Programmable multimode quantum networks
Armstrong, Seiji; Morizur, Jean-François; Janousek, Jiri; Hage, Boris; Treps, Nicolas; Lam, Ping Koy; Bachor, Hans-A.
2012-01-01
Entanglement between large numbers of quantum modes is the quintessential resource for future technologies such as the quantum internet. Conventionally, the generation of multimode entanglement in optics requires complex layouts of beamsplitters and phase shifters in order to transform the input modes into entangled modes. Here we report the highly versatile and efficient generation of various multimode entangled states with the ability to switch between different linear optics networks in real time. By defining our modes to be combinations of different spatial regions of one beam, we may use just one pair of multi-pixel detectors in order to measure multiple entangled modes. We programme virtual networks that are fully equivalent to the physical linear optics networks they are emulating. We present results for N=2 up to N=8 entangled modes here, including N=2, 3, 4 cluster states. Our approach introduces the highly sought after attributes of flexibility and scalability to multimode entanglement. PMID:22929783
Lopez, L.; Chalopin, B.; Riviere de la Souchere, A.; Fabre, C.; Treps, N.; Maitre, A.
2009-10-15
We investigate the spatial quantum properties of the light emitted by a perfectly spatially degenerate optical parametric oscillator (self-imaging optical parametric oscillator). We show that this device produces local squeezing for areas bigger than a coherence area that depends on the crystal length and pump width. Furthermore, it generates local EPR beams in the far field. We show, calculating the eigenmodes of the system, that it is highly multimode for realistic experimental parameters.
Multimodal luminescence properties of surface-treated ZnSe quantum dots by Eu
NASA Astrophysics Data System (ADS)
Park, Ji Young; Jeong, Da-Woon; Lim, Kyoung-Mook; Choa, Yong-Ho; Kim, Woo-Byoung; Kim, Bum Sung
2017-09-01
ZnSe:Eu quantum dots (QDs) were synthesized using the heating-up method by adding a Eu precursor in Zn and Se precursors. The optical property was investigated based on the change in the multimodal emission caused by increasing the amount of the Eu precursor. The emission wavelength of ZnSe QDs increased from 398 nm to 405 nm when the reaction was carried out for 30-300 s. The broad spectrum was attributed to the 4F65D1 → 4F7 transition when the Eu2+ emission was increased from 450 to 550 nm. Eu3+ shows characteristic red emission peaks at 579, 592, 615, 651, and 700 nm owing to the electronic transition of 5D0 → 7Fj (j = 0, 1, 2, 3, 4). The expected structure of the ZnSe:Eu QDs was verified by XRD, TEM, and XPS. Compared to the diffraction peaks of pristine ZnSe, the corresponding peaks for the ZnSe:Eu QDs are shifted, by about 0.43°, to larger angles, because the ionic radius of Eu3+ (0.95 Å) is larger than that of Zn2+ (0.74 Å). They also have Eu2+sbnd O and Eu3+sbnd O dangling bonds on the surface of Eu3+-doped ZnSe QDs, with an average size of about 3.15 nm. These semiconductor QDs with rare earth elements are promising candidates to fabricate light-converting materials.
Quantum Dots and Their Multimodal Applications: A Review
Bera, Debasis; Qian, Lei; Tseng, Teng-Kuan; Holloway, Paul H.
2010-01-01
Semiconducting quantum dots, whose particle sizes are in the nanometer range, have very unusual properties. The quantum dots have band gaps that depend in a complicated fashion upon a number of factors, described in the article. Processing-structure-properties-performance relationships are reviewed for compound semiconducting quantum dots. Various methods for synthesizing these quantum dots are discussed, as well as their resulting properties. Quantum states and confinement of their excitons may shift their optical absorption and emission energies. Such effects are important for tuning their luminescence stimulated by photons (photoluminescence) or electric field (electroluminescence). In this article, decoupling of quantum effects on excitation and emission are described, along with the use of quantum dots as sensitizers in phosphors. In addition, we reviewed the multimodal applications of quantum dots, including in electroluminescence device, solar cell and biological imaging.
Quantum teleportation of nonclassical wave packets: An effective multimode theory
Benichi, Hugo; Takeda, Shuntaro; Lee, Noriyuki; Furusawa, Akira
2011-07-15
We develop a simple and efficient theoretical model to understand the quantum properties of broadband continuous variable quantum teleportation. We show that, if stated properly, the problem of multimode teleportation can be simplified to teleportation of a single effective mode that describes the input state temporal characteristic. Using that model, we show how the finite bandwidth of squeezing and external noise in the classical channel affect the output teleported quantum field. We choose an approach that is especially relevant for the case of non-Gaussian nonclassical quantum states and we finally back-test our model with recent experimental results.
Invariant measures on multimode quantum Gaussian states
Lupo, C.; Mancini, S.; De Pasquale, A.; Facchi, P.; Florio, G.; Pascazio, S.
2012-12-15
We derive the invariant measure on the manifold of multimode quantum Gaussian states, induced by the Haar measure on the group of Gaussian unitary transformations. To this end, by introducing a bipartition of the system in two disjoint subsystems, we use a parameterization highlighting the role of nonlocal degrees of freedom-the symplectic eigenvalues-which characterize quantum entanglement across the given bipartition. A finite measure is then obtained by imposing a physically motivated energy constraint. By averaging over the local degrees of freedom we finally derive the invariant distribution of the symplectic eigenvalues in some cases of particular interest for applications in quantum optics and quantum information.
Invariant measures on multimode quantum Gaussian states
NASA Astrophysics Data System (ADS)
Lupo, C.; Mancini, S.; De Pasquale, A.; Facchi, P.; Florio, G.; Pascazio, S.
2012-12-01
We derive the invariant measure on the manifold of multimode quantum Gaussian states, induced by the Haar measure on the group of Gaussian unitary transformations. To this end, by introducing a bipartition of the system in two disjoint subsystems, we use a parameterization highlighting the role of nonlocal degrees of freedom—the symplectic eigenvalues—which characterize quantum entanglement across the given bipartition. A finite measure is then obtained by imposing a physically motivated energy constraint. By averaging over the local degrees of freedom we finally derive the invariant distribution of the symplectic eigenvalues in some cases of particular interest for applications in quantum optics and quantum information.
Multimode optomechanical system in the quantum regime.
Nielsen, William Hvidtfelt Padkær; Tsaturyan, Yeghishe; Møller, Christoffer Bo; Polzik, Eugene S; Schliesser, Albert
2017-01-03
We realize a simple and robust optomechanical system with a multitude of long-lived (Q > 10(7)) mechanical modes in a phononic-bandgap shielded membrane resonator. An optical mode of a compact Fabry-Perot resonator detects these modes' motion with a measurement rate (96 kHz) that exceeds the mechanical decoherence rates already at moderate cryogenic temperatures (10 K). Reaching this quantum regime entails, inter alia, quantum measurement backaction exceeding thermal forces and thus strong optomechanical quantum correlations. In particular, we observe ponderomotive squeezing of the output light mediated by a multitude of mechanical resonator modes, with quantum noise suppression up to -2.4 dB (-3.6 dB if corrected for detection losses) and bandwidths ≲90 kHz. The multimode nature of the membrane and Fabry-Perot resonators will allow multimode entanglement involving electromagnetic, mechanical, and spin degrees of freedom.
Multimode optomechanical system in the quantum regime
NASA Astrophysics Data System (ADS)
Hvidtfelt Padkær Nielsen, William; Tsaturyan, Yeghishe; Møller, Christoffer Bo; Polzik, Eugene S.; Schliesser, Albert
2017-01-01
We realize a simple and robust optomechanical system with a multitude of long-lived (Q > 107) mechanical modes in a phononic-bandgap shielded membrane resonator. An optical mode of a compact Fabry–Perot resonator detects these modes’ motion with a measurement rate (96 kHz) that exceeds the mechanical decoherence rates already at moderate cryogenic temperatures (10 K). Reaching this quantum regime entails, inter alia, quantum measurement backaction exceeding thermal forces and thus strong optomechanical quantum correlations. In particular, we observe ponderomotive squeezing of the output light mediated by a multitude of mechanical resonator modes, with quantum noise suppression up to ‑2.4 dB (‑3.6 dB if corrected for detection losses) and bandwidths ≲90 kHz. The multimode nature of the membrane and Fabry–Perot resonators will allow multimode entanglement involving electromagnetic, mechanical, and spin degrees of freedom.
A Single-Photon Subtractor for Multimode Quantum States
NASA Astrophysics Data System (ADS)
Ra, Young-Sik; Jacquard, Clément; Averchenko, Valentin; Roslund, Jonathan; Cai, Yin; Dufour, Adrien; Fabre, Claude; Treps, Nicolas
2016-05-01
In the last decade, single-photon subtraction has proved to be key operations in optical quantum information processing and quantum state engineering. Implementation of the photon subtraction has been based on linear optics and single-photon detection on single-mode resources. This technique, however, becomes unsuitable with multimode resources such as spectrally multimode squeezed states or continuous variables cluster states. We implement a single-photon subtractor for such multimode resources based on sum-frequency generation and single-photon detection. An input multimode quantum state interacts with a bright control beam whose spectrum has been engineered through ultrafast pulse-shaping. The multimode quantum state resulting from the single-photon subtractor is analyzed with multimode homodyne detection whose local oscillator spectrum is independently engineered. We characterize the single-photon subtractor via coherent-state quantum process tomography, which provides its mode-selectivity and subtraction modes. The ability to simultaneously control the state engineering and its detection ensures both flexibility and scalability in the production of highly entangled non-Gaussian quantum states.
Effect of multimode entanglement on lossy optical quantum metrology
NASA Astrophysics Data System (ADS)
Knott, P. A.; Proctor, T. J.; Nemoto, Kae; Dunningham, J. A.; Munro, W. J.
2014-09-01
In optical interferometry multimode entanglement is often assumed to be the driving force behind quantum enhanced measurements. Recent work has shown this assumption to be false: single-mode quantum states perform just as well as their multimode entangled counterparts. We go beyond this to show that when photon losses occur, an inevitability in any realistic system, multimode entanglement is actually detrimental to obtaining quantum enhanced measurements. We specifically apply this idea to a superposition of coherent states, demonstrating that these states show a robustness to loss that allows them to significantly outperform their competitors in realistic systems. A practically viable measurement scheme is then presented that allows measurements close to the theoretical bound, even with loss. These results promote an alternate way of approaching optical quantum metrology using single-mode states that we expect to have great implications for the future.
Two-photon quantum walk in a multimode fiber
Defienne, Hugo; Barbieri, Marco; Walmsley, Ian A.; Smith, Brian J.; Gigan, Sylvain
2016-01-01
Multiphoton propagation in connected structures—a quantum walk—offers the potential of simulating complex physical systems and provides a route to universal quantum computation. Increasing the complexity of quantum photonic networks where the walk occurs is essential for many applications. We implement a quantum walk of indistinguishable photon pairs in a multimode fiber supporting 380 modes. Using wavefront shaping, we control the propagation of the two-photon state through the fiber in which all modes are coupled. Excitation of arbitrary output modes of the system is realized by controlling classical and quantum interferences. This report demonstrates a highly multimode platform for multiphoton interference experiments and provides a powerful method to program a general high-dimensional multiport optical circuit. This work paves the way for the next generation of photonic devices for quantum simulation, computing, and communication. PMID:27152325
Two-photon quantum walk in a multimode fiber.
Defienne, Hugo; Barbieri, Marco; Walmsley, Ian A; Smith, Brian J; Gigan, Sylvain
2016-01-01
Multiphoton propagation in connected structures-a quantum walk-offers the potential of simulating complex physical systems and provides a route to universal quantum computation. Increasing the complexity of quantum photonic networks where the walk occurs is essential for many applications. We implement a quantum walk of indistinguishable photon pairs in a multimode fiber supporting 380 modes. Using wavefront shaping, we control the propagation of the two-photon state through the fiber in which all modes are coupled. Excitation of arbitrary output modes of the system is realized by controlling classical and quantum interferences. This report demonstrates a highly multimode platform for multiphoton interference experiments and provides a powerful method to program a general high-dimensional multiport optical circuit. This work paves the way for the next generation of photonic devices for quantum simulation, computing, and communication.
Multimode circuit quantum electrodynamics with hybrid metamaterial transmission lines.
Egger, D J; Wilhelm, F K
2013-10-18
Quantum transmission lines are central to superconducting and hybrid quantum computing. In this work we show how coupling them to a left-handed transmission line allows circuit QED to reach a new regime: multimode ultrastrong coupling. Out of the many potential applications of this novel device, we discuss the preparation of multipartite entangled states and the simulation of the spin-boson model where a quantum phase transition is reached up to finite size effects.
Multimode quantum states with single photons carrying orbital angular momentum.
Song, Xin-Bing; Fu, Shi-Yao; Zhang, Xiong; Yang, Zhen-Wei; Zeng, Qiang; Gao, Chunqing; Zhang, Xiangdong
2017-06-15
We propose and experimentally demonstrate a scheme for generating multimode quantum states with single photons carrying orbital angular momentum (OAM). Various quantum states have been realized by superposing multiple OAM modes of single photons in two possible paths. These quantum states exhibit NOON-like "super-resolving" interference behavior for the multiple OAM modes of single photons. Compared with the NOON states using many photons, these states are not only easily prepared, but also robust to photon losses. They may find potential applications in quantum optical communication and recognizing defects or objects. The method to identify a particular kind of defect has been demonstrated both theoretically and experimentally.
Quantum annealing with ultracold atoms in a multimode optical resonator
NASA Astrophysics Data System (ADS)
Torggler, Valentin; Krämer, Sebastian; Ritsch, Helmut
2017-03-01
A dilutely filled N -site optical lattice near zero temperature within a high-Q multimode cavity can be mapped to a spin ensemble with tailorable interactions at all length scales. The effective full site to site interaction matrix can be dynamically controlled by the application of up to N (N +1 )/2 laser beams of suitable geometry, frequency, and power, which allows for the implementation of quantum annealing dynamics relying on the all-to-all effective spin coupling controllable in real time. Via an adiabatic sweep starting from a superfluid initial state one can find the lowest-energy stationary state of this system. As the cavity modes are lossy, errors can be amended and the ground state can still be reached even from a finite temperature state via ground-state cavity cooling. The physical properties of the final atomic state can be directly and almost nondestructively read off from the cavity output fields. As an example we simulate a quantum Hopfield associative memory scheme.
Teleporting photonic qudits using multimode quantum scissors
NASA Astrophysics Data System (ADS)
Goyal, Sandeep K.; Konrad, Thomas
2013-12-01
Teleportation plays an important role in the communication of quantum information between the nodes of a quantum network and is viewed as an essential ingredient for long-distance Quantum Cryptography. We describe a method to teleport the quantum information carried by a photon in a superposition of a number d of light modes (a ``qudit'') by the help of d additional photons based on transcription. A qudit encoded into a single excitation of d light modes (in our case Laguerre-Gauss modes which carry orbital angular momentum) is transcribed to d single-rail photonic qubits, which are spatially separated. Each single-rail qubit consists of a superposition of vacuum and a single photon in each one of the modes. After successful teleportation of each of the d single-rail qubits by means of ``quantum scissors'' they are converted back into a qudit carried by a single photon which completes the teleportation scheme.
Teleporting photonic qudits using multimode quantum scissors.
Goyal, Sandeep K; Konrad, Thomas
2013-12-19
Teleportation plays an important role in the communication of quantum information between the nodes of a quantum network and is viewed as an essential ingredient for long-distance Quantum Cryptography. We describe a method to teleport the quantum information carried by a photon in a superposition of a number d of light modes (a "qudit") by the help of d additional photons based on transcription. A qudit encoded into a single excitation of d light modes (in our case Laguerre-Gauss modes which carry orbital angular momentum) is transcribed to d single-rail photonic qubits, which are spatially separated. Each single-rail qubit consists of a superposition of vacuum and a single photon in each one of the modes. After successful teleportation of each of the d single-rail qubits by means of "quantum scissors" they are converted back into a qudit carried by a single photon which completes the teleportation scheme.
Multimode quantum interference of photons in multiport integrated devices
Peruzzo, Alberto; Laing, Anthony; Politi, Alberto; Rudolph, Terry; O'Brien, Jeremy L.
2011-01-01
Photonics is a leading approach in realizing future quantum technologies and recently, optical waveguide circuits on silicon chips have demonstrated high levels of miniaturization and performance. Multimode interference (MMI) devices promise a straightforward implementation of compact and robust multiport circuits. Here, we show quantum interference in a 2×2 MMI coupler with visibility of V=95.6±0.9%. We further demonstrate the operation of a 4×4 port MMI device with photon pairs, which exhibits complex quantum interference behaviour. We have developed a new technique to fully characterize such multiport devices, which removes the need for phase-sensitive measurements and may find applications for a wide range of photonic devices. Our results show that MMI devices can operate in the quantum regime with high fidelity and promise substantial simplification and concatenation of photonic quantum circuits. PMID:21364563
Multimode squeezing, biphotons and uncertainty relations in polarization quantum optics
NASA Technical Reports Server (NTRS)
Karassiov, V. P.
1994-01-01
The concept of squeezing and uncertainty relations are discussed for multimode quantum light with the consideration of polarization. Using the polarization gauge SU(2) invariance of free electromagnetic fields, we separate the polarization and biphoton degrees of freedom from other ones, and consider uncertainty relations characterizing polarization and biphoton observables. As a consequence, we obtain a new classification of states of unpolarized (and partially polarized) light within quantum optics. We also discuss briefly some interrelations of our analysis with experiments connected with solving some fundamental problems of physics.
Multimode circuit optomechanics near the quantum limit
Massel, Francesco; Cho, Sung Un; Pirkkalainen, Juha-Matti; Hakonen, Pertti J.; Heikkilä, Tero T.; Sillanpää, Mika A.
2012-01-01
The coupling of distinct systems underlies nearly all physical phenomena. A basic instance is that of interacting harmonic oscillators, giving rise to, for example, the phonon eigenmodes in a lattice. Of particular importance are the interactions in hybrid quantum systems, which can combine the benefits of each part in quantum technologies. Here we investigate a hybrid optomechanical system having three degrees of freedom, consisting of a microwave cavity and two micromechanical beams with closely spaced frequencies around 32 MHz and no direct interaction. We record the first evidence of tripartite optomechanical mixing, implying that the eigenmodes are combinations of one photonic and two phononic modes. We identify an asymmetric dark mode having a long lifetime. Simultaneously, we operate the nearly macroscopic mechanical modes close to the motional quantum ground state, down to 1.8 thermal quanta, achieved by back-action cooling. These results constitute an important advance towards engineering of entangled motional states. PMID:22871806
Multimode circuit optomechanics near the quantum limit.
Massel, Francesco; Cho, Sung Un; Pirkkalainen, Juha-Matti; Hakonen, Pertti J; Heikkilä, Tero T; Sillanpää, Mika A
2012-01-01
The coupling of distinct systems underlies nearly all physical phenomena. A basic instance is that of interacting harmonic oscillators, giving rise to, for example, the phonon eigenmodes in a lattice. Of particular importance are the interactions in hybrid quantum systems, which can combine the benefits of each part in quantum technologies. Here we investigate a hybrid optomechanical system having three degrees of freedom, consisting of a microwave cavity and two micromechanical beams with closely spaced frequencies around 32 MHz and no direct interaction. We record the first evidence of tripartite optomechanical mixing, implying that the eigenmodes are combinations of one photonic and two phononic modes. We identify an asymmetric dark mode having a long lifetime. Simultaneously, we operate the nearly macroscopic mechanical modes close to the motional quantum ground state, down to 1.8 thermal quanta, achieved by back-action cooling. These results constitute an important advance towards engineering of entangled motional states.
Near-field hyperspectral quantum probing of multimodal plasmonic resonators
NASA Astrophysics Data System (ADS)
Cuche, A.; Berthel, M.; Kumar, U.; Colas des Francs, G.; Huant, S.; Dujardin, E.; Girard, C.; Drezet, A.
2017-03-01
Quantum systems, excited by an external source of photons, display a photodynamics that is ruled by a subtle balance between radiative or nonradiative energy channels when interacting with metallic nanostructures. We apply and generalize this concept to achieve a quantum probing of multimodal plasmonic resonators by collecting and filtering the broad emission spectra generated by a nanodiamond (ND) hosting a small set of nitrogen-vacancy (NV) color centers attached at the apex of an optical tip. Spatially and spectrally resolved information on the photonic local density of states (ph-LDOS) can be recorded with this technique in the immediate vicinity of plasmonic resonators, paving the way for a complete near-field optical characterization of any kind of nanoresonators in the single photon regime.
Multimode Bose-Hubbard model for quantum dipolar gases in confined geometries
NASA Astrophysics Data System (ADS)
Cartarius, Florian; Minguzzi, Anna; Morigi, Giovanna
2017-06-01
We theoretically consider ultracold polar molecules in a wave guide. The particles are bosons: They experience a periodic potential due to an optical lattice oriented along the wave guide and are polarized by an electric field orthogonal to the guide axis. The array is mechanically unstable by opening the transverse confinement in the direction orthogonal to the polarizing electric field and can undergo a transition to a double-chain (zigzag) structure. For this geometry we derive a multimode generalized Bose-Hubbard model for determining the quantum phases of the gas at the mechanical instability, taking into account the quantum fluctuations in all directions of space. Our model limits the dimension of the numerically relevant Hilbert subspace by means of an appropriate decomposition of the field operator, which is obtained from a field theoretical model of the linear-zigzag instability. We determine the phase diagrams of small systems using exact diagonalization and find that, even for tight transverse confinement, the aspect ratio between the two transverse trap frequencies controls not only the classical but also the quantum properties of the ground state in a nontrivial way. Convergence tests at the linear-zigzag instability demonstrate that our multimode generalized Bose-Hubbard model can catch the essential features of the quantum phases of dipolar gases in confined geometries with a limited computational effort.
Magnetically engineered semiconductor quantum dots as multimodal imaging probes.
Jing, Lihong; Ding, Ke; Kershaw, Stephen V; Kempson, Ivan M; Rogach, Andrey L; Gao, Mingyuan
2014-10-08
Light-emitting semiconductor quantum dots (QDs) combined with magnetic resonance imaging contrast agents within a single nanoparticle platform are considered to perform as multimodal imaging probes in biomedical research and related clinical applications. The principles of their rational design are outlined and contemporary synthetic strategies are reviewed (heterocrystalline growth; co-encapsulation or assembly of preformed QDs and magnetic nanoparticles; conjugation of magnetic chelates onto QDs; and doping of QDs with transition metal ions), identifying the strengths and weaknesses of different approaches. Some of the opportunities and benefits that arise through in vivo imaging using these dual-mode probes are highlighted where tumor location and delineation is demonstrated in both MRI and fluorescence modality. Work on the toxicological assessments of QD/magnetic nanoparticles is also reviewed, along with progress in reducing their toxicological side effects for eventual clinical use. The review concludes with an outlook for future biomedical imaging and the identification of key challenges in reaching clinical applications.
Quantum theory of Stokes generation with a multimode laser
Raymer, M.G.; Westling, L.A.
1985-09-01
The quantum theory of Stokes generation by stimulated Raman scattering of a multimode laser is developed and analyzed. For large laser-mode spacing, the generated Stokes intensity is found to be independent of the number of laser modes for both high and low gains. The result applies to both free-running and mode-locked lasers and is in contrast to that in the Raman amplifier, in which gain is found to depend on the number of modes. The Stokes light is generated with mode amplitudes and phases in perfect correlation with those of the laser. Also, in steady state the instantaneous Stokes intensity is found to follow exactly the rapid fluctuations of the laser intensity.
NASA Astrophysics Data System (ADS)
Dwivedi, A.; Mishra, Kavita; Rai, S. B.
2015-11-01
This work investigates the promising multi-modal luminescence (upconversion (UC), downshifting (DS) and quantum cutting (QC)) properties of RE3+ (Tm3+, Yb3+) and Bi3+ activated GdNbO4 phosphors synthesized using the well-known solid state reaction method. Structural characterization using x-ray diffraction measurements confirms the formation of the pure phase of the GdNbO4 host with no impurities. The optical band gap (E g) of GdNbO4 (with and without RE3+ ions) calculated from UV-Vis-near-infrared (NIR) measurements was found to be the same ~4.44 eV which indicates that GdNbO4 is a wide band gap material. Further, Bi3+ doping presents an interesting E g tuning of the GdNbO4 phosphor, i.e. E g increases up to 5.38 eV. In terms of luminescence, this material produces intense blue and NIR emission via multi-modal optical processes. On NIR excitation (λ exc = 980 nm), Gd0.94Tm0.01Yb0.05NbO4 produces intense upconverted blue and NIR and relatively weak red emission. In addition to the UC process, Gd0.94Tm0.01Yb0.05NbO4 also exhibits pump power dependent variation in fluorescence intensity ratio for I 472/I 477 showing the applicability of this material as an optical heater. On UV excitation (λ exc = 265 nm), Gd0.99Tm0.01NbO4 produces intense DS blue emission due to the Tm3+ ion, overlapped with the emission of the (NbO4)3- ion through strong energy transfer (ET) from (NbO4)3- to Tm3+ ions. Interestingly, NIR QC has also been successfully observed in Gd0.9Yb0.1NbO4, Gd0.89Bi0.01Yb0.1NbO4 and Gd0.79Tm0.01Yb0.2NbO4 phosphors through cooperative ET from the (NbO4)3- group to the Yb3+ ion, Bi(6s)-Nb(4d) to the Yb3+ ion and the Tm3+ ion to the Yb3+ ion, respectively. The mechanisms involved in these processes are explained in detail in this work. The QC efficiency in this work has been found to be ~177%. Thus, the multi-modal luminescence (UC, DS and QC) property of this material makes it a promising candidate for display devices, spectral
Solid-State Source of Nonclassical Photon Pairs with Embedded Multimode Quantum Memory.
Kutluer, Kutlu; Mazzera, Margherita; de Riedmatten, Hugues
2017-05-26
The generation and distribution of quantum correlations between photonic qubits is a key resource in quantum information science. For applications in quantum networks and quantum repeaters, it is required that these quantum correlations be stored in a quantum memory. In 2001, Duan, Lukin, Cirac, and Zoller (DLCZ) proposed a scheme combining a correlated photon-pair source and a quantum memory in atomic gases, which has enabled fast progress towards elementary quantum networks. In this Letter, we demonstrate a solid-state source of correlated photon pairs with embedded spin-wave quantum memory, using a rare-earth-ion-doped crystal. We show strong quantum correlations between the photons, high enough for performing quantum communication. Unlike the original DLCZ proposal, our scheme is inherently multimode thanks to a built-in rephasing mechanism, allowing us to demonstrate storage of 11 temporal modes. These results represent an important step towards the realization of complex quantum networks architectures using solid-state resources.
Solid-State Source of Nonclassical Photon Pairs with Embedded Multimode Quantum Memory
NASA Astrophysics Data System (ADS)
Kutluer, Kutlu; Mazzera, Margherita; de Riedmatten, Hugues
2017-05-01
The generation and distribution of quantum correlations between photonic qubits is a key resource in quantum information science. For applications in quantum networks and quantum repeaters, it is required that these quantum correlations be stored in a quantum memory. In 2001, Duan, Lukin, Cirac, and Zoller (DLCZ) proposed a scheme combining a correlated photon-pair source and a quantum memory in atomic gases, which has enabled fast progress towards elementary quantum networks. In this Letter, we demonstrate a solid-state source of correlated photon pairs with embedded spin-wave quantum memory, using a rare-earth-ion-doped crystal. We show strong quantum correlations between the photons, high enough for performing quantum communication. Unlike the original DLCZ proposal, our scheme is inherently multimode thanks to a built-in rephasing mechanism, allowing us to demonstrate storage of 11 temporal modes. These results represent an important step towards the realization of complex quantum networks architectures using solid-state resources.
Convergence of the multimode quantum Rabi model of circuit quantum electrodynamics
NASA Astrophysics Data System (ADS)
Gely, Mario F.; Parra-Rodriguez, Adrian; Bothner, Daniel; Blanter, Ya. M.; Bosman, Sal J.; Solano, Enrique; Steele, Gary A.
2017-06-01
Circuit quantum electrodynamics (QED) studies the interaction of artificial atoms, open transmission lines, and electromagnetic resonators fabricated from superconducting electronics. While the theory of an artificial atom coupled to one mode of a resonator is well studied, considering multiple modes leads to divergences which are not well understood. Here, we introduce a first-principles model of a multimode resonator coupled to a Josephson junction atom. Studying the model in the absence of any cutoff, in which the coupling rate to mode number n scales as √{n } for n up to ∞ , we find that quantities such as the Lamb shift do not diverge due to a natural rescaling of the bare atomic parameters that arises directly from the circuit analysis. Introducing a cutoff in the coupling from a nonzero capacitance of the Josephson junction, we provide a physical interpretation of the decoupling of higher modes in the context of circuit analysis. In addition to explaining the convergence of the quantum Rabi model with no cutoff, our work also provides a useful framework for analyzing the ultrastrong coupling regime of a multimode circuit QED.
Tumor-Targeted Multimodal Optical Imaging with Versatile Cadmium-Free Quantum Dots
Liu, Xiangyou; Braun, Gary B.; Zhong, Haizheng; Hall, David J.; Han, Wenlong; Qin, Mingde; Zhao, Chuanzhen; Wang, Meina; She, Zhi-Gang; Cao, Chuanbao; Sailor, Michael J.; Stallcup, William B.; Ruoslahti, Erkki
2016-01-01
The rapid development of fluorescence imaging technologies requires concurrent improvements in the performance of fluorescent probes. Quantum dots have been extensively used as an imaging probe in various research areas because of their inherent advantages based on unique optical and electronic properties. However, their clinical translation has been limited by the potential toxicity especially from cadmium. Here, a versatile bioimaging probe is developed by using highly luminescent cadmium-free CuInSe2/ZnS core/shell quantum dots conjugated with CGKRK (Cys–Gly–Lys–Arg–Lys) tumor-targeting peptides. This probe exhibits excellent photostability, reasonably long circulation time, minimal toxicity, and strong tumor-specific homing property. The most important feature of this probe is that it shows distinctive versatility in tumor-targeted multimodal imaging including near-infrared, time-gated, and two-photon imaging in different tumor models. In a glioblastoma mouse model, the targeted probe clearly denotes tumor boundaries and positively labels a population of diffusely infiltrating tumor cells, suggesting its utility in precise tumor detection during surgery. This work lays a foundation for potential clinical translation of the probe. PMID:27441036
NASA Astrophysics Data System (ADS)
Seri, Alessandro; Lenhard, Andreas; Rieländer, Daniel; Gündoǧan, Mustafa; Ledingham, Patrick M.; Mazzera, Margherita; de Riedmatten, Hugues
2017-04-01
Quantum correlations between long-lived quantum memories and telecom photons that can propagate with low loss in optical fibers are an essential resource for the realization of large-scale quantum information networks. Significant progress has been realized in this direction with atomic and solid-state systems. Here, we demonstrate quantum correlations between a telecom photon and a multimode on-demand solid state quantum memory. This is achieved by mapping a correlated single photon onto a spin collective excitation in a Pr3 +:Y2SiO5 crystal for a controllable time. The stored single photons are generated by cavity-enhanced spontaneous parametric down-conversion and heralded by their partner photons at telecom wavelength. These results represent the first demonstration of a multimode on-demand solid state quantum memory for external quantum states of light. They provide an important resource for quantum repeaters and pave the way for the implementation of quantum information networks with distant solid state quantum nodes.
Norms of quantum Gaussian multi-mode channels
NASA Astrophysics Data System (ADS)
Frank, Rupert L.; Lieb, Elliott H.
2017-06-01
We compute the Sp→Sp norm of a general Gaussian gauge-covariant multi-mode channel for any 1 ≤ p < ∞ , where Sp is a Schatten space. As a consequence, we verify the Gaussian optimizer conjecture and the multiplicativity conjecture in these cases.
Multimode cavity-assisted quantum storage via continuous phase-matching control
NASA Astrophysics Data System (ADS)
Kalachev, Alexey; Kocharovskaya, Olga
2013-09-01
A scheme for spatial multimode quantum memory is developed such that spatial-temporal structure of a weak signal pulse can be stored and recalled via cavity-assisted off-resonant Raman interaction with a strong angular-modulated control field in an extended Λ-type atomic ensemble. It is shown that effective multimode storage is possible when the Raman coherence spatial grating involves wave vectors with different longitudinal components relative to the paraxial signal field. The possibilities of implementing the scheme in the solid-state materials are discussed.
Energy exchange between modes in a multimode two-color quantum dot laser with optical feedback.
Virte, Martin; Pawlus, Robert; Sciamanna, Marc; Panajotov, Krassimir; Breuer, Stefan
2016-07-15
We investigate experimentally and theoretically the multimode dynamics of a two-color quantum dot laser subject to time-delayed optical feedback. We unveil energy exchanges between the longitudinal modes of the excited state triggered by variations of the feedback phase, and observe that the modal competition between longitudinal modes appears independently within the ground state and excited state emission. These features are accurately reproduced with a quantum dot laser model extended to take into account multiple modes for both ground and excited states. Finally, we discuss the significant impact of such behavior on feedback-based control of two-color quantum dot lasers.
Multiplicative properties of quantum channels
NASA Astrophysics Data System (ADS)
Rahaman, Mizanur
2017-08-01
In this paper, we study the multiplicative behaviour of quantum channels, mathematically described by trace preserving, completely positive maps on matrix algebras. It turns out that the multiplicative domain of a unital quantum channel has a close connection to its spectral properties. A structure theorem (theorem 2.5), which reveals the automorphic property of an arbitrary unital quantum channel on a subalgebra, is presented. Various classes of quantum channels (irreducible, primitive, etc) are then analysed in terms of this stabilising subalgebra. The notion of the multiplicative index of a unital quantum channel is introduced, which measures the number of times a unital channel needs to be composed with itself for the multiplicative algebra to stabilise. We show that the maps that have trivial multiplicative domains are dense in completely bounded norm topology in the set of all unital completely positive maps. Some applications in quantum information theory are discussed.
Multimode and Long-Lived Quantum Correlations Between Photons and Spins in a Crystal
NASA Astrophysics Data System (ADS)
Laplane, Cyril; Jobez, Pierre; Etesse, Jean; Gisin, Nicolas; Afzelius, Mikael
2017-05-01
The realization of quantum networks and quantum repeaters remains an outstanding challenge in quantum communication. These rely on the entanglement of remote matter systems, which in turn requires the creation of quantum correlations between a single photon and a matter system. A practical way to establish such correlations is via spontaneous Raman scattering in atomic ensembles, known as the Duan-Lukin-Cirac-Zoller (DLCZ) scheme. However, time multiplexing is inherently difficult using this method, which leads to low communication rates even in theory. Moreover, it is desirable to find solid-state ensembles where such matter-photon correlations could be generated. Here we demonstrate quantum correlations between a single photon and a spin excitation in up to 12 temporal modes, in a 151Eu3+ -doped Y2 SiO5 crystal, using a novel DLCZ approach that is inherently multimode. After a storage time of 1 ms, the spin excitation is converted into a second photon. The quantum correlation of the generated photon pair is verified by violating a Cauchy-Schwarz inequality. Our results show that solid-state rare-earth-ion-doped crystals could be used to generate remote multimode entanglement, an important resource for future quantum networks.
Quantum properties of exponential states
Luis, Alfredo
2007-05-15
The use of Renyi entropy as an uncertainty measure alternative to variance leads to the study of states with quantum fluctuations below the levels established by Gaussian states, which are the position-momentum minimum uncertainty states according to variance. We examine the quantum properties of states with exponential wave functions, which combine reduced fluctuations with practical feasibility.
Gold–silica quantum rattles for multimodal imaging and therapy
Hembury, Mathew; Chiappini, Ciro; Bertazzo, Sergio; Kalber, Tammy L.; Drisko, Glenna L.; Ogunlade, Olumide; Walker-Samuel, Simon; Krishna, Katla Sai; Jumeaux, Coline; Beard, Paul; Kumar, Challa S. S. R.; Porter, Alexandra E.; Lythgoe, Mark F.; Boissière, Cédric; Sanchez, Clément; Stevens, Molly M.
2015-01-01
Gold quantum dots exhibit distinctive optical and magnetic behaviors compared with larger gold nanoparticles. However, their unfavorable interaction with living systems and lack of stability in aqueous solvents has so far prevented their adoption in biology and medicine. Here, a simple synthetic pathway integrates gold quantum dots within a mesoporous silica shell, alongside larger gold nanoparticles within the shell’s central cavity. This “quantum rattle” structure is stable in aqueous solutions, does not elicit cell toxicity, preserves the attractive near-infrared photonics and paramagnetism of gold quantum dots, and enhances the drug-carrier performance of the silica shell. In vivo, the quantum rattles reduced tumor burden in a single course of photothermal therapy while coupling three complementary imaging modalities: near-infrared fluorescence, photoacoustic, and magnetic resonance imaging. The incorporation of gold within the quantum rattles significantly enhanced the drug-carrier performance of the silica shell. This innovative material design based on the mutually beneficial interaction of gold and silica introduces the use of gold quantum dots for imaging and therapeutic applications. PMID:25653336
Gold-silica quantum rattles for multimodal imaging and therapy.
Hembury, Mathew; Chiappini, Ciro; Bertazzo, Sergio; Kalber, Tammy L; Drisko, Glenna L; Ogunlade, Olumide; Walker-Samuel, Simon; Krishna, Katla Sai; Jumeaux, Coline; Beard, Paul; Kumar, Challa S S R; Porter, Alexandra E; Lythgoe, Mark F; Boissière, Cédric; Sanchez, Clément; Stevens, Molly M
2015-02-17
Gold quantum dots exhibit distinctive optical and magnetic behaviors compared with larger gold nanoparticles. However, their unfavorable interaction with living systems and lack of stability in aqueous solvents has so far prevented their adoption in biology and medicine. Here, a simple synthetic pathway integrates gold quantum dots within a mesoporous silica shell, alongside larger gold nanoparticles within the shell's central cavity. This "quantum rattle" structure is stable in aqueous solutions, does not elicit cell toxicity, preserves the attractive near-infrared photonics and paramagnetism of gold quantum dots, and enhances the drug-carrier performance of the silica shell. In vivo, the quantum rattles reduced tumor burden in a single course of photothermal therapy while coupling three complementary imaging modalities: near-infrared fluorescence, photoacoustic, and magnetic resonance imaging. The incorporation of gold within the quantum rattles significantly enhanced the drug-carrier performance of the silica shell. This innovative material design based on the mutually beneficial interaction of gold and silica introduces the use of gold quantum dots for imaging and therapeutic applications.
Gold–silica quantum rattles for multimodal imaging and therapy
Hembury, Mathew; Chiappini, Ciro; Bertazzo, Sergio; Kalber, Tammy L.; Drisko, Glenna L.; Ogunlade, Olumide; Walker-Samuel, Simon; Krishna, Katla Sai; Jumeaux, Coline; Beard, Paul; Kumar, Challa S. S. R.; Porter, Alexandra E.; Lythgoe, Mark F.; Boissière, Cédric; Sanchez, Clément; Stevens, Molly M.
2015-02-04
Gold quantum dots exhibit distinctive optical and magnetic behaviors compared with larger gold nanoparticles. However, their unfavorable interaction with living systems and lack of stability in aqueous solvents has so far prevented their adoption in biology and medicine. In this paper, a simple synthetic pathway integrates gold quantum dots within a mesoporous silica shell, alongside larger gold nanoparticles within the shell’s central cavity. This “quantum rattle” structure is stable in aqueous solutions, does not elicit cell toxicity, preserves the attractive near-infrared photonics and paramagnetism of gold quantum dots, and enhances the drug-carrier performance of the silica shell. In vivo, the quantum rattles reduced tumor burden in a single course of photothermal therapy while coupling three complementary imaging modalities: near-infrared fluorescence, photoacoustic, and magnetic resonance imaging. The incorporation of gold within the quantum rattles significantly enhanced the drug-carrier performance of the silica shell. Finally, this innovative material design based on the mutually beneficial interaction of gold and silica introduces the use of gold quantum dots for imaging and therapeutic applications.
Gold–silica quantum rattles for multimodal imaging and therapy
Hembury, Mathew; Chiappini, Ciro; Bertazzo, Sergio; ...
2015-02-04
Gold quantum dots exhibit distinctive optical and magnetic behaviors compared with larger gold nanoparticles. However, their unfavorable interaction with living systems and lack of stability in aqueous solvents has so far prevented their adoption in biology and medicine. In this paper, a simple synthetic pathway integrates gold quantum dots within a mesoporous silica shell, alongside larger gold nanoparticles within the shell’s central cavity. This “quantum rattle” structure is stable in aqueous solutions, does not elicit cell toxicity, preserves the attractive near-infrared photonics and paramagnetism of gold quantum dots, and enhances the drug-carrier performance of the silica shell. In vivo, themore » quantum rattles reduced tumor burden in a single course of photothermal therapy while coupling three complementary imaging modalities: near-infrared fluorescence, photoacoustic, and magnetic resonance imaging. The incorporation of gold within the quantum rattles significantly enhanced the drug-carrier performance of the silica shell. Finally, this innovative material design based on the mutually beneficial interaction of gold and silica introduces the use of gold quantum dots for imaging and therapeutic applications.« less
NASA Astrophysics Data System (ADS)
Parniak, Michał; Pęcak, Daniel; Wasilewski, Wojciech
2016-11-01
We analyse the properties of a Raman quantum light-atom interface in long atomic ensemble and its applications as a quantum memory or two-mode squeezed state generator. We consider the weak-coupling regime and include both Stokes and anti-Stokes scattering and the effects of Doppler broadening in buffer gas assuming frequent velocity-averaging collisions. We find the Green functions describing multimode transformation from input to output fields of photons and atomic excitations. Proper mode basis is found via singular value decomposition for short interaction times. It reveals that triples of modes are coupled by a transformation equivalent to a combination of two beamsplitters and a two-mode squeezing operation. We analyse the possible transformations on an example of warm rubidium-87 vapour. The model we present bridges the gap between the Stokes only and anti-Stokes only interactions providing simple, universal description in a temporally and longitudinally multimode situation. Our results also provide an easy way to find an evolution of the states in a Schrödinger picture thus facilitating understanding and design.
Near-field optical properties of quantum dots, applications and perspectives.
Zora, A; Triberis, G P; Simserides, C
2011-11-01
Recent years have witnessed tremendous research in quantum dots as excellent models of quantum physics at the nanoscale and as excellent candidates for various applications based on their optoelectronic properties. This review intends to present theoretical and experimental investigations of the near-field optical properties of these structures, and their multimodal applications such as biosensors, biological labels, optical fibers, switches and sensors, visual displays, photovoltaic devices and related patents.
Collective dynamics of multimode bosonic systems induced by weak quantum measurement
NASA Astrophysics Data System (ADS)
Mazzucchi, Gabriel; Kozlowski, Wojciech; Caballero-Benitez, Santiago F.; Mekhov, Igor B.
2016-07-01
In contrast to the fully projective limit of strong quantum measurement, where the evolution is locked to a small subspace (quantum Zeno dynamics), or even frozen completely (quantum Zeno effect), the weak non-projective measurement can effectively compete with standard unitary dynamics leading to nontrivial effects. Here we consider global weak measurement addressing collective variables, thus preserving quantum superpositions due to the lack of which path information. While for certainty we focus on ultracold atoms, the idea can be generalized to other multimode quantum systems, including various quantum emitters, optomechanical arrays, and purely photonic systems with multiple-path interferometers (photonic circuits). We show that light scattering from ultracold bosons in optical lattices can be used for defining macroscopically occupied spatial modes that exhibit long-range coherent dynamics. Even if the measurement strength remains constant, the quantum measurement backaction acts on the atomic ensemble quasi-periodically and induces collective oscillatory dynamics of all the atoms. We introduce an effective model for the evolution of the spatial modes and present an analytic solution showing that the quantum jumps drive the system away from its stable point. We confirm our finding describing the atomic observables in terms of stochastic differential equations.
Multimodal imaging probes based on Gd-DOTA conjugated quantum dot nanomicelles.
Liu, Liwei; Law, Wing-Cheung; Yong, Ken-Tye; Roy, Indrajit; Ding, Hong; Erogbogbo, Folarin; Zhang, Xihe; Prasad, Paras N
2011-05-07
Recently, multimodal nanoparticles integrating dual- or tri-imaging modalities into a single hybrid nanosystem have attracted plenty of attention in biomedical research. Here, we report the fabrication of two types of multimodal micelle-encapsulated nanoparticles, which were systematically characterized and thoroughly evaluated in terms of their imaging potential and biocompatibility. Optical and magnetic resonance (MR) imaging probes were integrated by conjugating DOTA-gadolinium (Gd) derivative to quantum dot based nanomicelles. Two amphiphilic block copolymer micelles, amine-terminated mPEG-phospholipid and amine-modified Pluronic F127, were chosen as the capping agents because of their excellent biocompatibility and ability to prevent opsonization and prolong circulation time in vivo. Owing to their different hydrophobic-hydrophilic structure, the micellar aggregates exhibited different sizes and protection of core QDs. This work revealed the differences between these nanomicelles in terms of the stability over a wide range of pH, along with their cytotoxicity and the capacity for chelating gadolinium, thus providing a useful guideline for tailor-making multimodal nanoparticles for specific biomedical applications.
NASA Astrophysics Data System (ADS)
Wang, Hailong; Fabre, Claude; Jing, Jietai
2017-05-01
Multimode quantum resources or states, in which quantum correlations are shared and distributed among multiple parties, are important not only for fundamental tests of quantum effects but also for their numerous possible applications in quantum technologies, such as quantum imaging and quantum metrology. Here we demonstrate the single-step fabrication of a multimode quantum resource from four-wave mixing (FWM) process in hot Rb vapor using a spatially structured pump, which consists of a coherent combination of two tilted pump beams. During this FWM process, one probe beam is amplified, three conjugate and two new probe beams are generated. The measured degrees of the intensity squeezing for the four-beam case and six-beam case are around -4.1 ±0.1 dB and -4.7 ±0.1 dB, respectively. The generated multiple quantum correlated beams are naturally separated with distinct directions, which is crucial for sending them out to quantum nodes at different locations in quantum communication. Our scheme is compact, simple, phase insensitive, and easily scalable to larger number of quantum-correlated modes.
Mn-doped near-infrared quantum dots as multimodal targeted probes for pancreatic cancer imaging
NASA Astrophysics Data System (ADS)
Yong, Ken-Tye
2009-01-01
This work presents a novel approach to producing manganese (Mn)-doped quantum dots (Mnd-QDs) emitting in the near-infrared (NIR). Surface functionalization of Mnd-QDs with lysine makes them stably disperse in aqueous media and able to conjugate with targeting molecules. The nanoparticles were structurally and compositionally characterized and maintained a high photoluminescence quantum yield and displayed paramagnetism in water. The receptor-mediated delivery of bioconjugated Mnd-QDs into pancreatic cancer cells was demonstrated using the confocal microscopy technique. Cytotoxicity of Mnd-QDs on live cells has been evaluated. The NIR-emitting characteristic of the QDs has been exploited to acquire whole animal body imaging with high contrast signals. In addition, histological and blood analysis of mice have revealed that no long-term toxic effects arise from MnD-QDs. These studies suggest multimodal Mnd-QDs have the potentials as probes for early pancreatic cancer imaging and detection.
Multimode dynamics in quantum cascade lasers: From coherent instability to mode locking
NASA Astrophysics Data System (ADS)
Wang, Christine Yi-Ting
Quantum Cascade Lasers (QCLs) are unipolar semiconductor lasers based on intersubband transitions in quantum wells. Since their invention in 1994, these lasers have undergone tremendous improvement, and have become the most prominent coherent light source in the mid-infrared and terahertz spectral ranges. However, the understanding of multimode regimes in QCLs is still in its infancy, and there has not been much effort toward generating ultrafast pulses from QCLs. The recent development of low loss, high power QCLs enables the study of those previously under-investigated aspects. This thesis can be divided into two main parts. In the first part, we study the multimode regimes in QCLs. We find that QCLs, because of their extremely fast gain recovery time, differ from diode lasers in multimode operation. While a saturable absorber can often lead to self mode-locking in lasers with long gain recovery compared to the cavity round-trip time, in QCLs it lowers the threshold of a coherent multimode instability, which is driven by the same fundamental mechanism of Rabi oscillations as the elusive Risken-Nummedal-Graham-Haken (RNGH) instability predicted 40 years ago. The main experimental signature of RNGH instability is a splitting corresponding to twice the Rabi frequency in optical spectrum. In QCLs this coherent instability is enhanced due to the large Rabi frequency compared to the relaxation rates. We have also shown that spatial hole burning, which is not so readily observable in diode lasers, also plays an important role in QCLs. Both experimental data and simulations based on Maxwell-Bloch equations are presented. In the second part of this thesis, we demonstrate active mode-locking in QCLs. The stable mode-locked pulse train was generated by actively modulating the pumping current of a small section on a QCL. Stable mode locking was confirmed by second-order interferometric autocorrelation measurements, and a FWHM of 3 ps and about 0.5 pJ per pulse were deduced
Schneeweiss, Philipp; Zeiger, Sophie; Hoinkes, Thomas; Rauschenbeutel, Arno; Volz, Jürgen
2017-01-01
We experimentally realize an optical fiber ring resonator that includes a tapered section with a subwavelength-diameter waist. In this section, the guided light exhibits a significant evanescent field which allows for efficient interfacing with optical emitters. A commercial tunable fiber beam splitter provides simple and robust coupling to the resonator. Key parameters of the resonator such as the out-coupling rate, free spectral range, and birefringence can be adjusted. Thanks to the low taper- and coupling-losses, the resonator exhibits an unloaded finesse of F=75±1, sufficient for reaching the regime of strong coupling for emitters placed in the evanescent field. The system is ideally suited for trapping ensembles of laser-cooled atoms along the nanofiber section. Based on measured parameters, we estimate that the system can serve as a platform for optical multimode strong coupling experiments. Finally, we discuss the possibilities of using the resonator for applications based on chiral quantum optics.
NASA Astrophysics Data System (ADS)
Schneeweiss, Philipp; Zeiger, Sophie; Hoinkes, Thomas; Rauschenbeutel, Arno; Volz, Jürgen
2017-01-01
We experimentally realize an optical fiber ring resonator that includes a tapered section with subwavelength-diameter waist. In this section, the guided light exhibits a significant evanescent field which allows for efficient interfacing with optical emitters. A commercial tunable fiber beam splitter provides simple and robust coupling to the resonator. Key parameters of the resonator such as its out-coupling rate, free spectral range, and birefringence can be adjusted. Thanks to the low taper- and coupling-losses, the resonator exhibits an unloaded finesse of F=75+/-1, sufficient for reaching the regime of strong coupling for emitters placed in the evanescent field. The system is ideally suited for trapping ensembles of laser-cooled atoms along the nanofiber section. Based on measured parameters, we estimate that the system can serve as a platform for optical multimode strong coupling experiments. Finally, we discuss the possibilities of using the resonator for applications based on chiral quantum optics.
Multimodality and interactivity: connecting properties of serious games with educational outcomes.
Ritterfeld, Ute; Shen, Cuihua; Wang, Hua; Nocera, Luciano; Wong, Wee Ling
2009-12-01
Serious games have become an important genre of digital media and are often acclaimed for their potential to enhance deeper learning because of their unique technological properties. Yet the discourse has largely remained at a conceptual level. For an empirical evaluation of educational games, extra effort is needed to separate intertwined and confounding factors in order to manipulate and thus attribute the outcome to one property independent of another. This study represents one of the first attempts to empirically test the educational impact of two important properties of serious games, multimodality and interactivity, through a partial 2 x 3 (interactive, noninteractive by high, moderate, low in multimodality) factorial between-participants follow-up experiment. Results indicate that both multimodality and interactivity contribute to educational outcomes individually. Implications for educational strategies and future research directions are discussed.
Schindler, Torben; Walter, Johannes; Peukert, Wolfgang; Segets, Doris; Unruh, Tobias
2015-12-10
Properties of small semiconductor nanoparticles (NPs) are strongly governed by their size. Precise characterization is a key requirement for tailored dispersities and thus for high-quality devices. Results of a careful analysis of particle size distributions (PSDs) of ZnO are presented combining advantages of UV/vis absorption spectroscopy, analytical ultracentrifugation, and small-angle X-ray scattering (SAXS). Our study reveals that careful cross-validation of these different methods is mandatory to end up with reliable resolution. PSDs of ZnO NPs are multimodal on a size range of 2-8 nm, a finding that is not yet sufficiently addressed. In the second part of our work the evolution of PSDs was studied using in situ SAXS. General principles for the appearance of multimodalities covering a temperature range between 15 and 45 °C were found which are solely determined by the aging state indicated by the size of the medium-sized fraction. Whenever this fraction exceeds a critical diameter, a new multimodality is identified, independent of the particular time-temperature combination. A fraction of larger particles aggregates first before a fraction of smaller particles is detected. Fixed multimodalities have not yet been addressed adequately and could only be evidenced due to careful size analysis.
Center-of-mass motion as a sensitive convergence test for variational multimode quantum dynamics
NASA Astrophysics Data System (ADS)
Cosme, Jayson G.; Weiss, Christoph; Brand, Joachim
2016-10-01
Multimode expansions in computational quantum dynamics promise convergence toward exact results upon increasing the number of modes. Convergence is difficult to ascertain in practice due to the unfavorable scaling of required resources for many-particle problems and therefore a simplified criterion based on a threshold value for the least occupied mode function is often used. Here we show how the separable quantum motion of the center of mass can be used to sensitively detect unconverged numerical multiparticle dynamics in harmonic potentials. Based on an experimentally relevant example of attractively interacting bosons in one dimension, we demonstrate that the simplified convergence criterion fails to assure qualitatively correct results. Furthermore, the numerical evidence for the creation of two-hump fragmented bright soliton-like states presented by A. I. Streltsov et al. [Phys. Rev. Lett. 100, 130401 (2008), 10.1103/PhysRevLett.100.130401] is shown to be inconsistent with exact results. Implications for understanding dynamical fragmentation in attractive boson systems are briefly discussed.
Around Property (T) for Quantum Groups
NASA Astrophysics Data System (ADS)
Daws, Matthew; Skalski, Adam; Viselter, Ami
2017-07-01
We study Property (T) for locally compact quantum groups, providing several new characterisations, especially related to operator algebraic ergodic theory. Quantum Property (T) is described in terms of the existence of various Kazhdan type pairs, and some earlier structural results of Kyed, Chen and Ng are strengthened and generalised. For second countable discrete unimodular quantum groups with low duals, Property (T) is shown to be equivalent to Property (T)1,1 of Bekka and Valette. This is used to extend to this class of quantum groups classical theorems on `typical' representations (due to Kerr and Pichot), and on connections of Property (T) with spectral gaps (due to Li and Ng) and with strong ergodicity of weakly mixing actions on a particular von Neumann algebra (due to Connes and Weiss). Finally, we discuss in the Appendix equivalent characterisations of the notion of a quantum group morphism with dense image.
Fractal properties of quantum spacetime.
Benedetti, Dario
2009-03-20
We show that, in general, a spacetime having a quantum group symmetry has also a scale-dependent fractal dimension which deviates from its classical value at short scales, a phenomenon that resembles what is observed in some approaches to quantum gravity. In particular, we analyze the cases of a quantum sphere and of kappa-Minkowski spacetime, the latter being relevant in the context of quantum gravity.
Determining surface properties with bimodal and multimodal AFM.
Forchheimer, D; Borysov, Stanislav S; Platz, D; Haviland, David B
2014-12-05
Conventional dynamic atomic force microscopy (AFM) can be extended to bimodal and multimodal AFM in which the cantilever is simultaneously excited at two or more resonance frequencies. Such excitation schemes result in one additional amplitude and phase images for each driven resonance, and potentially convey more information about the surface under investigation. Here we present a theoretical basis for using this information to approximate the parameters of a tip-surface interaction model. The theory is verified by simulations with added noise corresponding to room-temperature measurements.
NASA Astrophysics Data System (ADS)
Bahadur, A.; Yadav, R. S.; Yadav, R. V.; Rai, S. B.
2017-02-01
This paper reports the optical properties of Tb3+/Yb3+ co-doped lithium borate (LB) glass prepared by melt quench method. The absorption spectrum of the Yb3+ doped LB glass contains intense NIR band centered at 976 nm due to 2F7/2→2F5/2 transition. The emission spectra of the prepared glasses have been monitored on excitation with 266, 355 and 976 nm. The Yb3+ doped glass emits a broad NIR band centered at 976 nm whereas the Tb3+ doped glass gives off visible bands on excitations with 266 and 355 nm. When the Tb3+ and Yb3+ ions are co-doped together, the emission intensity in the visible region decreases whereas it increases in the NIR region significantly. The increase in the emission intensity in the NIR region is due to efficient cooperative energy transfer (CET) from Tb3+ to Yb3+ ions. The quantum cutting efficiency for Tb3+/Yb3+ co-doped glass has been calculated and compared for 266 and 355 nm excitations. The quantum cutting efficiency is larger for 355 nm excitation (137%). The Tb3+/Yb3+ co-doped LB glass also emits upconverted visible bands on excitation with 976 nm. The mechanisms involved in the energy transfer have been discussed using schematic energy level diagram. The Tb3+/Yb3+ co-doped LB glass may be used in the optical devices and in solar cell for solar spectral conversion and behaves as a multi-modal photo-luminescent material.
Multimode analysis of highly tunable, quantum cascade powered, circular graphene spaser
Jayasekara, Charith Premaratne, Malin; Stockman, Mark I.; Gunapala, Sarath D.
2015-11-07
We carried out a detailed analysis of a circular graphene spaser made of a circular graphene flake and a quantum cascade well structure. Owing to unique properties of graphene and quantum cascade well structure, the proposed design shows high mechanical and thermal stability and low optical losses. Additionally, operation characteristics of the model are analysed and tunability of the device is demonstrated. Some advantages of the proposed design include compact size, lower power operation, and the ability to set the operating wavelength over a wide range from Mid-IR to Near-IR. Thus, it can have wide spread applications including designing of ultracompact and ultrafast devices, nanoscopy and biomedical applications.
NASA Astrophysics Data System (ADS)
Zandieh, Omid; Kim, Seonghwan
2016-05-01
Multi-modal chemical sensors based on microelectromechanical systems (MEMS) have been developed with an electrical readout. Opto-calorimetric infrared (IR) spectroscopy, capable of obtaining molecular signatures of extremely small quantities of adsorbed explosive molecules, has been realized with a microthermometer/microheater device using a widely tunable quantum cascade laser. A microthermometer/microheater device responds to the heat generated by nonradiative decay process when the adsorbed explosive molecules are resonantly excited with IR light. Monitoring the variation in microthermometer signal as a function of illuminating IR wavelength corresponds to the conventional IR absorption spectrum of the adsorbed molecules. Moreover, the mass of the adsorbed molecules is determined by measuring the resonance frequency shift of the cantilever shape microthermometer for the quantitative opto-calorimetric IR spectroscopy. In addition, micro-differential thermal analysis, which can be used to differentiate exothermic or endothermic reaction of heated molecules, has been performed with the same device to provide additional orthogonal signal for trace explosive detection and sensor surface regeneration. In summary, we have designed, fabricated and tested microcantilever shape devices integrated with a microthermometer/microheater which can provide electrical responses used to acquire both opto-calorimetric IR spectra and microcalorimetric thermal responses. We have demonstrated the successful detection, differentiation, and quantification of trace amounts of explosive molecules and their mixtures (cyclotrimethylene trinitramine (RDX) and pentaerythritol tetranitrate (PETN)) using three orthogonal sensing signals which improve chemical selectivity.
NASA Astrophysics Data System (ADS)
Sitbon, Gary; Bouccara, Sophie; Tasso, Mariana; Francois, Aurélie; Bezdetnaya, Lina; Marchal, Frédéric; Beaumont, Marine; Pons, Thomas
2014-07-01
The development of sensitive multimodal contrast agents is a key issue to provide better global, multi-scale images for diagnostic or therapeutic purposes. Here we present the synthesis of Zn-Cu-In-(S, Se)/Zn1-xMnxS core-shell quantum dots (QDs) that can be used as markers for both near-infrared fluorescence imaging and magnetic resonance imaging (MRI). We first present the synthesis of Zn-Cu-In-(S, Se) cores coated with a thick ZnS shell doped with various proportions of Mn. Their emission wavelengths can be tuned over the NIR optical window suitable for deep tissue imaging. The incorporation of manganese ions (up to a few thousand ions per QD) confers them a paramagnetic character, as demonstrated by structural analysis and electron paramagnetic resonance spectroscopy. These QDs maintain their optical properties after transfer to water using ligand exchange. They exhibit T1-relaxivities up to 1400 mM-1 [QD] s-1 at 7 T and 300 K. We finally show that these QDs are suitable multimodal in vivo probes and demonstrate MRI and NIR fluorescence detection of regional lymph nodes in mice.The development of sensitive multimodal contrast agents is a key issue to provide better global, multi-scale images for diagnostic or therapeutic purposes. Here we present the synthesis of Zn-Cu-In-(S, Se)/Zn1-xMnxS core-shell quantum dots (QDs) that can be used as markers for both near-infrared fluorescence imaging and magnetic resonance imaging (MRI). We first present the synthesis of Zn-Cu-In-(S, Se) cores coated with a thick ZnS shell doped with various proportions of Mn. Their emission wavelengths can be tuned over the NIR optical window suitable for deep tissue imaging. The incorporation of manganese ions (up to a few thousand ions per QD) confers them a paramagnetic character, as demonstrated by structural analysis and electron paramagnetic resonance spectroscopy. These QDs maintain their optical properties after transfer to water using ligand exchange. They exhibit T1-relaxivities
Electronic properties of aperiodic quantum dot chains
NASA Astrophysics Data System (ADS)
Korotaev, P. Yu.; Vekilov, Yu. Kh.; Kaputkina, N. E.
2012-04-01
The electronic spectral and transport properties of aperiodic quantum dot chains are investigated. The systems with singular continuous energy spectrum are considered: Thue-Morse chain, double-periodic chain, Rudin-Shapiro chain. The influence of electronic energy in quantum dot on the spectral properties, band structure, density of states and spectral resistivity, is discussed. Low resistivity regions correspond to delocalized states and these states could be current states. Also we discuss the magnetic field application as the way to tune electronic energy in quantum dot and to obtain metallic or insulating conducting states of the systems.
Quantum optical properties in plasmonic systems
NASA Astrophysics Data System (ADS)
Ooi, C. H. Raymond
2015-04-01
Plasmonic metallic particle (MP) can affect the optical properties of a quantum system (QS) in a remarkable way. We develop a general quantum nonlinear formalism with exact vectorial description for the scattered photons by the QS. The formalism enables us to study the variations of the dielectric function and photon spectrum of the QS with the particle distance between QS and MP, exciting laser direction, polarization and phase in the presence of surface plasmon resonance (SPR) in the MP. The quantum formalism also serves as a powerful tool for studying the effects of these parameters on the nonclassical properties of the scattered photons. The plasmonic effect of nanoparticles has promising possibilities as it provides a new way for manipulating quantum optical properties of light in nanophotonic systems.
Quantum optical properties in plasmonic systems
Ooi, C. H. Raymond
2015-04-24
Plasmonic metallic particle (MP) can affect the optical properties of a quantum system (QS) in a remarkable way. We develop a general quantum nonlinear formalism with exact vectorial description for the scattered photons by the QS. The formalism enables us to study the variations of the dielectric function and photon spectrum of the QS with the particle distance between QS and MP, exciting laser direction, polarization and phase in the presence of surface plasmon resonance (SPR) in the MP. The quantum formalism also serves as a powerful tool for studying the effects of these parameters on the nonclassical properties of the scattered photons. The plasmonic effect of nanoparticles has promising possibilities as it provides a new way for manipulating quantum optical properties of light in nanophotonic systems.
Quantum magnetotransport properties of Floquet topological insulators
NASA Astrophysics Data System (ADS)
Tahir, M.
2017-07-01
A theoretical realization of the quantum magnetotransport properties for the surface states of ultrathin Floquet topological insulators (FTIs) is presented. Their band structure in the presence of an external perpendicular magnetic field is derived and discussed. Further, the longitudinal and Hall conductivities are evaluated using linear response theory. A new quantum Hall state of matter has been found in FTIs under the application of a magnetic field where the n=0 Landau level undergoes a quantum phase transition from a trivial insulator state to a Hall insulator state. In the former state the Hall conductivity is zero at zero Fermi energy (EF=0) while in the latter the Hall conductivity is equal to e2 / h . The proposed effects are accessible to experiments which open new possibilities to study FTIs for the realization of (i) non trivial quantum phase transitions, (ii) exchange of surface states, and (iii) unusual quantum Hall plateaus.
Monogamy properties of quantum and classical correlations
Giorgi, Gian Luca
2011-11-15
In contrast with entanglement, as measured by concurrence, in general, quantum discord does not possess the property of monogamy; that is, there is no tradeoff between the quantum discord shared by a pair of subsystems and the quantum discord that both of them can share with a third party. Here, we show that, as far as monogamy is considered, quantum discord of pure states is equivalent to the entanglement of formation. This result allows one to analytically prove that none of the pure three-qubit states belonging to the subclass of W states is monogamous. A suitable physical interpretation of the meaning of the correlation information as a quantifier of monogamy for the total information is also given. Finally, we prove that, for rank 2 two-qubit states, discord and classical correlations are bounded from above by single-qubit von Neumann entropies.
Determining Complementary Properties with Quantum Clones
NASA Astrophysics Data System (ADS)
Thekkadath, G. S.; Saaltink, R. Y.; Giner, L.; Lundeen, J. S.
2017-08-01
In a classical world, simultaneous measurements of complementary properties (e.g., position and momentum) give a system's state. In quantum mechanics, measurement-induced disturbance is largest for complementary properties and, hence, limits the precision with which such properties can be determined simultaneously. It is tempting to try to sidestep this disturbance by copying the system and measuring each complementary property on a separate copy. However, perfect copying is physically impossible in quantum mechanics. Here, we investigate using the closest quantum analog to this copying strategy, optimal cloning. The coherent portion of the generated clones' state corresponds to "twins" of the input system. Like perfect copies, both twins faithfully reproduce the properties of the input system. Unlike perfect copies, the twins are entangled. As such, a measurement on both twins is equivalent to a simultaneous measurement on the input system. For complementary observables, this joint measurement gives the system's state, just as in the classical case. We demonstrate this experimentally using polarized single photons.
Quantum Control of Molecular Properties
Sola, I. R.; Gonzalez-Vazquez, J.; Santamaria, J.; Malinovsky, V. S.; Chang, B. Y.
2007-12-26
A general scheme is presented for controlling different molecular properties under strong pulse sequences working in the adiabatic regime. The strong laser pulses create laser induced potentials (LIP). The design of adiabatic schemes allows to move the wave function to the desired LIP. Manipulation of the structure of these LIPs and the starting energy of the wave function in the LIP, allows to control such different properties as bond lengths, vibrational motions, and intramolecular couplings. This work reviews some recent results under a unified frame and explores future applications.
Physical properties of quantum field theory measures
NASA Astrophysics Data System (ADS)
Mourão, J. M.; Thiemann, T.; Velhinho, J. M.
1999-05-01
Well known methods of measure theory on infinite dimensional spaces are used to study physical properties of measures relevant to quantum field theory. The difference of typical configurations of free massive scalar field theories with different masses is studied. We apply the same methods to study the Ashtekar-Lewandowski (AL) measure on spaces of connections. In particular we prove that the diffeomorphism group acts ergodically, with respect to the AL measure, on the Ashtekar-Isham space of quantum connections modulo gauge transformations. We also prove that a typical, with respect to the AL measure, quantum connection restricted to a (piecewise analytic) curve leads to a parallel transport discontinuous at every point of the curve.
NASA Astrophysics Data System (ADS)
Huang, H.; Arsenijević, D.; Schires, K.; Sadeev, T.; Bimberg, D.; Grillot, F.
2016-12-01
Quantum dot lasers are envisioned to be the next generation of optical transmitters used for short-reach communication links, owing to their low threshold current and high temperature operation. However, in a context of steady increase in both speed and reach, quantum dot lasers emitting on their upper energy levels have been recently of greater interest as they are touted for their faster modulation dynamics. This work aims at further evaluating the potential impact of such lasers in communication links by characterizing their long-delay optical feedback responses as well as the role of the lasing states on the multimode dynamics of InAs/GaAs quantum-dot Fabry-Perot devices sharing the same design. Results unveil that the excited-state laser shows a much larger sensitivity to optical feedback, with a more complex route to chaos, and a first destabilization point occurring at lower feedback strengths than for a comparable ground-state laser, which remains almost unaffected.
Ferguson, Kate R; Beavan, Sarah E; Longdell, Jevon J; Sellars, Matthew J
2016-07-08
Here, we demonstrate generating and storing entanglement in a solid-state spin-wave quantum memory with on-demand readout using the process of rephased amplified spontaneous emission (RASE). Amplified spontaneous emission (ASE), resulting from an inverted ensemble of Pr^{3+} ions doped into a Y_{2}SiO_{5} crystal, generates entanglement between collective states of the praseodymium ensemble and the output light. The ensemble is then rephased using a four-level photon echo technique. Entanglement between the ASE and its echo is confirmed and the inseparability violation preserved when the RASE is stored as a spin wave for up to 5 μs. RASE is shown to be temporally multimode with almost perfect distinguishability between two temporal modes demonstrated. These results pave the way for the use of multimode solid-state quantum memories in scalable quantum networks.
Koole, Rolf; van Schooneveld, Matti M.; Hilhorst, Jan; Castermans, Karolien; Cormode, David P.; Strijkers, Gustav J.; de Mello Donegá, Celso; Vanmaekelbergh, Daniel; Griffioen, Arjan W.; Nicolay, Klaas; Fayad, Zahi A.; Meijerink, Andries; Mulder, Willem J. M.
2012-01-01
Silica particles as a nanoparticulate carrier material for contrast agents have received considerable attention the past few years, since the material holds great promise for biomedical applications. A key feature for successful application of this material in vivo is biocompatibility, which may be significantly improved by appropriate surface modification. In this study we report a novel strategy to coat silica particles with a dense monolayer of paramagnetic and PEGylated lipids. The silica nanoparticles carry a quantum dot in their centre and are made target-specific by the conjugation of multiple αvβ3-integrin-specifc RGD-peptides. We demonstrate their specific uptake by endothelial cells in vitro using fluorescence microscopy, quantitative fluorescence imaging and magnetic resonance imaging. The lipid coated silica particles introduced here represent a new platform for nanoparticulate multimodality contrast agents. PMID:19035793
Koole, Rolf; van Schooneveld, Matti M; Hilhorst, Jan; Castermans, Karolien; Cormode, David P; Strijkers, Gustav J; de Mello Donegá, Celso; Vanmaekelbergh, Daniel; Griffioen, Arjan W; Nicolay, Klaas; Fayad, Zahi A; Meijerink, Andries; Mulder, Willem J M
2008-12-01
Silica particles as a nanoparticulate carrier material for contrast agents have received considerable attention the past few years, since the material holds great promise for biomedical applications. A key feature for successful application of this material in vivo is biocompatibility, which may be significantly improved by appropriate surface modification. In this study, we report a novel strategy to coat silica particles with a dense monolayer of paramagnetic and PEGylated lipids. The silica nanoparticles carry a quantum dot in their center and are made target-specific by the conjugation of multiple alphavbeta3-integrin-specific RGD-peptides. We demonstrate their specific uptake by endothelial cells in vitro using fluorescence microscopy, quantitative fluorescence imaging, and magnetic resonance imaging. The lipid-coated silica particles introduced here represent a new platform for nanoparticulate multimodality contrast agents.
Contractivity properties of a quantum diffusion semigroup
NASA Astrophysics Data System (ADS)
Datta, Nilanjana; Pautrat, Yan; Rouzé, Cambyse
2017-01-01
We consider a quantum generalization of the classical heat equation and study contractivity properties of its associated semigroup. We prove a Nash inequality and a logarithmic Sobolev inequality. The former leads to an ultracontractivity result. This in turn implies that the largest eigenvalue and the purity of a state with positive Wigner function, evolving under the action of the semigroup, decrease at least inverse polynomially in time, while its entropy increases at least logarithmically in time.
Nonclassical properties and quantum resources of hierarchical photonic superposition states
Volkoff, T. J.
2015-11-15
We motivate and introduce a class of “hierarchical” quantum superposition states of N coupled quantum oscillators. Unlike other well-known multimode photonic Schrödinger-cat states such as entangled coherent states, the hierarchical superposition states are characterized as two-branch superpositions of tensor products of single-mode Schrödinger-cat states. In addition to analyzing the photon statistics and quasiprobability distributions of prominent examples of these nonclassical states, we consider their usefulness for highprecision quantum metrology of nonlinear optical Hamiltonians and quantify their mode entanglement. We propose two methods for generating hierarchical superpositions in N = 2 coupled microwave cavities, exploiting currently existing quantum optical technology for generating entanglement between spatially separated electromagnetic field modes.
Nonclassical properties and quantum resources of hierarchical photonic superposition states
NASA Astrophysics Data System (ADS)
Volkoff, T. J.
2015-11-01
We motivate and introduce a class of "hierarchical" quantum superposition states of N coupled quantum oscillators. Unlike other well-known multimode photonic Schrödinger-cat states such as entangled coherent states, the hierarchical superposition states are characterized as two-branch superpositions of tensor products of single-mode Schrödinger-cat states. In addition to analyzing the photon statistics and quasiprobability distributions of prominent examples of these nonclassical states, we consider their usefulness for highprecision quantum metrology of nonlinear optical Hamiltonians and quantify their mode entanglement. We propose two methods for generating hierarchical superpositions in N = 2 coupled microwave cavities, exploiting currently existing quantum optical technology for generating entanglement between spatially separated electromagnetic field modes.
Multi-mode of Four and Six Wave Parametric Amplified Process
Zhu, Dayu; Yang, Yiheng; Zhang, Da; Liu, Ruizhou; Ma, Danmeng; Li, Changbiao; Zhang, Yanpeng
2017-01-01
Multiple quantum modes in correlated fields are essential for future quantum information processing and quantum computing. Here we report the generation of multi-mode phenomenon through parametric amplified four- and six-wave mixing processes in a rubidium atomic ensemble. The multi-mode properties in both frequency and spatial domains are studied. On one hand, the multi-mode behavior is dominantly controlled by the intensity of external dressing effect, or nonlinear phase shift through internal dressing effect, in frequency domain; on the other hand, the multi-mode behavior is visually demonstrated from the images of the biphoton fields directly, in spatial domain. Besides, the correlation of the two output fields is also demonstrated in both domains. Our approach supports efficient applications for scalable quantum correlated imaging. PMID:28255163
Multi-mode of Four and Six Wave Parametric Amplified Process
NASA Astrophysics Data System (ADS)
Zhu, Dayu; Yang, Yiheng; Zhang, Da; Liu, Ruizhou; Ma, Danmeng; Li, Changbiao; Zhang, Yanpeng
2017-03-01
Multiple quantum modes in correlated fields are essential for future quantum information processing and quantum computing. Here we report the generation of multi-mode phenomenon through parametric amplified four- and six-wave mixing processes in a rubidium atomic ensemble. The multi-mode properties in both frequency and spatial domains are studied. On one hand, the multi-mode behavior is dominantly controlled by the intensity of external dressing effect, or nonlinear phase shift through internal dressing effect, in frequency domain; on the other hand, the multi-mode behavior is visually demonstrated from the images of the biphoton fields directly, in spatial domain. Besides, the correlation of the two output fields is also demonstrated in both domains. Our approach supports efficient applications for scalable quantum correlated imaging.
Quantum chaos and electron transport properties in a quantum waveguide
NASA Astrophysics Data System (ADS)
Lee, Hoshik
We numerically investigate electron transport properties in an electron waveguide which can be constructed in 2DEG of the heterostructure of GaAs and AlGaAs. We apply R-matrix theory to solve a Schrodinger equation and construct a S-matrix, and we then calculate conductance of an electron waveguide. We study single impurity scattering in a waveguide. A delta-function model as a single impurity is very attractive, but it has been known that delta-function potential does not give a convergent result in two or higher space dimensions. However, we find that it can be used as a single impurity in a waveguide with the truncation of the number of modes. We also compute conductance for a finite size impurity by using R-matrix theory. We propose an appropriate criteria for determining the cut-off mode for a delta-function impurity that reproduces the conductance of a waveguide when a finite impurity presents. We find quantum scattering echoes in a ripple waveguide. A ripple waveguide (or cavity) is widely used for quantum chaos studies because it is easy to control a particle's dynamics. Moreover we can obtain an exact expression of Hamiltonian matrix with for the waveguide using a simple coordinate transformation. Having an exact Hamiltonian matrix reduces computation time significantly. It saves a lot of computational needs. We identify three families of resonance which correspond to three different classical phase space structures. Quasi bound states of one of those resonances reside on a hetero-clinic tangle formed by unstable manifolds and stable manifolds in the phase space of a corresponding classical system. Resonances due to these states appear in the conductance in a nearly periodic manner as a function of energy. Period from energy frequency gives a good agreement with a prediction of the classical theory. We also demonstrate wavepacket dynamics in a ripple waveguide. We find quantum echoes in the transmitted probability of a wavepacket. The period of echoes also
The lifetime and attenuation properties measurements of a US/MR multimodality molecular probe.
Liao, Ai-Ho; Shen, Che-Chou; Cheng, Chih-Hao; Chuang, Ho-Chiao; Lin, Chin-Hsiang
2013-01-01
In our previous studies we explored the potential of using a combined US/magnetic resonance (MR) multimodality contrast agent, albumin-gadolinium-diethylenetriaminepentacetate (Gd-DTPA) MBs, to induce BBB opening and for distinguishing between FUS-induced BBB opening and intracerebral hemorrhage in MR T1-weighted contrast imaging. According to the previous study in the literature, 1-2 µm bubbles have more pronounced acoustic activity at frequencies above 10 MHz. The present study developed a new targeted US/MR multimodality MB and the acoustic properties were compared with two commercial MBs, SonoVue and Targestar SA. The acoustic activities of these 1.15-2.78 µm MBs with different shells at 10 MHz were investigated. The feasibility of designing a new targeted US/MR multimodality MB was investigated. The lifetime (survival of MBs in the liquid suspension) and attenuation properties of lipid MBs (SonoVue and Targestar SA), albumin-(Gd-DTPA) MBs, and avidin-conjugated albumin (avidin-albumin)-(Gd-DTPA) MBs at 10 MHz were investigated with the pulse-echo substitution method. It was found that incorporating avidin into the albumin MBs and avidin-albumin-(Gd-DTPA) MBs affects the size distribution but does not affect the concentration of MBs produced. The avidin-albumin-shelled MBs had more significant nonlinear activity at 4-18 MHz (p=0.025), while the nonlinear activity of the other MBs peaked at 6-24 MHz (p=0.003-0.044). Moreover, the incorporation of paramagnetic metal ions into the MB shells increased their attenuation coefficients. With regard to the lifetime of these agents, the attenuations of the SonoVue and Targestar SA lipid MBs were 87.96% and 8.74%, respectively, while those of albumin MBs, avidin-albumin MBs, albumin-(Gd-DTPA) MBs, and avidin-albumin-(Gd-DTPA) MBs were 49.52%, 41.38%, 74.69%, and 100%, respectively. Avidin conjugation decreased the lifetime of the albumin MBs, but not that of the lipid MBs. The incorporation of paramagnetic metal ions
Quantum properties of charged ferroelectric domain walls
NASA Astrophysics Data System (ADS)
Sturman, B.; Podivilov, E.; Stepanov, M.; Tagantsev, A.; Setter, N.
2015-12-01
We consider the properties of charged domain walls in ferroelectrics as a quantum problem. This includes determination of self-consistent attracting 1D potential for compensating charge carriers, the number and positions of discrete energy levels in this potential, dependencies on the ferroelectric characteristics, as well as the spatial structure and formation energy of the wall. Our description is based on the Hartree and Thomas-Fermi methods and Landau theory for the ferroelectric transitions. Changeover from a few to many quantum levels (with the electron binding energies ˜1 eV) is controlled by a single characteristic parameter. The quantum models well describe the core of the wall, whose width is typically ˜10 nm. Additionally, the walls possess pronounced long-range tails which are due to trap recharging. For the trap concentration Nt=(1017-1018) cm-3 , the tail length ℓ is of the μ m scale. On the distances much larger than ℓ the walls are electrically uncoupled from each other and the crystal faces.
Optical Detection Properties of Silicon-Germanium Quantum Well Structures
1996-10-18
AFIT/DS/ENP/96-07 OPTICAL DETECTION PROPERTIES OF SILICON-GERMANIUM QUANTUM WELL STRUCTURES DISSERTATION Michael R. Gregg, Captain, USAF AFIT/DS/ENP...96 Approved for public release; distribution unlimited DTC Qr. ~r AFIT/DS/ENP/96-07 Optical Detection Properties of Silicon-Germanium Quantum Well ...release; distribution unlimited AFIT/DS/ENP/96-07 Optical Detection Properties of Silicon-Germanium Quantum Well Structures Michael R. Gregg, BA, MS
NASA Astrophysics Data System (ADS)
Ji, Se-Wan; Kim, M. S.; Nha, Hyunchul
2015-04-01
It is a topic of fundamental and practical importance how a quantum correlated state can be reliably distributed through a noisy channel for quantum information processing. The concept of quantum steering recently defined in a rigorous manner is relevant to study it under certain circumstances and here we address quantum steerability of Gaussian states to this aim. In particular, we attempt to reformulate the criterion for Gaussian steering in terms of local and global purities and show that it is sufficient and necessary for the case of steering a 1-mode system by an N-mode system. It subsequently enables us to reinforce a strong monogamy relation under which only one party can steer a local system of 1-mode. Moreover, we show that only a negative partial-transpose state can manifest quantum steerability by Gaussian measurements in relation to the Peres conjecture. We also discuss our formulation for the case of distributing a two-mode squeezed state via one-way quantum channels making dissipation and amplification effects, respectively. Finally, we extend our approach to include non-Gaussian measurements, more precisely, all orders of higher-order squeezing measurements, and find that this broad set of non-Gaussian measurements is not useful to demonstrate steering for Gaussian states beyond Gaussian measurements.
Spectral Properties of Fractional Quantum Hall Hamiltonians
NASA Astrophysics Data System (ADS)
Weerasinghe, Amila
The fractional quantum Hall (FQH) effect plays a prominent role in the study of topological phases of matter and of strongly correlated electron systems in general. FQH systems have been demonstrated to show many interesting novel properties such as fractional charges, and are believed to harbor even more intriguing phenomena such as fractional statistics. However, there remain many interesting questions to be addressed in this regime. The work reported in this thesis aims to push the envelope of our understanding of the low-energy properties of FQH states using microscopic principles. In the first part of the thesis, we present a systematic perturbative approach to study excitations in the thin cylinder/torus limit of the quantum Hall states. The approach is applied to the Haldane-Rezayi and Gaffnian quantum Hall states, which are both expected to have gapless excitations in the usual two-dimensional thermodynamic limit. For the Haldane-Rezayi state, we confirm that gapless excitations are present also in the "one-dimensional" thermodynamic limit of an infinite thin cylinder, in agreement with earlier considerations based on the wave functions alone. In contrast, we identify the lowest excitations of the Gaffnian state in the thin cylinder limit, and conclude that they are gapped, using a combination of perturbative and numerical means. We discuss possible scenarios for the cross-over between the two-dimensional and the one-dimensional thermodynamic limit in this case. In the second part of the thesis, we study the low energy spectral properties of positive center-of-mass conserving two-body Hamiltonians as they arise in models of FQH states. Starting from the observation that positive many-body Hamiltonians must have ground state energies that increase monotonously in particle number, we explore what general additional constraints can be obtained for two-body interactions with "center-of-mass conservation" symmetry, both in the presence and absence of particle
Time-Dependent Properties of Multimodal Polyoxymethylene Based Binder for Powder Injection Molding
NASA Astrophysics Data System (ADS)
Gonzalez-Gutierrez, Joamin; Stringari, Gustavo Beulke; Zupancic, Barbara; Kubyshkina, Galina; Bernstorff, Bernd Von; Emri, Igor
Powder injection molding (PIM) is one of the most versatile methods for the manufacturing of small complex shaped components from metal, ceramic or cemented carbide powders for the use in many applications. PIM consists of mixing the powder and a polymeric binder, injecting this mixture in a mold, debinding and then sintering. Catalytic debinding of polyoxymethylene (POM) is attractive since it shows high debinding rates and low risk of cracking. This work examines the possibility of using POM with bimodal molecular mass distribution as the main component of the binding agent by studying its time-dependent properties and comparing them to monomodal POM. Furthermore, possible optimization of the binder formulation was investigated by the addition of shorter polymeric chains (wax) to bimodal POM, as to create a multimodal material. It was observed that the magnitude of the complex viscosity for the commercial bimodal material was more than 2 times lower than for the chemically identical monomodal POM within the investigated frequency range and temperature. Viscosity values were observed to drop as the content of wax was increased, without compromising the binders mechanical properties in solid state. A new formulation of bimodal POM plus 8 wt.% of added wax provided the most appropriate results from investigated combinations. This work has shown how the addition of short polymeric chains in POM influences its time-dependent properties in solid and molten state, which can be an important tool for the optimization of binders designed to be used in PIM technology.
Quantum algorithm for molecular properties and geometry optimization.
Kassal, Ivan; Aspuru-Guzik, Alán
2009-12-14
Quantum computers, if available, could substantially accelerate quantum simulations. We extend this result to show that the computation of molecular properties (energy derivatives) could also be sped up using quantum computers. We provide a quantum algorithm for the numerical evaluation of molecular properties, whose time cost is a constant multiple of the time needed to compute the molecular energy, regardless of the size of the system. Molecular properties computed with the proposed approach could also be used for the optimization of molecular geometries or other properties. For that purpose, we discuss the benefits of quantum techniques for Newton's method and Householder methods. Finally, global minima for the proposed optimizations can be found using the quantum basin hopper algorithm, which offers an additional quadratic reduction in cost over classical multi-start techniques.
Li, Zhili; Shi, Chao; Ren, Wei
2016-09-01
A mid-infrared quartz-enhanced photoacoustic sensor was developed using a multimode fiber (MMF)-coupled quantum cascade laser (QCL) and demonstrated for sensitive nitric oxide (NO) detection at a wavelength near 5.26 μm. The QCL radiation was readily coupled into a solid-core InF_{3} MMF (100 μm core) with 97% coupling efficiency using an aspheric lens. Despite the 25.5% transmission loss for the 1 m long MMF, the Gaussian beam-like fiber output of 5.72° divergence was almost completely focused through the microresonator tube (length, 8.0 mm; ID, 600 μm) designed for off-beam quartz-enhanced photoacoustic spectroscopy. The sensor exploiting the R6.5 (Π2_{1/2}) doublet of NO at 1900.08 cm^{-1} demonstrated a minimum detection limit of 24 parts per billion by volume at an averaging time of 130 s. The sensor was found to be insensitive to the fiber bending noise for a bending radius >5 cm.
Spectral properties of light in quantum optics
NASA Astrophysics Data System (ADS)
Knöll, L.; Vogel, W.; Welsch, D.-G.
1990-07-01
The problem of spectral filtering of quantized light fields is studied, based on the recently developed quantum-optical theory of the action of passive, lossless optical systems [L. Knöll, W. Vogel, and D.-G. Welsch, Phys. Rev. A 36, 3803 (1987)]. Expressions for the operator of the electric field strength of the light and the normally and time-ordered field-correlation functions are derived for the case of a Fabry-Pérot interferometer being present. Various kinds of field decomposition that are usually considered in classical optics are studied. The results are compared with the Fourier approach to spectral properties of light. It is shown that, dependent on the experimental scheme used, new quantum effects appear, which may prevent the observation of the Fourier structure of the light as predicted from classical optics. Quantitatively this is demonstrated for the example of spectral squeezing in resonance fluorescence, where significant discrepancies between the measured and the full Fourier spectrum are found.
Optical properties of quantum-dot-doped liquid scintillators
NASA Astrophysics Data System (ADS)
Aberle, C.; Li, J. J.; Weiss, S.; Winslow, L.
2013-10-01
Semiconductor nanoparticles (quantum dots) were studied in the context of liquid scintillator development for upcoming neutrino experiments. The unique optical and chemical properties of quantum dots are particularly promising for the use in neutrinoless double-beta decay experiments. Liquid scintillators for large scale neutrino detectors have to meet specific requirements which are reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper, we report results on laboratory-scale measurements of the attenuation length and the fluorescence properties of three commercial quantum dot samples. The results include absorbance and emission stability measurements, improvement in transparency due to filtering of the quantum dot samples, precipitation tests to isolate the quantum dots from solution and energy transfer studies with quantum dots and the fluorophore PPO.
Optical properties of quantum-dot-doped liquid scintillators.
Aberle, C; Li, J J; Weiss, S; Winslow, L
2013-10-14
Semiconductor nanoparticles (quantum dots) were studied in the context of liquid scintillator development for upcoming neutrino experiments. The unique optical and chemical properties of quantum dots are particularly promising for the use in neutrinoless double-beta decay experiments. Liquid scintillators for large scale neutrino detectors have to meet specific requirements which are reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper, we report results on laboratory-scale measurements of the attenuation length and the fluorescence properties of three commercial quantum dot samples. The results include absorbance and emission stability measurements, improvement in transparency due to filtering of the quantum dot samples, precipitation tests to isolate the quantum dots from solution and energy transfer studies with quantum dots and the fluorophore PPO.
A family of generalized quantum entropies: definition and properties
NASA Astrophysics Data System (ADS)
Bosyk, G. M.; Zozor, S.; Holik, F.; Portesi, M.; Lamberti, P. W.
2016-08-01
We present a quantum version of the generalized (h,φ )-entropies, introduced by Salicrú et al. for the study of classical probability distributions. We establish their basic properties and show that already known quantum entropies such as von Neumann, and quantum versions of Rényi, Tsallis, and unified entropies, constitute particular classes of the present general quantum Salicrú form. We exhibit that majorization plays a key role in explaining most of their common features. We give a characterization of the quantum (h,φ )-entropies under the action of quantum operations and study their properties for composite systems. We apply these generalized entropies to the problem of detection of quantum entanglement and introduce a discussion on possible generalized conditional entropies as well.
Optical properties of quantum-dot-doped liquid scintillators
Aberle, C.; Li, J.J.; Weiss, S.; Winslow, L.
2014-01-01
Semiconductor nanoparticles (quantum dots) were studied in the context of liquid scintillator development for upcoming neutrino experiments. The unique optical and chemical properties of quantum dots are particularly promising for the use in neutrinoless double-beta decay experiments. Liquid scintillators for large scale neutrino detectors have to meet specific requirements which are reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper, we report results on laboratory-scale measurements of the attenuation length and the fluorescence properties of three commercial quantum dot samples. The results include absorbance and emission stability measurements, improvement in transparency due to filtering of the quantum dot samples, precipitation tests to isolate the quantum dots from solution and energy transfer studies with quantum dots and the fluorophore PPO. PMID:25392711
Selenium quantum dots: Preparation, structure, and properties
NASA Astrophysics Data System (ADS)
Qian, Fuli; Li, Xueming; Tang, Libin; Lai, Sin Ki; Lu, Chaoyu; Lau, Shu Ping
2017-01-01
An interesting class of low-dimensional nanomaterials, namely, selenium quantum dots (SeQDs), which are composed of nano-sized selenium particles, is reported in this study. The SeQDs possess a hexagonal crystal structure. They can be synthesized in large quantity by ultrasound liquid-phase exfoliation using NbSe2 powders as the source material and N-Methyl-2-pyrrolidone (NMP) as the dispersant. During sonication, the Nb-Se bonds dissociate; the SeQDs are formed, while niobium is separated by centrifugation. The SeQDs have a narrow diameter distribution from 1.9 to 4.6 nm and can be dispersed with high stability in NMP without the need for passivating agents. They exhibit photoluminescence properties that are expected to find useful applications in bioimaging, optoelectronics, as well as nanocomposites.
Tellurium quantum dots: Preparation and optical properties
NASA Astrophysics Data System (ADS)
Lu, Chaoyu; Li, Xueming; Tang, Libin; Lai, Sin Ki; Rogée, Lukas; Teng, Kar Seng; Qian, Fuli; Zhou, Liangliang; Lau, Shu Ping
2017-08-01
Herein, we report an effective and simple method for producing Tellurium Quantum dots (TeQDs), zero-dimensional nanomaterials with great prospects for biomedical applications. Their preparation is based on the ultrasonic exfoliation of Te powder dispersed in 1-methyl-2-pyrrolidone. Sonication causes the van der Waals forces between the structural hexagons of Te to break so that the relatively coarse powder breaks down into nanoscale particles. The TeQDs have an average size of about 4 nm. UV-Vis absorption spectra of the TeQDs showed an absorption peak at 288 nm. Photoluminescence excitation (PLE) and photoluminescence (PL) are used to study the optical properties of TeQDs. Both the PLE and PL peaks revealed a linear relationship against the emission and excitation energies, respectively. TeQDs have important potential applications in biological imaging and catalysis as well as optoelectronics.
Truncated correlation hierarchy schemes for driven-dissipative multimode quantum systems
NASA Astrophysics Data System (ADS)
Casteels, W.; Finazzi, S.; Le Boité, A.; Storme, F.; Ciuti, C.
2016-09-01
We present a method to describe driven-dissipative multi-mode systems by considering a truncated hierarchy of equations for the correlation functions. We consider two hierarchy truncation schemes with a global cutoff on the correlation order, which is the sum of the exponents of the operators involved in the correlation functions: a ‘hard’ cutoff corresponding to an expansion around the vacuum, which applies to a regime where the number of excitations per site is small; a ‘soft’ cutoff which corresponds to an expansion around coherent states, which can be applied for large excitation numbers per site. This approach is applied to describe the bunching-antibunching crossover in the driven-dissipative Bose-Hubbard model for photonic systems. The results have been successfully benchmarked by comparison with calculations based on the corner-space renormalization method in 1D and 2D systems. The regime of validity and strengths of the present truncation methods are critically discussed.
NASA Astrophysics Data System (ADS)
Ye, Yuanxin; Shen, Li
2016-06-01
Automatic matching of multi-modal remote sensing images (e.g., optical, LiDAR, SAR and maps) remains a challenging task in remote sensing image analysis due to significant non-linear radiometric differences between these images. This paper addresses this problem and proposes a novel similarity metric for multi-modal matching using geometric structural properties of images. We first extend the phase congruency model with illumination and contrast invariance, and then use the extended model to build a dense descriptor called the Histogram of Orientated Phase Congruency (HOPC) that captures geometric structure or shape features of images. Finally, HOPC is integrated as the similarity metric to detect tie-points between images by designing a fast template matching scheme. This novel metric aims to represent geometric structural similarities between multi-modal remote sensing datasets and is robust against significant non-linear radiometric changes. HOPC has been evaluated with a variety of multi-modal images including optical, LiDAR, SAR and map data. Experimental results show its superiority to the recent state-of-the-art similarity metrics (e.g., NCC, MI, etc.), and demonstrate its improved matching performance.
Quantum trajectories for systems probed by fields in multimode Fock and Schrodinger cat states
NASA Astrophysics Data System (ADS)
Combes, Joshua; Baragiola, Ben Q.; Branczyk, Agata M.; Cook, Robert L.; Gough, John E.; James, Matthew R.; Nurdin, Hendra I.
2012-02-01
Using Gardiner and Collet's input-output theory we derive system and output field master equations for an arbitrary quantum system probed by a field in a non-classical state of light. Specifically the field states we study are arbitrary combinations (superpositions and / or mixtures) of continuous-mode Fock states or continuous mode-coherent states. We also unravel the master equations for the system state to get the conditional evolution (the stochastic master equation) for homodyne and photon counting measurements.
Multimode Regimes in Quantum Cascade Lasers: From Coherent Instabilities to Spatial Hole Burning
2009-02-10
fast QWIP and a spectrum analyzer. This modulation shows that there is a non-trivial phase relation between the longitudinal modes, or equivalently...diagram of the two-photon QWIP showing three equidistant energy levels. The same RNGH splitting in spectra is observed in many different devices, from...photon quantum well infrared photodetector ( QWIP ) which converts the second-harmonic signal electrically [36,37] instead of using a nonlinear crystal
Li, Weisi; Belmont, Barry; Greve, Joan M; Manders, Adam B; Downey, Brian C; Zhang, Xi; Xu, Zhen; Guo, Dongming; Shih, Albert
2016-10-01
The mechanical and imaging properties of polyvinyl chloride (PVC) can be adjusted to meet the needs of researchers as a tissue-mimicking material. For instance, the hardness can be adjusted by changing the ratio of softener to PVC polymer, mineral oil can be added for lubrication in needle insertion, and glass beads can be added to scatter acoustic energy similar to biological tissue. Through this research, the authors sought to develop a regression model to design formulations of PVC with targeted mechanical and multimodal medical imaging properties. The design of experiment was conducted by varying three factors-(1) the ratio of softener to PVC polymer, (2) the mass fraction of mineral oil, and (3) the mass fraction of glass beads-and measuring the mechanical properties (elastic modulus, hardness, viscoelastic relaxation time constant, and needle insertion friction force) and the medical imaging properties [speed of sound, acoustic attenuation coefficient, magnetic resonance imaging time constants T1 and T2, and the transmittance of the visible light at wavelengths of 695 nm (Tλ695) and 532 nm (Tλ532)] on twelve soft PVC samples. A regression model was built to describe the relationship between the mechanical and medical imaging properties and the values of the three composition factors of PVC. The model was validated by testing the properties of a PVC sample with a formulation distinct from the twelve samples. The tested soft PVC had elastic moduli from 6 to 45 kPa, hardnesses from 5 to 50 Shore OOO-S, viscoelastic stress relaxation time constants from 114.1 to 191.9 s, friction forces of 18 gauge needle insertion from 0.005 to 0.086 N/mm, speeds of sound from 1393 to 1407 m/s, acoustic attenuation coefficients from 0.38 to 0.61 (dB/cm)/MHz, T1 relaxation times from 426.3 to 450.2 ms, T2 relaxation times from 21.5 to 28.4 ms, Tλ695 from 46.8% to 92.6%, and Tλ532 from 41.1% to 86.3%. Statistically significant factors of each property were identified. The
NASA Astrophysics Data System (ADS)
Yadav, Ranvijay; Singh, S. K.; Verma, R. K.; Rai, S. B.
2014-04-01
Micro-crystalline Y2O3 phosphor co-doped with Yb3+/Tm3+ has been synthesized and characterized. The phosphor material gives efficient multimodal emission via downshifting (DS), upconversion (UC), and downconversion (DC)/quantum cutting (QC) luminescence processes. Cross relaxation and co-operative energy transfer (CET) have been ascribed as the possible mechanism for QC; as result of which a UV/blue photon absorbed by Tm3+ splits into two near infrared photons (wavelength range 950-1050 nm) emitted by Yb3+. The Yb3+ concentration dependent ET efficiency and QC efficiency has also been evaluated. Such multi-mode emitting phosphors could have potential applications in increasing the conversion efficiency of solar cells via spectral modification.
Multimode mediated qubit-qubit coupling and dark-state symmetries in circuit quantum electrodynamics
Filipp, S.; Goeppl, M.; Fink, J. M.; Baur, M.; Bianchetti, R.; Steffen, L.; Wallraff, A.
2011-06-15
Microwave cavities with high quality factors enable coherent coupling of distant quantum systems. Virtual photons lead to a transverse interaction between qubits when they are nonresonant with the cavity but resonant with each other. We experimentally investigate the inverse scaling of the interqubit coupling with the detuning from a cavity mode and its proportionality to the qubit-cavity interaction strength. We demonstrate that the enhanced coupling at higher frequencies is mediated by multiple higher-harmonic cavity modes. Moreover, we observe dark states of the coupled qubit-qubit system and analyze their relation to the symmetry of the applied driving field at different frequencies.
Structural properties of the human corpus callosum: Multimodal assessment and sex differences.
Björnholm, L; Nikkinen, J; Kiviniemi, V; Nordström, T; Niemelä, S; Drakesmith, M; Evans, J C; Pike, G B; Veijola, J; Paus, T
2017-02-22
A number of structural properties of white matter can be assessed in vivo using multimodal magnetic resonance imaging (MRI). We measured profiles of R1 and R2 relaxation rates, myelin water fraction (MWF) and diffusion tensor measures (fractional anisotropy [FA], mean diffusivity [MD]) across the mid-sagittal section of the corpus callosum in two samples of young individuals. In Part 1, we compared histology-derived axon diameter (Aboitiz et al., 1992) to MRI measures obtained in 402 young men (19.55 ± 0.84 years) recruited from the Avon Longitudinal Study on Parents and Children. In Part 2, we examined sex differences in FA, MD and magnetization transfer ratio (MTR) across the corpus callosum in 433 young (26.50 ± 0.51 years) men and women recruited from the Northern Finland Birth Cohort 1986. We found that R1, R2, and MWF follow the anterior-to-posterior profile of small-axon density. Sex differences in mean MTR were similar across the corpus callosum (males > females) while these in FA differed by the callosal segment (Body: M>F; Splenium: F>M). We suggest that the values of R1, R2 and MWF are driven by high surface area of myelin in regions with high density of "small axons".
Electronic properties of superlattices on quantum rings.
da Costa, D R; Chaves, A; Ferreira, W P; Farias, G A; Ferreira, R
2017-04-26
We present a theoretical study of the one-electron states of a semiconductor-made quantum ring (QR) containing a series of piecewise-constant wells and barriers distributed along the ring circumference. The single quantum well and the superlattice cases are considered in detail. We also investigate how such confining potentials affect the Aharonov-Bohm like oscillations of the energy spectrum and current in the presence of a magnetic field. The model is simple enough so as to allow obtaining various analytical or quasi-analytical results. We show that the well-in-a-ring structure presents enhanced localization features, as well as specific geometrical resonances in its above-barrier spectrum. We stress that the superlattice-in-a-ring structure allows giving a physical meaning to the often used but usually artificial Born-von-Karman periodic conditions, and discuss in detail the formation of energy minibands and minigaps for the circumferential motion, as well as several properties of the superlattice eigenstates in the presence of the magnetic field. We obtain that the Aharonov-Bohm oscillations of below-barrier miniband states are reinforced, owing to the important tunnel coupling between neighbour wells of the superlattice, which permits the electron to move in the ring. Additionally, we analysis a superlattice-like structure made of a regular distribution of ionized impurities placed around the QR, a system that may implement the superlattice in a ring idea. Finally, we consider several random disorder models, in order to study roughness disorder and to tackle the robustness of some results against deviations from the ideally nanostructured ring system.
Electronic properties of superlattices on quantum rings
NASA Astrophysics Data System (ADS)
da Costa, D. R.; Chaves, A.; Ferreira, W. P.; Farias, G. A.; Ferreira, R.
2017-04-01
We present a theoretical study of the one-electron states of a semiconductor-made quantum ring (QR) containing a series of piecewise-constant wells and barriers distributed along the ring circumference. The single quantum well and the superlattice cases are considered in detail. We also investigate how such confining potentials affect the Aharonov-Bohm like oscillations of the energy spectrum and current in the presence of a magnetic field. The model is simple enough so as to allow obtaining various analytical or quasi-analytical results. We show that the well-in-a-ring structure presents enhanced localization features, as well as specific geometrical resonances in its above-barrier spectrum. We stress that the superlattice-in-a-ring structure allows giving a physical meaning to the often used but usually artificial Born-von-Karman periodic conditions, and discuss in detail the formation of energy minibands and minigaps for the circumferential motion, as well as several properties of the superlattice eigenstates in the presence of the magnetic field. We obtain that the Aharonov-Bohm oscillations of below-barrier miniband states are reinforced, owing to the important tunnel coupling between neighbour wells of the superlattice, which permits the electron to move in the ring. Additionally, we analysis a superlattice-like structure made of a regular distribution of ionized impurities placed around the QR, a system that may implement the superlattice in a ring idea. Finally, we consider several random disorder models, in order to study roughness disorder and to tackle the robustness of some results against deviations from the ideally nanostructured ring system.
Luminescent properties of cadmium selenide quantum dots in fluorophosphate glasses
NASA Astrophysics Data System (ADS)
Lipatova, Zh. O.; Kolobkova, E. V.; Babkina, A. N.
2016-11-01
The optical properties of fluorophosphate glasses with CdSe quantum dots are studied. Secondary heat treatment at a temperature exceeding the glass transition temperature resulted in the formation of quantum dots with sizes of 3.7-6.2 nm. The influence of the semiconductor component concentration on the spectral-luminescent characteristics of glasses is shown. It is experimentally demonstrated that glasses with a lower CdSe concentration have a higher absolute luminescence quantum yield.
Dąbrowski, M.; Chrapkiewicz, R.; Wasilewski, W.
2016-01-01
Warm atomic vapor quantum memories are simple and robust, yet suffer from a number of parasitic processes which produce excess noise. For operating in a single-photon regime precise filtering of the output light is essential. Here, we report a combination of magnetically tuned absorption and Faraday filters, both light–direction insensitive, which stop the driving lasers and attenuate spurious fluorescence and four-wave mixing while transmitting narrowband Stokes and anti-Stokes photons generated in write-in and readout processes. We characterize both filters with respect to adjustable working parameters. We demonstrate a significant increase in the signal-to-noise ratio upon applying the filters seen qualitatively in measurements of correlation between the Raman scattered photons. PMID:27695199
NASA Astrophysics Data System (ADS)
Dąbrowski, M.; Chrapkiewicz, R.; Wasilewski, W.
2016-11-01
Warm atomic vapor quantum memories are simple and robust, yet suffer from a number of parasitic processes which produce excess noise. For operating in a single-photon regime precise filtering of the output light is essential. Here, we report a combination of magnetically tuned absorption and Faraday filters, both light-direction insensitive, which stop the driving lasers and attenuate spurious fluorescence and four-wave mixing while transmitting narrowband Stokes and anti-Stokes photons generated in write-in and readout processes. We characterize both filters with respect to adjustable working parameters. We demonstrate a significant increase in the signal-to-noise ratio upon applying the filters seen qualitatively in measurements of correlation between the Raman scattered photons.
NASA Astrophysics Data System (ADS)
Sin, Yongkun; Presser, Nathan; Foran, Brendan; Ives, Neil; Moss, Steven C.
2009-02-01
Extensive investigations by a number of groups have identified catastrophic sudden degradation as the main failure mode in both single-mode and multi-mode InGaAs-AlGaAs strained quantum well (QW) lasers. Significant progress made in performance characteristics of broad-area InGaAs strained QW single emitters in recent years has led to an optical output power of over 20W and a power conversion efficiency of over 70% under CW operation. However, unlike 980nm single-mode lasers that have shown high reliability operation under a high optical power density of ~50MW/cm2, broad-area lasers have not achieved the same level of reliability even under a much lower optical power density of ~5MW/cm2. This paper investigates possible mechanisms that prevent broad-area lasers from achieving high reliability operation by performing accelerated lifetests of these devices and in-depth failure mode analyses of degraded devices with various destructive and non-destructive techniques including EBIC, FIB, and HR-TEM techniques. The diode lasers that we have investigated are commercial MOCVD-grown broad-area strained InGaAs single QW lasers at ~975nm. Both passivated and unpassivated broad-area lasers were studied that yielded catastrophic failures at the front facet and also in the bulk. To investigate the role that generation and propagation of defects plays in degradation processes via recombination enhanced defect reaction (REDR), EBIC was employed to study dark line defects in degraded lasers, failed under different stress conditions, and the correlation between DLDs and stress levels is reported. FIB was then employed to prepare TEM samples from the DLD areas for cross-sectional HR-TEM analysis.
Quantum plasmonics: optical properties of a nanomatryushka.
Kulkarni, Vikram; Prodan, Emil; Nordlander, Peter
2013-01-01
Quantum mechanical effects can significantly reduce the plasmon-induced field enhancements around nanoparticles. Here we present a quantum mechanical investigation of the plasmon resonances in a nanomatryushka, which is a concentric core-shell nanoparticle consisting of a solid metallic core encapsulated in a thin metallic shell. We compute the optical response using the time-dependent density functional theory and compare the results with predictions based on the classical electromagnetic theory. We find strong quantum mechanical effects for core-shell spacings below 5 Å, a regime where both the absorption cross section and the local field enhancements differ significantly from the classical predictions. We also show that the workfunction of the metal is a crucial parameter determining the onset and magnitude of quantum effects. For metals with lower workfunctions such as aluminum, the quantum effects are found to be significantly more pronounced than for a noble metal such as gold.
Error Regions for Properties of The Quantum State
NASA Astrophysics Data System (ADS)
Xikun, Li
This thesis mainly studies the method for constructing error intervals for properties of the quantum state. As a complement to point estimators for the quantum state estimation, region (interval for one dimension) estimators are proposed to supplement the error regions to the point estimator. These proposals, however, are ad hoc because they usually rely on having a lot of data, or consider all the possible data that haven't been observed. In [1], a method is provided for systematically constructing optimal error regions for quantum state estimation from the data actually observed. After identifying the prior probability as the size of a region, two types of optimal error regions--maximum-likelihood regions and smallest credible regions--are reported which are the bounded-likelihood regions that comprise all states with likelihood exceeding a threshold value. As a generalization of the above scenario for reporting optimal error regions for quantum state estimation, we propose a systematic method for constructing error intervals for a property of state directly from the experimental data. Usually, we are not interested in the full details of the quantum state, but rather care about some parameters or a few properties of the state. Moreover, it is much more difficult to estimate a high-dimensional quantum state. Therefore, a direct estimate of the properties of interest is more practical than the estimate of the whole quantum state. Analogous to error regions for quantum state estimation, the optimal error intervals are characterized by finding the constant likelihood values conditional on the property of state. For illustration, we identify the optimal error intervals for fidelity (with respect to certain target states) and purity of single-qubit states, as well as the CHSH quantity for two-qubit states. [1] J. Shang, H. K. Ng, A. Sehrawat, X. Li, and B.-G. Englert. Optimal error regions for quantum state estimation. New. J. Phys., 15:123026, 2013.
Bushnell, M C; Duncan, G H; Tremblay, N
1993-03-01
1. The role of the thalamic ventroposterior medial (VPM) nucleus in the discriminative aspects of nociception and thermoreception was evaluated in alert, trained rhesus monkeys. Single-unit responses were recorded from VPM while the monkeys performed a battery of tasks involving noxious heat, innocuous cool, and air-puff stimuli presented to the face. The discriminative ability of the monkey was compared directly with the responses of single neurons, to determine whether the neuronal response could subserve the monkey's discriminative behavior. 2. Most thermally sensitive neurons exhibited multimodal properties. Only 18% responded exclusively to heat (HT-Heat neurons), whereas 27% responded to innocuous mechanical, as well as noxious mechanical and heat stimuli (WDR-Heat). Twenty-three percent responded to innocuous mechanical stimuli and innocuous skin cooling (Mechano-Cool), and 32% responded to mechanical, innocuous cool, and noxious heat stimuli (WDR-Heat-Cool). 3. Almost all mechanical receptive fields were confined to one division of the trigeminal nerve. This was true for all of the above categories of VPM neurons, even those showing highly convergent properties (WDR-Heat-Cool). 4. Heat-activated neurons produced graded responses to noxious skin heating in the 46 to 49 degrees C range. Stimulus-response functions of neurons that responded to both heat and cool did not differ from those of neurons that responded exclusively to skin heating. 5. When the monkeys were detecting small changes in the intensity of a noxious heat stimulus (e.g., from 47 to 47.1-47.8 degrees C), heat-activated neurons responded to the smallest temperature changes that could be detected by the monkeys. Further, there was a high correlation between the monkey's success in detecting the stimulus changes and the magnitude of the neuronal responses to those changes. 6. Although the responsiveness of VPM cool-activated neurons was not compared with the monkeys' threshold for detecting
Quantum-mechanical properties of Bessel beams
Jauregui, R.; Hacyan, S.
2005-03-01
Bessel beams are studied within the general framework of quantum optics. The two modes of the electromagnetic field are quantized and the basic dynamical operators are identified. As we show explicitly, the operators that are usually associated with linear momentum, orbital angular momentum, and spin do not satisfy the algebra of the translation and rotation group. Nevertheless, we identify some components of these operators that represent observable quantities in an appropriate basis, thus characterizing the quantum numbers of Bessel photons. Some physical consequences of these results are discussed.
Optical properties of few layered graphene quantum dots
NASA Astrophysics Data System (ADS)
Pratap Choudhary, Raghvendra; Shukla, Shobha; Vaibhav, Kumar; Bhagwan Pawar, Pranav; Saxena, Sumit
2015-09-01
Quantum dots provide a unique opportunity to study the confinement effects of electronic wave function on the properties of materials. We have investigated the optical properties of graphene quantum dots synthesized using ultra-fast light-matter interactions followed by one step reduction process. Atomic-scale morphological information suggests the presence of both zigzag and armchair edges in these quantum dots. Optical characterizations were performed using absorption, photoluminescence, and infrared spectroscopy. A shift in the emission spectrum and disappearance of n → π* transition in the absorption spectrum on reduction of the ablated samples confirmed the formation of graphene quantum dots. First principles calculations are in good agreement with the experimentally reported infrared data.
Optical properties of dielectric thin films including quantum dots
NASA Astrophysics Data System (ADS)
Flory, F.; Chen, Y. J.; Lee, C. C.; Escoubas, L.; Simon, J. J.; Torchio, P.; Le Rouzo, J.; Vedraine, S.; Derbal-Habak, Hassina; Ackermann, Jorg; Shupyk, Ivan; Didane, Yahia
2010-08-01
Depending on the minimum size of their micro/nano structure, thin films can exhibit very different behaviors and optical properties. From optical waveguides down to artificial anisotropy, through diffractive optics and photonic crystals, the application changes when decreasing the minimum feature size. Rigorous electromagnetic theory can be used to model most of the components but when the size is of a few nanometers, quantum theory has also to be used. These materials including quantum structures are of particular interest for other applications, in particular for solar cells, because of their luminescent and electronic properties. We show that the properties of electrons in multiple quantum wells can be easily modeled with a formalism similar to that used for multilayer waveguides. The effects of different parameters, in particular coupling between wells and well thickness dispersion, on possible discrete energy levels or energy band of electrons and on electron wave functions is given. When such quantum confinement appears the spectral absorption and the extinction coefficient dispersion with wavelength is modified. The dispersion of the real part of the refractive index can then be deduced from the Kramers- Krönig relations. Associated with homogenization theory this approach gives a new model of refractive index for thin films including quantum dots. Absorption spectra of samples composed of ZnO quantum dots in PMMA layers are in preparation are given.
Optical properties of dielectric thin films including quantum dots.
Flory, François; Chen, Yu-Jen; Lee, Cheng-Chung; Escoubas, Ludovic; Simon, Jean-Jacques; Torchio, Philippe; Le Rouzo, Judikaël; Vedraine, Sylvain; Derbal-Habak, Hassina; Shupyk, Ivan; Didane, Yahia; Ackermann, Jörg
2011-03-20
Depending on the minimum size of their micro/nanostructure, thin films can exhibit very different behaviors and optical properties. From optical waveguides down to artificial anisotropy, through diffractive optics and photonic crystals, the application changes when decreasing the minimum feature size. Rigorous electromagnetic theory can be used to model most of the components, but, when the size is a few nanometers, quantum theory also has to be used. The materials, including quantum structures, are of particular interest for many applications, in particular for solar cells because of their luminescent and electronic properties. We show that the properties of electrons in periodic and nonperiodic multiple quantum well structures can be easily modeled with a formalism similar to that used for multilayer waveguides. The effects of different parameters, in particular the coupling between wells and well thickness dispersion, on possible discrete energy levels or the energy band of electrons and on electron wave functions are given. When such quantum confinement appears, the spectral absorption and extinction coefficient dispersion with wavelength are modified. The dispersion of the real part of the refractive index can be deduced from the Kramers-Kronig relations. Associated with homogenization theory, this approach gives a new model of the refractive index for thin films including quantum dots. The bandgap of ZnO quantum dots in solution obtained from the absorption spectrum is in good agreement with our calculation.
NASA Astrophysics Data System (ADS)
Volkoff, Tyler James
In this dissertation, I analyze certain problems in the following areas: 1) quantum dynamical phenomena in macroscopic systems of interacting, degenerate bosons (Parts II, III, and V), and 2) measures of macroscopicity for a large class of two-branch superposition states in separable Hilbert space (Part IV). Part I serves as an introduction to important concepts recurring in the later Parts. In Part II, a microscopic derivation of the effective action for the relative phase of driven, aperture-coupled reservoirs of weakly-interacting condensed bosons from a (3 + 1)D microscopic model with local U(1) gauge symmetry is presented. The effective theory is applied to the transition from linear to sinusoidal current vs. phase behavior observed in recent experiments on liquid 4He driven through nanoaperture arrays. Part III discusses path-integral Monte Carlo (PIMC) numerical simulations of quantum hydrodynamic properties of reservoirs of He II communicating through simple nanoaperture arrays. In addition to calculating the local superfluid density in these systems, new estimators for hydrodynamic observables and novel methods for extracting the length scale characterizing the decay of superfluidity at the system boundary from PIMC data are introduced with the aim of exploring the mechanism of superfluid weak-link formation in nanoscale containers. Part IV consists of an analysis of macroscopicity measures for a large class of Schrodinger cat states of N-mode photonic systems. For cat states of this class, it is shown that a well-known measure of superposition size based on the optimal distinguishability of the branches and another based on metrological usefulness of the superposition relative to its branches agree (i.e., designate the same superpositions as macroscopic) when the inner product of the branches of the superposition is sufficiently small. For certain superpositions in this class, a technique is presented for deriving a state-specific metrological
Interaction of a quantum well with squeezed light: Quantum-statistical properties
Sete, Eyob A.; Eleuch, H.
2010-10-15
We investigate the quantum statistical properties of the light emitted by a quantum well interacting with squeezed light from a degenerate subthreshold optical parametric oscillator. We obtain analytical solutions for the pertinent quantum Langevin equations in the strong-coupling and low-excitation regimes. Using these solutions we calculate the intensity spectrum, autocorrelation function, and quadrature squeezing for the fluorescent light. We show that the fluorescent light exhibits bunching and quadrature squeezing. We also show that the squeezed light leads to narrowing of the width of the spectrum of the fluorescent light.
NASA Astrophysics Data System (ADS)
Sin, Yongkun; Presser, Nathan; Mason, Maribeth; Moss, Steven C.
2006-02-01
High-power multi-mode broad area InGaAs strained quantum well (QW) single emitters (λ ~ 920-980nm) have been mainly used for industrial applications. Recently, these broad area lasers with CW output powers >5W have also found applications in communications as pump lasers for Er-Yb co-doped fiber amplifiers. This application requires very demanding characteristics including higher reliability than industrial applications. In contrast to 980nm single mode InGaAs strained QW lasers that are widely employed in both terrestrial and submarine applications, the fact that multimode lasers have never been used in optical communications necessitates careful study of these lasers. We report investigations of performance characteristics, reliability, and failure modes of high-power multi-mode single emitters. The lasers studied were broad area strained InGaAs-GaAs single QW lasers grown either by MOCVD or MBE. Typical apertures were around 100μm wide and cavity lengths were <=4.2mm. AR-HR coated laser diode chips were mounted on carriers with junction down configuration to reduce thermal impedance. Laser thresholds were <=453mA at RT. At 6A injection current typical CW output powers were over 5W at 25°C with wall-plug efficiency of ~60%. Characteristics measured included thermal impedance and optical beam profiles that are critical in understanding performance and reliability. Automatic current control burn-in tests with different stress conditions were performed and log (I)-V characteristics were measured at RT to correlate degradation in optical output power and an increase in trap density estimated from the 2κ•T term in bulk recombination current. We also report initial analysis of lifetest results and failure modes from these lasers.
Optical Properties of Zinc Oxide Quantum Dots
NASA Astrophysics Data System (ADS)
Hsieh, Wen-Feng; Hsu, Hsu-Cheng; Liao, Wan-Jiun; Cheng, Hsin-Ming; Lin, Kuo-Feng; Hsu, Wei-Tze; Pan, Chin-Jiu
Size-dependence of efficient UV photoluminescence (PL) and absorption spectra of various sizes of zinc oxide (ZnO) quantum dots (QDs) give evidence for the quantum confinement effect. Bandgap enlargement is in agreement with the theoretical calculation based on the effective mass model for the size of ZnO QDs being comparable to the Bohr radius of bulk exciton. By using the modified spatial correlation model to fit the measured Raman spectra, we reveal that the Raman spectral shift and asymmetry for E2(high) mode are caused by localization of optical phonons. Furthermore, we present temperature-dependent PL of different sizes of ZnO particles. The unobvious LO-phonon replicas of free exciton (FX) were observed when the ZnO particle sizes were under 12 nm in diameter. The increasing exciton energy (Eb) with the decreasing quantum dot size can be obtained from temperature-dependent PL. From the temperature-dependent change of FX emission energy, we deduce that the exciton-LO phonon coupling strength reduces as the particle size decreases. The reduced exciton Bohr radius aB with particle size obtained from Eb and PL spectrum confirms that the exciton becomes less polar in turn reducing the Fröhlich interaction and the exciton-LO phonon interaction is reduced with decreasing size of the ZnO QDs. In addition, the nearly unchanged spectral shape in power dependent PL of ZnO quantum dots reveals stable exciton states without formation of biexcitons and exciton-exciton cattering.
Germanium quantum dots: Optical properties and synthesis
NASA Astrophysics Data System (ADS)
Heath, James R.; Shiang, J. J.; Alivisatos, A. P.
1994-07-01
Three different size distributions of Ge quantum dots (≳200, 110, and 60 Å) have been synthesized via the ultrasonic mediated reduction of mixtures of chlorogermanes and organochlorogermanes (or organochlorosilanes) by a colloidal sodium/potassium alloy in heptane, followed by annealing in a sealed pressure vessel at 270 °C. The quantum dots are characterized by transmission electron microscopy, x-ray powder diffraction, x-ray photoemission, infrared spectroscopy, and Raman spectroscopy. Colloidal suspensions of these quantum dots were prepared and their extinction spectra are measured with ultraviolet/visible (UV/Vis) and near infrared (IR) spectroscopy, in the regime from 0.6 to 5 eV. The optical spectra are correlated with a Mie theory extinction calculation utilizing bulk optical constants. This leads to an assignment of three optical features to the E(1), E(0'), and E(2) direct band gap transitions. The E(0') transitions exhibit a strong size dependence. The near IR spectra of the largest dots is dominated by E(0) direct gap absorptions. For the smallest dots the near IR spectrum is dominated by the Γ25→L indirect transitions.
Properties of Quantum-Dot-Doped Liquid Scintillators
NASA Astrophysics Data System (ADS)
Coy, Christopher
2014-03-01
Novel scintillators based on semiconducting nanocrystals called quantum dots have unique optical and chemical properties that make them interesting for future neutrino experiments especially those searching for neutrino-less double beta decay. In this talk, we report the results of laboratory-scale measurements for three candidate quantum-dot-doped scintillators. We focus on the key properties required for large-scale neutrino experiments, which are the emission spectrum, the attenuation length and the stability. I would like to follow the talk by Andrey Elagin on directionality in scintillators and precede Athena Ierokomos' talk on light yield in scintillators.
Wo, Fangjie; Xu, Rujiao; Shao, Yuxiang; Zhang, Zheyu; Chu, Maoquan; Shi, Donglu; Liu, Shupeng
2016-01-01
In this study, a multimodal therapeutic system was shown to be much more lethal in cancer cell killing compared to a single means of nano therapy, be it photothermal or photodynamic. Hollow magnetic nanospheres (HMNSs) were designed and synthesized for the synergistic effects of both magneto-mechanical and photothermal cancer therapy. By these combined stimuli, the cancer cells were structurally and physically destroyed with the morphological characteristics distinctively different from those by other therapeutics. HMNSs were also coated with the silica shells and conjugated with carboxylated graphene quantum dots (GQDs) as a core-shell composite: HMNS/SiO2/GQDs. The composite was further loaded with an anticancer drug doxorubicin (DOX) and stabilized with liposomes. The multimodal system was able to kill cancer cells with four different therapeutic mechanisms in a synergetic and multilateral fashion, namely, the magnetic field-mediated mechanical stimulation, photothermal damage, photodynamic toxicity, and chemotherapy. The unique nanocomposites with combined mechanical, chemo, and physical effects will provide an alternative strategy for highly improved cancer therapy efficiency. PMID:26941842
Wo, Fangjie; Xu, Rujiao; Shao, Yuxiang; Zhang, Zheyu; Chu, Maoquan; Shi, Donglu; Liu, Shupeng
2016-01-01
In this study, a multimodal therapeutic system was shown to be much more lethal in cancer cell killing compared to a single means of nano therapy, be it photothermal or photodynamic. Hollow magnetic nanospheres (HMNSs) were designed and synthesized for the synergistic effects of both magneto-mechanical and photothermal cancer therapy. By these combined stimuli, the cancer cells were structurally and physically destroyed with the morphological characteristics distinctively different from those by other therapeutics. HMNSs were also coated with the silica shells and conjugated with carboxylated graphene quantum dots (GQDs) as a core-shell composite: HMNS/SiO2/GQDs. The composite was further loaded with an anticancer drug doxorubicin (DOX) and stabilized with liposomes. The multimodal system was able to kill cancer cells with four different therapeutic mechanisms in a synergetic and multilateral fashion, namely, the magnetic field-mediated mechanical stimulation, photothermal damage, photodynamic toxicity, and chemotherapy. The unique nanocomposites with combined mechanical, chemo, and physical effects will provide an alternative strategy for highly improved cancer therapy efficiency.
Wu, Qi; Sun, Yaming; Zhang, Xiaoli; Zhang, Xia; Dong, Shuqing; Qiu, Hongdeng; Wang, Litao; Zhao, Liang
2017-04-07
Graphene quantum dots (GQDs), which possess hydrophobic, hydrophilic, π-π stacking and hydrogen bonding properties, have great prospect in HPLC. In this study, a novel GQDs bonded silica stationary phase was prepared and applied in multiple separation modes including normal phase, reversed phase and hydrophilic chromatography mode. Alkaloids, nucleosides and nucleobases were chosen as test compounds to evaluate the separation performance of this column in hydrophilic chromatographic mode. The tested polar compounds achieved baseline separation and the resolutions reached 2.32, 4.62, 7.79, 1.68 for thymidine, uridine, adenosine, cytidine and guanosine. This new column showed satisfactory chromatographic performance for anilines, phenols and polycyclic aromatic hydrocarbons in normal and reversed phase mode. Five anilines were completely separated within 10min under the condition of mobile phase containing only 10% methanol. The effect of water content, buffer concentration and pH on chromatographic separation was further investigated, founding that this new stationary phase showed a complex retention mechanism of partitioning, adsorption and electrostatic interaction in hydrophilic chromatography mode, and the multiple retention interactions such as π-π stacking and π-π electron-donor-acceptor interaction played an important role during the separation process. This GQDs bonded column, which allows us to adjust appropriate chromatography mode according to the properties of analytes, has possibility in actual application after further research.
Cheng, Yuanbing; Wu, Jian; Zhao, Lingjuan; Luo, Xianshu; Wang, Qi Jie
2015-01-01
We have designed and demonstrated InAs/GaAs quantum dots-in-a-well laser diodes for short cavities with transverse fundamental mode operation by using an active multimode interferometer (MMI) structure for the first time to the best of our knowledge. Room-temperature continuous-wave ground-state lasing at 1280 nm has been achieved with an output power of 116 mW per facet, which is 2.4 times higher than that of the conventional ridge laser diodes. By using the MMI structures, the excited-state (ES) lasing is effectively suppressed with no ES lasing, even at a high injection current of 400 mA. This device has great potential for high-power single-mode laser emission with low electric power consumption and simple fabrication processes.
DNA-based programing of quantum dot properties.
Ma, Nan; Kelley, Shana O
2013-01-01
Nucleic acid molecules can serve as robust ligands for aqueous synthesis of semiconductor nanocrystals or quantum dots (QDs). QD properties including size, morphology, dispersity, emission maximum, and quantum yield are highly dependent on the sequences and structures of nucleic acids used for the synthesis. This synthetic strategy provides a novel facile means of constructing compact, stable, and biofunctionalized QDs in one step, which is of particular interest for a variety of applications such as biosensing, bioimaging, and self-assembly. This article summarizes recent advances in nucleic acid-templated QD synthesis with an emphasis on the nucleic acids-based programing of quantum dots properties. A variety of applications based on DNA-passivated QDs are also discussed. Copyright © 2012 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Montón, Helena; Parolo, Claudio; Aranda-Ramos, Antonio; Merkoçi, Arben; Nogués, Carme
2015-02-01
There is a great demand to develop novel techniques that allow useful and complete monitoring of apoptosis, which is a key factor of several diseases and a target for drug development. Here, we present the use of a novel dual electrochemical/optical label for the detection and study of apoptosis. We combined the specificity of Annexin-V for phosphatidylserine, a phospholipid expressed in the outer membrane of apoptotic cells, with the optical and electrochemical properties of quantum dots to create a more efficient label. Using this conjugate we addressed three important issues: (i) we made the labeling of apoptotic cells faster (30 min) and easier; (ii) we fully characterized the samples by common cell biological techniques (confocal laser scanning microscopy, scanning electron microscopy and flow cytometry); and (iii) we developed a fast, cheap and quantitative electrochemical detection method for apoptotic cells with results in full agreement with those obtained by flow cytometry.There is a great demand to develop novel techniques that allow useful and complete monitoring of apoptosis, which is a key factor of several diseases and a target for drug development. Here, we present the use of a novel dual electrochemical/optical label for the detection and study of apoptosis. We combined the specificity of Annexin-V for phosphatidylserine, a phospholipid expressed in the outer membrane of apoptotic cells, with the optical and electrochemical properties of quantum dots to create a more efficient label. Using this conjugate we addressed three important issues: (i) we made the labeling of apoptotic cells faster (30 min) and easier; (ii) we fully characterized the samples by common cell biological techniques (confocal laser scanning microscopy, scanning electron microscopy and flow cytometry); and (iii) we developed a fast, cheap and quantitative electrochemical detection method for apoptotic cells with results in full agreement with those obtained by flow cytometry
Spectral properties of circulant positive maps: classical versus quantum
NASA Astrophysics Data System (ADS)
Chruściński, Dariusz
2015-06-01
A class of circulant stochastic matrices and positive maps in matrix algebras displaying circulant structure is analyzed. It is shown how the spectral properties of matrices and linear maps are related to positivity conditions. An interesting interplay between the classical and quantum case is revealed. Dedicated to Margarita and Volodia Man’ko for their 150th birthday.
Optical, magnetic and electronic properties of graphene quantum dots
NASA Astrophysics Data System (ADS)
Guclu, A. Devrim
2011-03-01
We present a theory of optical, magnetic and electronic properties of graphene quantum dots. We demonstrate that there exists a class of triangular graphene quantum dots with zigzag edges [1-8] which combines magnetic, optical and transport properties in a single-material structure. These dots exhibit robust magnetic moment and optical transitions simultaneously in the THz, visible and UV spectral ranges due to the existence of a band of degenerate states lying at the Fermi level in the middle of the energy gap [1-6]. The magnetic and optical properties[5,7] are determined by strong electron-electron and excitonic interactions in the degenerate band, treated exactly using numerical techniques combining tight-binding, DFT, Hartree-Fock and configuration interactions methods. We show that the spin polarized degenerate band leads to quenching of the absorption spectrum at half-filling, while addition of a single electron fully depolarizes all electron spins and turns the absorption on. It is thus possible to design gate and size tunable graphene quantum dots with desired optical and magnetic properties for optoelectronic and photo-voltaic applications. Collaborators: P. Potasz, O. Voznyy, M. Korkusinski, and P. Hawrylak. The author thanks NRC-CNRS CRP, Canadian Institute for Advanced Research, Institute for Microstructural Sciences, and QuantumWorks for support.
Nakamura, Michihiro; Hayashi, Koichiro; Kubo, Hitoshi; Kanadani, Takafumi; Harada, Masafumi; Yogo, Toshinobu
2017-04-15
Multimodal imaging using novel multifunctional nanoparticles provides a new approach for the biomedical field. Thiol-organosilica nanoparticles containing iron oxide magnetic nanoparticles (MNPs) as the core and rhodamine B in the thiol-organosilica layer (thiol OS-MNP/Rho) were synthesized in a one-pot process. The thiol OS-MNP/Rho showed enhanced magnetic resonance imaging (MRI) contrast and high fluorescence intensity. The relaxometry of thiol OS-MNP/Rho revealed a novel coating effect of the organosilica layer to the MNPs. The organosilica layer shortened the T2 relaxation time but not the T1 relaxation time of the MNPs. We injected thiol-OS-MNP/Rho into normal mice intravenously. Injected mice revealed an alteration of the liver contrast in the MRI and a fluorescent pattern based on the liver histological structure at the level between macroscopic and microscopic fluorescent imaging (mesoscopic FI). In addition, the labeled macrophages were observed at the single cell level histologically. We demonstrated a new approach to evaluate the liver at the macroscopic, microscopic level as well as the mesoscopic level using multimodal imaging.
Critical properties of dissipative quantum spin systems in finite dimensions
NASA Astrophysics Data System (ADS)
Takada, Kabuki; Nishimori, Hidetoshi
2016-10-01
We study the critical properties of finite-dimensional dissipative quantum spin systems with uniform ferromagnetic interactions. Starting from the transverse field Ising model coupled to a bath of harmonic oscillators with Ohmic spectral density, we generalize its classical representation to classical spin systems with O(n) symmetry and then take the large-n limit to reduce the system to a spherical model. The exact solution to the resulting spherical model with long-range interactions along the imaginary time axis shows a phase transition with static critical exponents coinciding with those of the conventional short-range spherical model in d+2 dimensions, where d is the spatial dimensionality of the original quantum system. This implies that the dynamical exponent is z = 2. These conclusions are consistent with the results of Monte Carlo simulations and renormalization group calculations for dissipative transverse field Ising and O(n) models in one and two dimensions. The present approach therefore serves as a useful tool for analytically investigating the properties of quantum phase transitions of the dissipative transverse field Ising and other related models. Our method may also offer a platform to study more complex phase transitions in dissipative finite-dimensional quantum spin systems, which have recently received renewed interest in the context of quantum annealing in a noisy environment.
Comparison of dynamic properties of InP/InAs quantum-dot and quantum-dash lasers
NASA Astrophysics Data System (ADS)
Sadeev, T.; Arsenijević, D.; Bimberg, D.
2016-10-01
The dynamic properties of MOVPE grown InP/InAs quantum-dot and quantum-dash lasers, showing identical structural design, emitting in the C-band are investigated and compared to each other. Based on the small-signal measurements, we show the impact of the density of states function on the cut-off frequency, being larger for quantum dots at low currents, and reaching similar values for quantum dashes only at higher currents. The large-signal measurements show error-free data transmission at 22.5 and 17.5 Gbit/s for the quantum-dot and quantum-dash lasers.
Quantum mechanical properties of graphene nano-flakes and quantum dots.
Shi, Hongqing; Barnard, Amanda S; Snook, Ian K
2012-11-07
In recent years considerable attention has been given to methods for modifying and controlling the electronic and quantum mechanical properties of graphene quantum dots. However, as these types of properties are indirect consequences of the wavefunction of the material, a more efficient way of determining properties may be to engineer the wavefunction directly. One way of doing this may be via deliberate structural modifications, such as producing graphene nanostructures with specific sizes and shapes. In this paper we use quantum mechanical simulations to determine whether the wavefunction, quantified via the distribution of the highest occupied molecular orbital, has a direct and reliable relationship to the physical structure, and whether structural modifications can be useful for wavefunction engineering. We find that the wavefunction of small molecular graphene structures can be different from those of larger nanoscale counterparts, and the distribution of the highest occupied molecular orbital is strongly affected by the geometric shape (but only weakly by edge and corner terminations). This indicates that both size and shape may be more useful parameters in determining quantum mechanical and electronic properties, which should then be reasonably robust against variations in the chemical passivation or functionalisation around the circumference.
Tuning the dynamic properties of electrons between a quantum well and quantum dots
NASA Astrophysics Data System (ADS)
Cerulo, G.; Nevou, L.; Liverini, V.; Castellano, F.; Faist, J.
2012-08-01
We present a study of the dynamic properties of electrons tunneling from an InGaAs quantum well to self assembled InAs quantum dots. The experiments were conducted on three highly asymmetric quantum dot infrared photodetectors, where the quantum well and quantum dots were separated by a composite GaAs/AlGaAs/GaAs barrier, which varied from 3.5 nm to 7.0 nm. We performed interband (photoluminescence) and intraband (photocurrent) measurements to characterize the spectral properties of the well and the dots. The photoluminescence measurements revealed that the two nanostructures are decoupled when the device is at zero bias. By intraband pump-probe experiments and photocurrent saturation experiments, we were able to extrapolate a refilling time τ from the well to the dots, which varied from a few μs for the thinnest barrier and hundreds of μs for the thickest one. The extracted values are in good agreement with characteristic tunneling times computed by using a model based on the theoretically predicted transmission coefficient of the electrons through the composite barrier.
Quantum plasmonics: optical properties and tunability of metallic nanorods.
Zuloaga, Jorge; Prodan, Emil; Nordlander, Peter
2010-09-28
The plasmon resonances in metallic nanorods are investigated using fully quantum mechanical time-dependent density functional theory. The computed optical absorption curves display well-defined longitudinal and transverse plasmon resonances whose energies depend on the aspect ratio of the rods, in excellent agreement with classical electromagnetic modeling. The field enhancements obtained from the quantum mechanical calculations, however, differ significantly from classical predictions for distances shorter than 0.5 nm from the nanoparticle surfaces. These deviations can be understood as arising from the nonlocal screening properties of the conduction electrons at the nanoparticle surface.
Thermodynamical properties of Strunz’s quantum dissipative models
Zen, Freddy P.; Sulaiman, A.
2015-09-30
The existence of the negative of specific heat from quantum dissipative theory is investigated. Strunz’s quantum dissipative model will be used in this studies. The thermodynamical properties will be studied starts out from the thermo-dynamic partition function of the dissipative system. The path integral technique is used to calculate the partition function under consideration. The results shows that the specific heat can be negative if the damping parameter more than a half the oscillator frequency and also occur at low temperatures. For damping factor greater than the frequency of harmonic oscillator then specific heat will oscillate at low temperatures and approaching normal conditions at a high temperature.
Quantum-walk transport properties on graphene structures
NASA Astrophysics Data System (ADS)
Bougroura, Hamza; Aissaoui, Habib; Chancellor, Nicholas; Kendon, Viv
2016-12-01
We present numerical studies of quantum walks on C60 and related graphene structures to investigate their transport properties. Also known as a honeycomb lattice, the lattice formed by carbon atoms in the graphene phase can be rolled up to form nanotubes of various dimensions. Graphene nanotubes have many important applications, some of which rely on their unusual electrical conductivity and related properties. Quantum walks on graphs provide an abstract setting in which to study such transport properties independent of the other chemical and physical properties of a physical substance. They can thus be used to further the understanding of mechanisms behind such properties. We find that nanotube structures are significantly more efficient in transporting a quantum walk than cycles of equivalent size, provided the symmetry of the structure is respected in how they are used. We find faster transport on zigzag nanotubes compared to armchair nanotubes, which is unexpected given that for the actual materials the armchair nanotube is metallic, while the zigzag is semiconducting.
Electro-optical properties of phosphorene quantum dots
NASA Astrophysics Data System (ADS)
Saroka, V. A.; Lukyanchuk, I.; Portnoi, M. E.; Abdelsalam, H.
2017-08-01
We study the electronic and optical properties of single-layer phosphorene quantum dots with various shapes, sizes, and edge types (including disordered edges) subjected to an external electric field normal to the structure plane. Compared to graphene quantum dots, in phosphorene clusters of similar shape and size there is a set of edge states with energies dispersed at around the Fermi level. These states make the majority of phosphorene quantum dots metallic and enrich the phosphorene absorption gap with low-energy absorption peaks tunable by the electric field. The presence of the edge states dispersed around the Fermi level is a characteristic feature that is independent of the edge morphology and roughness.
Highly sensitive humidity sensing properties of carbon quantum dots films
Zhang, Xing; Ming, Hai; Liu, Ruihua; Han, Xiao; Kang, Zhenhui; Liu, Yang; Zhang, Yonglai
2013-02-15
Graphical abstract: Display Omitted Highlights: ► A humidity sensing device was fabricated based on carbon quantum dots (CQDs) films. ► The conductivity of the CQDs films shows a linear and rapid response to atmosphere humidity. ► The humidity sensing property was due to the hydrogen bonds between the functional groups on CQDs. -- Abstract: We reported the fabrication of a humidity sensing device based on carbon quantum dots (CQDs) film. The conductivity of the CQDs film has a linear and rapid response to relative humidity, providing the opportunity for the fabrication of humidity sensing devices. The mechanism of our humidity sensor was proposed to be the formation of hydrogen bonds between carbon quantum dots and water molecules in the humidity environment, which significantly promote the electrons migration. In a control experiment, this hypothesis was confirmed by comparing the humidity sensitivity of candle soot (i.e. carbon nanoparticles) with and without oxygen containing groups on the surfaces.
Optical properties of GaN wurtzite quantum wires
NASA Astrophysics Data System (ADS)
Zhang, X. W.; Xia, J. B.
2006-03-01
The electronic structure and optical properties of freestanding GaN wurtzite quantum wires are studied in the framework of six-band effective-mass envelope function theory. It is found that the electron states are either twofold or fourfold degenerate. There is a dark exciton effect when the radius R of GaN wurtzite quantum wires is in the range of [0.7, 10.9] nm. The linear polarization factors are calculated in three cases, the quantum confinement effect (finite long wire), the dielectric effect and both effects (infinitely long wire). It is found that the linear polarization factor of a finite long wire whose length is much less than the electromagnetic wavelength decreases as R increases, is very close to unity (0.979) at R = 1 nm, and changes from a positive value to a negative value around R = 4.1 nm. The linear polarization factor of the dielectric effect is 0.934, independent of radius, as long as the radius remains much less than the electromagnetic wavelength. The result for the two effects shows that the quantum confinement effect gives a correction to the dielectric effect result. It is found that the linear polarization factor of very long (treated approximately as infinitely long) quantum wires is in the range of [0.8, 1]. The linear polarization factors of the quantum confinement effect of CdSe wurtzite quantum wires are calculated for comparison. In the CdSe case, the linear polarization factor of R = 1 nm is 0.857, in agreement with the experimental results (Hu et al 2001 Science 292 2060). This value is much smaller than unity, unlike 0.979 in the GaN case, mainly due to the big spin-orbit splitting energy Δso of CdSe material with wurtzite structure.
Tuning quantum properties in bilayer ruthenates
NASA Astrophysics Data System (ADS)
Ke, Xianglin
The mutual coupling among spin, charge, lattice and orbital degrees of freedom in transition-metal oxide materials often leads to the competition of various types of energetic states. This makes such materials dramatically susceptible to external parameters, giving rise to novel physical properties and rich phase diagrams. In this talk, I shall use a bilayer ruthenate, Ca3Ru2O7, as an example to discuss the emergent phenomena achieved by systematically tuning materials magnetic and electronic properties via chemical doping, magnetic field, and pressure. I shall show that this system provides a rare opportunity to investigate the interplay between correlated metal and Mott insulator. This work was done in collaboration with M. Zhu, T. Tao, S. D. Mahanti, Z. Q. Mao, J. Peng, T. Hong, W. Tian, H. Cao, C. R. dela Cruz, D. Singh, and K. Prokes.
Quantum chemistry structures and properties of 134 kilo molecules.
Ramakrishnan, Raghunathan; Dral, Pavlo O; Rupp, Matthias; von Lilienfeld, O Anatole
2014-01-01
Computational de novo design of new drugs and materials requires rigorous and unbiased exploration of chemical compound space. However, large uncharted territories persist due to its size scaling combinatorially with molecular size. We report computed geometric, energetic, electronic, and thermodynamic properties for 134k stable small organic molecules made up of CHONF. These molecules correspond to the subset of all 133,885 species with up to nine heavy atoms (CONF) out of the GDB-17 chemical universe of 166 billion organic molecules. We report geometries minimal in energy, corresponding harmonic frequencies, dipole moments, polarizabilities, along with energies, enthalpies, and free energies of atomization. All properties were calculated at the B3LYP/6-31G(2df,p) level of quantum chemistry. Furthermore, for the predominant stoichiometry, C7H10O2, there are 6,095 constitutional isomers among the 134k molecules. We report energies, enthalpies, and free energies of atomization at the more accurate G4MP2 level of theory for all of them. As such, this data set provides quantum chemical properties for a relevant, consistent, and comprehensive chemical space of small organic molecules. This database may serve the benchmarking of existing methods, development of new methods, such as hybrid quantum mechanics/machine learning, and systematic identification of structure-property relationships.
Quantum chemistry structures and properties of 134 kilo molecules
Ramakrishnan, Raghunathan; Dral, Pavlo O.; Rupp, Matthias; von Lilienfeld, O. Anatole
2014-01-01
Computational de novo design of new drugs and materials requires rigorous and unbiased exploration of chemical compound space. However, large uncharted territories persist due to its size scaling combinatorially with molecular size. We report computed geometric, energetic, electronic, and thermodynamic properties for 134k stable small organic molecules made up of CHONF. These molecules correspond to the subset of all 133,885 species with up to nine heavy atoms (CONF) out of the GDB-17 chemical universe of 166 billion organic molecules. We report geometries minimal in energy, corresponding harmonic frequencies, dipole moments, polarizabilities, along with energies, enthalpies, and free energies of atomization. All properties were calculated at the B3LYP/6-31G(2df,p) level of quantum chemistry. Furthermore, for the predominant stoichiometry, C7H10O2, there are 6,095 constitutional isomers among the 134k molecules. We report energies, enthalpies, and free energies of atomization at the more accurate G4MP2 level of theory for all of them. As such, this data set provides quantum chemical properties for a relevant, consistent, and comprehensive chemical space of small organic molecules. This database may serve the benchmarking of existing methods, development of new methods, such as hybrid quantum mechanics/machine learning, and systematic identification of structure-property relationships. PMID:25977779
Optical properties of transition metal oxide quantum wells
NASA Astrophysics Data System (ADS)
Lin, Chungwei; Posadas, Agham; Choi, Miri; Demkov, Alexander A.
2015-01-01
Fabrication of a quantum well, a structure that confines the electron motion along one or more spatial directions, is a powerful method of controlling the electronic structure and corresponding optical response of a material. For example, semiconductor quantum wells are used to enhance optical properties of laser diodes. The ability to control the growth of transition metal oxide films to atomic precision opens an exciting opportunity of engineering quantum wells in these materials. The wide range of transition metal oxide band gaps offers unprecedented control of confinement while the strong correlation of d-electrons allows for various cooperative phenomena to come into play. Here, we combine density functional theory and tight-binding model Hamiltonian analysis to provide a simple physical picture of transition metal oxide quantum well states using a SrO/SrTiO3/SrO heterostructure as an example. The optical properties of the well are investigated by computing the frequency-dependent dielectric functions. The effect of an external electric field, which is essential for electro-optical devices, is also considered.
Optical properties of transition metal oxide quantum wells
Lin, Chungwei; Posadas, Agham; Choi, Miri; Demkov, Alexander A.
2015-01-21
Fabrication of a quantum well, a structure that confines the electron motion along one or more spatial directions, is a powerful method of controlling the electronic structure and corresponding optical response of a material. For example, semiconductor quantum wells are used to enhance optical properties of laser diodes. The ability to control the growth of transition metal oxide films to atomic precision opens an exciting opportunity of engineering quantum wells in these materials. The wide range of transition metal oxide band gaps offers unprecedented control of confinement while the strong correlation of d-electrons allows for various cooperative phenomena to come into play. Here, we combine density functional theory and tight-binding model Hamiltonian analysis to provide a simple physical picture of transition metal oxide quantum well states using a SrO/SrTiO{sub 3}/SrO heterostructure as an example. The optical properties of the well are investigated by computing the frequency-dependent dielectric functions. The effect of an external electric field, which is essential for electro-optical devices, is also considered.
Cadmium-containing quantum dots: properties, applications, and toxicity.
Mo, Dan; Hu, Liang; Zeng, Guangming; Chen, Guiqiu; Wan, Jia; Yu, Zhigang; Huang, Zhenzhen; He, Kai; Zhang, Chen; Cheng, Min
2017-04-01
The marriage of biology with nanomaterials has significantly accelerated advancement of biological techniques, profoundly facilitating practical applications in biomedical fields. With unique optical properties (e.g., tunable broad excitation, narrow emission spectra, robust photostability, and high quantum yield), fluorescent quantum dots (QDs) have been reasonably functionalized with controllable interfaces and extensively used as a new class of optical probe in biological researches. In this review, we summarize the recent progress in synthesis and properties of QDs. Moreover, we provide an overview of the outstanding potential of QDs for biomedical research and innovative methods of drug delivery. Specifically, the applications of QDs as novel fluorescent nanomaterials for biomedical sensing and imaging have been detailedly highlighted and discussed. In addition, recent concerns on potential toxicity of QDs are also introduced, ranging from cell researches to animal models.
Analysis of dynamic, modulation, and output power properties of self-assembled quantum dot lasers
NASA Astrophysics Data System (ADS)
Ghodsi Nahri, D.
2012-09-01
Dynamic, modulation, and output power (OP) characteristics of In(Ga)As/GaAs self-assembled quantum-dot lasers (SAQDLs) using multi-mode and multi-population rate equations analysis considering nonlinear material gain and thermal carrier escape pathways to both wetting layer and barriers are presented. I show that despite of significant effect of nonlinear material gain on time evolution of photon population, it does not affect 3-dB modulation bandwidth (MB). Thermal carrier escape processes have minor declining effects on modulation properties at around room-temperature (RT) operation and higher. Although turn-on delay increases with enhancement of temperature, in some bias currents, there is a reverse jump which is due to thermal carrier escape to barriers. In addition, it is indicated that optimum bias current to maximize MB increases as temperature enhances and that more disk-like SAQDs may provide higher MBs. Variations of some key parameters, bias current or mean quantum-dot (QD) radius, provide similar changing patterns for both MB and OP. While altering most of key parameters, average QD height, QD coverage, stripe width of the laser cavity, and temperature, leads to a tradeoff between MB and OP for a specific interval of those parameters. I show that considering our purpose, which is the highest OP or MB, we can achieve maximum possible output designing key parameters. For the present device, optimizing structural parameters, MB about 14 GHz is achieved at around RT operation under the moderate bias current 10 mA, which can be improved up to 30 GHz with decreasing carrier capture time. The results presented here may be used for designing QD lasers suitable for optical telecommunication.
Equilibration properties of a disordered interacting open quantum system
NASA Astrophysics Data System (ADS)
van Nieuwenburg, Evert; Huber, Sebastian
The central question in the field of many body localization is if a closed interacting quantum system effectively thermalizes in the presence of disorder. However, any experimental test necessarily involves the opening of the ideally closed quantum system. Both from a fundamental point of view as well as for concrete experimental investigations of many body localization phenomena, a solid understanding of the effect of an attached bath is of significant importance. We study the equilibration properties of disordered interacting open quantum systems. On the one hand we consider the equilibration of such a many body localized system by coupling baths to the ends of a 1D spin chain. We find non-monotonous behaviour of the slowest relaxation time towards equilibrium. On the other hand, we take the bath itself to be a disordered interacting open quantum system and investigate the dephasing of a single qubit coupled to it. The model for the bath has a many body localization transition, affecting the dephasing of the single qubit.
Properties of long quantum walks in one and two dimensions
NASA Astrophysics Data System (ADS)
Luo, Hao; Xue, Peng
2015-12-01
The quantum walk (QW) is the term given to a family of algorithms governing the evolution of a discrete quantum system and as such has a founding role in the study of quantum computation. We contribute to the investigation of QW phenomena by performing a detailed numerical study of discrete-time quantum walks. In one dimension (1D), we compute the structure of the probability distribution, which is not a smooth curve but shows oscillatory features on all length scales. By analyzing walks up to N = 1,000,000 steps, we discuss the scaling characteristics and limiting forms of the QW in both real and Fourier space. In 2D, with a view to ready experimental realization, we consider two types of QW, one based on a four-faced coin and the other on sequential flipping of a single two-faced coin. Both QWs may be generated using two two-faced coins, which in the first case are completely unentangled and in the second are maximally entangled. We draw on our 1D results to characterize the properties of both walks, demonstrating maximal speed-up and emerging semi-classical behavior in the maximally entangled QW.
Nonclassical distance in multimode bosonic systems
NASA Astrophysics Data System (ADS)
Nair, Ranjith
2017-06-01
We revisit the notion of nonclassical distance of states of bosonic quantum systems introduced in Phys. Rev. A 35, 725 (1987), 10.1103/PhysRevA.35.725 in a general multimode setting. After reviewing its definition, we establish some of its general properties. We obtain new upper and lower bounds on the nonclassical distance in terms of the supremum of the Husimi function of the state. Considering several examples, we elucidate the cases for which our lower bound is tight, which include the multimode number states and a class of multimode NOON states. The latter provide examples of states of definite photon number n ≥2 whose nonclassical distance can be made arbitrarily close to the upper limit of 1 by increasing the number of modes. We show that the nonclassical distance of the even and odd Schrödinger cat states is bounded away from unity regardless of how macroscopic the superpositions are, and that the nonclassical distance is not necessarily monotonically increasing with respect to macroscopicity.
Superposition states for quantum nanoelectronic circuits and their nonclassical properties
NASA Astrophysics Data System (ADS)
Choi, Jeong Ryeol
2016-09-01
Quantum properties of a superposition state for a series RLC nanoelectronic circuit are investigated. Two displaced number states of the same amplitude but with opposite phases are considered as components of the superposition state. We have assumed that the capacitance of the system varies with time and a time-dependent power source is exerted on the system. The effects of displacement and a sinusoidal power source on the characteristics of the state are addressed in detail. Depending on the magnitude of the sinusoidal power source, the wave packets that propagate in charge(q)-space are more or less distorted. Provided that the displacement is sufficiently high, distinct interference structures appear in the plot of the time behavior of the probability density whenever the two components of the wave packet meet together. This is strong evidence for the advent of nonclassical properties in the system, that cannot be interpretable by the classical theory. Nonclassicality of a quantum system is not only a beneficial topic for academic interest in itself, but its results can be useful resources for quantum information and computation as well.
Superposition states for quantum nanoelectronic circuits and their nonclassical properties
NASA Astrophysics Data System (ADS)
Choi, Jeong Ryeol
2017-09-01
Quantum properties of a superposition state for a series RLC nanoelectronic circuit are investigated. Two displaced number states of the same amplitude but with opposite phases are considered as components of the superposition state. We have assumed that the capacitance of the system varies with time and a time-dependent power source is exerted on the system. The effects of displacement and a sinusoidal power source on the characteristics of the state are addressed in detail. Depending on the magnitude of the sinusoidal power source, the wave packets that propagate in charge( q)-space are more or less distorted. Provided that the displacement is sufficiently high, distinct interference structures appear in the plot of the time behavior of the probability density whenever the two components of the wave packet meet together. This is strong evidence for the advent of nonclassical properties in the system, that cannot be interpretable by the classical theory. Nonclassicality of a quantum system is not only a beneficial topic for academic interest in itself, but its results can be useful resources for quantum information and computation as well.
Quantum Material Properties of 4d and 5d Transition Metal Oxides and Potential Applications
2015-05-26
quantum criticality near ambient pressure; four-layered hexagonal (4H) and nine-layered rhombohedral (9R) 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND...May-2011 Approved for Public Release; Distribution Unlimited Final Report: Quantum Material Properties of 4d and 5d Transition Metal Oxides and...U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Quantum materials; structure-property relationship, quantum
Electronic properties and quantum transport in Graphene-based nanostructures
NASA Astrophysics Data System (ADS)
Dubois, S. M.-M.; Zanolli, Z.; Declerck, X.; Charlier, J.-C.
2009-11-01
Carbon nanotubes (CNTs) and graphene nanoribbons (GNRs) represent a novel class of low-dimensional materials. All these graphene-based nanostructures are expected to display the extraordinary electronic, thermal and mechanical properties of graphene and are thus promising candidates for a wide range of nanoscience and nanotechnology applications. In this paper, the electronic and quantum transport properties of these carbon nanomaterials are reviewed. Although these systems share the similar graphene electronic structure, confinement effects are playing a crucial role. Indeed, the lateral confinement of charge carriers could create an energy gap near the charge neutrality point, depending on the width of the ribbon, the nanotube diameter, the stacking of the carbon layers regarding the different crystallographic orientations involved. After reviewing the transport properties of defect-free systems, doping and topological defects (including edge disorder) are also proposed as tools to taylor the quantum conductance in these materials. Their unusual electronic and transport properties promote these carbon nanomaterials as promising candidates for new building blocks in a future carbon-based nanoelectronics, thus opening alternatives to present silicon-based electronics devices.
Lopez, L.; Gigan, S.; Treps, N.; Maitre, A.; Fabre, C.; Gatti, A.
2005-07-15
Up to now, transverse quantum effects (usually labeled as 'quantum imaging' effects) which are generated by nonlinear devices inserted in resonant optical cavities have been calculated using the 'thin-crystal approximation', i.e., taking into account the effect of diffraction only inside the empty part of the cavity, and neglecting its effect in the nonlinear propagation inside the nonlinear crystal. We introduce in the present paper a theoretical method which is not restricted by this approximation. It allows us in particular to treat configurations closer to the actual experimental ones, where the crystal length is comparable to the Rayleigh length of the cavity mode. We use this method in the case of the confocal optical parametric oscillator, where the thin-crystal approximation predicts perfect squeezing on any area of the transverse plane, whatever its size and shape. We find that there exists in this case a 'coherence length' which gives the minimum size of a detector on which perfect squeezing can be observed, and which gives therefore a limit to the improvement of optical resolution that can be obtained using such devices.
Optoelectronic Properties of Semiconductor Quantum Dot Solids for Photovoltaic Applications.
Chistyakov, A A; Zvaigzne, M A; Nikitenko, V R; Tameev, A R; Martynov, I L; Prezhdo, O V
2017-09-07
Quantum dot (QD) solids represent a new type of condensed matter drawing high fundamental and applied interest. Quantum confinement in individual QDs, combined with macroscopic scale whole materials, leads to novel exciton and charge transfer features that are particularly relevant to optoelectronic applications. This Perspective discusses the structure of semiconductor QD solids, optical and spectral properties, charge carrier transport, and photovoltaic applications. The distance between adjacent nanoparticles and surface ligands influences greatly electrostatic interactions between QDs and, hence, charge and energy transfer. It is almost inevitable that QD solids exhibit energetic disorder that bears many similarities to disordered organic semiconductors, with charge and exciton transport described by the multiple trapping model. QD solids are synthesized at low cost from colloidal solutions by casting, spraying, and printing. A judicious selection of a layer sequence involving QDs with different size, composition, and ligands can be used to harvest sunlight over a wide spectral range, leading to inexpensive and efficient photovoltaic devices.
Spectral properties of pro-multimodal imaging agents derived from a NIR dye and a metal chelator.
Zhang, Zongren; Achilefu, Samuel
2005-01-01
Monomolecular multimodal imaging agents (MOMIAs) are able to provide complementary diagnostic information of a target diseased tissue. We developed a convenient solid-phase approach to construct two pro-MOMIAs (before incorporating radiometal) derived from 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and cypate, a near-infrared (NIR) fluorescent dye analogous to indocyanine green (ICG). The possible interaction between d orbitals of transition metal DOTA complexes or free metals and the p orbitals of cypate chromophore could quench the fluorescence of pro-MOMIAs. However, we did not observe significant changes in the spectral properties of cypate upon conjugation with DOTA and subsequent chelation with metals. The fluorescence intensity of the chelated and nonmetal-chelated PRO-MOMIAs remained fairly the same in dilute 20% aqueous dimethylsulfoxide (DMSO) solution (1 x 10(-6) M). Significant reduction in the fluorescence intensity of pro-MOMIAs occurred in the presence of a large excess of metal ions (>1 molar ratio for indium and 20-fold for a copper relative to pro-MOMIA). This study suggests the feasibility of using MOMIAs for combined optical and radioisotope imaging.
Extremal properties of conditional entropy and quantum discord for XXZ, symmetric quantum states
NASA Astrophysics Data System (ADS)
Yurischev, M. A.
2017-10-01
For the XXZ subclass of symmetric two-qubit X states, we study the behavior of quantum conditional entropy S_{cond} as a function of measurement angle θ \\in [0,π /2]. Numerical calculations show that the function S_{cond}(θ ) for X states can have at most one local extremum in the open interval from zero to π /2 (unimodality property). If the extremum is a minimum, the quantum discord displays region with variable (state-dependent) optimal measurement angle θ ^*. Such θ -regions (phases, fractions) are very tiny in the space of X-state parameters. We also discover the cases when the conditional entropy has a local maximum inside the interval (0,π /2). It is remarkable that the maxima exist in surprisingly wide regions, and the boundaries for such regions are defined by the same bifurcation conditions as for those with a minimum.
Coherent Optical Propagation Properties Based on a Generalized Multi-Mode Optomechanical System
NASA Astrophysics Data System (ADS)
Chen, Hua-Jun; Fang, Xian-Wen; Chen, Chang-Zhao; Li, Yang; Tang, Xu-Dong
2017-03-01
A generalized three-modes optomechanical system is presented where two cavity modes driven by two-tone fields are coupled to a mechanical resonator. We find that two input probe lasers can be entirely absorbed by the mechanical resonator without inducing any energy output from any of the cavity modes termed as coherent perfect absorption. Furthermore, the input probe laser will transmit from one cavity to the other cavity without undergoing any energy loss which is termed as coherent perfect transmission under different parameter regimes. The origin and conditions that enable the phenomena to achieve are analysed, and potential applications in quantum information may be realized in all-optical domain based on these phenomena.
Optimal error intervals for properties of the quantum state
NASA Astrophysics Data System (ADS)
Li, Xikun; Shang, Jiangwei; Ng, Hui Khoon; Englert, Berthold-Georg
2016-12-01
Quantum state estimation aims at determining the quantum state from observed data. Estimating the full state can require considerable efforts, but one is often only interested in a few properties of the state, such as the fidelity with a target state, or the degree of correlation for a specified bipartite structure. Rather than first estimating the state, one can, and should, estimate those quantities of interest directly from the data. We propose the use of optimal error intervals as a meaningful way of stating the accuracy of the estimated property values. Optimal error intervals are analogs of the optimal error regions for state estimation [New J. Phys. 15, 123026 (2013), 10.1088/1367-2630/15/12/123026]. They are optimal in two ways: They have the largest likelihood for the observed data and the prechosen size, and they are the smallest for the prechosen probability of containing the true value. As in the state situation, such optimal error intervals admit a simple description in terms of the marginal likelihood for the data for the properties of interest. Here, we present the concept and construction of optimal error intervals, report on an iterative algorithm for reliable computation of the marginal likelihood (a quantity difficult to calculate reliably), explain how plausible intervals—a notion of evidence provided by the data—are related to our optimal error intervals, and illustrate our methods with single-qubit and two-qubit examples.
Multimode entanglement in reconfigurable graph states using optical frequency combs
NASA Astrophysics Data System (ADS)
Cai, Y.; Roslund, J.; Ferrini, G.; Arzani, F.; Xu, X.; Fabre, C.; Treps, N.
2017-06-01
Multimode entanglement is an essential resource for quantum information processing and quantum metrology. However, multimode entangled states are generally constructed by targeting a specific graph configuration. This yields to a fixed experimental setup that therefore exhibits reduced versatility and scalability. Here we demonstrate an optical on-demand, reconfigurable multimode entangled state, using an intrinsically multimode quantum resource and a homodyne detection apparatus. Without altering either the initial squeezing source or experimental architecture, we realize the construction of thirteen cluster states of various sizes and connectivities as well as the implementation of a secret sharing protocol. In particular, this system enables the interrogation of quantum correlations and fluctuations for any multimode Gaussian state. This initiates an avenue for implementing on-demand quantum information processing by only adapting the measurement process and not the experimental layout.
Multimode entanglement in reconfigurable graph states using optical frequency combs
Cai, Y.; Roslund, J.; Ferrini, G.; Arzani, F.; Xu, X.; Fabre, C.; Treps, N.
2017-01-01
Multimode entanglement is an essential resource for quantum information processing and quantum metrology. However, multimode entangled states are generally constructed by targeting a specific graph configuration. This yields to a fixed experimental setup that therefore exhibits reduced versatility and scalability. Here we demonstrate an optical on-demand, reconfigurable multimode entangled state, using an intrinsically multimode quantum resource and a homodyne detection apparatus. Without altering either the initial squeezing source or experimental architecture, we realize the construction of thirteen cluster states of various sizes and connectivities as well as the implementation of a secret sharing protocol. In particular, this system enables the interrogation of quantum correlations and fluctuations for any multimode Gaussian state. This initiates an avenue for implementing on-demand quantum information processing by only adapting the measurement process and not the experimental layout. PMID:28585530
Quantum Electrostatic Model for Optical Properties of Nanoscale Gold Films
NASA Astrophysics Data System (ADS)
Qian, Haoliang; Xiao, Yuzhe; Lepage, Dominic; Chen, Li; Liu, Zhaowei
2015-11-01
The optical properties of thin gold films with thickness varying from 2.5 nm to 30 nm are investigated. Due to the quantum size effect, the optical constants of the thin gold film deviate from the Drude model for bulk material as film thickness decreases, especially around 2.5 nm, where the electron energy level becomes discrete. A theory based on the self-consistent solution of the Schrödinger equation and the Poisson equation is proposed and its predictions agree well with experimental results.
Thermoelectric properties of an interacting quantum dot based heat engine
NASA Astrophysics Data System (ADS)
Erdman, Paolo Andrea; Mazza, Francesco; Bosisio, Riccardo; Benenti, Giuliano; Fazio, Rosario; Taddei, Fabio
2017-06-01
We study the thermoelectric properties and heat-to-work conversion performance of an interacting, multilevel quantum dot (QD) weakly coupled to electronic reservoirs. We focus on the sequential tunneling regime. The dynamics of the charge in the QD is studied by means of master equations for the probabilities of occupation. From here we compute the charge and heat currents in the linear response regime. Assuming a generic multiterminal setup, and for low temperatures (quantum limit), we obtain analytical expressions for the transport coefficients which account for the interplay between interactions (charging energy) and level quantization. In the case of systems with two and three terminals we derive formulas for the power factor Q and the figure of merit Z T for a QD-based heat engine, identifying optimal working conditions which maximize output power and efficiency of heat-to-work conversion. Beyond the linear response we concentrate on the two-terminal setup. We first study the thermoelectric nonlinear coefficients assessing the consequences of large temperature and voltage biases, focusing on the breakdown of the Onsager reciprocal relation between thermopower and Peltier coefficient. We then investigate the conditions which optimize the performance of a heat engine, finding that in the quantum limit output power and efficiency at maximum power can almost be simultaneously maximized by choosing appropriate values of electrochemical potential and bias voltage. At last we study how energy level degeneracy can increase the output power.
Coupling single quantum dots to plasmonic nanocones: optical properties.
Meixner, Alfred J; Jäger, Regina; Jäger, Sebastian; Bräuer, Annika; Scherzinger, Kerstin; Fulmes, Julia; Krockhaus, Sven zur Oven; Gollmer, Dominik A; Kern, Dieter P; Fleischer, Monika
2015-01-01
Coupling a single quantum emitter, such as a fluorescent molecule or a quantum dot (QD), to a plasmonic nanostructure is an important issue in nano-optics and nano-spectroscopy, relevant for a wide range of applications, including tip-enhanced near-field optical microscopy, plasmon enhanced molecular sensing and spectroscopy, and nanophotonic amplifiers or nanolasers, to mention only a few. While the field enhancement of a sharp nanoantenna increasing the excitation rate of a very closely positioned single molecule or QD has been well investigated, the detailed physical mechanisms involved in the emission of a photon from such a system are, by far, less investigated. In one of our ongoing research projects, we try to address these issues by constructing and spectroscopically analysing geometrically simple hybrid heterostructures consisting of sharp gold cones with single quantum dots attached to the very tip apex. An important goal of this work is to tune the longitudinal plasmon resonance by adjusting the cones' geometry to the emission maximum of the core-shell CdSe/ZnS QDs at nominally 650 nm. Luminescence spectra of the bare cones, pure QDs and hybrid systems were distinguished successfully. In the next steps we will further investigate, experimentally and theoretically, the optical properties of the coupled systems in more detail, such as the fluorescence spectra, blinking statistics, and the current results on the fluorescence lifetimes, and compare them with uncoupled QDs to obtain a clearer picture of the radiative and non-radiative processes.
NASA Astrophysics Data System (ADS)
Ludwig, Andreas W. W.
1996-03-01
We review recent exact results (Work done in collaboration with Paul Fendley and Hubert Saleur, Physics Dept., University of Southern California, Los Angeles, CA 90089-0484.) for transport properties through a local impurity in a Luttinger liquid. These represent ``spectroscopic probes'' of the Luttinger non-Fermi-liquid state. Edge modes occuring in the fractional quantum Hall effect provide realizations of Luttinger liquids, insensitive to disorder. The linear-response conductance through a point contact in the ν =1/3 quantum Hall state has been predicted to be a universal function of temperature and point-contact interaction strength, independent of sample-specific details of the device. Our exact result for this scaling function is in quantitative agreement with experimental measurements (F.P. Milliken, C.P. Umbach and R.A. Webb, preprint.). The theoretical advance made in this work(P. Fendley, A.W.W. Ludwig and H. Saleur, Phys. Rev. Lett. 74) (1995) 3005; 75 (1995) 2196; Phys. Rev. B 52 (1995) 8934. is the computation of exact transport properties from the Bethe ansatz; in the past, the Bethe ansatz was useful mainly for thermodynamic quantities. We utilize an exact kinetic transport equation in a particular quasiparticle basis of the Luttinger liquid dictated by the integrability of the point-contact interaction. Since this equation is also valid out of equilibrium, we obtain also non-equilibrium quantum transport properties in this fully interacting system. In particular, we also present universal exact results for the I(V) characteristics and the DC shot noise of the point contact. The differential conductance develops a peak beyond a critical value e V/kB T >7.18868 of driving.
NASA Astrophysics Data System (ADS)
Kónya, G.; Szirmai, G.; Domokos, P.
2011-11-01
We develop a mean-field model describing the Hamiltonian interaction of ultracold atoms and the optical field in a cavity. The Bose-Einstein condensate is properly defined by means of a grand-canonical approach. The model is efficient because only the relevant excitation modes are taken into account. However, the model goes beyond the two-mode subspace necessary to describe the self-organization quantum phase transition observed recently. We calculate all the second-order correlations of the coupled atom field and radiation field hybrid bosonic system, including the entanglement between the two types of fields.
Low-energy properties of aperiodic quantum spin chains.
Vieira, André P
2005-02-25
We investigate the low-energy properties of antiferromagnetic quantum XXZ spin chains with couplings following two-letter aperiodic sequences, by an adaptation of the Ma-Dasgupta-Hu renormalization-group method. For a given aperiodic sequence, we argue that, in the easy-plane anisotropy regime, intermediate between the XX and Heisenberg limits, the general scaling form of the thermodynamic properties is essentially given by the exactly known XX behavior, providing a classification of the effects of aperiodicity on XXZ chains. As representative illustrations, we present analytical and numerical results for the low-temperature thermodynamics and the ground-state correlations for couplings following the Fibonacci quasiperiodic structure and a binary Rudin-Shapiro sequence, whose geometrical fluctuations are similar to those induced by randomness.
Potassium doping: Tuning the optical properties of graphene quantum dots
Qian, Fuli; Li, Xueming Lu, Chaoyu; Tang, Libin; Lai, Sin Ki; Lau, Shu Ping
2016-07-15
Doping with hetero-atoms is an effective way to tune the properties of graphene quantum dots (GQDs). Here, potassium-doped GQDs (K-GQDs) are synthesized by a one-pot hydrothermal treatment of sucrose and potassium hydroxide solution. Optical properties of the GQDs are altered as a result of K-doping. The absorption peaks exhibit a blue shift. Multiple photoluminescence (PL) peaks are observed as the excitation wavelength is varied from 380 nm to 620 nm. New energy levels are introduced into the K-GQDs and provide alternative electron transition pathways. The maximum PL intensity of the K-GQDs is obtained at an excitation wavelength of 480 nm which is distinct from the undoped GQDs (375 nm). The strong PL of the K-GQDs at the longer emission wavelengths is expected to make K-GQDs more suitable for bioimaging and optoelectronic applications.
Low-Energy Properties of Aperiodic Quantum Spin Chains
NASA Astrophysics Data System (ADS)
Vieira, André P.
2005-02-01
We investigate the low-energy properties of antiferromagnetic quantum XXZ spin chains with couplings following two-letter aperiodic sequences, by an adaptation of the Ma-Dasgupta-Hu renormalization-group method. For a given aperiodic sequence, we argue that, in the easy-plane anisotropy regime, intermediate between the XX and Heisenberg limits, the general scaling form of the thermodynamic properties is essentially given by the exactly known XX behavior, providing a classification of the effects of aperiodicity on XXZ chains. As representative illustrations, we present analytical and numerical results for the low-temperature thermodynamics and the ground-state correlations for couplings following the Fibonacci quasiperiodic structure and a binary Rudin-Shapiro sequence, whose geometrical fluctuations are similar to those induced by randomness.
Equilibration properties of small quantum systems: further examples
NASA Astrophysics Data System (ADS)
Luck, J. M.
2017-09-01
It has been proposed to investigate the equilibration properties of a small isolated quantum system by means of the matrix of asymptotic transition probabilities in some preferential basis. The trace T of this matrix measures the degree of equilibration of the system prepared in a typical state of the preferential basis. This quantity may vary between unity (ideal equilibration) and the dimension N of the Hilbert space (no equilibration at all). Here we analyze several examples of simple systems where the behavior of T can be investigated by analytical means. We first study the statistics of T when the Hamiltonian governing the dynamics is random and drawn from a distribution invariant under the group U(N) or O(N) . We then investigate a quantum spin S in a tilted magnetic field making an arbitrary angle with the preferred quantization axis, as well as a tight-binding particle on a finite electrified chain. The last two cases provide examples of the interesting situation where varying a system parameter—such as the tilt angle or the electric field—through some scaling regime induces a continuous crossover from good to bad equilibration properties.
Topological phases and transport properties of screened interacting quantum wires
NASA Astrophysics Data System (ADS)
Xu, Hengyi; Xiong, Ye; Wang, Jun
2016-10-01
We study theoretically the effects of long-range and on-site Coulomb interactions on the topological phases and transport properties of spin-orbit-coupled quasi-one-dimensional quantum wires imposed on a s-wave superconductor. The distributions of the electrostatic potential and charge density are calculated self-consistently within the Hartree approximation. Due to the finite width of the wires and charge repulsion, the potential and density distribute inhomogeneously in the transverse direction and tend to accumulate along the lateral edges where the hard-wall confinement is assumed. This result has profound effects on the topological phases and the differential conductance of the interacting quantum wires and their hybrid junctions with superconductors. Coulomb interactions renormalize the gate voltage and alter the topological phases strongly by enhancing the topological regimes and producing jagged boundaries. Moreover, the multicritical points connecting different topological phases are modified remarkably in striking contrast to the predictions of the two-band model. We further suggest the possible non-magnetic topological phase transitions manipulated externally with the aid of long-range interactions. Finally, the transport properties of normal-superconductor junctions are further examined, in particular, the impacts of Coulomb interactions on the zero-bias peaks related to the Majorana fermions and near zero-energy peaks.
NASA Astrophysics Data System (ADS)
Claus, D.; Schumacher, P. M.; Labitzke, T.; Mlikota, M.; Weber, U.; Schmauder, S.; Schierbaum, N.; Schäffer, T. E.; WittmüÎ², P.; Teutsch, T.; Tarin, C.; Hoffmann, S.; Taran, F. A.; Brucker, S.; Mischinger, J.; Stenzel, A.; Osten, W.
2015-07-01
During minimally invasive surgery the visual (3 dimensional) and mechanical (haptic) feedback is restricted or even non-existing, which imposes a serious loss of important information for decision making. Information about the mechanical properties of the biological tissue helps the surgeon to localize tissue abnormalities (benign vs. malign tissue). The work described here is directed towards assisting the surgeon during minimally invasive surgery, which in particular relates to the segmentation and navigation based on the recovery of mechanical properties. Besides the development of noninvasive elastographic measurement techniques, a reliable constitutive FE-model of the organ (describing its mechanical properties) is generated resulting in a further improvement of the segmentation and localization process. At first silicon phantoms, with and without foreign bodies have been generated for the purpose of testing the transfer of information (delivery and processing of data). The stress-strain curve was recorded and embedded in the FE-model (Arruda-Boyce). Two dimensional (2D) displacement maps have experimentally been obtained from the phantom, which were in good agreement with the FE simulation.
Properties of reactive oxygen species by quantum Monte Carlo
Zen, Andrea; Trout, Bernhardt L.; Guidoni, Leonardo
2014-07-07
The electronic properties of the oxygen molecule, in its singlet and triplet states, and of many small oxygen-containing radicals and anions have important roles in different fields of chemistry, biology, and atmospheric science. Nevertheless, the electronic structure of such species is a challenge for ab initio computational approaches because of the difficulties to correctly describe the statical and dynamical correlation effects in presence of one or more unpaired electrons. Only the highest-level quantum chemical approaches can yield reliable characterizations of their molecular properties, such as binding energies, equilibrium structures, molecular vibrations, charge distribution, and polarizabilities. In this work we use the variational Monte Carlo (VMC) and the lattice regularized Monte Carlo (LRDMC) methods to investigate the equilibrium geometries and molecular properties of oxygen and oxygen reactive species. Quantum Monte Carlo methods are used in combination with the Jastrow Antisymmetrized Geminal Power (JAGP) wave function ansatz, which has been recently shown to effectively describe the statical and dynamical correlation of different molecular systems. In particular, we have studied the oxygen molecule, the superoxide anion, the nitric oxide radical and anion, the hydroxyl and hydroperoxyl radicals and their corresponding anions, and the hydrotrioxyl radical. Overall, the methodology was able to correctly describe the geometrical and electronic properties of these systems, through compact but fully-optimised basis sets and with a computational cost which scales as N{sup 3} − N{sup 4}, where N is the number of electrons. This work is therefore opening the way to the accurate study of the energetics and of the reactivity of large and complex oxygen species by first principles.
Properties of reactive oxygen species by quantum Monte Carlo.
Zen, Andrea; Trout, Bernhardt L; Guidoni, Leonardo
2014-07-07
The electronic properties of the oxygen molecule, in its singlet and triplet states, and of many small oxygen-containing radicals and anions have important roles in different fields of chemistry, biology, and atmospheric science. Nevertheless, the electronic structure of such species is a challenge for ab initio computational approaches because of the difficulties to correctly describe the statical and dynamical correlation effects in presence of one or more unpaired electrons. Only the highest-level quantum chemical approaches can yield reliable characterizations of their molecular properties, such as binding energies, equilibrium structures, molecular vibrations, charge distribution, and polarizabilities. In this work we use the variational Monte Carlo (VMC) and the lattice regularized Monte Carlo (LRDMC) methods to investigate the equilibrium geometries and molecular properties of oxygen and oxygen reactive species. Quantum Monte Carlo methods are used in combination with the Jastrow Antisymmetrized Geminal Power (JAGP) wave function ansatz, which has been recently shown to effectively describe the statical and dynamical correlation of different molecular systems. In particular, we have studied the oxygen molecule, the superoxide anion, the nitric oxide radical and anion, the hydroxyl and hydroperoxyl radicals and their corresponding anions, and the hydrotrioxyl radical. Overall, the methodology was able to correctly describe the geometrical and electronic properties of these systems, through compact but fully-optimised basis sets and with a computational cost which scales as N(3) - N(4), where N is the number of electrons. This work is therefore opening the way to the accurate study of the energetics and of the reactivity of large and complex oxygen species by first principles.
Properties of reactive oxygen species by quantum Monte Carlo
NASA Astrophysics Data System (ADS)
Zen, Andrea; Trout, Bernhardt L.; Guidoni, Leonardo
2014-07-01
The electronic properties of the oxygen molecule, in its singlet and triplet states, and of many small oxygen-containing radicals and anions have important roles in different fields of chemistry, biology, and atmospheric science. Nevertheless, the electronic structure of such species is a challenge for ab initio computational approaches because of the difficulties to correctly describe the statical and dynamical correlation effects in presence of one or more unpaired electrons. Only the highest-level quantum chemical approaches can yield reliable characterizations of their molecular properties, such as binding energies, equilibrium structures, molecular vibrations, charge distribution, and polarizabilities. In this work we use the variational Monte Carlo (VMC) and the lattice regularized Monte Carlo (LRDMC) methods to investigate the equilibrium geometries and molecular properties of oxygen and oxygen reactive species. Quantum Monte Carlo methods are used in combination with the Jastrow Antisymmetrized Geminal Power (JAGP) wave function ansatz, which has been recently shown to effectively describe the statical and dynamical correlation of different molecular systems. In particular, we have studied the oxygen molecule, the superoxide anion, the nitric oxide radical and anion, the hydroxyl and hydroperoxyl radicals and their corresponding anions, and the hydrotrioxyl radical. Overall, the methodology was able to correctly describe the geometrical and electronic properties of these systems, through compact but fully-optimised basis sets and with a computational cost which scales as N3 - N4, where N is the number of electrons. This work is therefore opening the way to the accurate study of the energetics and of the reactivity of large and complex oxygen species by first principles.
Super quantum measures on effect algebras with the Riesz decomposition properties
Xie, Yongjian Ren, Fang; Yang, Aili
2015-10-15
We give one basis of the space of super quantum measures on finite effect algebras with the Riesz decomposition properties (RDP for short). Then we prove that the super quantum measures and quantum interference functions on finite effect algebras with the RDP are determined each other. At last, we investigate the relationships between the super quantum measures and the diagonally positive signed measures on finite effect algebras with the RDP in detail.
Adali, Tülay; Levin-Schwartz, Yuri; Calhoun, Vince D.
2015-01-01
Fusion of information from multiple sets of data in order to extract a set of features that are most useful and relevant for the given task is inherent to many problems we deal with today. Since, usually, very little is known about the actual interaction among the datasets, it is highly desirable to minimize the underlying assumptions. This has been the main reason for the growing importance of data-driven methods, and in particular of independent component analysis (ICA) as it provides useful decompositions with a simple generative model and using only the assumption of statistical independence. A recent extension of ICA, independent vector analysis (IVA) generalizes ICA to multiple datasets by exploiting the statistical dependence across the datasets, and hence, as we discuss in this paper, provides an attractive solution to fusion of data from multiple datasets along with ICA. In this paper, we focus on two multivariate solutions for multi-modal data fusion that let multiple modalities fully interact for the estimation of underlying features that jointly report on all modalities. One solution is the Joint ICA model that has found wide application in medical imaging, and the second one is the the Transposed IVA model introduced here as a generalization of an approach based on multi-set canonical correlation analysis. In the discussion, we emphasize the role of diversity in the decompositions achieved by these two models, present their properties and implementation details to enable the user make informed decisions on the selection of a model along with its associated parameters. Discussions are supported by simulation results to help highlight the main issues in the implementation of these methods. PMID:26525830
Adali, Tülay; Levin-Schwartz, Yuri; Calhoun, Vince D
2015-09-01
Fusion of information from multiple sets of data in order to extract a set of features that are most useful and relevant for the given task is inherent to many problems we deal with today. Since, usually, very little is known about the actual interaction among the datasets, it is highly desirable to minimize the underlying assumptions. This has been the main reason for the growing importance of data-driven methods, and in particular of independent component analysis (ICA) as it provides useful decompositions with a simple generative model and using only the assumption of statistical independence. A recent extension of ICA, independent vector analysis (IVA) generalizes ICA to multiple datasets by exploiting the statistical dependence across the datasets, and hence, as we discuss in this paper, provides an attractive solution to fusion of data from multiple datasets along with ICA. In this paper, we focus on two multivariate solutions for multi-modal data fusion that let multiple modalities fully interact for the estimation of underlying features that jointly report on all modalities. One solution is the Joint ICA model that has found wide application in medical imaging, and the second one is the the Transposed IVA model introduced here as a generalization of an approach based on multi-set canonical correlation analysis. In the discussion, we emphasize the role of diversity in the decompositions achieved by these two models, present their properties and implementation details to enable the user make informed decisions on the selection of a model along with its associated parameters. Discussions are supported by simulation results to help highlight the main issues in the implementation of these methods.
NASA Astrophysics Data System (ADS)
Sin, Yongkun; Lingley, Zachary; Brodie, Miles; Presser, Nathan; Moss, Steven C.
2017-02-01
High-power single-mode (SM) and multi-mode (MM) InGaAs-AlGaAs strained quantum well (QW) lasers are critical components for both telecommunications and space satellite communications systems. However, little has been reported on failure modes and degradation mechanisms of high-power SM and MM InGaAs-AlGaAs strained QW lasers although it is crucial to understand failure modes and underlying degradation mechanisms in developing these lasers that meet lifetime requirements for space satellite systems, where extremely high reliability of these lasers is required. Our present study addresses the aforementioned issues by performing long-term life-tests followed by failure mode analysis (FMA) and physics of failure investigation. We performed long-term accelerated life-tests on state-of-the-art SM and MM InGaAs-AlGaAs strained QW lasers under ACC (automatic current control) mode. Our life-tests have accumulated over 25,000 test hours for SM lasers and over 35,000 test hours for MM lasers. FMA was performed on failed SM lasers using electron beam induced current (EBIC). This technique allowed us to identify failure types by observing dark line defects. All the SM failures we studied showed catastrophic and sudden degradation and all of these failures were bulk failures. Our group previously reported that bulk failure or COBD (catastrophic optical bulk damage) is the dominant failure mode of MM InGaAs-AlGaAs strained QW lasers. Since degradation mechanisms responsible for COBD are still not well understood, we also employed other techniques including focused ion beam (FIB) processing and high-resolution TEM to further study dark line defects and dislocations in post-aged lasers. Our long-term life-test results and FMA results are reported.
NASA Astrophysics Data System (ADS)
Claus, D.; Schumacher, P. M.; Wilke, M.; Mlikota, M.; Weber, U.; Schmauder, S.; Schierbaum, N.; Schäffer, T. E.; Wittmüß, P.; Teutsch, T.; Tarin, C.; Hoffmann, S.; Brucker, S.; Mischinger, J.; Schwentner, C.; Stenzl, A.; Osten, W.
2015-03-01
Besides the many advantages minimally invasive surgery offers, the surgeon suffers from the loss of information, visual and mechanical (haptic feedback). The latter is an important tool, which helps the surgeon to localize tissue abnormalities (benign vs. malign tissue). We are aiming to generate a reliable constitutive FE model of the organ describing its mechanical properties by employing multiple elastographic measurement techniques at different scales (cell, tissue, and organ). A silicon phantom has been generated for the purpose of testing the transfer of information (delivery and processing of data). The stress-strain curve was recorded and embedded in the FE Model (Arruda-Boyce). A 2D displacement map was experimentally obtained from the phantom, which was in good agreement with the FE simulation.
Quantum properties of light emitted by dipole nano-laser
NASA Astrophysics Data System (ADS)
Ghannam, Talal
Recent technological advances allow entire optical systems to be lithographically implanted on small silicon chips. These systems include tiny semiconductor lasers that function as light sources for digital optical signals. Future advances will rely on even smaller components. At the theoretical limit of this process, the smallest lasers will have an active medium consisting of a single atom (natural or artificial). Several suggestions for how this can be accomplished have already been published, such as nano-lasers based on photonic crystals and nano wires. In particular, the "dipole nanolaser" consists of a single quantum dot functioning as the active medium. It is optically coupled to a metal nanoparticles that form a resonant cavity. Laser light is generated from the near-field optical signal. The proposed work is a theoretical exploration of the nature of the resulting laser light. The dynamics of the system will be studied and relevant time scales described. These will form the basis for a set of operator equations describing the quantum properties of the emitted light. The dynamics will be studied in both density matrix and quantum Langevin formulations, with attention directed to noise sources. The equations will be linearized and solved using standard techniques. The result of the study will be a set of predicted noise spectra describing the statistics of the emitted light. The goal will be to identify the major noise contributions and suggest methods for suppressing them. This will be done by studying the probability of getting squeezed light from the nanoparticle for the certain scheme of parameters.
Properties of multiple quantum wells and their use in high-speed detectors and modulators
NASA Technical Reports Server (NTRS)
Bhattacharya, Pallab
1988-01-01
Quantum well systems lattice matched to GaAs and InP have emerged as important materials for use in long wavelength optoelectronic devices. Intrinsic problems associated with the growth of these quantum wells by molecular beam epitaxy are discussed and the luminescence properties of state-of-art quantum wells, using novel growth techniques are described. Finally, the properties of detectors, modulators and integrated devices made with these heterojunction materials are described and discussed.
Physical Properties as Modal Operators in the Topos Approach to Quantum Mechanics
NASA Astrophysics Data System (ADS)
Freytes, H.; Domenech, G.; de Ronde, C.
2014-12-01
In the framework of the topos approach to quantum mechanics we give a representation of physical properties in terms of modal operators on Heyting algebras. It allows us to introduce a classical type study of the mentioned properties.
Chlorine doped graphene quantum dots: Preparation, properties, and photovoltaic detectors
Zhao, Jianhong; Xiang, Jinzhong; Tang, Libin Ji, Rongbin Yuan, Jun; Zhao, Jun; Yu, Ruiyun; Tai, Yunjian; Song, Liyuan
2014-09-15
Graphene quantum dots (GQDs) are becoming one of the hottest advanced functional materials because of the opening of the bandgap due to quantum confinement effect, which shows unique optical and electrical properties. The chlorine doped GQDs (Cl-GQDs) have been fabricated by chemical exfoliation of HCl treated carbon fibers (CFs), which were prepared from degreasing cotton through an annealing process at 1000 °C for 30 min. Raman study shows that both G and 2D peaks of GQDs may be redshifted (softened) by chlorine doping, leading to an n-type doping. The first vertical (Cl)-GQDs based photovoltaic detectors have been demonstrated, both the light absorbing and electron-accepting roles for (Cl)-GQDs in photodetection have been found, resulting in an exceptionally big ratio of photocurrent to dark current as high as ∼10{sup 5} at room temperature using a 405 nm laser irradiation under the reverse bias voltage. The study expands the application of (Cl)-GQDs to the important optoelectronic detection devices.
Optical properties of transition metal oxide quantum wells
NASA Astrophysics Data System (ADS)
Demkov, Alexander; Choi, Miri; Butcher, Matthew; Rodriguez, Cesar; He, Qian; Posadas, Agham; Borisevich, Albina; Zollner, Stefan; Lin, Chungwei; Ortmann, Elliott
2015-03-01
We report on the investigation of SrTiO3/LaAlO3 quantum wells (QWs) grown by molecular beam epitaxy (MBE) on LaAlO3 substrate. Structures with different QW thicknesses ranging from two to ten unit cells were grown and characterized using x-ray photoemission spectroscopy, reflection high-energy electron diffraction (RHEED), scanning transmission electron microscopy (STEM). Optical properties (complex dielectric function) were measured by spectroscopic ellipsometry (SE) in the range of 1.0 eV to 6.0 eV at room temperature. We observed that the absorption edge was blue-shifted by approximately 0.39 eV as the STO quantum well thickness was reduced to two unit cells (uc). Density functional theory and tight-binding are used to model the optical response of these heterostructures. Our results demonstrate that the energy level of the first sub-band can be controlled by the QW thickness in a complex oxide material. We acknowledge support from Air Force Office of Scientific Research (FA9550-12-10494).
Nuclear Quantum Effects on Aqueous Electron Attachment and Redox Properties.
Rybkin, Vladimir V; VandeVondele, Joost
2017-04-06
Nuclear quantum effects (NQEs) on the reduction and oxidation properties of small aqueous species (CO2, HO2, and O2) are quantified and rationalized by first-principles molecular dynamics and thermodynamic integration. Vertical electron attachment, or electron affinity, and detachment energies (VEA and VDE) are strongly affected by NQEs, decreasing in absolute value by 0.3 eV going from a classical to a quantum description of the nuclei. The effect is attributed to NQEs that lessen the solvent response upon oxidation/reduction. The reduction of solvent reorganization energy is expected to be general for small solutes in water. In the thermodynamic integral that yields the free energy of oxidation/reduction, these large changes enter with opposite sign, and only a small net effect (0.1 eV) remains. This is not obvious for CO2, where the integrand is strongly influenced by NQEs due to the onset of interaction of the reduced orbital with the conduction band of the liquid during thermodynamic integration. We conclude that NQEs might not have to be included in the computation of redox potentials, unless high accuracy is needed, but are important for VEA and VDE calculations.
Quantum noise and spatial emission properties of RCLEDs
NASA Astrophysics Data System (ADS)
Birkner, Richard; Kaiser, Joachim; ElsaBer, Wolfgang; Jung, Christian
2004-09-01
We present results of comprehensive investigations of the intensity noise and the angular-resolved spectral emission characteristics of resonant-cavity light-emitting diodes (RCLEDs), demonstrating an interesting interplay between these two properties. First, we find that the intensity noise of the investigated RCLEDs, detected within a full solid angle of detection, is up to -0.15 dB below the shot noise in a quite large pumping regime, i.e., we demonstrate the successful generation of squeezed states of light with these optoelectronic devices. Second, we investigate the spectral and angular emission characteristics and find that the cavity-like character of the Bragg mirrors and the quantum well active medium manifests itself in a blue shift of the central emission wavelength from 847 nm at zero degree to 825 nm at an emission angle of sixty degree. By varying the temperature we are able to detune the quantum-well emission wavelength and the cavity resonance wavelength and observe a broader angular intensity profile. Third, we measure the angular resolved intensity noise. Its super-shot noise behavior can be explained by anticorrelations between radial components of the output intensity emitted at different angles. Finally, the possible origin of the observed anticorrelations in the angular-resolved intensity noise, as well as possibilities for future trends, applications and the limitations of these non-classical states of light with respect to sensing and spectroscopic applications are discussed.
Fundamental Entangling Operators in Quantum Mechanics and Their Properties
NASA Astrophysics Data System (ADS)
Dao-Ming, Lu
2016-07-01
For the first time, we introduce so-called fundamental entangling operators e^{iQ1 P2} and e^{iP1 Q2 } for composing bipartite entangled states of continuum variables, where Q i and P i ( i = 1, 2) are coordinate and momentum operator, respectively. We then analyze how these entangling operators naturally appear in the quantum image of classical quadratic coordinate transformation ( q 1, q 2) → ( A q 1 + B q 2, C q 1 + D q 2), where A D- B C = 1, which means even the basic coordinate transformation ( Q 1, Q 2) → ( A Q 1 + B Q 2, C Q 1 + D Q 2) involves entangling mechanism. We also analyse their Lie algebraic properties and use the integration technique within an ordered product of operators to show they are also one- and two- mode combinatorial squeezing operators.
Optical properties of geometrically optimized graphene quantum dots
NASA Astrophysics Data System (ADS)
Bugajny, Paweł; Szulakowska, Ludmiła; Jaworowski, Błazej; Potasz, Paweł
2017-01-01
We derive effective tight-binding model for geometrically optimized graphene quantum dots and based on it we investigate corresponding changes in their optical properties in comparison to ideal structures. We consider hexagonal and triangular dots with zigzag and armchair edges. Using density functional theory methods we show that displacement of lattice sites leads to changes in atomic distances and in consequence modifies their energy spectrum. We derive appropriate model within tight-binding method with edge-modified hopping integrals. Using group theoretical analysis, we determine allowed optical transitions and investigate oscillatory strength between bulk-bulk, bulk-edge and edge-edge transitions. We compare optical joint density of states for ideal and geometry optimized structures. We also investigate an enhanced effect of sites displacement which can be designed in artificial graphene-like nanostructures. A shift of absorption peaks is found for small structures, vanishing with increasing system size.
NASA Astrophysics Data System (ADS)
O'Brien, Jeremy
2013-03-01
Of the approaches to quantum computing, photons are appealing for their low-noise properties and ease of manipulation, and relevance to other quantum technologies, including communication, metrology and measurement. We report an integrated waveguide approach to photonic quantum circuits for high performance, miniaturization and scalability [6-10]. We address the challenges of scaling up quantum circuits using new insights into how controlled operations can be efficiently realised, demonstrating Shor's algorithm with consecutive CNOT gates and the iterative phase estimation algorithm. We have shown how quantum circuits can be reconfigured, using thermo-optic phase shifters to realise a highly reconfigurable quantum circuit, and electro-optic phase shifters in lithium niobate to rapidly manipulate the path and polarisation of telecomm wavelength single photons. We have addressed miniaturisation using multimode interference architectures to directly implement NxN Hadamard operations, and by using high refractive index contrast materials such as SiOxNy, in which we have implemented quantum walks of correlated photons, and Si, in which we have demonstrated generation of orbital angular momentum states of light. We have incorporated microfluidic channels for the delivery of samples to measure the concentration of a blood protein with entangled states of light. We have begun to address the integration of superconducting single photon detectors and diamond and non-linear single photon sources. Finally, we give an overview of recent work on fundamental aspects of quantum measurement, including a quantum version of Wheeler's delayed choice experiment.
Quantum nonlocal effects on optical properties of spherical nanoparticles
Moradi, Afshin
2015-02-15
To study the scattering of electromagnetic radiation by a spherical metallic nanoparticle with quantum spatial dispersion, we develop the standard nonlocal Mie theory by allowing for the excitation of the quantum longitudinal plasmon modes. To describe the quantum nonlocal effects, we use the quantum longitudinal dielectric function of the system. As in the standard Mie theory, the electromagnetic fields are expanded in terms of spherical vector wavefunctions. Then, the usual Maxwell boundary conditions are imposed plus the appropriate additional boundary conditions. Examples of calculated extinction spectra are presented, and it is found that the frequencies of the subsidiary peaks, due to quantum bulk plasmon excitations exhibit strong dependence on the quantum spatial dispersion.
Biju, Vasudevanpillai; Itoh, Tamitake; Ishikawa, Mitsuru
2010-08-01
Bioconjugated nanomaterials offer endless opportunities to advance both nanobiotechnology and biomedical technology. In this regard, semiconductor nanoparticles, also called quantum dots, are of particular interest for multimodal, multifunctional and multiplexed imaging of biomolecules, cells, tissues and animals. The unique optical properties, such as size-dependent tunable absorption and emission in the visible and NIR regions, narrow emission and broad absorption bands, high photoluminescence quantum yields, large one- and multi-photon absorption cross-sections, and exceptional photostability are the advantages of quantum dots. Multimodal imaging probes are developed by interfacing the unique optical properties of quantum dots with magnetic or radioactive materials. Besides, crystalline structure of quantum dots adds scope for high-contrast X-ray and TEM imaging. Yet another unique feature of a quantum dot is its spacious and flexible surface which is promising to integrate multiple ligands and antibodies and construct multi-functional probes for bioimaging. In this critical review, we will summarize recent advancements in the preparation of biocompatible quantum dots, bioconjugation of quantum dots, and applications of quantum dots and their bioconjugates for targeted and nonspecific imaging of extracellular and intracellular proteins, organelles and functions (181 references).
Mechanical properties of thermoelectric lanthanum telluride from quantum mechanics
NASA Astrophysics Data System (ADS)
Li, Guodong; Aydemir, Umut; Wood, Max; Goddard, William A., III; Zhai, Pengcheng; Zhang, Qingjie; Snyder, G. Jeffrey
2017-07-01
Lanthanum telluride (La3Te4) is an n-type high-performance thermoelectric material in the high temperature range, but its mechanical properties remain unknown. Since we want robust mechanical properties for their integration into industrial applications, we report here quantum mechanics (QM) simulations to determine the ideal strength and deformation mechanisms of La3Te4 under pure shear deformations. Among all plausible shear deformation paths, we find that shearing along the (0 0 1)/< \\text{1} 0 0> slip system has the lowest ideal shear strength of 0.99 GPa, making it the most likely slip system to be activated under pressure. We find that the long range La-Te ionic interactions play the predominant role in resisting shear deformation. To enhance the mechanical strength, we suggest improving the long ionic La-Te bond stiffness to strengthen the ionic La-Te framework in La3Te4 by a defect-engineering strategy, such as partial substitution of La by Ce or Pr having isotypic crystal structures. This work provides the fundamental information to understand the intrinsic mechanics of La3Te4.
Manipulating topological-insulator properties using quantum confinement
NASA Astrophysics Data System (ADS)
Kotulla, M.; Zülicke, U.
2017-07-01
Recent discoveries have spurred the theoretical prediction and experimental realization of novel materials that have topological properties arising from band inversion. Such topological insulators are insulating in the bulk but have conductive surface or edge states. Topological materials show various unusual physical properties and are surmised to enable the creation of exotic Majorana-fermion quasiparticles. How the signatures of topological behavior evolve when the system size is reduced is interesting from both a fundamental and an application-oriented point of view, as such understanding may form the basis for tailoring systems to be in specific topological phases. This work considers the specific case of quantum-well confinement defining two-dimensional layers. Based on the effective-Hamiltonian description of bulk topological insulators, and using a harmonic-oscillator potential as an example for a softer-than-hard-wall confinement, we have studied the interplay of band inversion and size quantization. Our model system provides a useful platform for systematic study of the transition between the normal and topological phases, including the development of band inversion and the formation of massless-Dirac-fermion surface states. The effects of bare size quantization, two-dimensional-subband mixing, and electron-hole asymmetry are disentangled and their respective physical consequences elucidated.
Quantum Chemical Study of the Thermochemical Properties of Organophosphorous Compounds.
Khalfa, A; Ferrari, M; Fournet, R; Sirjean, B; Verdier, L; Glaude, P A
2015-10-22
Organophosphorous compounds are involved in many toxic compounds such as fungicides, pesticides, or chemical warfare nerve agents. The understanding of the decomposition chemistry of these compounds in the environment is largely limited by the scarcity of thermochemical data. Because of the high toxicity of many of these molecules, experimental determination of their thermochemical properties is very difficult. In this work, standard gas-phase thermodynamic data, i.e., enthalpies of formation (ΔfH298°), standard entropies (S298°), and heat capacities (Cp°(T)), were determined using quantum chemical calculations and more specifically the CBS-QB3 composite method, which was found to be the best compromise between precision and calculation time among high accuracy composite methods. A large number of molecules was theoretically investigated, involving trivalent and pentavalent phosphorus atoms, and C, H, O, N, S, and F atoms. These data were used to propose 83 original groups, used in the semiempirical group contribution method proposed by Benson. Thanks to these latter group values, thermochemical properties of several nerve agents, common pesticides and herbicides have been evaluated. Bond dissociations energies (BDE), useful for the analysis the thermal stability of the compounds, were also determined in several molecules of interest.
NASA Astrophysics Data System (ADS)
Sin, Yongkun; Presser, Nathan; Lingley, Zachary; Brodie, Miles; Foran, Brendan; Moss, Steven C.
2016-03-01
High power single-mode (SM) and multi-mode (MM) InGaAs-AlGaAs strained quantum well (QW) lasers are critical components for both telecommunications and potential space satellite communications systems. However, little has been reported on failure modes of state-of-the-art SM InGaAs-AlGaAs strained QW lasers although it is crucial to understand failure modes and underlying degradation mechanisms in developing these lasers that meet lifetime requirements for space satellite systems, where extremely high reliability of these lasers is required. Our present study addresses the aforementioned issues by performing long-term life tests under different test conditions followed by failure mode analysis (FMA) and physics of failure investigation. We performed long-term accelerated life-tests on state-of-the-art SM and MM InGaAs-AlGaAs strained QW lasers under ACC (automatic current control) mode. Our life-tests have accumulated over 25,000 test hours for SM lasers and over 35,000 test hours for MM lasers. FMA was performed on failed SM lasers using electron beam induced current (EBIC). This technique allowed us to identify failure types by observing dark line defects. All the SM failures we studied showed catastrophic and sudden degradation and all of these failures were bulk failures. Our group previously reported that bulk failure or COBD (catastrophic optical bulk damage) is the dominant failure mode of MM InGaAs-AlGaAs strained QW lasers. To the best of our knowledge, this is the first report demonstrating that the dominant failure mode of both SM and MM InGaAs-AlGaAs strained QW lasers is the bulk failure. Since degradation mechanisms responsible for COBD are still not well understood, we also employed other techniques including focused ion beam (FIB) processing and high-resolution TEM to further study dark line defects and dislocations in post-aged SM and MM lasers. Our long-term life test results and FMA results are reported.
Local field-induced optical properties of Ag-coated CdS quantum dots.
Je, Koo-Chul; Ju, Honglyoul; Treguer, Mona; Cardinal, Thierry; Park, Seung-Han
2006-08-21
Local field-induced optical properties of Ag-coated CdS quantum dot structures are investigated. We experimentally observe a clear exciton peak due to the quantum confinement effect in uncoated CdS quantum dots, and surface plasmon resonance and red-shifted exciton peak in Ag-coated CdS composite quantum dot structures. We have calculated the Stark shift of the exciton peak as a function of the local field for different silver thicknesses and various sizes of quantum dots based on the effective-mass Hamiltonian using the numerical-matrix-diagonalization method. Our theoretical calculations strongly indicate that the exciton peak is red-shifted in the metal-semiconductor composite quantum dots due to a strong local field, i.e., the quantum confined Stark effect.
Quantum memory for images: A quantum hologram
Vasilyev, Denis V.; Sokolov, Ivan V.; Polzik, Eugene S.
2008-02-15
Matter-light quantum interface and quantum memory for light are important ingredients of quantum information protocols, such as quantum networks, distributed quantum computation, etc. [P. Zoller et al., Eur. Phys. J. D 36, 203 (2005)]. In this paper we present a spatially multimode scheme for quantum memory for light, which we call a quantum hologram. Our approach uses a multiatom ensemble which has been shown to be efficient for a single spatial mode quantum memory. Due to the multiatom nature of the ensemble and to the optical parallelism it is capable of storing many spatial modes, a feature critical for the present proposal. A quantum hologram with the fidelity exceeding that of classical hologram will be able to store quantum features of an image, such as multimode superposition and entangled quantum states, something that a standard hologram is unable to achieve.
Potestio, R; Delle Site, L
2012-02-07
Parahydrogen is the spin-zero singlet state of molecular hydrogen, which at low temperature (between 14 and 25 K) is in a fluid state. A classical treatment of the system leads to unphysical freezing, and the inclusion of quantum delocalization of the molecule is then required to obtain a realistic description of its equilibrium properties. In the present work, we employ the classical-quantum adaptive resolution method AdResS to investigate the spatial extension of quantum delocalization effects in the bulk fluid at low temperature. Specifically, we simulate a small, spherical region of the system in full quantum detail: this region is coupled to a bulk of coarse-grained particles with classical, quantum-derived effective interactions obtained from quantum simulations. The two regions are interfaced through open boundaries and in conditions of thermodynamic equilibrium. Structural properties of the fluid, namely, pair distribution functions, are measured for different sizes of the quantum region. The results of this work show that, for the thermodynamic conditions corresponding to the range of temperature between 14 and 25 K, the bead-based, quantum structural properties of low-temperature parahydrogen are deemed local and do not require the support of an explicit quantum bulk.
Spectroscopic properties of colloidal indium phosphide quantum wires
Wang, Lin-Wang; Wang, Fudong; Yu, Heng; Li, Jingbo; Hang, Qingling; Zemlyanov, Dmitry; Gibbons, Patrick C.; Wang, Lin-Wang; Janes, David B.; Buhro, William E.
2008-07-11
Colloidal InP quantum wires are grown by the solution-liquid-solid (SLS) method, and passivated with the traditional quantum dots surfactants 1-hexadecylamine and tri-n-octylphosphine oxide. The size dependence of the band gaps in the wires are determined from the absorption spectra, and compared to other experimental results for InP quantum dots and wires, and to the predictions of theory. The photoluminescence behavior of the wires is also investigated. Efforts to enhance photoluminescence efficiencies through photochemical etching in the presence of HF result only in photochemical thinning or photo-oxidation, without a significant influence on quantum-wire photoluminescence. However, photo-oxidation produces residual dot and rod domains within the wires, which are luminescent. The results establish that the quantum-wire band gaps are weakly influenced by the nature of the surface passivation, and that colloidal quantum wires have intrinsically low photoluminescence efficiencies.
Nonlinear optical properties and supercontinuum spectrum of titania-modified carbon quantum dots
NASA Astrophysics Data System (ADS)
Kulchin, Yu N.; Mayor, A. Yu; Proschenko, D. Yu; Postnova, I. V.; Shchipunov, Yu A.
2016-04-01
We have studied the nonlinear optical properties and supercontinuum spectrum of solutions of carbon quantum dots prepared by a hydrothermal process from chitin and then coated with titania. The titania coating has been shown to have an activating effect on the carbon quantum dots, enhancing supercontinuum generation in the blue-violet spectral region and enabling their nonlinear optical characteristics to be varied.
Photoluminescence Properties Research on Graphene Quantum Dots/Silver Composites.
Wang, Jun; Li, Yan; Zhang, Bo-Ping; Xie, Dan-Dan; Ge, Juan; Liu, Hui
2016-04-01
Graphene quantum dots (GQDs) possess unique properties of graphene and exhibit a series of new phenomena of 0 dimension (D) carbon materials. Thus, GQDs have attracted much attention from researchers and have shown great promise for many applications. Recently, many works focus on GQDs-metal ions and metal nanoparticles (NPs). Although, many researches point out that metal ions and metal NPs have significant effect on photoluminescence (PL) feature of GQDs, mainly focus on PL intensity. Here, for the first time, we reported that metal NPs also affected PL peak position which was dependent on the mix mechanism of metal and GQDs. When GQDs-silver (Ag) composite mixed by physical method and excited at a wavelength of 320 nm, PL peak position of composites first showed blue-shifted then red-shifted with increasing of Ag content. However, if GQDs-Ag composite prepared by chemical method, PL peak position of the composites blue-shifted. Furthermore, the shift of PL peak position of GQDs-Ag prepared both for physical and chemical method displayed excitation-dependent feature. When the excitation wavelength approached to Ag SPR peaks, no obvious PL shift was observed. The mechanism for different PL shifts and the phenomenon of excitation-dependent PL shift as well as the formation mechanism of GQDs-Ag composite by chemical method are discussed in detail in this paper.
Experiments on the thermoelectric properties of quantum dots
NASA Astrophysics Data System (ADS)
Svilans, Artis; Leijnse, Martin; Linke, Heiner
2016-12-01
Quantum dots (QDs) are good model systems for fundamental studies of mesoscopic transport phenomena using thermoelectric effects because of their small size, electrostatically tunable properties and thermoelectric response characteristics that are very sensitive to small thermal biases. Here we provide a review of experimental studies on thermoelectric properties of single QDs realized in two-dimensional electron gases, single-walled carbon nanotubes and semiconductor nanowires. A key requirement for such experiments is to have some methods for nanoscale thermal biasing at one's disposal. We briefly review the main techniques used in the field, namely, heating of the QD contacts, side heating and top heating, and touch upon their relative advantages. The thermoelectric response of a QD as a function of gate potential has a characteristic oscillatory behavior with the same period as is observed for conductance peaks. Much of the existing literature focuses on the agreement between experiments and theory, particularly for amplitude and line-shape of the thermovoltage Vth. A general observation is that the widely used single-electron tunneling approximation for QDs has limited success in reproducing measured Vth. Landauer-type calculations are often found to describe measurement results better, despite the large electron-electron interactions in QDs. More recently, nonlinear thermoelectric effects have moved into the focus of attention, and we offer a brief overview of the experiments done so far. We conclude by discussing open questions and avenues for future work, including the role of asymmetries in tunnel- and capacitive couplings in the thermoelectric behavior of QDs. xml:lang="fr"
Plasmonic fluorescent quantum dots.
Jin, Yongdong; Gao, Xiaohu
2009-09-01
Combining multiple discrete components into a single multifunctional nanoparticle could be useful in a variety of applications. Retaining the unique optical and electrical properties of each component after nanoscale integration is, however, a long-standing problem. It is particularly difficult when trying to combine fluorophores such as semiconductor quantum dots with plasmonic materials such as gold, because gold and other metals can quench the fluorescence. So far, the combination of quantum dot fluorescence with plasmonically active gold has only been demonstrated on flat surfaces. Here, we combine fluorescent and plasmonic activities in a single nanoparticle by controlling the spacing between a quantum dot core and an ultrathin gold shell with nanometre precision through layer-by-layer assembly. Our wet-chemistry approach provides a general route for the deposition of ultrathin gold layers onto virtually any discrete nanostructure or continuous surface, and should prove useful for multimodal bioimaging, interfacing with biological systems, reducing nanotoxicity, modulating electromagnetic fields and contacting nanostructures.
Tailoring the physical properties of thiol-capped PbS quantum dots by thermal annealing.
Turyanska, L; Elfurawi, U; Li, M; Fay, M W; Thomas, N R; Mann, S; Blokland, J H; Christianen, P C M; Patanè, A
2009-08-05
We show that the thermal annealing of thiol-capped PbS colloidal quantum dots provides a means of narrowing the nanoparticle size distribution, increasing the size of the quantum dots and facilitating their coalescence preferentially along the 100 crystallographic axes. We exploit these phenomena to tune the photoluminescence emission of an ensemble of dots and to narrow the optical linewidth to values that compare with those reported at room temperature for single PbS quantum dots. We probe the influence of annealing on the electronic properties of the quantum dots by temperature dependent studies of the photoluminescence and magneto-photoluminescence.
Laser Optical Biasing of the Quantum Transport Properties of n-InSb.
1976-10-01
of the SdH oscillations. The research being done is directed at obtaining fundamental information concerning the effects of CO and CO2 laser radiation on the quantum transport properties on n-InSb. (Author)
Quantum Correlation Properties in Composite Parity-Conserved Matrix Product States
NASA Astrophysics Data System (ADS)
Zhu, Jing-Min
2016-09-01
We give a new thought for constructing long-range quantum correlation in quantum many-body systems. Our proposed composite parity-conserved matrix product state has long-range quantum correlation only for two spin blocks where their spin-block length larger than 1 compared to any subsystem only having short-range quantum correlation, and we investigate quantum correlation properties of two spin blocks varying with environment parameter and spacing spin number. We also find that the geometry quantum discords of two nearest-neighbor spin blocks and two next-nearest-neighbor spin blocks become smaller and for other conditions the geometry quantum discord becomes larger than that in any subcomponent, i.e., the increase or the production of the long-range quantum correlation is at the cost of reducing the short-range quantum correlation compared to the corresponding classical correlation and total correlation having no any characteristic of regulation. For nearest-neighbor and next-nearest-neighbor all the correlations take their maximal values at the same points, while for other conditions no whether for spacing same spin number or for different spacing spin numbers all the correlations taking their maximal values are respectively at different points which are very close. We believe that our work is helpful to comprehensively and deeply understand the organization and structure of quantum correlation especially for long-range quantum correlation of quantum many-body systems; and further helpful for the classification, the depiction and the measure of quantum correlation of quantum many-body systems.
Properties and relative measure for quantifying quantum synchronization
NASA Astrophysics Data System (ADS)
Li, Wenlin; Zhang, Wenzhao; Li, Chong; Song, Heshan
2017-07-01
Although quantum synchronization phenomena and corresponding measures have been widely discussed recently, it is still an open question how to characterize directly the influence of nonlocal correlation, which is the key distinction for identifying classical and quantum synchronizations. In this paper, we present basic postulates for quantifying quantum synchronization based on the related theory in Mari's work [Phys. Rev. Lett. 111, 103605 (2013), 10.1103/PhysRevLett.111.103605], and we give a general formula of a quantum synchronization measure with clear physical interpretations. By introducing Pearson's parameter, we show that the obvious characteristics of our measure are the relativity and monotonicity. As an example, the measure is applied to describe synchronization among quantum optomechanical systems under a Markovian bath. We also show the potential by quantifying generalized synchronization and discrete variable synchronization with this measure.
Density functional calculation of the structural and electronic properties of germanium quantum dots
NASA Astrophysics Data System (ADS)
Anas, M. M.; Gopir, G.
2015-04-01
We apply first principles density functional computational methods to study the structures, densities of states (DOS), and higher occupied molecular orbital (HOMO) - lowest unoccupied molecular orbital (LUMO) gaps of selected free-standing Ge semiconductor quantum dots up to 1.8nm. Our calculations are performed using numerical atomic orbital approach where linear combination of atomic orbital was applied. The surfaces of the quantum dots was passivized by hydrogen atoms. We find that surface passivation does affect the electronic properties associated with the changes of surface state, electron localization, and the energy gaps of germanium nanocrystals as well as the confinement of electrons inside the quantum dots (QDs). Our study shows that the energy gaps of germanium quantum dots decreases with the increasing dot diameter. The size-dependent variations of the computed HOMO-LUMO gaps in our quantum dots model were found to be consistent with the effects of quantum confinement reported in others theoretical and experimental calculation.
Density functional calculation of the structural and electronic properties of germanium quantum dots
Anas, M. M.; Gopir, G.
2015-04-24
We apply first principles density functional computational methods to study the structures, densities of states (DOS), and higher occupied molecular orbital (HOMO) – lowest unoccupied molecular orbital (LUMO) gaps of selected free-standing Ge semiconductor quantum dots up to 1.8nm. Our calculations are performed using numerical atomic orbital approach where linear combination of atomic orbital was applied. The surfaces of the quantum dots was passivized by hydrogen atoms. We find that surface passivation does affect the electronic properties associated with the changes of surface state, electron localization, and the energy gaps of germanium nanocrystals as well as the confinement of electrons inside the quantum dots (QDs). Our study shows that the energy gaps of germanium quantum dots decreases with the increasing dot diameter. The size-dependent variations of the computed HOMO-LUMO gaps in our quantum dots model were found to be consistent with the effects of quantum confinement reported in others theoretical and experimental calculation.
ERIC Educational Resources Information Center
Gunel, Murat; Hand, Brian; Gunduz, Sevket
2006-01-01
Physics as a subject for school students requires an understanding and ability to move between different modes of representation for the concepts under review. However, the inability of students to have a multimodal understanding of the concepts is seen as restricting their understandings of the concepts. The aim of this study was to explore the…
ERIC Educational Resources Information Center
Gunel, Murat; Hand, Brian; Gunduz, Sevket
2006-01-01
Physics as a subject for school students requires an understanding and ability to move between different modes of representation for the concepts under review. However, the inability of students to have a multimodal understanding of the concepts is seen as restricting their understandings of the concepts. The aim of this study was to explore the…
Spectral properties of a strongly coupled quantum-dot-metal-nanoparticle system
NASA Astrophysics Data System (ADS)
Hakami, Jabir; Wang, Ligang; Zubairy, M. Suhail
2014-05-01
We investigate the coherent control of the quantum optical properties of a quantum dot coupled to a metallic nanoparticle using a photon Green's function method, which is based on the exact quantization of the electromagnetic fields in a dissipative medium. The properties of the spontaneous emission spectra of such a system are studied in detail with and without involving the coherent field. The Rabi splitting effect in the spectrum emitted by the quantum dot under particular conditions is predicted for different sizes of the metal nanoparticles. We show that the spontaneous emission spectra of the transition coupled to surface plasmons may be further modified by adjusting the external coherent control on the adjacent transitions. Furthermore, the pronounced oscillatory behavior for the quantum-dot dynamics is demonstrated with the presence of the metal nanoparticle by the non-Markovian treatment. Our results may have potential applications in plasmonic-based quantum manipulation.
Can observations inside the Solar System reveal the gravitational properties of the quantum vacuum?
NASA Astrophysics Data System (ADS)
Hajdukovic, Dragan Slavkov
2013-02-01
The understanding of the gravitational properties of the quantum vacuum might be the next scientific revolution. It was recently proposed that the quantum vacuum contains the virtual gravitational dipoles; we argue that this hypothesis might be tested within the Solar System. The key point is that the quantum vacuum ("enriched" with the gravitational dipoles) induces a retrograde precession of the perihelion. It is obvious that this phenomenon might eventually be revealed by more accurate studies of orbits of planets and orbits of the artificial Earth satellites. However, we suggest that potentially the best "laboratory" for the study of the gravitational properties of the quantum vacuum is the recently discovered dwarf planet Eris with its satellite named Dysnomia; the distance of nearly 100 AU from the Sun makes it the unique system in which the precession of the perihelion of Dysnomia (around Eris) is strongly dominated by the quantum vacuum.
Nonlinear thermoelectric response due to energy-dependent transport properties of a quantum dot
NASA Astrophysics Data System (ADS)
Svilans, Artis; Burke, Adam M.; Svensson, Sofia Fahlvik; Leijnse, Martin; Linke, Heiner
2016-08-01
Quantum dots are useful model systems for studying quantum thermoelectric behavior because of their highly energy-dependent electron transport properties, which are tunable by electrostatic gating. As a result of this strong energy dependence, the thermoelectric response of quantum dots is expected to be nonlinear with respect to an applied thermal bias. However, until now this effect has been challenging to observe because, first, it is experimentally difficult to apply a sufficiently large thermal bias at the nanoscale and, second, it is difficult to distinguish thermal bias effects from purely temperature-dependent effects due to overall heating of a device. Here we take advantage of a novel thermal biasing technique and demonstrate a nonlinear thermoelectric response in a quantum dot which is defined in a heterostructured semiconductor nanowire. We also show that a theoretical model based on the Master equations fully explains the observed nonlinear thermoelectric response given the energy-dependent transport properties of the quantum dot.
NASA Astrophysics Data System (ADS)
Gutierrez, Rafael M.; Castañeda, Arcesio
2009-08-01
Quantum mechanics explains the existence and properties of the chemical bond responsible for the formation of molecules from isolated atoms. In this work we study quantum states of Double Quantum Wells, DQW, formed from isolated Single Quantum Wells, SQWs, that can be considered metamaterials. Using the quantum chemistry definition of the covalent bond, we discuss molecular states in DQW as a kind of nanochemistry of metamaterials with new properties, in particular new optical properties. An important particularity of such nanochemistry, is the possible experimental control of the geometrical parameters and effective masses characterizing the semiconductor heterostructures represented by the corresponding DQW. This implies a great potential for new applications of the controlled optical properties of the metamaterials. The use of ab initio methods of intensive numerical calculations permits to obtain macroscopic optical properties of the metamaterials from the fundamental components: the spatial distribution of the atoms and molecules constituting the semiconductor layers. The metamaterial new optical properties emerge from the coexistence of many body processes at atomic and molecular level and complex quantum phenomena such as covalent-like bonds at nanometric dimensions.
Investigation of Laser Optical Biasing on the Quantum Transport Properties of n-InSb.
1979-10-01
Af-01578 NOTH TEXAS STATE UNIV DENTON DEPT OF PHYSICS FIG 20/12 INVESTIGATION OF LASER OPTICAL BIASING ON THE QUANTUM TRANSPORT -ETC(U) OCT 79 0 6...SEILER NOOO-76-C-0319 NCLASSIFIED NL MEEEEEEE4N VEt IC?) ’ ,~CUAL)SUMMARY E’--. C Ii Investigation of Laser Optical Biasing on the Quantum Transport Properties...the investigation of laser optical biasing ef- fects on the quantum transport properties of n-InSb is given for the period October 1, 1978 - September
Goldmann, E. Jahnke, F.; Lorke, M.; Frauenheim, T.
2014-06-16
The saturation behaviour of optical gain with increasing excitation density is an important factor for laser device performance. For active materials based on self-organized InGaAs/GaAs quantum dots, we study the interplay between structural properties of the quantum dots and many-body effects of excited carriers in the optical properties via a combination of tight-binding and quantum-kinetic calculations. We identify regimes where either phase-space filling or excitation-induced dephasing dominates the saturation behavior of the optical gain. The latter can lead to the emergence of a negative differential material gain.
Quantum Monte Carlo methods and lithium cluster properties
Owen, Richard Kent
1990-12-01
Properties of small lithium clusters with sizes ranging from n = 1 to 5 atoms were investigated using quantum Monte Carlo (QMC) methods. Cluster geometries were found from complete active space self consistent field (CASSCF) calculations. A detailed development of the QMC method leading to the variational QMC (V-QMC) and diffusion QMC (D-QMC) methods is shown. The many-body aspect of electron correlation is introduced into the QMC importance sampling electron-electron correlation functions by using density dependent parameters, and are shown to increase the amount of correlation energy obtained in V-QMC calculations. A detailed analysis of D-QMC time-step bias is made and is found to be at least linear with respect to the time-step. The D-QMC calculations determined the lithium cluster ionization potentials to be 0.1982(14) [0.1981], 0.1895(9) [0.1874(4)], 0.1530(34) [0.1599(73)], 0.1664(37) [0.1724(110)], 0.1613(43) [0.1675(110)] Hartrees for lithium clusters n = 1 through 5, respectively; in good agreement with experimental results shown in the brackets. Also, the binding energies per atom was computed to be 0.0177(8) [0.0203(12)], 0.0188(10) [0.0220(21)], 0.0247(8) [0.0310(12)], 0.0253(8) [0.0351(8)] Hartrees for lithium clusters n = 2 through 5, respectively. The lithium cluster one-electron density is shown to have charge concentrations corresponding to nonnuclear attractors. The overall shape of the electronic charge density also bears a remarkable similarity with the anisotropic harmonic oscillator model shape for the given number of valence electrons.
Quantum Monte Carlo methods and lithium cluster properties. [Atomic clusters
Owen, R.K.
1990-12-01
Properties of small lithium clusters with sizes ranging from n = 1 to 5 atoms were investigated using quantum Monte Carlo (QMC) methods. Cluster geometries were found from complete active space self consistent field (CASSCF) calculations. A detailed development of the QMC method leading to the variational QMC (V-QMC) and diffusion QMC (D-QMC) methods is shown. The many-body aspect of electron correlation is introduced into the QMC importance sampling electron-electron correlation functions by using density dependent parameters, and are shown to increase the amount of correlation energy obtained in V-QMC calculations. A detailed analysis of D-QMC time-step bias is made and is found to be at least linear with respect to the time-step. The D-QMC calculations determined the lithium cluster ionization potentials to be 0.1982(14) (0.1981), 0.1895(9) (0.1874(4)), 0.1530(34) (0.1599(73)), 0.1664(37) (0.1724(110)), 0.1613(43) (0.1675(110)) Hartrees for lithium clusters n = 1 through 5, respectively; in good agreement with experimental results shown in the brackets. Also, the binding energies per atom was computed to be 0.0177(8) (0.0203(12)), 0.0188(10) (0.0220(21)), 0.0247(8) (0.0310(12)), 0.0253(8) (0.0351(8)) Hartrees for lithium clusters n = 2 through 5, respectively. The lithium cluster one-electron density is shown to have charge concentrations corresponding to nonnuclear attractors. The overall shape of the electronic charge density also bears a remarkable similarity with the anisotropic harmonic oscillator model shape for the given number of valence electrons.
Passive interferometric symmetries of multimode Gaussian pure states
NASA Astrophysics Data System (ADS)
Gabay, Natasha; Menicucci, Nicolas C.
2016-05-01
As large-scale multimode Gaussian states begin to become accessible in the laboratory, their representation and analysis become a useful topic of research in their own right. The graphical calculus for Gaussian pure states provides powerful tools for their representation, while this work presents a useful tool for their analysis: passive interferometric (i.e., number-conserving) symmetries. Here we show that these symmetries of multimode Gaussian states simplify calculations in measurement-based quantum computing and provide constructive tools for engineering large-scale harmonic systems with specific physical properties, and we provide a general mathematical framework for deriving them. Such symmetries are generated by linear combinations of operators expressed in the Schwinger representation of U (2 ) , called nullifiers because the Gaussian state in question is a zero eigenstate of them. This general framework is shown to have applications in the noise analysis of continuous-various cluster states and is expected to have additional applications in future work with large-scale multimode Gaussian states.
Quantum optical properties of a single Inx Ga1-x As-GaAs quantum dot two-level system
NASA Astrophysics Data System (ADS)
Stufler, S.; Ester, P.; Zrenner, A.; Bichler, M.
2005-09-01
We report on a two-level system, defined by the ground-state exciton of a single InGaAs/GaAs quantum dot. Saturation spectroscopy combined with ultrahigh spectral resolution gives us a complete description of the system in the steady-state limit. Rabi oscillations and quantum interference experiments, on the other hand, provide a detailed insight into the coherent high excitation regime. All fundamental properties of the two-level system show an excellent quantitative agreement in both domains, even though obtained under entirely different experimental conditions. We thus are able to demonstrate control over an almost ideal two-level system, suitable for possible applications in quantum information processing.
NASA Astrophysics Data System (ADS)
Losev, A. S.; Tikhonov, K. S.; Golubeva, T. Yu; Golubev, Yu M.
2016-10-01
We have considered theoretically the feasibility of broadband quantum memory based on the resonant tripod-type atomic configuration. In this case, the writing of a signal field is carried out simultaneously into two channels, and characterized by an excitation of two spin waves of the atomic ensemble. With simultaneous read out from both channels, quantum properties of the original signal are mapped onto the retrieval pulse no worse than in the case of memory based on a Λ-type atomic configuration. At the same time new possibilities are opened up for the manipulation of quantum states associated with sequential reading out (and/or sequential writing) of signal pulses. For example, a pulse in the squeezed state is converted into two partially entangled pulses with partially squeezed quadratures. Alternatively, two independent signal pulses with orthogonally squeezed quadratures can be converted into two entangled pulses.
Extremal properties of the variance and the quantum Fisher information
NASA Astrophysics Data System (ADS)
Tóth, Géza; Petz, Dénes
2013-03-01
We show that the variance is its own concave roof. For rank-2 density matrices and operators with zero diagonal elements in the eigenbasis of the density matrix, we prove analytically that the quantum Fisher information is four times the convex roof of the variance. Strong numerical evidence suggests that this statement is true even for operators with nonzero diagonal elements or density matrices with a rank larger than 2. We also find that within the different types of generalized quantum Fisher information considered in Petz [J. Phys. A1361-644710.1088/0305-4470/35/4/305 35, 929 (2002)] and Gibilisco, Hiai, and Petz [IEEE Trans. Inf. TheoryIETTAW0018-944810.1109/TIT.2008.2008142 55, 439 (2009)], after appropriate normalization, the quantum Fisher information is the largest. Hence, we conjecture that the quantum Fisher information is four times the convex roof of the variance even for the general case.
Ultrafast optical properties of lithographically defined quantum dot amplifiers
Miaja-Avila, L.; Verma, V. B.; Mirin, R. P.; Silverman, K. L.; Coleman, J. J.
2014-02-10
We measure the ultrafast optical response of lithographically defined quantum dot amplifiers at 40 K. Recovery of the gain mostly occurs in less than 1 picosecond, with some longer-term transients attributable to carrier heating. Recovery of the absorption proceeds on a much longer timescale, representative of relaxation between quantum dot levels and carrier recombination. We also measure transparency current-density in these devices.
2000-06-23
With Combined Quantum Well and Quantum Dot Layers Grown by Metal-Organic Vapor Phase Epitaxy DISTRIBUTION: Approved for public release, distribution...19-23, 2000 © 2000 loffe Institute Photoelectronic properties of InAs/GaAs nanostructures with combined quantum well and quantum dot layers grown by...of quantum well (QW) and QD layers in the GaAs/In.Gal-,As nanos- tructures obtained by MOVPE result not only in well known "red shift" of the QD PL
Quantum probes for the spectral properties of a classical environment
NASA Astrophysics Data System (ADS)
Benedetti, Claudia; Buscemi, Fabrizio; Bordone, Paolo; Paris, Matteo G. A.
2014-03-01
We address the use of simple quantum probes for the spectral characterization of classical noisy environments. In our scheme a qubit interacts with a classical stochastic field describing environmental noise and is then measured after a given interaction time in order to estimate the characteristic parameters of the noise. In particular, we address estimation of the spectral parameters of two relevant kinds of non-Gaussian noise: random telegraph noise with a Lorentzian spectrum and colored noise with a 1/fα spectrum. We analyze in detail the estimation precision achievable by quantum probes and prove that population measurement on the qubit is optimal for noise estimation in both cases. We also evaluate the optimal interaction times for the quantum probe, i.e., the values maximizing the quantum Fisher information (QFI) and the quantum signal-to-noise ratio. For random telegraph noise the QFI is inversely proportional to the square of the switching rate, meaning that the quantum signal-to-noise ratio is constant and thus the switching rate may be uniformly estimated with the same precision in its whole range of variation. For colored noise, the precision achievable in the estimation of "color," i.e., of the exponent α, strongly depends on the structure of the environment, i.e., on the number of fluctuators describing the classical environment. For an environment modeled by a single random fluctuator estimation is more precise for pink noise, i.e., for α =1, whereas by increasing the number of fluctuators, the quantum signal-to-noise ratio has two local maxima, with the largest one drifting towards α =2, i.e., brown noise.
Niebuhr, Nina I. Johnen, Wibke; Güldaglar, Timur; Runz, Armin; Echner, Gernot; Mann, Philipp; Möhler, Christian; Pfaffenberger, Asja; Greilich, Steffen; Jäkel, Oliver
2016-02-15
Purpose: Phantom surrogates were developed to allow multimodal [computed tomography (CT), magnetic resonance imaging (MRI), and teletherapy] and anthropomorphic tissue simulation as well as materials and methods to construct deformable organ shapes and anthropomorphic bone models. Methods: Agarose gels of variable concentrations and loadings were investigated to simulate various soft tissue types. Oils, fats, and Vaseline were investigated as surrogates for adipose tissue and bone marrow. Anthropomorphic shapes of bone and organs were realized using 3D-printing techniques based on segmentations of patient CT-scans. All materials were characterized in dual energy CT and MRI to adapt CT numbers, electron density, effective atomic number, as well as T1- and T2-relaxation times to patient and literature values. Results: Soft tissue simulation could be achieved with agarose gels in combination with a gadolinium-based contrast agent and NaF to simulate muscle, prostate, and tumor tissues. Vegetable oils were shown to be a good representation for adipose tissue in all modalities. Inner bone was realized using a mixture of Vaseline and K{sub 2}HPO{sub 4}, resulting in both a fatty bone marrow signal in MRI and inhomogeneous areas of low and high attenuation in CT. The high attenuation of outer bone was additionally adapted by applying gypsum bandages to the 3D-printed hollow bone case with values up to 1200 HU. Deformable hollow organs were manufactured using silicone. Signal loss in the MR images based on the conductivity of the gels needs to be further investigated. Conclusions: The presented surrogates and techniques allow the customized construction of multimodality, anthropomorphic, and deformable phantoms as exemplarily shown for a pelvic phantom, which is intended to study adaptive treatment scenarios in MR-guided radiation therapy.
Radiolabeled Nanoparticles for Multimodality Tumor Imaging
Xing, Yan; Zhao, Jinhua; Conti, Peter S.; Chen, Kai
2014-01-01
Each imaging modality has its own unique strengths. Multimodality imaging, taking advantages of strengths from two or more imaging modalities, can provide overall structural, functional, and molecular information, offering the prospect of improved diagnostic and therapeutic monitoring abilities. The devices of molecular imaging with multimodality and multifunction are of great value for cancer diagnosis and treatment, and greatly accelerate the development of radionuclide-based multimodal molecular imaging. Radiolabeled nanoparticles bearing intrinsic properties have gained great interest in multimodality tumor imaging over the past decade. Significant breakthrough has been made toward the development of various radiolabeled nanoparticles, which can be used as novel cancer diagnostic tools in multimodality imaging systems. It is expected that quantitative multimodality imaging with multifunctional radiolabeled nanoparticles will afford accurate and precise assessment of biological signatures in cancer in a real-time manner and thus, pave the path towards personalized cancer medicine. This review addresses advantages and challenges in developing multimodality imaging probes by using different types of nanoparticles, and summarizes the recent advances in the applications of radiolabeled nanoparticles for multimodal imaging of tumor. The key issues involved in the translation of radiolabeled nanoparticles to the clinic are also discussed. PMID:24505237
NASA Astrophysics Data System (ADS)
Krivenkov, V. A.; Solovyeva, D. O.; Samokhvalov, P. S.; Brazhnik, K. I.; Kotkovskiy, G. E.; Chistyakov, A. A.; Lukashev, E. P.; Nabiev, I. R.
2014-10-01
A method for controlled changes in the radiative properties of quantum dots (QDs) in order to modulate the Forster resonance energy transfer (FRET) rate in nano-hybrid materials is proposed. The mechanism underlying the effect of QDs with optical properties modulated by UV laser irradiation on the photocycle of the photosensitive protein bacteriorhodopsin (bR) in its native purple membranes (PM) isolated from Halobacterium salinarum has been studied. The irradiation leads to a twofold decrease in the QD fluorescence quantum yield without changes in the extinction spectrum or the position or shape of the fluorescence spectrum. The bR photocycle is accelerated, which has been shown to be related to the changes of the surface potential of PM upon formation of their complexes with QDs.
Properties of minimum spanning trees and fractional quantum Hall states
NASA Astrophysics Data System (ADS)
Jackson, Thomas Sundal
This dissertation consists of work done on two disjoint problems. In the first two chapters I discuss fractal properties of average-case solutions to the random minimal spanning tree (MST) problem: given a graph with costs on the edges, the MST is the spanning tree minimizing the sum of the total cost of the chosen edges. In the random version the costs are quenched random variables. I solve the random MST problem on the Bethe lattice with appropriate boundary conditions and use the results to infer fractal dimensions in the mean-field approximation. I find that connected components of the MST in a window have dimension D=6, which establishes the upper critical dimension dc=6. This contradicts a value dc=8 proposed previously in the literature; I correct the argument that led to this value. I then develop an exact low-density expansion for the random MST on a finite graph and use it to develop an expansion for the MST on critical percolation clusters. I prove this perturbation expansion is renormalizable around dc=6. Using a renormalization-group approach, I calculate the fractal dimension Dp of paths on the latter MST to first order in epsilon=6-d for d≤6, with the result Dp˜2-epsilon/7. In the final chapter, I investigate the correspondence between wavefunctions in the fractional quantum Hall effect obtained as blocks of a conformal field theory (CFT) versus those defined as zero-energy eigenstates of projection Hamiltonians, specifically one which forbids three particles to come together in one of two linearly-independent states of relative angular momentum six and all states of lesser relative angular momentum. I construct zero-energy states from amplitudes of superconformal currents using a result due to Simon. The counting of edge excitations of these states agrees with the character formula for the superconformal Kac vacuum module at generic central charge c, which implies this Hamiltonian is gapless for all c. I attempt to obtain a rational theory by
Excitonic optical properties of wurtzite ZnS quantum dots under pressure
Zeng, Zaiping; Garoufalis, Christos S.; Baskoutas, Sotirios; Bester, Gabriel
2015-03-21
By means of atomistic empirical pseudopotentials combined with a configuration interaction approach, we have studied the optical properties of wurtzite ZnS quantum dots in the presence of strong quantum confinement effects as a function of pressure. We find the pressure coefficients of quantum dots to be highly size-dependent and reduced by as much as 23% in comparison to the bulk value of 63 meV/GPa obtained from density functional theory calculations. The many-body excitonic effects on the quantum dot pressure coefficients are found to be marginal. The absolute gap deformation potential of quantum dots originates mainly from the energy change of the lowest unoccupied molecular orbital state. Finally, we find that the exciton spin-splitting increases nearly linearly as a function of applied pressure.
Optical Properties of Quantum Vacuum. Space-Time Engineering
Gevorkyan, A. S.; Gevorkyan, A. A.
2011-03-28
The propagation of electromagnetic waves in the vacuum is considered taking into account quantum fluctuations in the limits of Maxwell-Langevin (ML) type stochastic differential equations. For a model of fluctuations, type of 'white noise', using ML equations a partial differential equation of second order is obtained which describes the quantum distribution of virtual particles in vacuum. It is proved that in order to satisfy observed facts, the Lamb Shift etc, the virtual particles should be quantized in unperturbed vacuum. It is shown that the quantized virtual particles in toto (approximately 86 percent) are condensed on the 'ground state' energy level. It is proved that the extension of Maxwell electrodynamics with inclusion of quantum vacuum fluctuations may be constructed on a 6D space-time continuum, where 4D is Minkowski space-time and 2D is a compactified subspace. In detail is studied of vacuum's refraction indexes under the influence of external electromagnetic fields.
secondary structure of their crystals; Analysis of the crystal structure of mercury fulminate ; Studies of the properties and explosion mechanism of... mercury fulminate based on the image of its crystal; and Quantum-chemical consideration of explosive properties of initial explosives.
Tuning the optical properties of dilute nitride site controlled quantum dots
Juska, G.; Dimastrodonato, V.; Mereni, L. O.; Gocalinska, A.; Pelucchi, E.
2013-12-04
We show that deterministic control of the properties of pyramidal site-controlled quantum dots (QD) could be achieved by exposing the QD layer to nitrogen precursor unsymmetrical dimethylhydrazine (UDMHy). The properties that could be tuned include an expected emission reduction in dilute nitride materials, excitonic pattern (biexciton binding energy) and improved carrier confinement potential symmetry (reduced fine-structure splitting)
Emergence of equilibrium thermodynamic properties in quantum pure states. I. Theory
Fresch, Barbara; Moro, Giorgio J.
2010-07-21
Investigation on foundational aspects of quantum statistical mechanics recently entered a renaissance period due to novel intuitions from quantum information theory and to increasing attention on the dynamical aspects of single quantum systems. In the present contribution a simple but effective theoretical framework is introduced to clarify the connections between a purely mechanical description and the thermodynamic characterization of the equilibrium state of an isolated quantum system. A salient feature of our approach is the very transparent distinction between the statistical aspects and the dynamical aspects in the description of isolated quantum systems. Like in the classical statistical mechanics, the equilibrium distribution of any property is identified on the basis of the time evolution of the considered system. As a consequence equilibrium properties of quantum system appear to depend on the details of the initial state due to the abundance of constants of the motion in the Schroedinger dynamics. On the other hand the study of the probability distributions of some functions, such as the entropy or the equilibrium state of a subsystem, in statistical ensembles of pure states reveals the crucial role of typicality as the bridge between macroscopic thermodynamics and microscopic quantum dynamics. We shall consider two particular ensembles: the random pure state ensemble and the fixed expectation energy ensemble. The relation between the introduced ensembles, the properties of a given isolated system, and the standard quantum statistical description are discussed throughout the presentation. Finally we point out the conditions which should be satisfied by an ensemble in order to get meaningful thermodynamical characterization of an isolated quantum system.
Shen, Yi; Tan, Rui; Gee, Megan Y; Greytak, Andrew B
2015-03-24
This article describes an experiment designed to identify the role of specific molecular ligands in maintaining the high photoluminescence (PL) quantum yield (QY) observed in as-synthesized CdSe/CdZnS and CdSe/CdS quantum dots (QDs). Although it has been possible for many years to prepare core/shell quantum dots with near-unity quantum yield through high-temperature colloidal synthesis, purification of such colloidal particles is frequently accompanied by a reduction in quantum yield. Here, a recently established gel permeation chromatography (GPC) technique is used to remove weakly associated ligands without a change in solvent: a decrease in ensemble QY and average PL lifetime is observed. Minor components of the initial mixture that were removed by GPC are then added separately to purified QD samples to determine whether reintroduction of these components can restore the photophysical properties of the initial sample. We show that among these putative ligands trioctylphosphine and cadmium oleate can regenerate the initial high QY of all samples, but only the "L-type" ligands (trioctyphosphine and oleylamine) can restore the QY without changing the shapes of the optical spectra. On the basis of the PL decay analysis, we confirm that quenching in GPC-purified samples and regeneration in ligand-introduced samples are associated chiefly with changes in the relative population fraction of QDs with different decay rates. The reversibility of the QY regeneration process has also been studied; the introduction and removal of trioctylphosphine and oleylamine tend to be reversible, while cadmium oleate is not. Finally, isothermal titration calorimetry has been used to study the relationship between the binding strength of the neutral ligands to the surface and photophysical property changes in QD samples to which they are added.
On quantum Rényi entropies: A new generalization and some properties
Müller-Lennert, Martin; Dupuis, Frédéric; Szehr, Oleg; Fehr, Serge; Tomamichel, Marco
2013-12-15
The Rényi entropies constitute a family of information measures that generalizes the well-known Shannon entropy, inheriting many of its properties. They appear in the form of unconditional and conditional entropies, relative entropies, or mutual information, and have found many applications in information theory and beyond. Various generalizations of Rényi entropies to the quantum setting have been proposed, most prominently Petz's quasi-entropies and Renner's conditional min-, max-, and collision entropy. However, these quantum extensions are incompatible and thus unsatisfactory. We propose a new quantum generalization of the family of Rényi entropies that contains the von Neumann entropy, min-entropy, collision entropy, and the max-entropy as special cases, thus encompassing most quantum entropies in use today. We show several natural properties for this definition, including data-processing inequalities, a duality relation, and an entropic uncertainty relation.
Bound state properties of ABC-stacked trilayer graphene quantum dots.
Xiong, Haonan; Jiang, Wentao; Song, Yipu; Duan, Luming
2017-04-03
The few-layer graphene quantum dot provides a promising platform for quantum computing with both spin and valley degrees of freedom. Gate-defined quantum dots in particular can avoid noise from edge disorders. In connection with the recent experimental efforts [Y. Song et al., Nano Lett. 16, 6245 (2016)], we investigate the bound state properties of trilayer graphene (TLG) quantum dots (QDs) through numerical simulations. We show that the valley degeneracy can be lifted by breaking the time reversal symmetry through the application of a perpendicular magnetic field. The spectrum under such a potential exhibits a transition from one group of Landau levels to the other group, which can be understood analytically through perturbation theory. Our results provide insight to the transport property of TLG QDs, with possible applications to study of spin qubits and valleytronics in TLG QDs.
Linear and nonlinear optical properties of anisotropic quantum dots in a magnetic field
NASA Astrophysics Data System (ADS)
Xie, Wenfang
2013-05-01
We have investigated the linear and nonlinear optical properties of a two-dimensional anisotropic quantum dot in a magnetic field. Based on the computed energies and wave functions, the linear, third-order nonlinear and total optical absorption coefficients as well as the refractive index changes have been examined. The results are presented as a function of the incident photon energy for the different cases of anisotropy, dot size and external magnetic field. The results show that the linear and nonlinear optical properties of anisotropic quantum dots are strongly affected by the degree of anisotropy, the dot size, the external magnetic field and the polarized direction of the incident electromagnetic wave. The result also shows that the size effect of anisotropy quantum dots on the optical absorptions is different from that of isotropic quantum dots.
Bound state properties of ABC-stacked trilayer graphene quantum dots
NASA Astrophysics Data System (ADS)
Xiong, Haonan; Jiang, Wentao; Song, Yipu; Duan, Luming
2017-06-01
The few-layer graphene quantum dot provides a promising platform for quantum computing with both spin and valley degrees of freedom. Gate-defined quantum dots in particular can avoid noise from edge disorders. In connection with the recent experimental efforts (Song et al 2016 Nano Lett. 16 6245), we investigate the bound state properties of trilayer graphene (TLG) quantum dots (QDs) through numerical simulations. We show that the valley degeneracy can be lifted by breaking the time reversal symmetry through the application of a perpendicular magnetic field. The spectrum under such a potential exhibits a transition from one group of Landau levels to another group, which can be understood analytically through perturbation theory. Our results provide insight into the transport property of TLG QDs, with possible applications to study of spin qubits and valleytronics in TLG QDs.
The properties of Q-deformed hyperbolic and trigonometric functions in quantum deformation
Deta, U. A. E-mail: utamadeta@unesa.ac.id; Suparmi
2015-09-30
Quantum deformation has been studied due to its relation with applications in nuclear physics, conformal field theory, and statistical-quantum theory. The q-deformation of hyperbolic function was introduced by Arai. The application of q-deformed functions has been widely used in quantum mechanics. The properties of this two kinds of system explained in this paper including their derivative. The graph of q-deformed functions presented using Matlab. The special case is given for modified Poschl-Teller plus q-deformed Scarf II trigonometry potentials.
(In,Mn)As quantum dots: Molecular-beam epitaxy and optical properties
Bouravleuv, A. D. Nevedomskii, V. N.; Ubyivovk, E. V.; Sapega, V. F.; Khrebtov, A. I.; Samsonenko, Yu. B.; Cirlin, G. E.; Ustinov, V. M.
2013-08-15
Self-assembled (In,Mn)As quantum dots are synthesized by molecular-beam epitaxy on GaAs (001) substrates. The experimental results obtained by transmission electron microscopy show that doping of the central part of the quantum dots with Mn does not bring about the formation of structural defects. The optical properties of the samples, including those in external magnetic fields, are studied.
Markov property and strong additivity of von Neumann entropy for graded quantum systems
Moriya, Hajime
2006-03-15
The quantum Markov property is equivalent to the strong additivity of von Neumann entropy for graded quantum systems. The additivity of von Neumann entropy for bipartite graded systems implies the statistical independence of states. However, the structure of Markov states for graded systems is different from that for tensor-product systems which have trivial grading. For three-composed graded systems we have U(1)-gauge invariant Markov states whose restriction to the marginal pair of subsystems is nonseparable.
NASA Astrophysics Data System (ADS)
Elbaz, Edgard
This book gives a new insight into the interpretation of quantum mechanics (stochastic, integral paths, decoherence), a completely new treatment of angular momentum (graphical spin algebra) and an introduction to Fermion fields (Dirac equation) and Boson fields (e.m. and Higgs) as well as an introduction to QED (quantum electrodynamics), supersymmetry and quantum cosmology.
Optical and electronic properties of quantum dots with magnetic impurities
NASA Astrophysics Data System (ADS)
Govorov, Alexander O.
2008-10-01
The article discusses some of the recent results on semiconductor quantum dots with magnetic impurities. A single Mn impurity incorporated in a quantum dot strongly changes the optical response of a quantum-dot system. A character of Mn-carrier interaction is very different for II-VI and III-V quantum dots (QDs). In the II-VI QDs, a Mn impurity influences mostly the spin-structure of an exciton. In the III-V dots, a spatial localization of hole by a Mn impurity can be very important, and ultimately yields a totally different spin structure. A Mn-doped QD with a variable number of mobile carriers represents an artificial magnetic atom. Due to the Mn-carrier interaction, the order of filling of electronic shells in the magnetic QDs can be very different to the case of the real atoms. The "periodic" table of the artificial magnetic atoms can be realized in voltage-tunable transistor structures. For the electron numbers corresponding to the regime of Hund's rule, the magnetic Mn-carrier coupling is especially strong and the magnetic-polaron states are very robust. Magnetic QD molecules are also very different to the real molecules. QD molecules can demonstrate spontaneous breaking of symmetry and phase transitions. Single QDs and QD molecules can be viewed as voltage-tunable nanoscale memory cells where information is stored in the form of robust magnetic-polaron states. To cite this article: A.O. Govorov, C. R. Physique 9 (2008).
Quantum-Theoretical Methods and Studies Relating to Properties of Materials
1989-12-19
V. B.; Halow, I.; Bailey, S. M.; Schumm, R. H. Selected Values of Chemical Thermodynamic Properties , NBS Technical Note 270-3, Nat]. Bur. Stands... Thermodynamic Properties of Individual Substances (in Russian); Glyshko, W. P., Ed.; Science: Moscow, 1982. (14) Shimanouchi, T. J. Phys. Chem. Ref. Data...Theoretical Methods and Studies Relating to Properties of Materials. -’This research concerned-the development of new ab initio nonempirical quantum
Optical properties of a quantum well driven by a THz electric field
NASA Astrophysics Data System (ADS)
Maslov, Alexey V.
2001-07-01
A systematic study of linear optical properties of a quantum well driven by a periodic electric field with period in the THz frequency range is performed. The THz field is oriented in the growth direction of the quantum well. We present a general approach to characterize the optical properties of a modulated medium and discuss the use of short optical pulses (shorter than the modulation period) to obtain the optical properties in the frequency domain. Mixing of the quantum well subbands (both in the conduction and valence band) for strong THz fields is treated in terms of the states dressed by the THz field. Relations between the dressed states and the optical properties of the quantum well are given. In particular, our approach allowed us to find simple relations for the efficiency of the energy conversion of the incident light into the sidebands and generalize the rate of the exciton radiative decay for the case of THz-dressed exciton. We also predict the effect of mutual transparency of several coherent laser beams which are resonant with different Fourier components of the dressed exciton state. Finally, results of realistic calculations of the absorption spectra of THz-field driven quantum wells using multisubband semiconductor Bloch equations in the linear regime are presented.
Quantum Optical Lattices for Emergent Many-Body Phases of Ultracold Atoms
NASA Astrophysics Data System (ADS)
Caballero-Benitez, Santiago F.; Mekhov, Igor B.
2015-12-01
Confining ultracold gases in cavities creates a paradigm of quantum trapping potentials. We show that this allows us to bridge models with global collective and short-range interactions as novel quantum phases possess properties of both. Some phases appear solely due to quantum light-matter correlations. Because of a global, but spatially structured, interaction, the competition between quantum matter and light waves leads to multimode structures even in single-mode cavities, including delocalized dimers of matter-field coherences (bonds), beyond density orders as supersolids and density waves.
A realistic model for quantum theory with a locality property
Eberhard, P.H.
1987-04-01
A model reproducing the predictions of relativistic quantum theory to any desired degree of accuracy is described in this paper. It involves quantities that are independent of the observer's knowledge, and therefore can be called real, and which are defined at each point in space, and therefore can be called local in a rudimentary sense. It involves faster-than-light, but not instantaneous, action at distance.
Quantum Monte Carlo Calculations of Nanostructure Optical Properties
NASA Astrophysics Data System (ADS)
Williamson, Andrew
2003-03-01
Near linear scaling Quantum Monte Carlo (QMC) calculations[1] are used to calculate the optical gaps, electron affinities, and ionization potentials of silicon and germanium quantum dots ranging in size from 0 to 2 nm[2]. These QMC results are used to examine the accuracy of semi-empirical and density functional (DFT) calculations. We find optical gaps are underestimated by DFT by 1-2 eV depending on choice of functional. Corrections introduced by the time dependent formalisms are found to be minimal in these systems. Our results also show that quantum confinement in germanium is significantly greater than in silicon leading to a crossover of their optical gaps in dots between 2 and 3 nm in size, verifying recent experiment observations. [1] A. J. Williamson, R.Q. Hood and J.C. Grossman, Phys. Rev. Lett. 87, 246406-1 (2001). [2] A.J. Williamson J.C. Grossman, R.Q. Hood, A. Puzder and Giulia Galli, Phys. Rev. Lett, 89, 196803 (2002).
Dispersion properties of compressional electromagnetic waves in quantum dusty magnetoplasmas
Ali, S.; Shukla, P.K.
2006-05-15
A new dispersion relation for low-frequency compressional electromagnetic waves is derived by employing quantum magnetohydrodynamic model and Maxwell equations in cold quantum dusty magnetoplasmas. The latter is composed of inertialess electrons, mobile ions, and immobile charged dust particulates. The dispersion relation for the low-frequency compressional electromagnetic modes is further analyzed for the waves propagating parallel, perpendicular, and oblique to the external magnetic field direction. It is found theoretically and numerically that the quantum parameter {alpha}{sub q}=(n{sub i0}/n{sub e0})({Dirac_h}/2{pi}){sup 2}/(4m{sub e}m{sub i}) affects the real angular frequencies and the phase speeds of the compressional electromagnetic modes. Here, n{sub i0} (n{sub e0}) is the equilibrium number density of the ions (electrons), m{sub e} (m{sub i}) is the electron (ion) mass, and ({Dirac_h}/2{pi}) is the Plank constant divided by 2{pi}.
Properties of classical and quantum Jensen-Shannon divergence
Brieet, Jop; Harremoees, Peter
2009-05-15
Jensen-Shannon divergence (JD) is a symmetrized and smoothed version of the most important divergence measure of information theory, Kullback divergence. As opposed to Kullback divergence it determines in a very direct way a metric; indeed, it is the square of a metric. We consider a family of divergence measures (JD{sub {alpha}} for {alpha}>0), the Jensen divergences of order {alpha}, which generalize JD as JD{sub 1}=JD. Using a result of Schoenberg, we prove that JD{sub {alpha}} is the square of a metric for {alpha} is an element of (0,2], and that the resulting metric space of probability distributions can be isometrically embedded in a real Hilbert space. Quantum Jensen-Shannon divergence (QJD) is a symmetrized and smoothed version of quantum relative entropy and can be extended to a family of quantum Jensen divergences of order {alpha} (QJD{sub {alpha}}). We strengthen results by Lamberti and co-workers by proving that for qubits and pure states, QJD{sub {alpha}}{sup 1/2} is a metric space which can be isometrically embedded in a real Hilbert space when {alpha} is an element of (0,2]. In analogy with Burbea and Rao's generalization of JD, we also define general QJD by associating a Jensen-type quantity to any weighted family of states. Appropriate interpretations of quantities introduced are discussed and bounds are derived in terms of the total variation and trace distance.
Synthesis, properties and biomedical applications of carbon-based quantum dots: An updated review.
Namdari, Pooria; Negahdari, Babak; Eatemadi, Ali
2017-03-01
Carbon-based quantum dots (CQDs) are a newly developed class of carbon nano-materials that have attracted much interest and attention as promising competitors to already available semiconductor quantum dots owing to their un-comparable and unique properties. In addition, controllability of CQDs unique physiochemical properties is as a result of their surface passivation and functionalization. This is an update article (between 2013 and 2016) on the recent progress, characteristics and synthesis methods of CQDs and different advantages in varieties of applications. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Jha, Pradip Kumar; Kumar, Manoj; Lahon, Siddhartha; Gumber, Sukirti; Mohan, Man
2014-01-01
Here we have investigated the influence of external magnetic field on the optical absorption and refractive index changes of a parabolically confined quantum dot in the presence of Rashba spin orbit interaction. We have used density matrix formulation for obtaining optical properties within the effective mass approximation. The results are presented as a function of quantum confinement potential, magnetic field, Rashba spin orbit interaction strength and photon energy. Our results indicate the important influence of magnetic field on the peak positions of absorption coefficient and refractive index changes. The role of confinement strength and spin orbit interaction strength as control parameters on the linear and nonlinear properties have been demonstrated.
Quantum properties of parametric four-wave mixing in a Raman-type atomic system
NASA Astrophysics Data System (ADS)
Sharypov, A. V.; He, Bing; Arkhipkin, V. G.; Myslivets, S. A.
2017-05-01
We present a study of the quantum properties of two light fields used in parametric four-wave mixing in a Raman-type atomic system. The system realizes an effective Hamiltonian of beam-splitter-type coupling between the light fields, which allows one to control squeezing and amplitude distribution of the light fields, as well as realizing their entanglement. The scheme can be feasibly applied to engineer the quantum properties of two single-mode light fields in properly chosen input states.
Specific features of photoluminescence properties of copper-doped cadmium selenide quantum dots
Tselikov, G. I.; Dorofeev, S. G.; Tananaev, P. N.; Timoshenko, V. Yu.
2011-09-15
The effect of doping with copper on the photoluminescence properties of cadmium selenide quantum dots 4 nm in dimension is studied. The quenching of the excitonic photoluminescence band related to the quantum dots and the appearance of an impurity photoluminescence band in the near-infrared region are observed after doping of the quantum dots with copper. It is established that, on doping of the quantum dots, the photoluminescence kinetics undergoes substantial changes. The photoluminescence kinetics of the undoped quantum dots is adequately described by a sum of exponential relaxation relations, whereas the photoluminescence kinetics experimentally observed in the region of the impurity band of the copper-doped samples follows stretched exponential decay, with the average lifetimes 0.3-0.6 {mu}s at the photon energies in the range of 1.47-1.82 eV. The experimentally observed changes in the photoluminescence properties are attributed to transformation of radiative centers in the quantum dots when doped with copper atoms.
Wei, Wei; Dai, Ying; Niu, Chengwang; Huang, Baibiao
2015-11-30
In-plane transition-metal dichalcogenides (TMDs) quantum wells have been studied on the basis of first-principles density functional calculations to reveal how to control the electronic structures and the properties. In collection of quantum confinement, strain and intrinsic electric field, TMD quantum wells offer a diverse of exciting new physics. The band gap can be continuously reduced ascribed to the potential drop over the embedded TMD and the strain substantially affects the band gap nature. The true type-II alignment forms due to the coherent lattice and strong interface coupling suggesting the effective separation and collection of excitons. Interestingly, two-dimensional quantum wells of in-plane TMD can enrich the photoluminescence properties of TMD materials. The intrinsic electric polarization enhances the spin-orbital coupling and demonstrates the possibility to achieve topological insulator state and valleytronics in TMD quantum wells. In-plane TMD quantum wells have opened up new possibilities of applications in next-generation devices at nanoscale.
Wei, Wei; Dai, Ying; Niu, Chengwang; Huang, Baibiao
2015-01-01
In-plane transition-metal dichalcogenides (TMDs) quantum wells have been studied on the basis of first-principles density functional calculations to reveal how to control the electronic structures and the properties. In collection of quantum confinement, strain and intrinsic electric field, TMD quantum wells offer a diverse of exciting new physics. The band gap can be continuously reduced ascribed to the potential drop over the embedded TMD and the strain substantially affects the band gap nature. The true type-II alignment forms due to the coherent lattice and strong interface coupling suggesting the effective separation and collection of excitons. Interestingly, two-dimensional quantum wells of in-plane TMD can enrich the photoluminescence properties of TMD materials. The intrinsic electric polarization enhances the spin-orbital coupling and demonstrates the possibility to achieve topological insulator state and valleytronics in TMD quantum wells. In-plane TMD quantum wells have opened up new possibilities of applications in next-generation devices at nanoscale. PMID:26616013
Pinto, S. R. C.; Ramos, M. M. D.; Gomes, M. J. M.; Buljan, M.; Chahboun, A.; Roldan, M. A.; Molina, S. I.; Bernstorff, S.; Varela, M.; Pennycook, S. J.; Barradas, N. P.; Alves, E.
2012-04-01
In this work, we investigate the structural properties of Ge quantum dot lattices in amorphous silica matrix, prepared by low-temperature magnetron sputtering deposition of (Ge+SiO{sub 2})/SiO{sub 2} multilayers. The dependence of quantum dot shape, size, separation, and arrangement type on the Ge-rich (Ge + SiO{sub 2}) layer thickness is studied. We show that the quantum dots are elongated along the growth direction, perpendicular to the multilayer surface. The size of the quantum dots and their separation along the growth direction can be tuned by changing the Ge-rich layer thickness. The average value of the quantum dots size along the lateral (in-plane) direction along with their lateral separation is not affected by the thickness of the Ge-rich layer. However, the thickness of the Ge-rich layer significantly affects the quantum dot ordering. In addition, we investigate the dependence of the multilayer average atomic composition and also the quantum dot crystalline quality on the deposition parameters.
Pinto, S.; Roldan Gutierrez, Manuel A; Ramos, M. M.D.; Gomes, M.J.M.; Molina, S. I.; Pennycook, Stephen J; Varela del Arco, Maria; Buljan, M.; Barradas, N.; Alves, E.; Chahboun, A.; Bernstorff, S.
2012-01-01
In this work, we investigate the structural properties of Ge quantum dot lattices in amorphous silica matrix, prepared by low-temperature magnetron sputtering deposition of (Ge+SiO{sub 2})/SiO{sub 2} multilayers. The dependence of quantum dot shape, size, separation, and arrangement type on the Ge-rich (Ge + SiO{sub 2}) layer thickness is studied. We show that the quantum dots are elongated along the growth direction, perpendicular to the multilayer surface. The size of the quantum dots and their separation along the growth direction can be tuned by changing the Ge-rich layer thickness. The average value of the quantum dots size along the lateral (in-plane) direction along with their lateral separation is not affected by the thickness of the Ge-rich layer. However, the thickness of the Ge-rich layer significantly affects the quantum dot ordering. In addition, we investigate the dependence of the multilayer average atomic composition and also the quantum dot crystalline quality on the deposition parameters.
Erogbogbo, Folarin; Yong, Ken-Tye; Hu, Rui; Law, Wing-Cheung; Ding, Hong; Chang, Ching-Wen; Prasad, Paras N; Swihart, Mark T
2010-09-28
Luminescent silicon quantum dots (SiQDs) are gaining momentum in bioimaging applications, based on their unique combination of optical properties and biocompatibility. Here, we report the development of a multimodal probe that combines the optical properties of silicon quantum dots with the superparamagnetic properties of iron oxide nanoparticles to create biocompatible magnetofluorescent nanoprobes. Multiple nanoparticles of each type are coencapsulated within the hydrophobic core of biocompatible phospholipid-polyethyleneglycol (DSPE-PEG) micelles. The size distribution and composition of the magnetofluorescent nanoprobes were characterized by transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). Enhanced cellular uptake of these probes in the presence of a magnetic field was demonstrated in vitro. Their luminescence stability in a prostate cancer tumor model microenvironment was demonstrated in vivo. This paves the way for multimodal silicon quantum-dot-based nanoplatforms for a variety of imaging and delivery applications.
The Intersection of Multimodality and Critical Perspective: Multimodality as Subversion
ERIC Educational Resources Information Center
Huang, Shin-ying
2015-01-01
This study explores the relevance of multimodality to critical media literacy. It is based on the understanding that communication is intrinsically multimodal and multimodal communication is inherently social and ideological. By analysing two English-language learners' multimodal ensembles, the study reports on how multimodality contributes to a…
The Intersection of Multimodality and Critical Perspective: Multimodality as Subversion
ERIC Educational Resources Information Center
Huang, Shin-ying
2015-01-01
This study explores the relevance of multimodality to critical media literacy. It is based on the understanding that communication is intrinsically multimodal and multimodal communication is inherently social and ideological. By analysing two English-language learners' multimodal ensembles, the study reports on how multimodality contributes to a…
Impact of Different Surface Ligands on the Optical Properties of PbS Quantum Dot Solids.
Xu, Fan; Gerlein, Luis Felipe; Ma, Xin; Haughn, Chelsea R; Doty, Matthew F; Cloutier, Sylvain G
2015-04-21
The engineering of quantum dot solids with low defect concentrations and efficient carrier transport through a ligand strategy is crucial to achieve efficient quantum dot (QD) optoelectronic devices. Here, we study the consequences of various surface ligand treatments on the light emission properties of PbS quantum dot films using 1,3-benzenedithiol (1,3-BDT), 1,2-ethanedithiol (EDT), mercaptocarboxylic acids (MPA) and ammonium sulfide ((NH4)2S). We first investigate the influence of different ligand treatments on the inter-dot separation, which mainly determines the conductivity of the QD films. Then, through a combination of photoluminescence and transient photoluminescence characterization, we demonstrate that the radiative and non-radiative recombination mechanisms in the quantum dot films depend critically on the length and chemical structure of the surface ligands.
Realistic Many-Body Quantum Systems vs. Full Random Matrices: Static and Dynamical Properties
NASA Astrophysics Data System (ADS)
Torres-Herrera, Eduardo; Karp, Jonathan; Távora, Marco; Santos, Lea
2016-10-01
We study the static and dynamical properties of isolated many-body quantum systems and compare them with the results for full random matrices. In doing so, we link concepts from quantum information theory with those from quantum chaos. In particular, we relate the von Neumann entanglement entropy with the Shannon information entropy and discuss their relevance for the analysis of the degree of complexity of the eigenstates, the behavior of the system at different time scales and the conditions for thermalization. A main advantage of full random matrices is that they enable the derivation of analytical expressions that agree extremely well with the numerics and provide bounds for realistic many-body quantum systems.
Negative circular polarization as a universal property of quantum dots
Taylor, Matthew W.; Spencer, Peter; Murray, Ray
2015-03-23
This paper shows that negative circular polarization, a spin flip of polarized carriers resulting in emission of opposite helicity, can be observed in undoped, n-doped, and p-doped InAs/GaAs quantum dots. These results contradict the usual interpretation of the effect. We show using power dependent and time resolved spectroscopy that the generation of negative circular polarization correlates with excited state emission. Furthermore, a longer spin lifetime of negatively polarized excitons is observed where emission is largely ground state in character.
Spectral properties of single photons from quantum emitters
NASA Astrophysics Data System (ADS)
Müller, Philipp; Tentrup, Tristan; Bienert, Marc; Morigi, Giovanna; Eschner, Jürgen
2017-08-01
Quantum networks require flying qubits that transfer information between the nodes. This may be implemented by means of single atoms (the nodes) that emit and absorb single photons (the flying qubits) and requires full control of photon absorption and emission by the individual emitters. In this paper, we theoretically characterize the wave packet of a photon emitted by a single atom undergoing a spontaneous Raman transition in a three-level scheme. We investigate several excitation schemes that are experimentally relevant and discuss control parameters that allow one to tailor the spectrum of the emitted photon wave packet.
Some Properties of Generalized Connections in Quantum Gravity
NASA Astrophysics Data System (ADS)
Velhinho, J. M.
2002-12-01
Theories of connections play an important role in fundamental interactions, including Yang-Mills theories and gravity in the Ashtekar formulation. Typically in such cases, the classical configuration space {A}/ {G} of connections modulo gauge transformations is an infinite dimensional non-linear space of great complexity. Having in mind a rigorous quantization procedure, methods of functional calculus in an extension of {A}/ {G} have been developed. For a compact gauge group G, the compact space /line { {A}{ {/}} {G}} ( ⊃ {A}/ {G}) introduced by Ashtekar and Isham using C*-algebraic methods is a natural candidate to replace {A}/ {G} in the quantum context, 1 allowing the construction of diffeomorphism invariant measures. 2,3,4 Equally important is the space of generalized connections bar {A} introduced in a similar way by Baez. 5 bar {A} is particularly useful for the definition of vector fields in /line { {A}{ {/}} {G}} , fundamental in the construction of quantum observables. 6 These works crucially depend on the use of (generalized) Wilson variables associated to certain types of curves. We will consider the case of piecewise analytic curves, 1,2,5 althought most of the arguments apply equally to the piecewise smooth case. 7,8...
Overy, Catherine; Booth, George H; Blunt, N S; Shepherd, James J; Cleland, Deidre; Alavi, Ali
2014-12-28
Properties that are necessarily formulated within pure (symmetric) expectation values are difficult to calculate for projector quantum Monte Carlo approaches, but are critical in order to compute many of the important observable properties of electronic systems. Here, we investigate an approach for the sampling of unbiased reduced density matrices within the full configuration interaction quantum Monte Carlo dynamic, which requires only small computational overheads. This is achieved via an independent replica population of walkers in the dynamic, sampled alongside the original population. The resulting reduced density matrices are free from systematic error (beyond those present via constraints on the dynamic itself) and can be used to compute a variety of expectation values and properties, with rapid convergence to an exact limit. A quasi-variational energy estimate derived from these density matrices is proposed as an accurate alternative to the projected estimator for multiconfigurational wavefunctions, while its variational property could potentially lend itself to accurate extrapolation approaches in larger systems.
Overy, Catherine; Blunt, N. S.; Shepherd, James J.; Booth, George H.; Cleland, Deidre; Alavi, Ali
2014-12-28
Properties that are necessarily formulated within pure (symmetric) expectation values are difficult to calculate for projector quantum Monte Carlo approaches, but are critical in order to compute many of the important observable properties of electronic systems. Here, we investigate an approach for the sampling of unbiased reduced density matrices within the full configuration interaction quantum Monte Carlo dynamic, which requires only small computational overheads. This is achieved via an independent replica population of walkers in the dynamic, sampled alongside the original population. The resulting reduced density matrices are free from systematic error (beyond those present via constraints on the dynamic itself) and can be used to compute a variety of expectation values and properties, with rapid convergence to an exact limit. A quasi-variational energy estimate derived from these density matrices is proposed as an accurate alternative to the projected estimator for multiconfigurational wavefunctions, while its variational property could potentially lend itself to accurate extrapolation approaches in larger systems.
Sibov, Tatiana T; Pavon, Lorena F; Miyaki, Liza A; Mamani, Javier B; Nucci, Leopoldo P; Alvarim, Larissa T; Silveira, Paulo H; Marti, Luciana C; Gamarra, LF
2014-01-01
Here we describe multimodal iron oxide nanoparticles conjugated to Rhodamine-B (MION-Rh), their stability in culture medium, and subsequent validation of an in vitro protocol to label mesenchymal stem cells from umbilical cord blood (UC-MSC) with MION-Rh. These cells showed robust labeling in vitro without impairment of their functional properties, the viability of which were evaluated by proliferation kinetic and ultrastructural analyzes. Thus, labeled cells were infused into striatum of adult male rats of animal model that mimic late onset of Parkinson’s disease and, after 15 days, it was observed that cells migrated along the medial forebrain bundle to the substantia nigra as hypointense spots in T2 magnetic resonance imaging. These data were supported by short-term magnetic resonance imaging. Studies were performed in vivo, which showed that about 5 × 105 cells could be efficiently detected in the short term following infusion. Our results indicate that these labeled cells can be efficiently tracked in a neurodegenerative disease model. PMID:24531365
Optical Properties of Fluorescent Mixtures: Comparing Quantum Dots to Organic Dyes
ERIC Educational Resources Information Center
Hutchins, Benjamin M.; Morgan, Thomas T.; Ucak-Astarlioglu, Mine G.; Wlilliams, Mary Elizabeth
2007-01-01
The study describes and compares the size-dependent optical properties of organic dyes with those of semiconductor nanocrystals or quantum dots (QDs). The analysis shows that mixtures of QDs contain emission colors that are sum of the individual QD components.
Optical Properties of Fluorescent Mixtures: Comparing Quantum Dots to Organic Dyes
ERIC Educational Resources Information Center
Hutchins, Benjamin M.; Morgan, Thomas T.; Ucak-Astarlioglu, Mine G.; Wlilliams, Mary Elizabeth
2007-01-01
The study describes and compares the size-dependent optical properties of organic dyes with those of semiconductor nanocrystals or quantum dots (QDs). The analysis shows that mixtures of QDs contain emission colors that are sum of the individual QD components.
Matsuura, Motoharu; Ohta, Hiroaki; Seki, Ryota
2015-03-15
We experimentally show the dynamic frequency chirp properties induced by signal amplification in a quantum-dot semiconductor optical amplifier (QD-SOA) for the first time. We also compare the red and blue chirp peak values and temporal chirp changes while changing the gain and injected signal powers of the QD-SOA with those of a common SOA.
Properties of the volume operator in loop quantum gravity: I. Results
NASA Astrophysics Data System (ADS)
Brunnemann, Johannes; Rideout, David
2008-03-01
We analyze the spectral properties of the volume operator of Ashtekar and Lewandowski in loop quantum gravity, which is the quantum analog of the classical volume expression for regions in three-dimensional Riemannian space. Our analysis considers for the first time generic graph vertices of valence greater than four. Here we find that the geometry of the underlying vertex characterizes the spectral properties of the volume operator; in particular the presence of a 'volume gap' (a smallest non-zero eigenvalue in the spectrum) is found to depend on the vertex embedding. We compute the set of all non-spatially diffeomorphic non-coplanar vertex embeddings for vertices of valence 5 7, and argue that these sets can be used to label spatial diffeomorphism invariant states. We observe how gauge invariance connects vertex geometry and representation properties of the underlying gauge group in a natural way. Analytical results on the spectrum of 4-valent vertices are included, for which the presence of a volume gap is shown. This paper presents our main results; details are provided by a companion paper (Brunnemann and Rideout 2007 Properties of the volume operator in loop quantum gravity: II. Detailed presentation Class. Quantum Grav. 25 065002).
NASA Astrophysics Data System (ADS)
Panda, Debiprasad; Ahmad, Aijaz; Adhikary, Sourav; Ghadi, Hemant; Chakrabarti, Subhananda
2016-09-01
In this paper, we have proposed a technique to maintain the constant overgrowth percentage of quantum dots (QDs) in all layers of a multistacked heterostructure and hence the dot size uniformity is achieved. Two samples have been grown and compared in terms of their optical properties. Post growth annealing was carried out to observe the variation in their properties. The active layer of sample A is composed of 2.7 monolayer (ML) InAs QDs and the QD deposition amount is same for all the stacks. For the proposed sample B, 8ML In(Ga)As QDs were grown as seed layer, and the subsequent QD deposition is kept constant at 5ML. The overgrowth percentage in all QD layers were constant ( 40%) for this sample. Monomodal photoluminescence (PL) emission spectra was observed for the proposed sample B, whereas sample A has multimodal spectra. The samples were subjected to post growth annealing in argon atmosphere for 650, 700, 750, 800, 850, and 900°C. A negligible shift in the PL peak was observed for sample B up to 750°C, which confirms better thermal stability. The PL activation energy variation with respect to the annealed temperature was negligible for the proposed sample B ( 165 meV up to 750 °C). Hence the proposed growth mode of In(Ga)As multistacked QD heterostructure has better optical characteristics than the conventional structure in terms of PL spectra, FWHM, and also activation energy.
NASA Astrophysics Data System (ADS)
Dorofeeva, O. V.; Ryzhova, O. N.; Moiseeva, N. F.
2008-06-01
The enthalpies of formation, entropies, and heat capacities of 95 organophosphorus derivatives calculated by nonempirical quantum-chemical methods were used to develop the additive method for estimating the thermodynamic properties of these compounds. 86 group contribution values were obtained for estimating the thermodynamic properties of diverse organic derivatives of phosphorus in the oxidation states 3 and 5 (three-and four-coordinate phosphorus atoms).
NASA Astrophysics Data System (ADS)
Chen, Roland K.; Shih, A. J.
2013-08-01
This study develops a new class of gellan gum-based tissue-mimicking phantom material and a model to predict and control the elastic modulus, thermal conductivity, and electrical conductivity by adjusting the mass fractions of gellan gum, propylene glycol, and sodium chloride, respectively. One of the advantages of gellan gum is its gelling efficiency allowing highly regulable mechanical properties (elastic modulus, toughness, etc). An experiment was performed on 16 gellan gum-based tissue-mimicking phantoms and a regression model was fit to quantitatively predict three material properties (elastic modulus, thermal conductivity, and electrical conductivity) based on the phantom material's composition. Based on these material properties and the regression model developed, tissue-mimicking phantoms of porcine spinal cord and liver were formulated. These gellan gum tissue-mimicking phantoms have the mechanical, thermal, and electrical properties approximately equivalent to those of the spinal cord and the liver.
Optical properties of individual site-controlled Ge quantum dots
Grydlik, Martyna E-mail: martyna.grydlik@jku.at; Brehm, Moritz E-mail: martyna.grydlik@jku.at; Tayagaki, Takeshi; Langer, Gregor; Schäffler, Friedrich; Schmidt, Oliver G.
2015-06-22
We report photoluminescence (PL) experiments on individual SiGe quantum dots (QDs) that were epitaxially grown in a site-controlled fashion on pre-patterned Si(001) substrates. We demonstrate that the PL line-widths of single QDs decrease with excitation power to about 16 meV, a value that is much narrower than any of the previously reported PL signals in the SiGe/Si heterosystem. At low temperatures, the PL-intensity becomes limited by a 25 meV high potential-barrier between the QDs and the surrounding Ge wetting layer (WL). This barrier impedes QD filling from the WL which collects and traps most of the optically excited holes in this type-II heterosystem.
Quantum chemical studies of photochromic properties of benzoxazine compound
NASA Astrophysics Data System (ADS)
Toliautas, Stepas; Sulskus, Juozas; Valkunas, Leonas; Vengris, Mikas
2012-08-01
Molecular electronic structure of ground and excited states of a photochromic indolo[2,1-b][1,3]benzoxazine compound incorporating closed-ring system, which opens upon UV light excitation, was studied using various quantum chemical methods. Three local minima of the ground electronic state potential energy surface and related transition states were identified along the path of rotation of 4-nitrophenol group. Additionally, three local minima of the excited electronic states were located. The evaluated transition energy barriers between local ground-state minima nearest to the initial structure of the investigated molecule are less than 2 kBT, making open structures likely to revert to the initial structure by thermalization. Results obtained using ab initio GMC-QDPT method were explored and compared to the widely used TD-DFT and semi-empiric ZINDO methods.
[Spectral properties, protonation and fluorescence quantum yield of ciprofloxacin].
Liu, Cui-ge; Xu, Yi-zhuang; Wei, Yong-ju; Zhao, Jing; Qi, Jian; Wang, Xin-hong; Xu, Zhen-hua; Wu, Jin-guang
2005-09-01
Fluorescence spectra, ultraviolet absorption spectra, and protonation of Ciprofloxacin (CIP) at different pH values have been studied. Fluorescence quantum yield of CIP under neutral condition has been measured. In HCl medium with [H+] > 1 mol x L(-1), CIP molecules (simplified as HL) may accept three protons to exist as H4L3+ with very weak fluorescence, and its maximum fluorescence emission wavelength (lambdamax) is 456 nm. In acidic solution of pH 0 to pH 2, CIP mainly exists as H3L2+ form with lambdamax at 450 nm, and fluorescence intensity is relatively weak and increases with increasing of pH. In the range of pH 2 to pH 4, CIP mainly exists as H2L+ form with a strong fluorescence, and lambdamax is still at 450 nm. When pH>4, lambdamax gradually blue-shifts to 414 nm, fluorescence intensity slightly decreases as pH increases, and at the same time an evident change in ultraviolet absorption spectrum is observed, indicating that H2L+ has lost proton to exist as dipole ion form HL. When pH>8, the fluorescence intensity decreases until disappearance as pH increases, indicating that HL has lost proton to exist as non-fluorescence anion ion form L-. In the molecular form changing process, the maximum excitation wavelength of CIP is essentially constant at 275 nm, but the maximum emission wavelength changes obviously. In a buffer solution with pH 7.0, and using quinine bisulphate as a reference, the fluorescence quantum yield of CIP at maximum excitation wavelength 275 nm was measured to be 0.12.
Squeezing and quantum state engineering with Josephson travelling wave amplifiers
NASA Astrophysics Data System (ADS)
Grimsmo, Arne L.; Blais, Alexandre
2017-06-01
We develop a quantum theory describing the input-output properties of Josephson traveling wave parametric amplifiers. This allows us to show how such a device can be used as a source of nonclassical radiation, and how dispersion engineering can be used to tailor gain profiles and squeezing spectra with attractive properties, ranging from genuinely broadband spectra to "squeezing combs" consisting of a number of discrete entangled quasimodes. The device's output field can furthermore be used to generate a multi-mode squeezed bath-a powerful resource for dissipative quantum state preparation. In particular, we show how it can be used to generate continuous variable cluster states that are universal for measurement based quantum computing. The favorable scaling properties of the preparation scheme makes this a promising path towards continuous variable quantum computing in the microwave regime.
Lanthanide macrocyclic complexes, 'quantum dyes': optical properties and significance
NASA Astrophysics Data System (ADS)
Vallarino, Lidia M.; Harlow, Patrick M.; Leif, Robert C.
1993-05-01
Macrocylic complexes of the lanthanide (III) ions were functionalized to permit their attachment to antibodies, nucleic acid probes, and any other species capable of specific binding. The Eu(III) complex was found to possess a combination of properties (water solubility, inertness to metal release, ligand-sensitized luminescence, reactive peripheral functionalities) that make it suitable as a luminescent marker for bio-substrates. Its coupling to avidin was achieved, and the properties of the resulting conjugate were investigated.
Temporal Multimode Storage of Entangled Photon Pairs
NASA Astrophysics Data System (ADS)
Tiranov, Alexey; Strassmann, Peter C.; Lavoie, Jonathan; Brunner, Nicolas; Huber, Marcus; Verma, Varun B.; Nam, Sae Woo; Mirin, Richard P.; Lita, Adriana E.; Marsili, Francesco; Afzelius, Mikael; Bussières, Félix; Gisin, Nicolas
2016-12-01
Multiplexed quantum memories capable of storing and processing entangled photons are essential for the development of quantum networks. In this context, we demonstrate and certify the simultaneous storage and retrieval of two entangled photons inside a solid-state quantum memory and measure a temporal multimode capacity of ten modes. This is achieved by producing two polarization-entangled pairs from parametric down-conversion and mapping one photon of each pair onto a rare-earth-ion-doped (REID) crystal using the atomic frequency comb (AFC) protocol. We develop a concept of indirect entanglement witnesses, which can be used as Schmidt number witnesses, and we use it to experimentally certify the presence of more than one entangled pair retrieved from the quantum memory. Our work puts forward REID-AFC as a platform compatible with temporal multiplexing of several entangled photon pairs along with a new entanglement certification method, useful for the characterization of multiplexed quantum memories.
Electronic and dielectric properties of vacancy clusters as quantum dot in silicane
NASA Astrophysics Data System (ADS)
Mohan, Brij; Sharma, Munish; Kumar, Ashok; Ahluwalia, P. K.
2015-06-01
First principal study of electronic and dielectric properties of a silicane nanostructure containing cluster of vacancies as quantum dot (QD) has been investigated within density functional theory (DFT). Electronic band structure and corresponding density of states show the decrease in band gap with increasing size of quantum dot. A band gap of 0.38 eV has been achieved for silicane containing 3QD. Electron energy loss spectra (EEL) function shows additional plasmonic features for QD containing silicane in visible region, which may have potential applications in optoelectronic devices.
Electronic and dielectric properties of vacancy clusters as quantum dot in silicane
Mohan, Brij Sharma, Munish; Ahluwalia, P. K.; Kumar, Ashok
2015-06-24
First principal study of electronic and dielectric properties of a silicane nanostructure containing cluster of vacancies as quantum dot (QD) has been investigated within density functional theory (DFT). Electronic band structure and corresponding density of states show the decrease in band gap with increasing size of quantum dot. A band gap of 0.38 eV has been achieved for silicane containing 3QD. Electron energy loss spectra (EEL) function shows additional plasmonic features for QD containing silicane in visible region, which may have potential applications in optoelectronic devices.
Synthesis and quantum transport properties of Bi₂Se₃ topological insulator nanostructures.
Yan, Yuan; Liao, Zhi-Min; Zhou, Yang-Bo; Wu, Han-Chun; Bie, Ya-Qing; Chen, Jing-Jing; Meng, Jie; Wu, Xiao-Song; Yu, Da-Peng
2013-01-01
Bi₂Se₃ nanocrystals with various morphologies, including nanotower, nanoplate, nanoflake, nanobeam and nanowire, have been synthesized. Well-distinguished Shubnikov-de Haas (SdH) oscillations were observed in Bi₂Se₃ nanoplates and nanobeams. Careful analysis of the SdH oscillations suggests the existence of Berry's phase π, which confirms the quantum transport of the surface Dirac fermions in both Bi₂Se₃ nanoplates and nanobeams without intended doping. The observation of the singular quantum transport of the topological surface states implies that the high-quality Bi₂Se₃ nanostructures have superiorities for investigating the novel physical properties and developing the potential applications.
Dielectric and Thermal Properties of Transformer Oil Modified by Semiconductive CdS Quantum Dots
NASA Astrophysics Data System (ADS)
Abd-Elhady, Amr M.; Ibrahim, Mohamed E.; Taha, T. A.; Izzularab, Mohamed A.
2016-10-01
In this paper, modified transformer oil semiconductor quantum dots (QDs) are presented. Cadmium sulfide (CdS) quantum dots of radius 4.5 nm with a hexagonal crystal structure are added to transformer oil to improve its dielectric and thermal properties. CdS QDs modified oil is prepared considering different filler loading levels. Alternating current breakdown voltages of the transformer oil samples before and after the modification are measured based on American Society for Testing and Materials D1816 standard. The relative permittivity and dissipation factor are measured for all samples. Also, thermal properties of the oil samples are experimentally evaluated according to the temperature change measurement considering heating and cooling processes. The results show significant improvements in dielectric and thermal properties of the modified transformer oil, as well as an increase in the breakdown strength by about 81% in comparison to the base transformer oil.
Unique properties of graphene quantum dots and their applications in photonic/electronic devices
NASA Astrophysics Data System (ADS)
Choi, Suk-Ho
2017-03-01
In recent years, graphene quantum dots (GQDs) have been recognized as an attractive building block for electronic, photonic, and bio-molecular device applications. This paper reports the current status of studies on the novel properties of GQDs and their hybrids with conventional and low-dimensional materials for device applications. In this review, more emphasis is placed on the structural, electronic, and optical properties of GQDs, and device structures based on the combination of GQDs with various semiconducting/insulating materials such as graphene, silicon dioxide, Si quantum dots, silica nanoparticles, organic materials, and so on. Because of GQDs’ unique properties, their hybrid structures are employed in high-efficiency devices, including photodetectors, solar cells, light-emitting diodes, flash memory, and sensors.
CheckDen, a program to compute quantum molecular properties on spatial grids.
Pacios, Luis F; Fernandez, Alberto
2009-09-01
CheckDen, a program to compute quantum molecular properties on a variety of spatial grids is presented. The program reads as unique input wavefunction files written by standard quantum packages and calculates the electron density rho(r), promolecule and density difference function, gradient of rho(r), Laplacian of rho(r), information entropy, electrostatic potential, kinetic energy densities G(r) and K(r), electron localization function (ELF), and localized orbital locator (LOL) function. These properties can be calculated on a wide range of one-, two-, and three-dimensional grids that can be processed by widely used graphics programs to render high-resolution images. CheckDen offers also other options as extracting separate atom contributions to the property computed, converting grid output data into CUBE and OpenDX volumetric data formats, and perform arithmetic combinations with grid files in all the recognized formats.
Photoinduced quantum magnetotransport properties of silicene and germanene
NASA Astrophysics Data System (ADS)
Tahir, Muhammad; Schwingenschlögl, Udo
2015-11-01
Silicene and germanene have remarkable electronic properties due to strong spin orbit coupling and buckled single layer structures. We derive and analyze the band structures of these materials in the presence of perpendicular electric and magnetic fields taking into account the effects of off-resonant light. Using linear response theory, analytical expressions are derived and evaluated for the Hall and longitudinal conductivities. Contrary to graphene, we show that the light leads to a single Dirac cone state and thus to unusual plateaus and magnetotransport properties, which are desirable for electronic applications.
Emission and Propagation Properties of Midinfrared Quantum Cascade Lasers
Krishnaswami, Kannan; Bernacki, Bruce E.; Cannon, Bret D.; Ho, Nicolas; Anheier, Norman C.
2008-02-15
We report divergence, astigmatism and M^{2} measurements of quantum cascade lasers (QCL) with an emission wavelength of 8.77 mum. Emission profiles from the QCL facet showed divergence angles of 62° and 32° FWHM ± 2° for the fast and slow axes, respectively. The observation of far field structure superimposed on the fast axes profiles was attributed to the position of the QCL die with respect to the edge of the laser submount, emphasizing the need for careful placement. Two diffraction-limited Germanium aspheric microlenses were designed and fabricated to efficiently collect, collimate, and focus QCL emission. A confocal system comprised of these lenses was used to measure the beam propagation figure of merit (M2) yielding 1.8 and 1.2 for the fast and slow axes, respectively. Astigmatism at the exit facet was calculated to be about 3.4 mum, or less than half a wave. To the best of our knowledge, this is the first experimental measurement of astigmatism and M^{2} reported for mid-IR QCLs.
Optical Properties of Active Regions in Terahertz Quantum Cascade Lasers
NASA Astrophysics Data System (ADS)
Dyksik, M.; Motyka, M.; Rudno-Rudziński, W.; Sęk, G.; Misiewicz, J.; Pucicki, D.; Kosiel, K.; Sankowska, I.; Kubacka-Traczyk, J.; Bugajski, M.
2016-07-01
In this work, AlGaAs/GaAs superlattice, with layers' sequence and compositions imitating the active and injector regions of a quantum cascade laser designed for emission in the terahertz spectral range, was investigated. Three independent absorption-like optical spectroscopy techniques were employed in order to study the band structure of the minibands formed within the conduction band. Photoreflectance measurements provided information about interband transitions in the investigated system. Common transmission spectra revealed, in the target range of intraband transitions, mainly a number of lines associated with the phonon-related processes, including two-phonon absorption. In contrast, differential transmittance realized by means of Fourier-transform spectroscopy was utilized to probe the confined states of the conduction band. The obtained energy separation between the second and third confined electron levels, expected to be predominantly contributing to the lasing, was found to be ~9 meV. The optical spectroscopy measurements were supported by numerical calculations performed in the effective mass approximation and XRD measurements for layers' width verification. The calculated energy spacings are in a good agreement with the experimental values.
Tuning The Properties of Quantum Dots Via The Effective Mass
NASA Astrophysics Data System (ADS)
Singh, R. A.; Sinha, Abhinav; Pathak, Praveen
2011-07-01
In the present work we revisit effective mass theory (EMT) for a semiconductor quantum dot (QD) and employ the BenDaniel-Duke (BDD) boundary condition. In effective mass theory mass mi inside the dot of radius R is different from the mass mo outside the dot. That gives us a crucial factor in determining the electronic spectrum namely β = mi/m0. We show both by numerical calculations and asymptotic analysis that the ground state energy and the surface charge density, ρ(r) can be large. We also show that the dependence of the ground state energy on the radius of the well is infraquadratic. We demonstrate that the significance of BDD condition is pronounced at large R. We also study the dependence of excited state on the radius as well as the difference between energy states. Both exhibit an infra quadratic behavior with radius. The energy difference is important in study of absorption and emission spectra. We find that the BDD condition substantially alters the energy difference. Hence the interpretation of experimental result may need to be reexamined.
Tuning The Properties of Quantum Dots Via The Effective Mass
Singh, R. A.; Sinha, Abhinav; Pathak, Praveen
2011-07-15
In the present work we revisit effective mass theory (EMT) for a semiconductor quantum dot (QD) and employ the BenDaniel-Duke (BDD) boundary condition. In effective mass theory mass m{sub i} inside the dot of radius R is different from the mass m{sub o} outside the dot. That gives us a crucial factor in determining the electronic spectrum namely {beta} = m{sub i}/m{sub 0}. We show both by numerical calculations and asymptotic analysis that the ground state energy and the surface charge density, {rho}(r) can be large. We also show that the dependence of the ground state energy on the radius of the well is infraquadratic. We demonstrate that the significance of BDD condition is pronounced at large R. We also study the dependence of excited state on the radius as well as the difference between energy states. Both exhibit an infra quadratic behavior with radius. The energy difference is important in study of absorption and emission spectra. We find that the BDD condition substantially alters the energy difference. Hence the interpretation of experimental result may need to be reexamined.
New quantum properties of phonons and their detection
NASA Technical Reports Server (NTRS)
Artoni, Maurizo; Birman, Joseph L.
1994-01-01
We present a theoretical investigation on new and interesting properties of the phonon polarization field in solids. In particular, non-classical aspects of the phonon population and an experimental scheme that would enable one to detect them will be discussed.
Effect of surface ligands on the optical properties of aqueous soluble CdTe quantum dots
2012-01-01
We investigate systematically the influence of the nature of thiol-type capping ligands on the optical and structural properties of highly luminescent CdTe quantum dots synthesized in aqueous media, comparing mercaptopropionic acid (MPA), thioglycolic acid (TGA), 1-thioglycerol (TGH), and glutathione (GSH). The growth rate, size distribution, and quantum yield strongly depend on the type of surface ligand used. While TGH binds too strongly to the nanocrystal surface inhibiting growth, the use of GSH results in the fastest growth kinetics. TGA and MPA show intermediate growth kinetics, but MPA yields a much lower initial size distribution than TGA. The obtained fluorescence quantum yields range from 38% to 73%. XPS studies unambiguously put into evidence the formation of a CdS shell on the CdTe core due to the thermal decomposition of the capping ligands. This shell is thicker when GSH is used as ligand, as compared with TGA ligands. PMID:23017183
Fluorescent magnetic hybrid nanoprobe for multimodal bioimaging
Bright, Vanessa
2011-01-01
A fluorescent magnetic hybrid imaging nanoprobe (HINP) was fabricated by conjugation of superparamagnetic Fe3O4 nanoparticles and visible light-emitting (~600 nm) fluorescent CdTe/CdS quantum dots (QDs). The assembly strategy used the covalent linking of the oxidized dextran shell of magnetic particles to the glutathione ligands of QDs. Synthesized HINP formed stable water-soluble colloidal dispersions. The structure and properties of the particles were characterized by transmission electron and atomic force microscopy, energy dispersive X-ray analysis and inductively coupled plasma optical emission spectroscopy, dynamic light scattering analysis, optical absorption and photoluminescence spectroscopy, and fluorescent imaging. The luminescence imaging region of the nanoprobe was extended to the near-infrared (NIR) (~800 nm) by conjugation of superparamagnetic nanoparticles with synthesized CdHgTe/CdS QDs. Cadmium, mercury based QDs in HINP can be easily replaced by novel water soluble glutathione stabilized AgInS2/ZnS QDs to present a new class of cadmium-free multimodal imaging agents. Observed NIR photoluminescence of fluorescent magnetic nanocomposites supports their use for bioimaging. The developed HINP provides dual-imaging channels for simultaneous optical and magnetic resonance imaging. PMID:21597146
Homayoon, Zahra
2014-09-28
A new, full (nine)-dimensional potential energy surface and dipole moment surface to describe the NO{sup +}(H{sub 2}O) cluster is reported. The PES is based on fitting of roughly 32 000 CCSD(T)-F12/aug-cc-pVTZ electronic energies. The surface is a linear least-squares fit using a permutationally invariant basis with Morse-type variables. The PES is used in a Diffusion Monte Carlo study of the zero-point energy and wavefunction of the NO{sup +}(H{sub 2}O) and NO{sup +}(D{sub 2}O) complexes. Using the calculated ZPE the dissociation energies of the clusters are reported. Vibrational configuration interaction calculations of NO{sup +}(H{sub 2}O) and NO{sup +}(D{sub 2}O) using the MULTIMODE program are performed. The fundamental, a number of overtone, and combination states of the clusters are reported. The IR spectrum of the NO{sup +}(H{sub 2}O) cluster is calculated using 4, 5, 7, and 8 modes VSCF/CI calculations. The anharmonic, coupled vibrational calculations, and IR spectrum show very good agreement with experiment. Mode coupling of the water “antisymmetric” stretching mode with the low-frequency intermolecular modes results in intensity borrowing.
NASA Technical Reports Server (NTRS)
Danilowicz, R.
1973-01-01
Ground-state properties of quantum crystals have received considerable attention from both theorists and experimentalists. The theoretical results have varied widely with the Monte Carlo calculations being the most successful. The molecular field approximation yields ground-state properties which agree closely with the Monte Carlo results. This approach evaluates the dynamical behavior of each pair of molecules in the molecular field of the other N-2 molecules. In addition to predicting ground-state properties that agree well with experiment, this approach yields data on the relative importance of interactions of different nearest neighbor pairs.
NASA Astrophysics Data System (ADS)
Singh, Gautam; Fisch, Michael; Kumar, Satyendra
2016-05-01
Investigations of the mixtures of semiconducting quantum scale particles in anisotropic liquid crystal (LC) medium have become a vibrant area of research primarily due to their very interesting phenomenology. The results of these investigations fall into four groups: (i) Photoluminescent emissive properties of the quantum particles ordinarily depend on the size, shape, and chemical nature of the particles. These undergo important changes in their spectrum, polarization, and isotropy of emission when dissolved in an anisotropic LC phase. Moreover, their response to external stimuli such as mechanical, optical, or electric fields is altered in important ways; (ii) physical properties of LCs such as viscosity, dielectric relaxation, etc are modified by the addition of quantum particles. Their presence in ferroelectric smectic LC is known to give rise to an antiferro- to ferri-electric phase transition and suppresses the paraelectric phase; (iii) switching characteristics of LC devices are altered in important ways by the addition of quantum particles. Their threshold voltage is usually lowered, contrast ratio, and switching speed of nematic, ferroelectric, and cholesteric devices may increase or decrease depending on the concentration, applied field, and particle anisotropy; and (iv) controlled aggregation of quantum particles at the interface between isotropic and LC domains, near added polystyrene beads, and in the vicinity of point defects gives rise to interesting photonic structures, enables studies of photon antibunching and single photon sources. Clearly, there is a need to understand the basic and applied aspects of these systems and find routes to their technological applications including sensors, electrooptical devices, and solar energy harvesting. This review provides an overview of recent work involving liquid crystals and a variety of quantum particles.
ERIC Educational Resources Information Center
Casey, Heather
2012-01-01
Multimodal learning clubs link principles of motivation and engagement with 21st century technological tools and texts to support content area learning. The author describes how a sixth grade health teacher and his class incorporated multimodal learning clubs into a unit of study on human body systems. The students worked collaboratively online…
ERIC Educational Resources Information Center
Casey, Heather
2012-01-01
Multimodal learning clubs link principles of motivation and engagement with 21st century technological tools and texts to support content area learning. The author describes how a sixth grade health teacher and his class incorporated multimodal learning clubs into a unit of study on human body systems. The students worked collaboratively online…
Tselikov, G. I. Timoshenko, V. Yu.; Plenge, J.; Ruehl, E.; Shatalova, A. M.; Shandryuk, G. A.; Merekalov, A. S.; Tal'roze, R. V.
2013-05-15
The photoluminescence properties of cadmium-selenide (CdSe) quantum dots with an average size of {approx}3 nm, embedded in a liquid-crystal polymer matrix are studied. It was found that an increase in the quantum-dot concentration results in modification of the intrinsic (exciton) photoluminescence spectrum in the range 500-600 nm and a nonmonotonic change in its intensity. Time-resolved measurements show the biexponential decay of the photoluminescence intensity with various ratios of fast and slow components depending on the quantum-dot concentration. In this case, the characteristic lifetimes of exciton photoluminescence are 5-10 and 35-50 ns for the fast and slow components, respectively, which is much shorter than the times for colloidal CdSe quantum dots of the same size. The observed features of the photoluminescence spectra and kinetics are explained by the effects of light reabsorption, energy transfer from quantum dots to the liquid-crystal polymer matrix, and the effect of the electronic states at the CdSe/(liquid crystal) interface.
NASA Astrophysics Data System (ADS)
Goswami, Mrinmoy; Ghosh, Ranajit; Maruyama, Takahiro; Meikap, Ajit Kumar
2016-02-01
A new kind of polyaniline/carbon nanotube/CdS quantum dot composites have been developed via in-situ polymerization of aniline monomer in the presence of dispersed CdS quantum dots (size: 2.7-4.8 nm) and multi-walled carbon nanotubes (CNT), which exhibits enhanced optical and electrical properties. The existences of 1st order, 2nd order, and 3rd order longitudinal optical phonon modes, strongly indicate the high quality of synthesized CdS quantum dots. The occurrence of red shift of free exciton energy in photoluminescence is due to size dependent quantum confinement effect of CdS. The conductivity of the composites (for example PANI/CNT/CdS (2 wt.% CdS)) is increased by about 7 of magnitude compared to that of pure PANI indicating a charge transfer between CNT and polymer via CdS quantum dots. This advanced material has a great potential for high-performance of electro-optical applications.
Do the cations in clay and the polymer matrix affect quantum dot fluorescent properties?
Wei, Wenjun; Liu, Cui; Liu, Jiyan; Liu, Xueqing; Zou, Linling; Cai, Shaojun; Shi, Hong; Cao, Yuan-Cheng
2016-06-01
This paper studied the effects of cations and polymer matrix on the fluorescent properties of quantum dots (QDs). The results indicated that temperature has a greater impact on fluorescence intensity than clay cations (mainly K(+) and Na(+) ). Combined fluorescence lifetime and steady-state spectrometer tests showed that QD lifetimes all decreased when the cation concentration was increased, but the quantum yields were steady at various cation concentrations of 0, 0.05, 0.5 and 1 M. Poly(ethylene oxide) (PEO), poly(vinyl alcohol) (PVA) and diepoxy resin were used to study the effects of polymers on QD lifetime and quantum yield. The results showed that the lifetime for QDs 550 nm in PEO and PVA was 17.33 and 17.12 ns, respectively; for the epoxy resin, the lifetime was 0.74 ns, a sharp decrease from 24.47 ns. The quantum yield for QDs 550 nm changed from 34.22% to 7.45% and 7.81% in PEO and PVA, respectively; for the epoxy resin the quantum yield was 2.25%. QDs 580 nm and 620 nm showed the same results as QDs 550 nm. This study provides useful information on the design, synthesis and application of QDs-polymer luminescent materials. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Manifestation of magnetic quantum fluctuations in the dielectric properties of a multiferroic.
Kim, Jae Wook; Khim, Seunghyun; Chun, Sae Hwan; Jo, Y; Balicas, L; Yi, H T; Cheong, S-W; Harrison, N; Batista, C D; Han, Jung Hoon; Kim, Kee Hoon
2014-07-29
Insulating magnets can display novel signatures of quantum fluctuations as similar to the case of metallic magnets. However, their weak spin-lattice coupling has made such observations challenging. Here we find that antiferromagnetic (AF) quantum fluctuations manifest in the dielectric properties of multiferroic Ba2CoGe2O7, where a ferroelectric polarization develops concomitant to an AF ordering. Upon application of a magnetic field (H), dielectric constant shows a characteristic power-law dependence near absolute zero temperature and close to the critical field Hc=37.1 T due to enhanced AF quantum fluctuations. When H>Hc, the dielectric constant shows the temperature-dependent anomalies that reflect a crossover from a field-tuned quantum critical to a gapped spin-polarized state. We uncover theoretically that a linear relation between AF susceptibility and dielectric constant stems from the generic magnetoelectric coupling and directly explains the experimental findings, opening a new pathway for studying quantum criticality in condensed matter.
Properties of the volume operator in loop quantum gravity: II. Detailed presentation
NASA Astrophysics Data System (ADS)
Brunnemann, Johannes; Rideout, David
2008-03-01
The properties of the volume operator in loop quantum gravity, as constructed by Ashtekar and Lewandowski, are analyzed for the first time at generic vertices of valence greater than four. We find that the occurrence of a smallest non-zero eigenvalue is dependent upon the geometry of the underlying graph and is not a property of the volume operator itself. The present analysis benefits from the general simplified formula for matrix elements of the volume operator derived in Brunnemann and Thiemann (2006 Class. Quantum Grav. 23 1289), making it feasible to implement it on a computer as a matrix which is then diagonalized numerically. The resulting eigenvalues serve as a database to investigate the spectral properties of the volume operator. Analytical results on the spectrum at 4-valent vertices are included. This is a companion paper to Brunnemann and Rideout (2007 Properties of the volume operator in loop quantum gravity: I. Results Preprint 0706.0469), providing details of the analysis presented there.
NASA Astrophysics Data System (ADS)
Dietz, Barbara; Yunko, Vitalii; Białous, Małgorzata; Bauch, Szymon; Ławniczak, Michał; Sirko, Leszek
2017-05-01
We present experimental and numerical results for the long-range fluctuation properties in the spectra of quantum graphs with chaotic classical dynamics and preserved time-reversal invariance. Such systems are generally believed to provide an ideal basis for the experimental study of problems originating from the field of quantum chaos and random matrix theory. Our objective is to demonstrate that this is true only for short-range fluctuation properties in the spectra, whereas the observation of deviations in the long-range fluctuations is typical for quantum graphs. This may be attributed to the unavoidable occurrence of short periodic orbits, which explore only the individual bonds forming a graph and thus do not sense the chaoticity of its dynamics. In order to corroborate our supposition, we performed numerous experimental and corresponding numerical studies of long-range fluctuations in terms of the number variance and the power spectrum. Furthermore, we evaluated length spectra and compared them to semiclassical ones obtained from the exact trace formula for quantum graphs.
Growth behavior and properties of nano Pb quantum islands on Si(111) surfaces at low temperatures
NASA Astrophysics Data System (ADS)
Tsong, Tien T.
2004-03-01
Quantum effects can affect the dynamic properties of surface atoms and the growth behavior of nanometer size islands. Using scanning tunneling microscopy (STM), we have studied: 1) Dynamics of atoms and silicon magic clusters on clean Si(111)-7x7 surfaces. 2) How the electronic property affects the growth behavior of Pb ultra-thin quantum-islands on the Si(111) surface. We find the low temperature growth of Pb quantum-islands on the Si(111)-7x7 surface is affected by the electronic standing wave states formed in the normal direction of these islands. The scaling behavior in the growth of these multilayer flat-top quantum islands can be described by a scaling theory of growth of single layer 2D islands with a minor modification. 3) Observed the vertical Friedel oscillation of the electronic Morie patterns formed at the Pb-Si interface and found the decay of the amplitude to follow the inverse square of the distance to the interface. 4) Observed the dynamics of a structure phase transition of monolayer quasi two dimensional Pb islands and its size effect. These and other recent interesting observations of ours will be presented. Coworkers: C-S Chang, I-S Hwang, W-B Su, M-S Ho, W-B Jian, and S-H Chang etc. Work supported by NSC of Taiwan and Academia Sinica (Taiwan).
NASA Astrophysics Data System (ADS)
Carmeli, Benny; Metiu, Horia
1987-02-01
We calculate the equilibrium properties of a system consisting of two strongly interacting quantum and classical subsystems, by using a fast Fourier transform method to evaluate the quantum contribution and a Monte Carlo method to evaluate the contribution of the classical part. The method is applied to a model relevant to tunneling problems.
Sobotta, B; Söhn, M; Shaw, W; Alber, M
2011-05-21
Frequently, radiotherapy treatments are comprised of several dose distributions computed or optimized in different patient geometries. Therefore, the need arises to compute the comprehensive biological effect or physical figure of merit of the combined dose of a number of distinct geometry instances. For that purpose the dose is typically accumulated in a reference geometry through deformation fields obtained from deformable image registration. However, it is difficult to establish precise voxel-by-voxel relationships between different anatomical images in many cases. In this work, the mathematical properties of commonly used score functions are exploited to derive an upper boundary for the maximum effect for normal tissue and a lower boundary for the minimum effect for the target of accumulated doses on multiple geometry instances.
Synthesis and Optical Properties of Si and Ge Nanocrystals in the Quantum Confinement Regime*
NASA Astrophysics Data System (ADS)
Wilcoxon, J. P.; Newcomer, P. P.; Samara, G. A.
1997-03-01
Size-selected, crystalline nanoclusters of Si and Ge down to about 2 nm in size were grown in solution inside inverse micellar cages, purified using high pressure liquid chromatography and their optical properties studied. These properties, which reflect the effects of quantum confinement, differ considerably from those obtained on Si and Ge clusters prepared by other methods. Tailorable, visible (red to blue) room temperature photoluminescence due to both near band edge recombination and surface recombination is observed. The optical absorption spectra of the smaller clusters exhibit structure which provides insight into the electronic structure of these clusters. The present results will be compared with results on Si and Ge clusters in glass matrices and on porous Si and will be discussed in terms of recent models of quantum confinement for these materials *This work was supported by the United States Department of Energy under Contract DE-AC04-94Al85000.
Quantum transport properties of the three-dimensional Dirac semimetal Cd3As2 single crystals
NASA Astrophysics Data System (ADS)
He, Lan-Po; Li, Shi-Yan
2016-11-01
The discovery of the three-dimensional Dirac semimetals have expanded the family of topological materials, and attracted massive attentions in recent few years. In this short review, we briefly overview the quantum transport properties of a well-studied three-dimensional Dirac semimetal, Cd3As2. These unusual transport phenomena include the unexpected ultra-high charge mobility, large linear magnetoresistivity, remarkable Shubnikov-de Hass oscillations, and the evolution of the nontrivial Berry’s phase. These quantum transport properties not only reflect the novel electronic structure of Dirac semimetals, but also give the possibilities for their future device applications. Project supported by the National Basic Research Program of China (Grant Nos. 2012CB821402 and 2015CB921401), the National Natural Science Foundation of China, the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, and STCSM of China (Grant No. 15XD1500200).
Lasing properties of non-resonant single quantum dot-cavity system under incoherent excitation.
Guan, Huan; Yao, Peijun; Yu, Wenhai; Wang, Pei; Ming, Hai
2012-12-17
Single quantum dot laser has earned extensive interest due to its peculiar properties, however, most of works are focused on the resonant case. In this paper, the lasing oscillation based on off-resonant quantum dot (QD)-cavity system is investigated detailedly through two-electrons QD model. By gradually increasing the pump rate, the typical lasing signatures are shown with and without detuning, include the spectral transition from multiple peaks to single peak, and antibunching to Poissonian distribution. It is also demonstrated how detuning factor strongly influence photon statistics and emission properties, specially, the side peak of spectra induced by the exchange energy (named "sub-peak") will go across the main peak from left to right when the detuning is gradually increased, and, furthermore, we find the "sub-peak cross of spectra" will facilitate the lasing oscillation because of the existence of exchange energy.
Multimodal nanoparticulate bioimaging contrast agents.
Sharma, Parvesh; Singh, Amit; Brown, Scott C; Bengtsson, Niclas; Walter, Glenn A; Grobmyer, Stephen R; Iwakuma, Nobutaka; Santra, Swadeshmukul; Scott, Edward W; Moudgil, Brij M
2010-01-01
A wide variety of bioimaging techniques (e.g., ultrasound, computed X-ray tomography, magnetic resonance imaging (MRI), and positron emission tomography) are commonly employed for clinical diagnostics and scientific research. While all of these methods use a characteristic "energy-matter" interaction to provide specific details about biological processes, each modality differs from another in terms of spatial and temporal resolution, anatomical and molecular details, imaging depth, as well as the desirable material properties of contrast agents needed for augmented imaging. On many occasions, it is advantageous to apply multiple complimentary imaging modalities for faster and more accurate prognosis. Since most imaging modalities employ exogenous contrast agents to improve the signal-to-noise ratio, the development and use of multimodal contrast agents is considered to be highly advantageous for obtaining improved imagery from sought-after imaging modalities. Multimodal contrast agents offer improvements in patient care, and at the same time can reduce costs and enhance safety by limiting the number of contrast agent administrations required for imaging purposes. Herein, we describe the synthesis and characterization of nanoparticulate-based multimodal contrast agent for noninvasive bioimaging using MRI, optical, and photoacoustic tomography (PAT)-imaging modalities. The synthesis of these agents is described using microemulsions, which enable facile integration of the desired diversity of contrast agents and material components into a single entity.
A computational study of the quantum transport properties of a Cu-CNT composite.
Ghorbani-Asl, Mahdi; Bristowe, Paul D; Koziol, Krzysztof
2015-07-28
The quantum transport properties of a Cu-CNT composite are studied using a non-equilibrium Green's function approach combined with the self-consistent-charge density-functional tight-binding method. The results show that the electrical conductance of the composite depends strongly on CNT density and alignment but more weakly on chirality. Alignment with the applied bias is preferred and the conductance of the composite increases as its mass density increases.
Wu, Jiang; Wang, Zhiming M; Dorogan, Vitaliy G; Li, Shibin; Lee, Jihoon; Mazur, Yuriy I; Kim, Eun Soo; Salamo, Gregory J
2013-01-02
Strain-free GaAs/Al0.33Ga0.67As quantum rings are fabricated by droplet epitaxy. Both photoresponse and photoluminescence spectra confirm optical transitions in quantum rings, suggesting that droplet epitaxial nanomaterials are applicable to intermediate band solar cells. The effects of post-growth annealing on the quantum ring solar cells are investigated, and the optical properties of the solar cells with and without thermal treatment are characterized by photoluminescence technique. Rapid thermal annealing treatment has resulted in the significant improvement of material quality, which can be served as a standard process for quantum structure solar cells grown by droplet epitaxy.
Measuring Gaussian Quantum Information and Correlations Using the Rényi Entropy of Order 2
NASA Astrophysics Data System (ADS)
Adesso, Gerardo; Girolami, Davide; Serafini, Alessio
2012-11-01
We demonstrate that the Rényi-2 entropy provides a natural measure of information for any multimode Gaussian state of quantum harmonic systems, operationally linked to the phase-space Shannon sampling entropy of the Wigner distribution of the state. We prove that, in the Gaussian scenario, such an entropy satisfies the strong subadditivity inequality, a key requirement for quantum information theory. This allows us to define and analyze measures of Gaussian entanglement and more general quantum correlations based on such an entropy, which are shown to satisfy relevant properties such as monogamy.
NASA Astrophysics Data System (ADS)
Cheung, Carling L.; Looi, Thomas; Drake, James; Kim, Peter C. W.
2012-02-01
The development of image guided robotic and mechatronic platforms for medical applications requires a phantom model for initial testing. Finding an appropriate phantom becomes challenging when the targeted patient population is pediatrics, particularly infants, neonates or fetuses. Our group is currently developing a pediatricsized surgical robot that operates under fused MRI and laparoscopic video guidance. To support this work, we describe a method for designing and manufacturing silicone rubber organ phantoms for the purpose of testing the robotics and the image fusion system. A surface model of the organ is obtained and converted into a mold that is then rapid-prototyped using a 3D printer. The mold is filled with a solution containing a particular ratio of silicone rubber to slacker additive to achieve a specific set of tactile and imaging characteristics in the phantom. The expected MRI relaxation times of different ratios of silicone rubber to slacker additive are experimentally quantified so that the imaging properties of the phantom can be matched to those of the organ that it represents. Samples of silicone rubber and slacker additive mixed in ratios ranging from 1:0 to 1:1.5 were prepared and scanned using inversion recovery and spin echo sequences with varying TI and TE, respectively, in order to fit curves to calculate the expected T1 and T2 relaxation times of each ratio. A set of infantsized abdominal organs was prepared, which were successfully sutured by the robot and imaged using different modalities.
NASA Astrophysics Data System (ADS)
Naumova, N. L.; Vasilyeva, I. A.
2015-09-01
The spectral-luminescent properties of some dyes of substituted arylpolyenes and cross-conjugated ketones class in Shpolsky matrices, promising for using in solving quantum optics and nanophotonics, were studied.
Seo, Joobeom; Sakamoto, Hirotoshi; Matsuda, Ryotaro; Kitagawa, Susumu
2010-01-01
Remarkable advances in the recent development of porous coordination polymers (PCPs) or metal organic frameworks (MOFs) have paved the way toward functional chemistry having potential application such as molecular storage, separation, and catalysis. Moreover flexible PCPs, which are structurally transformable depending upon guest molecules adsorption/desorption, have received much attention because they provide unique properties, dissimilar to those of zeolites. PCPs can be categorized into structurally monomodal and multimodal classes. Monomodal PCPs possess single uniform pores in the framework. In contrast, multimodal PCPs have more than two types of pores in the framework. Interpenetrated PCPs can possess more than two types of pores with different sizes and shapes in the same framework depending on relative position of individual motifs, resulting in multimodal PCPs. Moreover, interpenetrated PCPs have several advantages, such as high thermal stability, flexibility, and ultramicropore for effective adsorption. In this review, chemistry of PCPs based on monomodal and multimodal PCPs are summarized and discussed.
Process-Dependent Properties in Colloidally Synthesized “Giant” Core/Shell Nanocrystal Quantum Dots
Hollingsworth, Jennifer A.; Ghosh, Yagnaseni; Dennis, Allison M.; Mangum, Benjamin D.; Park, Young-Shin; Kundu, Janardan; Htoon, Han
2012-06-07
Due to their characteristic bright and stable photoluminescence, semiconductor nanocrystal quantum dots (NQDs) have attracted much interest as efficient light emitters for applications from single-particle tracking to solid-state lighting. Despite their numerous enabling traits, however, NQD optical properties are frustratingly sensitive to their chemical environment, exhibit fluorescence intermittency ('blinking'), and are susceptible to Auger recombination, an efficient nonradiative decay process. Previously, we showed for the first time that colloidal CdSe/CdS core/shell nanocrystal quantum dots (NQDs) comprising ultrathick shells (number of shell monolayers, n, > 10) grown by protracted successive ionic layer adsorption and reaction (SILAR) leads to remarkable photostability and significantly suppressed blinking behavior as a function of increasing shell thickness. We have also shown that these so-called 'giant' NQDs (g-NQDs) afford nearly complete suppression of non-radiative Auger recombination, revealed in our studies as long biexciton lifetimes and efficient multiexciton emission. The unique behavior of this core/shell system prompted us to assess correlations between specific physicochemical properties - beyond shell thickness - and functionality. Here, we demonstrate the ability of particle shape/faceting, crystalline phase, and core size to determine ensemble and single-particle optical properties (quantum yield/brightness, blinking, radiative lifetimes). Significantly, we show how reaction process parameters (surface-stabilizing ligands, ligand:NQD ratio, choice of 'inert' solvent, and modifications to the SILAR method itself) can be tuned to modify these function-dictating NQD physical properties, ultimately leading to an optimized synthetic approach that results in the complete suppression of blinking. We find that the resulting 'guiding principles' can be applied to other NQD compositions, allowing us to achieve non-blinking behavior in the near
Metal colloids and quantum dots: linear and nonlinear optical properties
Henderson, Don O.
1997-05-12
Nanophase materials have found a wide application in a variety of technological areas which include ultrafast optical switching high density information storage and retrieval, electronics, and catalysts, to mention a few. Nanocrystal science has also drawn considerable interest from the fundamental perspective engaging physicists, chemists, and material scientists into this area of rapidly expanding and challenging research. Basic questions concerning how matter evolves from atomic like behavior to molecular and onto bulk lie at the center nanocrystal research. In addition, because of the high surface to volume ratio of the nanocrystals, the interaction potential between a nanocrystal and its surrounding environment becomes an important issue in determining its properties. While significant progress has been made in nanocrystal research, there are many problems concerned with their fabrication. In particular, the difficulty of incorporating nanocrystals into a matrix that is appropriate for ultimate device development has hindered some aspects of nanocrystal research. Ion implantation is a method that is now established as a technique for fabricating metal and semiconductor nanocrystals. It is highly versatile in that one may select nearly any host material for incorporating the nanocrystals of interest. The flexibility of being able to select the host matrix is also interesting from the point of view that it opens the opportunity to investigate matrix-nanocrystal interactions. We summarize in the following sections results on metal and semiconductor nanocrystals formed by ion implantation into dielectric hosts.
Strain induced novel quantum magnetotransport properties of topological insulators
NASA Astrophysics Data System (ADS)
Ma, Ning; Zhang, Shengli; Liu, Daqing
2016-12-01
Recent theoretical and experimental researches have revealed that the strained bulk HgTe can be regarded as a three-dimensional topological insulator (TI). Motivated by this, we explore the strain effects on the transport properties of the HgTe surface states, which are modulated by a weak 1D in-plane electrostatic periodic potential in the presence of a perpendicular magnetic field. We analytically derive the zero frequency (dc) diffusion conductivity for the case of quasielastic scattering in the Kubo formalism, and find that, in strong magnetic field regime, the Shubnikov-de Haas oscillations are superimposed on top of the Weiss oscillations due to the electric modulation for null and finite strain. Furthermore, the strain is shown to remove the degeneracy in inversion symmetric Dirac cones on the top and bottom surfaces. This accordingly gives rise to the splitting and mixture of Landau levels, and the asymmetric spectrum of the dc conductivity. These phenomena, not known in a conventional 2D electron gas and even in a strainless TI and graphene, are a consequence of the anomalous spectrum of surface states in a fully stained TI. These results should be valuable for electronic and spintronic applications of TIs, and thus we fully expect to see them in the further experiment.
Functionalized silicon quantum dots by N-vinylcarbazole: synthesis and spectroscopic properties.
Ji, Jianwei; Wang, Guan; You, Xiaozeng; Xu, Xiangxing
2014-01-01
Silicon quantum dots (Si QDs) attract increasing interest nowadays due to their excellent optical and electronic properties. However, only a few optoelectronic organic molecules were reported as ligands of colloidal Si QDs. In this report, N-vinylcarbazole - a material widely used in the optoelectronics industry - was used for the modification of Si QDs as ligands. This hybrid nanomaterial exhibits different spectroscopic properties from either free ligands or Si QDs alone. Possible mechanisms were discussed. This type of new functional Si QDs may find application potentials in bioimaging, photovoltaic, or optoelectronic devices.
Transport Properties of a Nonequilibrium Quantum Dot Connected to Ferromagnetic Leads
NASA Astrophysics Data System (ADS)
Yongmei, Zhang
2017-03-01
In this paper, transmission resonance and conductance properties of nonequilibrium quantum dot connected by ferromagnetic leads are investigated. Thermoelectric properties are also studied. Using the tight-binding formalism and numerically solving the Schrodinger equation, spin-dependent transmissions are obtained and plotted as a function of incoming electron energy. Transmissions of spin up and spin down electrons change in different ways as voltage bias and tilt angle change. Current spin polarization can be sensitively tuned by adjusting voltage bias. These research indicates the possible methods to modulate tilt angle or the bias voltage to obtain spin-dependent transmission, spin polarized current and effective Seebeck coefficients.
Modeling on the size dependent properties of InP quantum dots: a hybrid functional study.
Cho, Eunseog; Jang, Hyosook; Lee, Junho; Jang, Eunjoo
2013-05-31
Theoretical calculations based on density functional theory were performed to provide better understanding of the size dependent electronic properties of InP quantum dots (QDs). Using a hybrid functional approach, we suggest a reliable analytical equation to describe the change of energy band gap as a function of size. Synthesizing colloidal InP QDs with 2-4 nm diameter and measuring their optical properties was also carried out. It was found that the theoretical band gaps showed a linear dependence on the inverse size of QDs and gave energy band gaps almost identical to the experimental values.
A quantum model for bending vibrations and thermodynamic properties of C3.
NASA Technical Reports Server (NTRS)
Hansen, C. F.; Pearson, W. E.
1973-01-01
The investigation reported was conducted to clarify the thermodynamic properties of C3 by further developing the limit to the partition function suggested by Strauss and Thiele (1967). A quantum solution for the energy levels of a quadratically perturbed square well potential is presented and the consistency of this limit with observed energy levels is established. In the process a more complete physical picture of the bending C3 molecules emerges. The values of entropy deduced from various measurements of graphite pressure are compared with this limit, and the thermodynamic properties predicted for the limiting case are evaluated.
NASA Technical Reports Server (NTRS)
Simons, Rainee N. (Inventor); Wintucky, Edwin G. (Inventor)
2016-01-01
A multimode directional coupler is provided. In some embodiments, the multimode directional coupler is configured to receive a primary signal and a secondary signal at a first port of a primary waveguide. The primary signal is configured to propagate through the primary waveguide and be outputted at a second port of the primary waveguide. The multimode directional coupler also includes a secondary waveguide configured to couple the secondary signal from the primary waveguide with no coupling of the primary signal into the secondary waveguide. The secondary signal is configured to propagate through the secondary waveguide and be outputted from a port of the secondary waveguide.
Teleportation of continuous variable multimode Greeberger Horne Zeilinger entangled states
NASA Astrophysics Data System (ADS)
He, Guangqiang; Zhang, Jingtao; Zeng, Guihua
2008-11-01
Quantum teleportation protocols of continuous variable (CV) Greeberger-Horne-Zeilinger (GHZ) and Einstein-Podolsky-Rosen (EPR) entangled states are proposed, and are generalized to teleportation of arbitrary multimode GHZ entangled states described by Van Loock and Braunstein (2000 Phys. Rev. Lett. 84 3482). Each mode of a multimode entangled state is teleported using a CV EPR entangled pair and classical communication. The analytical expression of fidelity for the multimode Gaussian states which evaluates the teleportation quality is presented. The analytical results show that the fidelity is a function of both the squeezing parameter r, which characterizes the multimode entangled state to be teleported, and the channel parameter p, which characterizes the EPR pairs shared by Alice and Bob. The fidelity increases with increasing p, but decreases with increasing r, i.e., it is more difficult to teleport the more perfect multimode entangled states. The entanglement degree of the teleported multimode entangled states increases with increasing both r and p. In addition, the fact is proved that our teleportation protocol of EPR entangled states using parallel EPR pairs as quantum channels is the best case of the protocol using four-mode entangled states (Adhikari et al 2008 Phys. Rev. A 77 012337).
NASA Astrophysics Data System (ADS)
Chen, P.; Zhao, D. G.; Jiang, D. S.; Long, H.; Li, M.; Yang, J.; Zhu, J. J.; Liu, Z. S.; Li, X. J.; Liu, W.; Li, X.; Liang, F.; Liu, J. P.; Zhang, B. S.; Yang, H.
2017-03-01
The hole distribution and electroluminescence property improvement by adjusting the relative position between quantum wells and p-doped region in InGaN/GaN multiple-quantum-well structures are experimentally and theoretically investigated. Five designed samples with different barrier layer parameters of multiple-quantum-well structure are grown by MOCVD and then fabricated into devices. The electroluminescence properties of these samples are measured and compared. It is found that the output electroluminescence intensity of samples is enhanced if the position of quantum wells shifts towards p-side, while the output power is reduced if their position is shifted towards the n-side. The theoretical calculation of characteristics of these devices using the simulation program APSYS agrees well with the experimental data, illustrating that the effect of relative position between p-doped region and quantum wells on the improvement of hole distribution and electroluminescence performance is significant, especially for InGaN/GaN multiple-quantum-well devices operated under high injection condition.
Strain induced novel quantum magnetotransport properties of topological insulators
Ma, Ning; Zhang, Shengli; Liu, Daqing
2016-12-15
Recent theoretical and experimental researches have revealed that the strained bulk HgTe can be regarded as a three-dimensional topological insulator (TI). Motivated by this, we explore the strain effects on the transport properties of the HgTe surface states, which are modulated by a weak 1D in-plane electrostatic periodic potential in the presence of a perpendicular magnetic field. We analytically derive the zero frequency (dc) diffusion conductivity for the case of quasielastic scattering in the Kubo formalism, and find that, in strong magnetic field regime, the Shubnikov–de Haas oscillations are superimposed on top of the Weiss oscillations due to the electric modulation for null and finite strain. Furthermore, the strain is shown to remove the degeneracy in inversion symmetric Dirac cones on the top and bottom surfaces. This accordingly gives rise to the splitting and mixture of Landau levels, and the asymmetric spectrum of the dc conductivity. These phenomena, not known in a conventional 2D electron gas and even in a strainless TI and graphene, are a consequence of the anomalous spectrum of surface states in a fully stained TI. These results should be valuable for electronic and spintronic applications of TIs, and thus we fully expect to see them in the further experiment. - Highlights: • The strain removes the degeneracy in inversion symmetric Dirac cones. • The strain gives rise to the splitting and mixture of the Landau levels. • The strain leads to the asymmetric spectrum of the dc conductivity. • Shubnikov de Haas oscillations are shown to be superimposed on Weiss oscillations. • Interplay between strain and electric field causes different occupancy of TI states.
NASA Astrophysics Data System (ADS)
Chen, Y.; Maharjan, N.; Liu, Z.; Nakarmi, M. L.; Chaldyshev, V. V.; Kundelev, E. V.; Poddubny, A. N.; Vasil'ev, A. P.; Yagovkina, M. A.; Shakya, N. M.
2017-03-01
An AlGaAs/GaAs multiple-quantum-well based resonant Bragg structure was designed to match the optical Bragg resonance with the exciton-polariton resonance at the second quantum state in the GaAs quantum wells. The sample structure with 60 periods of AlGaAs/GaAs quantum wells was grown on a semi-insulating GaAs substrate by molecular beam epitaxy. Angle- and temperature-dependent photoluminescence, optical reflectance, and electro-reflectance spectroscopies were employed to study the resonant optical properties of the Bragg structure. Broad and enhanced optical and electro-reflectance features were observed when the Bragg resonance was tuned to the second quantum state of the GaAs quantum well excitons, manifesting a strong light-matter interaction. From the electro-optical experiments, we found the electro-reflectance features related to the transitions of x(e2-hh2) and x(e2-hh1) excitons. The excitonic transition x(e2-hh1), which is prohibited at zero electric field, was allowed by a DC bias due to the brake of symmetry and increased overlap of the electron and hole wave functions caused by the electric field. By tuning the Bragg resonance frequency, we have observed the electro-reflectance feature related to the second quantum state up to room temperature, which evidences a robust light-matter interaction in the resonant Bragg structure.
Effect of gamma-ray irradiation on the size and properties of CdS quantum dots in reverse micelles
NASA Astrophysics Data System (ADS)
Bekasova, O. D.; Revina, A. A.; Rusanov, A. L.; Kornienko, E. S.; Kurganov, B. I.
2013-11-01
Cadmium sulfide quantum dots 1.3-5.6 nm in size have been synthesized in sodium bis(2-ethylhexy1)sulfosuccinate (AOT)-water-isooctane micellar solutions with various [H2O]/[AOT] molar ratios (w=2.5, 5.0 or 10). Gamma irradiation method has been used to change the size and optical properties of quantum dots. It has been found that γ-irradiation reduces the size polydispersity of quantum dots in the micellar system and alters their fluorescent properties. Fluorescence intensity is enhanced after γ-irradiation. The average fluorescence lifetime of single quantum dots sized 5.2±0.4 nm increases from 5.14 to 6.39 ns after γ-irradiation at a dose of 7.9 kGy. To the best of our knowledge, this is the first report on fluorescence lifetime of single CdS quantum dots in micellar solution.
NASA Astrophysics Data System (ADS)
Nagashima, Hiroki; Tsuda, Shin-ichi; Tsuboi, Nobuyuki; Koshi, Mitsuo; Hayashi, A. Koichi; Tokumasu, Takashi
2014-03-01
In this paper, we have analysed an effect of quantum nature of the hydrogen molecule on its thermodynamic and transport properties using molecular dynamics (MD) method based on the path integral method. We performed NVE constant MD simulation and the quantum effect on the molecular mechanism was analysed. The simulation results were compared with experimental data. As a result, we clarified that the quantum nature makes the virial pressure larger than in classical mechanics and taking account the quantum nature makes smaller intermolecular interaction energy and larger repulsive force than classical representation. Besides, we have confirmed that the path-integral-based MD method well reproduces the thermal conductivity and quantum effect on the transport properties is also large.
Structure and transport properties of Ge quantum dots in a SiO2 matrix
NASA Astrophysics Data System (ADS)
Slunjski, R.; Dubček, P.; Radić, N.; Bernstorff, S.; Pivac, B.
2015-06-01
Germanium (Ge) nanoparticles or quantum dots (QDs) embedded in a transparent dielectric matrix have properties radically different from the bulk semiconductor and present a great potential for application in electronic and optoelectronic devices. Due to quantum confinement properties, the optical bandgap of QD-based materials can be tuned by varying the nanoparticle size. These properties may be exploited for the fabrication of nanoscale electronic devices or advanced solar cells. In this work we explored structural and transport properties of QD based superstructures for advanced solar cells. Magnetron cosputtering was used for deposition and upon suitable thermal treatment a superstructure of QDs was formed. Transport properties were explored by I-V measurement in the dark together with a C-V characterization. The obtained results were modeled with the known transport mechanisms for QDs containing materials. A special emphasis is given to trap controlled space charge limited current and hopping conductivity mechanism. We have shown that in our samples a significant charge is stored in the SiO2 layers with embedded Ge QDs. That charge is predominantly stored into traps at or close to the Ge(QDs)/SiO2 interface.
Self-consistent calculations of optical properties of type I and type II quantum heterostructures
NASA Astrophysics Data System (ADS)
Shuvayev, Vladimir A.
In this Thesis the self-consistent computational methods are applied to the study of the optical properties of semiconductor nanostructures with one- and two-dimensional quantum confinements. At first, the self-consistent Schrodinger-Poisson system of equations is applied to the cylindrical core-shell structure with type II band alignment without direct Coulomb interaction between carriers. The electron and hole states and confining potential are obtained from a numerical solution of this system. The photoluminescence kinetics is theoretically analyzed, with the nanostructure size dispersion taken into account. The results are applied to the radiative recombination in the system of ZnTe/ZnSe stacked quantum dots. A good agreement with both continuous wave and time-resolved experimental observations is found. It is shown that size distribution results in the photoluminescence decay that has essentially non-exponential behavior even at the tail of the decay where the carrier lifetime is almost the same due to slowly changing overlap of the electron and hole wavefunctions. Also, a model situation applicable to colloidal core-shell nanowires is investigated and discussed. With respect to the excitons in type I quantum wells, a new computationally efficient and flexible approach of calculating the characteristics of excitons, based on a self-consistent variational treatment of the electron-hole Coulomb interaction, is developed. In this approach, a system of self-consistent equations describing the motion of an electron-hole pair is derived. The motion in the growth direction of the quantum well is separated from the in-plane motion, but each of them occurs in modified potentials found self-consistently. This approach is applied to a shallow quantum well with the delta-potential profile, for which analytical expressions for the exciton binding energy and the ground state eigenfunctions are obtained, and to the quantum well with the square potential profile with several
NASA Astrophysics Data System (ADS)
Yuan, Jian-Hui; Chen, Ni; Zhang, Yan; Mo, Hua; Zhang, Zhi-Hai
2016-03-01
Electric field effect on the second-order nonlinear optical properties in semiparabolic quantum wells are studied theoretically. Both the second-harmonic generation susceptibility and nonlinear optical rectification depend dramatically on the direction and the strength of the electric field. Numerical results show that both the second-harmonic generation susceptibility and nonlinear optical rectification are always weakened as the electric field increases where the direction of the electric field is along the growth direction of the quantum wells, which is in contrast to the conventional case. However, the second-harmonic generation susceptibility is weakened, but the nonlinear optical rectification is strengthened as the electric field increases where the direction of the electric field is against the growth direction of the quantum wells. Also it is the blue (or red) shift of the resonance that is induced by increasing of the electric field when the direction of the electric field is along (or against) the growth direction of the quantum wells. Finally, the resonant peak and its corresponding to the resonant energy are also taken into account.
Amollo, Tabitha; Tessema, Gene; Nyamori, Vincent O
2017-10-11
Graphene provides numerous possibilities for structural modification and functionalization of its carbon backbone. Localized magnetic moments can, as well, be induced in graphene by the formation of structural defects which include vacancies, edges, and adatoms. In this work, graphene was functionalized using germanium atoms, we report the effect of the Ge ad atoms on the structural, electrical, optical and magnetic properties of graphene. Reduced graphene oxide (rGO)-germanium quantum dot nanocomposites of high crystalline quality were synthesized by the microwave-assisted solvothermal reaction. Highly crystalline spherical shaped germanium quantum dots, of diameter ranging between 1.6-9.0 nm, are anchored on the basal planes of rGO. The nanocomposites exhibit high electrical conductivity with a sheet resistance of up to 16 Ω sq-1. The electrical conductivity is observed to increase with the increase in Ge content in the nanocomposites. High defect-induced magnetization is attained in the composites via germanium adatoms. The evolution of the magnetic moments in the nanocomposites and the coercivity showed marked dependence on the Ge quantum dots size and concentration. Quantum confinement effects is evidenced in the UV-Vis absorbance spectra and photoluminescence emission spectra of the nanocomposites which show marked size-dependence. The composites manifest strong absorption in the UV region, strong luminescence in the near UV region, and a moderate luminescence in the visible region. © 2017 IOP Publishing Ltd.
Zaari, Ryan R; Brown, Alex
2011-07-28
The importance of the ro-vibrational state energies on the ability to produce high fidelity binary shaped laser pulses for quantum logic gates is investigated. The single frequency 2-qubit ACNOT(1) and double frequency 2-qubit NOT(2) quantum gates are used as test cases to examine this behaviour. A range of diatomics is sampled. The laser pulses are optimized using a genetic algorithm for binary (two amplitude and two phase parameter) variation on a discretized frequency spectrum. The resulting trends in the fidelities were attributed to the intrinsic molecular properties and not the choice of method: a discretized frequency spectrum with genetic algorithm optimization. This is verified by using other common laser pulse optimization methods (including iterative optimal control theory), which result in the same qualitative trends in fidelity. The results differ from other studies that used vibrational state energies only. Moreover, appropriate choice of diatomic (relative ro-vibrational state arrangement) is critical for producing high fidelity optimized quantum logic gates. It is also suggested that global phase alignment imposes a significant restriction on obtaining high fidelity regions within the parameter search space. Overall, this indicates a complexity in the ability to provide appropriate binary laser pulse control of diatomics for molecular quantum computing. © 2011 American Institute of Physics
Xu, Xianmei; Wang, Yilin; Gule, Teri; Luo, Qiang; Zhou, Liya; Gong, Fuzhong
2013-03-15
Highlights: ► Stable CdSe QDs were synthesized by the one-step and two-level process respectively. ► The fabricated white LEDs show good white balance. ► CdSe QDs present well green to yellow band luminescence. ► CdSe QDs displayed a broad excitation band. - Abstract: Yellow light-emitting cadmium selenide quantum dots were synthesized using one-step and two-step methods in an aqueous medium. The structural luminescent properties of these quantum dots were investigated. The obtained cadmium selenide quantum dots displayed a broad excitation band suitable for blue or near-ultraviolet light-emitting diode applications. White light-emitting diodes were fabricated by coating the cadmium selenide samples onto a 460 nm-emitting indium gallium nitrite chip. Both samples exhibited good white balance. Under a 20 mA working current, the white light-emitting diode fabricated via the one-step and two-step methods showed Commission Internationale de l’Éclairage coordinates at (0.27, 0.23) and (0.27, 0.33), respectively, and a color rendering index equal to 41 and 37, respectively. The one-step approach was simpler, greener, and more effective than the two-step approach. The one-step approach can be enhanced by combining cadmium selenide quantum dots with proper phosphors.
NASA Astrophysics Data System (ADS)
J, Joy Sebastian Prakash; G, Vinitha; Ramachandran, Murugesan; Rajamanickam, Karunanithi
2017-10-01
Three different stabilizing agents, namely, L-cysteine, Thioglycolic acid and cysteamine hydrochloride were used to synthesize Cd(Zn)Se quantum dots (QDs). It was characterized using UV-vis spectroscopy, x-ray diffraction (XRD) and transmission electron microscopy (TEM). The non-linear optical properties (non-linear absorption and non-linear refraction) of synthesized Cd(Zn)Se quantum dots were studied with z-scan technique using diode pumped continuous wavelaser system at a wavelength of 532 nm. Our (organic) synthesized quantum dots showed optical properties similar to the inorganic materials reported elsewhere.
Desgranges, C; Anderson, P W; Delhommelle, J
2017-02-01
Using molecular simulation, we determine the critical properties of Si as well as the loci for several remarkable thermodynamic contours spanning the supercritical region of the phase diagram. We consider a classical three-body potential as well as a quantum (tight-binding) many-body model, and determine the loci for the ideality contours, including the Zeno line and the H line of ideal enthalpy. The two strategies (classical or quantum) lead to strongly asymmetric binodals and to critical properties in good agreement with each other. The Zeno and H lines are found to remain linear over a wide temperature interval, despite the changes in electronic structure undergone by the fluid along these contours. We also show that the classical and quantum model yield markedly different results for the parameters defining the H line, the exponents for the power-laws underlying the line of minima for the isothermal enthalpy and for the density required to achieve ideal behavior, most notably for the enthalpy.
NASA Astrophysics Data System (ADS)
Desgranges, C.; Anderson, P. W.; Delhommelle, J.
2017-02-01
Using molecular simulation, we determine the critical properties of Si as well as the loci for several remarkable thermodynamic contours spanning the supercritical region of the phase diagram. We consider a classical three-body potential as well as a quantum (tight-binding) many-body model, and determine the loci for the ideality contours, including the Zeno line and the H line of ideal enthalpy. The two strategies (classical or quantum) lead to strongly asymmetric binodals and to critical properties in good agreement with each other. The Zeno and H lines are found to remain linear over a wide temperature interval, despite the changes in electronic structure undergone by the fluid along these contours. We also show that the classical and quantum model yield markedly different results for the parameters defining the H line, the exponents for the power-laws underlying the line of minima for the isothermal enthalpy and for the density required to achieve ideal behavior, most notably for the enthalpy.
Imaging characteristics of zinc sulfide shell, cadmium telluride core quantum dots.
Daneshvar, Hamid; Nelms, Jennifer; Muhammad, Osman; Jackson, Heather; Tkach, Jean; Davros, William; Peterson, Todd; Vogelbaum, Michael A; Bruchez, Marcel P; Toms, Steven A
2008-02-01
Quantum dots are optical nanocrystals whose in vitro and in vivo use in molecular imaging is expanding rapidly. In comparison with organic fluorophores, quantum dots exhibit desirable properties, such as multiwavelength fluorescence emission, excellent brightness and resistance to photobleaching. Their electron-dense, metallic cores suggest utility in other clinical imaging modalities. Core-shell zinc sulfide-cadmium telluride quantum dots were studied by magnetic resonance and computed tomography phantoms. Quantum dots were also injected into rat brain, as well as intravenously, using convection-enhanced delivery, prior to animal imaging. Computed tomography studies suggest that current formulations of quantum dots might be imaged in vivo in animals. Used in conjunction with optical imaging techniques, quantum dots have the potential to function as multimodal imaging platforms in vivo. The ability to detect an optical nanoparticle preoperatively with clinical imaging modality offers a distinct advantage to clinicians engaged in image-guided surgical applications.
Quantum Size Effects in Transport Properties of Bi2Te3 Topological Insulator Thin Films
NASA Astrophysics Data System (ADS)
Rogacheva, E. I.; Budnik, A. V.; Nashchekina, O. N.; Meriuts, A. V.; Dresselhaus, M. S.
2017-07-01
Bi2Te3 compound and Bi2Te3-based solid solutions have attracted much attention as promising thermoelectric materials for refrigerating devices. The possibility of enhancing the thermoelectric efficiency in low-dimensional structures has stimulated studies of Bi2Te3 thin films. Now, interest in studying the transport properties of Bi2Te3 has grown sharply due to the observation of special properties characteristic of three-dimensional (3D) topological insulators in Bi2Te3. One of the possible manifestations of quantum size effects in two-dimensional structures is an oscillatory behavior of the dependences of transport properties on film thickness, d. The goal of this work is to summarize our earlier experimental results on the d-dependences of transport properties of Bi2Te3 thin films obtained by thermal evaporation in a vacuum on glass substrates, and to present our new results of theoretical calculations of the oscillations periods within the framework of the model of an infinitely deep potential well, which takes into account the dependence of the Fermi energy on d and the contribution of all energy subbands below the Fermi level to the conductivity. On the basis of the data obtained, some general regularities and specificity of the quantum size effects manifestation in 3D topological insulators are established.
Multimode Strong Coupling in Circuit QED
NASA Astrophysics Data System (ADS)
Sundaresan, Neereja; Liu, Yanbing; Sadri, Darius; Szocs, Laszlo; Underwood, Devin; Malekakhlagh, Moein; Tureci, Hakan; Houck, Andrew
We present experimental and theoretical studies in the multimode strong coupling (MMSC) regime of cavity quantum electrodynamics (QED). In MMSC, a single atom is simultaneously coupled to a large, but discrete, number of cavity harmonics, with atom-mode coupling strengths comparable to the free spectral range (FSR). This regime is readily accessible in circuit QED, by strongly coupling a transmon qubit to a low fundamental frequency microwave cavity. We present some key results from our original experiment (PRX 5, 021035, 2015), in which a transmon qubit, resonant with the 75th harmonic of a 90 MHz cavity, reached qubit-mode coupling strengths exceeding 30MHz. When this system is coherently driven, we observed complex multimode fluorescence, with the notable formation of ultra-narrow linewidths. To better understand these unique features of multimode resonance fluorescence we developed a quantum formalism, which attributes the spectral linewidth narrowing to the correlated spontaneous emission of doubly dressed states. Finally we will share preliminary experimental results from our continuing study of MMSC, this time from a system where qubit-mode coupling strengths approach and even exceed the FSR.
NASA Astrophysics Data System (ADS)
Li, L. L.; Moldovan, D.; Xu, W.; Peeters, F. M.
2017-02-01
Recently, black phosphorus quantum dots were fabricated experimentally. Motivated by these experiments, we theoretically investigate the electronic and optical properties of rectangular phosphorene quantum dots (RPQDs) in the presence of an in-plane electric field and a perpendicular magnetic field. The energy spectra and wave functions of RPQDs are obtained numerically using the tight-binding approach. We find edge states within the band gap of the RPQD which are well separated from the bulk states. In an undoped RPQD and for in-plane polarized light, due to the presence of well-defined edge states, we find three types of optical transitions which are between the bulk states, between the edge and bulk states, and between the edge states. The electric and magnetic fields influence the bulk-to-bulk, edge-to-bulk, and edge-to-edge transitions differently due to the different responses of bulk and edge states to these fields.
Optical properties and aging of PbS quantum dots embedded in a porous matrix
NASA Astrophysics Data System (ADS)
Litvin, Aleksandr P.; Parfenov, Peter S.; Ushakova, Elena V.; Fedorov, Anatoly V.; Artemyev, Mikhail V.; Prudnikau, Anatoly V.; Rukhlenko, Ivan D.; Baranov, Alexander V.
2013-09-01
PbS quantum dots (QDs) with diameter of 2.9-7.4 nm were embedded into a porous matrix. The samples prepared by developed low-cost effortless method demonstrate linear dependencies of optical density and luminescence intensity on the QDs concentration and perfect homogeneity. Optical properties of quantum dots in the matrix were studied using absorption and steady-state and time-resolved photoluminescence spectroscopy. Luminescence lifetimes were found to be size-dependent and increase with decreasing of QDs size. The aging behavior of PbS QDs in a porous matrix was explored for a variety of QDs sizes. The energy transfer process in quasi-monodispersed PbS QDs ensemble was discovered.
Brogi, Bharat Bhushan Ahluwalia, P. K.; Chand, Shyam
2015-06-24
Theoretical study of the Coulomb blockade effect on transport properties (Transmission Probability and I-V characteristics) for varied configuration of coupled quantum dot system has been studied by using Non Equilibrium Green Function(NEGF) formalism and Equation of Motion(EOM) method in the presence of magnetic flux. The self consistent approach and intra-dot Coulomb interaction is being taken into account. As the key parameters of the coupled quantum dot system such as dot-lead coupling, inter-dot tunneling and magnetic flux threading through the system can be tuned, the effect of asymmetry parameter and magnetic flux on this tuning is being explored in Coulomb blockade regime. The presence of the Coulomb blockade due to on-dot Coulomb interaction decreases the width of transmission peak at energy level ε + U and by adjusting the magnetic flux the swapping effect in the Fano peaks in asymmetric and symmetric parallel configuration sustains despite strong Coulomb blockade effect.
Emission properties and photon statistics of a single quantum dot laser.
Ritter, S; Gartner, P; Gies, C; Jahnke, F
2010-05-10
A theoretical description for a single quantum-dot emitter in a microcavity is developed.We analyze for increasing steady-state pump rate the transition from the strong-coupling regime with photon antibunching to the weak-coupling regime with coherent emission. It is demonstrated how Coulomb interaction of excited carriers and excitation-induced dephasing can strongly modify the emission properties. Our theoretical investigations are based on a direct solution of the Liouville-von Neumann equation for the coupled carrier-photon system. We include multiple carrier excitations in the quantum dot, their Coulomb interaction, as well as excitation-induced dephasing and screening. Similarities and differences to atomic systems are discussed and results in the regime of recent experiments are interpreted. (c) 2010 Optical Society of America.
Temperature-dependent magnetotransport properties for systems of few quantum wires
NASA Astrophysics Data System (ADS)
Ploner, G.; Smoliner, J.; Strasser, G.; Gornik, E.
1996-09-01
We have investigated temperature-dependent magnetotransport properties of quantum wires fabricated on high mobility GaAsGaAlAs modulation doped heterostructures. Laser holography and optical lithography were used to define multiple quantum wire systems with 40 wires in parallel. These “few wire systems” turn out to have the best signal to noise ratio for systematic magnetic depopulation and magnetophonon resonance measurements. In the examined temperature range between 1.9 and 160 K it was found that the 1D subband energies increase strongly with decreasing 1D electron density and the polaron mass increases with increasing 1D subband spacing. Between 100 and 160 K, magnetophonon resonance data indicate a decline of both the subband spacing and also the polaron mass with increasing temperature. This effect is most probably due to an increase of the electron concentration with increasing temperature.
van Zon, Ramses; Hernández de la Peña, Lisandro; Peslherbe, Gilles H; Schofield, Jeremy
2008-10-01
Nonequilibrium path-integral methods for computing quantum free-energy differences are applied to a quantum particle trapped in a harmonic well of uniformly changing strength with the purpose of establishing the convergence properties of the work distribution and free energy as the number of degrees of freedom M in the regularized path integrals goes to infinity. The work distribution is found to converge when M tends to infinity regardless of the switching speed, leading to finite results for the free-energy difference when the Jarzynski nonequilibrium work relation or the Crooks fluctuation relation are used. The nature of the convergence depends on the regularization method. For the Fourier method, the convergence of the free-energy difference and work distribution go as 1/M , while both quantities converge as 1/M(2) when the bead regularization procedure is used. The implications of these results to more general systems are discussed.
Oura, Makoto; Yamamoto, Johtaro; Jin, Takashi; Kinjo, Masataka
2017-01-23
Quantum dot (QD) and quantum rod (QR) nanocrystals are widely used non-organic nanocrystals. Their strong fluorescence and photostability make them suitable for biomedical imaging applications. However, their pH-dependence and antibunching properties have not been studied much, especially in aqueous conditions. In this report, we used fluorescence correlation spectroscopy (FCS) with high temporal resolution to demonstrate that the fluorescent blinking and antibunching of QDs/QRs can be changed by varying the pH of their solutions. Furthermore, herein, we reported the relationship between the aggregation and antibunching relaxation time of QDs/QRs for the first time. The findings of this study suggest that FCS can be used to discover novel environmental indicators via observing nanosecond and microsecond phenomena.
Chen, Xiuxian; Jin, Qingqing; Wu, Lizhu; Tung, ChenHo; Tang, Xinjing
2014-11-10
Nitrogen-rich quantum dots (N-dots) were serendipitously synthesized in methanol or aqueous solution at a reaction temperature as low as 50 °C. These N-dots have a small size (less than 10 nm) and contain a high percentage of the element nitrogen, and are thus a new member of quantum-dot family. These N-dots show unique and distinct photoluminescence properties with an increasing percentage of nitrogen compared to the neighboring carbon dots. The photoluminescence behavior was adjusted from blue to green simply through variation of the reaction temperature. Furthermore, the detailed mechanism of N-dot formation was also proposed with the trapped intermediate. These N-dots have also shown promising applications as fluorescent ink and biocompatible staining in C. elegans. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Donchev, A. G.; Galkin, N. G.; Illarionov, A. A.; Khoruzhii, O. V.; Olevanov, M. A.; Ozrin, V. D.; Subbotin, M. V.; Tarasov, V. I.
2006-01-01
We have recently introduced a quantum mechanical polarizable force field (QMPFF) fitted solely to high-level quantum mechanical data for simulations of biomolecular systems. Here, we present an improved form of the force field, QMPFF2, and apply it to simulations of liquid water. The results of the simulations show excellent agreement with a variety of experimental thermodynamic and structural data, as good or better than that provided by specialized water potentials. In particular, QMPFF2 is the only ab initio force field to accurately reproduce the anomalous temperature dependence of water density to our knowledge. The ability of the same force field to successfully simulate the properties of both organic molecules and water suggests it will be useful for simulations of proteins and protein–ligand interactions in the aqueous environment. PMID:16723394
Holographic quantum imaging: reconstructing spatial properties via two-particle interference
NASA Astrophysics Data System (ADS)
Trautmann, Nils; Ferenczi, Gergely; Croke, Sarah; Barnett, Stephen M.
2017-05-01
Two particle interference phenomena, such as the Hong-Ou-Mandel (HOM) effect, are a direct manifestation of the nature of the symmetry properties of indistinguishable particles as described by quantum mechanics. The HOM effect has recently been applied as a tool for pure state tomography of a single photon. In this article, we generalize the method to extract additional information for a pure state and extend this to the full tomography of mixed states as well. The formalism is kept general enough to apply to both boson and fermion based interferometry. Our theoretical discussion is accompanied by two proposals of interferometric setups that allow the measurement of a tomographically complete set of observables for single photon quantum states.
Díaz, Natalia; Suárez, Dimas; Sordo, Tomás L
2003-11-30
Herein, we present theoretical results on the conformational properties of benzylpenicillin, which are characterized by means of quantum chemical calculations (MP2/6-31G* and B3LYP/6-31G*) and classical molecular dynamics simulations (5 ns) both in the gas phase and in aqueous solution. In the gas phase, the benzylpenicillin conformer in which the thiazolidine ring has the carboxylate group oriented axially is the most favored one. Both intramolecular CH. O and dispersion interactions contribute to stabilize the axial conformer with respect to the equatorial one. In aqueous solution, a molecular dynamics simulation predicts a relative population of the axial:equatorial conformers of 0.70:0.30 in consonance with NMR experimental data. Overall, the quantum chemical calculations as well as the simulations give insight into substituent effects, the conformational dynamics of benzylpenicillin, the frequency of ring-puckering motions, and the correlation of side chain and ring-puckering motions.
Li, L L; Moldovan, D; Xu, W; Peeters, F M
2017-02-24
Recently, black phosphorus quantum dots were fabricated experimentally. Motivated by these experiments, we theoretically investigate the electronic and optical properties of rectangular phosphorene quantum dots (RPQDs) in the presence of an in-plane electric field and a perpendicular magnetic field. The energy spectra and wave functions of RPQDs are obtained numerically using the tight-binding approach. We find edge states within the band gap of the RPQD which are well separated from the bulk states. In an undoped RPQD and for in-plane polarized light, due to the presence of well-defined edge states, we find three types of optical transitions which are between the bulk states, between the edge and bulk states, and between the edge states. The electric and magnetic fields influence the bulk-to-bulk, edge-to-bulk, and edge-to-edge transitions differently due to the different responses of bulk and edge states to these fields.
NASA Astrophysics Data System (ADS)
Brogi, Bharat Bhushan; Chand, Shyam; Ahluwalia, P. K.
2015-06-01
Theoretical study of the Coulomb blockade effect on transport properties (Transmission Probability and I-V characteristics) for varied configuration of coupled quantum dot system has been studied by using Non Equilibrium Green Function(NEGF) formalism and Equation of Motion(EOM) method in the presence of magnetic flux. The self consistent approach and intra-dot Coulomb interaction is being taken into account. As the key parameters of the coupled quantum dot system such as dot-lead coupling, inter-dot tunneling and magnetic flux threading through the system can be tuned, the effect of asymmetry parameter and magnetic flux on this tuning is being explored in Coulomb blockade regime. The presence of the Coulomb blockade due to on-dot Coulomb interaction decreases the width of transmission peak at energy level ɛ + U and by adjusting the magnetic flux the swapping effect in the Fano peaks in asymmetric and symmetric parallel configuration sustains despite strong Coulomb blockade effect.
Chen, Wei; Li, Fushan Wu, Chaoxing; Guo, Tailiang
2014-02-10
Graphene quantum dots (GQDs), which are edge-bound nanometer-size graphene pieces, have fascinating electronic and optical properties due to their quantum confinement and edge effect. In this paper, GQDs were synthesized by using acid treatment and chemical exfoliation of multi-walled carbon nanotubes (MWCNTs). The structure of the GQDs was investigated by transmission electron microscope. The GQDs have a uniform size distribution, zigzag edge structure and two-dimensional morphology. The results indicated that the GQDs have bright blue emission upon UV excitation. The highly fluorescent GQDs exhibited high water solubility and good stability. It is shown that the acid treatment of MWCNTs leads to the formation of the functional group in zigzag sites, which results in the pH-dependent fluorescence of the GQDs.
Impact of strain on the electronic properties of InAs/GaSb quantum well systems
NASA Astrophysics Data System (ADS)
Tiemann, L.; Mueller, S.; Wu, Q.-S.; Tschirky, T.; Ensslin, K.; Wegscheider, W.; Troyer, M.; Soluyanov, A. A.; Ihn, T.
2017-03-01
Electron-hole hybridization in InAs/GaSb double quantum well structures leads to the formation of a mini-band-gap. We experimentally and theoretically studied the impact of strain on the transport properties of this material system. Thinned samples were mounted to piezoelectric elements to exert strain along the [011] and [001] crystal directions. When the Fermi energy is tuned through the minigap, the resistivity at the charge neutrality point is found to be susceptible to external strain. In the electron and hole regimes, strain influences the Landau level structure. By analyzing the intrinsic strain from the epitaxial growth and the external strain from the piezo elements and combining our experimental results with numerical simulations of strained and unstrained quantum wells, we can illustrate why the InAs/GaSb material system is regularly found to be semimetallic.
NASA Astrophysics Data System (ADS)
Alimohammadi, Mohammad; Xu, Yang; Wang, Daoyuan; Biris, Alexandru S.; Khodakovskaya, Mariya V.
2011-07-01
Plant seedlings were exposed to single-walled carbon nanotube-quantum dot conjugates (SWCNT-QD) mixed in the growth medium in order to understand the interactions between these multicomponent nanosystems and plants. A combination of fluorescent and Raman-scattering 2D mapping analysis was used to clearly monitor the presence of the SWCNT-QD conjugates in various parts of the tomato seedlings. We found that the addition of QDs to SWCNTs dramatically changed the biological viability of the tomato plants by significantly accelerating leaf senescence and inhibiting root formation. Although the exposure of SWCNTs only to the plants induced positive effects, the chlorophyll content decreased by 1.5-fold in leaves, and the total weight of the root system decreased four times for the tomato plants exposed to SWCNT-QDs (50 µg ml - 1) compared to plants grown on regular medium as controls. Our results clearly indicate that the exposure of plants to multicomponent nanomaterials is highly influenced by the presence and bioactivity of each component, individually. Such studies could be the foundation for understanding how complex nanosized systems affect the activity of various biological systems with a major impact on ecotoxicology.
Alimohammadi, Mohammad; Xu, Yang; Wang, Daoyuan; Biris, Alexandru S; Khodakovskaya, Mariya V
2011-07-22
Plant seedlings were exposed to single-walled carbon nanotube-quantum dot conjugates (SWCNT-QD) mixed in the growth medium in order to understand the interactions between these multicomponent nanosystems and plants. A combination of fluorescent and Raman-scattering 2D mapping analysis was used to clearly monitor the presence of the SWCNT-QD conjugates in various parts of the tomato seedlings. We found that the addition of QDs to SWCNTs dramatically changed the biological viability of the tomato plants by significantly accelerating leaf senescence and inhibiting root formation. Although the exposure of SWCNTs only to the plants induced positive effects, the chlorophyll content decreased by 1.5-fold in leaves, and the total weight of the root system decreased four times for the tomato plants exposed to SWCNT-QDs (50 µg ml(-1)) compared to plants grown on regular medium as controls. Our results clearly indicate that the exposure of plants to multicomponent nanomaterials is highly influenced by the presence and bioactivity of each component, individually. Such studies could be the foundation for understanding how complex nanosized systems affect the activity of various biological systems with a major impact on ecotoxicology.
Trung, Nguyen Ngoc; Luu, Quynh-Phuong; Son, Bui Thanh; Sinh, Le Hoang; Bae, Jin-Young
2013-01-01
Our research focused on the morphological and optical properties of core/shell cadmium selenide/zinc sulfide (CdSe/ZnS) quantum dots incorporated in silicone resin. After dispersing ligand-coated quantum dots into Dow Corning two-component silicone resins (OE6630A and OE6630B at 1:4 mixing ratio by weight), the resins were cured at 150 degrees C for 1.5 hours to produce the quantum dot-silicone resin nanocomposites. The optical, morphological and thermal properties of the quantum dot incorporated in silicone resin were investigated by ultraviolet-visible, fluorescence, atomic force microscopy, field emission scanning electron microscopy, differential scanning calorimetry and thermogravimetric analysis. When the quantum dots, originally coated with trioctylamine ligand, were transferred from a chloroform solvent to methyl phenyl silicone oil and silicone resins of high viscosity, the quantum dots showed increased turbidity and lowered fluorescence intensity. Fluorescence enhancement was investigated by using various functional ligands such as poly(1, 1-dimethyl silazane) (multi-silazane), hexamethylenediamine (diamine), cysteamine (amino-thiol), triethylsilane (reactive hydrosilane), hexamethyldisilazane, nonamethyltrisilazane, octamethylcyclotetrasilazane (reactive amines). The results showed that the reactive amines were good additive ligands for enhancing the fluorescence of CdSe/ZnS quantum dots dispersed in the silicone resins, providing 1.2-2.48 Im/W and 4.2-5.56% higher luminous efficiency and photoluminescence conversion efficiency, respectively. We speculate that these reactive amines donate electrons to the surface electron traps, thereby reducing charge recombination. In addition, quantum dots aggregate to form quantum dot clusters with a relatively homogeneously dispersed in the silicone resin matrices, showing good emission properties due to surface passivation and good colloidal stability with the addition of silazane compounds to the resin
Multimode model for projective photon-counting measurements
Tualle-Brouri, Rosa; Ourjoumtsev, Alexei; Dantan, Aurelien; Grangier, Philippe; Wubs, Martijn; Soerensen, Anders S.
2009-07-15
We present a general model to account for the multimode nature of the quantum electromagnetic field in projective photon-counting measurements. We focus on photon-subtraction experiments, where non-Gaussian states are produced conditionally. These are useful states for continuous-variable quantum-information processing. We present a general method called mode reduction that reduces the multimode model to an effective two-mode problem. We apply this method to a multimode model describing broadband parametric down-conversion, thereby improving the analysis of existing experimental results. The main improvement is that spatial and frequency filters before the photon detector are taken into account explicitly. We find excellent agreement with previously published experimental results, using fewer free parameters than before, and discuss the implications of our analysis for the optimized production of states with negative Wigner functions.
Thermoelectric properties of Mg2X (X = Si, Ge) based bulk and quantum well systems
NASA Astrophysics Data System (ADS)
Yelgel, Övgü Ceyda
2017-01-01
Mg2X (X = Si, Ge) compounds are promising thermoelectric materials for middle temperature applications due to good thermoelectric properties, nontoxicity, and abundantly available constituent elements. So far, these materials used in applications have all been in bulk form. Herein we report a full theory of thermoelectric transport properties of 3D bulk and 2D quantum well systems. The main aim of this present work is to show the effect of quantum confinement on the enhancement of the thermoelectric figure of merit theoretically. Results are given for n-type Mg2 Si0.5 Ge0.5 solid solutions and n-type Mg2Si/Mg2Ge/Mg2Si quantum well systems where the values of well widths are taken as 10 nm, 15 nm, and 20 nm, respectively. The n-type doping is made by using Sb- and La-elements as dopants. Experimental results for solid solutions are included to provide demonstration of proof of principle for the theoretical model applied for 3D bulk structures. The maximum thermoelectric figure of merits of Lax Mg2 -x Si0.49 Ge0.5 Sb0.01 solid solutions are obtained to be 0.64 and 0.56 at 800 K for x = 0 and x = 0.01 sample, respectively. While, at the same temperature, due to the relatively low phonon thermal conductivity the state-of-the-art ZT values of 2.41 and 2.26 have been attained in the Mg2Si/Mg2Ge/Mg2Si quantum well samples with 0.01 wt. % Sb-doped and 0.01 wt. % Sb- and 0.01 wt. % La-doped, respectively.
Quantum Correlation Properties in Two Qubits One-axis Spin Squeezing Model
NASA Astrophysics Data System (ADS)
Guo-Hui, Yang
2017-02-01
Using the concurrence (C) and quantum discord (QD) criterions, the quantum correlation properties in two qubits one-axis spin squeezing model with an external magnetic field are investigated. It is found that one obvious difference in the limit case T → 0 (ground state) is the sudden disappearance phenomenon (SDP) occured in the behavior of C, while not in QD. In order to further explain the SDP, we obtain the analytic expressions of ground state C and QD which reveal that the SDP is not really "entanglement sudden disappeared", it is decayed to zero very quickly. Proper tuning the parameters μ(the spin squeezing interaction in x direction) and Ω(the external magnetic field in z direction) not only can obviously broaden the scope of ground state C exists but also can enhance the value of ground state QD. For the finite temperature case, one evident difference is that the sudden birth phenomenon (SBP) is appeared in the evolution of C, while not in QD, and decreasing the coupling parameters μ or Ω can obviously prolong the time interval before entanglement sudden birth. The value of C and QD are both enhanced by increasing the parameters μ or Ω in finite temperature case. In addition, through investigating the effects of temperature T on the quantum correlation properties with the variation of Ω and μ, one can find that the temperature scope of C and QD exists are broadened with increasing the parameters μ or Ω, and one can obtain the quantum correlation at higher temperature through changing these parameters.
Dwyer, Donard S
2005-01-01
Background Electronic properties of amino acid side chains such as inductive and field effects have not been characterized in any detail. Quantum mechanics (QM) calculations and fundamental equations that account for substituent effects may provide insight into these important properties. PM3 analysis of electron distribution and polarizability was used to derive quantitative scales that describe steric factors, inductive effects, resonance effects, and field effects of amino acid side chains. Results These studies revealed that: (1) different semiempirical QM methods yield similar results for the electronic effects of side chain groups, (2) polarizability, which reflects molecular deformability, represents steric factors in electronic terms, and (3) inductive effects contribute to the propensity of an amino acid for α-helices. Conclusion The data provide initial characterization of the substituent effects of amino acid side chains and suggest that these properties affect electron density along the peptide backbone. PMID:16078995
Determining stationary-state quantum properties directly from system-environment interactions
NASA Astrophysics Data System (ADS)
Nicacio, F.; Paternostro, M.; Ferraro, A.
2016-11-01
Considering stationary states of continuous-variable systems undergoing an open dynamics, we unveil the connection between properties and symmetries of the latter and the dynamical parameters. In particular, we explore the relation between the Lyapunov equation for dynamical systems and the steady-state solutions of a time-independent Lindblad master equation for bosonic modes. Exploiting bona fide relations that characterize some genuine quantum properties (entanglement, classicality, and steerability), we obtain conditions on the dynamical parameters for which the system is driven to a steady state possessing such properties. We also develop a method to capture the symmetries of a steady state based on symmetries of the Lyapunov equation. All the results and examples can be useful for steady-state engineering processes.
Nonlinear optical properties of doped quantum dots: Interplay between noise and carrier density
NASA Astrophysics Data System (ADS)
Bera, Aindrila; Ghosh, Anuja; Ghosh, Manas
2017-07-01
Present work explores the profiles of a few nonlinear optical (NLO) properties of doped GaAs quantum dot (QD) with special emphasis on the role played by the carrier density under the aegis of noise. Noise term maintains a Gaussian white character and it has been introduced to the system via two different pathways; additive and multiplicative. A change of carrier density principally affects the peak height of the NLO properties. Incorporation of noise leads to some remarkable changes in the profiles of NLO properties during the variation of carrier density. These changes, however, depend on the pathway by which noise has been applied and also on the noise strength. The interplay between carrier density and noise produces some interesting outcomes that bear relevance in the related field of research.
NASA Astrophysics Data System (ADS)
Sin, Yongkun; Lingley, Zachary; Brodie, Miles; Huang, Michael; Bushmaker, Adam; Theiss, Jesse; Presser, Nathan; Foran, Brendan; Moss, Steven C.
2016-03-01
Remarkable progress made in vertical cavity surface emitting lasers (VCSELs) emitting at 850 and 980 nm has led them to find an increasing number of applications in high speed data communications as well as in potential space satellite systems. However, little has been reported on reliability and failure modes of InGaAs VCSELs emitting at ~980 nm although it is crucial to understand failure modes and underlying degradation mechanisms in developing these VCSELs that exceed lifetime requirements for space missions. The active layer of commercial VCSELs that we studied consisted of two or three InGaAs quantum wells. The laser structures were fabricated into deep mesas followed by a steam oxidation process to form oxide-apertures for current and optical confinements. Our multi- mode VCSELs showed a laser threshold of ~ 0.5 mA at RT. Failures were generated via accelerated life-testing of VCSELs. For the present study, we report on failure mode analysis of degraded oxide-VCSELs using various techniques. We employed nondestructive techniques including electroluminescence (EL), optical beam induced current (OBIC), and electron beam induced current (EBIC) techniques as well as destructive techniques including focused ion beam (FIB) and high-resolution TEM techniques to study VCSELs that showed different degradation behaviors. Especially, we employed FIB systems to locally remove a portion of top-DBR mirrors of degraded VCSELs, which made it possible for our subsequent EBIC and OBIC techniques to locate damaged areas that were generated as a result of degradation processes and also for our HR-TEM technique to prepare TEM cross sections from damaged areas. Our nondestructive and destructive physical analysis results are reported including defect and structural analysis results from pre-aged VCSELs as well as from degraded VCSELs life-tested under different test conditions.
Alibolandi, Mona; Abnous, Khalil; Sadeghi, Fatemeh; Hosseinkhani, Hossein; Ramezani, Mohammad; Hadizadeh, Farzin
2016-03-16
In this study, we report the design and delivery of tumor-targeted, quantum dot (QD) and doxorubicin (DOX)-encapsulated PEG-PLGA nanopolymersomes (NPs) for the imaging and chemotherapy of breast cancer. To achieve active cancer targeting, QD and DOX-encapsulated NPs were conjugated with folate for folate-binding protein receptor-guided delivery, which overexpressed in many cancer cells. Hydrophobic DOX and hydrophilic MSA-capped QD were encapsulated in the bilayer and core of the PEG-PLGA nanopolymersomes, respectively. The data show that the formulated NPs sustained DOX release for a period of 12 days. Fluorescence microscopy and MTT assay demonstrated that the developed folate-targeted DOX-QD NPs had higher cytotoxicity than non-targeted NPs and the free form of the drug; moreover, they preferentially accumulated in 4T1 and MCF-7 cells in vitro. In vivo experiments including whole organ tissue-homogenate analysis and organ fluorescence microscopy imaging of BALB/c mice bearing 4T1 breast adenocarcinoma showed that the folate receptor-targeted QD encapsulated NPs accumulate at tumor sites 6h following intravenous injection. Acute toxicity studies of the prepared targeted QD-loaded NPs showed no evidence of long-term harmful histopathological and physiological effects on the treated animals. The in vivo tumor inhibitory effect of folic acid (FA)-QD-DOX NPs demonstrated an augmented therapeutic efficacy of targeted formulation over the non-targeted and free drug. The data obtained illustrate a high potential of the prepared targeted theranostic nanoplatform in the treatment and imaging of breast cancer. This study may open new directions for preparation of QD-based theranostic polymersomes for clinical application. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Han, Yu; Gong, Wei-Jiang; Wei, Guo-Zhu
2009-12-01
Electron transport properties of a triple-terminal Aharonov-Bohm interferometer are theoretically studied. By applying a Rashba spin-orbit coupling to a quantum dot locally, we find that remarkable spin polarization comes about in the electron transport process with tuning the structure parameters, i.e., the magnetic flux or quantum dot levels. When the quantum dot levels are aligned with the Fermi level, there only appear spin polarization in this structure by the presence of an appropriate magnetic flux. However, in absence of magnetic flux spin polarization and spin separation can be simultaneously realized with the adjustment of quantum dot levels, namely, an incident electron from one terminal can select a specific terminal to depart from the quantum dots according to its spin state.
Koc, Fatih; Sahin, Mehmet E-mail: mehsahin@gmail.com
2014-05-21
In this study, a detailed investigation of the electronic and optical properties (i.e., binding energies, absorption wavelength, overlap of the electron-hole wave functions, recombination oscillator strength, etc.) of an exciton and a biexciton in CdTe/CdSe core/shell type-II quantum dot heterostructures has been carried out in the frame of the single band effective mass approximation. In order to determine the electronic properties, we have self-consistently solved the Poisson-Schrödinger equations in the Hartree approximation. We have considered all probable Coulomb interaction effects on both energy levels and also on the corresponding wave functions for both single exciton and biexciton. In addition, we have taken into account the quantum mechanical exchange-correlation effects in the local density approximation between same kinds of particles for biexciton. Also, we have examined the effect of the ligands and dielectric mismatch on the electronic and optical properties. We have used a different approximation proposed by Sahin and Koc [Appl. Phys. Lett. 102, 183103 (2013)] for the recombination oscillator strength of the biexciton for bound and unbound cases. The results obtained have been presented comparatively as a function of the shell thicknesses and probable physical reasons in behind of the results have been discussed in a detail.
Usman, Muhammad; Tasco, Vittorianna; Todaro, Maria Teresa; De Giorgi, Milena; O'Reilly, Eoin P; Klimeck, Gerhard; Passaseo, Adriana
2012-04-27
III-V growth and surface conditions strongly influence the physical structure and resulting optical properties of self-assembled quantum dots (QDs). Beyond the design of a desired active optical wavelength, the polarization response of QDs is of particular interest for optical communications and quantum information science. Previous theoretical studies based on a pure InAs QD model failed to reproduce experimentally observed polarization properties. In this work, multi-million atom simulations are performed in an effort to understand the correlation between chemical composition and polarization properties of QDs. A systematic analysis of QD structural parameters leads us to propose a two-layer composition model, mimicking In segregation and In-Ga intermixing effects. This model, consistent with mostly accepted compositional findings, allows us to accurately fit the experimental PL spectra. The detailed study of QD morphology parameters presented here serves as a tool for using growth dynamics to engineer the strain field inside and around the QD structures, allowing tuning of the polarization response.
NASA Astrophysics Data System (ADS)
Koc, Fatih; Sahin, Mehmet
2014-05-01
In this study, a detailed investigation of the electronic and optical properties (i.e., binding energies, absorption wavelength, overlap of the electron-hole wave functions, recombination oscillator strength, etc.) of an exciton and a biexciton in CdTe/CdSe core/shell type-II quantum dot heterostructures has been carried out in the frame of the single band effective mass approximation. In order to determine the electronic properties, we have self-consistently solved the Poisson-Schrödinger equations in the Hartree approximation. We have considered all probable Coulomb interaction effects on both energy levels and also on the corresponding wave functions for both single exciton and biexciton. In addition, we have taken into account the quantum mechanical exchange-correlation effects in the local density approximation between same kinds of particles for biexciton. Also, we have examined the effect of the ligands and dielectric mismatch on the electronic and optical properties. We have used a different approximation proposed by Sahin and Koc [Appl. Phys. Lett. 102, 183103 (2013)] for the recombination oscillator strength of the biexciton for bound and unbound cases. The results obtained have been presented comparatively as a function of the shell thicknesses and probable physical reasons in behind of the results have been discussed in a detail.
Ab initio quantum Monte Carlo calculations of ground-state properties of manganese's oxides
NASA Astrophysics Data System (ADS)
Sharma, Vinit; Krogel, Jaron T.; Kent, P. R. C.; Reboredo, Fernando A.
One of the critical scientific challenges of contemporary research is to obtain an accurate theoretical description of the electronic properties of strongly correlated systems such as transition metal oxides and rare-earth compounds, since state-of-art ab-initio methods based on approximate density functionals are not always sufficiently accurate. Quantum Monte Carlo (QMC) methods, which use statistical sampling to evaluate many-body wave functions, have the potential to answer this challenge. Owing to the few fundamental approximations made and the direct treatment of electron correlation, QMC methods are among the most accurate electronic structure methods available to date. We assess the accuracy of the diffusion Monte Carlo method in the case of rocksalt manganese oxide (MnO). We study the electronic properties of this strongly-correlated oxide, which has been identified as a suitable candidate for many applications ranging from catalysts to electronic devices. ``This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.'' Ab initio quantum Monte Carlo calculations of ground-state properties of manganese's oxides.
NASA Astrophysics Data System (ADS)
Zuo, Wenbin; Tang, Libin; Xiang, Jinzhong; Ji, Rongbin; Luo, Lin; Rogée, Lukas; Ping Lau, Shu
2017-05-01
Graphene quantum dots (GQDs) possess unique photoelectronic properties ascribed to quantum confinement and edge effects, which have evoked important development and wide application in the optoelectronic field. Doping GQDs with heteroatoms can further modulate the energy band structure and thus produce unexpected properties. Herein, we obtained fluorine-doped GQDs (F-GQDs) by adopting an effective preparation technique, which includes the treatment of the as-prepared reaction precursor, fluorinated carbon fibers, with ultrasonic liquid phase exfoliation. The proposed method is simple, handy, and low-cost, opening up an alternate approach to prepare F-GQDs. Through multiple characterization techniques, the effective incorporation of fluorine in GQDs was confirmed, and the as-prepared F-GQDs exhibit excellent photoelectrical properties and good ultraviolet absorption performances. Accordingly, we have fabricated a vertical photovoltaic UV detector based on F-GQDs. The unoptimized device has an exceptionally large ratio of photocurrent to dark current of magnitude ˜105, and its detectivity (D*) could stabilize at around 1012 Jones at room temperature under λ = 365 nm light irradiation and reverse bias voltage.
Plasmonic fluorescent quantum dots
Jin, Yongdong
2009-01-01
Combining multiple discrete components into a single multifunctional nanoparticle could be useful in a variety of applications. Retaining the unique optical and electrical properties of each component after nanoscale integration is, however, a long-standing problem1,2. It is particularly difficult when trying to combine fluorophores such as semiconductor quantum dots with plasmonic materials such as gold, because gold and other metals can quench the fluorescence3,4. So far, the combination of quantum dot fluorescence with plasmonically active gold has only been demonstrated on flat surfaces5. Here, we combine fluorescent and plasmonic activities in a single nanoparticle by controlling the spacing between a quantum dot core and an ultrathin gold shell with nanometre precision through layer-by-layer assembly. Our wet-chemistry approach provides a general route for the deposition of ultrathin gold layers onto virtually any discrete nanostructure or continuous surface, and should prove useful for multimodal bioimaging6, interfacing with biological systems7, reducing nanotoxicity8, modulating electromagnetic fields5 and contacting nanostructures9,10. PMID:19734929
NASA Astrophysics Data System (ADS)
Sin, Yongkun; LaLumondiere, Stephen; DeIonno, Erica; Foran, Brendan; Presser, Nathan; Lotshaw, William; Moss, Steven C.
2014-03-01
A number of groups have studied reliability and degradation processes in GaAs-based lasers, but none of these studies have yielded a reliability model based on the physics of failure. Unsuccessful development of this model originates from the facts that: (i) defects related phenomena responsible for degradation in GaAs-based lasers are difficult to study due to the lack of suitable non-destructive techniques and (ii) degradation process occurs extremely fast after a long period of latency. Therefore, most of laser diode manufacturers perform accelerated multi-cell lifetests to estimate lifetimes of lasers using an empirical model, but this approach is a concern especially for satellite communication systems where high reliability is required of lasers for long-term duration in the space environment. Since it is a challenge to control defects introduced during the growth of laser structures, we studied degradation processes in broad-area InGaAs-AlGaAs strained quantum well (QW) lasers with intrinsic defects as well as those with defects introduced via proton irradiation. For the present study, we investigated the root causes of catastrophic degradation processes in MOCVD-grown broad-area InGaAs-AlGaAs strained QW lasers using various failure mode analysis techniques. A number of lasers were proton irradiated with different energies and fluences. We also studied GaAs double heterostructure (DH) test samples with different amounts of intrinsic defects introduced during MOCVD growth. These samples were proton irradiated as well to introduce additional defects. Deep level transient spectroscopy (DLTS) and time resolved photoluminescence (TR-PL) techniques were employed to study traps (due to point defects) and non-radiative recombination centers (NRCs) in pre- and poststressed lasers, respectively. These characteristics were compared with those in pre- and post-proton irradiated lasers and DHs to study the role that defects and NRCs play in catastrophic degradation
Advanced Technology for Improved Quantum Device Properties Using Highly Strained Materials
1991-03-01
Improved Quantum PE 61153N Device Properties Using Highly Strained Materials PE 1401N~R&T 414s 001-02 IN G. AUTHOR(S) (William J. Schaff , S.D. Offsey and...DECEMBER 15, 1989 CORNELL UNIVERSITY.......................... ITHACA, NY 14853-5401 PREPARED BY: WJ. Schaff ........ S.D. Offsey I - L.F. Eastman D ’’. i...Mandeville, R. Saito, P.J. Tasker, W.J. Schaff and L.F. Eastman, 12th IEEE/Comell Conference on’Advanced Concepts in High Speed Semiconductor Devices
The electronic properties of concentric double quantum ring and possibility designing XOR gate
NASA Astrophysics Data System (ADS)
AL-Badry, Lafy. F.
2017-03-01
In this paper I have investigated the Aharonov-Bohm oscillation in concentric double quantum ring. The outer ring attached to leads while the inner ring only tunnel-coupled to the outer ring. The effect of inner ring on electron transport properties through outer ring studied and found that the conductance spectrum consists of two types of oscillations. One is the normal Aharonov-Bohm oscillation, and other is a small oscillations superposed above AB oscillation. The AB oscillation utilized to designing nanoscale XOR gate by choosing the magnetic flux and tuning the gate voltages which realization XOR gate action.
Spectral properties of a double-quantum-dot structure: A causal Green's function approach
NASA Astrophysics Data System (ADS)
You, J. Q.; Zheng, Hou-Zhi
1999-09-01
Spectral properties of a double quantum dot (QD) structure are studied by a causal Green's function (GF) approach. The double QD system is modeled by an Anderson-type Hamiltonian in which both the intra- and interdot Coulomb interactions are taken into account. The GF's are derived by an equation-of-motion method and the real-space renormalization-group technique. The numerical results show that the average occupation number of electrons in the QD exhibits staircase features and the local density of states depends appreciably on the electron occupation of the dot.
Relativistic (SR-ZORA) quantum theory of atoms in molecules properties.
Anderson, James S M; Rodríguez, Juan I; Ayers, Paul W; Götz, Andreas W
2017-01-15
The Quantum Theory of Atoms in Molecules (QTAIM) is used to elucidate the effects of relativity on chemical systems. To do this, molecules are studied using density-functional theory at both the nonrelativistic level and using the scalar relativistic zeroth-order regular approximation. Relativistic effects on the QTAIM properties and topology of the electron density can be significant for chemical systems with heavy atoms. It is important, therefore, to use the appropriate relativistic treatment of QTAIM (Anderson and Ayers, J. Phys. Chem. 2009, 115, 13001) when treating systems with heavy atoms. © 2016 Wiley Periodicals, Inc.
Liu, Chunyu; Chang, Kaiwen; Guo, Wenbin E-mail: chenwy@jlu.edu.cn Li, Hao; Shen, Liang; Chen, Weiyou E-mail: chenwy@jlu.edu.cn; Yan, Dawei E-mail: chenwy@jlu.edu.cn
2014-08-18
Carbon quantum dots (Cdots) are synthesized by a simple method and introduced into active layer of polymer solar cells (PSCs). The performance of doped devices was apparently improved, and the highest power conversion efficiency of 7.05% was obtained, corresponding to a 28.2% enhancement compared with that of the contrast device. The charge transport properties, resistance, impedance, and transient absorption spectrum are systematically investigated to explore how the Cdots affect on PSCs performance. This study reveals the importance of Cdots in enhancing the efficiency of PSCs and gives insight into the mechanism of charge transport improvement.
Study of the nonlinear optical properties of CdS quantum dots in phosphate glass
NASA Astrophysics Data System (ADS)
De Souza, J. M.; Pilla, V.; Messias, D. N.; Silva, A. C. A.; Dantas, N. O.; Andrade, A. A.
2017-02-01
The aim of this work is the use of the Z-scan technique to determine the nonlinear refraction and nonlinear absorption of phosphate glass doped with CdS. This glass matrix, termed as PANK (P2O5-Al2O3-Na2O-K2O), was doped with 1, 2 and 3 % of CdS concentration. The quantum dots (QDs) are materials extensively investigated in the last years for their special physical properties associated to discrete energetic levels.
Optical Properties of a Quantum Dot-Ring System Grown Using Droplet Epitaxy.
Linares-García, Gabriel; Meza-Montes, Lilia; Stinaff, Eric; Alsolamy, S M; Ware, M E; Mazur, Y I; Wang, Z M; Lee, Jihoon; Salamo, G J
2016-12-01
Electronic and optical properties of InAs/GaAs nanostructures grown by the droplet epitaxy method are studied. Carrier states were determined by k · p theory including effects of strain and In gradient concentration for a model geometry. Wavefunctions are highly localized in the dots. Coulomb and exchange interactions are studied and we found the system is in the strong confinement regime. Microphotoluminescence spectra and lifetimes were calculated and compared with measurements performed on a set of quantum rings in a single sample. Some features of spectra are in good agreement.
Cosmin Obreja, Alexandru; Cristea, Dana; Radoi, Antonio; Gavrila, Raluca; Comanescu, Florin; Kusko, Cristian; Mihalache, Iuliana
2014-08-25
We show that graphene quantum dots (GQD) embedded in a semiconducting poly(3-hexylthiophene) polymeric matrix act as charge trapping nanomaterials. In plane current-voltage (I-V) measurements of thin films realized from this nanocomposite deposited on gold interdigitated electrodes revealed that the GQD enhanced dramatically the hole transport. I-V characteristics exhibited a strong nonlinear behavior and a pinched hysteresis loop, a signature of a memristive response. The transport properties of this nanocomposite were explained in terms of a trap controlled space charge limited current mechanism.
Electronic properties of substitutional impurities in InGaN monolayer quantum wells
Alfieri, G.; Tsutsumi, T.; Micheletto, R.
2015-05-11
InGaN alloys and, in particular, InGaN monolayer quantum wells (MLQWs) are attracting an increasing amount of interest for opto-electronic applications. Impurities, incorporated during growth, can introduce electronic states that can degrade the performance of such devices. For this reason, we present a density functional and group theoretical study of the electronic properties of C, H, or O impurities in an InGaN MLQW. Analysis of the formation energy and symmetry reveals that these impurities are mostly donors and can be held accountable for the reported degradation of InGaN-based devices.
NASA Astrophysics Data System (ADS)
Eftekhari, F.; Tavassoly, M. K.
In this paper, we will present a general formalism for constructing the nonlinear charge coherent states which in special case lead to the standard charge coherent states. The suQ(1, 1) algebra as a nonlinear deformed algebra realization of the introduced states is established. In addition, the corresponding even and odd nonlinear charge coherent states have also been introduced. The formalism has the potentiality to be applied to systems either with known "nonlinearity function" f(n) or solvable quantum system with known "discrete nondegenerate spectrum" en. As some physical appearances, a few known physical systems in the two mentioned categories have been considered. Finally, since the construction of nonclassical states is a central topic of quantum optics, nonclassical features and quantum statistical properties of the introduced states have been investigated by evaluating single- and two-mode squeezing, su(1, 1)-squeezing, Mandel parameter and antibunching effect (via g-correlation function) as well as some of their generalized forms we have introduced in the present paper.
Growth and properties of Hg-based quantum well structures and superlattices
NASA Technical Reports Server (NTRS)
Schetzina, J. F.
1990-01-01
An overview of the properties of HgTe-CdTe quantum well structures and superlattices (SL) is presented. These new quantum structures are candidates for use as new long wavelength infrared (LWIR) and very long wavelength infrared (VLWIR) detectors, as well as for other optoelectronic applications. Much has been learned within the past two years about the physics of such structures. The valence band offset has been determined to be approx. 350 meV, independent of temperature. The occurrence of electron and hole mobilities in excess of 10(exp 5)cm(exp 2)/V center dot s is now understood on the basis of SL band structure calculations. The in-plane and out-of-plane electron and hole effective masses have been measured and interpreted theoretically for HgTe-CdTe superlattices. Controlled substitutional doping of superlattices has recently been achieved at North Carolina State University (NCSU), and modulation-doped SLs have now been successfully grown and studied. Most recently, a dramatic lowering of the growth temperature of Hg-based quantum well structure and SLs (to approx. 100 C) has been achieved by means of photoassisted molecular beam epitaxy (MBE) at NCSU. A number of new devices have been fabricated from these doped multilayers.
Kolasinska-Sojka, Marta; Wlodek, Magdalena; Szuwarzynski, Michal; Kereiche, Sami; Kovacik, Lubomir; Warszynski, Piotr
2017-07-23
The formation and properties of supported lipid bilayers (SLB) containing hydrophobic nanoparticles (NP) was studied in relation to underlying cushion obtained from selected polyelectrolyte multilayers. Lipid vesicles were formed from zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and negatively charged 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) in phosphate buffer (PBS). As hydrophobic nanoparticles - quantum dots (QD) with size of 3.8nm (emission wavelength of 420nm) were used. Polyelectrolyte multilayers (PEM) were constructed by the sequential, i.e., layer-by-layer (LbL) adsorption of alternately charged polyelectrolytes from their solutions. Liposomes and Liposome-QDs complexes were studied with Transmission Cryo-Electron Microscopy (Cryo-TEM) to verify the quality of vesicles and the position of QD within lipid bilayer. Deposition of liposomes and liposomes with quantum dots on polyelectrolyte films was studied in situ using quartz crystal microbalance with dissipation (QCM-D) technique. The fluorescence emission spectra were analyzed for both: suspension of liposomes with nanoparticles and for supported lipid bilayers containing QD on PEM. It was demonstrated that quantum dots are located in the hydrophobic part of lipid bilayer. Moreover, we proved that such QD-modified liposomes formed supported lipid bilayers and their final structure depended on the type of underlying cushion. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Schreck, M.
2014-10-01
In the current paper the properties of a quantum field theory based on certain sets of Lorentz-violating coefficients in the nonminimal fermion sector of the Standard Model extension are analyzed. In particular, three families of coefficients are considered, where two of them are C P T even and the third is C P T odd. As a first step the modified fermion dispersion relations are obtained. Then the positive- and negative-energy solutions of the modified Dirac equation and the fermion propagator are derived. These are used to demonstrate the validity of the optical theorem at tree level, which provides a cross-check for the results obtained. Furthermore unitarity is examined and seems to be valid for the first set of C P T -even coefficients. However for the remaining sets certain issues with unitarity are found. The article demonstrates that the adapted quantum field theoretical methods at tree level work for the nonminimal, Lorentz-violating framework considered. Besides, the quantum field theory based on the first family of C P T -even coefficients is most likely well behaved at lowest order perturbation theory. The results are important for future phenomenological investigations carried out in the context of field theory, e.g., the computation of decay rates and cross sections at tree level.
Steinke, S. K.; Meystre, P.
2011-08-15
We analyze a detailed model of a Bose-Einstein condensate (BEC) trapped in a ring optical resonator and contrast its classical and quantum properties to those of a Fabry-Perot geometry. The inclusion of two counterpropagating light fields and three matter field modes leads to important differences between the two situations. Specifically, we identify an experimentally realizable region where the system's behavior differs strongly from that of a BEC in a Fabry-Perot cavity, and also where quantum corrections become significant. The classical dynamics are rich, and near bifurcation points in the mean-field classical system, the quantum fluctuations have a major impact on the system's dynamics.
Growth, structural, and optical properties of self-assembled (In,Ga)as quantum posts on GaAs.
He, J; Krenner, H J; Pryor, C; Zhang, J P; Wu, Y; Allen, D G; Morris, C M; Sherwin, M S; Petroff, P M
2007-03-01
Self-assembled quantum dots embedded in semiconductor heterostructures have proved to be a rich system for exploring the physics of three dimensionally confined charges and excitons. We present here a novel structure, which allows adjusting the level of confinement between 3D and 2D for electrons and holes, respectively. The quantum post consists of a quantum dot connected to a short quantum wire. The molecular beam epitaxy deposition of these self-assembled structures is discussed, and their structural and chemical compositions are presented. Their optical properties measured by photoluminescence are compared to an eight-band strain-dependent k.p model incorporating detailed structure and alloy composition. The calculations show electron delocalization in the quantum wire part of the quantum post and hole localization in the strain-induced regions at the ends of the quantum post. The quantum post offers the possibility of controlling the dipole moment in the structure and opens up new means for tuning the intra-subband transitions by controlling its dimensions.
Multimode waveguide speckle patterns for compressive sensing.
Valley, George C; Sefler, George A; Justin Shaw, T
2016-06-01
Compressive sensing (CS) of sparse gigahertz-band RF signals using microwave photonics may achieve better performances with smaller size, weight, and power than electronic CS or conventional Nyquist rate sampling. The critical element in a CS system is the device that produces the CS measurement matrix (MM). We show that passive speckle patterns in multimode waveguides potentially provide excellent MMs for CS. We measure and calculate the MM for a multimode fiber and perform simulations using this MM in a CS system. We show that the speckle MM exhibits the sharp phase transition and coherence properties needed for CS and that these properties are similar to those of a sub-Gaussian MM with the same mean and standard deviation. We calculate the MM for a multimode planar waveguide and find dimensions of the planar guide that give a speckle MM with a performance similar to that of the multimode fiber. The CS simulations show that all measured and calculated speckle MMs exhibit a robust performance with equal amplitude signals that are sparse in time, in frequency, and in wavelets (Haar wavelet transform). The planar waveguide results indicate a path to a microwave photonic integrated circuit for measuring sparse gigahertz-band RF signals using CS.
Kemény, Ferenc; Meier, Beat
2016-02-01
While sequence learning research models complex phenomena, previous studies have mostly focused on unimodal sequences. The goal of the current experiment is to put implicit sequence learning into a multimodal context: to test whether it can operate across different modalities. We used the Task Sequence Learning paradigm to test whether sequence learning varies across modalities, and whether participants are able to learn multimodal sequences. Our results show that implicit sequence learning is very similar regardless of the source modality. However, the presence of correlated task and response sequences was required for learning to take place. The experiment provides new evidence for implicit sequence learning of abstract conceptual representations. In general, the results suggest that correlated sequences are necessary for implicit sequence learning to occur. Moreover, they show that elements from different modalities can be automatically integrated into one unitary multimodal sequence.
Bakalova, Rumiana; Zhelev, Zhivko; Kokuryo, Daisuke; Spasov, Lubomir; Aoki, Ichio; Saga, Tsuneo
2011-01-01
Background: One of the most attractive properties of quantum dots is their potential to extend the opportunities for fluorescent and multimodal imaging in vivo. The aim of the present study was to clarify whether the composition and structure of organic coating of nanoparticles are crucial for their application in vivo. Methods: We compared quantum dots coated with non-crosslinked amino-functionalized polyamidoamine (PAMAM) dendrimers, quantum dots encapsulated in crosslinked carboxyl-functionalized PAMAM dendrimers, and silica-shelled amino-functionalized quantum dots. A multimodal fluorescent and paramagnetic quantum dot probe was also developed and analyzed. The probes were applied intravenously in anesthetized animals for visualization of brain vasculature using two-photon excited fluorescent microscopy and visualization of tumors using fluorescent IVIS® imaging (Caliper Life Sciences, Hopkinton, MA) and magnetic resonance imaging. Results: Quantum dots coated with non-crosslinked dendrimers were cytotoxic. They induced side effects in vivo, including vasodilatation with a decrease in mean arterial blood pressure and heart rate. The quantum dots penetrated the vessels, which caused the quality of fluorescent imaging to deteriorate. Quantum dots encapsulated in crosslinked dendrimers had low cytotoxicity and were biocompatible. In concentrations <0.3 nmol quantum dots/kg bodyweight, these nanoparticles did not affect blood pressure and heart rate, and did not induce vasodilatation or vasoconstriction. PEGylation (PEG [polyethylene glycol]) was an indispensable step in development of a quantum dot probe for in vivo imaging, based on silica-shelled quantum dots. The non-PEGylated silica-shelled quantum dots possessed low colloidal stability in high-salt physiological fluids, accompanied by rapid aggregation in vivo. The conjugation of silica-shelled quantum dots with PEG1100 increased their stability and half-life in the circulation without significant
Quantum statistics of optical parametric processes with squeezed reservoirs
NASA Astrophysics Data System (ADS)
Peřina, Jan; Křepelka, Jaromír
2013-11-01
Quantum statistics including joint photon-number and integrated-intensity probability distributions are derived in time evolution of general optical parametric process involving processes of frequency conversion, parametric amplification and subharmonic generation taking into account losses and noise described by squeezed reservoirs. Using these tools quantum entanglement of modes is considered and the other nonclassical properties of the process under discussion are demonstrated by means of conditional probability distributions and their Fano factors, difference-number probability distributions, quantum oscillations, squeezing of vacuum fluctuations and negative values of the joint and difference wave probability quasidistributions. Nonclassical properties are illustrated for spontaneous process as well as stimulated process by means of chaotic light and squeezed vacuum field. Multimode processes are investigated in the spirit of the Mandel-Rice photocount formula.
Statistical properties of spectral fluctuations for a quantum system with infinitely many components
NASA Astrophysics Data System (ADS)
Makino, H.; Minami, N.; Tasaki, S.
2009-03-01
Extending the idea formulated in Makino [Phys. Rev. E 67, 066205 (2003)], that is based on the Berry-Robnik approach [M. V. Berry and M. Robnik, J. Phys. A 17, 2413 (1984)], we investigate the statistical properties of a two-point spectral correlation for a classically integrable quantum system. The eigenenergy sequence of this system is regarded as a superposition of infinitely many independent components in the semiclassical limit. We derive the level number variance (LNV) in the limit of infinitely many components and discuss its deviations from Poisson statistics. The slope of the limiting LNV is found to be larger than that of Poisson statistics when the individual components have a certain accumulation. This property agrees with the result from the semiclassical periodic-orbit theory that is applied to a system with degenerate torus actions [D. Biswas, M. Azam, and S. V. Lawande, Phys. Rev. A 43, 5694 (1991)].
Tuning optical properties of water-soluble CdTe quantum dots for biological applications
NASA Astrophysics Data System (ADS)
Schulze, Anne S.; Tavernaro, Isabella; Machka, Friederike; Dakischew, Olga; Lips, Katrin S.; Wickleder, Mathias S.
2017-02-01
In this study, two different synthetic methods in aqueous solution are presented to tune the optical properties of CdTe and CdSe semiconductor nanoparticles. Additionally, the influence of different temperatures, pressures, precursor ratios, surface ligands, bases, and core components in the synthesis was investigated with regard to the particle sizes and optical properties. As a result, a red shift of the emission and absorption maxima with increasing reaction temperature (100 to 220°C), pressure (1 to 25 bar), and different ratios of core components of alloyed semiconductor nanoparticles could be observed without a change of the particle size. An increase in particle size from 2.5 to 5 nm was only achieved by variation of the mercaptocarboxylic acid ligands in combination with the reaction time and used base. To get a first hint on the cytotoxic effects and cell uptake of the synthesized quantum dots, in vitro tests mesenchymal stem cells (MSCs) were carried out.
Solookinejad, G.; Panahi, M.; Sangachin, E. A.; Asadpour, S. H. E-mail: S.Hosein.Asadpour@miau.ac.ir
2016-12-15
The transmission and reflection properties of incident light in a defect dielectric structure is studied theoretically. The defect structure consists of donor and acceptor quantum dot nanostructures embedded in a photonic crystal. It is shown that the transmission and reflection properties of incident light can be controlled by adjusting the corresponding parameters of the system. The role of dipole–dipole interaction is considered as a new parameter in our calculations. It is noted that the features of transmission and reflection curves can be adjusted in the presence of dipole–dipole interaction. It is found that the absorption of weak probe light can be converted to the probe amplification in the presence of dipole–dipole interaction. Moreover, the group velocity of transmitted and reflected probe light is discussed in detail in the absence and presence of dipole–dipole interaction. Our proposed model can be used as a new all-optical devices based on photonic materials doped with nanoparticles.
Variational quantum Monte Carlo calculation of the cohesive properties of cubic boron nitride
Malatesta, A.; Fahy, S.; Bachelet, G.B.
1997-11-01
The cohesive properties of cubic boron nitride are calculated using the variational quantum Monte Carlo approach. The calculated properties are found to be in good agreement with experiment and demonstrate the effectiveness of the variational forms of wave functions previously used in sp-bonded systems involving only one chemical species when applied to solids with more than one type of atom. The formulation of variance minimization for the one-body term in solids without inversion symmetry is presented, and a particularly simple form of one-body term based on a charge-fluctuation picture of electron correlation is shown to obtain excellent results for ground-state energies of B, C, and N atoms, and for the cubic boron nitride solid. {copyright} {ital 1997} {ital The American Physical Society}
Quantum Monte Carlo study of the electric properties of a ferroelectric superlattice
NASA Astrophysics Data System (ADS)
Feraoun, A.; Zaim, A.; Kerouad, M.
2016-12-01
By using quantum Monte Carlo (MC) simulation, the electric properties of an Ising spin superlattice formed by two ferroelectric slabs A and B with an antiferroelectric interfacial coupling was studied within the framework of the Transverse Ising Model (TIM). We have examined the effects of the temperature T and the transverse field Ω on the polarization properties. We have also examined the effects of the interfacial coupling JAB, T, and Ω on the hysteresis behavior. Our results are in good agreement with the previous theoretical results; we have found that the critical temperature Tc and the critical transverse field Ωc decrease with the increase of Ω and T respectively. In addition one or triple hysteresis loops can appear in the present system.
Electrical properties of individual self-assembled GeSi quantum rings
NASA Astrophysics Data System (ADS)
Zhang, Shengli; Lv, Yi; Jiang, Zuimin; Yang, Xinju
2011-11-01
The nanoscale electrical properties of self-assembled GeSi quantum rings (QRs) were investigated by conductive scanning probe microscopy at room temperature. The current distribution of individual GeSi QRs measured by conductive atomic force microscopy (CAFM) shows a low conductivity at the central hole as compared to the rim; however, the QRs' composition distribution obtained by selective chemical etching combined with AFM observation reveals that within the QRs' central holes, the Ge content is high, which should lead to a high conductivity instead of a low one as observed. Together with the results obtained by scanning capacitance microscopy (SCM) and electrostatic force microscopy (EFM), it is supposed that the GeSi QRs' electrical properties are mainly determined by the ring-shaped topography, rather than by the complete oxidation of the QRs' central hole or their composition distributions.
Multimodality imaging techniques.
Martí-Bonmatí, Luis; Sopena, Ramón; Bartumeus, Paula; Sopena, Pablo
2010-01-01
In multimodality imaging, the need to combine morphofunctional information can be approached by either acquiring images at different times (asynchronous), and fused them through digital image manipulation techniques or simultaneously acquiring images (synchronous) and merging them automatically. The asynchronous post-processing solution presents various constraints, mainly conditioned by the different positioning of the patient in the two scans acquired at different times in separated machines. The best solution to achieve consistency in time and space is obtained by the synchronous image acquisition. There are many multimodal technologies in molecular imaging. In this review we will focus on those multimodality image techniques more commonly used in the field of diagnostic imaging (SPECT-CT, PET-CT) and new developments (as PET-MR). The technological innovations and development of new tracers and smart probes are the main key points that will condition multimodality image and diagnostic imaging professionals' future. Although SPECT-CT and PET-CT are standard in most clinical scenarios, MR imaging has some advantages, providing excellent soft-tissue contrast and multidimensional functional, structural and morphological information. The next frontier is to develop efficient detectors and electronics systems capable of detecting two modality signals at the same time. Not only PET-MR but also MR-US or optic-PET will be introduced in clinical scenarios. Even more, MR diffusion-weighted, pharmacokinetic imaging, spectroscopy or functional BOLD imaging will merge with PET tracers to further increase molecular imaging as a relevant medical discipline. Multimodality imaging techniques will play a leading role in relevant clinical applications. The development of new diagnostic imaging research areas, mainly in the field of oncology, cardiology and neuropsychiatry, will impact the way medicine is performed today. Both clinical and experimental multimodality studies, in
Electronic and magneto-optical properties of monolayer phosphorene quantum dots
NASA Astrophysics Data System (ADS)
Zhang, Rui; Zhou, X. Y.; Zhang, D.; Lou, W. K.; Zhai, F.; Chang, Kai
2015-12-01
We theoretically investigate the electronic and magneto-optical properties of rectangular, hexangular, and triangular monolayer phosphorene quantum dots (MPQDs) utilizing the tight-binding method. The electronic states, density of states, electronic density distribution, and Laudau levels as well as the optical absorption spectrum are calculated numerically. Our calculations show that: (1) edge states appear in the band gap in all kinds of MPQDs regardless of their shapes and edge configurations due to the anisotropic electron hopping in monolayer phosphorene (MLP). The charge density of any edge state is only localized in specific edges of a MPQD, which is distinct from that in graphene quantum dots; (2) the magnetic levels of MPQDs exhibit a Hofstadter-butterfly spectrum and approach the Landau levels of MLP as the magnetic field increases. A ‘flat band’ appears in the magneto-energy spectrum which is totally different from that of MLP; (3) the electronic and optical properties can be tuned by the dot size, the types of boundary edges and the external magnetic field.
NASA Astrophysics Data System (ADS)
Schreck, M.
2014-05-01
In the context of the nonminimal Standard Model extension a special subset of the CPT-even higher-dimensional operators in the photon sector is discussed from a quantum field theoretical point of view. The modified dispersion laws, photon polarization vectors and the gauge field propagator are obtained and their properties are analyzed. It is demonstrated that for certain sectors of the modified theory a puzzle arises for the optical theorem at tree level. This is followed by a discussion of how it can be interpreted and resolved at first order Lorentz violation. Furthermore the commutator of two gauge fields that are evaluated at different spacetime points is obtained and discussed. The structure of the theory is shown to resemble the structure of the modification based on the corresponding dimension-4 operator. However some properties are altered due to the nonrenormalizable nature of the theory considered. The results provide more insight into the characteristics of Lorentz-violating quantum field theories that rest upon contributions of nonrenormalizable dimension.
Growth and Optical Properties of Al rich AlN/AlGaN Quantum Wells
NASA Astrophysics Data System (ADS)
Tahtamouni, T. M. Al; Nepal, N.; Nakarmi, M. L.; Lin, J. Y.; Jiang, H. X.
2006-03-01
Al rich AlGaN alloys are promising materials for the applications in the optoelectronic devices such as deep ultraviolet (UV) emitters and detectors in the spectral range down to 200 nm. AlGaN based UV emitters (λ<340nm) has applications in bio-chemical agent detection and medical research/ health care. To realize deep UV emission (λ< 280 nm) Al rich AlGaN based quantum wells (QWs) are required. We report here the growth of AlN/AlxGa1-xNQWs (x>0.65) on AlN/sapphire templates by metalorganic chemical vapor deposition (MOCVD). Deep UV photoluminescence (PL) was employed to study the optical properties of the QWs. Well width (Al composition) dependence was studied by varying the QW thickness (Al composition) with fixed x ˜ 0.65 (well width at 3 nm). Optical properties of these QWs such as the effects of alloy fluctuation, temperature, strain and piezoelectric field, carrier and exciton localizations on the quantum efficiency have been studied. Carrier and exciton dynamics were probed. Implications of our findings on the applications of Al rich AlN/AlGaN QWs for UV emitters and detectors will also be discussed.
The effect of Coulomb interactions on thermoelectric properties of quantum dots
NASA Astrophysics Data System (ADS)
Zimbovskaya, Natalya; Kuzmin, Valery
2014-03-01
Thermoelectric effects in a quantum dot coupled to the source and drain charge reservoirs are explored using a nonequilibrium Green's functions formalism beyond the Hartree-Fock approxomation. We concentrate on theoretical analysis of the influence of Coulomb interactions on thermopower and the figure of merit ZT . Obtained results show that Coulomb interactions between charge carriers on the dot significantly contribute to its thermoelectric properties. In the present work, we trace the transition from the Coulomb blockade regime to Kondo regime in the thermoelectric properties of the quantum dot which occurs when we gradually strengthen the coupling of the dot to the charge reservoirs. We show that within the Coulomb blockade regime (when the coupling of the dot to the leads is weak compared to the characteristic strength of the charge carriers interactions) thermoelectric characteristics of the dot display distinct features caused by Coulomb interactions. These features indicate possibilities of enhancement of thermoelectric efficiency of the considered systems. Within the Kondo regime, when the couplings of the dot to the leads became stronger, the influence of Coulomb interactions declines bringing a decrease in the the thermoelectric efficiency.
Observation of the quantum paradox of separation of a single photon from one of its properties
NASA Astrophysics Data System (ADS)
Ashby, James M.; Schwarz, Peter D.; Schlosshauer, Maximilian
2016-07-01
We report an experimental realization of the quantum paradox of the separation of a single photon from one of its properties (the so-called "quantum Cheshire cat"). We use a modified Sagnac interferometer with displaced paths to produce appropriately pre- and postselected states of heralded single photons. Weak measurements of photon presence and circular polarization are performed in each arm of the interferometer by introducing weak absorbers and small polarization rotations and analyzing changes in the postselected signal. The absorber is found to have an appreciable effect only in one arm of the interferometer, while the polarization rotation significantly affects the signal only when performed in the other arm. We carry out both sequential and simultaneous weak measurements and find good agreement between measured and predicted weak values. In the language of Aharonov et al. and in the sense of the ensemble averages described by weak values, the experiment establishes the separation of a particle from one its properties during the passage through the interferometer.
NASA Astrophysics Data System (ADS)
Bejan, D.
2017-02-01
The effects of exciton and electric field on the nonlinear optical properties, such as refraction index change, optical absorption coefficient and optical rectification of semiparabolic one-dimensional quantum dot, were theoretically investigated. The energy eigenvalues and eigenfunctions are calculated numerically within the effective mass approximation for a typical GaAs/ Al0.3Ga0.7 As quantum dot, for the cases where there is an exciton or a single electron/hole in the structure. Optical properties are obtained using the compact density matrix approach and steady state solutions. Our results show that: i) if the increasing electric field is oriented along the growth direction, the refractive index change structure and the resonance peaks of the absorption coefficient and optical rectification present a blue shift and are weakened for exciton and electron systems but have a red shift and are strengthened for the hole system; ii) when the field, oriented against the growth direction, augments, the above optical parameters present a red shift and are increased for exciton and electron systems but have a blue shift and are lowered for the hole system; iii) the exciton presence in the structure enhances the amplitude of the resonant peaks of all optical parameters even at zero electric field.
Photo-physical properties enhancement of bare and core-shell quantum dots
Mumin, Md Abdul Akhter, Kazi Farida Charpentier, Paul A.
2014-03-31
Semiconductor nanocrystals (NCs) (also known as quantum dots, QDs) have attracted immense attention for their size-tunable optical properties that makes them impressive candidates for solar cells, light emitting devices, lasers, as well as biomedical imaging. However monodispersity, high and consistent photoluminescence, photostability, and biocompatibility are still major challenges. This work focuses on optimizing the photophysical properties and biocompatibility of QDs by forming core-shell nanostructures and their encapsulation by a carrier. Highly luminescent CdS and CdS-ZnS core-shell QDs with 5 nm sizes were synthesized using a facile approach based on pyrolysis of the single molecule precursors. After capping the CdS QDs with a thin layer of ZnS to reduce toxicity, the photoluminescence and photostability of the core-shell QDs was significantly enhanced. To make both the bare and core/shell structure QDs more resistant against photochemical reactions, a mesoporous silica layer was grown on the QDs through a reverse microemulsion technique based on hydrophobic interaction. This encapsulation enhanced the quantum yield and photostability compared to the bare QDs by providing much stronger resistance to oxidation and Oswald ripening of QDs. Encapsulation also improved biocompatibility of QDs that was evaluated with human umbilical vein endothelial cell lines (HUVEC)
Quantum simulation of structure, transport properties, and melting in dense hydrogen
NASA Astrophysics Data System (ADS)
Kang, Dongdong; Dai, Jiayu; Yuan, Jianmin
2016-10-01
Due to the low mass, hydrogen exhibits significant nuclear quantum effects (NQEs), especially under low temperatures and high pressures. NQEs on structure and transport properties of dense liquid hydrogen under extreme conditions are investigated using the improved centroid path integral molecular dynamics (PIMD) simulations. The results show that with the inclusion of NQEs, the radial distribution functions are obviously broadened. The self-diffusion is largely higher while the shear viscosity is notably lower than the results of without the inclusion of NQEs due to the lower collision cross sections even when the NQEs have little effects on the static structures. The electrical conductivity is also significantly affected by NQEs. Quantum nuclear character induces complex behaviors for ionic transport properties of dense liquid hydrogen. In addition, the melting temperature of dense hydrogen is also investigated using the two-phase approach based on the PIMD with the Yukawa potential describing the interaction between ions. The results show that the NQEs have a significant impact on the melting of dense hydrogen, which largely lower the melting temperature by 10% at the density range of 10-1000 g/cm3.
Photo-physical properties enhancement of bare and core-shell quantum dots
NASA Astrophysics Data System (ADS)
Mumin, Md Abdul; Akhter, Kazi Farida; Charpentier, Paul A.
2014-03-01
Semiconductor nanocrystals (NCs) (also known as quantum dots, QDs) have attracted immense attention for their size-tunable optical properties that makes them impressive candidates for solar cells, light emitting devices, lasers, as well as biomedical imaging. However monodispersity, high and consistent photoluminescence, photostability, and biocompatibility are still major challenges. This work focuses on optimizing the photophysical properties and biocompatibility of QDs by forming core-shell nanostructures and their encapsulation by a carrier. Highly luminescent CdS and CdS-ZnS core-shell QDs with 5 nm sizes were synthesized using a facile approach based on pyrolysis of the single molecule precursors. After capping the CdS QDs with a thin layer of ZnS to reduce toxicity, the photoluminescence and photostability of the core-shell QDs was significantly enhanced. To make both the bare and core/shell structure QDs more resistant against photochemical reactions, a mesoporous silica layer was grown on the QDs through a reverse microemulsion technique based on hydrophobic interaction. This encapsulation enhanced the quantum yield and photostability compared to the bare QDs by providing much stronger resistance to oxidation and Oswald ripening of QDs. Encapsulation also improved biocompatibility of QDs that was evaluated with human umbilical vein endothelial cell lines (HUVEC).
Impact of carbon quantum dots on dynamic properties of BSA and BSA/DPPC adsorption layers.
Lai, Lu; Wei, Xiao-Qian; Huang, Wei-Hua; Mei, Ping; Ren, Zhao-Hua; Liu, Yi
2017-11-15
The effects of carbon quantum dots (CQDs) on the dynamic properties of bovine serum albumin (BSA) were investigated using pendant drop profile analysis method. Moreover, the effects of CQDs on the competitive adsorption of BSA and dipalmitoyl phosphatidylcholine (DPPC) were examined. CQDs reduce the fluorescence intensity of BSA and cause a red shift in fluorescence emission. The quenching constant at pH 4.3 is almost twice as large as that of the value obtained at pH 6.0. A small amount of CQDs does not influence the dynamic surface adsorption properties of BSA molecules. As the CQD concentration increases, a gradual increase in adsorption rate of BSA molecules is observed. Moreover, the addition of CQDs results in a significant transition of kinetic dependencies of surface elasticity of BSA solution when the CQD concentration exceeds a critical value. The appearance of the maximum surface elasticity value is probably attributed to the formation of tails and loops. When the dynamic surface properties are dominated by BSA molecules, the effects of CQDs on the surface properties of BSA/DPPC mixture are similar to those of BSA alone. However, when the surface film mainly consists of DPPC, CQDs can obviously change the interfacial properties of DPPC monolayer. Copyright © 2017 Elsevier Inc. All rights reserved.
Generation and characterization of discrete spatial entanglement in multimode nonlinear waveguides
NASA Astrophysics Data System (ADS)
Jachura, Michał; Karpiński, Michał; Banaszek, Konrad; Bharadwaj, Divya; Lugani, Jasleen; Thyagarajan, K.
2017-03-01
We analyze theoretically spontaneous parametric down-conversion in a multimode nonlinear waveguide as a source of entangled pairs of spatial qubits, realized as superpositions of a photon in two orthogonal transverse modes of the waveguide. It is shown that, by exploiting intermodal dispersion, down-conversion into the relevant pairs of spatial modes can be selected by spectral filtering, which also provides means to fine tune the properties of the generated entangled state. We also discuss an inverting interferometer detecting the spatial parity of the input beam as a versatile tool to characterize properties of the generated state. A single-photon Wigner function obtained by a scan of the displaced parity can be used to identify the basis modes of a spatial qubit, whereas correlations between displaced parity measurements on two photons can directly verify quantum entanglement through a violation of Bell's inequalities.
Tsukasaki, Y; Komatsuzaki, A; Mori, Y; Ma, Q; Yoshioka, Y; Jin, T
2014-11-28
For the non-invasive visualization of cell migration in deep tissues, we synthesized a short-wavelength infrared (SWIR) emitting multimodal probe that contains PbS/CdS quantum dots, rhodamine 6G and iron oxide nanoparticles. This probe enables multimodal (SWIR fluorescence/magnetic resonance) imaging of phagocyte cell migration in living mice.
Quantum computation for quantum chemistry
NASA Astrophysics Data System (ADS)
Aspuru-Guzik, Alan
2010-03-01
Numerically exact simulation of quantum systems on classical computers is in general, an intractable computational problem. Computational chemists have made progress in the development of approximate methods to tackle complex chemical problems. The downside of these approximate methods is that their failure for certain important cases such as long-range charge transfer states in the case of traditional density functional theory. In 1982, Richard Feynman suggested that a quantum device should be able to simulate quantum systems (in our case, molecules) exactly using quantum computers in a tractable fashion. Our group has been working in the development of quantum chemistry algorithms for quantum devices. In this talk, I will describe how quantum computers can be employed to carry out numerically exact quantum chemistry and chemical reaction dynamics calculations, as well as molecular properties. Finally, I will describe our recent experimental quantum computation of the energy of the hydrogen molecule using an optical quantum computer.
Solomon, Justin; Samei, Ehsan
2014-09-15
Purpose: Quantum noise properties of CT images are generally assessed using simple geometric phantoms with uniform backgrounds. Such phantoms may be inadequate when assessing nonlinear reconstruction or postprocessing algorithms. The purpose of this study was to design anatomically informed textured phantoms and use the phantoms to assess quantum noise properties across two clinically available reconstruction algorithms, filtered back projection (FBP) and sinogram affirmed iterative reconstruction (SAFIRE). Methods: Two phantoms were designed to represent lung and soft-tissue textures. The lung phantom included intricate vessel-like structures along with embedded nodules (spherical, lobulated, and spiculated). The soft tissue phantom was designed based on a three-dimensional clustered lumpy background with included low-contrast lesions (spherical and anthropomorphic). The phantoms were built using rapid prototyping (3D printing) technology and, along with a uniform phantom of similar size, were imaged on a Siemens SOMATOM Definition Flash CT scanner and reconstructed with FBP and SAFIRE. Fifty repeated acquisitions were acquired for each background type and noise was assessed by estimating pixel-value statistics, such as standard deviation (i.e., noise magnitude), autocorrelation, and noise power spectrum. Noise stationarity was also assessed by examining the spatial distribution of noise magnitude. The noise properties were compared across background types and between the two reconstruction algorithms. Results: In FBP and SAFIRE images, noise was globally nonstationary for all phantoms. In FBP images of all phantoms, and in SAFIRE images of the uniform phantom, noise appeared to be locally stationary (within a reasonably small region of interest). Noise was locally nonstationary in SAFIRE images of the textured phantoms with edge pixels showing higher noise magnitude compared to pixels in more homogenous regions. For pixels in uniform regions, noise magnitude was
Dikareva, N. V. Vikhrova, O. V.; Zvonkov, B. N.; Malekhonova, N. V.; Nekorkin, S. M.; Pirogov, A. V.; Pavlov, D. A.
2015-01-15
Heterostructures containing single GaAsSb/GaAs quantum wells and bilayer GaAsSb/InGaAs quantum wells are produced by metal-organic vapor-phase epitaxy at atmospheric pressure. The growth temperature of the quantum-confined layers is 500–570°C. The structural quality of the samples and the quality of heterointerfaces of the quantum wells are studied by the high-resolution transmission electron microscopy of cross sections. The emission properties of the heterostructures are studied by photoluminescence measurements. The structures are subjected to thermal annealing under conditions chosen in accordance with the temperature and time of growth of the upper cladding p-InGaP layer during the formation of GaAs/InGaP laser structures with an active region containing quantum-confined GaAsSb layers. It is found that such heat treatment can have a profound effect on the emission properties of the active region, only if a bilayer GaAsSb/InGaAs quantum well is formed.
NASA Astrophysics Data System (ADS)
Patty, Kira; Sadeghi, Seyed M.; Campbell, Quinn; Hamilton, Nathan; West, Robert G.; Mao, Chuanbin
2014-09-01
We used photoactive substrates consisting of about 1 nm coating of a metal oxide on glass substrates to investigate the impact of the structures of colloidal quantum dots on their photophysical and photochemical properties. We showed during irradiation these substrates can interact uniquely with such quantum dots, inducing distinct forms of photo-induced processes when they have different cores, shells, or ligands. In particular, our results showed that for certain types of core-shell quantum dot structures an ultrathin layer of a metal oxide can reduce suppression of quantum efficiency of the quantum dots happening when they undergo extensive photo-oxidation. This suggests the possibility of shrinking the sizes of quantum dots without significant enhancement of their non-radiative decay rates. We show that such quantum dots are not influenced significantly by Coulomb blockade or photoionization, while those without a shell can undergo a large amount of photo-induced fluorescence enhancement via such blockade when they are in touch with the metal oxide.
Patty, Kira; Campbell, Quinn; Hamilton, Nathan; West, Robert G.; Sadeghi, Seyed M.; Mao, Chuanbin
2014-09-21
We used photoactive substrates consisting of about 1 nm coating of a metal oxide on glass substrates to investigate the impact of the structures of colloidal quantum dots on their photophysical and photochemical properties. We showed during irradiation these substrates can interact uniquely with such quantum dots, inducing distinct forms of photo-induced processes when they have different cores, shells, or ligands. In particular, our results showed that for certain types of core-shell quantum dot structures an ultrathin layer of a metal oxide can reduce suppression of quantum efficiency of the quantum dots happening when they undergo extensive photo-oxidation. This suggests the possibility of shrinking the sizes of quantum dots without significant enhancement of their non-radiative decay rates. We show that such quantum dots are not influenced significantly by Coulomb blockade or photoionization, while those without a shell can undergo a large amount of photo-induced fluorescence enhancement via such blockade when they are in touch with the metal oxide.
Multimodal Information Exploration.
ERIC Educational Resources Information Center
Stock, Oliviero; Zancanaro, Massimo; Strapparava, Carlo
1997-01-01
Discussion of information exploration and software design in computer-based educational systems focuses on the integration of hypermedia and natural language dialog. AlFRESCO is described, an interactive natural language-centered multimodal system that was developed for users interested in frescoes and paintings. (LRW)
Generating Multimodal References
ERIC Educational Resources Information Center
van der Sluis, Ielka; Krahmer, Emiel
2007-01-01
This article presents a new computational model for the generation of multimodal referring expressions (REs), based on observations in human communication. The algorithm is an extension of the graph-based algorithm proposed by Krahmer, van Erk, and Verleg (2003) and makes use of a so-called Flashlight Model for pointing. The Flashlight Model…
Generating Multimodal References
ERIC Educational Resources Information Center
van der Sluis, Ielka; Krahmer, Emiel
2007-01-01
This article presents a new computational model for the generation of multimodal referring expressions (REs), based on observations in human communication. The algorithm is an extension of the graph-based algorithm proposed by Krahmer, van Erk, and Verleg (2003) and makes use of a so-called Flashlight Model for pointing. The Flashlight Model…
Bigot-Astruc, Marianne; Molin, Denis; Sillard, Pierre
2014-11-04
A depressed graded-index multimode optical fiber includes a central core, an inner depressed cladding, a depressed trench, an outer depressed cladding, and an outer cladding. The central core has an alpha-index profile. The depressed claddings limit the impact of leaky modes on optical-fiber performance characteristics (e.g., bandwidth, core size, and/or numerical aperture).
Diffusive and quantum effects of water properties in different states of matter
Yeh, Kuan-Yu; Huang, Shao-Nung; Chen, Li-Jen E-mail: stlin@ntu.edu.tw; Lin, Shiang-Tai E-mail: stlin@ntu.edu.tw
2014-07-28
The enthalpy, entropy, and free energy of water are important physical quantities for understanding many interesting phenomena in biological systems. However, conventional approaches require different treatments to incorporate quantum and diffusive effects of water in different states of matter. In this work, we demonstrate the use of the two-phase thermodynamic (2PT) model as a unified approach to obtain the properties of water over the whole phase region of water from short (∼20 ps) classical molecular dynamics trajectories. The 2PT model provides an effective way to separate the diffusive modes (gas-like component) from the harmonic vibrational modes (solid-like component) in the vibrational density of states (DoS). Therefore, both diffusive and quantum effect can be properly accounted for water by applying suitable statistical mechanical weighting functions to the DoS components. We applied the 2PT model to systematically examine the enthalpy, entropy, and their temperature dependence of five commonly used rigid water models. The 2PT results are found to be consistent with those obtained from more sophisticated calculations. While the thermodynamic properties determined from different water models are largely similar, the phase boundary determined from the equality of free energy is very sensitive to the small inaccuracy in the values of enthalpy and absolute entropy. The enthalpy, entropy, and diffusivity of water are strongly interrelated, which challenge further improvement of rigid water model via parameter fitting. Our results show that the 2PT is an efficient method for studying the properties of water under various chemical and biological environments.
Diffusive and quantum effects of water properties in different states of matter.
Yeh, Kuan-Yu; Huang, Shao-Nung; Chen, Li-Jen; Lin, Shiang-Tai
2014-07-28
The enthalpy, entropy, and free energy of water are important physical quantities for understanding many interesting phenomena in biological systems. However, conventional approaches require different treatments to incorporate quantum and diffusive effects of water in different states of matter. In this work, we demonstrate the use of the two-phase thermodynamic (2PT) model as a unified approach to obtain the properties of water over the whole phase region of water from short (∼20 ps) classical molecular dynamics trajectories. The 2PT model provides an effective way to separate the diffusive modes (gas-like component) from the harmonic vibrational modes (solid-like component) in the vibrational density of states (DoS). Therefore, both diffusive and quantum effect can be properly accounted for water by applying suitable statistical mechanical weighting functions to the DoS components. We applied the 2PT model to systematically examine the enthalpy, entropy, and their temperature dependence of five commonly used rigid water models. The 2PT results are found to be consistent with those obtained from more sophisticated calculations. While the thermodynamic properties determined from different water models are largely similar, the phase boundary determined from the equality of free energy is very sensitive to the small inaccuracy in the values of enthalpy and absolute entropy. The enthalpy, entropy, and diffusivity of water are strongly interrelated, which challenge further improvement of rigid water model via parameter fitting. Our results show that the 2PT is an efficient method for studying the properties of water under various chemical and biological environments.
Reddy, V Sivaranjana; Camacho, Cristopher; Xia, Jianlong; Jasti, Ramesh; Irle, Stephan
2014-09-09
The size-dependent ultraviolet/visible photophysical property trends of [n]cycloparaphenylenes ([n]CPPs, n = 6, 8, and 10) are theoretically investigated using quantum dynamics simulations. For geometry optimizations on the ground- and excited-state Born-Oppenheimer potential energy surfaces (PESs), we employ density functional theory (DFT) and time-dependent DFT calculations. Harmonic normal-mode analyses are carried out for the electronic ground state at Franck-Condon geometries. A diabatic Hamiltonian, comprising four low-lying singlet excited electronic states and 26 vibrational degrees of freedom of CPP, is constructed within the linear vibronic coupling (VC) model to elucidate the absorption spectral features in the range of 300-500 nm. Quantum nuclear dynamics is simulated within the multiconfiguration time-dependent Hartree approach to calculate the vibronic structure of the excited electronic states. The symmetry-forbidden S0 → S1 transition appears in the longer wavelength region of the spectrum with weak intensity due to VC. It is found that the Jahn-Teller and pseudo-Jahn-Teller effects in the doubly degenerate S2 and S3 electronic states are essential in the quantitative interpretation of the experimental observation of a broad absorption peak around 340 nm. The vibronic mixing of the S1 state with higher electronic states is responsible for the efficient photoluminescence from the S1 state. The fluorescence properties are characterized on the basis of the stationary points of the excited-state PESs. The findings reveal that vibronic effects become important in determining the photophysical properties of CPPs with increased ring size.
Greiff, Kirsti; Mathiassen, John Reidar; Misimi, Ekrem; Hersleth, Margrethe; Aursand, Ida G.
2015-01-01
The European diet today generally contains too much sodium (Na+). A partial substitution of NaCl by KCl has shown to be a promising method for reducing sodium content. The aim of this work was to investigate the sensorial changes of cooked ham with reduced sodium content. Traditional sensorial evaluation and objective multimodal machine vision were used. The salt content in the hams was decreased from 3.4% to 1.4%, and 25% of the Na+ was replaced by K+. The salt reduction had highest influence on the sensory attributes salty taste, after taste, tenderness, hardness and color hue. The multimodal machine vision system showed changes in lightness, as a function of reduced salt content. Compared to the reference ham (3.4% salt), a replacement of Na+-ions by K+-ions of 25% gave no significant changes in WHC, moisture, pH, expressed moisture, the sensory profile attributes or the surface lightness and shininess. A further reduction of salt down to 1.7–1.4% salt, led to a decrease in WHC and an increase in expressible moisture. PMID:26422367
Greiff, Kirsti; Mathiassen, John Reidar; Misimi, Ekrem; Hersleth, Margrethe; Aursand, Ida G
2015-01-01
The European diet today generally contains too much sodium (Na(+)). A partial substitution of NaCl by KCl has shown to be a promising method for reducing sodium content. The aim of this work was to investigate the sensorial changes of cooked ham with reduced sodium content. Traditional sensorial evaluation and objective multimodal machine vision were used. The salt content in the hams was decreased from 3.4% to 1.4%, and 25% of the Na(+) was replaced by K(+). The salt reduction had highest influence on the sensory attributes salty taste, after taste, tenderness, hardness and color hue. The multimodal machine vision system showed changes in lightness, as a function of reduced salt content. Compared to the reference ham (3.4% salt), a replacement of Na(+)-ions by K(+)-ions of 25% gave no significant changes in WHC, moisture, pH, expressed moisture, the sensory profile attributes or the surface lightness and shininess. A further reduction of salt down to 1.7-1.4% salt, led to a decrease in WHC and an increase in expressible moisture.
NASA Astrophysics Data System (ADS)
Ye, Hui; Yang, Ligong; Gu, Peifu
2002-09-01
Semiconducting ferroelectric antimony sulphoiodide (SbSI) microcrystallite doped organically modified TiO2 thin films were successfully fabricated with the sol-gel process. Ferroelectric SbSI crystallites have some attractive properties, including high dielectric permittivity, high electro-optical coefficient and high photoconductivity. SbSI is also an intrinsic semiconductor with a relatively narrow eneryg gap. The Bohr radius of the SbSI crystal was calculated larger than other semiconductors due to its large dielectric constant. If the crystal size is smaller than its Bohr radius and the microcrystallite are dispersed in a suitable matrix, a dramatic improvement of the nonlinear three-order nonlinearity will be achieved due to the quantum confinement effect. The SbSI quantum dot composites were proved to be good candidates for nonlinear and electro-optical devices. Glycidopropyltrimetroxysilane modified TiO2 was chosen as the matrix and SbSI was synthesized in situ by using SbI3, SC(NH2)2. The materials in thin film were heat-treated in different conditions and the size of the microcrystallite was characterized by the XRD. A value of 3.5pm/V of effective transverse electro-optical coefficient reff for the nano-composite containing 8 wt percent of antimony sulfide iodide was measured. The third-order nonlinear optical susceptibility of the SbSI quantum dot thin film was measured by degenerate four-wave mixing at 532nm using a frequency double Nd:YAG laser beams with a pulse width of around 10ns, the x(3) value of 3 μm sample was measured to be 6 × 10-11 esu.
NASA Astrophysics Data System (ADS)
Taherian, M.; Sabbagh Alvani, A. A.; Shokrgozar, M. A.; Salimi, R.; Moosakhani, S.; Sameie, H.; Tabatabaee, F.
2014-03-01
In the present study, the ZnS semiconductor quantum dots were successfully synthesized via an aqueous method utilizing glutathione (GSH), thioglycolic acid (TGA) and polyvinyl pyrrolidone (PVP) as capping agents. The structural, morphological and photo-physical properties and biocompatibility were investigated using comprehensive characterization techniques such as x-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM), dynamic light scattering (DLS), Fourier transform infrared spectrometry (FT-IR), UV-Vis optical absorption, photoluminescence (PL) spectrometer and MTT assay. The XRD patterns showed a cubic zinc blende crystal structure and a crystallite size of about 2-3 nm using Scherrer's equation confirmed by the electron micrographs and Effective Mass Approximation (EMA). The DLS and zeta-potential results revealed that GSH capped ZnS nanoparticles have the narrowest size distribution with an average size of 27 nm and relatively good colloidal stability. Also, the FT-IR spectrum confirmed the interaction of the capping agent groups with ZnS nanoparticles. According to the UV-Vis absorption results, optical bandgap of the spherical capped nanoparticles is higher compared to the uncapped sample and could be wider than 3.67 eV (corresponding to the bulk ZnS), which is due to the quantum confinement effect. From photoluminescence spectra, it was found that the emission becomes more intensive and shifts towards the shorter wavelengths in the presence of the capping agent. Moreover, the emission mechanism of uncapped and capped ZnS was discussed in detail. Finally, the MTT results revealed the satisfactory (>94%) biocompatibility of GSH capped ZnS quantum dots which would be a promising candidate applicable in fluorescent biological labels.
Nanoparticles in Higher-Order Multimodal Imaging
NASA Astrophysics Data System (ADS)
Rieffel, James Ki
Imaging procedures are a cornerstone in our current medical infrastructure. In everything from screening, diagnostics, and treatment, medical imaging is perhaps our greatest tool in evaluating individual health. Recently, there has been tremendous increase in the development of multimodal systems that combine the strengths of complimentary imaging technologies to overcome their independent weaknesses. Clinically, this has manifested in the virtually universal manufacture of combined PET-CT scanners. With this push toward more integrated imaging, new contrast agents with multimodal functionality are needed. Nanoparticle-based systems are ideal candidates based on their unique size, properties, and diversity. In chapter 1, an extensive background on recent multimodal imaging agents capable of enhancing signal or contrast in three or more modalities is presented. Chapter 2 discusses the development and characterization of a nanoparticulate probe with hexamodal imaging functionality. It is my hope that the information contained in this thesis will demonstrate the many benefits of nanoparticles in multimodal imaging, and provide insight into the potential of fully integrated imaging.
Ge/SiGe quantum wells on Si(111): Growth, structural, and optical properties
Gatti, E. Pezzoli, F.; Grilli, E.; Isa, F.; Chrastina, D.; Isella, G.; Müller Gubler, E.
2014-07-28
The epitaxial growth of Ge/Si{sub 0.15}Ge{sub 0.85} multiple quantum wells (MQWs) on Si(111) substrates is demonstrated. A 3 μm thick reverse, double-step virtual substrate with a final composition of Si{sub 0.10}Ge{sub 0.90} has been employed. High resolution XRD, TEM, AFM and defect etching analysis has been used for the study of the structural properties of the buffer and of the QWs. The QW stack is characterized by a threading dislocation density of about 3 × 10{sup 7 }cm{sup −2} and an interdiffusion layer at the well/barrier interface of 2.1 nm. The quantum confined energy levels of this system have been calculated using the k·p and effective mass approximation methods. The Ge/Si{sub 0.15}Ge{sub 0.85} MQWs have been characterized through absorption and photoluminescence measurements. The optical spectra have been compared with those of Ge/Si{sub 0.15}Ge{sub 0.85} QWs grown on Si(001) through a thick graded virtual substrate.
Size dependent magnetic and optical properties in diamond shaped graphene quantum dots: A DFT study
NASA Astrophysics Data System (ADS)
Das, Ritwika; Dhar, Namrata; Bandyopadhyay, Arka; Jana, Debnarayan
2016-12-01
The magnetic and optical properties of diamond shaped graphene quantum dots (DSGQDs) have been investigated by varying their sizes with the help of density functional theory (DFT). The study of density of states (DOS) has revealed that the Fermi energy decreases with increase in sizes (number of carbon atoms). The intermediate structure with 30 carbon atoms shows the highest magnetic moment (8 μB, μB being the Bohr magneton). The shifting of optical transitions to higher energy in smallest DSGQD (16 carbon atoms) bears the signature of stronger quantum confinement. However, for the largest structure (48 carbon atoms) multiple broad peaks appear in case of parallel polarization and in this case electron energy loss spectra (EELS) peak (in the energy range 0-5 eV) is sharp in nature (compared to high energy peak). This may be attributed to π plasmon and the broad peak (in the range 10-16 eV) corresponds to π + σ plasmon. A detail calculation of the Raman spectra has indicated some prominent mode of vibrations which can be used to characterize these structures (with hydrogen terminated dangling bonds). We think that these theoretical observations can be utilized for novel device designs involving DSGQDs.
Quantum properties of a binary bosonic mixture in a double well
NASA Astrophysics Data System (ADS)
Mujal, Pere; Juliá-Díaz, Bruno; Polls, Artur
2016-04-01
This work contains a detailed analysis of the properties of the ground state of a two-component two-site Bose-Hubbard model, which captures the physics of a binary mixture of Bose-Einstein condensates trapped in a double-well potential. The atom-atom interactions within each species and among the two species are taken as variable parameters, while the hopping terms are kept fixed. To characterize the ground state, we use observables such as the imbalance of population and its quantum uncertainty. The quantum many-body correlations present in the system are further quantified by studying the degree of condensation of each species, the entanglement between the two sites, and the entanglement between the two species. The latter is measured by means of the Schmidt gap, the von Neumann entropy, or the purity obtained after tracing out a part of the system. A number of relevant states are identified, e.g., Schrödinger catlike many-body states, in which the outcome of the population imbalance of both components is completely correlated, and other states with even larger von Neumann entropy which have a large spread in Fock space.
NASA Astrophysics Data System (ADS)
Chernyavskiy, Andrey; Khamitov, Kamil; Teplov, Alexey; Voevodin, Vadim; Voevodin, Vladimir
2016-10-01
In recent years, quantum information technologies (QIT) showed great development, although, the way of the implementation of QIT faces the serious difficulties, some of which are challenging computational tasks. This work is devoted to the deep and broad analysis of the parallel algorithmic properties of such tasks. As an example we take one- and two-qubit transformations of a many-qubit quantum state, which are the most critical kernels of many important QIT applications. The analysis of the algorithms uses the methodology of the AlgoWiki project (algowiki-project.org) and consists of two parts: theoretical and experimental. Theoretical part includes features like sequential and parallel complexity, macro structure, and visual information graph. Experimental part was made by using the petascale Lomonosov supercomputer (Moscow State University, Russia) and includes the analysis of locality and memory access, scalability and the set of more specific dynamic characteristics of realization. This approach allowed us to obtain bottlenecks and generate ideas of efficiency improvement.
NASA Astrophysics Data System (ADS)
Rogacheva, E. I.; Budnik, A. V.; Sipatov, A. Yu.; Nashchekina, O. N.; Dresselhaus, M. S.
2015-02-01
The dependences of the electrical conductivity, the Hall coefficient, and the Seebeck coefficient on the layer thickness d (d = 18-600 nm) of p-type topological insulator Bi2Te3 thin films grown by thermal evaporation in vacuum on glass substrates were obtained at room temperature. In the thickness range of d = 18-100 nm, sustained oscillations with a substantial amplitude were revealed. The observed oscillations are well approximated by a harmonic function with a period Δd = (9.5 ± 0.5) nm. At d > 100 nm, the transport coefficients practically do not change as d is increased. The oscillations of the kinetic properties are attributed to the quantum size effects due to the hole confinement in the Bi2Te3 quantum wells. The results of the theoretical calculations of Δd within the framework of a model of an infinitely deep potential well are in good agreement with the experimental results. It is suggested that the substantial amplitude of the oscillations and their sustained character as a function of d are connected with the topologically protected gapless surface states of Bi2Te3 and are inherent to topological insulators.
Vidanović, Ivana; Bogojević, Aleksandar; Belić, Aleksandar
2009-12-01
We analyze the method for calculation of properties of nonrelativistic quantum systems based on exact diagonalization of space-discretized short-time evolution operators. In this paper we present a detailed analysis of the errors associated with space discretization. Approaches using direct diagonalization of real-space discretized Hamiltonians lead to polynomial errors in discretization spacing Delta . Here we show that the method based on the diagonalization of the short-time evolution operators leads to substantially smaller discretization errors, vanishing exponentially with 1/Delta(2). As a result, the presented calculation scheme is particularly well suited for numerical studies of few-body quantum systems. The analytically derived discretization errors estimates are numerically shown to hold for several models. In the follow up paper [I. Vidanović, A. Bogojević, A. Balaz, and A. Belić, Phys. Rev. E 80, 066706 (2009)] we present and analyze substantial improvements that result from the merger of this approach with the recently introduced effective-action scheme for high-precision calculation of short-time propagation.
Photoluminescence properties of hybrid SiO2-coated CdTe/CdSe quantum dots.
Liu, Ning; Yang, Ping
2014-09-01
Hybrid SiO2-coated CdTe/CdSe quantum dots (QDs) were prepared using CdTe/CdSe QDs prepared by hydrothermal synthesis. A CdSe interlayer made CdTe/CdSe cores with unique type II heterostructures. The hybrid SiO2-coated CdTe/CdSe QDs revealed excellent photoluminescence (PL) properties compared with hybrid SiO2-coated CdTe QDs. Because of the existence of spatial separations of carriers in the type II CdTe/CdSe core/shell QDs, the hybrid QDs had a relatively extended PL lifetime and high stability in phosphate-buffered saline buffer solutions. This is ascribed to the unique components and stable surface state of hybrid SiO2-coated CdTe/CdSe QDs. During the stabilization test in phosphate-buffered saline buffer solutions, both static and dynamic quenching occurred. The quenching mechanism of the hybrid QDs was not suited with the Stern–Volmer equation. However, the relative stable surface of CdTe/CdSe QDs resulted in lower degradation and relative high PL quantum yields compared with hybrid SiO2-coated CdTe QDs. As a result, hybrid SiO2-coated CdTe/CdSe QDs can be used in bioapplications.
NASA Astrophysics Data System (ADS)
Hamedi, H. R.
2014-09-01
The transient and steady-state dispersion and absorption properties of a three-subband asymmetric semiconductor quantum well system are investigated. In the steady-state regime, it is shown that by increasing the strength of Fano-interference as well as enhancement of energy splitting of two excited states the slope of dispersion changes from negative to positive which is corresponding to a switch between superluminal to subluminal light propagation. At the same time, the probe absorption reduces at telecommunication wavelength λ = 1550 nm. The influence of incoherent pumping fields on time-dependent susceptibility is then discussed. It is found that due to more transfer of population to the upper levels, increasing the rate of incoherent pump field leads to the reduction of probe absorption. In addition, it is realized that incoherent pumping has a major role in converting fast to slow propagation of light at long wavelength. We also introduce an extra controllability for the light pulse to be slow downed at Telecom wavelength just through the quantum interference arising from incoherent pumping fields. The obtained results may be practical in telecommunication applications.
NASA Astrophysics Data System (ADS)
Degen, C. L.; Reinhard, F.; Cappellaro, P.
2017-07-01
"Quantum sensing" describes the use of a quantum system, quantum properties, or quantum phenomena to perform a measurement of a physical quantity. Historical examples of quantum sensors include magnetometers based on superconducting quantum interference devices and atomic vapors or atomic clocks. More recently, quantum sensing has become a distinct and rapidly growing branch of research within the area of quantum science and technology, with the most common platforms being spin qubits, trapped ions, and flux qubits. The field is expected to provide new opportunities—especially with regard to high sensitivity and precision—in applied physics and other areas of science. This review provides an introduction to the basic principles, methods, and concepts of quantum sensing from the viewpoint of the interested experimentalist.
Enhancement of surface plasmon resonances on the nonlinear optical properties in a GaAs quantum dot
NASA Astrophysics Data System (ADS)
Jiang, Xiancong; Guo, Kangxian; Liu, Guanghui; Yang, Tao; Yang, Yanlian
2017-05-01
In this paper, the nonlinear optical properties of a metallic nanoparticle (MNP)-semiconductor quantum dot (SQD) hybrid nanosystem with the hybrid exciton effect have been studied. Considering the influence of quantum-size effect to the dielectric function of MNP, the quantum corrected dielectric function was applied to our calculation. By using the compact-density-matrix method, the interaction between MNP and SQD has been studied theoretically. The results show that the surface plasmon resonances (SPRs) of MNP enhance indeed the nonlinear optical properties of SQD. Further more, the enhancement depends on two factors: (a) the center-to-center 7distance between MNP and SQD; (b) the radius ratio between MNP and SQD.
Time-evolving photo-induced changes of luminescent and spectral properties of PbS quantum dots sols
NASA Astrophysics Data System (ADS)
Evstropiev, S. K.; Kislyakov, I. M.; Bagrov, I. V.; Belousova, I. M.; Kiselev, V. M.
2016-05-01
Light irradiation influence on spectral and luminescent properties of PbS sol, stabilized by high-molecular polyvinylpyrrolidone, was studied as a time-evolving process. Uniform and stable for at least three months PbS/PVP suspensions were obtained with an average quantum dots size of 4 nm. Photoluminescent spectra of the suspensions showed wide intensive emission at 1000-1400 nm upon excitation by visible light. Luminescence intensities of all the suspensions demonstrate nonlinear dependences on the exciting radiation intensity. Experimental results show that light irradiation during luminescence measurements even with low excitation power density can significantly change luminescent and spectral properties of PbS quantum dots. The dependences found can be useful in preparation of a variety of quantum dots-containing photonics materials.
Quantum robots and quantum computers
Benioff, P.
1998-07-01
Validation of a presumably universal theory, such as quantum mechanics, requires a quantum mechanical description of systems that carry out theoretical calculations and systems that carry out experiments. The description of quantum computers is under active development. No description of systems to carry out experiments has been given. A small step in this direction is taken here by giving a description of quantum robots as mobile systems with on board quantum computers that interact with different environments. Some properties of these systems are discussed. A specific model based on the literature descriptions of quantum Turing machines is presented.
NASA Astrophysics Data System (ADS)
Marshall, Ashley R.
Semiconductor quantum dots (QDs) are interesting materials that, after less than 40 years of research, are used in commercial products. QDs are now found in displays, such as Samsung televisions and the Kindle Fire, and have applications in lighting, bio-imaging, quantum computing, and photovoltaics. They offer a large range of desirable properties: a controllable band gap, solution processability, controlled energy levels, and are currently the best materials for multiple exciton generation. The tunable optoelectronic properties of QDs can be controlled using size, shape, composition, and surface treatments--as shown here. Due to the quasi-spherical shape of QDs the surface to volume ratio is high, i.e. many of the constituent atoms are found on the QD surface. This makes QDs highly sensitive to surface chemistry modifications. This thesis encompasses the effects of surface treatments for QDs of two semiconducting materials: lead chalcogenides and CsPbI3. Our group developed a new synthetic technique for lead chalcogenide QDs via the cation exchange of cadmium chalcogenides. An in-depth chemical analysis is paired with optical and electrical studies and we find that metal halide residue contributes to the oxidative stability and decreased trap state density in cation-exchanged PbS QDs. We exploit these properties to make air-stable QD photovoltaic devices from both PbS and PbSe QD materials. Beyond the effects of residual atoms left from the synthetic technique, I investigated how to controllably add atoms onto the surface of QDs. I found that by introducing metal halides as a post-treatment in an electronically coupled array I am able to control the performance parameters in QD photovoltaic devices. These treatments fully infiltrate the assembled film, even under short exposure times and allow me to add controlled quantities of surface atoms to study their effects on film properties and photovoltaic device performance. Finally, I sought to apply the knowledge of
Magnetic properties of bilayer graphene quantum dots in the presence of uniaxial strain
NASA Astrophysics Data System (ADS)
Nascimento, J. S.; da Costa, D. R.; Zarenia, M.; Chaves, Andrey; Pereira, J. M.
2017-09-01
Using the tight-binding approach coupled with mean-field Hubbard model, we theoretically study the effect of mechanical deformations on the magnetic properties of bilayer graphene (BLG) quantum dots (QDs). Results are obtained for AA- and AB(Bernal)-stacked BLG QDs, considering different geometries (hexagonal, triangular and square shapes) and edge types (armchair and zigzag edges). In the absence of strain, our results show that (i) the magnetization is affected by taking different dot sizes only for hexagonal BLG QDs with zigzag edges, exhibiting different critical Hubbard interactions, and (ii) the magnetization does not depend on the interlayer hopping energies, except for the geometries with zigzag edges and AA stacking. In the presence of in-plane and uniaxial strain, for all geometries we obtain two different magnetization regimes depending on the applied strain amplitude. The appearance of such different regimes is due to the breaking of layer and sublattice symmetries in BLG QDs.
Polarization quantum properties in a type-II optical parametric oscillator below threshold
Zambrini, Roberta; Miguel, Maxi San; Gatti, Alessandra; Lugiato, Luigi
2003-12-01
We study the far-field spatial distribution of the quantum fluctuations in the transverse profile of the output light beam generated by a type-II optical parametric oscillator below threshold, including the effects of transverse walk-off. We study how quadrature field correlations depend on the polarization. We find spatial Einstein-Podolsky-Rosen entanglement in quadrature-polarization components. For the far-field points not affected by walk-off there is almost complete noise suppression in the proper quadratures difference of any orthogonal polarization components. We show the entanglement of the state of symmetric, intense, or macroscopic, spatial light modes. We also investigate nonclassical polarization properties in terms of the Stokes operators. We find perfect correlations in all Stokes parameters measured in opposite far-field points in the direction orthogonal to the walk-off, while locally the field is unpolarized and we find no polarization squeezing.
NASA Astrophysics Data System (ADS)
Silva, A. A. P.; Vasconcellos, Áurea. R.; Luzzi, Roberto; Meneses, E. A.; Laureto, E.
2009-10-01
Systems in which one or more directions are in the nanometric space scale exhibit significantly some peculiar phenomena and processes. We consider here the case of nanometric quantum wells with complex structure, displaying fractal-like characteristics, which are part of semiconductor heterostructures. An extensive theoretical study of the optical properties of photoluminescence and excited photoluminescence, and then involving absorption and the question of emergence of the so-called Stokes shift that is observed in some cases are performed. The results are compared with some experimental data. This is of relevance for opening up the possibility to use optical measurements to perform a (nondestructive) quality control of samples grown under different methods and protocols.
Electronic and Quantum Transport Properties of Atomically Identified Si Point Defects in Graphene.
Lopez-Bezanilla, Alejandro; Zhou, Wu; Idrobo, Juan-Carlos
2014-05-15
We report high-resolution scanning transmission electron microscopy images displaying a range of inclusions of isolated silicon atoms at the edges and inner zones of graphene layers. Whereas the incorporation of Si atoms to a graphene armchair edge involves no reconstruction of the neighboring carbon atoms, the inclusion of a Si atom to a zigzag graphene edge entails the formation of five-membered carbon rings. In all the observed atomic edge terminations, a Si atom is found bridging two C atoms in a 2-fold coordinated configuration. The atomic-scale observations are underpinned by first-principles calculations of the electronic and quantum transport properties of the structural anomalies. Experimental estimations of Si-doped graphene band gaps realized by means of transport measurements may be affected by a low doping rate of 2-fold coordinated Si atoms at the graphene edges, and 4-fold coordinated at inner zones due to the apparition of mobility gaps.
Structure and properties of InAs/AlAs quantum dots for broadband emission
NASA Astrophysics Data System (ADS)
Meng, X. Q.; Jin, P.; Liang, Z. M.; Liu, F. Q.; Wang, Z. G.; Zhang, Z. Y.
2010-11-01
The InAs quantum dots (QDs) on an AlAs layer are grown on GaAs substrates by molecular beam epitaxy technique. The properties of materials and optics of such QD structures have been investigated by cross sectional transmission electron microscopy and photoluminescence (PL) techniques. It is discovered that the inhomogeneous strain filed mainly exists below InAs QDs layers in the case of no wetting layer. The full width at half maximums (FWHMs) and intensities of PL emission peaks of InAs QDs are found to be closely related to the thickness of the thin AlAs layers. The InAs QDs on an eight monolayer AlAs layer, with wide FWHMs and large integral intensity of PL emission peaks, are favorable for producing broadband QD superluminescent diodes, external-cavity QD laser with large tuning range.
Kang, Hyeong-Gon; Tokumasu, Fuyuki; Clarke, Matthew; Zhou, Zhenping; Tang, Jianyong; Nguyen, Tinh; Hwang, Jeeseong
2010-01-01
We present results on the dynamic fluorescence properties of bioconjugated nanocrystals or quantum dots (QDs) in different chemical and physical environments. A variety of QD samples was prepared and compared: isolated individual QDs, QD aggregates, and QDs conjugated to other nanoscale materials, such as single-wall carbon nanotubes (SWCNTs) and human erythrocyte plasma membrane proteins. We discuss plausible scenarios to explain the results obtained for the fluorescence characteristics of QDs in these samples, especially for the excitation time-dependent fluorescence emission from clustered QDs. We also qualitatively demonstrate enhanced fluorescence emission signals from clustered QDs and deduce that the band 3 membrane proteins in erythrocytes are clustered. This approach is promising for the development of QD-based quantitative molecular imaging techniques for biomedical studies involving biomolecule clustering.
NASA Astrophysics Data System (ADS)
Bakanov, A. G.; Toropov, N. A.; Vartanyan, T. A.
2016-03-01
The optical properties of a composite material consisting of a thin polymer film, which is activated by semiconductor CdSe/ZnS quantum dots (QDs) and silver nanoparticles, on a transparent dielectric substrate have been investigated. It is revealed that the presence of silver nanoparticles leads to an increase in the QD absorption (by a factor of 4) and in the fluorescence intensity (by a factor of 10), whereas the fluorescence time drops by a factor of about 10. Excitation of the composite medium by a pulsed laser is found to result in narrowing of the fluorescence band and a sublinear dependence of its intensity on the pulse energy. In the absence of silver nanoparticles, the fluorescence spectrum of QDs is independent of the excitation-pulse energy density, and the fluorescence intensity depends linearly on the pulse energy in the entire range of energy densities, up to 75 mJ/cm2.
Electronic and Quantum Transport Properties of Atomically Identified Si Point Defects in Graphene
Lopez-Bezanilla, Alejandro; Zhou, Wu; Idrobo, Juan-Carlos
2014-05-01
In this paper, we report high-resolution scanning transmission electron microscopy images displaying a range of inclusions of isolated silicon atoms at the edges and inner zones of graphene layers. Whereas the incorporation of Si atoms to a graphene armchair edge involves no reconstruction of the neighboring carbon atoms, the inclusion of a Si atom to a zigzag graphene edge entails the formation of five-membered carbon rings. In all the observed atomic edge terminations, a Si atom is found bridging two C atoms in a 2-fold coordinated configuration. The atomic-scale observations are underpinned by first-principles calculations of the electronic and quantum transport properties of the structural anomalies. Finally, experimental estimations of Si-doped graphene band gaps realized by means of transport measurements may be affected by a low doping rate of 2-fold coordinated Si atoms at the graphene edges, and 4-fold coordinated at inner zones due to the apparition of mobility gaps.
Jackson, Robert L.; Crandall, Erika R.; Bozack, Michael J.
2015-05-21
The objective of this work is to evaluate the effect of scale dependent mechanical and electrical properties on electrical contact resistance (ECR) between rough surfaces. This work attempts to build on existing ECR models that neglect potentially important quantum- and size-dependent contact and electrical conduction mechanisms present due to the asperity sizes on typical surfaces. The electrical conductance at small scales can quantize or show a stepping trend as the contact area is varied in the range of the free electron Fermi wavelength squared. This work then evaluates if these effects remain important for the interface between rough surfaces, which may include many small scale contacts of varying sizes. The results suggest that these effects may be significant in some cases, while insignificant for others. It depends on the load and the multiscale structure of the surface roughness.
The Optical Properties of CdSe Quantum Dots by Using Spray-Atomization Method
NASA Astrophysics Data System (ADS)
Rosmani, C. H.; Abdullah, S.; Rusop, M.
2013-06-01
Cadmium Selenide (CdSe) quantum dots (QDs) is inorganic material by using spray-atomization method which is the novelty to find out the optical properties for the CdSe QDs. The Selenium (Se) precursor and Cadmium (Cd) precursor were prepared first. Se precursor by using sodium sulfite aqueous was mixed with selenium (Se) powder. For Cd precursor was used cadmium chloride (CdCI) as the Cd precursor. From previous research, CdSe QDs was obtained by using capping agent such as tri-n-octylphosphine oxide (TOPO) and trioctylphosphine (TOP). These capping agent are hazardous to environment and human. By using spray-atomization method it is more safe and economically. The photoluminescence (PL) was used to investigate the optical properties and to investigate the energy band gap from PL result. The field emission scanning electron microscopy (FESEM) was used to know the surface morphology of CdSe QDs. By PL result, the energy band gap was calculate and the comparison was investigate between the size of particle and the energy band gap. This important in this paper is to investigate the optical properties of CdSe QDs by using sprays-atomization method and to relate with the particle size.
Luminescence Properties of Sm3+/Eu3+ Co-Doped ZnO Quantum Dots.
Liu, Fengyi; Li, Hong; Hu, Yajing; Na, Jin; Mou, Yun; Yang, Kun; Ye, Zuhu; Li, Mingyue; Xie, Ya-Hong
2016-04-01
In order to improve luminescence properties of semiconductor ZnO quantum dots (QDs), Sm3+/Eu3+ co-doped ZnO QDs have been controllably synthesized by sol-gel method in this paper. ZnO QDs have a spherical shape with mean diameter at about 5-6 nm, which was characterized by high-resolution transmission electron microscopy (HRTEM). ZnO QDs have hexagonal wurtzite structure with parts of Sm3+ and Eu3+ incorporated into the lattice, which was demonstrated by X-ray Diffraction (XRD). Luminescence properties at room temperature (RT) of different amount of Sm3+ and 2 mol% Eu3+ doped ZnO QDs were examined in-depth by optical spectra. In contrast to the Pr3+/Eu3+ co-doped fluorescent performance researched in our previous study, the photoluminescence (PL) spectra indicates the unique luminescence properties of Sm3+/Eu3+ co-doped ZnO QDs. In addition, fluorescence lifetimes were obtained to illustrate the luminous mechanism.
NASA Astrophysics Data System (ADS)
Crespi, Vincent H.; Han, J. E.
2001-03-01
We describe a new class of nanoscale structured metals wherein the effects of quantum confinement are combined with dispersive metallic electronic states to induce modifications to the fundamental low-energy microscopic properties of a three-dimensional metal: the density of states, the distribution of Fermi velocities, and the collective electronic response (J. E. Han and Vincent H. Crespi, to appear in Phys. Rev. Lett.). The metalattice, metal-infiltrated colloidal lattice, possesses two very different length scales, lattice constants of metal atoms and of colloidal spheres. We compute the electronic properties of the metalattice using an empirical tight-binding method. As a result of the hierarchy in the two length scales, electronic states bifurcate into two classes with weak and strong dispersion. The dispersive states reflect the symmetry of the colloidal lattice and have major contribution to the transport properties such as inversion of Fermi velocity and optical response. We also discuss the magnetic structure of the metalattice with magnetic infiltrants such as Pd and Rh.
Multifunctional nanostructured materials for multimodal cancer imaging and therapy.
Liao, Jinfeng; Qi, Tingting; Chu, Bingyang; Peng, Jinrong; Luo, Feng; Qian, Zhiyong
2014-01-01
This paper reviews the recent research and development of multifunctional nanostructured materials for multimodal imaging and therapy. The biomedical applications for multifunctional imaging, diagnosis and therapy are discussed for several nanostructured materials such as polymeric nanoparticles, magnetic nanoparticles, gold nanomaterials, carbon materials, quantum dots and silica nanoparticles. Due to the unique features of nanostructured materials including the large surface area, structural diversity, multifunctionality, and long circulation time in blood, these materials have emerged as attractive preferences for optimized therapy. Multimodal imaging can be introduced to nanostructured materials for precise and fast diagnosis of cancer, which overcomes the shortcoming of single-imaging modality. Meanwhile, nanostructured materials can be also used to deliver therapeutic agents to the disease site in order to accomplish multimodal imaging and simultaneous diagnosis and therapy.
NASA Astrophysics Data System (ADS)
Wong, Dillon
Graphene, a two-dimensional (2D) honeycomb lattice of sp 2-bonded carbon atoms, is renowned for its many extraordinary properties. Not only does it have an extremely high carrier mobility, exceptional mechanical strength, and fascinating optical behavior, graphene additionally has an interesting energy-momentum relationship that is emergent from its space group symmetry. Graphene's low-energy electronic excitations consist of quasiparticles whose energies disperse linearly with wavevector and obey a 2D massless Dirac equation with a modified speed of light. This fortuitous circumstance allows for the exploration of ultra-relativistic phenomena using conventional tabletop techniques common to solid state physics and material science. Here I discuss experiments that probe these ultra-relativistic effects via application of scanning tunneling microscopy (STM) and spectroscopy (STS) to graphene field-effect transistors (FETs) in proximity with charged impurities. The first part of this dissertation focuses on the ultra-relativistic Coulomb problem. Depending on the strength of the potential, the Coulomb problem for massless Dirac particles is divided into two regimes: the subcritical and the supercritical. The subcritical regime is characterized by an electron-hole asymmetry in the local density of states (LDOS) and, unlike in nonrelativistic quantum mechanics, does not support bound states. In contrast, the supercritical regime hosts quasi-bound states that are analogous to "atomic collapse" orbits predicted to occur in atoms with nuclear charge Z > 170. By using an STM tip to directly position calcium (Ca) impurities on a graphene surface, we assembled "artificial nuclei" and observed a transition between the subcritical and supercritical regimes with increasing nuclear charge. We also investigated the screening of these charged impurities by massless Dirac fermions while varying the graphene carrier concentration with an electrostatic gate. The second part of this
SU(4)-SU(2) crossover and spin-filter properties of a double quantum dot nanosystem
NASA Astrophysics Data System (ADS)
Lopes, V.; Padilla, R. A.; Martins, G. B.; Anda, E. V.
2017-06-01
The SU(4)-SU(2) crossover, driven by an external magnetic field h , is analyzed in a capacitively coupled double quantum dot device connected to independent leads. As one continuously charges the dots from empty to quarter filled, by varying the gate potential Vg, the crossover starts when the magnitude of the spin polarization of the double quantum dot, as measured by
NASA Astrophysics Data System (ADS)
Dhar Sharma, Jyoti; Sharma, Munish; Kumar, Naveen; Ahluwalia, P. K.
2013-11-01
Ab-Initio computational study of dielectric function and optical properties of a graphane nano structure containing graphene quantum dot has been undertaken within Density Functional Theory using SIESTA code. Band structure, PDOS, real and imaginary parts of dielectric function, reflectance and energy loss have been calculated and frequencies corresponding to peak positions have been tabulated for each case. A comparison has been made with the corresponding properties of pristine graphene.
NASA Astrophysics Data System (ADS)
Zhou, Zhi; Du, Yingzi; Thomas, N. L.; Delp, Edward J., III
2010-04-01
Multimodal biometrics use more than one means of biometric identification to achieve higher recognition accuracy, since sometimes a unimodal biometric is not good enough used to do identification and classification. In this paper, we proposed a multimodal eye recognition system, which can obtain both iris and sclera patterns from one color eye image. Gabor filter and 1-D Log-Gabor filter algorithms have been applied as the iris recognition algorithms. In sclera recognition, we introduced automatic sclera segmentation, sclera pattern enhancement, sclera pattern template generation, and sclera pattern matching. We applied kernelbased matching score fusion to improve the performance of the eye recognition system. The experimental results show that the proposed eye recognition method can achieve better performance compared to unimodal biometric identification, and the accuracy of our proposed kernel-based matching score fusion method is higher than two classic linear matching score fusion methods: Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA).
Multimodal Nonlinear Optical Microscopy
Yue, Shuhua; Slipchenko, Mikhail N.; Cheng, Ji-Xin
2013-01-01
Because each nonlinear optical (NLO) imaging modality is sensitive to specific molecules or structures, multimodal NLO imaging capitalizes the potential of NLO microscopy for studies of complex biological tissues. The coupling of multiphoton fluorescence, second harmonic generation, and coherent anti-Stokes Raman scattering (CARS) has allowed investigation of a broad range of biological questions concerning lipid metabolism, cancer development, cardiovascular disease, and skin biology. Moreover, recent research shows the great potential of using CARS microscope as a platform to develop more advanced NLO modalities such as electronic-resonance-enhanced four-wave mixing, stimulated Raman scattering, and pump-probe microscopy. This article reviews the various approaches developed for realization of multimodal NLO imaging as well as developments of new NLO modalities on a CARS microscope. Applications to various aspects of biological and biomedical research are discussed. PMID:24353747
Fabrication and Transport Properties of Quantum Nanotransistors Coupled with Nanogap Electrodes
NASA Astrophysics Data System (ADS)
Hirakawa, Kazuhiko; Shibata, Kenji; Umeno, Akinori
Electrical manipulation and read-out of quantum mechanical states in single quantum dots and molecules by nanogap metal electrodes is expected to bring about great innovation in ICT (information-communication technology) devices. We have been working on technologies of accessing to single molecules and quantum dots by nanogap electrodes and exploring device applications of novel physics manifested in such nanotransistors.
Ground state properties of quantum Kagomé ice hardcore bosons
NASA Astrophysics Data System (ADS)
Owerre, S. A.
2016-11-01
We study the quantum Kagomé ice hardcore bosons, which correspond to the XY limit of the quantum spin ice Hamiltonian. We estimate the values of their zero-temperature thermodynamic quantities using the large-S expansion. We show that our semiclassical analysis is consistent with the finite temperature quantum Monte Carlo estimates.
Vinyltrimethoxysilane-modified zinc oxide quantum dots with tuned optical properties
NASA Astrophysics Data System (ADS)
Tăbăcaru, Aurel; Muşat, Viorica; Ţigău, Nicolae; Vasile, Bogdan Ştefan; Surdu, Vasile-Adrian
2015-12-01
Surface modification of zinc oxide nanoparticles (ZnO NPs) with covalently attachable organosilane species is a promising route for the preparation of hybrid nanomaterials in which optical and physico-chemical properties can be easily tuned. As a continuation of our ongoing studies regarding the surface modification of ZnO NPs with adjustable optical properties, we here report a novel series of hybrid zinc oxide quantum dots (ZnO QDs) modified with vinyltrimethoxysilane (VTMS). The modified ZnO QDs, with sizes spanning the range 3-4 nm, were obtained through a simple and low-cost precipitation method. They were morpho-structurally characterized by means of X-ray diffraction, high-resolution transmission electron microscopy and Fourier transform infrared spectroscopy, while their optical properties were studied by UV-vis spectroscopy. When applied as thin films on glass substrate, the obtained ZnO QDs showed excellent optical transmittance between 85 and 90%, and low reflectance in the visible domain. The photoluminescence spectra showed a significant blue-shift of the emission bands, from 578 nm for unmodified ZnO to 540 nm for ZnO modified with 10% VTMS. A new opposite trend of band gap variation from 3.494 eV for unmodified ZnO to 3.32 eV for ZnO modified with 10% VTMS was detected, while an organosilane loading higher than 10% was found to reincrease both nanoparticles size and band gap energy. These results highlighted the better ability of VTMS to attain a higher degree of nanoparticles size reduction, along with the tuning of the optical properties, with respect to the previously reported ZnO-MPS series.
High-contrast qubit interactions using multimode cavity QED.
McKay, David C; Naik, Ravi; Reinhold, Philip; Bishop, Lev S; Schuster, David I
2015-02-27
We introduce a new multimode cavity QED architecture for superconducting circuits that can be used to implement photonic memories, more efficient Purcell filters, and quantum simulations of photonic materials. We show that qubit interactions mediated by multimode cavities can have exponentially improved contrast for two qubit gates without sacrificing gate speed. Using two qubits coupled via a three-mode cavity system we spectroscopically observe multimode strong couplings up to 102 MHz and demonstrate suppressed interactions off resonance of 10 kHz when the qubits are ≈600 MHz detuned from the cavity resonance. We study Landau-Zener transitions in our multimode systems and demonstrate quasiadiabatic loading of single photons into the multimode cavity in 25 ns. We introduce an adiabatic gate protocol to realize a controlled-Z gate between the qubits in 95 ns and create a Bell state with 94.7% fidelity. This corresponds to an on/off ratio (gate contrast) of 1000.
Optimisation of optical properties of a long-wavelength GaInNAs quantum-well laser diode
Alias, M S; Maskuriy, F; Faiz, F; Mitani, S M; AL-Omari, A N
2013-11-30
We report optimisation of optical properties of a strained GaInNAs/GaAs quantum-well laser, by taking into account the many-body effect theory and the bowing parameter. The theoretical transition energies and the GaInNAs bowing parameter are fitted into the photoluminescence spectrum of the GaInNAs quantum well, obtained in the experiment. The theoretical results for the photoluminescence spectrum and laser characteristics (light, current and voltage) exhibits a high degree of agreement with the experimental results. (lasers)
Ananthanarayanan, Arundithi; Wang, Yue; Routh, Parimal; Sk, Mahasin Alam; Than, Aung; Lin, Ming; Zhang, Jie; Chen, Jie; Sun, Handong; Chen, Peng
2015-05-07
Graphene quantum dots (GQDs) are emerging zero-dimensional materials promising a wide spectrum of applications, particularly, as superior fluorescent reporters for bio-imaging and optical sensing. Heteroatom doping can endow GQDs with new or improved photoluminescence properties. Here, we demonstrate a simple strategy for the synthesis of nitrogen and phosphorus co-doped GQDs from a single biomolecule precursor (adenosine triphosphate - ATP). Such ATP-GQDs exhibit high fluorescence quantum yield, strong two-photon upconversion, small molecular weight, high photostability, and good biocompatibility. Furthermore, transferrin conjugated ATP-GQDs have been used for imaging and real-time tracking of transferrin receptors in live cells.
Properties of the Katugampola fractional derivative with potential application in quantum mechanics
Anderson, Douglas R.; Ulness, Darin J.
2015-06-15
Katugampola [e-print http://arxiv.org/abs/1410.6535 ] recently introduced a limit based fractional derivative, D{sup α} (referred to in this work as the Katugampola fractional derivative) that maintains many of the familiar properties of standard derivatives such as the product, quotient, and chain rules. Typically, fractional derivatives are handled using an integral representation and, as such, are non-local in character. The current work starts with a key property of the Katugampola fractional derivative, D{sup α}[y]=t{sup 1−α}(dy)/(dt) , and the associated differential operator, D{sup α} = t{sup 1−α}D{sup 1}. These operators, their inverses, commutators, anti-commutators, and several important differential equations are studied. The anti-commutator serves as a basis for the development of a self-adjoint operator which could potentially be useful in quantum mechanics. A Hamiltonian is constructed from this operator and applied to the particle in a box model.
Metal colloids and semiconductor quantum dots: Linear and nonlinear optical properties
NASA Technical Reports Server (NTRS)
Henderson, D. O.; My, R.; Tung, Y.; Ueda, A.; Zhu, J.; Collins, W. E.; Hall, Christopher
1995-01-01
One aspect of this project involves a collaborative effort with the Solid State Division of ORNL. The thrust behind this research is to develop ion implantion for synthesizing novel materials (quantum dots wires and wells, and metal colloids) for applications in all optical switching devices, up conversion, and the synthesis of novel refractory materials. In general the host material is typically a glass such as optical grade silica. The ions of interest are Au, Ag, Cd, Se, In, P, Sb, Ga and As. An emphasis is placed on host guest interactions between the matrix and the implanted ion and how the matrix effects and implantation parameters can be used to obtain designer level optical devices tailored for specific applications. The specific materials of interest are: CdSe, CdTe, InAs, GaAs, InP, GaP, InSb, GaSb and InGaAs. A second aspect of this research program involves using porous glass (25-200 A) for fabricating materials of finite size. In this part of the program, we are particularly interested in characterizing the thermodynamic and optical properties of these non-composite materials. We also address how phase diagram of the confined material is altered by the interfacial properties between the confined material and the pore wall.
Metal colloids and semiconductor quantum dots: Linear and nonlinear optical properties
NASA Technical Reports Server (NTRS)
Henderson, D. O.; My, R.; Tung, Y.; Ueda, A.; Zhu, J.; Collins, W. E.; Hall, Christopher
1995-01-01
One aspect of this project involves a collaborative effort with the Solid State Division of ORNL. The thrust behind this research is to develop ion implantion for synthesizing novel materials (quantum dots wires and wells, and metal colloids) for applications in all optical switching devices, up conversion, and the synthesis of novel refractory materials. In general the host material is typically a glass such as optical grade silica. The ions of interest are Au, Ag, Cd, Se, In, P, Sb, Ga and As. An emphasis is placed on host guest interactions between the matrix and the implanted ion and how the matrix effects and implantation parameters can be used to obtain designer level optical devices tailored for specific applications. The specific materials of interest are: CdSe, CdTe, InAs, GaAs, InP, GaP, InSb, GaSb and InGaAs. A second aspect of this research program involves using porous glass (25-200 A) for fabricating materials of finite size. In this part of the program, we are particularly interested in characterizing the thermodynamic and optical properties of these non-composite materials. We also address how phase diagram of the confined material is altered by the interfacial properties between the confined material and the pore wall.
Effect of graphene on photoluminescence properties of graphene/GeSi quantum dot hybrid structures
Chen, Y. L.; Ma, Y. J.; Wang, W. Q.; Ding, K.; Wu, Q.; Fan, Y. L.; Yang, X. J.; Zhong, Z. Y.; Jiang, Z. M.; Chen, D. D.; Xu, F.
2014-07-14
Graphene has been discovered to have two effects on the photoluminescence (PL) properties of graphene/GeSi quantum dot (QD) hybrid structures, which were formed by covering monolayer graphene sheet on the multilayer ordered GeSi QDs sample surfaces. At the excitation of 488 nm laser line, the hybrid structure had a reduced PL intensity, while at the excitation of 325 nm, it had an enhanced PL intensity. The attenuation in PL intensity can be attributed to the transferring of electrons from the conducting band of GeSi QDs to the graphene sheet. The electron transfer mechanism was confirmed by the time resolved PL measurements. For the PL enhancement, a mechanism called surface-plasmon-polariton (SPP) enhanced absorption mechanism is proposed, in which the excitation of SPP in the graphene is suggested. Due to the resonant excitation of SPP by incident light, the absorption of incident light is much enhanced at the surface region, thus leading to more exciton generation and a PL enhancement in the region. The results may be helpful to provide us a way to improve optical properties of low dimensional surface structures.
Shape Engineered InAs Quantum Dots with Stabilized Electronic Properties
NASA Astrophysics Data System (ADS)
Tokranov, Vadim E.; Yakimov, Michael; Katsnelson, Alex; Lamberti, Matthew; Oktyabrsky, Serge
2003-07-01
We have studied the influence of overgrowth procedure and a few monolayer-thick AlAs capping layers on the properties of self-assembled InAs quantum dots (QDs) using transmission electron microscopy (TEM), scanning electron microscopy, and photoluminescence (PL). PL spectroscopy was used to study and optimize optical properties of the QDs by shape engineering (QD truncation) through adjustment of the thickness of overlayers and temperature of the subsequent heating. QDs with 6 nm-thick overlayer with heating step at 560°C was found to have the highest PL intensity at room temperature and the lowest FWHM, 29 meV. Ground state energy of the truncated QDs is very stable against variations of growth parameters. TEM measurements show that the capping AlAs layer covers the QDs entirely even though the dots are truncated by the heating step. 1.22 μm edge-emitting laser with triple-layer truncated QD gain medium demonstrated room temperature minimum threshold current density, 56 A/cm2, and high saturated modal gain, 16 cm-1. Extremely high characteristic temperature, To = 304 K in the 20 - 60°C interval, and maximum lasing temperature of 219°C were measured for this laser diode.
First principles calculation of thermo-mechanical properties of thoria using Quantum ESPRESSO
NASA Astrophysics Data System (ADS)
Malakkal, Linu; Szpunar, Barbara; Zuniga, Juan Carlos; Siripurapu, Ravi Kiran; Szpunar, Jerzy A.
2016-05-01
In this work, we have used Quantum ESPRESSO (QE), an open source first principles code, based on density-functional theory, plane waves, and pseudopotentials, along with quasi-harmonic approximation (QHA) to calculate the thermo-mechanical properties of thorium dioxide (ThO2). Using Python programming language, our group developed qe-nipy-advanced, an interface to QE, which can evaluate the structural and thermo-mechanical properties of materials. We predicted the phonon contribution to thermal conductivity (kL) using the Slack model. We performed the calculations within local density approximation (LDA) and generalized gradient approximation (GGA) with the recently proposed version for solids (PBEsol). We employed a Monkhorst-Pack 5 × 5 × 5 k-points mesh in reciprocal space with a plane wave cut-off energy of 150 Ry to obtain the convergence of the structure. We calculated the dynamical matrices of the lattice on a 4 × 4 × 4 mesh. We have predicted the heat capacity, thermal expansion and the phonon contribution to thermal conductivity, as a function of temperature up to 1400K, and compared them with the previous work and known experimental results.
Resonant Bragg quantum wells in hybrid photonic crystals: optical properties and applications
NASA Astrophysics Data System (ADS)
Schiumarini, D.; D'Andrea, A.; Tomassini, N.
2016-03-01
The exciton-polariton propagation in resonant hybrid periodic stacks of isotropic/anisotropic layers, with misaligned in-plane anisotropy and Bragg photon frequency in resonance with Wannier exciton of 2D quantum wells is studied by self-consistent theory and in the effective mass approximation. The optical tailoring of this new class of resonant Bragg reflectors, where the structural periodicity of a multi-layer drives the in-plane optical \\hat{C}-axis orientation, is computed for symmetric and asymmetric elementary cells by conserving strong radiation-matter coupling and photonic band-gaps. The optical response computation, on a finite cluster of N-asymmetric elementary cells, shows anomalous exciton-polariton propagation and absorbance properties strongly dependent on the incident wave polarizations. Finally, the behaviour of the so-called intermediate dispersion curves, close to the unperturbed exciton resonance, and located between upper and lower branches of the first band gap, is studied as a function of the in-plane \\hat{C}-axis orientation. This latter optical property is promising for storing exciton-polariton impulses in this kind of Bragg reflector.
Physical properties of the candidate quantum spin-ice system Pr2Hf2O7
NASA Astrophysics Data System (ADS)
Anand, V. K.; Opherden, L.; Xu, J.; Adroja, D. T.; Islam, A. T. M. N.; Herrmannsdörfer, T.; Hornung, J.; Schönemann, R.; Uhlarz, M.; Walker, H. C.; Casati, N.; Lake, B.
2016-10-01
Physical properties of a pyrohafnate compound Pr2Hf2O7 have been investigated by ac magnetic susceptibility χac(T ) , dc magnetic susceptibility χ (T ) , isothermal magnetization M (H ) , and heat-capacity Cp(T ) measurements on polycrystalline as well as single-crystal samples combined with high-resolution synchrotron x-ray diffraction (XRD) for structural characterization and inelastic neutron scattering (INS) to determine the crystal-field energy-level scheme and wave functions. Synchrotron XRD data confirm the ordered cubic pyrochlore (F d 3 ¯m ) structure without any noticeable site mixing or oxygen deficiency. No clear evidence of long-range magnetic ordering is observed down to 90 mK, however the χac(T ) evinces slow spin dynamics revealed by a frequency dependent broad peak associated with spin freezing. The INS data reveal the expected five well-defined magnetic excitations due to crystal-field splitting of the J =4 ground-state multiplet of the Pr3 +. The crystal-field parameters and ground-state wave function of Pr3 + have been determined. The Ising anisotropic nature of the magnetic ground state is inferred from the INS as well as χ (T ) and M (H ) data. Together these properties make Pr2Hf2O7 a candidate compound for quantum spin-ice behavior.
Sahu, Bibhuti Bhusan; Yin, Yongyi; Gauter, Sven; Han, Jeon Geon; Kersten, Holger
2016-09-21
The characterization of plasma and atomic radical parameters along with the energy influx from plasma to the substrate during plasma enhanced chemical vapor deposition (PECVD) of Si quantum dot (QD) films is presented and discussed. In particular, relating to the Si QD process optimization and control of film growth, the necessity to control the deposition environment by inducing the effect of the energy of the key plasma species is realized. In this contribution, we report dual frequency PECVD processes for the low-temperature and high-rate deposition of Si QDs by chemistry and energy control of the key plasma species. The dual frequency plasmas can effectively produce a very high plasma density and atomic H and N densities, which are found to be crucial for the growth and nucleation of QDs. Apart from the study of plasma chemistry, the crucial role of the energy imparted due to these plasma activated species on the substrate is determined in light of QD formation. Various plasma diagnostics and film analysis methods are integrated to correlate the effect of plasma and energy flux on the properties of the deposited films prepared in the reactive mixtures of SiH4/NH3 at various pressures. The present results are highly relevant to the development of the next-generation plasma process for devices that rely on effective control of the QD size and film properties.
Linear-optics realization of channels for single-photon multimode qudits
Piani, Marco; Pitkanen, David; Luetkenhaus, Norbert; Kaltenbaek, Rainer
2011-09-15
We propose and theoretically study a method for the stochastic realization of arbitrary quantum channels on multimode single-photon qudits. In order for our method to be undemanding in its implementation, we restrict our analysis to linear-optical techniques, vacuum ancillary states, and nonadaptive schemes, but we allow for random switching between different optical networks. With our method it is possible to deterministically implement random-unitary channels and to stochastically implement general channels. We provide an expression for the optimal probability of success of our scheme and calculate this quantity for specific examples such as the qubit amplitude-damping channel. The success probability is shown to be related to the entanglement properties of the Choi-Jamiolkowski state isomorphic to the channel.
Wang, Cong; He, Xian-Tu; Zhang, Ping
2013-09-01
Thermophysical properties of hydrogen, helium, and hydrogen-helium mixtures have been investigated in the warm dense matter regime at electron number densities ranging from 6.02 × 10^{29} ∼ 2.41 × 10^{30} m^{-3} and temperatures from 4000 to 20000 K via quantum molecular dynamics simulations. We focus on the dynamical properties such as the equation of states, diffusion coefficients, and viscosity. Mixing rules (density matching, pressure matching, and binary ionic mixing rules) have been validated by checking composite properties of pure species against that of the fully interacting mixture derived from quantum molecular dynamics simulations. These mixing rules reproduce pressures within 10% accuracy, while it is 75% and 50% for the diffusion and viscosity, respectively. The binary ionic mixing rule moves the results into better agreement. Predictions from one component plasma model are also provided and discussed.
Charge Transfer as a Probe for the Interfacial Properties of Quantum Dot-Ligand Complexes
NASA Astrophysics Data System (ADS)
Weinberg, David Joseph
This dissertation describes the study of charge transfer interactions between colloidal quantum dots (QDs) and molecular redox partners in the context of both fundamental investigations of charge recombination mechanisms in nanocrystal-molecule systems, and as a technique to probe the properties of the QD ligand shell. Charge separation in a system of CdS nanocrystals and organic hole acceptors results in the formation of a spin-correlated radical ion pair. Interrogating this photogenerated species with EPR and magnetic field effect transient absorption techniques reveals that the charge recombination dynamics of this donor-acceptor system are dictated by the radical pair intersystem crossing mechanism on the nanosecond timescale. These experiments also indicate that the photoinjected electron localizes at a CdS QD surface trap state, and the coupling between the electron and hole in this spin-correlated system is low. Additional studies involving the CdS QDs and organic hole acceptors are proposed which would investigate the exchange of charge and energy within the nanocrystal organic adlayer. Collisional charge transfer interactions between substituted benzoquinone molecules and PbS QDs coated with mixed monolayers of oleic acid and perfluorodecanethiol are monitored via photoluminescence and transient absorption spectroscopies. These experiments reveal that partially fluorinated ligand shells are less permeable to solution phase molecules and offer greater protection of the nanocrystal surface than their aliphatic counterparts. Only a small amount of fluorinated surfactant ( 20% surface coverage) is necessary to profoundly change the permeability of the ligand shell, and the protective nature of these fluorinated molecules is likely a combination of the molecular volume and oleophobicity of these ligands. Follow up work is discussed which would elucidate the influence of solvent and extent of surfactant fluorination on the permeability of these ligand shells, as
NASA Astrophysics Data System (ADS)
Hur, Gwang-Ok
The -kicked rotor is a paradigm of quantum chaos. Its realisation with clouds of cold atoms in pulsed optical lattices demonstrated the well-known quantum chaos phenomenon of 'dynamical localisation'. In those experi ments by several groups world-wide, the £-kicks were applied at equal time intervals. However, recent theoretical and experimental work by the cold atom group at UCL Monteiro et al 2002, Jonckheere et al 2003, Jones et al 2004 showed that novel quantum and classical dynamics arises if the atomic cloud is pulsed with repeating sequences of unequally spaced kicks. In Mon teiro et al 2002 it was found that the energy absorption rates depend on the momentum of the atoms relative to the optical lattice hence a type of chaotic ratchet was proposed. In Jonckheere et al and Jones et al, a possible mechanism for selecting atoms according to their momenta (velocity filter) was investigated. The aim of this thesis was to study the properties of the underlying eigen values and eigenstates. Despite the unequally-spaced kicks, these systems are still time-periodic, so we in fact investigated the Floquet states, which are eigenstates of U(T), the one-period time evolution operator. The Floquet states and corresponding eigenvalues were obtained by diagonalising a ma trix representation of the operator U(T). It was found that the form of the eigenstates enables us to analyse qual itatively the atomic momentum probability distributions, N(p) measured experimentally. In particular, the momentum width of the individual eigen states varies strongly with < p > as expected from the theoretical and ex- perimental results obtained previously. In addition, at specific < p > close to values which in the experiment yield directed motion (ratchet transport), the probability distribution of the individual Floquet states is asymmetric, mirroring the asymmetric N(p) measured in clouds of cesium atoms. In the penultimate chapter, the spectral fluctuations (eigenvalue statis tics) are
Notes on Translational and Rotational Properties of Tensor Fields in Relativistic Quantum Mechanics
NASA Astrophysics Data System (ADS)
Dvoeglazov, V. V.
Recently, several discussions on the possible observability of 4-vector fields have been published in literature. Furthermore, several authors recently claimed existence of the helicity=0 fundamental field. We re-examine the theory of antisymmetric tensor fields and 4-vector potentials. We study the massless limits. In fact, a theoretical motivation for this venture is the old papers of Ogievetskiĭ and Polubarinov, Hayashi, and Kalb and Ramond. Ogievetskiĭ and Polubarinov proposed the concept of the notoph, whose helicity properties are complementary to those of the photon. We analyze the quantum field theory with taking into account mass dimensions of the notoph and the photon. It appears to be possible to describe both photon and notoph degrees of freedom on the basis of the modified Bargmann-Wigner formalism for the symmetric second-rank spinor. Next, we proceed to derive equations for the symmetric tensor of the second rank on the basis of the Bargmann-Wigner formalism in a straightforward way. The symmetric multispinor of the fourth rank is used. Due to serious problems with the interpretation of the results obtained on using the standard procedure we generalize it and obtain the spin-2 relativistic equations, which are consistent with the general relativity. Thus, in fact we deduced the gravitational field equations from relativistic quantum mechanics. The relations of this theory with the scalar-tensor theories of gravitation and f(R) are discussed. Particular attention has been paid to the correct definitions of the energy-momentum tensor and other Nöther currents in the electromagnetic theory, the relativistic theory of gravitation, the general relativity, and their generalizations. We estimate possible interactions, fermion-notoph, graviton-notoph, photon-notoph, and we conclude that they can probably be seen in experiments in the next few years.
Influence of GaAsSb structural properties on the optical properties of InAs/GaAsSb quantum dots
NASA Astrophysics Data System (ADS)
Zhang, Zewen; Huang, Yidan; Reece, Peter J.; Bremner, Stephen P.
2017-10-01
The optical properties of InAs quantum dots with GaAsSb buffer, capping and cladding layers of different alloy compositions are studied by photoluminescence techniques. Fully strained GaAsSb layers show that the inclusion of a buffer layer gives a blue-shift to quantum dot emission, while for quantum dots capped with GaAsSb a clear red-shift is seen. Power-dependent photoluminescence suggests a transition from type-I to type-II can be achieved by GaAsSb at Sb composition between 11-13%, while the transition for the GaAsSb cladding layer occurs at around 11%. At low Sb composition, good crystal quality and energy barrier are detected by temperature-dependent photoluminescence, while high-level dislocation and defects exist under high antimony content, as evidenced by X-Ray Diffraction and Transmission Electron Microscopy.
Multispectral analysis of multimodal images.
Kvinnsland, Yngve; Brekke, Njål; Taxt, Torfinn M; Grüner, Renate
2009-01-01
An increasing number of multimodal images represent a valuable increase in available image information, but at the same time it complicates the extraction of diagnostic information across the images. Multispectral analysis (MSA) has the potential to simplify this problem substantially as unlimited number of images can be combined, and tissue properties across the images can be extracted automatically. We have developed a software solution for MSA containing two algorithms for unsupervised classification, an EM-algorithm finding multinormal class descriptions and the k-means clustering algorithm, and two for supervised classification, a Bayesian classifier using multinormal class descriptions and a kNN-algorithm. The software has an efficient user interface for the creation and manipulation of class descriptions, and it has proper tools for displaying the results. The software has been tested on different sets of images. One application is to segment cross-sectional images of brain tissue (T1- and T2-weighted MR images) into its main normal tissues and brain tumors. Another interesting set of images are the perfusion maps and diffusion maps, derived images from raw MR images. The software returns segmentations that seem to be sensible. The MSA software appears to be a valuable tool for image analysis with multimodal images at hand. It readily gives a segmentation of image volumes that visually seems to be sensible. However, to really learn how to use MSA, it will be necessary to gain more insight into what tissues the different segments contain, and the upcoming work will therefore be focused on examining the tissues through for example histological sections.
A multimodal parallel architecture: A cognitive framework for multimodal interactions.
Cohn, Neil
2016-01-01
Human communication is naturally multimodal, and substantial focus has examined the semantic correspondences in speech-gesture and text-image relationships. However, visual narratives, like those in comics, provide an interesting challenge to multimodal communication because the words and/or images can guide the overall meaning, and both modalities can appear in complicated "grammatical" sequences: sentences use a syntactic structure and sequential images use a narrative structure. These dual structures create complexity beyond those typically addressed by theories of multimodality where only a single form uses combinatorial structure, and also poses challenges for models of the linguistic system that focus on single modalities. This paper outlines a broad theoretical framework for multimodal interactions by expanding on Jackendoff's (2002) parallel architecture for language. Multimodal interactions are characterized in terms of their component cognitive structures: whether a particular modality (verbal, bodily, visual) is present, whether it uses a grammatical structure (syntax, narrative), and whether it "dominates" the semantics of the overall expression. Altogether, this approach integrates multimodal interactions into an existing framework of language and cognition, and characterizes interactions between varying complexity in the verbal, bodily, and graphic domains. The resulting theoretical model presents an expanded consideration of the boundaries of the "linguistic" system and its involvement in multimodal interactions, with a framework that can benefit research on corpus analyses, experimentation, and the educational benefits of multimodality. Copyright © 2015.
Multimodal mechanisms of food creaminess sensation.
Chen, Jianshe; Eaton, Louise
2012-12-01
In this work, the sensory creaminess of a set of four viscosity-matched fluid foods (single cream, evaporated milk, corn starch solution, and corn starch solution containing long chain free fatty acids) was tested by a panel of 16 assessors via controlled sensation mechanisms of smell only, taste only, taste and tactile, and integrated multimodal. It was found that all sensation channels were able to discriminate between creamy and non-creamy foods, but only the multimodal method gave creaminess ratings in agreement with the samples' fat content. Results from this study show that the presence of long chain free fatty acids has no influence on creaminess perception. It is certain that food creaminess is not a primary sensory property but an integrated sensory perception (or sensory experience) derived from combined sensations of visual, olfactory, gustatory, and tactile cues. Creamy colour, milky flavour, and smooth texture are probably the most important sensory features of food creaminess.
Multimode directionality in all-dielectric metasurfaces
NASA Astrophysics Data System (ADS)
Yang, Yuanqing; Miroshnichenko, Andrey E.; Kostinski, Sarah V.; Odit, Mikhail; Kapitanova, Polina; Qiu, Min; Kivshar, Yuri S.
2017-04-01
We demonstrate that spectrally diverse multiple magnetic dipole resonances can be excited in all-dielectric structures lacking rotational symmetry, in contrast to conventionally used spheres, disks, or spheroids. Such multiple magnetic resonances arise from hybrid Mie-Fabry-Perot modes, and can constructively interfere with induced electric dipole moments, thereby leading to novel multifrequency unidirectional scattering. Here we focus on elongated dielectric nanobars, whose magnetic resonances can be spectrally tuned by their aspect ratios. Based on our theoretical results, we suggest all-dielectric multimode metasurfaces and verify them in proof-of-principle microwave experiments. We also believe that the demonstrated property of multimode directionality is largely responsible for the best efficiency of all-dielectric metasurfaces that were recently shown to operate across multiple telecom bands.
Multimodality imaging in nanomedicine and nanotheranostics
Li, Xue; Zhang, Xue-Ning; Li, Xiao-Dong; Chang, Jin
2016-01-01
Accurate diagnosis of tumors needs much detailed information. However, available single imaging modality cannot provide complete or comprehensive data. Nanomedicine is the application of nanotechnology to medicine, and multimodality imaging based on nanoparticles has been receiving extensive attention. This new hybrid imaging technology could provide complementary information from different imaging modalities using only a single injection of contrast agent. In this review, we introduce recent developments in multifunctional nanoparticles and their biomedical applications to multimodal imaging and theragnosis as nanomedicine. Most of the reviewed studies are based on the intrinsic properties of nanoparticles and their application in clinical imaging technology. The imaging techniques include positron emission tomography, single-photon emission computed tomography, computerized tomography, magnetic resonance imaging, optical imaging, and ultrasound imaging. PMID:27807501
2010-01-01
As an important step towards the realisation of silicon-based tandem solar cells using silicon quantum dots embedded in a silicon dioxide (SiO2) matrix, single-junction silicon quantum dot (Si QD) solar cells on quartz substrates have been fabricated. The total thickness of the solar cell material is 420 nm. The cells contain 4 nm diameter Si quantum dots. The impacts of post-metallisation treatments such as phosphoric acid (H3PO4) etching, nitrogen (N2) gas anneal and forming gas (Ar: H2) anneal on the cells’ electrical and photovoltaic properties are investigated. The Si QD solar cells studied in this work have achieved an open circuit voltage of 410 mV after various processes. Parameters extracted from dark I–V, light I–V and circular transfer length measurement (CTLM) suggest limiting mechanism in the Si QD solar cell operation and possible approaches for further improvement. PMID:21124642
Di, Dawei; Perez-Wurfl, Ivan; Gentle, Angus; Kim, Dong-Ho; Hao, Xiaojing; Shi, Lei; Conibeer, Gavin; Green, Martin A
2010-08-01
As an important step towards the realisation of silicon-based tandem solar cells using silicon quantum dots embedded in a silicon dioxide (SiO(2)) matrix, single-junction silicon quantum dot (Si QD) solar cells on quartz substrates have been fabricated. The total thickness of the solar cell material is 420 nm. The cells contain 4 nm diameter Si quantum dots. The impacts of post-metallisation treatments such as phosphoric acid (H(3)PO(4)) etching, nitrogen (N(2)) gas anneal and forming gas (Ar: H(2)) anneal on the cells' electrical and photovoltaic properties are investigated. The Si QD solar cells studied in this work have achieved an open circuit voltage of 410 mV after various processes. Parameters extracted from dark I-V, light I-V and circular transfer length measurement (CTLM) suggest limiting mechanism in the Si QD solar cell operation and possible approaches for further improvement.
NASA Astrophysics Data System (ADS)
Altıntaş, A.; ćakmak, K. E.; Güçlü, A. D.
2017-01-01
We theoretically investigate the effects of long-range disorder and electron-electron interactions on the optical properties of hexagonal armchair graphene quantum dots consisting of up to 10 806 atoms. The numerical calculations are performed using a combination of tight-binding, mean-field Hubbard, and configuration interaction methods. Imperfections in the graphene quantum dots are modeled as a long-range random potential landscape, giving rise to electron-hole puddles. We show that, when the electron-hole puddles are present, the tight-binding method gives a poor description of the low-energy absorption spectra compared to mean-field and configuration interaction calculation results. As the size of the graphene quantum dot is increased, the universal optical conductivity limit can be observed in the absorption spectrum. When disorder is present, the calculated absorption spectrum approaches the experimental results for isolated monolayers of graphene sheets.
NASA Astrophysics Data System (ADS)
Yamijala, Sharma S. R. K. C.; Bandyopadhyay, Arkamita; Pati, Swapan K.
2014-05-01
Spin-polarized density functional theory calculations have been performed on armchair graphene quantum dots and boron-nitride quantum dots (AG/BNQDs) and the effect of carbon/boron-nitride substitution on the electronic properties of these AG/BNQDs has been investigated. As a first step to consider more realistic quantum dots, quantum dots which are a combination of zigzag QDs and armchair QDs have been considered. Effect of substitution on these hybrid quantum dots has been explored for both GQDs and BNQDs and such results have been compared and contrasted with the results of substituted AG/BNQDs and their zigzag analogs. Our work suggests that the edge substitution can play an important tool while tuning the electronic properties of quantum dots.