Zhang, Shiyang; Mo, Yuxiang
2009-10-15
The spin-vibronic energy levels for CH(3)CN(+)(X(2)E) and CD(3)CN(+)(X(2)E) have been calculated using a diabatic model including multimode vibronic couplings and spin-orbit interaction without adjusting any parameter. The diabatic potential energy surfaces are represented by the Taylor expansions including linear, quadratic and bilinear vibronic coupling terms. The normal coordinates used in the Taylor expansion were expressed by the mass-weighted Cartesian coordinates. The adiabatic potential energy surfaces for CH(3)CN(+) and CD(3)CN(+) were calculated at the level of CASPT2/cc-pvtz, and the spin-orbit coupling constant was calculated at the level of MRCI/CAS/cc-pvtz. The spin-orbit energy splittings for the ground vibrational states of CH(3)CN(+)(X(2)E) and CD(3)CN(+)(X(2)E) are 20 and 16 cm(-1), respectively, which are resulted from the quenching of the spin-orbit coupling strength of 51 cm(-1). The calculated spin-vibronic levels are in good agreement with the experimental data. The calculation results show that the Jahn-Teller effects in CH(3)CN(+)(X(2)E) and CD(3)CN(+)(X(2)E) are essential to understand their spin-vibronic energy structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kopec, Sabine; Köppel, Horst; Ottiger, Philipp
2015-02-28
The S{sub 2}←S{sub 0} vibronic spectrum of the ortho-cyanophenol dimer (oCP){sub 2} is analyzed in a joint experimental and theoretical investigation. Vibronic excitation energies up to 750 cm{sup −1} are covered, which extends our previous analysis of the quenching of the excitonic splitting in this and related species [Kopec et al., J. Chem. Phys. 137, 184312 (2012)]. As we demonstrate, this necessitates an extension of the coupling model. Accordingly, we compute the potential energy surfaces of the ortho-cyanophenol dimer (oCP){sub 2} along all relevant normal modes using the approximate second-order coupled cluster method RI-CC2 and extract the corresponding coupling constantsmore » using the linear and quadratic vibronic coupling scheme. These serve as the basis to calculate the vibronic spectrum. The theoretical results are found to be in good agreement with the experimental highly resolved resonant two-photon ionization spectrum. This allows to interpret key features of the excitonic and vibronic interactions in terms of nodal patterns of the underlying vibronic wave functions.« less
NASA Astrophysics Data System (ADS)
Melnik, Dmitry G.; Miller, Terry A.; Liu, Jinjun
2012-06-01
We have recorded the high resolution spectra of tilde{B} ← tilde{X} of isopropoxy radical. The isopropoxy radical can be qualitatively viewed as a "chemically substituted" methoxy (with two methyl groups playing roles of "isotopes" of hydrogen), and the calculations indicate the methyl substitution only moderately removes the degeneracy of the tilde{X}^2E state of methoxy. Therefore, isopropoxy is expected to exhibit the effects of the vibronic coupling within near-degenerate electronic state twofold. Such a coupling can affect the selection rules of vibronic transitions as well as the observed parameters of the effective rotational Hamiltonian. These effects can be understood if the details of the vibronic eigenstates are available. To obtain such information we used a simple semi-quantitative model which accounts for spin-orbit and vibronic coupling involving several vibrational modes. We have subsequently use these results to predict the effects of the vibronic coupling on the observed parameters of the molecule. The results of these calculations will be discussed. R. A. Young and D. R. Yarkony, J. Chem. Phys., 125, 234301 (2006)
NASA Astrophysics Data System (ADS)
Myers Kelley, Anne
2003-08-01
The linear absorption spectra, resonance Raman excitation profiles and depolarization dispersion curves, and hyper-Rayleigh scattering profiles are calculated for excitonically coupled homodimers of a model electron donor-acceptor "push-pull" conjugated chromophore as a function of dimer geometry. The vibronic eigenstates of the dimer are calculated by diagonalizing the matrix of transition dipole couplings among the vibronic transitions of the constituent monomers. The absorption spectra show the usual red- or blueshifted transitions for J-type or H-type dimers, respectively. When the electronic coupling is large compared with the vibronic width of the monomer spectrum, the dimer absorption spectra exhibit simple Franck-Condon progressions having reduced vibronic intensities compared with the monomer, and the resonance Raman excitation profiles are shifted but otherwise only weakly perturbed. When the coupling is comparable to the vibronic width, the H-dimer absorption spectra exhibit irregular vibronic frequency spacings and intensity patterns and the effects on the Raman excitation profiles are larger. There is strong dispersion in the Raman depolarization ratios for dimer geometries in which both transitions carry oscillator strength. The first hyperpolarizabilities are somewhat enhanced in J-dimers and considerably reduced in H-dimers. These effects on the molecular β will amplify the effects of dimerization on the ground-state dipole moment in electro-optic materials formed from chromophore-doped polymers that must be electric field poled to obtain the net alignment needed for a macroscopic χ(2).
Multi-State Vibronic Interactions in Fluorinated Benzene Radical Cations.
NASA Astrophysics Data System (ADS)
Faraji, S.; Köppel, H.
2009-06-01
Conical intersections of potential energy surfaces have emerged as paradigms for signalling strong nonadiabatic coupling effects. An important class of systems where some of these effects have been analyzed in the literature, are the benzene and benzenoid cations, where the electronic structure, spectroscopy, and dynamics have received great attention in the literature. In the present work a brief overview is given over our theoretical treatments of multi-mode and multi-state vibronic interactions in the benzene radical cation and some of its fluorinated derivatives. The fluorobenzene derivatives are of systematic interest for at least two different reasons. (1) The reduction of symmetry by incomplete fluorination leads to a disappearance of the Jahn-Teller effect present in the parent cation. (2) A specific, more chemical effect of fluorination consists in the energetic increase of the lowest σ-type electronic states of the radical cations. The multi-mode multi-state vibronic interactions between the five lowest electronic states of the fluorobenzene radical cations are investigated theoretically, based on ab initio electronic structure data, and employing the well-established linear vibronic coupling model, augmented by quadratic coupling terms for the totally symmetric vibrational modes. Low-energy conical intersections, and strong vibronic couplings are found to prevail within the set of tilde{X}-tilde{A} and tilde{B}-tilde{C}-tilde{D} cationic states, while the interactions between these two sets of states are found to be weaker and depend on the particular isomer. This is attributed to the different location of the minima of the various conical intersections occurring in these systems. Wave-packet dynamical simulations for these coupled potential energy surfaces, utilizing the powerful multi-configuration time-dependent Hartree method are performed. Ultrafast internal conversion processes and the analysis of the MATI and photo-electron spectra shed new light on the spectroscopy and fluorescence dynamics of these species. W. Domcke, D. R. Yarkony, and H. Köppel, Advanced Series in Physical Chemistry, World Scientific, Singapore (2004). M. H. Beck and A. Jäckle and G. A. Worth and H. -D. Meyer, Phys. Rep. 324, 1 (2000). S. Faraji, H. Köppel, (Part I) ; S. Faraji, H. Köppel, H.-D. Meyer, (Part II) J. Chem. Phys. 129, 074310 (2008).
NASA Astrophysics Data System (ADS)
Rajak, Karunamoy; Ghosh, Arpita; Mahapatra, S.
2018-02-01
We report multimode vibronic coupling of the energetically low-lying electronic states of phenol and pentafluorophenol in this article. First principles nuclear dynamics calculations are carried out to elucidate the optical absorption spectrum of both of the molecules. This is motivated by the recent experimental measurements [S. Karmakar et al., J. Chem. Phys. 142, 184303 (2015)] on these systems. Diabatic vibronic coupling models are developed with the aid of adiabatic electronic energies calculated ab initio by the equation of motion coupled cluster quantum chemistry method. A nuclear dynamics study on the constructed electronic states is carried out by both the time-independent and time-dependent quantum mechanical methods. It is found that the nature of low-energy πσ* transition changes, and in pentafluorophenol the energy of the first two 1πσ* states, is lowered by about half an eV (vertically, relative to those in phenol), and they become energetically close to the optically bright first excited 1ππ* (S1) state. This results in strong vibronic coupling and multiple multi-state conical intersections among the ππ* and πσ* electronic states of pentafluorophenol. The impact of associated nonadiabatic effects on the vibronic structure and dynamics of the 1ππ* state is examined at length. The structured vibronic band of phenol becomes structureless in pentafluorophenol. The theoretical results are found to be in good accord with the experimental finding at both high energy resolution and low energy resolution.
Spin-vibronic quantum dynamics for ultrafast excited-state processes.
Eng, Julien; Gourlaouen, Christophe; Gindensperger, Etienne; Daniel, Chantal
2015-03-17
Ultrafast intersystem crossing (ISC) processes coupled to nuclear relaxation and solvation dynamics play a central role in the photophysics and photochemistry of a wide range of transition metal complexes. These phenomena occurring within a few hundred femtoseconds are investigated experimentally by ultrafast picosecond and femtosecond transient absorption or luminescence spectroscopies, and optical laser pump-X-ray probe techniques using picosecond and femtosecond X-ray pulses. The interpretation of ultrafast structural changes, time-resolved spectra, quantum yields, and time scales of elementary processes or transient lifetimes needs robust theoretical tools combining state-of-the-art quantum chemistry and developments in quantum dynamics for solving the electronic and nuclear problems. Multimode molecular dynamics beyond the Born-Oppenheimer approximation has been successfully applied to many small polyatomic systems. Its application to large molecules containing a transition metal atom is still a challenge because of the nuclear dimensionality of the problem, the high density of electronic excited states, and the spin-orbit coupling effects. Rhenium(I) α-diimine carbonyl complexes, [Re(L)(CO)3(N,N)](n+) are thermally and photochemically robust and highly flexible synthetically. Structural variations of the N,N and L ligands affect the spectroscopy, the photophysics, and the photochemistry of these chromophores easily incorporated into a complex environment. Visible light absorption opens the route to a wide range of applications such as sensors, probes, or emissive labels for imaging biomolecules. Halide complexes [Re(X)(CO)3(bpy)] (X = Cl, Br, or I; bpy = 2,2'-bipyridine) exhibit complex electronic structure and large spin-orbit effects that do not correlate with the heavy atom effects. Indeed, the (1)MLCT → (3)MLCT intersystem crossing (ISC) kinetics is slower than in [Ru(bpy)3](2+) or [Fe(bpy)3](2+) despite the presence of a third-row transition metal. Counterintuitively, singlet excited-state lifetime increases on going from Cl (85 fs) to Br (128 fs) and to I (152 fs). Moreover, correlation between the Re-X stretching mode and the rate of ISC is observed. In this Account, we emphasize on the role of spin-vibronic coupling on the mechanism of ultrafast ISC put in evidence in [Re(Br)(CO)3(bpy)]. For this purpose, we have developed a model Hamiltonian for solving an 11 electronic excited states multimode problem including vibronic and SO coupling within the linear vibronic coupling (LVC) approximation and the assumption of harmonic potentials. The presence of a central metal atom coupled to rigid ligands, such as α-diimine, ensures nuclear motion of small amplitudes and a priori justifies the use of the LVC model. The simulation of the ultrafast dynamics by wavepacket propagations using the multiconfiguration time-dependent Hartree (MCTDH) method is based on density functional theory (DFT), and its time-dependent extension to excited states (TD-DFT) electronic structure data. We believe that the interplay between time-resolved experiments and these pioneering simulations covering the first picoseconds and including spin-vibronic coupling will promote a number of quantum dynamical studies that will contribute to a better understanding of ultrafast processes in a wide range of organic and inorganic chromophores easily incorporated in biosystems or supramolecular devices for specific functions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Myeong H., E-mail: myeong.lee@warwick.ac.uk; Troisi, Alessandro
Vibronic coupling between the electronic and vibrational degrees of freedom has been reported to play an important role in charge and exciton transport in organic photovoltaic materials, molecular aggregates, and light-harvesting complexes. Explicitly accounting for effective vibrational modes rather than treating them as a thermal environment has been shown to be crucial to describe the effect of vibronic coupling. We present a methodology to study dissipative quantum dynamics of vibronically coupled systems based on a surrogate Hamiltonian approach, which is in principle not limited by Markov approximation or weak system-bath interaction, using a vibronic basis. We apply vibronic surrogate Hamiltonianmore » method to a linear chain system and discuss how different types of relaxation process, intramolecular vibrational relaxation and intermolecular vibronic relaxation, influence population dynamics of dissipative vibronic systems.« less
Distorted allotropes of bi-benzene: vibronic interactions and electronic excitations
NASA Astrophysics Data System (ADS)
Krasnenko, V.; Boltrushko, V.; Hizhnyakov, V.
2017-05-01
Bi-benzene - chemically bound two benzene molecules in stuck position is studied both analytically and numerically. There are several allotropes of bi-benzene having different geometry. The reason of the existence of sundry distorted structures is the pseudo-Jahn-Teller effect. The parameters of vibronic couplings causing distortions are found. For the calculation of these parameters both, the vibronic coupling of carbon atoms in different C6 rings and the vibronic coupling in the rings are considered. The contribution of the distortion of C6-planes to the latter coupling is also found. The energies of all the electronic states of π-electrons in all bi-benzene allotropes are determined by using the calculated vibronic interaction parameters.
NASA Astrophysics Data System (ADS)
Schweitzer-Stenner, Reinhard; Stichternath, Andreas; Dreybrodt, Wolfgang; Jentzen, Walter; Song, Xing-Zhi; Shelnutt, John A.; Nielsen, Ole Faurskov; Medforth, Craig J.; Smith, Kevin M.
1997-08-01
We have measured the polarized Raman cross sections and depolarization ratios of 16 fundamental modes of nickel octaethyltetraphenylporphyrin in a CS2 solution for 16 fundamental modes, i.e., the A1g-type vibrations ν1, ν2, ν3, ν4, ν5, and φ8, the B1g vibrations ν11 and ν14, the B2g vibrations ν28, ν29, and ν30 and the antisymmetric A2g modes ν19, ν20, ν22, and ν23 as function of the excitation wavelength. The data cover the entire resonant regions of the Q- and B-bands. They were analyzed by use of a theory which describes intra- and intermolecular coupling in terms of a time-independent nonadiabatic perturbation theory [E. Unger, U. Bobinger, W. Dreybrodt, and R. Schweitzer-Stenner, J. Phys. Chem. 97, 9956 (1993)]. This approach explicitly accounts in a self-consistent way for multimode mixing with all Raman modes investigated. The vibronic coupling parameters obtained from this procedure were then used to successfully fit the vibronic side bands of the absorption spectrum and to calculate the resonance excitation profiles in absolute units. Our results show that the porphyrin macrocycle is subject to B2u-(saddling) and B1u-(ruffling) distortions which lower its symmetry to S4. Thus, evidence is provided that the porphyrin molecule maintains the nonplanar structure of its crystal phase in an organic solvent. The vibronic coupling parameters indicate a breakdown of the four-orbital model. This notion is corroborated by (ZINDO/S) calculations which reveal that significant configurational interaction occurs between the electronic transitions into |Q>- and |1B>-states and various porphyrin→porphyrin, metal→porphyrin, and porphyrin→metal transitions. The intrastate coupling parameters are used to estimate the excited electronic states' displacements along the normal coordinates with respect to the ground state and their contributions to the reorganization energy. It turns out that the |B>-state is predominantly affected by symmetric A1g-displacements, whereas the |Q>-state is subject to A2g, B1g, and B2g displacements of its equilibrium configuration. While the former is induced by the combined effect of ruffling and saddling, the latter arises from Jahn-Teller coupling within the degenerate states.
NASA Astrophysics Data System (ADS)
Yang, Xiaohua; Hu, Haiquan; Chen, Zhida
The effect of magnetic exchange, double exchange, vibronic coupling, and asymmetry on magnetic properties of d2-d3 systems is discussed. The temperature-dependent magnetic moment was calculated with the semiclassical adiabatic approach. The results show that the vibronic coupling from the out-of-phase breathing vibration on the metal sites (Piepho, Krausz, and Schatz [PKS] model) and the vibronic coupling from the stretching vibration between the metal sites (P model) favor the localization and delocalization of the "extra" electron in mixed-valence dimers, respectively. The magnetic properties are determined by the interplay among magnetic exchange, double exchange, and vibronic coupling. The results obtained by analyzing d2-d3 systems can be generalized to other full delocalized dinuclear mixed valence systems with a unique transferable electron.
Stanton, John F; Okumura, Mitchio
2009-06-21
The A(2)E''<-- X(2)A'(2) absorption spectrum exhibits vibronically allowed transitions from the ground state of NO(3) to upper state levels having a''(1) and e' vibronic symmetries. This paper explores the coupling mechanisms that lend intensities to these features. While transitions to e' vibronic levels borrow intensity from the very strong B(2)E'<-- X(2)A'(2) electronic transition, those to a''(1) levels involve only negligible upper-state borrowing effects. Rather, it is the vibronic mixing of the ground vibronic level of NO(3) with vibrational levels in the B(2)E' electronic state that permit the a''(1) levels to be seen in the spectrum. These ideas are supported by vibronic coupling calculations. The fact that the intensities of features corresponding to the two different vibronic symmetries are comparable is thus accidental.
Interstate vibronic coupling constants between electronic excited states for complex molecules
NASA Astrophysics Data System (ADS)
Fumanal, Maria; Plasser, Felix; Mai, Sebastian; Daniel, Chantal; Gindensperger, Etienne
2018-03-01
In the construction of diabatic vibronic Hamiltonians for quantum dynamics in the excited-state manifold of molecules, the coupling constants are often extracted solely from information on the excited-state energies. Here, a new protocol is applied to get access to the interstate vibronic coupling constants at the time-dependent density functional theory level through the overlap integrals between excited-state adiabatic auxiliary wavefunctions. We discuss the advantages of such method and its potential for future applications to address complex systems, in particular, those where multiple electronic states are energetically closely lying and interact. We apply the protocol to the study of prototype rhenium carbonyl complexes [Re(CO)3(N,N)(L)]n+ for which non-adiabatic quantum dynamics within the linear vibronic coupling model and including spin-orbit coupling have been reported recently.
Spano, Frank C; Zhao, Zhen; Meskers, Stefan C J
2004-06-08
Using a Frenkel-exciton model, the degree of circular polarization of the luminescence (g(lum)) from one-dimensional, helical aggregates of chromophoric molecules is investigated theoretically. The coupling between the electronic excitation and a local, intramolecular vibrational mode is taken into account. Analytical expressions for the fluorescence band shape and g(lum) are presented for the case of strong and weak electronic coupling between the chromophoric units. Results are compared to those from numerical calculations obtained using the three particle approximation. g(lum) for the 0-0 vibronic band is found to be independent of the relative strength of electronic coupling between chromophores and excitation-vibration coupling. It depends solely on the number of coherently coupled molecules. In contrast, for the higher vibronic transitions[g(lum)] decreases with decreasing strength of the electronic coupling. In the limit of strong electronic coupling, [g(lum)] is almost constant throughout the series of vibronic transitions but for weak coupling [g(lum)] becomes vanishingly small for all vibronic transitions except for the 0-0 transition. The results are interpreted in terms of dynamic localization of the excitation during the zero point vibrational motion in the excited state of the aggregate. It is concluded that circular polarization measurements provide an independent way to determine the coherence size and bandwidth of the lowest exciton state for chiral aggregates. (c) 2004 American Institute of Physics.
Vibronic structure and coupling of higher excited electronic states in carotenoids
NASA Astrophysics Data System (ADS)
Krawczyk, Stanisław; Luchowski, Rafał
2013-03-01
Absorption spectra of all-trans carotenoids (lycopene, violaxanthin, ζ-carotene) at low temperature exhibit peculiar features in the UV range. The transition to the 11Ag+ state ('cis-band') weakens on cooling, indicating that it is induced by thermal deformations of the conjugated chain. The higher energy band has unique vibrational structure indicating the vibronic coupling of nBu with another electronic state. The electroabsorption spectra point to the electric field-induced mixing of the nBu state with the vibrational continuum of a lower-lying excited state (Fano effect). These observations widen the basis for elucidation of the vibronic coupling effects in the lower excited states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsukerblat, Boris, E-mail: tsuker@bgu.ac.il, E-mail: andrew.palii@uv.es; Palii, Andrew, E-mail: tsuker@bgu.ac.il, E-mail: andrew.palii@uv.es; Clemente-Juan, Juan Modesto
2015-10-07
Our interest in this article is prompted by the vibronic problem of charge polarized states in the four-dot molecular quantum cellular automata (mQCA), a paradigm for nanoelectronics, in which binary information is encoded in charge configuration of the mQCA cell. Here, we report the evaluation of the electronic levels and adiabatic potentials of mixed-valence (MV) tetra-ruthenium (2Ru(II) + 2Ru(III)) derivatives (assembled as two coupled Creutz-Taube complexes) for which molecular implementations of quantum cellular automata (QCA) was proposed. The cell based on this molecule includes two holes shared among four spinless sites and correspondingly we employ the model which takes into accountmore » the two relevant electron transfer processes (through the side and through the diagonal of the square) as well as the difference in Coulomb energies for different instant positions of localization of the hole pair. The combined Jahn-Teller (JT) and pseudo JT vibronic coupling is treated within the conventional Piepho-Krauzs-Schatz model adapted to a bi-electronic MV species with the square-planar topology. The adiabatic potentials are evaluated for the low lying Coulomb levels in which the antipodal sites are occupied, the case just actual for utilization in mQCA. The conditions for the vibronic self-trapping in spin-singlet and spin-triplet states are revealed in terms of the two actual transfer pathways parameters and the strength of the vibronic coupling. Spin related effects in degrees of the localization which are found for spin-singlet and spin-triplet states are discussed. The polarization of the cell is evaluated and we demonstrate how the partial delocalization caused by the joint action of the vibronic coupling and electron transfer processes influences polarization of a four-dot cell. The results obtained within the adiabatic approach are compared with those based on the numerical solution of the dynamic vibronic problem. Finally, the Coulomb interaction between the cells is considered and the influence of the vibronic coupling on the shape on the non-linear cell-cell response function is revealed.« less
Tsukerblat, Boris; Palii, Andrew; Clemente-Juan, Juan Modesto; Coronado, Eugenio
2015-10-07
Our interest in this article is prompted by the vibronic problem of charge polarized states in the four-dot molecular quantum cellular automata (mQCA), a paradigm for nanoelectronics, in which binary information is encoded in charge configuration of the mQCA cell. Here, we report the evaluation of the electronic levels and adiabatic potentials of mixed-valence (MV) tetra-ruthenium (2Ru(ii) + 2Ru(iii)) derivatives (assembled as two coupled Creutz-Taube complexes) for which molecular implementations of quantum cellular automata (QCA) was proposed. The cell based on this molecule includes two holes shared among four spinless sites and correspondingly we employ the model which takes into account the two relevant electron transfer processes (through the side and through the diagonal of the square) as well as the difference in Coulomb energies for different instant positions of localization of the hole pair. The combined Jahn-Teller (JT) and pseudo JT vibronic coupling is treated within the conventional Piepho-Krauzs-Schatz model adapted to a bi-electronic MV species with the square-planar topology. The adiabatic potentials are evaluated for the low lying Coulomb levels in which the antipodal sites are occupied, the case just actual for utilization in mQCA. The conditions for the vibronic self-trapping in spin-singlet and spin-triplet states are revealed in terms of the two actual transfer pathways parameters and the strength of the vibronic coupling. Spin related effects in degrees of the localization which are found for spin-singlet and spin-triplet states are discussed. The polarization of the cell is evaluated and we demonstrate how the partial delocalization caused by the joint action of the vibronic coupling and electron transfer processes influences polarization of a four-dot cell. The results obtained within the adiabatic approach are compared with those based on the numerical solution of the dynamic vibronic problem. Finally, the Coulomb interaction between the cells is considered and the influence of the vibronic coupling on the shape on the non-linear cell-cell response function is revealed.
Sun, Wei; Dai, Zuyang; Wang, Jia; Mo, Yuxiang
2015-05-21
The spin-vibronic energy levels of the chloroacetylene cation up to 4000 cm(-1) above the ground state have been measured using the one-photon zero-kinetic energy photoelectron spectroscopic method. The spin-vibronic energy levels have also been calculated using a diabatic model, in which the potential energy surfaces are expressed by expansions of internal coordinates, and the Hamiltonian matrix equation is solved using a variational method with harmonic basis functions. The calculated spin-vibronic energy levels are in good agreement with the experimental data. The Renner-Teller (RT) parameters describing the vibronic coupling for the H-C≡C bending mode (ε4), Cl-C≡C bending mode (ε5), the cross-mode vibronic coupling (ε45) of the two bending vibrations, and their vibrational frequencies (ω4 and ω5) have also been determined using an effective Hamiltonian matrix treatment. In comparison with the spin-orbit interaction, the RT effect in the H-C≡C bending (ε4) mode is strong, while the RT effect in the Cl-C≡C bending mode is weak. There is a strong cross-mode vibronic coupling of the two bending vibrations, which may be due to a vibronic resonance between the two bending vibrations. The spin-orbit energy splitting of the ground state has been determined for the first time and is found to be 209 ± 2 cm(-1).
Zero-point fluctuations in naphthalene and their effect on charge transport parameters.
Kwiatkowski, Joe J; Frost, Jarvist M; Kirkpatrick, James; Nelson, Jenny
2008-09-25
We calculate the effect of vibronic coupling on the charge transport parameters in crystalline naphthalene, between 0 and 400 K. We find that nuclear fluctuations can cause large changes in both the energy of a charge on a molecule and on the electronic coupling between molecules. As a result, nuclear fluctuations cause wide distributions of both energies and couplings. We show that these distributions have a small temperature dependence and that, even at high temperatures, vibronic coupling is dominated by the effect of zero-point fluctuations. Because of the importance of zero-point fluctuations, we find that the distributions of energies and couplings have substantial width, even at 0 K. Furthermore, vibronic coupling with high energy modes may be significant, even though these modes are never thermally activated. Our results have implications for the temperature dependence of charge mobilities in organic semiconductors.
The temperature dependence of vibronic lineshapes: Linear electron-phonon coupling
NASA Astrophysics Data System (ADS)
Roos, Claudia; Köhn, Andreas; Gauss, Jürgen; Diezemann, Gregor
2014-10-01
We calculate the effect of a linear electron-phonon coupling on vibronic transitions of dye molecules of arbitrary complexity. With the assumption of known vibronic frequencies (for instance from quantum-chemical calculations), we give expressions for the absorption or emission lineshapes in a second-order cumulant expansion. We show that the results coincide with those obtained from generalized Redfield theory if one uses the time-local version of the theory and applies the secular approximation. Furthermore, the theory allows to go beyond the Huang-Rhys approximation and can be used to incorporate Dushinsky effects in the treatment of the temperature dependence of optical spectra. We consider both, a pure electron-phonon coupling independent of the molecular vibrations and a coupling bilinear in the molecular vibrational modes and the phonon coordinates. We discuss the behavior of the vibronic density of states for various models for the spectral density representing the coupling of the vibronic system to the harmonic bath. We recover some of the results that have been derived earlier for the spin-boson model and we show that the behavior of the spectral density at low frequencies determines the dominant features of the spectra. In case of the bilinear coupling between the molecular vibrations and the phonons we give analytical expressions for different spectral densities. The spectra are reminiscent of those obtained from the well known Brownian oscillator model and one finds a zero-phonon line and phonon-side bands located at vibrational frequencies of the dye. The intensity of the phonon-side bands diminishes with increasing vibrational frequencies and with decreasing coupling strength (Huang-Rhys factor). It vanishes completely in the Markovian limit where only a Lorentzian zero-phonon line is observed.
Real-time observation of multi-mode vibronic coherence in pentafluoropyridine
NASA Astrophysics Data System (ADS)
Kus, J. A.; Hüter, O.; Temps, F.
2017-07-01
The ultrafast dynamics of pentafluoropyridine in the 1 1B2 (ππ*) electronic state excited at λpump = 255 nm is investigated by femtosecond time-resolved time-of-flight mass spectrometry and photoelectron imaging spectroscopy. A pronounced, long-lived, and complex periodic modulation of the transient ion yield signal with contributions by four distinct frequency components, 72 cm-1, 144 cm-1, 251 cm-1, and 281 cm-1, is observed for up to 9 ps. The recorded photoelectron images display a spectral band from the excited 1 1B2 (ππ*) state only in the oscillation maxima; the signal is strongly reduced in the oscillation minima. Supported by electronic structure calculations at the RI-SCS-CC2 and XMCQDPT2 levels of theory, the oscillating components of the signal are identified as frequencies of b1 symmetry coupling modes in a vibronic coherence of the 1 1B2 (ππ*) and 1 1A2 (πσ*) electronic states. The optical excitation initiates regular and periodic wavepacket motion along those out-of-plane modes. In the distorted molecular structure, the initially excited state acquires substantial πσ* character that modulates the transition dipole moment for ionization and results in the observed oscillations.
Reassigning the CaH+ 11Σ → 21Σ vibronic transition with CaD+
NASA Astrophysics Data System (ADS)
Condoluci, J.; Janardan, S.; Calvin, A. T.; Rugango, R.; Shu, G.; Sherrill, C. D.; Brown, K. R.
2017-12-01
We observe vibronic transitions in CaD+ between the 11Σ and 21Σ electronic states by resonance enhanced multiphoton photodissociation spectroscopy in a Coulomb crystal. The vibronic transitions are compared with previous measurements on CaH+. The result is a revised assignment of the CaH+ vibronic levels and a disagreement with multi-state-complete-active-space second-order perturbation theory theoretical calculations by approximately 700 cm-1. Updated high-level coupled-cluster calculations that include core-valence correlations reduce the disagreement between theory and experiment to 300 cm-1.
Pouthier, Vincent
2012-11-07
A communication protocol is proposed in which vibron-mediated quantum state transfer takes place in a molecular lattice. We consider two distant molecular groups grafted on each side of the lattice. These groups form two quantum computers where vibrational qubits are implemented and received. The lattice defines the communication channel along which a vibron delocalizes and interacts with a phonon bath. Using quasi-degenerate perturbation theory, vibron-phonon entanglement is taken into account through the effective Hamiltonian concept. A vibron is thus dressed by a virtual phonon cloud whereas a phonon is clothed by virtual vibronic transitions. It is shown that three quasi-degenerate dressed states define the relevant paths followed by a vibron to tunnel between the computers. When the coupling between the computers and the lattice is judiciously chosen, constructive interference takes place between these paths. Phonon-induced decoherence is minimized and a high-fidelity quantum state transfer occurs over a broad temperature range.
Piech, Krzysztof; Bally, Thomas; Ichino, Takatoshi; Stanton, John
2014-02-07
The electronic and vibrational absorption spectra of the radical anion and cation of p-benzoquinone (PBQ) in an Ar matrix between 500 and 40,000 cm(-1) are presented and discussed in detail. Of particular interest is the radical cation, which shows very unusual spectroscopic features that can be understood in terms of vibronic coupling between the ground and a very low-lying excited state. The infrared spectrum of PBQ˙(+) exhibits a very conspicuous and complicated pattern of features above 1900 cm(-1) that is due to this electronic transition, and offers an unusually vivid demonstration of the effects of vibronic coupling in what would usually be a relatively simple region of the electromagnetic spectrum associated only with vibrational transitions. As expected, the intensities of most of the IR transitions leading to levels that couple the ground to the very low-lying first excited state of PBQ˙(+) increase by large factors upon ionization, due to "intensity borrowing" from the D0 → D1 electronic transition. A notable exception is the antisymmetric C=O stretching vibration, which contributes significantly to the vibronic coupling, but has nevertheless quite small intensity in the cation spectrum. This surprising feature is rationalized on the basis of a simple perturbation analysis.
Revealing the spin–vibronic coupling mechanism of thermally activated delayed fluorescence
Etherington, Marc K.; Gibson, Jamie; Higginbotham, Heather F.; Penfold, Thomas J.; Monkman, Andrew P.
2016-01-01
Knowing the underlying photophysics of thermally activated delayed fluorescence (TADF) allows proper design of high efficiency organic light-emitting diodes. We have proposed a model to describe reverse intersystem crossing (rISC) in donor–acceptor charge transfer molecules, where spin–orbit coupling between singlet and triplet states is mediated by one of the local triplet states of the donor (or acceptor). This second order, vibronically coupled mechanism describes the basic photophysics of TADF. Through a series of measurements, whereby the energy ordering of the charge transfer (CT) excited states and the local triplet are tuned in and out of resonance, we show that TADF reaches a maximum at the resonance point, substantiating our model of rISC. Moreover, using photoinduced absorption, we show how the populations of both singlet and triplet CT states and the local triplet state change in and out of resonance. Our vibronic coupling rISC model is used to predict this behaviour and describes how rISC and TADF are affected by external perturbation. PMID:27901046
Revealing the spin-vibronic coupling mechanism of thermally activated delayed fluorescence
NASA Astrophysics Data System (ADS)
Etherington, Marc K.; Gibson, Jamie; Higginbotham, Heather F.; Penfold, Thomas J.; Monkman, Andrew P.
2016-11-01
Knowing the underlying photophysics of thermally activated delayed fluorescence (TADF) allows proper design of high efficiency organic light-emitting diodes. We have proposed a model to describe reverse intersystem crossing (rISC) in donor-acceptor charge transfer molecules, where spin-orbit coupling between singlet and triplet states is mediated by one of the local triplet states of the donor (or acceptor). This second order, vibronically coupled mechanism describes the basic photophysics of TADF. Through a series of measurements, whereby the energy ordering of the charge transfer (CT) excited states and the local triplet are tuned in and out of resonance, we show that TADF reaches a maximum at the resonance point, substantiating our model of rISC. Moreover, using photoinduced absorption, we show how the populations of both singlet and triplet CT states and the local triplet state change in and out of resonance. Our vibronic coupling rISC model is used to predict this behaviour and describes how rISC and TADF are affected by external perturbation.
Vibronic coupling simulations for linear and nonlinear optical processes: Theory
NASA Astrophysics Data System (ADS)
Silverstein, Daniel W.; Jensen, Lasse
2012-02-01
A comprehensive vibronic coupling model based on the time-dependent wavepacket approach is derived to simulate linear optical processes, such as one-photon absorbance and resonance Raman scattering, and nonlinear optical processes, such as two-photon absorbance and resonance hyper-Raman scattering. This approach is particularly well suited for combination with first-principles calculations. Expressions for the Franck-Condon terms, and non-Condon effects via the Herzberg-Teller coupling approach in the independent-mode displaced harmonic oscillator model are presented. The significance of each contribution to the different spectral types is discussed briefly.
NASA Astrophysics Data System (ADS)
Fujimoto, Kazuhiro J.; Balashov, Sergei P.
2017-03-01
The role of vibronic coupling of antenna carotenoid and retinal in xanthorhodopsin (XR) in its circular dichroism (CD) spectrum is examined computationally. A vibronic exciton model combined with a transition-density-fragment interaction (TDFI) method is developed, and applied to absorption and CD spectral calculations of XR. The TDFI method is based on the electronic Coulomb and exchange interactions between transition densities for individual chromophores [K. J. Fujimoto, J. Chem. Phys. 137, 034101 (2012)], which provides a quantitative description of electronic coupling energy. The TDFI calculation reveals a dominant contribution of the Coulomb interaction to the electronic coupling energy and a negligible contribution of the exchange interaction, indicating that the antenna function of carotenoid results from the Förster type of excitation-energy transfer, not from the Dexter one. The calculated absorption and CD spectra successfully reproduce the main features of the experimental results, which allow us to investigate the mechanism of biphasic CD spectrum observed in XR. The results indicate that vibronic coupling between carotenoid and retinal plays a significant role in the shape of the CD spectrum. Further analysis reveals that the negative value of electronic coupling directly contributes to the biphasic shape of CD spectrum. This study also reveals that the C6—C7 bond rotation of salinixanthin is not the main factor for the biphasic CD spectrum although it gives a non-negligible contribution to the spectral shift. The present method is useful for analyzing the molecular mechanisms underlying the chromophore-chromophore interactions in biological systems.
Vibronic Coupling Investigation to Compute Phosphorescence Spectra of Pt(II) Complexes.
Vazart, Fanny; Latouche, Camille; Bloino, Julien; Barone, Vincenzo
2015-06-01
The present paper reports a comprehensive quantum mechanical investigation on the luminescence properties of several mono- and dinuclear platinum(II) complexes. The electronic structures and geometric parameters are briefly analyzed together with the absorption bands of all complexes. In all cases agreement with experiment is remarkable. Next, emission (phosphorescence) spectra from the first triplet states have been investigated by comparing different computational approaches and taking into account also vibronic effects. Once again, agreement with experiment is good, especially using unrestricted electronic computations coupled to vibronic contributions. Together with the intrinsic interest of the results, the robustness and generality of the approach open the opportunity for computationally oriented chemists to provide accurate results for the screening of large targets which could be of interest in molecular materials design.
Dynamical Jahn-Teller effect of fullerene anions
NASA Astrophysics Data System (ADS)
Liu, Dan; Iwahara, Naoya; Chibotaru, Liviu F.
2018-03-01
The dynamical Jahn-Teller effect of C60n - anions (n =1 -5) is studied using the numerical diagonalization of the linear pn⊗8 d Jahn-Teller Hamiltonian with the currently established coupling parameters. It is found that in all anions the Jahn-Teller effect stabilizes the low-spin states, resulting in the violation of Hund's rule. The energy gain due to the Jahn-Teller dynamics is found to be comparable to the static Jahn-Teller stabilization. The Jahn-Teller dynamics influences the thermodynamic properties via strong variation of the density of vibronic states with energy. Thus the large vibronic entropy in the low-spin states enhances the effective spin gap of C603 - quenching the spin crossover. From the calculations of the effective spin gap as a function of the Hund's rule coupling, we found that the latter should amount 40 ±5 meV in order to cope with the violation of Hund's rule and to reproduce the large spin gap. With the obtained numerical solutions, the matrix elements of electronic operators for the low-lying vibronic levels and the vibronic reduction factors are calculated for all anions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weichman, Marissa L.; Cheng, Lan; Kim, Jongjin B.
A joint experimental and theoretical study is reported on the low-lying vibronic level structure of the ground state of the methoxy radical using slow photoelectron velocity-map imaging spectroscopy of cryogenically cooled, mass-selected anions (cryo-SEVI) and Köppel-Domcke-Cederbaum (KDC) vibronic Hamiltonian calculations. The KDC vibronic model Hamiltonian in the present study was parametrized using high-level quantum chemistry, allowing the assignment of the cryo-SEVI spectra for vibronic levels of CH 3O up to 2000 cm –1 and of CD 3O up to 1500 cm –1 above the vibrational origin, using calculated vibronic wave functions. The adiabatic electron affinities of CH 3O and CDmore » 3O are determined from the cryo-SEVI spectra to be 1.5689 ± 0.0007 eV and 1.5548 ± 0.0007 eV, respectively, demonstrating improved precision compared to previous work. Experimental peak splittings of <10 cm –1 are resolved between the e 1/2 and e 3/2 components of the 6 1 and 5 1 vibronic levels. A pair of spin-vibronic levels at 1638 and 1677 cm –1 were predicted in the calculation as the e 1/2 and e 3/2 components of 6 2 levels and experimentally resolved for the first time. The strong variation of the spin-orbit splittings with a vibrational quantum number is in excellent agreement between theory and experiment. In conclusion, the observation of signals from nominally forbidden a 1 vibronic levels in the cryo-SEVI spectra also provides direct evidence of vibronic coupling between ground and electronically excited states of methoxy.« less
Weichman, Marissa L.; Cheng, Lan; Kim, Jongjin B.; ...
2017-06-12
A joint experimental and theoretical study is reported on the low-lying vibronic level structure of the ground state of the methoxy radical using slow photoelectron velocity-map imaging spectroscopy of cryogenically cooled, mass-selected anions (cryo-SEVI) and Köppel-Domcke-Cederbaum (KDC) vibronic Hamiltonian calculations. The KDC vibronic model Hamiltonian in the present study was parametrized using high-level quantum chemistry, allowing the assignment of the cryo-SEVI spectra for vibronic levels of CH 3O up to 2000 cm –1 and of CD 3O up to 1500 cm –1 above the vibrational origin, using calculated vibronic wave functions. The adiabatic electron affinities of CH 3O and CDmore » 3O are determined from the cryo-SEVI spectra to be 1.5689 ± 0.0007 eV and 1.5548 ± 0.0007 eV, respectively, demonstrating improved precision compared to previous work. Experimental peak splittings of <10 cm –1 are resolved between the e 1/2 and e 3/2 components of the 6 1 and 5 1 vibronic levels. A pair of spin-vibronic levels at 1638 and 1677 cm –1 were predicted in the calculation as the e 1/2 and e 3/2 components of 6 2 levels and experimentally resolved for the first time. The strong variation of the spin-orbit splittings with a vibrational quantum number is in excellent agreement between theory and experiment. In conclusion, the observation of signals from nominally forbidden a 1 vibronic levels in the cryo-SEVI spectra also provides direct evidence of vibronic coupling between ground and electronically excited states of methoxy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soudackov, Alexander V.; Hammes-Schiffer, Sharon
2015-11-21
Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at highmore » temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton transfer and proton-coupled electron transfer in chemical and biological processes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soudackov, Alexander; Hammes-Schiffer, Sharon
2015-11-17
Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency regimes for the proton donor-acceptor vibrational mode. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term does not significantly impact the rate constants derived using the cumulant expansion approachmore » in any of the regimes studied. The effects of the quadratic term may become significant when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant, however, particularly at high temperatures and for proton transfer interfaces with extremely soft proton donor-acceptor modes that are associated with extraordinarily weak hydrogen bonds. Even with the thermal averaging procedure, the effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances, and the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton transfer and proton-coupled electron transfer in chemical and biological processes. We are grateful for support from National Institutes of Health Grant GM056207 (applications to enzymes) and the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences (applications to molecular electrocatalysts).« less
Vibronic Wavepackets and Energy Transfer in Cryptophyte Light-Harvesting Complexes.
Jumper, Chanelle C; van Stokkum, Ivo H M; Mirkovic, Tihana; Scholes, Gregory D
2018-06-21
Determining the key features of high-efficiency photosynthetic energy transfer remains an ongoing task. Recently, there has been evidence for the role of vibronic coherence in linking donor and acceptor states to redistribute oscillator strength for enhanced energy transfer. To gain further insights into the interplay between vibronic wavepackets and energy-transfer dynamics, we systematically compare four structurally related phycobiliproteins from cryptophyte algae by broad-band pump-probe spectroscopy and extend a parametric model based on global analysis to include vibrational wavepacket characterization. The four phycobiliproteins isolated from cryptophyte algae are two "open" structures and two "closed" structures. The closed structures exhibit strong exciton coupling in the central dimer. The dominant energy-transfer pathway occurs on the subpicosecond timescale across the largest energy gap in each of the proteins, from central to peripheral chromophores. All proteins exhibit a strong 1585 cm -1 coherent oscillation whose relative amplitude, a measure of vibronic intensity borrowing from resonance between donor and acceptor states, scales with both energy-transfer rates and damping rates. Central exciton splitting may aid in bringing the vibronically linked donor and acceptor states into better resonance resulting in the observed doubled rate in the closed structures. Several excited-state vibrational wavepackets persist on timescales relevant to energy transfer, highlighting the importance of further investigation of the interplay between electronic coupling and nuclear degrees of freedom in studies on high-efficiency photosynthesis.
Theory of Excitonic Delocalization for Robust Vibronic Dynamics in LH2.
Caycedo-Soler, Felipe; Lim, James; Oviedo-Casado, Santiago; van Hulst, Niek F; Huelga, Susana F; Plenio, Martin B
2018-06-11
Nonlinear spectroscopy has revealed long-lasting oscillations in the optical response of a variety of photosynthetic complexes. Different theoretical models that involve the coherent coupling of electronic (excitonic) or electronic-vibrational (vibronic) degrees of freedom have been put forward to explain these observations. The ensuing debate concerning the relevance of either mechanism may have obscured their complementarity. To illustrate this balance, we quantify how the excitonic delocalization in the LH2 unit of Rhodopseudomonas acidophila purple bacterium leads to correlations of excitonic energy fluctuations, relevant coherent vibronic coupling, and importantly, a decrease in the excitonic dephasing rates. Combining these effects, we identify a feasible origin for the long-lasting oscillations observed in fluorescent traces from time-delayed two-pulse single-molecule experiments performed on this photosynthetic complex and use this approach to discuss the role of this complementarity in other photosynthetic systems.
1980-08-11
No. Copies Cepies Office of INaval Research U.S. Army Research Office Attn: Code 472 Attn: CRD-AA-IP 80 North Quincy Street P.O. Box 1211 Arlington...Marine Building 5, Cameron Station Sciences Division Alexaidria, Virginia 22314 12 San Diego, California 91232 Dr. Fred Saalfeld K:r. John Boyle Chemistry
Albert, Julian; Falge, Mirjam; Gomez, Sandra; Sola, Ignacio R; Hildenbrand, Heiko; Engel, Volker
2015-07-28
We theoretically investigate the photon-echo spectroscopy of coupled electron-nuclear quantum dynamics. Two situations are treated. In the first case, the Born-Oppenheimer (adiabatic) approximation holds. It is then possible to interpret the two-dimensional (2D) spectra in terms of vibrational motion taking place in different electronic states. In particular, pure vibrational coherences which are related to oscillations in the time-dependent third-order polarization can be identified. This concept fails in the second case, where strong non-adiabatic coupling leads to the breakdown of the Born-Oppenheimer-approximation. Then, the 2D-spectra reveal a complicated vibronic structure and vibrational coherences cannot be disentangled from the electronic motion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, Julian; Falge, Mirjam; Hildenbrand, Heiko
2015-07-28
We theoretically investigate the photon-echo spectroscopy of coupled electron-nuclear quantum dynamics. Two situations are treated. In the first case, the Born-Oppenheimer (adiabatic) approximation holds. It is then possible to interpret the two-dimensional (2D) spectra in terms of vibrational motion taking place in different electronic states. In particular, pure vibrational coherences which are related to oscillations in the time-dependent third-order polarization can be identified. This concept fails in the second case, where strong non-adiabatic coupling leads to the breakdown of the Born-Oppenheimer-approximation. Then, the 2D-spectra reveal a complicated vibronic structure and vibrational coherences cannot be disentangled from the electronic motion.
On the Magnitude of the Nonadiabatic Error for Highly Coupled Radicals
NASA Astrophysics Data System (ADS)
Stanton, J. F.
2009-06-01
A review is given of recent advances in the construction of (quasi)diabatic model Hamiltonians and their application to analyzing the spectroscopy of molecules with strong vibronic coupling. A numerical application to the vibronic levels of the BNB radical below 0.6 eV is presented, together with corresponding adiabatic (quantum chemistry) calculations. The agreement with the experimental levels is nearly quantitative with the model Hamiltonian, attesting to the power of the approach. On the contrary, it is also revealed that the magnitude of the nonadiabatic contributions to the zero-point energy and the lowest fundamental frequency of the coupling mode are considerably larger than expected, at least by your narrator.
NASA Astrophysics Data System (ADS)
Perlík, Václav; Seibt, Joachim; Cranston, Laura J.; Cogdell, Richard J.; Lincoln, Craig N.; Savolainen, Janne; Šanda, František; Mančal, Tomáš; Hauer, Jürgen
2015-06-01
The initial energy transfer steps in photosynthesis occur on ultrafast timescales. We analyze the carotenoid to bacteriochlorophyll energy transfer in LH2 Marichromatium purpuratum as well as in an artificial light-harvesting dyad system by using transient grating and two-dimensional electronic spectroscopy with 10 fs time resolution. We find that Förster-type models reproduce the experimentally observed 60 fs transfer times, but overestimate coupling constants, which lead to a disagreement with both linear absorption and electronic 2D-spectra. We show that a vibronic model, which treats carotenoid vibrations on both electronic ground and excited states as part of the system's Hamiltonian, reproduces all measured quantities. Importantly, the vibronic model presented here can explain the fast energy transfer rates with only moderate coupling constants, which are in agreement with structure based calculations. Counterintuitively, the vibrational levels on the carotenoid electronic ground state play the central role in the excited state population transfer to bacteriochlorophyll; resonance between the donor-acceptor energy gap and the vibrational ground state energies is the physical basis of the ultrafast energy transfer rates in these systems.
Vibronic bands in the HOMO-LUMO excitation of linear polyyne molecules
NASA Astrophysics Data System (ADS)
Wakabayashi, Tomonari; Wada, Yoriko; Iwahara, Naoya; Sato, Tohru
2013-04-01
Hydrogen-capped linear carbon chain molecules, namely polyynes H(C≡C)nH (n>=2), give rise to three excited states in the HOMO-LUMO excitation. Electric dipole transition from the ground state is fully allowed to one of the three excited states, while forbidden for the other two low-lying excited states. In addition to the strong absorption bands in the UV for the allowed transition, the molecules exhibit weak absorption and emission bands in the near UV and visible wavelength regions. The weak features are the vibronic bands in the forbidden transition. In this article, symmetry considerations are presented for the optical transitions in the centrosymmetric linear polyyne molecule. The argument includes Herzberg-Teller expansion for the state mixing induced by nuclear displacements along the normal coordinate of the molecule, intensity borrowing from fully allowed transitions, and inducing vibrational modes excited in the vibronic transition. The vibronic coupling considered here includes off-diagonal matrix elements for second derivatives along the normal coordinate. The vibronic selection rule for the forbidden transition is derived and associated with the transition moment with respect to the molecular axis. Experimental approaches are proposed for the assignment of the observed vibronic bands.
Vibronic coupling effect on the electron transport through molecules
NASA Astrophysics Data System (ADS)
Tsukada, Masaru; Mitsutake, Kunihiro
2007-03-01
Electron transport through molecular bridges or molecular layers connected to nano-electrodes is determined by the combination of coherent and dissipative processes, controlled by the electron-vibron coupling, transfer integrals between the molecular orbitals, applied electric field and temperature. We propose a novel theoretical approach, which combines ab initio molecular orbital method with analytical many-boson model. As a case study, the long chain model of the thiophene oligomer is solved by a variation approach. Mixed states of moderately extended molecular orbital states mediated and localised by dress of vibron cloud are found as eigen-states. All the excited states accompanied by multiple quanta of vibration can be solved, and the overall carrier transport properties including the conductance, mobility, dissipation spectra are analyzed by solving the master equation with the transition rates estimated by the golden rule. We clarify obtained in a uniform systematic way, how the transport mode changes from a dominantly coherent transport to the dissipative hopping transport.
Probing the Inelastic Interactions in Molecular Junctions by Scanning Tunneling Microscope
NASA Astrophysics Data System (ADS)
Xu, Chen
With a sub-Kelvin scanning tunneling microscope, the energy resolution of spectroscopy is improved dramatically. Detailed studies of finer features of spectrum become possible. The asymmetry in the line shape of carbon monoxide vibrational spectra is observed to correlate with the couplings of the molecule to the tip and substrates. The spin-vibronic coupling in the molecular junctions is revisited with two metal phthalocyanine molecules, unveiling sharp spin-vibronic peaks. Finally, thanks to the improved spectrum resolution, the bonding structure of the acyclic compounds molecules is surveyed with STM inelastic tunneling probe, expanding the capability of the innovative high resolution imaging technique.
NASA Astrophysics Data System (ADS)
Patchkovskii, Serguei; Schuurman, Michael S.
2017-11-01
We present derivation and implementation of the multiconfigurational strong-field approximation with Gaussian nuclear wave packets (MC-SFA-GWP)—a version of the molecular strong-field approximation which treats all electronic and nuclear degrees of freedom, including their correlations, quantum mechanically. The technique allows realistic simulation of high-order-harmonic emission in polyatomic molecules without invoking reduced-dimensionality models for the nuclear motion or the electronic structure. We use MC-SFA-GWP to model isotope effects in high-order-harmonic-generation (HHG) spectroscopy of methane. The HHG emission in this molecule transiently involves the strongly vibronically coupled F22 electronic state of the CH4+ cation. We show that the isotopic HHG ratio in methane contains signatures of (a) field-free vibronic dynamics at the conical intersection (CI); (b) resonant features in the recombination cross sections; (c) laser-driven bound-state dynamics; as well as (d) the well-known short-time Gaussian decay of the emission. We assign the intrinsic vibronic feature (a) to a relatively long-lived (≥4 fs) vibronic wave packet of the singly excited ν4 (t2) and ν2 (e ) vibrational modes, strongly coupled to the components of the F22 electronic state. We demonstrate that these physical effects differ in their dependence on the wavelength, intensity, and duration of the driving pulse, allowing them to be disentangled. We thus show that HHG spectroscopy provides a versatile tool for exploring both conical intersections and resonant features in photorecombination matrix elements in the regime not easily accessible with other techniques.
Felicíssimo, V C; Guimarães, F F; Cesar, A; Gel'mukhanov, F; Agren, H
2006-11-30
The theory of IR-X-ray pump-probe spectroscopy beyond the Born-Oppenheimer approximation is developed and applied to the study of the dynamics of intramolecular proton transfer in glyoxalmonoxime leading to the formation of the tautomer 2-nitrosoethenol. Due to the IR pump pulses the molecule gains sufficient energy to promote a proton to a weakly bound well. A femtosecond X-ray pulse snapshots the wave packet route and, hence, the dynamics of the proton transfer. The glyoxalmonoxime molecule contains two chemically nonequivalent oxygen atoms that possess distinct roles in the hydrogen bond, a hydrogen donor and an acceptor. Core ionizations of these form two intersecting core-ionized states, the vibronic coupling between which along the OH stretching mode partially delocalizes the core hole, resulting in a hopping of the core hole from one site to another. This, in turn, affects the dynamics of the proton transfer in the core-ionized state. The quantum dynamical simulations of X-ray photoelectron spectra of glyoxalmonoxime driven by strong IR pulses demonstrate the general applicability of the technique for studies of intramolecular proton transfer in systems with vibronic coupling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perlík, Václav; Seibt, Joachim; Šanda, František
The initial energy transfer steps in photosynthesis occur on ultrafast timescales. We analyze the carotenoid to bacteriochlorophyll energy transfer in LH2 Marichromatium purpuratum as well as in an artificial light-harvesting dyad system by using transient grating and two-dimensional electronic spectroscopy with 10 fs time resolution. We find that Förster-type models reproduce the experimentally observed 60 fs transfer times, but overestimate coupling constants, which lead to a disagreement with both linear absorption and electronic 2D-spectra. We show that a vibronic model, which treats carotenoid vibrations on both electronic ground and excited states as part of the system’s Hamiltonian, reproduces all measuredmore » quantities. Importantly, the vibronic model presented here can explain the fast energy transfer rates with only moderate coupling constants, which are in agreement with structure based calculations. Counterintuitively, the vibrational levels on the carotenoid electronic ground state play the central role in the excited state population transfer to bacteriochlorophyll; resonance between the donor-acceptor energy gap and the vibrational ground state energies is the physical basis of the ultrafast energy transfer rates in these systems.« less
Vibronic coupling simulations for linear and nonlinear optical processes: Simulation results
NASA Astrophysics Data System (ADS)
Silverstein, Daniel W.; Jensen, Lasse
2012-02-01
A vibronic coupling model based on time-dependent wavepacket approach is applied to simulate linear optical processes, such as one-photon absorbance and resonance Raman scattering, and nonlinear optical processes, such as two-photon absorbance and resonance hyper-Raman scattering, on a series of small molecules. Simulations employing both the long-range corrected approach in density functional theory and coupled cluster are compared and also examined based on available experimental data. Although many of the small molecules are prone to anharmonicity in their potential energy surfaces, the harmonic approach performs adequately. A detailed discussion of the non-Condon effects is illustrated by the molecules presented in this work. Linear and nonlinear Raman scattering simulations allow for the quantification of interference between the Franck-Condon and Herzberg-Teller terms for different molecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wykes, M., E-mail: mikewykes@gmail.com; Parambil, R.; Gierschner, J.
Here, we present a general approach to treating vibronic coupling in molecular crystals based on atomistic simulations of large clusters. Such clusters comprise model aggregates treated at the quantum chemical level embedded within a realistic environment treated at the molecular mechanics level. As we calculate ground and excited state equilibrium geometries and vibrational modes of model aggregates, our approach is able to capture effects arising from coupling to intermolecular degrees of freedom, absent from existing models relying on geometries and normal modes of single molecules. Using the geometries and vibrational modes of clusters, we are able to simulate the fluorescencemore » spectra of aggregates for which the lowest excited state bears negligible oscillator strength (as is the case, e.g., ideal H-aggregates) by including both Franck-Condon (FC) and Herzberg-Teller (HT) vibronic transitions. The latter terms allow the adiabatic excited state of the cluster to couple with vibrations in a perturbative fashion via derivatives of the transition dipole moment along nuclear coordinates. While vibronic coupling simulations employing FC and HT terms are well established for single-molecules, to our knowledge this is the first time they are applied to molecular aggregates. Here, we apply this approach to the simulation of the low-temperature fluorescence spectrum of para-distyrylbenzene single-crystal H-aggregates and draw comparisons with coarse-grained Frenkel-Holstein approaches previously extensively applied to such systems.« less
Sirjoosingh, Andrew; Hammes-Schiffer, Sharon
2011-03-24
The distinction between proton-coupled electron transfer (PCET) and hydrogen atom transfer (HAT) mechanisms is important for the characterization of many chemical and biological processes. PCET and HAT mechanisms can be differentiated in terms of electronically nonadiabatic and adiabatic proton transfer, respectively. In this paper, quantitative diagnostics to evaluate the degree of electron-proton nonadiabaticity are presented. Moreover, the connection between the degree of electron-proton nonadiabaticity and the physical characteristics distinguishing PCET from HAT, namely, the extent of electronic charge redistribution, is clarified. In addition, a rigorous diabatization scheme for transforming the adiabatic electronic states into charge-localized diabatic states for PCET reactions is presented. These diabatic states are constructed to ensure that the first-order nonadiabatic couplings with respect to the one-dimensional transferring hydrogen coordinate vanish exactly. Application of these approaches to the phenoxyl-phenol and benzyl-toluene systems characterizes the former as PCET and the latter as HAT. The diabatic states generated for the phenoxyl-phenol system possess physically meaningful, localized electronic charge distributions that are relatively invariant along the hydrogen coordinate. These diabatic electronic states can be combined with the associated proton vibrational states to generate the reactant and product electron-proton vibronic states that form the basis of nonadiabatic PCET theories. Furthermore, these vibronic states and the corresponding vibronic couplings may be used to calculate rate constants and kinetic isotope effects of PCET reactions.
Vibronic Structure of the tilde{X} ^2A_2' State of NO_3
NASA Astrophysics Data System (ADS)
Fukushima, Masaru
2015-06-01
We have measured dispersed fluorescence ( DF ) spectra from the single vibronic levels ( SVL's ) of the tilde{B} ^2E' state of jet cooled 14NO_3 and 15NO_3, and found a new vibronic band around the ν_1 fundamental This new band has two characteristics; (1) inverse isotope shift, and (2) unexpectedly strong intensity, i.e. comparable with that of the ν_1 fundamental. We concluded on the basis of the isotope effect that the terminated ( lower ) vibrational level of the new vibronic band should have vibrationally a_1' symmetry, and assigned to the third over-tone of the ν_4 asymmetric (e') mode, 3 ν_4 (a_1'). We also assigned a weaker band at about 160 cm-1 above the new band to one terminated to 3 ν_4 (a_2'). The 3 ν_4 (a_1') and (a_2') levels are ones with l = ±3. Hirota proposed new vibronic coupling mechanism which suggests that degenerate vibrational modes can induce electronic orbital angular momentum ( L ) even in non-degenerate electronic states. %It is thus thought the surprisingly wide splitting of 3 ν_4, a_1' and a_2', is resulted from vibronic coupling, and the explanation we proposed is as follows. We interpret this as a sort of break-down of the Born-Oppenheimer approximation, and think that ± l induces ∓barΛ, where barΛ expresses the pseudo-L; for the present system, one of the components of the third over-tone level, | Λ = 0; v_4 = 3, l = +3 rangle, can have contributions of | barΛ = -1; v_4 = 3, l = +2 rangle and | -2; 3, +1 rangle. Under this interpretation, it is expected that there is sixth-order vibronic coupling, (q_+^3Q_-^3 + q_-^3Q_+^3), between | 0; 3, +3 rangle and | 0; 3, -3 rangle. The sixth-order coupling is weaker than the Renner-Teller term ( the fourth-order term, (q_+^2Q_-^2 + q_-^2Q_+^2) ), but stronger than the eighth-order term, (q_+^4Q_-^4 + q_-^4Q_+^4). It is well known in linear molecules that the former shows huge separation, comparable with vibrational frequency, among the vibronic levels of Π electronic states, and the latter shows considerable splitting, ˜10 cm-1, at Δ electronic states. Consequently, the ˜160 cm-1 splitting at v_4 = 3 is attributed to the sixth-order interaction. The relatively strong intensity for the band to 3 ν_4 (a_1') can be interpreted as a part of the huge 0-0 band intensity, because the 3 ν_4 (a_1') level, | 0; 3, ±3 rangle, can connect with the vibrationless level, | 0; 0, 0 rangle. 3 ν_4 (a_1') has two-fold intensity because of the vibrational wavefunction, | 0; 3, +3 rangle + | 0; 3, -3 rangle, while negligible intensity is expected for 3 ν_4 (a_2') with | 0; 3, +3 rangle - | 0; 3, -3 rangle due to the cancellation. To confirm these interpretations, experiments on rotationally resolved spectra are underway. M. Fukushima and T. Ishiwata, paper WJ03, ISMS2013, and paper MI17, ISMS2014. E. Hirota, J. Mol. Spectrosc., in press.
NASA Technical Reports Server (NTRS)
Herrington, J. R.; Estle, T. L.; Boatner, L. A.
1972-01-01
The observation and interpretation of weak EPR transitions, identified as 'forbidden' transitions, establish the existence of a new type of quadrupole interaction for cubic-symmetry imperfections. This interaction is simply a consequence of the ground-vibronic-state degeneracy. The signs as well as the magnitudes of the quadrupole-coupling coefficients are determined experimentally. These data agree well with the predictions of crystal field theory modified to account for a weak-to-moderate vibronic interaction (i.e., a dynamic Jahn-Teller effect).
NASA Astrophysics Data System (ADS)
Chen, Fasheng; Zhao, Xinyi; Liang, WanZhen
2018-04-01
Both the vibrationally resolved and statistically averaged one-photon absorption (OPA) and two-photon absorption (TPA) spectra of the anionic form of chromophore (AC) in its micro-environment of yellow fluorescent protein (YFP) Citrine have been calculated. The result comparison has been made with those of the AC model compounds in vacuo and methanol solution, which allows us to allocate the individual contribution of the intramolecular electron-vibrational coupling, the electrostatic π-stacking interaction between Tyr203 and AC, and the interaction between AC and its micro-environment to the spectra. The results reveal that the non-Condon vibronic coupling effect is responsible for the blue shift of TPA absorption maximum compared with its OPA counterpart corresponding to S0 → S1, and that the π-stacking interaction between Tyr203 and AC alters the relative intensities of TPA maxima, which further enhances the higher-energy vibronic peaks and weakens the lowest-energy peak. The statically averaged OPA and TPA spectra calculated by quantum mechanics/molecular mechanics (QM/MM) methods based on Born-Oppenheimer molecular dynamics simulation largely deviate the experimental spectral lineshapes, which further verifies the significant contribution of non-Condon vibronic coupling effect on the spectra. The interaction of individual amino acid residue or water close to AC+Tyr203 has different effects on the spectra, which may increase/decrease the excitation energy depending on its position and electronic property.
NASA Astrophysics Data System (ADS)
Rätsep, Margus; Pajusalu, Mihkel; Linnanto, Juha Matti; Freiberg, Arvi
2014-10-01
We have observed that an assembly of the bacteriochloropyll a molecules into B850 and B875 groups of cyclic bacterial light-harvesting complexes LH2 and LH1, respectively, results an almost total loss of the intra-molecular vibronic structure in the fluorescence spectrum, and simultaneously, an essential enhancement of its phonon sideband due to electron-phonon coupling. While the suppression of the vibronic coupling in delocalized (excitonic) molecular systems is predictable, as also confirmed by our model calculations, a boost of the electron-phonon coupling is rather unexpected. The latter phenomenon is explained by exciton self-trapping, promoted by mixing the molecular exciton states with charge transfer states between the adjacent chromophores in the tightly packed B850 and B875 arrangements. Similar, although less dramatic trends were noted for the light-harvesting complexes containing chlorophyll pigments.
Evidence for a vibrational phase-dependent isotope effect on the photochemistry of vision.
Schnedermann, C; Yang, X; Liebel, M; Spillane, K M; Lugtenburg, J; Fernández, I; Valentini, A; Schapiro, I; Olivucci, M; Kukura, P; Mathies, R A
2018-04-01
Vibronic coupling is key to efficient energy flow in molecular systems and a critical component of most mechanisms invoking quantum effects in biological processes. Despite increasing evidence for coherent coupling of electronic states being mediated by vibrational motion, it is not clear how and to what degree properties associated with vibrational coherence such as phase and coupling of atomic motion can impact the efficiency of light-induced processes under natural, incoherent illumination. Here, we show that deuteration of the H 11 -C 11 =C 12 -H 12 double-bond of the 11-cis retinal chromophore in the visual pigment rhodopsin significantly and unexpectedly alters the photoisomerization yield while inducing smaller changes in the ultrafast isomerization dynamics assignable to known isotope effects. Combination of these results with non-adiabatic molecular dynamics simulations reveals a vibrational phase-dependent isotope effect that we suggest is an intrinsic attribute of vibronically coherent photochemical processes.
Vibronic coupling and selectivity of vibrational excitation in the negative ion resonances of ozone
NASA Astrophysics Data System (ADS)
Allan, Michael; Popovic̀, Duška B.
1997-04-01
A recent experimental paper reported two shape resonances in electron impact on ozone, A 1 and B 2, both causing vibrational excitation with a distinct pattern of selectivity. The present Letter attempts to rationalize this selectivity using approximate potential curves, calculated for the A 1 and B 2 resonances by adding the SCF energy of neutral ozone to electron attachment energies calculated from ab initio virtual orbital energies using the Koopmans' theorem and an empirical scaling relation. The slopes of the curves explain the efficient excitation of the symmetric stretch by both resonances and the lack of the bending excitation by the B 2 resonance. The A 1 and B 2 resonances are strongly coupled by the b 2 antisymmetric stretch vibration, causing a double minimum on the lower surface. Nonadiabatic effects caused by the strong vibronic coupling explain the observed excitation of the antisymmetric stretch vibration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hestand, Nicholas J.; Spano, Frank C.
2015-12-28
The spectroscopic differences between J and H-aggregates are traditionally attributed to the spatial dependence of the Coulombic coupling, as originally proposed by Kasha. However, in tightly packed molecular aggregates wave functions on neighboring molecules overlap, leading to an additional charge transfer (CT) mediated exciton coupling with a vastly different spatial dependence. The latter is governed by the nodal patterns of the molecular LUMOs and HOMOs from which the electron (t{sub e}) and hole (t{sub h}) transfer integrals derive. The sign of the CT-mediated coupling depends on the sign of the product t{sub e}t{sub h} and is therefore highly sensitive tomore » small (sub-Angstrom) transverse displacements or slips. Given that Coulombic and CT-mediated couplings exist simultaneously in tightly packed molecular systems, the interference between the two must be considered when defining J and H-aggregates. Generally, such π-stacked aggregates do not abide by the traditional classification scheme of Kasha: for example, even when the Coulomb coupling is strong the presence of a similarly strong but destructively interfering CT-mediated coupling results in “null-aggregates” which spectroscopically resemble uncoupled molecules. Based on a Frenkel/CT Holstein Hamiltonian that takes into account both sources of electronic coupling as well as intramolecular vibrations, vibronic spectral signatures are developed for integrated Frenkel/CT systems in both the perturbative and resonance regimes. In the perturbative regime, the sign of the lowest exciton band curvature, which rigorously defines J and H-aggregation, is directly tracked by the ratio of the first two vibronic peak intensities. Even in the resonance regime, the vibronic ratio remains a useful tool to evaluate the J or H nature of the system. The theory developed is applied to the reversible H to J-aggregate transformations recently observed in several perylene bisimide systems.« less
Effects of Charge-Transfer Excitons on the Photophysics of Organic Semiconductors
NASA Astrophysics Data System (ADS)
Hestand, Nicholas J.
The field of organic electronics has received considerable attention over the past several years due to the promise of novel electronic materials that are cheap, flexible and light weight. While some devices based on organic materials have already emerged on the market (e.g. organic light emitting diodes), a deeper understanding of the excited states within the condensed phase is necessary both to improve current commercial products and to develop new materials for applications that are currently in the commercial pipeline (e.g. organic photovoltaics, wearable displays, and field effect transistors). To this end, a model for pi-conjugated molecular aggregates and crystals is developed and analyzed. The model considers two types of electronic excitations, namely Frenkel and charge-transfer excitons, both of which play a prominent role in determining the nature of the excited states within tightly-packed organic systems. The former consist of an electron-hole pair bound to the same molecule while in the later the electron and hole are located on different molecules. The model also considers the important nuclear reorganization that occurs when the system switches between electronic states. This is achieved using a Holstein-style Hamiltonian that includes linear vibronic coupling of the electronic states to the nuclear motion associated with the high frequency vinyl-stretching and ring-breathing modes. Analysis of the model reveals spectroscopic signatures of charge-transfer mediated J- and H-aggregation in systems where the photophysical properties are determined primarily by charge-transfer interactions. Importantly, such signatures are found to be sensitive to the relative phase of the intermolecular electron and hole transfer integrals, and the relative energy of the Frenkel and charge-transfer states. When the charge-transfer integrals are in phase and the energy of the charge-transfer state is higher than the Frenkel state, the system exhibits J-aggregate characteristics including a positive band curvature, a red shifted main absorption peak, and an increase in the ratio of the first two vibronic peaks relative to the monomer. On the other hand, when the charge-transfer integrals are out of phase and the energy of the charge-transfer state is higher than the Frenkel state, the system exhibits H-aggregate characteristics including a negative band curvature, a blue shifted main absorption peak, and a decrease in the ratio of the first two vibronic peaks relative to the monomer. Notably, these signatures are consistent with those exhibited by Coulombically coupled J- and H-aggregates. Additional signatures of charge-transfer J- and H-aggregation are also discovered, the most notable of which is the appearance of a second absorption band when the charge-transfer integrals are in phase and the charge-transfer and Frenkel excitons are near resonance. In such instances, the peak-to-peak spacing is found to be proportional to the sum of the electron and hole transfer integrals. Further analysis of the charge-transfer interactions within the context of an effective Frenkel exciton coupling reveals that the charge-transfer interactions interfere directly with the intermolecular Coulombic coupling. The interference can be either constructive or destructive resulting in either enhanced or suppressed J- or H- aggregate behavior relative to what is expected based on Coulombic coupling alone. Such interferences result in four new aggregate types, namely HH-, HJ-, JH-, and JJ-aggregates, where the first letter indicates the nature of the Coulombic coupling and the second indicates the nature of the charge-transfer coupling. Vibronic signatures of such aggregates are developed and provide a means by which to rapidly screen materials for certain electronic characteristics. Notably, a large total (Coulombic plus charge-transfer) exciton coupling is associated with an absorption spectrum in which the ratio of the first two vibronic peaks deviates significantly from that of the unaggregated monomer. Hence, strongly coupled, high exciton mobility aggregates can be readily distinguished from low mobility aggregates by the ratio of their first two vibronic peaks. (Abstract shortened by ProQuest.).
NASA Astrophysics Data System (ADS)
Thomas, Phillip S.; Chhantyal-Pun, Rabi; Kline, Neal D.; Miller, Terry A.
2010-03-01
The ÖX˜ electronic absorption spectrum of vinoxy radical has been investigated using room temperature cavity ringdown spectroscopy. Analysis of the observed bands on the basis of computed vibrational frequencies and rotational envelopes reveals that two distinct types of features are present with comparable intensities. The first type corresponds to "normal" allowed electronic transitions to the origin and symmetric vibrations in the à state. The second type is interpreted in terms of excitations to asymmetric à state vibrations, which are only vibronically allowed by Herzberg-Teller coupling to the B˜ state. Results of electronic structure calculations indicate that the magnitude of the Herzberg-Teller coupling is appropriate to produce vibronically induced transitions with intensities comparable to those of the normal bands.
Cerezo, Javier; Aranda, Daniel; Avila Ferrer, Francisco J; Prampolini, Giacomo; Mazzeo, Giuseppe; Longhi, Giovanna; Abbate, Sergio; Santoro, Fabrizio
2018-06-01
We extend a recently proposed mixed quantum/classical method for computing the vibronic electronic circular dichroism (ECD) spectrum of molecules with different conformers, to cases where more than one hindered rotation is present. The method generalizes the standard procedure, based on the simple Boltzmann average of the vibronic spectra of the stable conformers, and includes the contribution of structures that sample all the accessible conformational space. It is applied to the simulation of the ECD spectrum of (S)-2,2,2-trifluoroanthrylethanol, a molecule with easily interconvertible conformers, whose spectrum exhibits a pattern of alternating positive and negative vibronic peaks. Results are in very good agreement with experiment and show that spectra averaged over all the sampled conformational space can deviate significantly from the simple average of the contributions of the stable conformers. The present mixed quantum/classical method is able to capture the effect of the nonlinear dependence of the rotatory strength on the molecular structure and of the anharmonic couplings among the modes responsible for molecular flexibility. Despite its computational cost, the procedure is still affordable and promises to be useful in all cases where the ECD shape arises from a subtle balance between vibronic effects and conformational variety. © 2018 Wiley Periodicals, Inc.
Identification of the optically active vibrational modes in the photoluminescence of MEH-PPV films
NASA Astrophysics Data System (ADS)
da Silva, M. A. T.; Dias, I. F. L.; Duarte, J. L.; Laureto, E.; Silvestre, I.; Cury, L. A.; Guimara~Es, P. S. S.
2008-03-01
The temperature dependence of the photoluminescence properties of a thin film of poly[2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene-vinylene], MEH-PPV, fabricated by spin coating, is analyzed. The evolution with temperature of the peak energy of the purely electronic transition, of the first vibronic band, of the effective conjugation length, and of the Huang-Rhys factors are discussed. The asymmetric character of the pure electronic transition peak and the contribution of the individual vibrational modes to the first vibronic band line shape are considered by a model developed by Cury et al. [J. Chem. Phys. 121, 3836 (2004)]. The temperature dependence of the Huang-Rhys factors of the main vibrational modes pertaining to the first vibronic band allows us to identify two competing vibrational modes. These results show that the electron coupling to different vibrational modes depends on temperature via reduction of thermal disorder.
NASA Astrophysics Data System (ADS)
Mo, Yuxiang; Gao, Shuming; Dai, Zuyang; Li, Hua
2013-06-01
We report a combined experimental and theoretical study on the vibronic structure of CH_3F^+. The results show that the tunneling splittings of vibrational energy levels occur in CH_3F^+ due to the Jahn-Teller effect. Experimentally, we have measured a high resolution ZEKE spectrum of CH_3F up to 3500 cm^-^1 above the ground state. Theoretically, we performed an ab initio calculation based on the diabatic model. The adiabatic potential energy surfaces (APES) of CH_3F^+ have been calculated at the MRCI/CAS/avq(t)z level and expressed by Taylor expansions with normal coordinates as variables. The energy gradients for the lower and upper APES, the derivative couplings between them and also the energies of the APES have been used to determine the coefficients in the Taylor expansion. The spin-vibronic energy levels have been calculated by accounting all six vibrational modes and their couplings. The experimental ZEKE spectra were assigned based on the theoretical calculations. W. Domcke, D. R. Yarkony, and H. Köpple (Eds.), Conical Intersections: Eletronic Structure, Dynamics and Spectroscopy (World Scientific, Singapore, 2004). M. S. Schuurman, D. E. Weinberg, and D. R. Yarkony, J. Chem. Phys. 127, 104309 (2007).
NASA Astrophysics Data System (ADS)
Mondal, Padmabati; Opalka, Daniel; Poluyanov, Leonid V.; Domcke, Wolfgang
2012-02-01
Multiconfiguration ab initio methods have been employed to study the effects of Jahn-Teller (JT) and spin-orbit (SO) coupling in the transition-metal trifluorides TiF3, CrF3, and NiF3, which possess spatially doubly degenerate excited states (ME) of even spin multiplicities (M = 2 or 4). The ground states of TiF3, CrF3, and NiF3 are nondegenerate and exhibit minima of D3h symmetry. Potential-energy surfaces of spatially degenerate excited states have been calculated using the state-averaged complete-active-space self-consistent-field method. SO coupling is described by the matrix elements of the Breit-Pauli operator. Linear and higher order JT coupling constants for the JT-active bending and stretching modes as well as SO-coupling constants have been determined. Vibronic spectra of JT-active excited electronic states have been calculated, using JT Hamiltonians for trigonal systems with inclusion of SO coupling. The effect of higher order (up to sixth order) JT couplings on the vibronic spectra has been investigated for selected electronic states and vibrational modes with particularly strong JT couplings. While the weak SO couplings in TiF3 and CrF3 are almost completely quenched by the strong JT couplings, the stronger SO coupling in NiF3 is only partially quenched by JT coupling.
NASA Astrophysics Data System (ADS)
Yeh, Shu-Hao; Engel, Gregory S.; Kais, Sabre
Recently it has been suggested that the long-lived coherences in some photosynthetic pigment-protein systems, such as the Fenna-Matthews-Olson complex, could be attributed to the mixing of the pigments' electronic and vibrational degrees of freedom. In order to verify whether this is the case and to understand its underlying mechanism, a theoretical model capable of including both the electronic excitations and intramolecular vibrational modes of the pigments is necessary. Our model simultaneously considers the electronic and vibrational degrees of freedom, treating the system-environment interactions non-perturbatively by implementing the hierarchical equations of motion approach. Here we report the simulated two-dimensional electronic spectra of vibronically coupled molecular dimers to demonstrate how the electronic coherence lifetimes can be extended by borrowing the lifetime from the vibrational coherences. Funded by Qatar National Research Fund and Qatar Environment and Energy Research Institute.
Tracking the coherent generation of polaron pairs in conjugated polymers
NASA Astrophysics Data System (ADS)
de Sio, Antonietta; Troiani, Filippo; Maiuri, Margherita; Réhault, Julien; Sommer, Ephraim; Lim, James; Huelga, Susana F.; Plenio, Martin B.; Rozzi, Carlo Andrea; Cerullo, Giulio; Molinari, Elisa; Lienau, Christoph
2016-12-01
The optical excitation of organic semiconductors not only generates charge-neutral electron-hole pairs (excitons), but also charge-separated polaron pairs with high yield. The microscopic mechanisms underlying this charge separation have been debated for many years. Here we use ultrafast two-dimensional electronic spectroscopy to study the dynamics of polaron pair formation in a prototypical polymer thin film on a sub-20-fs time scale. We observe multi-period peak oscillations persisting for up to about 1 ps as distinct signatures of vibronic quantum coherence at room temperature. The measured two-dimensional spectra show pronounced peak splittings revealing that the elementary optical excitations of this polymer are hybridized exciton-polaron-pairs, strongly coupled to a dominant underdamped vibrational mode. Coherent vibronic coupling induces ultrafast polaron pair formation, accelerates the charge separation dynamics and makes it insensitive to disorder. These findings open up new perspectives for tailoring light-to-current conversion in organic materials.
Shi, Tongchao; Liu, Zhengzheng; Miyatake, Tomohiro; Tamiaki, Hitoshi; Kobayashi, Takayoshi; Zhang, Zeyu; Du, Juan; Leng, Yuxin
2017-11-27
Ultrafast vibronic dynamics induced by the interaction of the Frenkel exciton with the coherent molecular vibrations in a layer-structured zinc chlorin aggregates prepared for artificial photosynthesis have been studied by 7.1 fs real-time vibrational spectroscopy with multi-spectrum detection. The fast decay of 100 ± 5fs is ascribed to the relaxation from the higher multi-exciton state (MES) to the one-exciton state, and the slow one of 863 ± 70fs is assigned to the relaxation from Q-exciton state to the dark nonfluorescent charge-transfer (CT) state, respectively. In addition, the wavelength dependences of the exciton-vibration coupling strength are found to follow the zeroth derivative of the transient absorption spectra of the exciton. It could be explained in term of the transition dipole moment modulated by dynamic intensity borrowing between the B transition and the Q transition through the vibronic interactions.
NASA Astrophysics Data System (ADS)
Schulze, Jan; Shibl, Mohamed F.; Al-Marri, Mohammed J.; Kühn, Oliver
2016-05-01
The coupled quantum dynamics of excitonic and vibrational degrees of freedom is investigated for high-dimensional models of the Fenna-Matthews-Olson complex. This includes a seven- and an eight-site model with 518 and 592 harmonic vibrational modes, respectively. The coupling between local electronic transitions and vibrations is described within the Huang-Rhys model using parameters that are obtained by discretization of an experimental spectral density. Different pathways of excitation energy flow are analyzed in terms of the reduced one-exciton density matrix, focussing on the role of vibrational and vibronic excitations. Distinct features due to both competing time scales of vibrational and exciton motion and vibronically assisted transfer are observed. The question of the effect of initial state preparation is addressed by comparing the case of an instantaneous Franck-Condon excitation at a single site with that of a laser field excitation.
Sioutis, Ilias; Stakhursky, Vadim L; Tarczay, György; Miller, Terry A
2008-02-28
Laser-induced fluorescence (LIF) and laser-excited dispersed fluorescence (LEDF) spectra of the cycloheptatrienyl (tropyl) radical C7H7 have been observed under supersonic jet-cooling conditions. Assignment of the LIF excitation spectrum yields detailed information about the A-state vibronic structure. The LEDF emission was collected by pumping different vibronic bands of the A 2E"3<--X 2E"2 electronic spectrum. Analysis of the LEDF spectra yields valuable information about the vibronic levels of the X 2E"2 state. The X- and A-state vibronic structures characterize the Jahn-Teller distortion of the respective potential energy surfaces. A thorough analysis reveals observable Jahn-Teller activity in three of the four e'3 modes for the X 2E"2 state and two of the three e'1 modes for the A 2E"3 state and provides values for their deperturbed vibrational frequencies as well as linear Jahn-Teller coupling constants. The molecular parameters characterizing the Jahn-Teller interaction in the X and A states of C7H7 are compared to theoretical results and to those previously obtained for C5H5 and C6H6+.
Clemente-Juan, Juan Modesto; Palii, Andrew; Coronado, Eugenio; Tsukerblat, Boris
2016-08-09
In this article, we focus on the electron-vibrational problem of the tetrameric mixed-valence (MV) complexes proposed for implementation as four-dot molecular quantum cellular automata (mQCA).1 Although the adiabatic approximation explored in ref 2 is an appropriate tool for the qualitative analysis of the basic characteristics of mQCA, like vibronic trapping of the electrons encoding binary information and cell-cell response, it loses its accuracy providing moderate vibronic coupling and fails in the description of the discrete pattern of the vibronic levels. Therefore, a precise solution of the quantum-mechanical vibronic problem is of primary importance for the evaluation of the shapes of the electron transfer optical absorption bands and quantitative analysis of the main parameters of tetrameric quantum cells. Here, we go beyond the Born-Oppenheimer paradigm and present a solution of the quantum-mechanical pseudo Jahn-Teller (JT) vibronic problem in bielectronic MV species (exemplified by the tetra-ruthenium complexes) based on the recently developed symmetry-assisted approach.3,4 The mathematical approach to the vibronic eigenproblem takes into consideration the point symmetry basis, and therefore, the total matrix of the JT Hamiltonian is blocked to the maximum extent. The submatrices correspond to the irreducible representations (irreps) of the point group. With this tool, we also extend the theory of the mQCA cell beyond the limit of prevailing Coulomb repulsion in the electronic pair (adopted in ref 2), and therefore, the general pseudo-JT problems for spin-singlet ((1)B1g, 2(1)A1g, (1)B2g, (1)Eu) ⊗ (b1g + eu) and spin-triplet states ((3)A2g, (3)B1g, 2(3)Eu) ⊗ (b1g + eu) in a square-planar bielectronic system are solved. The obtained symmetry-adapted electron-vibrational functions are employed for the calculation of the profiles (shape functions) of the charge transfer absorption bands in the tetrameric MV complexes and for the discussion of the magnetic properties.
NASA Astrophysics Data System (ADS)
Xu, Long-Quan; Kang, Xu; Peng, Yi-Geng; Xu, Xin; Liu, Ya-Wei; Wu, Yong; Yang, Ke; Hiraoka, Nozomu; Tsuei, Ku-Ding; Wang, Jian-Guo; Zhu, Lin-Fan
2018-03-01
A joint experimental and theoretical investigation of the valence-shell excitations of hydrogen has been performed by the high-resolution inelastic x-ray scattering and electron scattering as well as the multireference single- and double-excitation configuration-interaction method. Momentum-transfer-dependent inelastic squared form factors for the vibronic series belonging to the B 1Σu+ ,C 1Πu , and E F 1Σg+ electronic states of molecular hydrogen have been derived from the inelastic x-ray scattering method at an impact photon energy around 10 keV, and the electron energy-loss spectra measured at an incident electron energy of 1500 eV. It is found that both the present and the previous calculations cannot satisfactorily reproduce the inelastic squared form-factor profiles for the higher vibronic transitions of the B 1Σu+ state of molecular hydrogen, which may be due to the electronic-vibrational coupling for the higher vibronic states. For the C 1Πu state and some vibronic excitations of E F 1Σg+ state, the present experimental results are in good agreement with the present and previous calculations, while the slight differences between the inelastic x-ray scattering and electron energy-loss spectroscopy results in the larger squared momentum-transfer region may be attributed to the increasing role of the higher-order Born terms in the electron-scattering process.
The vibronic level structure of the cyclopentadienyl radical
NASA Astrophysics Data System (ADS)
Ichino, Takatoshi; Wren, Scott W.; Vogelhuber, Kristen M.; Gianola, Adam J.; Lineberger, W. Carl; Stanton, John F.
2008-08-01
The 351.1 nm photoelectron spectrum of the cyclopentadienide ion has been measured, which reveals the vibronic structure of the X~ 2E1'' state of the cyclopentadienyl radical. Equation-of-motion ionization potential coupled-cluster (EOMIP-CCSD) calculations have been performed to construct a diabatic model potential of the X~ 2E1'' state, which takes into account linear Jahn-Teller effects along the e2' normal coordinates as well as bilinear Jahn-Teller effects along the e2' and ring-breathing a1' coordinates. A simulation based on this ab initio model potential reproduces the spectrum very well, identifying the vibronic levels with linear Jahn-Teller angular momentum quantum numbers of +/-1/2. The angular distributions of the photoelectrons for these vibronic levels are highly anisotropic with the photon energies used in the measurements. A few additional weak photoelectron peaks are observed when photoelectrons ejected parallel to the laser polarization are examined. These peaks correspond to the vibronic levels for out-of-plane modes in the ground X~ 2E1'' state, which arise due to several pseudo-Jahn-Teller interactions with excited states of the radical and quadratic Jahn-Teller interaction in the X~ 2E1'' state. A variant of the first derivative of the energy for the EOMIP-CCSD method has been utilized to evaluate the strength of these nonadiabatic couplings, which have subsequently been employed to construct the model potential of the X~ 2E1'' state with respect to the out-of-plane normal coordinates. Simulations based on the model potential successfully reproduce the weak features that become conspicuous in the 0° spectrum. The present study of the photoelectron spectrum complements a previous dispersed fluorescence spectroscopic study Miller and co-workers [J. Chem. Phys. 114, 4855 (2001); 4869 (2001) Miller and co-workers [J. Chem. Phys.114, 4869 (2001)] to provide a detailed account of the vibronic structure of X~ 2E1'' cyclopentadienyl. The electron affinity of the cyclopentadienyl radical is determined to be 1.808+/-0.006 eV. This electron affinity and the gas-phase acidity of cyclopentadiene have been combined in a negative ion thermochemical cycle to determine the C-H bond dissociation energy of cyclopentadiene; D0(C5H6,C-H)=81.5+/-1.3 kcal mol-1. The standard enthalpy of formation of the cyclopentadienyl radical has been determined to be ΔfH298(C5H5)=63.2+/-1.4 kcal mol-1.
Vibronic coupling in the excited-states of carotenoids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miki, Takeshi; Buckup, Tiago; Krause, Marie S.
2016-01-01
The ultrafast femtochemistry of carotenoids is governed by the interaction between electronic excited states, which has been explained by the relaxation dynamics within a few hundred femtoseconds from the lowest optically allowed excited state S 2to the optically dark state S 1.
Vibronic coupling in the excited-states of carotenoids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miki, Takeshi; Buckup, Tiago; Krause, Marie S.
The ultrafast femtochemistry of carotenoids is governed by the interaction between electronic excited states, which has been explained by the relaxation dynamics within a few hundred femtoseconds from the lowest optically allowed excited state S 2to the optically dark state S 1.
Vibronic eigenstates and the geometric phase effect in the 2E″ state of NO3.
Eisfeld, Wolfgang; Viel, Alexandra
2017-01-21
The 2 E″ state of NO 3 , a prototype for the Jahn-Teller effect, has been an enigma and a challenge for a long time for both experiment and theory. We present a detailed theoretical study of the vibronic quantum dynamics in this electronic state, uncovering the effects of tunnelling, geometric phase, and symmetry. To this end, 45 vibronic levels of NO 3 in the 2 E″ state are determined accurately and analyzed thoroughly. The computation is based on a high quality diabatic potential representation of the two-sheeted surface of the 2 E″ state developed by us [W. Eisfeld et al., J. Chem. Phys. 140, 224109 (2014)] and on the multi-configuration time dependent Hartree approach. The vibrational eigenstates of the NO 3 - anion are determined and analyzed as well to gain a deeper understanding of the symmetry properties of such D 3h symmetric systems. To this end, 61 eigenstates of the NO 3 - anion ground state are computed using the single sheeted potential surface of the 1 A 1 state published in the same reference quoted above. The assignments of both the vibrational and vibronic levels are discussed. A simple model is proposed to rationalize the computed NO 3 spectrum strongly influenced by the Jahn-Teller couplings, the associated geometric phase effect, and the tunnelling. Comparison with the available spectroscopic data is also presented.
Coupling efficiency of laser beam to multimode fiber
NASA Astrophysics Data System (ADS)
Niu, Jinfu; Xu, Jianqiu
2007-06-01
The coupling efficiency of laser beam to multimode fiber is given by geometrical optics, and the relation between the maximum coupling efficiency and the beam propagation factor M2 is analyzed. An equivalent factor MF2 for the multimode fiber is introduced to characterize the fiber coupling capability. The coupling efficiency of laser beam to multimode fiber is calculated in respect of the ratio M2/MF2 by the overlapping integral theory. The optimal coupling efficiency can be roughly estimated by the ratio of M2 to MF2 but with a large error range. The deviation comes from the lacks of information on the detail of phase and intensity profile in the beam factor M2.
NASA Astrophysics Data System (ADS)
Flakus, Henryk T.; Śmiszek-Lindert, Wioleta; Stadnicka, Katarzyna
2007-06-01
This paper presents the investigation results of the polarized IR spectra of the hydrogen bond in crystals of N-methylthioacetamide. The spectral studies were preceded by the determination of the crystal X-ray structure. The spectra were measured at 283 K and at 77 K by a transmission method, using polarized light. Theoretical analysis of the results concerned the linear dichroic effects, the H/D isotopic and temperature effects, observed in the solid-state IR spectra of the hydrogen and of the deuterium bond at the frequency ranges of the νN-H and the νN-D bands, respectively. The main spectral properties of the crystals can be interpreted satisfactorily in terms of the simple quantitative theory of the IR spectra of the hydrogen bond, i.e., the " strong-coupling" theory on the basis of the hydrogen bond centrosymmetric dimer model. The spectra revealed that the strongest vibrational exciton coupling involved the closely spaced hydrogen bonds, each belonging to a different chain of associated N-methylthioacetamide molecules. The crystal spectral properties, along with an abnormal H/D isotopic effect in the spectra, were found to be strongly influenced by vibronic coupling mechanisms in these dimers. These mechanisms were considered as responsible for the activation in IR of the totally symmetric proton stretching vibrations in the dimers. On analyzing the spectra of isotopically diluted crystalline samples of N-methylthioacetamide, it was proved that a non-random distribution of the protons and deuterons took place in the hydrogen bond lattices. In an individual hydrogen-bonded chain in the crystals distribution of the hydrogen isotope atoms H and D was fully random. The H/D isotopic " self-organization" mechanism, of a vibronic nature, involved a pair of hydrogen bonds from a unit cell, where each hydrogen bond belonged to a different chain of the associated molecules.
Femtosecond dynamics and laser control of charge transport in trans-polyacetylene.
Franco, Ignacio; Shapiro, Moshe; Brumer, Paul
2008-06-28
The induction of dc electronic transport in rigid and flexible trans-polyacetylene oligomers according to the omega versus 2omega coherent control scenario is investigated using a quantum-classical mean field approximation. The approach involves running a large ensemble of mixed quantum-classical trajectories under the influence of omega+2omega laser fields and choosing the initial conditions by sampling the ground-state Wigner distribution function for the nuclei. The vibronic couplings are shown to change the mean single-particle spectrum, introduce ultrafast decoherence, and enhance intramolecular vibrational and electronic relaxation. Nevertheless, even in the presence of significant couplings, limited coherent control of the electronic dynamics is still viable, the most promising route involving the use of femtosecond pulses with a duration that is comparable to the electronic dephasing time. The simulations offer a realistic description of the behavior of a simple coherent control scenario in a complex system and provide a detailed account of the femtosecond photoinduced vibronic dynamics of a conjugated polymer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulze, Jan; Kühn, Oliver, E-mail: oliver.kuehn@uni-rostock.de; Shibl, Mohamed F., E-mail: mfshibl@qu.edu.qa
2016-05-14
The coupled quantum dynamics of excitonic and vibrational degrees of freedom is investigated for high-dimensional models of the Fenna-Matthews-Olson complex. This includes a seven- and an eight-site model with 518 and 592 harmonic vibrational modes, respectively. The coupling between local electronic transitions and vibrations is described within the Huang-Rhys model using parameters that are obtained by discretization of an experimental spectral density. Different pathways of excitation energy flow are analyzed in terms of the reduced one-exciton density matrix, focussing on the role of vibrational and vibronic excitations. Distinct features due to both competing time scales of vibrational and exciton motionmore » and vibronically assisted transfer are observed. The question of the effect of initial state preparation is addressed by comparing the case of an instantaneous Franck-Condon excitation at a single site with that of a laser field excitation.« less
High-Resolution Laser Spectroscopy of Free Radicals in Nearly Degenerate Electronic States
NASA Astrophysics Data System (ADS)
Liu, Jinjun
2017-06-01
Rovibronic structure of molecules in orbitally degenerate electronic states including Renner-Teller (RT) and Jahn-Teller (JT) active molecules has been extensively studied. Less is known about rotational structure of polyatomic molecules in nearly degenerate states, especially those with low (e.g., C_s) symmetry that are subject to the pseudo-Jahn-Teller (pJT) effect. In the case of free radicals, the unpaired electron further complicates energy levels by inducing spin-orbit (SO) and spin-rotation (SR) splittings. Asymmetric deuteration or methyl substitution of C_{3v} free radicals such as CH_3O, CaCH_3, and CaOCH_3 lowers the molecular symmetry, lifts the vibronic degeneracy, and reduces the JT effect to the pJT effect. New spectroscopic models are required to reproduce the rovibronic structure and simulate the experimentally obtained spectra of pJT-active free radicals. It has been found that rotational and fine-structure analysis of spectra involving nearly degenerate states may aid in vibronic analysis and interpretation of effective molecular constants. Especially, SO and Coriolis interactions that couple the two states can be determined accurately from fitting the experimental spectra. Coupling between the two electronic states also affects the intensities of rotational and vibronic transitions. The study on free radicals in nearly degenerate states provides a promising avenue of research which may bridge the gap between symmetry-induced degenerate states and the Born-Oppenheimer (BO) limit of unperturbed electronic states.
Self-cavity lasing in optically pumped single crystals of p-sexiphenyl
NASA Astrophysics Data System (ADS)
Yanagi, Hisao; Tamura, Kenji; Sasaki, Fumio
2016-08-01
Organic single-crystal self-cavities are prepared by solution growth of p-sexiphenyl (p-6P). Based on Fabry-Pérot feedback inside a quasi-lozenge-shaped platelet crystal, edge-emitting laser is obtained under optical pumping. The multimode lasing band appears at the 0-1 or 0-2 vibronic progressions depending on the excitation conditions which affect the self-absorption effect. Cavity-size dependence of amplified spontaneous emission (ASE) is investigated with laser-etched single crystals of p-6P. As the cavity length of square-shaped crystal is reduced from 100 to 10 μm, ASE threshold fluence is decreased probably due to size-dependent light confinement in the crystal cavity.
Vibrational and vibronic coherences in the dynamics of the FMO complex
NASA Astrophysics Data System (ADS)
Liu, Xiaomeng; Kühn, Oliver
2016-12-01
The coupled exciton-vibrational dynamics of a seven site Frenkel exciton model of the Fenna-Matthews-Olson (FMO) complex is investigated using a Quantum Master Equation approach. Thereby, one vibrational mode per monomer is treated explicitly as being part of the relevant system. Emphasis is put on the comparison of this model with that of a purely excitonic relevant system. Further, the effects of two different approximations to the exciton-vibrational basis are investigated, namely the one- and two-particle description. Analysis of the vibronic and vibrational density matrix in the site basis points to the importance of on- and inter-site coherences for the exciton transfer. Here, one- and two-particle approximations give rise to qualitatively different results.
Vibronic spectra of Cu(2+) in ZnTe
NASA Technical Reports Server (NTRS)
Volz, M. P.; Su, C.-H.; Lehoczky, S. L.; Szofran, F. R.
1992-01-01
Infrared-absorption spectra of substitutional Cu(2+) ions in ZnTe have been measured at 4.6 K. Several distinct absorption peaks are observed between 800 and 2000/cm. Absorption peaks at 1002 and 1069/cm are identified as zero-phonon lines arising from 2T2-2E transitions. Between 1069 and 2000/cm, several sets of sharp absorption lines are seen to recur regularly at an interval of 210/cm, corresponding to the LO phonon energy. Within each set distinct vibronic sidebands that cannot be identified with critical-point energies of TA, LA, TO or LO phonon modes are observed. A dynamic Jahn-Teller effect, involving coupling between a single-phonon mode and the electronic states of the 2E level, is proposed to account for the observed spectra.
ExoMol molecular line lists - XIII. The spectrum of CaO
NASA Astrophysics Data System (ADS)
Yurchenko, Sergei N.; Blissett, Audra; Asari, Usama; Vasilios, Marcus; Hill, Christian; Tennyson, Jonathan
2016-03-01
An accurate line list for calcium oxide is presented covering transitions between all bound ro-vibronic levels from the five lowest electronic states X 1Σ+, A' 1Π, A 1Σ+, a 3Π, and b 3Σ+. The ro-vibronic energies and corresponding wavefunctions were obtained by solving the fully coupled Schrödinger equation. Ab initio potential energy, spin-orbit, and electronic angular momentum curves were refined by fitting to the experimental frequencies and experimentally derived energies available in the literature. Using our refined model we could (1) reassign the vibronic states for a large portion of the experimentally derived energies (van Groenendael A., Tudorie M., Focsa C., Pinchemel B., Bernath P. F., 2005, J. Mol. Spectrosc., 234, 255), (2) extended this list of energies to J = 61-118 and (3) suggest a new description of the resonances from the A 1Σ+-X 1Σ+ system. We used high level ab initio electric dipole moments reported previously (Khalil H., Brites V., Le Quere F., Leonard C., 2011, Chem. Phys., 386, 50) to compute the Einstein A coefficients. Our work is the first fully coupled description of this system. Our line list is the most complete catalogue of spectroscopic transitions available for 40Ca16O and is applicable for temperatures up to at least 5000 K. CaO has yet to be observed astronomically but its transitions are characterized by being particularly strong which should facilitate its detection. The CaO line list is made available in an electronic form as supplementary data to this article and at www.exomol.com.
Towards quantification of vibronic coupling in photosynthetic antenna complexes
NASA Astrophysics Data System (ADS)
Singh, V. P.; Westberg, M.; Wang, C.; Dahlberg, P. D.; Gellen, T.; Gardiner, A. T.; Cogdell, R. J.; Engel, G. S.
2015-06-01
Photosynthetic antenna complexes harvest sunlight and efficiently transport energy to the reaction center where charge separation powers biochemical energy storage. The discovery of existence of long lived quantum coherence during energy transfer has sparked the discussion on the role of quantum coherence on the energy transfer efficiency. Early works assigned observed coherences to electronic states, and theoretical studies showed that electronic coherences could affect energy transfer efficiency—by either enhancing or suppressing transfer. However, the nature of coherences has been fiercely debated as coherences only report the energy gap between the states that generate coherence signals. Recent works have suggested that either the coherences observed in photosynthetic antenna complexes arise from vibrational wave packets on the ground state or, alternatively, coherences arise from mixed electronic and vibrational states. Understanding origin of coherences is important for designing molecules for efficient light harvesting. Here, we give a direct experimental observation from a mutant of LH2, which does not have B800 chromophores, to distinguish between electronic, vibrational, and vibronic coherence. We also present a minimal theoretical model to characterize the coherences both in the two limiting cases of purely vibrational and purely electronic coherence as well as in the intermediate, vibronic regime.
NASA Astrophysics Data System (ADS)
Mebel, Alexander M.; Lin, Sheng-Hsien
1997-03-01
The geometries, vibrational frequencies and vertical and adiabatic excitation energies of the excited valence and Rydberg 3s, 3p, 3d, and 4s electronic states of CH 3 have been studied using ab initio molecular orbital multiconfigurational SCF (CASSCF), internally contracted multireference configuration interaction (MRCI) and equation-of-motion coupled cluster (EOM-CCSD) methods. The vibronic spectra are determined through the calculation of Franck-Condon factors. Close agreement between theory and experiment has been found for the excitation energies, vibrational frequencies and vibronic spectra. The adiabatic excitation energies of the Rydberg 3s B˜ 2A' 1 and 3p 2 2A″ 2 states are calculated to be 46435 and 60065 cm -1 compared to the experimental values of 46300 and 59972 cm -1, respectively. The valence 2A″ excited state of CH 3 has been found to have a pyramidal geometry within C s symmetry and to be adiabatically by 97 kcal/mol higher in energy than the ground state. The 2A″ state is predicted to be stable by 9 and 13 kcal/mol with respect to H 2 and H elimination.
NASA Astrophysics Data System (ADS)
Shimada, Rintaro; Kano, Hideaki; Hamaguchi, Hiro-o.
2008-07-01
A new molecular phenomenon associated with resonance hyper-Raman (HR) scattering in solution has been discovered. Resonance HR spectra of all-trans-β-carotene and all-trans-lycopene in various solvents exhibited several extra bands that were not assignable to the solute but were unequivocally assigned to the solvents. Neat solvents did not show detectable HR signals under the same experimental conditions. Similar experiments with all-trans-retinal did not exhibit such enhancement either. All-trans-β-carotene and all-trans-lycopene have thus been shown to induce enhanced HR scattering of solvent molecules through a novel molecular effect that is not associated with all-trans-retinal. We call this new effect the "molecular near-field effect." In order to explain this newly found effect, an extended vibronic theory of resonance HR scattering is developed where the vibronic interaction including the proximate solvent molecule (intermolecular vibronic coupling) is explicitly introduced in the solute hyperpolarizability tensor. The potential of "molecular near-field HR spectroscopy," which selectively detects molecules existing in the close vicinity of a HR probe in complex chemical or biological systems, is discussed.
Chmela, Jiří; Greisch, Jean-François; Harding, Michael E; Klopper, Wim; Kappes, Manfred M; Schooss, Detlef
2018-03-08
The gas-phase laser-induced photoluminescence of cationic mononuclear gadolinium and lutetium complexes involving two 9-oxophenalen-1-one ligands is reported. Performing measurements at a temperature of 83 K enables us to resolve vibronic transitions. Via comparison to Franck-Condon computations, the main vibrational contributions to the ligand-centered phosphorescence are determined to involve rocking, wagging, and stretching of the 9-oxophenalen-1-one-lanthanoid coordination in the low-energy range, intraligand bending, and stretching in the medium- to high-energy range, rocking of the carbonyl and methine groups, and C-H stretching beyond. Whereas Franck-Condon calculations based on density-functional harmonic frequency computations reproduce the main features of the vibrationally resolved emission spectra, the absolute transition energies as determined by density functional theory are off by several thousand wavenumbers. This discrepancy is found to remain at higher computational levels. The relative energy of the Gd(III) and Lu(III) emission bands is only reproduced at the coupled-cluster singles and doubles level and beyond.
Semiclassical Path Integral Calculation of Nonlinear Optical Spectroscopy.
Provazza, Justin; Segatta, Francesco; Garavelli, Marco; Coker, David F
2018-02-13
Computation of nonlinear optical response functions allows for an in-depth connection between theory and experiment. Experimentally recorded spectra provide a high density of information, but to objectively disentangle overlapping signals and to reach a detailed and reliable understanding of the system dynamics, measurements must be integrated with theoretical approaches. Here, we present a new, highly accurate and efficient trajectory-based semiclassical path integral method for computing higher order nonlinear optical response functions for non-Markovian open quantum systems. The approach is, in principle, applicable to general Hamiltonians and does not require any restrictions on the form of the intrasystem or system-bath couplings. This method is systematically improvable and is shown to be valid in parameter regimes where perturbation theory-based methods qualitatively breakdown. As a test of the methodology presented here, we study a system-bath model for a coupled dimer for which we compare against numerically exact results and standard approximate perturbation theory-based calculations. Additionally, we study a monomer with discrete vibronic states that serves as the starting point for future investigation of vibronic signatures in nonlinear electronic spectroscopy.
NASA Astrophysics Data System (ADS)
Shakib, Farnaz; Huo, Pengfei
Photo-induced proton-coupled electron transfer reactions (PCET) are at the heart of energy conversion reactions in photocatalysis. Here, we apply the recently developed ring-polymer surface-hopping (RPSH) approach to simulate the nonadiabatic dynamics of photo-induced PCET. The RPSH method incorporates ring-polymer (RP) quantization of the proton into the fewest-switches surface-hopping (FSSH) approach. Using two diabatic electronic states, corresponding to the electron donor and acceptor states, we model photo-induced PCET with the proton described by a classical isomorphism RP. From the RPSH method, we obtain numerical results that are comparable to those obtained when the proton is treated quantum mechanically. This accuracy stems from incorporating exact quantum statistics, such as proton tunnelling, into approximate quantum dynamics. Additionally, RPSH offers the numerical accuracy along with the computational efficiency. Namely, compared to the FSSH approach in vibronic representation, there is no need to calculate a massive number of vibronic states explicitly. This approach opens up the possibility to accurately and efficiently simulate photo-induced PCET with multiple transferring protons or electrons.
The Jahn-Teller effect in (hu+)2⊗hg systems
NASA Astrophysics Data System (ADS)
Hands, Ian D.; Diery, Wajood A.; Dunn, Janette L.; Bates, Colin A.
2007-07-01
A general consideration is made of the vibronic coupling in a (hu+)2⊗hg Jahn-Teller system, that is to say, a system in which two holes of Hu symmetry are coupled to vibrations of hg symmetry. We find that the resulting high-spin states may undergo spontaneous distortion into species exhibiting one of the following four possible symmetries: D5 d, D3 d, D2 h or C2 h. The system may be viewed as a first approximation to a C602+ ion, but our intention here is to make a general consideration of the model without application to any specific molecular system. Coulombic interactions between holes, which must be important in real systems, are therefore ignored throughout. However, they could be included in the model, if required, using the method described in an earlier work [I.D. Hands, J.L. Dunn, W.A. Diery, C.A. Bates, Phys. Rev. B 73 (2006) 115435]. For each of the different symmetry types, projection operators are used to create symmetry-adapted states (SASs) that give a good account of the states of the system over a wide range of coupling strengths. These SASs are used, in turn, to derive energies for the vibronic states.
Ludlow, Michelle K; Soudackov, Alexander V; Hammes-Schiffer, Sharon
2009-05-27
In this paper we present theoretical calculations on model biomimetic systems for quinol oxidation. In these model systems, an excited-state [Ru(bpy)(2)(pbim)](+) complex (bpy = 2,2'-dipyridyl, pbim = 2-(2-pyridyl)benzimidazolate) oxidizes a ubiquinol or plastoquinol analogue in acetonitrile. The charge transfer reaction occurs via a proton-coupled electron transfer (PCET) mechanism, in which an electron is transferred from the quinol to the Ru and a proton is transferred from the quinol to the pbim(-) ligand. The experimentally measured average kinetic isotope effects (KIEs) at 296 K are 1.87 and 3.45 for the ubiquinol and plastoquinol analogues, respectively, and the KIE decreases with temperature for plastoquinol but increases with temperature for ubiquinol. The present calculations provide a possible explanation for the differences in magnitudes and temperature dependences of the KIEs for the two systems and, in particular, an explanation for the unusual inverse temperature dependence of the KIE for the ubiquinol analogue. These calculations are based on a general theoretical formulation for PCET reactions that includes quantum mechanical effects of the electrons and transferring proton, as well as the solvent reorganization and proton donor-acceptor motion. The physical properties of the system that enable the inverse temperature dependence of the KIE are a stiff hydrogen bond, which corresponds to a high-frequency proton donor-acceptor motion, and small inner-sphere and solvent reorganization energies. The inverse temperature dependence of the KIE may be observed if the 0/0 pair of reactant/product vibronic states is in the inverted Marcus region, while the 0/1 pair of reactant/product vibronic states is in the normal Marcus region and is the dominant contributor to the overall rate. In this case, the free energy barrier for the dominant transition is lower for deuterium than for hydrogen because of the smaller splittings between the vibronic energy levels for deuterium, and the KIE increases with increasing temperature. The temperature dependence of the KIE is found to be very sensitive to the interplay among the driving force, the reorganization energy, and the vibronic coupling in this regime.
Optical Properties of Vibronically Coupled Cy3 Dimers on DNA Scaffolds.
Cunningham, Paul D; Kim, Young C; Díaz, Sebastián A; Buckhout-White, Susan; Mathur, Divita; Medintz, Igor L; Melinger, Joseph S
2018-05-17
We examine the effect of electronic coupling on the optical properties of Cy3 dimers attached to DNA duplexes as a function of base pair (bp) separation using steady-state and time-resolved spectroscopy. For close Cy3-Cy3 separations, 0 and 1 bp between dyes, intermediate to strong electronic coupling is revealed by modulation of the absorption and fluorescence properties including spectral band shape, peak wavelength, and excited-state lifetime. Using a vibronic exciton model, we estimate coupling strengths of 150 and 266 cm -1 for the 1 and 0 bp separations, respectively, which are comparable to those found in natural light-harvesting complexes. For the strongest electronic coupling (0 bp separation), we observe that the absorption band shape is strongly affected by the base pairs that surround the dyes, where more strongly hydrogen-bonded G-C pairs produce a red-shifted absorption spectrum consistent with a J-type dimer. This effect is studied theoretically using molecular dynamics simulation, which predicts an in-line dye configuration that is consistent with the experimental J-type spectrum. When the Cy3 dimers are in a standard aqueous buffer, the presence of relatively strong electronic coupling is accompanied by decreased fluorescence lifetime, suggesting that it promotes nonradiative relaxation in cyanine dyes. However, we show that the use of a viscous solvent can suppress this nonradiative recombination and thereby restore the dimer fluorescent emission. Ultrafast transient absorption measurements of Cy3 dimers in both standard aqueous buffer and viscous glycerol buffer suggest that sufficiently strong electronic coupling increases the probability of excited-state relaxation through a dark state that is related to Cy3 torsional motion.
Delor, Milan; Sazanovich, Igor V; Towrie, Michael; Weinstein, Julia A
2015-04-21
The Born-Oppenheimer approximation refers to the assumption that the nuclear and electronic wave functions describing a molecular system evolve and can be determined independently. It is now well-known that this approximation often breaks down and that nuclear-electronic (vibronic) coupling contributes greatly to the ultrafast photophysics and photochemistry observed in many systems ranging from simple molecules to biological organisms. In order to probe vibronic coupling in a time-dependent manner, one must use spectroscopic tools capable of correlating the motions of electrons and nuclei on an ultrafast time scale. Recent developments in nonlinear multidimensional electronic and vibrational spectroscopies allow monitoring both electronic and structural factors with unprecedented time and spatial resolution. In this Account, we present recent studies from our group that make use of different variants of frequency-domain transient two-dimensional infrared (T-2DIR) spectroscopy, a pulse sequence combining electronic and vibrational excitations in the form of a UV-visible pump, a narrowband (12 cm(-1)) IR pump, and a broadband (400 cm(-1)) IR probe. In the first example, T-2DIR is used to directly compare vibrational dynamics in the ground and relaxed electronic excited states of Re(Cl)(CO)3(4,4'-diethylester-2,2'-bipyridine) and Ru(4,4'-diethylester-2,2'-bipyridine)2(NCS)2, prototypical charge transfer complexes used in photocatalytic CO2 reduction and electron injection in dye-sensitized solar cells. The experiments show that intramolecular vibrational redistribution (IVR) and vibrational energy transfer (VET) are up to an order of magnitude faster in the triplet charge transfer excited state than in the ground state. These results show the influence of electronic arrangement on vibrational coupling patterns, with direct implications for vibronic coupling mechanisms in charge transfer excited states. In the second example, we show unambiguously that electronic and vibrational movement are coupled in a donor-bridge-acceptor complex based on a Pt(II) trans-acetylide design motif. Time-resolved IR (TRIR) spectroscopy reveals that the rate of electron transfer (ET) is highly dependent on the amount of excess energy localized on the bridge following electronic excitation. Using an adaptation of T-2DIR, we are able to selectively perturb bridge-localized vibrational modes during charge separation, resulting in the donor-acceptor charge separation pathway being completely switched off, with all excess energy redirected toward the formation of a long-lived intraligand triplet state. A series of control experiments reveal that this effect is mode specific: it is only when the high-frequency bridging C≡C stretching mode is pumped that radical changes in photoproduct yields are observed. These experiments therefore suggest that one may perturb electronic movement by stimulating structural motion along the reaction coordinate using IR light. These studies add to a growing body of evidence suggesting that controlling the pathways and efficiency of charge transfer may be achieved through synthetic and perturbative approaches aiming to modulate vibronic coupling. Achieving such control would represent a breakthrough for charge transfer-based applications such as solar energy conversion and molecular electronics.
Solvent effects on the vibronic one-photon absorption profiles of dioxaborine heterocycles
NASA Astrophysics Data System (ADS)
Wang, Yan-Hua; Halik, Marcus; Wang, Chuan-Kui; Marder, Seth R.; Luo, Yi
2005-11-01
The vibronic profiles of one-photon absorption spectra of dioxaborine heterocycles in gas phase and solution have been calculated at the Hartree-Fock and density-functional-theory levels. The polarizable continuum model has been applied to simulate the solvent effect, while the linear coupling model is used to compute the Franck-Condon and Herzberg-Teller contributions. It is found that a good agreement between theory and experiment can be achieved when the solvent effect and electron correlation are taken into account simultaneously. For the first excited charge-transfer state, the maximum of its Herzberg-Teller profile is blueshifted from that of the Franck-Condon profile. The shifted energy is found to be around 0.2eV, which agrees well with the measured energy difference between two- and one-photon absorptions of the first excited state.
NASA Astrophysics Data System (ADS)
Lilichenko, Mark; Kelley, Anne Myers
2001-04-01
A novel approach is presented for finding the vibrational frequencies, Franck-Condon factors, and vibronic linewidths that best reproduce typical, poorly resolved electronic absorption (or fluorescence) spectra of molecules in condensed phases. While calculation of the theoretical spectrum from the molecular parameters is straightforward within the harmonic oscillator approximation for the vibrations, "inversion" of an experimental spectrum to deduce these parameters is not. Standard nonlinear least-squares fitting methods such as Levenberg-Marquardt are highly susceptible to becoming trapped in local minima in the error function unless very good initial guesses for the molecular parameters are made. Here we employ a genetic algorithm to force a broad search through parameter space and couple it with the Levenberg-Marquardt method to speed convergence to each local minimum. In addition, a neural network trained on a large set of synthetic spectra is used to provide an initial guess for the fitting parameters and to narrow the range searched by the genetic algorithm. The combined algorithm provides excellent fits to a variety of single-mode absorption spectra with experimentally negligible errors in the parameters. It converges more rapidly than the genetic algorithm alone and more reliably than the Levenberg-Marquardt method alone, and is robust in the presence of spectral noise. Extensions to multimode systems, and/or to include other spectroscopic data such as resonance Raman intensities, are straightforward.
Direct observation of slow intersystem crossing in an aromatic ketone, fluorenone.
Soep, Benoît; Mestdagh, Jean-Michel; Briant, Marc; Gaveau, Marc-André; Poisson, Lionel
2016-08-17
Direct measurements of Single vibronic Level InterSystem Crossing (SLISC) have been performed on the fluorenone molecule in the gas phase, by time resolved photoelectron and photoion spectroscopy. Vibronic transitions above the S1 nπ* origin were excited in the 432-420 nm region and the decay of S1 and growth of T1(3)ππ* could be observed within a 10 ns time domain. The ionization potential is measured as 8.33 ± 0.04 eV. The energy of the first excited triplet state of fluorenone, T1 has been characterized directly at 18 640 ± 250 cm(-1). The internal conversion of S1 to S0 is found to amount to ∼15% of the population decay, thus ISC is the dominant electronic relaxation process. ISC, although favored by the S1(1)nπ*-T1(3)ππ* coupling scheme, is 3 orders of magnitude less efficient than in the similar molecule benzophenone. Thus, the planarity of the fluorenone molecule disfavors the exploration of the configuration space where surface crossings would create high ISC probability, which occurs in benzophenone through surface crossings. The time evolution of S1 fluorenone is well accounted for by the statistical decay of individual levels into a quasi-continuum of T1 vibronic levels.
Exciton-phonon coupling in diindenoperylene thin films
NASA Astrophysics Data System (ADS)
Heinemeyer, U.; Scholz, R.; Gisslén, L.; Alonso, M. I.; Ossó, J. O.; Garriga, M.; Hinderhofer, A.; Kytka, M.; Kowarik, S.; Gerlach, A.; Schreiber, F.
2008-08-01
We investigate exciton-phonon coupling and exciton transfer in diindenoperylene (DIP) thin films on oxidized Si substrates by analyzing the dielectric function determined by variable-angle spectroscopic ellipsometry. Since the molecules in the thin-film phase form crystallites that are randomly oriented azimuthally and highly oriented along the surface normal, DIP films exhibit strongly anisotropic optical properties with uniaxial symmetry. This anisotropy can be determined by multiple sample analysis. The thin-film spectrum is compared with a monomer spectrum in solution, which reveals similar vibronic subbands and a Huang-Rhys parameter of S≈0.87 for an effective internal vibration at ℏωeff=0.17eV . However, employing these parameters the observed dielectric function of the DIP films cannot be described by a pure Frenkel exciton model, and the inclusion of charge-transfer (CT) states becomes mandatory. A model Hamiltonian is parametrized with density-functional theory calculations of single DIP molecules and molecule pairs in the stacking geometry of the thin-film phase, revealing the vibronic coupling constants of DIP in its excited and charged states together with electron and hole transfer integrals along the stack. From a fit of the model calculation to the observed dielectric tensor, we find the lowest CT transition E00CT at 0.26±0.05eV above the neutral molecular excitation energy E00F , which is an important parameter for device applications.
Jet cooled cavity ringdown spectroscopy of the A ˜ 2 E ″ ← X ˜ 2 A2 ' transition of the NO3 radical
NASA Astrophysics Data System (ADS)
Codd, Terrance; Chen, Ming-Wei; Roudjane, Mourad; Stanton, John F.; Miller, Terry A.
2015-05-01
The A ˜ 2 E ″ ← X ˜ 2 A2 ' spectrum of NO3 radical from 7550 cm-1 to 9750 cm-1 has been recorded and analyzed. Our spectrum differs from previously recorded spectra of this transition due to jet-cooling, which narrows the rotational contours and eliminates spectral interference from hot bands. Assignments of numerous vibronic features can be made based on both band contour and position including the previously unassigned 30 1 band and several associated combination bands. We have analyzed our spectrum first with an independent anharmonic oscillator model and then by a quadratic Jahn-Teller vibronic coupling model. The fit achieved with the quadratic Jahn-Teller model is excellent, but the potential energy surface obtained with the fitted parameters is in only qualitative agreement with one obtained from ab initio calculations.
Trachsel, Maria A; Wiedmer, Timo; Blaser, Susan; Frey, Hans-Martin; Li, Quansong; Ruiz-Barragan, Sergi; Blancafort, Lluís; Leutwyler, Samuel
2016-10-07
We have investigated the S 0 → S 1 UV vibronic spectrum and time-resolved S 1 state dynamics of jet-cooled amino-keto 1-methylcytosine (1MCyt) using two-color resonant two-photon ionization, UV/UV holeburning and depletion spectroscopies, as well as nanosecond and picosecond time-resolved pump/delayed ionization measurements. The experimental study is complemented with spin-component-scaled second-order coupled-cluster and multistate complete active space second order perturbation ab initio calculations. Above the weak electronic origin of 1MCyt at 31 852 cm -1 about 20 intense vibronic bands are observed. These are interpreted as methyl group torsional transitions coupled to out-of-plane ring vibrations, in agreement with the methyl group rotation and out-of-plane distortions upon 1 ππ ∗ excitation predicted by the calculations. The methyl torsion and ν 1 ' (butterfly) vibrations are strongly coupled, in the S 1 state. The S 0 → S 1 vibronic spectrum breaks off at a vibrational excess energy E exc ∼ 500 cm -1 , indicating that a barrier in front of the ethylene-type S 1 ⇝S 0 conical intersection is exceeded, which is calculated to lie at E exc = 366 cm -1 . The S 1 ⇝S 0 internal conversion rate constant increases from k IC = 2 ⋅ 10 9 s -1 near the S 1 (v = 0) level to 1 ⋅ 10 11 s -1 at E exc = 516 cm -1 . The 1 ππ ∗ state of 1MCyt also relaxes into the lower-lying triplet T 1 ( 3 ππ ∗ ) state by intersystem crossing (ISC); the calculated spin-orbit coupling (SOC) value is 2.4 cm -1 . The ISC rate constant is 10-100 times lower than k IC ; it increases from k ISC = 2 ⋅ 10 8 s -1 near S 1 (v = 0) to k ISC = 2 ⋅ 10 9 s -1 at E exc = 516 cm -1 . The T 1 state energy is determined from the onset of the time-delayed photoionization efficiency curve as 25 600 ± 500 cm -1 . The T 2 ( 3 nπ ∗ ) state lies >1500 cm -1 above S 1 (v = 0), so S 1 ⇝T 2 ISC cannot occur, despite the large SOC parameter of 10.6 cm -1 . An upper limit to the adiabatic ionization energy of 1MCyt is determined as 8.41 ± 0.02 eV. Compared to cytosine, methyl substitution at N1 lowers the adiabatic ionization energy by ≥0.32 eV and leads to a much higher density of vibronic bands in the S 0 → S 1 spectrum. The effect of methylation on the radiationless decay to S 0 and ISC to T 1 is small, as shown by the similar break-off of the spectrum and the similar computed mechanisms.
NASA Astrophysics Data System (ADS)
Trachsel, Maria A.; Wiedmer, Timo; Blaser, Susan; Frey, Hans-Martin; Li, Quansong; Ruiz-Barragan, Sergi; Blancafort, Lluís; Leutwyler, Samuel
2016-10-01
We have investigated the S0 → S1 UV vibronic spectrum and time-resolved S1 state dynamics of jet-cooled amino-keto 1-methylcytosine (1MCyt) using two-color resonant two-photon ionization, UV/UV holeburning and depletion spectroscopies, as well as nanosecond and picosecond time-resolved pump/delayed ionization measurements. The experimental study is complemented with spin-component-scaled second-order coupled-cluster and multistate complete active space second order perturbation ab initio calculations. Above the weak electronic origin of 1MCyt at 31 852 cm-1 about 20 intense vibronic bands are observed. These are interpreted as methyl group torsional transitions coupled to out-of-plane ring vibrations, in agreement with the methyl group rotation and out-of-plane distortions upon 1ππ∗ excitation predicted by the calculations. The methyl torsion and ν1 ' (butterfly) vibrations are strongly coupled, in the S1 state. The S0 → S1 vibronic spectrum breaks off at a vibrational excess energy Eexc ˜ 500 cm-1, indicating that a barrier in front of the ethylene-type S1⇝S0 conical intersection is exceeded, which is calculated to lie at Eexc = 366 cm-1. The S1⇝S0 internal conversion rate constant increases from kIC = 2 ṡ 109 s-1 near the S1(v = 0) level to 1 ṡ 1011 s-1 at Eexc = 516 cm-1. The 1ππ∗ state of 1MCyt also relaxes into the lower-lying triplet T1 (3ππ∗) state by intersystem crossing (ISC); the calculated spin-orbit coupling (SOC) value is 2.4 cm-1. The ISC rate constant is 10-100 times lower than kIC; it increases from kISC = 2 ṡ 108 s-1 near S1(v = 0) to kISC = 2 ṡ 109 s-1 at Eexc = 516 cm-1. The T1 state energy is determined from the onset of the time-delayed photoionization efficiency curve as 25 600 ± 500 cm-1. The T2 (3nπ∗) state lies >1500 cm-1 above S1(v = 0), so S1⇝T2 ISC cannot occur, despite the large SOC parameter of 10.6 cm-1. An upper limit to the adiabatic ionization energy of 1MCyt is determined as 8.41 ± 0.02 eV. Compared to cytosine, methyl substitution at N1 lowers the adiabatic ionization energy by ≥0.32 eV and leads to a much higher density of vibronic bands in the S0 → S1 spectrum. The effect of methylation on the radiationless decay to S0 and ISC to T1 is small, as shown by the similar break-off of the spectrum and the similar computed mechanisms.
Manbeck, Gerald F.; Fujita, Etsuko; Concepcion, Javier J.
2016-08-18
Proton-coupled electron-transfer (PCET) reactions were studied in acetonitrile for a Photosystem II (PSII) inspired [Ru(bpy) 2(phen-imidazole-Ph(OH)( tBu) 2)] 2+, in which Ru(III) generated by a flash-quench sequence oxidizes the appended phenol and the proton is transferred to the hydrogen bonded imidazole base. In contrast to related systems, the donor and acceptor are strongly coupled, as indicated by the shift in the Ru III/IIcouple upon phenol oxidation, and intramolecular oxidation of the phenol by Ru(III) is energetically favorable by both stepwise or concerted pathways. The phenol oxidation occurs via a stepwise ET-PT mechanism with k ET = 2.7 × 10 7more » s ₋1 and a kinetic isotope effect (KIE) of 0.99 ± 0.03. The electron transfer reaction was characterized as adiabatic with λ DA = 1.16 eV and 280 < H DA < 540 cm ₋1 consistent with strong electronic coupling and slow solvent dynamics. Reduction of the phenoxyl radical by the quencher radical was examined as the analogue of the redox reaction between the PSII tyrosyl radical and the oxygen evolving complex (OEC). In our PSII-inspired complex, the recombination reaction activation energy is < 2 kcal mol ₋1. In conclusion, the reaction is nonadiabatic (V PCET ~ 22 cm ₋1 (H) and 49 cm ₋1 (D)), concerted, and exhibits an unexpected inverse KIE of 0.55 that is attributed to greater overlap of the reactant vibronic ground state with the OD vibronic states of the proton acceptor due to the smaller quantum spacing of the deuterium vibrational levels.« less
NASA Astrophysics Data System (ADS)
Balakin, M.; Gulyaev, A.; Kazaryan, A.; Yarovoy, O.
2018-04-01
We study influence of time delay in coupling on the dynamics of two coupled multimode optoelectronic oscillators. We reveal the structure of main synchronization region on the parameter plane and main bifurcations leading to synchronization and multistability formation. The dynamics of the system is studied in a wide range of values of control parameters.
NASA Technical Reports Server (NTRS)
Simons, Rainee N. (Inventor); Wintucky, Edwin G. (Inventor)
2016-01-01
A multimode directional coupler is provided. In some embodiments, the multimode directional coupler is configured to receive a primary signal and a secondary signal at a first port of a primary waveguide. The primary signal is configured to propagate through the primary waveguide and be outputted at a second port of the primary waveguide. The multimode directional coupler also includes a secondary waveguide configured to couple the secondary signal from the primary waveguide with no coupling of the primary signal into the secondary waveguide. The secondary signal is configured to propagate through the secondary waveguide and be outputted from a port of the secondary waveguide.
NASA Astrophysics Data System (ADS)
Grobnic, Dan; Mihailov, Stephen J.; Ding, H.; Bilodeau, F.; Smelser, Christopher W.
2005-05-01
Multimode sapphire fiber Bragg gratings (SFBG) made with an IR femtosecond laser and a phase mask were probed using tapered single mode fibers of different taper diameters producing single and low order mode reflection/transmission responses. A configuration made of an input single mode tapered fiber and multimode silica fiber used for output coupling was also tested and has delivered a filtered multimode transmission spectrum. The tapered coupling improved the spectral resolution of the SFBG as compared to its multimode responses previously reported. Such improvements facilitate the utilization of the SFBG as a high temperature sensor. Wavelength shifts of the single mode response were monitored as a function of temperature up to 1500 °C and were consistent with the measurement obtained from the multimode response published previously.
Iron monocyanide (FeCN): Spin-orbit and vibronic interactions in low-lying electronic states
NASA Astrophysics Data System (ADS)
Jerosimić, Stanka V.; Milovanović, Milan Z.
2018-04-01
The spin-orbit eigenvalues of low-energy quartet and sextet spatially degenerate electronic states of FeCN are reported, together with the combined effect of vibronic and spin-orbit interaction in the lowest-lying 14Δ and 16Δ states of FeCN, by using perturbational and variational method. Spin-orbit constants (ASO) have been calculated in the basis of: (a) two components of each degenerate state, (b) four components of 14Δ and 14Π (16Δ and 16Π) states, and (c) ten components of 16Δ, 16Π, 16Σ+, 14Δ, 14Π, and 14Σ+ states. The present calculations predict the values of ASO= -77 cm-1 for 16Δ and ASO= -108 cm-1 for 14Δ state in the lowest-energy spin-orbit manifolds of each state. The major perturbing state for the 14Δ state is the 14Π state (16Π for the sextet 16Δ). As expected, based on extremely small splitting and shallowness of the bending potential energy curves for the lowest-lying 4,6Δ states, the present study indicate that the vibronic coupling does not create significant splitting of the bending levels, but the influence of anharmonicity in the bending mode is more pronounced. However, the spin-orbit fine structure dominantly influences the spectra of this species.
Angle selective fiber coupler.
Barnoski, M K; Morrison, R J
1976-01-01
Angle selective input coupling through the side of a slightly tapered section of Corning highly multimode fiber has been experimentally demonstrated for the first time. This coupling technique allows the possibility of fabricating bidirectional (duplex) couplers for systems employing single strands of multimode, low loss fiber.
NASA Astrophysics Data System (ADS)
Peters, William K.; Tiwari, Vivek; Jonas, David M.
2017-11-01
The nonadiabatic states and dynamics are investigated for a linear vibronic coupling Hamiltonian with a static electronic splitting and weak off-diagonal Jahn-Teller coupling through a single vibration with a vibrational-electronic resonance. With a transformation of the electronic basis, this Hamiltonian is also applicable to the anti-correlated vibration in a symmetric homodimer with marginally strong constant off-diagonal coupling, where the non-adiabatic states and dynamics model electronic excitation energy transfer or self-exchange electron transfer. For parameters modeling a free-base naphthalocyanine, the nonadiabatic couplings are deeply quantum mechanical and depend on wavepacket width; scalar couplings are as important as the derivative couplings that are usually interpreted to depend on vibrational velocity in semiclassical curve crossing or surface hopping theories. A colored visualization scheme that fully characterizes the non-adiabatic states using the exact factorization is developed. The nonadiabatic states in this nested funnel have nodeless vibrational factors with strongly avoided zeroes in their vibrational probability densities. Vibronic dynamics are visualized through the vibrational coordinate dependent density of the time-dependent dipole moment in free induction decay. Vibrational motion is amplified by the nonadiabatic couplings, with asymmetric and anisotropic motions that depend upon the excitation polarization in the molecular frame and can be reversed by a change in polarization. This generates a vibrational quantum beat anisotropy in excess of 2/5. The amplitude of vibrational motion can be larger than that on the uncoupled potentials, and the electronic population transfer is maximized within one vibrational period. Most of these dynamics are missed by the adiabatic approximation, and some electronic and vibrational motions are completely suppressed by the Condon approximation of a coordinate-independent transition dipole between adiabatic states. For all initial conditions investigated, the initial nonadiabatic electronic motion is driven towards the lower adiabatic state, and criteria for this directed motion are discussed.
Peters, William K; Tiwari, Vivek; Jonas, David M
2017-11-21
The nonadiabatic states and dynamics are investigated for a linear vibronic coupling Hamiltonian with a static electronic splitting and weak off-diagonal Jahn-Teller coupling through a single vibration with a vibrational-electronic resonance. With a transformation of the electronic basis, this Hamiltonian is also applicable to the anti-correlated vibration in a symmetric homodimer with marginally strong constant off-diagonal coupling, where the non-adiabatic states and dynamics model electronic excitation energy transfer or self-exchange electron transfer. For parameters modeling a free-base naphthalocyanine, the nonadiabatic couplings are deeply quantum mechanical and depend on wavepacket width; scalar couplings are as important as the derivative couplings that are usually interpreted to depend on vibrational velocity in semiclassical curve crossing or surface hopping theories. A colored visualization scheme that fully characterizes the non-adiabatic states using the exact factorization is developed. The nonadiabatic states in this nested funnel have nodeless vibrational factors with strongly avoided zeroes in their vibrational probability densities. Vibronic dynamics are visualized through the vibrational coordinate dependent density of the time-dependent dipole moment in free induction decay. Vibrational motion is amplified by the nonadiabatic couplings, with asymmetric and anisotropic motions that depend upon the excitation polarization in the molecular frame and can be reversed by a change in polarization. This generates a vibrational quantum beat anisotropy in excess of 2/5. The amplitude of vibrational motion can be larger than that on the uncoupled potentials, and the electronic population transfer is maximized within one vibrational period. Most of these dynamics are missed by the adiabatic approximation, and some electronic and vibrational motions are completely suppressed by the Condon approximation of a coordinate-independent transition dipole between adiabatic states. For all initial conditions investigated, the initial nonadiabatic electronic motion is driven towards the lower adiabatic state, and criteria for this directed motion are discussed.
NASA Astrophysics Data System (ADS)
Bosman, Sal J.; Gely, Mario F.; Singh, Vibhor; Bruno, Alessandro; Bothner, Daniel; Steele, Gary A.
In circuit QED, multi-mode extensions of the quantum Rabi model suffer from divergence problems. Here, we spectroscopically study multi-mode ultra-strong coupling using a transmon circuit architecture, which provides no clear guidelines on how many modes play a role in the dynamics of the system. As our transmon qubit, we employ a suspended island above the voltage anti-node of a λ / 4 coplanar microwave resonator, thereby realising a circuit where 88% of the qubit capacitance is formed by a vacuum-gap capacitor with the center conductor of the resonator. We measure vacuum Rabi splitting over multiple modes up to 2 GHz, reaching coupling ratios of g / ω = 0 . 18 , well within the ultra-strong coupling regime. We observe a qubit-mediated mode coupling, measurable up to the fifth mode at 38 GHz. Using a novel analytical quantum circuit model of this architecture, which includes all modes without introducing divergencies, we are able to fit the full spectrum and extract a vacuum fluctuations induced Bloch-Siegert shift of up to 62 MHz. This circuit architecture expands the versatility of the transmon technology platform and opens many possibilities in multi-mode physics in the ultra-strong coupling regime.
Fiber optic laser-induced breakdown spectroscopy sensor for molten material analysis
Zhang, Hansheng; Rai, Awadesh K.; Singh, Jagdish P.; Yueh, Fang-Yu
2004-07-13
A fiber optic laser-induced breakdown spectroscopy (LIBS) sensor, including a laser light source, a harmonic separator for directing the laser light, a dichroic mirror for reflecting the laser light, a coupling lens for coupling the laser light at an input of a multimode optical fiber, a connector for coupling the laser light from an output of the multimode optical fiber to an input of a high temperature holder, such as a holder made of stainless steel, and a detector portion for receiving emission signal and analyzing LIBS intensities. In one variation, the multimode optical fiber has silica core and silica cladding. The holder includes optical lenses for collimating and focusing the laser light in a molten alloy to produce a plasma, and for collecting and transmitting an emission signal to the multimode optical fiber.
Computational Spectroscopy of Polycyclic Aromatic Hydrocarbons In Support of Laboratory Astrophysics
NASA Technical Reports Server (NTRS)
Tan, Xiaofeng; Salama, Farid
2006-01-01
Polycyclic aromatic hydrocarbons (PAHs) are strong candidates for the molecular carriers of the unidentified infrared bands (UIR) and the diffuse interstellar bands (DIBs). In order to test the PAH hypothesis, we have systematically measured the vibronic spectra of a number of jet-cooled neutral and ionized PAHs in the near ultraviolet (UV) to visible spectral ranges using the cavity ring-down spectroscopy. To support this experimental effort, we have carried out theoretical studies of the spectra obtained in our measurements. Ab initio and (time-dependent) density.functiona1 theory calculations are performed to obtain the geometries, energetics, vibrational frequencies, transition dipole moments, and normal coordinates of these PAH molecules. Franck-Condon (FC) calculations and/or vibronic calculations are then performed using the calculated normal coordinates and vibrational frequencies to simulate the vibronic spectra. It is found that vibronic interactions in these conjugated pi electron systems are often strong enough to cause significant deviations from the Born-Oppenheimer (BO) approximation. For vibronic transitions that are well described by the BO approximation, the vibronic band profiles are simulated by calculating the rotational structure of the vibronic transitions. Vibronic oscillator strength factors are calculated in the frame of the FC approximation from the electronic transition dipole moments and the FC factors. This computational effort together with our experimental measurements provides, for the first time, powerful tools for comparison with space-based data and, hence, a powerful approach to understand the spectroscopy of interstellar PAH analogs and the nature of the UIR and DIBs.
Cavity Quantum Acoustic Device in the Multimode Strong Coupling Regime
NASA Astrophysics Data System (ADS)
Moores, Bradley A.; Sletten, Lucas R.; Viennot, Jeremie J.; Lehnert, K. W.
2018-06-01
We demonstrate an acoustical analog of a circuit quantum electrodynamics system that leverages acoustic properties to enable strong multimode coupling in the dispersive regime while suppressing spontaneous emission to unconfined modes. Specifically, we fabricate and characterize a device that comprises a flux tunable transmon coupled to a 300 μ m long surface acoustic wave resonator. For some modes, the qubit-cavity coupling reaches 6.5 MHz, exceeding the cavity loss rate (200 kHz), qubit linewidth (1.1 MHz), and the cavity free spectral range (4.8 MHz), placing the device in both the strong coupling and strong multimode regimes. With the qubit detuned from the confined modes of the cavity, we observe that the qubit linewidth strongly depends on its frequency, as expected for spontaneous emission of phonons, and we identify operating frequencies where this emission rate is suppressed.
The Phenalenyl Free Radical - a Jahn-Teller D3H PAH
NASA Astrophysics Data System (ADS)
O'Connor, G. D.; Troy, T. P.; Roberts, D. A.; Chalyavi, N.; Fückel, B.; Crossley, M. J.; Nauta, K.; Schmidt, T. W.; Stanton, J. F.
2012-06-01
After benzene and naphthalene, the smallest polycyclic aromatic hydrocarbon bearing six-membered rings is the threefold-symmetric phenalenyl radical. Despite the fact that it is so fundamental, its electronic spectroscopy has not been rigorously scrutinized, in spite of growing interest in graphene fragments for molecular electronic applications. Here we used complementary laser spectroscopic techniques to probe the jet-cooled phenalenyl radical in vacuo. Its spectrum reveals the interplay between four electronic states that exhibit Jahn-Teller and pseudo-Jahn-Teller (Herzberg-Teller) vibronic coupling. The coupling mechanism has been elucidated by the application of various ab initio quantum-chemical techniques.
NASA Astrophysics Data System (ADS)
Honarvar, Hossein; Hussein, Mahmoud I.
2018-05-01
The thermal conductivity of a freestanding single-crystal silicon membrane may be reduced significantly by attaching nanoscale pillars on one or both surfaces. Atomic resonances of the nanopillars form vibrons that intrinsically couple with the base membrane phonons causing mode hybridization and flattening at each coupling location in the phonon band structure. This in turn causes group velocity reductions of existing phonons, in addition to introducing new modes that get excited but are localized and do not transport energy. The nanopillars also reduce the phonon lifetimes at and around the hybridization zones. These three effects, which in principle may be tuned to take place across silicon's full spectrum, lead to a lowering of the in-plane thermal conductivity in the base membrane. Using equilibrium molecular dynamics simulations, and utilizing the concept of vibrons compensation, we report a staggering two orders of magnitude reduction in the thermal conductivity at room temperature by this mechanism. Specifically, a reduction of a factor of 130 is demonstrated for a roughly 10-nm-thick pillared membrane compared to a corresponding unpillared membrane. This amounts to a record reduction of a factor of 481 compared to bulk crystalline silicon and nearly a factor of 2 compared to bulk amorphous silicon. These results are obtained while providing a path for preserving performance with upscaling.
Molecular electronics: some views on transport junctions and beyond.
Joachim, Christian; Ratner, Mark A
2005-06-21
The field of molecular electronics comprises a fundamental set of issues concerning the electronic response of molecules as parts of a mesoscopic structure and a technology-facing area of science. We will overview some important aspects of these subfields. The most advanced ideas in the field involve the use of molecules as individual logic or memory units and are broadly based on using the quantum state space of the molecule. Current work in molecular electronics usually addresses molecular junction transport, where the molecule acts as a barrier for incoming electrons: This is the fundamental Landauer idea of "conduction as scattering" generalized to molecular junction structures. Another point of view in terms of superexchange as a guiding mechanism for coherent electron transfer through the molecular bridge is discussed. Molecules generally exhibit relatively strong vibronic coupling. The last section of this overview focuses on vibronic effects, including inelastic electron tunneling spectroscopy, hysteresis in junction charge transport, and negative differential resistance in molecular transport junctions.
Molecular electronics: Some views on transport junctions and beyond
Joachim, Christian; Ratner, Mark A.
2005-01-01
The field of molecular electronics comprises a fundamental set of issues concerning the electronic response of molecules as parts of a mesoscopic structure and a technology-facing area of science. We will overview some important aspects of these subfields. The most advanced ideas in the field involve the use of molecules as individual logic or memory units and are broadly based on using the quantum state space of the molecule. Current work in molecular electronics usually addresses molecular junction transport, where the molecule acts as a barrier for incoming electrons: This is the fundamental Landauer idea of “conduction as scattering” generalized to molecular junction structures. Another point of view in terms of superexchange as a guiding mechanism for coherent electron transfer through the molecular bridge is discussed. Molecules generally exhibit relatively strong vibronic coupling. The last section of this overview focuses on vibronic effects, including inelastic electron tunneling spectroscopy, hysteresis in junction charge transport, and negative differential resistance in molecular transport junctions. PMID:15956192
Bai, Shuming; Song, Kai; Shi, Qiang
2015-05-21
Observations of oscillatory features in the 2D spectra of several photosynthetic complexes have led to diverged opinions on their origins, including electronic coherence, vibrational coherence, and vibronic coherence. In this work, effects of these different types of quantum coherence on ultrafast pump-probe polarization anisotropy are investigated and distinguished. We first simulate the isotropic pump-probe signal and anisotropy decay of the Fenna-Matthews-Olson (FMO) complex using a model with only electronic coherence at low temperature and obtain the same coherence time as in the previous experiment. Then, three model dimer systems with different prespecified quantum coherence are simulated, and the results show that their different spectral characteristics can be used to determine the type of coherence during the spectral process. Finally, we simulate model systems with different electronic-vibrational couplings and reveal the condition in which long time vibronic coherence can be observed in systems like the FMO complex.
Cavity Quantum Acoustic Device in the Multimode Strong Coupling Regime.
Moores, Bradley A; Sletten, Lucas R; Viennot, Jeremie J; Lehnert, K W
2018-06-01
We demonstrate an acoustical analog of a circuit quantum electrodynamics system that leverages acoustic properties to enable strong multimode coupling in the dispersive regime while suppressing spontaneous emission to unconfined modes. Specifically, we fabricate and characterize a device that comprises a flux tunable transmon coupled to a 300 μm long surface acoustic wave resonator. For some modes, the qubit-cavity coupling reaches 6.5 MHz, exceeding the cavity loss rate (200 kHz), qubit linewidth (1.1 MHz), and the cavity free spectral range (4.8 MHz), placing the device in both the strong coupling and strong multimode regimes. With the qubit detuned from the confined modes of the cavity, we observe that the qubit linewidth strongly depends on its frequency, as expected for spontaneous emission of phonons, and we identify operating frequencies where this emission rate is suppressed.
NASA Astrophysics Data System (ADS)
Pishtshev, A.; Kristoffel, N.
2017-05-01
We outline our novel results relating to the physics of the electron-TO-phonon (el-TO-ph) interaction in a polar crystal. We explained why the el-TO-ph interaction becomes effectively strong in a ferroelectric, and showed how the electron density redistribution establishes favorable conditions for soft-behavior of the long-wavelength branch of the active TO vibration. In the context of the vibronic theory it has been demonstrated that at the macroscopic level the interaction of electrons with the polar zone-centre TO phonons can be associated with the internal long-range dipole forces. Also we elucidated a methodological issue of how local field effects are incorporated within the vibronic theory. These result provided not only substantial support for the vibronic mechanism of ferroelectricity but also presented direct evidence of equivalence between vibronic and the other lattice dynamics models. The corresponding comparison allowed us to introduce the original parametrization for constants of the vibronic interaction in terms of key material constants. The applicability of the suggested formula has been tested for a wide class of polar materials.
Mid-infrared supercontinuum generation in multimode step index chalcogenide fiber
NASA Astrophysics Data System (ADS)
Ben Khalifa, Ameni; Ben Salem, Amine; Cherif, Rim; Zghal, Mourad
2016-09-01
In this paper, we propose a design of a high numerical aperture multimode hybrid step-index fiber for mid-infrared (mid- IR) supercontinuum generation (SCG) where two chalcogenide glass compositions As40Se60 and Ge10As23.4Se66.6 for the core and the cladding are selected, respectively. Aiming to get accurate modeling of the SCG by the fundamental mode, we solve the multimode generalized nonlinear Schrödinger equations and demonstrate nonlinear coupling and energy transfer between high order modes. The proposed study points out the impact of nonlinear mode coupling that should be taken into account in order to successfully predict the mid-infrared supercontinuum generation in highly nonlinear multimode fibers.
NASA Astrophysics Data System (ADS)
Filipe Kuhne, Jean; Rocha, Ana Maria; de Oliveira, Valmir; José Kalinowski, Hypolito; Canute Kamikawachi, Ricardo
2018-02-01
In this work is reported the experimental and numerical results of the refractive index response of etched fibre Bragg gratings written in a graded index multimode fibre. The responses of the modes coupled by the grating inscribed in a multimode fibre are compared with the mode coupled by a grating inscribed in single mode fibre. The results of this study show that the refractive index sensitivity and the dynamical range of etched fibre Bragg gratings written in multimode fibres are higher than the ones verified in single-mode fibres. The determination of oil-biodiesel blend concentrations are also compared as an example of practical applications. It is shown that a greater core diameter of the multimode fibre enables the Bragg gratings to exhibit enhanced sensitivity without requiring further fibre diameter reduction.
Widely tunable 1.94-μm Tm:BaY2F8 laser
NASA Astrophysics Data System (ADS)
Galzerano, Gianluca; Cornacchia, Francesco; Parisi, Daniela; Toncelli, Alessandra; Tonelli, Mauro; Laporta, Paolo
2005-04-01
A novel BaY2F8 crystal doped with thulium ions is grown and extensively investigated. Owing to the large number of vibronic levels and to a favorable electron-phonon coupling, extremely wide absorption and emission bands around 1.9 μm are observed. A room-temperature Tm:BaY2F8 laser tunable over a 210-nm interval, from 1849 to 2059 nm, is demonstrated.
Feedforward Equalizers for MDM-WDM in Multimode Fiber Interconnects
NASA Astrophysics Data System (ADS)
Masunda, Tendai; Amphawan, Angela
2018-04-01
In this paper, we present new tap configurations of a feedforward equalizer to mitigate mode coupling in a 60-Gbps 18-channel mode-wavelength division multiplexing system in a 2.5-km-long multimode fiber. The performance of the equalization is measured through analyses on eye diagrams, power coupling coefficients and bit-error rates.
NASA Astrophysics Data System (ADS)
Lossouarn, B.; Deü, J.-F.; Aucejo, M.; Cunefare, K. A.
2016-11-01
Multimodal damping can be achieved by coupling a mechanical structure to an electrical network exhibiting similar modal properties. Focusing on a plate, a new topology for such an electrical analogue is found from a finite difference approximation of the Kirchhoff-Love theory and the use of the direct electromechanical analogy. Discrete models based on element dynamic stiffness matrices are proposed to simulate square plate unit cells coupled to their electrical analogues through two-dimensional piezoelectric transducers. A setup made of a clamped plate covered with an array of piezoelectric patches is built in order to validate the control strategy and the numerical models. The analogous electrical network is implemented with passive components as inductors, transformers and the inherent capacitance of the piezoelectric patches. The effect of the piezoelectric coupling on the dynamics of the clamped plate is significant as it creates the equivalent of a multimodal tuned mass damping. An adequate tuning of the network then yields a broadband vibration reduction. In the end, the use of an analogous electrical network appears as an efficient solution for the multimodal control of a plate.
Fujihashi, Yuta; Fleming, Graham R.; Ishizaki, Akihito
2015-09-07
In 2D electronic spectroscopy studies, long-lived quantum beats have recently been observed in photosynthetic systems, and several theoretical studies have suggested that the beats are produced by quantum mechanically mixed electronic and vibrational states. Concerning the electronic-vibrational quantum mixtures, the impact of protein-induced fluctuations was examined by calculating the 2D electronic spectra of a weakly coupled dimer with the Franck-Condon active vibrational modes in the resonant condition. This analysis demonstrated that quantum mixtures of the vibronic resonance are rather robust under the influence of the fluctuations at cryogenic temperatures, whereas the mixtures are eradicated by the fluctuations at physiological temperatures.more » However, this conclusion cannot be generalized because the magnitude of the coupling inducing the quantum mixtures is proportional to the inter-pigment electronic coupling. In this paper, we explore the impact of the fluctuations on electronic-vibrational quantum mixtures in a strongly coupled dimer with an off-resonant vibrational mode. Toward this end, we calculate energy transfer dynamics and 2D electronic spectra of a model dimer that corresponds to the most strongly coupled bacteriochlorophyll molecules in the Fenna-Matthews-Olson complex in a numerically accurate manner. The quantum mixtures are found to be robust under the exposure of protein-induced fluctuations at cryogenic temperatures, irrespective of the resonance. At 300 K, however, the quantum mixing is disturbed more strongly by the fluctuations, and therefore, the beats in the 2D spectra become obscure even in a strongly coupled dimer with a resonant vibrational mode. Further, the overall behaviors of the energy transfer dynamics are demonstrated to be dominated by the environment and coupling between the 0 0 vibronic transitions as long as the Huang-Rhys factor of the vibrational mode is small. Finally, the electronic-vibrational quantum mixtures do not necessarily play a significant role in electronic energy transfer dynamics despite contributing to the enhancement of long-lived quantum beating in the 2D spectra.« less
Calibration for single multi-mode fiber digital scanning microscopy imaging system
NASA Astrophysics Data System (ADS)
Yin, Zhe; Liu, Guodong; Liu, Bingguo; Gan, Yu; Zhuang, Zhitao; Chen, Fengdong
2015-11-01
Single multimode fiber (MMF) digital scanning imaging system is a development tendency of modern endoscope. We concentrate on the calibration method of the imaging system. Calibration method comprises two processes, forming scanning focused spots and calibrating the couple factors varied with positions. Adaptive parallel coordinate algorithm (APC) is adopted to form the focused spots at the multimode fiber (MMF) output. Compare with other algorithm, APC contains many merits, i.e. rapid speed, small amount calculations and no iterations. The ratio of the optics power captured by MMF to the intensity of the focused spots is called couple factor. We setup the calibration experimental system to form the scanning focused spots and calculate the couple factors for different object positions. The experimental result the couple factor is higher in the center than the edge.
The best of both Reps—Diabatized Gaussians on adiabatic surfaces
NASA Astrophysics Data System (ADS)
Meek, Garrett A.; Levine, Benjamin G.
2016-11-01
When simulating nonadiabatic molecular dynamics, choosing an electronic representation requires consideration of well-known trade-offs. The uniqueness and spatially local couplings of the adiabatic representation come at the expense of an electronic wave function that changes discontinuously with nuclear motion and associated singularities in the nonadiabatic coupling matrix elements. The quasi-diabatic representation offers a smoothly varying wave function and finite couplings, but identification of a globally well-behaved quasi-diabatic representation is a system-specific challenge. In this work, we introduce the diabatized Gaussians on adiabatic surfaces (DGAS) approximation, a variant of the ab initio multiple spawning (AIMS) method that preserves the advantages of both electronic representations while avoiding their respective pitfalls. The DGAS wave function is expanded in a basis of vibronic functions that are continuous in both electronic and nuclear coordinates, but potentially discontinuous in time. Because the time-dependent Schrödinger equation contains only first-order derivatives with respect to time, singularities in the second-derivative nonadiabatic coupling terms (i.e., diagonal Born-Oppenheimer correction; DBOC) at conical intersections are rigorously absent, though singular time-derivative couplings remain. Interpolation of the electronic wave function allows the accurate prediction of population transfer probabilities even in the presence of the remaining singularities. We compare DGAS calculations of the dynamics of photoexcited ethene to AIMS calculations performed in the adiabatic representation, including the DBOC. The 28 fs excited state lifetime observed in DGAS simulations is considerably shorter than the 50 fs lifetime observed in the adiabatic simulations. The slower decay in the adiabatic representation is attributable to the large, repulsive DBOC in the neighborhood of conical intersections. These repulsive DBOC terms are artifacts of the discontinuities in the individual adiabatic vibronic basis functions and therefore cannot reflect the behavior of the exact molecular wave function, which must be continuous.
Thyrhaug, Erling; Lincoln, Craig N; Branchi, Federico; Cerullo, Giulio; Perlík, Václav; Šanda, František; Lokstein, Heiko; Hauer, Jürgen
2018-03-01
The peripheral light-harvesting antenna complex (LH2) of purple photosynthetic bacteria is an ideal testing ground for models of structure-function relationships due to its well-determined molecular structure and ultrafast energy deactivation. It has been the target for numerous studies in both theory and ultrafast spectroscopy; nevertheless, certain aspects of the convoluted relaxation network of LH2 lack a satisfactory explanation by conventional theories. For example, the initial carotenoid-to-bacteriochlorophyll energy transfer step necessary on visible light excitation was long considered to follow the Förster mechanism, even though transfer times as short as 40 femtoseconds (fs) have been observed. Such transfer times are hard to accommodate by Förster theory, as the moderate coupling strengths found in LH2 suggest much slower transfer within this framework. In this study, we investigate LH2 from Phaeospirillum (Ph.) molischianum in two types of transient absorption experiments-with narrowband pump and white-light probe resulting in 100 fs time resolution, and with degenerate broadband 10 fs pump and probe pulses. With regard to the split Q x band in this system, we show that vibronically mediated transfer explains both the ultrafast carotenoid-to-B850 transfer, and the almost complete lack of transfer to B800. These results are beyond Förster theory, which predicts an almost equal partition between the two channels.
Vibron Solitons and Soliton-Induced Infrared Spectra of Crystalline Acetanilide
NASA Astrophysics Data System (ADS)
Takeno, S.
1986-01-01
Red-shifted infrared spectra at low temperatures of amide I (C=O stretching) vibrations of crystalline acetanilide measured by Careri et al. are shown to be due to vibron solitons, which are nonlinearity-induced localized modes of vibrons arising from their nonlinear interactions with optic-type phonons. A nonlinear eigenvalue equation giving the eigenfrequency of stationary solitons is solved approximately by introducing lattice Green's functions, and the obtained result is in good agreement with the experimental result. Inclusion of interactions with acoustic phonons yields the Debye-Waller factor in the zero-phonon line spectrum of vibron solitons, in a manner analogous to the case of impurity-induced localized harmonic phonon modes in alkali halides.
NASA Astrophysics Data System (ADS)
Grobnic, D.; Mihailov, S. J.; Ding, H.; Bilodeau, F.; Smelser, C. W.
2006-05-01
Multimode sapphire fibre Bragg gratings (SFBG) made with an ultrafast Ti:sapphire 800 nm laser and a phase mask were probed using a tapered single mode fibre of different taper diameters to produce single and low order mode reflection/transmission responses. A configuration made of an input single mode tapered fibre and multimode silica fibre used for output coupling was also tested and has delivered a filtered multimode transmission spectrum. The tapered coupling improved the spectral resolution of the SFBG. Such improvements facilitate the utilization of the SFBG as a high temperature sensor. Wavelength shifts of the single mode response were monitored as a function of temperature up to 1500 °C with no detectable degradation in the grating strength or hysteresis in the Bragg resonance.
NASA Technical Reports Server (NTRS)
Rawat, Banmali
2000-01-01
The multimode fiber bandwidth enhancement techniques to meet the Gigabit Ethernet standards for local area networks (LAN) of the Kennedy Space Center and other NASA centers have been discussed. Connector with lateral offset coupling between single mode launch fiber cable and the multimode fiber cable has been thoroughly investigated. An optimization of connector position offset for 8 km long optical fiber link at 1300 nm with 9 micrometer diameter single mode fiber (SMF) and 50 micrometer diameter multimode fiber (MMF) coupling has been obtained. The optimization is done in terms of bandwidth, eye-pattern, and bit pattern measurements. It is simpler, is a highly practical approach and is cheaper as no additional cost to manufacture the offset type of connectors is involved.
Nonlinear dynamics of magnetically coupled beams for multi-modal vibration energy harvesting
NASA Astrophysics Data System (ADS)
Abed, I.; Kacem, N.; Bouhaddi, N.; Bouazizi, M. L.
2016-04-01
We investigate the nonlinear dynamics of magnetically coupled beams for multi-modal vibration energy harvesting. A multi-physics model for the proposed device is developed taking into account geometric and magnetic nonlinearities. The coupled nonlinear equations of motion are solved using the Galerkin discretization coupled with the harmonic balance method and the asymptotic numerical method. Several numerical simulations have been performed showing that the expected performances of the proposed vibration energy harvester are significantly promising with up to 130 % in term of bandwidth and up to 60 μWcm-3g-2 in term of normalized harvested power.
NASA Astrophysics Data System (ADS)
Gharaibeh, Mohammed; Clouthier, Dennis J.; Tarroni, Riccardo
2016-06-01
The electronic spectra of the HBBr and DBBr free radicals have been studied in depth. These species were prepared in a pulsed electric discharge jet using a precursor mixture of BBr3 vapor and H2 or D2 in high pressure argon. Transitions to the electronic excited state of the jet-cooled radicals were probed with laser-induced fluorescence and the ground state energy levels were measured from the single vibronic level emission spectra. HBBr has an extensive band system in the red which involves a linear-bent transition between the two Renner-Teller components of what would be a 2Π state at linearity. We have used high level ab initio theory to calculate potential energy surfaces for the bent 2A' ground state and the linear A˜ 2A″Π excited state and we have determined the ro-vibronic energy levels variationally, including spin orbit effects. The correspondence between the computed and experimentally observed transition frequencies, upper state level symmetries, and H and B isotope shifts was used to make reliable assignments. We have shown that the ground state barriers to linearity, which range from 10 000 cm-1 in HBF to 2700 cm-1 in BH2, are inversely related to the energy of the first excited 2Σ (2A') electronic state. This suggests that a vibronic coupling mechanism is responsible for the nonlinear equilibrium geometries of the ground states of the HBX free radicals.
Multimode fiber devices with single-mode performance
NASA Astrophysics Data System (ADS)
Leon-Saval, S. G.; Birks, T. A.; Bland-Hawthorn, J.; Englund, M.
2005-10-01
A taper transition can couple light between a multimode fiber and several single-mode fibers. If the number of single-mode fibers matches the number of spatial modes in the multimode fiber, the transition can have low loss in both directions. This enables the high performance of single-mode fiber devices to be attained in multimode fibers. We report an experimental proof of concept by using photonic crystal fiber techniques to make the transitions, demonstrating a multimode fiber filter with the transmission spectrum of a single-mode fiber grating.
Palii, Andrew; Tsukerblat, Boris
2016-10-25
In this article we consider two coupled tetrameric mixed-valence (MV) units accommodating electron pairs, which play the role of cells in molecular quantum cellular automata. It is supposed that the Coulombic interaction between instantly localized electrons within the cell markedly inhibits the transfer processes between the redox centers. Under this condition, as well as due to the vibronic localization of the electron pair, the cell can encode binary information, which is controlled by neighboring cells. We show that under certain conditions the two low-lying vibronic spin levels of the cell (ground and first excited states) can be regarded as originating from an effective spin-spin interaction. This is shown to depend on the internal parameters of the cell as well as on the induced polarization. Within this simplified two-level picture we evaluate the quantum entanglement in the system represented by the two electrons in the cell and show how the entanglement within the cell and concurrence can be controlled via polarization of the neighboring cells and temperature.
NASA Astrophysics Data System (ADS)
Yoon, Young Wook; Huh, Chang Soon; Lee, Sang Kuk
2012-06-01
We generated vibronically excited but jet-cooled benzyl-type radicals from corona discharge of precursor of mixed substituents using a technique of corona excited supersonic expansion coupled with a pinhole-type glass nozzle, from which the visible vibronic emission spectra were recorded with a long-path monochromator. The spectra exhibit the intensity variation of each species with discharging voltage, indicating the radical species generated in corona discharge is highly sensitive to excitation. From the analysis of the spectra, we found the Cl substituent is replaced in preference to the F substituent by the hydrogen atoms liberated from the dissociation of the C-H bond of the methyl group of the precursor, from which we proposed the possible mechanism for the elimination reaction of substituent in terms of the bond dissociation energy. Additionally, we obtained an accurate electronic energy in the D_1 → D_0 transition and the vibrational mode frequencies of newly detected benzyl-type radicals in the ground electronic state by comparison with those of ab initio calculations and the known spectroscopic data of precursors for the first time.
Electron–vibration coupling induced renormalization in the photoemission spectrum of diamondoids
Gali, Adam; Demján, Tamás; Vörös, Márton; ...
2016-04-22
The development of theories and methods devoted to the accurate calculation of the electronic quasi-particle states and levels of molecules, clusters and solids is of prime importance to interpret the experimental data. These quantum systems are often modelled by using the Born–Oppenheimer approximation where the coupling between the electrons and vibrational modes is not fully taken into account, and the electrons are treated as pure quasi-particles. Here, we show that in small diamond cages, called diamondoids, the electron–vibration coupling leads to the breakdown of the electron quasi-particle picture. More importantly, we demonstrate that the strong electron–vibration coupling is essential tomore » properly describe the overall lineshape of the experimental photoemission spectrum. This cannot be obtained by methods within Born–Oppenheimer approximation. Furthermore, we deduce a link between the vibronic states found by our many-body perturbation theory approach and the well-known Jahn–Teller effect.« less
Electron–vibration coupling induced renormalization in the photoemission spectrum of diamondoids
Gali, Adam; Demján, Tamás; Vörös, Márton; Thiering, Gergő; Cannuccia, Elena; Marini, Andrea
2016-01-01
The development of theories and methods devoted to the accurate calculation of the electronic quasi-particle states and levels of molecules, clusters and solids is of prime importance to interpret the experimental data. These quantum systems are often modelled by using the Born–Oppenheimer approximation where the coupling between the electrons and vibrational modes is not fully taken into account, and the electrons are treated as pure quasi-particles. Here, we show that in small diamond cages, called diamondoids, the electron–vibration coupling leads to the breakdown of the electron quasi-particle picture. More importantly, we demonstrate that the strong electron–vibration coupling is essential to properly describe the overall lineshape of the experimental photoemission spectrum. This cannot be obtained by methods within Born–Oppenheimer approximation. Moreover, we deduce a link between the vibronic states found by our many-body perturbation theory approach and the well-known Jahn–Teller effect. PMID:27103340
NASA Astrophysics Data System (ADS)
Zuehlsdorff, T. J.; Isborn, C. M.
2018-01-01
The correct treatment of vibronic effects is vital for the modeling of absorption spectra of many solvated dyes. Vibronic spectra for small dyes in solution can be easily computed within the Franck-Condon approximation using an implicit solvent model. However, implicit solvent models neglect specific solute-solvent interactions on the electronic excited state. On the other hand, a straightforward way to account for solute-solvent interactions and temperature-dependent broadening is by computing vertical excitation energies obtained from an ensemble of solute-solvent conformations. Ensemble approaches usually do not account for vibronic transitions and thus often produce spectral shapes in poor agreement with experiment. We address these shortcomings by combining zero-temperature vibronic fine structure with vertical excitations computed for a room-temperature ensemble of solute-solvent configurations. In this combined approach, all temperature-dependent broadening is treated classically through the sampling of configurations and quantum mechanical vibronic contributions are included as a zero-temperature correction to each vertical transition. In our calculation of the vertical excitations, significant regions of the solvent environment are treated fully quantum mechanically to account for solute-solvent polarization and charge-transfer. For the Franck-Condon calculations, a small amount of frozen explicit solvent is considered in order to capture solvent effects on the vibronic shape function. We test the proposed method by comparing calculated and experimental absorption spectra of Nile red and the green fluorescent protein chromophore in polar and non-polar solvents. For systems with strong solute-solvent interactions, the combined approach yields significant improvements over the ensemble approach. For systems with weak to moderate solute-solvent interactions, both the high-energy vibronic tail and the width of the spectra are in excellent agreement with experiments.
Vibronic transitions of trivalent Er and Ce in BaY2F8 single crystals
NASA Astrophysics Data System (ADS)
Baraldi, A.; Capelletti, R.; Mazzera, M.; Ponzoni, A.; Sani, E.; Tonelli, M.
2003-01-01
High resolution (0.02 cm(-1)) Fourier transform spectroscopy was applied in the 9-300 K and 100-24,000 cm(-1) ranges, respectively, to detect in Er3+ and Ce3+ doped Bay(2)F(8) single crystals (1) the narrow line spectra due to the intraconfigurational 4f-->4f transitions of the rare earths (RE) and (2) the possible vibronic tails accompanying the zero-phonon lines. The F-2(5/2) --> F-2(7/2) transition was monitored for the Ce3+-doping and the crystal field splitting of the initial and final manifold was determined. Weak vibronic spectra accompanying six among the nine investigated 4f-->4f transitions of Er3+ and the F-2(5/2) --> F-2(7/2) transition of Ce3+ were detected. The vibronic spectra amplitude was found to scale with the RE contents. On the basis of the IR- and Raman-active vibrational modes, either measured or quoted in the literature, most of the vibronic lines could be successfully assigned to the lattice modes. Violations of the selection rules were envisaged and discussed.
EPR/ENDOR and Theoretical Study of the Jahn-Teller-Active [HIPTN3N]MoVL Complexes (L = N-, NH).
Sharma, Ajay; Roemelt, Michael; Reithofer, Michael; Schrock, Richard R; Hoffman, Brian M; Neese, Frank
2017-06-19
The molybdenum trisamidoamine (TAA) complex [Mo] {[3,5-(2,4,6-i-Pr 3 C 6 H 2 ) 2 C 6 H 3 NCH 2 CH 2 N]Mo} carries out catalytic reduction of N 2 to ammonia (NH 3 ) by protons and electrons at room temperature. A key intermediate in the proposed [Mo] nitrogen reduction cycle is nitridomolybdenum(VI), [Mo(VI)]N. The addition of [e - /H + ] to [Mo(VI)]N to generate [Mo(V)]NH might, in principle, follow one of three possible pathways: direct proton-coupled electron transfer; H + first and then e - ; e - and then H + . In this study, the paramagnetic Mo(V) intermediate {[Mo]N} - and the [Mo]NH transfer product were generated by irradiating the diamagnetic [Mo]N and {[Mo]NH} + Mo(VI) complexes, respectively, with γ-rays at 77 K, and their electronic and geometric structures were characterized by electron paramagnetic resonance and electron nuclear double resonance spectroscopies, combined with quantum-chemical computations. In combination with previous X-ray studies, this creates the rare situation in which each one of the four possible states of [e - /H + ] delivery has been characterized. Because of the degeneracy of the electronic ground states of both {[Mo(V)]N} - and [Mo(V)]NH, only multireference-based methods such as the complete active-space self-consistent field (CASSCF) and related methods provide a qualitatively correct description of the electronic ground state and vibronic coupling. The molecular g values of {[Mo]N} - and [Mo]NH exhibit large deviations from the free-electron value g e . Their actual values reflect the relative strengths of vibronic and spin-orbit coupling. In the course of the computational treatment, the utility and limitations of a formal two-state model that describes this competition between couplings are illustrated, and the implications of our results for the chemical reactivity of these states are discussed.
Solvatochromism of 9,10-phenanthrenequinone: An electronic and resonance Raman spectroscopic study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ravi Kumar, Venkatraman; Rajkumar, Nagappan; Umapathy, Siva, E-mail: umapathy@ipc.iisc.ernet.in
2015-01-14
Solvent effects play a vital role in various chemical, physical, and biological processes. To gain a fundamental understanding of the solute-solvent interactions and their implications on the energy level re-ordering and structure, UV-VIS absorption, resonance Raman spectroscopic, and density functional theory calculation studies on 9,10-phenanthrenequinone (PQ) in different solvents of diverse solvent polarity has been carried out. The solvatochromic analysis of the absorption spectra of PQ in protic dipolar solvents suggests that the longest (1n-π{sup 1}*; S{sub 1} state) and the shorter (1π-π{sup 1}*; S{sub 2} state) wavelength band undergoes a hypsochromic and bathochromic shift due to intermolecular hydrogen bondmore » weakening and strengthening, respectively. It also indicates that hydrogen bonding plays a major role in the differential solvation of the S{sub 2} state relative to the ground state. Raman excitation profiles of PQ (400–1800 cm{sup −1}) in various solvents followed their corresponding absorption spectra therefore the enhancements on resonant excitation are from single-state rather than mixed states. The hyperchromism of the longer wavelength band is attributed to intensity borrowing from the nearby allowed electronic transition through vibronic coupling. Computational calculation with C{sub 2ν} symmetry constraint on the S{sub 2} state resulted in an imaginary frequency along the low-frequency out-of-plane torsional modes involving the C=O site and therefore, we hypothesize that this mode could be involved in the vibronic coupling.« less
Electronic Equalization of Multikilometer 10-Gb/s Multimode Fiber Links: Mode-Coupling Effects
NASA Astrophysics Data System (ADS)
Balemarthy, Kasyapa; Polley, Arup; Ralph, Stephen E.
2006-12-01
This paper investigates the ability of electronic equalization to compensate for modal dispersion in the presence of mode coupling in multimode fibers (MMFs) at 10 Gb/s. Using a new time-domain experimental method, mode coupling is quantified in MMF. These results, together with a comprehensive link model, allow to determine the impact of mode coupling on the performance of MMF. The equalizer performance on links from 300 m to 8 km is quantified with and without modal coupling. It is shown that the mode-coupling effects are influenced by the specific index profile and increase the equalizer penalty by as much as 1 dBo for 1-km links and 2.3 dBo for 2-km links when using a standard model of fiber profiles at 1310 nm.
Mode synthesizing atomic force microscopy and mode-synthesizing sensing
Passian, Ali; Thundat, Thomas George; Tetard, Laurene
2013-05-17
A method of analyzing a sample that includes applying a first set of energies at a first set of frequencies to a sample and applying, simultaneously with the applying the first set of energies, a second set of energies at a second set of frequencies, wherein the first set of energies and the second set of energies form a multi-mode coupling. The method further includes detecting an effect of the multi-mode coupling.
Mode-synthesizing atomic force microscopy and mode-synthesizing sensing
Passain, Ali; Thundat, Thomas George; Tetard, Laurene
2014-07-22
A method of analyzing a sample that includes applying a first set of energies at a first set of frequencies to a sample and applying, simultaneously with the applying the first set of energies, a second set of energies at a second set of frequencies, wherein the first set of energies and the second set of energies form a multi-mode coupling. The method further includes detecting an effect of the multi-mode coupling.
Blau, Samuel M.; Bennett, Doran I. G.; Kreisbeck, Christoph; Scholes, Gregory D.; Aspuru-Guzik, Alán
2018-01-01
The mechanisms controlling excitation energy transport (EET) in light-harvesting complexes remain controversial. Following the observation of long-lived beats in 2D electronic spectroscopy of PC645, vibronic coherence, the delocalization of excited states between pigments supported by a resonant vibration, has been proposed to enable direct excitation transport from the highest-energy to the lowest-energy pigments, bypassing a collection of intermediate states. Here, we instead show that for phycobiliprotein PC645 an incoherent vibronic transport mechanism is at play. We quantify the solvation dynamics of individual pigments using ab initio quantum mechanics/molecular mechanics (QM/MM) nuclear dynamics. Our atomistic spectral densities reproduce experimental observations ranging from absorption and fluorescence spectra to the timescales and selectivity of down-conversion observed in transient absorption measurements. We construct a general model for vibronic dimers and establish the parameter regimes of coherent and incoherent vibronic transport. We demonstrate that direct down-conversion in PC645 proceeds incoherently, enhanced by large reorganization energies and a broad collection of high-frequency vibrations. We suggest that a similar incoherent mechanism is appropriate across phycobiliproteins and represents a potential design principle for nanoscale control of EET. PMID:29588417
NASA Technical Reports Server (NTRS)
Patsilinakou, E.; Wiedmann, R. T.; Fotakis, C.; Grant, E. R.
1989-01-01
Ionization-detected UV multiphoton absorption spectroscopy of the excited states of N2O is presented, showing Rydberg structure within 20,000/cm of the first ionization threshold. Despite evidence for strong Rydberg-continuum coupling in the form of broadened bands and Fano line-shapes, the Rydberg structure persists, with atomic-like quantum defects and vibration structure well-matched with that of the ion. In the most clearly resolved spectrum, corresponding to the 3p(delta)1Pi state, Renner-Teller and Herzberg-Teller coupling of electronic and vibrational angular momentum are revealed. It is suggested that these mixings are properties of the N2O(+)Pi ion core.
Vibronic Origin for the Diffuse Band Spectrum
NASA Astrophysics Data System (ADS)
Duley, W. W.
1983-09-01
The two arguments outlined by Nuth and Donn (1983) against an interpretation of the diffuse band spectrum between 677 and 536 nm as vibronic systems associated with forbidden origins at 14321, 15153, and 15343 cm-1 (Duley, 1982) are controverted. It is concluded that the vibronic analysis presented by Duley, 1983 for the diffuse band spectrum is in keeping with current spectroscopic practice. The identification of a forbidden origin for 19 of these bands at 14321 cm-1 strongly suggests the involvement of Cr3+ ions in MgO solids in the production of these features.
NASA Astrophysics Data System (ADS)
Krupa, Katarzyna; Tonello, Alessandro; Barthélémy, Alain; Couderc, Vincent; Shalaby, Badr Mohamed; Bendahmane, Abdelkrim; Millot, Guy; Wabnitz, Stefan
2016-05-01
Spatiotemporal mode coupling in highly multimode physical systems permits new routes for exploring complex instabilities and forming coherent wave structures. We present here the first experimental demonstration of multiple geometric parametric instability sidebands, generated in the frequency domain through resonant space-time coupling, owing to the natural periodic spatial self-imaging of a multimode quasi-continuous-wave beam in a standard graded-index multimode fiber. The input beam was launched in the fiber by means of an amplified microchip laser emitting sub-ns pulses at 1064 nm. The experimentally observed frequency spacing among sidebands agrees well with analytical predictions and numerical simulations. The first-order peaks are located at the considerably large detuning of 123.5 THz from the pump. These results open the remarkable possibility to convert a near-infrared laser directly into a broad spectral range spanning visible and infrared wavelengths, by means of a single resonant parametric nonlinear effect occurring in the normal dispersion regime. As further evidence of our strong space-time coupling regime, we observed the striking effect that all of the different sideband peaks were carried by a well-defined and stable bell-shaped spatial profile.
Anharmonicity and hydrogen bonding in electrooptic sucrose crystal
NASA Astrophysics Data System (ADS)
Szostak, M. M.; Giermańska, J.
1990-03-01
The polarized absorption spectra of the sucrose crystal in the 5300 - 7300 cm -1 region have been measured. The assignments of all the eight OH stretching overtones are proposed and their mechanical anharmonicities are estimated. The discrepancies from the oriented gas model (OGM) in the observed relative band intensities, especially of the -CH vibrations, are assumed to be connected with vibronic couplings enhanced by the helical arrangement of molecules joined by hydrogen bondings. It seems that this kind of interactions might be important for the second harmonic generation (SHG) by the sucrose crystal.
Zak, Emil J; Tennyson, Jonathan
2017-09-07
A procedure for calculating ro-vibronic transition intensities for triatomic molecules within the Born-Oppenheimer approximation is reported. Ro-vibrational energy levels and wavefunctions are obtained with the DVR3D suite, which solves the nuclear motion problem with an exact kinetic energy operator. Absolute transition intensities are calculated both with the Franck-Condon approximation and with a full transition dipole moment surface. The theoretical scheme is tested on C̃ 1 B 2 ← X̃ 1 A 1 ro-vibronic transitions of SO 2 . Ab initio potential energy and dipole moment surfaces are generated for this purpose. The calculated ro-vibronic transition intensities and cross sections are compared with the available experimental and theoretical data.
MIMO signal progressing with RLSCMA algorithm for multi-mode multi-core optical transmission system
NASA Astrophysics Data System (ADS)
Bi, Yuan; Liu, Bo; Zhang, Li-jia; Xin, Xiang-jun; Zhang, Qi; Wang, Yong-jun; Tian, Qing-hua; Tian, Feng; Mao, Ya-ya
2018-01-01
In the process of transmitting signals of multi-mode multi-core fiber, there will be mode coupling between modes. The mode dispersion will also occur because each mode has different transmission speed in the link. Mode coupling and mode dispersion will cause damage to the useful signal in the transmission link, so the receiver needs to deal received signal with digital signal processing, and compensate the damage in the link. We first analyzes the influence of mode coupling and mode dispersion in the process of transmitting signals of multi-mode multi-core fiber, then presents the relationship between the coupling coefficient and dispersion coefficient. Then we carry out adaptive signal processing with MIMO equalizers based on recursive least squares constant modulus algorithm (RLSCMA). The MIMO equalization algorithm offers adaptive equalization taps according to the degree of crosstalk in cores or modes, which eliminates the interference among different modes and cores in space division multiplexing(SDM) transmission system. The simulation results show that the distorted signals are restored efficiently with fast convergence speed.
Directional multimode coupler for planar magnonics: Side-coupled magnetic stripes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadovnikov, A. V., E-mail: sadovnikovav@gmail.com; Nikitov, S. A.; Kotel'nikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Moscow 125009
We experimentally demonstrate spin waves coupling in two laterally adjacent magnetic stripes. By the means of Brillouin light scattering spectroscopy, we show that the coupling efficiency depends both on the magnonic waveguides' geometry and the characteristics of spin-wave modes. In particular, the lateral confinement of coupled yttrium-iron-garnet stripes enables the possibility of control over the spin-wave propagation characteristics. Numerical simulations (in time domain and frequency domain) reveal the nature of intermodal coupling between two magnonic stripes. The proposed topology of multimode magnonic coupler can be utilized as a building block for fabrication of integrated parallel functional and logic devices suchmore » as the frequency selective directional coupler or tunable splitter, enabling a number of potential applications for planar magnonics.« less
Ultrafast Narrow Band Modulation of VCSELs
NASA Technical Reports Server (NTRS)
Ning, Cun-Zheng; Biegel, Bryan A. (Technical Monitor)
2002-01-01
Multimode beating was greatly enhanced by taking output from part (e.g., half) of the output facet. Simpler sources of microwaves and millimeter waves of various frequencies were generated by varying the VCSEL diameter in a single multimode VCSEL our coupling of a few VCSELs. Breathing frequency in multi-mode operations affects modulation response and bandwidth. Optimizing RO frequency and mode beating frequency could potentially expand bandwidths suitable for wide band digital communications.
Superradiant phase transition with graphene embedded in one dimensional optical cavity
NASA Astrophysics Data System (ADS)
Li, Benliang; Liu, Tao; Hewak, Daniel W.; Wang, Qi Jie
2018-01-01
We theoretically investigate the cavity QED of graphene embedded in an optical cavity under perpendicular magnetic field. We consider the coupling of cyclotron transition and a multimode cavity described by a multimode Dicke model. This model exhibits a superradiant quantum phase transition, which we describe exactly in an effective Hamiltonian approach. The complete excitation spectrum in both the normal phase and superradiant phase regimes is given. In contrast to the single mode case, multimode coupling of cavity photon and cyclotron transition can greatly reduce the critical vacuum Rabi frequency required for quantum phase transition, and dramatically enhance the superradiant emission by fast modulating the Hamiltonian. Our work paves a way to experimental explorations of quantum phase transitions in solid state systems.
Importance of Vibronic Effects in the UV-Vis Spectrum of the 7,7,8,8-Tetracyanoquinodimethane Anion.
Tapavicza, Enrico; Furche, Filipp; Sundholm, Dage
2016-10-11
We present a computational method for simulating vibronic absorption spectra in the ultraviolet-visible (UV-vis) range and apply it to the 7,7,8,8-tetracyanoquinodimethane anion (TCNQ - ), which has been used as a ligand in black absorbers. Gaussian broadening of vertical electronic excitation energies of TCNQ - from linear-response time-dependent density functional theory produces only one band, which is qualitatively incorrect. Thus, the harmonic vibrational modes of the two lowest doublet states were computed, and the vibronic UV-vis spectrum was simulated using the displaced harmonic oscillator approximation, the frequency-shifted harmonic oscillator approximation, and the full Duschinsky formalism. An efficient real-time generating function method was implemented to avoid the exponential complexity of conventional Franck-Condon approaches to vibronic spectra. The obtained UV-vis spectra for TCNQ - agree well with experiment; the Duschinsky rotation is found to have only a minor effect on the spectrum. Born-Oppenheimer molecular dynamics simulations combined with calculations of the electronic excitation energies for a large number of molecular structures were also used for simulating the UV-vis spectrum. The Born-Oppenheimer molecular dynamics simulations yield a broadening of the energetically lowest peak in the absorption spectrum, but additional vibrational bands present in the experimental and simulated quantum harmonic oscillator spectra are not observed in the molecular dynamics simulations. Our results underline the importance of vibronic effects for the UV-vis spectrum of TCNQ - , and they establish an efficient method for obtaining vibronic spectra using a combination of linear-response time-dependent density functional theory and a real-time generating function approach.
Vibronic Analysis for widetilde{B} - widetilde{X} Transition of Isopropoxy Radical
NASA Astrophysics Data System (ADS)
Chhantyal-Pun, Rabi; Miller, Terry A.
2013-06-01
Alkoxy radicals are important intermediates in combustion and atmospheric chemistry. Alkoxy radicals are also of significant spectroscopic interest for the study of Jahn Teller and pseudo Jahn Teller effects, involving the widetilde{X} and widetilde{A} states. The Jahn Teller effect has been studied in methoxy. Substitution of one or two hydrogens by methyl groups transforms the interaction to a pseudo Jahn Teller effect in ethoxy and isopropoxy. Previously, moderate resolution scans have been obtained for widetilde{B} - widetilde{X} and widetilde{B} - widetilde{A} transition systems, the latter observable at higher temperature. These measurements have shown that the widetilde{X} and widetilde{A} states of isopropoxy are separated by only 60.7(7) cm^{-1} which indicates a strong pseudo Jahn Teller effect in the widetilde{X} state. Such pseduo Jahn Teller coupling should also introduce additional bands into the widetilde{B} - widetilde{X} spectrum and a number of weaker transitions have been observed which may be caused by such effects. In this talk we present a vibronic analysis for the widetilde{B} - widetilde{X} transition based on the experimental results and also the results from recent quantum chemistry calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gali, Adam; Demján, Tamás; Vörös, Márton
The development of theories and methods devoted to the accurate calculation of the electronic quasi-particle states and levels of molecules, clusters and solids is of prime importance to interpret the experimental data. These quantum systems are often modelled by using the Born–Oppenheimer approximation where the coupling between the electrons and vibrational modes is not fully taken into account, and the electrons are treated as pure quasi-particles. Here, we show that in small diamond cages, called diamondoids, the electron–vibration coupling leads to the breakdown of the electron quasi-particle picture. More importantly, we demonstrate that the strong electron–vibration coupling is essential tomore » properly describe the overall lineshape of the experimental photoemission spectrum. This cannot be obtained by methods within Born–Oppenheimer approximation. Furthermore, we deduce a link between the vibronic states found by our many-body perturbation theory approach and the well-known Jahn–Teller effect.« less
Efficient multi-mode to single-mode coupling in a photonic lantern.
Noordegraaf, Danny; Skovgaard, Peter M W; Nielsen, Martin D; Bland-Hawthorn, Joss
2009-02-02
We demonstrate the fabrication of a high performance multi-mode (MM) to single-mode (SM) splitter or "photonic lantern", first described by Leon-Saval et al. (2005). Our photonic lantern is a solid all-glass version, and we show experimentally that this device can be used to achieve efficient and reversible coupling between a MM fiber and a number of SM fibers, when perfectly matched launch conditions into the MM fiber are ensured. The fabricated photonic lantern has a coupling loss for a MM to SM tapered transition of only 0.32 dB which proves the feasibility of the technology.
A Direct Mechanism of Ultrafast Intramolecular Singlet Fission in Pentacene Dimers
Fuemmeler, Eric G.; Sanders, Samuel N.; Pun, Andrew B.; ...
2016-05-05
Interest in materials that undergo singlet fission (SF) has been catalyzed by the potential to exceed the Shockley–Queisser limit of solar power conversion efficiency. In conventional materials, the mechanism of SF is an intermolecular process (xSF), which is mediated by charge transfer (CT) states and depends sensitively on crystal packing or molecular collisions. In contrast, recently reported covalently coupled pentacenes yield ~2 triplets per photon absorbed in individual molecules: the hallmark of intramolecular singlet fission (iSF). But, the mechanism of iSF is unclear. Here, using multireference electronic structure calculations and transient absorption spectroscopy, we establish that iSF can occur viamore » a direct coupling mechanism that is independent of CT states. Moreover, we show that a near-degeneracy in electronic state energies induced by vibronic coupling to intramolecular modes of the covalent dimer allows for strong mixing between the correlated triplet pair state and the local excitonic state, despite weak direct coupling.« less
Multiplexed single-mode wavelength-to-time mapping of multimode light
Chandrasekharan, Harikumar K; Izdebski, Frauke; Gris-Sánchez, Itandehui; Krstajić, Nikola; Walker, Richard; Bridle, Helen L.; Dalgarno, Paul A.; MacPherson, William N.; Henderson, Robert K.; Birks, Tim A.; Thomson, Robert R.
2017-01-01
When an optical pulse propagates along an optical fibre, different wavelengths travel at different group velocities. As a result, wavelength information is converted into arrival-time information, a process known as wavelength-to-time mapping. This phenomenon is most cleanly observed using a single-mode fibre transmission line, where spatial mode dispersion is not present, but the use of such fibres restricts possible applications. Here we demonstrate that photonic lanterns based on tapered single-mode multicore fibres provide an efficient way to couple multimode light to an array of single-photon avalanche detectors, each of which has its own time-to-digital converter for time-correlated single-photon counting. Exploiting this capability, we demonstrate the multiplexed single-mode wavelength-to-time mapping of multimode light using a multicore fibre photonic lantern with 121 single-mode cores, coupled to 121 detectors on a 32 × 32 detector array. This work paves the way to efficient multimode wavelength-to-time mapping systems with the spectral performance of single-mode systems. PMID:28120822
NASA Astrophysics Data System (ADS)
Tiwari, Vivek; Peters, William K.; Jonas, David M.
2017-10-01
Non-adiabatic vibrational-electronic resonance in the excited electronic states of natural photosynthetic antennas drastically alters the adiabatic framework, in which electronic energy transfer has been conventionally studied, and suggests the possibility of exploiting non-adiabatic dynamics for directed energy transfer. Here, a generalized dimer model incorporates asymmetries between pigments, coupling to the environment, and the doubly excited state relevant for nonlinear spectroscopy. For this generalized dimer model, the vibrational tuning vector that drives energy transfer is derived and connected to decoherence between singly excited states. A correlation vector is connected to decoherence between the ground state and the doubly excited state. Optical decoherence between the ground and singly excited states involves linear combinations of the correlation and tuning vectors. Excitonic coupling modifies the tuning vector. The correlation and tuning vectors are not always orthogonal, and both can be asymmetric under pigment exchange, which affects energy transfer. For equal pigment vibrational frequencies, the nonadiabatic tuning vector becomes an anti-correlated delocalized linear combination of intramolecular vibrations of the two pigments, and the nonadiabatic energy transfer dynamics become separable. With exchange symmetry, the correlation and tuning vectors become delocalized intramolecular vibrations that are symmetric and antisymmetric under pigment exchange. Diabatic criteria for vibrational-excitonic resonance demonstrate that anti-correlated vibrations increase the range and speed of vibronically resonant energy transfer (the Golden Rule rate is a factor of 2 faster). A partial trace analysis shows that vibronic decoherence for a vibrational-excitonic resonance between two excitons is slower than their purely excitonic decoherence.
Tiwari, Vivek; Peters, William K; Jonas, David M
2017-10-21
Non-adiabatic vibrational-electronic resonance in the excited electronic states of natural photosynthetic antennas drastically alters the adiabatic framework, in which electronic energy transfer has been conventionally studied, and suggests the possibility of exploiting non-adiabatic dynamics for directed energy transfer. Here, a generalized dimer model incorporates asymmetries between pigments, coupling to the environment, and the doubly excited state relevant for nonlinear spectroscopy. For this generalized dimer model, the vibrational tuning vector that drives energy transfer is derived and connected to decoherence between singly excited states. A correlation vector is connected to decoherence between the ground state and the doubly excited state. Optical decoherence between the ground and singly excited states involves linear combinations of the correlation and tuning vectors. Excitonic coupling modifies the tuning vector. The correlation and tuning vectors are not always orthogonal, and both can be asymmetric under pigment exchange, which affects energy transfer. For equal pigment vibrational frequencies, the nonadiabatic tuning vector becomes an anti-correlated delocalized linear combination of intramolecular vibrations of the two pigments, and the nonadiabatic energy transfer dynamics become separable. With exchange symmetry, the correlation and tuning vectors become delocalized intramolecular vibrations that are symmetric and antisymmetric under pigment exchange. Diabatic criteria for vibrational-excitonic resonance demonstrate that anti-correlated vibrations increase the range and speed of vibronically resonant energy transfer (the Golden Rule rate is a factor of 2 faster). A partial trace analysis shows that vibronic decoherence for a vibrational-excitonic resonance between two excitons is slower than their purely excitonic decoherence.
Multimode four-wave mixing in an unresolved sideband optomechanical system
NASA Astrophysics Data System (ADS)
Li, Zongyang; You, Xiang; Li, Yongmin; Liu, Yong-Chun; Peng, Kunchi
2018-03-01
We have studied multimode four-wave mixing (FWM) in an unresolved sideband cavity optomechanical system. The radiation pressure coupling between the cavity fields and multiple mechanical modes results in the formation of a series of tripod-type energy-level systems, which induce the multimode FWM phenomenon. The FWM mechanism enables remarkable amplification of a weak signal field accompanied by the generation of an FWM field when only a microwatt-level pump field is applied. For proper system parameters, the amplified signal and FWM fields have equal intensity with opposite phases. The gain and frequency response bandwidth of the signal field can be dynamically tuned by varying the pump intensity, optomechanical coupling strength, and additional feedback control. Under certain conditions, the frequency response bandwidth can be very narrow and reaches the level of hertz.
Rotational Parameters from Vibronic Eigenfunctions of Jahn-Teller Active Molecules
NASA Astrophysics Data System (ADS)
Garner, Scott M.; Miller, Terry A.
2017-06-01
The structure in rotational spectra of many free radical molecules is complicated by Jahn-Teller distortions. Understanding the magnitudes of these distortions is vital to determining the equilibrium geometric structure and details of potential energy surfaces predicted from electronic structure calculations. For example, in the recently studied {\\widetilde{A}^2E^{''} } state of the NO_3 radical, the magnitudes of distortions are yet to be well understood as results from experimental spectroscopic studies of its vibrational and rotational structure disagree with results from electronic structure calculations of the potential energy surface. By fitting either vibrationally resolved spectra or vibronic levels determined by a calculated potential energy surface, we obtain vibronic eigenfunctions for the system as linear combinations of basis functions from products of harmonic oscillators and the degenerate components of the electronic state. Using these vibronic eigenfunctions we are able to predict parameters in the rotational Hamiltonian such as the Watson Jahn-Teller distortion term, h_1, and compare with the results from the analysis of rotational experiments.
Energy spectra of vibron and cluster models in molecular and nuclear systems
NASA Astrophysics Data System (ADS)
Jalili Majarshin, A.; Sabri, H.; Jafarizadeh, M. A.
2018-03-01
The relation of the algebraic cluster model, i.e., of the vibron model and its extension, to the collective structure, is discussed. In the first section of the paper, we study the energy spectra of vibron model, for diatomic molecule then we derive the rotation-vibration spectrum of 2α, 3α and 4α configuration in the low-lying spectrum of 8Be, 12C and 16O nuclei. All vibrational and rotational states with ground and excited A, E and F states appear to have been observed, moreover the transitional descriptions of the vibron model and α-cluster model were considered by using an infinite-dimensional algebraic method based on the affine \\widehat{SU(1,1)} Lie algebra. The calculated energy spectra are compared with experimental data. Applications to the rotation-vibration spectrum for the diatomic molecule and many-body nuclear clusters indicate that there are solvable models and they can be approximated very well using the transitional theory.
NASA Astrophysics Data System (ADS)
Wang, Qun; Gao, Qing-Yu; Lü, Hua-Ping; Zheng, Zhi-Gang
2010-05-01
Multi-mode spiral wave and its breakup in 1-d and 2-d coupled oscillatory media is studied here by theoretic analysis and numerical simulations. The analysis in 1-d system shows that the dispersion relation curve could be non-monotonic depending on the coupling strength. It may also lead to the coexistence of different wave numbers within one system. Direct numerical observations in 1-d and 2-d systems conform to the prediction of dispersion relation analysis. Our findings indicate that the wave grouping can also be observed in oscillatory media without tip meandering and waves with negative group velocity can occur without inhomogeneity.
Spatiotemporal light-beam compression from nonlinear mode coupling
NASA Astrophysics Data System (ADS)
Krupa, Katarzyna; Tonello, Alessandro; Couderc, Vincent; Barthélémy, Alain; Millot, Guy; Modotto, Daniele; Wabnitz, Stefan
2018-04-01
We experimentally demonstrate simultaneous spatial and temporal compression in the propagation of light pulses in multimode nonlinear optical fibers. We reveal that the spatial beam self-cleaning recently discovered in graded-index multimode fibers is accompanied by significant temporal reshaping and up to fourfold shortening of the injected subnanosecond laser pulses. Since the nonlinear coupling among the modes strongly depends on the instantaneous power, we explore the entire range of the nonlinear dynamics with a single optical pulse, where the optical power is continuously varied across the pulse profile.
High-resolution threshold photoionization of N2O
NASA Technical Reports Server (NTRS)
Wiedmann, R. T.; Grant, E. R.; Tonkyn, R. G.; White, M. G.
1991-01-01
Pulsed field ionization (PFI) has been used in conjunction with a coherent VUV source to obtain high-resolution threshold photoelectron spectra for the (000), (010), (020), and (100) vibrational states of the N2O(+) cation. Simulations for the rotational profiles of each vibronic level were obtained by fitting the Buckingham-Orr-Sichel equations using accurate spectroscopic constants for the ground states of the neutral and the ion. The relative branch intensities are interpreted in terms of the partial waves of the outgoing photoelectron to which the ionic core is coupled and in terms of the angular momentum transferred to the core.
Synthesis of Five‐Porphyrin Nanorings by Using Ferrocene and Corannulene Templates
Liu, Pengpeng; Hisamune, Yutaka; Peeks, Martin D.; Odell, Barbara; Gong, Juliane Q.; Herz, Laura M.
2016-01-01
Abstract The smallest and most strained member of a family of π‐conjugated cyclic porphyrin oligomers was synthesized by using pentapyridyl templates based on ferrocene and corannulene. Both templates are effective for directing the synthesis of the butadiyne‐linked cyclic pentamer, despite the fact that the radii of their N5 donor sets are too small by 0.5 Å and 0.9 Å, respectively (from DFT calculations). The five‐porphyrin nanoring exhibits a structured absorption spectrum and its fluorescence extends to 1200 nm, reflecting strong π conjugation and Herzberg–Teller vibronic coupling. PMID:27213825
NASA Astrophysics Data System (ADS)
Ottiger, Philipp; Leutwyler, Samuel; Köppel, Horst
2012-05-01
The S1/S2 state exciton splittings of symmetric doubly hydrogen-bonded gas-phase dimers provide spectroscopic benchmarks for the excited-state electronic couplings between UV chromophores. These have important implications for electronic energy transfer in multichromophoric systems ranging from photosynthetic light-harvesting antennae to photosynthetic reaction centers, conjugated polymers, molecular crystals, and nucleic acids. We provide laser spectroscopic data on the S1/S2 excitonic splitting Δexp of the doubly H-bonded o-cyanophenol (oCP) dimer and compare to the splittings of the dimers of (2-aminopyridine)2, [(2AP)2], (2-pyridone)2, [(2PY)2], (benzoic acid)2, [(BZA)2], and (benzonitrile)2, [(BN)2]. The experimental S1/S2 excitonic splittings are Δexp = 16.4 cm-1 for (oCP)2, 11.5 cm-1 for (2AP)2, 43.5 cm-1 for (2PY)2, and <1 cm-1 for (BZA)2. In contrast, the vertical S1/S2 energy gaps Δcalc calculated by the approximate second-order coupled cluster (CC2) method for the same dimers are 10-40 times larger than the Δexp values. The qualitative failure of this and other ab initio methods to reproduce the exciton splitting Δexp arises from the Born-Oppenheimer (BO) approximation, which implicitly assumes the strong-coupling case and cannot be employed to evaluate excitonic splittings of systems that are in the weak-coupling limit. Given typical H-bond distances and oscillator strengths, the majority of H-bonded dimers lie in the weak-coupling limit. In this case, the monomer electronic-vibrational coupling upon electronic excitation must be accounted for; the excitonic splittings arise between the vibronic (and not the electronic) transitions. The discrepancy between the BO-based splittings Δcalc and the much smaller experimental Δexp values is resolved by taking into account the quenching of the BO splitting by the intramolecular vibronic coupling in the monomer S1 ← S0 excitation. The vibrational quenching factors Γ for the five dimers (oCP)2, (2AP)2, (2AP)2, (BN)2, and (BZA)2 lie in the range Γ = 0.03-0.2. The quenched excitonic splittings Γ.Δcalc are found to be in very good agreement with the observed splittings Δexp. The vibrational quenching approach predicts reliable Δexp values for the investigated dimers, confirms the importance of vibrational quenching of the electronic Davydov splittings, and provides a sound basis for predicting realistic exciton splittings in multichromophoric systems.
Selective two-photon excitation of a vibronic state by correlated photons.
Oka, Hisaki
2011-03-28
We theoretically investigate the two-photon excitation of a molecular vibronic state by correlated photons with energy anticorrelation. A Morse oscillator having three sets of vibronic states is used, as an example, to evaluate the selectivity and efficiency of two-photon excitation. We show that a vibrational mode can be selectively excited with high efficiency by the correlated photons, without phase manipulation or pulse-shaping techniques. This can be achieved by controlling the quantum correlation so that the photon pair concurrently has two pulse widths, namely, a temporally narrow width and a spectrally narrow width. Though this concurrence is seemingly contradictory, we can create such a photon pair by tailoring the quantum correlation between two photons.
NASA Astrophysics Data System (ADS)
Yoon, Young Wook; Lee, Sang Kuk; Lee, Gi Woo
2011-06-01
The visible vibronic emission spectra were recorded from the corona discharge of precursor tetramethylbenzene with a large amount of inert carrier gas helium using a pinhole-type glass nozzle coupled with corona excited supersonic expansion (CESE) well developed in this laboratory. The spectra showed a series of vibronic bands in the D_1 → D_0 electronic transition of jet-cooled benzyl-type radicals formed from the precursor in a corona excitation. The analysis confirmed that two isomeric radicals, 2,3,4- and 2,3,6-trimethylbenzyl radicals and three isomeric radicals, 3,4,5-, 2,3,5- and 2,4,6-trimethylbenzyl radicals were produced, respectively, from 1,2,3,4- and 1,2,3,5-tetramethylbenzenes as a result of removal of a hydrogen atom from the methyl group at different substitution position. For each isomeric trimethylbenzyl radical generated in the corona discharge of precursor, the electronic transition and a few vibrational mode frequencies were determined in the ground electronic state by comparing with those from both ab initio calculations and the known vibrational data of the precursor. The substitution effect that states the shift of electronic transition depends on the nature, the number, and the position of substituents on the ring has been qualitatively proved for the case of benzyl-type radicals.
Long-lived coherence in carotenoids
NASA Astrophysics Data System (ADS)
Davis, J. A.; Cannon, E.; Van Dao, L.; Hannaford, P.; Quiney, H. M.; Nugent, K. A.
2010-08-01
We use two-colour vibronic coherence spectroscopy to observe long-lived vibrational coherences in the ground electronic state of carotenoid molecules, with decoherence times in excess of 1 ps. Lycopene and spheroidene were studied isolated in solution, and within the LH2 light-harvesting complex extracted from purple bacteria. The vibrational coherence time is shown to increase significantly for the carotenoid in the complex, providing further support to previous assertions that long-lived electronic coherences in light-harvesting complexes are facilitated by in-phase motion of the chromophores and surrounding proteins. Using this technique, we are also able to follow the evolution of excited state coherences and find that for carotenoids in the light-harvesting complex the langS2|S0rang superposition remains coherent for more than 70 fs. In addition to the implications of this long electronic decoherence time, the extended coherence allows us to observe the evolution of the excited state wavepacket. These experiments reveal an enhancement of the vibronic coupling to the first vibrational level of the C-C stretching mode and/or methyl-rocking mode in the ground electronic state 70 fs after the initial excitation. These observations open the door to future experiments and modelling that may be able to resolve the relaxation dynamics of carotenoids in solution and in natural light-harvesting systems.
To Be or Not to Be Symmetric: That is the Question for Potentially Active Vibronic Modes
ERIC Educational Resources Information Center
Tyler, Sarah F.; Judkins, Eileen C.; Morozov, Dmitry; Borca, Carlos H.; Slipchenko, Lyudmila V.; McMillin, David R.
2017-01-01
Electronic spectra often exhibit vibronic structure when vibrational and electronic transitions occur in concert. Theory reveals (1) that orbital symmetry considerations determine specific roles played by the nuclear degrees of freedom and (2) that the vibrational excitation is often highly regiospecific, that is, attributable to an identifiable…
Huh, Joonsuk; Yung, Man-Hong
2017-08-07
Molecular vibroic spectroscopy, where the transitions involve non-trivial Bosonic correlation due to the Duschinsky Rotation, is strongly believed to be in a similar complexity class as Boson Sampling. At finite temperature, the problem is represented as a Boson Sampling experiment with correlated Gaussian input states. This molecular problem with temperature effect is intimately related to the various versions of Boson Sampling sharing the similar computational complexity. Here we provide a full description to this relation in the context of Gaussian Boson Sampling. We find a hierarchical structure, which illustrates the relationship among various Boson Sampling schemes. Specifically, we show that every instance of Gaussian Boson Sampling with an initial correlation can be simulated by an instance of Gaussian Boson Sampling without initial correlation, with only a polynomial overhead. Since every Gaussian state is associated with a thermal state, our result implies that every sampling problem in molecular vibronic transitions, at any temperature, can be simulated by Gaussian Boson Sampling associated with a product of vacuum modes. We refer such a generalized Gaussian Boson Sampling motivated by the molecular sampling problem as Vibronic Boson Sampling.
Raman spectroscopy and melting of nitrogen between 290 and 900 K and 2. 3 and 18 GPa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zinn, A.S.; Schiferl, D.; Nicol, M.F.
1987-07-15
Raman spectroscopy was used to study the melting of nitrogen from 290 to 900 K at pressures from 2.3 to 18 GPa. This work, which extends the melting by a factor of 9 over previously published results was made possible by new developments in high-temperature diamond-anvil cells. The ..beta../delta phase boundary was also determined, and the ..beta..--delta--fluid triple point was found to be at 578 +- 10 K and 9.9 +- 0.5 GPa. The Raman frequencies of the vibron in fluid N/sub 2/ and the ..nu../sub 2/ vibron in delta-N/sub 2/ were found to have the same pressure dependence andmore » be independent of temperature to a good approximation. A temperature-independent pressure scale, useful to at least 900 K is approximated by P/GPa = 0.4242 ..nu../cm/sup -1/ -987.8, where ..nu.. is the frequency of either the ..nu../sub 2/ vibron in delta-N/sub 2/ or the vibron in fluid-N/sub 2/.« less
New method for calculating the coupling coefficient in graded index optical fibers
NASA Astrophysics Data System (ADS)
Savović, Svetislav; Djordjevich, Alexandar
2018-05-01
A simple method is proposed for determining the mode coupling coefficient D in graded index multimode optical fibers. It only requires observation of the output modal power distribution P(m, z) for one fiber length z as the Gaussian launching modal power distribution changes, with the Gaussian input light distribution centered along the graded index optical fiber axis (θ0 = 0) without radial offset (r0 = 0). A similar method we previously proposed for calculating the coupling coefficient D in a step-index multimode optical fibers where the output angular power distributions P(θ, z) for one fiber length z with the Gaussian input light distribution launched centrally along the step-index optical fiber axis (θ0 = 0) is needed to be known.
del Valle, Juan Carlos; Claramunt, R M; Catalán, J
2008-06-26
Methylation at the 1N position of 2-phenylimidazole provides the shortest wavelength for a liquid-state laser dye reported to date; that is, the 1-methyl-2-phenylimidazole molecule in cyclohexane solution yields amplified spontaneous emission (ASE) with a peak wavelength at 314.5 nm and a constant laser gain value of 5 cm(-1) from 310 to 317 nm. Methyl substitution in this case favors the appearance of laser action (owing to a torsion-vibrational mechanism) in cyclohexane as compared with the nonmethylated species which does not exhibit ASE in this solvent. The 2-(2'-hydroxyphenyl)imidazole molecules give rise to ASE with high gain values (ca. 9 cm(-1)) at 450 and 466 nm. The mechanism of population inversion is understood in terms of a vibronic coupling between the hydroxyl stretching motion and the torsional vibration of the phenyl and imidazole rings. The proton-transfer spectroscopy of 2-(2'-hydroxyphenyl)imidazoles is studied in dioxane, cyclohexane, dimethyl sulfoxide, methanol, and water. The greater the acidity of the solvent the greater the disruption of the intramolecular hydrogen bond; solvent acidity is the main parameter which favors formation of the open-form species in the ground electronic state. Methyl substitution at the 1N position favors formation of the open species for 2-hydroxyphenylimidazoles in the ground electronic state, which decreases their own capacity to undergo ASE. Low-temperature absorption spectroscopy confirms aggregation processes for 2-(2'-hydroxyphenyl)imidazoles in solution. In accordance with X-ray analyses in the solid phase, these molecules form associations through intermolecular chains of the type N-H...O or O-H...N.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Bing; Clouthier, Dennis J., E-mail: dclaser@uky.edu; Sheridan, Phillip M.
2015-03-28
In this and previous work [D. J. Clouthier, J. Chem. Phys. 141, 244309 (2014)], the spectroscopic signatures of the X{sub 2}BY (X = H, halogen, Y = O, S) free radicals have been predicted using high level ab initio theory. The theoretical results have been used to calculate the electronic absorption and single vibronic level (SVL) emission spectra of the radicals under typical jet-cooled conditions. Using these diagnostic predictions, the previously unknown F{sub 2}BS and Cl{sub 2}BS free radicals have been identified and characterized. The radicals were prepared in a free jet expansion by subjecting precursor mixtures of BF{sub 3}more » or BCl{sub 3} and CS{sub 2} vapor to an electric discharge at the exit of a pulsed molecular beam valve. The B{sup ~2}A{sub 1}–X{sup ~} {sup 2}B{sub 2} laser-induced fluorescence spectra were found within 150 cm{sup −1} of their theoretically predicted positions with vibronic structure consistent with our Franck-Condon simulations. The B{sup ~2}A{sub 1} state emits down to the ground state and to the low-lying A{sup ~2}B{sub 1} excited state and the correspondence between the observed and theoretically derived SVL emission Franck-Condon profiles was used to positively identify the radicals and make assignments. Excited state Coriolis coupling effects complicate the emission spectra of both radicals. In addition, a forbidden component of the electronically allowed B{sup ~}–X{sup ~} band system of Cl{sub 2}BS is evident, as signaled by the activity in the b{sub 2} modes in the spectrum. Symmetry arguments indicate that this component gains intensity due to a vibronic interaction of the B{sup ~2}A{sub 1} state with a nearby electronic state of {sup 2}B{sub 2} symmetry.« less
The E(2) symmetry and quantum phase transition in the two-dimensional limit of the vibron model
NASA Astrophysics Data System (ADS)
Zhang, Yu; Pan, Feng; Liu, Yu-Xin; Draayer, J. P.
2010-11-01
We study in detail the relation between the two-dimensional Euclidean dynamical E(2) symmetry and the quantum phase transition in the two-dimensional limit of the vibron model, called the U(3) vibron model. Both geometric and algebraic descriptions of the U(3) vibron model show that structures of low-lying states at the critical point of the model with a quartic potential as its classical limit can be approximately described by the E(2) symmetry. We also fit the finite-size scaling exponent of the energy levels and E1 transition rates in the F(2) model, which is exactly the E(2) model but with truncation in its Hilbert subspace, as well as those at the critical point in the U(3) vibron model. The N-scaling power law around the critical point shows that the E(2) symmetry is well preserved even for cases with finite number of bosons. In addition, two kinds of experimentally accessible effective order parameters, such as the energy ratios E_{2_1}/E_{1_1}, E_{3_1}/E_{1_1} and E1 transition ratios \\frac{B(E1;2_1\\rightarrow 1_1)}{B(E1;1_1\\rightarrow 0_1)}, \\frac{B(E1;0_2\\rightarrow 1_1)}{B(E1;1_1\\rightarrow 0_1)}, are proposed to identify the second-order phase transition in such systems. Possible empirical examples exhibiting approximate E(2) symmetry are also presented.
NASA Astrophysics Data System (ADS)
Fukushima, Masaru; Ishiwata, Takashi
2016-12-01
The laser induced fluorescence (LIF) spectrum of the A ˜ 2Δ - X ˜ 2Π transition was obtained for SiCN generated by laser ablation under supersonic free jet expansion. The vibrational structures of the dispersed fluorescence (DF) spectra from single vibronic levels (SVL's) were analyzed with consideration of the Renner-Teller (R-T) interaction. Analysis of the pure bending (ν2) structure by a perturbation approach including R-T, anharmonicity, spin-orbit (SO), and Herzberg-Teller (H-T) interactions indicated considerably different spin splitting for the μ and κ levels of the X ˜ 2Π state of SiCN, in contrast to identical spin splitting for general species derived from the perturbation approach, where μ and κ specify the lower and upper levels, respectively, separated by R-T. Further analysis of the vibrational structure including R-T, anharmonicity, SO, H-T, Fermi, and Sears interactions was carried out via a direct diagonalization procedure, where Sears resonance is a second-order interaction combined from SO and H-T interactions with Δ K = ± 1, ΔΣ = ∓1, and Δ P = 0, and where P is a quantum number, P = K + Σ. The later numerical analysis reproduced the observed structure, not only the pure ν2 structure but also the combination structure of the ν2 and the Si-CN stretching (ν3) modes. As an example, the analysis demonstrates Sears resonance between vibronic levels, (0110) κ Σ(+) and ( 0 2 0 0 ) μ Π /1 2 , with Δ K = ± 1 and Δ P = 0. On the basis of coefficients of their eigen vectors derived from the numerical analysis, it is interpreted as an almost one-to-one mixing between the two levels. The mixing coefficients of the two vibronic levels agree with those obtained from computational studies. The numerical analysis also indicates that some of the vibronic levels show chaotic characteristics in view of the two-dimensional harmonic oscillator (2D-HO) basis which is used as the basis function in the present numerical analysis; i.e., the eigen vectors for some of the observed levels have several components of the basis, and we have not been able to give precise vibronic assignments for the levels, but just vibronically labeled, referring the largest component in their vectors. (To emphasize this situation, we do not use the word "assignment," but prefer to use "label" as the meaning of just "label," but not "assign," throughout this paper.) The latter shows that the vibronic labels of the levels are meaningless, and the P quantum number and the order of their eigen states in the P matrix block derived in the numerical analysis only characterize the vibronic levels. Comparing the constants obtained for all of the interactions with those of species showing Sears resonance and studied previously, it is found that none of them are strong, but are moderate. It is thus concluded that the chaotic appearance is not derived by any strong interaction, but is induced by complex and accidental proximities of the vibronic levels caused by the moderate interactions.
NASA Astrophysics Data System (ADS)
Jonas, David M.
2018-04-01
Femtosecond two-dimensional (2D) Fourier transform spectroscopy generates and probes several types of coherence that characterize the couplings between vibrational and electronic motions. These couplings have been studied in molecules with Jahn-Teller conical intersections, pseudo-Jahn-Teller funnels, dimers, molecular aggregates, photosynthetic light harvesting complexes, and photosynthetic reaction centers. All have closely related Hamiltonians and at least two types of vibrations, including one that is decoupled from the electronic dynamics and one that is nonadiabatically coupled. Polarized pulse sequences can often be used to distinguish these types of vibrations. Electronic coherences are rapidly obscured by inhomogeneous dephasing. The longest-lived coherences in these systems arise from delocalized vibrations on the ground electronic state that are enhanced by a nonadiabatic Raman excitation process. These characterize the initial excited-state dynamics. 2D oscillation maps are beginning to isolate the medium lifetime vibronic coherences that report on subsequent stages of the excited-state dynamics.
Dong, Haiyun; Zhang, Chunhuan; Liu, Yuan; Yan, Yongli; Hu, Fengqin; Zhao, Yong Sheng
2018-03-12
The very broad emission bands of organic semiconductor materials are, in theory, suitable for achieving versatile solid-state lasers; however, most of organic materials only lase at short wavelength corresponding to the 0-1 transition governed by the Franck-Condon (FC) principle. A strategy is developed to overcome the limit of FC principle for tailoring the output of microlasers over a wide range based on the controlled vibronic emission of organic materials at microcrystal state. For the first time, the output wavelength of organic lasers is tailored across all vibronic (0-1, 0-2, 0-3, and even 0-4) bands spanning the entire emission spectrum. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Kalinauskaite, Eimante; Murphy, Anthony; McAuley, Ian; Trappe, Neil A.; Bracken, Colm P.; McCarthy, Darragh N.; Doherty, Stephen; Gradziel, Marcin L.; O'Sullivan, Creidhe; Maffei, Bruno; Lamarre, Jean-Michel A.; Ade, Peter A. R.; Savini, Giorgio
2016-07-01
Multimode horn antennas can be utilized as high efficiency feeds for bolometric detectors, providing increased throughput and sensitivity over single mode feeds, while also ensuring good control of beam pattern characteristics. Multimode horns were employed in the highest frequency channels of the European Space Agency Planck Telescope, and have been proposed for future terahertz instrumentation, such as SAFARI for SPICA. The radiation pattern of a multimode horn is affected by the details of the coupling of the higher order waveguide modes to the bolometer making the modeling more complicated than in the case of a single mode system. A typical cavity coupled bolometer system can be most efficiently simulated using mode matching, typically with smooth walled waveguide modes as the basis and computing an overall scattering matrix for the horn-waveguide-cavity system that includes the power absorption by the absorber. In this paper we present how to include a cavity coupled bolometer, modelled as a thin absorbing film with particular interest in investigating the cavity configuration for optimizing power absorption. As an example, the possible improvements from offsetting the axis of a cylindrically symmetric absorbing cavity from that of a circular waveguide feeding it (thus trapping more power in the cavity) are discussed. Another issue is the effect on the optical efficiency of the detectors of the presence of any gaps, through which power can escape. To model these effects required that existing in-house mode matching software, which calculates the scattering matrices for axially symmetric waveguide structures, be extended to be able to handle offset junctions and free space gaps. As part of this process the complete software code 'PySCATTER' was developed in Python. The approach can be applied to proposed terahertz systems, such as SPICASAFARI.
Is back-electron transfer process in Betaine-30 coherent?
NASA Astrophysics Data System (ADS)
Rafiq, Shahnawaz; Scholes, Gregory D.
2017-09-01
The possible role of coherent vibrational motion in ultrafast photo-induced electron transfer remains unclear despite considerable experimental and theoretical advances. We revisited this problem by tracking the back-electron transfer (bET) process in Betaine-30 with broadband pump-probe spectroscopy. Dephasing time constant of certain high-frequency vibrations as a function of solvent shows a trend similar to the ET rates. In the purview of Bixon-Jortner model, high-frequency quantum vibrations bridge the reactant-product energy gap by providing activationless vibronic channels. Such interaction reduces the effective coupling significantly and thereby the coherence effects are eliminated due to energy gap fluctuations, making the back-electron transfer incoherent.
NASA Astrophysics Data System (ADS)
Xie, Changjian; Guo, Hua
2017-09-01
The nonadiabatic tunneling-facilitated photodissociation of phenol is investigated using a reduced-dimensional quantum model on two ab initio-based coupled potential energy surfaces (PESs). Although dynamics occurs largely on the lower adiabat, the proximity to a conical intersection between the S1 and S2 states requires the inclusion of both the geometric phase (GP) and diagonal Born-Oppenheimer correction (DBOC). The lifetime of the lowest-lying vibronic state is computed using the diabatic and various adiabatic models. The GP and DBOC terms are found to be essential on one set of PESs, but have a small impact on the other.
Ab initio study of energy transfer rates and impact sensitivities of crystalline explosives.
Bernstein, Jonathan
2018-02-28
Impact sensitivities of various crystalline explosives were predicted by means of plane wave-density functional theory calculations. Crystal structures and complete vibrational spectra of TATB, PETN, FOX7, TEX, 14DNI, and β-HMX molecular crystals were calculated. A correlation between the phonon-vibron coupling (which is proportionally related to the energy transfer rate between the phonon manifold and the intramolecular vibrational modes) and impact sensitivities of secondary explosives was found. We propose a method, based on ab initio calculations, for the evaluation of impact sensitivities, which consequently can assist in screening candidates for chemical synthesis of high energetic materials.
Resonant stimulation of Raman scattering from single-crystal thiophene/phenylene co-oligomers
NASA Astrophysics Data System (ADS)
Yanagi, Hisao; Marutani, Yusuke; Matsuoka, Naoki; Hiramatsu, Toru; Ishizumi, Atsushi; Sasaki, Fumio; Hotta, Shu
2013-12-01
Amplified Raman scattering was observed from single crystals of thiophene/phenylene co-oligomers (TPCOs). Under ns-pulsed excitation, the TPCO crystals exhibited amplified spontaneous emission (ASE) at resonant absorption wavelengths. With increasing excitation wavelength to the 0-0 absorption edge, the stimulated resonant Raman peaks appeared both in the 0-1 and 0-2 ASE band regions. When the excitation wavelength coincided with the 0-1 ASE band energy, the Raman peaks selectively appeared in the 0-2 ASE band. Such unusual enhancement of the 0-2 Raman scattering was ascribed to resonant stimulation via vibronic coupling with electronic transitions in the uniaxially oriented TPCO molecules.
Ab initio study of energy transfer rates and impact sensitivities of crystalline explosives
NASA Astrophysics Data System (ADS)
Bernstein, Jonathan
2018-02-01
Impact sensitivities of various crystalline explosives were predicted by means of plane wave-density functional theory calculations. Crystal structures and complete vibrational spectra of TATB, PETN, FOX7, TEX, 14DNI, and β-HMX molecular crystals were calculated. A correlation between the phonon-vibron coupling (which is proportionally related to the energy transfer rate between the phonon manifold and the intramolecular vibrational modes) and impact sensitivities of secondary explosives was found. We propose a method, based on ab initio calculations, for the evaluation of impact sensitivities, which consequently can assist in screening candidates for chemical synthesis of high energetic materials.
Assigning the low lying vibronic states of CH3O and CD3O
NASA Astrophysics Data System (ADS)
Johnson, Britta A.; Sibert, Edwin L.
2017-05-01
The assignment of lines in vibrational spectra in strongly mixing systems is considered. Several low lying vibrational states of the ground electronic X˜ 2E state of the CH3O and CD3O radicals are assigned. Jahn-Teller, spin-orbit, and Fermi couplings mix the normal mode states. The mixing complicates the assignment of the infrared spectra using a zero-order normal mode representation. Alternative zero-order representations, which include specific Jahn-Teller couplings, are explored. These representations allow for definitive assignments. In many instances it is possible to plot the wavefunctions on which the assignments are based. The plots, which are shown in the adiabatic representation, allow one to visualize the effects of various higher order couplings. The plots also enable one to visualize the conical seam and its effect on the wavefunctions. The first and the second order Jahn-Teller couplings in the rocking motion dominate the spectral features in CH3O, while first order and modulated first order couplings dominate the spectral features in CD3O. The methods described here are general and can be applied to other Jahn-Teller systems.
Design of high energy laser pulse delivery in a multimode fiber for photoacoustic tomography.
Ai, Min; Shu, Weihang; Salcudean, Tim; Rohling, Robert; Abolmaesumi, Purang; Tang, Shuo
2017-07-24
In photoacoustic tomography (PAT), delivering high energy pulses through optical fiber is critical for achieving high quality imaging. A fiber coupling scheme with a beam homogenizer is demonstrated for coupling high energy pulses in a single multimode fiber. This scheme can benefit PAT applications that require miniaturized illumination or internal illumination with a small fiber. The beam homogenizer is achieved by using a cross cylindrical lens array, which provides a periodic spatial modulation on the phase of the input light. Thus the lens array acts as a phase grating which diffracts the beam into a 2D diffraction pattern. Both theoretical analysis and experiments demonstrate that the focused beam can be split into a 2D spot array that can reduce the peak power on the fiber tip surface and thus enhance the coupling performance. The theoretical analysis of the intensity distribution of the focused beam is carried out by Fourier optics. In experiments, coupled energy at 48 mJ/pulse and 60 mJ/pulse have been achieved and the corresponding coupling efficiency is 70% and 90% in a 1000-μm and a 1500-μm-core-diameter fiber, respectively. The high energy pulses delivered by the multimode fiber are further tested for PAT imaging in phantoms. PAT imaging of a printed dot array shows a large illumination area of 7 cm 2 under 5 mm thick chicken breast tissue. In vivo imaging is also demonstrated on the human forearm. The large improvement in coupling energy can potentially benefit PAT with single fiber delivery to achieve large area imaging and deep penetration detection.
Padula, Daniele; Cerezo, Javier; Pescitelli, Gennaro; Santoro, Fabrizio
2017-12-13
Comparison between chiroptical spectra and theoretical predictions is the method of choice for the assignment of the absolute configuration of chiral compounds in solution. Here we report the case of an apparently simple biarylcarbinol, whose electronic circular dichroism (ECD) in the 1 L b region exhibits a peculiar alternation of negative and positive bands. Adopting Density Functional Theory, and describing solvent effects with implicit methods, we found three stable conformers in ethanol, each of them with two close lying states corresponding to similar local 1 L b excitations on the two phenyls. We computed the corresponding vibronic ECD spectra in harmonic approximation, including Duschinsky mixings as well as both Franck Condon (FC) and Herzberg Teller (HT) effects. Exploiting a recently developed mixed quantum/classical method, we further investigated the contribution of the vibronic spectra of out-of-equilibrium structures along the interconversion path connecting the different conformers. In this way, we achieved a reasonable agreement with experiment and attributed the alternating signs of the bands to the existence of different conformers. The remaining discrepancies with experiment indicate that specific solute-solvent interactions modulate the relative conformers' stabilities, calling for new methods able to combine Molecular Dynamics explorations and vibronic calculations. Moreover, the poor performance of HT approaches and the existence of two closely-lying states suggest the necessity of an improved fully-nonadiabatic vibronic approach. These findings demonstrate that even for such a simple system as the biarylcarbinol investigated here, a full reproduction of the fine details of the ECD spectrum requires the development of new improved methods.
Xu, Fang; Poon, Andrew W
2008-06-09
We report silicon cross-connect filters using microring resonator coupled multimode-interference (MMI) based waveguide crossings. Our experiments reveal that the MMI-based cross-connect filters impose lower crosstalk at the crossing than the conventional cross-connect filters using plain crossings, while offering a nearly symmetric resonance line shape in the drop-port transmission. As a proof-of-concept for cross-connection applications, we demonstrate on a silicon-on-insulator substrate (i) a 4-channel 1 x 4 linear-cascaded MMI-based cross-connect filter, and (ii) a 2-channel 2 x 2 array-cascaded MMI-based cross-connect filter.
Adaptive wavefront shaping for controlling nonlinear multimode interactions in optical fibres
NASA Astrophysics Data System (ADS)
Tzang, Omer; Caravaca-Aguirre, Antonio M.; Wagner, Kelvin; Piestun, Rafael
2018-06-01
Recent progress in wavefront shaping has enabled control of light propagation inside linear media to focus and image through scattering objects. In particular, light propagation in multimode fibres comprises complex intermodal interactions and rich spatiotemporal dynamics. Control of physical phenomena in multimode fibres and its applications are in their infancy, opening opportunities to take advantage of complex nonlinear modal dynamics. Here, we demonstrate a wavefront shaping approach for controlling nonlinear phenomena in multimode fibres. Using a spatial light modulator at the fibre input, real-time spectral feedback and a genetic algorithm optimization, we control a highly nonlinear multimode stimulated Raman scattering cascade and its interplay with four-wave mixing via a flexible implicit control on the superposition of modes coupled into the fibre. We show versatile spectrum manipulations including shifts, suppression, and enhancement of Stokes and anti-Stokes peaks. These demonstrations illustrate the power of wavefront shaping to control and optimize nonlinear wave propagation.
NASA Astrophysics Data System (ADS)
Kakitani, Yoshinori; Miki, Takeshi; Koyama, Yasushi; Nagae, Hiroyoshi; Nakamura, Ryosuke; Kanematsu, Yasuo
2009-07-01
The time constants of the vibrational relaxation, υ = 2 → υ = 1 and υ = 1 → υ = 0, in the 1Bu+ manifold and those of internal conversion from the 1Bu+(0) level, which is isoenergetic (so-called 'diabatic') with the 1Bu- vibronic levels in neurosporene and spheroidene and with the 3Ag- vibronic levels in lycopene and anhydrorhodovibrin, were determined by Kerr-gate fluorescence spectroscopy. The time constants of the vibrational relaxation were in the ˜1:2 ratio, and those of internal conversion agreed with the lifetimes of the diabatic counterparts, i.e., the 1Bu- and 3Ag- electronic states, respectively.
Vibronic effects in the 1.4-eV optical center in diamond
NASA Astrophysics Data System (ADS)
Iakoubovskii, Konstantin; Davies, Gordon
2004-12-01
We report optical absorption and luminescence measurements on the 1.4-eV center in diamond. We show that the zero-phonon lines have a temperature-dependent Ni-isotope shift, that the isotopic shifts induced by carbon and nickel are opposite in sign, and that a local vibronic mode is present in the absorption spectrum but not in luminescence. The microscopic properties of the center are successfully analyzed with the Ludwig-Woodbury theory (LWT), revealing that the Ni+ ion in the 1.4-eV center only weakly interacts with the diamond lattice. The importance of vibronic effects in the LWT analysis is experimentally demonstrated. It is believed that similar effects can account for the discrepancies previously encountered in modeling other 3d9 impurities in semiconductors.
Wave function continuity and the diagonal Born-Oppenheimer correction at conical intersections
NASA Astrophysics Data System (ADS)
Meek, Garrett A.; Levine, Benjamin G.
2016-05-01
We demonstrate that though exact in principle, the expansion of the total molecular wave function as a sum over adiabatic Born-Oppenheimer (BO) vibronic states makes inclusion of the second-derivative nonadiabatic energy term near conical intersections practically problematic. In order to construct a well-behaved molecular wave function that has density at a conical intersection, the individual BO vibronic states in the summation must be discontinuous. When the second-derivative nonadiabatic terms are added to the Hamiltonian, singularities in the diagonal BO corrections (DBOCs) of the individual BO states arise from these discontinuities. In contrast to the well-known singularities in the first-derivative couplings at conical intersections, these singularities are non-integrable, resulting in undefined DBOC matrix elements. Though these singularities suggest that the exact molecular wave function may not have density at the conical intersection point, there is no physical basis for this constraint. Instead, the singularities are artifacts of the chosen basis of discontinuous functions. We also demonstrate that continuity of the total molecular wave function does not require continuity of the individual adiabatic nuclear wave functions. We classify nonadiabatic molecular dynamics methods according to the constraints placed on wave function continuity and analyze their formal properties. Based on our analysis, it is recommended that the DBOC be neglected when employing mixed quantum-classical methods and certain approximate quantum dynamical methods in the adiabatic representation.
Wave function continuity and the diagonal Born-Oppenheimer correction at conical intersections.
Meek, Garrett A; Levine, Benjamin G
2016-05-14
We demonstrate that though exact in principle, the expansion of the total molecular wave function as a sum over adiabatic Born-Oppenheimer (BO) vibronic states makes inclusion of the second-derivative nonadiabatic energy term near conical intersections practically problematic. In order to construct a well-behaved molecular wave function that has density at a conical intersection, the individual BO vibronic states in the summation must be discontinuous. When the second-derivative nonadiabatic terms are added to the Hamiltonian, singularities in the diagonal BO corrections (DBOCs) of the individual BO states arise from these discontinuities. In contrast to the well-known singularities in the first-derivative couplings at conical intersections, these singularities are non-integrable, resulting in undefined DBOC matrix elements. Though these singularities suggest that the exact molecular wave function may not have density at the conical intersection point, there is no physical basis for this constraint. Instead, the singularities are artifacts of the chosen basis of discontinuous functions. We also demonstrate that continuity of the total molecular wave function does not require continuity of the individual adiabatic nuclear wave functions. We classify nonadiabatic molecular dynamics methods according to the constraints placed on wave function continuity and analyze their formal properties. Based on our analysis, it is recommended that the DBOC be neglected when employing mixed quantum-classical methods and certain approximate quantum dynamical methods in the adiabatic representation.
Side-detecting optical fiber coated with Zn(OH)2 nanorods for ultraviolet sensing applications
NASA Astrophysics Data System (ADS)
Azad, S.; Parvizi, R.; Sadeghi, E.
2017-09-01
This paper presents an improved coupling efficiency and side detecting of UV radiation induced by light scattering and luminescent features of Zn(OH)2 nanorods coated multimode optical fibers. Uniform and high density Zn(OH)2 nanorods were grown hydrothermally on the core of chemically etched multimode optical fibers. The prepared samples were characterized through x-ray diffraction patterns, scanning electron microscopy and photoluminescence spectroscopy. The detecting technique was based on the intensity modulation of the side coupled light through the Zn(OH)2 nanorods. A simple and cost-effective UV radiation detecting setup has been designed. Experimentally estimated coupling efficiency of the proposed setup was obtained near 11%. The proposed device exhibited stable and reversible responses with a fast rising and decaying time of about 1.4 s and 0.85 s, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorenz, Matthias; Ovchinnikova, Olga S; Kertesz, Vilmos
2013-01-01
This paper describes the coupling of ambient laser ablation surface sampling, accomplished using a laser capture microdissection system, with atmospheric pressure chemical ionization mass spectrometry for high spatial resolution multimodal imaging. A commercial laser capture microdissection system was placed in close proximity to a modified ion source of a mass spectrometer designed to allow for sampling of laser ablated material via a transfer tube directly into the ionization region. Rhodamine 6G dye of red sharpie ink in a laser etched pattern as well as cholesterol and phosphatidylcholine in a cerebellum mouse brain thin tissue section were identified and imaged frommore » full scan mass spectra. A minimal spot diameter of 8 m was achieved using the 10X microscope cutting objective with a lateral oversampling pixel resolution of about 3.7 m. Distinguishing between features approximately 13 m apart in a cerebellum mouse brain thin tissue section was demonstrated in a multimodal fashion including co-registered optical and mass spectral chemical images.« less
Radiation patterns of multimode feed-horn-coupled bolometers for FAR-IR space applications
NASA Astrophysics Data System (ADS)
Kalinauskaite, Eimante; Murphy, J. Anthony; McAuley, Ian; Trappe, Neal A.; McCarthy, Darragh N.; Bracken, Colm P.; Doherty, Stephen; Gradziel, Marcin L.; O'Sullivan, Créidhe; Wilson, Daniel; Peacocke, Tully; Maffei, Bruno; Lamarre, Jean-Michel; Ade, Peter A. R.; Savini, Giorgio
2017-02-01
A multimode horn differs from a single mode horn in that it has a larger sized waveguide feeding it. Multimode horns can therefore be utilized as high efficiency feeds for bolometric detectors, providing increased throughput and sensitivity over single mode feeds, while also ensuring good control of the beam pattern characteristics. Although a cavity mounted bolometer can be modelled as a perfect black body radiator (using reciprocity in order to calculate beam patterns), nevertheless, this is an approximation. In this paper we present how this approach can be improved to actually include the cavity coupled bolometer, now modelled as a thin absorbing film. Generally, this is a big challenge for finite element software, in that the structures are typically electrically large. However, the radiation pattern of multimode horns can be more efficiently simulated using mode matching, typically with smooth-walled waveguide modes as the basis and computing an overall scattering matrix for the horn-waveguide-cavity system. Another issue on the optical efficiency of the detectors is the presence of any free space gaps, through which power can escape. This is best dealt with treating the system as an absorber. Appropriate reflection and transmission matrices can be determined for the cavity using the natural eigenfields of the bolometer cavity system. We discuss how the approach can be applied to proposed terahertz systems, and also present results on how the approach was applied to improve beam pattern predictions on the sky for the multi-mode HFI 857GHz channel on Planck.
Supermode-density-wave-polariton condensation with a Bose–Einstein condensate in a multimode cavity
Kollár, Alicia J.; Papageorge, Alexander T.; Vaidya, Varun D.; Guo, Yudan; Keeling, Jonathan; Lev, Benjamin L.
2017-01-01
Phase transitions, where observable properties of a many-body system change discontinuously, can occur in both open and closed systems. By placing cold atoms in optical cavities and inducing strong coupling between light and excitations of the atoms, one can experimentally study phase transitions of open quantum systems. Here we observe and study a non-equilibrium phase transition, the condensation of supermode-density-wave polaritons. These polaritons are formed from a superposition of cavity photon eigenmodes (a supermode), coupled to atomic density waves of a quantum gas. As the cavity supports multiple photon spatial modes and because the light–matter coupling can be comparable to the energy splitting of these modes, the composition of the supermode polariton is changed by the light–matter coupling on condensation. By demonstrating the ability to observe and understand density-wave-polariton condensation in the few-mode-degenerate cavity regime, our results show the potential to study similar questions in fully multimode cavities. PMID:28211455
Rectified diode response of a multimode quantum cascade laser integrated terahertz transceiver.
Dyer, Gregory C; Norquist, Christopher D; Cich, Michael J; Grine, Albert D; Fuller, Charles T; Reno, John L; Wanke, Michael C
2013-02-25
We characterized the DC transport response of a diode embedded in a THz quantum cascade laser as the laser current was changed. The overall response is described by parallel contributions from the rectification of the laser field due to the non-linearity of the diode I-V and from thermally activated transport. Sudden jumps in the diode response when the laser changes from single mode to multi-mode operation, with no corresponding jumps in output power, suggest that the coupling between the diode and laser field depends on the spatial distribution of internal fields. The results demonstrate conclusively that the internal laser field couples directly to the integrated diode.
Fiber-coupled three-micron pulsed laser source for CFRP laser treatment
NASA Astrophysics Data System (ADS)
Nyga, Sebastian; Blass, David; Katzy, Veronika; Westphalen, Thomas; Jungbluth, Bernd; Hoffmann, Hans-Dieter
2018-02-01
We present a laser source providing up to 18 W and 1.5 mJ at a wavelength of 3 μm. The output is generated by frequency conversion of randomly polarized multimode radiation at 1064 nm of an Nd:YAG laser in a two-stage conversion setup. The frequency converter comprises an optical parametric oscillator and a subsequent optical parametric amplifier using PPLN as nonlinear medium in both stages. To implement fiber-based beam delivery for materials processing, we coupled the output at 3 μm to a multimode ZrF4-fiber. This source was then used to remove epoxy resin from the surface of CFRP samples.
Calhoun, Vince D; Sui, Jing
2016-01-01
It is becoming increasingly clear that combining multi-modal brain imaging data is able to provide more information for individual subjects by exploiting the rich multimodal information that exists. However, the number of studies that do true multimodal fusion (i.e. capitalizing on joint information among modalities) is still remarkably small given the known benefits. In part, this is because multi-modal studies require broader expertise in collecting, analyzing, and interpreting the results than do unimodal studies. In this paper, we start by introducing the basic reasons why multimodal data fusion is important and what it can do, and importantly how it can help us avoid wrong conclusions and help compensate for imperfect brain imaging studies. We also discuss the challenges that need to be confronted for such approaches to be more widely applied by the community. We then provide a review of the diverse studies that have used multimodal data fusion (primarily focused on psychosis) as well as provide an introduction to some of the existing analytic approaches. Finally, we discuss some up-and-coming approaches to multi-modal fusion including deep learning and multimodal classification which show considerable promise. Our conclusion is that multimodal data fusion is rapidly growing, but it is still underutilized. The complexity of the human brain coupled with the incomplete measurement provided by existing imaging technology makes multimodal fusion essential in order to mitigate against misdirection and hopefully provide a key to finding the missing link(s) in complex mental illness. PMID:27347565
Calhoun, Vince D; Sui, Jing
2016-05-01
It is becoming increasingly clear that combining multi-modal brain imaging data is able to provide more information for individual subjects by exploiting the rich multimodal information that exists. However, the number of studies that do true multimodal fusion (i.e. capitalizing on joint information among modalities) is still remarkably small given the known benefits. In part, this is because multi-modal studies require broader expertise in collecting, analyzing, and interpreting the results than do unimodal studies. In this paper, we start by introducing the basic reasons why multimodal data fusion is important and what it can do, and importantly how it can help us avoid wrong conclusions and help compensate for imperfect brain imaging studies. We also discuss the challenges that need to be confronted for such approaches to be more widely applied by the community. We then provide a review of the diverse studies that have used multimodal data fusion (primarily focused on psychosis) as well as provide an introduction to some of the existing analytic approaches. Finally, we discuss some up-and-coming approaches to multi-modal fusion including deep learning and multimodal classification which show considerable promise. Our conclusion is that multimodal data fusion is rapidly growing, but it is still underutilized. The complexity of the human brain coupled with the incomplete measurement provided by existing imaging technology makes multimodal fusion essential in order to mitigate against misdirection and hopefully provide a key to finding the missing link(s) in complex mental illness.
Tunable Mode Coupling in Nanocontact Spin-Torque Oscillators
Zhang, Steven S. -L.; Iacocca, Ezio; Heinonen, Olle
2017-07-27
Recent experiments on spin-torque oscillators have revealed interactions between multiple magneto-dynamic modes, including mode coexistence, mode hopping, and temperature-driven crossover between modes. The initial multimode theory indicates that a linear coupling between several dominant modes, arising from the interaction of the subdynamic system with a magnon bath, plays an essential role in the generation of various multimode behaviors, such as mode hopping and mode coexistence. In this work, we derive a set of rate equations to describe the dynamics of coupled magneto-dynamic modes in a nanocontact spin-torque oscillator. Here, expressions for both linear and nonlinear coupling terms are obtained, whichmore » allow us to analyze the dependence of the coupled dynamic behaviors of modes on external experimental conditions as well as intrinsic magnetic properties. For a minimal two-mode system, we further map the energy and phase difference of the two modes onto a two-dimensional phase space and demonstrate in the phase portraits how the manifolds of periodic orbits and fixed points vary with an external magnetic field as well as with the temperature.« less
Tunable Mode Coupling in Nanocontact Spin-Torque Oscillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Steven S. -L.; Iacocca, Ezio; Heinonen, Olle
Recent experiments on spin-torque oscillators have revealed interactions between multiple magneto-dynamic modes, including mode coexistence, mode hopping, and temperature-driven crossover between modes. The initial multimode theory indicates that a linear coupling between several dominant modes, arising from the interaction of the subdynamic system with a magnon bath, plays an essential role in the generation of various multimode behaviors, such as mode hopping and mode coexistence. In this work, we derive a set of rate equations to describe the dynamics of coupled magneto-dynamic modes in a nanocontact spin-torque oscillator. Here, expressions for both linear and nonlinear coupling terms are obtained, whichmore » allow us to analyze the dependence of the coupled dynamic behaviors of modes on external experimental conditions as well as intrinsic magnetic properties. For a minimal two-mode system, we further map the energy and phase difference of the two modes onto a two-dimensional phase space and demonstrate in the phase portraits how the manifolds of periodic orbits and fixed points vary with an external magnetic field as well as with the temperature.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Qingyong, E-mail: mengqingyong@dicp.ac.cn; Meyer, Hans-Dieter, E-mail: hans-dieter.meyer@pci.uni-heidelberg.de
2014-09-28
Employing the multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) method in conjunction with the multistate multimode vibronic coupling Hamiltonian (MMVCH) model, we perform a full dimensional (9D) quantum dynamical study on the simplest Criegee intermediate, formaldehyde oxide, in five lower-lying singlet electronic states. The ultraviolet (UV) spectrum is then simulated by a Fourier transform of the auto-correlation function. The MMVCH model is built based on extensive MRCI(8e,8o)/aug-cc-pVTZ calculations. To ensure a fast convergence of the final calculations, a large number of ML-MCTDH test calculations is performed to find an appropriate multilayer separations (ML-trees) of the ML-MCTDH nuclear wave functions, and the dynamicalmore » calculations are carefully checked to ensure that the calculations are well converged. To compare the computational efficiency, standard MCTDH simulations using the same Hamiltonian are also performed. A comparison of the MCTDH and ML-MCTDH calculations shows that even for the present not-too-large system (9D here) the ML-MCTDH calculations can save a considerable amount of computational resources while producing identical spectra as the MCTDH calculations. Furthermore, the present theoretical B{sup ~} {sup 1}A{sup ′}←X{sup ~} {sup 1}A{sup ′} UV spectral band and the corresponding experimental measurements [J. M. Beames, F. Liu, L. Lu, and M. I. Lester, J. Am. Chem. Soc. 134, 20045–20048 (2012); L. Sheps, J. Phys. Chem. Lett. 4, 4201–4205 (2013); W.-L. Ting, Y.-H. Chen, W. Chao, M. C. Smith, and J. J.-M. Lin, Phys. Chem. Chem. Phys. 16, 10438–10443 (2014)] are discussed. To the best of our knowledge, this is the first theoretical UV spectrum simulated for this molecule including nuclear motion beyond an adiabatic harmonic approximation.« less
Cotton, Stephen J.; Miller, William H.
2016-10-14
Previous work has shown how a symmetrical quasi-classical (SQC) windowing procedure can be used to quantize the initial and final electronic degrees of freedom in the Meyer-Miller (MM) classical vibronic (i.e, nuclear + electronic) Hamiltonian, and that the approach provides a very good description of electronically non-adiabatic processes within a standard classical molecular dynamics framework for a number of benchmark problems. This study explores application of the SQC/MM approach to the case of very weak non-adiabatic coupling between the electronic states, showing (as anticipated) how the standard SQC/MM approach used to date fails in this limit, and then devises amore » new SQC windowing scheme to deal with it. Finally, application of this new SQC model to a variety of realistic benchmark systems shows that the new model not only treats the weak coupling case extremely well, but it is also seen to describe the “normal” regime (of electronic transition probabilities ≳ 0.1) even more accurately than the previous “standard” model.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cotton, Stephen J.; Miller, William H.
Previous work has shown how a symmetrical quasi-classical (SQC) windowing procedure can be used to quantize the initial and final electronic degrees of freedom in the Meyer-Miller (MM) classical vibronic (i.e, nuclear + electronic) Hamiltonian, and that the approach provides a very good description of electronically non-adiabatic processes within a standard classical molecular dynamics framework for a number of benchmark problems. This study explores application of the SQC/MM approach to the case of very weak non-adiabatic coupling between the electronic states, showing (as anticipated) how the standard SQC/MM approach used to date fails in this limit, and then devises amore » new SQC windowing scheme to deal with it. Finally, application of this new SQC model to a variety of realistic benchmark systems shows that the new model not only treats the weak coupling case extremely well, but it is also seen to describe the “normal” regime (of electronic transition probabilities ≳ 0.1) even more accurately than the previous “standard” model.« less
Lynch, Michael S; Slenkamp, Karla M; Cheng, Mark; Khalil, Munira
2012-07-05
Obtaining a detailed description of photochemical reactions in solution requires measuring time-evolving structural dynamics of transient chemical species on ultrafast time scales. Time-resolved vibrational spectroscopies are sensitive probes of molecular structure and dynamics in solution. In this work, we develop doubly resonant fifth-order nonlinear visible-infrared spectroscopies to probe nonequilibrium vibrational dynamics among coupled high-frequency vibrations during an ultrafast charge transfer process using a heterodyne detection scheme. The method enables the simultaneous collection of third- and fifth-order signals, which respectively measure vibrational dynamics occurring on electronic ground and excited states on a femtosecond time scale. Our data collection and analysis strategy allows transient dispersed vibrational echo (t-DVE) and dispersed pump-probe (t-DPP) spectra to be extracted as a function of electronic and vibrational population periods with high signal-to-noise ratio (S/N > 25). We discuss how fifth-order experiments can measure (i) time-dependent anharmonic vibrational couplings, (ii) nonequilibrium frequency-frequency correlation functions, (iii) incoherent and coherent vibrational relaxation and transfer dynamics, and (iv) coherent vibrational and electronic (vibronic) coupling as a function of a photochemical reaction.
NASA Astrophysics Data System (ADS)
Oliveira, Eliezer Fernando; Shi, Junqing; Lavarda, Francisco Carlos; Lüer, Larry; Milián-Medina, Begoña; Gierschner, Johannes
2017-07-01
A time-dependent density functional theory study is performed to reveal the excited state absorption (ESA) features of distyrylbenzene (DSB), a prototype π-conjugated organic oligomer. Starting with a didactic insight to ESA based on simple molecular orbital and configuration considerations, the performance of various density functional theory functionals is tested to reveal the full vibronic ESA features of DSB at short and long probe delay times.
Temperature-dependent conformations of exciton-coupled Cy3 dimers in double-stranded DNA
NASA Astrophysics Data System (ADS)
Kringle, Loni; Sawaya, Nicolas P. D.; Widom, Julia; Adams, Carson; Raymer, Michael G.; Aspuru-Guzik, Alán; Marcus, Andrew H.
2018-02-01
Understanding the properties of electronically interacting molecular chromophores, which involve internally coupled electronic-vibrational motions, is important to the spectroscopy of many biologically relevant systems. Here we apply linear absorption, circular dichroism, and two-dimensional fluorescence spectroscopy to study the polarized collective excitations of excitonically coupled cyanine dimers (Cy3)2 that are rigidly positioned within the opposing sugar-phosphate backbones of the double-stranded region of a double-stranded (ds)-single-stranded (ss) DNA fork construct. We show that the exciton-coupling strength of the (Cy3)2-DNA construct can be systematically varied with temperature below the ds-ss DNA denaturation transition. We interpret spectroscopic measurements in terms of the Holstein vibronic dimer model, from which we obtain information about the local conformation of the (Cy3)2 dimer, as well as the degree of static disorder experienced by the Cy3 monomer and the (Cy3)2 dimer probe locally within their respective DNA duplex environments. The properties of the (Cy3)2-DNA construct we determine suggest that it may be employed as a useful model system to test fundamental concepts of protein-DNA interactions and the role of electronic-vibrational coherence in electronic energy migration within exciton-coupled bio-molecular arrays.
Spatial Combining of Laser-Diode Beams for Pumping an NPRO
NASA Technical Reports Server (NTRS)
Gelsinger, Paul; Liu, Duncan; Mulder, Jerry; Aguayo, Francisco
2008-01-01
A free-space optical beam combiner now undergoing development makes it possible to use the outputs of multiple multimode laser diodes to pump a neodymium-doped yttrium aluminum garnet (Nd:YAG) non-planar ring oscillator (NPRO) laser while ensuring that the laser operates at only a single desired frequency. Heretofore, a Nd:YAG NPRO like the present one has been pumped by a single multimode laser-diode beam delivered via an optical fiber. It would be desirable to use multiple pump laser diodes to increase reliability beyond that obtainable from a single pump laser diode. However, as explained in this article, simplistically coupling multiple multimode laser-diode beams through a fiber-optic combiner would entail a significant reduction in coupling efficiency, and lasing would occur at one or more other frequencies in addition to the single desired frequency. To minimize coupling loss, one must ensure that the NA (approximately equal to 0.3) of the combined laser-diode beams is less than the NA of the fiber. The A(Omega) of the laser-diode beam in the slow-axis plane is 1/1.3 as large as that of the fiber. This A(Omega) is small enough to enable efficient coupling of light into the optical fiber, but too large for combining of beams in the slow-axis plane. Therefore, a pair of cylindrical lenses is used to cancel the slow-axis plane magnification introduced by the on-cylindrical lenses used to effect magnification in the fast-axis plane.
Zagidullin, M V; Pershin, A A; Azyazov, V N; Mebel, A M
2015-12-28
Experimental and theoretical studies of collision induced emission of singlet oxygen molecules O2(a(1)Δg) in the visible range have been performed. The rate constants, half-widths, and position of peaks for the emission bands of the (O2(a(1)Δg))2 collisional complex centered around 634 nm (2) and 703 nm (3) have been measured in the temperature range of 90-315 K using a flow-tube apparatus that utilized a gas-liquid chemical singlet oxygen generator. The absolute values of the spontaneous emission rate constants k2 and k3 are found to be similar, with the k3/k2 ratio monotonically decreasing from 1.1 at 300 K to 0.96 at 90 K. k2 slowly decreases with decreasing temperature but a sharp increase in its values is measured below 100 K. The experimental results were rationalized in terms of ab initio calculations of the ground and excited potential energy and transition dipole moment surfaces of singlet electronic states of the (O2)2 dimole, which were utilized to compute rate constants k2 and k3 within a statistical model. The best theoretical results reproduced experimental rate constants with the accuracy of under 40% and correctly described the observed temperature dependence. The main contribution to emission process (2), which does not involve vibrational excitation of O2 molecules at the ground electronic level, comes from the spin- and symmetry-allowed 1(1)Ag←(1)B3u transition in the rectangular H configuration of the dimole. Alternatively, emission process (3), in which one of the monomers becomes vibrationally excited in the ground electronic state, is found to be predominantly due to the vibronically allowed 1(1)Ag←2(1)Ag transition induced by the asymmetric O-O stretch vibration in the collisional complex. The strong vibronic coupling between nearly degenerate excited singlet states of the dimole makes the intensities of vibronically and symmetry-allowed transitions comparable and hence the rate constants k2 and k3 close to one another.
Joint sparse representation for robust multimodal biometrics recognition.
Shekhar, Sumit; Patel, Vishal M; Nasrabadi, Nasser M; Chellappa, Rama
2014-01-01
Traditional biometric recognition systems rely on a single biometric signature for authentication. While the advantage of using multiple sources of information for establishing the identity has been widely recognized, computational models for multimodal biometrics recognition have only recently received attention. We propose a multimodal sparse representation method, which represents the test data by a sparse linear combination of training data, while constraining the observations from different modalities of the test subject to share their sparse representations. Thus, we simultaneously take into account correlations as well as coupling information among biometric modalities. A multimodal quality measure is also proposed to weigh each modality as it gets fused. Furthermore, we also kernelize the algorithm to handle nonlinearity in data. The optimization problem is solved using an efficient alternative direction method. Various experiments show that the proposed method compares favorably with competing fusion-based methods.
Effect of external index of refraction on multimode fiber couplers.
Wang, G Z; Murphy, K A; Claus, R O
1995-12-20
The dependence of the performance of fused-taper multimode fiber couplers on the refractive index of the material surrounding the taper region has been investigated both theoretically and experimentally. It has been identified that for a 2 × 2 multimode fiber coupler there is a range of output-power-coupling ratios for which the effect of the external refractive index is negligible. When the coupler is tapered beyond this region, the performance becomes dependent on the external index of refraction and lossy. To analyze the multimode coupler-loss mechanism, we develop a two-dimensional ray-optics model that incorporates trapped cladding-mode loss and core-mode loss through frustrated total internal reflection.
Computer-simulation results support the experimental observations. Related issues such as coupler fabrication and packaging are also discussed.
Multi-focus beam shaping of high power multimode lasers
NASA Astrophysics Data System (ADS)
Laskin, Alexander; Volpp, Joerg; Laskin, Vadim; Ostrun, Aleksei
2017-08-01
Beam shaping of powerful multimode fiber lasers, fiber-coupled solid-state and diode lasers is of great importance for improvements of industrial laser applications. Welding, cladding with millimetre scale working spots benefit from "inverseGauss" intensity profiles; performance of thick metal sheet cutting, deep penetration welding can be enhanced when distributing the laser energy along the optical axis as more efficient usage of laser energy, higher edge quality and reduction of the heat affected zone can be achieved. Building of beam shaping optics for multimode lasers encounters physical limitations due to the low beam spatial coherence of multimode fiber-coupled lasers resulting in big Beam Parameter Products (BPP) or M² values. The laser radiation emerging from a multimode fiber presents a mixture of wavefronts. The fiber end can be considered as a light source which optical properties are intermediate between a Lambertian source and a single mode laser beam. Imaging of the fiber end, using a collimator and a focusing objective, is a robust and widely used beam delivery approach. Beam shaping solutions are suggested in form of optics combining fiber end imaging and geometrical separation of focused spots either perpendicular to or along the optical axis. Thus, energy of high power lasers is distributed among multiple foci. In order to provide reliable operation with multi-kW lasers and avoid damages the optics are designed as refractive elements with smooth optical surfaces. The paper presents descriptions of multi-focus optics as well as examples of intensity profile measurements of beam caustics and application results.
Hyperfine interaction constants of 14NO2 in 14 500-16 800 cm-1 energy region
NASA Astrophysics Data System (ADS)
Tada, Kohei; Hirata, Michihiro; Kasahara, Shunji
2017-10-01
We observed hyperfine-resolved high-resolution fluorescence excitation spectra of k = 0, N = 1 ← 0 transitions in 82 vibronic bands of the à 2B2 ← X ˜ 2A1 system of 14NO2 in the 14 500-16 800 cm-1 region by crossing a jet-cooled molecular beam and a single-mode dye laser beam at right angles. We determined hyperfine interaction constants of the lower and upper states for all the observed vibronic bands based on the analysis of the hyperfine structures of k = 0, N = 1 ← 0 transitions. Most of the determined Fermi contact interaction constants were found to be distributed in 0.0013-0.0038 cm-1, which are intermediate in magnitude between those in lower and higher energy region reported by other groups. A sharp decreasing of the Fermi contact interaction constant was found in 16 200-16 600 cm-1, and it may be caused by the interaction with the dark C ˜ 2A2 state. The hyperfine interaction constants are powerful clues to obtain reliable vibronic assignment. We tentatively assigned vibronic bands located at 14 836 cm-1, 15 586 cm-1, and 16 322 cm-1 as the transitions to the intrinsic (0,7,0), (0,8,0), and (0,9,0) vibrational levels of the à 2B2 state, respectively.
Lei, Yi; Li, Jianqiang; Wu, Rui; Fan, Yuting; Fu, Songnian; Yin, Feifei; Dai, Yitang; Xu, Kun
2017-06-01
Based on the observed random fluctuation phenomenon of speckle pattern across multimode fiber (MMF) facet and received optical power distribution across three output ports, we experimentally investigate the statistic characteristics of a 3×3 radio frequency multiple-input multiple-output (MIMO) channel enabled by mode division multiplexing in a conventional 50 µm MMF using non-mode-selective three-dimensional waveguide photonic lanterns as mode multiplexer and demultiplexer. The impacts of mode coupling on the MIMO channel coefficients, channel matrix, and channel capacity have been analyzed over different fiber lengths. The results indicate that spatial multiplexing benefits from the greater fiber length with stronger mode coupling, despite a higher optical loss.
NASA Astrophysics Data System (ADS)
Shvartsburg, Alexandre A.; Siu, K. W. Michael
2001-06-01
Modeling the delayed dissociation of clusters had been over the last decade a frontline development area in chemical physics. It is of fundamental interest how statistical kinetics methods previously validated for regular molecules and atomic nuclei may apply to clusters, as this would help to understand the transferability of statistical models for disintegration of complex systems across various classes of physical objects. From a practical perspective, accurate simulation of unimolecular decomposition is critical for the extraction of true thermochemical values from measurements on the decay of energized clusters. Metal clusters are particularly challenging because of the multitude of low-lying electronic states that are coupled to vibrations. This has previously been accounted for assuming the average electronic structure of a conducting cluster approximated by the levels of electron in a cavity. While this provides a reasonable time-averaged description, it ignores the distribution of instantaneous electronic structures in a "boiling" cluster around that average. Here we set up a new treatment that incorporates the statistical distribution of electronic levels around the average picture using random matrix theory. This approach faithfully reflects the completely chaotic "vibronic soup" nature of hot metal clusters. We found that the consideration of electronic level statistics significantly promotes electronic excitation and thus increases the magnitude of its effect. As this excitation always depresses the decay rates, the inclusion of level statistics results in slower dissociation of metal clusters.
Fiber comb filters based on UV-writing Bragg gratings in graded-index multimode fibers
NASA Astrophysics Data System (ADS)
Liu, Yu; Lit, John; Gu, Xijia; Wei, Li
2005-10-01
We report a new kind of comb filters based on fiber Bragg gratings in graded-index multimode fibers. It produces two groups of spectra with a total of 36 reflection peaks that correspond to 18 principal modes and cross coupled modes. The mode indices and wavelength spacings have been investigated theoretically and experimentally. This kind of comb filters may be used to construct multi-wavelength light sources for sensing, optical communications, and instrumentations
Few Mode Multicore Photonic Lantern Multiplexer
2016-01-01
2015, Valencia (2015). [6] S. G. Leon-Saval, T. A. Birks, J. Bland- Hawthorn , and M. Englund, “Multimode fiber devices with single-mode performance...Opt. Lett. 30, 2545–2547 (2005). [7] D. Noordegraaf, P. M. W. Skovgaard, M. D. Nielsen, and J. Bland- Hawthorn , “Efficient multi-mode to single mode...coupling in a photonic lantern,” Opt. Express 17, 1988–1994 (2009). [8] S. G. Leon-Saval, A. Argyros, and J. Bland- Hawthorn , “Photonic lanterns: a
Huang, Yawen; Shao, Ling; Frangi, Alejandro F
2018-03-01
Multi-modality medical imaging is increasingly used for comprehensive assessment of complex diseases in either diagnostic examinations or as part of medical research trials. Different imaging modalities provide complementary information about living tissues. However, multi-modal examinations are not always possible due to adversary factors, such as patient discomfort, increased cost, prolonged scanning time, and scanner unavailability. In additionally, in large imaging studies, incomplete records are not uncommon owing to image artifacts, data corruption or data loss, which compromise the potential of multi-modal acquisitions. In this paper, we propose a weakly coupled and geometry co-regularized joint dictionary learning method to address the problem of cross-modality synthesis while considering the fact that collecting the large amounts of training data is often impractical. Our learning stage requires only a few registered multi-modality image pairs as training data. To employ both paired images and a large set of unpaired data, a cross-modality image matching criterion is proposed. Then, we propose a unified model by integrating such a criterion into the joint dictionary learning and the observed common feature space for associating cross-modality data for the purpose of synthesis. Furthermore, two regularization terms are added to construct robust sparse representations. Our experimental results demonstrate superior performance of the proposed model over state-of-the-art methods.
Silicone polymer waveguide bridge for Si to glass optical fibers
NASA Astrophysics Data System (ADS)
Kruse, Kevin L.; Riegel, Nicholas J.; Middlebrook, Christopher T.
2015-03-01
Multimode step index polymer waveguides achieve high-speed, (<10 Gb/s) low bit-error-rates for onboard and embedded circuit applications. Using several multimode waveguides in parallel enables overall capacity to reach beyond 100 Gb/s, but the intrinsic bandwidth limitations due to intermodal dispersion limit the data transmission rates within multimode waveguides. Single mode waveguides, where intermodal dispersion is not present, have the potential to further improve data transmission rates. Single mode waveguide size is significantly less than their multimode counterparts allowing for greater density of channels leading to higher bandwidth capacity per layer. Challenges in implementation of embedded single mode waveguides within printed circuit boards involves mass production fabrication techniques to create precision dimensional waveguides, precision alignment tolerances necessary to launch a mode, and effective coupling between adjoining waveguides and devices. An emerging need in which single mode waveguides can be utilized is providing low loss fan out techniques and coupling between on-chip transceiver devices containing Si waveguide structures to traditional single mode optical fiber. A polymer waveguide bridge for Si to glass optical fibers can be implemented using silicone polymers at 1310 nm. Fabricated and measured prototype devices with modeling and simulation analysis are reported for a 12 member 1-D tapered PWG. Recommendations and designs are generated with performance factors such as numerical aperture and alignment tolerances.
NASA Astrophysics Data System (ADS)
Averkiev, Nikita S.; Bersuker, Isaac B.; Gudkov, Vladimir V.; Zhevstovskikh, Irina V.; Sarychev, Maksim N.; Zherlitsyn, Sergei; Yasin, Shadi; Shakurov, Gilman S.; Ulanov, Vladimir A.; Surikov, Vladimir T.
2017-11-01
A new approach to evaluate the relaxation contribution to the total elastic moduli for crystals with Jahn-Teller (JT) impurities is worked out and applied to the analysis of the experimentally measured ultrasound velocity and attenuation in SrF2:Cr2+. Distinguished from previous work, the background adiabatic contribution to the moduli, important for revealing the impurity relaxation contribution, is taken into account. The temperature dependence of the relaxation time for transitions between the equivalent configurations of the JT centers has been obtained, and the activation energy for the latter in SrF2:Cr2+, as well as the linear vibronic coupling constant have been evaluated.
NASA Astrophysics Data System (ADS)
Marin, Timothy W.; Janik, Ireneusz; Bartels, David M.; Chipman, Daniel M.
2017-05-01
The nature and extent of hydrogen bonding in water has been scrutinized for decades, including how it manifests in optical properties. Here we report vacuum ultraviolet absorption spectra for the lowest-lying electronic state of subcritical and supercritical water. For subcritical water, the spectrum redshifts considerably with increasing temperature, demonstrating the gradual breakdown of the hydrogen-bond network. Tuning the density at 381 °C gives insight into the extent of hydrogen bonding in supercritical water. The known gas-phase spectrum, including its vibronic structure, is duplicated in the low-density limit. With increasing density, the spectrum blueshifts and the vibronic structure is quenched as the water monomer becomes electronically perturbed. Fits to the supercritical water spectra demonstrate consistency with dimer/trimer fractions calculated from the water virial equation of state and equilibrium constants. Using the known water dimer interaction potential, we estimate the critical distance between molecules (ca. 4.5 Å) needed to explain the vibronic structure quenching.
Marin, Timothy W.; Janik, Ireneusz; Bartels, David M.; ...
2017-05-17
The nature and extent of hydrogen bonding in water has been scrutinized for decades, including how it manifests in optical properties. Here we report vacuum ultraviolet absorption spectra for the lowest-lying electronic state of subcritical and supercritical water. For subcritical water, the spectrum redshifts considerably with increasing temperature, demonstrating the gradual breakdown of the hydrogen-bond network. Tuning the density at 381°C gives insight into the extent of hydrogen bonding in supercritical water. The known gas-phase spectrum, including its vibronic structure, is duplicated in the low-density limit. With increasing density, the spectrum blueshifts and the vibronic structure is quenched as themore » water monomer becomes electronically perturbed. Fits to the supercritical water spectra demonstrate consistency with dimer/trimer fractions calculated from the water virial equation of state and equilibrium constants. As a result, using the known water dimer interaction potential, we estimate the critical distance between molecules (ca. 4.5 Å) needed to explain the vibronic structure quenching.« less
Analysis and design of fiber-coupled high-power laser diode array
NASA Astrophysics Data System (ADS)
Zhou, Chongxi; Liu, Yinhui; Xie, Weimin; Du, Chunlei
2003-11-01
A conclusion that a single conventional optical system could not realize fiber coupled high-power laser diode array is drawn based on the BPP of laser beam. According to the parameters of coupled fiber, a method to couple LDA beams into a single multi-mode fiber including beams collimating, shaping, focusing and coupling is present. The divergence angles after collimating are calculated and analyzed; the shape equation of the collimating micro-lenses array is deprived. The focusing lens is designed. A fiber coupled LDA result with the core diameter of 800 um and numeric aperture of 0.37 is gotten.
Numerical modelling of multimode fibre-optic communication lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sidelnikov, O S; Fedoruk, M P; Sygletos, S
The results of numerical modelling of nonlinear propagation of an optical signal in multimode fibres with a small differential group delay are presented. It is found that the dependence of the error vector magnitude (EVM) on the differential group delay can be reduced by increasing the number of ADC samples per symbol in the numerical implementation of the differential group delay compensation algorithm in the receiver. The possibility of using multimode fibres with a small differential group delay for data transmission in modern digital communication systems is demonstrated. It is shown that with increasing number of modes the strong couplingmore » regime provides a lower EVM level than the weak coupling one. (fibre-optic communication lines)« less
Robustness of a multimodal piezoelectric damping involving the electrical analogue of a plate
NASA Astrophysics Data System (ADS)
Lossouarn, Boris; Cunefare, Kenneth A.; Aucejo, Mathieu; Deü, Jean-François
2016-04-01
Multimodal passive damping of a mechanical structure can be implemented by a coupling to a secondary structure exhibiting similar modal properties. When considering a piezoelectric coupling, the secondary structure is an electrical network. A suitable topology for such a network can be obtained by a finite difference formulation of the mechanical equations, followed by a direct electromechanical analogy. This procedure is applied to the Kirchhoff-Love theory in order to find the electrical analogue of a clamped plate. The passive electrical network is implemented with inductors, transformers and the inherent capacitance of the piezoelectric patches. The electrical resonances are tuned to approach those of several mechanical modes simultaneously. This yields a broadband reduction of the plate vibrations through the array of interconnected piezoelectric patches. The robustness of the control strategy is evaluated by introducing perturbations in the mechanical or electrical designs. A non-optimal tuning is considered by way of a uniform variation of the network inductance. Then, the effect of local or boundary modifications of the electromechanical system is observed experimentally. In the end, the use of an analogous electrical network appears as an efficient and robust solution for the multimodal control of a plate.
Multimode intravascular RF coil for MRI-guided interventions.
Kurpad, Krishna N; Unal, Orhan
2011-04-01
To demonstrate the feasibility of using a single intravascular radiofrequency (RF) probe connected to the external magnetic resonance imaging (MRI) system via a single coaxial cable to perform active tip tracking and catheter visualization and high signal-to-noise ratio (SNR) intravascular imaging. A multimode intravascular RF coil was constructed on a 6F balloon catheter and interfaced to a 1.5T MRI scanner via a decoupling circuit. Bench measurements of coil impedances were followed by imaging experiments in saline and phantoms. The multimode coil behaves as an inductively coupled transmit coil. The forward-looking capability of 6 mm was measured. A greater than 3-fold increase in SNR compared to conventional imaging using optimized external coil was demonstrated. Simultaneous active tip tracking and catheter visualization was demonstrated. It is feasible to perform 1) active tip tracking, 2) catheter visualization, and 3) high SNR imaging using a single multimode intravascular RF coil that is connected to the external system via a single coaxial cable. Copyright © 2011 Wiley-Liss, Inc.
Multi-mode Intravascular RF Coil for MRI-guided Interventions
Kurpad, Krishna N.; Unal, Orhan
2011-01-01
Purpose To demonstrate the feasibility of using a single intravascular RF probe connected to the external MRI system via a single coaxial cable to perform active tip tracking and catheter visualization, and high SNR intravascular imaging. Materials and Methods A multi-mode intravascular RF coil was constructed on a 6F balloon catheter and interfaced to a 1.5T MRI scanner via a decoupling circuit. Bench measurements of coil impedances were followed by imaging experiments in saline and phantoms. Results The multi-mode coil behaves as an inductively-coupled transmit coil. Forward looking capability of 6mm is measured. Greater than 3-fold increase in SNR compared to conventional imaging using optimized external coil is demonstrated. Simultaneous active tip tracking and catheter visualization is demonstrated. Conclusions It is feasible to perform 1) active tip tracking, 2) catheter visualization, and 3) high SNR imaging using a single multi-mode intravascular RF coil that is connected to the external system via a single coaxial cable. PMID:21448969
Coupled opto-electronic oscillator
NASA Technical Reports Server (NTRS)
Yao, X. Steve (Inventor); Maleki, Lute (Inventor)
1999-01-01
A coupled opto-electronic oscillator that directly couples a laser oscillation with an electronic oscillation to simultaneously achieve a stable RF oscillation at a high frequency and ultra-short optical pulsation by mode locking with a high repetition rate and stability. Single-mode selection can be achieved even with a very long opto-electronic loop. A multimode laser can be used to pump the electronic oscillation, resulting in a high operation efficiency. The optical and the RF oscillations are correlated to each other.
Ogata, Satoshi; Kianmanesh, Reza; Varma, Deepak; Belghiti, Jacques
2005-01-01
Complete resection of colorectal liver metastases (LM) has been the only curative treatment. However, when LM are multiple and bilobar, only a few patients are candidates for curative surgery. We report on a 53-year-old woman with synchronous multiple and bilobar LM from sigmoidal cancer who became resectable after a multimodal strategy including preoperative systemic chemotherapy and two-step surgery. The spectacular decrease in tumor size after systemic chemotherapy led us to perform two-step surgery, including right portal-vein ligation and left liver metastasectomies, with a coupled saline-radiofrequency device, in order to improve the surgical margin. An extended right hepatectomy was performed later to remove the remaining right liver lesions. The patient was discharged after 28 days without major complication and was recurrence-free 14 months later. We conclude that improving the surgical margin with a coupled saline-radiofrequency device is feasible and effective, avoiding small remnant liver even after multiple tumorectomies. The multimodal strategy, including preoperative chemotherapy, two-step surgery, and tumorectomies, using a coupled saline-radiofrequency device, could increase the number of patients with diffuse bilobar liver metastases who can benefit from liver resection.
Hot Band Analysis and Kinetics Measurements for Ethynyl Radical, C_2H, in the 1.49 μm Region
NASA Astrophysics Data System (ADS)
Le, Anh T.; Hall, Gregory; Sears, Trevor
2017-06-01
Ethynyl, C_2H, is an important intermediate in combustion processes and has been widely observed in interstellar space. Spectroscopically, it is of particular interest because it possesses three low-lying electronic surfaces: a ground ^2Σ^+state, and a low-lying ^2Π excited electronic state, which splits due to the Renner-Teller effect. Vibronic coupling among these states leads to a complicated, mixed-character, energy level structure. We have previously reported work on three bands originating from the ˜{X}(0,0,0) ^2Σ ground state to excited vibronic states: two ^2Σ - ^2 Σ transitions at 6696 and 7088 \\wn and a ^2Π - ^2Σ transition at 7108 \\wn. In this work, the radicals were formed in a hot, non-thermal, population distribution by u.v. pulsed laser photolysis of a precursor. Kinetic measurements of the time-evolution of the ground state populations following collisional relaxation and reactive loss were also made, using some of the stronger rotational lines observed. Time-dependent signals in mixtures containing a variable concentration of precursor in argon suggested that vibronically hot C_2H radicals were less reactive than the relaxed, thermalized, radical. Two additional hot bands originating in states ˜{X}(0,1^1,0) ^2Π and ˜{X}(0,2^0,0) ^2Σ, have now been identified in the same spectral region. In a new series of experiments, we have measured the kinetics of formation and decay of representative levels involving all the assigned transitions, i.e. originating in ˜{X}(0,v_2,0), with v_2 =0 ,1, and 2, in various concentrations of mixtures of precursor, inert gas and hydrogen. The new spectra also show greatly improved signal-to-noise ratio in comparison to our previous work, due to the use of a transient FM detection scheme, and additional spectral assignments seem likely. Both kinetics and spectroscopic results will be described in the talk. Acknowledgments: Work at Brookhaven National Laboratory was carried out under Contract No. DE-SC0012704 with the U.S. Department of Energy, Office of Science, and supported by its Division of Chemical Sciences, Geosciences and Biosciences within the Office of Basic Energy Sciences. A. T. Le, G. E. Hall, T. J. Sears, J. Chem. Phys. 145 074306, 2016
The Spectroscopy and Photophysics of Aniline, 2-AMINOPYRIDINE, and 3-AMINOPYRIDINE
NASA Astrophysics Data System (ADS)
Kim, Byungjoo
1995-01-01
Two-photon ionization photoelectron spectroscopic techniques have been employed in concert with a picosecond laser system and molecular beam machine to study the vibrational structure of molecular ions and the intramolecular dynamics of optically prepared intermediate states. From photoelectron spectra of 2-aminopyridine via various S_1 vibronic resonances, the frequencies of several vibrations in the ionic state are assigned. The ionization potential of the molecule is found to be 8.099 +/- 0.003 eV. Using two-color ionization techniques, the electronic overlap effects in the photoionization of excited molecules have been studied, on the example of 2-aminopyridine, 3-aminopyridine, and aniline. The molecules are excited to their S_1 states, and ionized by a 200 nm laser pulse within 50 ps. The spectra of the aminopyridines show a striking absence of transitions to excited electronic states of the ions, indicating small electronic overlap factors in the ionization transitions and very little configuration interaction in the S _1 states. The spectra of aniline show the vibrationally resolved first excited electronic state band of the ion, which is very weak compared to the ground electronic state band, indicating a small amount of orbital mixing in the S_1 state. The vibrational peaks in the band were assigned by comparison of the spectra via two different vibronic resonances. The observations demonstrate that electronic overlap effects play a very general role in the ionization of polyatomic molecules in electronically excited states, and that orbital mixing patterns of the excited electronic states may become observable by projecting molecular electronic wavefunctions onto the ion states. In the time-delayed experiments for these molecules, all spectra reveal only one product of the nonradiative relaxation process. Careful considerations of electronic and vibrational overlap propensity rules for the ionization step lead to the conclusion that the dominant nonradiative decay mechanism in these molecules is the intersystem crossing to excited vibrational states of the T_1 state. This technique has been applied to study the predissociation process of CS_2 in the S_3 vibronic levels near 200 nm. The spectra show extensive vibrational structure, with unusual activity in the antisymmetric vibrations, indicating the possibility of level mixing in the intermediate state by the IVR couplings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zagidullin, M. V., E-mail: marsel@fian.smr.ru; Pershin, A. A., E-mail: anchizh93@gmail.com; Azyazov, V. N., E-mail: azyazov@ssau.ru
Experimental and theoretical studies of collision induced emission of singlet oxygen molecules O{sub 2}(a{sup 1}Δ{sub g}) in the visible range have been performed. The rate constants, half-widths, and position of peaks for the emission bands of the (O{sub 2}(a{sup 1}Δ{sub g})){sub 2} collisional complex centered around 634 nm (2) and 703 nm (3) have been measured in the temperature range of 90–315 K using a flow-tube apparatus that utilized a gas-liquid chemical singlet oxygen generator. The absolute values of the spontaneous emission rate constants k{sub 2} and k{sub 3} are found to be similar, with the k{sub 3}/k{sub 2} ratiomore » monotonically decreasing from 1.1 at 300 K to 0.96 at 90 K. k{sub 2} slowly decreases with decreasing temperature but a sharp increase in its values is measured below 100 K. The experimental results were rationalized in terms of ab initio calculations of the ground and excited potential energy and transition dipole moment surfaces of singlet electronic states of the (O{sub 2}){sub 2} dimole, which were utilized to compute rate constants k{sub 2} and k{sub 3} within a statistical model. The best theoretical results reproduced experimental rate constants with the accuracy of under 40% and correctly described the observed temperature dependence. The main contribution to emission process (2), which does not involve vibrational excitation of O{sub 2} molecules at the ground electronic level, comes from the spin- and symmetry-allowed 1{sup 1}A{sub g}←{sup 1}B{sub 3u} transition in the rectangular H configuration of the dimole. Alternatively, emission process (3), in which one of the monomers becomes vibrationally excited in the ground electronic state, is found to be predominantly due to the vibronically allowed 1{sup 1}A{sub g}←2{sup 1}A{sub g} transition induced by the asymmetric O–O stretch vibration in the collisional complex. The strong vibronic coupling between nearly degenerate excited singlet states of the dimole makes the intensities of vibronically and symmetry-allowed transitions comparable and hence the rate constants k{sub 2} and k{sub 3} close to one another.« less
Multimodal Nonlinear Optical Microscopy
Yue, Shuhua; Slipchenko, Mikhail N.; Cheng, Ji-Xin
2013-01-01
Because each nonlinear optical (NLO) imaging modality is sensitive to specific molecules or structures, multimodal NLO imaging capitalizes the potential of NLO microscopy for studies of complex biological tissues. The coupling of multiphoton fluorescence, second harmonic generation, and coherent anti-Stokes Raman scattering (CARS) has allowed investigation of a broad range of biological questions concerning lipid metabolism, cancer development, cardiovascular disease, and skin biology. Moreover, recent research shows the great potential of using CARS microscope as a platform to develop more advanced NLO modalities such as electronic-resonance-enhanced four-wave mixing, stimulated Raman scattering, and pump-probe microscopy. This article reviews the various approaches developed for realization of multimodal NLO imaging as well as developments of new NLO modalities on a CARS microscope. Applications to various aspects of biological and biomedical research are discussed. PMID:24353747
Demonstration of analyzers for multimode photonic time-bin qubits
NASA Astrophysics Data System (ADS)
Jin, Jeongwan; Agne, Sascha; Bourgoin, Jean-Philippe; Zhang, Yanbao; Lütkenhaus, Norbert; Jennewein, Thomas
2018-04-01
We demonstrate two approaches for unbalanced interferometers as time-bin qubit analyzers for quantum communication, robust against mode distortions and polarization effects as expected from free-space quantum communication systems including wavefront deformations, path fluctuations, pointing errors, and optical elements. Despite strong spatial and temporal distortions of the optical mode of a time-bin qubit, entangled with a separate polarization qubit, we verify entanglement using the Negative Partial Transpose, with the measured visibility of up to 0.85 ±0.01 . The robustness of the analyzers is further demonstrated for various angles of incidence up to 0 .2∘ . The output of the interferometers is coupled into multimode fiber yielding a high system throughput of 0.74. Therefore, these analyzers are suitable and efficient for quantum communication over multimode optical channels.
Development of ClearPEM-Sonic, a multimodal mammography system for PET and Ultrasound
NASA Astrophysics Data System (ADS)
Cucciati, G.; Auffray, E.; Bugalho, R.; Cao, L.; Di Vara, N.; Farina, F.; Felix, N.; Frisch, B.; Ghezzi, A.; Juhan, V.; Jun, D.; Lasaygues, P.; Lecoq, P.; Mensah, S.; Mundler, O.; Neves, J.; Paganoni, M.; Peter, J.; Pizzichemi, M.; Siles, P.; Silva, J. C.; Silva, R.; Tavernier, S.; Tessonnier, L.; Varela, J.
2014-03-01
ClearPEM-Sonic is an innovative imaging device specifically developed for breast cancer. The possibility to work in PEM-Ultrasound multimodality allows to obtain metabolic and morphological information increasing the specificity of the exam. The ClearPEM detector is developed to maximize the sensitivity and the spatial resolution as compared to Whole-Body PET scanners. It is coupled with a 3D ultrasound system, the SuperSonic Imagine Aixplorer that improves the specificity of the exam by providing a tissue elasticity map. This work describes the ClearPEM-Sonic project focusing on the technological developments it has required, the technical merits (and limits) and the first multimodal images acquired on a dedicated phantom. It finally presents selected clinical case studies that confirm the value of PEM information.
Bianchi, S; Rajamanickam, V P; Ferrara, L; Di Fabrizio, E; Liberale, C; Di Leonardo, R
2013-12-01
The use of individual multimode optical fibers in endoscopy applications has the potential to provide highly miniaturized and noninvasive probes for microscopy and optical micromanipulation. A few different strategies have been proposed recently, but they all suffer from intrinsically low resolution related to the low numerical aperture of multimode fibers. Here, we show that two-photon polymerization allows for direct fabrication of micro-optics components on the fiber end, resulting in an increase of the numerical aperture to a value that is close to 1. Coupling light into the fiber through a spatial light modulator, we were able to optically scan a submicrometer spot (300 nm FWHM) over an extended region, facing the opposite fiber end. Fluorescence imaging with improved resolution is also demonstrated.
Selective excitation of exciton transitions in PTCDA crystals and films
NASA Astrophysics Data System (ADS)
Gangilenka, V. R.; Titova, L. V.; Smith, L. M.; Wagner, H. P.; Desilva, L. A. A.; Gisslén, L.; Scholz, R.
2010-04-01
Photoluminescence excitation studies on 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) single crystals and polycrystalline PTCDA films are compared to the calculated excitonic dispersion deduced from an exciton model including the coupling between Frenkel and charge transfer (CT) excitons along the stacking direction. For excitation energies below the 0-0 Frenkel exciton absorption band at 5 K these measurements enable the selective excitation of several CT states. The CT2 state involving stacked PTCDA molecules reveals two excitation resonances originating from different vibronic sublevels. Moreover, the fundamental transition of the CT1 exciton state delocalized over both basis molecules in the crystal unit cell has been identified from the corresponding excitation resonance. From the excitation energy dependence the fundamental transition energies of the CT2 and CT1 excitons have been deduced to occur at 1.95 and 1.98 eV, respectively. When the excitation energy exceeds ˜2.08eV , we observe a strong emission channel which is related to the indirect minimum of the lowest dispersion branch dominated by Frenkel excitons. Photoluminescence excitation spectroscopy measurements on polycrystalline PTCDA films reveal a strong CT2 signal intensity which is attributed to an increased density of defect-related CT2 states that are preferentially formed by slightly deformed or compressed stacked PTCDA molecules in the vicinity of defects or at grain boundaries. Temperature-dependent PL measurements in polycrystalline PTCDA films between 10 and 300 K at an excitation of 1.88 eV further allow a detailed investigation of the CT2 transition and its vibronic subband.
Jet-Cooled Laser-Induced Fluorescence Spectroscopy of T-Butoxy
NASA Astrophysics Data System (ADS)
Reilly, Neil J.; Cheng, Lan; Stanton, John F.; Miller, Terry A.; Liu, Jinjun
2015-06-01
The vibrational structures of the tilde A ^2A_1 and tilde X ^2E states of t-butoxy were obtained in jet-cooled laser-induced fluorescence (LIF) and dispersed fluorescence (DF) spectroscopic measurements. The observed transitions are assigned based on vibrational frequencies calculated using Complete Active Space Self-Consistent Field (CASSCF) method and the predicted Franck-Condon factors. The spin-orbit (SO) splitting was measured to be 35(5) cm-1 for the lowest vibrational level of the ground (tilde X ^2E) state and increases with increasing vibrational quantum number of the CO stretch mode. Vibronic analysis of the DF spectra suggests that Jahn-Teller (JT)-active modes of the ground-state t-butoxy radical are similar to those of methoxy and would be the same if methyl groups were replaced by hydrogen atoms. Coupled-cluster calculations show that electron delocalization, introduced by the substitution of hydrogens with methyl groups, reduces the electronic contribution of the SO splittings by only around ten percent, and a calculation on the vibronic levels based on quasidiabatic model Hamiltonian clearly attributes the relatively small SO splitting of the tilde X ^2E state of t-butoxy mainly to stronger reduction of orbital angular momentum by the JT-active modes when compared to methoxy. The rotational and fine structure of the LIF transition to the first CO stretch overtone level of the tilde A^2A_1 state has been simulated using a spectroscopic model first proposed for methoxy, yielding an accurate determination of the rotational constants of both tilde A and tilde X states.
Nonadiabatic quantum dynamics and laser control of Br2 in solid argon.
Accardi, A; Borowski, A; Kühn, O
2009-07-02
A five-dimensional reaction surface-vibronic coupling model is introduced to describe the B- to C-state predissociation dynamics of Br(2) occupying a double substitutional lattice site in a face-centered cubic argon crystal at low temperatures. The quantum dynamics driven by a Franck-Condon vertical excitation is investigated, revealing the role of matrix cage compression for efficient nonadiabatic transitions. Vibrational preexcitation of the Br(2) bond in the electronic ground state can be used to access a different regime of predissociation which does not require substantial matrix compression because the Franck-Condon window shifts into the energetic range of the B-C level crossing. Using optimal control theory, it is shown how vibrational preexcitation can be achieved via a pump-dump-type mechanism involving the repulsive C state.
NASA Astrophysics Data System (ADS)
de Oliveira, Eliane M.; Freitas, Thiago C.; Coutinho, Kaline; do N. Varella, Márcio T.; Canuto, Sylvio; Lima, Marco A. P.; Bettega, Márcio H. F.
2014-08-01
We report on the shape resonance spectra of phenol-water clusters, as obtained from elastic electron scattering calculations. Our results, along with virtual orbital analysis, indicate that the well-known indirect mechanism for hydrogen elimination in the gas phase is significantly impacted on by microsolvation, due to the competition between vibronic couplings on the solute and solvent molecules. This fact suggests how relevant the solvation effects could be for the electron-driven damage of biomolecules and the biomass delignification [E. M. de Oliveira et al., Phys. Rev. A 86, 020701(R) (2012)]. We also discuss microsolvation signatures in the differential cross sections that could help to identify the solvated complexes and access the composition of gaseous admixtures of these species.
NASA Astrophysics Data System (ADS)
Szostak, M. M.; Le Calvé, N.; Romain, F.; Pasquier, B.
1994-10-01
The polarized IR reflection spectra of the meta-nitroaniline ( m-NA) single crystal along the a, b and c crystallographic axes as well as the b and c polarized transmission spectra have been measured in the 100-400 cm -1 region. The LO-TO splitting values have been calculated from the reflection spectra by fitting them with the four parameter dielectric function. The dipole moment derivatives, relevant to dynamic effective charges, of the vibrations have also been calculated and used to check the applicability of the oriented gas model (OGM) to reflection spectra. The discrepancies from the OGM have been discussed in terms of vibronic couplings, weak hydrogen bondings (HB) and intramolecular charge transfer.
Kouchakzadeh, Ghazaleh; Nori-Shargh, Davood
2015-11-21
CCSD(T), MP2, LC-BLYP, LC-ωPBE and B3LYP methods with the Def2-TZVPP basis set and natural bond orbital (NBO) interpretations were performed to investigate the correlations between the Pseudo-Jahn-Teller Effect (PJTE) parameters [i.e. vibronic coupling constant values (F), energy gaps between reference states (Δ) and the primary force constant (K0)], structural and configurational properties, global hardness, global electronegativity, natural bond orders, stabilization energies associated with electron delocalizations and natural atomic charges of disilicon tetrafluoride (1), disilicon tetrachloride (2), disilicon tetrabromide (3) and disilicon tetraiodide (4). All levels of theory showed the trans-bent (C2h) configurations as the energy minimum structures of compounds 1-4, and the flap angles between the X2Si planes and the Si=Si bonds in the distorted (C2h) configurations decrease from compound 1 to compound 4. The negative curvatures of the ground state electronic configurations and the positive curvatures of the excited states of the adiabatic potential energy surfaces (APESs) which resulted from the mixing of the ground Ag and excited B2g states are due to the PJTE (i.e. PJT(Ag + B2g) ⊗ b2g problem). Contrary to the usual expectation, with the decrease of the energy gaps between reference states (Δ), the PJTE stabilization energy, E(PJT), decreases from compound 1 to compound 4. The canonical molecular orbital (CMO) analysis revealed that the contributions of the ψ(HOMO)(b3u) and ψL(UMO)(b1u) molecular orbitals in the vibronic coupling constant (F) decrease from compound 1 to compound 4. This fact clearly justifies the decrease of the vibronic coupling constant (F) and the primary force constant (the force constant without the PJTE) values on going from compound 1 to compound 4, leading to the decrease of the negative curvatures of the ground state electronic configuration curves of their corresponding APESs. The results obtained showed that the stabilization energies associated with the mixing of the distorted donor π(Si-Si)(b(u)) bonding and acceptor σ(Si-Si)*(b(u)) antibonding orbitals along the b2g bending distortions decrease from compound 1 to compound 4. This fact reasonably explains the increase of the Si-Si natural bond orders (nbo) on going from compound 1 to compound 4. With the increase of the Si-Si natural bond orders, the corresponding E(PJT) decreases from compound 1 to compound 4. Importantly, the variations of the global hardness (η) differences (Δ[η(C2h) - η(D2h)]) do not correlate with the trend observed for their corresponding total energy differences, justifying that the configurational properties of compounds 1-4 do not obey the maximum hardness principle. Interestingly, the trans-bent (C2h) configurations of compounds 1-4 are more electronegative than their corresponding planar (D2h) forms and the variations of their global electronegativity (χ) differences (Δ[χ(C2h) - χ(D2h)]) succeed in accounting for the decrease of the E(PJT) stabilization energies for the D2h → C2h conversion processes on going from compound 1 to compound 4.
2014-12-23
coupled for d = 2λ . Results are shown for the TE polarization , where the transverse electric field vector is pointing in the vertical direction in these...16, 42–44 (1991). 6. D. U. Noske, N. Pandit, and J. R. Taylor, “Subpicosecond soliton pulse formation from self-mode- locked erbium fibre laser using...High-Energy Pulse Propagation in Graded-Index Multimode Optical Fibers for Mode- Locked Fiber Lasers 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1
Fiber Bragg grating inscription in optical multicore fibers
NASA Astrophysics Data System (ADS)
Becker, Martin; Elsmann, Tino; Lorenz, Adrian; Spittel, Ron; Kobelke, Jens; Schuster, Kay; Rothhardt, Manfred; Latka, Ines; Dochow, Sebastian; Bartelt, Hartmut
2015-09-01
Fiber Bragg gratings as key components in telecommunication, fiber lasers, and sensing systems usually rely on the Bragg condition for single mode fibers. In special applications, such as in biophotonics and astrophysics, high light coupling efficiency is of great importance and therefore, multimode fibers are often preferred. The wavelength filtering effect of Bragg gratings in multimode fibers, however is spectrally blurred over a wide modal spectrum of the fiber. With a well-designed all solid multicore microstructured fiber a good light guiding efficiency in combination with narrow spectral filtering effect by Bragg gratings becomes possible.
Enhancement and inhibition of light tunneling mediated by resonant mode conversion.
Kartashov, Yaroslav V; Vysloukh, Victor A; Torner, Lluis
2014-02-15
We show that the rate at which light tunnels between neighboring multimode waveguides can be drastically increased or reduced by the presence of small longitudinal periodic modulations of the waveguide properties that stimulate resonant conversion between the eigenmodes of each waveguide. Such a conversion, available only in multimode guiding structures, leads to periodic power transfer into higher-order modes, whose tails may considerably overlap with neighboring waveguides. As a result, the effective coupling constant for neighboring waveguides may change by several orders of magnitude upon small variations in the longitudinal modulation parameters.
Near UV bands of jet-cooled CaO
NASA Astrophysics Data System (ADS)
Stewart, Jacob T.; Sullivan, Michael N.; Heaven, Michael C.
2016-04-01
The electronic spectrum of CaO has been recorded for the 29,800-33,150 cm-1 energy range. Jet cooling was used to obtain relatively uncongested spectra. Rotationally resolved bands have been assigned to the C1Σ+-X1Σ+ and F1∏-X transitions. These data extend the range of vibronic levels characterized for the upper states. Three additional vibronic states were observed as a short progression. One of these levels, which are of 0+ symmetry, interacts strongly with the C1Σ+, v‧ = 7 level. Possible assignments for the perturbing state are considered.
NASA Astrophysics Data System (ADS)
Kompaneets, V. V.; Vasilieva, I. A.
2017-08-01
We have quantitatively analyzed the vibronic parameters of two cross-conjugated δ-dimethylaminoketones. The presence of the -N(CH3)2, C=O, and -NO2 groups in the benzene ring has been shown to affect the manifestation of the vibronic parameters of characteristic bands that describe the state (vibrations, types of deformation upon excitation) of polyene systems with aromatic rings. Data on the influence of the nature of the substituent on the parameters of intra- and intermolecular interactions in the examined compounds have been presented.
Optimal quantum control of multimode couplings between trapped ion qubits for scalable entanglement.
Choi, T; Debnath, S; Manning, T A; Figgatt, C; Gong, Z-X; Duan, L-M; Monroe, C
2014-05-16
We demonstrate entangling quantum gates within a chain of five trapped ion qubits by optimally shaping optical fields that couple to multiple collective modes of motion. We individually address qubits with segmented optical pulses to construct multipartite entangled states in a programmable way. This approach enables high-fidelity gates that can be scaled to larger qubit registers for quantum computation and simulation.
Tang, Jin; Ke, Yajiao; He, Wei; Zhang, Xiangqun; Zhang, Wei; Li, Na; Zhang, Yongsheng; Li, Yan; Cheng, Zhaohua
2018-05-25
Antiferromagnetic spin dynamics is important for both fundamental and applied antiferromagnetic spintronic devices; however, it is rarely explored by external fields because of the strong exchange interaction in antiferromagnetic materials. Here, the photoinduced excitation of ultrafast antiferromagnetic spin dynamics is achieved by capping antiferromagnetic RFeO 3 (R = Er or Dy) with an exchange-coupled ferromagnetic Fe film. Compared with antiferromagnetic spin dynamics of bare RFeO 3 orthoferrite single crystals, which can be triggered effectively by ultrafast laser heating just below the phase transition temperature, the ultrafast photoinduced multimode antiferromagnetic spin dynamic modes, for exchange-coupled Fe/RFeO 3 heterostructures, including quasiferromagnetic resonance, impurity, coherent phonon, and quasiantiferromagnetic modes, are observed in a temperature range of 10-300 K. These experimental results not only offer an effective means to trigger ultrafast antiferromagnetic spin dynamics of rare-earth orthoferrites, but also shed light on the ultrafast manipulation of antiferromagnetic magnetization in Fe/RFeO 3 heterostructures. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tunable-Range, Photon-Mediated Atomic Interactions in Multimode Cavity QED
NASA Astrophysics Data System (ADS)
Vaidya, Varun D.; Guo, Yudan; Kroeze, Ronen M.; Ballantine, Kyle E.; Kollár, Alicia J.; Keeling, Jonathan; Lev, Benjamin L.
2018-01-01
Optical cavity QED provides a platform with which to explore quantum many-body physics in driven-dissipative systems. Single-mode cavities provide strong, infinite-range photon-mediated interactions among intracavity atoms. However, these global all-to-all couplings are limiting from the perspective of exploring quantum many-body physics beyond the mean-field approximation. The present work demonstrates that local couplings can be created using multimode cavity QED. This is established through measurements of the threshold of a superradiant, self-organization phase transition versus atomic position. Specifically, we experimentally show that the interference of near-degenerate cavity modes leads to both a strong and tunable-range interaction between Bose-Einstein condensates (BECs) trapped within the cavity. We exploit the symmetry of a confocal cavity to measure the interaction between real BECs and their virtual images without unwanted contributions arising from the merger of real BECs. Atom-atom coupling may be tuned from short range to long range. This capability paves the way toward future explorations of exotic, strongly correlated systems such as quantum liquid crystals and driven-dissipative spin glasses.
Optical and tunneling microscopy and spectroscopy at the ultimate spatial limit
NASA Astrophysics Data System (ADS)
Chen, Chi
2009-12-01
The combination of optical detection system with a scanning tunneling microscope (STM) leads to the possibility of resolving radiative transition probability with the ultrahigh spatial resolution of STM in real space. This opens an innovative approach toward revealing the correlation between molecular structure, electronic characteristics, and optical properties. This thesis describes a series of experiments that manifests this correlation, including atomic silver chains and single porphine molecules. In atomic silver chains, the number and positions of the emission maxima in the photon images match the nodes in the dI/d V images of "particle-in-a-box" states. This surprising correlation between the emission maxima and nodes in the density of states is a manifestation of Fermi's golden rule in real space for radiative transitions, which provides an understanding of the mechanism of STM induced light emission. From single porphine molecules, orthogonal spatial contrast of two types of vibronic coupling is resolved by both photon spectroscopy and vibronic-mode-selected photon images. Intramolecular transitions from the two orthogonal LUMOs individually couple to different molecular normal modes. This is the first demonstration of the photon emission probability of a single molecule and its direct correlations with the molecular orbitals. This also provides the first real space experimental evidence to separate the tangled effects of molecular conformations and nano-environments on the inhomogeneity of molecular emission. DSB molecules are found to have two conformational isomers and one of them shows surface chirality. All these conformers and enantiomers can be switched to each other by electron injection. Different DSB conformers present distinct manipulation dynamics, which demonstrate how different conformations and their preferred adsorption geometries can have pronounced influence on the molecular mechanics on the surface. Overall, this thesis studies the very fundamental nature of single molecules and artificial nanostructures by integrating all kinds of important functions of STM: topography, spectroscopy, manipulation, and photon emission. Detailed correlations between the emission patterns and orbital structures are revealed by the ultimate spatial resolution of our "STM photon microscopy".
NASA Astrophysics Data System (ADS)
Plenio, M. B.; Almeida, J.; Huelga, S. F.
2013-12-01
We demonstrate that the coupling of excitonic and vibrational motion in biological complexes can provide mechanisms to explain the long-lived oscillations that have been obtained in nonlinear spectroscopic signals of different photosynthetic pigment protein complexes and we discuss the contributions of excitonic versus purely vibrational components to these oscillatory features. Considering a dimer model coupled to a structured spectral density we exemplify the fundamental aspects of the electron-phonon dynamics, and by analyzing separately the different contributions to the nonlinear signal, we show that for realistic parameter regimes purely electronic coherence is of the same order as purely vibrational coherence in the electronic ground state. Moreover, we demonstrate how the latter relies upon the excitonic interaction to manifest. These results link recently proposed microscopic, non-equilibrium mechanisms to support long lived coherence at ambient temperatures with actual experimental observations of oscillatory behaviour using 2D photon echo techniques to corroborate the fundamental importance of the interplay of electronic and vibrational degrees of freedom in the dynamics of light harvesting aggregates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seyler, Kyle L.; Zhong, Ding; Klein, Dahlia R.
Bulk chromium tri-iodide (CrI 3) has long been known as a layered van der Waals ferromagnet. However, its monolayer form was only recently isolated and confirmed to be a truly two-dimensional (2D) ferromagnet, providing a new platform for investigating light–matter interactions and magneto-optical phenomena in the atomically thin limit. Here in this paper, we report spontaneous circularly polarized photoluminescence in monolayer CrI 3 under linearly polarized excitation, with helicity determined by the monolayer magnetization direction. In contrast, the bilayer CrI 3 photoluminescence exhibits vanishing circular polarization, supporting the recently uncovered anomalous antiferromagnetic interlayer coupling in CrI 3 bilayers. Distinct frommore » the Wannier–Mott excitons that dominate the optical response in well-known 2D van der Waals semiconductors, our absorption and layer-dependent photoluminescence measurements reveal the importance of ligand-field and charge-transfer transitions to the optoelectronic response of atomically thin CrI 3. We attribute the photoluminescence to a parity-forbidden d–d transition characteristic of Cr 3+ complexes, which displays broad linewidth due to strong vibronic coupling and thickness-independent peak energy due to its localized molecular orbital nature.« less
Towards a global model of spin-orbit coupling in the halocarbenes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nyambo, Silver; Karshenas, Cyrus; Reid, Scott A., E-mail: scott.reid@marquette.edu, E-mail: dawesr@mst.edu
We report a global analysis of spin-orbit coupling in the mono-halocarbenes, CH(D)X, where X = Cl, Br, and I. These are model systems for examining carbene singlet-triplet energy gaps and spin-orbit coupling. Over the past decade, rich data sets collected using single vibronic level emission spectroscopy and stimulated emission pumping spectroscopy have yielded much information on the ground vibrational level structure and clearly demonstrated the presence of perturbations involving the low-lying triplet state. To model these interactions globally, we compare two approaches. First, we employ a diabatic treatment of the spin-orbit coupling, where the coupling matrix elements are written inmore » terms of a purely electronic spin-orbit matrix element which is independent of nuclear coordinates, and an integral representing the overlap of the singlet and triplet vibrational wavefunctions. In this way, the structures, harmonic frequencies, and normal mode displacements from ab initio calculations were used to calculate the vibrational overlaps of the singlet and triplet state levels, including the full effects of Duschinsky mixing. These calculations have allowed many new assignments to be made, particularly for CHI, and provided spin-orbit coupling parameters and values for the singlet-triplet gaps. In a second approach, we have computed and fit full geometry dependent spin-orbit coupling surfaces and used them to compute matrix elements without the product form approximation. Those matrix elements were used in similar fits varying the anharmonic constants and singlet-triplet gap to reproduce the experimental levels. The derived spin-orbit parameters for carbenes CHX (X = Cl, Br, and I) show an excellent linear correlation with the atomic spin-orbit constant of the corresponding halogen, indicating that the spin-orbit coupling in the carbenes is consistently around 14% of the atomic value.« less
Internal Mirror Optical Fiber Couplers
NASA Astrophysics Data System (ADS)
Shin, Jong-Dug
A fusion splicing technique has been used to produce angled dielectric mirrors in multimode and single-mode silica fibers. These mirrored fiber couplers serve as compact directional couplers with low excess optical loss (~0.2 dB for multimode and 0.5 dB for single mode at 1.3 μm) and excellent mechanical properties. The reflectance is found to be wavelength dependent and strongly polarization dependent, as expected. Far-field scans of the reflected output power measured with a white-light source show a pattern which is almost circularly symmetric. The splitting ratio in a multimode coupler measured with a laser source is much less dependent on input coupling conditions than in conventional fused biconical-taper couplers. Spectral properties of multilayer fiber mirrors have been investigated experimentally, and a matrix analysis has been used to explain the results.
Two-photon quantum walk in a multimode fiber
Defienne, Hugo; Barbieri, Marco; Walmsley, Ian A.; Smith, Brian J.; Gigan, Sylvain
2016-01-01
Multiphoton propagation in connected structures—a quantum walk—offers the potential of simulating complex physical systems and provides a route to universal quantum computation. Increasing the complexity of quantum photonic networks where the walk occurs is essential for many applications. We implement a quantum walk of indistinguishable photon pairs in a multimode fiber supporting 380 modes. Using wavefront shaping, we control the propagation of the two-photon state through the fiber in which all modes are coupled. Excitation of arbitrary output modes of the system is realized by controlling classical and quantum interferences. This report demonstrates a highly multimode platform for multiphoton interference experiments and provides a powerful method to program a general high-dimensional multiport optical circuit. This work paves the way for the next generation of photonic devices for quantum simulation, computing, and communication. PMID:27152325
Single-mode glass waveguide technology for optical interchip communication on board level
NASA Astrophysics Data System (ADS)
Brusberg, Lars; Neitz, Marcel; Schröder, Henning
2012-01-01
The large bandwidth demand in long-distance telecom networks lead to single-mode fiber interconnects as result of low dispersion, low loss and dense wavelength multiplexing possibilities. In contrast, multi-mode interconnects are suitable for much shorter lengths up to 300 meters and are promising for optical links between racks and on board level. Active optical cables based on multi-mode fiber links are at the market and research in multi-mode waveguide integration on board level is still going on. Compared to multi-mode, a single-mode waveguide has much more integration potential because of core diameters of around 20% of a multi-mode waveguide by a much larger bandwidth. But light coupling in single-mode waveguides is much more challenging because of lower coupling tolerances. Together with the silicon photonics technology, a single-mode waveguide technology on board-level will be the straight forward development goal for chip-to-chip optical interconnects integration. Such a hybrid packaging platform providing 3D optical single-mode links bridges the gap between novel photonic integrated circuits and the glass fiber based long-distance telecom networks. Following we introduce our 3D photonic packaging approach based on thin glass substrates with planar integrated optical single-mode waveguides for fiber-to-chip and chip-to-chip interconnects. This novel packaging approach merges micro-system packaging and glass integrated optics. It consists of a thin glass substrate with planar integrated singlemode waveguide circuits, optical mirrors and lenses providing an integration platform for photonic IC assembly and optical fiber interconnect. Thin glass is commercially available in panel and wafer formats and characterizes excellent optical and high-frequency properties. That makes it perfect for microsystem packaging. The paper presents recent results in single-mode waveguide technology on wafer level and waveguide characterization. Furthermore the integration in a hybrid packaging process and design issues are discussed.
Mok, Daniel W K; Lee, Edmond P F; Chau, Foo-Tim; Dyke, John M
2009-03-10
RCCSD(T) and/or CASSCF/MRCI calculations have been carried out on the X̃(1)A' and Ã(1)A'' states of HSiCl employing basis sets of up to the aug-cc-pV5Z quality. Contributions from core correlation and extrapolation to the complete basis set limit were included in determining the computed equilibrium geometrical parameters and relative electronic energy of these two states of HSiCl. Franck-Condon factors which include allowance for anharmonicity and Duschinsky rotation between these two states of HSiCl and DSiCl were calculated employing RCCSD(T) and CASSCF/MRCI potential energy functions, and were used to simulate the Ã(1)A'' ← X̃(1)A' absorption and Ã(1)A'' → X̃(1)A' single vibronic level (SVL) emission spectra of HSiCl and DSiCl. Simulated absorption and experimental LIF spectra, and simulated and observed Ã(1)A''(0,0,0) → X̃(1)A' SVL emission spectra, of HSiCl and DSiCl are in very good agreement. However, agreement between simulated and observed Ã(1)A''(0,1,0) → X̃(1)A' and Ã(1)A''(0,2,1) → X̃(1)A' SVL emission spectra of DSiCl is not as good. Preliminary calculations on low-lying excited states of HSiCl suggest that vibronic interaction between low-lying vibrational levels of the Ã(1)A'' state and highly excited vibrational levels of the ã(3)A'' is possible. Such vibronic interaction may change the character of the low-lying vibrational levels of the Ã(1)A'' state, which would lead to perturbation in the SVL emission spectra from these vibrational levels.
Waveguide-loaded silica fibers for coupling to high-index micro-resonators
NASA Astrophysics Data System (ADS)
Latawiec, P.; Burek, M. J.; Venkataraman, V.; Lončar, M.
2016-01-01
Tapered silica fibers are often used to rapidly probe the optical properties of micro-resonators. However, their low refractive index precludes phase-matching when coupling to high-index micro-resonators, reducing efficiency. Here, we demonstrate efficient optical coupling from tapered fibers to high-index micro-resonators by loading the fibers with an ancillary adiabatic waveguide-coupler fabricated via angled-etching. We demonstrate greatly enhanced coupling to a silicon multimode micro-resonator when compared to coupling via the bare fiber only. Signatures of resonator optical bistability are observed at high powers. This scheme can be applied to resonators of any size and material, increasing the functional scope of fiber coupling.
Greening, Gage J.; Powless, Amy J.; Hutcheson, Joshua A.; Prieto, Sandra P.; Majid, Aneeka A.; Muldoon, Timothy J.
2015-01-01
Many cases of epithelial cancer originate in basal layers of tissue and are initially undetected by conventional microendoscopy techniques. We present a bench-top, fiber-bundle microendoscope capable of providing high resolution images of surface cell morphology. Additionally, the microendoscope has the capability to interrogate deeper into material by using diffuse reflectance and broadband diffuse reflectance spectroscopy. The purpose of this multimodal technique was to overcome the limitation of microendoscopy techniques that are limited to only visualizing morphology at the tissue or cellular level. Using a custom fiber optic probe, high resolution surface images were acquired using topical proflavine to fluorescently stain non-keratinized epithelia. A 635 nm laser coupled to a 200 μm multimode fiber delivers light to the sample and the diffuse reflectance signal was captured by a 1 mm image guide fiber. Finally, a tungsten-halogen lamp coupled to a 200 μm multimode fiber delivers broadband light to the sample to acquire spectra at source-detector separations of 374, 729, and 1051 μm. To test the instrumentation, a high resolution proflavine-induced fluorescent image of resected healthy mouse colon was acquired. Additionally, five monolayer poly(dimethylsiloxane)-based optical phantoms with varying absorption and scattering properties were created to acquire diffuse reflectance profiles and broadband spectra. PMID:25983372
NASA Astrophysics Data System (ADS)
Greening, Gage J.; Powless, Amy J.; Hutcheson, Joshua A.; Prieto, Sandra P.; Majid, Aneeka A.; Muldoon, Timothy J.
2015-03-01
Many cases of epithelial cancer originate in basal layers of tissue and are initially undetected by conventional microendoscopy techniques. We present a bench-top, fiber-bundle microendoscope capable of providing high resolution images of surface cell morphology. Additionally, the microendoscope has the capability to interrogate deeper into material by using diffuse reflectance and broadband diffuse reflectance spectroscopy. The purpose of this multimodal technique was to overcome the limitation of microendoscopy techniques that are limited to only visualizing morphology at the tissue or cellular level. Using a custom fiber optic probe, high resolution surface images were acquired using topical proflavine to fluorescently stain non-keratinized epithelia. A 635 nm laser coupled to a 200 μm multimode fiber delivers light to the sample and the diffuse reflectance signal was captured by a 1 mm image guide fiber. Finally, a tungsten-halogen lamp coupled to a 200 μm multimode fiber delivers broadband light to the sample to acquire spectra at source-detector separations of 374, 729, and 1051 μm. To test the instrumentation, a high resolution proflavine-induced fluorescent image of resected healthy mouse colon was acquired. Additionally, five monolayer poly(dimethylsiloxane)-based optical phantoms with varying absorption and scattering properties were created to acquire diffuse reflectance profiles and broadband spectra.
NASA Astrophysics Data System (ADS)
Xhoxhi, Moisi; Dudia, Alma; Ymeti, Aurel
2017-05-01
We propose the novel structure of an interferometric biosensor based on multimode interference (MMI) waveguides. We present the design of the biosensor using eigenmode expansion (EME) method in accordance with the requirements and standards of today's photonic technology. The MMI structures with a 90 nm Si3N4 core are used as power splitters with 5 outputs. The 5 high-resolution images at the end of the multimode region show high power balance. We analyze the coupling efficiency of the laser source with the structure, the excess loss and power imbalance for different compact MMI waveguides with widths ranging from 45 μm to 15 μm. For a laser source with a tolerance of +/-1mm in linearization we could achieve a coupling efficiency of 52%. MMI waveguides with tapered channels show excess loss values under 0.5 dB and power imbalance values under 0.08 dB. In addition, we show that for a 10 nm deviation of the source wavelength from its optimal value and for a 10 μm deviation of the MMI length from its optimal value, the performance of the MMI waveguides remains acceptable. Finally, we analyze the power budget of the whole biosensor structure and show that it is sufficient for the proper operation of this device.
Han, Ming; Wang, Anbo
2006-05-01
Theoretical and experimental results have shown that mode power distribution (MPD) variations could significantly vary the phase of spectral fringes from multimode fiber extrinsic Fabry-Perot interferometric (MMF-EFPI) sensor systems, owing to the fact that different modes introduce different extra phase shifts resulting from the coupling of modes reflected at the second surface to the lead-in fiber end. This dependence of fringe pattern on MPD could cause measurement errors in signal demodulation methods of white-light MMF-EFPI sensors that implement the phase information of the fringes.
Analysis of a single ring resonator with 2×2 90-degree multimode waveguide turning couplers
NASA Astrophysics Data System (ADS)
Chiu, C. L.; Liao, Yen-Hsun
2016-02-01
A novel design of a single ring resonator with two low-loss 2×2 90-degree multimode waveguide turning mirror couplers based on a InP structure. The coupling factor of the 2×2 90-degree multimode waveguide turning mirror coupler is inversed for K=0.85 to K=0.15 when one folding is achieved. The 2×2 90-degree turning mirror coupler for K=0.15 is (3/4)Lπ in length. Its length is reduced 3 times than the conventional straight 2×2 multimode waveguide interference coupler (9/4)Lπ in length for K=0.15. The cavity length of the curve waveguide (90-degree arc length) in this ring resonator with two 2×2 90-degree multimode waveguide turning couplers is decreased 1/2 times than with two 2×2 MMI couplers (180-degree arc length). The free spectral range (FSR) is increased 2 times. The output spectral response gets a FSR of 82 GHz for the device and a contrast of 4 dB and FWHM of 0.24 nm for the drop port. The results of numerical analysis calculated by the transfer functions in a single ring resonator are agreement with the experimental results.
a Zero-Order Picture of the Infrared Spectrum for the Methoxy Radical: Assignment of States
NASA Astrophysics Data System (ADS)
Johnson, Britta; Sibert, Edwin
2016-06-01
The ground tilde{X}^2E vibrations of the methoxy radical have intrigued both experimentalists and theorists alike due to the presence of a conical intersection at the C3v molecular geometry. This conical intersection causes methoxy's vibrational spectrum to be strongly influenced by Jahn-Teller vibronic coupling which leads to large amplitude vibrations and extensive mixing of the two lowest electronic states. This coupling combined with spin-orbit and Fermi couplings greatly complicates the assignments of states. Using the potential force field and calculated spectra of Nagesh and Sibert1,2, we assign quantum numbers to the infrared spectrum. When the zero-order states are the diabatic normal mode states, there is sufficient mode mixing that the normal mode quantum numbers are poor labels for the final states. We define a series of zero-order Hamiltonians which include additional coupling elements beyond the normal mode picture but still allow for the assignment of Jahn-Teller quantum numbers. In methoxy, the two lowest frequency e} modes, the bend (q_5) and the rock (q_6), are the modes with the strongest Jahn-Teller coupling. In general, a zero-order Hamiltonian which includes first-order Jahn-Teller coupling in q_6 is sufficient for most states of interest. Working in a representation which includes first-order Jahn-Teller coupling in q_6, we identify states in which additional coupling elements must be included; these couplings include first-order Jahn-Teller coupling in q_5, higher order Jahn-Teller coupling in q_5 and q_6, and, in the dueterated case, Jahn-Teller coupling which is modulated by the corresponding a modes. [^1] Nagesh, J.; Sibert, E. L. J. Phys. Chem. A 2012, 116, 3846-3855. Lee, Y.F.; Chou, W.T.; Johnson, B.A.; Tabor, D.P. ; Sibert, E.L.; Lee, Y.P. J. Mol. Spectrosc. 2015, 310, 57-67. Barckholtz, T. A.; Miller, T. A. Int. Revs. in Phys. Chem. 1998, 17, 435-524.
Spectroscopic identification of dichlorobenzyl radicals: Jet-cooled 2,3-dichlorobenzyl radical
NASA Astrophysics Data System (ADS)
Chae, Sang Youl; Yoon, Young Wook; Lee, Sang Kuk
2015-07-01
The vibronically excited but jet-cooled 2,3-dichlorobenzyl radical was generated from the corona discharge of precursor 2,3-dichlorotoluene seeded in a large amount of carrier gas He using a pinhole-type glass nozzle. From an analysis of the visible vibronic emission spectrum observed, we obtained the electronic energy of the D1 → D0 transition and vibrational mode frequencies in the D0 state of the 2,3-dichlorobenzyl radical by comparing the observation with the results of ab initio calculations. In addition, we discussed substituent effect of Cls on electronic transition energy in terms of substituent orientation for the first time.
Efficient, diode-pumped Tm3+:BaY2F8 vibronic laser
NASA Astrophysics Data System (ADS)
Cornacchia, F.; Parisi, D.; Bernardini, C.; Toncelli, A.; Tonelli, M.
2004-05-01
In this work we report the spectroscopy and laser results of several Thulium doped BaY2F8 single crystals grown using the Czochralski technique. The doping concentration is between 2at.% and 18at.%. We performed room temperature laser experiments pumping the samples with a laser diode at 789 nm obtaining 61% as maximum optical-to-optical efficiency with a maximum output power of 290 mW and a minimum lasing threshold of 26 mW. The lasing wavelength changed with the dopant concentration from 1927 nm up to 2030 nm and the nature of the transition changed from purely electronic to vibronic, accordingly.
Quasi-classical approaches to vibronic spectra revisited
NASA Astrophysics Data System (ADS)
Karsten, Sven; Ivanov, Sergei D.; Bokarev, Sergey I.; Kühn, Oliver
2018-03-01
The framework to approach quasi-classical dynamics in the electronic ground state is well established and is based on the Kubo-transformed time correlation function (TCF), being the most classical-like quantum TCF. Here we discuss whether the choice of the Kubo-transformed TCF as a starting point for simulating vibronic spectra is as unambiguous as it is for vibrational ones. Employing imaginary-time path integral techniques in combination with the interaction representation allowed us to formulate a method for simulating vibronic spectra in the adiabatic regime that takes nuclear quantum effects and dynamics on multiple potential energy surfaces into account. Further, a generalized quantum TCF is proposed that contains many well-established TCFs, including the Kubo one, as particular cases. Importantly, it also provides a framework to construct new quantum TCFs. Applying the developed methodology to the generalized TCF leads to a plethora of simulation protocols, which are based on the well-known TCFs as well as on new ones. Their performance is investigated on 1D anharmonic model systems at finite temperatures. It is shown that the protocols based on the new TCFs may lead to superior results with respect to those based on the common ones. The strategies to find the optimal approach are discussed.
Observation of direct infrared multiphoton pumping of the triplet manifold of biacetyl
NASA Astrophysics Data System (ADS)
Tsao, Jeffrey Y.; Black, Jerry G.; Yablonovitch, Eli; Burak, Itamar
1980-09-01
Direct collisionless multiphoton (MP) excitation of the triplet vibronic manifold of biacetyl is reported. Following a dye laser pulse which prepares some of the biacetyl molecules in the triplet metastable state, the system is irradiated by an intense 20 ns 9.6μ CO2 pulse. The CO2 radiation induces fast quenching of the phosphorescence emission from the 3Au excited molecules. It also induces an emission signal in the fluorescence spectral region of biacetyl. This signal is related to an inverse electronic relaxation (IER) from excited triplet vibronic levels into isoenergetic singlet 1Au vibronic levels. Analysis of the induced luminescence signals provides information on the collisionless MP prompted vibrational distribution. Excitation with 10.6μ CO2 pulses leads to the simultaneous MP pumping of both the ground and triplet manifolds. The generation of blue emission signals in this experiment bears a close resemblance to recent observations of prompt visible emission due to MP pumping of ground state molecules. General expressions for the emission intensities are derived with special emphasis on the specific features of MP vibrational distributions. The detectability of MP induced emission signals is discussed.
Farrow, Darcie A; Smith, Eric R; Qian, Wei; Jonas, David M
2008-11-07
By analogy to the Raman depolarization ratio, vibrational quantum beats in pump-probe experiments depend on the relative pump and probe laser beam polarizations in a way that reflects vibrational symmetry. The polarization signatures differ from those in spontaneous Raman scattering because the order of field-matter interactions is different. Since pump-probe experiments are sensitive to vibrations on excited electronic states, the polarization anisotropy of vibrational quantum beats can also reflect electronic relaxation processes. Diagrammatic treatments, which expand use of the symmetry of the two-photon tensor to treat signal pathways with vibrational and vibronic coherences, are applied to find the polarization anisotropy of vibrational and vibronic quantum beats in pump-probe experiments for different stages of electronic relaxation in square symmetric molecules. Asymmetric vibrational quantum beats can be distinguished from asymmetric vibronic quantum beats by a pi phase jump near the center of the electronic spectrum and their disappearance in the impulsive limit. Beyond identification of vibrational symmetry, the vibrational quantum beat anisotropy can be used to determine if components of a doubly degenerate electronic state are unrelaxed, dephased, population exchanged, or completely equilibrated.
Nuclear Dynamics at Molecule–Metal Interfaces: A Pseudoparticle Perspective
Galperin, Michael; Nitzan, Abraham
2015-11-20
We discuss nuclear dynamics at molecule-metal interfaces including nonequilibrium molecular junctions. Starting from the many-body states (pseudoparticle) formulation of the molecule-metal system in the molecular vibronic basis, we introduce gradient expansion to reduce the adiabatic nuclear dynamics (that is, nuclear dynamics on a single molecular potential surface) into its semiclassical form while maintaining the effect of the nonadiabatic electronic transitions between different molecular charge states. Finally, this yields a set of equations for the nuclear dynamics in the presence of these nonadiabatic transitions, which reproduce the surface-hopping formulation in the limit of small metal-molecule coupling (where broadening of the molecularmore » energy levels can be disregarded) and Ehrenfest dynamics (motion on the potential of mean force) when information on the different charging states is traced out.« less
The generation of O(1S) from the dissociative recombination of O2(+)
NASA Technical Reports Server (NTRS)
Guberman, Steven L.; Giusti-Suzor, Annick
1991-01-01
The multichannel quantum defect theory (MQDT) method and large scale wave functions are applied to the calculation of the cross sections and rates for dissociative recombination of O2(+) along the 1Sigma-u(+) dissociative potential. Indirect dissociative recombination is accounted for by simultaneously including both the vibronic and electronic coupling to the intermediate Rydberg resonances. An enhanced MQDT approach involving a second-order K matrix is described. Cross sections and rates for the lowest three vibrational levels of the ion are reported. The shapes of the cross sections are discussed in terms of Fano's profile index. It is found that, for each of the three ion vibrational levels, the intermediate Rydberg resonances reduce the dissociative recombination rate below the direct recombination rate. Just above threshold, resonances with centers below threshold play an important role.
NASA Astrophysics Data System (ADS)
Rudnick, Alexander; Kass, Kim-Julia; Preis, Eduard; Scherf, Ullrich; Bässler, Heinz; Köhler, Anna
2017-05-01
We present a detailed spectroscopic study, along with the synthesis, of conjugated, ladder-type 2,7-linked poly(pyrene)s. We observe a delocalization of the first singlet excited state along the polymer backbone, i.e., across the 2,7 linkage in the pyrene moiety, in contrast to earlier studies on conjugated 2,7-linked poly(pyrene)s without ladder structure. The electronic signature of the pyrene unit is, however, manifested in an increased lifetime and reduced oscillator strength as well as a modified vibronic progression in absorption of the singlet state compared to a ladder-type poly(para-phenylene) (MeLPPP). Furthermore, the reduced oscillator strength and increased lifetime slow down Förster-type energy transfer in films, where this transfer occurs to sites with increasing inter-chain coupling of H-type nature.
High resolution Fourier transform spectroscopy and crystal-field analysis in Tm,Ho:BaY2F8
NASA Astrophysics Data System (ADS)
Baraldi, A.; Capelletti, R.; Mazzera, M.; Riolo, P.; Amoretti, G.; Magnani, N.; Sani, E.; Toncelli, A.; Tonelli, M.
2005-01-01
A Tm3+- Ho3+ -codoped single crystal of monoclinic BaY2F8 has been characterized by means of high resolution FTIR spectroscopy in the wave number range 2000-24000 cm-1 and in the temperature range 9-300 K. The energy level schemes of the two lanthanide ions as determined by the optical absorption spectra is presented, analyzed, and fitted within a single ion Hamiltonian model. The very small energy separation (about 0.6-1.6 cm-1) measured between the first and second sublevels of the ground state manifolds for both the ions is in line with the theoretical predictions. The impurity-phonon coupling is put into evidence by the thermally induced line shift and broadening, and by the detection of vibronic replicas of a few lines.
High-efficiency K-band tracking antenna feed
NASA Technical Reports Server (NTRS)
Beavin, R. L.; Simanyi, A. I.
1975-01-01
Antenna feed features high aperture efficiency of multimode near-field horn and develops tracking signals without conventional monopulse bridge. Feed assembly is relatively simple and very compact. However, feed is sensitive to cross-polarized energy which couples into orthogonal error channel.
Chau, Foo-Tim; Mok, Daniel K W; Lee, Edmond P F; Dyke, John M
2004-07-22
Restricted-spin coupled-cluster single-double plus perturbative triple excitation [RCCSD(T)] potential energy functions (PEFs) were calculated for the X (2)A" and A (2)A' states of HPCl employing the augmented correlation-consistent polarized-valence-quadruple-zeta (aug-cc-pVQZ) basis set. Further geometry optimization calculations were carried out on both electronic states of HPCl at the RCCSD(T) level with all electron and quasirelativistic effective core potential basis sets of better than the aug-cc-pVQZ quality, and also including some core electrons, in order to obtain more reliable geometrical parameters and relative electronic energy of the two states. Anharmonic vibrational wave functions of the two states of HPCl and DPCl, and Franck-Condon (FC) factors of the A (2)A'-X (2)A" transition were computed employing the RCCSD(T)/aug-cc-pVQZ PEFs. Calculated FC factors with allowance for Duschinsky rotation and anharmonicity were used to simulate the single-vibronic-level (SVL) emission spectra of HPCl and DPCl reported by Brandon et al. [J. Chem. Phys. 119, 2037 (2003)] and the chemiluminescence spectrum reported by Bramwell et al. [Chem. Phys. Lett. 331, 483 (2000)]. Comparison between simulated and observed SVL emission spectra gives the experimentally derived equilibrium geometry of the A (2)A' state of HPCl of r(e)(PCl) = 2.0035 +/- 0.0015 A, theta(e) = 116.08 +/- 0.60 degrees, and r(e)(HP) = 1.4063+/-0.0015 A via the iterative Franck-Condon analysis procedure. Comparison between simulated and observed chemiluminescence spectra confirms that the vibrational population distribution of the A (2)A' state of HPCl is non-Boltzmann, as proposed by Baraille et al. [Chem. Phys. 289, 263 (2003)].
Multiple-mode reconfigurable electro-optic switching network for optical fiber sensor array
NASA Technical Reports Server (NTRS)
Chen, Ray T.; Wang, Michael R.; Jannson, Tomasz; Baumbick, Robert
1991-01-01
This paper reports the first switching network compatible with multimode fibers. A one-to-many cascaded reconfigurable interconnection was built. A thin glass substrate was used as the guiding medium which provides not only higher coupling efficiency from multimode fiber to waveguide but also better tolerance of phase-matching conditions. Involvement of a total-internal-reflection hologram and multimode waveguide eliminates interface problems between fibers and waveguides. The DCG polymer graft has proven to be reliable from -180 C to +200 C. Survivability of such an electrooptic system in harsh environments is further ensured. LiNbO3 was chosen as the E-O material because of its stability at high temperatures (phase-transition temperature of more than 1000 C) and maturity of E-O device technology. Further theoretical calculation was conducted to provide the optimal interaction length and device capacitance.
Vestibular system: the many facets of a multimodal sense.
Angelaki, Dora E; Cullen, Kathleen E
2008-01-01
Elegant sensory structures in the inner ear have evolved to measure head motion. These vestibular receptors consist of highly conserved semicircular canals and otolith organs. Unlike other senses, vestibular information in the central nervous system becomes immediately multisensory and multimodal. There is no overt, readily recognizable conscious sensation from these organs, yet vestibular signals contribute to a surprising range of brain functions, from the most automatic reflexes to spatial perception and motor coordination. Critical to these diverse, multimodal functions are multiple computationally intriguing levels of processing. For example, the need for multisensory integration necessitates vestibular representations in multiple reference frames. Proprioceptive-vestibular interactions, coupled with corollary discharge of a motor plan, allow the brain to distinguish actively generated from passive head movements. Finally, nonlinear interactions between otolith and canal signals allow the vestibular system to function as an inertial sensor and contribute critically to both navigation and spatial orientation.
Effective light coupling in reflective fiber optic distance sensors using a double-clad fiber
NASA Astrophysics Data System (ADS)
Werzinger, Stefan; Härteis, Lisa; Köhler, Aaron; Engelbrecht, Rainer; Schmauss, Bernhard
2017-04-01
Many fiber optic distance sensors use a reflective configuration, where a light beam is launched from an optical fiber, reflected from a target and coupled back into the fiber. While singlemode fibers (SMF) provide low-loss, high-performance components and a well-defined output beam, the coupling of the reflected light into the SMF is very sensitive to mechanical misalignments and scattering at the reflecting target. In this paper we use a double-clad fiber (DCF) and a DCF coupler to obtain an enhanced multimodal coupling of reflected light into the fiber. Increased power levels and robustness are achieved compared to a pure SMF configuration.
Limitations and Tolerances in Optical Devices
NASA Astrophysics Data System (ADS)
Jackman, Neil Allan
The performance of optical systems is limited by the imperfections of their components. Many of the devices in optical systems including optical fiber amplifiers, multimode transmission lines and multilayered media such as mirrors, windows and filters, are modeled by coupled line equations. This investigation includes: (i) a study of the limitations imposed on a wavelength multiplexed unidirectional ring by the non-uniformities of the gain spectra of Erbium-doped optical fiber amplifiers. We find numerical solutions for non-linear coupled power differential equations and use these solutions to compare the signal -to-noise ratios and signal levels at different nodes. (ii) An analytical study of the tolerances of imperfect multimode media which support forward traveling modes. The complex mode amplitudes are related by linear coupled differential equations. We use analytical methods to derive extended equations for the expected mode powers and give heuristic limits for their regions of validity. These results compare favorably to exact solutions found for a special case. (iii) A study of the tolerances of multilayered media in the presence of optical thickness imperfections. We use analytical methods including Kronecker producers, to calculate the reflection and transmission statistics of the media. Monte Carlo simulations compare well to our analytical method.
Spectroscopic properties of the S1 state of linear carotenoids after excess energy excitation
NASA Astrophysics Data System (ADS)
Kuznetsova, Valentyna; Southall, June; Cogdell, Richard J.; Fuciman, Marcel; Polívka, Tomáš
2017-09-01
Properties of the S1 state of neurosporene, spheroidene and lycopene were studied after excess energy excitation in the S2 state. Excitation of carotenoids into higher vibronic levels of the S2 state generates excess vibrational energy in the S1 state. The vibrationally hot S1 state relaxes faster when carotenoid is excited into the S2 state with excess energy, but the S1 lifetime remains constant regardless of which vibronic level of the S2 state is excited. The S∗ signal depends on excitation energy only for spheroidene, which is likely due to asymmetry of the molecule, facilitating conformations responsible for the S∗ signal.
Vibronic dephasing model for coherent-to-incoherent crossover in DNA
NASA Astrophysics Data System (ADS)
Karasch, Patrick; Ryndyk, Dmitry A.; Frauenheim, Thomas
2018-05-01
In this paper, we investigate the interplay between coherent and incoherent charge transport in cytosine-guanine (GC-) rich DNA molecules. Our objective is to introduce a physically grounded approach to dephasing in large molecules and to understand the length-dependent charge transport characteristics, and especially the crossover from the coherent tunneling to incoherent hopping regime at different temperatures. Therefore, we apply the vibronic dephasing model and compare the results to the Büttiker probe model which is commonly used to describe decoherence effects in charge transport. Using the full ladder model and simplified one-dimensional model of DNA, we consider molecular junctions with alternating and stacked GC sequences and compare our results to recent experimental measurements.
Spectroscopic evidence of jet-cooled p-methyl-α-methylbenzyl radical
NASA Astrophysics Data System (ADS)
Chae, Sang Youl; Yoon, Young Wook; Lim, Manho; Lee, Sang Kuk
2015-08-01
We report spectroscopic evidence of the jet-cooled p-methyl-α-methylbenzyl radical in corona discharge. The visible vibronic emission spectra were recorded from the corona discharge of three precursors, p-xylene, p-ethyltoluene, and p-isopropyltoluene seeded in a large amount of carrier gas helium using a pinhole-type glass nozzle. From the analysis of the vibronic spectra observed from each precursor and the bond dissociation energies of precursor molecules, we are able to confirm the formation of the jet-cooled p-methyl-α-methylbenzyl radical in corona discharge, and determine the energy of the D1 → D0 transition and a few vibrational mode frequencies in the D0 state.
NASA Astrophysics Data System (ADS)
Yoon, Young Wook; Chae, Sang Youl; Lim, Manho; Lee, Sang Kuk
2015-08-01
We report spectroscopic observations of the α,α-dichlorobenzyl radical obtained by corona excited supersonic jet expansion using a pinhole-type glass nozzle. Vibronically excited but jet-cooled radicals were generated by corona discharge of the precursor benzotrichloride with a large amount of helium carrier gas, from which the visible vibronic emission spectrum was recorded using a long path monochromator. From an analysis of the spectrum observed, the electronic energy of the D1 → D0 transition and a few vibrational mode frequencies in the ground electronic state were obtained for the α,α-dichlorobenzyl radical by comparing observed frequencies with those obtained by ab initio calculation.
NASA Astrophysics Data System (ADS)
Costa, Bárbara B. A.; Souza, Paula D. C.; Gontijo, Rafael N.; Jardim, Guilherme A. M.; Moreira, Roberto L.; da Silva, Eufrânio N.; Cury, Luiz A.
2018-03-01
Photoluminescence and phosphorescence emissions of solid-state phenazine films were investigated in steady-state experimental conditions. Important discrepancies were observed for blended films where a host optically inert matrix was introduced to disperse the probe molecules. A vibronic spin-orbit phosphorescent emission clearly appeared, while for the films solely composed by the probe molecules, the phosphorescence broadened and presented a structureless shape, shifted to longer wavelengths. Further Arrhenius behavior analysis on the photoluminescent and phosphorescent emissions on temperature, corroborated the direct and reverse intersystem crossing interplay between singlet and triplet states. Molecular aggregation is responsible for the deterioration of non-blended triazole films phosphorescence.
Coupling efficiency of laser beam to multimode fiber for free space optical communication
NASA Astrophysics Data System (ADS)
Arisa, Suguru; Takayama, Yoshihisa; Endo, Hiroyuki; Shimizu, Ryosuke; Fujiwara, Mikio; Sasaki, Masahide
2017-11-01
Recently, the free space optical (FSO) communications have been widely studied as an alternative for large capacity communications and its possible implementation in satellite and terrestrial laser links. In satellite communications, clouds can strongly attenuate the laser signal that would lead to high bit-error rates or temporal unavailability of the link. To overcome the cloud coverage effects, often site diversity technique is implemented. When using multiple ground stations though, simplified optical system is required to allow the usage of more flexible approaches. In terrestrial laser communications, several methods for optical system simplification by using a multimode fiber (MMF) have been proposed.
Reconstructing multi-mode networks from multivariate time series
NASA Astrophysics Data System (ADS)
Gao, Zhong-Ke; Yang, Yu-Xuan; Dang, Wei-Dong; Cai, Qing; Wang, Zhen; Marwan, Norbert; Boccaletti, Stefano; Kurths, Jürgen
2017-09-01
Unveiling the dynamics hidden in multivariate time series is a task of the utmost importance in a broad variety of areas in physics. We here propose a method that leads to the construction of a novel functional network, a multi-mode weighted graph combined with an empirical mode decomposition, and to the realization of multi-information fusion of multivariate time series. The method is illustrated in a couple of successful applications (a multi-phase flow and an epileptic electro-encephalogram), which demonstrate its powerfulness in revealing the dynamical behaviors underlying the transitions of different flow patterns, and enabling to differentiate brain states of seizure and non-seizure.
Ding, Edwin; Lefrancois, Simon; Kutz, Jose Nathan; Wise, Frank W.
2011-01-01
The mode-locking of dissipative soliton fiber lasers using large mode area fiber supporting multiple transverse modes is studied experimentally and theoretically. The averaged mode-locking dynamics in a multi-mode fiber are studied using a distributed model. The co-propagation of multiple transverse modes is governed by a system of coupled Ginzburg–Landau equations. Simulations show that stable and robust mode-locked pulses can be produced. However, the mode-locking can be destabilized by excessive higher-order mode content. Experiments using large core step-index fiber, photonic crystal fiber, and chirally-coupled core fiber show that mode-locking can be significantly disturbed in the presence of higher-order modes, resulting in lower maximum single-pulse energies. In practice, spatial mode content must be carefully controlled to achieve full pulse energy scaling. This paper demonstrates that mode-locking performance is very sensitive to the presence of multiple waveguide modes when compared to systems such as amplifiers and continuous-wave lasers. PMID:21731106
Ding, Edwin; Lefrancois, Simon; Kutz, Jose Nathan; Wise, Frank W
2011-01-01
The mode-locking of dissipative soliton fiber lasers using large mode area fiber supporting multiple transverse modes is studied experimentally and theoretically. The averaged mode-locking dynamics in a multi-mode fiber are studied using a distributed model. The co-propagation of multiple transverse modes is governed by a system of coupled Ginzburg-Landau equations. Simulations show that stable and robust mode-locked pulses can be produced. However, the mode-locking can be destabilized by excessive higher-order mode content. Experiments using large core step-index fiber, photonic crystal fiber, and chirally-coupled core fiber show that mode-locking can be significantly disturbed in the presence of higher-order modes, resulting in lower maximum single-pulse energies. In practice, spatial mode content must be carefully controlled to achieve full pulse energy scaling. This paper demonstrates that mode-locking performance is very sensitive to the presence of multiple waveguide modes when compared to systems such as amplifiers and continuous-wave lasers.
Efficient pump module coupling >1kW from a compact detachable fiber
NASA Astrophysics Data System (ADS)
Dogan, M.; Chin, R. H.; Fulghum, S.; Jacob, J. H.; Chin, A. K.
2018-02-01
In the most developed fiber amplifiers, optical pump power is introduced into the 400μm-diameter, 0.46NA first cladding of the double-clad, Yb-doped, gain fiber, using a (6+1):1 multi-mode fiber combiner. For this configuration, the core diameter and numerical aperture of the pump delivery fibers have maximum values of 225μm and 0.22, respectively. This paper presents the first fiber-coupled laser-diode pump module emitting more than 1kW of claddingmode- stripped power from a detachable 225μm, 0.22NA delivery fiber at 976nm. The electrical-to-optical power conversion efficiency at 1kW is 50%. The FWHM spectral width at 1kW output is 4nm and has an excellent overlap with the narrow absorption spectrum of ytterbium in glass. Six of these pump modules attached to a (6+1):1 multimode combiner enable a 5-6kW, single-mode, Yb-doped fiber amplifier.
Developing single-laser sources for multimodal coherent anti-Stokes Raman scattering microscopy
NASA Astrophysics Data System (ADS)
Pegoraro, Adrian Frank
Coherent anti-Stokes Raman scattering (CARS) microscopy has developed rapidly and is opening the door to new types of experiments. This work describes the development of new laser sources for CARS microscopy and their use for different applications. It is specifically focused on multimodal nonlinear optical microscopy—the simultaneous combination of different imaging techniques. This allows us to address a diverse range of applications, such as the study of biomaterials, fluid inclusions, atherosclerosis, hepatitis C infection in cells, and ice formation in cells. For these applications new laser sources are developed that allow for practical multimodal imaging. For example, it is shown that using a single Ti:sapphire oscillator with a photonic crystal fiber, it is possible to develop a versatile multimodal imaging system using optimally chirped laser pulses. This system can perform simultaneous two photon excited fluorescence, second harmonic generation, and CARS microscopy. The versatility of the system is further demonstrated by showing that it is possible to probe different Raman modes using CARS microscopy simply by changing a time delay between the excitation beams. Using optimally chirped pulses also enables further simplification of the laser system required by using a single fiber laser combined with nonlinear optical fibers to perform effective multimodal imaging. While these sources are useful for practical multimodal imaging, it is believed that for further improvements in CARS microscopy sensitivity, new excitation schemes are necessary. This has led to the design of a new, high power, extended cavity oscillator that should be capable of implementing new excitation schemes for CARS microscopy as well as other techniques. Our interest in multimodal imaging has led us to other areas of research as well. For example, a fiber-coupling scheme for signal collection in the forward direction is demonstrated that allows for fluorescence lifetime imaging without significant temporal distortion. Also highlighted is an imaging artifact that is unique to CARS microscopy that can alter image interpretation, especially when using multimodal imaging. By combining expertise in nonlinear optics, laser development, fiber optics, and microscopy, we have developed systems and techniques that will be of benefit for multimodal CARS microscopy.
Fiber-optic coupling based on nonimaging expanded-beam optics.
Moslehi, B; Ng, J; Kasimoff, I; Jannson, T
1989-12-01
We have fabricated and experimentally tested low-cost and mass-producible multimode fiber-optic couplers and connectors based on nonimaging beam-expanding optics and Liouville's theorem. Analysis indicates that a pair coupling loss of -0.25 dB can be achieved. Experimentally, we measured insertion losses as low as -0.38 dB. The beam expanders can be mass produced owing to the use of plastic injection-molding fabrication techniques and packaged in standard connector housings. This design is compatible with the fiber geometry and can yield highly stable coupling owing to its high tolerance for misalignments.
Anion photoelectron spectroscopy of radicals and clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Travis, Taylor R.
1999-12-01
Anion photoelectron spectroscopy is used to study free radicals and clusters. The low-lying 2Σ and 2π states of C 2nH (n = 1--4) have been studied. The anion photoelectron spectra yielded electron affinities, term values, and vibrational frequencies for these combustion and astrophysically relevant species. Photoelectron angular distributions allowed the author to correctly assign the electronic symmetry of the ground and first excited states and to assess the degree of vibronic coupling in C 2H and C 4H. Other radicals studied include NCN and I 3. The author was able to observe the low-lying singlet and triplet states of NCNmore » for the first time. Measurement of the electron affinity of I 3 revealed that it has a bound ground state and attachment of an argon atom to this moiety enabled him to resolve the symmetric stretching progression.« less
NASA Astrophysics Data System (ADS)
Tran, Henry K.; Stanton, John F.; Miller, Terry A.
2018-01-01
The limitations associated with the common practice of fitting a quadratic Hamiltonian to vibronic levels of a Jahn-Teller system have been explored quantitatively. Satisfactory results for the prototypical X∼2E‧ state of Li3 are obtained from fits to both experimental spectral data and to an "artificial" spectrum calculated by a quartic Hamiltonian which accurately reproduces the adiabatic potential obtained from state-of-the-art quantum chemistry calculations. However the values of the Jahn-Teller parameters, stabilization energy, and pseudo-rotation barrier obtained from the quadratic fit differ markedly from those associated with the ab initio potential. Nonetheless the RMS deviations of the fits are not strikingly different. Guidelines are suggested for comparing parameters obtained from fits to experiment to those obtained by direct calculation, but a principal conclusion of this work is that such comparisons must be done with a high degree of caution.
Influence of nuclear exchange on nonadiabatic electron processes in H(+)+H2 collisions.
Errea, L F; Illescas, Clara; Macías, A; Méndez, L; Pons, B; Rabadán, I; Riera, A
2010-12-28
H(+)+H(2) collisions are studied by means of a semiclassical approach that explicitly accounts for nuclear rearrangement channels in nonadiabatic electron processes. A set of classical trajectories is used to describe the nuclear motion, while the electronic degrees of freedom are treated quantum mechanically in terms of a three-state expansion of the collision wavefunction. We describe electron capture and vibrational excitation, which can also involve nuclear exchange and dissociation, in the E = 2-1000 eV impact energy range. We compare dynamical results obtained with two parametrizations of the potential energy surface of H(3)(+) ground electronic state. Total cross sections for E > 10 eV agree with previous results using a vibronic close-coupling expansion, and with experimental data for E < 10 eV. Additionally, some prototypical features of both nuclear and electron dynamics at low E are discussed.
Cr/sup 3 +/-doped colquiriite solid state laser material
Payne, S.A.; Chase, L.L.; Newkirk, H.W.; Krupke, W.F.
1988-03-31
Chromium doped colquiriite, LiCaAlF/sub 6/:Cr/sup 3 +/, is useful as a tunable laser crystal that has a high intrinsic slope efficiency, comparable to or exceeding that of alexandrite, the current leading performer of vibronic sideband Cr/sup 3 +/ lasers. The laser output is tunable from at least 720 nm to 840 nm with a measured slope efficiency of about 60% in a Kr laser pumped laser configuration. The intrinsic slope efficiency (in the limit of large output coupling) may approach the quantum defect limited value of 83%. The high slope efficiency implies that excited state absorption (ESA) is negligible. The potential for efficiency and the tuning range of this material satisfy the requirements for a pump laser for a high density storage medium incorporating Nd/sup 3 +/ or Tm/sup 3 +/ for use in a multimegajoule single shot fusion research facility. 4 figs.
Cr.sup.3+ -doped colquiriite solid state laser material
Payne, Stephen A.; Chase, Lloyd L.; Newkirk, Herbert W.; Krupke, William F.
1989-01-01
Chromium doped colquiriite, LiCaAlF.sub.6 :Cr.sup.3+, is useful as a tunable laser crystal that has a high intrinsic slope efficiency, comparable to or exceeding that of alexandrite, the current leading performer of vibronic sideband Cr.sup.3+ lasers. The laser output is tunable from at least 720 nm to 840 nm with a measured slop efficiency of about 60% in a Kr laser pumped laser configuration. The intrinsic slope efficiency (in the limit of large output coupling) may approach the quantum defect limited value of 83%. The high slope efficiency implies that excited state absorption (ESA) is negligible. The potential for efficiency and the tuning range of this material satisfy the requirements for a pump laser for a high density storage medium incorporating Nd.sup.3+ or Tm.sup.3+ for use in a multimegajoule single shot fusion research facility.
From transistor to trapped-ion computers for quantum chemistry.
Yung, M-H; Casanova, J; Mezzacapo, A; McClean, J; Lamata, L; Aspuru-Guzik, A; Solano, E
2014-01-07
Over the last few decades, quantum chemistry has progressed through the development of computational methods based on modern digital computers. However, these methods can hardly fulfill the exponentially-growing resource requirements when applied to large quantum systems. As pointed out by Feynman, this restriction is intrinsic to all computational models based on classical physics. Recently, the rapid advancement of trapped-ion technologies has opened new possibilities for quantum control and quantum simulations. Here, we present an efficient toolkit that exploits both the internal and motional degrees of freedom of trapped ions for solving problems in quantum chemistry, including molecular electronic structure, molecular dynamics, and vibronic coupling. We focus on applications that go beyond the capacity of classical computers, but may be realizable on state-of-the-art trapped-ion systems. These results allow us to envision a new paradigm of quantum chemistry that shifts from the current transistor to a near-future trapped-ion-based technology.
Photovoltaic concepts inspired by coherence effects in photosynthetic systems
NASA Astrophysics Data System (ADS)
Brédas, Jean-Luc; Sargent, Edward H.; Scholes, Gregory D.
2017-01-01
The past decade has seen rapid advances in our understanding of how coherent and vibronic phenomena in biological photosynthetic systems aid in the efficient transport of energy from light-harvesting antennas to photosynthetic reaction centres. Such coherence effects suggest strategies to increase transport lengths even in the presence of structural disorder. Here we explore how these principles could be exploited in making improved solar cells. We investigate in depth the case of organic materials, systems in which energy and charge transport stand to be improved by overcoming challenges that arise from the effects of static and dynamic disorder -- structural and energetic -- and from inherently strong electron-vibration couplings. We discuss how solar-cell device architectures can evolve to use coherence-exploiting materials, and we speculate as to the prospects for a coherent energy conversion system. We conclude with a survey of the impacts of coherence and bioinspiration on diverse solar-energy harvesting solutions, including artificial photosynthetic systems.
Observing interactions between DNA bases using ion dip spectroscopy.
NASA Astrophysics Data System (ADS)
Vries Mattanjah, De
2002-03-01
We investigate biomolecular building blocks and their clusters with each other and with water on a single molecular level. The motivation is the need to distinguish between intrinsic molecular properties and those that result from the biological environment. This is achieved by a combination of laser desorption and jet cooling, applied to aromatic amino acids, small peptides containing those, purine bases and nucleosides. This approach is coupled with a number of gas phase laser spectroscopic techniques. We will present results for DNA bases guanine, adenine, cytosine, and their derivatives, for which we obtained tautomer selected vibronic spectra. Capitalizing on these results we use these bases as chromophores to study interactions in single base pairs, obtained by formation of clusters of laser desorbed bases in a supersonic beam. For analysis we employ both UV/UV and IR/UV ion-dip spectroscopy, the results of which we compare with ab initio calculations.
Infrared Spectroscopy of the Tropyl Radical in Helium Droplets
Kaufmann, Matin; Leicht, Daniel; Havenith, Martina; ...
2016-08-16
Here, the infrared spectrum of themore » $$\\tilde{X}$$ 2E 2" tropyl radical has been recorded in the range of the CH-stretch vibrational modes using the helium droplet isolation technique. Two bands are observed at 3053 and 3058 cm –1. The electronic degeneracy of the ground state results in a Jahn–Teller interaction for two of the CH-stretch modes, i.e., first-order interaction for E 3' symmetry modes and second-order interaction for E 2' symmetry modes. The experimentally observed bands are assigned to the E 1' and E 3' CH-stretch modes. The E 1' mode is infrared-active, whereas the E 3' mode is inactive in the absence of the Jahn–Teller interaction. The transition to the upper component of the Jahn–Teller split E 3' mode gains intensity via vibronic coupling, giving rise to the second experimentally observed band.« less
From transistor to trapped-ion computers for quantum chemistry
Yung, M.-H.; Casanova, J.; Mezzacapo, A.; McClean, J.; Lamata, L.; Aspuru-Guzik, A.; Solano, E.
2014-01-01
Over the last few decades, quantum chemistry has progressed through the development of computational methods based on modern digital computers. However, these methods can hardly fulfill the exponentially-growing resource requirements when applied to large quantum systems. As pointed out by Feynman, this restriction is intrinsic to all computational models based on classical physics. Recently, the rapid advancement of trapped-ion technologies has opened new possibilities for quantum control and quantum simulations. Here, we present an efficient toolkit that exploits both the internal and motional degrees of freedom of trapped ions for solving problems in quantum chemistry, including molecular electronic structure, molecular dynamics, and vibronic coupling. We focus on applications that go beyond the capacity of classical computers, but may be realizable on state-of-the-art trapped-ion systems. These results allow us to envision a new paradigm of quantum chemistry that shifts from the current transistor to a near-future trapped-ion-based technology. PMID:24395054
Mode coupling at connectors in mode-division multiplexed transmission over few-mode fiber.
Vuong, Jordi; Ramantanis, Petros; Frignac, Yann; Salsi, Massimiliano; Genevaux, Philippe; Bendimerad, Djalal F; Charlet, Gabriel
2015-01-26
In mode-division multiplexed (MDM) transmission systems, mode coupling is responsible for inter-modal crosstalk. We consider the transmission of modulated signals over a few-mode fiber (FMF) having low mode coupling and large differential mode group delay in the presence of a non-ideal fiber connection responsible for extra mode coupling. In this context, we first analytically derive the coupling matrix of the multimode connector and we numerically study the dependence of the matrix coefficients as a function of the butt-joint connection characteristics. The numerical results are then validated through an experiment with a five-mode setup. Finally, through numerical simulations, we assess the impact of the connector on the signal quality investigating different receiver digital signal processing (DSP) schemes.
Orlandi, Giorgio; Garavelli, Marco; Zerbetto, Francesco
2017-09-20
We analyze the highly resolved vibronic structure of the low energy (≤200 cm -1 ) region of the fluorescence and fluorescence excitation spectra of trans-stilbene in supersonic beams. In this spectral region the vibronic structure is associated mainly with vibrational levels of the C e -C e torsion (τ) and the a u combination of the two C e -C ph bond twisting (ϕ). We base this analysis on the well-established S 0 (τ, ϕ) two-dimensional potential energy surface (PES) and on a newly refined S 1 (τ, ϕ) PES. We obtain vibrational eigenvalues and eigenvectors of the anharmonic S 0 (τ, ϕ) and S 1 (τ, ϕ) PES using a numerical procedure based on the Meyer's flexible model [R. Meyer, J. Mol. Spectrosc., 1979, 76, 266]. Then we derive Franck-Condon factors and therefore intensities of the relevant vibronic bands for the S 0 → S 1 excitation and S 1 → S 0 fluorescence spectra. Furthermore, we assess the role of the b g combination of the two C e -C ph bond twisting (ν 48 ) in the structure of the S 1 → S 0 fluorescence spectra. By the use of these results we are able to assign most of the low energy vibrational levels of the S 0 → S 1 excitation spectra and of the fluorescence spectra of the emission from several low energy S 1 vibronic levels. The good agreement between the observed and the computed vibrational structure of the S 0 → S 1 and S 1 → S 0 spectra suggests that the proposed picture of the E 1 (τ, ϕ) and E 0 (τ, ϕ) PES, in particular along the coordinate τ governing trans-cis photo-isomerization in S 1 , is accurate. In S 0 , the barriers for the C e [double bond, length as m-dash]C e torsion and for the a u type C e -C ph bond twisting are 16 080 cm -1 and 3125 cm -1 , respectively, while in S 1 , where the bond orders of the C e [double bond, length as m-dash]C e and C e -C ph bonds are reversed, the two barriers become 1350 cm -1 and 8780 cm -1 , respectively.
Integrable pair-transition-coupled nonlinear Schrödinger equations.
Ling, Liming; Zhao, Li-Chen
2015-08-01
We study integrable coupled nonlinear Schrödinger equations with pair particle transition between components. Based on exact solutions of the coupled model with attractive or repulsive interaction, we predict that some new dynamics of nonlinear excitations can exist, such as the striking transition dynamics of breathers, new excitation patterns for rogue waves, topological kink excitations, and other new stable excitation structures. In particular, we find that nonlinear wave solutions of this coupled system can be written as a linear superposition of solutions for the simplest scalar nonlinear Schrödinger equation. Possibilities to observe them are discussed in a cigar-shaped Bose-Einstein condensate with two hyperfine states. The results would enrich our knowledge on nonlinear excitations in many coupled nonlinear systems with transition coupling effects, such as multimode nonlinear fibers, coupled waveguides, and a multicomponent Bose-Einstein condensate system.
An alternative laser driven photodissociation mechanism of pyrrole via πσ*1∕S0 conical intersection.
Nandipati, K R; Lan, Z; Singh, H; Mahapatra, S
2017-06-07
A first principles quantum dynamics study of N-H photodissociation of pyrrole on the S 0 - 1 πσ * (A21) coupled electronic states is carried out with the aid of an optimally designed UV-laser pulse. A new photodissociation path, as compared to the conventional barrier crossing on the πσ*1 state, opens up upon electronic transitions under the influence of pump-dump laser pulses, which efficiently populate both the dissociation channels. The interplay of electronic transitions due both to vibronic coupling and the laser pulse is observed in the control mechanism and discussed in detail. The proposed control mechanism seems to be robust, and not discussed in the literature so far, and is expected to trigger future experiments on the πσ*1 photochemistry of molecules of chemical and biological importance. The design of the optimal pulses and their application to enhance the overall dissociation probability is carried out within the framework of optimal control theory. The quantum dynamics of the system in the presence of pulse is treated by solving the time-dependent Schrödinger equation in the semi-classical dipole approximation.
An alternative laser driven photodissociation mechanism of pyrrole via πσ*1∕S0 conical intersection
Nandipati, K. R.; Lan, Z.; Singh, H.; Mahapatra, S.
2017-01-01
A first principles quantum dynamics study of N–H photodissociation of pyrrole on the S0−1πσ*(A21) coupled electronic states is carried out with the aid of an optimally designed UV-laser pulse. A new photodissociation path, as compared to the conventional barrier crossing on the πσ*1 state, opens up upon electronic transitions under the influence of pump-dump laser pulses, which efficiently populate both the dissociation channels. The interplay of electronic transitions due both to vibronic coupling and the laser pulse is observed in the control mechanism and discussed in detail. The proposed control mechanism seems to be robust, and not discussed in the literature so far, and is expected to trigger future experiments on the πσ*1 photochemistry of molecules of chemical and biological importance. The design of the optimal pulses and their application to enhance the overall dissociation probability is carried out within the framework of optimal control theory. The quantum dynamics of the system in the presence of pulse is treated by solving the time-dependent Schrödinger equation in the semi-classical dipole approximation. PMID:28595406
Ligand-field helical luminescence in a 2D ferromagnetic insulator
Seyler, Kyle L.; Zhong, Ding; Klein, Dahlia R.; ...
2017-12-04
Bulk chromium tri-iodide (CrI 3) has long been known as a layered van der Waals ferromagnet. However, its monolayer form was only recently isolated and confirmed to be a truly two-dimensional (2D) ferromagnet, providing a new platform for investigating light–matter interactions and magneto-optical phenomena in the atomically thin limit. Here in this paper, we report spontaneous circularly polarized photoluminescence in monolayer CrI 3 under linearly polarized excitation, with helicity determined by the monolayer magnetization direction. In contrast, the bilayer CrI 3 photoluminescence exhibits vanishing circular polarization, supporting the recently uncovered anomalous antiferromagnetic interlayer coupling in CrI 3 bilayers. Distinct frommore » the Wannier–Mott excitons that dominate the optical response in well-known 2D van der Waals semiconductors, our absorption and layer-dependent photoluminescence measurements reveal the importance of ligand-field and charge-transfer transitions to the optoelectronic response of atomically thin CrI 3. We attribute the photoluminescence to a parity-forbidden d–d transition characteristic of Cr 3+ complexes, which displays broad linewidth due to strong vibronic coupling and thickness-independent peak energy due to its localized molecular orbital nature.« less
Diabatic Definition of Geometric Phase Effects.
Izmaylov, Artur F; Li, Jiaru; Joubert-Doriol, Loïc
2016-11-08
Electronic wave functions in the adiabatic representation acquire nontrivial geometric phases (GPs) when corresponding potential energy surfaces undergo conical intersection (CI). These GPs have profound effects on the nuclear quantum dynamics and cannot be eliminated in the adiabatic representation without changing the physics of the system. To define dynamical effects arising from the GP presence, the nuclear quantum dynamics of the CI containing system is compared with that of the system with artificially removed GP. We explore a new construction of the system with removed GP via a modification of the diabatic representation for the original CI containing system. Using an absolute value function of diabatic couplings, we remove the GP while preserving adiabatic potential energy surfaces and CI. We assess GP effects in dynamics of a two-dimensional linear vibronic coupling model both for ground and excited state dynamics. Results are compared with those obtained with a conventional removal of the GP by ignoring double-valued boundary conditions of the real electronic wave functions. Interestingly, GP effects appear similar in two approaches only for the low energy dynamics. In contrast with the conventional approach, the new approach does not have substantial GP effects in the ultrafast excited state dynamics.
An alternative laser driven photodissociation mechanism of pyrrole via π*1σ/S0 conical intersection
NASA Astrophysics Data System (ADS)
Nandipati, K. R.; Lan, Z.; Singh, H.; Mahapatra, S.
2017-06-01
A first principles quantum dynamics study of N-H photodissociation of pyrrole on the S0-1π σ*(A12) coupled electronic states is carried out with the aid of an optimally designed UV-laser pulse. A new photodissociation path, as compared to the conventional barrier crossing on the π*1σ state, opens up upon electronic transitions under the influence of pump-dump laser pulses, which efficiently populate both the dissociation channels. The interplay of electronic transitions due both to vibronic coupling and the laser pulse is observed in the control mechanism and discussed in detail. The proposed control mechanism seems to be robust, and not discussed in the literature so far, and is expected to trigger future experiments on the π*1σ photochemistry of molecules of chemical and biological importance. The design of the optimal pulses and their application to enhance the overall dissociation probability is carried out within the framework of optimal control theory. The quantum dynamics of the system in the presence of pulse is treated by solving the time-dependent Schrödinger equation in the semi-classical dipole approximation.
Femtosecond dynamics of correlated many-body states in C60 fullerenes
NASA Astrophysics Data System (ADS)
Usenko, Sergey; Schüler, Michael; Azima, Armin; Jakob, Markus; Lazzarino, Leslie L.; Pavlyukh, Yaroslav; Przystawik, Andreas; Drescher, Markus; Laarmann, Tim; Berakdar, Jamal
2016-11-01
Fullerene complexes may play a key role in the design of future molecular electronics and nanostructured devices with potential applications in light harvesting using organic solar cells. Charge and energy flow in these systems is mediated by many-body effects. We studied the structure and dynamics of laser-induced multi-electron excitations in isolated C60 by two-photon photoionization as a function of excitation wavelength using a tunable fs UV laser and developed a corresponding theoretical framework on the basis of ab initio calculations. The measured resonance line width gives direct information on the excited state lifetime. From the spectral deconvolution we derive a lower limit for purely electronic relaxation on the order of {τ }{el}={10}-3+5 fs. Energy dissipation towards nuclear degrees of freedom is studied with time-resolved techniques. The evaluation of the nonlinear autocorrelation trace gives a characteristic time constant of {τ }{vib}=400+/- 100 fs for the exponential decay. In line with the experiment, the observed transient dynamics is explained theoretically by nonadiabatic (vibronic) couplings involving the correlated electronic, the nuclear degrees of freedom (accounting for the Herzberg-Teller coupling), and their interplay.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, G. Barratt; Jiang, Jun; Field, Robert W.
Here the C 1B 2 state of SO 2 has a double-minimum potential in the antisymmetric stretch coordinate, such that the minimum energy geometry has nonequivalent SO bond lengths. The asymmetry in the potential energy surface is expressed as a staggering in the energy levels of the v' 3 progression. We have recently made the first observation of low-lying levels with odd quanta of v' 3, which allows us--in the current work--to characterize the origins of the level staggering. Our work demonstrates the usefulness of low-lying vibrational level structure, where the character of the wavefunctions can be relatively easily understood,more » to extract information about dynamically important potential energy surface crossings that occur at much higher energy. The measured staggering pattern is consistent with a vibronic coupling model for the double-minimum, which involves direct coupling to the bound 2 1A 1 state and indirect coupling with the repulsive 3 1A 1 state. The degree of staggering in the v' 3 levels increases with quanta of bending excitation, which is consistent with the approach along the C state potential energy surface to a conical intersection with the 2 1A 1 surface at a bond angle of ~145°.« less
Park, G. Barratt; Jiang, Jun; Field, Robert W.
2016-04-14
Here the C 1B 2 state of SO 2 has a double-minimum potential in the antisymmetric stretch coordinate, such that the minimum energy geometry has nonequivalent SO bond lengths. The asymmetry in the potential energy surface is expressed as a staggering in the energy levels of the v' 3 progression. We have recently made the first observation of low-lying levels with odd quanta of v' 3, which allows us--in the current work--to characterize the origins of the level staggering. Our work demonstrates the usefulness of low-lying vibrational level structure, where the character of the wavefunctions can be relatively easily understood,more » to extract information about dynamically important potential energy surface crossings that occur at much higher energy. The measured staggering pattern is consistent with a vibronic coupling model for the double-minimum, which involves direct coupling to the bound 2 1A 1 state and indirect coupling with the repulsive 3 1A 1 state. The degree of staggering in the v' 3 levels increases with quanta of bending excitation, which is consistent with the approach along the C state potential energy surface to a conical intersection with the 2 1A 1 surface at a bond angle of ~145°.« less
Extended quantum jump description of vibronic two-dimensional spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, Julian; Falge, Mirjam; Keß, Martin
2015-06-07
We calculate two-dimensional (2D) vibronic spectra for a model system involving two electronic molecular states. The influence of a bath is simulated using a quantum-jump approach. We use a method introduced by Makarov and Metiu [J. Chem. Phys. 111, 10126 (1999)] which includes an explicit treatment of dephasing. In this way it is possible to characterize the influence of dissipation and dephasing on the 2D-spectra, using a wave function based method. The latter scales with the number of stochastic runs and the number of system eigenstates included in the expansion of the wave-packets to be propagated with the stochastic methodmore » and provides an efficient method for the calculation of the 2D-spectra.« less
Resonant two-photon ionization and laser induced fluorescence spectroscopy of jet-cooled adenine
NASA Astrophysics Data System (ADS)
Kim, Nam Joon; Jeong, Gawoon; Kim, Yung Sam; Sung, Jiha; Keun Kim, Seong; Park, Young Dong
2000-12-01
Electronic spectra of the jet-cooled DNA base adenine were obtained by the resonant two-photon ionization (R2PI) and the laser induced fluorescence (LIF) techniques. The 0-0 band to the lowest electronically excited state was found to be located at 35 503 cm-1. Well-resolved vibronic structures were observed up to 1100 cm-1 above the 0-0 level, followed by a slow rise of broad structureless absorption. The lowest electronic state was proposed to be of nπ* character, which lies ˜600 cm-1 below the onset of the ππ* state. The broad absorption was attributed to the extensive vibronic mixing between the nπ* state and the high-lying ππ* state.
Confirmed assignments of isomeric dimethylbenzyl radicals generated by corona discharge.
Yoon, Young Wook; Lee, Sang Kuk
2011-12-07
The controversial vibronic assignments of isomeric dimethylbenzyl radicals were clearly resolved by using different precursors. By employing corresponding dimethylbenzyl chlorides as precursors, we identified the origins of the vibronic bands of the dimethylbenzyl radicals generated by corona discharge of 1,2,4-trimethylbenzene. From the analysis of the spectra observed from the dimethylbenzyl chlorides in a corona excited supersonic expansion, we revised previous assignments of the 3,4-, 2,4-, and 2,5-dimethylbenzyl radicals. Spectroscopic data of electronic transition and vibrational mode frequencies in the ground electronic state of each isomer were accurately determined by comparing them with those obtained by an ab initio calculation and with the known vibrational data of 1,2,4-trimethylbenzene. © 2011 American Institute of Physics
Nazin, G. V.; Wu, S. W.; Ho, W.
2005-01-01
The scanning tunneling microscope enables atomic-scale measurements of electron transport through individual molecules. Copper phthalocyanine and magnesium porphine molecules adsorbed on a thin oxide film grown on the NiAl(110) surface were probed. The single-molecule junctions contained two tunneling barriers, vacuum gap, and oxide film. Differential conductance spectroscopy shows that electron transport occurs via vibronic states of the molecules. The intensity of spectral peaks corresponding to the individual vibronic states depends on the relative electron tunneling rates through the two barriers of the junction, as found by varying the vacuum gap tunneling rate by changing the height of the scanning tunneling microscope tip above the molecule. A simple, sequential tunneling model explains the observed trends. PMID:15956189
Nazin, G V; Wu, S W; Ho, W
2005-06-21
The scanning tunneling microscope enables atomic-scale measurements of electron transport through individual molecules. Copper phthalocyanine and magnesium porphine molecules adsorbed on a thin oxide film grown on the NiAl(110) surface were probed. The single-molecule junctions contained two tunneling barriers, vacuum gap, and oxide film. Differential conductance spectroscopy shows that electron transport occurs via vibronic states of the molecules. The intensity of spectral peaks corresponding to the individual vibronic states depends on the relative electron tunneling rates through the two barriers of the junction, as found by varying the vacuum gap tunneling rate by changing the height of the scanning tunneling microscope tip above the molecule. A simple, sequential tunneling model explains the observed trends.
NASA Astrophysics Data System (ADS)
Zhang, Ziyang; Fiebrandt, Julia; Haynes, Dionne; Sun, Kai; Madhav, Kalaga; Stoll, Andreas; Makan, Kirill; Makan, Vadim; Roth, Martin
2018-03-01
Three-dimensional multi-mode interference devices are demonstrated using a single-mode fiber (SMF) center-spliced to a section of polygon-shaped core multimode fiber (MMF). This simple structure can effectively generate well-localized self-focusing spots that match to the layout of a chosen multi-core fiber (MCF) as a launcher device. An optimized hexagon-core MMF can provide efficient coupling from a SMF to a 7-core MCF with an insertion loss of 0.6 dB and a power imbalance of 0.5 dB, while a square-core MMF can form a self-imaging pattern with symmetrically distributed 2 × 2, 3 × 3 or 4 × 4 spots. These spots can be directly received by a two-dimensional detector array. The device can work as a vector curvature sensor by comparing the relative power among the spots with a resolution of ∼0.1° over a 1.8 mm-long MMF.
Projective filtering of the fundamental eigenmode from spatially multimode radiation
NASA Astrophysics Data System (ADS)
Pérez, A. M.; Sharapova, P. R.; Straupe, S. S.; Miatto, F. M.; Tikhonova, O. V.; Leuchs, G.; Chekhova, M. V.
2015-11-01
Lossless filtering of a single coherent (Schmidt) mode from spatially multimode radiation is a problem crucial for optics in general and for quantum optics in particular. It becomes especially important in the case of nonclassical light that is fragile to optical losses. An example is bright squeezed vacuum generated via high-gain parametric down conversion or four-wave mixing. Its highly multiphoton and multimode structure offers a huge increase in the information capacity provided that each mode can be addressed separately. However, the nonclassical signature of bright squeezed vacuum, photon-number correlations, are highly susceptible to losses. Here we demonstrate lossless filtering of a single spatial Schmidt mode by projecting the spatial spectrum of bright squeezed vacuum on the eigenmode of a single-mode fiber. Moreover, we show that the first Schmidt mode can be captured by simply maximizing the fiber-coupled intensity. Importantly, the projection operation does not affect the targeted mode and leaves it usable for further applications.
NASA Astrophysics Data System (ADS)
Kislitsyn, Dmitry Anatolevich
This dissertation presents results of a project bringing Scanning Tunneling Microscope (STM) into a regime of unlimited operational time at cryogenic conditions. Freedom from liquid helium consumption was achieved and technical characteristics of the instrument are reported, including record low noise for a scanning probe instrument coupled to a close-cycle cryostat, which allows for atomically resolved imaging, and record low thermal drift. Subsequent studies showed that the new STM opened new prospects in nanoscience research by enabling Scanning Tunneling Spectroscopic (STS) spatial mapping to reveal details of the electronic structure in real space for molecules and low-dimensional nanomaterials, for which this depth of investigation was previously prohibitively expensive. Quantum-confined electronic states were studied in single-walled carbon nanotubes (SWCNTs) deposited on the Au(111) surface. Localization on the nanometer-scale was discovered to produce a local vibronic manifold resulting from the localization-enhanced electron-vibrational coupling. STS showed the vibrational overtones, identified as D-band Kekule vibrational modes and K-point transverse out-of plane phonons. This study experimentally connected the properties of well-defined localized electronic states to the properties of associated vibronic states. Electronic structures of alkyl-substituted oligothiophenes with different backbone lengths were studied and correlated with torsional conformations assumed on the Au(111) surface. The molecules adopted distinct planar conformations with alkyl ligands forming cis- or trans-mutual orientations and at higher coverage self-assembled into ordered structures, binding to each other via interdigitated alkyl ligands. STS maps visualized, in real space, particle-in-a-box-like molecular orbitals. Shorter quaterthiophenes have substantially varying orbital energies because of local variations in surface reactivity. Different conformers of longer oligothiophenes with significant geometrical distortions of the oligothiophene backbones surprisingly exhibited similar electronic structures, indicating insensitivity of interaction with the surface to molecular conformation. Electronic states for annealed ligand-free lead sulfide nanocrystals were investigated, as well as hydrogen-passivated silicon nanocrystals, supported on the Au(111) surface. Delocalized quantum-confined states and localized defect-related states were identified, for the first time, via STS spatial mapping. Physical mechanisms, involving surface reconstruction or single-atom defects, were proposed for surface state formation to explain the observed spatial behavior of the electronic density of states. This dissertation includes previously published co-authored material.
Multimodal switching of conformation and solubility in homocysteine derived polypeptides.
Kramer, Jessica R; Deming, Timothy J
2014-04-16
We report the design and synthesis of poly(S-alkyl-L-homocysteine)s, which were found to be a new class of readily prepared, multiresponsive polymers that possess the unprecedented ability to respond in different ways to different stimuli, either through a change in chain conformation or in water solubility. The responsive properties of these materials are also effected under mild conditions and are completely reversible for all pathways. The key components of these polymers are the incorporation of water solubilizing alkyl functional groups that are integrated with precisely positioned, multiresponsive thioether linkages. This promising system allows multimodal switching of polypeptide properties to obtain desirable features, such as coupled responses to multiple external inputs.
Compact multiwavelength transmitter module for multimode fiber optic ribbon cable
Deri, Robert J.; Pocha, Michael D.; Larson, Michael C.; Garrett, Henry E.
2002-01-01
A compact multiwavelength transmitter module for multimode fiber optic ribbon cable, which couples light from an M.times.N array of emitters onto N fibers, where the M wavelength may be distributed across two or more vertical-cavity surface-emitting laser (VCSEL) chips, and combining emitters and multiplexer into a compact package that is compatible with placement on a printed circuit board. A key feature is bringing together two emitter arrays fabricated on different substrates--each array designed for a different wavelength--into close physical proximity. Another key feature is to compactly and efficiently combine the light from two or more clusters of optical emitters, each in a different wavelength band, into a fiber ribbon.
Tapered enlarged ends in multimode optical fibers.
Brenci, M; Falciai, R; Scheggi, A M
1982-01-15
Radiation characteristics of multimode fibers with enlarged tapers were investigated on a number of samples obtained by varying the fiber drawing speed with a given law corresponding to a prefixed taper profile. The characterization of the fibers was made by near- and far-field intensity pattern measurements as well as by measuring the losses introduced by the taper. With a suitable choice of parameters the taper constitutes a reasonable low-loss component useful, for example, for either efficient coupling to large-spot high-power density sources or connecting fibers of different sizes. Conversely at the exit of the fiber the taper can be used for beam shaping which is of interest for mechanical or surgical applications.
NASA Astrophysics Data System (ADS)
Vassiliou, Marius S.; Sundareswaran, Venkataraman; Chen, S.; Behringer, Reinhold; Tam, Clement K.; Chan, M.; Bangayan, Phil T.; McGee, Joshua H.
2000-08-01
We describe new systems for improved integrated multimodal human-computer interaction and augmented reality for a diverse array of applications, including future advanced cockpits, tactical operations centers, and others. We have developed an integrated display system featuring: speech recognition of multiple concurrent users equipped with both standard air- coupled microphones and novel throat-coupled sensors (developed at Army Research Labs for increased noise immunity); lip reading for improving speech recognition accuracy in noisy environments, three-dimensional spatialized audio for improved display of warnings, alerts, and other information; wireless, coordinated handheld-PC control of a large display; real-time display of data and inferences from wireless integrated networked sensors with on-board signal processing and discrimination; gesture control with disambiguated point-and-speak capability; head- and eye- tracking coupled with speech recognition for 'look-and-speak' interaction; and integrated tetherless augmented reality on a wearable computer. The various interaction modalities (speech recognition, 3D audio, eyetracking, etc.) are implemented a 'modality servers' in an Internet-based client-server architecture. Each modality server encapsulates and exposes commercial and research software packages, presenting a socket network interface that is abstracted to a high-level interface, minimizing both vendor dependencies and required changes on the client side as the server's technology improves.
Coupling structures for out-of-plane coupling in optical PCBs
NASA Astrophysics Data System (ADS)
Hendrickx, N.; Van Erps, J.; Bosman, E.; Thienpont, H.; Van Daele, P.
2008-04-01
Coupling structures are critical building blocks that have a big influence on the performance of board-level optical interconnections. 45° micro-mirrors deflect the light beam over 90° and are used for out-of-plane coupling in single layer structures and out-of-plane and inter-plane coupling in multilayer structures. Two different approaches are being presented: a micro-mirror that is directly integrated with the multimode waveguides and a discrete coupling element that can be plugged into a cavity in the optical layer. The advantage of the integrated micro-mirror is the high achievable alignment accuracy. The discrete couplers on the other hand have the advantage that they can be characterized and measured prior to the insertion into the optical layer. Both mirror configurations are discussed and the performance is evaluated at wavelength 850nm.
Beaser, Eric; Schwartz, Jennifer K; Bell, Caleb B; Solomon, Edward I
2011-09-26
A Genetic Algorithm (GA) is a stochastic optimization technique based on the mechanisms of biological evolution. These algorithms have been successfully applied in many fields to solve a variety of complex nonlinear problems. While they have been used with some success in chemical problems such as fitting spectroscopic and kinetic data, many have avoided their use due to the unconstrained nature of the fitting process. In engineering, this problem is now being addressed through incorporation of adaptive penalty functions, but their transfer to other fields has been slow. This study updates the Nanakorrn Adaptive Penalty function theory, expanding its validity beyond maximization problems to minimization as well. The expanded theory, using a hybrid genetic algorithm with an adaptive penalty function, was applied to analyze variable temperature variable field magnetic circular dichroism (VTVH MCD) spectroscopic data collected on exchange coupled Fe(II)Fe(II) enzyme active sites. The data obtained are described by a complex nonlinear multimodal solution space with at least 6 to 13 interdependent variables and are costly to search efficiently. The use of the hybrid GA is shown to improve the probability of detecting the global optimum. It also provides large gains in computational and user efficiency. This method allows a full search of a multimodal solution space, greatly improving the quality and confidence in the final solution obtained, and can be applied to other complex systems such as fitting of other spectroscopic or kinetics data.
Optical characterisation and analysis of multi-mode pixels for use in future far infrared telescopes
NASA Astrophysics Data System (ADS)
McCarthy, Darragh; Trappe, Neil; Murphy, J. Anthony; Doherty, Stephen; Gradziel, Marcin; O'Sullivan, Créidhe; Audley, Michael D.; de Lange, Gert; van der Vorst, Maarten
2016-07-01
In this paper we present the development and verification of feed horn simulation code based on the mode- matching technique to simulate the electromagnetic performance of waveguide based structures of rectangular cross-section. This code is required to model multi-mode pyramidal horns which may be required for future far infrared (far IR) space missions where wavelengths in the range of 30 to 200 µm will be analysed. Multi-mode pyramidal horns can be used effectively to couple radiation to sensitive superconducting devices like Kinetic Inductance Detectors (KIDs) or Transition Edge Sensor (TES) detectors. These detectors could be placed in integrating cavities (to further increase the efficiency) with an absorbing layer used to couple to the radiation. The developed code is capable of modelling each of these elements, and so will allow full optical characterisation of such pixels and allow an optical efficiency to be calculated effectively. As the signals being measured at these short wavelengths are at an extremely low level, the throughput of the system must be maximised and so multi-mode systems are proposed. To this end, the focal planes of future far IR missions may consist of an array of multi-mode rectangular feed horns feeding an array of, for example, TES devices contained in individual integrating cavities. Such TES arrays have been fabricated by SRON Groningen and are currently undergoing comprehensive optical, electrical and thermal verification. In order to fully understand and validate the optical performance of the receiver system, it is necessary to develop comprehensive and robust optical models in parallel. We outline the development and verification of this optical modelling software by means of applying it to a representative multi-mode system operating at 150 GHz in order to obtain sufficiently short execution times so as to comprehensively test the code. SAFARI (SPICA FAR infrared Instrument) is a far infrared imaging grating spectrometer, to be proposed as an ESA M5 mission. It is planned for this mission to be launched on board the proposed SPICA (SPace Infrared telescope for Cosmology and Astrophysics) mission, in collaboration with JAXA. SAFARI is planned to operate in the 1.5-10 THz band, focussing on the formation and evolution of galaxies, stars and planetary systems. The pixel that drove the development of the techniques presented in this paper is typical of one option that could be implemented in the SAFARI focal plane, and so the ability to accurately understand and characterise such pixels is critical in the design phase of the next generation of far IR telescopes.
Monolithic coupling of a SU8 waveguide to a silicon photodiode
NASA Astrophysics Data System (ADS)
Nathan, M.; Levy, O.; Goldfarb, I.; Ruzin, A.
2003-12-01
We present quantitative results of light coupling from SU8 waveguides into silicon p-n photodiodes in monolithically integrated structures. Multimode, 12 μm thick, and 20 μm wide SU8 waveguides were fabricated to overlap 40×180 μm2 photodiodes, with three different waveguide-photodiode overlap lengths. The attenuation due to leaky-mode coupling in the overlap area was then calculated from photocurrent measurements. The overlap attenuation ranged from a minimum of 2.2 dB per mm overlap length to a maximum of about 3 dB/mm, comparing favorably with reported nonpolymeric waveguide-Si photodiode attenuations.
Spectroscopic study on deuterated benzenes. III. Vibronic structure and dynamics in the S1 state
NASA Astrophysics Data System (ADS)
Kunishige, Sachi; Katori, Toshiharu; Kawabata, Megumi; Yamanaka, Takaya; Baba, Masaaki
2015-12-01
We observed the fluorescence excitation spectra and mass-selected resonance enhanced multiphoton ionization (REMPI) excitation spectra for the 6 01 , 6 01 10 1 , and 6 01 10 2 bands of the S1←S0 transition of jet-cooled deuterated benzene and assigned the vibronic bands of C6D6 and C6HD5. The 60 1 10 n (n = 0, 1, 2) and 00 0 transition energies were found to be dependent only on the number of D atoms (ND), which was reflected by the zero-point energy of each H/D isotopomer. In some isotopomers some bands, such as those of out-of-plane vibrations mixed with 611n, make the spectra complex. These included the 611021n level or combination bands with ν12 which are allowed because of reduced molecular symmetry. From the lifetime measurements of each vibronic band, some enhancement of the nonradiative intramolecular vibrational redistribution (IVR) process was observed. It was also found that the threshold excess energy of "channel three" was higher than the 6112 levels, which were similar for all the H/D isotopomers. We suggest that the channel three nonradiative process could be caused mainly by in-plane processes such as IVR and internal conversion at the high vibrational levels in the S1 state of benzene, although the out-of-plane vibrations might contribute to some degree.
Vibronic relaxation dynamics of o-dichlorobenzene in its lowest excited singlet state
NASA Astrophysics Data System (ADS)
Liu, Benkang; Zhao, Haiyan; Lin, Xiang; Li, Xinxin; Gao, Mengmeng; Wang, Li; Wang, Wei
2018-01-01
Vibronic dynamics of o-dichlorobenzene in its lowest excited singlet state, S1, is investigated in real time by using femtosecond pump-probe method, combined with time-of-flight mass spectroscopy and photoelectron velocity mapping technique. Relaxation processes for the excitation in the range of 276-252 nm can be fitted by single exponential decay model, while in the case of wavelength shorter than 252 nm two-exponential decay model must be adopted for simulating transient profiles. Lifetime constants of the vibrationally excited S1 states change from 651 ± 10 ps for 276 nm excitation to 61 ± 1 ps for 242 nm excitation. Both the internal conversion from the S1 to the highly vibrationally excited ground state S0 and the intersystem crossing from the S1 to the triplet state are supposed to play important roles in de-excitation processes. Exponential fitting of the de-excitation rates on the excitation energy implies such de-excitation process starts from the highly vibrationally excited S0 state, which is validated, by probing the relaxation following photoexcitation at 281 nm, below the S1 origin. Time-dependent photoelectron kinetic energy distributions have been obtained experimentally. As the excitation wavelength changes from 276 nm to 242 nm, different cationic vibronic vibrations can be populated, determined by the Franck-Condon factors between the large geometry distorted excited singlet states and final cationic states.
Non-Condon nonequilibrium Fermi’s golden rule rates from the linearized semiclassical method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Xiang; Geva, Eitan
2016-08-14
The nonequilibrium Fermi’s golden rule describes the transition between a photoexcited bright donor electronic state and a dark acceptor electronic state, when the nuclear degrees of freedom start out in a nonequilibrium state. In a previous paper [X. Sun and E. Geva, J. Chem. Theory Comput. 12, 2926 (2016)], we proposed a new expression for the nonequilibrium Fermi’s golden rule within the framework of the linearized semiclassical approximation and based on the Condon approximation, according to which the electronic coupling between donor and acceptor is assumed constant. In this paper we propose a more general expression, which is applicable tomore » the case of non-Condon electronic coupling. We test the accuracy of the new non-Condon nonequilibrium Fermi’s golden rule linearized semiclassical expression on a model where the donor and acceptor potential energy surfaces are parabolic and identical except for shifts in the equilibrium energy and geometry, and the coupling between them is linear in the nuclear coordinates. Since non-Condon effects may or may not give rise to conical intersections, both possibilities are examined by considering the following: (1) A modified Garg-Onuchic-Ambegaokar model for charge transfer in the condensed phase, where the donor-acceptor coupling is linear in the primary-mode coordinate, and for which non-Condon effects do not give rise to a conical intersection; (2) the linear vibronic coupling model for electronic transitions in gas phase molecules, where non-Condon effects give rise to conical intersections. We also present a comprehensive comparison between the linearized semiclassical expression and a progression of more approximate expressions, in both normal and inverted regions, and over a wide range of initial nonequilibrium states, temperatures, and frictions.« less
Westermann, Till; Eisfeld, Wolfgang; Manthe, Uwe
2013-07-07
An approach to construct vibronically and spin-orbit coupled diabatic potential energy surfaces (PESs) which describe all three relevant electronic states in the entrance channels of the X(P) + CH4 →HX + CH3 reactions (with X=F((2)P), Cl((2)P), or O((3)P)) is introduced. The diabatization relies on the permutational symmetry present in the methane molecule and results in diabatic states which transform as the three p orbitals of the X atom. Spin-orbit coupling is easily and accurately included using the atomic spin-orbit coupling matrix of the isolated X atom. The method is applied to the F + CH4 system obtaining an accurate PES for the entrance channel based on ab initio multi-reference configuration interaction (MRCI) calculations. Comparing the resulting PESs with spin-orbit MRCI calculations, excellent agreement is found for the excited electronic states at all relevant geometries. The photodetachment spectrum of CH4·F(-) is investigated via full-dimensional (12D) quantum dynamics calculations on the coupled PESs using the multi-layer multi-configurational time-dependent Hartree approach. Extending previous work [J. Palma and U. Manthe, J. Chem. Phys. 137, 044306 (2012)], which was restricted to the dynamics on a single adiabatic PES, the contributions of the electronically excited states to the photodetachment spectrum are calculated and compared to experiment. Considering different experimental setups, good agreement between experiment and theory is found. Addressing questions raised in the previous work, the present dynamical calculations show that the main contribution to the second peak in the photodetachment spectrum results from electron detachment into the electronically excited states of the CH4F complex.
Padula, Daniele; Lee, Myeong H; Claridge, Kirsten; Troisi, Alessandro
2017-11-02
In this paper, we adopt an approach suitable for monitoring the time evolution of the intramolecular contribution to the spectral density of a set of identical chromophores embedded in their respective environments. We apply the proposed method to the Fenna-Matthews-Olson (FMO) complex, with the objective to quantify the differences among site-dependent spectral densities and the impact of such differences on the exciton dynamics of the system. Our approach takes advantage of the vertical gradient approximation to reduce the computational demands of the normal modes analysis. We show that the region of the spectral density that is believed to strongly influence the exciton dynamics changes significantly in the timescale of tens of nanoseconds. We then studied the impact of the intramolecular vibrations on the exciton dynamics by considering a model of FMO in a vibronic basis and neglecting the interaction with the environment to isolate the role of the intramolecular exciton-vibration coupling. In agreement with the assumptions in the literature, we demonstrate that high frequency modes at energy much larger than the excitonic energy splitting have negligible influence on exciton dynamics despite the large exciton-vibration coupling. We also find that the impact of including the site-dependent spectral densities on exciton dynamics is not very significant, indicating that it may be acceptable to apply the same spectral density on all sites. However, care needs to be taken for the description of the exciton-vibrational coupling in the low frequency part of intramolecular modes because exciton dynamics is more susceptible to low frequency modes despite their small Huang-Rhys factors.
"I've Got Swag": Simone Performs Critical Literacy in a High-School English Classroom
ERIC Educational Resources Information Center
Johnson, Elisabeth
2011-01-01
Drawing on multimodal, post-structural, and critical theory, the author examines a high-school English classroom exchange about editing a student publication. Analysing a young woman's embodied identity performances, the author illustrates how Simone, a tenth-grader, employed, adjusted, and coupled modes of communication like speech, laughter,…
ERIC Educational Resources Information Center
Kim, Paul; Hong, Ji-Seong; Bonk, Curtis; Lim, Gloria
2011-01-01
A Web 2.0 environment that is coupled with emerging multimodal interaction tools can have considerable influence on team learning outcomes. Today, technologies supporting social networking, collective intelligence, emotional interaction, and virtual communication are introducing new forms of collaboration that are profoundly impacting education.…
NASA Astrophysics Data System (ADS)
Sutresno, Adita; Kakitani, Yoshinori; Zuo, Ping; Li, Chunyong; Koyama, Yasushi; Nagae, Hiroyoshi
2007-10-01
In spheroidene (having the number of conjugated double bonds n = 10), stimulated emission was observed from the mixed vibronic levels of 1Bu+(0)+1Bu-(2) and 1Bu+(1)+1Bu-(3), whereas in lycopene, anhydrorhodovibrin and spirilloxanthin ( n = 11-13), stimulated emission, from the pure vibronic levels of 1Bu+(0) and 1Bu+(1). Thus, the 1Bu+ state can mix with the 1Bu- state but not with the 3Ag- state, both being located just below the 1Bu+ state. The presence and absence of the mixing of the neighboring diabatic states support the symmetries of the next low-lying 1Bu- and 3Ag- states.
Bound vector solitons and soliton complexes for the coupled nonlinear Schrödinger equations.
Sun, Zhi-Yuan; Gao, Yi-Tian; Yu, Xin; Liu, Wen-Jun; Liu, Ying
2009-12-01
Dynamic features describing the collisions of the bound vector solitons and soliton complexes are investigated for the coupled nonlinear Schrödinger (CNLS) equations, which model the propagation of the multimode soliton pulses under some physical situations in nonlinear fiber optics. Equations of such type have also been seen in water waves and plasmas. By the appropriate choices of the arbitrary parameters for the multisoliton solutions derived through the Hirota bilinear method, the periodic structures along the propagation are classified according to the relative relations of the real wave numbers. Furthermore, parameters are shown to control the intensity distributions and interaction patterns for the bound vector solitons and soliton complexes. Transformations of the soliton types (shape changing with intensity redistribution) during the collisions of those stationary structures with the regular one soliton are discussed, in which a class of inelastic properties is involved. Discussions could be expected to be helpful in interpreting such structures in the multimode nonlinear fiber optics and equally applied to other systems governed by the CNLS equations, e.g., the plasma physics and Bose-Einstein condensates.
Board-to-board optical interconnection using novel optical plug and slot
NASA Astrophysics Data System (ADS)
Cho, In K.; Yoon, Keun Byoung; Ahn, Seong H.; Kim, Jin Tae; Lee, Woo Jin; Shin, Kyoung Up; Heo, Young Un; Park, Hyo Hoon
2004-10-01
A novel optical PCB with transmitter/receiver system boards and optical bakcplane was prepared, which is board-to-board interconnection by optical plug and slot. We report an 8Gb/s PRBS NRZ data transmission between transmitter system board and optical backplane embedded multimode polymeric waveguide arrays. The basic concept of ETRI's optical PCB is as follows; 1) Metal optical bench is integrated with optoelectronic devices, driver and receiver circuits, polymeric waveguide and access line PCB module. 2) Multimode polymeric waveguide inside an optical backplane, which is embedded into PCB. 3) Optical slot and plug for high-density(channel pitch : 500um) board-to-board interconnection. The polymeric waveguide technology can be used for transmission of data on transmitter/ receiver system boards and for backplane interconnections. The main components are low-loss tapered polymeric waveguides and a novel optical plug and slot for board-to-board interconnections, respectively. The optical PCB is characteristic of low coupling loss, easy insertion/extraction of the boards and, especially, reliable optical coupling unaffected from external environment after board insertion.
On the adiabatic representation of Meyer-Miller electronic-nuclear dynamics
NASA Astrophysics Data System (ADS)
Cotton, Stephen J.; Liang, Ruibin; Miller, William H.
2017-08-01
The Meyer-Miller (MM) classical vibronic (electronic + nuclear) Hamiltonian for electronically non-adiabatic dynamics—as used, for example, with the recently developed symmetrical quasiclassical (SQC) windowing model—can be written in either a diabatic or an adiabatic representation of the electronic degrees of freedom, the two being a canonical transformation of each other, thus giving the same dynamics. Although most recent applications of this SQC/MM approach have been carried out in the diabatic representation—because most of the benchmark model problems that have exact quantum results available for comparison are typically defined in a diabatic representation—it will typically be much more convenient to work in the adiabatic representation, e.g., when using Born-Oppenheimer potential energy surfaces (PESs) and derivative couplings that come from electronic structure calculations. The canonical equations of motion (EOMs) (i.e., Hamilton's equations) that come from the adiabatic MM Hamiltonian, however, in addition to the common first-derivative couplings, also involve second-derivative non-adiabatic coupling terms (as does the quantum Schrödinger equation), and the latter are considerably more difficult to calculate. This paper thus revisits the adiabatic version of the MM Hamiltonian and describes a modification of the classical adiabatic EOMs that are entirely equivalent to Hamilton's equations but that do not involve the second-derivative couplings. The second-derivative coupling terms have not been neglected; they simply do not appear in these modified adiabatic EOMs. This means that SQC/MM calculations can be carried out in the adiabatic representation, without approximation, needing only the PESs and the first-derivative coupling elements. The results of example SQC/MM calculations are presented, which illustrate this point, and also the fact that simply neglecting the second-derivative couplings in Hamilton's equations (and presumably also in the Schrödinger equation) can cause very significant errors.
NASA Astrophysics Data System (ADS)
Novak, Joseph
Optical biological sensors are widely used in the fields of medical testing, water treatment and safety, gene identification, and many others due to advances in nanofabrication technology. This work focuses on the design of fiber-coupled Mach-Zehnder Interferometer (MZI) based biosensors fabricated on silicon-on-insulator (SOI) wafer. Silicon waveguide sensors are designed with multimode and single-mode dimensions. Input coupling efficiency is investigated by design of various taper structures. Integration processing and packaging is performed for fiber attachment and enhancement of input coupling efficiency. Optical guided-wave sensors rely on single-mode operation to extract an induced phase-shift from the output signal. A silicon waveguide MZI sensor designed and fabricated for both multimode and single-mode dimensions. Sensitivity of the sensors is analyzed for waveguide dimensions and materials. An s-bend structure is designed for the multimode waveguide to eliminate higher-order mode power as an alternative to single-mode confinement. Single-mode confinement is experimentally demonstrated through near field imaging of waveguide output. Y-junctions are designed for 3dB power splitting to the MZI arms and for power recombination after sensing to utilize the interferometric function of the MZI. Ultra-short 10microm taper structures with curved geometries are designed to improve insertion loss from fiber-to-chip without significantly increasing device area and show potential for applications requiring misalignment tolerance. An novel v-groove process is developed for self-aligned integration of fiber grooves for attachment to sensor chips. Thermal oxidation at temperatures from 1050-1150°C during groove processing creates an SiO2 layer on the waveguide end facet to protect the waveguide facet during integration etch processing without additional e-beam lithography processing. Experimental results show improvement of insertion loss compared to dicing preparation and Focused Ion Beam methods using the thermal oxidation process.
Lei, Ting; Poon, Andrew W
2013-01-28
We demonstrate two-dimensional optical trapping and manipulation of 1 μm and 2.2 μm polystyrene particles in an 18 μm-thick fluidic cell at a wavelength of 1565 nm using the recently proposed Silicon-on-insulator Multimode-interference (MMI) waveguide-based ARrayed optical Tweezers (SMART) technique. The key component is a 100 μm square-core silicon waveguide with mm length. By tuning the fiber-coupling position at the MMI waveguide input facet, we demonstrate various patterns of arrayed optical tweezers that enable optical trapping and manipulation of particles. We numerically simulate the physical mechanisms involved in the arrayed trap, including the optical force, the heat transfer and the thermal-induced microfluidic flow.
NASA Astrophysics Data System (ADS)
Zhang, Xianxia; Wang, Jian; Qin, Tinggao
2003-09-01
Intelligent control algorithms are introduced into the control system of temperature and humidity. A multi-mode control algorithm of PI-Single Neuron is proposed for single loop control of temperature and humidity. In order to remove the coupling between temperature and humidity, a new decoupling method is presented, which is called fuzzy decoupling. The decoupling is achieved by using a fuzzy controller that dynamically modifies the static decoupling coefficient. Taking the control algorithm of PI-Single Neuron as the single loop control of temperature and humidity, the paper provides the simulated output response curves with no decoupling control, static decoupling control and fuzzy decoupling control. Those control algorithms are easily implemented in singlechip-based hardware systems.
Tapered waveguides for guided wave optics.
Campbell, J C
1979-03-15
Strip waveguides having half-paraboloid shaped tapers that permit efficient fiber to waveguide coupling have been fabricated by Ag ion exchange in soda-lime glass. A reduction in the input coupling loss has been accomplished by tailoring the diffusion to provide a gradual transition from a single-mode waveguide to a multimode waveguide having cross-sectional dimensions comparable to the core diameter of a single-mode fiber. Waveguides without tapers exhibit an attenuation of 1.0 dB/cm and an input coupling loss of 0.6 dB. The additional loss introduced by the tapered region is 0.5 dB. By way of contrast, an input coupling loss of 2.4 dB is obtained by coupling directly to a single-mode waveguide, indicating a net improvement of 1.3 dB for the tapered waveguides.
NASA Astrophysics Data System (ADS)
Roudjane, Mourad; Codd, Terrance Joseph; Chen, Ming-Wei; Tran, Henry; Melnik, Dmitry G.; Miller, Terry A.; Stanton, John F.
2015-06-01
The vibronic structure of the tilde{A}-tilde{X} electronic spectrum of NO_3 has been observed using both room-temperature and jet-cooled samples. A recent analysis of this structure is consistent with the Jahn-Teller effect (JTE) in the e^' ν_3 vibrational mode (N-O stretch) being quite strong while the JTE in the e^' ν_4 mode (O-N-O) bend) is rather weak. Electronic structure calculations qualitatively predict these results but the calculated magnitude of the JTE is quantitatively inconsistent with the spectral analysis. Rotationally resolved spectra have been obtained for over a dozen vibronic bands of the tilde{A}-tilde{X} electronic transition in NO_3. An analysis of these spectra should provide considerably more experimental information about the JTE in the tilde{A} state of NO_3 as the rotational structure should be quite sensitive to the geometric distortion of the molecule due to the JTE. This talk will focus upon the parallel bands, which terminate on tilde{A} state levels of a''_1 vibronic symmetry, which were the subject of a preliminary analysis reported at this meeting in 2014. We have now recorded the rotational structure of over a half-dozen parallel bands and have completed analysis on the 3^1_0 and 3^1_0 4^1_0 transitions with several other bands being reasonably well understood. Two general conclusions emerge from this work. (i) All the spectral bands show evidence of perturbations which can reasonably be assumed to result from interactions of the observed tilde{A} state levels with high vibrational levels of the tilde{X} state. The perturbations range from severe in some bands to quite modest in others. (ii) Analyses of observed spectra, insofar as the perturbations permit, have all been performed with an oblate symmetric top model including only additional spin-rotation effects. This result is, of course, consistent with an effective, undistorted geometry for NO_3 of D3h symmetry on the rotational timescale.
NASA Astrophysics Data System (ADS)
Majumder, Saikat; Jha, Amit Kr.; Biswas, Aishik; Banerjee, Debasmita; Ganguly, Dipankar; Chakraborty, Rajib
2017-08-01
Horizontal spot size converter required for horizontal light coupling and vertical bridge structure required for vertical integration are designed on high index contrast SOI platform in order to form more compact integrated photonic circuits. Both the structures are based on the concept of multimode interference. The spot size converter can be realized by successive integration of multimode interference structures with reducing dimension on horizontal plane, whereas the optical bridge structure consists of a number of vertical multimode interference structure connected by single mode sections. The spot size converter can be modified to a spot profile converter when the final single mode waveguide is replaced by a slot waveguide. Analysis have shown that by using three multimode sections in a spot size converter, an Gaussian input having spot diameter of 2.51 μm can be converted to a spot diameter of 0.25 μm. If the output single mode section is replaced by a slot waveguide, this input profile can be converted to a flat top profile of width 50 nm. Similarly, vertical displacement of 8μm is possible by using a combination of two multimode sections and three single mode sections in the vertical bridge structure. The analyses of these two structures are carried out for both TE and TM modes at 1550 nm wavelength using the semi analytical matrix method which is simple and fast in computation time and memory. This work shows that the matrix method is equally applicable for analysis of horizontally as well as vertically integrated photonic circuit.
NASA Astrophysics Data System (ADS)
Bamiedakis, N.; Chen, J.; Penty, R. V.; White, I. H.
2016-03-01
Multimode polymer waveguides are being increasingly considered for use in short-reach board-level optical interconnects as they exhibit favourable optical properties and allow direct integration onto standard PCBs with conventional methods of the electronics industry. Siloxane-based multimode waveguides have been demonstrated with excellent optical transmission performance, while a wide range of passive waveguide components that offer routing flexibility and enable the implementation of complex on-board interconnection architectures has been reported. In recent work, we have demonstrated that these polymer waveguides can exhibit very high bandwidth-length products in excess of 30 GHz×m despite their highly-multimoded nature, while it has been shown that even larger values of > 60 GHz×m can be achieved by adjusting their refractive index profile. Furthermore, the combination of refractive index engineering and launch conditioning schemes can ensure high bandwidth (> 100 GHz×m) and high coupling efficiency (<1 dB) with standard multimode fibre inputs with relatively large alignment tolerances (~17×15 μm2). In the work presented here, we investigate the effects of refractive index engineering on the performance of passive waveguide components (crossings, bends) and provide suitable design rules for their on-board use. It is shown that, depending on the interconnection layout and link requirements, appropriate choice of refractive index profile can provide enhanced component performance, ensuring low loss interconnection and adequate link bandwidth. The results highlight the strong potential of this versatile optical technology for the formation of high-performance board-level optical interconnects with high routing flexibility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimada, Rintaro; Hamaguchi, Hiro-o, E-mail: hhama@nctu.edu.tw
2014-05-28
We quantitatively interpret the recently discovered intriguing phenomenon related to resonance Hyper-Raman (HR) scattering. In resonance HR spectra of all-trans-β-carotene (β-carotene) in solution, vibrations of proximate solvent molecules are observed concomitantly with the solute β-carotene HR bands. It has been shown that these solvent bands are subject to marked intensity enhancements by more than 5 orders of magnitude under the presence of β-carotene. We have called this phenomenon the molecular-near field effect. Resonance HR spectra of β-carotene in benzene, deuterated benzene, cyclohexane, and deuterated cyclohexane have been measured precisely for a quantitative analysis of this effect. The assignments of themore » observed peaks are made by referring to the infrared, Raman, and HR spectra of neat solvents. It has been revealed that infrared active and some Raman active vibrations are active in the HR molecular near-field effect. The observed spectra in the form of difference spectra (between benzene/deuterated benzene and cyclohexane/deuterated cyclohexane) are quantitatively analyzed on the basis of the extended vibronic theory of resonance HR scattering. The theory incorporates the coupling of excited electronic states of β-carotene with the vibrations of a proximate solvent molecule through solute–solvent dipole–dipole and dipole–quadrupole interactions. It is shown that the infrared active modes arise from the dipole–dipole interaction, whereas Raman active modes from the dipole–quadrupole interaction. It is also shown that vibrations that give strongly polarized Raman bands are weak in the HR molecular near-field effect. The observed solvent HR spectra are simulated with the help of quantum chemical calculations for various orientations and distances of a solvent molecule with respect to the solute. The observed spectra are best simulated with random orientations of the solvent molecule at an intermolecular distance of 10 Å.« less
Tiwari, Vivek; Jonas, David M
2018-02-28
Vibrational-electronic resonance in photosynthetic pigment-protein complexes invalidates Förster's adiabatic framework for interpreting spectra and energy transfer, thus complicating determination of how the surrounding protein affects pigment properties. This paper considers the combined effects of vibrational-electronic resonance and inhomogeneous variations in the electronic excitation energies of pigments at different sites on absorption, emission, circular dichroism, and hole-burning spectra for a non-degenerate homodimer. The non-degenerate homodimer has identical pigments in different sites that generate differences in electronic energies, with parameters loosely based on bacteriochlorophyll a pigments in the Fenna-Matthews-Olson antenna protein. To explain the intensity borrowing, the excited state vibrational-electronic eigenvectors are discussed in terms of the vibrational basis localized on the individual pigments, as well as the correlated/anti-correlated vibrational basis delocalized over both pigments. Compared to those in the isolated pigment, vibrational satellites for the correlated vibration have the same frequency and precisely a factor of 2 intensity reduction through vibrational delocalization in both absorption and emission. Vibrational satellites for anti-correlated vibrations have their relaxed emission intensity reduced by over a factor 2 through vibrational and excitonic delocalization. In absorption, anti-correlated vibrational satellites borrow excitonic intensity but can be broadened away by the combination of vibronic resonance and site inhomogeneity; in parallel, their vibronically resonant excitonic partners are also broadened away. These considerations are consistent with photosynthetic antenna hole-burning spectra, where sharp vibrational and excitonic satellites are absent. Vibrational-excitonic resonance barely alters the inhomogeneously broadened linear absorption, emission, and circular dichroism spectra from those for a purely electronic excitonic coupling model. Energy transfer can leave excess energy behind as vibration on the electronic ground state of the donor, allowing vibrational relaxation on the donor's ground electronic state to make energy transfer permanent by removing excess energy from the excited electronic state of the dimer.
NASA Astrophysics Data System (ADS)
Tiwari, Vivek; Jonas, David M.
2018-02-01
Vibrational-electronic resonance in photosynthetic pigment-protein complexes invalidates Förster's adiabatic framework for interpreting spectra and energy transfer, thus complicating determination of how the surrounding protein affects pigment properties. This paper considers the combined effects of vibrational-electronic resonance and inhomogeneous variations in the electronic excitation energies of pigments at different sites on absorption, emission, circular dichroism, and hole-burning spectra for a non-degenerate homodimer. The non-degenerate homodimer has identical pigments in different sites that generate differences in electronic energies, with parameters loosely based on bacteriochlorophyll a pigments in the Fenna-Matthews-Olson antenna protein. To explain the intensity borrowing, the excited state vibrational-electronic eigenvectors are discussed in terms of the vibrational basis localized on the individual pigments, as well as the correlated/anti-correlated vibrational basis delocalized over both pigments. Compared to those in the isolated pigment, vibrational satellites for the correlated vibration have the same frequency and precisely a factor of 2 intensity reduction through vibrational delocalization in both absorption and emission. Vibrational satellites for anti-correlated vibrations have their relaxed emission intensity reduced by over a factor 2 through vibrational and excitonic delocalization. In absorption, anti-correlated vibrational satellites borrow excitonic intensity but can be broadened away by the combination of vibronic resonance and site inhomogeneity; in parallel, their vibronically resonant excitonic partners are also broadened away. These considerations are consistent with photosynthetic antenna hole-burning spectra, where sharp vibrational and excitonic satellites are absent. Vibrational-excitonic resonance barely alters the inhomogeneously broadened linear absorption, emission, and circular dichroism spectra from those for a purely electronic excitonic coupling model. Energy transfer can leave excess energy behind as vibration on the electronic ground state of the donor, allowing vibrational relaxation on the donor's ground electronic state to make energy transfer permanent by removing excess energy from the excited electronic state of the dimer.
Tscherbul, Timur V; Brumer, Paul
2015-12-14
We present a theoretical study of quantum coherence effects in the primary cis-trans photoisomerization of retinal in rhodopsin induced by incoherent solar light. Using the partial secular Bloch-Redfield quantum master equation approach based on a two-state two-mode linear vibronic coupling model of the retinal chromophore [S. Hahn and G. Stock, J. Phys. Chem. B, 2000, 104, 1146-1149], we show that a sudden turn-on of incoherent pumping can generate substantial Fano coherences among the excited states of retinal. These coherences are the most pronounced in the regime where the matrix elements of the transition dipole moment between the ground and excited eigenstates are parallel to one another. We show that even when the transition dipole moments are perpendicular (implying the absence of light-induced Fano coherence) a small amount of excited-state coherence is still generated due to the coupling to intramolecular vibrational modes and the protein environment, causing depopulation of the excited eigenstates. The overall effect of the coherences on the steady-state population and on the photoproduct quantum yield is shown to be small; however we observe a significant transient effect on the formation of the trans photoproduct, enhancing the photoreaction quantum yield by ∼11% at 200 fs. These calculations suggest that coupling to intramolecular vibrational modes and the protein environment play an important role in photoreaction dynamics, suppressing oscillations in the quantum yield associated with Fano interference.
High brightness laser-diode device emitting 160 watts from a 100 μm/NA 0.22 fiber.
Yu, Junhong; Guo, Linui; Wu, Hualing; Wang, Zhao; Tan, Hao; Gao, Songxin; Wu, Deyong; Zhang, Kai
2015-11-10
A practical method of achieving a high-brightness and high-power fiber-coupled laser-diode device is demonstrated both by experiment and ZEMAX software simulation, which is obtained by a beam transformation system, free-space beam combining, and polarization beam combining based on a mini-bar laser-diode chip. Using this method, fiber-coupled laser-diode module output power from the multimode fiber with 100 μm core diameter and 0.22 numerical aperture (NA) could reach 174 W, with equalizing brightness of 14.2 MW/(cm2·sr). By this method, much wider applications of fiber-coupled laser-diodes are anticipated.
NASA Astrophysics Data System (ADS)
Miao, Yinping; Zhang, Hao; Lin, Jichao; Song, Binbin; Zhang, Kailiang; Lin, Wei; Liu, Bo; Yao, Jianquan
2015-03-01
A dual-parameter measurement scheme based on a long-period fiber grating (LPFG) concatenated with a multimode fiber (MMF) has been proposed and experimentally demonstrated for simultaneous measurement of magnetic field and temperature. Splicing the LPFG with the etched MMF enables the coupling between the core modes and different cladding modes of the LPFG as well as the interferences between higher-order modes in the MMF. Due to different transmission mechanisms of the LPFG and mode interference, the proposed sensor shows transmission dip wavelength sensitivities of 0.02878 nm/Oe and -0.04048 nm/°C for multi-mode interference (MMI) and -0.0024 nm/Oe and 0.03929 nm/°C for the LPFG, respectively. By monitoring the opposite behaviors of resonance wavelength shift corresponding to the LPFG and MMI, the magnetic field and environmental temperature can be simultaneously measured. The spectral characteristics of the proposed sensor that could be tuned through control of both environmental temperature and applied magnetic field, which would provide a promising candidate for dual-channel filtering applications as well as multi-parameter measurement applications.
Multimodal hyperspectral optical microscopy
Novikova, Irina V.; Smallwood, Chuck R.; Gong, Yu; ...
2017-09-02
We describe a unique and convenient approach to multimodal hyperspectral optical microscopy, herein achieved by coupling a portable and transferable hyperspectral imager to various optical microscopes. The experimental and data analysis schemes involved in recording spectrally and spatially resolved fluorescence, dark field, and optical absorption micrographs are illustrated through prototypical measurements targeting selected model systems. Namely, hyperspectral fluorescence micrographs of isolated fluorescent beads are employed to ensure spectral calibration of our detector and to gauge the attainable spatial resolution of our measurements; the recorded images are diffraction-limited. Moreover, spatially over-sampled absorption spectroscopy of a single lipid (18:1 Liss Rhod PE)more » layer reveals that optical densities on the order of 10-3 may be resolved by spatially averaging the recorded optical signatures. We also briefly illustrate two applications of our setup in the general areas of plasmonics and cell biology. Most notably, we deploy hyperspectral optical absorption microscopy to identify and image algal pigments within a single live Tisochrysis lutea cell. Overall, this work paves the way for multimodal multidimensional spectral imaging measurements spanning the realms of several scientific disciples.« less
The expert surgical assistant. An intelligent virtual environment with multimodal input.
Billinghurst, M; Savage, J; Oppenheimer, P; Edmond, C
1996-01-01
Virtual Reality has made computer interfaces more intuitive but not more intelligent. This paper shows how an expert system can be coupled with multimodal input in a virtual environment to provide an intelligent simulation tool or surgical assistant. This is accomplished in three steps. First, voice and gestural input is interpreted and represented in a common semantic form. Second, a rule-based expert system is used to infer context and user actions from this semantic representation. Finally, the inferred user actions are matched against steps in a surgical procedure to monitor the user's progress and provide automatic feedback. In addition, the system can respond immediately to multimodal commands for navigational assistance and/or identification of critical anatomical structures. To show how these methods are used we present a prototype sinus surgery interface. The approach described here may easily be extended to a wide variety of medical and non-medical training applications by making simple changes to the expert system database and virtual environment models. Successful implementation of an expert system in both simulated and real surgery has enormous potential for the surgeon both in training and clinical practice.
Multimodal Spectral Imaging of Cells Using a Transmission Diffraction Grating on a Light Microscope
Isailovic, Dragan; Xu, Yang; Copus, Tyler; Saraswat, Suraj; Nauli, Surya M.
2011-01-01
A multimodal methodology for spectral imaging of cells is presented. The spectral imaging setup uses a transmission diffraction grating on a light microscope to concurrently record spectral images of cells and cellular organelles by fluorescence, darkfield, brightfield, and differential interference contrast (DIC) spectral microscopy. Initially, the setup was applied for fluorescence spectral imaging of yeast and mammalian cells labeled with multiple fluorophores. Fluorescence signals originating from fluorescently labeled biomolecules in cells were collected through triple or single filter cubes, separated by the grating, and imaged using a charge-coupled device (CCD) camera. Cellular components such as nuclei, cytoskeleton, and mitochondria were spatially separated by the fluorescence spectra of the fluorophores present in them, providing detailed multi-colored spectral images of cells. Additionally, the grating-based spectral microscope enabled measurement of scattering and absorption spectra of unlabeled cells and stained tissue sections using darkfield and brightfield or DIC spectral microscopy, respectively. The presented spectral imaging methodology provides a readily affordable approach for multimodal spectral characterization of biological cells and other specimens. PMID:21639978
Assessment of Delirium in Intensive Care Unit Patients: Educational Strategies.
Smith, Judith M; Van Aman, M Nancy; Schneiderhahn, Mary Elizabeth; Edelman, Robin; Ercole, Patrick M
2017-05-01
Delirium is an acute brain dysfunction associated with poor outcomes in intensive care unit (ICU) patients. Critical care nurses play an important role in the prevention, detection, and management of delirium, but they must be able to accurately assess for it. The Confusion Assessment Method for the Intensive Care Unit (CAM-ICU) instrument is a reliable and valid method to assess for delirium, but research reveals most nurses need practice to use it proficiently. A pretest-posttest design was used to evaluate the success of a multimodal educational strategy (i.e., online learning module coupled with standardized patient simulation experience) on critical care nurses' knowledge and confidence to assess and manage delirium using the CAM-ICU. Participants (N = 34) showed a significant increase (p < .001) in confidence in their ability to assess and manage delirium following the multimodal education. No statistical change in knowledge of delirium existed following the education. A multimodal educational strategy, which included simulation, significantly added confidence in critical care nurses' performance using the CAM-ICU. J Contin Nurs Educ. 2017;48(5):239-244. Copyright 2017, SLACK Incorporated.
Photonic lantern with multimode fibers embedded
NASA Astrophysics Data System (ADS)
Yu, Hai-Jiao; Yan, Qi; Huang, Zong-Jun; Tian, He; Jiang, Yu; Liu, Yong-Jun; Zhang, Jian-Zhong; Sun, Wei-Min
2014-08-01
A photonic lantern is studied which is formed by seven multimode fibers inserted into a pure silica capillary tube. The core of the tapered end has a uniform refractive index because the polymer claddings are removed before the fibers are inserted. Consequently, the light distribution is also uniform. Two theories describing a slowly varying waveguide and multimode coupling are used to analyze the photonic lantern. The transmission loss decreases as the length of the tapered part increases. For a device with a taper length of 3.4 cm, the loss is about 1.06 dB on average for light propagating through the taper from an inserted fiber to the tapered end and 0.99 dB in the reverse direction. For a device with a taper length of 0.7 cm, the two loss values are 2.63 dB and 2.53 dB, respectively. The results show that it is possible to achieve a uniform light distribution with the tapered end and a low-loss transmission in the device if parameters related to the lantern are reasonably defined.
Multimodal hyperspectral optical microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novikova, Irina V.; Smallwood, Chuck R.; Gong, Yu
We describe a unique and convenient approach to multimodal hyperspectral optical microscopy, herein achieved by coupling a portable and transferable hyperspectral imager to various optical microscopes. The experimental and data analysis schemes involved in recording spectrally and spatially resolved fluorescence, dark field, and optical absorption micrographs are illustrated through prototypical measurements targeting selected model systems. Namely, hyperspectral fluorescence micrographs of isolated fluorescent beads are employed to ensure spectral calibration of our detector and to gauge the attainable spatial resolution of our measurements; the recorded images are diffraction-limited. Moreover, spatially over-sampled absorption spectroscopy of a single lipid (18:1 Liss Rhod PE)more » layer reveals that optical densities on the order of 10-3 may be resolved by spatially averaging the recorded optical signatures. We also briefly illustrate two applications of our setup in the general areas of plasmonics and cell biology. Most notably, we deploy hyperspectral optical absorption microscopy to identify and image algal pigments within a single live Tisochrysis lutea cell. Overall, this work paves the way for multimodal multidimensional spectral imaging measurements spanning the realms of several scientific disciples.« less
Korolkov, M V; Manz, J
2007-05-07
The preparation of matrix isolated homonuclear diatomic molecules in a vibrational superposition state c0Phie=1,v=0+cjPhie=1,v=j, with large (|c0|2 approximately 1) plus small contributions (|cj|2<1) of the ground v=0 and specific v=j low excited vibrational eigenstates, respectively, in the electronic ground (e=1) state, and without any net population transfer to electronic excited (e>1) states, is an important challenge; it serves as a prerequisite for coherent spin control. For this purpose, the authors investigate two scenarios of laser pulse control, involving sequential or intrapulse pump- and dump-type transitions via excited vibronic states Phiex,k with a dominant singlet or triplet character. The mechanisms are demonstrated by means of quantum simulations for representative nuclear wave packets on coupled potential energy surfaces, using as an example a one-dimensional model for Cl2 in an Ar matrix. A simple three-state model (including Phi1,0, Phi1,j and Phiex,k) allows illuminating analyses and efficient determinations of the parameters of the laser pulses based on the values of the transition energies and dipole couplings of the transient state which are derived from the absorption spectra.
Nonadiabatic coupling reduces the activation energy in thermally activated delayed fluorescence.
Gibson, J; Penfold, T J
2017-03-22
The temperature dependent rate of a thermally activated process is given by the Arrhenius equation. The exponential decrease in the rate with activation energy, which this imposes, strongly promotes processes with small activation barriers. This criterion is one of the most challenging during the design of thermally activated delayed fluorescence (TADF) emitters used in organic light emitting diodes. The small activation energy is usually achieved with donor-acceptor charge transfer complexes. However, this sacrifices the radiative rate and is therefore incommensurate with the high luminescence quantum yields required for applications. Herein we demonstrate that the spin-vibronic mechanism, operative for efficient TADF, overcomes this limitation. Nonadiabatic coupling between the lowest two triplet states give rise to a strong enhancement of the rate of reserve intersystem crossing via a second order mechanism and promotes population transfer between the T 1 to T 2 states. Consequently the rISC mechanism is actually operative between initial and final state exhibiting an energy gap that is smaller than between the T 1 and S 1 states. This contributes to the small activation energies for molecules exhibiting a large optical gap, identifies limitations of the present design procedures and provides a basis from which to construct TADF molecules with simultaneous high radiative and rISC rates.
Mizoguchi, Asao; Ohshima, Yasuhiro; Endo, Yasuki
2011-08-14
Pure rotational spectra of the sodium chloride-water complexes, NaCl-(H(2)O)(n) (n = 1, 2, and 3), in the vibronic ground state have been observed by a Fourier- transform microwave spectrometer coupled with a laser ablation source. The (37)Cl-isotopic species and a few deuterated species have also been observed. From the analyses of the spectra, the rotational constants, the centrifugal distortion constants, and the nuclear quadrupole coupling constants of the Na and Cl nuclei were determined precisely for all the species. The molecular structures of NaCl-(H(2)O)(n) were determined using the rotational constants and the molecular symmetry. The charge distributions around Na and Cl nuclei in NaCl are dramatically changed by the complex formation with H(2)O. Prominent dependences of the bond lengths r(Na-Cl) on the number of H(2)O were also observed. By a comparison with results of theoretical studies, it is shown that the structure of NaCl-(H(2)O)(3) is approaching to that of the contact ion-pair, which is considered to be an intermediate species in the incipient solvation process.
Influence of intra-pigment vibrations on dynamics of photosynthetic exciton.
Sato, Yoshihiro; Doolittle, Brian
2014-11-14
We have numerically investigated the effect of an underdamped intra-pigment vibrational mode on an exciton's quantum coherence and energy transfer efficiency. Our model describes a bacteriochlorophyll a pigment-protein dimer under the conditions at which photosynthetic energy transfer occurs. The dimer is modeled using a theoretical treatment of a vibronic exciton, and its dynamics are numerically analyzed using a non-Markovian and non-perturbative method. We examined the system's response to various values of the Huang-Rhys factor, site energy difference, reorganization energy, and reorganization energy difference. We found that the inclusion of the intra-pigment vibronic mode allows for long-lived oscillatory quantum coherences to occur. This excitonic coherence is robust against static site-energy disorder. The vibrational mode also promotes exciton transfer along the site-energy landscape thus improving the overall energy transfer efficiency.
NASA Astrophysics Data System (ADS)
Kytka, M.; Gisslen, L.; Gerlach, A.; Heinemeyer, U.; Kováč, J.; Scholz, R.; Schreiber, F.
2009-06-01
In order to investigate the optical properties of rubrene we study the vibronic progression of the first absorption band (lowest π →π∗ transition). We analyze the dielectric function ɛ2 of rubrene in solution and thin films using the displaced harmonic oscillator model and derive all relevant parameters of the vibronic progression. The findings are supplemented by density functional calculations using B3LYP hybrid functionals. Our theoretical results for the molecule in two different conformations, i.e., with a twisted or planar tetracene backbone, are in very good agreement with the experimental data obtained for rubrene in solution and thin films. Moreover, a simulation based on the monomer spectrum and the calculated transition energies of the two conformations indicates that the thin film spectrum of rubrene is dominated by the twisted isomer.
Kytka, M; Gisslen, L; Gerlach, A; Heinemeyer, U; Kovác, J; Scholz, R; Schreiber, F
2009-06-07
In order to investigate the optical properties of rubrene we study the vibronic progression of the first absorption band (lowest pi-->pi( *) transition). We analyze the dielectric function epsilon(2) of rubrene in solution and thin films using the displaced harmonic oscillator model and derive all relevant parameters of the vibronic progression. The findings are supplemented by density functional calculations using B3LYP hybrid functionals. Our theoretical results for the molecule in two different conformations, i.e., with a twisted or planar tetracene backbone, are in very good agreement with the experimental data obtained for rubrene in solution and thin films. Moreover, a simulation based on the monomer spectrum and the calculated transition energies of the two conformations indicates that the thin film spectrum of rubrene is dominated by the twisted isomer.
Quantum coherence selective 2D Raman–2D electronic spectroscopy
Spencer, Austin P.; Hutson, William O.; Harel, Elad
2017-01-01
Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational–vibrational, electronic–vibrational and electronic–electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment–protein complexes. PMID:28281541
A reinterpretation of the electronic spectrum of pyrrole: A quantum dynamics study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neville, S. P.; Worth, G. A., E-mail: g.a.worth@bham.ac.uk
The first band in the electronic spectrum of pyrrole is calculated from wavepacket propagations performed using the MCTDH method. To do so, two model Hamiltonians are constructed to describe seven low-lying excited electronic states of pyrrole. These Hamiltonians are based on the vibronic coupling model, and are parameterised via fitting to extensive CASPT2 and EOM-CCSD calculations. A detailed analysis of the structure of pyrrole's electronic spectrum in the range 5.5 to 6.5 eV is made. The role of intensity borrowing from transitions to ππ{sup *} states by lower-lying 3s and 3p Rydberg states is assessed, and reassignments of much ofmore » the spectrum are subsequently made which indicate that most of the states in the spectrum are predominantly Rydberg in character. The resulting conclusions drawn serve to highlight the limitations of assignments based on the matching of calculated vertical excitation energies and the positions of peak maxima observed in electronic spectra.« less
Coherent structural trapping through wave packet dispersion during photoinduced spin state switching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemke, Henrik T.; Kjær, Kasper S.; Hartsock, Robert
The description of ultrafast nonadiabatic chemical dynamics during molecular photo-transformations remains challenging because electronic and nuclear configurations impact each other and cannot be treated independently. Here we gain experimental insights, beyond the Born–Oppenheimer approximation, into the light-induced spin-state trapping dynamics of the prototypical [Fe(bpy)3]2+ compound by time-resolved X-ray absorption spectroscopy at sub-30-femtosecond resolution and high signal-to-noise ratio. The electronic decay from the initial optically excited electronic state towards the high spin state is distinguished from the structural trapping dynamics, which launches a coherent oscillating wave packet (265 fs period), clearly identified as molecular breathing. Throughout the structural trapping, the dispersionmore » of the wave packet along the reaction coordinate reveals details of intramolecular vibronic coupling before a slower vibrational energy dissipation to the solution environment. These findings illustrate how modern time-resolved X-ray absorption spectroscopy can provide key information to unravel dynamic details of photo-functional molecules.« less
High-resolution threshold photoionization of N sub 2 O
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiedmann, R.T.; Grant, E.R.; Tonkyn, R.G.
1991-07-15
Pulsed field ionization (PFI) has been used in conjunction with a coherent vuv source to obtain high-resolution threshold photoelectron spectra for the (000), (010), (020), and (100) vibrational states of the N{sub 2}O{sup +} cation. Simulations for the rotational profiles of each vibronic level were obtained by fitting the Buckingham--Orr--Sichel equations (A. D. Buckingham, B. J. Orr, and J. M. Sichel, Philos. Trans. R. Soc. London, Ser. A {bold 268}, 147 (1970)) using accurate spectroscopic constants for the ground states of the neutral and the ion. The relative branch intensities are interpreted in terms of the partial waves of themore » outgoing photoelectron to which the ionic core is coupled and in terms of the angular momentum transferred to the core. The PFI technique also allows us to report an improved value for the ionization potential of N{sub 2}O of 103 963{plus minus}5 cm{sup {minus}1}.« less
Electronic relaxation effects in condensed polyacenes: A high-resolution photoemission study
NASA Astrophysics Data System (ADS)
Rocco, M. L. M.; Haeming, M.; Batchelor, D. R.; Fink, R.; Schöll, A.; Umbach, E.
2008-08-01
We present a high-resolution photoelectron spectroscopy investigation of condensed films of benzene, naphthalene, anthracene, tetracene, and pentacene. High spectroscopic resolution and a systematic variation of the molecular size allow a detailed analysis of the fine structures. The line shapes of the C 1s main lines are analyzed with respect to the different contributions of inhomogeneous broadening, vibronic coupling, and chemical shifts. The shake-up satellite spectra reveal trends, which give insight into the charge redistribution within the molecule upon photoexcitation. In particular, the shake-up between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) increases in intensity and moves closer toward the C 1s main line if the size of the aromatic system is increased. An explanation is given on the basis of the delocalization of the aromatic system and its capability in screening the photogenerated core hole. A comparison of the HOMO-LUMO shake-up position to the optical band gap gives additional insight into the reorganization of the electronic system upon photoexcitation.
Electron-flux infrared response to varying π-bond topology in charged aromatic monomers
Álvaro Galué, Héctor; Oomens, Jos; Buma, Wybren Jan; Redlich, Britta
2016-01-01
The interaction of delocalized π-electrons with molecular vibrations is key to charge transport processes in π-conjugated organic materials based on aromatic monomers. Yet the role that specific aromatic motifs play on charge transfer is poorly understood. Here we show that the molecular edge topology in charged catacondensed aromatic hydrocarbons influences the Herzberg-Teller coupling of π-electrons with molecular vibrations. To this end, we probe the radical cations of picene and pentacene with benchmark armchair- and zigzag-edges using infrared multiple-photon dissociation action spectroscopy and interpret the recorded spectra via quantum-chemical calculations. We demonstrate that infrared bands preserve information on the dipolar π-electron-flux mode enhancement, which is governed by the dynamical evolution of vibronically mixed and correlated one-electron configuration states. Our results reveal that in picene a stronger charge π-flux is generated than in pentacene, which could justify the differences of electronic properties of armchair- versus zigzag-type families of technologically relevant organic molecules. PMID:27577323
Coherent structural trapping through wave packet dispersion during photoinduced spin state switching
Lemke, Henrik T.; Kjær, Kasper S.; Hartsock, Robert; ...
2017-05-24
The description of ultrafast nonadiabatic chemical dynamics during molecular photo-transformations remains challenging because electronic and nuclear configurations impact each other and cannot be treated independently. Here we gain experimental insights, beyond the Born–Oppenheimer approximation, into the light-induced spin-state trapping dynamics of the prototypical [Fe(bpy)3]2+ compound by time-resolved X-ray absorption spectroscopy at sub-30-femtosecond resolution and high signal-to-noise ratio. The electronic decay from the initial optically excited electronic state towards the high spin state is distinguished from the structural trapping dynamics, which launches a coherent oscillating wave packet (265 fs period), clearly identified as molecular breathing. Throughout the structural trapping, the dispersionmore » of the wave packet along the reaction coordinate reveals details of intramolecular vibronic coupling before a slower vibrational energy dissipation to the solution environment. These findings illustrate how modern time-resolved X-ray absorption spectroscopy can provide key information to unravel dynamic details of photo-functional molecules.« less
Infrared spectroscopy of the ν1 + ν4 and 3ν4 bands of the nitrate radical
NASA Astrophysics Data System (ADS)
Kawaguchi, Kentarou; Fujimori, Ryuji; Ishiwata, Takashi
2018-05-01
High-resolution Fourier transform infrared spectra of the ν1 + ν4 and 3ν4 bands of 14NO3 were observed in the 1414 and 1174 cm-1 regions, respectively, and the corresponding ones of 15NO3 in the 1407 and 1159 cm-1 regions, respectively, and analyzed as E‧-A2‧ bands. The rotational constants of the upper states of 14NO3 are determined to be 0.457584 and 0.46089 cm-1 for ν1 + ν4 and 3ν4, respectively, consistent with the vibrational assignment. Effective Coriolis coupling constants of the ground electronic state are partly explained by vibronic interaction from the B2E‧ state, and a large change (37% decrease) in the value of the ν1 + ν4 state compared with that of the ν4 state is attributed to a mixing with the ν3 + ν4 state (1492 cm-1) through vibrational anharmonicity.
Coherent structural trapping through wave packet dispersion during photoinduced spin state switching
NASA Astrophysics Data System (ADS)
Lemke, Henrik T.; Kjær, Kasper S.; Hartsock, Robert; van Driel, Tim B.; Chollet, Matthieu; Glownia, James M.; Song, Sanghoon; Zhu, Diling; Pace, Elisabetta; Matar, Samir F.; Nielsen, Martin M.; Benfatto, Maurizio; Gaffney, Kelly J.; Collet, Eric; Cammarata, Marco
2017-05-01
The description of ultrafast nonadiabatic chemical dynamics during molecular photo-transformations remains challenging because electronic and nuclear configurations impact each other and cannot be treated independently. Here we gain experimental insights, beyond the Born-Oppenheimer approximation, into the light-induced spin-state trapping dynamics of the prototypical [Fe(bpy)3]2+ compound by time-resolved X-ray absorption spectroscopy at sub-30-femtosecond resolution and high signal-to-noise ratio. The electronic decay from the initial optically excited electronic state towards the high spin state is distinguished from the structural trapping dynamics, which launches a coherent oscillating wave packet (265 fs period), clearly identified as molecular breathing. Throughout the structural trapping, the dispersion of the wave packet along the reaction coordinate reveals details of intramolecular vibronic coupling before a slower vibrational energy dissipation to the solution environment. These findings illustrate how modern time-resolved X-ray absorption spectroscopy can provide key information to unravel dynamic details of photo-functional molecules.
Multicomponent Time-Dependent Density Functional Theory: Proton and Electron Excitation Energies.
Yang, Yang; Culpitt, Tanner; Hammes-Schiffer, Sharon
2018-04-05
The quantum mechanical treatment of both electrons and protons in the calculation of excited state properties is critical for describing nonadiabatic processes such as photoinduced proton-coupled electron transfer. Multicomponent density functional theory enables the consistent quantum mechanical treatment of more than one type of particle and has been implemented previously for studying ground state molecular properties within the nuclear-electronic orbital (NEO) framework, where all electrons and specified protons are treated quantum mechanically. To enable the study of excited state molecular properties, herein the linear response multicomponent time-dependent density functional theory (TDDFT) is derived and implemented within the NEO framework. Initial applications to FHF - and HCN illustrate that NEO-TDDFT provides accurate proton and electron excitation energies within a single calculation. As its computational cost is similar to that of conventional electronic TDDFT, the NEO-TDDFT approach is promising for diverse applications, particularly nonadiabatic proton transfer reactions, which may exhibit mixed electron-proton vibronic excitations.
Statistical quasi-particle theory for open quantum systems
NASA Astrophysics Data System (ADS)
Zhang, Hou-Dao; Xu, Rui-Xue; Zheng, Xiao; Yan, YiJing
2018-04-01
This paper presents a comprehensive account on the recently developed dissipaton-equation-of-motion (DEOM) theory. This is a statistical quasi-particle theory for quantum dissipative dynamics. It accurately describes the influence of bulk environments, with a few number of quasi-particles, the dissipatons. The novel dissipaton algebra is then followed, which readily bridges the Schrödinger equation to the DEOM theory. As a fundamental theory of quantum mechanics in open systems, DEOM characterizes both the stationary and dynamic properties of system-and-bath interferences. It treats not only the quantum dissipative systems of primary interest, but also the hybrid environment dynamics that could be experimentally measurable. Examples are the linear or nonlinear Fano interferences and the Herzberg-Teller vibronic couplings in optical spectroscopies. This review covers the DEOM construction, the underlying dissipaton algebra and theorems, the physical meanings of dynamical variables, the possible identifications of dissipatons, and some recent advancements in efficient DEOM evaluations on various problems. The relations of the present theory to other nonperturbative methods are also critically presented.
NASA Astrophysics Data System (ADS)
Zhang, Jian-Song; Zhang, Liu-Juan; Chen, Ai-Xi; Abdel-Aty, Mahmoud
2018-06-01
We study the dynamics of the three-qubit system interacting with multi-mode without rotating wave approximation (RWA). A physical realization of the system without direct qubits interactions with dephasing bath is proposed. It is shown that non-Markovian characters of the purity of the three qubits and the coupling strength of modes are stronger enough the RWA is no longer valid. The influences of the dephasing of qubits and interactions of modes on the dynamics of genuine multipartite entanglement and bipartite correlations of qubits are investigated. The multipartite and bipartite quantum correlations could be generated faster if we increase the coupling strength of modes and the RWA is not valid when the coupling strength is strong enough. The unitary transformations approach adopted here can be extended to other systems such as circuit or cavity quantum electrodynamic systems in the strong coupling regime.
NASA Astrophysics Data System (ADS)
Kuwahara, Jun; Miyata, Hajime; Konno, Hidetoshi
2017-09-01
Recently, complex dynamics of globally coupled oscillators have been attracting many researcher's attentions. In spite of their numerous studies, their features of nonlinear oscillator systems with global and local couplings in two-dimension (2D) are not understood fully. The paper focuses on 2D states of coherent, clustered and chaotic oscillation especially under the effect of negative global coupling (NGC) in 2D Alief-Panfilov model. It is found that the tuning NGC can cause various new coupling-parameter dependency on the features of oscillations. Then quantitative characterization of various states of oscillations (so called spiral wave turbulence) is examined by using the pragmatic information (PI) which have been utilized in analyzing multimode laser, solar activity and neuronal systems. It is demonstrated that the dynamics of the PI for various oscillations can be characterized successfully by the Hyper-Gamma stochastic process.
Withington, Stafford; Yassin, Ghassan
2002-07-01
A procedure is described for calculating the power coupled between partially coherent waveguide fields that are in different states of coherence. The method becomes important when it is necessary to calculate the power transferred from a distributed source S to a distributed load L through a length of multimode metallic, or dielectric, waveguide. It is shown that if the correlations between the transverse components of the electric and magnetic fields of S and L are described by coherence matrices M and M', respectively, then the normalized average power coupled between them is (eta) = Tr[MM']/Tr[M]Tr[M'], where Tr denotes the trace. When the modal impedances are equal, this expression for the coupled power reduces to an equation derived in a previous paper [J. Opt. Soc. Am. A 18, 3061 (2001)], by use of thermodynamic arguments, for the power coupled between partially coherent free-space beams.
NASA Astrophysics Data System (ADS)
Esayan, G. L.; Krivoshlykov, S. G.
1989-08-01
A method of coherent states is used to describe the process of Rayleigh scattering in a multimode graded-index waveguide with a quadratic refractive-index profile. Explicit expressions are obtained for the coefficients representing excitation of Gaussian-Hermite backscattering modes in two cases of practical importance: excitation of a waveguide by an extended noncoherent light source and selective excitation of different modes at the entry to a waveguide. An analysis is also made of the coefficients of coupling between forward and backward modes. Explicit expressions for the coefficients representing capture of backscattered radiation by a waveguide are obtained for two special cases of excitation (extended light source and zeroth mode).
Optical fiber curvature sensor based on MMF-SCF-MMF structure
NASA Astrophysics Data System (ADS)
Wang, Qi; Liu, Yu
2018-07-01
A sensitive curvature sensor based on MMF-SCF-MMF (MMF: multimode fiber; SCF: seven core fiber) structure is proposed. The multimode fiber (MMF) are used to improve the light coupling efficiency between the input singlemode fiber (SMF) and the seven-core fiber (SCF), and the seven-core fiber is used as the main element for curvature measurement. Experimental results show that the best curvature sensitivity reaches 41.46453 nm/m-1 in the range of 0.094 m-1-0.567 m-1. The temperature sensitivity is up to 59.02 pm/°C in the range of 20 °C-55 °C. The optical curvature sensors are widely used for buildings structure health monitoring and mechanical engineering due to the advantages of compact structure, anti-electromagnetic interference, and low cost.
Attenuation of cryocooler induced vibration using multimodal tuned dynamic absorber
NASA Astrophysics Data System (ADS)
Veprik, A.; Babitsky, V.; Tuito, A.
2017-12-01
Modern infrared imagers often rely on low Size, Weight and Power split Stirling linear cryocoolers comprised of side-by-side packed compressor and expander units fixedly mounted upon a common frame and interconnected by the configurable transfer line. Imbalanced reciprocation of moving assemblies generates vibration export in the form of tonal force couple producing angular and translational dynamic responses. Resulting line of sight jitter and dynamic defocusing may affect the image quality. The authors explore the concept of multimodal tuned dynamic absorber, the translational and tilting modal frequencies of which are essentially matched to the driving frequency. Dynamic analysis and full-scale testing show that the dynamic reactions (forces and moments) produced by such a device may effectively attenuate both translational and angular components of cryocooler-induced vibration.
Note: Motor-piezoelectricity coupling driven high temperature fatigue device
NASA Astrophysics Data System (ADS)
Ma, Z. C.; Du, X. J.; Zhao, H. W.; Ma, X. X.; Jiang, D. Y.; Liu, Y.; Ren, L. Q.
2018-01-01
The design and performance evaluation of a novel high temperature fatigue device simultaneously driven by servo motor and piezoelectric actuator is our focus. The device integrates monotonic and cyclic loading functions with a maximum tensile load of 1800 N, driving frequency of 50 Hz, alternating load of 95 N, and maximum service temperature of 1200 °C. Multimodal fatigue tests with arbitrary combinations of static and dynamic loads are achieved. At temperatures that range from RT to 1100 °C, the tensile and tensile-fatigue coupling mechanical behaviors of UM Co50 alloys are investigated to verify the feasibility of the device.
Theoretical study of mode evolution in active long tapered multimode fiber.
Shi, Chen; Wang, Xiaolin; Zhou, Pu; Xu, Xiaojun; Lu, Qisheng
2016-08-22
A concise and effective model based on coupled mode theory to describe mode evolution in long tapered active fiber is presented in this manuscript. The mode coupling due to variation of core radius and slight perturbation have been analyzed and local gain with transverse spatial hole burning (TSHB) effect, loss and curvature have been taken into consideration in our model. On the base of this model, the mode evolution behaviors under different factors have been numerically investigated. Our model and results can provide instructive suggestions when designing long tapered fiber based laser and amplifiers.
Homayoon, Zahra
2014-09-28
A new, full (nine)-dimensional potential energy surface and dipole moment surface to describe the NO(+)(H2O) cluster is reported. The PES is based on fitting of roughly 32,000 CCSD(T)-F12/aug-cc-pVTZ electronic energies. The surface is a linear least-squares fit using a permutationally invariant basis with Morse-type variables. The PES is used in a Diffusion Monte Carlo study of the zero-point energy and wavefunction of the NO(+)(H2O) and NO(+)(D2O) complexes. Using the calculated ZPE the dissociation energies of the clusters are reported. Vibrational configuration interaction calculations of NO(+)(H2O) and NO(+)(D2O) using the MULTIMODE program are performed. The fundamental, a number of overtone, and combination states of the clusters are reported. The IR spectrum of the NO(+)(H2O) cluster is calculated using 4, 5, 7, and 8 modes VSCF/CI calculations. The anharmonic, coupled vibrational calculations, and IR spectrum show very good agreement with experiment. Mode coupling of the water "antisymmetric" stretching mode with the low-frequency intermolecular modes results in intensity borrowing.
NASA Astrophysics Data System (ADS)
Homayoon, Zahra
2014-09-01
A new, full (nine)-dimensional potential energy surface and dipole moment surface to describe the NO+(H2O) cluster is reported. The PES is based on fitting of roughly 32 000 CCSD(T)-F12/aug-cc-pVTZ electronic energies. The surface is a linear least-squares fit using a permutationally invariant basis with Morse-type variables. The PES is used in a Diffusion Monte Carlo study of the zero-point energy and wavefunction of the NO+(H2O) and NO+(D2O) complexes. Using the calculated ZPE the dissociation energies of the clusters are reported. Vibrational configuration interaction calculations of NO+(H2O) and NO+(D2O) using the MULTIMODE program are performed. The fundamental, a number of overtone, and combination states of the clusters are reported. The IR spectrum of the NO+(H2O) cluster is calculated using 4, 5, 7, and 8 modes VSCF/CI calculations. The anharmonic, coupled vibrational calculations, and IR spectrum show very good agreement with experiment. Mode coupling of the water "antisymmetric" stretching mode with the low-frequency intermolecular modes results in intensity borrowing.
Temperature sensors based on multimode chalcogenide fibre Bragg gratings
NASA Astrophysics Data System (ADS)
Zhang, Qian; Zeng, Jianghui; Zhu, Liang; Yang, Dandan; Zhang, Peiqing; Xu, Yinsheng; Wang, Xunsi; Nie, Qiuhua; Dai, Shixun
2018-04-01
In this work, a theoretical study was conducted on temperature sensing in Ge-Sb-Se multimode fibre Bragg grating (MM-FBG). The sensing characteristics of the designed MM-FBGs with different fibre parameters and operating wavelengths were calculated using a coupled model method. The temperature sensitivity of this MM-FBG was found to improve significantly by shifting the operating wavelength from telecom range to mid-infrared (MIR) and utilizing the wide transmission range of Ge-Sb-Se glasses. The temperature sensitivity of the proposed Ge-Sb-Se MM-FBG was calculated to be 0.0758 nm/°C at 1550 nm, which is 7.58 times higher than silica FBGs at 1550 nm, and the temperature sensitivity was calculated to be more than 0.16 nm/°C at 3390 nm, which is 2.2 times higher than that at 1550 nm. In addition, the proposed MM-FBGs provided multi-peak information, and the sensitivity of each peak was calculated to be comparable to the single-mode FBG. The proposed Ge-Sb-Se MM-FBG has great potential for temperature sensing in MIR because of its advantages of simple preparation, high coupling efficiency, multi-peak information and wide working window.
NASA Astrophysics Data System (ADS)
Liu, Kun; Xue, Meng; Jiang, Junfeng; Wang, Tao; Chang, Pengxiang; Liu, Tiegen
2018-03-01
A coupled plasmon waveguide resonance (CPWR) sensor based on metal/dielectric-coated step index multimode optical fiber is proposed. Theoretical simulations using the four-layer Fresnel equations based on a bi-dimensional optical fiber model were implemented on four structures: Ag-ZnO, Au-ZnO, Ag-TiO2 and Au-TiO2. By controlling the thickness of dielectric layer, we managed to manipulate the CPWR resonance wavelengths. When a CPWR resonance dip is in the short wavelength region, it is insensitive to the change of surrounding refractive index (SRI) and can be used as a reference to improve the sensing accuracy of surface plasmon resonance (SPR) mode. With the increase of the thickness of the dielectric layer, the CPWR resonance dips shift to longer wavelength and the corresponding sensitivities increase. When the 1st CPWR resonance wavelength is near 1550 nm and SRI is around 1.333, the sensitivities of four structures reach 1360.61 nm/RIU, 1375.76 nm/RIU, 1048.48 nm/RIU and 1015.15 nm/RIU, respectively. The values are close to that of the conventional SPR optical fiber sensor while the spectral bandwidths of the optical fiber CPWR sensors are narrower.
NASA Astrophysics Data System (ADS)
Ma, Xing-Bing; Jiang, Ting
2018-04-01
A wideband bandpass filter (BPF) with an adjustable notched-band and high selectivity is proposed. The proposed BPF consists of a multi-mode resonator (MMR), two λ/2 resonators, and I/O feed lines with 50 ohm characteristic impedance. The MMR, connected as a whole by a wide stub, is composed of one I-shaped resonator and two open-loop resonators. Tightly coupling is built between MMR and λ/2 resonators. I/O feed lines are directly connected with two λ/2 resonators, respectively. Due to the use of tapped-line coupling, one transmission zero (TZ) is formed near low-edge of aim passband. High-edge of passband with one attendant TZ can be tuned to desired location by adjusting bottom-side position of used wide stub or bottom-side length of I-shaped resonator in MMR. The top-side length of I-shaped resonator is applied to improve upper stopband performance and shift undesired resonant mode of MMR near high-edge of aim passband to proper frequency point. The notched-band in aim passband is dominated by top-side position of wide stub in MMR. Good agreement is observed between simulated and measured results.
NASA Astrophysics Data System (ADS)
Li, Linghui; Gruzdev, Vitaly; Yu, Ping; Chen, J. K.
2009-02-01
High pulse energy continuum generation in conventional multimode optical fibers has been studied for potential applications to a holographic optical coherence imaging system. As a new imaging modality for the biological tissue imaging, high-resolution holographic optical coherence imaging requires a broadband light source with a high brightness, a relatively low spatial coherence and a high stability. A broadband femtosecond laser can not be used as the light source of holographic imaging system since the laser creates a lot of speckle patterns. By coupling high peak power femtosecond laser pulses into a multimode optical fiber, nonlinear optical effects cause a continuum generation that can be served as a super-bright and broadband light source. In our experiment, an amplified femtosecond laser was coupled into the fiber through a microscopic objective. We measured the FWHM of the continuum generation as a function of incident pulse energy from 80 nJ to 800 μJ. The maximum FWHM is about 8 times higher than that of the input pulses. The stability was analyzed at different pump energies, integration times and fiber lengths. The spectral broadening and peak position show that more than two processes compete in the fiber.
Long distance transmission in few-mode fibers.
Yaman, Fatih; Bai, Neng; Zhu, Benyuan; Wang, Ting; Li, Guifang
2010-06-07
Using multimode fibers for long-haul transmission is proposed and demonstrated experimentally. In particular few-mode fibers (FMFs) are demonstrated as a good compromise since they are sufficiently resistant to mode coupling compared to standard multimode fibers but they still can have large core diameters compared to single-mode fibers. As a result these fibers can have significantly less nonlinearity and at the same time they can have the same performance as single-mode fibers in terms of dispersion and loss. In the absence of mode coupling it is possible to use these fibers in the single-mode operation where all the data is carried in only one of the spatial modes throughout the fiber. It is shown experimentally that the single-mode operation is achieved simply by splicing single-mode fibers to both ends of a 35-km-long dual-mode fiber at 1310 nm. After 35 km of transmission, no modal dispersion or excess loss was observed. Finally the same fiber is placed in a recirculating loop and 3 WDM channels each carrying 6 Gb/s BPSK data were transmitted through 1050 km of the few-mode fiber without modal dispersion.
NASA Astrophysics Data System (ADS)
Dorko, E. A.; Glessner, J. W.; Ritchey, C. M.; Rutger, L. L.; Pow, J. J.; Brasure, L. D.; Duray, J. P.; Snyder, S. R.
1986-03-01
The chemiluminescence from electronically excited lead oxide formed during the reaction between lead vapor and either 3Σ O 2 or 1Δ O 2 has been studied. The reactions were accomplished in a flow tube reactor. A microwave discharge was used to generate 1Δ O 2. The vibronic spectrum was analyzed and the band head assignments were used in a linear least-squares calculation to obtain the vibronic molecular constants for the X, a, b, A, B, C, C', D, and E electronic states of lead oxide. Based on these and other molecular constants, Franck-Condon factors were calculated for the transitions to the ground state and also for the A-a and D-a transitions. Evidence was presented to support a kinetic analysis of the mechanism leading to chemiluminescence under the experimental conditions encountered in the flow tube reactor. Mechanisms presented earlier were verified by the present data.
Theoretical Studies of Relaxation and Optical Properties of Polymers
NASA Astrophysics Data System (ADS)
Jin, Bih-Yaw
1993-01-01
This thesis is composed of two parts. In the part one, the empirical correlation between the logarithm of tunneling splittings and the temperature at which the spin-lattice relaxation time is minimum for methyl groups in different molecular crystals is explained successfully by taking multiphonon processes into account. We show that one phonon transitions dominate in the low barrier limit. However, in the intermediate barrier range and high barrier limit, it is necessary to include multiphonon processes. We also show that the empirical correlation depends only logarithmically on the details of the phonon bath. In the part two, we have investigated the optical and relaxation properties of conjugated polymers. The connection between the vibronic picture of Raman scattering and the third order perturbation approach in solid state physics is clarified in chapter 2. Starting from the Kramers -Heissenberg-Dirac formula for Raman scattering, we derive expressions for the Condon and Herzberg-Teller terms from a simple two-level system to a two-band system, i.e. polyacetylene, by using traditional vibronic picture. Both the Condon and Herzberg-Teller terms contribute to two-band processes, while three-band processes consist only of Herzberg-Teller terms in the solid state limit. Close to resonance the Condon term dominates and converges to the usual solid state result. In the off-resonance region the Herzberg -Teller term is comparable to Condon term for both small molecule and solid state system. In chapter 3, we will concentrate on the lattice relaxation of the lowest optically allowed 1B_ {u} state, especially, the effect of electron correlation on the excited state geometric relaxation for finite polyenes. We have examined the competition between electron-electron interaction and electron-phonon coupling on the formation of localized lattice distortion in the 1B_{u} state for finite polyene with chain length up to 30 double bonds. The chain length dependence of the lattice relaxation in 1B _{u} state has been studied thoroughly within singly excited configuration interaction for short range Hubbard, extended Hubbard model and long-range Pariser -Parr-Pople model. We have found that local distortion is not favored until a critical chain length is reached. Beyond this critical length, which is a function of electron-electron interaction and electron-phonon coupling strength, a self -trapped exciton is formed rather than the separated soliton -antisoliton configuration as expected in the independent electron theory. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617 -253-5668; Fax 617-253-1690.).
Molecular Chirality: Enantiomer Differentiation by High-Resolution Spectroscopy
NASA Astrophysics Data System (ADS)
Hirota, Eizi
2014-06-01
I have demonstrated that triple resonance performed on a three-rotational-level system of a chiral molecule of C1 symmetry exhibits signals opposite in phase for different enantiomers, thereby making enantiomer differentiation possible by microwave spectroscopy This prediction was realized by Patterson et al. on 1,2-propanediol and 1,3-butanediol. We thus now add a powerful method: microwave spectroscopy to the study of chiral molecules, for which hitherto only the measurement of optical rotation has been employed. Although microwave spectroscopy is applied to molecules in the gaseous phase, it is unprecedentedly superior to the traditional method: polarimeter in resolution, accuracy, sensitivity, and so on, and I anticipate a new fascinating research area to be opened in the field of molecular chirality. More versatile and efficient systems should be invented and developed for microwave spectroscopy, in order to cope well with new applications expected for this method For C2 and Cn (n ≥ 3)chiral molecules, the three-rotational-level systems treated above for C1 molecules are no more available within one vibronic state. It should, however, be pointed out that, if we take into account an excited vibronic state in addition to the ground state, for example, we may encounter many three-level systems. Namely, either one rotational transition in the ground state is combined with two vibronic transitions, or such a rotational transition in an excited state may be connected through two vibronic transitions to a rotational level in the ground state manifold. The racemization obviously plays a crucial role in the study of molecular chirality. However, like many other terms employed in chemistry, this important process has been "defined" only in a vague way, in other words, it includes many kinds of processes, which are not well classified on a molecular basis. I shall mention an attempt to obviate these shortcomings in the definition of racemization and also to clarify the implicit assumptions made in Hund's paradox. E. Hirota, 3rd Molecular Science Symposium, Nagoya, September 2009, E. Hirota, Proc. Jpn. Acad. Ser. B, 88, 120 (2012). D. Patterson, M. Schnell and J. M. Doyle, Nature 497, 475 (2013), D. Patterson and J. M. Doyle, Phys. Rev. Lett. 111, 023008 (2013). F. Hund, Z. Phys. 43, 805 (1927).
NASA Astrophysics Data System (ADS)
Peng, Zhaozhuang; Wang, Li; Yan, Huanhuan
2016-11-01
Application of high temperature fiber sensing system is very extensive. It can be mainly used in high temperature test aerospace, such as, materials, chemicals, and energy. In recent years, various on-line optical fiber interferometric sensors based on modular interference of single-mode-multimode-single-mode(SMS) fiber have been largely explored in high temperature fiber sensor. In this paper we use the special fiber of a polyimide coating, its sensor head is composed of a section of multimode fiber spliced in the middle of Single-mode fiber. When the light is launched into the multimode fiber(MMF) through the lead-in single-mode fiber(SMF), the core mode and cladding modes are excited and propagate in the MMF respectively. Then, at the MMF-SMF spliced point, the excited cladding modes coupled back into the core of lead-out SMF interfere with SMF core mode. And the wavelength of the interference dip would shift differently with the variation of the temperature. By this mean, we can achieve the measurement of temperature. The experimental results also show that the fiber sensor based on SMS structure has a highly temperature sensitivity. From 30° to 300°, with the temperature increasing, the interference dip slightly shifts toward longer wavelength and the temperature sensitivity coefficient is 0.0115nm/°. With high sensitivity, simple structure, immunity to electromagnetic interferences and a good linearity of the experimental results, the structure has an excellent application prospect in engineering field.
NASA Astrophysics Data System (ADS)
Chaturvedi, S.
2011-09-01
In this work we examine the possibilities of converting quantum optical nonclassicality into entanglement in multimode under the action of classicality preserving devices such as beamsplitters. While the single mode case is amenable to a complete analysis, non availability of certain crucial results in the classical theory of moments in the multimode situations forces us to treat these cases with lesser degree of generality by taking recourse to the familiar Mandel matrix and its extensions. We generalize the Mandel matrix from one-mode states to the two-mode situation, leading to a natural classification of states with varying levels of nonclassicality. For two-mode states we present a single test which, if successful, simultaneouly witnesses nonclassicality as well as NPT entanglement. We develop a test for NPT entanglement after beamsplitter action on a nonclassical state, designed in such a way that it remains `close' to that for nonclassicality. In the same spirit we analyse the result of three-mode `beamsplitter' action after coupling to an ancilla in the Fock ground state. The concept of genuine tripartite entanglement and scalar measures of nonclassicality at the Mandel level for two mode systems are discussed and illustrated with the help of several examples.
Journey During Acute Ischemic Stroke: A Physician’s Experience
Hoong, Low Chen; Sharma, Vijay K.
2010-01-01
Acute ischemic stroke is a potentially devastating condition. What follows is a true narration of the experience of a doctor-patient during his treatment for acute ischemic stroke and how the experience changed him. Described is the temporal sequence of events, starting from home to infusion of tissue plasminogen activator, which, when coupled with a multimodal therapeutic approach, resulted in an excellent clinical recovery. PMID:20458112
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Xiang; Geva, Eitan
2016-06-28
In this paper, we test the accuracy of the linearized semiclassical (LSC) expression for the equilibrium Fermi’s golden rule rate constant for electronic transitions in the presence of non-Condon effects. We do so by performing a comparison with the exact quantum-mechanical result for a model where the donor and acceptor potential energy surfaces are parabolic and identical except for shifts in the equilibrium energy and geometry, and the coupling between them is linear in the nuclear coordinates. Since non-Condon effects may or may not give rise to conical intersections, both possibilities are examined by considering: (1) A modified Garg-Onuchic-Ambegaokar modelmore » for charge transfer in the condensed phase, where the donor-acceptor coupling is linear in the primary mode coordinate, and for which non-Condon effects do not give rise to a conical intersection; (2) the linear vibronic coupling model for electronic transitions in gas phase molecules, where non-Condon effects give rise to conical intersections. We also present a comprehensive comparison between the linearized semiclassical expression and a progression of more approximate expressions. The comparison is performed over a wide range of frictions and temperatures for model (1) and over a wide range of temperatures for model (2). The linearized semiclassical method is found to reproduce the exact quantum-mechanical result remarkably well for both models over the entire range of parameters under consideration. In contrast, more approximate expressions are observed to deviate considerably from the exact result in some regions of parameter space.« less
Two-dimensional vibrational-electronic spectroscopy
NASA Astrophysics Data System (ADS)
Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira
2015-10-01
Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (νCN) and either a ligand-to-metal charge transfer transition ([FeIII(CN)6]3- dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN)5FeIICNRuIII(NH3)5]- dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific νCN modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.
Two-dimensional vibrational-electronic spectroscopy.
Courtney, Trevor L; Fox, Zachary W; Slenkamp, Karla M; Khalil, Munira
2015-10-21
Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (νCN) and either a ligand-to-metal charge transfer transition ([Fe(III)(CN)6](3-) dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN)5Fe(II)CNRu(III)(NH3)5](-) dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific νCN modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.
Electromagnetic Design of a Magnetically Coupled Spatial Power Combiner
NASA Astrophysics Data System (ADS)
Bulcha, B. T.; Cataldo, G.; Stevenson, T. R.; U-Yen, K.; Moseley, S. H.; Wollack, E. J.
2018-04-01
The design of a two-dimensional spatial beam-combining network employing a parallel-plate superconducting waveguide filled with a monocrystalline silicon dielectric substrate is presented. This component uses arrays of magnetically coupled antenna elements to achieve high coupling efficiency and full sampling of the intensity distribution while avoiding diffractive losses in the multimode waveguide region. These attributes enable the structure's use in realizing compact far-infrared spectrometers for astrophysical and instrumentation applications. If unterminated, reflections within a finite-sized spatial beam combiner can potentially lead to spurious couplings between elements. A planar meta-material electromagnetic absorber is implemented to control this response within the device. This broadband termination absorbs greater than 0.99 of the power over the 1.7:1 operational band at angles ranging from normal to near-parallel incidence. The design approach, simulations and applications of the spatial power combiner and meta-material termination structure are presented.
Effect of friction on electron transfer: The two reaction coordinate case
NASA Astrophysics Data System (ADS)
Onuchic, José Nelson
1987-04-01
Electron transfer is a very important reaction in many biological processes such as photosynthesis and oxidative phosphorylation. In many of these reactions, most of the interesting dynamics can be included by using two reaction coordinates: one fast (local high frequency vibration modes) and one slow (outersphere modes such as solvent polarization). We report a model to describe this problem, which uses path integral techniques to calculate electron transfer rates, and also to obtain the Fokker-Planck equations associated with this model. Different limiting cases lead to qualitatively different results such as exponential or nonexponential time decay for the donor survival probability. Conditions for the validity of the adiabatic or the nonadiabatic limits will be discussed. Application of this model to real systems is proposed, in particular for a porphyrin rigidly linked to a quinone, which is a very interesting model compound for primary events of photosynthesis. This model can also be used for other multicoordinate biological reactions such as ligand binding to heme proteins. Also, in the concluding part of Sec. III, we discuss the important limit where the fast vibronic mode is much faster than all the other nuclear modes coupled to the problem. In this limit the fast mode ``renormalizes'' the electronic matrix element, and this considerably simplifies the treatment of the problem, reducing it to coupling only to the slow modes.
NASA Astrophysics Data System (ADS)
Dahlberg, Peter D.; Norris, Graham J.; Wang, Cheng; Viswanathan, Subha; Singh, Ved P.; Engel, Gregory S.
2015-09-01
Energy transfer through large disordered antenna networks in photosynthetic organisms can occur with a quantum efficiency of nearly 100%. This energy transfer is facilitated by the electronic structure of the photosynthetic antennae as well as interactions between electronic states and the surrounding environment. Coherences in time-domain spectroscopy provide a fine probe of how a system interacts with its surroundings. In two-dimensional electronic spectroscopy, coherences can appear on both the ground and excited state surfaces revealing detailed information regarding electronic structure, system-bath coupling, energy transfer, and energetic coupling in complex chemical systems. Numerous studies have revealed coherences in isolated photosynthetic pigment-protein complexes, but these coherences have not been observed in vivo due to the small amplitude of these signals and the intense scatter from whole cells. Here, we present data acquired using ultrafast video-acquisition gradient-assisted photon echo spectroscopy to observe quantum beating signals from coherences in vivo. Experiments were conducted on isolated light harvesting complex II (LH2) from Rhodobacter sphaeroides, whole cells of R. sphaeroides, and whole cells of R. sphaeroides grown in 30% deuterated media. A vibronic coherence was observed following laser excitation at ambient temperature between the B850 and the B850∗ states of LH2 in each of the 3 samples with a lifetime of ˜40-60 fs.
Reliable optical card-edge (ROC) connector for avionics applications
NASA Astrophysics Data System (ADS)
Darden, Bruce V.; Pimpinella, Richard J.; Seals, John D.
1994-10-01
The Reliable Optical Card-Edge (ROC) Connector is a blind-mate backplane unit designed to meet military stress requirements for avionics applications. Its modular design represents the first significant advance in connector optics since the biconic butt-coupled connector was introduced twenty years ago. This multimode connector utilizes beam optics, micro-machined silicon, and a floating, low mass subassembly design to maintain low coupling loss under high levels of shock and vibration. The ROC connector also incorporates retracting doors to protect the unmated termini from environmental contamination and abusive handling. Design features and test results for the ROC connector are presented in this paper.
Facet-embedded thin-film III-V edge-emitting lasers integrated with SU-8 waveguides on silicon.
Palit, Sabarni; Kirch, Jeremy; Huang, Mengyuan; Mawst, Luke; Jokerst, Nan Marie
2010-10-15
A thin-film InGaAs/GaAs edge-emitting single-quantum-well laser has been integrated with a tapered multimode SU-8 waveguide onto an Si substrate. The SU-8 waveguide is passively aligned to the laser using mask-based photolithography, mimicking electrical interconnection in Si complementary metal-oxide semiconductor, and overlaps one facet of the thin-film laser for coupling power from the laser to the waveguide. Injected threshold current densities of 260A/cm(2) are measured with the reduced reflectivity of the embedded laser facet while improving single mode coupling efficiency, which is theoretically simulated to be 77%.
New multicore low mode noise scrambling fiber for applications in high-resolution spectroscopy
NASA Astrophysics Data System (ADS)
Haynes, Dionne M.; Gris-Sanchez, Itandehui; Ehrlich, Katjana; Birks, Tim A.; Giannone, Domenico; Haynes, Roger
2014-07-01
We present a new type of multicore fiber (MCF) and photonic lantern that consists of 511 individual cores designed to operate over a broadband visible wavelength range (380-860nm). It combines the coupling efficiency of a multimode fiber with modal stability intrinsic to a single mode fibre. It is designed to provide phase and amplitude scrambling to achieve a stable near field and far field illumination pattern during input coupling variations; it also has low modal noise for increased photometric stability. Preliminary results are presented for the new MCF as well as current state of the art octagonal fiber for comparison.
Engineered circuit QED with dense resonant modes
NASA Astrophysics Data System (ADS)
Wilhelm, Frank; Egger, Daniel
2013-03-01
In circuit quantum electrodynamics even in the ultrastrong coupling regime, strong quasi-resonant interaction typically involves only one mode of the resonator as the mode spacing is comparable to the frequency of the mode. We are going to present an engineered hybrid transmission line consisting of a left-handed and a right-handed portion that has a low-frequency van-Hove singularity hence showing a dense mode spectrum at an experimentally accessible point. This gives rise to strong multi-mode coupling and can be utilized in multiple ways to create strongly correlated microwave photons. Supported by DARPA through the QuEST program and by NSERC Discovery grants
NASA Astrophysics Data System (ADS)
Mandal, Anuvab; Singh, Param Jeet; Shastri, Aparna; Sunanda, K.; Jagatap, B. N.
2015-05-01
Photoabsorption and photodissociation studies of dimethyl sulphoxide and its deuterated isotopologue (DMSO-h6 and DMSO-d6) are performed using synchrotron radiation in the 35,000-80,000 cm-1 region. In the photoabsorption spectrum, Rydberg series converging to the first three ionization potentials of DMSO at 9.1, 10.1 and 12.3 eV corresponding to removal of an electron from the highest three occupied molecular orbitals (14a‧, 7a″ and 13a‧) are observed. Based on a quantum defect analysis, Rydberg series assignments are extended to higher members as compared to earlier works and a few ambiguities in earlier assignments are clarified. Analysis is aided by quantum chemical calculations using the DFT and TDDFT methodologies. Vibronic structures observed in the spectrum of DMSO-h6 in the regions 7.7-8.1 eV and 8.1-8.8 eV are attributed to the transitions 7a″→4p at 7.862 eV and 14a‧→6s/4d at 8.182 eV, respectively. Photoabsorption spectra of DMSO-h6 and -d6 recorded using a broad band incident radiation show prominent peaks, which are identified and assigned to electronic and vibronic transitions of the SO radical. This provides a direct confirmation of the fact that DMSO preferentially dissociates into CH3 and SO upon UV-VUV excitation, as proposed in earlier photodissociation studies. An extended vibronic band system associated with the e1Π-X3Σ- transition of the SO radical is identified and assigned. The complete VUV photoabsorption spectrum of DMSO-d6 is also reported here for the first time.
Nanotechnology-Enabled Optical Molecular Imaging of Breast Cancer
2010-07-01
Abbreviations Ab antibody AF-Ab Alexa Fluor labeled antibody CCD charge coupled device CTAB cetyltrimethylammonium bromide EDC 1-ethyl-[3-dimethylaminopropyl...mPEG-SH in figure 1. The carboxy-terminal nanorods were conjugated to antibodies using the zero-length crosslinker EDC stabilized by NHS [38]. Standard...multimode fiber coupler /positioner (Newport, model: F-915T) is utilized to mount the objective lens and a fiber chuck (Newport, model: FPH-DJ). With
NASA Astrophysics Data System (ADS)
Gonschior, C. P.; Klein, K.-F.; Sun, T.; Grattan, K. T. V.
2012-04-01
As the demand for high power fiber-coupled violet laser systems increases existing problems remain. The typical power of commercially available diode lasers around 400 nm is in the order of 100 to 300 mW, depending on the type of laser. But in combination with the small core of single-mode fibers reduced spot sizes are needed for good coupling efficiencies, leading to power densities in the MW/cm2 range. We investigated the influence of 405 nm laser light irradiation on different fused silica fibers and differently treated end-faces. The effect of glued-and-polished, cleaved-and-clamped and of cleaved-and-fusion-arc-treated fiber end-faces on the damage rate and behavior are presented. In addition, effects in the deep ultra-violet were determined spectrally using newest spectrometer technology, allowing the measurement of color centers around 200 nm in small core fibers. Periodic surface structures were found on the proximal end-faces and were investigated concerning generation control parameters and composition. The used fiber types range from low-mode fiber to single-mode and polarization-maintaining fiber. For this investigation 405 nm single-mode or multi-mode diode lasers with 150 mW or 300 mW, respectively, were employed.
NASA Astrophysics Data System (ADS)
Song, Wei; Xu, Qiang; Zhang, Yang; Zhan, Yang; Zheng, Wei; Song, Liang
2016-08-01
The ability to obtain comprehensive structural and functional information from intact biological tissue in vivo is highly desirable for many important biomedical applications, including cancer and brain studies. Here, we developed a fully integrated multimodal microscopy that can provide photoacoustic (optical absorption), two-photon (fluorescence), and second harmonic generation (SHG) information from tissue in vivo, with intrinsically co-registered images. Moreover, using a delicately designed optical-acoustic coupling configuration, a high-frequency miniature ultrasonic transducer was integrated into a water-immersion optical objective, thus allowing all three imaging modalities to provide a high lateral resolution of ~290 nm with reflection-mode imaging capability, which is essential for studying intricate anatomy, such as that of the brain. Taking advantage of the complementary and comprehensive contrasts of the system, we demonstrated high-resolution imaging of various tissues in living mice, including microvasculature (by photoacoustics), epidermis cells, cortical neurons (by two-photon fluorescence), and extracellular collagen fibers (by SHG). The intrinsic image co-registration of the three modalities conveniently provided improved visualization and understanding of the tissue microarchitecture. The reported results suggest that, by revealing complementary tissue microstructures in vivo, this multimodal microscopy can potentially facilitate a broad range of biomedical studies, such as imaging of the tumor microenvironment and neurovascular coupling.
Nonlinear multimodal model for TLD of irregular tank geometry and small fluid depth
NASA Astrophysics Data System (ADS)
Love, J. S.; Tait, M. J.
2013-11-01
Tuned liquid dampers (TLDs) utilize sloshing fluid to absorb and dissipate structural vibrational energy. TLDs of irregular or complex tank geometry may be required in practice to avoid tank interference with fixed structural or mechanical components. The literature offers few analytical models to predict the response of this type of TLD, particularly when the fluid depth is small. In this paper, a multimodal model is developed utilizing a Boussinesq-type modal theory which is valid for small TLD fluid depths. The Bateman-Luke variational principle is employed to develop a system of coupled nonlinear ordinary differential equations which describe the fluid response when the tank is subjected to base excitation. Energy dissipation is incorporated into the model from the inclusion of damping screens. The fluid model is used to describe the response of a 2D structure-TLD system when the structure is subjected to external loading and the TLD tank geometry is irregular.
2 μm laser oscillation of Ho3+:Tm3+-codoped silica microspheres.
Peng, Longxiang; Huang, Yantang; Duan, Yafan; Zhuang, Shijian; Liao, Tingdi; Xu, Canhua
2017-09-10
2 μm laser oscillation with a low threshold has been achieved in Ho 3+ :Tm 3+ -codoped silica microspheres (HTCSMs). Ho 3+ :Tm 3+ -codoped solgel functionalization film is applied to the surface of a silica microsphere, and an optical tapered fiber is adopted to couple an 808 nm continuous-wave laser to serve as the pump light source. Multimode and single-mode laser oscillations around 2 μm within the eye-safe wave band are observed due to the I 7 5→I 8 5 transitions of Ho 3+ ions sensitized by Tm 3+ . The morphology characteristics of microspheres determine the multimode laser oscillation spectrum. The free spectral range is in good accordance with the calculated value based on Mie scattering theory. The HTCSM laser oscillation shows characteristics of good capability, simple process, high flexibility, and low cost.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giorda, Paolo; Zanardi, Paolo; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
We analyze the dynamical-algebraic approach to universal quantum control introduced in P. Zanardi and S. Lloyd, e-print quant-ph/0305013. The quantum state space H encoding information decomposes into irreducible sectors and subsystems associated with the group of available evolutions. If this group coincides with the unitary part of the group algebra CK of some group K then universal control is achievable over the K-irreducible components of H. This general strategy is applied to different kinds of bosonic systems. We first consider massive bosons in a double well and show how to achieve universal control over all finite-dimensional Fock sectors. We thenmore » discuss a multimode massless case giving the conditions for generating the whole infinite-dimensional multimode Heisenberg-Weyl enveloping algebra. Finally we show how to use an auxiliary bosonic mode coupled to finite-dimensional systems to generate high-order nonlinearities needed for universal control.« less
NASA Astrophysics Data System (ADS)
Wei, Liangqin; Sun, Hongdi; Yang, Tiantian; Deng, Shenzhen; Wu, Mingbo; Li, Zhongtao
2018-05-01
Herein, the study reports a facile and scale-up able strategy to synthesize metal organic frameworks (MOFs) Fe-7,7,8,8-Tetracyanoquinodimethane (Fe-TCNQ) as precursors to develop non-precious metal bifunctional electrocatalysts through a one-step hydrothermal route. Then, Fe3C/carbon nitride (Fe3C@CNx) core-shell structure composites are readily available through pyrolyzing Fe-TCNQ at reasonable temperature, during which hierarchical porous structures with multimodal porosity formed. Nitrogen doped porosity carbon layers can facilitate mass access to active sites and accelerate reaction. Consequently, the optimized catalyst exhibits superior oxygen reduction reaction (ORR) electrocatalytic activity and better catalytic activity for oxygen evolution reaction (OER) in alkaline medium than that of Pt/C, which can be attributed to the synergistic effect of strong coupling between Fe3C and nitrogen doped carbon shells, active sites Fe-NX, optimal level of nitrogen doping, and appropriate multimodal porosity.
Evanescent wave assisted nanomaterial coating.
Mondal, Samir K; Pal, Sudipta Sarkar; Kumbhakar, Dharmadas; Tiwari, Umesh; Bhatnagar, Randhir
2013-08-01
In this work we present a novel nanomaterial coating technique using evanescent wave (EW). The gradient force in the EW is used as an optical tweezer for tweezing and self-assembling nanoparticles on the source of EW. As a proof of the concept, we have used a laser coupled etched multimode optical fiber, which generates EW for the EW assisted coating. The section-wise etched multimode optical fiber is horizontally and superficially dipped into a silver/gold nanoparticles solution while the laser is switched on. The fiber is left until the solution recedes due to evaporation leaving the fiber in air. The coating time usually takes 40-50 min at room temperature. The scanning electron microscope image shows uniform and thin coating of self-assembled nanoparticles due to EW around the etched section. A coating thickness <200 nm is achieved. The technique could be useful for making surface-plasmon-resonance-based optical fiber probes and other plasmonic circuits.
Erogbogbo, Folarin; Yong, Ken-Tye; Hu, Rui; Law, Wing-Cheung; Ding, Hong; Chang, Ching-Wen; Prasad, Paras N; Swihart, Mark T
2010-09-28
Luminescent silicon quantum dots (SiQDs) are gaining momentum in bioimaging applications, based on their unique combination of optical properties and biocompatibility. Here, we report the development of a multimodal probe that combines the optical properties of silicon quantum dots with the superparamagnetic properties of iron oxide nanoparticles to create biocompatible magnetofluorescent nanoprobes. Multiple nanoparticles of each type are coencapsulated within the hydrophobic core of biocompatible phospholipid-polyethyleneglycol (DSPE-PEG) micelles. The size distribution and composition of the magnetofluorescent nanoprobes were characterized by transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). Enhanced cellular uptake of these probes in the presence of a magnetic field was demonstrated in vitro. Their luminescence stability in a prostate cancer tumor model microenvironment was demonstrated in vivo. This paves the way for multimodal silicon quantum-dot-based nanoplatforms for a variety of imaging and delivery applications.
Interactive multi-mode blade impact analysis
NASA Technical Reports Server (NTRS)
Alexander, A.; Cornell, R. W.
1978-01-01
The theoretical methodology used in developing an analysis for the response of turbine engine fan blades subjected to soft-body (bird) impacts is reported, and the computer program developed using this methodology as its basis is described. This computer program is an outgrowth of two programs that were previously developed for the purpose of studying problems of a similar nature (a 3-mode beam impact analysis and a multi-mode beam impact analysis). The present program utilizes an improved missile model that is interactively coupled with blade motion which is more consistent with actual observations. It takes into account local deformation at the impact area, blade camber effects, and the spreading of the impacted missile mass on the blade surface. In addition, it accommodates plate-type mode shapes. The analysis capability in this computer program represents a significant improvement in the development of the methodology for evaluating potential fan blade materials and designs with regard to foreign object impact resistance.
Olcott, Peter D; Peng, Hao; Levin, Craig S
2009-01-01
A new magnetic resonance imaging (MRI)-compatible positron emission tomography (PET) detector design is being developed that uses electro-optical coupling to bring the amplitude and arrival time information of high-speed PET detector scintillation pulses out of an MRI system. The electro-optical coupling technology consists of a magnetically insensitive photodetector output signal connected to a nonmagnetic vertical cavity surface emitting laser (VCSEL) diode that is coupled to a multimode optical fiber. This scheme essentially acts as an optical wire with no influence on the MRI system. To test the feasibility of this approach, a lutetium-yttrium oxyorthosilicate crystal coupled to a single pixel of a solid-state photomultiplier array was placed in coincidence with a lutetium oxyorthosilicate crystal coupled to a fast photomultiplier tube with both the new nonmagnetic VCSEL coupling and the standard coaxial cable signal transmission scheme. No significant change was observed in 511 keV photopeak energy resolution and coincidence time resolution. This electro-optical coupling technology enables an MRI-compatible PET block detector to have a reduced electromagnetic footprint compared with the signal transmission schemes deployed in the current MRI/PET designs.
Simulation of the single-vibronic-level emission spectrum of HPS.
Mok, Daniel K W; Lee, Edmond P F; Chau, Foo-tim; Dyke, John M
2014-05-21
We have computed the potential energy surfaces of the X¹A' and ùA" states of HPS using the explicitly correlated multi-reference configuration interaction (MRCI-F12) method, and Franck-Condon factors between the two states, which include anharmonicity and Duschinsky rotation, with the aim of testing the assignment of the recently reported single-vibronic-level (SVL) emission spectrum of HPS [R. Grimminger, D. J. Clouthier, R. Tarroni, Z. Wang, and T. J. Sears, J. Chem. Phys. 139, 174306 (2013)]. These are the highest level calculations on these states yet reported. It is concluded that our spectral simulation supports the assignments of the molecular carrier, the electronic states involved and the vibrational structure of the experimental laser induced fluorescence, and SVL emission spectra proposed by Grimminger et al. [J. Chem. Phys. 139, 174306 (2013)]. However, there remain questions unanswered regarding the relative electronic energies of the two states and the geometry of the excited state of HPS.
Near-field scanning magneto-optical spectroscopy of Wigner molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mintairov, A. M., E-mail: amintair@nd.edu; Rouvimov, S.; Ioffe Physical-Technical Institute of the Russian Academy of Sciences, Saint Petersburg, 194021
We study the emission spectra of single self-organized InP/GaInP QDs (size 100-220 nm) using high-spatial-resolution, low-temperature (5 K) near-field scanning optical microscope (NSOM) operating at magnetic field strength B=0-10 T. The dots contain up to twenty electrons and represent natural Wigner molecules (WM). We observed vibronic-type shake-up structure in single electron QDs manifesting formation of two electron (2e) WM in photo-excited state. We found that relative intensities of the shake-up components described well by vibronic Frank-Condon factors giving for dots having parabolic confinement energy ħω{sub 0}=1.2-4 meV molecule bond lengths 40-140 nm. We used measurements of magnetic-field-induced shifts to distinguishmore » emission of 2e-WM and singly charged exciton (trion). We also observed magnetic-field-induced molecular-droplet transition for two electron dot, emitting through doubly charge exciton (tetron) at zero magnetic field.« less
A new basis set for molecular bending degrees of freedom.
Jutier, Laurent
2010-07-21
We present a new basis set as an alternative to Legendre polynomials for the variational treatment of bending vibrational degrees of freedom in order to highly reduce the number of basis functions. This basis set is inspired from the harmonic oscillator eigenfunctions but is defined for a bending angle in the range theta in [0:pi]. The aim is to bring the basis functions closer to the final (ro)vibronic wave functions nature. Our methodology is extended to complicated potential energy surfaces, such as quasilinearity or multiequilibrium geometries, by using several free parameters in the basis functions. These parameters allow several density maxima, linear or not, around which the basis functions will be mainly located. Divergences at linearity in integral computations are resolved as generalized Legendre polynomials. All integral computations required for the evaluation of molecular Hamiltonian matrix elements are given for both discrete variable representation and finite basis representation. Convergence tests for the low energy vibronic states of HCCH(++), HCCH(+), and HCCS are presented.
Ultraviolet photodissociation action spectroscopy of the N-pyridinium cation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Christopher S., E-mail: csh297@uowmail.edu.au; Trevitt, Adam J., E-mail: adamt@uow.edu.au; Blanksby, Stephen J.
2015-01-07
The S{sub 1}←S{sub 0} electronic transition of the N-pyridinium ion (C{sub 5}H{sub 5}NH{sup +}) is investigated using ultraviolet photodissociation (PD) spectroscopy of the bare ion and also the N{sub 2}-tagged complex. Gas-phase N-pyridinium ions photodissociate by the loss of molecular hydrogen (H{sub 2}) in the photon energy range 37 000–45 000 cm{sup −1} with structurally diagnostic ion-molecule reactions identifying the 2-pyridinylium ion as the exclusive co-product. The photodissociation action spectra reveal vibronic details that, with the aid of electronic structure calculations, support the proposal that dissociation occurs through an intramolecular rearrangement on the ground electronic state following internal conversion. Quantum chemical calculationsmore » are used to analyze the measured spectra. Most of the vibronic features are attributed to progressions of totally symmetric ring deformation modes and out-of-plane modes active in the isomerization of the planar excited state towards the non-planar excited state global minimum.« less
Rafiee Fanood, Mohammad M; Ganjitabar, Hassan; Garcia, Gustavo A; Nahon, Laurent; Turchini, Stefano; Powis, Ivan
2018-04-17
Photoionization of the chiral monoterpene limonene has been investigated using polarized synchrotron radiation between the adiabatic ionization threshold, 8.505 and 23.5 eV. A rich vibrational structure is seen in the threshold photoelectron spectrum and is interpreted using a variety of computational methods. The corresponding photoelectron circular dichroism-measured in the photoelectron angular distribution as a forward-backward asymmetry with respect to the photon direction-was found to be strongly dependent on the vibronic structure appearing in the photoelectron spectra, with the observed asymmetry even switching direction in between the major vibrational peaks. This effect can be ultimately attributed to the sensitivity of this dichroism to small phase shifts between adjacent partial waves of the outgoing photoelectron. These observations have implications for potential applications of this chiroptical technique, where the enantioselective analysis of monoterpene components is of particular interest. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yao, Yao; Sun, Ke-Wei; Luo, Zhen; Ma, Haibo
2018-01-18
The accurate theoretical interpretation of ultrafast time-resolved spectroscopy experiments relies on full quantum dynamics simulations for the investigated system, which is nevertheless computationally prohibitive for realistic molecular systems with a large number of electronic and/or vibrational degrees of freedom. In this work, we propose a unitary transformation approach for realistic vibronic Hamiltonians, which can be coped with using the adaptive time-dependent density matrix renormalization group (t-DMRG) method to efficiently evolve the nonadiabatic dynamics of a large molecular system. We demonstrate the accuracy and efficiency of this approach with an example of simulating the exciton dissociation process within an oligothiophene/fullerene heterojunction, indicating that t-DMRG can be a promising method for full quantum dynamics simulation in large chemical systems. Moreover, it is also shown that the proper vibronic features in the ultrafast electronic process can be obtained by simulating the two-dimensional (2D) electronic spectrum by virtue of the high computational efficiency of the t-DMRG method.
Liu, Jinjun; Miller, Terry A
2014-12-26
The rotational structure of the previously observed B̃(2)A' ← X̃(2)A″ and B̃(2)A' ← Ã(2)A' laser-induced fluorescence spectra of jet-cooled cyclohexoxy radical (c-C6H11O) [ Zu, L.; Liu, J.; Tarczay, G.; Dupré, P; Miller, T. A. Jet-cooled laser spectroscopy of the cyclohexoxy radical. J. Chem. Phys. 2004 , 120 , 10579 ] has been analyzed and simulated using a spectroscopic model that includes the coupling between the nearly degenerate X̃ and à states separated by ΔE. The rotational and fine structure of these two states is reproduced by a 2-fold model using one set of molecular constants including rotational constants, spin-rotation constants (ε's), the Coriolis constant (Aζt), the quenched spin-orbit constant (aζed), and the vibronic energy separation between the two states (ΔE0). The energy level structure of both states can also be reproduced using an isolated-state asymmetric top model with rotational constants and effective spin-rotation constants (ε's) and without involving Coriolis and spin-orbit constants. However, the spin-orbit interaction introduces transitions that have no intensity using the isolated-state model but appear in the observed spectra. The line intensities are well simulated using the 2-fold model with an out-of-plane (b-) transition dipole moment for the B̃ ← X̃ transitions and in-plane (a and c) transition dipole moment for the B̃ ← à transitions, requiring the symmetry for the X̃ (Ã) state to be A″ (A'), which is consistent with a previous determination and opposite to that of isopropoxy, the smallest secondary alkoxy radical. The experimentally determined Ã-X̃ separation and the energy level ordering of these two states with different (A' and A″) symmetries are consistent with quantum chemical calculations. The 2-fold model also enables the independent determination of the two contributions to the Ã-X̃ separation: the relativistic spin-orbit interaction (magnetic effect) and the nonrelativistic vibronic separation between the lowest vibrational energy levels of these two states due to both electrostatic interaction (Coulombic effect) and difference in zero-point energies (kinetic effect).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Jie; Han Fangyuan; Pei Linsen
2010-05-20
The distinctive set of infrared (IR) emission bands at 3.3, 6.2, 7.7, 8.6, and 11.3 {mu}m are ubiquitously seen in a wide variety of astrophysical environments. They are generally attributed to polycyclic aromatic hydrocarbon (PAH) molecules. However, not a single PAH species has yet been identified in space, as the mid-IR vibrational bands are mostly representative of functional groups and thus do not allow one to fingerprint individual PAH molecules. In contrast, the far-IR (FIR) bands are sensitive to the skeletal characteristics of a molecule, hence they are important for chemical identification of unknown species. With an aim to offermore » laboratory astrophysical data for the Herschel Space Observatory, Stratospheric Observatory for Infrared Astronomy, and similar future space missions, in this work we report neutral and cation FIR spectroscopy of pentacene (C{sub 22}H{sub 14}), a five-ring PAH molecule. We report three IR active modes of cationic pentacene at 53.3, 84.8, and 266 {mu}m that may be detectable by space missions such as the SAFARI instrument on board SPICA. In the experiment, pentacene is vaporized from a laser desorption source and cooled by a supersonic argon beam. We have obtained results from two-color resonantly enhanced multiphoton ionization and two-color zero kinetic energy photoelectron (ZEKE) spectroscopy. Several skeletal vibrational modes of the first electronically excited state of the neutral species and those of the cation are assigned, with the aid of ab initio and density functional calculations. Although ZEKE is governed by the Franck-Condon principle different from direct IR absorption or emission, vibronic coupling in the long ribbon-like molecule results in the observation of a few IR active modes. Within the experimental resolution of {approx}7 cm{sup -1}, the frequency values from our calculation agree with the experiment for the cation, but differ for the electronically excited intermediate state. Consequently, modeling of the intensity distribution is difficult and may require explicit inclusion of vibronic interactions.« less
Photonic crystal fiber refractive-index sensor based on multimode interferometry
NASA Astrophysics Data System (ADS)
Gong, Zhenfeng; Zhang, Xinpu; Liu, Yun; Liu, Zigeng; Peng, Wei
2014-11-01
We report a type of multimode fiber interferometers (MMI) formed in photonic crystal fiber (PCF). To excite the cladding modes from the fundamental core mode of a PCF, a coupling point is formed. To form the coupling point, we used the method that is blowing compressed gas into the air-holes and discharging at one point, and the air-holes in this point will expand due to gas expansion in the discharge process. By placing two coupling points in series, a very simple all-fiber MMI can be implemented. The detailed fabrication process is that the one end of the PCF is tightly sealed by a short section of single mode fiber (SMF) spliced to the PCF. The other end of the PCF is sealed into a gas chamber and the opened air holes are pressurized. The PCF is then heated locally by the fusion splicer and the holes with higher gas pressure will expand locally where two bubbles formed. We tested the RI responses of fabricated sensors at room temperature by immersing the sensor into solutions with different NaCl concentration. Experimental results show that as refractive-index (RI) increases, the resonance wavelength of the MMI moves toward longer wavelengths. The sensitivity coefficients are estimated by the linear fitting line, which is 46nm/RIU, 154mn/RIU with the interferometer lengths (IL) of 3mm and 6mm. The interferometer with larger IL has higher RI sensitivity. The temperature cross-sensitivity of the sensor is also tested. The temperature sensitivity can be as low as -16.0pm/°C.
Heterogeneous Electron-Transfer Dynamics through Dipole-Bridge Groups.
Nieto-Pescador, Jesus; Abraham, Baxter; Li, Jingjing; Batarseh, Alberto; Bartynski, Robert A; Galoppini, Elena; Gundlach, Lars
2016-01-14
Heterogeneous electron transfer (HET) between photoexcited molecules and colloidal TiO 2 has been investigated for a set of Zn-porphyrin chromophores attached to the semiconductor via linkers that allow to change level alignment by 200 meV by reorientation of the dipole moment. These unique dye molecules have been studied by femtosecond transient absorption spectroscopy in solution and adsorbed on the TiO 2 colloidal film in vacuum. In solution energy transfer from the excited chromophore to the dipole group has been identified as a slow relaxation pathway competing with S 2 -S 1 internal conversion. On the film heterogeneous electron transfer occurred in 80 fs, much faster compared to all intramolecular pathways. Despite a difference of 200 meV in level alignment of the excited state with respect to the semiconductor conduction band, identical electron transfer times were measured for different linkers. The measurements are compared to a quantum-mechanical model that accounts for electronic-vibronic coupling and finite band width for the acceptor states. We conclude that HET occurs into a distribution of transition states that differs from regular surface states or bridge mediated states.
A multi-plate velocity-map imaging design for high-resolution photoelectron spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kregel, Steven J.; Thurston, Glen K.; Zhou, Jia
A velocity map imaging (VMI) setup consisting of multiple electrodes with three adjustable voltage parameters, designed for slow electron velocity map imaging applications, is presented. The motivations for this design are discussed in terms of parameters that influence the VMI resolution and functionality. Particularly, this VMI has two tunable potentials used to adjust for optimal focus, yielding good VMI focus across a relatively large energy range. It also allows for larger interaction volumes without significant sacrifice to the resolution via a smaller electric gradient at the interaction region. All the electrodes in this VMI have the same dimensions for practicalitymore » and flexibility, allowing for relatively easy modifications to suit different experimental needs. We have coupled this VMI to a cryogenic ion trap mass spectrometer that has a flexible source design. The performance is demonstrated with the photoelectron spectra of S- and CS 2 -. The latter has a long vibrational progression in the ground state, and the temperature dependence of the vibronic features is probed by changing the temperature of the ion trap.« less
A quantum dynamics study of the benzopyran ring opening guided by laser pulses
NASA Astrophysics Data System (ADS)
Saab, Mohamad; Doriol, Loïc Joubert; Lasorne, Benjamin; Guérin, Stéphane; Gatti, Fabien
2014-10-01
The ring-opening photoisomerization of benzopyran, which occurs via a photochemical route involving a conical intersection, has been studied with quantum dynamics calculations using the multi-configuration time-dependent Hartree method (MCTDH). We introduce a mechanistic strategy to control the conversion of benzopyran to merocyanine with laser pulses. We use a six-dimensional model developed in a previous work for the potential energy surfaces (PES) based on an extension of the vibronic-coupling Hamiltonian model (diabatization method by ansatz), which depends on the most active degrees of freedom. The main objective of these quantum dynamics simulations is to provide a set of strategies that could help experimentalists to control the photoreactivity vs. photostability ratio (selectivity). In this work we present: (i) a pump-dump technique used to control the photostability, (ii) a two-step strategy to enhance the reactivity of the system: first, a pure vibrational excitation in the electronic ground state that prepares the system and, second, an ultraviolet excitation that brings the system to the first adiabatic electronic state; (iii) finally the effect of a non-resonant pulse (Stark effect) on the dynamics.
NASA Astrophysics Data System (ADS)
Gejo, T.; Oura, M.; Tokushima, T.; Horikawa, Y.; Arai, H.; Shin, S.; Kimberg, V.; Kosugi, N.
2017-07-01
High-resolution resonant inelastic x-ray scattering (RIXS) and low-energy photoemission spectra of oxygen molecules have been measured for investigating the electronic structure of Rydberg states in the O 1s → σ* energy region. The electronic characteristics of each Rydberg state have been successfully observed, and new assignments are made for several states. The RIXS spectra clearly show that vibrational excitation is very sensitive to the electronic characteristics because of Rydberg-valence mixing and vibronic coupling in O2. This observation constitutes direct experimental evidence that the Rydberg-valence mixing characteristic depends on the vibrational excitation near the avoided crossing of potential surfaces. We also measured the photoemission spectra of metastable oxygen atoms (O*) from O2 excited to 1s → Rydberg states. The broadening of the 4p Rydberg states of O* has been found with isotropic behavior, implying that excited oxygen molecules undergo dissociation with a lifetime of the order of 10 fs in 1s → Rydberg states.
Dos Santos, Paloma L; Ward, Jonathan S; Congrave, Daniel G; Batsanov, Andrei S; Eng, Julien; Stacey, Jessica E; Penfold, Thomas J; Monkman, Andrew P; Bryce, Martin R
2018-06-01
By inverting the common structural motif of thermally activated delayed fluorescence materials to a rigid donor core and multiple peripheral acceptors, reverse intersystem crossing (rISC) rates are demonstrated in an organic material that enables utilization of triplet excited states at faster rates than Ir-based phosphorescent materials. A combination of the inverted structure and multiple donor-acceptor interactions yields up to 30 vibronically coupled singlet and triplet states within 0.2 eV that are involved in rISC. This gives a significant enhancement to the rISC rate, leading to delayed fluorescence decay times as low as 103.9 ns. This new material also has an emission quantum yield ≈1 and a very small singlet-triplet gap. This work shows that it is possible to achieve both high photoluminescence quantum yield and fast rISC in the same molecule. Green organic light-emitting diode devices with external quantum efficiency >30% are demonstrated at 76 cd m -2 .
A multi-plate velocity-map imaging design for high-resolution photoelectron spectroscopy
Kregel, Steven J.; Thurston, Glen K.; Zhou, Jia; ...
2017-09-01
A velocity map imaging (VMI) setup consisting of multiple electrodes with three adjustable voltage parameters, designed for slow electron velocity map imaging applications, is presented. The motivations for this design are discussed in terms of parameters that influence the VMI resolution and functionality. Particularly, this VMI has two tunable potentials used to adjust for optimal focus, yielding good VMI focus across a relatively large energy range. It also allows for larger interaction volumes without significant sacrifice to the resolution via a smaller electric gradient at the interaction region. All the electrodes in this VMI have the same dimensions for practicalitymore » and flexibility, allowing for relatively easy modifications to suit different experimental needs. We have coupled this VMI to a cryogenic ion trap mass spectrometer that has a flexible source design. The performance is demonstrated with the photoelectron spectra of S- and CS 2 -. The latter has a long vibrational progression in the ground state, and the temperature dependence of the vibronic features is probed by changing the temperature of the ion trap.« less
NASA Astrophysics Data System (ADS)
Stern, Hannah L.; Cheminal, Alexandre; Yost, Shane R.; Broch, Katharina; Bayliss, Sam L.; Chen, Kai; Tabachnyk, Maxim; Thorley, Karl; Greenham, Neil; Hodgkiss, Justin M.; Anthony, John; Head-Gordon, Martin; Musser, Andrew J.; Rao, Akshay; Friend, Richard H.
2017-12-01
Singlet exciton fission (SF), the conversion of one spin-singlet exciton (S1) into two spin-triplet excitons (T1), could provide a means to overcome the Shockley-Queisser limit in photovoltaics. SF as measured by the decay of S1 has been shown to occur efficiently and independently of temperature, even when the energy of S1 is as much as 200 meV less than that of 2T1. Here we study films of triisopropylsilyltetracene using transient optical spectroscopy and show that the triplet pair state (TT), which has been proposed to mediate singlet fission, forms on ultrafast timescales (in 300 fs) and that its formation is mediated by the strong coupling of electronic and vibrational degrees of freedom. This is followed by a slower loss of singlet character as the excitation evolves to become only TT. We observe the TT to be thermally dissociated on 10-100 ns timescales to form free triplets. This provides a model for 'temperature-independent' efficient TT formation and thermally activated TT separation.
Andrew Liehr and the structure of Jahn-Teller surfaces
NASA Astrophysics Data System (ADS)
Chibotaru, Liviu F.; Iwahara, Naoya
2017-05-01
The present article is an attempt to draw attention to a seminal work by Andrew Liehr “Topological aspects of conformational stability problem” [1, 2] issued more than half century ago. The importance of this work stems from two aspects of static Jahn-Teller and pseudo-Jahn-Teller problems fully developed by the author. First, the work of Liehr offers an almost complete overview of adiabatic potential energy surfaces for most known Jahn-Teller problems including linear, quadratic and higher-order vibronic couplings. Second, and most importantly, it identifies the factors defining the structure of Jahn-Teller surfaces. Among them, one should specially mention the minimax principle stating that the distorted Jahn-Teller systems tend to preserve the highest symmetry consistent with the loss of their orbital degeneracy. We believe that the present short reminiscence not only will introduce a key Jahn-Teller scientist to the young members of the community but also will serve as a vivid example of how a complete understanding of a complex problem, which the Jahn-Teller effect certainly was in the beginning of 1960s, can be achieved.
Gans, Bérenger; Lamarre, Nicolas; Broquier, Michel; Liévin, Jacques; Boyé-Péronne, Séverine
2016-12-21
Vacuum-ultraviolet pulsed-field-ionization zero-kinetic-energy photoelectron spectra of X + Π2←XΣ+1 and B + Π2←XΣ+1 transitions of the HC 3 14 N and HC 3 15 N isotopologues of cyanoacetylene have been recorded. The resolution of the photoelectron spectra allowed us to resolve the vibrational structures and the spin-orbit splittings in the cation. Accurate values of the adiabatic ionization potentials of the two isotopologues (E I /hc(HC 3 14 N)=93 909(2) cm -1 and E I /hc(HC 3 15 N)=93 912(2) cm -1 ), the vibrational frequencies of the ν 2 , ν 6 , and ν 7 vibrational modes, and the spin-orbit coupling constant (A SO = -44(2) cm -1 ) of the X + Π2 cationic ground state have been derived from the measurements. Using ab initio calculations, the unexpected structure of the B + Π2←XΣ+1 transition is tentatively attributed to a conical intersection between the A + and B + electronic states of the cation.
Tunneling explains efficient electron transport via protein junctions.
Fereiro, Jerry A; Yu, Xi; Pecht, Israel; Sheves, Mordechai; Cuevas, Juan Carlos; Cahen, David
2018-05-15
Metalloproteins, proteins containing a transition metal ion cofactor, are electron transfer agents that perform key functions in cells. Inspired by this fact, electron transport across these proteins has been widely studied in solid-state settings, triggering the interest in examining potential use of proteins as building blocks in bioelectronic devices. Here, we report results of low-temperature (10 K) electron transport measurements via monolayer junctions based on the blue copper protein azurin (Az), which strongly suggest quantum tunneling of electrons as the dominant charge transport mechanism. Specifically, we show that, weakening the protein-electrode coupling by introducing a spacer, one can switch the electron transport from off-resonant to resonant tunneling. This is a consequence of reducing the electrode's perturbation of the Cu(II)-localized electronic state, a pattern that has not been observed before in protein-based junctions. Moreover, we identify vibronic features of the Cu(II) coordination sphere in transport characteristics that show directly the active role of the metal ion in resonance tunneling. Our results illustrate how quantum mechanical effects may dominate electron transport via protein-based junctions.
Magnetic susceptibility and spin-lattice interactions in U1-xPuxO2 single crystals
NASA Astrophysics Data System (ADS)
Kolberg, D.; Wastin, F.; Rebizant, J.; Boulet, P.; Lander, G. H.; Schoenes, J.
2002-12-01
Single crystals of mixed uranium-plutonium dioxides have been grown by means of a chemical vapor transport reaction and characterized by x-ray diffraction on bulk and powdered single crystals. Magnetization and susceptibility data were taken using a commercial superconducting quantum interference device. Characteristic ordering temperatures have been determined as well as paramagnetic Curie temperatures and effective magnetic moments. Departures of the reciprocal susceptibility as a function of temperature from linearity have been treated in detail based on a model of vibronic interactions introduced to explain the gross features of susceptibility measurements on thorium-diluted UO2 [Sasaki and Obata, J. Phys. Soc. Jpn. 28, 1157 (1970)]. The influence of spin-lattice interactions causes a certain shape of the observed 1/χ vs T curves from which we are able to suggest different mechanisms for the interactions as a function of the constituent’s concentrations. From our susceptibility measurements characteristic parameters have been calculated using a model of tetragonal vibrational modes of the oxygen cage surrounding each uranium ion. These include specific coupling parameters G, mode characteristic temperatures Tω, and molecular-field constants λ.
Pulsed Discharge Nozzle Cavity Ring Down Spectroscopy of Cold PAH Ions
NASA Technical Reports Server (NTRS)
Biennier, Ludovic; Salama, Farid; Allamandola, Louis J.; Scherer, James J.; DeVincenzi, Donald (Technical Monitor)
2002-01-01
The gas-phase electronic absorption spectra of the naphthalene (C10H8(+)) and acenaphthene (C12H10(+)) cations have been measured in the visible range in a free 10 jet planar expansion in an attempt to collect data in an astrophysically relevant environment. The direct absorption spectra of two out of four bands measured of the gas-phase cold naphthalene cation along with the gas-phase vibronic absorption spectrum of the cold acenaphthene cation are reported for the first time. The study has been carried out using the ultrasensitive and versatile technique of cavity ringdown spectroscopy (CRDS) coupled to a pulsed discharge slit nozzle (PDN). The new CRDS-PDN set up is described and its characteristics are evaluated. The direct-absorption spectra of the PAH ions are discussed and compared to the gas-phase and solid-phase data available in the literature. The analysis of the results show that cold, free flying PAH ions are generated in the argon discharge primarily through soft Penning ionization. This enables the intrinsic band profiles to be measured, a key requirement for astrophysical applications.
NASA Astrophysics Data System (ADS)
Miller, Carl Cameron
1995-01-01
The role of molecular structure in energy transfer reactions in the ground and excited electronic states was explored using optothermal spectroscopy. In the ground state, the relationship between intramolecular van der Waals interactions and vibrational mode coupling was explored in a homologous series of disubstituted ethanes, including Gg^' -2-fluoroethanol, g-1,2-difluoroethane, g-1-chloro-2-fluoroethane, t-1-chloro-2-fluoroethane, and 1,1,2-trifluoroethane. This series of substituted ethanes varies in degree of van der Waals interactions that hinder internal rotation about the C-C bond. High resolution infrared molecular beam spectroscopy was used to determine the extent of vibrational mode coupling. Perturbations in the rotational structure of these molecules provided a measure of vibrational mode coupling. We have observed that the degree of intramolecular interaction, which is dependent on the van der Waals separation of the substituents and the shape of the potential well, correlates with the extent of vibrational mode coupling. The extent of vibrational mode coupling in this series of molecules did not correlate with the density of states available for coupling. Therefore, density of states alone is insufficient to explain the observed trend. In the excited electronic state, optothermal detection has been used to observe non-radiative relaxation channels in aniline, p-bromoaniline and trans-stilbene. p-Bromoaniline has no detectable fluorescence due to a heavy atom effect which increases the rate of intersystem crossing to the triplet state. An optothermal spectrum of p-bromoaniline was observed with the origin at 32625 cm^ {-1}. For trans-stilbene the differences between the laser excitation spectrum and the optothermal spectrum of the S_1 state clearly show the onset of isomerization at ~1250 cm^{-1} above the origin. Absolute quantum yields of fluorescence, Frank-Condon factors, non -radiative rates, and radiative rates have been obtained for a series of vibronic transitions. For low energy vibrational states there is good agreement between the current study and previous work. For vibrational energies above the barrier of isomerization predicted quantum yields do not agree with our experimental results.
Pseudo Jahn-Teller coupling in trioxides XO3(0,1,-1) with 22 and 23 valence electrons
NASA Astrophysics Data System (ADS)
Grein, Friedrich
2013-05-01
D3h and C2v geometries and energies, vertical excitation energies, as well as minimal energy paths as function of the O1(z)-X-O2 angle α were obtained for XO3(0,1,-1) (X = B, Al, Ga; C, Si, Ge; N, P, As; S, Se) molecules and ions with 22 and 23 valence electrons (VE), using density functional theory (DFT), coupled cluster with single and double substitutions with noniterative triple excitations (CCSD(T)), equation of motion (EOM)-CCSD, time-dependent DFT, and multi-reference configuration interaction methods. It is shown that pseudo Jahn-Teller (PJT) coupling increases as the central atom X becomes heavier, due to decreases in excitation energies. As is well known for CO3, the excited 1E' states of the 22 VE systems SiO3, GeO3; NO_3 ^ +, PO3+, AsO3+; BO3-, AlO3-, GaO3- have strong vibronic coupling with the 1A1' ground state via the e' vibrational modes, leading to a C2v minimum around α = 145°. For first and second row X atoms, there is an additional D3h minimum (α = 120°). Interacting excited states have minima around 135°. In the 23 VE systems CO3-, SiO3-; NO3, PO3; SO3+, coupling of the excited 2E' with the 2A2' ground state via the e' mode does not generate a C2v state. Minima of interacting excited states are close to 120°. However, due to very strong PJT coupling, a double-well potential is predicted for GeO3-, AsO3, and SeO3+, with a saddle point at D3h symmetry. Interaction of the b2 highest occupied molecular orbital with the b2 lowest unoccupied molecular orbital, both oxygen lone pair molecular orbitals, is seen as the reason for the C2v stabilization of 22 VE molecules.
NASA Astrophysics Data System (ADS)
Cicchi, Riccardo; Anand, Suresh; Fantechi, Riccardo; Giordano, Flavio; Gacci, Mauro; Conti, Valerio; Nesi, Gabriella; Buccoliero, Anna Maria; Carini, Marco; Guerrini, Renzo; Pavone, Francesco Saverio
2017-07-01
An optical fiber probe for multimodal spectroscopy was designed, developed and used for tissue diagnostics. The probe, based on a fiber bundle with optical fibers of various size and properties, allows performing spectroscopic measurements with different techniques, including fluorescence, Raman, and diffuse reflectance, using the same probe. Two visible laser diodes were used for fluorescence spectroscopy, a laser diode emitting in the NIR was used for Raman spectroscopy, and a fiber-coupled halogen lamp for diffuse reflectance. The developed probe was successfully employed for diagnostic purposes on various tissues, including brain and bladder. In particular, the device allowed discriminating healthy tissue from both tumor and dysplastic tissue as well as to perform tumor grading. The diagnostic capabilities of the method, determined using a cross-validation method with a leave-one-out approach, demonstrated high sensitivity and specificity for all the examined samples, as well as a good agreement with histopathological examination performed on the same samples. The obtained results demonstrated that the multimodal approach is crucial for improving diagnostic capabilities with respect to what can be obtained from individual techniques. The experimental setup presented here can improve diagnostic capabilities on a broad range of tissues and has the potential of being used clinically for guiding surgical resection in the near future.
Ultrawide Band Gap β-Ga2O3 Nanomechanical Resonators with Spatially Visualized Multimode Motion.
Zheng, Xu-Qian; Lee, Jaesung; Rafique, Subrina; Han, Lu; Zorman, Christian A; Zhao, Hongping; Feng, Philip X-L
2017-12-13
Beta gallium oxide (β-Ga 2 O 3 ) is an emerging ultrawide band gap (4.5 eV-4.9 eV) semiconductor with attractive properties for future power electronics, optoelectronics, and sensors for detecting gases and ultraviolet radiation. β-Ga 2 O 3 thin films made by various methods are being actively studied toward such devices. Here, we report on the experimental demonstration of single-crystal β-Ga 2 O 3 nanomechanical resonators using β-Ga 2 O 3 nanoflakes grown via low-pressure chemical vapor deposition (LPCVD). By investigating β-Ga 2 O 3 circular drumhead structures, we demonstrate multimode nanoresonators up to the sixth mode in high and very high frequency (HF/VHF) bands, and also realize spatial mapping and visualization of the multimode motion. These measurements reveal a Young's modulus of E Y = 261 GPa and anisotropic biaxial built-in tension of 37.5 MPa and 107.5 MPa. We find that thermal annealing can considerably improve the resonance characteristics, including ∼40% upshift in frequency and ∼90% enhancement in quality (Q) factor. This study lays a foundation for future exploration and development of mechanically coupled and tunable β-Ga 2 O 3 electronic, optoelectronic, and physical sensing devices.
NASA Astrophysics Data System (ADS)
Wu, Bo; Zhou, Xian; Ma, Yanan; Luo, Jun; Zhong, Kangping; Qiu, Shaofeng; Feng, Zhiyong; Luo, Yazhi; Agustin, Mikel; Ledentsov, Nikolay; Kropp, Joerg; Shchukin, Vitaly; Ledentsov, Nikolay N.; Eddie, Iain; Chao, Lu
2016-03-01
Discrete Multitone Transmission (DMT) transmission over standard multimode fiber (MMF) using high-speed single (SM) and multimode (MM) Vertical-Cavity Surface-Emitting Lasers (VCSELs) is studied. Transmission speed in the range of 72Gbps to 82Gbps over 300m -100m distances of OM4 fiber is realized, respectively, at Bit-Error-Ratio (BER) <5e-3 and the received optical power of only -5dBm. Such BER condition requires only 7% overhead for the conversion to error-free operation using single Bose-Chaudhuri-Hocquenghem forward error correction (BCH-FEC) coding and decoding. SM VCSEL is demonstrated to provide a much higher data transmission capacity over MMF. For 100m MMF transmission SM VCSEL allows 82Gbps as compared to MM VCSEL resulting in only 34Gbps at the same power (-5dBm). Furthermore, MM VCSEL link at 0dBm is still restricted at 100m distance by 63Gbps while SM VCSEL can exceed 100Gbps at such power levels. We believe that with further improvement in SM VCSELs and fiber coupling >100Gbps data transmission over >300m MMF distances at the BER levels matching the industry standards will become possible.
NASA Astrophysics Data System (ADS)
Feng, David J. Y.; Lay, T. S.; Chang, T. Y.
2007-02-01
We show that it is possible to obtain 2 x 2 waveguide couplers with new power splitting ratios for cross coupling of 7%, 64%, 80% and 93% by cascading two short MMI sections. These couplers have simple geometry and low loss. They offer valuable new possibilities for designing waveguide power taps, high-Q ring resonators, ladder-structure optical filters, and loop-mirror partial reflectors.
Modeling of SBS Phase Conjugation in Multimode Step Index Fibers
2008-03-01
cavity or in an external amplifier. Since pumping is never a perfectly efficient process, some heat will be introduced, and for very high pump powers...modes it supports, and the incident pump power. While theoretical investigations of SBS PCMs have been conducted by a num- ber of authors, the model...predictions about the phase conjugate fidelity that could be expected from a given pump intensity input coupled into a specific fiber. A numerical
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkoff, T. J., E-mail: adidasty@gmail.com
We motivate and introduce a class of “hierarchical” quantum superposition states of N coupled quantum oscillators. Unlike other well-known multimode photonic Schrödinger-cat states such as entangled coherent states, the hierarchical superposition states are characterized as two-branch superpositions of tensor products of single-mode Schrödinger-cat states. In addition to analyzing the photon statistics and quasiprobability distributions of prominent examples of these nonclassical states, we consider their usefulness for highprecision quantum metrology of nonlinear optical Hamiltonians and quantify their mode entanglement. We propose two methods for generating hierarchical superpositions in N = 2 coupled microwave cavities, exploiting currently existing quantum optical technology formore » generating entanglement between spatially separated electromagnetic field modes.« less
Heterogeneous integration of thin film compound semiconductor lasers and SU8 waveguides on SiO2/Si
NASA Astrophysics Data System (ADS)
Palit, Sabarni; Kirch, Jeremy; Mawst, Luke; Kuech, Thomas; Jokerst, Nan Marie
2010-02-01
We present the heterogeneous integration of a 3.8 μm thick InGaAs/GaAs edge emitting laser that was metal-metal bonded to SiO2/Si and end-fire coupled into a 2.8 μm thick tapered SU8 polymer waveguide integrated on the same substrate. The system was driven in pulsed mode and the waveguide output was captured on an IR imaging array to characterize the mode. The waveguide output was also coupled into a multimode fiber, and into an optical head and spectrum analyzer, indicating lasing at ~997 nm and a threshold current density of 250 A/cm2.
NASA Astrophysics Data System (ADS)
Tremblay, Jean Christophe
2013-06-01
A model for treating excitation and relaxation of adsorbates at metallic surfaces induced by non-adiabatic coupling is developed. The derivation is based on the concept of resonant electron transfer, where the adsorbate serves as a molecular bridge for the inelastic transition between an electron source and a sink. In this picture, energy relaxation and scanning tunneling microscopy (STM) at metallic surfaces are treated on an equal footing as a quasi-thermal process. The model goes beyond the local harmonic approximation and allows for an unbiased description of floppy systems with multiple potential wells. Further, the limitation of the product ansatz for the vibronic wave function to include the position-dependence of the non-adiabatic couplings is avoided by explicitly enforcing detailed balance. The theory is applied to the excitation of hydrogen on palladium, which has multiple local potential minima connected by low energy barriers. The main aspects investigated are the lifetimes of adsorbate vibrations in different adsorption sites, as well as the dependence of the excitation, response, and transfer rates on an applied potential bias. The excitation and relaxation simulations reveal intricate population dynamics that depart significantly from the simplistic tunneling model in a truncated harmonic potential. In particular, the population decay from an initially occupied local minimum induced by the contact with an STM tip is found to be better described by a double exponential. The two rates are interpreted as a response to the system perturbation and a transfer rate following the perturbation. The transfer rate is found to obey a power law, as was the case in previous experimental and theoretical work.
Understanding Molecular Conduction: Old Wine in a New Bottle?
NASA Astrophysics Data System (ADS)
Ghosh, Avik
2007-03-01
Molecules provide an opportunity to test our understanding of fundamental non-equilibrium transport processes, as well as explore new device possibilities. We have developed a unified approach to nanoscale conduction, coupling bandstructure and electrostatics of the channel and contacts with a quantum kinetic theory of current flow. This allows us to describe molecular conduction at various levels of detail, -- from quantum corrected compact models, to semi-empirical models for quick physical insights, and `first-principles' calculations of current-voltage (I-V) characteristics with no adjustable parameters. Using this suite of tools, we can quantitatively explain various experimental I-Vs, including complex reconstructed silicon substrates. We find that conduction in most molecules is contact dominated, and limited by fundamental electrostatic and thermodynamic restrictions quite analogous to those faced by the silicon industry, barring a few interesting exceptions. The distinction between molecular and silicon electronics must therefore be probed at a more fundamental level. Ultra-short molecules are unique in that they possess large Coulomb energies as well as anomalous vibronic couplings with current flow -- in other words, strong non-equilibrium electron-electron and electron-phonon correlations. These effects yield prominent experimental signatures, but require a completely different modeling approach -- in fact, popular approaches to include correlation typically do not work for non-equilibrium. Molecules exhibit rich physics, including the ability to function both as weakly interacting current conduits (quantum wires) as well as strongly correlated charge storage centers (quantum dots). Theoretical treatment of the intermediate coupling regime is particularly challenging, with a large `fine structure constant' for transport that negates orthodox theories of Coulomb Blockade and phonon-assisted tunneling. It is in this regime that the scientific and technological merits of molecular conductors may need to be explored. For instance, the tunable quantum coupling of current flow in silicon transistors with engineered molecular scatterers could lead to devices that operate on completely novel principles.
Mode-coupling mechanisms in nanocontact spin-torque oscillators
Iacocca, Ezio; Dürrenfeld, Philipp; Heinonen, Olle; ...
2015-03-11
Spin torque oscillators (STOs) are devices that allow for the excitation of a variety of magneto-dynamical modes at the nanoscale. Depending on both external conditions and intrinsic magnetic properties, STOs can exhibit regimes of mode-hopping and even mode coexistence. Whereas mode hopping has been extensively studied in STOs patterned as nanopillars, coexistence has been only recently observed for localized modes in nanocontact STOs (NC-STOs) where the current is confined to flow through a NC fabricated on an extended pseudo spin valve. We investigate the physical origin of the mode coupling mechanisms favoring coexistence, by means of electrical characterization and amore » multi-mode STO theory. Two coupling mechanisms are identified: (i) magnon mediated scattering and (ii) inter-mode interactions. These mechanisms can be physically disentangled by fabricating devices where the NCs have an elliptical cross-section. Furthermore, the generation power and linewidth from such devices are found to be in good qualitative agreement with the theoretical predictions, as well as provide evidence of the dominant mode coupling mechanisms.« less
NASA Astrophysics Data System (ADS)
Xie, Mengying; Zhang, Yan; Kraśny, Marcin J.; Rhead, Andrew; Bowen, Chris; Arafa, Mustafa
2018-07-01
The energy harvesting capability of resonant harvesting structures, such as piezoelectric cantilever beams, can be improved by utilizing coupled oscillations that generate favourable strain mode distributions. In this work, we present the first demonstration of the use of a laminated carbon fibre reinforced polymer to create cantilever beams that undergo coupled bending-twisting oscillations for energy harvesting applications. Piezoelectric layers that operate in bending and shear mode are attached to the bend-twist coupled beam surface at locations of maximum bending and torsional strains in the first mode of vibration to fully exploit the strain distribution along the beam. Modelling of this new bend-twist harvesting system is presented, which compares favourably with experimental results. It is demonstrated that the variety of bend and torsional modes of the harvesters can be utilized to create a harvester that operates over a wider range of frequencies and such multi-modal device architectures provides a unique approach to tune the frequency response of resonant harvesting systems.
NASA Astrophysics Data System (ADS)
Sohn, Kyung-Rak; Song, Jae-Won
2002-03-01
Using a side-polished single-mode fiber covered with a polished LiNbO 3 overlay and an intermediate coupling layer, tunable fiber-optic comb filters are demonstrated. The device behaviors based on the modal properties of the fiber and the planar LiNbO 3 waveguide are analyzed by two dimensional beam propagation methods (2-D BPM) and discussed the role of an intermediate coupling layer in terms of coupling efficiency. We also show that the thermo-optic effects of this layer can be utilized to tune the comb filter. When the polished x-cut LiNbO 3 with 200 μm thickness is used as a multimode overlay waveguide, the comb output spectra with free spectral range of 4 nm are measured in 1550 nm wavelength range. The tuning rate as a function of the refractive index of an intermediate coupling layer, Δλ/ Δnb, is about -0.129 nm/-0.001. The experimental results are in good agreement with the calculated results.
NASA Astrophysics Data System (ADS)
van Harrevelt, Rob; van Hemert, Marc C.
2000-04-01
A complete three-dimensional quantum mechanical description of the photodissociation of water in the B˜ band, starting from its rotational ground state, is presented. In order to include B˜-X˜ vibronic coupling and the B˜-Ã Renner-Teller coupling, diabatic electronic states have been constructed from adiabatic electronic states and matrix elements of the electronic angular momentum operators, following the procedure developed by A. J. Dobbyn and P. J. Knowles [Mol. Phys. 91, 1107 (1997)], using the ab initio results discussed in the preceding paper. The dynamics is studied using wave packet methods, and the evolution of the time-dependent wave function is discussed in detail. Results for the H2O and D2O absorption spectra, OH(A)/OH(X) and OD(A)/OD(X) branching ratios, and rovibrational distributions of the OH and OD fragments are presented and compared with available experimental data. The present theoretical results agree at least qualitatively with the experiments. The calculations show that the absorption spectrum and the product state distributions are strongly influenced by long-lived resonances on the adiabatic B˜ state. It is also shown that molecular rotation plays an important role in the photofragmentation process, due to both the Renner-Teller B˜-X˜ mixing, and the strong effect of out-of-plane molecular rotations (K>0) on the dynamics at near linear HOH and HHO geometries.
NASA Astrophysics Data System (ADS)
Liu, Mengyang; Chen, Zhe; Sinz, Christoph; Rank, Elisabet; Zabihian, Behrooz; Zhang, Edward Z.; Beard, Paul C.; Kittler, Harald; Drexler, Wolfgang
2017-02-01
All optical photoacoustic tomography (PAT) using a planar Fabry-Perot interferometer polymer film sensor has been demonstrated for in vivo human palm imaging with an imaging penetration depth of 5 mm. The relatively larger vessels in the superficial plexus and the vessels in the dermal plexus are visible in PAT. However, due to both resolution and sensitivity limits, all optical PAT cannot reveal the smaller vessels such as capillary loops and venules. Melanin absorption also sometimes causes difficulties in PAT to resolve vessels. Optical coherence tomography (OCT) based angiography, on the other hand, has been proven suitable for microvasculature visualization in the first couple millimeters in human. In our work, we combine an all optical PAT system with an OCT system featuring a phase stable akinetic swept source. This multimodal PAT/OCT/OCT-angiography system provides us co-registered human skin vasculature information as well as the structural information of cutaneous. The scanning units of the sub-systems are assembled into one probe, which is then mounted onto a portable rack. The probe and rack design gives six degrees of freedom, allowing the multimodal optical imaging probe to access nearly all regions of human body. Utilizing this probe, we perform imaging on patients with various skin disorders as well as on healthy controls. Fused PAT/OCT-angiography volume shows the complete blood vessel network in human skin, which is further embedded in the morphology provided by OCT. A comparison between the results from the disordered regions and the normal regions demonstrates the clinical translational value of this multimodal optical imaging system in dermatology.
Smooth and flat phase-locked Kerr frequency comb generation by higher order mode suppression
Huang, S.-W.; Liu, H.; Yang, J.; Yu, M.; Kwong, D.-L.; Wong, C. W.
2016-01-01
High-Q microresonator is perceived as a promising platform for optical frequency comb generation, via dissipative soliton formation. In order to achieve a higher quality factor and obtain the necessary anomalous dispersion, multi-mode waveguides were previously implemented in Si3N4 microresonators. However, coupling between different transverse mode families in multi-mode waveguides results in periodic disruption of dispersion and quality factor, and consequently causes perturbation to dissipative soliton formation and amplitude modulation to the corresponding spectrum. Careful choice of pump wavelength to avoid the mode crossing region is thus critical in conventional Si3N4 microresonators. Here, we report a novel design of Si3N4 microresonator in which single-mode operation, high quality factor, and anomalous dispersion are attained simultaneously. The novel microresonator is consisted of uniform single-mode waveguides in the semi-circle region, to eliminate bending induced mode coupling, and adiabatically tapered waveguides in the straight region, to avoid excitation of higher order modes. The intrinsic quality factor of the microresonator reaches 1.36 × 106 while the group velocity dispersion remains to be anomalous at −50 fs2/mm. With this novel microresonator, we demonstrate that broadband phase-locked Kerr frequency combs with flat and smooth spectra can be generated by pumping at any resonances in the optical C-band. PMID:27181420
NASA Astrophysics Data System (ADS)
Elmlinger, Philipp; Schreivogel, Martin; Schmid, Marc; Kaiser, Myriam; Priester, Roman; Sonström, Patrick; Kneissl, Michael
2016-04-01
The suitability of materials for deep ultraviolet (DUV) waveguides concerning transmittance, fabrication, and coupling properties is investigated and a fused silica core/ambient air cladding waveguide system is presented. This high refractive index contrast system has far better coupling efficiency especially for divergent light sources like LEDs and also a significantly smaller critical bending radius compared to conventional waveguide systems, as simulated by ray-tracing simulations. For the fabrication of 300-ffm-thick multimode waveguides a hydrouoric (HF) acid based wet etch process is compared to selective laser etching (SLE). In order to fabricate thick waveguides out of 300-ffm-thick silica wafers by HF etching, two masking materials, LPCVD silicon nitride and LPCVD poly silicon, are investigated. Due to thermal stress, the silicon nitride deposited wafers show cracks and even break. Using poly silicon as a masking material, no cracks are observed and deep etching in 50 wt% HF acid up to 180 min is performed. While the masked and unmasked silica surface is almost unchanged in terms of roughness, notching defects occur at the remaining polysilicon edge leading to jagged sidewalls. Using SLE, waveguides with high contour accuracy are fabricated and the DUV guiding properties are successfully demonstrated with propagation losses between 0.6 and 0:8 dB=mm. These values are currently limited by sidewall scattering losses.
Multicore fibre photonic lanterns for precision radial velocity Science
NASA Astrophysics Data System (ADS)
Gris-Sánchez, Itandehui; Haynes, Dionne M.; Ehrlich, Katjana; Haynes, Roger; Birks, Tim A.
2018-04-01
Incomplete fibre scrambling and fibre modal noise can degrade high-precision spectroscopic applications (typically high spectral resolution and high signal to noise). For example, it can be the dominating error source for exoplanet finding spectrographs, limiting the maximum measurement precision possible with such facilities. This limitation is exacerbated in the next generation of infra-red based systems, as the number of modes supported by the fibre scales inversely with the wavelength squared and more modes typically equates to better scrambling. Substantial effort has been made by major research groups in this area to improve the fibre link performance by employing non-circular fibres, double scramblers, fibre shakers, and fibre stretchers. We present an original design of a multicore fibre (MCF) terminated with multimode photonic lantern ports. It is designed to act as a relay fibre with the coupling efficiency of a multimode fibre (MMF), modal stability similar to a single-mode fibre and low loss in a wide range of wavelengths (380 nm to 860 nm). It provides phase and amplitude scrambling to achieve a stable near field and far-field output illumination pattern despite input coupling variations, and low modal noise for increased stability for high signal-to-noise applications such as precision radial velocity (PRV) science. Preliminary results are presented for a 511-core MCF and compared with current state of the art octagonal fibre.
Bolley, Julie; Guenin, Erwann; Lievre, Nicole; Lecouvey, Marc; Soussan, Michael; Lalatonne, Yoann; Motte, Laurence
2013-11-26
Superparamagnetic fluorescent nanoparticles targeting αvβ3 integrins were elaborated using two methodologies: carbodiimide coupling and click chemistries (CuACC and thiol-yne). The nanoparticles are first functionalized with hydroxymethylenebisphonates (HMBP) bearing carboxylic acid or alkyne functions. Then, a large number of these reactives functions were used for the covalent coupling of dyes, poly(ethylene glycol) (PEG), and cyclic RGD. Several methods were used to characterize the nanoparticle surface functionalization, and the magnetic properties of these contrast agents were studied using a 1.5 T clinical MRI. The affinity toward integrins was evidenced by solid-phase receptor-binding assay. In addition to their chemoselective natures, click reactions were shown to be far more efficient than the carbodiimide coupling. The grafting increase was shown to enhance targeting affinity to integrin without imparing MRI and fluorescent properties.
Synchronization of Spontaneous Active Motility of Hair Cell Bundles
Zhang, Tracy-Ying; Ji, Seung; Bozovic, Dolores
2015-01-01
Hair cells of the inner ear exhibit an active process, believed to be crucial for achieving the sensitivity of auditory and vestibular detection. One of the manifestations of the active process is the occurrence of spontaneous hair bundle oscillations in vitro. Hair bundles are coupled by overlying membranes in vivo; hence, explaining the potential role of innate bundle motility in the generation of otoacoustic emissions requires an understanding of the effects of coupling on the active bundle dynamics. We used microbeads to connect small groups of hair cell bundles, using in vitro preparations that maintain their innate oscillations. Our experiments demonstrate robust synchronization of spontaneous oscillations, with either 1:1 or multi-mode phase-locking. The frequency of synchronized oscillation was found to be near the mean of the innate frequencies of individual bundles. Coupling also led to an improved regularity of entrained oscillations, demonstrated by an increase in the quality factor. PMID:26540409
Ciampi, Simone; Guan, Bin; Darwish, Nadim A; Zhu, Ying; Reece, Peter J; Gooding, J Justin
2012-12-21
Herein, mesoporous silicon (PSi) is configured as a single sensing device that has dual readouts; as a photonic crystal sensor in a Rugate filter configuration, and as a high surface area porous electrode. The as-prepared PSi is chemically modified to provide it with stability in aqueous media and to allow for the subsequent coupling of chemical species, such as via Cu(I)-catalyzed cycloaddition reactions between 1-alkynes and azides ("click" reactions). The utility of the bimodal capabilities of the PSi sensor for monitoring surface coupling procedures is demonstrated by the covalent coupling of a ferrocene derivative, as well as by demonstrating ligand-exchange reactions (LER) at the PSi surface. Both types of reactions were monitored through optical reflectivity measurements, as well as electrochemically via the oxidation/reduction of the surface tethered redox species.
Tian, Fei; Kanka, Jiri; Du, Henry
2012-09-10
Regular and cascaded long period gratings (LPG, C-LPG) of periods ranging from 460 to 590 μm were inscribed in an endlessly single mode photonic crystal fiber (PCF) using CO(2) laser for sensing measurements of helium, argon and acetylene. High index sensitivities in excess of 1700 nm/RIU were achieved in both grating schemes with a period of 460 μm. The sharp interference fringes in the transmission spectrum of C-PCF-LPG afforded not only greatly enhanced sensing resolution, but also accuracy when the phase-shift of the fringe pattern is determined through spectral processing. Comparative numerical and experimental studies indicated LP(01) to LP(03) mode coupling as the principal coupling step for both PCF-LPG and C-PCF-LPG with emergence of multi-mode coupling at shorter grating periods or longer resonance wavelengths.
NASA Astrophysics Data System (ADS)
Yanson, Dan; Levy, Moshe; Peleg, Ophir; Rappaport, Noam; Shamay, Moshe; Dahan, Nir; Klumel, Genady; Berk, Yuri; Baskin, Ilya
2015-02-01
Fiber laser manufacturers demand high-brightness laser diode pumps delivering optical pump energy in both a compact fiber core and narrow angular content. A pump delivery fiber of a 105 μm core and 0.22 numerical aperture (NA) is typically used, where the fiber NA is under-filled to ease the launch of laser diode emission into the fiber and make the fiber tolerant to bending. At SCD, we have developed multi-emitter fiber-coupled pump modules that deliver 50 W output from a 105 μm, 0.15 NA fiber at 915, 950 and 976 nm wavelengths enabling low-NA power delivery to a customer's fiber laser network. In this work, we address the challenges of coupling and propagating high optical powers from laser diode sources in weakly guiding step-index multimode fibers. We present simulations of light propagation inside the low-NA multimode fiber for different launch conditions and fiber bend diameters using a ray-racing tool and demonstrate how these affect the injection of light into cladding-bounded modes. The mode filling at launch and source NA directly limit the bend radius at which the fiber can be coiled. Experimentally, we measure the fiber bend loss using our 50 W fiber-coupled module and establish a critical bend diameter in agreement with our simulation results. We also employ thermal imaging to investigate fiber heating caused by macro-bends and angled cleaving. The low mode filling of the 0.15 NA fiber by our brightness-enhanced laser diodes allows it to be coiled with diameters down to 70 mm at full operating power despite the low NA and further eliminates the need for mode-stripping at fiber combiners and splices downstream from our pump modules.
Dual-color single-mode lasing in axially coupled organic nanowire resonators
Zhang, Chunhuan; Zou, Chang-Ling; Dong, Haiyun; Yan, Yongli; Yao, Jiannian; Zhao, Yong Sheng
2017-01-01
Miniaturized lasers with multicolor output and high spectral purity are of crucial importance for yielding more compact and more versatile photonic devices. However, multicolor lasers usually operate in multimode, which largely restricts their practical applications due to the lack of an effective mode selection mechanism that is simultaneously applicable to multiple wavebands. We propose a mutual mode selection strategy to realize dual-color single-mode lasing in axially coupled cavities constructed from two distinct organic self-assembled single-crystal nanowires. The unique mode selection mechanism in the heterogeneously coupled nanowires was elucidated experimentally and theoretically. With each individual nanowire functioning as both the laser source and the mode filter for the other nanowire, dual-color single-mode lasing was successfully achieved in the axially coupled heterogeneous nanowire resonators. Furthermore, the heterogeneously coupled resonators provided multiple nanoscale output ports for delivering coherent signals with different colors, which could greatly contribute to increasing the integration level of functional photonic devices. These results advance the fundamental understanding of the lasing modulation in coupled cavity systems and offer a promising route to building multifunctional nanoscale lasers for high-level practical photonic integrations. PMID:28785731
A Simple and Convenient Method of Multiple Linear Regression to Calculate Iodine Molecular Constants
ERIC Educational Resources Information Center
Cooper, Paul D.
2010-01-01
A new procedure using a student-friendly least-squares multiple linear-regression technique utilizing a function within Microsoft Excel is described that enables students to calculate molecular constants from the vibronic spectrum of iodine. This method is advantageous pedagogically as it calculates molecular constants for ground and excited…
Zooming in on vibronic structure by lowest-value projection reconstructed 4D coherent spectroscopy
NASA Astrophysics Data System (ADS)
Harel, Elad
2018-05-01
A fundamental goal of chemical physics is an understanding of microscopic interactions in liquids at and away from equilibrium. In principle, this microscopic information is accessible by high-order and high-dimensionality nonlinear optical measurements. Unfortunately, the time required to execute such experiments increases exponentially with the dimensionality, while the signal decreases exponentially with the order of the nonlinearity. Recently, we demonstrated a non-uniform acquisition method based on radial sampling of the time-domain signal [W. O. Hutson et al., J. Phys. Chem. Lett. 9, 1034 (2018)]. The four-dimensional spectrum was then reconstructed by filtered back-projection using an inverse Radon transform. Here, we demonstrate an alternative reconstruction method based on the statistical analysis of different back-projected spectra which results in a dramatic increase in sensitivity and at least a 100-fold increase in dynamic range compared to conventional uniform sampling and Fourier reconstruction. These results demonstrate that alternative sampling and reconstruction methods enable applications of increasingly high-order and high-dimensionality methods toward deeper insights into the vibronic structure of liquids.
Note: Observation of a new electronically excited state of cobalt monoxide
NASA Astrophysics Data System (ADS)
Zang, Jianzheng; Zhang, Qun; Qin, Chengbing; Gu, Zhong; Bai, Xilin; Chen, Yang
2012-11-01
The laser-induced fluorescence excitation spectra of jet-cooled CoO molecules have been recorded in the energy region of 21 800—25 000 cm-1. Apart from the seven vibronic bands assigned to the known G4Φ9/2(υ') - X4Δ7/2(υ″ = 0) progression [M. Barnes, D. J. Clouthier, P. G. Hajigeorgiou, G. Huang, C. T. Kingston, A. J. Merer, G. F. Metha, J. R. D. Peers, and S. J. Rixon, J. Mol. Spectrosc. 186, 374 (1997), 10.1006/jmsp.1997.7456], we observed a new band system assignable to the [22.95]4Δ7/2(υ' = 0 - 4) - X4Δ7/2(υ″ = 0) progression. Extensive perturbations among these vibronic bands have been revealed by means of reduced energy plots. The new electronically excited 4Δ state has been determined to be most likely of an electronic configuration (2pπ)3(4sσ)2(3dδ)3(3dπ)3 based on the charge-transferred promotion model.
Two-Dimensional Resonance Raman Signatures of Vibronic Coherence Transfer in Chemical Reactions.
Guo, Zhenkun; Molesky, Brian P; Cheshire, Thomas P; Moran, Andrew M
2017-11-02
Two-dimensional resonance Raman (2DRR) spectroscopy has been developed for studies of photochemical reaction mechanisms and structural heterogeneity in condensed phase systems. 2DRR spectroscopy is motivated by knowledge of non-equilibrium effects that cannot be detected with traditional resonance Raman spectroscopy. For example, 2DRR spectra may reveal correlated distributions of reactant and product geometries in systems that undergo chemical reactions on the femtosecond time scale. Structural heterogeneity in an ensemble may also be reflected in the 2D spectroscopic line shapes of both reactive and non-reactive systems. In this chapter, these capabilities of 2DRR spectroscopy are discussed in the context of recent applications to the photodissociation reactions of triiodide. We show that signatures of "vibronic coherence transfer" in the photodissociation process can be targeted with particular 2DRR pulse sequences. Key differences between the signal generation mechanisms for 2DRR and off-resonant 2D Raman spectroscopy techniques are also addressed. Overall, recent experimental developments and applications of the 2DRR method suggest that it will be a valuable tool for elucidating ultrafast chemical reaction mechanisms.
Sampling of the telescope image plane using single- and few-mode fibre arrays
NASA Astrophysics Data System (ADS)
Corbett, Jason C.
2009-02-01
The coupling efficiency of starlight into single and few-mode fibres fed with lenslet arrays to provide a continuous field of view is investigated. The single-mode field of view (FOV) and overall transmission is a highly complicated function of wavelength and fibre size leading to a continuous sample only in cases of poor throughput. Significant improvements are found in the few-mode regime with a continuous and efficient sample of the image plane shown to be possible with as few as 4 modes. This work is of direct relevance to the coupling of celestial light into photonic instrumentation and the removal of image scrambling and reduction of focal ratio degradation (FRD) using multi-mode fibre to single-mode fibre array converters.
Spectral response of fiber-coupled Fabry-Perot etalons.
Ionov, Pavel
2014-03-01
In many remote sensing applications one or multiple Fabry-Perot etalons are used as high-spectral-resolution filter elements. These etalons are often coupled to a receiving telescope with a multimode fiber, leading to subtle effects of the fiber mode order on the overall spectral response of the system. A theoretical model is developed to treat the spectral response of the combined system: fiber, collimator, and etalon. The method is based on a closed-form expression of the diffracted mode in terms of a Hankel transform. In this representation, it is shown how the spectral effect of the fiber and collimator can be separated from the details of the etalon and can be viewed as a mode-dependent spectral broadening and shift.
Negative Differential Conductivity in an Interacting Quantum Gas.
Labouvie, Ralf; Santra, Bodhaditya; Heun, Simon; Wimberger, Sandro; Ott, Herwig
2015-07-31
We report on the observation of negative differential conductivity (NDC) in a quantum transport device for neutral atoms employing a multimode tunneling junction. The system is realized with a Bose-Einstein condensate loaded in a one-dimensional optical lattice with high site occupancy. We induce an initial difference in chemical potential at one site by local atom removal. The ensuing transport dynamics are governed by the interplay between the tunneling coupling, the interaction energy, and intrinsic collisions, which turn the coherent coupling into a hopping process. The resulting current-voltage characteristics exhibit NDC, for which we identify atom number-dependent tunneling as a new microscopic mechanism. Our study opens new ways for the future implementation and control of complex neutral atom quantum circuits.
Two-dimensional vibrational-electronic spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.
2015-10-21
Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE)more » to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (ν{sub CN}) and either a ligand-to-metal charge transfer transition ([Fe{sup III}(CN){sub 6}]{sup 3−} dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN){sub 5}Fe{sup II}CNRu{sup III}(NH{sub 3}){sub 5}]{sup −} dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific ν{sub CN} modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.« less
Raman-in-SEM, a multimodal and multiscale analytical tool: performance for materials and expertise.
Wille, Guillaume; Bourrat, Xavier; Maubec, Nicolas; Lahfid, Abdeltif
2014-12-01
The availability of Raman spectroscopy in a powerful analytical scanning electron microscope (SEM) allows morphological, elemental, chemical, physical and electronic analysis without moving the sample between instruments. This paper documents the metrological performance of the SEMSCA commercial Raman interface operated in a low vacuum SEM. It provides multiscale and multimodal analyses as Raman/EDS, Raman/cathodoluminescence or Raman/STEM (STEM: scanning transmission electron microscopy) as well as Raman spectroscopy on nanomaterials. Since Raman spectroscopy in a SEM can be influenced by several SEM-related phenomena, this paper firstly presents a comparison of this new tool with a conventional micro-Raman spectrometer. Then, some possible artefacts are documented, which are due to the impact of electron beam-induced contamination or cathodoluminescence contribution to the Raman spectra, especially with geological samples. These effects are easily overcome by changing or adapting the Raman spectrometer and the SEM settings and methodology. The deletion of the adverse effect of cathodoluminescence is solved by using a SEM beam shutter during Raman acquisition. In contrast, this interface provides the ability to record the cathodoluminescence (CL) spectrum of a phase. In a second part, this study highlights the interest and efficiency of the coupling in characterizing micrometric phases at the same point. This multimodal approach is illustrated with various issues encountered in geosciences. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ha, Unsoo; Lee, Yongsu; Kim, Hyunki; Roh, Taehwan; Bae, Joonsung; Kim, Changhyeon; Yoo, Hoi-Jun
2015-12-01
A multimodal mental management system in the shape of the wearable headband and earplugs is proposed to monitor electroencephalography (EEG), hemoencephalography (HEG) and heart rate variability (HRV) for accurate mental health monitoring. It enables simultaneous transcranial electrical stimulation (tES) together with real-time monitoring. The total weight of the proposed system is less than 200 g. The multi-loop low-noise amplifier (MLLNA) achieves over 130 dB CMRR for EEG sensing and the capacitive correlated-double sampling transimpedance amplifier (CCTIA) has low-noise characteristics for HEG and HRV sensing. Measured three-physiology domains such as neural, vascular and autonomic domain signals are combined with canonical correlation analysis (CCA) and temporal kernel canonical correlation analysis (tkCCA) algorithm to find the neural-vascular-autonomic coupling. It supports highly accurate classification with the 19% maximum improvement with multimodal monitoring. For the multi-channel stimulation functionality, after-effects maximization monitoring and sympathetic nerve disorder monitoring, the stimulator is designed as reconfigurable. The 3.37 × 2.25 mm(2) chip has 2-channel EEG sensor front-end, 2-channel NIRS sensor front-end, NIRS current driver to drive dual-wavelength VCSEL and 6-b DAC current source for tES mode. It dissipates 24 mW with 2 mA stimulation current and 5 mA NIRS driver current.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raman, Rajesh N.; Pivetti, Christopher D.; Ramsamooj, Rajendra
Functional changes in rat kidneys during the induced ischemic injury and recovery phases were explored using multimodal autofluorescence and light scattering imaging. We aim to evaluate the use of noncontact optical signatures for rapid assessment of tissue function and viability. Specifically, autofluorescence images were acquired in vivo under 355, 325, and 266 nm illumination while light scattering images were collected at the excitation wavelengths as well as using relatively narrowband light centered at 500 nm. The images were simultaneously recorded using a multimodal optical imaging system. We also analyzed to obtain time constants, which were correlated to kidney dysfunction asmore » determined by a subsequent survival study and histopathological analysis. This analysis of both the light scattering and autofluorescence images suggests that changes in tissue microstructure, fluorophore emission, and blood absorption spectral characteristics, coupled with vascular response, contribute to the behavior of the observed signal, which may be used to obtain tissue functional information and offer the ability to predict posttransplant kidney function.« less
VCSEL-based optical transceiver module operating at 25 Gb/s and using a single CMOS IC
NASA Astrophysics Data System (ADS)
Afriat, Gil; Horwitz, Lior; Lazar, Dror; Issachar, Assaf; Pogrebinsky, Alexander; Ran, Adee; Shoor, Ehud; Bar, Roi; Saba, Rushdy
2012-01-01
We present here a low cost, small form factor, optical transceiver module composed of a CMOS IC transceiver, 850 nm emission wavelength VCSEL modulated at 25 Gb/s, and an InGaAs/InP PIN Photo Diode (PD). The transceiver IC is fabricated in a standard 28 nm CMOS process and integrates the analog circuits interfacing the VCSEL and PD, namely the VCSEL driver and Transimpedance Amplifier (TIA), as well as all other required transmitter and receiver circuits like Phase Locked Loop (PLL), Post Amplifier and Clock & Data Recovery (CDR). The transceiver module couples into a 62.5/125 um multi-mode (OM1) TX/RX fiber pair via a low cost plastic cover realizing the transmitter and receiver lens systems and demonstrates BER < 10-12 at the 25 Gb/s data rate over a distance of 3 meters. Using a 50/125 um laser optimized multi-mode fiber (OM3), the same performance was achieved over a distance of 30 meters.
A multi-core fiber based interferometer for high temperature sensing
NASA Astrophysics Data System (ADS)
Zhou, Song; Huang, Bo; Shu, Xuewen
2017-04-01
In this paper, we have verified and implemented a Mach-Zehnder interferometer based on seven-core fiber for high temperature sensing application. This proposed structure is based on a multi-mode-multi-core-multi-mode fiber structure sandwiched by a single mode fiber. Between the single-mode and multi-core fiber, a 3 mm long multi-mode fiber is formed for lead-in and lead-out light. The basic operation principle of this device is the use of multi-core modes, single-mode and multi-mode interference coupling is also utilized. Experimental results indicate that this interferometer sensor is capable of accurate measurements of temperatures up to 800 °C, and the temperature sensitivity of the proposed sensor is as high as 170.2 pm/°C, which is much higher than the current existing MZI based temperature sensors (109 pm/°C). This type of sensor is promising for practical high temperature applications due to its advantages including high sensitivity, simple fabrication process, low cost and compactness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Haotian; Duan, Fajie; Wu, Guoxiu
2014-11-15
The blade tip clearance is a parameter of great importance to guarantee the efficiency and safety of the turbine engines. In this article, a laser ranging system designed for blade tip clearance measurement is presented. Multi-mode fiber is utilized for optical transmission to guarantee that enough optical power is received by the sensor probe. The model of the tiny sensor probe is presented. The error brought by the optical path difference of different modes of the fiber is estimated and the length of the fiber is limited to reduce this error. The measurement range in which the optical power receivedmore » by the probe remains essentially unchanged is analyzed. Calibration experiments and dynamic experiments are conducted. The results of the calibration experiments indicate that the resolution of the system is about 0.02 mm and the range of the system is about 9 mm.« less
Sensitivity-Bandwidth Limit in a Multimode Optoelectromechanical Transducer
NASA Astrophysics Data System (ADS)
Moaddel Haghighi, I.; Malossi, N.; Natali, R.; Di Giuseppe, G.; Vitali, D.
2018-03-01
An optoelectromechanical system formed by a nanomembrane capacitively coupled to an L C resonator and to an optical interferometer has recently been employed for the highly sensitive optical readout of rf signals [T. Bagci et al., Nature (London) 507, 81 (2013), 10.1038/nature13029]. We propose and experimentally demonstrate how the bandwidth of such a transducer can be increased by controlling the interference between two electromechanical interaction pathways of a two-mode mechanical system. With a proof-of-principle device operating at room temperature, we achieve a sensitivity of 300 nV /√{Hz } over a bandwidth of 15 kHz in the presence of radio-frequency noise, and an optimal shot-noise-limited sensitivity of 10 nV /√{Hz } over a bandwidth of 5 kHz. We discuss strategies for improving the performance of the device, showing that, for the same given sensitivity, a mechanical multimode transducer can achieve a bandwidth significantly larger than that for a single-mode one.
Raman, Rajesh N.; Pivetti, Christopher D.; Ramsamooj, Rajendra; ...
2017-05-03
Functional changes in rat kidneys during the induced ischemic injury and recovery phases were explored using multimodal autofluorescence and light scattering imaging. We aim to evaluate the use of noncontact optical signatures for rapid assessment of tissue function and viability. Specifically, autofluorescence images were acquired in vivo under 355, 325, and 266 nm illumination while light scattering images were collected at the excitation wavelengths as well as using relatively narrowband light centered at 500 nm. The images were simultaneously recorded using a multimodal optical imaging system. We also analyzed to obtain time constants, which were correlated to kidney dysfunction asmore » determined by a subsequent survival study and histopathological analysis. This analysis of both the light scattering and autofluorescence images suggests that changes in tissue microstructure, fluorophore emission, and blood absorption spectral characteristics, coupled with vascular response, contribute to the behavior of the observed signal, which may be used to obtain tissue functional information and offer the ability to predict posttransplant kidney function.« less
Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices
Wang, Danqing; Yang, Ankun; Wang, Weijia; ...
2017-07-10
Single band-edge states can trap light and function as high-quality optical feedback for microscale lasers and nanolasers. However, access to more than a single band-edge mode for nanolasing has not been possible because of limited cavity designs. Here, we describe how plasmonic superlattices-finite-arrays of nanoparticles (patches) grouped into microscale arrays-can support multiple band-edge modes capable of multi-modal nanolasing at programmed emission wavelengths and with large mode spacings. Different lasing modes show distinct input-output light behaviour and decay dynamics that can be tailored by nanoparticle size. By modelling the superlattice nanolasers with a four-level gain system and a time-domain approach, wemore » reveal that the accumulation of population inversion at plasmonic hot spots can be spatially modulated by the diffractive coupling order of the patches. Furthermore, we show that symmetry-broken superlattices can sustain switchable nanolasing between a single mode and multiple modes.« less
Alac, Morana; Movellan, Javier; Tanaka, Fumihide
2011-12-01
Social roboticists design their robots to function as social agents in interaction with humans and other robots. Although we do not deny that the robot's design features are crucial for attaining this aim, we point to the relevance of spatial organization and coordination between the robot and the humans who interact with it. We recover these interactions through an observational study of a social robotics laboratory and examine them by applying a multimodal interactional analysis to two moments of robotics practice. We describe the vital role of roboticists and of the group of preverbal infants, who are involved in a robot's design activity, and we argue that the robot's social character is intrinsically related to the subtleties of human interactional moves in laboratories of social robotics. This human involvement in the robot's social agency is not simply controlled by individual will. Instead, the human-machine couplings are demanded by the situational dynamics in which the robot is lodged.
NASA Astrophysics Data System (ADS)
Mandal, Anuvab; Singh, Param Jeet; Shastri, Aparna; Jagatap, B. N.
2014-12-01
A consolidated study of the VUV absorption spectra of CH2Cl2 and CD2Cl2 in the 50,000-95,000 cm-1 region using synchrotron radiation is presented. Rydberg series and vibronic analysis are carried out and supported by quantum chemical calculations. The broad absorption band of CH2Cl2 in the region 50,000-60,000 cm-1 is attributed to the valence states 11B2, 11B1 and 11A1. Most of the bands in the 60,000-95,000 cm-1 region are fitted to Rydberg series of ns, np and nd type converging to the first four ionization potentials 11.320, 11.357, 12.152 and 12.271 eV of CH2Cl2 arising from excitation of an electron from one of the four outermost Cl non-bonding orbitals (2b1, 3b2, 1a2 and 4a1). Vertical excited states of CH2Cl2 calculated using TDDFT are correlated with experimentally observed electronic states based on the symmetries of the initial and final MOs involved in a transition. A few Rydberg transitions viz. 2b1→5s, 4p, 5p, 6p; 3b2→4p, 5p; 1a2→4p are accompanied by vibronic features. Observed vibronic bands are assigned mainly to the CCl symmetric stretch (ν3‧) mode with smaller contributions from the CH symmetric stretch (ν1‧), CH2 bend (ν2‧) and CH2 wag (ν8‧) modes. Assignments are corroborated by comparison with the VUV absorption spectrum of the deuterated isotopologue CD2Cl2, reported here for the first time. The high underlying intensities seen in several sub-regions are explained by valence or valence-Rydberg mixed type transitions predicted with high oscillator strengths by the TDDFT calculations.
Quantum dynamics of a two-atom-qubit system
NASA Astrophysics Data System (ADS)
Van Hieu, Nguyen; Bich Ha, Nguyen; Linh, Le Thi Ha
2009-09-01
A physical model of the quantum information exchange between two qubits is studied theoretically. The qubits are two identical two-level atoms, the physical mechanism of the quantum information exchange is the mutual dependence of the reduced density matrices of two qubits generated by their couplings with a multimode radiation field. The Lehmberg-Agarwal master equation is exactly solved. The explicit form of the mutual dependence of two reduced density matrices is established. The application to study the entanglement of two qubits is discussed.
Theory of fiber-optic, evanescent-wave spectroscopy and sensors
NASA Astrophysics Data System (ADS)
Messica, A.; Greenstein, A.; Katzir, A.
1996-05-01
A general theory for fiber-optic, evanescent-wave spectroscopy and sensors is presented for straight, uncladded, step-index, multimode fibers. A three-dimensional model is formulated within the framework of geometric optics. The model includes various launching conditions, input and output end-face Fresnel transmission losses, multiple Fresnel reflections, bulk absorption, and evanescent-wave absorption. An evanescent-wave sensor response is analyzed as a function of externally controlled parameters such as coupling angle, f number, fiber length, and diameter. Conclusions are drawn for several experimental apparatuses.
NASA Astrophysics Data System (ADS)
Su, Daiqin; Ho, C. T. Marco; Mann, Robert B.; Ralph, Timothy C.
2017-09-01
We show that the gravitational quasinormal modes (QNMs) of a Schwarzschild black hole play the role of a multimode squeezer that can generate particles. For a minimally coupled scalar field, the QNMs "squeeze" the initial state of the scalar field (even for the vacuum) and produce scalar particles. The maximal squeezing amplitude is inversely proportional to the cube of the imaginary part of the QNM frequency, implying that the particle generation efficiency is higher for lower decaying QNMs. Our results show that the gravitational perturbations can amplify Hawking radiation.
Beam profile for the Herschel-SPIRE Fourier transform spectrometer.
Makiwa, Gibion; Naylor, David A; Ferlet, Marc; Salji, Carl; Swinyard, Bruce; Polehampton, Edward; van der Wiel, Matthijs H D
2013-06-01
One of the instruments on board the Herschel Space Observatory is the Spectral and Photometric Imaging Receiver (SPIRE). SPIRE employs a Fourier transform spectrometer with feed-horn-coupled bolometers to provide imaging spectroscopy. To interpret the resultant spectral images requires knowledge of the wavelength-dependent beam, which in the case of SPIRE is complicated by the use of multimoded feed horns. In this paper we describe a series of observations and the analysis conducted to determine the wavelength dependence of the SPIRE spectrometer beam profile.
2011-10-31
designs with code division multiple access ( CDMA ). Analog chirp filters were used to produce an up-chirp, which is used as a radar waveform, coupled with...signals. A potential shortcoming of CDMA techniques is that the addition of two signals will result in a non-constant amplitude signal which will be...of low-frequency A/ Ds . As an example for a multiple carrier signal all the received signals from the multiple carriers are aliased onto the
Mikhailov, A. S.; Zanette, D. H.; Zhai, Y. M.; Kiss, I. Z.; Hudson, J. L.
2004-01-01
We present laboratory experiments on the effects of global coupling in a population of electrochemical oscillators with a multimodal frequency distribution. The experiments show that complex collective signals are generated by this system through spontaneous emergence and joint operation of coherently acting groups representing hierarchically organized resonant clusters. Numerical simulations support these experimental findings. Our results suggest that some forms of internal self-organization, characteristic for complex multiagent systems, are already possible in simple chemical systems. PMID:15263084
2015-11-23
realized gain values of−5.0 dBiC and 3.1 dBiC, respectively. Details of the design, optimization, simulation, and the measured results of the fabricated...prototype of this Fig. 4. The measured input VSWR of the antenna prototype shown in Fig. 3. 7 antenna were published in IEEE Transactions on...suppressed. Other prototypes of these types of MEFSSs were also designed and fabricated and characterized. Details of the design and measurement
2001-12-01
850 nm. The layers are grown by molecular beam epitaxy . The AlGaAs–GaAs inter- faces are alloy-graded for 30 nm to eliminate charge trapping that may... beam of the VCSELs allow for easy coupling of light into the MMF, it is also desirable to have photodetectors with large active windows compatible with... VCSEL )emitting at 850 nm [1] have become the preferred source for high-speed short-wavelength communication systems. These VCSELs are particularly