A Review of Surrogate Assisted Multiobjective Evolutionary Algorithms
Díaz-Manríquez, Alan; Toscano, Gregorio; Barron-Zambrano, Jose Hugo; Tello-Leal, Edgar
2016-01-01
Multiobjective evolutionary algorithms have incorporated surrogate models in order to reduce the number of required evaluations to approximate the Pareto front of computationally expensive multiobjective optimization problems. Currently, few works have reviewed the state of the art in this topic. However, the existing reviews have focused on classifying the evolutionary multiobjective optimization algorithms with respect to the type of underlying surrogate model. In this paper, we center our focus on classifying multiobjective evolutionary algorithms with respect to their integration with surrogate models. This interaction has led us to classify similar approaches and identify advantages and disadvantages of each class. PMID:27382366
A Novel Multiobjective Evolutionary Algorithm Based on Regression Analysis
Song, Zhiming; Wang, Maocai; Dai, Guangming; Vasile, Massimiliano
2015-01-01
As is known, the Pareto set of a continuous multiobjective optimization problem with m objective functions is a piecewise continuous (m − 1)-dimensional manifold in the decision space under some mild conditions. However, how to utilize the regularity to design multiobjective optimization algorithms has become the research focus. In this paper, based on this regularity, a model-based multiobjective evolutionary algorithm with regression analysis (MMEA-RA) is put forward to solve continuous multiobjective optimization problems with variable linkages. In the algorithm, the optimization problem is modelled as a promising area in the decision space by a probability distribution, and the centroid of the probability distribution is (m − 1)-dimensional piecewise continuous manifold. The least squares method is used to construct such a model. A selection strategy based on the nondominated sorting is used to choose the individuals to the next generation. The new algorithm is tested and compared with NSGA-II and RM-MEDA. The result shows that MMEA-RA outperforms RM-MEDA and NSGA-II on the test instances with variable linkages. At the same time, MMEA-RA has higher efficiency than the other two algorithms. A few shortcomings of MMEA-RA have also been identified and discussed in this paper. PMID:25874246
Multiobjective Optimization of Rocket Engine Pumps Using Evolutionary Algorithm
NASA Technical Reports Server (NTRS)
Oyama, Akira; Liou, Meng-Sing
2001-01-01
A design optimization method for turbopumps of cryogenic rocket engines has been developed. Multiobjective Evolutionary Algorithm (MOEA) is used for multiobjective pump design optimizations. Performances of design candidates are evaluated by using the meanline pump flow modeling method based on the Euler turbine equation coupled with empirical correlations for rotor efficiency. To demonstrate the feasibility of the present approach, a single stage centrifugal pump design and multistage pump design optimizations are presented. In both cases, the present method obtains very reasonable Pareto-optimal solutions that include some designs outperforming the original design in total head while reducing input power by one percent. Detailed observation of the design results also reveals some important design criteria for turbopumps in cryogenic rocket engines. These results demonstrate the feasibility of the EA-based design optimization method in this field.
Multidisciplinary Multiobjective Optimal Design for Turbomachinery Using Evolutionary Algorithm
NASA Technical Reports Server (NTRS)
2005-01-01
This report summarizes Dr. Lian s efforts toward developing a robust and efficient tool for multidisciplinary and multi-objective optimal design for turbomachinery using evolutionary algorithms. This work consisted of two stages. The first stage (from July 2003 to June 2004) Dr. Lian focused on building essential capabilities required for the project. More specifically, Dr. Lian worked on two subjects: an enhanced genetic algorithm (GA) and an integrated optimization system with a GA and a surrogate model. The second stage (from July 2004 to February 2005) Dr. Lian formulated aerodynamic optimization and structural optimization into a multi-objective optimization problem and performed multidisciplinary and multi-objective optimizations on a transonic compressor blade based on the proposed model. Dr. Lian s numerical results showed that the proposed approach can effectively reduce the blade weight and increase the stage pressure ratio in an efficient manner. In addition, the new design was structurally safer than the original design. Five conference papers and three journal papers were published on this topic by Dr. Lian.
A hierarchical evolutionary algorithm for multiobjective optimization in IMRT
Holdsworth, Clay; Kim, Minsun; Liao, Jay; Phillips, Mark H.
2010-01-01
Purpose: The current inverse planning methods for intensity modulated radiation therapy (IMRT) are limited because they are not designed to explore the trade-offs between the competing objectives of tumor and normal tissues. The goal was to develop an efficient multiobjective optimization algorithm that was flexible enough to handle any form of objective function and that resulted in a set of Pareto optimal plans. Methods: A hierarchical evolutionary multiobjective algorithm designed to quickly generate a small diverse Pareto optimal set of IMRT plans that meet all clinical constraints and reflect the optimal trade-offs in any radiation therapy plan was developed. The top level of the hierarchical algorithm is a multiobjective evolutionary algorithm (MOEA). The genes of the individuals generated in the MOEA are the parameters that define the penalty function minimized during an accelerated deterministic IMRT optimization that represents the bottom level of the hierarchy. The MOEA incorporates clinical criteria to restrict the search space through protocol objectives and then uses Pareto optimality among the fitness objectives to select individuals. The population size is not fixed, but a specialized niche effect, domination advantage, is used to control the population and plan diversity. The number of fitness objectives is kept to a minimum for greater selective pressure, but the number of genes is expanded for flexibility that allows a better approximation of the Pareto front. Results: The MOEA improvements were evaluated for two example prostate cases with one target and two organs at risk (OARs). The population of plans generated by the modified MOEA was closer to the Pareto front than populations of plans generated using a standard genetic algorithm package. Statistical significance of the method was established by compiling the results of 25 multiobjective optimizations using each method. From these sets of 12–15 plans, any random plan selected from a MOEA
Multi-objective Job Shop Rescheduling with Evolutionary Algorithm
NASA Astrophysics Data System (ADS)
Hao, Xinchang; Gen, Mitsuo
In current manufacturing systems, production processes and management are involved in many unexpected events and new requirements emerging constantly. This dynamic environment implies that operation rescheduling is usually indispensable. A wide variety of procedures and heuristics has been developed to improve the quality of rescheduling. However, most proposed approaches are derived usually with respect to simplified assumptions. As a consequence, these approaches might be inconsistent with the actual requirements in a real production environment, i.e., they are often unsuitable and inflexible to respond efficiently to the frequent changes. In this paper, a multi-objective job shop rescheduling problem (moJSRP) is formulated to improve the practical application of rescheduling. To solve the moJSRP model, an evolutionary algorithm is designed, in which a random key-based representation and interactive adaptive-weight (i-awEA) fitness assignment are embedded. To verify the effectiveness, the proposed algorithm has been compared with other apporaches and benchmarks on the robustness of moJRP optimziation. The comparison results show that iAWGA-A is better than weighted fitness method in terms of effectiveness and stability. Simlarly, iAWGA-A also outperforms other well stability approachessuch as non-dominated sorting genetic algorithm (NSGA-II) and strength Pareto evolutionary algorithm2 (SPEA2).
Multi-objective evolutionary algorithm for operating parallel reservoir system
NASA Astrophysics Data System (ADS)
Chang, Li-Chiu; Chang, Fi-John
2009-10-01
SummaryThis paper applies a multi-objective evolutionary algorithm, the non-dominated sorting genetic algorithm (NSGA-II), to examine the operations of a multi-reservoir system in Taiwan. The Feitsui and Shihmen reservoirs are the most important water supply reservoirs in Northern Taiwan supplying the domestic and industrial water supply needs for over 7 million residents. A daily operational simulation model is developed to guide the releases of the reservoir system and then to calculate the shortage indices (SI) of both reservoirs over a long-term simulation period. The NSGA-II is used to minimize the SI values through identification of optimal joint operating strategies. Based on a 49 year data set, we demonstrate that better operational strategies would reduce shortage indices for both reservoirs. The results indicate that the NSGA-II provides a promising approach. The pareto-front optimal solutions identified operational compromises for the two reservoirs that would be expected to improve joint operations.
A multiobjective evolutionary algorithm to find community structures based on affinity propagation
NASA Astrophysics Data System (ADS)
Shang, Ronghua; Luo, Shuang; Zhang, Weitong; Stolkin, Rustam; Jiao, Licheng
2016-07-01
Community detection plays an important role in reflecting and understanding the topological structure of complex networks, and can be used to help mine the potential information in networks. This paper presents a Multiobjective Evolutionary Algorithm based on Affinity Propagation (APMOEA) which improves the accuracy of community detection. Firstly, APMOEA takes the method of affinity propagation (AP) to initially divide the network. To accelerate its convergence, the multiobjective evolutionary algorithm selects nondominated solutions from the preliminary partitioning results as its initial population. Secondly, the multiobjective evolutionary algorithm finds solutions approximating the true Pareto optimal front through constantly selecting nondominated solutions from the population after crossover and mutation in iterations, which overcomes the tendency of data clustering methods to fall into local optima. Finally, APMOEA uses an elitist strategy, called "external archive", to prevent degeneration during the process of searching using the multiobjective evolutionary algorithm. According to this strategy, the preliminary partitioning results obtained by AP will be archived and participate in the final selection of Pareto-optimal solutions. Experiments on benchmark test data, including both computer-generated networks and eight real-world networks, show that the proposed algorithm achieves more accurate results and has faster convergence speed compared with seven other state-of-art algorithms.
Kwan, Mei-Po; Xiao, Ningchuan; Ding, Guoxiang
2015-01-01
Due to the complexity and multidimensional characteristics of human activities, assessing the similarity of human activity patterns and classifying individuals with similar patterns remains highly challenging. This paper presents a new and unique methodology for evaluating the similarity among individual activity patterns. It conceptualizes multidimensional sequence alignment (MDSA) as a multiobjective optimization problem, and solves this problem with an evolutionary algorithm. The study utilizes sequence alignment to code multiple facets of human activities into multidimensional sequences, and to treat similarity assessment as a multiobjective optimization problem that aims to minimize the alignment cost for all dimensions simultaneously. A multiobjective optimization evolutionary algorithm (MOEA) is used to generate a diverse set of optimal or near-optimal alignment solutions. Evolutionary operators are specifically designed for this problem, and a local search method also is incorporated to improve the search ability of the algorithm. We demonstrate the effectiveness of our method by comparing it with a popular existing method called ClustalG using a set of 50 sequences. The results indicate that our method outperforms the existing method for most of our selected cases. The multiobjective evolutionary algorithm presented in this paper provides an effective approach for assessing activity pattern similarity, and a foundation for identifying distinctive groups of individuals with similar activity patterns. PMID:26190858
NASA Astrophysics Data System (ADS)
Tang, Y.; Reed, P.; Wagner, T.
2005-12-01
This study provides the first comprehensive assessment of state-of-the-art evolutionary multiobjective optimization (EMO) tools- relative effectiveness in calibrating integrated hydrologic models. The relative computational efficiency, accuracy, and ease-of-use of the following EMO algorithms are tested: Epsilon Dominance Nondominated Sorted Genetic Algorithm-II (??-NSGAII), the Multiobjective Shuffled Complex Evolution Metropolis algorithm (MOSCEM-UA), and the Strength Pareto Evolutionary Algorithm 2 (SPEA2). This study assesses the performances of these three evolutionary multiobjective algorithms using a formal metrics-based methodology. This study uses two phases of testing to compare the algorithms- performances. In the first phase, this study uses a suite of standard computer science test problems to validate the algorithms- abilities to perform global search effectively, efficiently, and reliably. The second phase of testing compares the algorithms- performances for a computationally intensive multiobjective integrated hydrologic model calibration application for the Shale Hills watershed located within the Valley and Ridge province of the Susquehanna River Basin in north central Pennsylvania. The Shale Hills test case demonstrates the computational challenges posed by the paradigmatic shift in environmental and water resources simulation tools towards highly nonlinear physical models that seek to holistically simulate the water cycle. Specifically, the Shale Hills test case is an excellent test for the three EMO algorithms due to the large number of continuous decision variables, the increased computational demands posed by the simulating fully-coupled hydrologic processes, and the highly multimodal nature of the search space. A challenge and contribution of this work is the development of a comprehensive methodology for comprehensively comparing EMO algorithms that have different search operators and randomization techniques.
NASA Astrophysics Data System (ADS)
Tang, Y.; Reed, P.; Wagener, T.
2005-11-01
This study provides a comprehensive assessment of state-of-the-art evolutionary multiobjective optimization (EMO) tools' relative effectiveness in calibrating hydrologic models. The relative computational efficiency, accuracy, and ease-of-use of the following EMO algorithms are tested: Epsilon Dominance Nondominated Sorted Genetic Algorithm-II (ɛ-NSGAII), the Multiobjective Shuffled Complex Evolution Metropolis algorithm (MOSCEM-UA), and the Strength Pareto Evolutionary Algorithm 2 (SPEA2). This study uses three test cases to compare the algorithms' performances: (1) a standardized test function suite from the computer science literature, (2) a benchmark hydrologic calibration test case for the Leaf River near Collins, Mississippi, and (3) a computationally intensive integrated model application in the Shale Hills watershed in Pennsylvania. A challenge and contribution of this work is the development of a methodology for comprehensively comparing EMO algorithms that have different search operators and randomization techniques. Overall, SPEA2 is an excellent benchmark algorithm for multiobjective hydrologic model calibration. SPEA2 attained competitive to superior results for most of the problems tested in this study. ɛ-NSGAII appears to be superior to MOSCEM-UA and competitive with SPEA2 for hydrologic model calibration.
Frutos, M; Méndez, M; Tohmé, F; Broz, D
2013-01-01
Many of the problems that arise in production systems can be handled with multiobjective techniques. One of those problems is that of scheduling operations subject to constraints on the availability of machines and buffer capacity. In this paper we analyze different Evolutionary multiobjective Algorithms (MOEAs) for this kind of problems. We consider an experimental framework in which we schedule production operations for four real world Job-Shop contexts using three algorithms, NSGAII, SPEA2, and IBEA. Using two performance indexes, Hypervolume and R2, we found that SPEA2 and IBEA are the most efficient for the tasks at hand. On the other hand IBEA seems to be a better choice of tool since it yields more solutions in the approximate Pareto frontier. PMID:24489502
Frutos, M.; Méndez, M.; Tohmé, F.; Broz, D.
2013-01-01
Many of the problems that arise in production systems can be handled with multiobjective techniques. One of those problems is that of scheduling operations subject to constraints on the availability of machines and buffer capacity. In this paper we analyze different Evolutionary multiobjective Algorithms (MOEAs) for this kind of problems. We consider an experimental framework in which we schedule production operations for four real world Job-Shop contexts using three algorithms, NSGAII, SPEA2, and IBEA. Using two performance indexes, Hypervolume and R2, we found that SPEA2 and IBEA are the most efficient for the tasks at hand. On the other hand IBEA seems to be a better choice of tool since it yields more solutions in the approximate Pareto frontier. PMID:24489502
Experiments with a Parallel Multi-Objective Evolutionary Algorithm for Scheduling
NASA Technical Reports Server (NTRS)
Brown, Matthew; Johnston, Mark D.
2013-01-01
Evolutionary multi-objective algorithms have great potential for scheduling in those situations where tradeoffs among competing objectives represent a key requirement. One challenge, however, is runtime performance, as a consequence of evolving not just a single schedule, but an entire population, while attempting to sample the Pareto frontier as accurately and uniformly as possible. The growing availability of multi-core processors in end user workstations, and even laptops, has raised the question of the extent to which such hardware can be used to speed up evolutionary algorithms. In this paper we report on early experiments in parallelizing a Generalized Differential Evolution (GDE) algorithm for scheduling long-range activities on NASA's Deep Space Network. Initial results show that significant speedups can be achieved, but that performance does not necessarily improve as more cores are utilized. We describe our preliminary results and some initial suggestions from parallelizing the GDE algorithm. Directions for future work are outlined.
MOEA/D-ACO: a multiobjective evolutionary algorithm using decomposition and AntColony.
Ke, Liangjun; Zhang, Qingfu; Battiti, Roberto
2013-12-01
Combining ant colony optimization (ACO) and the multiobjective evolutionary algorithm (EA) based on decomposition (MOEA/D), this paper proposes a multiobjective EA, i.e., MOEA/D-ACO. Following other MOEA/D-like algorithms, MOEA/D-ACO decomposes a multiobjective optimization problem into a number of single-objective optimization problems. Each ant (i.e., agent) is responsible for solving one subproblem. All the ants are divided into a few groups, and each ant has several neighboring ants. An ant group maintains a pheromone matrix, and an individual ant has a heuristic information matrix. During the search, each ant also records the best solution found so far for its subproblem. To construct a new solution, an ant combines information from its group's pheromone matrix, its own heuristic information matrix, and its current solution. An ant checks the new solutions constructed by itself and its neighbors, and updates its current solution if it has found a better one in terms of its own objective. Extensive experiments have been conducted in this paper to study and compare MOEA/D-ACO with other algorithms on two sets of test problems. On the multiobjective 0-1 knapsack problem,MOEA/D-ACO outperforms the MOEA/D with conventional genetic operators and local search on all the nine test instances. We also demonstrate that the heuristic information matrices in MOEA/D-ACO are crucial to the good performance of MOEA/D-ACO for the knapsack problem. On the biobjective traveling salesman problem, MOEA/D-ACO performs much better than the BicriterionAnt on all the 12 test instances. We also evaluate the effects of grouping, neighborhood, and the location information of current solutions on the performance of MOEA/D-ACO. The work in this paper shows that reactive search optimization scheme, i.e., the "learning while optimizing" principle, is effective in improving multiobjective optimization algorithms. PMID:23757576
An Evolutionary Algorithm with Double-Level Archives for Multiobjective Optimization.
Chen, Ni; Chen, Wei-Neng; Gong, Yue-Jiao; Zhan, Zhi-Hui; Zhang, Jun; Li, Yun; Tan, Yu-Song
2015-09-01
Existing multiobjective evolutionary algorithms (MOEAs) tackle a multiobjective problem either as a whole or as several decomposed single-objective sub-problems. Though the problem decomposition approach generally converges faster through optimizing all the sub-problems simultaneously, there are two issues not fully addressed, i.e., distribution of solutions often depends on a priori problem decomposition, and the lack of population diversity among sub-problems. In this paper, a MOEA with double-level archives is developed. The algorithm takes advantages of both the multiobjective-problem-level and the sub-problem-level approaches by introducing two types of archives, i.e., the global archive and the sub-archive. In each generation, self-reproduction with the global archive and cross-reproduction between the global archive and sub-archives both breed new individuals. The global archive and sub-archives communicate through cross-reproduction, and are updated using the reproduced individuals. Such a framework thus retains fast convergence, and at the same time handles solution distribution along Pareto front (PF) with scalability. To test the performance of the proposed algorithm, experiments are conducted on both the widely used benchmarks and a set of truly disconnected problems. The results verify that, compared with state-of-the-art MOEAs, the proposed algorithm offers competitive advantages in distance to the PF, solution coverage, and search speed. PMID:25343775
NASA Astrophysics Data System (ADS)
Karakostas, Spiros
2015-05-01
The multi-objective nature of most spatial planning initiatives and the numerous constraints that are introduced in the planning process by decision makers, stakeholders, etc., synthesize a complex spatial planning context in which the concept of solid and meaningful optimization is a unique challenge. This article investigates new approaches to enhance the effectiveness of multi-objective evolutionary algorithms (MOEAs) via the adoption of a well-known metaheuristic: the non-dominated sorting genetic algorithm II (NSGA-II). In particular, the contribution of a sophisticated crossover operator coupled with an enhanced initialization heuristic is evaluated against a series of metrics measuring the effectiveness of MOEAs. Encouraging results emerge for both the convergence rate of the evolutionary optimization process and the occupation of valuable regions of the objective space by non-dominated solutions, facilitating the work of spatial planners and decision makers. Based on the promising behaviour of both heuristics, topics for further research are proposed to improve their effectiveness.
Optimized sound diffusers based on sonic crystals using a multiobjective evolutionary algorithm.
Redondo, J; Sánchez-Pérez, J V; Blasco, X; Herrero, J M; Vorländer, M
2016-05-01
Sonic crystals have been demonstrated to be good candidates to substitute for conventional diffusers in order to overcome the need for extremely thick structures when low frequencies have to be scattered, however, their performance is limited to a narrow band. In this work, multiobjective evolutionary algorithms are used to extend the bandwidth to the whole low frequency range. The results show that diffusion can be significantly increased. Several cost functions are considered in the paper, on the one hand to illustrate the flexibility of the optimization and on the other hand to demonstrate the problems associated with the use of certain cost functions. A study of the robustness of the optimized diffusers is also presented, introducing a parameter that can help to choose among the best candidates. Finally, the advantages of the use of multiobjective optimization in comparison with conventional optimizations are discussed. PMID:27250173
NASA Astrophysics Data System (ADS)
Zatarain Salazar, Jazmin; Reed, Patrick M.; Herman, Jonathan D.; Giuliani, Matteo; Castelletti, Andrea
2016-06-01
Globally, the pressures of expanding populations, climate change, and increased energy demands are motivating significant investments in re-operationalizing existing reservoirs or designing operating policies for new ones. These challenges require an understanding of the tradeoffs that emerge across the complex suite of multi-sector demands in river basin systems. This study benchmarks our current capabilities to use Evolutionary Multi-Objective Direct Policy Search (EMODPS), a decision analytic framework in which reservoirs' candidate operating policies are represented using parameterized global approximators (e.g., radial basis functions) then those parameterized functions are optimized using multi-objective evolutionary algorithms to discover the Pareto approximate operating policies. We contribute a comprehensive diagnostic assessment of modern MOEAs' abilities to support EMODPS using the Conowingo reservoir in the Lower Susquehanna River Basin, Pennsylvania, USA. Our diagnostic results highlight that EMODPS can be very challenging for some modern MOEAs and that epsilon dominance, time-continuation, and auto-adaptive search are helpful for attaining high levels of performance. The ɛ-MOEA, the auto-adaptive Borg MOEA, and ɛ-NSGAII all yielded superior results for the six-objective Lower Susquehanna benchmarking test case. The top algorithms show low sensitivity to different MOEA parameterization choices and high algorithmic reliability in attaining consistent results for different random MOEA trials. Overall, EMODPS poses a promising method for discovering key reservoir management tradeoffs; however algorithmic choice remains a key concern for problems of increasing complexity.
A Self-adaptive Evolutionary Algorithm for Multi-objective Optimization
NASA Astrophysics Data System (ADS)
Cao, Ruifen; Li, Guoli; Wu, Yican
Evolutionary algorithm has gained a worldwide popularity among multi-objective optimization. The paper proposes a self-adaptive evolutionary algorithm (called SEA) for multi-objective optimization. In the SEA, the probability of crossover and mutation,P c and P m , are varied depending on the fitness values of the solutions. Fitness assignment of SEA realizes the twin goals of maintaining diversity in the population and guiding the population to the true Pareto Front; fitness value of individual not only depends on improved density estimation but also depends on non-dominated rank. The density estimation can keep diversity in all instances including when scalars of all objectives are much different from each other. SEA is compared against the Non-dominated Sorting Genetic Algorithm (NSGA-II) on a set of test problems introduced by the MOEA community. Simulated results show that SEA is as effective as NSGA-II in most of test functions, but when scalar of objectives are much different from each other, SEA has better distribution of non-dominated solutions.
Ma, Jingjing; Liu, Jie; Ma, Wenping; Gong, Maoguo; Jiao, Licheng
2014-01-01
Community structure is one of the most important properties in social networks. In dynamic networks, there are two conflicting criteria that need to be considered. One is the snapshot quality, which evaluates the quality of the community partitions at the current time step. The other is the temporal cost, which evaluates the difference between communities at different time steps. In this paper, we propose a decomposition-based multiobjective community detection algorithm to simultaneously optimize these two objectives to reveal community structure and its evolution in dynamic networks. It employs the framework of multiobjective evolutionary algorithm based on decomposition to simultaneously optimize the modularity and normalized mutual information, which quantitatively measure the quality of the community partitions and temporal cost, respectively. A local search strategy dealing with the problem-specific knowledge is incorporated to improve the effectiveness of the new algorithm. Experiments on computer-generated and real-world networks demonstrate that the proposed algorithm can not only find community structure and capture community evolution more accurately, but also be steadier than the two compared algorithms. PMID:24723806
NASA Astrophysics Data System (ADS)
Tang, Y.; Reed, P.; Wagener, T.
2006-05-01
This study provides a comprehensive assessment of state-of-the-art evolutionary multiobjective optimization (EMO) tools' relative effectiveness in calibrating hydrologic models. The relative computational efficiency, accuracy, and ease-of-use of the following EMO algorithms are tested: Epsilon Dominance Nondominated Sorted Genetic Algorithm-II (ɛ-NSGAII), the Multiobjective Shuffled Complex Evolution Metropolis algorithm (MOSCEM-UA), and the Strength Pareto Evolutionary Algorithm 2 (SPEA2). This study uses three test cases to compare the algorithms' performances: (1) a standardized test function suite from the computer science literature, (2) a benchmark hydrologic calibration test case for the Leaf River near Collins, Mississippi, and (3) a computationally intensive integrated surface-subsurface model application in the Shale Hills watershed in Pennsylvania. One challenge and contribution of this work is the development of a methodology for comprehensively comparing EMO algorithms that have different search operators and randomization techniques. Overall, SPEA2 attained competitive to superior results for most of the problems tested in this study. The primary strengths of the SPEA2 algorithm lie in its search reliability and its diversity preservation operator. The biggest challenge in maximizing the performance of SPEA2 lies in specifying an effective archive size without a priori knowledge of the Pareto set. In practice, this would require significant trial-and-error analysis, which is problematic for more complex, computationally intensive calibration applications. ɛ-NSGAII appears to be superior to MOSCEM-UA and competitive with SPEA2 for hydrologic model calibration. ɛ-NSGAII's primary strength lies in its ease-of-use due to its dynamic population sizing and archiving which lead to rapid convergence to very high quality solutions with minimal user input. MOSCEM-UA is best suited for hydrologic model calibration applications that have small parameter sets
NASA Astrophysics Data System (ADS)
Wu, J.; Yang, Y.; Wu, J.
2011-12-01
In this study, a new hybrid multi-objective evolutionary algorithm (MOEA), the niched Pareto tabu search combined with a genetic algorithm (NPTSGA), is proposed for the management of groundwater resources under variable density conditions. Relatively few MOEAs can possess global search ability contenting with intensified search in local area. Moreover, the overall searching ability of tabu search (TS) based MOEAs is very sensitive to neighborhood step size. The NPTSGA is developed on the thought of integrating genetic algorithm (GA) with a TS based MOEA, niched Pareto tabu search (NPTS), which helps to alleviate both of the above difficulties. Here, the global search ability of the NPTS is improved by the diversification of candidate solutions arose from the evolving genetic algorithm population. Furthermore, the proposed methodology coupled with a density-dependent groundwater flow and solute transport simulator, SEAWAT, is developed and its performance is evaluated through a synthetic seawater intrusion management problem. Optimization results indicate that the NPTSGA offers a tradeoff between the two conflicting objectives. A key conclusion of this study is that the NPTSGA can balance the tradeoff between the intensification of nondomination and the diversification of near Pareto-optimal solutions and is a stable and robust method for implementing the multi-objective design of variable-density groundwater resources.
Wang, Yuping; Feng, Junhong
2013-01-01
In association rule mining, evaluating an association rule needs to repeatedly scan database to compare the whole database with the antecedent, consequent of a rule and the whole rule. In order to decrease the number of comparisons and time consuming, we present an attribute index strategy. It only needs to scan database once to create the attribute index of each attribute. Then all metrics values to evaluate an association rule do not need to scan database any further, but acquire data only by means of the attribute indices. The paper visualizes association rule mining as a multiobjective problem rather than a single objective one. In order to make the acquired solutions scatter uniformly toward the Pareto frontier in the objective space, elitism policy and uniform design are introduced. The paper presents the algorithm of attribute index and uniform design based multiobjective association rule mining with evolutionary algorithm, abbreviated as IUARMMEA. It does not require the user-specified minimum support and minimum confidence anymore, but uses a simple attribute index. It uses a well-designed real encoding so as to extend its application scope. Experiments performed on several databases demonstrate that the proposed algorithm has excellent performance, and it can significantly reduce the number of comparisons and time consumption. PMID:23766683
NASA Astrophysics Data System (ADS)
Bonissone, Stefano R.
2001-11-01
There are many approaches to solving multi-objective optimization problems using evolutionary algorithms. We need to select methods for representing and aggregating preferences, as well as choosing strategies for searching in multi-dimensional objective spaces. First we suggest the use of linguistic variables to represent preferences and the use of fuzzy rule systems to implement tradeoff aggregations. After a review of alternatives EA methods for multi-objective optimizations, we explore the use of multi-sexual genetic algorithms (MSGA). In using a MSGA, we need to modify certain parts of the GAs, namely the selection and crossover operations. The selection operator groups solutions according to their gender tag to prepare them for crossover. The crossover is modified by appending a gender tag at the end of the chromosome. We use single and double point crossovers. We determine the gender of the offspring by the amount of genetic material provided by each parent. The parent that contributed the most to the creation of a specific offspring determines the gender that the offspring will inherit. This is still a work in progress, and in the conclusion we examine many future extensions and experiments.
Identifying irregularly shaped crime hot-spots using a multiobjective evolutionary algorithm
NASA Astrophysics Data System (ADS)
Wu, Xiaolan; Grubesic, Tony H.
2010-12-01
Spatial cluster detection techniques are widely used in criminology, geography, epidemiology, and other fields. In particular, spatial scan statistics are popular and efficient techniques for detecting areas of elevated crime or disease events. The majority of spatial scan approaches attempt to delineate geographic zones by evaluating the significance of clusters using likelihood ratio statistics tested with the Poisson distribution. While this can be effective, many scan statistics give preference to circular clusters, diminishing their ability to identify elongated and/or irregular shaped clusters. Although adjusting the shape of the scan window can mitigate some of these problems, both the significance of irregular clusters and their spatial structure must be accounted for in a meaningful way. This paper utilizes a multiobjective evolutionary algorithm to find clusters with maximum significance while quantitatively tracking their geographic structure. Crime data for the city of Cincinnati are utilized to demonstrate the advantages of the new approach and highlight its benefits versus more traditional scan statistics.
NASA Technical Reports Server (NTRS)
Pulliam, T. H.; Nemec, M.; Holst, T.; Zingg, D. W.; Kwak, Dochan (Technical Monitor)
2002-01-01
A comparison between an Evolutionary Algorithm (EA) and an Adjoint-Gradient (AG) Method applied to a two-dimensional Navier-Stokes code for airfoil design is presented. Both approaches use a common function evaluation code, the steady-state explicit part of the code,ARC2D. The parameterization of the design space is a common B-spline approach for an airfoil surface, which together with a common griding approach, restricts the AG and EA to the same design space. Results are presented for a class of viscous transonic airfoils in which the optimization tradeoff between drag minimization as one objective and lift maximization as another, produces the multi-objective design space. Comparisons are made for efficiency, accuracy and design consistency.
A possibilistic approach to rotorcraft design through a multi-objective evolutionary algorithm
NASA Astrophysics Data System (ADS)
Chae, Han Gil
Most of the engineering design processes in use today in the field may be considered as a series of successive decision making steps. The decision maker uses information at hand, determines the direction of the procedure, and generates information for the next step and/or other decision makers. However, the information is often incomplete, especially in the early stages of the design process of a complex system. As the complexity of the system increases, uncertainties eventually become unmanageable using traditional tools. In such a case, the tools and analysis values need to be "softened" to account for the designer's intuition. One of the methods that deals with issues of intuition and incompleteness is possibility theory. Through the use of possibility theory coupled with fuzzy inference, the uncertainties estimated by the intuition of the designer are quantified for design problems. By involving quantified uncertainties in the tools, the solutions can represent a possible set, instead of a crisp spot, for predefined levels of certainty. From a different point of view, it is a well known fact that engineering design is a multi-objective problem or a set of such problems. The decision maker aims to find satisfactory solutions, sometimes compromising the objectives that conflict with each other. Once the candidates of possible solutions are generated, a satisfactory solution can be found by various decision-making techniques. A number of multi-objective evolutionary algorithms (MOEAs) have been developed, and can be found in the literature, which are capable of generating alternative solutions and evaluating multiple sets of solutions in one single execution of an algorithm. One of the MOEA techniques that has been proven to be very successful for this class of problems is the strength Pareto evolutionary algorithm (SPEA) which falls under the dominance-based category of methods. The Pareto dominance that is used in SPEA, however, is not enough to account for the
NASA Astrophysics Data System (ADS)
Tom, Brian C.
Intensity Modulated Radiation Therapy (IMRT) has enjoyed success in the clinic by achieving dose escalation to the target while sparing nearby critical structures. For DMLC plans, regularization is introduced in order to smooth the fluence maps. In this dissertation, regularization is used to smooth the fluence profiles. Since SMLC plans have a limited number of intensity levels, smoothing is not a problem. However, in many treatment planning systems, the plans are optimized with beam weights that are continuous. Only after the optimization is complete is when the fluence maps are quantized. This dissertation will study the effects, if any, of quantizing the beam weights. In order to study both smoothing DMLC plans and the quantization of SMLC plans, a multi-objective evolutionary algorithm is employed as the optimization method. The main advantages of using these stochastic algorithms is that the beam weights can be represented either in binary or real strings. Clearly, a binary representation is suited for SMLC delivery (discrete intensity levels), while a real representation is more suited for DMLC. Further, in the case of real beam weights, multi-objective evolutionary algorithms can handle conflicting objective functions very well. In fact, regularization can be thought of as having two competing functions: to maintain fidelity to the data, and smoothing the data. The main disadvantage of regularization is the need to specify the regularization parameter, which controls how important the two objectives are relative to one another. Multi-objective evolutionary algorithms do not need such a parameter. In addition, such algorithms yield a set of solutions, each solution representing differing importance factors of the two (or more) objective functions. Multi-objective evolutionary algorithms can thus be used to study the effects of quantizing the beam weights for SMLC delivery systems as well studying how regularization can reduce the difference between the
Application of a multi-objective evolutionary algorithm to the spacecraft stationkeeping problem
NASA Astrophysics Data System (ADS)
Myers, Philip L.; Spencer, David B.
2016-10-01
Satellite operations are becoming an increasingly private industry, requiring increased profitability. Efficient and safe operation of satellites in orbit will ensure longer lasting and more profitable satellite services. This paper focuses on the use of a multi-objective evolutionary algorithm to schedule the maneuvers of a hypothetical satellite operating at geosynchronous altitude, by seeking to minimize the propellant consumed through the execution of stationkeeping maneuvers and the time the satellite is displaced from its desired orbital plane. Minimization of the time out of place increases the operational availability and minimizing the propellant usage which allows the spacecraft to operate longer. North-South stationkeeping was studied in this paper, through the use of a set of orbit inclination change maneuvers each year. Two cases for the maximum number of maneuvers to be executed were considered, with four and five maneuvers per year. The results delivered by the algorithm provide maneuver schedules which require 40-100 m/s of total Δv for two years of operation, with the satellite maintaining the satellite's orbital plane to within 0.1° between 84% and 96% of the two years being modeled.
NASA Astrophysics Data System (ADS)
Clarkin, T. J.; Kasprzyk, J. R.; Raseman, W. J.; Herman, J. D.
2015-12-01
This study contributes a diagnostic assessment of multiobjective evolutionary algorithm (MOEA) search on a set of water resources problem formulations with different configurations of constraints. Unlike constraints in classical optimization modeling, constraints within MOEA simulation-optimization represent limits on acceptable performance that delineate whether solutions within the search problem are feasible. Constraints are relevant because of the emergent pressures on water resources systems: increasing public awareness of their sustainability, coupled with regulatory pressures on water management agencies. In this study, we test several state-of-the-art MOEAs that utilize restricted tournament selection for constraint handling on varying configurations of water resources planning problems. For example, a problem that has no constraints on performance levels will be compared with a problem with several severe constraints, and a problem with constraints that have less severe values on the constraint thresholds. One such problem, Lower Rio Grande Valley (LRGV) portfolio planning, has been solved with a suite of constraints that ensure high reliability, low cost variability, and acceptable performance in a single year severe drought. But to date, it is unclear whether or not the constraints are negatively affecting MOEAs' ability to solve the problem effectively. Two categories of results are explored. The first category uses control maps of algorithm performance to determine if the algorithm's performance is sensitive to user-defined parameters. The second category uses run-time performance metrics to determine the time required for the algorithm to reach sufficient levels of convergence and diversity on the solution sets. Our work exploring the effect of constraints will better enable practitioners to define MOEA problem formulations for real-world systems, especially when stakeholders are concerned with achieving fixed levels of performance according to one or
NASA Astrophysics Data System (ADS)
Reed, P. M.; Kollat, J. B.
2005-12-01
This study demonstrates the effectiveness of a modified version of Deb's Non-Dominated Sorted Genetic Algorithm II (NSGAII), which the authors have named the Epsilon-Dominance Non-Dominated Sorted Genetic Algorithm II (Epsilon-NSGAII), at solving a four objective long-term groundwater monitoring (LTM) design test case. The Epsilon-NSGAII incorporates prior theoretical competent evolutionary algorithm (EA) design concepts and epsilon-dominance archiving to improve the original NSGAII's efficiency, reliability, and ease-of-use. This algorithm eliminates much of the traditional trial-and-error parameterization associated with evolutionary multi-objective optimization (EMO) through epsilon-dominance archiving, dynamic population sizing, and automatic termination. The effectiveness and reliability of the new algorithm is compared to the original NSGAII as well as two other benchmark multi-objective evolutionary algorithms (MOEAs), the Epsilon-Dominance Multi-Objective Evolutionary Algorithm (Epsilon-MOEA) and the Strength Pareto Evolutionary Algorithm 2 (SPEA2). These MOEAs have been selected because they have been demonstrated to be highly effective at solving numerous multi-objective problems. The results presented in this study indicate superior performance of the Epsilon-NSGAII in terms of the hypervolume indicator, unary Epsilon-indicator, and first-order empirical attainment function metrics. In addition, the runtime metric results indicate that the diversity and convergence dynamics of the Epsilon-NSGAII are competitive to superior relative to the SPEA2, with both algorithms greatly outperforming the NSGAII and Epsilon-MOEA in terms of these metrics. The improvements in performance of the Epsilon-NSGAII over its parent algorithm the NSGAII demonstrate that the application of Epsilon-dominance archiving, dynamic population sizing with archive injection, and automatic termination greatly improve algorithm efficiency and reliability. In addition, the usability of
NASA Astrophysics Data System (ADS)
Holdsworth, C. H.; Corwin, D.; Stewart, R. D.; Rockne, R.; Trister, A. D.; Swanson, K. R.; Phillips, M.
2012-12-01
We demonstrate a patient-specific method of adaptive IMRT treatment for glioblastoma using a multiobjective evolutionary algorithm (MOEA). The MOEA generates spatially optimized dose distributions using an iterative dialogue between the MOEA and a mathematical model of tumor cell proliferation, diffusion and response. Dose distributions optimized on a weekly basis using biological metrics have the potential to substantially improve and individualize treatment outcomes. Optimized dose distributions were generated using three different decision criteria for the tumor and compared with plans utilizing standard dose of 1.8 Gy/fraction to the CTV (T2-visible MRI region plus a 2.5 cm margin). The sets of optimal dose distributions generated using the MOEA approach the Pareto Front (the set of IMRT plans that delineate optimal tradeoffs amongst the clinical goals of tumor control and normal tissue sparing). MOEA optimized doses demonstrated superior performance as judged by three biological metrics according to simulated results. The predicted number of reproductively viable cells 12 weeks after treatment was found to be the best target objective for use in the MOEA.
NASA Astrophysics Data System (ADS)
Wu, J.; Yang, Y.; Luo, Q.; Wu, J.
2012-12-01
This study presents a new hybrid multi-objective evolutionary algorithm, the niched Pareto tabu search combined with a genetic algorithm (NPTSGA), whereby the global search ability of niched Pareto tabu search (NPTS) is improved by the diversification of candidate solutions arose from the evolving nondominated sorting genetic algorithm II (NSGA-II) population. Also, the NPTSGA coupled with the commonly used groundwater flow and transport codes, MODFLOW and MT3DMS, is developed for multi-objective optimal design of groundwater remediation systems. The proposed methodology is then applied to a large-scale field groundwater remediation system for cleanup of large trichloroethylene (TCE) plume at the Massachusetts Military Reservation (MMR) in Cape Cod, Massachusetts. Furthermore, a master-slave (MS) parallelization scheme based on the Message Passing Interface (MPI) is incorporated into the NPTSGA to implement objective function evaluations in distributed processor environment, which can greatly improve the efficiency of the NPTSGA in finding Pareto-optimal solutions to the real-world application. This study shows that the MS parallel NPTSGA in comparison with the original NPTS and NSGA-II can balance the tradeoff between diversity and optimality of solutions during the search process and is an efficient and effective tool for optimizing the multi-objective design of groundwater remediation systems under complicated hydrogeologic conditions.
NASA Astrophysics Data System (ADS)
Marghany, M.
2015-06-01
Oil spill pollution has a substantial role in damaging the marine ecosystem. Oil spill that floats on top of water, as well as decreasing the fauna populations, affects the food chain in the ecosystem. In fact, oil spill is reducing the sunlight penetrates the water, limiting the photosynthesis of marine plants and phytoplankton. Moreover, marine mammals for instance, disclosed to oil spills their insulating capacities are reduced, and so making them more vulnerable to temperature variations and much less buoyant in the seawater. This study has demonstrated a design tool for oil spill detection in SAR satellite data using optimization of Entropy based Multi-Objective Evolutionary Algorithm (E-MMGA) which based on Pareto optimal solutions. The study also shows that optimization entropy based Multi-Objective Evolutionary Algorithm provides an accurate pattern of oil slick in SAR data. This shown by 85 % for oil spill, 10 % look-alike and 5 % for sea roughness using the receiver-operational characteristics (ROC) curve. The E-MMGA also shows excellent performance in SAR data. In conclusion, E-MMGA can be used as optimization for entropy to perform an automatic detection of oil spill in SAR satellite data.
NASA Astrophysics Data System (ADS)
Xiao, Zhongliang
2012-04-01
In this paper, we set up a mathematical model to solve the problem of airport ground services. In this model, we set objective function of cost and time, and the purpose is making it minimized. Base on the analysis of scheduling characteristic, we use the multi-population co-evolutionary Memetic algorithm (MAMC) which is with the elitist strategy to realize the model. From the result we can see that our algorithm is better than the genetic algorithm in this problem and we can see that our algorithm is convergence. So we can summarize that it can be a better optimization to airport ground services problem.
NASA Astrophysics Data System (ADS)
Ward, V. L.; Singh, R.; Reed, P. M.; Keller, K.
2014-12-01
As water resources problems typically involve several stakeholders with conflicting objectives, multi-objective evolutionary algorithms (MOEAs) are now key tools for understanding management tradeoffs. Given the growing complexity of water planning problems, it is important to establish if an algorithm can consistently perform well on a given class of problems. This knowledge allows the decision analyst to focus on eliciting and evaluating appropriate problem formulations. This study proposes a multi-objective adaptation of the classic environmental economics "Lake Problem" as a computationally simple but mathematically challenging MOEA benchmarking problem. The lake problem abstracts a fictional town on a lake which hopes to maximize its economic benefit without degrading the lake's water quality to a eutrophic (polluted) state through excessive phosphorus loading. The problem poses the challenge of maintaining economic activity while confronting the uncertainty of potentially crossing a nonlinear and potentially irreversible pollution threshold beyond which the lake is eutrophic. Objectives for optimization are maximizing economic benefit from lake pollution, maximizing water quality, maximizing the reliability of remaining below the environmental threshold, and minimizing the probability that the town will have to drastically change pollution policies in any given year. The multi-objective formulation incorporates uncertainty with a stochastic phosphorus inflow abstracting non-point source pollution. We performed comprehensive diagnostics using 6 algorithms: Borg, MOEAD, eMOEA, eNSGAII, GDE3, and NSGAII to ascertain their controllability, reliability, efficiency, and effectiveness. The lake problem abstracts elements of many current water resources and climate related management applications where there is the potential for crossing irreversible, nonlinear thresholds. We show that many modern MOEAs can fail on this test problem, indicating its suitability as a
Holdsworth, Clay; Kim, Minsun; Liao, Jay; Phillips, Mark
2012-01-01
Purpose: To evaluate how a more flexible and thorough multiobjective search of feasible IMRT plans affects performance in IMRT optimization. Methods: A multiobjective evolutionary algorithm (MOEA) was used as a tool to investigate how expanding the search space to include a wider range of penalty functions affects the quality of the set of IMRT plans produced. The MOEA uses a population of IMRT plans to generate new IMRT plans through deterministic minimization of recombined penalty functions that are weighted sums of multiple, tissue-specific objective functions. The quality of the generated plans are judged by an independent set of nonconvex, clinically relevant decision criteria, and all dominated plans are eliminated. As this process repeats itself, better plans are produced so that the population of IMRT plans will approach the Pareto front. Three different approaches were used to explore the effects of expanding the search space. First, the evolutionary algorithm used genetic optimization principles to search by simultaneously optimizing both the weights and tissue-specific dose parameters in penalty functions. Second, penalty function parameters were individually optimized for each voxel in all organs at risk (OARs) in the MOEA. Finally, a heuristic voxel-specific improvement (VSI) algorithm that can be used on any IMRT plan was developed that incrementally improves voxel-specific penalty function parameters for all structures (OARs and targets). Different approaches were compared using the concept of domination comparison applied to the sets of plans obtained by multiobjective optimization. Results: MOEA optimizations that simultaneously searched both importance weights and dose parameters generated sets of IMRT plans that were superior to sets of plans produced when either type of parameter was fixed for four example prostate plans. The amount of improvement increased with greater overlap between OARs and targets. Allowing the MOEA to search for voxel
NASA Astrophysics Data System (ADS)
Ong, Zhiyang; Lo, Andy Hao-Wei; Berryman, Matthew; Abbott, Derek
2005-12-01
The trade-off between pleiotropy and redundancy in telecommunications networks is analyzed in this paper. They are optimized to reduce installation costs and propagation delays. Pleiotropy of a server in a telecommunications network is defined as the number of clients and servers that it can service whilst redundancy is described as the number of servers servicing a client. Telecommunications networks containing many servers with large pleiotropy are cost-effective but vulnerable to network failures and attacks. Conversely, those networks containing many servers with high redundancy are reliable but costly. Several key issues regarding the choice of cost functions and techniques in evolutionary computation (such as the modeling of Darwinian evolution, and mutualism and commensalism) will be discussed, and a future research agenda is outlined. Experimental results indicate that the pleiotropy of servers in the optimum network does improve, whilst the redundancy of clients do not vary significantly, as expected, with evolving networks. This is due to the controlled evolution of networks that is modeled by the steady-state genetic algorithm; changes in telecommunications networks that occur drastically over a very short period of time are rare.
A Note on Evolutionary Algorithms and Its Applications
ERIC Educational Resources Information Center
Bhargava, Shifali
2013-01-01
This paper introduces evolutionary algorithms with its applications in multi-objective optimization. Here elitist and non-elitist multiobjective evolutionary algorithms are discussed with their advantages and disadvantages. We also discuss constrained multiobjective evolutionary algorithms and their applications in various areas.
NASA Astrophysics Data System (ADS)
Smith, R.; Kasprzyk, J. R.; Zagona, E. A.
2015-12-01
Instead of building new infrastructure to increase their supply reliability, water resource managers are often tasked with better management of current systems. The managers often have existing simulation models that aid their planning, and lack methods for efficiently generating and evaluating planning alternatives. This presentation discusses how multiobjective evolutionary algorithm (MOEA) decision support can be used with the sophisticated water infrastructure model, RiverWare, in highly constrained water planning environments. We first discuss a study that performed a many-objective tradeoff analysis of water supply in the Tarrant Regional Water District (TRWD) in Texas. RiverWare is combined with the Borg MOEA to solve a seven objective problem that includes systemwide performance objectives and individual reservoir storage reliability. Decisions within the formulation balance supply in multiple reservoirs and control pumping between the eastern and western parts of the system. The RiverWare simulation model is forced by two stochastic hydrology scenarios to inform how management changes in wet versus dry conditions. The second part of the presentation suggests how a broader set of RiverWare-MOEA studies can inform tradeoffs in other systems, especially in political situations where multiple actors are in conflict over finite water resources. By incorporating quantitative representations of diverse parties' objectives during the search for solutions, MOEAs may provide support for negotiations and lead to more widely beneficial water management outcomes.
Multi-objective optimal design of lithium-ion battery packs based on evolutionary algorithms
NASA Astrophysics Data System (ADS)
Severino, Bernardo; Gana, Felipe; Palma-Behnke, Rodrigo; Estévez, Pablo A.; Calderón-Muñoz, Williams R.; Orchard, Marcos E.; Reyes, Jorge; Cortés, Marcelo
2014-12-01
Lithium-battery energy storage systems (LiBESS) are increasingly being used on electric mobility and stationary applications. Despite its increasing use and improvements of the technology there are still challenges associated with cost reduction, increasing lifetime and capacity, and higher safety. A correct battery thermal management system (BTMS) design is critical to achieve these goals. In this paper, a general framework for obtaining optimal BTMS designs is proposed. Due to the trade-off between the BTMS's design goals and the complex modeling of thermal response inside the battery pack, this paper proposes to solve this problem using a novel Multi-Objective Particle Swarm Optimization (MOPSO) approach. A theoretical case of a module with 6 cells and a real case of a pack used in a Solar Race Car are presented. The results show the capabilities of the proposal methodology, in which improved designs for battery packs are obtained.
NASA Astrophysics Data System (ADS)
An, Zhao; Zhounian, Lai; Peng, Wu; Linlin, Cao; Dazhuan, Wu
2016-07-01
This paper describes the shape optimization of a low specific speed centrifugal pump at the design point. The target pump has already been manually modified on the basis of empirical knowledge. A genetic algorithm (NSGA-II) with certain enhancements is adopted to improve its performance further with respect to two goals. In order to limit the number of design variables without losing geometric information, the impeller is parametrized using the Bézier curve and a B-spline. Numerical simulation based on a Reynolds averaged Navier-Stokes (RANS) turbulent model is done in parallel to evaluate the flow field. A back-propagating neural network is constructed as a surrogate for performance prediction to save computing time, while initial samples are selected according to an orthogonal array. Then global Pareto-optimal solutions are obtained and analysed. The results manifest that unexpected flow structures, such as the secondary flow on the meridian plane, have diminished or vanished in the optimized pump.
Evolutionary Multiobjective Design Targeting a Field Programmable Transistor Array
NASA Technical Reports Server (NTRS)
Aguirre, Arturo Hernandez; Zebulum, Ricardo S.; Coello, Carlos Coello
2004-01-01
This paper introduces the ISPAES algorithm for circuit design targeting a Field Programmable Transistor Array (FPTA). The use of evolutionary algorithms is common in circuit design problems, where a single fitness function drives the evolution process. Frequently, the design problem is subject to several goals or operating constraints, thus, designing a suitable fitness function catching all requirements becomes an issue. Such a problem is amenable for multi-objective optimization, however, evolutionary algorithms lack an inherent mechanism for constraint handling. This paper introduces ISPAES, an evolutionary optimization algorithm enhanced with a constraint handling technique. Several design problems targeting a FPTA show the potential of our approach.
Cao, Buwen; Luo, Jiawei; Liang, Cheng; Wang, Shulin; Song, Dan
2015-10-01
The identification of protein complexes in protein-protein interaction (PPI) networks has greatly advanced our understanding of biological organisms. Existing computational methods to detect protein complexes are usually based on specific network topological properties of PPI networks. However, due to the inherent complexity of the network structures, the identification of protein complexes may not be fully addressed by using single network topological property. In this study, we propose a novel MultiObjective Evolutionary Programming Genetic Algorithm (MOEPGA) which integrates multiple network topological features to detect biologically meaningful protein complexes. Our approach first systematically analyzes the multiobjective problem in terms of identifying protein complexes from PPI networks, and then constructs the objective function of the iterative algorithm based on three common topological properties of protein complexes from the benchmark dataset, finally we describe our algorithm, which mainly consists of three steps, population initialization, subgraph mutation and subgraph selection operation. To show the utility of our method, we compared MOEPGA with several state-of-the-art algorithms on two yeast PPI datasets. The experiment results demonstrate that the proposed method can not only find more protein complexes but also achieve higher accuracy in terms of fscore. Moreover, our approach can cover a certain number of proteins in the input PPI network in terms of the normalized clustering score. Taken together, our method can serve as a powerful framework to detect protein complexes in yeast PPI networks, thereby facilitating the identification of the underlying biological functions. PMID:26298638
NASA Astrophysics Data System (ADS)
Cody, B. M.; Gonzalez-Nicolas, A.; Bau, D. A.
2011-12-01
Carbon capture and storage (CCS) has been proposed as a method of reducing global carbon dioxide (CO2) emissions. Although CCS has the potential to greatly retard greenhouse gas loading to the atmosphere while cleaner, more sustainable energy solutions are developed, there is a possibility that sequestered CO2 may leak and intrude into and adversely affect groundwater resources. It has been reported [1] that, while CO2 intrusion typically does not directly threaten underground drinking water resources, it may cause secondary effects, such as the mobilization of hazardous inorganic constituents present in aquifer minerals and changes in pH values. These risks must be fully understood and minimized before CCS project implementation. Combined management of project resources and leakage risk is crucial for the implementation of CCS. In this work, we present a method of: (a) minimizing the total CCS cost, the summation of major project costs with the cost associated with CO2 leakage; and (b) maximizing the mass of injected CO2, for a given proposed sequestration site. Optimization decision variables include the number of CO2 injection wells, injection rates, and injection well locations. The capital and operational costs of injection wells are directly related to injection well depth, location, injection flow rate, and injection duration. The cost of leakage is directly related to the mass of CO2 leaked through weak areas, such as abandoned oil wells, in the cap rock layers overlying the injected formation. Additional constraints on fluid overpressure caused by CO2 injection are imposed to maintain predefined effective stress levels that prevent cap rock fracturing. Here, both mass leakage and fluid overpressure are estimated using two semi-analytical models based upon work by [2,3]. A multi-objective evolutionary algorithm coupled with these semi-analytical leakage flow models is used to determine Pareto-optimal trade-off sets giving minimum total cost vs. maximum mass
Constrained Multiobjective Biogeography Optimization Algorithm
Mo, Hongwei; Xu, Zhidan; Xu, Lifang; Wu, Zhou; Ma, Haiping
2014-01-01
Multiobjective optimization involves minimizing or maximizing multiple objective functions subject to a set of constraints. In this study, a novel constrained multiobjective biogeography optimization algorithm (CMBOA) is proposed. It is the first biogeography optimization algorithm for constrained multiobjective optimization. In CMBOA, a disturbance migration operator is designed to generate diverse feasible individuals in order to promote the diversity of individuals on Pareto front. Infeasible individuals nearby feasible region are evolved to feasibility by recombining with their nearest nondominated feasible individuals. The convergence of CMBOA is proved by using probability theory. The performance of CMBOA is evaluated on a set of 6 benchmark problems and experimental results show that the CMBOA performs better than or similar to the classical NSGA-II and IS-MOEA. PMID:25006591
Constrained multiobjective biogeography optimization algorithm.
Mo, Hongwei; Xu, Zhidan; Xu, Lifang; Wu, Zhou; Ma, Haiping
2014-01-01
Multiobjective optimization involves minimizing or maximizing multiple objective functions subject to a set of constraints. In this study, a novel constrained multiobjective biogeography optimization algorithm (CMBOA) is proposed. It is the first biogeography optimization algorithm for constrained multiobjective optimization. In CMBOA, a disturbance migration operator is designed to generate diverse feasible individuals in order to promote the diversity of individuals on Pareto front. Infeasible individuals nearby feasible region are evolved to feasibility by recombining with their nearest nondominated feasible individuals. The convergence of CMBOA is proved by using probability theory. The performance of CMBOA is evaluated on a set of 6 benchmark problems and experimental results show that the CMBOA performs better than or similar to the classical NSGA-II and IS-MOEA. PMID:25006591
NASA Astrophysics Data System (ADS)
Rodrigo, Deepal
2007-12-01
This dissertation introduces a novel approach for optimally operating a day-ahead electricity market not only by economically dispatching the generation resources but also by minimizing the influences of market manipulation attempts by the individual generator-owning companies while ensuring that the power system constraints are not violated. Since economic operation of the market conflicts with the individual profit maximization tactics such as market manipulation by generator-owning companies, a methodology that is capable of simultaneously optimizing these two competing objectives has to be selected. Although numerous previous studies have been undertaken on the economic operation of day-ahead markets and other independent studies have been conducted on the mitigation of market power, the operation of a day-ahead electricity market considering these two conflicting objectives simultaneously has not been undertaken previously. These facts provided the incentive and the novelty for this study. A literature survey revealed that many of the traditional solution algorithms convert multi-objective functions into either a single-objective function using weighting schemas or undertake optimization of one function at a time. Hence, these approaches do not truly optimize the multi-objectives concurrently. Due to these inherent deficiencies of the traditional algorithms, the use of alternative non-traditional solution algorithms for such problems has become popular and widely used. Of these, multi-objective evolutionary algorithms (MOEA) have received wide acceptance due to their solution quality and robustness. In the present research, three distinct algorithms were considered: a non-dominated sorting genetic algorithm II (NSGA II), a multi-objective tabu search algorithm (MOTS) and a hybrid of multi-objective tabu search and genetic algorithm (MOTS/GA). The accuracy and quality of the results from these algorithms for applications similar to the problem investigated here
Multiobjective Evolutionary Path Planning via Sugeno-Based Tournament Selection
NASA Technical Reports Server (NTRS)
Dozier, Gerry; McCullough, Shaun; Homaifar, Abdollah; Esterline, Albert
1998-01-01
This paper introduces a new tournament selection algorithm that can be used for evolutionary path planning systems. The fuzzy (Sugeno) tournament selection algorithm (STSA) described in this paper selects candidate paths (CPs) to be parents and undergo reproduction based on: (1) path feasibility, (2) the euclidean distance of a path from the origin to its destination, and (3) the average change in the slope of a path. In this paper, we provide a detailed description of the fuzzy inference system used in the STSA as well as some examples of its usefulness. We then use 12 instances of our STSA to rank a population of CPs based on the above criteria. We also show how the STSA can obviate the need for the development of an explicit (lexicographic multiobjective) evaluation function and use it to develop multiobjective motion paths.
NASA Astrophysics Data System (ADS)
Paton, F. L.; Maier, H. R.; Dandy, G. C.
2014-08-01
Cities around the world are increasingly involved in climate action and mitigating greenhouse gas (GHG) emissions. However, in the context of responding to climate pressures in the water sector, very few studies have investigated the impacts of changing water use on GHG emissions, even though water resource adaptation often requires greater energy use. Consequently, reducing GHG emissions, and thus focusing on both mitigation and adaptation responses to climate change in planning and managing urban water supply systems, is necessary. Furthermore, the minimization of GHG emissions is likely to conflict with other objectives. Thus, applying a multiobjective evolutionary algorithm (MOEA), which can evolve an approximation of entire trade-off (Pareto) fronts of multiple objectives in a single run, would be beneficial. Consequently, the main aim of this paper is to incorporate GHG emissions into a MOEA framework to take into consideration both adaptation and mitigation responses to climate change for a city's water supply system. The approach is applied to a case study based on Adelaide's southern water supply system to demonstrate the framework's practical management implications. Results indicate that trade-offs exist between GHG emissions and risk-based performance, as well as GHG emissions and economic cost. Solutions containing rainwater tanks are expensive, while GHG emissions greatly increase with increased desalinated water supply. Consequently, while desalination plants may be good adaptation options to climate change due to their climate-independence, rainwater may be a better mitigation response, albeit more expensive.
NASA Astrophysics Data System (ADS)
Fourment, Lionel; Ducloux, Richard; Marie, Stéphane; Ejday, Mohsen; Monnereau, Dominique; Massé, Thomas; Montmitonnet, Pierre
2010-06-01
The use of material processing numerical simulation allows a strategy of trial and error to improve virtual processes without incurring material costs or interrupting production and therefore save a lot of money, but it requires user time to analyze the results, adjust the operating conditions and restart the simulation. Automatic optimization is the perfect complement to simulation. Evolutionary Algorithm coupled with metamodelling makes it possible to obtain industrially relevant results on a very large range of applications within a few tens of simulations and without any specific automatic optimization technique knowledge. Ten industrial partners have been selected to cover the different area of the mechanical forging industry and provide different examples of the forming simulation tools. It aims to demonstrate that it is possible to obtain industrially relevant results on a very large range of applications within a few tens of simulations and without any specific automatic optimization technique knowledge. The large computational time is handled by a metamodel approach. It allows interpolating the objective function on the entire parameter space by only knowing the exact function values at a reduced number of "master points". Two algorithms are used: an evolution strategy combined with a Kriging metamodel and a genetic algorithm combined with a Meshless Finite Difference Method. The later approach is extended to multi-objective optimization. The set of solutions, which corresponds to the best possible compromises between the different objectives, is then computed in the same way. The population based approach allows using the parallel capabilities of the utilized computer with a high efficiency. An optimization module, fully embedded within the Forge2009 IHM, makes possible to cover all the defined examples, and the use of new multi-core hardware to compute several simulations at the same time reduces the needed time dramatically. The presented examples
A Multipopulation Coevolutionary Strategy for Multiobjective Immune Algorithm
Shi, Jiao; Gong, Maoguo; Ma, Wenping; Jiao, Licheng
2014-01-01
How to maintain the population diversity is an important issue in designing a multiobjective evolutionary algorithm. This paper presents an enhanced nondominated neighbor-based immune algorithm in which a multipopulation coevolutionary strategy is introduced for improving the population diversity. In the proposed algorithm, subpopulations evolve independently; thus the unique characteristics of each subpopulation can be effectively maintained, and the diversity of the entire population is effectively increased. Besides, the dynamic information of multiple subpopulations is obtained with the help of the designed cooperation operator which reflects a mutually beneficial relationship among subpopulations. Subpopulations gain the opportunity to exchange information, thereby expanding the search range of the entire population. Subpopulations make use of the reference experience from each other, thereby improving the efficiency of evolutionary search. Compared with several state-of-the-art multiobjective evolutionary algorithms on well-known and frequently used multiobjective and many-objective problems, the proposed algorithm achieves comparable results in terms of convergence, diversity metrics, and running time on most test problems. PMID:24672330
Combinatorial Multiobjective Optimization Using Genetic Algorithms
NASA Technical Reports Server (NTRS)
Crossley, William A.; Martin. Eric T.
2002-01-01
The research proposed in this document investigated multiobjective optimization approaches based upon the Genetic Algorithm (GA). Several versions of the GA have been adopted for multiobjective design, but, prior to this research, there had not been significant comparisons of the most popular strategies. The research effort first generalized the two-branch tournament genetic algorithm in to an N-branch genetic algorithm, then the N-branch GA was compared with a version of the popular Multi-Objective Genetic Algorithm (MOGA). Because the genetic algorithm is well suited to combinatorial (mixed discrete / continuous) optimization problems, the GA can be used in the conceptual phase of design to combine selection (discrete variable) and sizing (continuous variable) tasks. Using a multiobjective formulation for the design of a 50-passenger aircraft to meet the competing objectives of minimizing takeoff gross weight and minimizing trip time, the GA generated a range of tradeoff designs that illustrate which aircraft features change from a low-weight, slow trip-time aircraft design to a heavy-weight, short trip-time aircraft design. Given the objective formulation and analysis methods used, the results of this study identify where turboprop-powered aircraft and turbofan-powered aircraft become more desirable for the 50 seat passenger application. This aircraft design application also begins to suggest how a combinatorial multiobjective optimization technique could be used to assist in the design of morphing aircraft.
Multi-Objective Community Detection Based on Memetic Algorithm
2015-01-01
Community detection has drawn a lot of attention as it can provide invaluable help in understanding the function and visualizing the structure of networks. Since single objective optimization methods have intrinsic drawbacks to identifying multiple significant community structures, some methods formulate the community detection as multi-objective problems and adopt population-based evolutionary algorithms to obtain multiple community structures. Evolutionary algorithms have strong global search ability, but have difficulty in locating local optima efficiently. In this study, in order to identify multiple significant community structures more effectively, a multi-objective memetic algorithm for community detection is proposed by combining multi-objective evolutionary algorithm with a local search procedure. The local search procedure is designed by addressing three issues. Firstly, nondominated solutions generated by evolutionary operations and solutions in dominant population are set as initial individuals for local search procedure. Then, a new direction vector named as pseudonormal vector is proposed to integrate two objective functions together to form a fitness function. Finally, a network specific local search strategy based on label propagation rule is expanded to search the local optimal solutions efficiently. The extensive experiments on both artificial and real-world networks evaluate the proposed method from three aspects. Firstly, experiments on influence of local search procedure demonstrate that the local search procedure can speed up the convergence to better partitions and make the algorithm more stable. Secondly, comparisons with a set of classic community detection methods illustrate the proposed method can find single partitions effectively. Finally, the method is applied to identify hierarchical structures of networks which are beneficial for analyzing networks in multi-resolution levels. PMID:25932646
Turbopump Performance Improved by Evolutionary Algorithms
NASA Technical Reports Server (NTRS)
Oyama, Akira; Liou, Meng-Sing
2002-01-01
The development of design optimization technology for turbomachinery has been initiated using the multiobjective evolutionary algorithm under NASA's Intelligent Synthesis Environment and Revolutionary Aeropropulsion Concepts programs. As an alternative to the traditional gradient-based methods, evolutionary algorithms (EA's) are emergent design-optimization algorithms modeled after the mechanisms found in natural evolution. EA's search from multiple points, instead of moving from a single point. In addition, they require no derivatives or gradients of the objective function, leading to robustness and simplicity in coupling any evaluation codes. Parallel efficiency also becomes very high by using a simple master-slave concept for function evaluations, since such evaluations often consume the most CPU time, such as computational fluid dynamics. Application of EA's to multiobjective design problems is also straightforward because EA's maintain a population of design candidates in parallel. Because of these advantages, EA's are a unique and attractive approach to real-world design optimization problems.
MULTIOBJECTIVE PARALLEL GENETIC ALGORITHM FOR WASTE MINIMIZATION
In this research we have developed an efficient multiobjective parallel genetic algorithm (MOPGA) for waste minimization problems. This MOPGA integrates PGAPack (Levine, 1996) and NSGA-II (Deb, 2000) with novel modifications. PGAPack is a master-slave parallel implementation of a...
Antimicrobial Peptides Design by Evolutionary Multiobjective Optimization
Maccari, Giuseppe; Di Luca, Mariagrazia; Nifosí, Riccardo; Cardarelli, Francesco; Signore, Giovanni; Boccardi, Claudia; Bifone, Angelo
2013-01-01
Antimicrobial peptides (AMPs) are an abundant and wide class of molecules produced by many tissues and cell types in a variety of mammals, plant and animal species. Linear alpha-helical antimicrobial peptides are among the most widespread membrane-disruptive AMPs in nature, representing a particularly successful structural arrangement in innate defense. Recently, AMPs have received increasing attention as potential therapeutic agents, owing to their broad activity spectrum and their reduced tendency to induce resistance. The introduction of non-natural amino acids will be a key requisite in order to contrast host resistance and increase compound's life. In this work, the possibility to design novel AMP sequences with non-natural amino acids was achieved through a flexible computational approach, based on chemophysical profiles of peptide sequences. Quantitative structure-activity relationship (QSAR) descriptors were employed to code each peptide and train two statistical models in order to account for structural and functional properties of alpha-helical amphipathic AMPs. These models were then used as fitness functions for a multi-objective evolutional algorithm, together with a set of constraints for the design of a series of candidate AMPs. Two ab-initio natural peptides were synthesized and experimentally validated for antimicrobial activity, together with a series of control peptides. Furthermore, a well-known Cecropin-Mellitin alpha helical antimicrobial hybrid (CM18) was optimized by shortening its amino acid sequence while maintaining its activity and a peptide with non-natural amino acids was designed and tested, demonstrating the higher activity achievable with artificial residues. PMID:24039565
PARETO: A novel evolutionary optimization approach to multiobjective IMRT planning
Fiege, Jason; McCurdy, Boyd; Potrebko, Peter; Champion, Heather; Cull, Andrew
2011-09-15
Purpose: In radiation therapy treatment planning, the clinical objectives of uniform high dose to the planning target volume (PTV) and low dose to the organs-at-risk (OARs) are invariably in conflict, often requiring compromises to be made between them when selecting the best treatment plan for a particular patient. In this work, the authors introduce Pareto-Aware Radiotherapy Evolutionary Treatment Optimization (pareto), a multiobjective optimization tool to solve for beam angles and fluence patterns in intensity-modulated radiation therapy (IMRT) treatment planning. Methods: pareto is built around a powerful multiobjective genetic algorithm (GA), which allows us to treat the problem of IMRT treatment plan optimization as a combined monolithic problem, where all beam fluence and angle parameters are treated equally during the optimization. We have employed a simple parameterized beam fluence representation with a realistic dose calculation approach, incorporating patient scatter effects, to demonstrate feasibility of the proposed approach on two phantoms. The first phantom is a simple cylindrical phantom containing a target surrounded by three OARs, while the second phantom is more complex and represents a paraspinal patient. Results: pareto results in a large database of Pareto nondominated solutions that represent the necessary trade-offs between objectives. The solution quality was examined for several PTV and OAR fitness functions. The combination of a conformity-based PTV fitness function and a dose-volume histogram (DVH) or equivalent uniform dose (EUD) -based fitness function for the OAR produced relatively uniform and conformal PTV doses, with well-spaced beams. A penalty function added to the fitness functions eliminates hotspots. Comparison of resulting DVHs to those from treatment plans developed with a single-objective fluence optimizer (from a commercial treatment planning system) showed good correlation. Results also indicated that pareto shows
An Algorithmic Framework for Multiobjective Optimization
Ganesan, T.; Elamvazuthi, I.; Shaari, Ku Zilati Ku; Vasant, P.
2013-01-01
Multiobjective (MO) optimization is an emerging field which is increasingly being encountered in many fields globally. Various metaheuristic techniques such as differential evolution (DE), genetic algorithm (GA), gravitational search algorithm (GSA), and particle swarm optimization (PSO) have been used in conjunction with scalarization techniques such as weighted sum approach and the normal-boundary intersection (NBI) method to solve MO problems. Nevertheless, many challenges still arise especially when dealing with problems with multiple objectives (especially in cases more than two). In addition, problems with extensive computational overhead emerge when dealing with hybrid algorithms. This paper discusses these issues by proposing an alternative framework that utilizes algorithmic concepts related to the problem structure for generating efficient and effective algorithms. This paper proposes a framework to generate new high-performance algorithms with minimal computational overhead for MO optimization. PMID:24470795
An algorithmic framework for multiobjective optimization.
Ganesan, T; Elamvazuthi, I; Shaari, Ku Zilati Ku; Vasant, P
2013-01-01
Multiobjective (MO) optimization is an emerging field which is increasingly being encountered in many fields globally. Various metaheuristic techniques such as differential evolution (DE), genetic algorithm (GA), gravitational search algorithm (GSA), and particle swarm optimization (PSO) have been used in conjunction with scalarization techniques such as weighted sum approach and the normal-boundary intersection (NBI) method to solve MO problems. Nevertheless, many challenges still arise especially when dealing with problems with multiple objectives (especially in cases more than two). In addition, problems with extensive computational overhead emerge when dealing with hybrid algorithms. This paper discusses these issues by proposing an alternative framework that utilizes algorithmic concepts related to the problem structure for generating efficient and effective algorithms. This paper proposes a framework to generate new high-performance algorithms with minimal computational overhead for MO optimization. PMID:24470795
Evolutionary Multiobjective Query Workload Optimization of Cloud Data Warehouses
Dokeroglu, Tansel; Sert, Seyyit Alper; Cinar, Muhammet Serkan
2014-01-01
With the advent of Cloud databases, query optimizers need to find paretooptimal solutions in terms of response time and monetary cost. Our novel approach minimizes both objectives by deploying alternative virtual resources and query plans making use of the virtual resource elasticity of the Cloud. We propose an exact multiobjective branch-and-bound and a robust multiobjective genetic algorithm for the optimization of distributed data warehouse query workloads on the Cloud. In order to investigate the effectiveness of our approach, we incorporate the devised algorithms into a prototype system. Finally, through several experiments that we have conducted with different workloads and virtual resource configurations, we conclude remarkable findings of alternative deployments as well as the advantages and disadvantages of the multiobjective algorithms we propose. PMID:24892048
Evolutionary multiobjective query workload optimization of Cloud data warehouses.
Dokeroglu, Tansel; Sert, Seyyit Alper; Cinar, Muhammet Serkan
2014-01-01
With the advent of Cloud databases, query optimizers need to find paretooptimal solutions in terms of response time and monetary cost. Our novel approach minimizes both objectives by deploying alternative virtual resources and query plans making use of the virtual resource elasticity of the Cloud. We propose an exact multiobjective branch-and-bound and a robust multiobjective genetic algorithm for the optimization of distributed data warehouse query workloads on the Cloud. In order to investigate the effectiveness of our approach, we incorporate the devised algorithms into a prototype system. Finally, through several experiments that we have conducted with different workloads and virtual resource configurations, we conclude remarkable findings of alternative deployments as well as the advantages and disadvantages of the multiobjective algorithms we propose. PMID:24892048
Objective reduction in evolutionary multiobjective optimization: theory and applications.
Brockhoff, Dimo; Zitzler, Eckart
2009-01-01
Many-objective problems represent a major challenge in the field of evolutionary multiobjective optimization--in terms of search efficiency, computational cost, decision making, visualization, and so on. This leads to various research questions, in particular whether certain objectives can be omitted in order to overcome or at least diminish the difficulties that arise when many, that is, more than three, objective functions are involved. This study addresses this question from different perspectives. First, we investigate how adding or omitting objectives affects the problem characteristics and propose a general notion of conflict between objective sets as a theoretical foundation for objective reduction. Second, we present both exact and heuristic algorithms to systematically reduce the number of objectives, while preserving as much as possible of the dominance structure of the underlying optimization problem. Third, we demonstrate the usefulness of the proposed objective reduction method in the context of both decision making and search for a radar waveform application as well as for well-known test functions. PMID:19413486
Comparing a Coevolutionary Genetic Algorithm for Multiobjective Optimization
NASA Technical Reports Server (NTRS)
Lohn, Jason D.; Kraus, William F.; Haith, Gary L.; Clancy, Daniel (Technical Monitor)
2002-01-01
We present results from a study comparing a recently developed coevolutionary genetic algorithm (CGA) against a set of evolutionary algorithms using a suite of multiobjective optimization benchmarks. The CGA embodies competitive coevolution and employs a simple, straightforward target population representation and fitness calculation based on developmental theory of learning. Because of these properties, setting up the additional population is trivial making implementation no more difficult than using a standard GA. Empirical results using a suite of two-objective test functions indicate that this CGA performs well at finding solutions on convex, nonconvex, discrete, and deceptive Pareto-optimal fronts, while giving respectable results on a nonuniform optimization. On a multimodal Pareto front, the CGA finds a solution that dominates solutions produced by eight other algorithms, yet the CGA has poor coverage across the Pareto front.
Multiobjective Genetic Algorithm applied to dengue control.
Florentino, Helenice O; Cantane, Daniela R; Santos, Fernando L P; Bannwart, Bettina F
2014-12-01
Dengue fever is an infectious disease caused by a virus of the Flaviridae family and transmitted to the person by a mosquito of the genus Aedes aegypti. This disease has been a global public health problem because a single mosquito can infect up to 300 people and between 50 and 100 million people are infected annually on all continents. Thus, dengue fever is currently a subject of research, whether in the search for vaccines and treatments for the disease or efficient and economical forms of mosquito control. The current study aims to study techniques of multiobjective optimization to assist in solving problems involving the control of the mosquito that transmits dengue fever. The population dynamics of the mosquito is studied in order to understand the epidemic phenomenon and suggest strategies of multiobjective programming for mosquito control. A Multiobjective Genetic Algorithm (MGA_DENGUE) is proposed to solve the optimization model treated here and we discuss the computational results obtained from the application of this technique. PMID:25230238
Flower pollination algorithm: A novel approach for multiobjective optimization
NASA Astrophysics Data System (ADS)
Yang, Xin-She; Karamanoglu, Mehmet; He, Xingshi
2014-09-01
Multiobjective design optimization problems require multiobjective optimization techniques to solve, and it is often very challenging to obtain high-quality Pareto fronts accurately. In this article, the recently developed flower pollination algorithm (FPA) is extended to solve multiobjective optimization problems. The proposed method is used to solve a set of multiobjective test functions and two bi-objective design benchmarks, and a comparison of the proposed algorithm with other algorithms has been made, which shows that the FPA is efficient with a good convergence rate. Finally, the importance for further parametric studies and theoretical analysis is highlighted and discussed.
NASA Astrophysics Data System (ADS)
Long, Kim Chenming
Real-world engineering optimization problems often require the consideration of multiple conflicting and noncommensurate objectives, subject to nonconvex constraint regions in a high-dimensional decision space. Further challenges occur for combinatorial multiobjective problems in which the decision variables are not continuous. Traditional multiobjective optimization methods of operations research, such as weighting and epsilon constraint methods, are ill-suited to solving these complex, multiobjective problems. This has given rise to the application of a wide range of metaheuristic optimization algorithms, such as evolutionary, particle swarm, simulated annealing, and ant colony methods, to multiobjective optimization. Several multiobjective evolutionary algorithms have been developed, including the strength Pareto evolutionary algorithm (SPEA) and the non-dominated sorting genetic algorithm (NSGA), for determining the Pareto-optimal set of non-dominated solutions. Although numerous researchers have developed a wide range of multiobjective optimization algorithms, there is a continuing need to construct computationally efficient algorithms with an improved ability to converge to globally non-dominated solutions along the Pareto-optimal front for complex, large-scale, multiobjective engineering optimization problems. This is particularly important when the multiple objective functions and constraints of the real-world system cannot be expressed in explicit mathematical representations. This research presents a novel metaheuristic evolutionary algorithm for complex multiobjective optimization problems, which combines the metaheuristic tabu search algorithm with the evolutionary algorithm (TSEA), as embodied in genetic algorithms. TSEA is successfully applied to bicriteria (i.e., structural reliability and retrofit cost) optimization of the aircraft tail structure fatigue life, which increases its reliability by prolonging fatigue life. A comparison for this
Teo, Jason; Abbass, Hussein A
2004-01-01
In this paper, we investigate the use of a self-adaptive Pareto evolutionary multi-objective optimization (EMO) approach for evolving the controllers of virtual embodied organisms. The objective of this paper is to demonstrate the trade-off between quality of solutions and computational cost. We show empirically that evolving controllers using the proposed algorithm incurs significantly less computational cost when compared to a self-adaptive weighted sum EMO algorithm, a self-adaptive single-objective evolutionary algorithm (EA) and a hand-tuned Pareto EMO algorithm. The main contribution of the self-adaptive Pareto EMO approach is its ability to produce sufficiently good controllers with different locomotion capabilities in a single run, thereby reducing the evolutionary computational cost and allowing the designer to explore the space of good solutions simultaneously. Our results also show that self-adaptation was found to be highly beneficial in reducing redundancy when compared against the other algorithms. Moreover, it was also shown that genetic diversity was being maintained naturally by virtue of the system's inherent multi-objectivity. PMID:15355605
Comparing Evolutionary Strategies on a Biobjective Cultural Algorithm
Lagos, Carolina; Crawford, Broderick; Cabrera, Enrique; Rubio, José-Miguel; Paredes, Fernando
2014-01-01
Evolutionary algorithms have been widely used to solve large and complex optimisation problems. Cultural algorithms (CAs) are evolutionary algorithms that have been used to solve both single and, to a less extent, multiobjective optimisation problems. In order to solve these optimisation problems, CAs make use of different strategies such as normative knowledge, historical knowledge, circumstantial knowledge, and among others. In this paper we present a comparison among CAs that make use of different evolutionary strategies; the first one implements a historical knowledge, the second one considers a circumstantial knowledge, and the third one implements a normative knowledge. These CAs are applied on a biobjective uncapacitated facility location problem (BOUFLP), the biobjective version of the well-known uncapacitated facility location problem. To the best of our knowledge, only few articles have applied evolutionary multiobjective algorithms on the BOUFLP and none of those has focused on the impact of the evolutionary strategy on the algorithm performance. Our biobjective cultural algorithm, called BOCA, obtains important improvements when compared to other well-known evolutionary biobjective optimisation algorithms such as PAES and NSGA-II. The conflicting objective functions considered in this study are cost minimisation and coverage maximisation. Solutions obtained by each algorithm are compared using a hypervolume S metric. PMID:25254257
Evaluation of multi-algorithm optimization approach in multi-objective rainfall-runoff calibration
NASA Astrophysics Data System (ADS)
Shafii, M.; de Smedt, F.
2009-04-01
Calibration of rainfall-runoff models is one of the issues in which hydrologists have been interested over past decades. Because of the multi-objective nature of rainfall-runoff calibration, and due to advances in computational power, population-based optimization techniques are becoming increasingly popular to be applied for multi-objective calibration schemes. Over past recent years, such methods have shown to be powerful search methods for this purpose, especially when there are a large number of calibration parameters. However, application of these methods is always criticised based on the fact that it is not possible to develop a single algorithm which is always efficient for different problems. Therefore, more recent efforts have been focused towards development of simultaneous multiple optimization algorithms to overcome this drawback. This paper involves one of the most recent population-based multi-algorithm approaches, named AMALGAM, for application to multi-objective rainfall-runoff calibration in a distributed hydrological model, WetSpa. This algorithm merges the strengths of different optimization algorithms and it, thus, has proven to be more efficient than other methods. In order to evaluate this issue, comparison between results of this paper and those previously reported using a normal multi-objective evolutionary algorithm would be the next step of this study.
NASA Astrophysics Data System (ADS)
Yang, Y.; Wu, J.
2011-12-01
The previous work in the field of multi-objective optimization under uncertainty has concerned with the probabilistic multi-objective algorithm itself, how to effectively evaluate an estimate of uncertain objectives and identify a set of reliable Pareto optimal solutions. However, the design of a robust and reliable groundwater remediation system encounters major difficulties owing to the inherent uncertainty of hydrogeological parameters such as hydraulic conductivity (K). Thus, we need to make reduction of uncertainty associated with the site characteristics of the contaminated aquifers. In this study, we first use the Sequential Gaussian Simulation (SGSIM) to generate 1000 conditional realizations of lnK based on the sampled conditioning data acquired by field test. It is worthwhile to note that the cost for field test often weighs heavily upon the remediation cost and must thus be taken into account in the tradeoff between the solution reliability and remedial cost optimality. In this situation, we perform Monte Carlo simulation to make an uncertainty analysis of lnK realizations associated with the different number of conditioning data points. The results indicate that the uncertainty of the site characteristics and the contaminant concentration output from transport model is decreasing and then tends toward stabilization with the increase of conditioning data. This study presents a probabilistic multi-objective evolutionary algorithm (PMOEA) that integrates noisy genetic algorithm (NGA) and probabilistic multi-objective genetic algorithm (MOGA). The evident difference between deterministic MOGA and probabilistic MOGA is the use of probabilistic Pareto domination ranking and niche technique to ensure that each solution found is most reliable and robust. The proposed algorithm is then evaluated through a synthetic pump-and-treat (PAT) groundwater remediation test case. The 1000 lnK realizations generated by SGSIM with appropriate number of conditioning data (30
Optimal design of plasmonic waveguide using multiobjective genetic algorithm
NASA Astrophysics Data System (ADS)
Jung, Jaehoon
2016-01-01
An approach for multiobjective optimal design of a plasmonic waveguide is presented. We use a multiobjective extension of a genetic algorithm to find the Pareto-optimal geometries. The design variables are the geometrical parameters of the waveguide. The objective functions are chosen as the figure of merit defined as the ratio between the propagation distance and effective mode size and the normalized coupling length between adjacent waveguides at the telecom wavelength of 1550 nm.
NASA Astrophysics Data System (ADS)
Zhou, Xu; Liu, Yanheng; Li, Bin; Sun, Geng
2015-10-01
Identifying community structures in static network misses the opportunity to capture the evolutionary patterns. So community detection in dynamic network has attracted many researchers. In this paper, a multiobjective biogeography based optimization algorithm with decomposition (MBBOD) is proposed to solve community detection problem in dynamic networks. In the proposed algorithm, the decomposition mechanism is adopted to optimize two evaluation objectives named modularity and normalized mutual information simultaneously, which measure the quality of the community partitions and temporal cost respectively. A novel sorting strategy for multiobjective biogeography based optimization is presented for comparing quality of habitats to get species counts. In addition, problem-specific migration and mutation model are introduced to improve the effectiveness of the new algorithm. Experimental results both on synthetic and real networks demonstrate that our algorithm is effective and promising, and it can detect communities more accurately in dynamic networks compared with DYNMOGA and FaceNet.
Multi-objective evolutionary optimization design of vehicle magnetorheological fluid damper
NASA Astrophysics Data System (ADS)
Zhao, Qiang; Wang, Yang; Gao, Fang
2007-07-01
Structure design and parameters selection are crucial steps in developing magnetorheological fluid (MRF) damper for vehicle semi-active suspension system. Most traditional methods for deciding structure parameters by experiential expressions are unilateral and imprecise. In this paper, a multiobjective evolutionary optimization approach will be used to solve the optimization design problem. Based on Bingham fluid models, a structure design for MRF damper with shearing valve mode is completed for vehicle suspension. To reduce the dynamic response time and to enlarge the range the controllable damping force are taken as the optimization objectives. Three crucial parameters, including gap width, effective axial pole length and coil turns number are taken as optimization variables, a hybrid evolutionary algorithm combining particle swarm optimization (PSO) and crossover is employed to search for the Pareto solutions, According to the optimized results, a new type MRF damper design is accomplished for a pickup truck suspension system. The proposed method and analysis present a beneficial reference for MRF damper design.
Technology Transfer Automated Retrieval System (TEKTRAN)
This study explored the application of a multi-objective evolutionary algorithm (MOEA) and Pareto ordering in the multiple-objective automatic calibration of the Soil and Water Assessment Tool (SWAT). SWAT was calibrated in the Calapooia watershed, Oregon, USA, with two different pairs of objective ...
Aubry, Jean-Francois; Beaulieu, Frederic; Sevigny, Caroline; Beaulieu, Luc; Tremblay, Daniel
2006-12-15
Inverse planning in external beam radiotherapy often requires a scalar objective function that incorporates importance factors to mimic the planner's preferences between conflicting objectives. Defining those importance factors is not straightforward, and frequently leads to an iterative process in which the importance factors become variables of the optimization problem. In order to avoid this drawback of inverse planning, optimization using algorithms more suited to multiobjective optimization, such as evolutionary algorithms, has been suggested. However, much inverse planning software, including one based on simulated annealing developed at our institution, does not include multiobjective-oriented algorithms. This work investigates the performance of a modified simulated annealing algorithm used to drive aperture-based intensity-modulated radiotherapy inverse planning software in a multiobjective optimization framework. For a few test cases involving gastric cancer patients, the use of this new algorithm leads to an increase in optimization speed of a little more than a factor of 2 over a conventional simulated annealing algorithm, while giving a close approximation of the solutions produced by a standard simulated annealing. A simple graphical user interface designed to facilitate the decision-making process that follows an optimization is also presented.
Design of PID-type controllers using multiobjective genetic algorithms.
Herreros, Alberto; Baeyens, Enrique; Perán, José R
2002-10-01
The design of a PID controller is a multiobjective problem. A plant and a set of specifications to be satisfied are given. The designer has to adjust the parameters of the PID controller such that the feedback interconnection of the plant and the controller satisfies the specifications. These specifications are usually competitive and any acceptable solution requires a tradeoff among them. An approach for adjusting the parameters of a PID controller based on multiobjective optimization and genetic algorithms is presented in this paper. The MRCD (multiobjective robust control design) genetic algorithm has been employed. The approach can be easily generalized to design multivariable coupled and decentralized PID loops and has been successfully validated for a large number of experimental cases. PMID:12398277
An Efficient Chemical Reaction Optimization Algorithm for Multiobjective Optimization.
Bechikh, Slim; Chaabani, Abir; Ben Said, Lamjed
2015-10-01
Recently, a new metaheuristic called chemical reaction optimization was proposed. This search algorithm, inspired by chemical reactions launched during collisions, inherits several features from other metaheuristics such as simulated annealing and particle swarm optimization. This fact has made it, nowadays, one of the most powerful search algorithms in solving mono-objective optimization problems. In this paper, we propose a multiobjective variant of chemical reaction optimization, called nondominated sorting chemical reaction optimization, in an attempt to exploit chemical reaction optimization features in tackling problems involving multiple conflicting criteria. Since our approach is based on nondominated sorting, one of the main contributions of this paper is the proposal of a new quasi-linear average time complexity quick nondominated sorting algorithm; thereby making our multiobjective algorithm efficient from a computational cost viewpoint. The experimental comparisons against several other multiobjective algorithms on a variety of benchmark problems involving various difficulties show the effectiveness and the efficiency of this multiobjective version in providing a well-converged and well-diversified approximation of the Pareto front. PMID:25373137
Multi-objective nested algorithms for optimal reservoir operation
NASA Astrophysics Data System (ADS)
Delipetrev, Blagoj; Solomatine, Dimitri
2016-04-01
The optimal reservoir operation is in general a multi-objective problem, meaning that multiple objectives are to be considered at the same time. For solving multi-objective optimization problems there exist a large number of optimization algorithms - which result in a generation of a Pareto set of optimal solutions (typically containing a large number of them), or more precisely, its approximation. At the same time, due to the complexity and computational costs of solving full-fledge multi-objective optimization problems some authors use a simplified approach which is generically called "scalarization". Scalarization transforms the multi-objective optimization problem to a single-objective optimization problem (or several of them), for example by (a) single objective aggregated weighted functions, or (b) formulating some objectives as constraints. We are using the approach (a). A user can decide how many multi-objective single search solutions will generate, depending on the practical problem at hand and by choosing a particular number of the weight vectors that are used to weigh the objectives. It is not guaranteed that these solutions are Pareto optimal, but they can be treated as a reasonably good and practically useful approximation of a Pareto set, albeit small. It has to be mentioned that the weighted-sum approach has its known shortcomings because the linear scalar weights will fail to find Pareto-optimal policies that lie in the concave region of the Pareto front. In this context the considered approach is implemented as follows: there are m sets of weights {w1i, …wni} (i starts from 1 to m), and n objectives applied to single objective aggregated weighted sum functions of nested dynamic programming (nDP), nested stochastic dynamic programming (nSDP) and nested reinforcement learning (nRL). By employing the multi-objective optimization by a sequence of single-objective optimization searches approach, these algorithms acquire the multi-objective properties
Genetic Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization
NASA Technical Reports Server (NTRS)
Holst, Terry L.
2005-01-01
A genetic algorithm approach suitable for solving multi-objective problems is described and evaluated using a series of aerodynamic shape optimization problems. Several new features including two variations of a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding Pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. A new masking array capability is included allowing any gene or gene subset to be eliminated as decision variables from the design space. This allows determination of the effect of a single gene or gene subset on the Pareto optimal solution. Results indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning selection algorithms generally provide Pareto front quality enhancements and moderate convergence efficiency improvements for most of the problems solved.
Genetic Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization
NASA Technical Reports Server (NTRS)
Holst, Terry L.
2004-01-01
A genetic algorithm approach suitable for solving multi-objective optimization problems is described and evaluated using a series of aerodynamic shape optimization problems. Several new features including two variations of a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. A new masking array capability is included allowing any gene or gene subset to be eliminated as decision variables from the design space. This allows determination of the effect of a single gene or gene subset on the pareto optimal solution. Results indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning selection algorithms generally provide pareto front quality enhancements and moderate convergence efficiency improvements for most of the problems solved.
Constrained Multiobjective Optimization Algorithm Based on Immune System Model.
Qian, Shuqu; Ye, Yongqiang; Jiang, Bin; Wang, Jianhong
2016-09-01
An immune optimization algorithm, based on the model of biological immune system, is proposed to solve multiobjective optimization problems with multimodal nonlinear constraints. First, the initial population is divided into feasible nondominated population and infeasible/dominated population. The feasible nondominated individuals focus on exploring the nondominated front through clone and hypermutation based on a proposed affinity design approach, while the infeasible/dominated individuals are exploited and improved via the simulated binary crossover and polynomial mutation operations. And then, to accelerate the convergence of the proposed algorithm, a transformation technique is applied to the combined population of the above two offspring populations. Finally, a crowded-comparison strategy is used to create the next generation population. In numerical experiments, a series of benchmark constrained multiobjective optimization problems are considered to evaluate the performance of the proposed algorithm and it is also compared to several state-of-art algorithms in terms of the inverted generational distance and hypervolume indicators. The results indicate that the new method achieves competitive performance and even statistically significant better results than previous algorithms do on most of the benchmark suite. PMID:26285230
Optimal Robust Motion Controller Design Using Multiobjective Genetic Algorithm
Svečko, Rajko
2014-01-01
This paper describes the use of a multiobjective genetic algorithm for robust motion controller design. Motion controller structure is based on a disturbance observer in an RIC framework. The RIC approach is presented in the form with internal and external feedback loops, in which an internal disturbance rejection controller and an external performance controller must be synthesised. This paper involves novel objectives for robustness and performance assessments for such an approach. Objective functions for the robustness property of RIC are based on simple even polynomials with nonnegativity conditions. Regional pole placement method is presented with the aims of controllers' structures simplification and their additional arbitrary selection. Regional pole placement involves arbitrary selection of central polynomials for both loops, with additional admissible region of the optimized pole location. Polynomial deviation between selected and optimized polynomials is measured with derived performance objective functions. A multiobjective function is composed of different unrelated criteria such as robust stability, controllers' stability, and time-performance indexes of closed loops. The design of controllers and multiobjective optimization procedure involve a set of the objectives, which are optimized simultaneously with a genetic algorithm—differential evolution. PMID:24987749
A multiobjective memetic algorithm based on particle swarm optimization.
Liu, Dasheng; Tan, K C; Goh, C K; Ho, W K
2007-02-01
In this paper, a new memetic algorithm (MA) for multiobjective (MO) optimization is proposed, which combines the global search ability of particle swarm optimization with a synchronous local search heuristic for directed local fine-tuning. A new particle updating strategy is proposed based upon the concept of fuzzy global-best to deal with the problem of premature convergence and diversity maintenance within the swarm. The proposed features are examined to show their individual and combined effects in MO optimization. The comparative study shows the effectiveness of the proposed MA, which produces solution sets that are highly competitive in terms of convergence, diversity, and distribution. PMID:17278557
A multiobjective optimization algorithm is applied to a groundwater quality management problem involving remediation by pump-and-treat (PAT). The multiobjective optimization framework uses the niched Pareto genetic algorithm (NPGA) and is applied to simultaneously minimize the...
Algorithmic Mechanism Design of Evolutionary Computation
Pei, Yan
2015-01-01
We consider algorithmic design, enhancement, and improvement of evolutionary computation as a mechanism design problem. All individuals or several groups of individuals can be considered as self-interested agents. The individuals in evolutionary computation can manipulate parameter settings and operations by satisfying their own preferences, which are defined by an evolutionary computation algorithm designer, rather than by following a fixed algorithm rule. Evolutionary computation algorithm designers or self-adaptive methods should construct proper rules and mechanisms for all agents (individuals) to conduct their evolution behaviour correctly in order to definitely achieve the desired and preset objective(s). As a case study, we propose a formal framework on parameter setting, strategy selection, and algorithmic design of evolutionary computation by considering the Nash strategy equilibrium of a mechanism design in the search process. The evaluation results present the efficiency of the framework. This primary principle can be implemented in any evolutionary computation algorithm that needs to consider strategy selection issues in its optimization process. The final objective of our work is to solve evolutionary computation design as an algorithmic mechanism design problem and establish its fundamental aspect by taking this perspective. This paper is the first step towards achieving this objective by implementing a strategy equilibrium solution (such as Nash equilibrium) in evolutionary computation algorithm. PMID:26257777
Algorithmic Mechanism Design of Evolutionary Computation.
Pei, Yan
2015-01-01
We consider algorithmic design, enhancement, and improvement of evolutionary computation as a mechanism design problem. All individuals or several groups of individuals can be considered as self-interested agents. The individuals in evolutionary computation can manipulate parameter settings and operations by satisfying their own preferences, which are defined by an evolutionary computation algorithm designer, rather than by following a fixed algorithm rule. Evolutionary computation algorithm designers or self-adaptive methods should construct proper rules and mechanisms for all agents (individuals) to conduct their evolution behaviour correctly in order to definitely achieve the desired and preset objective(s). As a case study, we propose a formal framework on parameter setting, strategy selection, and algorithmic design of evolutionary computation by considering the Nash strategy equilibrium of a mechanism design in the search process. The evaluation results present the efficiency of the framework. This primary principle can be implemented in any evolutionary computation algorithm that needs to consider strategy selection issues in its optimization process. The final objective of our work is to solve evolutionary computation design as an algorithmic mechanism design problem and establish its fundamental aspect by taking this perspective. This paper is the first step towards achieving this objective by implementing a strategy equilibrium solution (such as Nash equilibrium) in evolutionary computation algorithm. PMID:26257777
Evolutionary multiobjective design of a flexible caudal fin for robotic fish.
Clark, Anthony J; Tan, Xiaobo; McKinley, Philip K
2015-12-01
Robotic fish accomplish swimming by deforming their bodies or other fin-like appendages. As an emerging class of embedded computing system, robotic fish are anticipated to play an important role in environmental monitoring, inspection of underwater structures, tracking of hazardous wastes and oil spills, and the study of live fish behaviors. While integration of flexible materials (into the fins and/or body) holds the promise of improved swimming performance (in terms of both speed and maneuverability) for these robots, such components also introduce significant design challenges due to the complex material mechanics and hydrodynamic interactions. The problem is further exacerbated by the need for the robots to meet multiple objectives (e.g., both speed and energy efficiency). In this paper, we propose an evolutionary multiobjective optimization approach to the design and control of a robotic fish with a flexible caudal fin. Specifically, we use the NSGA-II algorithm to investigate morphological and control parameter values that optimize swimming speed and power usage. Several evolved fin designs are validated experimentally with a small robotic fish, where fins of different stiffness values and sizes are printed with a multi-material 3D printer. Experimental results confirm the effectiveness of the proposed design approach in balancing the two competing objectives. PMID:26601975
Advantages of Task-Specific Multi-Objective Optimisation in Evolutionary Robotics
Trianni, Vito; López-Ibáñez, Manuel
2015-01-01
The application of multi-objective optimisation to evolutionary robotics is receiving increasing attention. A survey of the literature reveals the different possibilities it offers to improve the automatic design of efficient and adaptive robotic systems, and points to the successful demonstrations available for both task-specific and task-agnostic approaches (i.e., with or without reference to the specific design problem to be tackled). However, the advantages of multi-objective approaches over single-objective ones have not been clearly spelled out and experimentally demonstrated. This paper fills this gap for task-specific approaches: starting from well-known results in multi-objective optimisation, we discuss how to tackle commonly recognised problems in evolutionary robotics. In particular, we show that multi-objective optimisation (i) allows evolving a more varied set of behaviours by exploring multiple trade-offs of the objectives to optimise, (ii) supports the evolution of the desired behaviour through the introduction of objectives as proxies, (iii) avoids the premature convergence to local optima possibly introduced by multi-component fitness functions, and (iv) solves the bootstrap problem exploiting ancillary objectives to guide evolution in the early phases. We present an experimental demonstration of these benefits in three different case studies: maze navigation in a single robot domain, flocking in a swarm robotics context, and a strictly collaborative task in collective robotics. PMID:26295151
Advantages of Task-Specific Multi-Objective Optimisation in Evolutionary Robotics.
Trianni, Vito; López-Ibáñez, Manuel
2015-01-01
The application of multi-objective optimisation to evolutionary robotics is receiving increasing attention. A survey of the literature reveals the different possibilities it offers to improve the automatic design of efficient and adaptive robotic systems, and points to the successful demonstrations available for both task-specific and task-agnostic approaches (i.e., with or without reference to the specific design problem to be tackled). However, the advantages of multi-objective approaches over single-objective ones have not been clearly spelled out and experimentally demonstrated. This paper fills this gap for task-specific approaches: starting from well-known results in multi-objective optimisation, we discuss how to tackle commonly recognised problems in evolutionary robotics. In particular, we show that multi-objective optimisation (i) allows evolving a more varied set of behaviours by exploring multiple trade-offs of the objectives to optimise, (ii) supports the evolution of the desired behaviour through the introduction of objectives as proxies, (iii) avoids the premature convergence to local optima possibly introduced by multi-component fitness functions, and (iv) solves the bootstrap problem exploiting ancillary objectives to guide evolution in the early phases. We present an experimental demonstration of these benefits in three different case studies: maze navigation in a single robot domain, flocking in a swarm robotics context, and a strictly collaborative task in collective robotics. PMID:26295151
A Multi-Objective Genetic Algorithm for Outlier Removal.
Nahum, Oren E; Yosipof, Abraham; Senderowitz, Hanoch
2015-12-28
Quantitative structure activity relationship (QSAR) or quantitative structure property relationship (QSPR) models are developed to correlate activities for sets of compounds with their structure-derived descriptors by means of mathematical models. The presence of outliers, namely, compounds that differ in some respect from the rest of the data set, compromise the ability of statistical methods to derive QSAR models with good prediction statistics. Hence, outliers should be removed from data sets prior to model derivation. Here we present a new multi-objective genetic algorithm for the identification and removal of outliers based on the k nearest neighbors (kNN) method. The algorithm was used to remove outliers from three different data sets of pharmaceutical interest (logBBB, factor 7 inhibitors, and dihydrofolate reductase inhibitors), and its performances were compared with those of five other methods for outlier removal. The results suggest that the new algorithm provides filtered data sets that (1) better maintain the internal diversity of the parent data sets and (2) give rise to QSAR models with much better prediction statistics. Equally good filtered data sets in terms of these metrics were obtained when another objective function was added to the algorithm (termed "preservation"), forcing it to remove certain compounds with low probability only. This option is highly useful when specific compounds should be preferably kept in the final data set either because they have favorable activities or because they represent interesting molecular scaffolds. We expect this new algorithm to be useful in future QSAR applications. PMID:26553402
Distributed Query Plan Generation Using Multiobjective Genetic Algorithm
Panicker, Shina; Vijay Kumar, T. V.
2014-01-01
A distributed query processing strategy, which is a key performance determinant in accessing distributed databases, aims to minimize the total query processing cost. One way to achieve this is by generating efficient distributed query plans that involve fewer sites for processing a query. In the case of distributed relational databases, the number of possible query plans increases exponentially with respect to the number of relations accessed by the query and the number of sites where these relations reside. Consequently, computing optimal distributed query plans becomes a complex problem. This distributed query plan generation (DQPG) problem has already been addressed using single objective genetic algorithm, where the objective is to minimize the total query processing cost comprising the local processing cost (LPC) and the site-to-site communication cost (CC). In this paper, this DQPG problem is formulated and solved as a biobjective optimization problem with the two objectives being minimize total LPC and minimize total CC. These objectives are simultaneously optimized using a multiobjective genetic algorithm NSGA-II. Experimental comparison of the proposed NSGA-II based DQPG algorithm with the single objective genetic algorithm shows that the former performs comparatively better and converges quickly towards optimal solutions for an observed crossover and mutation probability. PMID:24963513
Scheduling Earth Observing Satellites with Evolutionary Algorithms
NASA Technical Reports Server (NTRS)
Globus, Al; Crawford, James; Lohn, Jason; Pryor, Anna
2003-01-01
We hypothesize that evolutionary algorithms can effectively schedule coordinated fleets of Earth observing satellites. The constraints are complex and the bottlenecks are not well understood, a condition where evolutionary algorithms are often effective. This is, in part, because evolutionary algorithms require only that one can represent solutions, modify solutions, and evaluate solution fitness. To test the hypothesis we have developed a representative set of problems, produced optimization software (in Java) to solve them, and run experiments comparing techniques. This paper presents initial results of a comparison of several evolutionary and other optimization techniques; namely the genetic algorithm, simulated annealing, squeaky wheel optimization, and stochastic hill climbing. We also compare separate satellite vs. integrated scheduling of a two satellite constellation. While the results are not definitive, tests to date suggest that simulated annealing is the best search technique and integrated scheduling is superior.
NASA Astrophysics Data System (ADS)
Zhou, Xu; Liu, Yanheng; Li, Bin
2016-03-01
Detecting community is a challenging task in analyzing networks. Solving community detection problem by evolutionary algorithm is a heated topic in recent years. In this paper, a multi-objective discrete cuckoo search algorithm with local search (MDCL) for community detection is proposed. To the best of our knowledge, it is first time to apply cuckoo search algorithm for community detection. Two objective functions termed as negative ratio association and ratio cut are to be minimized. These two functions can break through the modularity limitation. In the proposed algorithm, the nest location updating strategy and abandon operator of cuckoo are redefined in discrete form. A local search strategy and a clone operator are proposed to obtain the optimal initial population. The experimental results on synthetic and real-world networks show that the proposed algorithm has better performance than other algorithms and can discover the higher quality community structure without prior information.
NASA Astrophysics Data System (ADS)
Chen, Jing; Liu, Tundong; Jiang, Hao
2016-01-01
A Pareto-based multi-objective optimization approach is proposed to design multichannel FBG filters. Instead of defining a single optimal objective, the proposed method establishes the multi-objective model by taking two design objectives into account, which are minimizing the maximum index modulation and minimizing the mean dispersion error. To address this optimization problem, we develop a two-stage evolutionary computation approach integrating an elitist non-dominated sorting genetic algorithm (NSGA-II) and technique for order preference by similarity to ideal solution (TOPSIS). NSGA-II is utilized to search for the candidate solutions in terms of both objectives. The obtained results are provided as Pareto front. Subsequently, the best compromise solution is determined by the TOPSIS method from the Pareto front according to the decision maker's preference. The design results show that the proposed approach yields a remarkable reduction of the maximum index modulation and the performance of dispersion spectra of the designed filter can be optimized simultaneously.
Adly, Amr A; Abd-El-Hafiz, Salwa K
2015-05-01
Transformers are regarded as crucial components in power systems. Due to market globalization, power transformer manufacturers are facing an increasingly competitive environment that mandates the adoption of design strategies yielding better performance at lower costs. In this paper, a power transformer design methodology using multi-objective evolutionary optimization is proposed. Using this methodology, which is tailored to be target performance design-oriented, quick rough estimation of transformer design specifics may be inferred. Testing of the suggested approach revealed significant qualitative and quantitative match with measured design and performance values. Details of the proposed methodology as well as sample design results are reported in the paper. PMID:26257939
Evolutionary Algorithm for Optimal Vaccination Scheme
NASA Astrophysics Data System (ADS)
Parousis-Orthodoxou, K. J.; Vlachos, D. S.
2014-03-01
The following work uses the dynamic capabilities of an evolutionary algorithm in order to obtain an optimal immunization strategy in a user specified network. The produced algorithm uses a basic genetic algorithm with crossover and mutation techniques, in order to locate certain nodes in the inputted network. These nodes will be immunized in an SIR epidemic spreading process, and the performance of each immunization scheme, will be evaluated by the level of containment that provides for the spreading of the disease.
Zhang, Xuesong; Srinivasan, Raghavan; Van Liew, M.
2010-04-15
With the availability of spatially distributed data, distributed hydrologic models are increasingly used for simulation of spatially varied hydrologic processes to understand and manage natural and human activities that affect watershed systems. Multi-objective optimization methods have been applied to calibrate distributed hydrologic models using observed data from multiple sites. As the time consumed by running these complex models is increasing substantially, selecting efficient and effective multi-objective optimization algorithms is becoming a nontrivial issue. In this study, we evaluated a multi-algorithm, genetically adaptive multi-objective method (AMALGAM) for multi-site calibration of a distributed hydrologic model—Soil and Water Assessment Tool (SWAT), and compared its performance with two widely used evolutionary multi-objective optimization (EMO) algorithms (i.e. Strength Pareto Evolutionary Algorithm 2 (SPEA2) and Non-dominated Sorted Genetic Algorithm II (NSGA-II)). In order to provide insights into each method’s overall performance, these three methods were tested in four watersheds with various characteristics. The test results indicate that the AMALGAM can consistently provide competitive or superior results compared with the other two methods. The multi-method search framework of AMALGAM, which can flexibly and adaptively utilize multiple optimization algorithms, makes it a promising tool for multi-site calibration of the distributed SWAT. For practical use of AMALGAM, it is suggested to implement this method in multiple trials with relatively small number of model runs rather than run it once with long iterations. In addition, incorporating different multiobjective optimization algorithms and multi-mode search operators into AMALGAM deserves further research.
Evolutionary development of path planning algorithms
Hage, M
1998-09-01
This paper describes the use of evolutionary software techniques for developing both genetic algorithms and genetic programs. Genetic algorithms are evolved to solve a specific problem within a fixed and known environment. While genetic algorithms can evolve to become very optimized for their task, they often are very specialized and perform poorly if the environment changes. Genetic programs are evolved through simultaneous training in a variety of environments to develop a more general controller behavior that operates in unknown environments. Performance of genetic programs is less optimal than a specially bred algorithm for an individual environment, but the controller performs acceptably under a wider variety of circumstances. The example problem addressed in this paper is evolutionary development of algorithms and programs for path planning in nuclear environments, such as Chernobyl.
Synthesis of logic circuits with evolutionary algorithms
JONES,JAKE S.; DAVIDSON,GEORGE S.
2000-01-26
In the last decade there has been interest and research in the area of designing circuits with genetic algorithms, evolutionary algorithms, and genetic programming. However, the ability to design circuits of the size and complexity required by modern engineering design problems, simply by specifying required outputs for given inputs has as yet eluded researchers. This paper describes current research in the area of designing logic circuits using an evolutionary algorithm. The goal of the research is to improve the effectiveness of this method and make it a practical aid for design engineers. A novel method of implementing the algorithm is introduced, and results are presented for various multiprocessing systems. In addition to evolving standard arithmetic circuits, work in the area of evolving circuits that perform digital signal processing tasks is described.
Evolutionary Algorithm for Calculating Available Transfer Capability
NASA Astrophysics Data System (ADS)
Šošić, Darko; Škokljev, Ivan
2013-09-01
The paper presents an evolutionary algorithm for calculating available transfer capability (ATC). ATC is a measure of the transfer capability remaining in the physical transmission network for further commercial activity over and above already committed uses. In this paper, MATLAB software is used to determine the ATC between any bus in deregulated power systems without violating system constraints such as thermal, voltage, and stability constraints. The algorithm is applied on IEEE 5 bus system and on IEEE 30 bus system.
Automated Antenna Design with Evolutionary Algorithms
NASA Technical Reports Server (NTRS)
Linden, Derek; Hornby, Greg; Lohn, Jason; Globus, Al; Krishunkumor, K.
2006-01-01
Current methods of designing and optimizing antennas by hand are time and labor intensive, and limit complexity. Evolutionary design techniques can overcome these limitations by searching the design space and automatically finding effective solutions. In recent years, evolutionary algorithms have shown great promise in finding practical solutions in large, poorly understood design spaces. In particular, spacecraft antenna design has proven tractable to evolutionary design techniques. Researchers have been investigating evolutionary antenna design and optimization since the early 1990s, and the field has grown in recent years as computer speed has increased and electromagnetic simulators have improved. Two requirements-compliant antennas, one for ST5 and another for TDRS-C, have been automatically designed by evolutionary algorithms. The ST5 antenna is slated to fly this year, and a TDRS-C phased array element has been fabricated and tested. Such automated evolutionary design is enabled by medium-to-high quality simulators and fast modern computers to evaluate computer-generated designs. Evolutionary algorithms automate cut-and-try engineering, substituting automated search though millions of potential designs for intelligent search by engineers through a much smaller number of designs. For evolutionary design, the engineer chooses the evolutionary technique, parameters and the basic form of the antenna, e.g., single wire for ST5 and crossed-element Yagi for TDRS-C. Evolutionary algorithms then search for optimal configurations in the space defined by the engineer. NASA's Space Technology 5 (ST5) mission will launch three small spacecraft to test innovative concepts and technologies. Advanced evolutionary algorithms were used to automatically design antennas for ST5. The combination of wide beamwidth for a circularly-polarized wave and wide impedance bandwidth made for a challenging antenna design problem. From past experience in designing wire antennas, we chose to
Knowledge Guided Evolutionary Algorithms in Financial Investing
ERIC Educational Resources Information Center
Wimmer, Hayden
2013-01-01
A large body of literature exists on evolutionary computing, genetic algorithms, decision trees, codified knowledge, and knowledge management systems; however, the intersection of these computing topics has not been widely researched. Moving through the set of all possible solutions--or traversing the search space--at random exhibits no control…
Bell-Curve Based Evolutionary Optimization Algorithm
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, J.; Laba, K.; Kincaid, R.
1998-01-01
The paper presents an optimization algorithm that falls in the category of genetic, or evolutionary algorithms. While the bit exchange is the basis of most of the Genetic Algorithms (GA) in research and applications in America, some alternatives, also in the category of evolutionary algorithms, but use a direct, geometrical approach have gained popularity in Europe and Asia. The Bell-Curve Based Evolutionary Algorithm (BCB) is in this alternative category and is distinguished by the use of a combination of n-dimensional geometry and the normal distribution, the bell-curve, in the generation of the offspring. The tool for creating a child is a geometrical construct comprising a line connecting two parents and a weighted point on that line. The point that defines the child deviates from the weighted point in two directions: parallel and orthogonal to the connecting line, the deviation in each direction obeying a probabilistic distribution. Tests showed satisfactory performance of BCB. The principal advantage of BCB is its controllability via the normal distribution parameters and the geometrical construct variables.
Effective multi-objective optimization with the coral reefs optimization algorithm
NASA Astrophysics Data System (ADS)
Salcedo-Sanz, S.; Pastor-Sánchez, A.; Portilla-Figueras, J. A.; Prieto, L.
2016-06-01
In this article a new algorithm for multi-objective optimization is presented, the Multi-Objective Coral Reefs Optimization (MO-CRO) algorithm. The algorithm is based on the simulation of processes in coral reefs, such as corals' reproduction and fight for space in the reef. The adaptation to multi-objective problems is a process based on domination or non-domination during the process of fight for space in the reef. The final MO-CRO is an easily-implemented and fast algorithm, simple and robust, since it is able to keep diversity in the population of corals (solutions) in a natural way. The experimental evaluation of this new approach for multi-objective optimization problems is carried out on different multi-objective benchmark problems, where the MO-CRO has shown excellent performance in cases with limited computational resources, and in a real-world problem of wind speed prediction, where the MO-CRO algorithm is used to find the best set of features to predict the wind speed, taking into account two objective functions related to the performance of the prediction and the computation time of the regressor.
Protein Structure Prediction with Evolutionary Algorithms
Hart, W.E.; Krasnogor, N.; Pelta, D.A.; Smith, J.
1999-02-08
Evolutionary algorithms have been successfully applied to a variety of molecular structure prediction problems. In this paper we reconsider the design of genetic algorithms that have been applied to a simple protein structure prediction problem. Our analysis considers the impact of several algorithmic factors for this problem: the confirmational representation, the energy formulation and the way in which infeasible conformations are penalized, Further we empirically evaluated the impact of these factors on a small set of polymer sequences. Our analysis leads to specific recommendations for both GAs as well as other heuristic methods for solving PSP on the HP model.
Multi-objective evolutionary optimization for greywater reuse in municipal sewer systems.
Penn, Roni; Friedler, Eran; Ostfeld, Avi
2013-10-01
Sustainable design and implementation of greywater reuse (GWR) has to achieve an optimum compromise between costs and potable water demand reduction. Studies show that GWR is an efficient tool for reducing potable water demand. This study presents a multi-objective optimization model for estimating the optimal distribution of different types of GWR homes in an existing municipal sewer system. Six types of GWR homes were examined. The model constrains the momentary wastewater (WW) velocity in the sewer pipes (which is responsible for solids movement). The objective functions in the optimization model are the total WW flow at the outlet of the neighborhoods sewer system and the cost of the on-site GWR treatment system. The optimization routing was achieved by an evolutionary multi-objective optimization coupled with hydrodynamic simulations of a representative sewer system of a neighborhood located at the coast of Israel. The two non-dominated best solutions selected were the ones having either the smallest WW flow discharged at the outlet of the neighborhood sewer system or the lowest daily cost. In both solutions most of the GWR types chosen were the types resulting with the smallest water usage. This lead to only a small difference between the two best solutions, regarding the diurnal patterns of the WW flows at the outlet of the neighborhood sewer system. However, in the upstream link a substantial difference was depicted between the diurnal patterns. This difference occurred since to the upstream links only few homes, implementing the same type of GWR, discharge their WW, and in each solution a different type of GWR was implemented in these upstream homes. To the best of our knowledge this is the first multi-objective optimization model aimed at quantitatively trading off the cost of local/onsite GW spatially distributed reuse treatments, and the total amount of WW flow discharged into the municipal sewer system under unsteady flow conditions. PMID:23932104
NASA Astrophysics Data System (ADS)
Mahmoodabadi, M. J.; Bagheri, A.; Nariman-zadeh, N.; Jamali, A.
2012-10-01
Particle swarm optimization (PSO) is a randomized and population-based optimization method that was inspired by the flocking behaviour of birds and human social interactions. In this work, multi-objective PSO is modified in two stages. In the first stage, PSO is combined with convergence and divergence operators. Here, this method is named CDPSO. In the second stage, to produce a set of Pareto optimal solutions which has good convergence, diversity and distribution, two mechanisms are used. In the first mechanism, a new leader selection method is defined, which uses the periodic iteration and the concept of the particle's neighbour number. This method is named periodic multi-objective algorithm. In the second mechanism, an adaptive elimination method is employed to limit the number of non-dominated solutions in the archive, which has influences on computational time, convergence and diversity of solution. Single-objective results show that CDPSO performs very well on the complex test functions in terms of solution accuracy and convergence speed. Furthermore, some benchmark functions are used to evaluate the performance of periodic multi-objective CDPSO. This analysis demonstrates that the proposed algorithm operates better in three metrics through comparison with three well-known elitist multi-objective evolutionary algorithms. Finally, the algorithm is used for Pareto optimal design of a two-degree of freedom vehicle vibration model. The conflicting objective functions are sprung mass acceleration and relative displacement between sprung mass and tyre. The feasibility and efficiency of periodic multi-objective CDPSO are assessed in comparison with multi-objective modified NSGAII.
Wen, Tingxi; Zhang, Zhongnan; Wong, Kelvin K L
2016-01-01
Unmanned aerial vehicle (UAV) has been widely used in many industries. In the medical environment, especially in some emergency situations, UAVs play an important role such as the supply of medicines and blood with speed and efficiency. In this paper, we study the problem of multi-objective blood supply by UAVs in such emergency situations. This is a complex problem that includes maintenance of the supply blood's temperature model during transportation, the UAVs' scheduling and routes' planning in case of multiple sites requesting blood, and limited carrying capacity. Most importantly, we need to study the blood's temperature change due to the external environment, the heating agent (or refrigerant) and time factor during transportation, and propose an optimal method for calculating the mixing proportion of blood and appendage in different circumstances and delivery conditions. Then, by introducing the idea of transportation appendage into the traditional Capacitated Vehicle Routing Problem (CVRP), this new problem is proposed according to the factors of distance and weight. Algorithmically, we use the combination of decomposition-based multi-objective evolutionary algorithm and local search method to perform a series of experiments on the CVRP public dataset. By comparing our technique with the traditional ones, our algorithm can obtain better optimization results and time performance. PMID:27163361
Wen, Tingxi; Zhang, Zhongnan; Wong, Kelvin K. L.
2016-01-01
Unmanned aerial vehicle (UAV) has been widely used in many industries. In the medical environment, especially in some emergency situations, UAVs play an important role such as the supply of medicines and blood with speed and efficiency. In this paper, we study the problem of multi-objective blood supply by UAVs in such emergency situations. This is a complex problem that includes maintenance of the supply blood’s temperature model during transportation, the UAVs’ scheduling and routes’ planning in case of multiple sites requesting blood, and limited carrying capacity. Most importantly, we need to study the blood’s temperature change due to the external environment, the heating agent (or refrigerant) and time factor during transportation, and propose an optimal method for calculating the mixing proportion of blood and appendage in different circumstances and delivery conditions. Then, by introducing the idea of transportation appendage into the traditional Capacitated Vehicle Routing Problem (CVRP), this new problem is proposed according to the factors of distance and weight. Algorithmically, we use the combination of decomposition-based multi-objective evolutionary algorithm and local search method to perform a series of experiments on the CVRP public dataset. By comparing our technique with the traditional ones, our algorithm can obtain better optimization results and time performance. PMID:27163361
Use of evolutionary algorithms for telescope scheduling
NASA Astrophysics Data System (ADS)
Grim, Ruud; Jansen, Mischa; Baan, Arno; van Hemert, Jano; de Wolf, Hans
2002-07-01
LOFAR, a new radio telescope, will be designed to observe with up to 8 independent beams, thus allowing several simultaneous observations. Scheduling of multiple observations parallel in time, each having their own constraints, requires a more intelligent and flexible scheduling function then operated before. In support of the LOFAR radio telescope project, and in co-operation with Leiden University, Fokker Space has started a study to investigate the suitability of the use of evolutionary algorithms applied to complex scheduling problems. After a positive familiarization phase, we now examine the potential use of evolutionary algorithms via a demonstration project. Results of the familiarization phase, and the first results of the demonstration project are presented in this paper.
Evolutionary algorithms and multi-agent systems
NASA Astrophysics Data System (ADS)
Oh, Jae C.
2006-05-01
This paper discusses how evolutionary algorithms are related to multi-agent systems and the possibility of military applications using the two disciplines. In particular, we present a game theoretic model for multi-agent resource distribution and allocation where agents in the environment must help each other to survive. Each agent maintains a set of variables representing actual friendship and perceived friendship. The model directly addresses problems in reputation management schemes in multi-agent systems and Peer-to-Peer distributed systems. We present algorithms based on evolutionary game process for maintaining the friendship values as well as a utility equation used in each agent's decision making. For an application problem, we adapted our formal model to the military coalition support problem in peace-keeping missions. Simulation results show that efficient resource allocation and sharing with minimum communication cost is achieved without centralized control.
NASA Astrophysics Data System (ADS)
Venkata Rao, R.; Patel, Vivek
2012-08-01
This study explores the use of teaching-learning-based optimization (TLBO) and artificial bee colony (ABC) algorithms for determining the optimum operating conditions of combined Brayton and inverse Brayton cycles. Maximization of thermal efficiency and specific work of the system are considered as the objective functions and are treated simultaneously for multi-objective optimization. Upper cycle pressure ratio and bottom cycle expansion pressure of the system are considered as design variables for the multi-objective optimization. An application example is presented to demonstrate the effectiveness and accuracy of the proposed algorithms. The results of optimization using the proposed algorithms are validated by comparing with those obtained by using the genetic algorithm (GA) and particle swarm optimization (PSO) on the same example. Improvement in the results is obtained by the proposed algorithms. The results of effect of variation of the algorithm parameters on the convergence and fitness values of the objective functions are reported.
Stochastic Evolutionary Algorithms for Planning Robot Paths
NASA Technical Reports Server (NTRS)
Fink, Wolfgang; Aghazarian, Hrand; Huntsberger, Terrance; Terrile, Richard
2006-01-01
A computer program implements stochastic evolutionary algorithms for planning and optimizing collision-free paths for robots and their jointed limbs. Stochastic evolutionary algorithms can be made to produce acceptably close approximations to exact, optimal solutions for path-planning problems while often demanding much less computation than do exhaustive-search and deterministic inverse-kinematics algorithms that have been used previously for this purpose. Hence, the present software is better suited for application aboard robots having limited computing capabilities (see figure). The stochastic aspect lies in the use of simulated annealing to (1) prevent trapping of an optimization algorithm in local minima of an energy-like error measure by which the fitness of a trial solution is evaluated while (2) ensuring that the entire multidimensional configuration and parameter space of the path-planning problem is sampled efficiently with respect to both robot joint angles and computation time. Simulated annealing is an established technique for avoiding local minima in multidimensional optimization problems, but has not, until now, been applied to planning collision-free robot paths by use of low-power computers.
Intervals in evolutionary algorithms for global optimization
Patil, R.B.
1995-05-01
Optimization is of central concern to a number of disciplines. Interval Arithmetic methods for global optimization provide us with (guaranteed) verified results. These methods are mainly restricted to the classes of objective functions that are twice differentiable and use a simple strategy of eliminating a splitting larger regions of search space in the global optimization process. An efficient approach that combines the efficient strategy from Interval Global Optimization Methods and robustness of the Evolutionary Algorithms is proposed. In the proposed approach, search begins with randomly created interval vectors with interval widths equal to the whole domain. Before the beginning of the evolutionary process, fitness of these interval parameter vectors is defined by evaluating the objective function at the center of the initial interval vectors. In the subsequent evolutionary process the local optimization process returns an estimate of the bounds of the objective function over the interval vectors. Though these bounds may not be correct at the beginning due to large interval widths and complicated function properties, the process of reducing interval widths over time and a selection approach similar to simulated annealing helps in estimating reasonably correct bounds as the population evolves. The interval parameter vectors at these estimated bounds (local optima) are then subjected to crossover and mutation operators. This evolutionary process continues for predetermined number of generations in the search of the global optimum.
Predicting polymeric crystal structures by evolutionary algorithms
NASA Astrophysics Data System (ADS)
Zhu, Qiang; Sharma, Vinit; Oganov, Artem R.; Ramprasad, Ramamurthy
2014-10-01
The recently developed evolutionary algorithm USPEX proved to be a tool that enables accurate and reliable prediction of structures. Here we extend this method to predict the crystal structure of polymers by constrained evolutionary search, where each monomeric unit is treated as a building block with fixed connectivity. This greatly reduces the search space and allows the initial structure generation with different sequences and packings of these blocks. The new constrained evolutionary algorithm is successfully tested and validated on a diverse range of experimentally known polymers, namely, polyethylene, polyacetylene, poly(glycolic acid), poly(vinyl chloride), poly(oxymethylene), poly(phenylene oxide), and poly (p-phenylene sulfide). By fixing the orientation of polymeric chains, this method can be further extended to predict the structures of complex linear polymers, such as all polymorphs of poly(vinylidene fluoride), nylon-6 and cellulose. The excellent agreement between predicted crystal structures and experimentally known structures assures a major role of this approach in the efficient design of the future polymeric materials.
NASA Astrophysics Data System (ADS)
Peralta, Richard C.; Forghani, Ali; Fayad, Hala
2014-04-01
Many real water resources optimization problems involve conflicting objectives for which the main goal is to find a set of optimal solutions on, or near to the Pareto front. E-constraint and weighting multiobjective optimization techniques have shortcomings, especially as the number of objectives increases. Multiobjective Genetic Algorithms (MGA) have been previously proposed to overcome these difficulties. Here, an MGA derives a set of optimal solutions for multiobjective multiuser conjunctive use of reservoir, stream, and (un)confined groundwater resources. The proposed methodology is applied to a hydraulically and economically nonlinear system in which all significant flows, including stream-aquifer-reservoir-diversion-return flow interactions, are simulated and optimized simultaneously for multiple periods. Neural networks represent constrained state variables. The addressed objectives that can be optimized simultaneously in the coupled simulation-optimization model are: (1) maximizing water provided from sources, (2) maximizing hydropower production, and (3) minimizing operation costs of transporting water from sources to destinations. Results show the efficiency of multiobjective genetic algorithms for generating Pareto optimal sets for complex nonlinear multiobjective optimization problems.
PARALLEL MULTIOBJECTIVE EVOLUTIONARY ALGORITHMS FOR WASTE SOLVENT RECYCLING
Waste solvents are of great concern to the chemical process industries and to the public, and many technologies have been suggested and implemented in the chemical process industries to reduce waste and associated environmental impacts. In this article we have developed a novel p...
Heinonen, Jari; Kukkonen, Saku; Sainio, Tuomo
2014-09-01
Performance characteristics of two advanced multi-column chromatographic separation processes with discontinuous feed, Multi-Column Recycling Chromatogrphy (MCRC) and Japan Organo (JO), were investigated for a ternary separation using multi-objective optimization with an evolutionary algorithm. Conventional batch process was used as a reference. Fractionation of a concentrated acid hydrolysate of wood biomass into sulfuric acid, monosaccharide, and acetic acid fractions was used as a model system. Comparison of the separation processes was based on selected performance parameters in their optimized states. Flow rates and step durations were taken as decision variables whereas the column configuration and dimensions were fixed. The MCRC process was found to be considerably more efficient than the other processes with respect to eluent consumption. The batch process gave the highest productivity and the JO process the lowest. Both of the multi-column processes gave significantly higher monosaccharide yield than the batch process. When eluent consumption and monosaccharide yield are taken into account together with productivity, the MCRC process was found to be the most efficient in the studied case. PMID:25060000
Compromise Approach-Based Genetic Algorithm for Constrained Multiobjective Portfolio Selection Model
NASA Astrophysics Data System (ADS)
Li, Jun
In this paper, fuzzy set theory is incorporated into a multiobjective portfolio selection model for investors’ taking into three criteria: return, risk and liquidity. The cardinality constraint, the buy-in threshold constraint and the round-lots constraints are considered in the proposed model. To overcome the difficulty of evaluation a large set of efficient solutions and selection of the best one on non-dominated surface, a compromise approach-based genetic algorithm is presented to obtain a compromised solution for the proposed constrained multiobjective portfolio selection model.
Improved multi-objective ant colony optimization algorithm and its application in complex reasoning
NASA Astrophysics Data System (ADS)
Wang, Xinqing; Zhao, Yang; Wang, Dong; Zhu, Huijie; Zhang, Qing
2013-09-01
The problem of fault reasoning has aroused great concern in scientific and engineering fields. However, fault investigation and reasoning of complex system is not a simple reasoning decision-making problem. It has become a typical multi-constraint and multi-objective reticulate optimization decision-making problem under many influencing factors and constraints. So far, little research has been carried out in this field. This paper transforms the fault reasoning problem of complex system into a paths-searching problem starting from known symptoms to fault causes. Three optimization objectives are considered simultaneously: maximum probability of average fault, maximum average importance, and minimum average complexity of test. Under the constraints of both known symptoms and the causal relationship among different components, a multi-objective optimization mathematical model is set up, taking minimizing cost of fault reasoning as the target function. Since the problem is non-deterministic polynomial-hard(NP-hard), a modified multi-objective ant colony algorithm is proposed, in which a reachability matrix is set up to constrain the feasible search nodes of the ants and a new pseudo-random-proportional rule and a pheromone adjustment mechinism are constructed to balance conflicts between the optimization objectives. At last, a Pareto optimal set is acquired. Evaluation functions based on validity and tendency of reasoning paths are defined to optimize noninferior set, through which the final fault causes can be identified according to decision-making demands, thus realize fault reasoning of the multi-constraint and multi-objective complex system. Reasoning results demonstrate that the improved multi-objective ant colony optimization(IMACO) can realize reasoning and locating fault positions precisely by solving the multi-objective fault diagnosis model, which provides a new method to solve the problem of multi-constraint and multi-objective fault diagnosis and
Evolutionary algorithm for metabolic pathways synthesis.
Gerard, Matias F; Stegmayer, Georgina; Milone, Diego H
2016-06-01
Metabolic pathway building is an active field of research, necessary to understand and manipulate the metabolism of organisms. There are different approaches, mainly based on classical search methods, to find linear sequences of reactions linking two compounds. However, an important limitation of these methods is the exponential increase of search trees when a large number of compounds and reactions is considered. Besides, such models do not take into account all substrates for each reaction during the search, leading to solutions that lack biological feasibility in many cases. This work proposes a new evolutionary algorithm that allows searching not only linear, but also branched metabolic pathways, formed by feasible reactions that relate multiple compounds simultaneously. Tests performed using several sets of reactions show that this algorithm is able to find feasible linear and branched metabolic pathways. PMID:27080162
Performance Comparison Of Evolutionary Algorithms For Image Clustering
NASA Astrophysics Data System (ADS)
Civicioglu, P.; Atasever, U. H.; Ozkan, C.; Besdok, E.; Karkinli, A. E.; Kesikoglu, A.
2014-09-01
Evolutionary computation tools are able to process real valued numerical sets in order to extract suboptimal solution of designed problem. Data clustering algorithms have been intensively used for image segmentation in remote sensing applications. Despite of wide usage of evolutionary algorithms on data clustering, their clustering performances have been scarcely studied by using clustering validation indexes. In this paper, the recently proposed evolutionary algorithms (i.e., Artificial Bee Colony Algorithm (ABC), Gravitational Search Algorithm (GSA), Cuckoo Search Algorithm (CS), Adaptive Differential Evolution Algorithm (JADE), Differential Search Algorithm (DSA) and Backtracking Search Optimization Algorithm (BSA)) and some classical image clustering techniques (i.e., k-means, fcm, som networks) have been used to cluster images and their performances have been compared by using four clustering validation indexes. Experimental test results exposed that evolutionary algorithms give more reliable cluster-centers than classical clustering techniques, but their convergence time is quite long.
NASA Astrophysics Data System (ADS)
Creaco, E.; Berardi, L.; Sun, Siao; Giustolisi, O.; Savic, D.
2016-04-01
The growing availability of field data, from information and communication technologies (ICTs) in "smart" urban infrastructures, allows data modeling to understand complex phenomena and to support management decisions. Among the analyzed phenomena, those related to storm water quality modeling have recently been gaining interest in the scientific literature. Nonetheless, the large amount of available data poses the problem of selecting relevant variables to describe a phenomenon and enable robust data modeling. This paper presents a procedure for the selection of relevant input variables using the multiobjective evolutionary polynomial regression (EPR-MOGA) paradigm. The procedure is based on scrutinizing the explanatory variables that appear inside the set of EPR-MOGA symbolic model expressions of increasing complexity and goodness of fit to target output. The strategy also enables the selection to be validated by engineering judgement. In such context, the multiple case study extension of EPR-MOGA, called MCS-EPR-MOGA, is adopted. The application of the proposed procedure to modeling storm water quality parameters in two French catchments shows that it was able to significantly reduce the number of explanatory variables for successive analyses. Finally, the EPR-MOGA models obtained after the input selection are compared with those obtained by using the same technique without benefitting from input selection and with those obtained in previous works where other data-modeling techniques were used on the same data. The comparison highlights the effectiveness of both EPR-MOGA and the input selection procedure.
Wind farm optimization using evolutionary algorithms
NASA Astrophysics Data System (ADS)
Ituarte-Villarreal, Carlos M.
In recent years, the wind power industry has focused its efforts on solving the Wind Farm Layout Optimization (WFLO) problem. Wind resource assessment is a pivotal step in optimizing the wind-farm design and siting and, in determining whether a project is economically feasible or not. In the present work, three (3) different optimization methods are proposed for the solution of the WFLO: (i) A modified Viral System Algorithm applied to the optimization of the proper location of the components in a wind-farm to maximize the energy output given a stated wind environment of the site. The optimization problem is formulated as the minimization of energy cost per unit produced and applies a penalization for the lack of system reliability. The viral system algorithm utilized in this research solves three (3) well-known problems in the wind-energy literature; (ii) a new multiple objective evolutionary algorithm to obtain optimal placement of wind turbines while considering the power output, cost, and reliability of the system. The algorithm presented is based on evolutionary computation and the objective functions considered are the maximization of power output, the minimization of wind farm cost and the maximization of system reliability. The final solution to this multiple objective problem is presented as a set of Pareto solutions and, (iii) A hybrid viral-based optimization algorithm adapted to find the proper component configuration for a wind farm with the introduction of the universal generating function (UGF) analytical approach to discretize the different operating or mechanical levels of the wind turbines in addition to the various wind speed states. The proposed methodology considers the specific probability functions of the wind resource to describe their proper behaviors to account for the stochastic comportment of the renewable energy components, aiming to increase their power output and the reliability of these systems. The developed heuristic considers a
NASA Astrophysics Data System (ADS)
Bansal, Shonak; Singh, Arun Kumar; Gupta, Neena
2016-07-01
In real-life, multi-objective engineering design problems are very tough and time consuming optimization problems due to their high degree of nonlinearities, complexities and inhomogeneity. Nature-inspired based multi-objective optimization algorithms are now becoming popular for solving multi-objective engineering design problems. This paper proposes original multi-objective Bat algorithm (MOBA) and its extended form, namely, novel parallel hybrid multi-objective Bat algorithm (PHMOBA) to generate shortest length Golomb ruler called optimal Golomb ruler (OGR) sequences at a reasonable computation time. The OGRs found their application in optical wavelength division multiplexing (WDM) systems as channel-allocation algorithm to reduce the four-wave mixing (FWM) crosstalk. The performances of both the proposed algorithms to generate OGRs as optical WDM channel-allocation is compared with other existing classical computing and nature-inspired algorithms, including extended quadratic congruence (EQC), search algorithm (SA), genetic algorithms (GAs), biogeography based optimization (BBO) and big bang-big crunch (BB-BC) optimization algorithms. Simulations conclude that the proposed parallel hybrid multi-objective Bat algorithm works efficiently as compared to original multi-objective Bat algorithm and other existing algorithms to generate OGRs for optical WDM systems. The algorithm PHMOBA to generate OGRs, has higher convergence and success rate than original MOBA. The efficiency improvement of proposed PHMOBA to generate OGRs up to 20-marks, in terms of ruler length and total optical channel bandwidth (TBW) is 100 %, whereas for original MOBA is 85 %. Finally the implications for further research are also discussed.
NASA Astrophysics Data System (ADS)
Karakla, Diane M.; Pontoppidan, K.; Shyrokov, A.; Beck, T. L.; Valenti, J. A.; Soderblom, D. R.; Tumlinson, J.; Muzerolle, J.
2014-01-01
Planning observations for the JWST NIRSpec Multi-Object Spectroscopy will be complex because of the fixed-grid nature of the Micro-Shutter Arrays (MSAs) used for this instrument mode. Two algorithms have been incorporated into the 'MSA Planning Tool' (MPT) in the Astronomers Proposal Tools (APT) for this NIRSpec observation planning process. The 'Basic Algorithm' and the 'Constrained Algorithm' both determine a set of on-sky pointing positions which yield an optimal number of science sources observed per MSA shutter configuration, but these algorithms have different strategies for generating their observing plans. The Basic algorithm uses a defined set of fixed dithers specified by the observer, while the Constrained algorithm can more flexibly define dithers by merely constraining offsets from one pointing position to the next. Each algorithm offers advantages for different observing cases. This poster describes the two algorithms and their products, and clarifies observing cases where clear planning advantages are offered by each.
Yoshimaru, Eriko S.; Randtke, Edward A.; Pagel, Mark D.; Cárdenas-Rodríguez, Julio
2016-01-01
Pulsed Chemical Exchange Saturation Transfer (CEST) MRI experimental parameters and RF saturation pulse shapes were optimized using a multiobjective genetic algorithm. The optimization was carried out for RF saturation duty cycles of 50% and 90%, and results were compared to continuous wave saturation and Gaussian waveform. In both simulation and phantom experiments, continuous wave saturation performed the best, followed by parameters and shapes optimized by the genetic algorithm and then followed by Gaussian waveform. We have successfully demonstrated that the genetic algorithm is able to optimize pulse CEST parameters and that the results are translatable to clinical scanners. PMID:26778301
NASA Astrophysics Data System (ADS)
Yoshimaru, Eriko S.; Randtke, Edward A.; Pagel, Mark D.; Cárdenas-Rodríguez, Julio
2016-02-01
Pulsed Chemical Exchange Saturation Transfer (CEST) MRI experimental parameters and RF saturation pulse shapes were optimized using a multiobjective genetic algorithm. The optimization was carried out for RF saturation duty cycles of 50% and 90%, and results were compared to continuous wave saturation and Gaussian waveform. In both simulation and phantom experiments, continuous wave saturation performed the best, followed by parameters and shapes optimized by the genetic algorithm and then followed by Gaussian waveform. We have successfully demonstrated that the genetic algorithm is able to optimize pulse CEST parameters and that the results are translatable to clinical scanners.
Multi-objective genetic algorithm for the optimization of a flat-plate solar thermal collector.
Mayer, Alexandre; Gaouyat, Lucie; Nicolay, Delphine; Carletti, Timoteo; Deparis, Olivier
2014-10-20
We present a multi-objective genetic algorithm we developed for the optimization of a flat-plate solar thermal collector. This collector consists of a waffle-shaped Al substrate with NiCrOx cermet and SnO(2) anti-reflection conformal coatings. Optimal geometrical parameters are determined in order to (i) maximize the solar absorptance α and (ii) minimize the thermal emittance ε. The multi-objective genetic algorithm eventually provides a whole set of Pareto-optimal solutions for the optimization of α and ε, which turn out to be competitive with record values found in the literature. In particular, a solution that enables α = 97.8% and ε = 4.8% was found. PMID:25607321
Multi-objective optimization of lithium-ion battery model using genetic algorithm approach
NASA Astrophysics Data System (ADS)
Zhang, Liqiang; Wang, Lixin; Hinds, Gareth; Lyu, Chao; Zheng, Jun; Li, Junfu
2014-12-01
A multi-objective parameter identification method for modeling of Li-ion battery performance is presented. Terminal voltage and surface temperature curves at 15 °C and 30 °C are used as four identification objectives. The Pareto fronts of two types of Li-ion battery are obtained using the modified multi-objective genetic algorithm NSGA-II and the final identification results are selected using the multiple criteria decision making method TOPSIS. The simulated data using the final identification results are in good agreement with experimental data under a range of operating conditions. The validation results demonstrate that the modified NSGA-II and TOPSIS algorithms can be used as robust and reliable tools for identifying parameters of multi-physics models for many types of Li-ion batteries.
NASA Astrophysics Data System (ADS)
Wang, Congzhe; Fang, Yuefa; Guo, Sheng
2015-07-01
Dimensional synthesis is one of the most difficult issues in the field of parallel robots with actuation redundancy. To deal with the optimal design of a redundantly actuated parallel robot used for ankle rehabilitation, a methodology of dimensional synthesis based on multi-objective optimization is presented. First, the dimensional synthesis of the redundant parallel robot is formulated as a nonlinear constrained multi-objective optimization problem. Then four objective functions, separately reflecting occupied space, input/output transmission and torque performances, and multi-criteria constraints, such as dimension, interference and kinematics, are defined. In consideration of the passive exercise of plantar/dorsiflexion requiring large output moment, a torque index is proposed. To cope with the actuation redundancy of the parallel robot, a new output transmission index is defined as well. The multi-objective optimization problem is solved by using a modified Differential Evolution(DE) algorithm, which is characterized by new selection and mutation strategies. Meanwhile, a special penalty method is presented to tackle the multi-criteria constraints. Finally, numerical experiments for different optimization algorithms are implemented. The computation results show that the proposed indices of output transmission and torque, and constraint handling are effective for the redundant parallel robot; the modified DE algorithm is superior to the other tested algorithms, in terms of the ability of global search and the number of non-dominated solutions. The proposed methodology of multi-objective optimization can be also applied to the dimensional synthesis of other redundantly actuated parallel robots only with rotational movements.
Multiobjective synchronization of coupled systems
NASA Astrophysics Data System (ADS)
Tang, Yang; Wang, Zidong; Wong, W. K.; Kurths, Jürgen; Fang, Jian-an
2011-06-01
In this paper, multiobjective synchronization of chaotic systems is investigated by especially simultaneously minimizing optimization of control cost and convergence speed. The coupling form and coupling strength are optimized by an improved multiobjective evolutionary approach that includes a hybrid chromosome representation. The hybrid encoding scheme combines binary representation with real number representation. The constraints on the coupling form are also considered by converting the multiobjective synchronization into a multiobjective constraint problem. In addition, the performances of the adaptive learning method and non-dominated sorting genetic algorithm-II as well as the effectiveness and contributions of the proposed approach are analyzed and validated through the Rössler system in a chaotic or hyperchaotic regime and delayed chaotic neural networks.
Mahmoodabadi, M. J.; Taherkhorsandi, M.; Bagheri, A.
2014-01-01
An optimal robust state feedback tracking controller is introduced to control a biped robot. In the literature, the parameters of the controller are usually determined by a tedious trial and error process. To eliminate this process and design the parameters of the proposed controller, the multiobjective evolutionary algorithms, that is, the proposed method, modified NSGAII, Sigma method, and MATLAB's Toolbox MOGA, are employed in this study. Among the used evolutionary optimization algorithms to design the controller for biped robots, the proposed method operates better in the aspect of designing the controller since it provides ample opportunities for designers to choose the most appropriate point based upon the design criteria. Three points are chosen from the nondominated solutions of the obtained Pareto front based on two conflicting objective functions, that is, the normalized summation of angle errors and normalized summation of control effort. Obtained results elucidate the efficiency of the proposed controller in order to control a biped robot. PMID:24616619
Zhang, Wenlong; Wang, Chao; Li, Yi; Wang, Peifang; Wang, Qing; Wang, Dawei
2014-01-21
Sustainable design and implementation of wastewater reuse in China have to achieve an optimum compromise among water resources augmenting, pollutants reduction and economic profit. A systematic framework with a multiobjective optimization model is first developed considering the trade-offs among wastewater reuse supplies and demands, costs and profits, as well as pollutants reduction. Pareto fronts of wastewater reuse optimization for 31 provinces of China are obtained through nondominated sorting genetic algorithm trials. The control strategies for each province are selected on the basis of regional water resources and water environment status. On the national level, the control strategies of wastewater reuse scale, BOD5 reduction, and economic profit are 15.39 billion cubic meters, 176.31 kilotons, and 9.68 billion RMB Yuan, respectively. The driving forces of water resources augmenting and water pollution control play more important roles than economic profit during wastewater reuse expanding in China. According to the optimal allocations, reclaimed wastewater should be intensively used in municipal, domestic, and recreative sectors in the regions suffering from quantity-related water scarcity, while it should be focused on industrial users in the regions suffering from quality-related water scarcity. The results present a general picture of wastewater reuse for policy makers in China. PMID:24378011
Evolutionary algorithm for vehicle driving cycle generation.
Perhinschi, Mario G; Marlowe, Christopher; Tamayo, Sergio; Tu, Jun; Wayne, W Scott
2011-09-01
Modeling transit bus emissions and fuel economy requires a large amount of experimental data over wide ranges of operational conditions. Chassis dynamometer tests are typically performed using representative driving cycles defined based on vehicle instantaneous speed as sequences of "microtrips", which are intervals between consecutive vehicle stops. Overall significant parameters of the driving cycle, such as average speed, stops per mile, kinetic intensity, and others, are used as independent variables in the modeling process. Performing tests at all the necessary combinations of parameters is expensive and time consuming. In this paper, a methodology is proposed for building driving cycles at prescribed independent variable values using experimental data through the concatenation of "microtrips" isolated from a limited number of standard chassis dynamometer test cycles. The selection of the adequate "microtrips" is achieved through a customized evolutionary algorithm. The genetic representation uses microtrip definitions as genes. Specific mutation, crossover, and karyotype alteration operators have been defined. The Roulette-Wheel selection technique with elitist strategy drives the optimization process, which consists of minimizing the errors to desired overall cycle parameters. This utility is part of the Integrated Bus Information System developed at West Virginia University. PMID:22010377
NASA Astrophysics Data System (ADS)
Kourakos, George; Mantoglou, Aristotelis
2013-02-01
SummaryThe demand for fresh water in coastal areas and islands can be very high due to increased local needs and tourism. A multi-objective optimization methodology is developed, involving minimization of economic and environmental costs while satisfying water demand. The methodology considers desalinization of pumped water and injection of treated water into the aquifer. Variable density aquifer models are computationally intractable when integrated in optimization algorithms. In order to alleviate this problem, a multi-objective optimization algorithm is developed combining surrogate models based on Modular Neural Networks [MOSA(MNNs)]. The surrogate models are trained adaptively during optimization based on a genetic algorithm. In the crossover step, each pair of parents generates a pool of offspring which are evaluated using the fast surrogate model. Then, the most promising offspring are evaluated using the exact numerical model. This procedure eliminates errors in Pareto solution due to imprecise predictions of the surrogate model. The method has important advancements compared to previous methods such as precise evaluation of the Pareto set and alleviation of propagation of errors due to surrogate model approximations. The method is applied to an aquifer in the Greek island of Santorini. The results show that the new MOSA(MNN) algorithm offers significant reduction in computational time compared to previous methods (in the case study it requires only 5% of the time required by other methods). Further, the Pareto solution is better than the solution obtained by alternative algorithms.
Martínez-Álvarez, Antonio; Crespo-Cano, Rubén; Díaz-Tahoces, Ariadna; Cuenca-Asensi, Sergio; Ferrández Vicente, José Manuel; Fernández, Eduardo
2016-11-01
The retina is a very complex neural structure, which contains many different types of neurons interconnected with great precision, enabling sophisticated conditioning and coding of the visual information before it is passed via the optic nerve to higher visual centers. The encoding of visual information is one of the basic questions in visual and computational neuroscience and is also of seminal importance in the field of visual prostheses. In this framework, it is essential to have artificial retina systems to be able to function in a way as similar as possible to the biological retinas. This paper proposes an automatic evolutionary multi-objective strategy based on the NSGA-II algorithm for tuning retina models. Four metrics were adopted for guiding the algorithm in the search of those parameters that best approximate a synthetic retinal model output with real electrophysiological recordings. Results show that this procedure exhibits a high flexibility when different trade-offs has to be considered during the design of customized neuro prostheses. PMID:27354187
NASA Astrophysics Data System (ADS)
Wang, Ping; Wu, Guangqiang
2013-03-01
Typical multidisciplinary design optimization(MDO) has gradually been proposed to balance performances of lightweight, noise, vibration and harshness(NVH) and safety for instrument panel(IP) structure in the automotive development. Nevertheless, plastic constitutive relation of Polypropylene(PP) under different strain rates, has not been taken into consideration in current reliability-based and collaborative IP MDO design. In this paper, based on tensile test under different strain rates, the constitutive relation of Polypropylene material is studied. Impact simulation tests for head and knee bolster are carried out to meet the regulation of FMVSS 201 and FMVSS 208, respectively. NVH analysis is performed to obtain mainly the natural frequencies and corresponding mode shapes, while the crashworthiness analysis is employed to examine the crash behavior of IP structure. With the consideration of lightweight, NVH, head and knee bolster impact performance, design of experiment(DOE), response surface model(RSM), and collaborative optimization(CO) are applied to realize the determined and reliability-based optimizations, respectively. Furthermore, based on multi-objective genetic algorithm(MOGA), the optimal Pareto sets are completed to solve the multi-objective optimization(MOO) problem. The proposed research ensures the smoothness of Pareto set, enhances the ability of engineers to make a comprehensive decision about multi-objectives and choose the optimal design, and improves the quality and efficiency of MDO.
A hybrid quantum-inspired genetic algorithm for multiobjective flow shop scheduling.
Li, Bin-Bin; Wang, Ling
2007-06-01
This paper proposes a hybrid quantum-inspired genetic algorithm (HQGA) for the multiobjective flow shop scheduling problem (FSSP), which is a typical NP-hard combinatorial optimization problem with strong engineering backgrounds. On the one hand, a quantum-inspired GA (QGA) based on Q-bit representation is applied for exploration in the discrete 0-1 hyperspace by using the updating operator of quantum gate and genetic operators of Q-bit. Moreover, random-key representation is used to convert the Q-bit representation to job permutation for evaluating the objective values of the schedule solution. On the other hand, permutation-based GA (PGA) is applied for both performing exploration in permutation-based scheduling space and stressing exploitation for good schedule solutions. To evaluate solutions in multiobjective sense, a randomly weighted linear-sum function is used in QGA, and a nondominated sorting technique including classification of Pareto fronts and fitness assignment is applied in PGA with regard to both proximity and diversity of solutions. To maintain the diversity of the population, two trimming techniques for population are proposed. The proposed HQGA is tested based on some multiobjective FSSPs. Simulation results and comparisons based on several performance metrics demonstrate the effectiveness of the proposed HQGA. PMID:17550113
Multi-objective optimization to predict muscle tensions in a pinch function using genetic algorithm
NASA Astrophysics Data System (ADS)
Bensghaier, Amani; Romdhane, Lotfi; Benouezdou, Fethi
2012-03-01
This work is focused on the determination of the thumb and the index finger muscle tensions in a tip pinch task. A biomechanical model of the musculoskeletal system of the thumb and the index finger is developed. Due to the assumptions made in carrying out the biomechanical model, the formulated force analysis problem is indeterminate leading to an infinite number of solutions. Thus, constrained single and multi-objective optimization methodologies are used in order to explore the muscular redundancy and to predict optimal muscle tension distributions. Various models are investigated using the optimization process. The basic criteria to minimize are the sum of the muscle stresses, the sum of individual muscle tensions and the maximum muscle stress. The multi-objective optimization is solved using a Pareto genetic algorithm to obtain non-dominated solutions, defined as the set of optimal distributions of muscle tensions. The results show the advantage of the multi-objective formulation over the single objective one. The obtained solutions are compared to those available in the literature demonstrating the effectiveness of our approach in the analysis of the fingers musculoskeletal systems when predicting muscle tensions.
Learning evasive maneuvers using evolutionary algorithms and neural networks
NASA Astrophysics Data System (ADS)
Kang, Moung Hung
In this research, evolutionary algorithms and recurrent neural networks are combined to evolve control knowledge to help pilots avoid being struck by a missile, based on a two-dimensional air combat simulation model. The recurrent neural network is used for representing the pilot's control knowledge and evolutionary algorithms (i.e., Genetic Algorithms, Evolution Strategies, and Evolutionary Programming) are used for optimizing the weights and/or topology of the recurrent neural network. The simulation model of the two-dimensional evasive maneuver problem evolved is used for evaluating the performance of the recurrent neural network. Five typical air combat conditions were selected to evaluate the performance of the recurrent neural networks evolved by the evolutionary algorithms. Analysis of Variance (ANOVA) tests and response graphs were used to analyze the results. Overall, there was little difference in the performance of the three evolutionary algorithms used to evolve the control knowledge. However, the number of generations of each algorithm required to obtain the best performance was significantly different. ES converges the fastest, followed by EP and then by GA. The recurrent neural networks evolved by the evolutionary algorithms provided better performance than the traditional recommendations for evasive maneuvers, maximum gravitational turn, for each air combat condition. Furthermore, the recommended actions of the recurrent neural networks are reasonable and can be used for pilot training.
Multiobjective Optimization Using a Pareto Differential Evolution Approach
NASA Technical Reports Server (NTRS)
Madavan, Nateri K.; Biegel, Bryan A. (Technical Monitor)
2002-01-01
Differential Evolution is a simple, fast, and robust evolutionary algorithm that has proven effective in determining the global optimum for several difficult single-objective optimization problems. In this paper, the Differential Evolution algorithm is extended to multiobjective optimization problems by using a Pareto-based approach. The algorithm performs well when applied to several test optimization problems from the literature.
A Comparative Study of Multi-Objective Optimization Algorithms for Automatic Calibration
NASA Astrophysics Data System (ADS)
Asadzadeh, M.; Tolson, B.; Maclean, A.
2009-12-01
Hydrologic model calibration is often a computationally expensive problem that aims to find a set of parameters that simulates observations. It has been shown that no single metric can comprehensively evaluate the effectiveness of the calibration. Moreover, many of the proposed metrics are conflicting (e.g., the set of parameters that achieves accurate high flow predictions is different from the set of parameters that achieves accurate low flow predictions). Conflict is even more likely when objectives are based on different fluxes and/or state variables (e.g., streamflow versus Snow Water Equivalent (SWE)). The goal of solving a multi-objective optimization problem is to approximate the tradeoff between objectives (also called the Pareto front) that represents the attained level of each metric in comparison with other metrics and hence helps to decide on the acceptable set of parameters. In this study, a variety of algorithms are applied to solve a multi-objective (MO) model calibration problem and the performance of these algorithms is compared. The calibration case study is the MESH model (a combined land surface and hydrologic model under development by Environment Canada) applied to the Reynolds Creek Experimental Watershed. MESH is calibrated against two objectives to adequately simulate the measured streamflow and SWE. The MO algorithms applied to this calibration problem include NSGAII, SPEA2 and AMALGAM. In addition, a new MO algorithm called the Pareto Archived Dynamically Dimensioned Search (PA-DDS) is also applied. PA-DDS uses DDS as a search engine and archives all the non-dominated solutions during the search. It inherits the parsimonious characteristic of DDS, so it has only one algorithm parameter which does not need tuning. This characteristic makes PA-DDS very suitable for solving multi-objective hydrologic model calibrations, since tuning the algorithm parameters in computationally intensive models is a very time consuming process. Preliminary
Memetic algorithm-based multi-objective coverage optimization for wireless sensor networks.
Chen, Zhi; Li, Shuai; Yue, Wenjing
2014-01-01
Maintaining effective coverage and extending the network lifetime as much as possible has become one of the most critical issues in the coverage of WSNs. In this paper, we propose a multi-objective coverage optimization algorithm for WSNs, namely MOCADMA, which models the coverage control of WSNs as the multi-objective optimization problem. MOCADMA uses a memetic algorithm with a dynamic local search strategy to optimize the coverage of WSNs and achieve the objectives such as high network coverage, effective node utilization and more residual energy. In MOCADMA, the alternative solutions are represented as the chromosomes in matrix form, and the optimal solutions are selected through numerous iterations of the evolution process, including selection, crossover, mutation, local enhancement, and fitness evaluation. The experiment and evaluation results show MOCADMA can have good capabilities in maintaining the sensing coverage, achieve higher network coverage while improving the energy efficiency and effectively prolonging the network lifetime, and have a significant improvement over some existing algorithms. PMID:25360579
Memetic Algorithm-Based Multi-Objective Coverage Optimization for Wireless Sensor Networks
Chen, Zhi; Li, Shuai; Yue, Wenjing
2014-01-01
Maintaining effective coverage and extending the network lifetime as much as possible has become one of the most critical issues in the coverage of WSNs. In this paper, we propose a multi-objective coverage optimization algorithm for WSNs, namely MOCADMA, which models the coverage control of WSNs as the multi-objective optimization problem. MOCADMA uses a memetic algorithm with a dynamic local search strategy to optimize the coverage of WSNs and achieve the objectives such as high network coverage, effective node utilization and more residual energy. In MOCADMA, the alternative solutions are represented as the chromosomes in matrix form, and the optimal solutions are selected through numerous iterations of the evolution process, including selection, crossover, mutation, local enhancement, and fitness evaluation. The experiment and evaluation results show MOCADMA can have good capabilities in maintaining the sensing coverage, achieve higher network coverage while improving the energy efficiency and effectively prolonging the network lifetime, and have a significant improvement over some existing algorithms. PMID:25360579
A new multiobjective performance criterion used in PID tuning optimization algorithms
Sahib, Mouayad A.; Ahmed, Bestoun S.
2015-01-01
In PID controller design, an optimization algorithm is commonly employed to search for the optimal controller parameters. The optimization algorithm is based on a specific performance criterion which is defined by an objective or cost function. To this end, different objective functions have been proposed in the literature to optimize the response of the controlled system. These functions include numerous weighted time and frequency domain variables. However, for an optimum desired response it is difficult to select the appropriate objective function or identify the best weight values required to optimize the PID controller design. This paper presents a new time domain performance criterion based on the multiobjective Pareto front solutions. The proposed objective function is tested in the PID controller design for an automatic voltage regulator system (AVR) application using particle swarm optimization algorithm. Simulation results show that the proposed performance criterion can highly improve the PID tuning optimization in comparison with traditional objective functions. PMID:26843978
A new multiobjective performance criterion used in PID tuning optimization algorithms.
Sahib, Mouayad A; Ahmed, Bestoun S
2016-01-01
In PID controller design, an optimization algorithm is commonly employed to search for the optimal controller parameters. The optimization algorithm is based on a specific performance criterion which is defined by an objective or cost function. To this end, different objective functions have been proposed in the literature to optimize the response of the controlled system. These functions include numerous weighted time and frequency domain variables. However, for an optimum desired response it is difficult to select the appropriate objective function or identify the best weight values required to optimize the PID controller design. This paper presents a new time domain performance criterion based on the multiobjective Pareto front solutions. The proposed objective function is tested in the PID controller design for an automatic voltage regulator system (AVR) application using particle swarm optimization algorithm. Simulation results show that the proposed performance criterion can highly improve the PID tuning optimization in comparison with traditional objective functions. PMID:26843978
Low-thrust orbit transfer optimization with refined Q-law and multi-objective genetic algorithm
NASA Technical Reports Server (NTRS)
Lee, Seungwon; Petropoulos, Anastassios E.; von Allmen, Paul
2005-01-01
An optimization method for low-thrust orbit transfers around a central body is developed using the Q-law and a multi-objective genetic algorithm. in the hybrid method, the Q-law generates candidate orbit transfers, and the multi-objective genetic algorithm optimizes the Q-law control parameters in order to simultaneously minimize both the consumed propellant mass and flight time of the orbit tranfer. This paper addresses the problem of finding optimal orbit transfers for low-thrust spacecraft.
Identification of IPMC nonlinear model via single and multi-objective optimization algorithms.
Caponetto, Riccardo; Graziani, Salvatore; Pappalardo, Fulvio; Sapuppo, Francesca
2014-03-01
Ionic Polymer-Metal Composites (IPMCs) are electro-active polymers transforming mechanical forces into electric signals and vice versa. This paper proposes an improved electro-mechanical grey-box model for IPMC membrane working as actuator. In particular the IPMC nonlinearity has been characterized through experimentation and included within the electric model. Moreover identification of the model parameters has been performed via optimization algorithms using both single- and multi-objective formulation. Minimization was attained via the Nelder-Mead simplex and the Genetic Algorithms considering as cost functions the error between the experimental and modeled absorbed current and the error between experimental and modeled displacement. The obtained results for the different formulations have been then compared. PMID:24342273
A Novel Multi-objective Genetic Algorithms-Based Calculation of Hill's Coefficients
NASA Astrophysics Data System (ADS)
Hariharan, Krishnaswamy; Chakraborti, Nirupam; Barlat, Frédéric; Lee, Myoung-Gyu
2014-06-01
The anisotropic coefficients of Hill's yield criterion are determined through a novel genetic algorithms-based multi-objective optimization approach. The classical method of determining anisotropic coefficients is sensitive to the effective plastic strain. In the present procedure, that limitation is overcome using a genetically evolved meta-model of the entire stress strain curve, obtained from uniaxial tension tests conducted in the rolling direction and transverse directions, and biaxial tension. Then, an effective strain that causes the least error in terms of two theoretically derived objective functions is chosen. The anisotropic constants evolved through genetic algorithms correlate very well with the classical results. This approach is expected to be successful for more complex constitutive equations as well.
Mokeddem, Diab; Khellaf, Abdelhafid
2009-01-01
Optimal design problem are widely known by their multiple performance measures that are often competing with each other. In this paper, an optimal multiproduct batch chemical plant design is presented. The design is firstly formulated as a multiobjective optimization problem, to be solved using the well suited non dominating sorting genetic algorithm (NSGA-II). The NSGA-II have capability to achieve fine tuning of variables in determining a set of non dominating solutions distributed along the Pareto front in a single run of the algorithm. The NSGA-II ability to identify a set of optimal solutions provides the decision-maker DM with a complete picture of the optimal solution space to gain better and appropriate choices. Then an outranking with PROMETHEE II helps the decision-maker to finalize the selection of a best compromise. The effectiveness of NSGA-II method with multiojective optimization problem is illustrated through two carefully referenced examples. PMID:19543537
NASA Astrophysics Data System (ADS)
Hemmatian, Hossein; Fereidoon, Abdolhossein; Assareh, Ehsanolah
2014-09-01
The multi-objective gravitational search algorithm (MOGSA) technique is applied to hybrid laminates to achieve minimum weight and cost. The investigated laminate is made of glass-epoxy and carbon-epoxy plies to combine the economical attributes of the first with the light weight and high-stiffness properties of the second in order to make the trade-off between the cost and weight as the objective functions. The first natural flexural frequency was considered as a constraint. The results obtained using the MOGSA, including the Pareto set, optimum stacking sequences and number of plies made of either glass or carbon fibres, were compared with those using the genetic algorithm (GA) and ant colony optimization (ACO) reported in the literature. The comparisons confirmed the advantages of hybridization and showed that the MOGSA outperformed the GA and ACO in terms of the functions' value and constraint accuracy.
An overview of population-based algorithms for multi-objective optimisation
NASA Astrophysics Data System (ADS)
Giagkiozis, Ioannis; Purshouse, Robin C.; Fleming, Peter J.
2015-07-01
In this work we present an overview of the most prominent population-based algorithms and the methodologies used to extend them to multiple objective problems. Although not exact in the mathematical sense, it has long been recognised that population-based multi-objective optimisation techniques for real-world applications are immensely valuable and versatile. These techniques are usually employed when exact optimisation methods are not easily applicable or simply when, due to sheer complexity, such techniques could potentially be very costly. Another advantage is that since a population of decision vectors is considered in each generation these algorithms are implicitly parallelisable and can generate an approximation of the entire Pareto front at each iteration. A critique of their capabilities is also provided.
NASA Astrophysics Data System (ADS)
Luo, Qiankun; Wu, Jianfeng; Yang, Yun; Qian, Jiazhong; Wu, Jichun
2014-11-01
This study develops a new probabilistic multi-objective fast harmony search algorithm (PMOFHS) for optimal design of groundwater remediation systems under uncertainty associated with the hydraulic conductivity (K) of aquifers. The PMOFHS integrates the previously developed deterministic multi-objective optimization method, namely multi-objective fast harmony search algorithm (MOFHS) with a probabilistic sorting technique to search for Pareto-optimal solutions to multi-objective optimization problems in a noisy hydrogeological environment arising from insufficient K data. The PMOFHS is then coupled with the commonly used flow and transport codes, MODFLOW and MT3DMS, to identify the optimal design of groundwater remediation systems for a two-dimensional hypothetical test problem and a three-dimensional Indiana field application involving two objectives: (i) minimization of the total remediation cost through the engineering planning horizon, and (ii) minimization of the mass remaining in the aquifer at the end of the operational period, whereby the pump-and-treat (PAT) technology is used to clean up contaminated groundwater. Also, Monte Carlo (MC) analysis is employed to evaluate the effectiveness of the proposed methodology. Comprehensive analysis indicates that the proposed PMOFHS can find Pareto-optimal solutions with low variability and high reliability and is a potentially effective tool for optimizing multi-objective groundwater remediation problems under uncertainty.
NASA Astrophysics Data System (ADS)
Rabbani, Masoud; Montazeri, Mona; Farrokhi-Asl, Hamed; Rafiei, Hamed
2016-07-01
Mixed-model assembly lines are increasingly accepted in many industrial environments to meet the growing trend of greater product variability, diversification of customer demands, and shorter life cycles. In this research, a new mathematical model is presented considering balancing a mixed-model U-line and human-related issues, simultaneously. The objective function consists of two separate components. The first part of the objective function is related to balance problem. In this part, objective functions are minimizing the cycle time, minimizing the number of workstations, and maximizing the line efficiencies. The second part is related to human issues and consists of hiring cost, firing cost, training cost, and salary. To solve the presented model, two well-known multi-objective evolutionary algorithms, namely non-dominated sorting genetic algorithm and multi-objective particle swarm optimization, have been used. A simple solution representation is provided in this paper to encode the solutions. Finally, the computational results are compared and analyzed.
A genetic algorithm based multi-objective shape optimization scheme for cementless femoral implant.
Chanda, Souptick; Gupta, Sanjay; Kumar Pratihar, Dilip
2015-03-01
The shape and geometry of femoral implant influence implant-induced periprosthetic bone resorption and implant-bone interface stresses, which are potential causes of aseptic loosening in cementless total hip arthroplasty (THA). Development of a shape optimization scheme is necessary to achieve a trade-off between these two conflicting objectives. The objective of this study was to develop a novel multi-objective custom-based shape optimization scheme for cementless femoral implant by integrating finite element (FE) analysis and a multi-objective genetic algorithm (GA). The FE model of a proximal femur was based on a subject-specific CT-scan dataset. Eighteen parameters describing the nature of four key sections of the implant were identified as design variables. Two objective functions, one based on implant-bone interface failure criterion, and the other based on resorbed proximal bone mass fraction (BMF), were formulated. The results predicted by the two objective functions were found to be contradictory; a reduction in the proximal bone resorption was accompanied by a greater chance of interface failure. The resorbed proximal BMF was found to be between 23% and 27% for the trade-off geometries as compared to ∼39% for a generic implant. Moreover, the overall chances of interface failure have been minimized for the optimal designs, compared to the generic implant. The adaptive bone remodeling was also found to be minimal for the optimally designed implants and, further with remodeling, the chances of interface debonding increased only marginally. PMID:25392855
A Hybrid Cellular Genetic Algorithm for Multi-objective Crew Scheduling Problem
NASA Astrophysics Data System (ADS)
Jolai, Fariborz; Assadipour, Ghazal
Crew scheduling is one of the important problems of the airline industry. This problem aims to cover a number of flights by crew members, such that all the flights are covered. In a robust scheduling the assignment should be so that the total cost, delays, and unbalanced utilization are minimized. As the problem is NP-hard and the objectives are in conflict with each other, a multi-objective meta-heuristic called CellDE, which is a hybrid cellular genetic algorithm, is implemented as the optimization method. The proposed algorithm provides the decision maker with a set of non-dominated or Pareto-optimal solutions, and enables them to choose the best one according to their preferences. A set of problems of different sizes is generated and solved using the proposed algorithm. Evaluating the performance of the proposed algorithm, three metrics are suggested, and the diversity and the convergence of the achieved Pareto front are appraised. Finally a comparison is made between CellDE and PAES, another meta-heuristic algorithm. The results show the superiority of CellDE.
Evaluation of Genetic Algorithm Concepts Using Model Problems. Part 2; Multi-Objective Optimization
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Pulliam, Thomas H.
2003-01-01
A genetic algorithm approach suitable for solving multi-objective optimization problems is described and evaluated using a series of simple model problems. Several new features including a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. Results indicate that the genetic algorithm optimization approach is flexible in application and extremely reliable, providing optimal results for all optimization problems attempted. The binning algorithm generally provides pareto front quality enhancements and moderate convergence efficiency improvements for most of the model problems. The gene-space transformation procedure provides a large convergence efficiency enhancement for problems with non-convoluted pareto fronts and a degradation in efficiency for problems with convoluted pareto fronts. The most difficult problems --multi-mode search spaces with a large number of genes and convoluted pareto fronts-- require a large number of function evaluations for GA convergence, but always converge.
Locally-adaptive and memetic evolutionary pattern search algorithms.
Hart, William E
2003-01-01
Recent convergence analyses of evolutionary pattern search algorithms (EPSAs) have shown that these methods have a weak stationary point convergence theory for a broad class of unconstrained and linearly constrained problems. This paper describes how the convergence theory for EPSAs can be adapted to allow each individual in a population to have its own mutation step length (similar to the design of evolutionary programing and evolution strategies algorithms). These are called locally-adaptive EPSAs (LA-EPSAs) since each individual's mutation step length is independently adapted in different local neighborhoods. The paper also describes a variety of standard formulations of evolutionary algorithms that can be used for LA-EPSAs. Further, it is shown how this convergence theory can be applied to memetic EPSAs, which use local search to refine points within each iteration. PMID:12804096
Using Evolutionary Algorithms to Induce Oblique Decision Trees
Cantu-Paz, E.; Kamath, C.
2000-01-21
This paper illustrates the application of evolutionary algorithms (EAs) to the problem of oblique decision tree induction. The objectives are to demonstrate that EAs can find classifiers whose accuracy is competitive with other oblique tree construction methods, and that this can be accomplished in a shorter time. Experiments were performed with a (1+1) evolutionary strategy and a simple genetic algorithm on public domain and artificial data sets. The empirical results suggest that the EAs quickly find Competitive classifiers, and that EAs scale up better than traditional methods to the dimensionality of the domain and the number of training instances.
Evolutionary algorithms, simulated annealing, and Tabu search: a comparative study
NASA Astrophysics Data System (ADS)
Youssef, Habib; Sait, Sadiq M.; Adiche, Hakim
1998-10-01
Evolutionary algorithms, simulated annealing (SA), and Tabu Search (TS) are general iterative algorithms for combinatorial optimization. The term evolutionary algorithm is used to refer to any probabilistic algorithm whose design is inspired by evolutionary mechanisms found in biological species. Most widely known algorithms of this category are Genetic Algorithms (GA). GA, SA, and TS have been found to be very effective and robust in solving numerous problems from a wide range of application domains.Furthermore, they are even suitable for ill-posed problems where some of the parameters are not known before hand. These properties are lacking in all traditional optimization techniques. In this paper we perform a comparative study among GA, SA, and TS. These algorithms have many similarities, but they also possess distinctive features, mainly in their strategies for searching the solution state space. the three heuristics are applied on the same optimization problem and compared with respect to (1) quality of the best solution identified by each heuristic, (2) progress of the search from initial solution(s) until stopping criteria are met, (3) the progress of the cost of the best solution as a function of time, and (4) the number of solutions found at successive intervals of the cost function. The benchmark problem was is the floorplanning of very large scale integrated circuits. This is a hard multi-criteria optimization problem. Fuzzy logic is used to combine all objective criteria into a single fuzzy evaluation function, which is then used to rate competing solutions.
Multi-Objective Optimal Design of Switch Reluctance Motors Using Adaptive Genetic Algorithm
NASA Astrophysics Data System (ADS)
Rashidi, Mehran; Rashidi, Farzan
In this paper a design methodology based on multi objective genetic algorithm (MOGA) is presented to design the switched reluctance motors with multiple conflicting objectives such as efficiency, power factor, full load torque, and full load current, specified dimension, weight of cooper and iron and also manufacturing cost. The optimally designed motor is compared with an industrial motor having the same ratings. Results verify that the proposed method gives better performance for the multi-objective optimization problems. The results of optimal design show the reduction in the specified dimension, weight and manufacturing cost, and the improvement in the power factor, full load torque, and efficiency of the motor.A major advantage of the method is its quite short response time in obtaining the optimal design.
Solving multi-objective job shop scheduling problems using a non-dominated sorting genetic algorithm
NASA Astrophysics Data System (ADS)
Piroozfard, Hamed; Wong, Kuan Yew
2015-05-01
The efforts of finding optimal schedules for the job shop scheduling problems are highly important for many real-world industrial applications. In this paper, a multi-objective based job shop scheduling problem by simultaneously minimizing makespan and tardiness is taken into account. The problem is considered to be more complex due to the multiple business criteria that must be satisfied. To solve the problem more efficiently and to obtain a set of non-dominated solutions, a meta-heuristic based non-dominated sorting genetic algorithm is presented. In addition, task based representation is used for solution encoding, and tournament selection that is based on rank and crowding distance is applied for offspring selection. Swapping and insertion mutations are employed to increase diversity of population and to perform intensive search. To evaluate the modified non-dominated sorting genetic algorithm, a set of modified benchmarking job shop problems obtained from the OR-Library is used, and the results are considered based on the number of non-dominated solutions and quality of schedules obtained by the algorithm.
NASA Astrophysics Data System (ADS)
Schütze, Niels; Wöhling, Thomas; de Play, Michael
2010-05-01
Some real-world optimization problems in water resources have a high-dimensional space of decision variables and more than one objective function. In this work, we compare three general-purpose, multi-objective simulation optimization algorithms, namely NSGA-II, AMALGAM, and CMA-ES-MO when solving three real case Multi-objective Optimization Problems (MOPs): (i) a high-dimensional soil hydraulic parameter estimation problem; (ii) a multipurpose multi-reservoir operation problem; and (iii) a scheduling problem in deficit irrigation. We analyze the behaviour of the three algorithms on these test problems considering their formulations ranging from 40 up to 120 decision variables and 2 to 4 objectives. The computational effort required by each algorithm in order to reach the true Pareto front is also analyzed.
A Hybrid Evolutionary Algorithm for Wheat Blending Problem
Bonyadi, Mohammad Reza; Michalewicz, Zbigniew; Barone, Luigi
2014-01-01
This paper presents a hybrid evolutionary algorithm to deal with the wheat blending problem. The unique constraints of this problem make many existing algorithms fail: either they do not generate acceptable results or they are not able to complete optimization within the required time. The proposed algorithm starts with a filtering process that follows predefined rules to reduce the search space. Then the linear-relaxed version of the problem is solved using a standard linear programming algorithm. The result is used in conjunction with a solution generated by a heuristic method to generate an initial solution. After that, a hybrid of an evolutionary algorithm, a heuristic method, and a linear programming solver is used to improve the quality of the solution. A local search based posttuning method is also incorporated into the algorithm. The proposed algorithm has been tested on artificial test cases and also real data from past years. Results show that the algorithm is able to find quality results in all cases and outperforms the existing method in terms of both quality and speed. PMID:24707222
NASA Astrophysics Data System (ADS)
Zhang, B.; Ye, Z. F.; Xu, X.
2016-01-01
The data processing procedures currently used on most multi-object fiber spectroscopic telescopes, such as Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST), the Sloan Digital Sky Survey (SDSS), the Anglo-Australia Telescope (AAT), etc., are based on one-dimensional (1-D) algorithms. In this paper, LAMOST is taken as an example to display the proposed multi-object fiber spectral data processing procedure. In the using processing procedure on LAMOST, after the pretreatment process, the two-dimensional (2-D) observed raw data are extracted into 1-D intermediate data simply based on 1-D model. Then the subsequent key steps are all done by 1-D algorithms. However, this processing procedure is not in accord with the formation mechanism of the observed spectra. Therefore, it brings a considerable error in each step. To solve the problem, we propose a novel processing procedure that has not been used on LAMOST or other telescopes. The modules of the procedure are reordered, and the main steps are all based on 2-D algorithms. The principles of the core algorithms are explained in detail. Besides, some partial experimental results are shown to prove the effectiveness and superiority of the 2-D algorithms.
NASA Astrophysics Data System (ADS)
Aly, Mohamed F.; Nassef, Ashraf O.; Hamza, Karim
2015-05-01
This article presents a multi-objective design optimization study of a vehicle suspension system with passive variable stiffness and active damping. Design of suspension systems is particularly challenging when the effective mass of the vehicle is subject to considerable variation during service. Perfectly maintaining the suspension performance under the variable load typically requires a controlled actuator to emulate variable stiffness. This is typically done through a hydraulic or pneumatic system, which can be too costly for small/medium pick-up trucks. The system in this article employs two springs with an offset to the second spring so that it engages during large deformation only, thereby providing passive variable stiffness without expensive hydraulics. The system damping is assumed to be controlled via variable viscosity magnetizable fluid, which can be implemented in a compact, low-power set-up. Performance indices from the literature are evaluated at minimum and maximum weight, and regarded as objectives in a multi-objective problem. As the individual objectives are prone to having local optima, the multi-objective problem is prone to having a disjointed Pareto-space. To deal with this issue, a modification is proposed to a multi-objective genetic algorithm. The algorithm performance is investigated via analytical test functions as well as the design case of the suspension system.
A novel fitness evaluation method for evolutionary algorithms
NASA Astrophysics Data System (ADS)
Wang, Ji-feng; Tang, Ke-zong
2013-03-01
Fitness evaluation is a crucial task in evolutionary algorithms because it can affect the convergence speed and also the quality of the final solution. But these algorithms may require huge computation power for solving nonlinear programming problems. This paper proposes a novel fitness evaluation approach which employs similarity-base learning embedded in a classical differential evolution (SDE) to evaluate all new individuals. Each individual consists of three elements: parameter vector (v), a fitness value (f), and a reliability value(r). The f is calculated using NFEA, and only when the r is below a threshold is the f calculated using true fitness function. Moreover, applying error compensation system to the proposed algorithm further enhances the performance of the algorithm to make r much closer to true fitness value for each new child. Simulation results over a comprehensive set of benchmark functions show that the convergence rate of the proposed algorithm is much faster than much that of the compared algorithms.
Proposal of Functional-Specialization Multi-Objective Real-Coded Genetic Algorithm: FS-MOGA
NASA Astrophysics Data System (ADS)
Hamada, Naoki; Tanaka, Masaharu; Sakuma, Jun; Kobayashi, Shigenobu; Ono, Isao
This paper presents a Genetic Algorithm (GA) for multi-objective function optimization. To find a precise and widely-distributed set of solutions in difficult multi-objective function optimization problems which have multimodality and curved Pareto-optimal set, a GA would be required conflicting behaviors in the early stage and the last stage of search. That is, in the early stage of search, GA should perform local-Pareto-optima-overcoming search which aims to overcome local Pareto-optima and converge the population to promising areas in the decision variable space. On the other hand, in the last stage of search, GA should perform Pareto-frontier-covering search which aims to spread the population along the Pareto-optimal set. NSGA-II and SPEA2, the most widely used conventional methods, have problems in local-Pareto-optima-overcoming and Pareto-frontier-covering search. In local-Pareto-optima-overcoming search, their selection pressure is too high to maintain the diversity for overcoming local Pareto-optima. In Pareto-frontier-covering search, their abilities of extrapolation-directed sampling are not enough to spread the population and they cannot sample along the Pareto-optimal set properly. To resolve above problems, the proposed method adaptively switches two search strategies, each of which is specialized for local-Pareto-optima-overcoming and Pareto-frontier-covering search, respectively. We examine the effectiveness of the proposed method using two benchmark problems. The experimental results show that our approach outperforms the conventional methods in terms of both local-Pareto-optima-overcoming and Pareto-frontier-covering search.
Multiobjective optimization of temporal processes.
Song, Zhe; Kusiak, Andrew
2010-06-01
This paper presents a dynamic predictive-optimization framework of a nonlinear temporal process. Data-mining (DM) and evolutionary strategy algorithms are integrated in the framework for solving the optimization model. DM algorithms learn dynamic equations from the process data. An evolutionary strategy algorithm is then applied to solve the optimization problem guided by the knowledge extracted by the DM algorithm. The concept presented in this paper is illustrated with the data from a power plant, where the goal is to maximize the boiler efficiency and minimize the limestone consumption. This multiobjective optimization problem can be either transformed into a single-objective optimization problem through preference aggregation approaches or into a Pareto-optimal optimization problem. The computational results have shown the effectiveness of the proposed optimization framework. PMID:19900853
Multi-Objective Optimization of Heat Load and Run Time for CEBAF Linacs Using Genetic Algorithms
NASA Astrophysics Data System (ADS)
Reeves, Cody; Terzic, Balsa; Hofler, Alicia
2014-09-01
The Continuous Electron Beam Accelerator Facility (CEBAF) consists of two linear accelerators (Linacs) connected by arcs. Within each Linac, there are 200 niobium cavities that use superconducting radio frequency (SRF) to accelerate electrons. The gradients for the cavities are selected to optimize two competing objectives: heat load (the energy required to cool the cavities) and trip rate (how often the beam turns off within an hour). This results in a multidimensional, multi-objective, nonlinear system of equations that is not readily solved by analytical methods. This study improved a genetic algorithm (GA), which applies the concept of natural selection. The primary focus was making this GA more efficient to allow for more cost-effective solutions in the same amount of computation time. Two methods used were constraining the maximum value of the ob-jectives and also utilizing previously simulated solutions as the initial generation. A third method of interest involved refining the GA by combining the two objectives into a single weighted-sum objective, which collapses the set of optimal solutions into a single point. By combining these methods, the GA can be made 128 times as effective, reducing computation time from 30 min to 12 sec. This is crucial for when a cavity must be turned off, a new solution needs to be computed quickly. This work is of particular interest since it provides an efficient algorithm that can be easily adapted to any Linac facility.
NASA Astrophysics Data System (ADS)
Lahanas, Michael; Schreibmann, Eduard; Baltas, Dimos
2003-09-01
We consider the behaviour of the limited memory L-BFGS algorithm as a representative constraint-free gradient-based algorithm which is used for multiobjective (MO) dose optimization for intensity modulated radiotherapy (IMRT). Using a parameter transformation, the positivity constraint problem of negative beam fluences is entirely eliminated: a feature which to date has not been fully understood by all investigators. We analyse the global convergence properties of L-BFGS by searching for the existence and the influence of possible local minima. With a fast simulated annealing (FSA) algorithm we examine whether the L-BFGS solutions are globally Pareto optimal. The three examples used in our analysis are a brain tumour, a prostate tumour and a test case with a C-shaped PTV. In 1% of the optimizations global convergence is violated. A simple mechanism practically eliminates the influence of this failure and the obtained solutions are globally optimal. A single-objective dose optimization requires less than 4 s for 5400 parameters and 40 000 sampling points. The elimination of the problem of negative beam fluences and the high computational speed permit constraint-free gradient-based optimization algorithms to be used for MO dose optimization. In this situation, a representative spectrum of possible solutions is obtained which contains information such as the trade-off between the objectives and range of dose values. Using simple decision making tools the best of all the possible solutions can be chosen. We perform an MO dose optimization for the three examples and compare the spectra of solutions, firstly using recommended critical dose values for the organs at risk and secondly, setting these dose values to zero.
NASA Astrophysics Data System (ADS)
Bonissone, Stefano R.; Subbu, Raj
2002-12-01
In multi-objective optimization (MOO) problems we need to optimize many possibly conflicting objectives. For instance, in manufacturing planning we might want to minimize the cost and production time while maximizing the product's quality. We propose the use of evolutionary algorithms (EAs) to solve these problems. Solutions are represented as individuals in a population and are assigned scores according to a fitness function that determines their relative quality. Strong solutions are selected for reproduction, and pass their genetic material to the next generation. Weak solutions are removed from the population. The fitness function evaluates each solution and returns a related score. In MOO problems, this fitness function is vector-valued, i.e. it returns a value for each objective. Therefore, instead of a global optimum, we try to find the Pareto-optimal or non-dominated frontier. We use multi-sexual EAs with as many genders as optimization criteria. We have created new crossover and gender assignment functions, and experimented with various parameters to determine the best setting (yielding the highest number of non-dominated solutions.) These experiments are conducted using a variety of fitness functions, and the algorithms are later evaluated on a flexible manufacturing problem with total cost and time minimization objectives.
A survey on evolutionary algorithm based hybrid intelligence in bioinformatics.
Li, Shan; Kang, Liying; Zhao, Xing-Ming
2014-01-01
With the rapid advance in genomics, proteomics, metabolomics, and other types of omics technologies during the past decades, a tremendous amount of data related to molecular biology has been produced. It is becoming a big challenge for the bioinformatists to analyze and interpret these data with conventional intelligent techniques, for example, support vector machines. Recently, the hybrid intelligent methods, which integrate several standard intelligent approaches, are becoming more and more popular due to their robustness and efficiency. Specifically, the hybrid intelligent approaches based on evolutionary algorithms (EAs) are widely used in various fields due to the efficiency and robustness of EAs. In this review, we give an introduction about the applications of hybrid intelligent methods, in particular those based on evolutionary algorithm, in bioinformatics. In particular, we focus on their applications to three common problems that arise in bioinformatics, that is, feature selection, parameter estimation, and reconstruction of biological networks. PMID:24729969
Available Transfer Capability Determination Using Hybrid Evolutionary Algorithm
NASA Astrophysics Data System (ADS)
Jirapong, Peeraool; Ongsakul, Weerakorn
2008-10-01
This paper proposes a new hybrid evolutionary algorithm (HEA) based on evolutionary programming (EP), tabu search (TS), and simulated annealing (SA) to determine the available transfer capability (ATC) of power transactions between different control areas in deregulated power systems. The optimal power flow (OPF)-based ATC determination is used to evaluate the feasible maximum ATC value within real and reactive power generation limits, line thermal limits, voltage limits, and voltage and angle stability limits. The HEA approach simultaneously searches for real power generations except slack bus in a source area, real power loads in a sink area, and generation bus voltages to solve the OPF-based ATC problem. Test results on the modified IEEE 24-bus reliability test system (RTS) indicate that ATC determination by the HEA could enhance ATC far more than those from EP, TS, hybrid TS/SA, and improved EP (IEP) algorithms, leading to an efficient utilization of the existing transmission system.
A Survey on Evolutionary Algorithm Based Hybrid Intelligence in Bioinformatics
Li, Shan; Zhao, Xing-Ming
2014-01-01
With the rapid advance in genomics, proteomics, metabolomics, and other types of omics technologies during the past decades, a tremendous amount of data related to molecular biology has been produced. It is becoming a big challenge for the bioinformatists to analyze and interpret these data with conventional intelligent techniques, for example, support vector machines. Recently, the hybrid intelligent methods, which integrate several standard intelligent approaches, are becoming more and more popular due to their robustness and efficiency. Specifically, the hybrid intelligent approaches based on evolutionary algorithms (EAs) are widely used in various fields due to the efficiency and robustness of EAs. In this review, we give an introduction about the applications of hybrid intelligent methods, in particular those based on evolutionary algorithm, in bioinformatics. In particular, we focus on their applications to three common problems that arise in bioinformatics, that is, feature selection, parameter estimation, and reconstruction of biological networks. PMID:24729969
Hart, W.E.
1999-02-10
Evolutionary programs (EPs) and evolutionary pattern search algorithms (EPSAS) are two general classes of evolutionary methods for optimizing on continuous domains. The relative performance of these methods has been evaluated on standard global optimization test functions, and these results suggest that EPSAs more robustly converge to near-optimal solutions than EPs. In this paper we evaluate the relative performance of EPSAs and EPs on a real-world application: flexible ligand binding in the Autodock docking software. We compare the performance of these methods on a suite of docking test problems. Our results confirm that EPSAs and EPs have comparable performance, and they suggest that EPSAs may be more robust on larger, more complex problems.
Receiver Diversity Combining Using Evolutionary Algorithms in Rayleigh Fading Channel
Akbari, Mohsen; Manesh, Mohsen Riahi
2014-01-01
In diversity combining at the receiver, the output signal-to-noise ratio (SNR) is often maximized by using the maximal ratio combining (MRC) provided that the channel is perfectly estimated at the receiver. However, channel estimation is rarely perfect in practice, which results in deteriorating the system performance. In this paper, an imperialistic competitive algorithm (ICA) is proposed and compared with two other evolutionary based algorithms, namely, particle swarm optimization (PSO) and genetic algorithm (GA), for diversity combining of signals travelling across the imperfect channels. The proposed algorithm adjusts the combiner weights of the received signal components in such a way that maximizes the SNR and minimizes the bit error rate (BER). The results indicate that the proposed method eliminates the need of channel estimation and can outperform the conventional diversity combining methods. PMID:25045725
Supervised and unsupervised discretization methods for evolutionary algorithms
Cantu-Paz, E
2001-01-24
This paper introduces simple model-building evolutionary algorithms (EAs) that operate on continuous domains. The algorithms are based on supervised and unsupervised discretization methods that have been used as preprocessing steps in machine learning. The basic idea is to discretize the continuous variables and use the discretization as a simple model of the solutions under consideration. The model is then used to generate new solutions directly, instead of using the usual operators based on sexual recombination and mutation. The algorithms presented here have fewer parameters than traditional and other model-building EAs. They expect that the proposed algorithms that use multivariate models scale up better to the dimensionality of the problem than existing EAs.
Robust Multiobjective Controllability of Complex Neuronal Networks.
Tang, Yang; Gao, Huijun; Du, Wei; Lu, Jianquan; Vasilakos, Athanasios V; Kurths, Jurgen
2016-01-01
This paper addresses robust multiobjective identification of driver nodes in the neuronal network of a cat's brain, in which uncertainties in determination of driver nodes and control gains are considered. A framework for robust multiobjective controllability is proposed by introducing interval uncertainties and optimization algorithms. By appropriate definitions of robust multiobjective controllability, a robust nondominated sorting adaptive differential evolution (NSJaDE) is presented by means of the nondominated sorting mechanism and the adaptive differential evolution (JaDE). The simulation experimental results illustrate the satisfactory performance of NSJaDE for robust multiobjective controllability, in comparison with six statistical methods and two multiobjective evolutionary algorithms (MOEAs): nondominated sorting genetic algorithms II (NSGA-II) and nondominated sorting composite differential evolution. It is revealed that the existence of uncertainties in choosing driver nodes and designing control gains heavily affects the controllability of neuronal networks. We also unveil that driver nodes play a more drastic role than control gains in robust controllability. The developed NSJaDE and obtained results will shed light on the understanding of robustness in controlling realistic complex networks such as transportation networks, power grid networks, biological networks, etc. PMID:26441452
NASA Astrophysics Data System (ADS)
Luo, Q.; Wu, J.; Qian, J.
2013-12-01
This study develops a new probabilistic multi-objective fast harmony search algorithm (PMOFHS) for optimal design of groundwater remediation system under uncertainty associated with the hydraulic conductivity of aquifers. The PMOFHS integrates the previously developed deterministic multi-objective optimization method, namely multi-objective fast harmony search algorithm (MOFHS) with a probabilistic Pareto domination ranking and probabilistic niche technique to search for Pareto-optimal solutions to multi-objective optimization problems in a noisy hydrogeological environment arising from insufficient hydraulic conductivity data. The PMOFHS is then coupled with the commonly used flow and transport codes, MODFLOW and MT3DMS, to identify the optimal groundwater remediation system of a two-dimensional hypothetical test problem involving two objectives: (i) minimization of the total remediation cost through the engineering planning horizon, and (ii) minimization of the percentage of mass remaining in the aquifer at the end of the operational period, which uses the Pump-and-Treat (PAT) technology to clean up contaminated groundwater. Also, Monte Carlo (MC) analysis is used to demonstrate the effectiveness of the proposed methodology. The MC analysis is taken to each Pareto solutions for every K realization. Then the statistical mean and the upper and lower bounds of uncertainty intervals of 95% confidence level are calculated. The MC analysis results show that all of the Pareto-optimal solutions are located between the upper and lower bounds of the MC analysis. Moreover, the root mean square errors (RMSEs) between the Pareto-optimal solutions by the PMOFHS and the average values of optimal solutions by the MC analysis are 0.0204 for the first objective and 0.0318 for the second objective, quite smaller than those RMSEs between the results by the existing probabilistic multi-objective genetic algorithm (PMOGA) and the MC analysis, 0.0384 and 0.0397, respectively. In
Solving molecular docking problems with multi-objective metaheuristics.
García-Godoy, María Jesús; López-Camacho, Esteban; García-Nieto, José; Aldana-Montes, Antonio J Nebroand José F
2015-01-01
Molecular docking is a hard optimization problem that has been tackled in the past with metaheuristics, demonstrating new and challenging results when looking for one objective: the minimum binding energy. However, only a few papers can be found in the literature that deal with this problem by means of a multi-objective approach, and no experimental comparisons have been made in order to clarify which of them has the best overall performance. In this paper, we use and compare, for the first time, a set of representative multi-objective optimization algorithms applied to solve complex molecular docking problems. The approach followed is focused on optimizing the intermolecular and intramolecular energies as two main objectives to minimize. Specifically, these algorithms are: two variants of the non-dominated sorting genetic algorithm II (NSGA-II), speed modulation multi-objective particle swarm optimization (SMPSO), third evolution step of generalized differential evolution (GDE3), multi-objective evolutionary algorithm based on decomposition (MOEA/D) and S-metric evolutionary multi-objective optimization (SMS-EMOA). We assess the performance of the algorithms by applying quality indicators intended to measure convergence and the diversity of the generated Pareto front approximations. We carry out a comparison with another reference mono-objective algorithm in the problem domain (Lamarckian genetic algorithm (LGA) provided by the AutoDock tool). Furthermore, the ligand binding site and molecular interactions of computed solutions are analyzed, showing promising results for the multi-objective approaches. In addition, a case study of application for aeroplysinin-1 is performed, showing the effectiveness of our multi-objective approach in drug discovery. PMID:26042856
A hybrid multi-objective particle swarm algorithm for a mixed-model assembly line sequencing problem
NASA Astrophysics Data System (ADS)
Rahimi-Vahed, A. R.; Mirghorbani, S. M.; Rabbani, M.
2007-12-01
Mixed-model assembly line sequencing is one of the most important strategic problems in the field of production management where diversified customers' demands exist. In this article, three major goals are considered: (i) total utility work, (ii) total production rate variation and (iii) total setup cost. Due to the complexity of the problem, a hybrid multi-objective algorithm based on particle swarm optimization (PSO) and tabu search (TS) is devised to obtain the locally Pareto-optimal frontier where simultaneous minimization of the above-mentioned objectives is desired. In order to validate the performance of the proposed algorithm in terms of solution quality and diversity level, the algorithm is applied to various test problems and its reliability, based on different comparison metrics, is compared with three prominent multi-objective genetic algorithms, PS-NC GA, NSGA-II and SPEA-II. The computational results show that the proposed hybrid algorithm significantly outperforms existing genetic algorithms in large-sized problems.
Optimal classification of standoff bioaerosol measurements using evolutionary algorithms
NASA Astrophysics Data System (ADS)
Nyhavn, Ragnhild; Moen, Hans J. F.; Farsund, Øystein; Rustad, Gunnar
2011-05-01
Early warning systems based on standoff detection of biological aerosols require real-time signal processing of a large quantity of high-dimensional data, challenging the systems efficiency in terms of both computational complexity and classification accuracy. Hence, optimal feature selection is essential in forming a stable and efficient classification system. This involves finding optimal signal processing parameters, characteristic spectral frequencies and other data transformations in large magnitude variable space, stating the need for an efficient and smart search algorithm. Evolutionary algorithms are population-based optimization methods inspired by Darwinian evolutionary theory. These methods focus on application of selection, mutation and recombination on a population of competing solutions and optimize this set by evolving the population of solutions for each generation. We have employed genetic algorithms in the search for optimal feature selection and signal processing parameters for classification of biological agents. The experimental data were achieved with a spectrally resolved lidar based on ultraviolet laser induced fluorescence, and included several releases of 5 common simulants. The genetic algorithm outperform benchmark methods involving analytic, sequential and random methods like support vector machines, Fisher's linear discriminant and principal component analysis, with significantly improved classification accuracy compared to the best classical method.
Multi-objective global optimization of a butterfly valve using genetic algorithms.
Corbera, Sergio; Olazagoitia, José Luis; Lozano, José Antonio
2016-07-01
A butterfly valve is a type of valve typically used for isolating or regulating flow where the closing mechanism takes the form of a disc. For a long time, the attention of many researchers has focused on carrying out structural (FEM) and computational fluid dynamics (CFD) analysis in order to increase the performance of this type of flow-control device. This paper proposes a novel multi-objective approach for the design optimization of a butterfly valve using advanced genetic algorithms based on Pareto dominance. Firstly, after defining the need for this study and analyzing previous papers on the subject, the initial butterfly valve is presented and the initial fluid and structural analysis are carried out. Secondly, the optimization problem is defined and the optimization strategy is presented. The design variables are identified and a parameterization model of the valve is made. Thirdly, initial design candidates are generated by DOE and design optimization using genetic algorithms is performed. In this part of the process structural and CFD analysis are calculated for each candidate simultaneously. The optimization process involves various types of software and Python scripts are needed for their interaction and the connection of all steps. Finally, a set of optimal solutions is obtained and the optimum design that provides a 65.4% stress reduction, a 5% mass reduction and a 11.3% flow increase is selected in accordance with manufacturer preferences. Validation of the results is provided by comparing experimental test results with the values obtained for the initial design. The results demonstrate the capability and potential of the proposed methodology. PMID:27056745
Ren, Kun; Jihong, Qu
2014-01-01
Wind-hydrothermal power system dispatching has received intensive attention in recent years because it can help develop various reasonable plans to schedule the power generation efficiency. But future data such as wind power output and power load would not be accurately predicted and the nonlinear nature involved in the complex multiobjective scheduling model; therefore, to achieve accurate solution to such complex problem is a very difficult task. This paper presents an interval programming model with 2-step optimization algorithm to solve multiobjective dispatching. Initially, we represented the future data into interval numbers and simplified the object function to a linear programming problem to search the feasible and preliminary solutions to construct the Pareto set. Then the simulated annealing method was used to search the optimal solution of initial model. Thorough experimental results suggest that the proposed method performed reasonably well in terms of both operating efficiency and precision. PMID:24895663
Jihong, Qu
2014-01-01
Wind-hydrothermal power system dispatching has received intensive attention in recent years because it can help develop various reasonable plans to schedule the power generation efficiency. But future data such as wind power output and power load would not be accurately predicted and the nonlinear nature involved in the complex multiobjective scheduling model; therefore, to achieve accurate solution to such complex problem is a very difficult task. This paper presents an interval programming model with 2-step optimization algorithm to solve multiobjective dispatching. Initially, we represented the future data into interval numbers and simplified the object function to a linear programming problem to search the feasible and preliminary solutions to construct the Pareto set. Then the simulated annealing method was used to search the optimal solution of initial model. Thorough experimental results suggest that the proposed method performed reasonably well in terms of both operating efficiency and precision. PMID:24895663
Virus evolutionary genetic algorithm for task collaboration of logistics distribution
NASA Astrophysics Data System (ADS)
Ning, Fanghua; Chen, Zichen; Xiong, Li
2005-12-01
In order to achieve JIT (Just-In-Time) level and clients' maximum satisfaction in logistics collaboration, a Virus Evolutionary Genetic Algorithm (VEGA) was put forward under double constraints of logistics resource and operation sequence. Based on mathematic description of a multiple objective function, the algorithm was designed to schedule logistics tasks with different due dates and allocate them to network members. By introducing a penalty item, make span and customers' satisfaction were expressed in fitness function. And a dynamic adaptive probability of infection was used to improve performance of local search. Compared to standard Genetic Algorithm (GA), experimental result illustrates the performance superiority of VEGA. So the VEGA can provide a powerful decision-making technique for optimizing resource configuration in logistics network.
NASA Astrophysics Data System (ADS)
Smith, R.; Kasprzyk, J. R.; Zagona, E. A.
2013-12-01
Population growth and climate change, combined with difficulties in building new infrastructure, motivate portfolio-based solutions to ensuring sufficient water supply. Powerful simulation models with graphical user interfaces (GUI) are often used to evaluate infrastructure portfolios; these GUI based models require manual modification of the system parameters, such as reservoir operation rules, water transfer schemes, or system capacities. Multiobjective evolutionary algorithm (MOEA) based optimization can be employed to balance multiple objectives and automatically suggest designs for infrastructure systems, but MOEA based decision support typically uses a fixed problem formulation (i.e., a single set of objectives, decisions, and constraints). This presentation suggests a dynamic framework for linking GUI-based infrastructure models with MOEA search. The framework begins with an initial formulation which is solved using a MOEA. Then, stakeholders can interact with candidate solutions, viewing their properties in the GUI model. This is followed by changes in the formulation which represent users' evolving understanding of exigent system properties. Our case study is built using RiverWare, an object-oriented, data-centered model that facilitates the representation of a diverse array of water resources systems. Results suggest that assumptions within the initial MOEA search are violated after investigating tradeoffs and reveal how formulations should be modified to better capture stakeholders' preferences.
Hybrid Evolutionary-Heuristic Algorithm for Capacitor Banks Allocation
NASA Astrophysics Data System (ADS)
Barukčić, Marinko; Nikolovski, Srete; Jović, Franjo
2010-11-01
The issue of optimal allocation of capacitor banks concerning power losses minimization in distribution networks are considered in this paper. This optimization problem has been recently tackled by application of contemporary soft computing methods such as: genetic algorithms, neural networks, fuzzy logic, simulated annealing, ant colony methods, and hybrid methods. An evolutionaryheuristic method has been proposed for optimal capacitor allocation in radial distribution networks. An evolutionary method based on genetic algorithm is developed. The proposed method has a reduced number of parameters compared to the usual genetic algorithm. A heuristic stage is used for improving the optimal solution given by the evolutionary stage. A new cost-voltage node index is used in the heuristic stage in order to improve the quality of solution. The efficiency of the proposed two-stage method has been tested on different test networks. The quality of solution has been verified by comparison tests with other methods on the same test networks. The proposed method has given significantly better solutions for time dependent load in the 69-bus network than found in references.
Srinivasan, D.; Tettamanzi, A.G.B.
1997-02-01
An integrated framework for modeling and evaluating the economic impacts of environmental dispatching and fuel switching is presented in this paper. It explores the potential for operational changes in utility commitment and dispatching to achieve least cost operation while complying to rigorous environmental standards. The work reported here employs a heuristics-guided evolutionary algorithm to solve this multiobjective constrained optimization problem, and provides the decision maker a whole range of alternatives along the Pareto-optimal frontier. Heuristics are used to ensure the feasibility of each solution, and to reduce the computation time. The capabilities of this approach are illustrated via tests on a 19-unit system. Various emission compliance strategies are considered to reveal the economic trade-offs that come into play.
Fragment-based de novo ligand design by multiobjective evolutionary optimization.
Dey, Fabian; Caflisch, Amedeo
2008-03-01
GANDI (Genetic Algorithm-based de Novo Design of Inhibitors) is a computational tool for automatic fragment-based design of molecules within a protein binding site of known structure. A genetic algorithm and a tabu search act in concert to join predocked fragments with a user-supplied list of fragments. A novel feature of GANDI is the simultaneous optimization of force field energy and a term enforcing 2D-similarity to known inhibitor(s) or 3D-overlap to known binding mode(s). Scaffold hopping can be promoted by tuning the relative weights of these terms. The performance of GANDI is tested on cyclin-dependent kinase 2 (CDK2) using a library of about 14 000 fragments and the binding mode of a known oxindole inhibitor to bias the design. Top ranking GANDI molecules are involved in one to three hydrogen bonds with the backbone polar groups in the hinge region of CDK2, an interaction pattern observed in potent kinase inhibitors. Notably, a GANDI molecule with very favorable predicted binding affinity shares a 2-N-phenyl-1,3-thiazole-2,4-diamine moiety with a known nanomolar inhibitor of CDK2. Importantly, molecules with a favorable GANDI score are synthetic accessible. In fact, eight of the 1809 molecules designed by GANDI for CDK2 are found in the ZINC database of commercially available compounds which also contains about 600 compounds with identical scaffolds as those in the top ranking GANDI molecules. PMID:18307332
Sathiyamoorthy, V.; Sekar, T.; Elango, N.
2015-01-01
Formation of spikes prevents achievement of the better material removal rate (MRR) and surface finish while using plain NaNO3 aqueous electrolyte in electrochemical machining (ECM) of die tool steel. Hence this research work attempts to minimize the formation of spikes in the selected workpiece of high carbon high chromium die tool steel using copper nanoparticles suspended in NaNO3 aqueous electrolyte, that is, nanofluid. The selected influencing parameters are applied voltage and electrolyte discharge rate with three levels and tool feed rate with four levels. Thirty-six experiments were designed using Design Expert 7.0 software and optimization was done using multiobjective genetic algorithm (MOGA). This tool identified the best possible combination for achieving the better MRR and surface roughness. The results reveal that voltage of 18 V, tool feed rate of 0.54 mm/min, and nanofluid discharge rate of 12 lit/min would be the optimum values in ECM of HCHCr die tool steel. For checking the optimality obtained from the MOGA in MATLAB software, the maximum MRR of 375.78277 mm3/min and respective surface roughness Ra of 2.339779 μm were predicted at applied voltage of 17.688986 V, tool feed rate of 0.5399705 mm/min, and nanofluid discharge rate of 11.998816 lit/min. Confirmatory tests showed that the actual performance at the optimum conditions was 361.214 mm3/min and 2.41 μm; the deviation from the predicted performance is less than 4% which proves the composite desirability of the developed models. PMID:26167538
Sathiyamoorthy, V; Sekar, T; Elango, N
2015-01-01
Formation of spikes prevents achievement of the better material removal rate (MRR) and surface finish while using plain NaNO3 aqueous electrolyte in electrochemical machining (ECM) of die tool steel. Hence this research work attempts to minimize the formation of spikes in the selected workpiece of high carbon high chromium die tool steel using copper nanoparticles suspended in NaNO3 aqueous electrolyte, that is, nanofluid. The selected influencing parameters are applied voltage and electrolyte discharge rate with three levels and tool feed rate with four levels. Thirty-six experiments were designed using Design Expert 7.0 software and optimization was done using multiobjective genetic algorithm (MOGA). This tool identified the best possible combination for achieving the better MRR and surface roughness. The results reveal that voltage of 18 V, tool feed rate of 0.54 mm/min, and nanofluid discharge rate of 12 lit/min would be the optimum values in ECM of HCHCr die tool steel. For checking the optimality obtained from the MOGA in MATLAB software, the maximum MRR of 375.78277 mm(3)/min and respective surface roughness Ra of 2.339779 μm were predicted at applied voltage of 17.688986 V, tool feed rate of 0.5399705 mm/min, and nanofluid discharge rate of 11.998816 lit/min. Confirmatory tests showed that the actual performance at the optimum conditions was 361.214 mm(3)/min and 2.41 μm; the deviation from the predicted performance is less than 4% which proves the composite desirability of the developed models. PMID:26167538
Evolutionary pattern search algorithms for unconstrained and linearly constrained optimization
HART,WILLIAM E.
2000-06-01
The authors describe a convergence theory for evolutionary pattern search algorithms (EPSAs) on a broad class of unconstrained and linearly constrained problems. EPSAs adaptively modify the step size of the mutation operator in response to the success of previous optimization steps. The design of EPSAs is inspired by recent analyses of pattern search methods. The analysis significantly extends the previous convergence theory for EPSAs. The analysis applies to a broader class of EPSAs,and it applies to problems that are nonsmooth, have unbounded objective functions, and which are linearly constrained. Further, they describe a modest change to the algorithmic framework of EPSAs for which a non-probabilistic convergence theory applies. These analyses are also noteworthy because they are considerably simpler than previous analyses of EPSAs.
Characterization of atmospheric contaminant sources using adaptive evolutionary algorithms
NASA Astrophysics Data System (ADS)
Cervone, Guido; Franzese, Pasquale; Grajdeanu, Adrian
2010-10-01
The characteristics of an unknown source of emissions in the atmosphere are identified using an Adaptive Evolutionary Strategy (AES) methodology based on ground concentration measurements and a Gaussian plume model. The AES methodology selects an initial set of source characteristics including position, size, mass emission rate, and wind direction, from which a forward dispersion simulation is performed. The error between the simulated concentrations from the tentative source and the observed ground measurements is calculated. Then the AES algorithm prescribes the next tentative set of source characteristics. The iteration proceeds towards minimum error, corresponding to convergence towards the real source. The proposed methodology was used to identify the source characteristics of 12 releases from the Prairie Grass field experiment of dispersion, two for each atmospheric stability class, ranging from very unstable to stable atmosphere. The AES algorithm was found to have advantages over a simple canonical ES and a Monte Carlo (MC) method which were used as benchmarks.
NASA Astrophysics Data System (ADS)
Luo, Qiankun; Wu, Jianfeng; Yang, Yun; Qian, Jiazhong; Wu, Jichun
2016-03-01
Optimal design of long term groundwater monitoring (LTGM) network often involves conflicting objectives and substantial uncertainty arising from insufficient hydraulic conductivity (K) data. This study develops a new multi-objective simulation-optimization model involving four objectives: minimizations of (i) the total sampling costs for monitoring contaminant plume, (ii) mass estimation error, (iii) the first moment estimation error, and (iv) the second moment estimation error of the contaminant plume, for LTGM network design problems. Then a new probabilistic Pareto genetic algorithm (PPGA) coupled with the commonly used flow and transport codes, MODFLOW and MT3DMS, is developed to search for the Pareto-optimal solutions to the multi-objective LTGM problems under uncertainty of the K-fields. The PPGA integrates the niched Pareto genetic algorithm with probabilistic Pareto sorting scheme to deal with the uncertainty of objectives caused by the uncertain K-field. Also, the elitist selection strategy, the operation library and the Pareto solution set filter are conducted to improve the diversity and reliability of Pareto-optimal solutions by the PPGA. Furthermore, the sampling strategy of noisy genetic algorithm is adopted to cope with the uncertainty of the K-fields and improve the computational efficiency of the PPGA. In particular, Monte Carlo (MC) analysis is employed to evaluate the effectiveness of the proposed methodology in finding Pareto-optimal sampling network designs of LTGM systems through a two-dimensional hypothetical example and a three-dimensional field application in Indiana (USA). Comprehensive analysis demonstrates that the proposed PPGA can find Pareto optimal solutions with low variability and high reliability and is a promising tool for optimizing multi-objective LTGM network designs under uncertainty.
A Multiobjective Sparse Feature Learning Model for Deep Neural Networks.
Gong, Maoguo; Liu, Jia; Li, Hao; Cai, Qing; Su, Linzhi
2015-12-01
Hierarchical deep neural networks are currently popular learning models for imitating the hierarchical architecture of human brain. Single-layer feature extractors are the bricks to build deep networks. Sparse feature learning models are popular models that can learn useful representations. But most of those models need a user-defined constant to control the sparsity of representations. In this paper, we propose a multiobjective sparse feature learning model based on the autoencoder. The parameters of the model are learnt by optimizing two objectives, reconstruction error and the sparsity of hidden units simultaneously to find a reasonable compromise between them automatically. We design a multiobjective induced learning procedure for this model based on a multiobjective evolutionary algorithm. In the experiments, we demonstrate that the learning procedure is effective, and the proposed multiobjective model can learn useful sparse features. PMID:26340790
Peptide identification via constrained multi-objective optimization: Pareto-based genetic algorithms
Malard, Joel M.; Heredia-Langner, Alejandro; Cannon, William R.; Mooney, Ryan W.; Baxter, Douglas J.
2005-12-10
Automatic data-base independent peptide identification from collision-induced dissociation tandem mass spectrometry data is made difficult by large plateaus in the fitness landscapes of scoring functions and the fuzzy nature of the constraints that is due to noise in the data. Two different scoring functions are combined into a parallel multi-objective optimization framework.
NASA Astrophysics Data System (ADS)
Yi, Pengxing; Dong, Lijian; Shi, Tielin
2014-12-01
To improve the dynamic performance and reduce the weight of the planet carrier in wind turbine gearbox, a multi-objective optimization method, which is driven by the maximum deformation, the maximum stress and the minimum mass of the studied part, is proposed by combining the response surface method and genetic algorithms in this paper. Firstly, the design points' distribution for the design variables of the planet carrier is established with the central composite design (CCD) method. Then, based on the computing results of finite element analysis (FEA), the response surface analysis is conducted to find out the proper sets of design variable values. And a multi-objective genetic algorithm (MOGA) is applied to determine the direction of optimization. As well, this method is applied to design and optimize the planet carrier in a 1.5MW wind turbine gearbox, the results of which are validated by an experimental modal test. Compared with the original design, the mass and the stress of the optimized planet carrier are respectively reduced by 9.3% and 40%. Consequently, the cost of planet carrier is greatly reduced and its stability is also improved.
NASA Astrophysics Data System (ADS)
Yu, Lijun; Liu, Shaoying; Liu, Fanming; Wang, Hui
2015-06-01
Energy optimization is one of the key problems for ship roll reduction systems in the last decade. According to the nonlinear characteristics of ship motion, the four degrees of freedom nonlinear model of Fin/Rudder roll stabilization can be established. This paper analyzes energy consumption caused by overcoming the resistance and the yaw, which is added to the fin/rudder roll stabilization system as new performance index. In order to achieve the purpose of the roll reduction, ship course keeping and energy optimization, the self-tuning PID controller based on the multi-objective genetic algorithm (MOGA) method is used to optimize performance index. In addition, random weight coefficient is adopted to build a multi-objective genetic algorithm optimization model. The objective function is improved so that the objective function can be normalized to a constant level. Simulation results showed that the control method based on MOGA, compared with the traditional control method, not only improves the efficiency of roll stabilization and yaw control precision, but also optimizes the energy of the system. The proposed methodology can get a better performance at different sea states.
Discovering new materials and new phenomena with evolutionary algorithms
NASA Astrophysics Data System (ADS)
Oganov, Artem
Thanks to powerful evolutionary algorithms, in particular the USPEX method, it is now possible to predict both the stable compounds and their crystal structures at arbitrary conditions, given just the set of chemical elements. Recent developments include major increases of efficiency and extensions to low-dimensional systems and molecular crystals (which allowed large structures to be handled easily, e.g. Mg(BH4)2 and H2O-H2) and new techniques called evolutionary metadynamics and Mendelevian search. Some of the results that I will discuss include: 1. Theoretical and experimental evidence for a new partially ionic phase of boron, γ-B and an insulating and optically transparent form of sodium. 2. Predicted stability of ``impossible'' chemical compounds that become stable under pressure - e.g. Na3Cl, Na2Cl, Na3Cl2, NaCl3, NaCl7, Mg3O2 and MgO2. 3. Novel surface phases (e.g. boron surface reconstructions). 4. Novel dielectric polymers, and novel permanent magnets confirmed by experiment and ready for applications. 5. Prediction of new ultrahard materials and computational proof that diamond is the hardest possible material.
On the application of evolutionary pattern search algorithms
Hart, W.E.
1997-02-01
This paper presents an experimental evaluation of evolutionary pattern search algorithms (EPSAs). Our experimental evaluation of EPSAs indicates that EPSAs can achieve similar performance to EAs on challenging global optimization problems. Additionally, we describe a stopping rule for EPSAs that reliably terminated them near a stationary point of the objective function. The ability for EPSAs to reliably terminate near stationary points offers a practical advantage over other EAs, which are typically stopped by heuristic stopping rules or simple bounds on the number of iterations. Our experiments also illustrate how the rate of the crossover operator can influence the tradeoff between the number of iterations before termination and the quality of the solution found by an EPSA.
NASA Astrophysics Data System (ADS)
Lin, Wenwen; Yu, D. Y.; Wang, S.; Zhang, Chaoyong; Zhang, Sanqiang; Tian, Huiyu; Luo, Min; Liu, Shengqiang
2015-07-01
In addition to energy consumption, the use of cutting fluids, deposition of worn tools and certain other manufacturing activities can have environmental impacts. All these activities cause carbon emission directly or indirectly; therefore, carbon emission can be used as an environmental criterion for machining systems. In this article, a direct method is proposed to quantify the carbon emissions in turning operations. To determine the coefficients in the quantitative method, real experimental data were obtained and analysed in MATLAB. Moreover, a multi-objective teaching-learning-based optimization algorithm is proposed, and two objectives to minimize carbon emissions and operation time are considered simultaneously. Cutting parameters were optimized by the proposed algorithm. Finally, the analytic hierarchy process was used to determine the optimal solution, which was found to be more environmentally friendly than the cutting parameters determined by the design of experiments method.
Dynamic multiobjective optimization algorithm based on average distance linear prediction model.
Li, Zhiyong; Chen, Hengyong; Xie, Zhaoxin; Chen, Chao; Sallam, Ahmed
2014-01-01
Many real-world optimization problems involve objectives, constraints, and parameters which constantly change with time. Optimization in a changing environment is a challenging task, especially when multiple objectives are required to be optimized simultaneously. Nowadays the common way to solve dynamic multiobjective optimization problems (DMOPs) is to utilize history information to guide future search, but there is no common successful method to solve different DMOPs. In this paper, we define a kind of dynamic multiobjectives problem with translational Paretooptimal set (DMOP-TPS) and propose a new prediction model named ADLM for solving DMOP-TPS. We have tested and compared the proposed prediction model (ADLM) with three traditional prediction models on several classic DMOP-TPS test problems. The simulation results show that our proposed prediction model outperforms other prediction models for DMOP-TPS. PMID:24616625
Xiang, Bingren; Wu, Xiaohong; Liu, Dan
2014-01-01
Simultaneous determination of multiple weak chromatographic peaks via stochastic resonance algorithm attracts much attention in recent years. However, the optimization of the parameters is complicated and time consuming, although the single-well potential stochastic resonance algorithm (SSRA) has already reduced the number of parameters to only one and simplified the process significantly. Even worse, it is often difficult to keep amplified peaks with beautiful peak shape. Therefore, multiobjective genetic algorithm was employed to optimize the parameter of SSRA for multiple optimization objectives (i.e., S/N and peak shape) and multiple chromatographic peaks. The applicability of the proposed method was evaluated with an experimental data set of Sudan dyes, and the results showed an excellent quantitative relationship between different concentrations and responses. PMID:24526920
The hierarchical fair competition (HFC) framework for sustainable evolutionary algorithms.
Hu, Jianjun; Goodman, Erik; Seo, Kisung; Fan, Zhun; Rosenberg, Rondal
2005-01-01
Many current Evolutionary Algorithms (EAs) suffer from a tendency to converge prematurely or stagnate without progress for complex problems. This may be due to the loss of or failure to discover certain valuable genetic material or the loss of the capability to discover new genetic material before convergence has limited the algorithm's ability to search widely. In this paper, the Hierarchical Fair Competition (HFC) model, including several variants, is proposed as a generic framework for sustainable evolutionary search by transforming the convergent nature of the current EA framework into a non-convergent search process. That is, the structure of HFC does not allow the convergence of the population to the vicinity of any set of optimal or locally optimal solutions. The sustainable search capability of HFC is achieved by ensuring a continuous supply and the incorporation of genetic material in a hierarchical manner, and by culturing and maintaining, but continually renewing, populations of individuals of intermediate fitness levels. HFC employs an assembly-line structure in which subpopulations are hierarchically organized into different fitness levels, reducing the selection pressure within each subpopulation while maintaining the global selection pressure to help ensure the exploitation of the good genetic material found. Three EAs based on the HFC principle are tested - two on the even-10-parity genetic programming benchmark problem and a real-world analog circuit synthesis problem, and another on the HIFF genetic algorithm (GA) benchmark problem. The significant gain in robustness, scalability and efficiency by HFC, with little additional computing effort, and its tolerance of small population sizes, demonstrates its effectiveness on these problems and shows promise of its potential for improving other existing EAs for difficult problems. A paradigm shift from that of most EAs is proposed: rather than trying to escape from local optima or delay convergence at a
PSO-based multiobjective optimization with dynamic population size and adaptive local archives.
Leong, Wen-Fung; Yen, Gary G
2008-10-01
Recently, various multiobjective particle swarm optimization (MOPSO) algorithms have been developed to efficiently and effectively solve multiobjective optimization problems. However, the existing MOPSO designs generally adopt a notion to "estimate" a fixed population size sufficiently to explore the search space without incurring excessive computational complexity. To address the issue, this paper proposes the integration of a dynamic population strategy within the multiple-swarm MOPSO. The proposed algorithm is named dynamic population multiple-swarm MOPSO. An additional feature, adaptive local archives, is designed to improve the diversity within each swarm. Performance metrics and benchmark test functions are used to examine the performance of the proposed algorithm compared with that of five selected MOPSOs and two selected multiobjective evolutionary algorithms. In addition, the computational cost of the proposed algorithm is quantified and compared with that of the selected MOPSOs. The proposed algorithm shows competitive results with improved diversity and convergence and demands less computational cost. PMID:18784011
An Allele Real-Coded Quantum Evolutionary Algorithm Based on Hybrid Updating Strategy.
Zhang, Yu-Xian; Qian, Xiao-Yi; Peng, Hui-Deng; Wang, Jian-Hui
2016-01-01
For improving convergence rate and preventing prematurity in quantum evolutionary algorithm, an allele real-coded quantum evolutionary algorithm based on hybrid updating strategy is presented. The real variables are coded with probability superposition of allele. A hybrid updating strategy balancing the global search and local search is presented in which the superior allele is defined. On the basis of superior allele and inferior allele, a guided evolutionary process as well as updating allele with variable scale contraction is adopted. And H ε gate is introduced to prevent prematurity. Furthermore, the global convergence of proposed algorithm is proved by Markov chain. Finally, the proposed algorithm is compared with genetic algorithm, quantum evolutionary algorithm, and double chains quantum genetic algorithm in solving continuous optimization problem, and the experimental results verify the advantages on convergence rate and search accuracy. PMID:27057159
An Allele Real-Coded Quantum Evolutionary Algorithm Based on Hybrid Updating Strategy
Zhang, Yu-Xian; Qian, Xiao-Yi; Peng, Hui-Deng; Wang, Jian-Hui
2016-01-01
For improving convergence rate and preventing prematurity in quantum evolutionary algorithm, an allele real-coded quantum evolutionary algorithm based on hybrid updating strategy is presented. The real variables are coded with probability superposition of allele. A hybrid updating strategy balancing the global search and local search is presented in which the superior allele is defined. On the basis of superior allele and inferior allele, a guided evolutionary process as well as updating allele with variable scale contraction is adopted. And Hε gate is introduced to prevent prematurity. Furthermore, the global convergence of proposed algorithm is proved by Markov chain. Finally, the proposed algorithm is compared with genetic algorithm, quantum evolutionary algorithm, and double chains quantum genetic algorithm in solving continuous optimization problem, and the experimental results verify the advantages on convergence rate and search accuracy. PMID:27057159
NASA Astrophysics Data System (ADS)
Jin, Yi; Gu, Yonggang; Zhai, Chao
2012-09-01
Multi-Object Fiber Spectroscopic sky surveys are now booming, such as LAMOST already built by China, BIGBOSS project put forward by the U.S. Lawrence Berkeley National Lab and GTC (Gran Telescopio Canarias) telescope developed by the United States, Mexico and Spain. They all use or will use this approach and each fiber can be moved within a certain area for one astrology target, so observation planning is particularly important for this Sky Surveys. One observation planning algorithm used in multi-objective astronomical observations is developed. It can avoid the collision and interference between the fiber positioning units in the focal plane during the observation in one field of view, and the interested objects can be ovserved in a limited round with the maximize efficiency. Also, the observation simulation can be made for wide field of view through multi-FOV observation. After the observation planning is built ,the simulation is made in COSMOS field using GTC telescope. Interested galaxies, stars and high-redshift LBG galaxies are selected after the removal of the mask area, which may be bright stars. Then 9 FOV simulation is completed and observation efficiency and fiber utilization ratio for every round are given. Otherwise,allocating a certain number of fibers for background sky, giving different weights for different objects and how to move the FOV to improve the overall observation efficiency are discussed.
A multiagent evolutionary algorithm for constraint satisfaction problems.
Liu, Jing; Zhong, Weicai; Jiao, Licheng
2006-02-01
With the intrinsic properties of constraint satisfaction problems (CSPs) in mind, we divide CSPs into two types, namely, permutation CSPs and nonpermutation CSPs. According to their characteristics, several behaviors are designed for agents by making use of the ability of agents to sense and act on the environment. These behaviors are controlled by means of evolution, so that the multiagent evolutionary algorithm for constraint satisfaction problems (MAEA-CSPs) results. To overcome the disadvantages of the general encoding methods, the minimum conflict encoding is also proposed. Theoretical analyzes show that MAEA-CSPs has a linear space complexity and converges to the global optimum. The first part of the experiments uses 250 benchmark binary CSPs and 79 graph coloring problems from the DIMACS challenge to test the performance of MAEA-CSPs for nonpermutation CSPs. MAEA-CSPs is compared with six well-defined algorithms and the effect of the parameters is analyzed systematically. The second part of the experiments uses a classical CSP, n-queen problems, and a more practical case, job-shop scheduling problems (JSPs), to test the performance of MAEA-CSPs for permutation CSPs. The scalability of MAEA-CSPs along n for n-queen problems is studied with great care. The results show that MAEA-CSPs achieves good performance when n increases from 10(4) to 10(7), and has a linear time complexity. Even for 10(7)-queen problems, MAEA-CSPs finds the solutions by only 150 seconds. For JSPs, 59 benchmark problems are used, and good performance is also obtained. PMID:16468566
Optimizing quantum gas production by an evolutionary algorithm
NASA Astrophysics Data System (ADS)
Lausch, T.; Hohmann, M.; Kindermann, F.; Mayer, D.; Schmidt, F.; Widera, A.
2016-05-01
We report on the application of an evolutionary algorithm (EA) to enhance performance of an ultra-cold quantum gas experiment. The production of a ^{87}rubidium Bose-Einstein condensate (BEC) can be divided into fundamental cooling steps, specifically magneto-optical trapping of cold atoms, loading of atoms to a far-detuned crossed dipole trap, and finally the process of evaporative cooling. The EA is applied separately for each of these steps with a particular definition for the feedback, the so-called fitness. We discuss the principles of an EA and implement an enhancement called differential evolution. Analyzing the reasons for the EA to improve, e.g., the atomic loading rates and increase the BEC phase-space density, yields an optimal parameter set for the BEC production and enables us to reduce the BEC production time significantly. Furthermore, we focus on how additional information about the experiment and optimization possibilities can be extracted and how the correlations revealed allow for further improvement. Our results illustrate that EAs are powerful optimization tools for complex experiments and exemplify that the application yields useful information on the dependence of these experiments on the optimized parameters.
Evolutionary algorithm based structure search for hard ruthenium carbides
NASA Astrophysics Data System (ADS)
Harikrishnan, G.; Ajith, K. M.; Chandra, Sharat; Valsakumar, M. C.
2015-12-01
An exhaustive structure search employing evolutionary algorithm and density functional theory has been carried out for ruthenium carbides, for the three stoichiometries Ru1C1, Ru2C1 and Ru3C1, yielding five lowest energy structures. These include the structures from the two reported syntheses of ruthenium carbides. Their emergence in the present structure search in stoichiometries, unlike the previously reported ones, is plausible in the light of the high temperature required for their synthesis. The mechanical stability and ductile character of all these systems are established by their elastic constants, and the dynamical stability of three of them by the phonon data. Rhombohedral structure ≤ft(R\\bar{3}m\\right) is found to be energetically the most stable one in Ru1C1 stoichiometry and hexagonal structure ≤ft( P\\bar{6}m2\\right) , the most stable in Ru3C1 stoichiometry. RuC-Zinc blende system is a semiconductor with a band gap of 0.618 eV while the other two stable systems are metallic. Employing a semi-empirical model based on the bond strength, the hardness of RuC-Zinc blende is found to be a significantly large value of ~37 GPa while a fairly large value of ~21GPa is obtained for the RuC-Rhombohedral system. The positive formation energies of these systems show that high temperature and possibly high pressure are necessary for their synthesis.
NASA Astrophysics Data System (ADS)
Ausaf, Muhammad Farhan; Gao, Liang; Li, Xinyu
2015-12-01
For increasing the overall performance of modern manufacturing systems, effective integration of process planning and scheduling functions has been an important area of consideration among researchers. Owing to the complexity of handling process planning and scheduling simultaneously, most of the research work has been limited to solving the integrated process planning and scheduling (IPPS) problem for a single objective function. As there are many conflicting objectives when dealing with process planning and scheduling, real world problems cannot be fully captured considering only a single objective for optimization. Therefore considering multi-objective IPPS (MOIPPS) problem is inevitable. Unfortunately, only a handful of research papers are available on solving MOIPPS problem. In this paper, an optimization algorithm for solving MOIPPS problem is presented. The proposed algorithm uses a set of dispatching rules coupled with priority assignment to optimize the IPPS problem for various objectives like makespan, total machine load, total tardiness, etc. A fixed sized external archive coupled with a crowding distance mechanism is used to store and maintain the non-dominated solutions. To compare the results with other algorithms, a C-matric based method has been used. Instances from four recent papers have been solved to demonstrate the effectiveness of the proposed algorithm. The experimental results show that the proposed method is an efficient approach for solving the MOIPPS problem.
Technology Transfer Automated Retrieval System (TEKTRAN)
In optimization problems with at least two conflicting objectives, a set of solutions rather than a unique one exists because of the trade-offs between these objectives. The Pareto optimal set is achieved when no solution can be improved without degrading another one. This study investigated the ap...
Ghiasi, Mohammad Sadegh; Arjmand, Navid; Boroushaki, Mehrdad; Farahmand, Farzam
2016-03-01
A six-degree-of-freedom musculoskeletal model of the lumbar spine was developed to predict the activity of trunk muscles during light, moderate and heavy lifting tasks in standing posture. The model was formulated into a multi-objective optimization problem, minimizing the sum of the cubed muscle stresses and maximizing the spinal stability index. Two intelligent optimization algorithms, i.e., the vector evaluated particle swarm optimization (VEPSO) and nondominated sorting genetic algorithm (NSGA), were employed to solve the optimization problem. The optimal solution for each task was then found in the way that the corresponding in vivo intradiscal pressure could be reproduced. Results indicated that both algorithms predicted co-activity in the antagonistic abdominal muscles, as well as an increase in the stability index when going from the light to the heavy task. For all of the light, moderate and heavy tasks, the muscles' activities predictions of the VEPSO and the NSGA were generally consistent and in the same order of the in vivo electromyography data. The proposed methodology is thought to provide improved estimations for muscle activities by considering the spinal stability and incorporating the in vivo intradiscal pressure data. PMID:26088358
EVO—Evolutionary algorithm for crystal structure prediction
NASA Astrophysics Data System (ADS)
Bahmann, Silvia; Kortus, Jens
2013-06-01
We present EVO—an evolution strategy designed for crystal structure search and prediction. The concept and main features of biological evolution such as creation of diversity and survival of the fittest have been transferred to crystal structure prediction. EVO successfully demonstrates its applicability to find crystal structures of the elements of the 3rd main group with their different spacegroups. For this we used the number of atoms in the conventional cell and multiples of it. Running EVO with different numbers of carbon atoms per unit cell yields graphite as the lowest energy structure as well as a diamond-like structure, both in one run. Our implementation also supports the search for 2D structures and was able to find a boron sheet with structural features so far not considered in literature. Program summaryProgram title: EVO Catalogue identifier: AEOZ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOZ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 3 No. of lines in distributed program, including test data, etc.: 23488 No. of bytes in distributed program, including test data, etc.: 1830122 Distribution format: tar.gz Programming language: Python. Computer: No limitations known. Operating system: Linux. RAM: Negligible compared to the requirements of the electronic structure programs used Classification: 7.8. External routines: Quantum ESPRESSO (http://www.quantum-espresso.org/), GULP (https://projects.ivec.org/gulp/) Nature of problem: Crystal structure search is a global optimisation problem in 3N+3 dimensions where N is the number of atoms in the unit cell. The high dimensional search space is accompanied by an unknown energy landscape. Solution method: Evolutionary algorithms transfer the main features of biological evolution to use them in global searches. The combination of the "survival of the fittest" (deterministic) and the
NASA Astrophysics Data System (ADS)
Marwati, Rini; Yulianti, Kartika; Pangestu, Herny Wulandari
2016-02-01
A fuzzy evolutionary algorithm is an integration of an evolutionary algorithm and a fuzzy system. In this paper, we present an application of a genetic algorithm to a fuzzy evolutionary algorithm to detect and to solve chromosomes conflict. A chromosome conflict is identified by existence of any two genes in a chromosome that has the same values as two genes in another chromosome. Based on this approach, we construct an algorithm to solve a lecture scheduling problem. Time codes, lecture codes, lecturer codes, and room codes are defined as genes. They are collected to become chromosomes. As a result, the conflicted schedule turns into chromosomes conflict. Built in the Delphi program, results show that the conflicted lecture schedule problem is solvable by this algorithm.
Guan, Xiangmin; Zhang, Xuejun; Zhu, Yanbo; Sun, Dengfeng; Lei, Jiaxing
2015-01-01
Considering reducing the airspace congestion and the flight delay simultaneously, this paper formulates the airway network flow assignment (ANFA) problem as a multiobjective optimization model and presents a new multiobjective optimization framework to solve it. Firstly, an effective multi-island parallel evolution algorithm with multiple evolution populations is employed to improve the optimization capability. Secondly, the nondominated sorting genetic algorithm II is applied for each population. In addition, a cooperative coevolution algorithm is adapted to divide the ANFA problem into several low-dimensional biobjective optimization problems which are easier to deal with. Finally, in order to maintain the diversity of solutions and to avoid prematurity, a dynamic adjustment operator based on solution congestion degree is specifically designed for the ANFA problem. Simulation results using the real traffic data from China air route network and daily flight plans demonstrate that the proposed approach can improve the solution quality effectively, showing superiority to the existing approaches such as the multiobjective genetic algorithm, the well-known multiobjective evolutionary algorithm based on decomposition, and a cooperative coevolution multiobjective algorithm as well as other parallel evolution algorithms with different migration topology. PMID:26180840
Guan, Xiangmin; Zhang, Xuejun; Zhu, Yanbo; Sun, Dengfeng; Lei, Jiaxing
2015-01-01
Considering reducing the airspace congestion and the flight delay simultaneously, this paper formulates the airway network flow assignment (ANFA) problem as a multiobjective optimization model and presents a new multiobjective optimization framework to solve it. Firstly, an effective multi-island parallel evolution algorithm with multiple evolution populations is employed to improve the optimization capability. Secondly, the nondominated sorting genetic algorithm II is applied for each population. In addition, a cooperative coevolution algorithm is adapted to divide the ANFA problem into several low-dimensional biobjective optimization problems which are easier to deal with. Finally, in order to maintain the diversity of solutions and to avoid prematurity, a dynamic adjustment operator based on solution congestion degree is specifically designed for the ANFA problem. Simulation results using the real traffic data from China air route network and daily flight plans demonstrate that the proposed approach can improve the solution quality effectively, showing superiority to the existing approaches such as the multiobjective genetic algorithm, the well-known multiobjective evolutionary algorithm based on decomposition, and a cooperative coevolution multiobjective algorithm as well as other parallel evolution algorithms with different migration topology. PMID:26180840
NASA Astrophysics Data System (ADS)
Shimizu, Yoshiaki; Sakaguchi, Tatsuhiko; Pralomkarn, Theerayoth
To meet higher customer satisfaction and shorter production lead time, assembly lines are shifting to mixed-model assembly lines. Accordingly, sequencing is becoming an increasingly important operation scheduling that directly affects on efficiency of the entire process. In this study, such sequencing problem at the mixed-model assembly line has been formulated as a bi-objective integer programming problem so that decision making through trade-off analysis can bring about significant production improvements. Then we have developed a multi-objective analysis method by hybridizing conventional and recent meta-heuristic methods. After showing its generic idea, the car mixed-model assembly line sequencing problem is concerned as a case study. Certain measures are also introduced to quantitatively evaluate the performances of the method through comparison.
NASA Astrophysics Data System (ADS)
Mallick, Rajnish; Ganguli, Ranjan; Seetharama Bhat, M.
2015-09-01
The objective of this study is to determine an optimal trailing edge flap configuration and flap location to achieve minimum hub vibration levels and flap actuation power simultaneously. An aeroelastic analysis of a soft in-plane four-bladed rotor is performed in conjunction with optimal control. A second-order polynomial response surface based on an orthogonal array (OA) with 3-level design describes both the objectives adequately. Two new orthogonal arrays called MGB2P-OA and MGB4P-OA are proposed to generate nonlinear response surfaces with all interaction terms for two and four parameters, respectively. A multi-objective bat algorithm (MOBA) approach is used to obtain the optimal design point for the mutually conflicting objectives. MOBA is a recently developed nature-inspired metaheuristic optimization algorithm that is based on the echolocation behaviour of bats. It is found that MOBA inspired Pareto optimal trailing edge flap design reduces vibration levels by 73% and flap actuation power by 27% in comparison with the baseline design.
NASA Astrophysics Data System (ADS)
Jourdan, Damien B.; de Weck, Olivier L.
2004-09-01
This paper examines the optimal placement of nodes for a Wireless Sensor Network (WSN) designed to monitor a critical facility in a hostile region. The sensors are dropped from an aircraft, and they must be connected (directly or via hops) to a High Energy Communication Node (HECN), which serves as a relay from the ground to a satellite or a high-altitude aircraft. The sensors are assumed to have fixed communication and sensing ranges. The facility is modeled as circular and served by two roads. This simple model is used to benchmark the performance of the optimizer (a Multi-Objective Genetic Algorithm, or MOGA) in creating WSN designs that provide clear assessments of movements in and out of the facility, while minimizing both the likelihood of sensors being discovered and the number of sensors to be dropped. The algorithm is also tested on two other scenarios; in the first one the WSN must detect movements in and out of a circular area, and in the second one it must cover uniformly a square region. The MOGA is shown again to perform well on those scenarios, which shows its flexibility and possible application to more complex mission scenarios with multiple and diverse targets of observation.
Hybridization of decomposition and local search for multiobjective optimization.
Ke, Liangjun; Zhang, Qingfu; Battiti, Roberto
2014-10-01
Combining ideas from evolutionary algorithms, decomposition approaches, and Pareto local search, this paper suggests a simple yet efficient memetic algorithm for combinatorial multiobjective optimization problems: memetic algorithm based on decomposition (MOMAD). It decomposes a combinatorial multiobjective problem into a number of single objective optimization problems using an aggregation method. MOMAD evolves three populations: 1) population P(L) for recording the current solution to each subproblem; 2) population P(P) for storing starting solutions for Pareto local search; and 3) an external population P(E) for maintaining all the nondominated solutions found so far during the search. A problem-specific single objective heuristic can be applied to these subproblems to initialize the three populations. At each generation, a Pareto local search method is first applied to search a neighborhood of each solution in P(P) to update P(L) and P(E). Then a single objective local search is applied to each perturbed solution in P(L) for improving P(L) and P(E), and reinitializing P(P). The procedure is repeated until a stopping condition is met. MOMAD provides a generic hybrid multiobjective algorithmic framework in which problem specific knowledge, well developed single objective local search and heuristics and Pareto local search methods can be hybridized. It is a population based iterative method and thus an anytime algorithm. Extensive experiments have been conducted in this paper to study MOMAD and compare it with some other state-of-the-art algorithms on the multiobjective traveling salesman problem and the multiobjective knapsack problem. The experimental results show that our proposed algorithm outperforms or performs similarly to the best so far heuristics on these two problems. PMID:25222724
Yu, Yang; Wang, Sihan; Tang, Jiafu; Kaku, Ikou; Sun, Wei
2016-01-01
Productivity can be greatly improved by converting the traditional assembly line to a seru system, especially in the business environment with short product life cycles, uncertain product types and fluctuating production volumes. Line-seru conversion includes two decision processes, i.e., seru formation and seru load. For simplicity, however, previous studies focus on the seru formation with a given scheduling rule in seru load. We select ten scheduling rules usually used in seru load to investigate the influence of different scheduling rules on the performance of line-seru conversion. Moreover, we clarify the complexities of line-seru conversion for ten different scheduling rules from the theoretical perspective. In addition, multi-objective decisions are often used in line-seru conversion. To obtain Pareto-optimal solutions of multi-objective line-seru conversion, we develop two improved exact algorithms based on reducing time complexity and space complexity respectively. Compared with the enumeration based on non-dominated sorting to solve multi-objective problem, the two improved exact algorithms saves computation time greatly. Several numerical simulation experiments are performed to show the performance improvement brought by the two proposed exact algorithms. PMID:27390649
A multiobjective scatter search algorithm for fault-tolerant NoC mapping optimisation
NASA Astrophysics Data System (ADS)
Le, Qianqi; Yang, Guowu; Hung, William N. N.; Zhang, Xinpeng; Fan, Fuyou
2014-08-01
Mapping IP cores to an on-chip network is an important step in Network-on-Chip (NoC) design and affects the performance of NoC systems. A mapping optimisation algorithm and a fault-tolerant mechanism are proposed in this article. The fault-tolerant mechanism and the corresponding routing algorithm can recover NoC communication from switch failures, while preserving high performance. The mapping optimisation algorithm is based on scatter search (SS), which is an intelligent algorithm with a powerful combinatorial search ability. To meet the requests of the NoC mapping application, the standard SS is improved for multiple objective optimisation. This method helps to obtain high-performance mapping layouts. The proposed algorithm was implemented on the Embedded Systems Synthesis Benchmarks Suite (E3S). Experimental results show that this optimisation algorithm achieves low-power consumption, little communication time, balanced link load and high reliability, compared to particle swarm optimisation and genetic algorithm.
NASA Astrophysics Data System (ADS)
Tang, Zhili
2016-06-01
This paper solved aerodynamic drag reduction of transport wing fuselage configuration in transonic regime by using a parallel Nash evolutionary/deterministic hybrid optimization algorithm. Two sets of parameters are used, namely globally and locally. It is shown that optimizing separately local and global parameters by using Nash algorithms is far more efficient than considering these variables as a whole.
NASA Astrophysics Data System (ADS)
Malik, Aimun; Zhang, Zheming; Agarwal, Ramesh K.
2014-08-01
There is need for a battery model that can accurately describe the battery performance for an electrical system, such as the electric drive train of electric vehicles. In this paper, both linear and non-linear equivalent circuit models (ECM) are employed as a means of extracting the battery parameters that can be used to model the performance of a battery. The linear and non-linear equivalent circuit models differ in the numbers of capacitance and resistance; the non-linear model has an added circuit; however their numerical characteristics are equivalent. A multi-objective genetic algorithm is employed to accurately extract the values of the battery model parameters. The battery model parameters are obtained for several existing industrial batteries as well as for two recently proposed high performance batteries. Once the model parameters are optimally determined, the results demonstrate that both linear and non-linear equivalent circuit models can predict with acceptable accuracy the performance of various batteries of different sizes, characteristics, capacities, and materials. However, the comparisons of results with catalog and experimental data shows that the predictions of results using the non-linear equivalent circuit model are slightly better than those predicted by the linear model, calculating voltages that are closer to the manufacturers' values.
NASA Astrophysics Data System (ADS)
Xu, Shuo; Ji, Ze; Truong Pham, Duc; Yu, Fan
2011-11-01
The simultaneous mission assignment and home allocation for hospital service robots studied is a Multidimensional Assignment Problem (MAP) with multiobjectives and multiconstraints. A population-based metaheuristic, the Binary Bees Algorithm (BBA), is proposed to optimize this NP-hard problem. Inspired by the foraging mechanism of honeybees, the BBA's most important feature is an explicit functional partitioning between global search and local search for exploration and exploitation, respectively. Its key parts consist of adaptive global search, three-step elitism selection (constraint handling, non-dominated solutions selection, and diversity preservation), and elites-centred local search within a Hamming neighbourhood. Two comparative experiments were conducted to investigate its single objective optimization, optimization effectiveness (indexed by the S-metric and C-metric) and optimization efficiency (indexed by computational burden and CPU time) in detail. The BBA outperformed its competitors in almost all the quantitative indices. Hence, the above overall scheme, and particularly the searching history-adapted global search strategy was validated.
NASA Astrophysics Data System (ADS)
Menou, Edern; Ramstein, Gérard; Bertrand, Emmanuel; Tancret, Franck
2016-06-01
A new computational framework for systematic and optimal alloy design is introduced. It is based on a multi-objective genetic algorithm which allows (i) the screening of vast compositional ranges and (ii) the optimisation of the performance of novel alloys. Alloys performance is evaluated on the basis of their predicted constitutional and thermomechanical properties. To this end, the CALPHAD method is used for assessing equilibrium characteristics (such as constitution, stability or processability) while Gaussian processes provide an estimate of thermomechanical properties (such as tensile strength or creep resistance), based on a multi-variable non-linear regression of existing data. These three independently well-assessed tools were unified within a single C++ routine. The method was applied to the design of affordable nickel-base superalloys for service in power plants, providing numerous candidates with superior expected microstructural stability and strength. An overview of the metallurgy of optimised alloys, as well as two detailed examples of optimal alloys, suggest that improvements over current commercial alloys are achievable at lower costs.
Klymenko, M. V.; Remacle, F.
2014-10-28
A methodology is proposed for designing a low-energy consuming ternary-valued full adder based on a quantum dot (QD) electrostatically coupled with a single electron transistor operating as a charge sensor. The methodology is based on design optimization: the values of the physical parameters of the system required for implementing the logic operations are optimized using a multiobjective genetic algorithm. The searching space is determined by elements of the capacitance matrix describing the electrostatic couplings in the entire device. The objective functions are defined as the maximal absolute error over actual device logic outputs relative to the ideal truth tables for the sum and the carry-out in base 3. The logic units are implemented on the same device: a single dual-gate quantum dot and a charge sensor. Their physical parameters are optimized to compute either the sum or the carry out outputs and are compatible with current experimental capabilities. The outputs are encoded in the value of the electric current passing through the charge sensor, while the logic inputs are supplied by the voltage levels on the two gate electrodes attached to the QD. The complex logic ternary operations are directly implemented on an extremely simple device, characterized by small sizes and low-energy consumption compared to devices based on switching single-electron transistors. The design methodology is general and provides a rational approach for realizing non-switching logic operations on QD devices.
Path Planning Using a Hybrid Evolutionary Algorithm Based on Tree Structure Encoding
Wang, Siao-En; Guo, Jian-Horn
2014-01-01
A hybrid evolutionary algorithm using scalable encoding method for path planning is proposed in this paper. The scalable representation is based on binary tree structure encoding. To solve the problem of hybrid genetic algorithm and particle swarm optimization, the “dummy node” is added into the binary trees to deal with the different lengths of representations. The experimental results show that the proposed hybrid method demonstrates using fewer turning points than traditional evolutionary algorithms to generate shorter collision-free paths for mobile robot navigation. PMID:24971389
Path planning using a hybrid evolutionary algorithm based on tree structure encoding.
Ju, Ming-Yi; Wang, Siao-En; Guo, Jian-Horn
2014-01-01
A hybrid evolutionary algorithm using scalable encoding method for path planning is proposed in this paper. The scalable representation is based on binary tree structure encoding. To solve the problem of hybrid genetic algorithm and particle swarm optimization, the "dummy node" is added into the binary trees to deal with the different lengths of representations. The experimental results show that the proposed hybrid method demonstrates using fewer turning points than traditional evolutionary algorithms to generate shorter collision-free paths for mobile robot navigation. PMID:24971389
NASA Astrophysics Data System (ADS)
Zheng, Ling; Duan, Xuwei; Deng, Zhaoxue; Li, Yinong
2014-03-01
A novel flow-mode magneto-rheological (MR) engine mount integrated a diaphragm de-coupler and the spoiler plate is designed and developed to isolate engine and the transmission from the chassis in a wide frequency range and overcome the stiffness in high frequency. A lumped parameter model of the MR engine mount in single degree of freedom system is further developed based on bond graph method to predict the performance of the MR engine mount accurately. The optimization mathematical model is established to minimize the total of force transmissibility over several frequency ranges addressed. In this mathematical model, the lumped parameters are considered as design variables. The maximum of force transmissibility and the corresponding frequency in low frequency range as well as individual lumped parameter are limited as constraints. The multiple interval sensitivity analysis method is developed to select the optimized variables and improve the efficiency of optimization process. An improved non-dominated sorting genetic algorithm (NSGA-II) is used to solve the multi-objective optimization problem. The synthesized distance between the individual in Pareto set and the individual in possible set in engineering is defined and calculated. A set of real design parameters is thus obtained by the internal relationship between the optimal lumped parameters and practical design parameters for the MR engine mount. The program flowchart for the improved non-dominated sorting genetic algorithm (NSGA-II) is given. The obtained results demonstrate the effectiveness of the proposed optimization approach in minimizing the total of force transmissibility over several frequency ranges addressed.
Optimization of aeroelastic composite structures using evolutionary algorithms
NASA Astrophysics Data System (ADS)
Manan, A.; Vio, G. A.; Harmin, M. Y.; Cooper, J. E.
2010-02-01
The flutter/divergence speed of a simple rectangular composite wing is maximized through the use of different ply orientations. Four different biologically inspired optimization algorithms (binary genetic algorithm, continuous genetic algorithm, particle swarm optimization, and ant colony optimization) and a simple meta-modeling approach are employed statistically on the same problem set. In terms of the best flutter speed, it was found that similar results were obtained using all of the methods, although the continuous methods gave better answers than the discrete methods. When the results were considered in terms of the statistical variation between different solutions, ant colony optimization gave estimates with much less scatter.
Evolutionary Algorithms Approach to the Solution of Damage Detection Problems
NASA Astrophysics Data System (ADS)
Salazar Pinto, Pedro Yoajim; Begambre, Oscar
2010-09-01
In this work is proposed a new Self-Configured Hybrid Algorithm by combining the Particle Swarm Optimization (PSO) and a Genetic Algorithm (GA). The aim of the proposed strategy is to increase the stability and accuracy of the search. The central idea is the concept of Guide Particle, this particle (the best PSO global in each generation) transmits its information to a particle of the following PSO generation, which is controlled by the GA. Thus, the proposed hybrid has an elitism feature that improves its performance and guarantees the convergence of the procedure. In different test carried out in benchmark functions, reported in the international literature, a better performance in stability and accuracy was observed; therefore the new algorithm was used to identify damage in a simple supported beam using modal data. Finally, it is worth noting that the algorithm is independent of the initial definition of heuristic parameters.
NASA Astrophysics Data System (ADS)
Wang, Hongfeng; Fu, Yaping; Huang, Min; Wang, Junwei
2016-03-01
The operation process design is one of the key issues in the manufacturing and service sectors. As a typical operation process, the scheduling with consideration of the deteriorating effect has been widely studied; however, the current literature only studied single function requirement and rarely considered the multiple function requirements which are critical for a real-world scheduling process. In this article, two function requirements are involved in the design of a scheduling process with consideration of the deteriorating effect and then formulated into two objectives of a mathematical programming model. A novel multiobjective evolutionary algorithm is proposed to solve this model with combination of three strategies, i.e. a multiple population scheme, a rule-based local search method and an elitist preserve strategy. To validate the proposed model and algorithm, a series of randomly-generated instances are tested and the experimental results indicate that the model is effective and the proposed algorithm can achieve the satisfactory performance which outperforms the other state-of-the-art multiobjective evolutionary algorithms, such as nondominated sorting genetic algorithm II and multiobjective evolutionary algorithm based on decomposition, on all the test instances.
Predicting land cover using GIS, Bayesian and evolutionary algorithm methods.
Aitkenhead, M J; Aalders, I H
2009-01-01
Modelling land cover change from existing land cover maps is a vital requirement for anyone wishing to understand how the landscape may change in the future. In order to test any land cover change model, existing data must be used. However, often it is not known which data should be applied to the problem, or whether relationships exist within and between complex datasets. Here we have developed and tested a model that applied evolutionary processes to Bayesian networks. The model was developed and tested on a dataset containing land cover information and environmental data, in order to show that decisions about which datasets should be used could be made automatically. Bayesian networks are amenable to evolutionary methods as they can be easily described using a binary string to which crossover and mutation operations can be applied. The method, developed to allow comparison with standard Bayesian network development software, was proved capable of carrying out a rapid and effective search of the space of possible networks in order to find an optimal or near-optimal solution for the selection of datasets that have causal links with one another. Comparison of land cover mapping in the North-East of Scotland was made with a commercial Bayesian software package, with the evolutionary method being shown to provide greater flexibility in its ability to adapt to incorporate/utilise available evidence/knowledge and develop effective and accurate network structures, at the cost of requiring additional computer programming skills. The dataset used to develop the models included GIS-based data taken from the Land Cover for Scotland 1988 (LCS88), Land Capability for Forestry (LCF), Land Capability for Agriculture (LCA), the soil map of Scotland and additional climatic variables. PMID:18079039
Scheduling Earth Observing Fleets Using Evolutionary Algorithms: Problem Description and Approach
NASA Technical Reports Server (NTRS)
Globus, Al; Crawford, James; Lohn, Jason; Morris, Robert; Clancy, Daniel (Technical Monitor)
2002-01-01
We describe work in progress concerning multi-instrument, multi-satellite scheduling. Most, although not all, Earth observing instruments currently in orbit are unique. In the relatively near future, however, we expect to see fleets of Earth observing spacecraft, many carrying nearly identical instruments. This presents a substantially new scheduling challenge. Inspired by successful commercial applications of evolutionary algorithms in scheduling domains, this paper presents work in progress regarding the use of evolutionary algorithms to solve a set of Earth observing related model problems. Both the model problems and the software are described. Since the larger problems will require substantial computation and evolutionary algorithms are embarrassingly parallel, we discuss our parallelization techniques using dedicated and cycle-scavenged workstations.
Bioinspired Evolutionary Algorithm Based for Improving Network Coverage in Wireless Sensor Networks
Abbasi, Mohammadjavad; Bin Abd Latiff, Muhammad Shafie
2014-01-01
Wireless sensor networks (WSNs) include sensor nodes in which each node is able to monitor the physical area and send collected information to the base station for further analysis. The important key of WSNs is detection and coverage of target area which is provided by random deployment. This paper reviews and addresses various area detection and coverage problems in sensor network. This paper organizes many scenarios for applying sensor node movement for improving network coverage based on bioinspired evolutionary algorithm and explains the concern and objective of controlling sensor node coverage. We discuss area coverage and target detection model by evolutionary algorithm. PMID:24693247
Design of synthetic biological logic circuits based on evolutionary algorithm.
Chuang, Chia-Hua; Lin, Chun-Liang; Chang, Yen-Chang; Jennawasin, Tanagorn; Chen, Po-Kuei
2013-08-01
The construction of an artificial biological logic circuit using systematic strategy is recognised as one of the most important topics for the development of synthetic biology. In this study, a real-structured genetic algorithm (RSGA), which combines general advantages of the traditional real genetic algorithm with those of the structured genetic algorithm, is proposed to deal with the biological logic circuit design problem. A general model with the cis-regulatory input function and appropriate promoter activity functions is proposed to synthesise a wide variety of fundamental logic gates such as NOT, Buffer, AND, OR, NAND, NOR and XOR. The results obtained can be extended to synthesise advanced combinational and sequential logic circuits by topologically distinct connections. The resulting optimal design of these logic gates and circuits are established via the RSGA. The in silico computer-based modelling technology has been verified showing its great advantages in the purpose. PMID:23919952
The study on gear transmission multi-objective optimum design based on SQP algorithm
NASA Astrophysics Data System (ADS)
Li, Quancai; Qiao, Xuetao; Wu, Cuirong; Wang, Xingxing
2011-12-01
Gear mechanism is the most popular transmission mechanism; however, the traditional design method is complex and not accurate. Optimization design is the effective method to solve the above problems, used in gear design method. In many of the optimization software MATLAB, there are obvious advantage projects and numerical calculation. There is a single gear transmission as example, the mathematical model of gear transmission system, based on the analysis of the objective function, and on the basis of design variables and confirmation of choice restrictive conditions. The results show that the algorithm through MATLAB, the optimization designs, efficient, reliable, simple.
NASA Astrophysics Data System (ADS)
Luo, Yugong; Chen, Tao; Li, Keqiang
2015-12-01
The paper presents a novel active distance control strategy for intelligent hybrid electric vehicles (IHEV) with the purpose of guaranteeing an optimal performance in view of the driving functions, optimum safety, fuel economy and ride comfort. Considering the complexity of driving situations, the objects of safety and ride comfort are decoupled from that of fuel economy, and a hierarchical control architecture is adopted to improve the real-time performance and the adaptability. The hierarchical control structure consists of four layers: active distance control object determination, comprehensive driving and braking torque calculation, comprehensive torque distribution and torque coordination. The safety distance control and the emergency stop algorithms are designed to achieve the safety and ride comfort goals. The optimal rule-based energy management algorithm of the hybrid electric system is developed to improve the fuel economy. The torque coordination control strategy is proposed to regulate engine torque, motor torque and hydraulic braking torque to improve the ride comfort. This strategy is verified by simulation and experiment using a forward simulation platform and a prototype vehicle. The results show that the novel control strategy can achieve the integrated and coordinated control of its multiple subsystems, which guarantees top performance of the driving functions and optimum safety, fuel economy and ride comfort.
A Comparative Study between Migration and Pair-Swap on Quantum-Inspired Evolutionary Algorithm
NASA Astrophysics Data System (ADS)
Imabeppu, Takahiro; Ono, Satoshi; Morishige, Ryota; Kurose, Motoyoshi; Nakayama, Shigeru
Quantum-inspired Evolutionary Algorithm (QEA) has been proposed as one of stochastic algorithms of evolutionary computation instead of a quantum algorithm. The authors have proposed Quantum-inspired Evolutionary Algorithm based on Pair Swap (QEAPS), which uses pair swap operator and does not group individuals in order to simplify QEA and reduce parameters in QEA. QEA and QEAPS imitationally use quantum bits as genes and superposition states in quantum computation. QEAPS has shown better search performance than QEA on knapsack problem, while eliminating parameters about immigration intervals and number of groups. However, QEAPS still has a parameter in common with QEA, a rotation angle unit, which is uncommon among other evolutionary computation algorithms. The rotation angle unit deeply affects exploitation and exploration control in QEA, but it has been unclear how the parameter influences QEAPS to behave. This paper aims to show that QEAPS involves few parameters and even those parameters can be adjusted easily. Experimental results, in knapsack problem and number partitioning problem which have different characteristics, have shown that QEAPS is competitive with other metaheuristics in search performance, and that QEAPS is robust against the parameter configuration and problem characteristics.
Evolutionary Processes in the Development of Errors in Subtraction Algorithms
ERIC Educational Resources Information Center
Fernandez, Ricardo Lopez; Garcia, Ana B. Sanchez
2008-01-01
The study of errors made in subtraction is a research subject approached from different theoretical premises that affect different components of the algorithmic process as triggers of their generation. In the following research an attempt has been made to investigate the typology and nature of errors which occur in subtractions and their evolution…
First principles prediction of amorphous phases using evolutionary algorithms.
Nahas, Suhas; Gaur, Anshu; Bhowmick, Somnath
2016-07-01
We discuss the efficacy of evolutionary method for the purpose of structural analysis of amorphous solids. At present, ab initio molecular dynamics (MD) based melt-quench technique is used and this deterministic approach has proven to be successful to study amorphous materials. We show that a stochastic approach motivated by Darwinian evolution can also be used to simulate amorphous structures. Applying this method, in conjunction with density functional theory based electronic, ionic and cell relaxation, we re-investigate two well known amorphous semiconductors, namely silicon and indium gallium zinc oxide. We find that characteristic structural parameters like average bond length and bond angle are within ∼2% of those reported by ab initio MD calculations and experimental studies. PMID:27394098
First principles prediction of amorphous phases using evolutionary algorithms
NASA Astrophysics Data System (ADS)
Nahas, Suhas; Gaur, Anshu; Bhowmick, Somnath
2016-07-01
We discuss the efficacy of evolutionary method for the purpose of structural analysis of amorphous solids. At present, ab initio molecular dynamics (MD) based melt-quench technique is used and this deterministic approach has proven to be successful to study amorphous materials. We show that a stochastic approach motivated by Darwinian evolution can also be used to simulate amorphous structures. Applying this method, in conjunction with density functional theory based electronic, ionic and cell relaxation, we re-investigate two well known amorphous semiconductors, namely silicon and indium gallium zinc oxide. We find that characteristic structural parameters like average bond length and bond angle are within ˜2% of those reported by ab initio MD calculations and experimental studies.
Multiobjective optimization approach: thermal food processing.
Abakarov, A; Sushkov, Y; Almonacid, S; Simpson, R
2009-01-01
The objective of this study was to utilize a multiobjective optimization technique for the thermal sterilization of packaged foods. The multiobjective optimization approach used in this study is based on the optimization of well-known aggregating functions by an adaptive random search algorithm. The applicability of the proposed approach was illustrated by solving widely used multiobjective test problems taken from the literature. The numerical results obtained for the multiobjective test problems and for the thermal processing problem show that the proposed approach can be effectively used for solving multiobjective optimization problems arising in the food engineering field. PMID:20492109
Martins, Maria; Costa, Lino; Frizera, Anselmo; Ceres, Ramón; Santos, Cristina
2014-03-01
Walker devices are often prescribed incorrectly to patients, leading to the increase of dissatisfaction and occurrence of several problems, such as, discomfort and pain. Thus, it is necessary to objectively evaluate the effects that assisted gait can have on the gait patterns of walker users, comparatively to a non-assisted gait. A gait analysis, focusing on spatiotemporal and kinematics parameters, will be issued for this purpose. However, gait analysis yields redundant information that often is difficult to interpret. This study addresses the problem of selecting the most relevant gait features required to differentiate between assisted and non-assisted gait. For that purpose, it is presented an efficient approach that combines evolutionary techniques, based on genetic algorithms, and support vector machine algorithms, to discriminate differences between assisted and non-assisted gait with a walker with forearm supports. For comparison purposes, other classification algorithms are verified. Results with healthy subjects show that the main differences are characterized by balance and joints excursion in the sagittal plane. These results, confirmed by clinical evidence, allow concluding that this technique is an efficient feature selection approach. PMID:24444751
Predicting patchy particle crystals: variable box shape simulations and evolutionary algorithms.
Bianchi, Emanuela; Doppelbauer, Günther; Filion, Laura; Dijkstra, Marjolein; Kahl, Gerhard
2012-06-01
We consider several patchy particle models that have been proposed in literature and we investigate their candidate crystal structures in a systematic way. We compare two different algorithms for predicting crystal structures: (i) an approach based on Monte Carlo simulations in the isobaric-isothermal ensemble and (ii) an optimization technique based on ideas of evolutionary algorithms. We show that the two methods are equally successful and provide consistent results on crystalline phases of patchy particle systems. PMID:22697525
2014-01-01
Background To improve the tedious task of reconstructing gene networks through testing experimentally the possible interactions between genes, it becomes a trend to adopt the automated reverse engineering procedure instead. Some evolutionary algorithms have been suggested for deriving network parameters. However, to infer large networks by the evolutionary algorithm, it is necessary to address two important issues: premature convergence and high computational cost. To tackle the former problem and to enhance the performance of traditional evolutionary algorithms, it is advisable to use parallel model evolutionary algorithms. To overcome the latter and to speed up the computation, it is advocated to adopt the mechanism of cloud computing as a promising solution: most popular is the method of MapReduce programming model, a fault-tolerant framework to implement parallel algorithms for inferring large gene networks. Results This work presents a practical framework to infer large gene networks, by developing and parallelizing a hybrid GA-PSO optimization method. Our parallel method is extended to work with the Hadoop MapReduce programming model and is executed in different cloud computing environments. To evaluate the proposed approach, we use a well-known open-source software GeneNetWeaver to create several yeast S. cerevisiae sub-networks and use them to produce gene profiles. Experiments have been conducted and the results have been analyzed. They show that our parallel approach can be successfully used to infer networks with desired behaviors and the computation time can be largely reduced. Conclusions Parallel population-based algorithms can effectively determine network parameters and they perform better than the widely-used sequential algorithms in gene network inference. These parallel algorithms can be distributed to the cloud computing environment to speed up the computation. By coupling the parallel model population-based optimization method and the parallel
Simulation of Biochemical Pathway Adaptability Using Evolutionary Algorithms
Bosl, W J
2005-01-26
The systems approach to genomics seeks quantitative and predictive descriptions of cells and organisms. However, both the theoretical and experimental methods necessary for such studies still need to be developed. We are far from understanding even the simplest collective behavior of biomolecules, cells or organisms. A key aspect to all biological problems, including environmental microbiology, evolution of infectious diseases, and the adaptation of cancer cells is the evolvability of genomes. This is particularly important for Genomes to Life missions, which tend to focus on the prospect of engineering microorganisms to achieve desired goals in environmental remediation and climate change mitigation, and energy production. All of these will require quantitative tools for understanding the evolvability of organisms. Laboratory biodefense goals will need quantitative tools for predicting complicated host-pathogen interactions and finding counter-measures. In this project, we seek to develop methods to simulate how external and internal signals cause the genetic apparatus to adapt and organize to produce complex biochemical systems to achieve survival. This project is specifically directed toward building a computational methodology for simulating the adaptability of genomes. This project investigated the feasibility of using a novel quantitative approach to studying the adaptability of genomes and biochemical pathways. This effort was intended to be the preliminary part of a larger, long-term effort between key leaders in computational and systems biology at Harvard University and LLNL, with Dr. Bosl as the lead PI. Scientific goals for the long-term project include the development and testing of new hypotheses to explain the observed adaptability of yeast biochemical pathways when the myosin-II gene is deleted and the development of a novel data-driven evolutionary computation as a way to connect exploratory computational simulation with hypothesis
NASA Astrophysics Data System (ADS)
Biswas, Papun; Chakraborti, Debjani
2010-10-01
This paper describes how the genetic algorithms (GAs) can be efficiently used to fuzzy goal programming (FGP) formulation of optimal power flow problems having multiple objectives. In the proposed approach, the different constraints, various relationships of optimal power flow calculations are fuzzily described. In the model formulation of the problem, the membership functions of the defined fuzzy goals are characterized first for measuring the degree of achievement of the aspiration levels of the goals specified in the decision making context. Then, the achievement function for minimizing the regret for under-deviations from the highest membership value (unity) of the defined membership goals to the extent possible on the basis of priorities is constructed for optimal power flow problems. In the solution process, the GA method is employed to the FGP formulation of the problem for achievement of the highest membership value (unity) of the defined membership functions to the extent possible in the decision making environment. In the GA based solution search process, the conventional Roulette wheel selection scheme, arithmetic crossover and random mutation are taken into consideration to reach a satisfactory decision. The developed method has been tested on IEEE 6-generator 30-bus System. Numerical results show that this method is promising for handling uncertain constraints in practical power systems.
Multi-objective optimization of a plain fin-and-tube heat exchanger using genetic algorithm
NASA Astrophysics Data System (ADS)
Juan, Du; Qin, Qian Zuo
2014-04-01
In the present paper, a plate fin-and-tube heat exchanger (PFTHE) is considered for optimization with air and water as working fluid, four geometric variables are taken as parameters for optimization, a Genetic Algorithm (GA) was used to search for the optimal structure sizes of the PFTHE, the maximum total heat transfer rate and the minimum total pressure drop are taken as objective functions in GA, respectively. Performance of the optimized result was evaluated and correspondingly the total heat transfer rate, the total pressure drop, the heat transfer coefficient and the local Nusselt number, j-factor and friction factor ξ are calculated respectively. Results show that the total heat transfer rate of the optimized heat exchanger increased by about 2.1-9.2% comparing with the original one, the heat transfer coefficient increased by about 8.2-14.7% and the total pressure drop decreased by about 4.4-8% in the range of Re = 1200-14000.
On Polymorphic Circuits and Their Design Using Evolutionary Algorithms
NASA Technical Reports Server (NTRS)
Stoica, Adrian; Zebulum, Ricardo; Keymeulen, Didier; Lohn, Jason; Clancy, Daniel (Technical Monitor)
2002-01-01
This paper introduces the concept of polymorphic electronics (polytronics) - referring to electronics with superimposed built-in functionality. A function change does not require switches/reconfiguration as in traditional approaches. Instead the change comes from modifications in the characteristics of devices involved in the circuit, in response to controls such as temperature, power supply voltage (VDD), control signals, light, etc. The paper illustrates polytronic circuits in which the control is done by temperature, morphing signals, and VDD respectively. Polytronic circuits are obtained by evolutionary design/evolvable hardware techniques. These techniques are ideal for the polytronics design, a new area that lacks design guidelines, know-how,- yet the requirements/objectives are easy to specify and test. The circuits are evolved/synthesized in two different modes. The first mode explores an unstructured space, in which transistors can be interconnected freely in any arrangement (in simulations only). The second mode uses a Field Programmable Transistor Array (FPTA) model, and the circuit topology is sought as a mapping onto a programmable architecture (these experiments are performed both in simulations and on FPTA chips). The experiments demonstrated the synthesis. of polytronic circuits by evolution. The capacity of storing/hiding "extra" functions provides for watermark/invisible functionality, thus polytronics may find uses in intelligence/security applications.
Wayne F. Boyer; Gurdeep S. Hura
2005-09-01
The Problem of obtaining an optimal matching and scheduling of interdependent tasks in distributed heterogeneous computing (DHC) environments is well known to be an NP-hard problem. In a DHC system, task execution time is dependent on the machine to which it is assigned and task precedence constraints are represented by a directed acyclic graph. Recent research in evolutionary techniques has shown that genetic algorithms usually obtain more efficient schedules that other known algorithms. We propose a non-evolutionary random scheduling (RS) algorithm for efficient matching and scheduling of inter-dependent tasks in a DHC system. RS is a succession of randomized task orderings and a heuristic mapping from task order to schedule. Randomized task ordering is effectively a topological sort where the outcome may be any possible task order for which the task precedent constraints are maintained. A detailed comparison to existing evolutionary techniques (GA and PSGA) shows the proposed algorithm is less complex than evolutionary techniques, computes schedules in less time, requires less memory and fewer tuning parameters. Simulation results show that the average schedules produced by RS are approximately as efficient as PSGA schedules for all cases studied and clearly more efficient than PSGA for certain cases. The standard formulation for the scheduling problem addressed in this paper is Rm|prec|Cmax.,
Hybrid evolutionary algorithms for network-centric command and control
NASA Astrophysics Data System (ADS)
Khosla, Deepak; Nichols, Tom
2006-05-01
Network-centric force optimization is the problem of threat engagement and dynamic Weapon-Target Allocation (WTA) across the force. The goal is to allocate and schedule defensive weapon resources over a given period of time so as to achieve certain battle management objectives subject to resource and temporal constraints. The problem addresses in this paper is one of dynamic WTA and involves optimization across both resources (weapons) and time. We henceforth refer to this problem as the Weapon Allocation and Scheduling problem (WAS). This paper addresses and solves the WAS problem for two separate battle management objectives: (1) Threat Kill Maximization (TKM), and (2) Asset Survival Maximization (ASM). Henceforth, the WAS problems for the above objectives are referred to as the WAS-TKM and WAS-ASM, respectively. Both WAS problems are NP-complete problem and belong to a class of multiple-resource-constrained optimal scheduling problems. While the above objectives appear to be intuitively similar from a battle management perspective, the two optimal scheduling problems are quite different in their complexity. We present a hybrid genetic algorithm (GA) that is a combination of a traditional genetic algorithm and a simulated annealing-type algorithm for solving these problems. The hybrid GA approach proposed here uses a simulated annealing-type heuristics to compute the fitness of a GA-selected population. This step also optimizes the temporal dimension (scheduling) under resource and temporal constraints and is significantly different for the WAS-TKM and WAS-ASM problems. The proposed method provides schedules that are near optimal in short cycle times and have minimal perturbation from one cycle to the next.
NASA Astrophysics Data System (ADS)
Fan, Shu-Kai S.; Chang, Ju-Ming; Chuang, Yu-Chiang
2015-06-01
Most real-world optimization problems involve the optimization task of more than a single objective function and, therefore, require a great amount of computational effort as the solution procedure is designed to anchor multiple compromised optimal solutions. Abundant multi-objective evolutionary algorithms (MOEAs) for multi-objective optimization have appeared in the literature over the past two decades. In this article, a new proposal by means of particle swarm optimization is addressed for solving multi-objective optimization problems. The proposed algorithm is constructed based on the concept of Pareto dominance, taking both the diversified search and empirical movement strategies into account. The proposed particle swarm MOEA with these two strategies is thus dubbed the empirical-movement diversified-search multi-objective particle swarm optimizer (EMDS-MOPSO). Its performance is assessed in terms of a suite of standard benchmark functions taken from the literature and compared to other four state-of-the-art MOEAs. The computational results demonstrate that the proposed algorithm shows great promise in solving multi-objective optimization problems.
A Multiobjective Approach to Homography Estimation.
Osuna-Enciso, Valentín; Cuevas, Erik; Oliva, Diego; Zúñiga, Virgilio; Pérez-Cisneros, Marco; Zaldívar, Daniel
2016-01-01
In several machine vision problems, a relevant issue is the estimation of homographies between two different perspectives that hold an extensive set of abnormal data. A method to find such estimation is the random sampling consensus (RANSAC); in this, the goal is to maximize the number of matching points given a permissible error (Pe), according to a candidate model. However, those objectives are in conflict: a low Pe value increases the accuracy of the model but degrades its generalization ability that refers to the number of matching points that tolerate noisy data, whereas a high Pe value improves the noise tolerance of the model but adversely drives the process to false detections. This work considers the estimation process as a multiobjective optimization problem that seeks to maximize the number of matching points whereas Pe is simultaneously minimized. In order to solve the multiobjective formulation, two different evolutionary algorithms have been explored: the Nondominated Sorting Genetic Algorithm II (NSGA-II) and the Nondominated Sorting Differential Evolution (NSDE). Results considering acknowledged quality measures among original and transformed images over a well-known image benchmark show superior performance of the proposal than Random Sample Consensus algorithm. PMID:26839532
A Multiobjective Approach to Homography Estimation
Osuna-Enciso, Valentín; Oliva, Diego; Zúñiga, Virgilio; Pérez-Cisneros, Marco; Zaldívar, Daniel
2016-01-01
In several machine vision problems, a relevant issue is the estimation of homographies between two different perspectives that hold an extensive set of abnormal data. A method to find such estimation is the random sampling consensus (RANSAC); in this, the goal is to maximize the number of matching points given a permissible error (Pe), according to a candidate model. However, those objectives are in conflict: a low Pe value increases the accuracy of the model but degrades its generalization ability that refers to the number of matching points that tolerate noisy data, whereas a high Pe value improves the noise tolerance of the model but adversely drives the process to false detections. This work considers the estimation process as a multiobjective optimization problem that seeks to maximize the number of matching points whereas Pe is simultaneously minimized. In order to solve the multiobjective formulation, two different evolutionary algorithms have been explored: the Nondominated Sorting Genetic Algorithm II (NSGA-II) and the Nondominated Sorting Differential Evolution (NSDE). Results considering acknowledged quality measures among original and transformed images over a well-known image benchmark show superior performance of the proposal than Random Sample Consensus algorithm. PMID:26839532
Towards unbiased benchmarking of evolutionary and hybrid algorithms for real-valued optimisation
NASA Astrophysics Data System (ADS)
MacNish, Cara
2007-12-01
Randomised population-based algorithms, such as evolutionary, genetic and swarm-based algorithms, and their hybrids with traditional search techniques, have proven successful and robust on many difficult real-valued optimisation problems. This success, along with the readily applicable nature of these techniques, has led to an explosion in the number of algorithms and variants proposed. In order for the field to advance it is necessary to carry out effective comparative evaluations of these algorithms, and thereby better identify and understand those properties that lead to better performance. This paper discusses the difficulties of providing benchmarking of evolutionary and allied algorithms that is both meaningful and logistically viable. To be meaningful the benchmarking test must give a fair comparison that is free, as far as possible, from biases that favour one style of algorithm over another. To be logistically viable it must overcome the need for pairwise comparison between all the proposed algorithms. To address the first problem, we begin by attempting to identify the biases that are inherent in commonly used benchmarking functions. We then describe a suite of test problems, generated recursively as self-similar or fractal landscapes, designed to overcome these biases. For the second, we describe a server that uses web services to allow researchers to 'plug in' their algorithms, running on their local machines, to a central benchmarking repository.
Evolutionary Design of Rule Changing Artificial Society Using Genetic Algorithms
NASA Astrophysics Data System (ADS)
Wu, Yun; Kanoh, Hitoshi
Socioeconomic phenomena, cultural progress and political organization have recently been studied by creating artificial societies consisting of simulated agents. In this paper we propose a new method to design action rules of agents in artificial society that can realize given requests using genetic algorithms (GAs). In this paper we propose an efficient method for designing the action rules of agents that will constitute an artificial society that meets a specified demand by using a GAs. In the proposed method, each chromosome in the GA population represents a candidate set of action rules and the number of rule iterations. While a conventional method applies distinct rules in order of precedence, the present method applies a set of rules repeatedly for a certain period. The present method is aiming at both firm evolution of agent population and continuous action by that. Experimental results using the artificial society proved that the present method can generate artificial society which fills a demand in high probability.
Runtime Analysis of (1+1) Evolutionary Algorithm for a TSP Instance
NASA Astrophysics Data System (ADS)
Zhang, Yu Shan; Hao, Zhi Feng
Evolutionary Algorithms (EAs) have been used widely and successfully in solving a famous classical combinatorial optimization problem-the traveling salesman problem (TSP). There are lots of experimental results concerning the TSP. However, relatively few theoretical results on the runtime analysis of EAs on the TSP are available. This paper conducts a runtime analysis of a simple Evolutionary Algorithm called (1+1) EA on a TSP instance. We represent a tour as a string of integer, and randomly choose 2-opt and 3-opt operator as the mutation operator at each iteration. The expected runtime of (1+1) EA on this TSP instance is proved to be O(n 4), which is tighter than O(n 6 + (1/ρ)nln n) of (1+1) MMAA (Max-Min ant algorithms). It is also shown that the selection of mutation operator is very important in (1+1) EA.
Genetic algorithm for investigating flight MH370 in Indian Ocean using remotely sensed data
NASA Astrophysics Data System (ADS)
Marghany, Maged; Mansor, Shattri; Shariff, Abdul Rashid Bin Mohamed
2016-06-01
This study utilized Genetic algorithm (GA) for automatic detection and simulation trajectory movements of flight MH370 debris. In doing so, the Ocean Surface Topography Mission(OSTM) on the Jason- 2 satellite have been used within 1 and half year covers data to simulate the pattern of Flight MH370 debris movements across the southern Indian Ocean. Further, multi-objectives evolutionary algorithm also used to discriminate uncertainty of flight MH370 imagined and detection. The study shows that the ocean surface current speed is 0.5 m/s. This current patterns have developed a large anticlockwise gyre over a water depth of 8,000 m. The multi-objectives evolutionary algorithm suggested that objects are existed on satellite data are not flight MH370 debris. In addition, multiobjectives evolutionary algorithm suggested that the difficulties to acquire the exact location of flight MH370 due to complicated hydrodynamic movements across the southern Indian Ocean.
A Guiding Evolutionary Algorithm with Greedy Strategy for Global Optimization Problems
Cao, Leilei; Xu, Lihong; Goodman, Erik D.
2016-01-01
A Guiding Evolutionary Algorithm (GEA) with greedy strategy for global optimization problems is proposed. Inspired by Particle Swarm Optimization, the Genetic Algorithm, and the Bat Algorithm, the GEA was designed to retain some advantages of each method while avoiding some disadvantages. In contrast to the usual Genetic Algorithm, each individual in GEA is crossed with the current global best one instead of a randomly selected individual. The current best individual served as a guide to attract offspring to its region of genotype space. Mutation was added to offspring according to a dynamic mutation probability. To increase the capability of exploitation, a local search mechanism was applied to new individuals according to a dynamic probability of local search. Experimental results show that GEA outperformed the other three typical global optimization algorithms with which it was compared. PMID:27293421
A Guiding Evolutionary Algorithm with Greedy Strategy for Global Optimization Problems.
Cao, Leilei; Xu, Lihong; Goodman, Erik D
2016-01-01
A Guiding Evolutionary Algorithm (GEA) with greedy strategy for global optimization problems is proposed. Inspired by Particle Swarm Optimization, the Genetic Algorithm, and the Bat Algorithm, the GEA was designed to retain some advantages of each method while avoiding some disadvantages. In contrast to the usual Genetic Algorithm, each individual in GEA is crossed with the current global best one instead of a randomly selected individual. The current best individual served as a guide to attract offspring to its region of genotype space. Mutation was added to offspring according to a dynamic mutation probability. To increase the capability of exploitation, a local search mechanism was applied to new individuals according to a dynamic probability of local search. Experimental results show that GEA outperformed the other three typical global optimization algorithms with which it was compared. PMID:27293421
NASA Astrophysics Data System (ADS)
Chen, Chun; Tseng, Lin-Yu
2014-10-01
Multi-objective optimization is widely used in science, engineering and business. In this article, an improved version of the multiple trajectory search (MTS) called MTS2 is presented and successfully applied to real-value multi-objective optimization problems. In the first step, MTS2 generates M initial solutions distributed over the solution space. These solutions are called seeds. Some seeds with good objective values are selected as foreground seeds. Then, MTS2 chooses a suitable region search method for each foreground seed according to the landscape of the neighbourhood of the seed. During the search, MTS2 focuses its search on some promising areas specified by the foreground seeds. The performance of MTS2 was examined by applying it to solve the benchmark problems provided by the Competition of Performance Assessment of Constrained/Bound Constrained Multi-Objective Optimization Algorithms held at the 2009 IEEE Congress on Evolutionary Computation.
Convergence of a discretized self-adaptive evolutionary algorithm on multi-dimensional problems.
Hart, William Eugene; DeLaurentis, John Morse
2003-08-01
We consider the convergence properties of a non-elitist self-adaptive evolutionary strategy (ES) on multi-dimensional problems. In particular, we apply our recent convergence theory for a discretized (1,{lambda})-ES to design a related (1,{lambda})-ES that converges on a class of seperable, unimodal multi-dimensional problems. The distinguishing feature of self-adaptive evolutionary algorithms (EAs) is that the control parameters (like mutation step lengths) are evolved by the evolutionary algorithm. Thus the control parameters are adapted in an implicit manner that relies on the evolutionary dynamics to ensure that more effective control parameters are propagated during the search. Self-adaptation is a central feature of EAs like evolutionary stategies (ES) and evolutionary programming (EP), which are applied to continuous design spaces. Rudolph summarizes theoretical results concerning self-adaptive EAs and notes that the theoretical underpinnings for these methods are essentially unexplored. In particular, convergence theories that ensure convergence to a limit point on continuous spaces have only been developed by Rudolph, Hart, DeLaurentis and Ferguson, and Auger et al. In this paper, we illustrate how our analysis of a (1,{lambda})-ES for one-dimensional unimodal functions can be used to ensure convergence of a related ES on multidimensional functions. This (1,{lambda})-ES randomly selects a search dimension in each iteration, along which points generated. For a general class of separable functions, our analysis shows that the ES searches along each dimension independently, and thus this ES converges to the (global) minimum.
Learning deterministic finite automata with a smart state labeling evolutionary algorithm.
Lucas, Simon M; Reynolds, T Jeff
2005-07-01
Learning a Deterministic Finite Automaton (DFA) from a training set of labeled strings is a hard task that has been much studied within the machine learning community. It is equivalent to learning a regular language by example and has applications in language modeling. In this paper, we describe a novel evolutionary method for learning DFA that evolves only the transition matrix and uses a simple deterministic procedure to optimally assign state labels. We compare its performance with the Evidence Driven State Merging (EDSM) algorithm, one of the most powerful known DFA learning algorithms. We present results on random DFA induction problems of varying target size and training set density. We also studythe effects of noisy training data on the evolutionary approach and on EDSM. On noise-free data, we find that our evolutionary method outperforms EDSM on small sparse data sets. In the case of noisy training data, we find that our evolutionary method consistently outperforms EDSM, as well as other significant methods submitted to two recent competitions. PMID:16013754
THE APPLICATION OF AN EVOLUTIONARY ALGORITHM TO THE OPTIMIZATION OF A MESOSCALE METEOROLOGICAL MODEL
Werth, D.; O'Steen, L.
2008-02-11
We show that a simple evolutionary algorithm can optimize a set of mesoscale atmospheric model parameters with respect to agreement between the mesoscale simulation and a limited set of synthetic observations. This is illustrated using the Regional Atmospheric Modeling System (RAMS). A set of 23 RAMS parameters is optimized by minimizing a cost function based on the root mean square (rms) error between the RAMS simulation and synthetic data (observations derived from a separate RAMS simulation). We find that the optimization can be efficient with relatively modest computer resources, thus operational implementation is possible. The optimization efficiency, however, is found to depend strongly on the procedure used to perturb the 'child' parameters relative to their 'parents' within the evolutionary algorithm. In addition, the meteorological variables included in the rms error and their weighting are found to be an important factor with respect to finding the global optimum.
An Adaptive Evolutionary Algorithm for Traveling Salesman Problem with Precedence Constraints
Sung, Jinmo; Jeong, Bongju
2014-01-01
Traveling sales man problem with precedence constraints is one of the most notorious problems in terms of the efficiency of its solution approach, even though it has very wide range of industrial applications. We propose a new evolutionary algorithm to efficiently obtain good solutions by improving the search process. Our genetic operators guarantee the feasibility of solutions over the generations of population, which significantly improves the computational efficiency even when it is combined with our flexible adaptive searching strategy. The efficiency of the algorithm is investigated by computational experiments. PMID:24701158
NASA Astrophysics Data System (ADS)
Woodley, Robert; Lindahl, Eric; Barker, Joseph
2007-04-01
A culturally diverse group of people are now participating in military multinational coalition operations (e.g., combined air operations center, training exercises such as Red Flag at Nellis AFB, NATO AWACS), as well as in extreme environments. Human biases and routines, capabilities, and limitations strongly influence overall system performance; whether during operations or simulations using models of humans. Many missions and environments challenge human capabilities (e.g., combat stress, waiting, fatigue from long duty hours or tour of duty). This paper presents a team selection algorithm based on an evolutionary algorithm. The main difference between this and the standard EA is that a new form of objective function is used that incorporates the beliefs and uncertainties of the data. Preliminary results show that this selection algorithm will be very beneficial for very large data sets with multiple constraints and uncertainties. This algorithm will be utilized in a military unit selection tool.
Sum-of-squares-based fuzzy controller design using quantum-inspired evolutionary algorithm
NASA Astrophysics Data System (ADS)
Yu, Gwo-Ruey; Huang, Yu-Chia; Cheng, Chih-Yung
2016-07-01
In the field of fuzzy control, control gains are obtained by solving stabilisation conditions in linear-matrix-inequality-based Takagi-Sugeno fuzzy control method and sum-of-squares-based polynomial fuzzy control method. However, the optimal performance requirements are not considered under those stabilisation conditions. In order to handle specific performance problems, this paper proposes a novel design procedure with regard to polynomial fuzzy controllers using quantum-inspired evolutionary algorithms. The first contribution of this paper is a combination of polynomial fuzzy control and quantum-inspired evolutionary algorithms to undertake an optimal performance controller design. The second contribution is the proposed stability condition derived from the polynomial Lyapunov function. The proposed design approach is dissimilar to the traditional approach, in which control gains are obtained by solving the stabilisation conditions. The first step of the controller design uses the quantum-inspired evolutionary algorithms to determine the control gains with the best performance. Then, the stability of the closed-loop system is analysed under the proposed stability conditions. To illustrate effectiveness and validity, the problem of balancing and the up-swing of an inverted pendulum on a cart is used.
Fang, Guanghua; Xue, Mengzhu; Su, Mingbo; Hu, Dingyu; Li, Yanlian; Xiong, Bing; Ma, Lanping; Meng, Tao; Chen, Yuelei; Li, Jingya; Li, Jia; Shen, Jingkang
2012-07-15
The introduction of the multi-objective optimization has dramatically changed the virtual combinatorial library design, which can consider many objectives simultaneously, such as synthesis cost and drug-likeness, thus may increase positive rates of biological active compounds. Here we described a software called CCLab (Combinatorial Chemistry Laboratory) for combinatorial library design based on the multi-objective genetic algorithm. Tests of the convergence ability and the ratio to re-take the building blocks in the reference library were conducted to assess the software in silico, and then it was applied to a real case of designing a 5×6 HDAC inhibitor library. Sixteen compounds in the resulted library were synthesized, and the histone deactetylase (HDAC) enzymatic assays proved that 14 compounds showed inhibitory ratios more than 50% against tested 3 HDAC enzymes at concentration of 20 μg/mL, with IC(50) values of 3 compounds comparable to SAHA. These results demonstrated that the CCLab software could enhance the hit rates of the designed library and would be beneficial for medicinal chemists to design focused library in drug development (the software can be downloaded at: http://202.127.30.184:8080/drugdesign.html). PMID:22738629
Technology Transfer Automated Retrieval System (TEKTRAN)
Hyperspectral scattering is a promising technique for rapid and noninvasive measurement of multiple quality attributes of apple fruit. A hierarchical evolutionary algorithm (HEA) approach, in combination with subspace decomposition and partial least squares (PLS) regression, was proposed to select o...
Metabolic flux estimation--a self-adaptive evolutionary algorithm with singular value decomposition.
Yang, Jing; Wongsa, Sarawan; Kadirkamanathan, Visakan; Billings, Stephen A; Wright, Phillip C
2007-01-01
Metabolic flux analysis is important for metabolic system regulation and intracellular pathway identification. A popular approach for intracellular flux estimation involves using 13C tracer experiments to label states that can be measured by nuclear magnetic resonance spectrometry or gas chromatography mass spectrometry. However, the bilinear balance equations derived from 13C tracer experiments and the noisy measurements require a nonlinear optimization approach to obtain the optimal solution. In this paper, the flux quantification problem is formulated as an error-minimization problem with equality and inequality constraints through the 13C balance and stoichiometric equations. The stoichiometric constraints are transformed to a null space by singular value decomposition. Self-adaptive evolutionary algorithms are then introduced for flux quantification. The performance of the evolutionary algorithm is compared with ordinary least squares estimation by the simulation of the central pentose phosphate pathway. The proposed algorithm is also applied to the central metabolism of Corynebacterium glutamicum under lysine-producing conditions. A comparison between the results from the proposed algorithm and data from the literature is given. The complexity of a metabolic system with bidirectional reactions is also investigated by analyzing the fluctuations in the flux estimates when available measurements are varied. PMID:17277420
Design and Optimization of Low-thrust Orbit Transfers Using Q-law and Evolutionary Algorithms
NASA Technical Reports Server (NTRS)
Lee, Seungwon; vonAllmen, Paul; Fink, Wolfgang; Petropoulos, Anastassios; Terrile, Richard
2005-01-01
Future space missions will depend more on low-thrust propulsion (such as ion engines) thanks to its high specific impulse. Yet, the design of low-thrust trajectories is complex and challenging. Third-body perturbations often dominate the thrust, and a significant change to the orbit requires a long duration of thrust. In order to guide the early design phases, we have developed an efficient and efficacious method to obtain approximate propellant and flight-time requirements (i.e., the Pareto front) for orbit transfers. A search for the Pareto-optimal trajectories is done in two levels: optimal thrust angles and locations are determined by Q-law, while the Q-law is optimized with two evolutionary algorithms: a genetic algorithm and a simulated-annealing-related algorithm. The examples considered are several types of orbit transfers around the Earth and the asteroid Vesta.
Lin, Kuan-Cheng; Hsieh, Yi-Hsiu
2015-10-01
The classification and analysis of data is an important issue in today's research. Selecting a suitable set of features makes it possible to classify an enormous quantity of data quickly and efficiently. Feature selection is generally viewed as a problem of feature subset selection, such as combination optimization problems. Evolutionary algorithms using random search methods have proven highly effective in obtaining solutions to problems of optimization in a diversity of applications. In this study, we developed a hybrid evolutionary algorithm based on endocrine-based particle swarm optimization (EPSO) and artificial bee colony (ABC) algorithms in conjunction with a support vector machine (SVM) for the selection of optimal feature subsets for the classification of datasets. The results of experiments using specific UCI medical datasets demonstrate that the accuracy of the proposed hybrid evolutionary algorithm is superior to that of basic PSO, EPSO and ABC algorithms, with regard to classification accuracy using subsets with a reduced number of features. PMID:26289628
Tuning of MEMS Gyroscope using Evolutionary Algorithm and "Switched Drive-Angle" Method
NASA Technical Reports Server (NTRS)
Keymeulen, Didier; Ferguson, Michael I.; Breuer, Luke; Peay, Chris; Oks, Boris; Cheng, Yen; Kim, Dennis; MacDonald, Eric; Foor, David; Terrile, Rich; Yee, Karl
2006-01-01
We propose a tuning method for Micro-Electro-Mechanical Systems (MEMS) gyroscopes based on evolutionary computation that has the capacity to efficiently increase the sensitivity of MEMS gyroscopes through tuning and, furthermore, to find the optimally tuned configuration for this state of increased sensitivity. We present the results of an experiment to determine the speed and efficiency of an evolutionary algorithm applied to electrostatic tuning of MEMS micro gyros. The MEMS gyro used in this experiment is a pyrex post resonator gyro (PRG) in a closed-loop control system. A measure of the quality of tuning is given by the difference in resonant frequencies, or frequency split, for the two orthogonal rocking axes. The current implementation of the closed-loop platform is able to measure and attain a relative stability in the sub-millihertz range, leading to a reduction of the frequency split to less than 100 mHz.
NASA Astrophysics Data System (ADS)
S, Kyriacou; E, Kontoleontos; S, Weissenberger; L, Mangani; E, Casartelli; I, Skouteropoulou; M, Gattringer; A, Gehrer; M, Buchmayr
2014-03-01
An efficient hydraulic optimization procedure, suitable for industrial use, requires an advanced optimization tool (EASY software), a fast solver (block coupled CFD) and a flexible geometry generation tool. EASY optimization software is a PCA-driven metamodel-assisted Evolutionary Algorithm (MAEA (PCA)) that can be used in both single- (SOO) and multiobjective optimization (MOO) problems. In MAEAs, low cost surrogate evaluation models are used to screen out non-promising individuals during the evolution and exclude them from the expensive, problem specific evaluation, here the solution of Navier-Stokes equations. For additional reduction of the optimization CPU cost, the PCA technique is used to identify dependences among the design variables and to exploit them in order to efficiently drive the application of the evolution operators. To further enhance the hydraulic optimization procedure, a very robust and fast Navier-Stokes solver has been developed. This incompressible CFD solver employs a pressure-based block-coupled approach, solving the governing equations simultaneously. This method, apart from being robust and fast, also provides a big gain in terms of computational cost. In order to optimize the geometry of hydraulic machines, an automatic geometry and mesh generation tool is necessary. The geometry generation tool used in this work is entirely based on b-spline curves and surfaces. In what follows, the components of the tool chain are outlined in some detail and the optimization results of hydraulic machine components are shown in order to demonstrate the performance of the presented optimization procedure.
O'Hagan, Steve; Knowles, Joshua; Kell, Douglas B.
2012-01-01
Comparatively few studies have addressed directly the question of quantifying the benefits to be had from using molecular genetic markers in experimental breeding programmes (e.g. for improved crops and livestock), nor the question of which organisms should be mated with each other to best effect. We argue that this requires in silico modelling, an approach for which there is a large literature in the field of evolutionary computation (EC), but which has not really been applied in this way to experimental breeding programmes. EC seeks to optimise measurable outcomes (phenotypic fitnesses) by optimising in silico the mutation, recombination and selection regimes that are used. We review some of the approaches from EC, and compare experimentally, using a biologically relevant in silico landscape, some algorithms that have knowledge of where they are in the (genotypic) search space (G-algorithms) with some (albeit well-tuned ones) that do not (F-algorithms). For the present kinds of landscapes, F- and G-algorithms were broadly comparable in quality and effectiveness, although we recognise that the G-algorithms were not equipped with any ‘prior knowledge’ of epistatic pathway interactions. This use of algorithms based on machine learning has important implications for the optimisation of experimental breeding programmes in the post-genomic era when we shall potentially have access to the full genome sequence of every organism in a breeding population. The non-proprietary code that we have used is made freely available (via Supplementary information). PMID:23185279
Piezoelectric transducer design via multiobjective optimization.
Fu, B; Hemsel, T; Wallaschek, J
2006-12-22
The design of piezoelectric transducers is usually based on single-objective optimization only. In most practical applications of piezoelectric transducers, however, there exist multiple design objectives that often are contradictory to each other by their very nature. It is impossible to find a solution at which each objective function gets its optimal value simultaneously. Our design approach is to first find a set of Pareto-optimal solutions, which can be considered to be best compromises among multiple design objectives. Among these Pareto-optimal solutions, the designer can then select the one solution which he considers to be the best one. In this paper we investigate the optimal design of a Langevin transducer. The design problem is formulated mathematically as a constrained multiobjective optimization problem. The maximum vibration amplitude and the minimum electrical input power are considered as optimization objectives. Design variables involve continuous variables (dimensions of the transducer) and discrete variables (the number of piezoelectric rings and material types). In order to formulate the optimization problem, the behavior of piezoelectric transducers is modeled using the transfer matrix method based on analytical models. Multiobjective evolutionary algorithms are applied in the optimization process and a set of Pareto-optimal designs is calculated. The optimized results are analyzed and the preferred design is determined. PMID:16814826
A Gaze-Driven Evolutionary Algorithm to Study Aesthetic Evaluation of Visual Symmetry
Bertamini, Marco; Jones, Andrew; Holmes, Tim; Zanker, Johannes M.
2016-01-01
Empirical work has shown that people like visual symmetry. We used a gaze-driven evolutionary algorithm technique to answer three questions about symmetry preference. First, do people automatically evaluate symmetry without explicit instruction? Second, is perfect symmetry the best stimulus, or do people prefer a degree of imperfection? Third, does initial preference for symmetry diminish after familiarity sets in? Stimuli were generated as phenotypes from an algorithmic genotype, with genes for symmetry (coded as deviation from a symmetrical template, deviation–symmetry, DS gene) and orientation (0° to 90°, orientation, ORI gene). An eye tracker identified phenotypes that were good at attracting and retaining the gaze of the observer. Resulting fitness scores determined the genotypes that passed to the next generation. We recorded changes to the distribution of DS and ORI genes over 20 generations. When participants looked for symmetry, there was an increase in high-symmetry genes. When participants looked for the patterns they preferred, there was a smaller increase in symmetry, indicating that people tolerated some imperfection. Conversely, there was no increase in symmetry during free viewing, and no effect of familiarity or orientation. This work demonstrates the viability of the evolutionary algorithm approach as a quantitative measure of aesthetic preference. PMID:27433324
A Gaze-Driven Evolutionary Algorithm to Study Aesthetic Evaluation of Visual Symmetry.
Makin, Alexis D J; Bertamini, Marco; Jones, Andrew; Holmes, Tim; Zanker, Johannes M
2016-03-01
Empirical work has shown that people like visual symmetry. We used a gaze-driven evolutionary algorithm technique to answer three questions about symmetry preference. First, do people automatically evaluate symmetry without explicit instruction? Second, is perfect symmetry the best stimulus, or do people prefer a degree of imperfection? Third, does initial preference for symmetry diminish after familiarity sets in? Stimuli were generated as phenotypes from an algorithmic genotype, with genes for symmetry (coded as deviation from a symmetrical template, deviation-symmetry, DS gene) and orientation (0° to 90°, orientation, ORI gene). An eye tracker identified phenotypes that were good at attracting and retaining the gaze of the observer. Resulting fitness scores determined the genotypes that passed to the next generation. We recorded changes to the distribution of DS and ORI genes over 20 generations. When participants looked for symmetry, there was an increase in high-symmetry genes. When participants looked for the patterns they preferred, there was a smaller increase in symmetry, indicating that people tolerated some imperfection. Conversely, there was no increase in symmetry during free viewing, and no effect of familiarity or orientation. This work demonstrates the viability of the evolutionary algorithm approach as a quantitative measure of aesthetic preference. PMID:27433324
Creating ensembles of oblique decision trees with evolutionary algorithms and sampling
Cantu-Paz, Erick; Kamath, Chandrika
2006-06-13
A decision tree system that is part of a parallel object-oriented pattern recognition system, which in turn is part of an object oriented data mining system. A decision tree process includes the step of reading the data. If necessary, the data is sorted. A potential split of the data is evaluated according to some criterion. An initial split of the data is determined. The final split of the data is determined using evolutionary algorithms and statistical sampling techniques. The data is split. Multiple decision trees are combined in ensembles.
Searching for the Optimal Working Point of the MEIC at JLab Using an Evolutionary Algorithm
Balsa Terzic, Matthew Kramer, Colin Jarvis
2011-03-01
The Medium-energy Electron Ion Collider (MEIC), a proposed medium-energy ring-ring electron-ion collider based on CEBAF at Jefferson Lab. The collider luminosity and stability are sensitive to the choice of a working point - the betatron and synchrotron tunes of the two colliding beams. Therefore, a careful selection of the working point is essential for stable operation of the collider, as well as for achieving high luminosity. Here we describe a novel approach for locating an optimal working point based on evolutionary algorithm techniques.
A new evolutionary algorithm with structure mutation for the maximum balanced biclique problem.
Yuan, Bo; Li, Bin; Chen, Huanhuan; Yao, Xin
2015-05-01
The maximum balanced biclique problem (MBBP), an NP-hard combinatorial optimization problem, has been attracting more attention in recent years. Existing node-deletion-based algorithms usually fail to find high-quality solutions due to their easy stagnation in local optima, especially when the scale of the problem grows large. In this paper, a new algorithm for the MBBP, evolutionary algorithm with structure mutation (EA/SM), is proposed. In the EA/SM framework, local search complemented with a repair-assisted restart process is adopted. A new mutation operator, SM, is proposed to enhance the exploration during the local search process. The SM can change the structure of solutions dynamically while keeping their size (fitness) and the feasibility unchanged. It implements a kind of large mutation in the structure space of MBBP to help the algorithm escape from local optima. An MBBP-specific local search operator is designed to improve the quality of solutions efficiently; besides, a new repair-assisted restart process is introduced, in which the Marchiori's heuristic repair is modified to repair every new solution reinitialized by an estimation of distribution algorithm (EDA)-like process. The proposed algorithm is evaluated on a large set of benchmark graphs with various scales and densities. Experimental results show that: 1) EA/SM produces significantly better results than the state-of-the-art heuristic algorithms; 2) it also outperforms a repair-based EDA and a repair-based genetic algorithm on all benchmark graphs; and 3) the advantages of EA/SM are mainly due to the introduction of the new SM operator and the new repair-assisted restart process. PMID:25137737
A Cooperative Co-Evolutionary Genetic Algorithm for Tree Scoring and Ancestral Genome Inference.
Gao, Nan; Zhang, Yan; Feng, Bing; Tang, Jijun
2015-01-01
Recent advances of technology have made it easy to obtain and compare whole genomes. Rearrangements of genomes through operations such as reversals and transpositions are rare events that enable researchers to reconstruct deep evolutionary history among species. Some of the popular methods need to search a large tree space for the best scored tree, thus it is desirable to have a fast and accurate method that can score a given tree efficiently. During the tree scoring procedure, the genomic structures of internal tree nodes are also provided, which provide important information for inferring ancestral genomes and for modeling the evolutionary processes. However, computing tree scores and ancestral genomes are very difficult and a lot of researchers have to rely on heuristic methods which have various disadvantages. In this paper, we describe the first genetic algorithm for tree scoring and ancestor inference, which uses a fitness function considering co-evolution, adopts different initial seeding methods to initialize the first population pool, and utilizes a sorting-based approach to realize evolution. Our extensive experiments show that compared with other existing algorithms, this new method is more accurate and can infer ancestral genomes that are much closer to the true ancestors. PMID:26671797
An evolutionary firefly algorithm for the estimation of nonlinear biological model parameters.
Abdullah, Afnizanfaizal; Deris, Safaai; Anwar, Sohail; Arjunan, Satya N V
2013-01-01
The development of accurate computational models of biological processes is fundamental to computational systems biology. These models are usually represented by mathematical expressions that rely heavily on the system parameters. The measurement of these parameters is often difficult. Therefore, they are commonly estimated by fitting the predicted model to the experimental data using optimization methods. The complexity and nonlinearity of the biological processes pose a significant challenge, however, to the development of accurate and fast optimization methods. We introduce a new hybrid optimization method incorporating the Firefly Algorithm and the evolutionary operation of the Differential Evolution method. The proposed method improves solutions by neighbourhood search using evolutionary procedures. Testing our method on models for the arginine catabolism and the negative feedback loop of the p53 signalling pathway, we found that it estimated the parameters with high accuracy and within a reasonable computation time compared to well-known approaches, including Particle Swarm Optimization, Nelder-Mead, and Firefly Algorithm. We have also verified the reliability of the parameters estimated by the method using an a posteriori practical identifiability test. PMID:23469172
NASA Astrophysics Data System (ADS)
Shen, Xin; Zhang, Jing; Yao, Huang
2015-12-01
Remote sensing satellites play an increasingly prominent role in environmental monitoring and disaster rescue. Taking advantage of almost the same sunshine condition to same place and global coverage, most of these satellites are operated on the sun-synchronous orbit. However, it brings some problems inevitably, the most significant one is that the temporal resolution of sun-synchronous orbit satellite can't satisfy the demand of specific region monitoring mission. To overcome the disadvantages, two methods are exploited: the first one is to build satellite constellation which contains multiple sunsynchronous satellites, just like the CHARTER mechanism has done; the second is to design non-predetermined orbit based on the concrete mission demand. An effective method for remote sensing satellite orbit design based on multiobjective evolution algorithm is presented in this paper. Orbit design problem is converted into a multi-objective optimization problem, and a fast and elitist multi-objective genetic algorithm is utilized to solve this problem. Firstly, the demand of the mission is transformed into multiple objective functions, and the six orbit elements of the satellite are taken as genes in design space, then a simulate evolution process is performed. An optimal resolution can be obtained after specified generation via evolution operation (selection, crossover, and mutation). To examine validity of the proposed method, a case study is introduced: Orbit design of an optical satellite for regional disaster monitoring, the mission demand include both minimizing the average revisit time internal of two objectives. The simulation result shows that the solution for this mission obtained by our method meet the demand the users' demand. We can draw a conclusion that the method presented in this paper is efficient for remote sensing orbit design.
David J. Muth Jr.
2006-09-01
This paper examines the use of graph based evolutionary algorithms (GBEAs) to find multiple acceptable solutions for heat transfer in engineering systems during the optimization process. GBEAs are a type of evolutionary algorithm (EA) in which a topology, or geography, is imposed on an evolving population of solutions. The rates at which solutions can spread within the population are controlled by the choice of topology. As in nature geography can be used to develop and sustain diversity within the solution population. Altering the choice of graph can create a more or less diverse population of potential solutions. The choice of graph can also affect the convergence rate for the EA and the number of mating events required for convergence. The engineering system examined in this paper is a biomass fueled cookstove used in developing nations for household cooking. In this cookstove wood is combusted in a small combustion chamber and the resulting hot gases are utilized to heat the stove’s cooking surface. The spatial temperature profile of the cooking surface is determined by a series of baffles that direct the flow of hot gases. The optimization goal is to find baffle configurations that provide an even temperature distribution on the cooking surface. Often in engineering, the goal of optimization is not to find the single optimum solution but rather to identify a number of good solutions that can be used as a starting point for detailed engineering design. Because of this a key aspect of evolutionary optimization is the diversity of the solutions found. The key conclusion in this paper is that GBEA’s can be used to create multiple good solutions needed to support engineering design.
NASA Astrophysics Data System (ADS)
Rout, Sachindra K.; Choudhury, Balaji K.; Sahoo, Ranjit K.; Sarangi, Sunil K.
2014-07-01
The modeling and optimization of a Pulse Tube Refrigerator is a complicated task, due to its complexity of geometry and nature. The aim of the present work is to optimize the dimensions of pulse tube and regenerator for an Inertance-Type Pulse Tube Refrigerator (ITPTR) by using Response Surface Methodology (RSM) and Non-Sorted Genetic Algorithm II (NSGA II). The Box-Behnken design of the response surface methodology is used in an experimental matrix, with four factors and two levels. The diameter and length of the pulse tube and regenerator are chosen as the design variables where the rest of the dimensions and operating conditions of the ITPTR are constant. The required output responses are the cold head temperature (Tcold) and compressor input power (Wcomp). Computational fluid dynamics (CFD) have been used to model and solve the ITPTR. The CFD results agreed well with those of the previously published paper. Also using the results from the 1-D simulation, RSM is conducted to analyse the effect of the independent variables on the responses. To check the accuracy of the model, the analysis of variance (ANOVA) method has been used. Based on the proposed mathematical RSM models a multi-objective optimization study, using the Non-sorted genetic algorithm II (NSGA-II) has been performed to optimize the responses.
Ishibuchi, Hisao; Sudo, Takahiko; Nojima, Yusuke
2016-01-01
In interactive evolutionary computation (IEC), each solution is evaluated by a human user. Usually the total number of examined solutions is very small. In some applications such as hearing aid design and music composition, only a single solution can be evaluated at a time by a human user. Moreover, accurate and precise numerical evaluation is difficult. Based on these considerations, we formulated an IEC model with the minimum requirement for fitness evaluation ability of human users under the following assumptions: They can evaluate only a single solution at a time, they can memorize only a single previous solution they have just evaluated, their evaluation result on the current solution is whether it is better than the previous one or not, and the best solution among the evaluated ones should be identified after a pre-specified number of evaluations. In this paper, we first explain our IEC model in detail. Next we propose a ([Formula: see text])ES-style algorithm for our IEC model. Then we propose an offline meta-level approach to automated algorithm design for our IEC model. The main feature of our approach is the use of a different mechanism (e.g., mutation, crossover, random initialization) to generate each solution to be evaluated. Through computational experiments on test problems, our approach is compared with the ([Formula: see text])ES-style algorithm where a solution generation mechanism is pre-specified and fixed throughout the execution of the algorithm. PMID:27026888
Grand-canonical evolutionary algorithm for the prediction of two-dimensional materials
NASA Astrophysics Data System (ADS)
Revard, Benjamin C.; Tipton, William W.; Yesypenko, Anna; Hennig, Richard G.
2016-02-01
Single-layer materials represent a new materials class with properties that are potentially transformative for applications in nanoelectronics and solar-energy harvesting. With the goal of discovering novel two-dimensional (2D) materials with unusual compositions and structures, we have developed a grand-canonical evolutionary algorithm that searches the structure and composition space while constraining the thickness of the structures. Coupling the algorithm to first-principles total-energy methods, we show that this approach can successfully identify known 2D materials and find low-energy ones. We present the details of the algorithm, including suitable objective functions, and illustrate its potential with a study of the Sn-S and C-Si binary materials systems. The algorithm identifies several 2D structures of InP, recovers known 2D structures in the binary Sn-S and C-Si systems, and finds two 1D Si defects in graphene with formation energies below that of isolated substitutional Si atoms.
XTALOPT: An open-source evolutionary algorithm for crystal structure prediction
NASA Astrophysics Data System (ADS)
Lonie, David C.; Zurek, Eva
2011-02-01
The implementation and testing of XTALOPT, an evolutionary algorithm for crystal structure prediction, is outlined. We present our new periodic displacement (ripple) operator which is ideally suited to extended systems. It is demonstrated that hybrid operators, which combine two pure operators, reduce the number of duplicate structures in the search. This allows for better exploration of the potential energy surface of the system in question, while simultaneously zooming in on the most promising regions. A continuous workflow, which makes better use of computational resources as compared to traditional generation based algorithms, is employed. Various parameters in XTALOPT are optimized using a novel benchmarking scheme. XTALOPT is available under the GNU Public License, has been interfaced with various codes commonly used to study extended systems, and has an easy to use, intuitive graphical interface. Program summaryProgram title:XTALOPT Catalogue identifier: AEGX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPL v2.1 or later [1] No. of lines in distributed program, including test data, etc.: 36 849 No. of bytes in distributed program, including test data, etc.: 1 149 399 Distribution format: tar.gz Programming language: C++ Computer: PCs, workstations, or clusters Operating system: Linux Classification: 7.7 External routines: QT [2], OpenBabel [3], AVOGADRO [4], SPGLIB [8] and one of: VASP [5], PWSCF [6], GULP [7]. Nature of problem: Predicting the crystal structure of a system from its stoichiometry alone remains a grand challenge in computational materials science, chemistry, and physics. Solution method: Evolutionary algorithms are stochastic search techniques which use concepts from biological evolution in order to locate the global minimum on their potential energy surface. Our evolutionary algorithm, XTALOPT, is freely
Analysis of (1+1) evolutionary algorithm and randomized local search with memory.
Sung, Chi Wan; Yuen, Shiu Yin
2011-01-01
This paper considers the scenario of the (1+1) evolutionary algorithm (EA) and randomized local search (RLS) with memory. Previously explored solutions are stored in memory until an improvement in fitness is obtained; then the stored information is discarded. This results in two new algorithms: (1+1) EA-m (with a raw list and hash table option) and RLS-m+ (and RLS-m if the function is a priori known to be unimodal). These two algorithms can be regarded as very simple forms of tabu search. Rigorous theoretical analysis of the expected time to find the globally optimal solutions for these algorithms is conducted for both unimodal and multimodal functions. A unified mathematical framework, involving the new concept of spatially invariant neighborhood, is proposed. Under this framework, both (1+1) EA with standard uniform mutation and RLS can be considered as particular instances and in the most general cases, all functions can be considered to be unimodal. Under this framework, it is found that for unimodal functions, the improvement by memory assistance is always positive but at most by one half. For multimodal functions, the improvement is significant; for functions with gaps and another hard function, the order of growth is reduced; for at least one example function, the order can change from exponential to polynomial. Empirical results, with a reasonable fitness evaluation time assumption, verify that (1+1) EA-m and RLS-m+ are superior to their conventional counterparts. Both new algorithms are promising for use in a memetic algorithm. In particular, RLS-m+ makes the previously impractical RLS practical, and surprisingly, does not require any extra memory in actual implementation. PMID:20868262
Combining evolutionary algorithms with oblique decision trees to detect bent-double galaxies
NASA Astrophysics Data System (ADS)
Cantu-Paz, Erick; Kamath, Chandrika
2000-10-01
Decision tress have long been popular in classification as they use simple and easy-to-understand tests at each node. Most variants of decision trees test a single attribute at a node, leading to axis- parallel trees, where the test results in a hyperplane which is parallel to one of the dimensions in the attribute space. These trees can be rather large and inaccurate in cases where the concept to be learned is best approximated by oblique hyperplanes. In such cases, it may be more appropriate to use an oblique decision tree, where the decision at each node is a linear combination of the attributes. Oblique decision trees have not gained wide popularity in part due to the complexity of constructing good oblique splits and the tendency of existing splitting algorithms to get stuck in local minima. Several alternatives have been proposed to handle these problems including randomization in conjunction wiht deterministic hill-climbing and the use of simulated annealing. In this paper, we use evolutionary algorithms (EAs) to determine the split. EAs are well suited for this problem because of their global search properties, their tolerance to noisy fitness evaluations, and their scalability to large dimensional search spaces. We demonstrate our technique on a synthetic data set, and then we apply it to a practical problem from astronomy, namely, the classification of galaxies with a bent-double morphology. In addition, we describe our experiences with several split evaluation criteria. Our results suggest that, in some cases, the evolutionary approach is faster and more accurate than existing oblique decision tree algorithms. However, for our astronomical data, the accuracy is not significantly different than the axis-parallel trees.
NASA Astrophysics Data System (ADS)
Rahimi, Masoud; Beigzadeh, Reza; Parvizi, Mehdi; Eiamsa-ard, Smith
2016-08-01
The group method of data handling (GMDH) technique was used to predict heat transfer and friction characteristics in heat exchanger tubes equipped with wire-rod bundles. Nusselt number and friction factor were determined as functions of wire-rod bundle geometric parameters and Reynolds number. The performance of the developed GMDH-type neural networks was found to be superior in comparison with the proposed empirical correlations. For optimization, the genetic algorithm-based multi-objective optimization was applied.
An evolutionary algorithm for the segmentation of muscles and bones of the lower limb.
NASA Astrophysics Data System (ADS)
Lpez, Marco A.; Braidot, A.; Sattler, Anbal; Schira, Claudia; Uriburu, E.
2016-04-01
In the field of medical image segmentation, muscles segmentation is a problem that has not been fully resolved yet. This is due to the fact that the basic assumption of image segmentation, which asserts that a visual distinction should ex- ist between the different structures to be identified, is infringed. As the tissue composition of two different muscles is the same, it becomes extremely difficult to distinguish one another if they are near. We have developed an evolutionary algorithm which selects the set and the sequence of morphological operators that better segments muscles and bones from an MRI image. The achieved results shows that the developed algorithm presents average sensitivity values close to 75% in the segmentation of the different processed muscles and bones. It also presents average specificity values close to 93% for the same structures. Furthermore, the algorithm can identify muscles that are closely located through the path from their origin point to their insertions, with very low error values (below 7%) .
Weinert, K; Zabel, A; Kersting, P; Michelitsch, T; Wagner, T
2009-01-01
In the field of production engineering, various complex multi-objective problems are known. In this paper we focus on the design of mold temperature control systems, the reconstruction of digitized surfaces, and the optimization of NC paths for the five-axis milling process. For all these applications, efficient problem-specific algorithms exist that only consider a subset of the desirable objectives. In contrast, modern multi-objective evolutionary algorithms are able to cope with many conflicting objectives, but they require a long runtime due to their general applicability. Therefore, we propose hybrid algorithms for the three applications mentioned. In each case, the problem-specific algorithms are used to determine promising initial solutions for the multi-objective evolutionary approach, whose variation concepts are used to generate diversity in the objective space. We show that the combination of these techniques provides great benefits. Since the final solution is chosen by a decision maker based on this Pareto front approximation, appropriate visualizations of the high-dimensional solutions are presented. PMID:19916775
XTALOPT version r7: An open-source evolutionary algorithm for crystal structure prediction
NASA Astrophysics Data System (ADS)
Lonie, David C.; Zurek, Eva
2011-10-01
A new version of XTALOPT, a user-friendly GPL-licensed evolutionary algorithm for crystal structure prediction, is available for download from the CPC library or the XTALOPT website, http://xtalopt.openmolecules.net. The new version now supports four external geometry optimization codes (VASP, GULP, PWSCF, and CASTEP), as well as three queuing systems: PBS, SGE, SLURM, and “Local”. The local queuing system allows the geometry optimizations to be performed on the user's workstation if an external computational cluster is unavailable. Support for the Windows operating system has been added, and a Windows installer is provided. Numerous bugfixes and feature enhancements have been made in the new release as well.
Duan, Hai-Bin; Xu, Chun-Fang; Xing, Zhi-Hui
2010-02-01
In this paper, a novel hybrid Artificial Bee Colony (ABC) and Quantum Evolutionary Algorithm (QEA) is proposed for solving continuous optimization problems. ABC is adopted to increase the local search capacity as well as the randomness of the populations. In this way, the improved QEA can jump out of the premature convergence and find the optimal value. To show the performance of our proposed hybrid QEA with ABC, a number of experiments are carried out on a set of well-known Benchmark continuous optimization problems and the related results are compared with two other QEAs: the QEA with classical crossover operation, and the QEA with 2-crossover strategy. The experimental comparison results demonstrate that the proposed hybrid ABC and QEA approach is feasible and effective in solving complex continuous optimization problems. PMID:20180252
NASA Astrophysics Data System (ADS)
Rocha, M. C.; Saraiva, J. T.
2012-10-01
The basic objective of Transmission Expansion Planning (TEP) is to schedule a number of transmission projects along an extended planning horizon minimizing the network construction and operational costs while satisfying the requirement of delivering power safely and reliably to load centres along the horizon. This principle is quite simple, but the complexity of the problem and the impact on society transforms TEP on a challenging issue. This paper describes a new approach to solve the dynamic TEP problem, based on an improved discrete integer version of the Evolutionary Particle Swarm Optimization (EPSO) meta-heuristic algorithm. The paper includes sections describing in detail the EPSO enhanced approach, the mathematical formulation of the TEP problem, including the objective function and the constraints, and a section devoted to the application of the developed approach to this problem. Finally, the use of the developed approach is illustrated using a case study based on the IEEE 24 bus 38 branch test system.
Alternating evolutionary pressure in a genetic algorithm facilitates protein model selection
Offman, Marc N; Tournier, Alexander L; Bates, Paul A
2008-01-01
Background Automatic protein modelling pipelines are becoming ever more accurate; this has come hand in hand with an increasingly complicated interplay between all components involved. Nevertheless, there are still potential improvements to be made in template selection, refinement and protein model selection. Results In the context of an automatic modelling pipeline, we analysed each step separately, revealing several non-intuitive trends and explored a new strategy for protein conformation sampling using Genetic Algorithms (GA). We apply the concept of alternating evolutionary pressure (AEP), i.e. intermediate rounds within the GA runs where unrestrained, linear growth of the model populations is allowed. Conclusion This approach improves the overall performance of the GA by allowing models to overcome local energy barriers. AEP enabled the selection of the best models in 40% of all targets; compared to 25% for a normal GA. PMID:18673557
MONSS: A multi-objective nonlinear simplex search approach
NASA Astrophysics Data System (ADS)
Zapotecas-Martínez, Saúl; Coello Coello, Carlos A.
2016-01-01
This article presents a novel methodology for dealing with continuous box-constrained multi-objective optimization problems (MOPs). The proposed algorithm adopts a nonlinear simplex search scheme in order to obtain multiple elements of the Pareto optimal set. The search is directed by a well-distributed set of weight vectors, each of which defines a scalarization problem that is solved by deforming a simplex according to the movements described by Nelder and Mead's method. Considering an MOP with n decision variables, the simplex is constructed using n+1 solutions which minimize different scalarization problems defined by n+1 neighbor weight vectors. All solutions found in the search are used to update a set of solutions considered to be the minima for each separate problem. In this way, the proposed algorithm collectively obtains multiple trade-offs among the different conflicting objectives, while maintaining a proper representation of the Pareto optimal front. In this article, it is shown that a well-designed strategy using just mathematical programming techniques can be competitive with respect to the state-of-the-art multi-objective evolutionary algorithms against which it was compared.
An archived multi-objective simulated annealing for a dynamic cellular manufacturing system
NASA Astrophysics Data System (ADS)
Shirazi, Hossein; Kia, Reza; Javadian, Nikbakhsh; Tavakkoli-Moghaddam, Reza
2014-05-01
To design a group layout of a cellular manufacturing system (CMS) in a dynamic environment, a multi-objective mixed-integer non-linear programming model is developed. The model integrates cell formation, group layout and production planning (PP) as three interrelated decisions involved in the design of a CMS. This paper provides an extensive coverage of important manufacturing features used in the design of CMSs and enhances the flexibility of an existing model in handling the fluctuations of part demands more economically by adding machine depot and PP decisions. Two conflicting objectives to be minimized are the total costs and the imbalance of workload among cells. As the considered objectives in this model are in conflict with each other, an archived multi-objective simulated annealing (AMOSA) algorithm is designed to find Pareto-optimal solutions. Matrix-based solution representation, a heuristic procedure generating an initial and feasible solution and efficient mutation operators are the advantages of the designed AMOSA. To demonstrate the efficiency of the proposed algorithm, the performance of AMOSA is compared with an exact algorithm (i.e., ∈-constraint method) solved by the GAMS software and a well-known evolutionary algorithm, namely NSGA-II for some randomly generated problems based on some comparison metrics. The obtained results show that the designed AMOSA can obtain satisfactory solutions for the multi-objective model.
NASA Astrophysics Data System (ADS)
Garambois, Pierre; Besset, Sebastien; Jézéquel, Louis
2015-07-01
This paper presents a methodology for the multi-objective (MO) shape optimization of plate structure under stress criteria, based on a mixed Finite Element Model (FEM) enhanced with a sub-structuring method. The optimization is performed with a classical Genetic Algorithm (GA) method based on Pareto-optimal solutions and considers thickness distributions parameters and antagonist objectives among them stress criteria. We implement a displacement-stress Dynamic Mixed FEM (DM-FEM) for plate structure vibrations analysis. Such a model gives a privileged access to the stress within the plate structure compared to primal classical FEM, and features a linear dependence to the thickness parameters. A sub-structuring reduction method is also computed in order to reduce the size of the mixed FEM and split the given structure into smaller ones with their own thickness parameters. Those methods combined enable a fast and stress-wise efficient structure analysis, and improve the performance of the repetitive GA. A few cases of minimizing the mass and the maximum Von Mises stress within a plate structure under a dynamic load put forward the relevance of our method with promising results. It is able to satisfy multiple damage criteria with different thickness distributions, and use a smaller FEM.
NASA Astrophysics Data System (ADS)
Dhingra, Sunil; Bhushan, Gian; Dubey, Kashyap Kumar
2014-03-01
The present work studies and identifies the different variables that affect the output parameters involved in a single cylinder direct injection compression ignition (CI) engine using jatropha biodiesel. Response surface methodology based on Central composite design (CCD) is used to design the experiments. Mathematical models are developed for combustion parameters (Brake specific fuel consumption (BSFC) and peak cylinder pressure (Pmax)), performance parameter brake thermal efficiency (BTE) and emission parameters (CO, NO x , unburnt HC and smoke) using regression techniques. These regression equations are further utilized for simultaneous optimization of combustion (BSFC, Pmax), performance (BTE) and emission (CO, NO x , HC, smoke) parameters. As the objective is to maximize BTE and minimize BSFC, Pmax, CO, NO x , HC, smoke, a multiobjective optimization problem is formulated. Nondominated sorting genetic algorithm-II is used in predicting the Pareto optimal sets of solution. Experiments are performed at suitable optimal solutions for predicting the combustion, performance and emission parameters to check the adequacy of the proposed model. The Pareto optimal sets of solution can be used as guidelines for the end users to select optimal combination of engine output and emission parameters depending upon their own requirements.
Bowen, J.; Dozier, G.
1996-12-31
This paper introduces a hybrid evolutionary hill-climbing algorithm that quickly solves (Constraint Satisfaction Problems (CSPs)). This hybrid uses opportunistic arc and path revision in an interleaved fashion to reduce the size of the search space and to realize when to quit if a CSP is based on an inconsistent constraint network. This hybrid outperforms a well known hill-climbing algorithm, the Iterative Descent Method, on a test suite of 750 randomly generated CSPs.
Double-layer evolutionary algorithm for distributed optimization of particle detection on the Grid
NASA Astrophysics Data System (ADS)
Padée, Adam; Kurek, Krzysztof; Zaremba, Krzysztof
2013-08-01
Reconstruction of particle tracks from information collected by position-sensitive detectors is an important procedure in HEP experiments. It is usually controlled by a set of numerical parameters which have to be manually optimized. This paper proposes an automatic approach to this task by utilizing evolutionary algorithm (EA) operating on both real-valued and binary representations. Because of computational complexity of the task a special distributed architecture of the algorithm is proposed, designed to be run in grid environment. It is two-level hierarchical hybrid utilizing asynchronous master-slave EA on the level of clusters and island model EA on the level of the grid. The technical aspects of usage of production grid infrastructure are covered, including communication protocols on both levels. The paper deals also with the problem of heterogeneity of the resources, presenting efficiency tests on a benchmark function. These tests confirm that even relatively small islands (clusters) can be beneficial to the optimization process when connected to the larger ones. Finally a real-life usage example is presented, which is an optimization of track reconstruction in Large Angle Spectrometer of NA-58 COMPASS experiment held at CERN, using a sample of Monte Carlo simulated data. The overall reconstruction efficiency gain, achieved by the proposed method, is more than 4%, compared to the manually optimized parameters.
NASA Astrophysics Data System (ADS)
Sarkar, K.; Topsakal, M.; Wentzcovitch, R. M.
2015-12-01
We attempt to achieve the accuracy of full-potential linearized augmented-plane-wave (FLAPW) method, as implemented in the WIEN2k code, at the favorable computational efficiency of the projector augmented wave (PAW) method for ab initio calculations of solids. For decades, PAW datasets have been generated by manually choosing its parameters and by visually inspecting its logarithmic derivatives, partial wave, and projector basis set. In addition to being tedious and error-prone, this procedure is inadequate because it is impractical to manually explore the full parameter space, as an infinite number of PAW parameter sets for a given augmentation radius can be generated maintaining all the constraints on logarithmic derivatives and basis sets. Performance verification of all plausible solutions against FLAPW is also impractical. Here we report the development of a hybrid algorithm to construct optimized PAW basis sets that can closely reproduce FLAPW results from zero to ultra-high pressures. The approach applies evolutionary computing (EC) to generate optimum PAW parameter sets using the ATOMPAW code. We have the Quantum ESPRESSO distribution to generate equation of state (EOS) to be compared with WIEN2k EOSs set as target. Softer PAW potentials reproducing yet more closely FLAPW EOSs can be found with this method. We demonstrate its working principles and workability by optimizing PAW basis functions for carbon, magnesium, aluminum, silicon, calcium, and iron atoms. The algorithm requires minimal user intervention in a sense that there is no requirement of visual inspection of logarithmic derivatives or of projector functions.
Combining evolutionary algorithms with oblique decision trees to detect bent double galaxies
Cantu-Paz, E; Kamath, C
2000-06-22
Decision trees have long been popular in classification as they use simple and easy-to-understand tests at each node. Most variants of decision trees test a single attribute at a node, leading to axis-parallel trees, where the test results in a hyperplane which is parallel to one of the dimensions in the attribute space. These trees can be rather large and inaccurate in cases where the concept to be learnt is best approximated by oblique hyperplanes. In such cases, it may be more appropriate to use an oblique decision tree, where the decision at each node is a linear combination of the attributes. Oblique decision trees have not gained wide popularity in part due to the complexity of constructing good oblique splits and the tendency of existing splitting algorithms to get stuck in local minima. Several alternatives have been proposed to handle these problems including randomization in conjunction with deterministic hill climbing and the use of simulated annealing. In this paper, they use evolutionary algorithms (EAs) to determine the split. EAs are well suited for this problem because of their global search properties, their tolerance to noisy fitness evaluations, and their scalability to large dimensional search spaces. They demonstrate the technique on a practical problem from astronomy, namely, the classification of galaxies with a bent-double morphology, and describe their experiences with several split evaluation criteria.
Deconvolution of γ-spectra variably affected by space radiation using an evolutionary algorithm
NASA Astrophysics Data System (ADS)
McClanahan, Timothy P.; Loew, Murray H.; Trombka, Jacob I.; Evans, Larry G.
2007-09-01
An evolutionary algorithm (ES) for automated deconvolution of γ-ray spectra is described that fits peak shape morphologies typical of spectra acquired from variably radiation damaged γ-ray detectors. Space radiation effects significantly impair semi-conductor γ-ray detector efficiency and induce variable degrees of nuclide peak broadening, distortion in spectra. Mars Odyssey Gamma-ray spectrometer data are used to demonstrate applicability of described algorithms for three degrees of radiation damage. ES methods accurately identify and quantify the discrete set of nuclide peaks in an arbitrary spectrum using a nuclide library. A novel method of constraining peak low energy tails, broadened by detector radiation damage, reduces the peak shape model from six parameters to four yielding a significant minimization of model complexity. Benefits of this approach include the simple implementation of highly specific parameter constraints that appropriately define feasible solution spaces. Methods describe peak low energy tailing descriptors as a continuum of low energy peak tailing curves representing increasing degrees of radiation damage. Curves are addressable by a single real valued parameter. Results illustrate the use of methods to simply describe relative radiation dosimetry using this parameter. Analysis of degraded spectra indicates method sensitivity to low and high levels of space radiation damage prior to and post MO-GRS detector annealings.
NASA Astrophysics Data System (ADS)
Wang, J.; Cai, X.
2007-12-01
A water resources system can be defined as a large-scale spatial system, within which distributed ecological system interacts with the stream network and ground water system. Water resources management, the causative factors and hence the solutions to be developed have a significant spatial dimension. This motivates a modeling analysis of water resources management within a spatial analytical framework, where data is usually geo- referenced and in the form of a map. One of the important functions of Geographic information systems (GIS) is to identify spatial patterns of environmental variables. The role of spatial patterns in water resources management has been well established in the literature particularly regarding how to design better spatial patterns for satisfying the designated objectives of water resources management. Evolutionary algorithms (EA) have been demonstrated to be successful in solving complex optimization models for water resources management due to its flexibility to incorporate complex simulation models in the optimal search procedure. The idea of combining GIS and EA motivates the development and application of spatial evolutionary algorithms (SEA). SEA assimilates spatial information into EA, and even changes the representation and operators of EA. In an EA used for water resources management, the mathematical optimization model should be modified to account the spatial patterns; however, spatial patterns are usually implicit, and it is difficult to impose appropriate patterns to spatial data. Also it is difficult to express complex spatial patterns by explicit constraints included in the EA. The GIS can help identify the spatial linkages and correlations based on the spatial knowledge of the problem. These linkages are incorporated in the fitness function for the preference of the compatible vegetation distribution. Unlike a regular GA for spatial models, the SEA employs a special hierarchical hyper-population and spatial genetic operators
NASA Astrophysics Data System (ADS)
Manzano-Agugliaro, F.; San-Antonio-Gómez, C.; López, S.; Montoya, F. G.; Gil, C.
2013-08-01
When historical map data are compared with modern cartography, the old map coordinates must be transformed to the current system. However, historical data often exhibit heterogeneous quality. In calculating the transformation parameters between the historical and modern maps, it is often necessary to discard highly uncertain data. An optimal balance between the objectives of minimising the transformation error and eliminating as few points as possible can be achieved by generating a Pareto front of solutions using evolutionary genetic algorithms. The aim of this paper is to assess the performance of evolutionary algorithms in determining the accuracy of historical maps in regard to modern cartography. When applied to the 1787 Tomas Lopez map, the use of evolutionary algorithms reduces the linear error by 40% while eliminating only 2% of the data points. The main conclusion of this paper is that evolutionary algorithms provide a promising alternative for the transformation of historical map coordinates and determining the accuracy of historical maps in regard to modern cartography, particularly when the positional quality of the data points used cannot be assured.
Integrative systems modeling and multi-objective optimization
This presentation presents a number of algorithms, tools, and methods for utilizing multi-objective optimization within integrated systems modeling frameworks. We first present innovative methods using a genetic algorithm to optimally calibrate the VELMA and SWAT ecohydrological ...
Kurek, Wojciech; Ostfeld, Avi
2013-01-30
A multi-objective methodology utilizing the Strength Pareto Evolutionary Algorithm (SPEA2) linked to EPANET for trading-off pumping costs, water quality, and tanks sizing of water distribution systems is developed and demonstrated. The model integrates variable speed pumps for modeling the pumps operation, two water quality objectives (one based on chlorine disinfectant concentrations and one on water age), and tanks sizing cost which are assumed to vary with location and diameter. The water distribution system is subject to extended period simulations, variable energy tariffs, Kirchhoff's laws 1 and 2 for continuity of flow and pressure, tanks water level closure constraints, and storage-reliability requirements. EPANET Example 3 is employed for demonstrating the methodology on two multi-objective models, which differ in the imposed water quality objective (i.e., either with disinfectant or water age considerations). Three-fold Pareto optimal fronts are presented. Sensitivity analysis on the storage-reliability constraint, its influence on pumping cost, water quality, and tank sizing are explored. The contribution of this study is in tailoring design (tank sizing), pumps operational costs, water quality of two types, and reliability through residual storage requirements, in a single multi-objective framework. The model was found to be stable in generating multi-objective three-fold Pareto fronts, while producing explainable engineering outcomes. The model can be used as a decision tool for both pumps operation, water quality, required storage for reliability considerations, and tank sizing decision-making. PMID:23262407
Dietrich, Arne; Haider, Hilde
2015-08-01
Creative thinking is arguably the pinnacle of cerebral functionality. Like no other mental faculty, it has been omnipotent in transforming human civilizations. Probing the neural basis of this most extraordinary capacity, however, has been doggedly frustrated. Despite a flurry of activity in cognitive neuroscience, recent reviews have shown that there is no coherent picture emerging from the neuroimaging work. Based on this, we take a different route and apply two well established paradigms to the problem. First is the evolutionary framework that, despite being part and parcel of creativity research, has no informed experimental work in cognitive neuroscience. Second is the emerging prediction framework that recognizes predictive representations as an integrating principle of all cognition. We show here how the prediction imperative revealingly synthesizes a host of new insights into the way brains process variation-selection thought trials and present a new neural mechanism for the partial sightedness in human creativity. Our ability to run offline simulations of expected future environments and action outcomes can account for some of the characteristic properties of cultural evolutionary algorithms running in brains, such as degrees of sightedness, the formation of scaffolds to jump over unviable intermediate forms, or how fitness criteria are set for a selection process that is necessarily hypothetical. Prospective processing in the brain also sheds light on how human creating and designing - as opposed to biological creativity - can be accompanied by intentions and foresight. This paper raises questions about the nature of creative thought that, as far as we know, have never been asked before. PMID:25304474
NASA Astrophysics Data System (ADS)
Watchareeruetai, Ukrit; Matsumoto, Tetsuya; Takeuchi, Yoshinori; Kudo, Hiroaki; Ohnishi, Noboru
We propose a new multi-objective genetic programming (MOGP) for automatic construction of image feature extraction programs (FEPs). The proposed method was originated from a well known multi-objective evolutionary algorithm (MOEA), i.e., NSGA-II. The key differences are that redundancy-regulation mechanisms are applied in three main processes of the MOGP, i.e., population truncation, sampling, and offspring generation, to improve population diversity as well as convergence rate. Experimental results indicate that the proposed MOGP-based FEP construction system outperforms the two conventional MOEAs (i.e., NSGA-II and SPEA2) for a test problem. Moreover, we compared the programs constructed by the proposed MOGP with four human-designed object recognition programs. The results show that the constructed programs are better than two human-designed methods and are comparable with the other two human-designed methods for the test problem.
NASA Astrophysics Data System (ADS)
Gair, Jonathan R.; Porter, Edward K.
2009-11-01
We describe a hybrid evolutionary algorithm that can simultaneously search for multiple supermassive black hole binary (SMBHB) inspirals in LISA data. The algorithm mixes evolutionary computation, Metropolis-Hastings methods and Nested Sampling. The inspiral of SMBHBs presents an interesting problem for gravitational wave data analysis since, due to the LISA response function, the sources have a bi-modal sky solution. We show here that it is possible not only to detect multiple SMBHBs in the data stream, but also to investigate simultaneously all the various modes of the global solution. In all cases, the algorithm returns parameter determinations within 5σ (as estimated from the Fisher matrix) of the true answer, for both the actual and antipodal sky solutions.
Zhao, Xiujuan; Xu, Wei; Ma, Yunjia; Hu, Fuyu
2015-01-01
The correct location of earthquake emergency shelters and their allocation to residents can effectively reduce the number of casualties by providing safe havens and efficient evacuation routes during the chaotic period of the unfolding disaster. However, diverse and strict constraints and the discrete feasible domain of the required models make the problem of shelter location and allocation more difficult. A number of models have been developed to solve this problem, but there are still large differences between the models and the actual situation because the characteristics of the evacuees and the construction costs of the shelters have been excessively simplified. We report here the development of a multi-objective model for the allocation of residents to earthquake shelters by considering these factors using the Chaoyang district, Beijing, China as a case study. The two objectives of this model were to minimize the total weighted evacuation time from residential areas to a specified shelter and to minimize the total area of all the shelters. The two constraints were the shelter capacity and the service radius. Three scenarios were considered to estimate the number of people who would need to be evacuated. The particle swarm optimization algorithm was first modified by applying the von Neumann structure in former loops and global structure in later loops, and then used to solve this problem. The results show that increasing the shelter area can result in a large decrease in the total weighted evacuation time from scheme 1 to scheme 9 in scenario A, from scheme 1 to scheme 9 in scenario B, from scheme 1 to scheme 19 in scenario C. If the funding were not a limitation, then the final schemes of each scenario are the best solutions, otherwise the earlier schemes are more reasonable. The modified model proved to be useful for the optimization of shelter allocation, and the result can be used as a scientific reference for planning shelters in the Chaoyang district
Evolutionary Design of one-dimensional Rule Changing cellular automata using genetic algorithms
NASA Astrophysics Data System (ADS)
Yun, Wu; Kanoh, Hitoshi
In this paper we propose a new method to obtain transition rules of one-dimensional two-state cellular automata (CAs) using genetic algorithms (GAs). CAs have the advantages of producing complex systems from the interaction of simple elements, and have attracted increased research interest. However, the difficulty of designing CAs' transition rules to perform a particular task has severely limited their applications. The evolutionary design of CA rules has been studied by the EVCA group in detail. A GA was used to evolve CAs for two tasks: density classification and synchronization problems. That GA was shown to have discovered rules that gave rise to sophisticated emergent computational strategies. Sipper has studied a cellular programming algorithm for 2-state non-uniform CAs, in which each cell may contain a different rule. Meanwhile, Land and Belew proved that the perfect two-state rule for performing the density classification task does not exist. However, Fuks´ showed that a pair of human written rules performs the task perfectly when the size of neighborhood is one. In this paper, we consider a pair of rules and the number of rule iterations as a chromosome, whereas the EVCA group considers a rule as a chromosome. The present method is meant to reduce the complexity of a given problem by dividing the problem into smaller ones and assigning a distinct rule to each one. Experimental results for the two tasks prove that our method is more efficient than a conventional method. Some of the obtained rules agree with the human written rules shown by Fuks´. We also grouped 1000 rules with high fitness into 4 classes according to the Langton's λ parameter. The rules obtained by the proposed method belong to Class- I, II, III or IV, whereas most of the rules by the conventional method belong to Class-IV only. This result shows that the combination of simple rules can perform complex tasks.
NASA Astrophysics Data System (ADS)
Asouti, V. G.; Giannakoglou, K. C.
2012-07-01
This article presents a solution method to the unit commitment problem with probabilistic unit failures and repairs, which is based on evolutionary algorithms and Monte Carlo simulations. Regarding the latter, thousands of availability-unavailability trial time patterns along the scheduling horizon are generated. The objective function to be minimised is the expected total operating cost, computed after adapting any candidate solution, i.e. any series of generating/non-generating (ON/OFF) unit states, to the availability-unavailability patterns and performing evaluations by considering fuel, start-up and shutdown costs as well as the cost for buying electricity from external resources, if necessary. The proposed method introduces a new efficient chromosome representation: the decision variables are integer IDs corresponding to the binary-to-decimal converted ON/OFF (1/0) scenarios that cover the demand in each hour. In contrast to previous methods using binary strings as chromosomes, the new chromosome must be penalised only if any of the constraints regarding start-up, shutdown and ramp times cannot be met, chromosome repair is avoided and, consequently, the dispatch problems are solved once in the preparatory phase instead of during the evolution. For all these reasons, with or without probabilistic outages, the proposed algorithm has much lower CPU cost. In addition, if probabilistic outages are taken into account, a hierarchical evaluation scheme offers extra noticeable gain in CPU cost: the population members are approximately pre-evaluated using a small 'representative' set of the Monte Carlo simulations and only a few top population members undergo evaluations through the full Monte Carlo simulations. The hierarchical scheme makes the proposed method about one order of magnitude faster than its conventional counterpart.
Analysis of high resolution FTIR spectra from synchrotron sources using evolutionary algorithms
NASA Astrophysics Data System (ADS)
van Wijngaarden, Jennifer; Desmond, Durell; Leo Meerts, W.
2015-09-01
Room temperature Fourier transform infrared spectra of the four-membered heterocycle trimethylene sulfide were collected with a resolution of 0.00096 cm-1 using synchrotron radiation from the Canadian Light Source from 500 to 560 cm-1. The in-plane ring deformation mode (ν13) at ∼529 cm-1 exhibits dense rotational structure due to the presence of ring inversion tunneling and leads to a doubling of all transitions. Preliminary analysis of the experimental spectrum was pursued via traditional methods involving assignment of quantum numbers to individual transitions in order to conduct least squares fitting to determine the spectroscopic parameters. Following this approach, the assignment of 2358 transitions led to the experimental determination of an effective Hamiltonian. This model describes transitions in the P and R branches to J‧ = 60 and Ka‧ = 10 that connect the tunneling split ground and vibrationally excited states of the ν13 band although a small number of low intensity features remained unassigned. The use of evolutionary algorithms (EA) for automated assignment was explored in tandem and yielded a set of spectroscopic constants that re-create this complex experimental spectrum to a similar degree. The EA routine was also applied to the previously well-understood ring puckering vibration of another four-membered ring, azetidine (Zaporozan et al., 2010). This test provided further evidence of the robust nature of the EA method when applied to spectra for which the underlying physics is well understood.
Enhancements of evolutionary algorithm for the complex requirements of a nurse scheduling problem
NASA Astrophysics Data System (ADS)
Tein, Lim Huai; Ramli, Razamin
2014-12-01
Over the years, nurse scheduling is a noticeable problem that is affected by the global nurse turnover crisis. The more nurses are unsatisfied with their working environment the more severe the condition or implication they tend to leave. Therefore, the current undesirable work schedule is partly due to that working condition. Basically, there is a lack of complimentary requirement between the head nurse's liability and the nurses' need. In particular, subject to highly nurse preferences issue, the sophisticated challenge of doing nurse scheduling is failure to stimulate tolerance behavior between both parties during shifts assignment in real working scenarios. Inevitably, the flexibility in shifts assignment is hard to achieve for the sake of satisfying nurse diverse requests with upholding imperative nurse ward coverage. Hence, Evolutionary Algorithm (EA) is proposed to cater for this complexity in a nurse scheduling problem (NSP). The restriction of EA is discussed and thus, enhancement on the EA operators is suggested so that the EA would have the characteristic of a flexible search. This paper consists of three types of constraints which are the hard, semi-hard and soft constraints that can be handled by the EA with enhanced parent selection and specialized mutation operators. These operators and EA as a whole contribute to the efficiency of constraint handling, fitness computation as well as flexibility in the search, which correspond to the employment of exploration and exploitation principles.
Exploring PtSO4 and PdSO4 phases: an evolutionary algorithm based investigation.
Sharma, Hom; Sharma, Vinit; Huan, Tran Doan
2015-07-21
Metal sulfate formation is one of the major challenges to the emission aftertreatment catalysts. Unlike the incredibly sulfation prone nature of Pd to form PdSO4, no experimental evidence exists for PtSO4 formation. Given the mystery of nonexistence of PtSO4, we explore PtSO4 using a combined approach of an evolutionary algorithm based search technique and quantum mechanical computations. Experimentally known PdSO4 is considered for the comparison and validation of our results. We predict many possible low-energy phases of PtSO4 and PdSO4 at 0 K, which are further investigated in a wide range of temperature-pressure conditions. An entirely new low-energy (tetragonal P42/m) structure of PtSO4 and PdSO4 is predicted, which appears to be the most stable phase of PtSO4 and a competing phase of the experimentally known monoclinic C2/c phase of PdSO4. Phase stability at a finite temperature is further examined and verified by Gibbs free energy calculations of sulfates towards their possible decomposition products. Finally, temperature-pressure phase diagrams are computationally established for both PtSO4 and PdSO4. PMID:26103206
NASA Astrophysics Data System (ADS)
Friedel, Michael; Buscema, Massimo
2016-04-01
Aquatic ecosystem models can potentially be used to understand the influence of stresses on catchment resource quality. Given that catchment responses are functions of natural and anthropogenic stresses reflected in sparse and spatiotemporal biological, physical, and chemical measurements, an ecosystem is difficult to model using statistical or numerical methods. We propose an artificial adaptive systems approach to model ecosystems. First, an unsupervised machine-learning (ML) network is trained using the set of available sparse and disparate data variables. Second, an evolutionary algorithm with genetic doping is applied to reduce the number of ecosystem variables to an optimal set. Third, the optimal set of ecosystem variables is used to retrain the ML network. Fourth, a stochastic cross-validation approach is applied to quantify and compare the nonlinear uncertainty in selected predictions of the original and reduced models. Results are presented for aquatic ecosystems (tens of thousands of square kilometers) undergoing landscape change in the USA: Upper Illinois River Basin and Central Colorado Assessment Project Area, and Southland region, NZ.
NASA Astrophysics Data System (ADS)
Sarjaš, Andrej; Chowdhury, Amor; Svečko, Rajko
2016-09-01
This paper presents the synthesis of an optimal robust controller design using the polynomial pole placement technique and multi-criteria optimisation procedure via an evolutionary computation algorithm - differential evolution. The main idea of the design is to provide a reliable fixed-order robust controller structure and an efficient closed-loop performance with a preselected nominally characteristic polynomial. The multi-criteria objective functions have quasi-convex properties that significantly improve convergence and the regularity of the optimal/sub-optimal solution. The fundamental aim of the proposed design is to optimise those quasi-convex functions with fixed closed-loop characteristic polynomials, the properties of which are unrelated and hard to present within formal algebraic frameworks. The objective functions are derived from different closed-loop criteria, such as robustness with metric ?∞, time performance indexes, controller structures, stability properties, etc. Finally, the design results from the example verify the efficiency of the controller design and also indicate broader possibilities for different optimisation criteria and control structures.
Parameter extraction from experimental PEFC data using an evolutionary optimization algorithm
NASA Astrophysics Data System (ADS)
Zaglio, M.; Schuler, G.; Wokaun, A.; Mantzaras, J.; Büchi, F. N.
2011-05-01
The accurate characterization of the parameters related to the charge and water transport in the ionomer membrane of polymer electrolyte fuel cells (PEFC) is highly important for the understanding and interpretation of the overall cell behavior. Despite the big efforts to experimentally determine these parameters, a large scatter of data is reported in the literature, due to the inherent experimental difficulties. Likewise, the porosity and tortuosity of the gas diffusion layers affect the membrane water content and the local cell performance, but the published data are usually measured ex-situ, not accounting for the effect of clamping pressure. Using a quasi two-dimensional model and experimental current density data from a linear cell of technical size, a multiparameter optimization procedure based on an evolutionary algorithm has been applied to determine eight material properties highly influencing the cell performance. The optimization procedure converges towards a well defined solution and the resulting parameter values are compared to those available in the literature. The quality of the set of parameters extracted by the optimization procedure is assessed by a sensitivity analysis.
Optimization of thin noise barrier designs using Evolutionary Algorithms and a Dual BEM Formulation
NASA Astrophysics Data System (ADS)
Toledo, R.; Aznárez, J. J.; Maeso, O.; Greiner, D.
2015-01-01
This work aims at assessing the acoustic efficiency of different thin noise barrier models. These designs frequently feature complex profiles and their implementation in shape optimization processes may not always be easy in terms of determining their topological feasibility. A methodology to conduct both overall shape and top edge optimizations of thin cross section acoustic barriers by idealizing them as profiles with null boundary thickness is proposed. This procedure is based on the maximization of the insertion loss of candidate profiles proposed by an evolutionary algorithm. The special nature of these sorts of barriers makes necessary the implementation of a complementary formulation to the classical Boundary Element Method (BEM). Numerical simulations of the barriers' performance are conducted by using a 2D Dual BEM code in eight different barrier configurations (covering overall shaped and top edge configurations; spline curved and polynomial shaped based designs; rigid and noise absorbing boundaries materials). While results are achieved by using a specific receivers' scheme, the influence of the receivers' location on the acoustic performance is previously addressed. With the purpose of testing the methodology here presented, a numerical model validation on the basis of experimental results from a scale model test [34] is conducted. Results obtained show the usefulness of representing complex thin barrier configurations as null boundary thickness-like models.
A Pareto evolutionary artificial neural network approach for remote sensing image classification
NASA Astrophysics Data System (ADS)
Liu, Fujiang; Wu, Xincai; Guo, Yan; Sun, Huashan; Zhou, Feng; Mei, Linlu
2006-10-01
This paper presents a Pareto evolutionary artificial neural network (Pareto-EANN) approach based on the evolutionary algorithms for multiobjective optimization augmented with local search for the classification of remote sensing image. Its novelty lies in the use of a multiobjective genetic algorithm where single hidden layers Multilayer Perceptrons (MLP) are employed to indicate the accuracy/complexity trade-off. Some advantages of this approach include the ability to accommodate multiple criteria such as accuracy of the classifier and number of hidden units. We compared Pareto-EANN classifiers results of the classification of remote sensing image against standard backpropagation neural network classifiers and EANN classifiers; we show experimentally the efficiency of the proposed methodology.
NASA Astrophysics Data System (ADS)
Hadia, Sarman K.; Thakker, R. A.; Bhatt, Kirit R.
2016-05-01
The study proposes an application of evolutionary algorithms, specifically an artificial bee colony (ABC), variant ABC and particle swarm optimisation (PSO), to extract the parameters of metal oxide semiconductor field effect transistor (MOSFET) model. These algorithms are applied for the MOSFET parameter extraction problem using a Pennsylvania surface potential model. MOSFET parameter extraction procedures involve reducing the error between measured and modelled data. This study shows that ABC algorithm optimises the parameter values based on intelligent activities of honey bee swarms. Some modifications have also been applied to the basic ABC algorithm. Particle swarm optimisation is a population-based stochastic optimisation method that is based on bird flocking activities. The performances of these algorithms are compared with respect to the quality of the solutions. The simulation results of this study show that the PSO algorithm performs better than the variant ABC and basic ABC algorithm for the parameter extraction of the MOSFET model; also the implementation of the ABC algorithm is shown to be simpler than that of the PSO algorithm.
NASA Astrophysics Data System (ADS)
Gladwin, D.; Stewart, P.; Stewart, J.
2011-02-01
This article addresses the problem of maintaining a stable rectified DC output from the three-phase AC generator in a series-hybrid vehicle powertrain. The series-hybrid prime power source generally comprises an internal combustion (IC) engine driving a three-phase permanent magnet generator whose output is rectified to DC. A recent development has been to control the engine/generator combination by an electronically actuated throttle. This system can be represented as a nonlinear system with significant time delay. Previously, voltage control of the generator output has been achieved by model predictive methods such as the Smith Predictor. These methods rely on the incorporation of an accurate system model and time delay into the control algorithm, with a consequent increase in computational complexity in the real-time controller, and as a necessity relies to some extent on the accuracy of the models. Two complementary performance objectives exist for the control system. Firstly, to maintain the IC engine at its optimal operating point, and secondly, to supply a stable DC supply to the traction drive inverters. Achievement of these goals minimises the transient energy storage requirements at the DC link, with a consequent reduction in both weight and cost. These objectives imply constant velocity operation of the IC engine under external load disturbances and changes in both operating conditions and vehicle speed set-points. In order to achieve these objectives, and reduce the complexity of implementation, in this article a controller is designed by the use of Genetic Programming methods in the Simulink modelling environment, with the aim of obtaining a relatively simple controller for the time-delay system which does not rely on the implementation of real time system models or time delay approximations in the controller. A methodology is presented to utilise the miriad of existing control blocks in the Simulink libraries to automatically evolve optimal control
Multi-objective optimization for deepwater dynamic umbilical installation analysis
NASA Astrophysics Data System (ADS)
Yang, HeZhen; Wang, AiJun; Li, HuaJun
2012-08-01
We suggest a method of multi-objective optimization based on approximation model for dynamic umbilical installation. The optimization aims to find out the most cost effective size, quantity and location of buoyancy modules for umbilical installation while maintaining structural safety. The approximation model is constructed by the design of experiment (DOE) sampling and is utilized to solve the problem of time-consuming analyses. The non-linear dynamic analyses considering environmental loadings are executed on these sample points from DOE. Non-dominated Sorting Genetic Algorithm (NSGA-II) is employed to obtain the Pareto solution set through an evolutionary optimization process. Intuitionist fuzzy set theory is applied for selecting the best compromise solution from Pareto set. The optimization results indicate this optimization strategy with approximation model and multiple attribute decision-making method is valid, and provide the optimal deployment method for deepwater dynamic umbilical buoyancy modules.
NASA Astrophysics Data System (ADS)
Timoshenko, Janis; Anspoks, Andris; Kalinko, Aleksandr; Kuzmin, Alexei
2016-05-01
Extended x-ray absorption fine structure (EXAFS) spectroscopy combined with reverse Monte Carlo (RMC) and evolutionary algorithm (EA) modelling is used to advance the understanding of the local structure and lattice dynamics of copper nitride (Cu3N). The RMC/EA-EXAFS method provides a possibility to probe correlations in the motion of neighboring atoms and allows us to analyze the influence of anisotropic motion of copper atoms in Cu3N.
Multi-objective approach for the automatic design of optical systems.
Carneiro de Albuquerque, Bráulio Fonseca; Luis de Sousa, Fabiano; Montes, Amauri Silva
2016-03-21
An innovative method for the automatic design of optical systems is presented and verified. The proposed method is based on a multi-objective evolutionary memetic optimization algorithm. The multi-objective approach simultaneously, but separately, addresses the image quality, tolerance, and complexity of the system. The memetic technique breaks down the search for optical designs in to three different parts or phases: optical glass selection, exploration, and exploitation. The optical glass selection phase defines the most appropriate set of glasses for the system under design. The glass selection phase limits the available glasses from hundreds to just a few, drastically reducing the design space and significantly increasing the efficiency of the automatic design method. The exploration phase is based on an evolutionary algorithm (EA), more specifically, on a problem-tailored generalized extremal optimization (GEO) algorithm, named Optical GEO (O-GEO). The new EA incorporates many features customized for lens design, such as optical system codification and diversity operators. The trade-off systems found in the exploration phase are refined by a local search, based on the damped least square method in the exploitation phase. As a result, the method returns a set of trade-off solutions, generating a Pareto front. Our method delivers alternative and useful insights for the compromise solutions in a lens design problem. The efficiency of the proposed method is verified through real-world examples, showing excellent results for the tested problems. PMID:27136851
Applying a multiobjective metaheuristic inspired by honey bees to phylogenetic inference.
Santander-Jiménez, Sergio; Vega-Rodríguez, Miguel A
2013-10-01
The development of increasingly popular multiobjective metaheuristics has allowed bioinformaticians to deal with optimization problems in computational biology where multiple objective functions must be taken into account. One of the most relevant research topics that can benefit from these techniques is phylogenetic inference. Throughout the years, different researchers have proposed their own view about the reconstruction of ancestral evolutionary relationships among species. As a result, biologists often report different phylogenetic trees from a same dataset when considering distinct optimality principles. In this work, we detail a multiobjective swarm intelligence approach based on the novel Artificial Bee Colony algorithm for inferring phylogenies. The aim of this paper is to propose a complementary view of phylogenetics according to the maximum parsimony and maximum likelihood criteria, in order to generate a set of phylogenetic trees that represent a compromise between these principles. Experimental results on a variety of nucleotide data sets and statistical studies highlight the relevance of the proposal with regard to other multiobjective algorithms and state-of-the-art biological methods. PMID:23850533
NASA Astrophysics Data System (ADS)
Sánchez-Escobar, Juan Jaime; Barbosa Santillán, Liliana Ibeth
2015-09-01
This paper describes the use of a hybrid evolutionary optimization algorithm (HEOA) for computing the wavefront aberration from real interferometric data. By finding the near-optimal solution to an optimization problem, this algorithm calculates the Zernike polynomial expansion coefficients from a Fizeau interferogram, showing the validity for the reconstruction of the wavefront aberration. The proposed HEOA incorporates the advantages of both a multimember evolution strategy and locally weighted linear regression in order to minimize an objective function while avoiding premature convergence to a local minimum. The numerical results demonstrate that our HEOA is robust for analyzing real interferograms degraded by noise.
NASA Astrophysics Data System (ADS)
Tsoukalas, Ioannis; Kossieris, Panagiotis; Efstratiadis, Andreas; Makropoulos, Christos
2015-04-01
In water resources optimization problems, the calculation of the objective function usually presumes to first run a simulation model and then evaluate its outputs. In several cases, however, long simulation times may pose significant barriers to the optimization procedure. Often, to obtain a solution within a reasonable time, the user has to substantially restrict the allowable number of function evaluations, thus terminating the search much earlier than required by the problem's complexity. A promising novel strategy to address these shortcomings is the use of surrogate modelling techniques within global optimization algorithms. Here we introduce the Surrogate-Enhanced Evolutionary Annealing-Simplex (SE-EAS) algorithm that couples the strengths of surrogate modelling with the effectiveness and efficiency of the EAS method. The algorithm combines three different optimization approaches (evolutionary search, simulated annealing and the downhill simplex search scheme), in which key decisions are partially guided by numerical approximations of the objective function. The performance of the proposed algorithm is benchmarked against other surrogate-assisted algorithms, in both theoretical and practical applications (i.e. test functions and hydrological calibration problems, respectively), within a limited budget of trials (from 100 to 1000). Results reveal the significant potential of using SE-EAS in challenging optimization problems, involving time-consuming simulations.
NASA Astrophysics Data System (ADS)
Della Mora, S.; Boschi, L.; Becker, T. W.; Giardini, D.
2010-12-01
The wavelength spectrum of three-dimensional (3D) heterogeneity naturally reflects the nature of Earth dynamics, and is in its own right an important constraint for geodynamical modeling. The Earth's spectrum has been usually evaluated indirectly, on the basis of previously derived tomographic models. If the geographic distribution of seismic heterogeneities is neglected, however, one can invert global seismic data directly to find the spectrum of the Earth. Inverting for the spectrum is in principle (fewer unknowns) cheaper and robust than inverting for the 3D structure of a planet: this should allow us to constrain planetary structure at smaller scales than by current 3D models. Based on the work of Gudmundsson and coworkers in the early 1990s, we have developed a linear algorithm for surface waves. The spectra we obtain are in qualitative agreement with results from 3D tomography, but the resolving power is generally lower, due to the simplifications required to linearise the ``spectral'' inversion. To overcome this problem, we performed full nonlinear inversions of synthetically generated and real datasets, and compare the obtained spectra with the input and tomographic models respectively. The inversions are calculated on a distributed memory parallel nodes cluster, employing the MPI package. An evolutionary strategy approach is used to explore the parameter space, using the PIKAIA software. The first preliminary results show a resolving power higher than that of linearised inversion. This confirms that the approximations required in the linear formulation affect the solution quality, and suggests that the nonlinear approach might effectively help to constrain the heterogeneity spectrum more robustly than currently possible.
Holmes, Tim; Zanker, Johannes M.
2013-01-01
Studying aesthetic preference is notoriously difficult because it targets individual experience. Eye movements provide a rich source of behavioral measures that directly reflect subjective choice. To determine individual preferences for simple composition rules we here use fixation duration as the fitness measure in a Gaze Driven Evolutionary Algorithm (GDEA), which has been demonstrated as a tool to identify aesthetic preferences (Holmes and Zanker, 2012). In the present study, the GDEA was used to investigate the preferred combination of color and shape which have been promoted in the Bauhaus arts school. We used the same three shapes (square, circle, triangle) used by Kandinsky (1923), with the three color palette from the original experiment (A), an extended seven color palette (B), and eight different shape orientation (C). Participants were instructed to look for their preferred circle, triangle or square in displays with eight stimuli of different shapes, colors and rotations, in an attempt to test for a strong preference for red squares, yellow triangles and blue circles in such an unbiased experimental design and with an extended set of possible combinations. We Tested six participants extensively on the different conditions and found consistent preferences for color-shape combinations for individuals, but little evidence at the group level for clear color/shape preference consistent with Kandinsky's claims, apart from some weak link between yellow and triangles. Our findings suggest substantial inter-individual differences in the presence of stable individual associations of color and shapes, but also that these associations are robust within a single individual. These individual differences go some way toward challenging the claims of the universal preference for color/shape combinations proposed by Kandinsky, but also indicate that a much larger sample size would be needed to confidently reject that hypothesis. Moreover, these experiments highlight the
NASA Astrophysics Data System (ADS)
Ketabchi, Hamed; Ataie-Ashtiani, Behzad
2015-01-01
This paper surveys the literature associated with the application of evolutionary algorithms (EAs) in coastal groundwater management problems (CGMPs). This review demonstrates that previous studies were mostly relied on the application of limited and particular EAs, mainly genetic algorithm (GA) and its variants, to a number of specific problems. The exclusive investigation of these problems is often not the representation of the variety of feasible processes may be occurred in coastal aquifers. In this study, eight EAs are evaluated for CGMPs. The considered EAs are: GA, continuous ant colony optimization (CACO), particle swarm optimization (PSO), differential evolution (DE), artificial bee colony optimization (ABC), harmony search (HS), shuffled complex evolution (SCE), and simplex simulated annealing (SIMPSA). The first application of PSO, ABC, HS, and SCE in CGMPs is reported here. Moreover, the four benchmark problems with different degree of difficulty and variety are considered to address the important issues of groundwater resources in coastal regions. Hence, the wide ranges of popular objective functions and constraints with the number of decision variables ranging from 4 to 15 are included. These benchmark problems are applied in the combined simulation-optimization model to examine the optimization scenarios. Some preliminary experiments are performed to select the most efficient parameters values for EAs to set a fair comparison. The specific capabilities of each EA toward CGMPs in terms of results quality and required computational time are compared. The evaluation of the results highlights EA's applicability in CGMPs, besides the remarkable strengths and weaknesses of them. The comparisons show that SCE, CACO, and PSO yield superior solutions among the EAs according to the quality of solutions whereas ABC presents the poor performance. CACO provides the better solutions (up to 17%) than the worst EA (ABC) for the problem with the highest decision
Liu, Yaolin; Wang, Hua; Ji, Yingli; Liu, Zhongqiu; Zhao, Xiang
2012-08-01
Comprehensive land-use planning (CLUP) at the county level in China must include land-use zoning. This is specifically stipulated by the China Land Management Law and aims to achieve strict control on the usages of land. The land-use zoning problem is treated as a multi-objective optimization problem (MOOP) in this article, which is different from the traditional treatment. A particle swarm optimization (PSO) based model is applied to the problem and is developed to maximize the attribute differences between land-use zones, the spatial compactness, the degree of spatial harmony and the ecological benefits of the land-use zones. This is subject to some constraints such as: the quantity limitations for varying land-use zones, regulations assigning land units to a certain land-use zone, and the stipulation of a minimum parcel area in a land-use zoning map. In addition, a crossover and mutation operator from a genetic algorithm is adopted to avoid the prematurity of PSO. The results obtained for Yicheng, a county in central China, using different objective weighting schemes, are compared and suggest that: (1) the fundamental demand for attribute difference between land-use zones leads to a mass of fragmentary land-use zones; (2) the spatial pattern of land-use zones is remarkably optimized when a weight is given to the sub-objectives of spatial compactness and the degree of spatial harmony, simultaneously, with a reduction of attribute difference between land-use zones; (3) when a weight is given to the sub-objective of ecological benefits of the land-use zones, the ecological benefits get a slight increase also at the expense of a reduction in attribute difference between land-use zones; (4) the pursuit of spatial harmony or spatial compactness may have a negative effect on each other; (5) an increase in the ecological benefits may improve the spatial compactness and spatial harmony of the land-use zones; (6) adjusting the weights assigned to each sub-objective can
Liu, Yaolin; Wang, Hua; Ji, Yingli; Liu, Zhongqiu; Zhao, Xiang
2012-01-01
Comprehensive land-use planning (CLUP) at the county level in China must include land-use zoning. This is specifically stipulated by the China Land Management Law and aims to achieve strict control on the usages of land. The land-use zoning problem is treated as a multi-objective optimization problem (MOOP) in this article, which is different from the traditional treatment. A particle swarm optimization (PSO) based model is applied to the problem and is developed to maximize the attribute differences between land-use zones, the spatial compactness, the degree of spatial harmony and the ecological benefits of the land-use zones. This is subject to some constraints such as: the quantity limitations for varying land-use zones, regulations assigning land units to a certain land-use zone, and the stipulation of a minimum parcel area in a land-use zoning map. In addition, a crossover and mutation operator from a genetic algorithm is adopted to avoid the prematurity of PSO. The results obtained for Yicheng, a county in central China, using different objective weighting schemes, are compared and suggest that: (1) the fundamental demand for attribute difference between land-use zones leads to a mass of fragmentary land-use zones; (2) the spatial pattern of land-use zones is remarkably optimized when a weight is given to the sub-objectives of spatial compactness and the degree of spatial harmony, simultaneously, with a reduction of attribute difference between land-use zones; (3) when a weight is given to the sub-objective of ecological benefits of the land-use zones, the ecological benefits get a slight increase also at the expense of a reduction in attribute difference between land-use zones; (4) the pursuit of spatial harmony or spatial compactness may have a negative effect on each other; (5) an increase in the ecological benefits may improve the spatial compactness and spatial harmony of the land-use zones; (6) adjusting the weights assigned to each sub-objective can
Particle Swarm and Ant Colony Approaches in Multiobjective Optimization
NASA Astrophysics Data System (ADS)
Rao, S. S.
2010-10-01
The social behavior of groups of birds, ants, insects and fish has been used to develop evolutionary algorithms known as swarm intelligence techniques for solving optimization problems. This work presents the development of strategies for the application of two of the popular swarm intelligence techniques, namely the particle swarm and ant colony methods, for the solution of multiobjective optimization problems. In a multiobjective optimization problem, the objectives exhibit a conflicting nature and hence no design vector can minimize all the objectives simultaneously. The concept of Pareto-optimal solution is used in finding a compromise solution. A modified cooperative game theory approach, in which each objective is associated with a different player, is used in this work. The applicability and computational efficiencies of the proposed techniques are demonstrated through several illustrative examples involving unconstrained and constrained problems with single and multiple objectives and continuous and mixed design variables. The present methodologies are expected to be useful for the solution of a variety of practical continuous and mixed optimization problems involving single or multiple objectives with or without constraints.
NASA Astrophysics Data System (ADS)
Ma, Zhanshan (Sam)
Competition, cooperation and communication are the three fundamental relationships upon which natural selection acts in the evolution of life. Evolutionary game theory (EGT) is a 'marriage' between game theory and Darwin's evolution theory; it gains additional modeling power and flexibility by adopting population dynamics theory. In EGT, natural selection acts as optimization agents and produces inherent strategies, which eliminates some essential assumptions in traditional game theory such as rationality and allows more realistic modeling of many problems. Prisoner's Dilemma (PD) and Sir Philip Sidney (SPS) games are two well-known examples of EGT, which are formulated to study cooperation and communication, respectively. Despite its huge success, EGT exposes a certain degree of weakness in dealing with time-, space- and covariate-dependent (i.e., dynamic) uncertainty, vulnerability and deception. In this paper, I propose to extend EGT in two ways to overcome the weakness. First, I introduce survival analysis modeling to describe the lifetime or fitness of game players. This extension allows more flexible and powerful modeling of the dynamic uncertainty and vulnerability (collectively equivalent to the dynamic frailty in survival analysis). Secondly, I introduce agreement algorithms, which can be the Agreement algorithms in distributed computing (e.g., Byzantine Generals Problem [6][8], Dynamic Hybrid Fault Models [12]) or any algorithms that set and enforce the rules for players to determine their consensus. The second extension is particularly useful for modeling dynamic deception (e.g., asymmetric faults in fault tolerance and deception in animal communication). From a computational perspective, the extended evolutionary game theory (EEGT) modeling, when implemented in simulation, is equivalent to an optimization methodology that is similar to evolutionary computing approaches such as Genetic algorithms with dynamic populations [15][17].
NASA Astrophysics Data System (ADS)
Shahamatnia, Ehsan; Dorotovič, Ivan; Fonseca, Jose M.; Ribeiro, Rita A.
2016-03-01
Developing specialized software tools is essential to support studies of solar activity evolution. With new space missions such as Solar Dynamics Observatory (SDO), solar images are being produced in unprecedented volumes. To capitalize on that huge data availability, the scientific community needs a new generation of software tools for automatic and efficient data processing. In this paper a prototype of a modular framework for solar feature detection, characterization, and tracking is presented. To develop an efficient system capable of automatic solar feature tracking and measuring, a hybrid approach combining specialized image processing, evolutionary optimization, and soft computing algorithms is being followed. The specialized hybrid algorithm for tracking solar features allows automatic feature tracking while gathering characterization details about the tracked features. The hybrid algorithm takes advantages of the snake model, a specialized image processing algorithm widely used in applications such as boundary delineation, image segmentation, and object tracking. Further, it exploits the flexibility and efficiency of Particle Swarm Optimization (PSO), a stochastic population based optimization algorithm. PSO has been used successfully in a wide range of applications including combinatorial optimization, control, clustering, robotics, scheduling, and image processing and video analysis applications. The proposed tool, denoted PSO-Snake model, was already successfully tested in other works for tracking sunspots and coronal bright points. In this work, we discuss the application of the PSO-Snake algorithm for calculating the sidereal rotational angular velocity of the solar corona. To validate the results we compare them with published manual results performed by an expert.
NASA Astrophysics Data System (ADS)
Ramli, Razamin; Tein, Lim Huai
2016-08-01
A good work schedule can improve hospital operations by providing better coverage with appropriate staffing levels in managing nurse personnel. Hence, constructing the best nurse work schedule is the appropriate effort. In doing so, an improved selection operator in the Evolutionary Algorithm (EA) strategy for a nurse scheduling problem (NSP) is proposed. The smart and efficient scheduling procedures were considered. Computation of the performance of each potential solution or schedule was done through fitness evaluation. The best so far solution was obtained via special Maximax&Maximin (MM) parent selection operator embedded in the EA, which fulfilled all constraints considered in the NSP.
Linear antenna array optimization using flower pollination algorithm.
Saxena, Prerna; Kothari, Ashwin
2016-01-01
Flower pollination algorithm (FPA) is a new nature-inspired evolutionary algorithm used to solve multi-objective optimization problems. The aim of this paper is to introduce FPA to the electromagnetics and antenna community for the optimization of linear antenna arrays. FPA is applied for the first time to linear array so as to obtain optimized antenna positions in order to achieve an array pattern with minimum side lobe level along with placement of deep nulls in desired directions. Various design examples are presented that illustrate the use of FPA for linear antenna array optimization, and subsequently the results are validated by benchmarking along with results obtained using other state-of-the-art, nature-inspired evolutionary algorithms such as particle swarm optimization, ant colony optimization and cat swarm optimization. The results suggest that in most cases, FPA outperforms the other evolutionary algorithms and at times it yields a similar performance. PMID:27066339
NASA Astrophysics Data System (ADS)
Gosálvez, M. A.; Ferrando, N.; Xing, Y.; Pal, Prem; Sato, K.; Cerdá, J.; Gadea, R.
2011-06-01
An evolutionary algorithm is presented for the automated calibration of the continuous cellular automaton for the simulation of isotropic and anisotropic wet chemical etching of silicon in as many as 31 widely different and technologically relevant etchants, including KOH, KOH+IPA, TMAH and TMAH+Triton, in various concentrations and temperatures. Based on state-of-the-art evolutionary operators, we implement a robust algorithm for the simultaneous optimization of roughly 150 microscopic removal rates based on the minimization of a cost function with four quantitative error measures, including (i) the error between simulated and experimental macroscopic etch rates for numerous surface orientations all over the unit sphere, (ii) the error due to underetching asymmetries and floor corrugation features observed in simulated silicon samples masked using a circular pattern, (iii) the error associated with departures from a step-flow-based hierarchy in the values of the microscopic removal rates, and (iv) the error associated with deviations from a step-flow-based clustering of the microscopic removal rates. For the first time, we present the calibration and successful simulation of two technologically relevant CMOS compatible etchants, namely TMAH and, especially, TMAH+Triton, providing several comparisons between simulated and experimental MEMS structures based on multi-step etching in these etchants.
Automated Hardware Design via Evolutionary Search
NASA Technical Reports Server (NTRS)
Lohn, Jason D.; Colombano, Silvano P.
2000-01-01
The goal of this research is to investigate the application of evolutionary search to the process of automated engineering design. Evolutionary search techniques involve the simulation of Darwinian mechanisms by computer algorithms. In recent years, such techniques have attracted much attention because they are able to tackle a wide variety of difficult problems and frequently produce acceptable solutions. The results obtained are usually functional, often surprising, and typically "messy" because the algorithms are told to concentrate on the overriding objective and not elegance or simplicity. advantages. First, faster design cycles translate into time and, hence, cost savings. Second, automated design techniques can be made to scale well and hence better deal with increasing amounts of design complexity. Third, design quality can increase because design properties can be specified a priori. For example, size and weight specifications of a device, smaller and lighter than the best known design, might be optimized by the automated design technique. The domain of electronic circuit design is an advantageous platform in which to study automated design techniques because it is a rich design space that is well understood, permitting human-created designs to be compared to machine- generated designs. developed for circuit design was to automatically produce high-level integrated electronic circuit designs whose properties permit physical implementation in silicon. This process entailed designing an effective evolutionary algorithm and solving a difficult multiobjective optimization problem. FY 99 saw many accomplishments in this effort.
Multiobjective Optimization Design of a Fractional Order PID Controller for a Gun Control System
Chen, Jilin; Wang, Li; Xu, Shiqing; Hou, Yuanlong
2013-01-01
Motion control of gun barrels is an ongoing topic for the development of gun control equipments possessing excellent performances. In this paper, a typical fractional order PID control strategy is employed for the gun control system. To obtain optimal parameters of the controller, a multiobjective optimization scheme is developed from the loop-shaping perspective. To solve the specified nonlinear optimization problem, a novel Pareto optimal solution based multiobjective differential evolution algorithm is proposed. To enhance the convergent rate of the optimization process, an opposition based learning method is embedded in the chaotic population initialization process. To enhance the robustness of the algorithm for different problems, an adapting scheme of the mutation operation is further employed. With assistance of the evolutionary algorithm, the optimal solution for the specified problem is selected. The numerical simulation results show that the control system can rapidly follow the demand signal with high accuracy and high robustness, demonstrating the efficiency of the proposed controller parameter tuning method. PMID:23766721
Differential evolution enhanced with multiobjective sorting-based mutation operators.
Wang, Jiahai; Liao, Jianjun; Zhou, Ying; Cai, Yiqiao
2014-12-01
Differential evolution (DE) is a simple and powerful population-based evolutionary algorithm. The salient feature of DE lies in its mutation mechanism. Generally, the parents in the mutation operator of DE are randomly selected from the population. Hence, all vectors are equally likely to be selected as parents without selective pressure at all. Additionally, the diversity information is always ignored. In order to fully exploit the fitness and diversity information of the population, this paper presents a DE framework with multiobjective sorting-based mutation operator. In the proposed mutation operator, individuals in the current population are firstly sorted according to their fitness and diversity contribution by nondominated sorting. Then parents in the mutation operators are proportionally selected according to their rankings based on fitness and diversity, thus, the promising individuals with better fitness and diversity have more opportunity to be selected as parents. Since fitness and diversity information is simultaneously considered for parent selection, a good balance between exploration and exploitation can be achieved. The proposed operator is applied to original DE algorithms, as well as several advanced DE variants. Experimental results on 48 benchmark functions and 12 real-world application problems show that the proposed operator is an effective approach to enhance the performance of most DE algorithms studied. PMID:24802378
Comparison of Algorithms for Prediction of Protein Structural Features from Evolutionary Data
Bywater, Robert P.
2016-01-01
Proteins have many functions and predicting these is still one of the major challenges in theoretical biophysics and bioinformatics. Foremost amongst these functions is the need to fold correctly thereby allowing the other genetically dictated tasks that the protein has to carry out to proceed efficiently. In this work, some earlier algorithms for predicting protein domain folds are revisited and they are compared with more recently developed methods. In dealing with intractable problems such as fold prediction, when different algorithms show convergence onto the same result there is every reason to take all algorithms into account such that a consensus result can be arrived at. In this work it is shown that the application of different algorithms in protein structure prediction leads to results that do not converge as such but rather they collude in a striking and useful way that has never been considered before. PMID:26963911
Prediction of protein-protein interaction network using a multi-objective optimization approach.
Chowdhury, Archana; Rakshit, Pratyusha; Konar, Amit
2016-06-01
Protein-Protein Interactions (PPIs) are very important as they coordinate almost all cellular processes. This paper attempts to formulate PPI prediction problem in a multi-objective optimization framework. The scoring functions for the trial solution deal with simultaneous maximization of functional similarity, strength of the domain interaction profiles, and the number of common neighbors of the proteins predicted to be interacting. The above optimization problem is solved using the proposed Firefly Algorithm with Nondominated Sorting. Experiments undertaken reveal that the proposed PPI prediction technique outperforms existing methods, including gene ontology-based Relative Specific Similarity, multi-domain-based Domain Cohesion Coupling method, domain-based Random Decision Forest method, Bagging with REP Tree, and evolutionary/swarm algorithm-based approaches, with respect to sensitivity, specificity, and F1 score. PMID:26846814
Mutual information image registration based on improved bee evolutionary genetic algorithm
NASA Astrophysics Data System (ADS)
Xu, Gang; Tu, Jingzhi
2009-07-01
In recent years, the mutual information is regarded as a more efficient similarity metrics in the image registration. According to the features of mutual information image registration, the Bee Evolution Genetic Algorithm (BEGA) is chosen for optimizing parameters, which imitates swarm mating. Besides, we try our best adaptively set the initial parameters to improve the BEGA. The programming result shows the wonderful precision of the algorithm.
Kyriacou, Theocharis
2012-04-01
A biologically inspired model of head direction cells is presented and tested on a small mobile robot. Head direction cells (discovered in the brain of rats in 1984) encode the head orientation of their host irrespective of the host's location in the environment. The head direction system thus acts as a biological compass (though not a magnetic one) for its host. Head direction cells are influenced in different ways by idiothetic (host-centred) and allothetic (not host-centred) cues. The model presented here uses the visual, vestibular and kinesthetic inputs that are simulated by robot sensors. Real robot-sensor data has been used in order to train the model's artificial neural network connections. The main contribution of this paper lies in the use of an evolutionary algorithm in order to determine the values of parameters that determine the behaviour of the model. More importantly, the objective function of the evolutionary strategy used takes into consideration quantitative biological observations reported in the literature. PMID:21785973
NASA Astrophysics Data System (ADS)
Al-Aqtash, Nabil; Sabirianov, Renat
2014-03-01
The evolutionary algorithm coupled with the first-principles Density Functional Theory (DFT) method is used to identify the global energy minimum structure of Fe3Se4. The structure is processed by free-energy based evolutionary crystal structure optimization algorithms, as implemented USPEX and XtalOpt codes, which predict structure of the system solely based on the chemical formula without prior experimental information. This is very challenging task for verifying the validity of this approach on Fe3Se4 structure. Fe3Se4 has highly anisotropic structure, and its structure demonstrates ordering of vacancies that makes the system ``open'', i.e. breaking traditional coordination rules. By using USPEX and XtalOpt we identify the global minimum of Fe3Se4 structure. The randomly generated initial population had 20 structures. The enthalpy (tolerance of 0.002 eV), and space group were used for niching. The enthalpy of the lowest energy structure, out of 700 generated structures that were generated, is (-81.126 eV). Bulk Fe3Se4 has a monoclinic structure with a space group of I2/m and a = 6.208Å, b = 3.541Å, and c = 11.281Å. The crystal structure and the lattice parameters of Fe3Se4 optimized from our calculations are similar to the experimental existing structure parameters. Fe3Se4 exhibits large magnetocrystalline anisotropy of 6x106 erg/cm3 and coercivity up to 40kOe due to its unusual properties.
Constructing large-scale genetic maps using an evolutionary strategy algorithm.
Mester, D; Ronin, Y; Minkov, D; Nevo, E; Korol, A
2003-01-01
This article is devoted to the problem of ordering in linkage groups with many dozens or even hundreds of markers. The ordering problem belongs to the field of discrete optimization on a set of all possible orders, amounting to n!/2 for n loci; hence it is considered an NP-hard problem. Several authors attempted to employ the methods developed in the well-known traveling salesman problem (TSP) for multilocus ordering, using the assumption that for a set of linked loci the true order will be the one that minimizes the total length of the linkage group. A novel, fast, and reliable algorithm developed for the TSP and based on evolution-strategy discrete optimization was applied in this study for multilocus ordering on the basis of pairwise recombination frequencies. The quality of derived maps under various complications (dominant vs. codominant markers, marker misclassification, negative and positive interference, and missing data) was analyzed using simulated data with approximately 50-400 markers. High performance of the employed algorithm allows systematic treatment of the problem of verification of the obtained multilocus orders on the basis of computing-intensive bootstrap and/or jackknife approaches for detecting and removing questionable marker scores, thereby stabilizing the resulting maps. Parallel calculation technology can easily be adopted for further acceleration of the proposed algorithm. Real data analysis (on maize chromosome 1 with 230 markers) is provided to illustrate the proposed methodology. PMID:14704202
Multi-Objective Multi-User Scheduling for Space Science Missions
NASA Technical Reports Server (NTRS)
Johnston, Mark D.; Giuliano, Mark
2010-01-01
We have developed an architecture called MUSE (Multi-User Scheduling Environment) to enable the integration of multi-objective evolutionary algorithms with existing domain planning and scheduling tools. Our approach is intended to make it possible to re-use existing software, while obtaining the advantages of multi-objective optimization algorithms. This approach enables multiple participants to actively engage in the optimization process, each representing one or more objectives in the optimization problem. As initial applications, we apply our approach to scheduling the James Webb Space Telescope, where three objectives are modeled: minimizing wasted time, minimizing the number of observations that miss their last planning opportunity in a year, and minimizing the (vector) build up of angular momentum that would necessitate the use of mission critical propellant to dump the momentum. As a second application area, we model aspects of the Cassini science planning process, including the trade-off between collecting data (subject to onboard recorder capacity) and transmitting saved data to Earth. A third mission application is that of scheduling the Cluster 4-spacecraft constellation plasma experiment. In this paper we describe our overall architecture and our adaptations for these different application domains. We also describe our plans for applying this approach to other science mission planning and scheduling problems in the future.
Osaba, E.; Carballedo, R.; Diaz, F.; Onieva, E.; de la Iglesia, I.; Perallos, A.
2014-01-01
Since their first formulation, genetic algorithms (GAs) have been one of the most widely used techniques to solve combinatorial optimization problems. The basic structure of the GAs is known by the scientific community, and thanks to their easy application and good performance, GAs are the focus of a lot of research works annually. Although throughout history there have been many studies analyzing various concepts of GAs, in the literature there are few studies that analyze objectively the influence of using blind crossover operators for combinatorial optimization problems. For this reason, in this paper a deep study on the influence of using them is conducted. The study is based on a comparison of nine techniques applied to four well-known combinatorial optimization problems. Six of the techniques are GAs with different configurations, and the remaining three are evolutionary algorithms that focus exclusively on the mutation process. Finally, to perform a reliable comparison of these results, a statistical study of them is made, performing the normal distribution z-test. PMID:25165731
NASA Astrophysics Data System (ADS)
de Vos, N. J.; Rientjes, T. H.; Gupta, H. V.
2006-12-01
The forecasting of river discharges and water levels requires models that simulate the transformation of rainfall on a watershed into the runoff. The most popular approach to this complex modeling issue is to use conceptual hydrological models. In recent years, however, data-driven model alternatives have gained significant attention. Such models extract and re-use information that is implicit in hydrological data and do not directly take into account the physical laws that underlie rainfall-runoff processes. In this study, we have made a comparison between a conceptual hydrological model and the popular data-driven approach of Artificial Neural Network (ANN) modeling. ANNs use flexible model structures that simulate rainfall-runoff processes by mapping the transformation from system input and/or system states (e.g., rainfall, evaporation, soil moisture content) to system output (e.g. river discharge). Special attention was paid to the procedure of calibration of both approaches. Singular objective functions based on squared-error-based performance measures, such as the Mean Squared Error (MSE) are commonly used in rainfall-runoff modeling. However, not all differences between modeled and observed hydrograph characteristics can be adequately expressed by a single performance measure. Nowadays it is acknowledged that the calibration of rainfall-runoff models is inherently multi-objective. Therefore, Multi-Objective Evolutionary Algorithms (MOEAs) were tested as alternatives to traditional single-objective algorithms for calibration of both a conceptual and an ANN model for forecasting runoff. The MOEAs compare favorably to traditional single-objective methods in terms of performance, and they shed more light on the trade-offs between various objective functions. Additionally, the distribution of model parameter values gives insights into model parameter uncertainty and model structural deficiencies. Summarizing, the current study presents interesting and promising
NASA Astrophysics Data System (ADS)
Palacin, J.; Salleras, M.; Puig, M.; Samitier, J.; Marco, S.
2004-07-01
In this work, we approach the problem of extracting a dynamic multiport thermal compact model from thermal impedance transients of microsystems using genetic algorithms. The model takes the form of a unique RC network, using a thermal-electrical analogy. The model topology is codified in a binary chromosoma and nonlinear least squares is used for sizing their components. The compact model topology evolution is genetically controlled to obtain the RC network that minimizes the reconstruction error of the thermal impedance transients. As an example, the proposed methodology is applied to an innovative silicon microthruster and compared with random search and sequential forward selection.
On the Effects of Migration on the Fitness Distribution of Parallel Evolutionary Algorithms
Cantu-Paz, E.
2000-04-25
Migration of individuals between populations may increase the selection pressure. This has the desirable consequence of speeding up convergence, but it may result in an excessively rapid loss of variation that may cause the search to fail. This paper investigates the effects of migration on the distribution of fitness. It considers arbitrary migration rates and topologies with different number of neighbors, and it compares algorithms that are configured to have the same selection intensity. The results suggest that migration preserves more diversity as the number of neighbors of a deme increases.
NASA Astrophysics Data System (ADS)
Hu, Yan-Yan; Li, Dong-Sheng
2016-01-01
The hyperspectral images(HSI) consist of many closely spaced bands carrying the most object information. While due to its high dimensionality and high volume nature, it is hard to get satisfactory classification performance. In order to reduce HSI data dimensionality preparation for high classification accuracy, it is proposed to combine a band selection method of artificial immune systems (AIS) with a hybrid kernels support vector machine (SVM-HK) algorithm. In fact, after comparing different kernels for hyperspectral analysis, the approach mixed radial basis function kernel (RBF-K) with sigmoid kernel (Sig-K) and applied the optimized hybrid kernels in SVM classifiers. Then the SVM-HK algorithm used to induce the bands selection of an improved version of AIS. The AIS was composed of clonal selection and elite antibody mutation, including evaluation process with optional index factor (OIF). Experimental classification performance was on a San Diego Naval Base acquired by AVIRIS, the HRS dataset shows that the method is able to efficiently achieve bands redundancy removal while outperforming the traditional SVM classifier.
Searching good strategies in evolutionary minority game using variable length genetic algorithm
NASA Astrophysics Data System (ADS)
Yang, Wei-Song; Wang, Bing-Hong; Wu, Yi-Lin; Xie, Yan-Bo
2004-08-01
We propose and study a new adaptation minority game for understanding the complex dynamical behavior characterized by agent interactions competing limited resource in many natural and social systems. We compare the strategy of agents in the model to chromosome in biology. In our model, the agents with poor performance during certain time period may modify their strategies via variable length genetic algorithm which consists of cut and splice operator, imitating similar processes in biology. The performances of the agents in our model are calculated for different parameter conditions and different evolution mechanism. It is found that the system may evolve into a much more ideal equilibrium state, which implies much stronger cooperation among agents and much more effective utilization of the social resources. It is also found that the distribution of the strategies held by agents will tend towards a state concentrating upon small m region.
2013-01-01
Background Proteins are essential biological molecules which play vital roles in nearly all biological processes. It is the tertiary structure of a protein that determines its functions. Therefore the prediction of a protein's tertiary structure based on its primary amino acid sequence has long been the most important and challenging subject in biochemistry, molecular biology and biophysics. In the past, the HP lattice model was one of the ab initio methods that many researchers used to forecast the protein structure. Although these kinds of simplified methods could not achieve high resolution, they provided a macrocosm-optimized protein structure. The model has been employed to investigate general principles of protein folding, and plays an important role in the prediction of protein structures. Methods In this paper, we present an improved evolutionary algorithm for the protein folding problem. We study the problem on the 3D FCC lattice HP model which has been widely used in previous research. Our focus is to develop evolutionary algorithms (EA) which are robust, easy to implement and can handle various energy functions. We propose to combine three different local search methods, including lattice rotation for crossover, K-site move for mutation, and generalized pull move; these form our key components to improve previous EA-based approaches. Results We have carried out experiments over several data sets which were used in previous research. The results of the experiments show that our approach is able to find optimal conformations which were not found by previous EA-based approaches. Conclusions We have investigated the geometric properties of the 3D FCC lattice and developed several local search techniques to improve traditional EA-based approaches to the protein folding problem. It is known that EA-based approaches are robust and can handle arbitrary energy functions. Our results further show that by extensive development of local searches, EA can also be very
Application of multi-objective nonlinear optimization technique for coordinated ramp-metering
Haj Salem, Habib; Farhi, Nadir; Lebacque, Jean Patrick E-mail: nadir.frahi@ifsttar.fr
2015-03-10
This paper aims at developing a multi-objective nonlinear optimization algorithm applied to coordinated motorway ramp metering. The multi-objective function includes two components: traffic and safety. Off-line simulation studies were performed on A4 France Motorway including 4 on-ramps.
Beyer, Hans-Georg
2014-01-01
The convergence behaviors of so-called natural evolution strategies (NES) and of the information-geometric optimization (IGO) approach are considered. After a review of the NES/IGO ideas, which are based on information geometry, the implications of this philosophy w.r.t. optimization dynamics are investigated considering the optimization performance on the class of positive quadratic objective functions (the ellipsoid model). Exact differential equations describing the approach to the optimizer are derived and solved. It is rigorously shown that the original NES philosophy optimizing the expected value of the objective functions leads to very slow (i.e., sublinear) convergence toward the optimizer. This is the real reason why state of the art implementations of IGO algorithms optimize the expected value of transformed objective functions, for example, by utility functions based on ranking. It is shown that these utility functions are localized fitness functions that change during the IGO flow. The governing differential equations describing this flow are derived. In the case of convergence, the solutions to these equations exhibit an exponentially fast approach to the optimizer (i.e., linear convergence order). Furthermore, it is proven that the IGO philosophy leads to an adaptation of the covariance matrix that equals in the asymptotic limit-up to a scalar factor-the inverse of the Hessian of the objective function considered. PMID:24922548
Knowledge-based function optimization using fuzzy cultural algorithms with evolutionary programming.
Reynolds, R G; Zhu, S
2001-01-01
In this paper, the advantages of a fuzzy representation in problem solving and search is investigated using the framework of Cultural algorithms (CAs). Since all natural languages contain a fuzzy component, the natural question is "Does this fuzzy representation facilitate the problem-solving process, within these systems". In order to investigate this question we use the CA framework of Reynolds (1996), CAs are a computational model of cultural evolution derived from and used to express basic anthropological models of culture and its development. A mathematical model of a full fuzzy CA is developed there. In it, the problem solving knowledge is represented using a fuzzy framework. Several theoretical results concerning its properties are presented. The model is then applied to the solution of a set of 12 difficult, benchmark problems in nonlinear real-valued function optimization. The performance of the full fuzzy model is compared with 8 other fuzzy and crisp architectures. The results suggest that a fuzzy approach can produce a statistically significant improvement in search efficiency over nonfuzzy versions for the entire set of functions, the then investigate the class of performance functions for which the full fuzzy system exhibits the greatest improvements over nonfuzzy systems. In general, these are functions which require some preliminary investigation in order to embark on an effective search. PMID:18244764
Static-dynamic multi-scale structural damage identification in a multi-objective framework
NASA Astrophysics Data System (ADS)
Perera, Ricardo; Marin, Roberto; Ruiz, Antonio
2013-03-01
Although either static or dynamic measurements have been used for model updating in a damage identification procedure, when a generally valid and accurate model is sought, different types of measurements should be combined. While modal characteristics give information about the global response of structures, static measurements are more concerned with the local response. Their combination would allow considering different scale levels in the detection through the simultaneous optimization of several objectives. In this work, a damage identification methodology is presented which allows combining static and dynamic measurements within a model updating procedure posed in a multi-objective framework solved by using evolutionary algorithms. Unlike other global-local multi-stage procedures developed in the past, the proposed method is solved as a simplified one-stage procedure.
On Multiobjective Evolution Model
NASA Astrophysics Data System (ADS)
Ahmed, E.; Elettreby, M. F.
Self-Organized Criticality (SOC) phenomena could have a significant effect on the dynamics of ecosystems. The Bak-Sneppen (BS) model is a simple and robust model of biological evolution that exhibits punctuated equilibrium behavior. Here, we will introduce random version of BS model. We also generalize the single objective BS model to a multiobjective one.
NASA Astrophysics Data System (ADS)
Grimminck, Dennis L. A. G.; Polman, Ben J. W.; Kentgens, Arno P. M.; Leo Meerts, W.
2011-08-01
A fast and accurate fit program is presented for deconvolution of one-dimensional solid-state quadrupolar NMR spectra of powdered materials. Computational costs of the synthesis of theoretical spectra are reduced by the use of libraries containing simulated time/frequency domain data. These libraries are calculated once and with the use of second-party simulation software readily available in the NMR community, to ensure a maximum flexibility and accuracy with respect to experimental conditions. EASY-GOING deconvolution ( EGdeconv) is equipped with evolutionary algorithms that provide robust many-parameter fitting and offers efficient parallellised computing. The program supports quantification of relative chemical site abundances and (dis)order in the solid-state by incorporation of (extended) Czjzek and order parameter models. To illustrate EGdeconv's current capabilities, we provide three case studies. Given the program's simple concept it allows a straightforward extension to include other NMR interactions. The program is available as is for 64-bit Linux operating systems.
Guerra, J G; Rubiano, J G; Winter, G; Guerra, A G; Alonso, H; Arnedo, M A; Tejera, A; Gil, J M; Rodríguez, R; Martel, P; Bolivar, J P
2015-11-01
The determination in a sample of the activity concentration of a specific radionuclide by gamma spectrometry needs to know the full energy peak efficiency (FEPE) for the energy of interest. The difficulties related to the experimental calibration make it advisable to have alternative methods for FEPE determination, such as the simulation of the transport of photons in the crystal by the Monte Carlo method, which requires an accurate knowledge of the characteristics and geometry of the detector. The characterization process is mainly carried out by Canberra Industries Inc. using proprietary techniques and methodologies developed by that company. It is a costly procedure (due to shipping and to the cost of the process itself) and for some research laboratories an alternative in situ procedure can be very useful. The main goal of this paper is to find an alternative to this costly characterization process, by establishing a method for optimizing the parameters of characterizing the detector, through a computational procedure which could be reproduced at a standard research lab. This method consists in the determination of the detector geometric parameters by using Monte Carlo simulation in parallel with an optimization process, based on evolutionary algorithms, starting from a set of reference FEPEs determined experimentally or computationally. The proposed method has proven to be effective and simple to implement. It provides a set of characterization parameters which it has been successfully validated for different source-detector geometries, and also for a wide range of environmental samples and certified materials. PMID:26188622
Sweetapple, Christine; Fu, Guangtao; Butler, David
2014-05-15
This study investigates the potential of control strategy optimisation for the reduction of operational greenhouse gas emissions from wastewater treatment in a cost-effective manner, and demonstrates that significant improvements can be realised. A multi-objective evolutionary algorithm, NSGA-II, is used to derive sets of Pareto optimal operational and control parameter values for an activated sludge wastewater treatment plant, with objectives including minimisation of greenhouse gas emissions, operational costs and effluent pollutant concentrations, subject to legislative compliance. Different problem formulations are explored, to identify the most effective approach to emissions reduction, and the sets of optimal solutions enable identification of trade-offs between conflicting objectives. It is found that multi-objective optimisation can facilitate a significant reduction in greenhouse gas emissions without the need for plant redesign or modification of the control strategy layout, but there are trade-offs to consider: most importantly, if operational costs are not to be increased, reduction of greenhouse gas emissions is likely to incur an increase in effluent ammonia and total nitrogen concentrations. Design of control strategies for a high effluent quality and low costs alone is likely to result in an inadvertent increase in greenhouse gas emissions, so it is of key importance that effects on emissions are considered in control strategy development and optimisation. PMID:24602860
Deep Space Network Scheduling Using Multi-Objective Optimization with Uncertainty
NASA Technical Reports Server (NTRS)
Johnston, Mark D.
2008-01-01
We have developed a novel technique to incorporate uncertainty modeling within an evolutionary algorithm approach to multi-objective scheduling, with the goal of identifying a Pareto frontier (tradeoff curve) that recognizes the likelihood of events that can impact the schedule outcome. Our approach is particularly applicable to the generation of multiobjective optimized robust schedules, where objectives are assigned a service level, for example that we require an objective value to be greater than or equal to X with Y% confidence. We have demonstrated that such an approach can, for example, minimize scheduling on less reliable resources, based solely on a resource reliability model and not on any ad hoc heuristics. We have also investigated an alternative method of optimizing for robustness, in which we add to the set of objectives a failure risk objective to minimize. We compare the advantages and disadvantages of these two approaches. Future plans for further developing this technology include its application to space-based observatory scheduling problems.
NASA Astrophysics Data System (ADS)
Ibanez, Eduardo
Most U.S. energy usage is for electricity production and vehicle transportation, two interdependent infrastructures. The strength and number of the interdependencies will increase rapidly as hybrid electric transportation systems, including plug-in hybrid electric vehicles and hybrid electric trains, become more prominent. There are several new energy supply technologies reaching maturity, accelerated by public concern over global warming. The National Energy and Transportation Planning Tool (NETPLAN) is the implementation of the long-term investment and operation model for the transportation and energy networks. An evolutionary approach with underlying fast linear optimization are in place to determine the solutions with the best investment portfolios in terms of cost, resiliency and sustainability, i.e., the solutions that form the Pareto front. The popular NSGA-II algorithm is used as the base for the multiobjective optimization and metrics are developed for to evaluate the energy and transportation portfolios. An integrating approach to resiliency is presented, allowing the evaluation of high-consequence events, like hurricanes or widespread blackouts. A scheme to parallelize the multiobjective solver is presented, along with a decomposition method for the cost minimization program. The modular and data-driven design of the software is presented. The modeling tool is applied in a numerical example to optimize the national investment in energy and transportation in the next 40 years.
NASA Astrophysics Data System (ADS)
Siegfried, Tobias; Kinzelbach, Wolfgang
2006-02-01
Negative effects from groundwater mining are observed globally. They threaten future supply locally. Especially in semiarid to arid regions, where aquifers are the sole freshwater resource, this is problematic and can lead to an excessive rise of provision costs. Proper resource management in such environments is crucial. In many instances, however, aquifers are common property resources. In such cases and depending on resource characteristics and the nature of competing uses, their management is inherently multiobjective, and benefits from cooperative management are likely to be substantial. This paper presents a methodology for the determination of optimal, cooperative allocation policies in multiobjective aquifer management problems. Our model couples a finite difference aquifer model with an economic model that accounts for water provision costs. Discounted temporal installation and pumping and conveyance costs determine the vector-valued objective function. Each of the objectives characterizes the individual present costs over a given time horizon that the corresponding decision makers wish to minimize. Constraint handling is implemented by the option of moving wells. A multiobjective evolutionary algorithm is coupled to the management model so as to approximate cooperative tradeoff policies on the Pareto surface. These solutions can be ranked against existing, noncooperative status quo strategies. Consequently, the simulation-optimization model is applied to the northwest Sahara aquifer system which is used noncooperatively as a resource by Algeria, Tunisia, and Libya. We find that significant capital gains can be achieved by the establishment of intelligent pump scheduling. Since each country could benefit, a strong incentive toward the implementation of such cooperative strategies exists.
Ahmed, E; Hegazi, A S; El-Hafez, A T Abd
2003-04-01
Multiobjective oligopoly models are constructed. The objectives of the first two models are to maximize profits and to maximize sales. In the third model the objectives are to maximize profits and to minimize risk. Giving more weight to risk minimization decreased the profits. In all three models, we found that the weight of profit maximization has to be higher than a given threshold. Again they require that the weight of profit maximization has to be higher than a certain value. PMID:12876441
Clausen, Rudy; Ma, Buyong; Nussinov, Ruth; Shehu, Amarda
2015-01-01
An important goal in molecular biology is to understand functional changes upon single-point mutations in proteins. Doing so through a detailed characterization of structure spaces and underlying energy landscapes is desirable but continues to challenge methods based on Molecular Dynamics. In this paper we propose a novel algorithm, SIfTER, which is based instead on stochastic optimization to circumvent the computational challenge of exploring the breadth of a protein’s structure space. SIfTER is a data-driven evolutionary algorithm, leveraging experimentally-available structures of wildtype and variant sequences of a protein to define a reduced search space from where to efficiently draw samples corresponding to novel structures not directly observed in the wet laboratory. The main advantage of SIfTER is its ability to rapidly generate conformational ensembles, thus allowing mapping and juxtaposing landscapes of variant sequences and relating observed differences to functional changes. We apply SIfTER to variant sequences of the H-Ras catalytic domain, due to the prominent role of the Ras protein in signaling pathways that control cell proliferation, its well-studied conformational switching, and abundance of documented mutations in several human tumors. Many Ras mutations are oncogenic, but detailed energy landscapes have not been reported until now. Analysis of SIfTER-computed energy landscapes for the wildtype and two oncogenic variants, G12V and Q61L, suggests that these mutations cause constitutive activation through two different mechanisms. G12V directly affects binding specificity while leaving the energy landscape largely unchanged, whereas Q61L has pronounced, starker effects on the landscape. An implementation of SIfTER is made available at http://www.cs.gmu.edu/~ashehu/?q=OurTools. We believe SIfTER is useful to the community to answer the question of how sequence mutations affect the function of a protein, when there is an abundance of experimental
Fuzzy multiobjective models for optimal operation of a hydropower system
NASA Astrophysics Data System (ADS)
Teegavarapu, Ramesh S. V.; Ferreira, André R.; Simonovic, Slobodan P.
2013-06-01
Optimal operation models for a hydropower system using new fuzzy multiobjective mathematical programming models are developed and evaluated in this study. The models use (i) mixed integer nonlinear programming (MINLP) with binary variables and (ii) integrate a new turbine unit commitment formulation along with water quality constraints used for evaluation of reservoir downstream impairment. Reardon method used in solution of genetic algorithm optimization problems forms the basis for development of a new fuzzy multiobjective hydropower system optimization model with creation of Reardon type fuzzy membership functions. The models are applied to a real-life hydropower reservoir system in Brazil. Genetic Algorithms (GAs) are used to (i) solve the optimization formulations to avoid computational intractability and combinatorial problems associated with binary variables in unit commitment, (ii) efficiently address Reardon method formulations, and (iii) deal with local optimal solutions obtained from the use of traditional gradient-based solvers. Decision maker's preferences are incorporated within fuzzy mathematical programming formulations to obtain compromise operating rules for a multiobjective reservoir operation problem dominated by conflicting goals of energy production, water quality and conservation releases. Results provide insight into compromise operation rules obtained using the new Reardon fuzzy multiobjective optimization framework and confirm its applicability to a variety of multiobjective water resources problems.
5D parameter estimation of near-field sources using hybrid evolutionary computational techniques.
Zaman, Fawad; Qureshi, Ijaz Mansoor
2014-01-01
Hybrid evolutionary computational technique is developed to jointly estimate the amplitude, frequency, range, and 2D direction of arrival (elevation and azimuth angles) of near-field sources impinging on centrosymmetric cross array. Specifically, genetic algorithm is used as a global optimizer, whereas pattern search and interior point algorithms are employed as rapid local search optimizers. For this, a new multiobjective fitness function is constructed, which is the combination of mean square error and correlation between the normalized desired and estimated vectors. The performance of the proposed hybrid scheme is compared not only with the individual responses of genetic algorithm, interior point algorithm, and pattern search, but also with the existing traditional techniques. The proposed schemes produced fairly good results in terms of estimation accuracy, convergence rate, and robustness against noise. A large number of Monte-Carlo simulations are carried out to test out the validity and reliability of each scheme. PMID:24701156
Multiobjective optimization in integrated photonics design.
Gagnon, Denis; Dumont, Joey; Dubé, Louis J
2013-07-01
We propose the use of the parallel tabu search algorithm (PTS) to solve combinatorial inverse design problems in integrated photonics. To assess the potential of this algorithm, we consider the problem of beam shaping using a two-dimensional arrangement of dielectric scatterers. The performance of PTS is compared to one of the most widely used optimization algorithms in photonics design, the genetic algorithm (GA). We find that PTS can produce comparable or better solutions than the GA, while requiring less computation time and fewer adjustable parameters. For the coherent beam shaping problem as a case study, we demonstrate how PTS can tackle multiobjective optimization problems and represent a robust and efficient alternative to GA. PMID:23811870
Multi-Objective Calibration of Hydrological Model Parameters Using MOSCEM-UA
NASA Astrophysics Data System (ADS)
Wang, Yuhui; Lei, Xiaohui; Jiang, Yunzhong; Wang, Hao
2010-05-01
In the past two decades, many evolutionary algorithms have been adopted in the auto-calibration of hydrological model such as NSGA-II, SCEM, etc., some of which has shown ideal performance. In this article, a detailed hydrological model auto-calibration algorithm Multi-objective Shuffled Complex Evolution Metropolis (MOSCEM-UA) has been introduced to carry out auto-calibration of hydrological model in order to clarify the equilibrium and the uncertainty of model parameters. The development and the implement flow chart of the advanced multi-objective algorithm (MOSCEM-UA) were interpreted in detail. Hymod, a conceptual hydrological model depending on Moore's concept, was then introduced as a lumped Rain-Runoff simulation approach with several principal parameters involved. The five important model parameters subjected to calibration includes maximum storage capacity, spatial variability of the soil moisture capacity, flow distributing factor between slow and quick reservoirs as well as slow tank and quick tank distribution factor. In this study, a test case on the up-stream area of KuanCheng hydrometric station in Haihe basin was studied to verify the performance of calibration. Two objectives including objective for high flow process and objective for low flow process are chosen in the process of calibration. The results emphasized that the interrelationship between objective functions could be described in correlation Pareto Front by using MOSCEM-UA. The Pareto Front can be draw after the iteration. Further more, post range of parameters corresponding to Pareto sets could also be drawn to identify the prediction range of the model. Then a set of balanced parameter was chosen to validate the model and the result showed an ideal prediction. Meanwhile, the correlation among parameters and their effects on the model performance could also be achieved.
An Interactive Multiobjective Programming Approach to Combinatorial Data Analysis.
ERIC Educational Resources Information Center
Brusco, Michael J.; Stahl, Stephanie
2001-01-01
Describes an interactive procedure for multiobjective asymmetric unidimensional seriation problems that uses a dynamic-programming algorithm to generate partially the efficient set of sequences for small to medium-sized problems and a multioperational heuristic to estimate the efficient set for larger problems. Applies the procedure to an…
A Multistage Method for Multiobjective Route Selection
NASA Astrophysics Data System (ADS)
Wen, Feng; Gen, Mitsuo
The multiobjective route selection problem (m-RSP) is a key research topic in the car navigation system (CNS) for ITS (Intelligent Transportation System). In this paper, we propose an interactive multistage weight-based Dijkstra genetic algorithm (mwD-GA) to solve it. The purpose of the proposed approach is to create enough Pareto-optimal routes with good distribution for the car driver depending on his/her preference. At the same time, the routes can be recalculated according to the driver's preferences by the multistage framework proposed. In the solution approach proposed, the accurate route searching ability of the Dijkstra algorithm and the exploration ability of the Genetic algorithm (GA) are effectively combined together for solving the m-RSP problems. Solutions provided by the proposed approach are compared with the current research to show the effectiveness and practicability of the solution approach proposed.
Huang, Lei; Liao, Li; Wu, Cathy H.
2016-01-01
Revealing the underlying evolutionary mechanism plays an important role in understanding protein interaction networks in the cell. While many evolutionary models have been proposed, the problem about applying these models to real network data, especially for differentiating which model can better describe evolutionary process for the observed network urgently remains as a challenge. The traditional way is to use a model with presumed parameters to generate a network, and then evaluate the fitness by summary statistics, which however cannot capture the complete network structures information and estimate parameter distribution. In this work we developed a novel method based on Approximate Bayesian Computation and modified Differential Evolution (ABC-DEP) that is capable of conducting model selection and parameter estimation simultaneously and detecting the underlying evolutionary mechanisms more accurately. We tested our method for its power in differentiating models and estimating parameters on the simulated data and found significant improvement in performance benchmark, as compared with a previous method. We further applied our method to real data of protein interaction networks in human and yeast. Our results show Duplication Attachment model as the predominant evolutionary mechanism for human PPI networks and Scale-Free model as the predominant mechanism for yeast PPI networks. PMID:26357273
Zhang, X.; Izaurralde, R. C.; Zong, Z.; Zhao, K.; Thomson, A. M.
2012-08-20
The efficiency of calibrating physically-based complex hydrologic models is a major concern in the application of those models to understand and manage natural and human activities that affect watershed systems. In this study, we developed a multi-core aware multi-objective evolutionary optimization algorithm (MAMEOA) to improve the efficiency of calibrating a worldwide used watershed model (Soil and Water Assessment Tool (SWAT)). The test results show that MAMEOA can save about 1-9%, 26-51%, and 39-56% time consumed by calibrating SWAT as compared with sequential method by using dual-core, quad-core, and eight-core machines, respectively. Potential and limitations of MAMEOA for calibrating SWAT are discussed. MAMEOA is open source software.
Guturu, Parthasarathy; Dantu, Ram
2008-06-01
Many graph- and set-theoretic problems, because of their tremendous application potential and theoretical appeal, have been well investigated by the researchers in complexity theory and were found to be NP-hard. Since the combinatorial complexity of these problems does not permit exhaustive searches for optimal solutions, only near-optimal solutions can be explored using either various problem-specific heuristic strategies or metaheuristic global-optimization methods, such as simulated annealing, genetic algorithms, etc. In this paper, we propose a unified evolutionary algorithm (EA) to the problems of maximum clique finding, maximum independent set, minimum vertex cover, subgraph and double subgraph isomorphism, set packing, set partitioning, and set cover. In the proposed approach, we first map these problems onto the maximum clique-finding problem (MCP), which is later solved using an evolutionary strategy. The proposed impatient EA with probabilistic tabu search (IEA-PTS) for the MCP integrates the best features of earlier successful approaches with a number of new heuristics that we developed to yield a performance that advances the state of the art in EAs for the exploration of the maximum cliques in a graph. Results of experimentation with the 37 DIMACS benchmark graphs and comparative analyses with six state-of-the-art algorithms, including two from the smaller EA community and four from the larger metaheuristics community, indicate that the IEA-PTS outperforms the EAs with respect to a Pareto-lexicographic ranking criterion and offers competitive performance on some graph instances when individually compared to the other heuristic algorithms. It has also successfully set a new benchmark on one graph instance. On another benchmark suite called Benchmarks with Hidden Optimal Solutions, IEA-PTS ranks second, after a very recent algorithm called COVER, among its peers that have experimented with this suite. PMID:18558530
A Multi-object Exoplanet Detecting Technique
NASA Astrophysics Data System (ADS)
Zhang, K.
2011-05-01
Exoplanet exploration is not only a meaningful astronomical action, but also has a close relation with the extra-terrestrial life. High resolution echelle spectrograph is the key instrument for measuring stellar radial velocity (RV). But with higher precision, better environmental stability and higher cost are required. An improved technique of RV means invented by David J. Erskine in 1997, External Dispersed Interferometry (EDI), can increase the RV measuring precision by combining the moderate resolution spectrograph with a fixed-delay Michelson interferometer. LAMOST with large aperture and large field of view is equipped with 16 multi-object low resolution fiber spectrographs. And these spectrographs are capable to work in medium resolution mode (R=5{K}˜10{K}). LAMOST will be one of the most powerful exoplanet detecting systems over the world by introducing EDI technique. The EDI technique is a new technique for developing astronomical instrumentation in China. The operating theory of EDI was generally verified by a feasibility experiment done in 2009. And then a multi-object exoplanet survey system based on LAMOST spectrograph was proposed. According to this project, three important tasks have been done as follows: Firstly, a simulation of EDI operating theory contains the stellar spectrum model, interferometer transmission model, spectrograph mediation model and RV solution model. In order to meet the practical situation, two detecting modes, temporal and spatial phase-stepping methods, are separately simulated. The interference spectrum is analyzed with Fourier transform algorithm and a higher resolution conventional spectrum is resolved. Secondly, an EDI prototype is composed of a multi-object interferometer prototype and the LAMOST spectrograph. Some ideas are used in the design to reduce the effect of central obscuration, for example, modular structure and external/internal adjusting frames. Another feasibility experiment was done at Xinglong Station in
Multi-object geodesic active contours (MOGAC).
Lucas, Blake C; Kazhdan, Michael; Taylor, Russell H
2012-01-01
An emerging topic is to build image segmentation systems that can segment hundreds to thousands of objects (i.e. cell segmentation\\tracking, full brain parcellation, full body segmentation, etc.). Multi-object Level Set Methods (MLSM) perform this task with the benefit of sub-pixel precision. However, current implementations of MLSM are not as computationally or memory efficient as their region growing and graph cut counterparts which lack sub-pixel precision. To address this performance gap, we present a novel parallel implementation of MLSM that leverages the sparse properties of the algorithm to minimize its memory footprint for multiple objects. The new method, Multi-Object Geodesic Active Contours (MOGAC), can represent N objects with just two functions: a label mask image and unsigned distance field. The time complexity of the algorithm is shown to be O((M (power)d)/P) for M (power)d pixels and P processing units in dimension d = {2,3}, independent of the number of objects. Results are presented for 2D and 3D image segmentation problems. PMID:23286074
Evolutionary methods for multidisciplinary optimization applied to the design of UAV systems†
NASA Astrophysics Data System (ADS)
Gonzalez, L. F.; Periaux, J.; Damp, L.; Srinivas, K.
2007-10-01
The implementation and use of a framework in which engineering optimization problems can be analysed are described. In the first part, the foundations of the framework and the hierarchical asynchronous parallel multi-objective evolutionary algorithms (HAPMOEAs) are presented. These are based upon evolution strategies and incorporate the concepts of multi-objective optimization, hierarchical topology, asynchronous evaluation of candidate solutions, and parallel computing. The methodology is presented first and the potential of HAPMOEAs for solving multi-criteria optimization problems is demonstrated on test case problems of increasing difficulty. In the second part of the article several recent applications of multi-objective and multidisciplinary optimization (MO) are described. These illustrate the capabilities of the framework and methodology for the design of UAV and UCAV systems. The application presented deals with a two-objective (drag and weight) UAV wing plan-form optimization. The basic concepts are refined and more sophisticated software and design tools with low- and high-fidelity CFD and FEA models are introduced. Various features described in the text are used to meet the challenge in optimization presented by these test cases.
Multimethod evolutionary search for the regional calibration of rainfall-runoff models
NASA Astrophysics Data System (ADS)
Lombardi, Laura; Castiglioni, Simone; Toth, Elena; Castellarin, Attilio; Montanari, Alberto
2010-05-01
The study focuses on regional calibration for a generic rainfall-runoff model. The maximum likelihood function in the spectral domain proposed by Whittle is approximated in the time domain by maximising the simultaneous fit (through a multiobjective optimisation) of selected statistics of streamflow values, with the aim to propose a calibration procedure that can be applied at regional scale. The method may in fact be applied without the availability of actual time series of streamflow observations, since it is based exclusively on the selected statistics, that are here obtained on the basis of the dominant climate and catchment characteristics, through regional regression relationships. The multiobjective optimisation was carried out by using a recently proposed multimethod evolutionary search algorithm (AMALGAM, Vrugt and Robinson, 2007), that runs simultaneously, for population evolution, a set of different optimisation methods (namely NSGA-II, Differential Evolution, Adaptive Metropolis Search and Particle Swarm Optimisation), resulting in a combination of the respective strengths by adaptively updating the weights of these individual methods based on their reproductive success. This ensures a fast, reliable and computationally efficient solution to multiobjective optimisation problems. The proposed technique is applied to the case study of some catchments located in central Italy, which are treated as ungauged and are located in a region where detailed hydrological and geomorfoclimatic information is available. The results obtained with the regional calibration are compared with those provided by a classical least squares calibration in the time domain. The outcomes of the analysis confirm the potentialities of the proposed methodology.
Efficient multiobjective optimization scheme for large scale structures
NASA Astrophysics Data System (ADS)
Grandhi, Ramana V.; Bharatram, Geetha; Venkayya, V. B.
1992-09-01
This paper presents a multiobjective optimization algorithm for an efficient design of large scale structures. The algorithm is based on generalized compound scaling techniques to reach the intersection of multiple functions. Multiple objective functions are treated similar to behavior constraints. Thus, any number of objectives can be handled in the formulation. Pseudo targets on objectives are generated at each iteration in computing the scale factors. The algorithm develops a partial Pareto set. This method is computationally efficient due to the fact that it does not solve many single objective optimization problems in reaching the Pareto set. The computational efficiency is compared with other multiobjective optimization methods, such as the weighting method and the global criterion method. Trusses, plate, and wing structure design cases with stress and frequency considerations are presented to demonstrate the effectiveness of the method.
Patton, Robert M; Cui, Xiaohui; Jiao, Yu; Potok, Thomas E
2008-01-01
The rate at which information overwhelms humans is significantly more than the rate at which humans have learned to process, analyze, and leverage this information. To overcome this challenge, new methods of computing must be formulated, and scientist and engineers have looked to nature for inspiration in developing these new methods. Consequently, evolutionary computing has emerged as new paradigm for computing, and has rapidly demonstrated its ability to solve real-world problems where traditional techniques have failed. This field of work has now become quite broad and encompasses areas ranging from artificial life to neural networks. This chapter focuses specifically on two sub-areas of nature-inspired computing: Evolutionary Algorithms and Swarm Intelligence.
Chen, Zhihuan; Yuan, Yanbin; Yuan, Xiaohui; Huang, Yuehua; Li, Xianshan; Li, Wenwu
2015-05-01
A hydraulic turbine regulating system (HTRS) is one of the most important components of hydropower plant, which plays a key role in maintaining safety, stability and economical operation of hydro-electrical installations. At present, the conventional PID controller is widely applied in the HTRS system for its practicability and robustness, and the primary problem with respect to this control law is how to optimally tune the parameters, i.e. the determination of PID controller gains for satisfactory performance. In this paper, a kind of multi-objective evolutionary algorithms, named adaptive grid particle swarm optimization (AGPSO) is applied to solve the PID gains tuning problem of the HTRS system. This newly AGPSO optimized method, which differs from a traditional one-single objective optimization method, is designed to take care of settling time and overshoot level simultaneously, in which a set of non-inferior alternatives solutions (i.e. Pareto solution) is generated. Furthermore, a fuzzy-based membership value assignment method is employed to choose the best compromise solution from the obtained Pareto set. An illustrative example associated with the best compromise solution for parameter tuning of the nonlinear HTRS system is introduced to verify the feasibility and the effectiveness of the proposed AGPSO-based optimization approach, as compared with two another prominent multi-objective algorithms, i.e. Non-dominated Sorting Genetic Algorithm II (NSGAII) and Strength Pareto Evolutionary Algorithm II (SPEAII), for the quality and diversity of obtained Pareto solutions set. Consequently, simulation results show that this AGPSO optimized approach outperforms than compared methods with higher efficiency and better quality no matter whether the HTRS system works under unload or load conditions. PMID:25481821
Study on the evolutionary optimisation of the topology of network control systems
NASA Astrophysics Data System (ADS)
Zhou, Zude; Chen, Benyuan; Wang, Hong; Fan, Zhun
2010-08-01
Computer networks have been very popular in enterprise applications. However, optimisation of network designs that allows networks to be used more efficiently in industrial environment and enterprise applications remains an interesting research topic. This article mainly discusses the topology optimisation theory and methods of the network control system based on switched Ethernet in an industrial context. Factors that affect the real-time performance of the industrial control network are presented in detail, and optimisation criteria with their internal relations are analysed. After the definition of performance parameters, the normalised indices for the evaluation of the topology optimisation are proposed. The topology optimisation problem is formulated as a multi-objective optimisation problem and the evolutionary algorithm is applied to solve it. Special communication characteristics of the industrial control network are considered in the optimisation process. In respect to the evolutionary algorithm design, an improved arena algorithm is proposed for the construction of the non-dominated set of the population. In addition, for the evaluation of individuals, the integrated use of the dominative relation method and the objective function combination method, for reducing the computational cost of the algorithm, are given. Simulation tests show that the performance of the proposed algorithm is preferable and superior compared to other algorithms. The final solution greatly improves the following indices: traffic localisation, traffic balance and utilisation rate balance of switches. In addition, a new performance index with its estimation process is proposed.
Rogošić, Marko; Šimović, Ena; Tišler, Vesna; Bolanča, Tomislav
2013-01-01
Gradient ion chromatography was used for the separation of eight sugars: arabitol, cellobiose, fructose, fucose, lactulose, melibiose, N-acetyl-D-glucosamine, and raffinose. The separation method was optimized using a combination of simplex or genetic algorithm with the isocratic-to-gradient retention modeling. Both the simplex and genetic algorithms provided well separated chromatograms in a similar analysis time. However, the simplex methodology showed severe drawbacks when dealing with local minima. Thus the genetic algorithm methodology proved as a method of choice for gradient optimization in this case. All the calculated/predicted chromatograms were compared with the real sample data, showing more than a satisfactory agreement. PMID:24349824
Automatic Clustering Using Multi-objective Particle Swarm and Simulated Annealing
Abubaker, Ahmad; Baharum, Adam; Alrefaei, Mahmoud
2015-01-01
This paper puts forward a new automatic clustering algorithm based on Multi-Objective Particle Swarm Optimization and Simulated Annealing, “MOPSOSA”. The proposed algorithm is capable of automatic clustering which is appropriate for partitioning datasets to a suitable number of clusters. MOPSOSA combines the features of the multi-objective based particle swarm optimization (PSO) and the Multi-Objective Simulated Annealing (MOSA). Three cluster validity indices were optimized simultaneously to establish the suitable number of clusters and the appropriate clustering for a dataset. The first cluster validity index is centred on Euclidean distance, the second on the point symmetry distance, and the last cluster validity index is based on short distance. A number of algorithms have been compared with the MOPSOSA algorithm in resolving clustering problems by determining the actual number of clusters and optimal clustering. Computational experiments were carried out to study fourteen artificial and five real life datasets. PMID:26132309
NASA Astrophysics Data System (ADS)
Baturin, V. S.; Lepeshkin, S. V.; Matsko, N. L.; Uspenskii, Yu A.
2016-02-01
We investigate the structural and thermodynamical properties of small silicon clusters. Using the graph theory applied to previously obtained structures of Si10H2m clusters we trace the connection between geometry and passivation degree. The existing data on these clusters and structures of Si10O4n clusters obtained here using evolutionary calculations allowed to analyze the features of Si10H2m clusters in hydrogen atmosphere and Si10O4n clusters in oxygen atmosphere. We have shown the basic differences between structures and thermodynamical properties of silicon clusters, passivated by hydrogen and silicon oxide clusters.
Scalable multi-objective control for large scale water resources systems under uncertainty
NASA Astrophysics Data System (ADS)
Giuliani, Matteo; Quinn, Julianne; Herman, Jonathan; Castelletti, Andrea; Reed, Patrick
2016-04-01
The use of mathematical models to support the optimal management of environmental systems is rapidly expanding over the last years due to advances in scientific knowledge of the natural processes, efficiency of the optimization techniques, and availability of computational resources. However, undergoing changes in climate and society introduce additional challenges for controlling these systems, ultimately motivating the emergence of complex models to explore key causal relationships and dependencies on uncontrolled sources of variability. In this work, we contribute a novel implementation of the evolutionary multi-objective direct policy search (EMODPS) method for controlling environmental systems under uncertainty. The proposed approach combines direct policy search (DPS) with hierarchical parallelization of multi-objective evolutionary algorithms (MOEAs) and offers a threefold advantage: the DPS simulation-based optimization can be combined with any simulation model and does not add any constraint on modeled information, allowing the use of exogenous information in conditioning the decisions. Moreover, the combination of DPS and MOEAs prompts the generation or Pareto approximate set of solutions for up to 10 objectives, thus overcoming the decision biases produced by cognitive myopia, where narrow or restrictive definitions of optimality strongly limit the discovery of decision relevant alternatives. Finally, the use of large-scale MOEAs parallelization improves the ability of the designed solutions in handling the uncertainty due to severe natural variability. The proposed approach is demonstrated on a challenging water resources management problem represented by the optimal control of a network of four multipurpose water reservoirs in the Red River basin (Vietnam). As part of the medium-long term energy and food security national strategy, four large reservoirs have been constructed on the Red River tributaries, which are mainly operated for hydropower
Pan, Indranil; Das, Saptarshi; Gupta, Amitava
2011-10-01
The issues of stochastically varying network delays and packet dropouts in Networked Control System (NCS) applications have been simultaneously addressed by time domain optimal tuning of fractional order (FO) PID controllers. Different variants of evolutionary algorithms are used for the tuning process and their performances are compared. Also the effectiveness of the fractional order PI(λ)D(μ) controllers over their integer order counterparts is looked into. Two standard test bench plants with time delay and unstable poles which are encountered in process control applications are tuned with the proposed method to establish the validity of the tuning methodology. The proposed tuning methodology is independent of the specific choice of plant and is also applicable for less complicated systems. Thus it is useful in a wide variety of scenarios. The paper also shows the superiority of FOPID controllers over their conventional PID counterparts for NCS applications. PMID:21621208
NASA Astrophysics Data System (ADS)
Tillett, Jason C.; Rao, Raghuveer; Sahin, Ferat; Rao, T. M.
2004-08-01
When wireless sensors are capable of variable transmit power and are battery powered, it is important to select the appropriate transmit power level for the node. Lowering the transmit power of the sensor nodes imposes a natural clustering on the network and has been shown to improve throughput of the network. However, a common transmit power level is not appropriate for inhomogeneous networks. A possible fitness-based approach, motivated by an evolutionary optimization technique, Particle Swarm Optimization (PSO) is proposed and extended in a novel way to determine the appropriate transmit power of each sensor node. A distributed version of PSO is developed and explored using experimental fitness to achieve an approximation of least-cost connectivity.
A Multiobjective Optimal Design of a Hybrid Power Source System for a Railway Vehicle
NASA Astrophysics Data System (ADS)
Ogawa, Tomoyuki; Wakao, Shinji; Kondo, Keiichiro
In this paper, we study an optimal design for a hybrid power source railway vehicle as an alternative to diesel railway vehicles. The hybrid power source railway vehicle is assumed to be composed of the fuel cell and the electric double layer capacitor. We apply the multiobjective optimization based on the genetic algorithm for the vehicle design, aiming at reduction of both initial cost and energy consumption. The pareto optimal solutions are obtained using the multiobjective optimization. First we develop a simulation model of the hybrid power source railway vehicle and its electric power control methods. Next we derive the pareto optimal solutions as a result of the multiobjective optimization. Finally, we categorize the pareto optimal solutions to some groups, which enables us to elucidate characteristics of the pareto optimal solutions. Consequently, using the multiobjective optimization approach we effectively comprehend the problem characteristics and can obtain the plural valuable solutions.
On Persistence in Multiobjective Oligopoly
NASA Astrophysics Data System (ADS)
Ahmed, E.; Hegazi, A. S.; El-Hafez, A. T. Abd
Multiobjective oligopoly models are constructed. The objective of th e first two models are to maximize profits and to maximize sales. In the third model, the objectives are to maximize profits and to minimize risk. Giving more weight to risk minimization decreased the profits. In all the three models, we found that the weight of the profit maximization has to be higher than a given threshold. Sufficient conditions for persistence of some multiobjective oligopolies are derived. Again, they require that the weight of profit maximization to be higher than certain value.
A multi-objective optimization framework to model 3D river and landscape evolution processes
NASA Astrophysics Data System (ADS)
Bizzi, Simone; Castelletti, Andrea; Cominola, Andrea; Mason, Emanuele; Paik, Kyungrock
2013-04-01
conflicting optimality principles proposed in the literature, are computed by evolutionary multiobjective algorithm. Generated landscapes and their river networks are compared with the ones observed in nature through state of the art indicators, and visualized with erosion-deposition contour maps in order to make the comprehension easier. Preliminary results show that multiobjective frameworks allow powerfully comparing how different optimality principles affect the simulation of landscape evolution and river organization. These findings prove that the single criteria proposed so far in literature can describe only part of the landscape evolution processes and that more comprehensive optimality criteria need to be proposed in order to prove that least action principle drives river network formation and to use this knowledge to simulate river and landscape evolution.
Dun, Cai-xia
2013-01-01
As a practical inventory and transportation problem, it is important to synthesize several objectives for the joint replenishment and delivery (JRD) decision. In this paper, a new multiobjective stochastic JRD (MSJRD) of the one-warehouse and n-retailer systems considering the balance of service level and total cost simultaneously is proposed. The goal of this problem is to decide the reasonable replenishment interval, safety stock factor, and traveling routing. Secondly, two approaches are designed to handle this complex multi-objective optimization problem. Linear programming (LP) approach converts the multi-objective to single objective, while a multi-objective evolution algorithm (MOEA) solves a multi-objective problem directly. Thirdly, three intelligent optimization algorithms, differential evolution algorithm (DE), hybrid DE (HDE), and genetic algorithm (GA), are utilized in LP-based and MOEA-based approaches. Results of the MSJRD with LP-based and MOEA-based approaches are compared by a contrastive numerical example. To analyses the nondominated solution of MOEA, a metric is also used to measure the distribution of the last generation solution. Results show that HDE outperforms DE and GA whenever LP or MOEA is adopted. PMID:24302880
Greedy Set Cover Field Selection for Multi-object Spectroscopy in C++ MPI
NASA Astrophysics Data System (ADS)
Stenborg, T. N.
2015-09-01
Multi-object spectrographs allow efficient observation of clustered targets. Observational programs of many targets not encompassed within a telescope's field of view, however, require multiple pointings. Here, a greedy set cover algorithmic approach to efficient field selection in such a scenario is examined. The goal of this approach is not to minimize the total number of pointings needed to cover a given target set, but rather maximize the observational return for a restricted number of pointings. Telescope field of view and maximum targets per field are input parameters, allowing algorithm application to observation planning for the current range of active multi-object spectrographs (e.g. the 2dF/AAOmega, Fiber Large Array Multi Element Spectrograph, Fiber Multi-Object Spectrograph, Hectochelle, Hectospec and Hydra systems), and for any future systems. A parallel version of the algorithm is implemented with the message passing interface, facilitating execution on both shared and distributed memory systems.
NASA Astrophysics Data System (ADS)
Primorac, E.; Kuhlenbeck, H.; Freund, H.-J.
2016-07-01
The structure of a thin MoO3 layer on Au(111) with a c(4 × 2) superstructure was studied with LEED I/V analysis. As proposed previously (Quek et al., Surf. Sci. 577 (2005) L71), the atomic structure of the layer is similar to that of a MoO3 single layer as found in regular α-MoO3. The layer on Au(111) has a glide plane parallel to the short unit vector of the c(4 × 2) unit cell and the molybdenum atoms are bridge-bonded to two surface gold atoms with the structure of the gold surface being slightly distorted. The structural refinement of the structure was performed with the CMA-ES evolutionary strategy algorithm which could reach a Pendry R-factor of ∼ 0.044. In the second part the performance of CMA-ES is compared with that of the differential evolution method, a genetic algorithm and the Powell optimization algorithm employing I/V curves calculated with tensor LEED.
3-D flame temperature field reconstruction with multiobjective neural network
NASA Astrophysics Data System (ADS)
Wan, Xiong; Gao, Yiqing; Wang, Yuanmei
2003-02-01
A novel 3-D temperature field reconstruction method is proposed in this paper, which is based on multiwavelength thermometry and Hopfield neural network computed tomography. A mathematical model of multi-wavelength thermometry is founded, and a neural network algorithm based on multiobjective optimization is developed. Through computer simulation and comparison with the algebraic reconstruction technique (ART) and the filter back-projection algorithm (FBP), the reconstruction result of the new method is discussed in detail. The study shows that the new method always gives the best reconstruction results. At last, temperature distribution of a section of four peaks candle flame is reconstructed with this novel method.
Multiobjective genetic approach for optimal control of photoinduced processes
Bonacina, Luigi; Extermann, Jerome; Rondi, Ariana; Wolf, Jean-Pierre; Boutou, Veronique
2007-08-15
We have applied a multiobjective genetic algorithm to the optimization of multiphoton-excited fluorescence. Our study shows the advantages that this approach can offer to experiments based on adaptive shaping of femtosecond pulses. The algorithm outperforms single-objective optimizations, being totally independent from the bias of user defined parameters and giving simultaneous access to a large set of feasible solutions. The global inspection of their ensemble represents a powerful support to unravel the connections between pulse spectral field features and excitation dynamics of the sample.
Integrating GIS and genetic algorithms for automating land partitioning
NASA Astrophysics Data System (ADS)
Demetriou, Demetris; See, Linda; Stillwell, John
2014-08-01
Land consolidation is considered to be the most effective land management planning approach for controlling land fragmentation and hence improving agricultural efficiency. Land partitioning is a basic process of land consolidation that involves the subdivision of land into smaller sub-spaces subject to a number of constraints. This paper explains the development of a module called LandParcelS (Land Parcelling System) that integrates geographical information systems and a genetic algorithm to automate the land partitioning process by designing and optimising land parcels in terms of their shape, size and value. This new module has been applied to two land blocks that are part of a larger case study area in Cyprus. Partitioning is carried out by guiding a Thiessen polygon process within ArcGIS and it is treated as a multiobjective problem. The results suggest that a step forward has been made in solving this complex spatial problem, although further research is needed to improve the algorithm. The contribution of this research extends land partitioning and space partitioning in general, since these approaches may have relevance to other spatial processes that involve single or multi-objective problems that could be solved in the future by spatial evolutionary algorithms.
NASA Astrophysics Data System (ADS)
Kotegawa, Tatsuya
Complexity in the Air Transportation System (ATS) arises from the intermingling of many independent physical resources, operational paradigms, and stakeholder interests, as well as the dynamic variation of these interactions over time. Currently, trade-offs and cost benefit analyses of new ATS concepts are carried out on system-wide evaluation simulations driven by air traffic forecasts that assume fixed airline routes. However, this does not well reflect reality as airlines regularly add and remove routes. A airline service route network evolution model that projects route addition and removal was created and combined with state-of-the-art air traffic forecast methods to better reflect the dynamic properties of the ATS in system-wide simulations. Guided by a system-of-systems framework, network theory metrics and machine learning algorithms were applied to develop the route network evolution models based on patterns extracted from historical data. Constructing the route addition section of the model posed the greatest challenge due to the large pool of new link candidates compared to the actual number of routes historically added to the network. Of the models explored, algorithms based on logistic regression, random forests, and support vector machines showed best route addition and removal forecast accuracies at approximately 20% and 40%, respectively, when validated with historical data. The combination of network evolution models and a system-wide evaluation tool quantified the impact of airline route network evolution on air traffic delay. The expected delay minutes when considering network evolution increased approximately 5% for a forecasted schedule on 3/19/2020. Performance trade-off studies between several airline route network topologies from the perspectives of passenger travel efficiency, fuel burn, and robustness were also conducted to provide bounds that could serve as targets for ATS transformation efforts. The series of analysis revealed that high
Combining Environment-Driven Adaptation and Task-Driven Optimisation in Evolutionary Robotics
Haasdijk, Evert; Bredeche, Nicolas; Eiben, A. E.
2014-01-01
Embodied evolutionary robotics is a sub-field of evolutionary robotics that employs evolutionary algorithms on the robotic hardware itself, during the operational period, i.e., in an on-line fashion. This enables robotic systems that continuously adapt, and are therefore capable of (re-)adjusting themselves to previously unknown or dynamically changing conditions autonomously, without human oversight. This paper addresses one of the major challenges that such systems face, viz. that the robots must satisfy two sets of requirements. Firstly, they must continue to operate reliably in their environment (viability), and secondly they must competently perform user-specified tasks (usefulness). The solution we propose exploits the fact that evolutionary methods have two basic selection mechanisms–survivor selection and parent selection. This allows evolution to tackle the two sets of requirements separately: survivor selection is driven by the environment and parent selection is based on task-performance. This idea is elaborated in the Multi-Objective aNd open-Ended Evolution (monee) framework, which we experimentally validate. Experiments with robotic swarms of 100 simulated e-pucks show that monee does indeed promote task-driven behaviour without compromising environmental adaptation. We also investigate an extension of the parent selection process with a ‘market mechanism’ that can ensure equitable distribution of effort over multiple tasks, a particularly pressing issue if the environment promotes specialisation in single tasks. PMID:24901702
Combining environment-driven adaptation and task-driven optimisation in evolutionary robotics.
Haasdijk, Evert; Bredeche, Nicolas; Eiben, A E
2014-01-01
Embodied evolutionary robotics is a sub-field of evolutionary robotics that employs evolutionary algorithms on the robotic hardware itself, during the operational period, i.e., in an on-line fashion. This enables robotic systems that continuously adapt, and are therefore capable of (re-)adjusting themselves to previously unknown or dynamically changing conditions autonomously, without human oversight. This paper addresses one of the major challenges that such systems face, viz. that the robots must satisfy two sets of requirements. Firstly, they must continue to operate reliably in their environment (viability), and secondly they must competently perform user-specified tasks (usefulness). The solution we propose exploits the fact that evolutionary methods have two basic selection mechanisms-survivor selection and parent selection. This allows evolution to tackle the two sets of requirements separately: survivor selection is driven by the environment and parent selection is based on task-performance. This idea is elaborated in the Multi-Objective aNd open-Ended Evolution (monee) framework, which we experimentally validate. Experiments with robotic swarms of 100 simulated e-pucks show that monee does indeed promote task-driven behaviour without compromising environmental adaptation. We also investigate an extension of the parent selection process with a 'market mechanism' that can ensure equitable distribution of effort over multiple tasks, a particularly pressing issue if the environment promotes specialisation in single tasks. PMID:24901702
2014-01-01
Background The ability of science to produce experimental data has outpaced the ability to effectively visualize and integrate the data into a conceptual framework that can further higher order understanding. Multidimensional and shape-based observational data of regenerative biology presents a particularly daunting challenge in this regard. Large amounts of data are available in regenerative biology, but little progress has been made in understanding how organisms such as planaria robustly achieve and maintain body form. An example of this kind of data can be found in a new repository (PlanformDB) that encodes descriptions of planaria experiments and morphological outcomes using a graph formalism. Results We are developing a model discovery framework that uses a cell-based modeling platform combined with evolutionary search to automatically search for and identify plausible mechanisms for the biological behavior described in PlanformDB. To automate the evolutionary search we developed a way to compare the output of the modeling platform to the morphological descriptions stored in PlanformDB. We used a flexible connected component algorithm to create a graph representation of the virtual worm from the robust, cell-based simulation data. These graphs can then be validated and compared with target data from PlanformDB using the well-known graph-edit distance calculation, which provides a quantitative metric of similarity between graphs. The graph edit distance calculation was integrated into a fitness function that was able to guide automated searches for unbiased models of planarian regeneration. We present a cell-based model of planarian that can regenerate anatomical regions following bisection of the organism, and show that the automated model discovery framework is capable of searching for and finding models of planarian regeneration that match experimental data stored in PlanformDB. Conclusion The work presented here, including our algorithm for converting cell
Multiobjective training of artificial neural networks for rainfall-runoff modeling
NASA Astrophysics Data System (ADS)
de Vos, N. J.; Rientjes, T. H. M.
2008-08-01
This paper presents results on the application of various optimization algorithms for the training of artificial neural network rainfall-runoff models. Multilayered feed-forward networks for forecasting discharge from two mesoscale catchments in different climatic regions have been developed for this purpose. The performances of the multiobjective algorithms Multi Objective Shuffled Complex Evolution Metropolis-University of Arizona (MOSCEM-UA) and Nondominated Sorting Genetic Algorithm II (NSGA-II) have been compared to the single-objective Levenberg-Marquardt and Genetic Algorithm for training of these models. Performance has been evaluated by means of a number of commonly applied objective functions and also by investigating the internal weights of the networks. Additionally, the effectiveness of a new objective function called mean squared derivative error, which penalizes models for timing errors and noisy signals, has been explored. The results show that the multiobjective algorithms give competitive results compared to the single-objective ones. Performance measures and posterior weight distributions of the various algorithms suggest that multiobjective algorithms are more consistent in finding good optima than are single-objective algorithms. However, results also show that it is difficult to conclude if any of the algorithms is superior in terms of accuracy, consistency, and reliability. Besides the training algorithm, network performance is also shown to be sensitive to the choice of objective function(s), and including more than one objective function proves to be helpful in constraining the neural network training.
Hastie, David I.; Zeller, Tanja; Liquet, Benoit; Newcombe, Paul; Yengo, Loic; Wild, Philipp S.; Schillert, Arne; Ziegler, Andreas; Nielsen, Sune F.; Butterworth, Adam S.; Ho, Weang Kee; Castagné, Raphaële; Munzel, Thomas; Tregouet, David; Falchi, Mario; Cambien, François; Nordestgaard, Børge G.; Fumeron, Fredéric; Tybjærg-Hansen, Anne; Froguel, Philippe; Danesh, John; Petretto, Enrico; Blankenberg, Stefan; Tiret, Laurence; Richardson, Sylvia
2013-01-01
Genome-wide association studies (GWAS) yielded significant advances in defining the genetic architecture of complex traits and disease. Still, a major hurdle of GWAS is narrowing down multiple genetic associations to a few causal variants for functional studies. This becomes critical in multi-phenotype GWAS where detection and interpretability of complex SNP(s)-trait(s) associations are complicated by complex Linkage Disequilibrium patterns between SNPs and correlation between traits. Here we propose a computationally efficient algorithm (GUESS) to explore complex genetic-association models and maximize genetic variant detection. We integrated our algorithm with a new Bayesian strategy for multi-phenotype analysis to identify the specific contribution of each SNP to different trait combinations and study genetic regulation of lipid metabolism in the Gutenberg Health Study (GHS). Despite the relatively small size of GHS (n = 3,175), when compared with the largest published meta-GWAS (n>100,000), GUESS recovered most of the major associations and was better at refining multi-trait associations than alternative methods. Amongst the new findings provided by GUESS, we revealed a strong association of SORT1 with TG-APOB and LIPC with TG-HDL phenotypic groups, which were overlooked in the larger meta-GWAS and not revealed by competing approaches, associations that we replicated in two independent cohorts. Moreover, we demonstrated the increased power of GUESS over alternative multi-phenotype approaches, both Bayesian and non-Bayesian, in a simulation study that mimics real-case scenarios. We showed that our parallel implementation based on Graphics Processing Units outperforms alternative multi-phenotype methods. Beyond multivariate modelling of multi-phenotypes, our Bayesian model employs a flexible hierarchical prior structure for genetic effects that adapts to any correlation structure of the predictors and increases the power to identify associated variants. This
NASA Astrophysics Data System (ADS)
Ayala, Helon Vicente Hultmann; Coelho, Leandro dos Santos
2016-02-01
The present work introduces a procedure for input selection and parameter estimation for system identification based on Radial Basis Functions Neural Networks (RBFNNs) models with an improved objective function based on the residuals and its correlation function coefficients. We show the results when the proposed methodology is applied to model a magnetorheological damper, with real acquired data, and other two well-known benchmarks. The canonical genetic and differential evolution algorithms are used in cascade to decompose the problem of defining the lags taken as the inputs of the model and its related parameters based on the simultaneous minimization of the residuals and higher orders correlation functions. The inner layer of the cascaded approach is composed of a population which represents the lags on the inputs and outputs of the system and an outer layer represents the corresponding parameters of the RBFNN. The approach is able to define both the inputs of the model and its parameters. This is interesting as it frees the designer of manual procedures, which are time consuming and prone to error, usually done to define the model inputs. We compare the proposed methodology with other works found in the literature, showing overall better results for the cascaded approach.
NASA Astrophysics Data System (ADS)
Moradi, M.; Delavar, M. R.; Moradi, A.
2015-12-01
Being one of the natural disasters, earthquake can seriously damage buildings, urban facilities and cause road blockage. Post-earthquake route planning is problem that has been addressed in frequent researches. The main aim of this research is to present a route planning model for after earthquake. It is assumed in this research that no damage data is available. The presented model tries to find the optimum route based on a number of contributing factors which mainly indicate the length, width and safety of the road. The safety of the road is represented by a number of criteria such as distance to faults, percentage of non-standard buildings and percentage of high buildings around the route. An integration of genetic algorithm and ordered weighted averaging operator is employed in the model. The former searches the problem space among all alternatives, while the latter aggregates the scores of road segments to compute an overall score for each alternative. Ordered weighted averaging operator enables the users of the system to evaluate the alternative routes based on their decision strategy. Based on the proposed model, an optimistic user tries to find the shortest path between the two points, whereas a pessimistic user tends to pay more attention to safety parameters even if it enforces a longer route. The results depicts that decision strategy can considerably alter the optimum route. Moreover, post-earthquake route planning is a function of not only the length of the route but also the probability of the road blockage.
Evolutionary tree reconstruction
NASA Technical Reports Server (NTRS)
Cheeseman, Peter; Kanefsky, Bob
1990-01-01
It is described how Minimum Description Length (MDL) can be applied to the problem of DNA and protein evolutionary tree reconstruction. If there is a set of mutations that transform a common ancestor into a set of the known sequences, and this description is shorter than the information to encode the known sequences directly, then strong evidence for an evolutionary relationship has been found. A heuristic algorithm is described that searches for the simplest tree (smallest MDL) that finds close to optimal trees on the test data. Various ways of extending the MDL theory to more complex evolutionary relationships are discussed.
Herman, Matthew R; Nejadhashemi, A Pouyan; Daneshvar, Fariborz; Abouali, Mohammad; Ross, Dennis M; Woznicki, Sean A; Zhang, Zhen
2016-10-01
The emission of greenhouse gases continues to amplify the impacts of global climate change. This has led to the increased focus on using renewable energy sources, such as biofuels, due to their lower impact on the environment. However, the production of biofuels can still have negative impacts on water resources. This study introduces a new strategy to optimize bioenergy landscapes while improving stream health for the region. To accomplish this, several hydrological models including the Soil and Water Assessment Tool, Hydrologic Integrity Tool, and Adaptive Neruro Fuzzy Inference System, were linked to develop stream health predictor models. These models are capable of estimating stream health scores based on the Index of Biological Integrity. The coupling of the aforementioned models was used to guide a genetic algorithm to design watershed-scale bioenergy landscapes. Thirteen bioenergy managements were considered based on the high probability of adaptation by farmers in the study area. Results from two thousand runs identified an optimum bioenergy crops placement that maximized the stream health for the Flint River Watershed in Michigan. The final overall stream health score was 50.93, which was improved from the current stream health score of 48.19. This was shown to be a significant improvement at the 1% significant level. For this final bioenergy landscape the most often used management was miscanthus (27.07%), followed by corn-soybean-rye (19.00%), corn stover-soybean (18.09%), and corn-soybean (16.43%). The technique introduced in this study can be successfully modified for use in different regions and can be used by stakeholders and decision makers to develop bioenergy landscapes that maximize stream health in the area of interest. PMID:27420165
Enhanced Multiobjective Optimization Technique for Comprehensive Aerospace Design. Part A
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi; Rajadas, John N.
1997-01-01
A multidisciplinary design optimization procedure which couples formal multiobjectives based techniques and complex analysis procedures (such as computational fluid dynamics (CFD) codes) developed. The procedure has been demonstrated on a specific high speed flow application involving aerodynamics and acoustics (sonic boom minimization). In order to account for multiple design objectives arising from complex performance requirements, multiobjective formulation techniques are used to formulate the optimization problem. Techniques to enhance the existing Kreisselmeier-Steinhauser (K-S) function multiobjective formulation approach have been developed. The K-S function procedure used in the proposed work transforms a constrained multiple objective functions problem into an unconstrained problem which then is solved using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. Weight factors are introduced during the transformation process to each objective function. This enhanced procedure will provide the designer the capability to emphasize specific design objectives during the optimization process. The demonstration of the procedure utilizes a computational Fluid dynamics (CFD) code which solves the three-dimensional parabolized Navier-Stokes (PNS) equations for the flow field along with an appropriate sonic boom evaluation procedure thus introducing both aerodynamic performance as well as sonic boom as the design objectives to be optimized simultaneously. Sensitivity analysis is performed using a discrete differentiation approach. An approximation technique has been used within the optimizer to improve the overall computational efficiency of the procedure in order to make it suitable for design applications in an industrial setting.
Multiobjective hyper heuristic scheme for system design and optimization
NASA Astrophysics Data System (ADS)
Rafique, Amer Farhan
2012-11-01
As system design is becoming more and more multifaceted, integrated, and complex, the traditional single objective optimization trends of optimal design are becoming less and less efficient and effective. Single objective optimization methods present a unique optimal solution whereas multiobjective methods present pareto front. The foremost intent is to predict a reasonable distributed pareto-optimal solution set independent of the problem instance through multiobjective scheme. Other objective of application of intended approach is to improve the worthiness of outputs of the complex engineering system design process at the conceptual design phase. The process is automated in order to provide the system designer with the leverage of the possibility of studying and analyzing a large multiple of possible solutions in a short time. This article presents Multiobjective Hyper Heuristic Optimization Scheme based on low level meta-heuristics developed for the application in engineering system design. Herein, we present a stochastic function to manage meta-heuristics (low-level) to augment surety of global optimum solution. Generic Algorithm, Simulated Annealing and Swarm Intelligence are used as low-level meta-heuristics in this study. Performance of the proposed scheme is investigated through a comprehensive empirical analysis yielding acceptable results. One of the primary motives for performing multiobjective optimization is that the current engineering systems require simultaneous optimization of conflicting and multiple. Random decision making makes the implementation of this scheme attractive and easy. Injecting feasible solutions significantly alters the search direction and also adds diversity of population resulting in accomplishment of pre-defined goals set in the proposed scheme.
NASA Astrophysics Data System (ADS)
Zhang, Yongyong; Shao, Quanxi; Taylor, John A.
2016-07-01
Due to the high interactions among multiple processes in integrated water system models, it is extremely difficult, if not impossible, to achieve reasonable solutions for all objectives by using the traditional step-by-step calibration. In many cases, water quantity and quality are equally important but their objectives in model calibration usually conflict with each other, so it is not a good practice to calibrate one after another. In this study, a combined auto-calibration multi-process approach was proposed for the integrated water system model (HEQM) using a multi-objective evolutionary algorithm. This ensures that the model performance among inseparable or interactive processes could be balanced by users based on the Pareto front. The Huai River Basin, a highly regulated and heavily polluted region of China, was selected as a case study. The hydrological and water quality parameters of HEQM were calibrated simultaneously based on the observed series of runoff and ammonia-nitrogen (NH4-N) concentrations. The results were compared with those of the step-by-step calibration to demonstrate the rationality and feasibility of the multi-objective approach. The results showed that a Pareto optimal front was formed and could be divided into three clear sections based on the elastic coefficient of model performance between NH4-N and runoff, i.e., the dominated section for NH4-N improvement, the trade-off section between NH4-N and runoff, and the dominated section for runoff improvement. The trade-off of model performance between runoff and NH4-N concentration was clear. The results of the step-by-step calibration fell in the dominated section for NH4-N improvement, where just the optimum of the runoff simulation was achieved with a large potential to improve NH4-N simulation without a significant degradation of the runoff simulation. The overall optimal solutions for all the simulations appeared in the trade-off section. Therefore, the Pareto front provided different
Multi-objective engineering design using preferences
NASA Astrophysics Data System (ADS)
Sanchis, J.; Martinez, M.; Blasco, X.
2008-03-01
System design is a complex task when design parameters have to satisy a number of specifications and objectives which often conflict with those of others. This challenging problem is called multi-objective optimization (MOO). The most common approximation consists in optimizing a single cost index with a weighted sum of objectives. However, once weights are chosen the solution does not guarantee the best compromise among specifications, because there is an infinite number of solutions. A new approach can be stated, based on the designer's experience regarding the required specifications and the associated problems. This valuable information can be translated into preferences for design objectives, and will lead the search process to the best solution in terms of these preferences. This article presents a new method, which enumerates these a priori objective preferences. As a result, a single objective is built automatically and no weight selection need be performed. Problems occuring because of the multimodal nature of the generated single cost index are managed with genetic algorithms (GAs).
Multiobjective sensitivity analysis and optimization of distributed hydrologic model MOBIDIC
NASA Astrophysics Data System (ADS)
Yang, J.; Castelli, F.; Chen, Y.
2014-10-01
Calibration of distributed hydrologic models usually involves how to deal with the large number of distributed parameters and optimization problems with multiple but often conflicting objectives that arise in a natural fashion. This study presents a multiobjective sensitivity and optimization approach to handle these problems for the MOBIDIC (MOdello di Bilancio Idrologico DIstribuito e Continuo) distributed hydrologic model, which combines two sensitivity analysis techniques (the Morris method and the state-dependent parameter (SDP) method) with multiobjective optimization (MOO) approach ɛ-NSGAII (Non-dominated Sorting Genetic Algorithm-II). This approach was implemented to calibrate MOBIDIC with its application to the Davidson watershed, North Carolina, with three objective functions, i.e., the standardized root mean square error (SRMSE) of logarithmic transformed discharge, the water balance index, and the mean absolute error of the logarithmic transformed flow duration curve, and its results were compared with those of a single objective optimization (SOO) with the traditional Nelder-Mead simplex algorithm used in MOBIDIC by taking the objective function as the Euclidean norm of these three objectives. Results show that (1) the two sensitivity analysis techniques are effective and efficient for determining the sensitive processes and insensitive parameters: surface runoff and evaporation are very sensitive processes to all three objective functions, while groundwater recession and soil hydraulic conductivity are not sensitive and were excluded in the optimization. (2) Both MOO and SOO lead to acceptable simulations; e.g., for MOO, the average Nash-Sutcliffe value is 0.75 in the calibration period and 0.70 in the validation period. (3) Evaporation and surface runoff show similar importance for watershed water balance, while the contribution of baseflow can be ignored. (4) Compared to SOO, which was dependent on the initial starting location, MOO provides more
The Robust Weighted Multi-Objective Game
2015-01-01
This paper studies a class of multi-objective n-person non-zero sum games through a robust weighted approach where each player has more than one competing objective. This robust weighted multi-objective game model assumes that each player attaches a set of weights to its objectives instead of accessing accurate weights. Each player wishes to minimize its maximum weighted sum objective where the maximization is pointing to the set of weights. To address this new model, a new equilibrium concept-robust weighted Nash equilibrium is obtained. The existence of this new concept is proven on suitable assumptions about the multi-objective payoffs. PMID:26406986
Rahat, Alma A M; Everson, Richard M; Fieldsend, Jonathan E
2015-01-01
Mesh network topologies are becoming increasingly popular in battery-powered wireless sensor networks, primarily because of the extension of network range. However, multihop mesh networks suffer from higher energy costs, and the routing strategy employed directly affects the lifetime of nodes with limited energy resources. Hence when planning routes there are trade-offs to be considered between individual and system-wide battery lifetimes. We present a multiobjective routing optimisation approach using hybrid evolutionary algorithms to approximate the optimal trade-off between the minimum lifetime and the average lifetime of nodes in the network. In order to accomplish this combinatorial optimisation rapidly, our approach prunes the search space using k-shortest path pruning and a graph reduction method that finds candidate routes promoting long minimum lifetimes. When arbitrarily many routes from a node to the base station are permitted, optimal routes may be found as the solution to a well-known linear program. We present an evolutionary algorithm that finds good routes when each node is allowed only a small number of paths to the base station. On a real network deployed in the Victoria & Albert Museum, London, these solutions, using only three paths per node, are able to achieve minimum lifetimes of over 99% of the optimum linear program solution's time to first sensor battery failure. PMID:25950392
Olugbara, Oludayo
2014-01-01
This paper presents an annual multiobjective crop-mix planning as a problem of concurrent maximization of net profit and maximization of crop production to determine an optimal cropping pattern. The optimal crop production in a particular planting season is a crucial decision making task from the perspectives of economic management and sustainable agriculture. A multiobjective optimal crop-mix problem is formulated and solved using the generalized differential evolution 3 (GDE3) metaheuristic to generate a globally optimal solution. The performance of the GDE3 metaheuristic is investigated by comparing its results with the results obtained using epsilon constrained and nondominated sorting genetic algorithms—being two representatives of state-of-the-art in evolutionary optimization. The performance metrics of additive epsilon, generational distance, inverted generational distance, and spacing are considered to establish the comparability. In addition, a graphical comparison with respect to the true Pareto front for the multiobjective optimal crop-mix planning problem is presented. Empirical results generally show GDE3 to be a viable alternative tool for solving a multiobjective optimal crop-mix planning problem. PMID:24883369
NASA Astrophysics Data System (ADS)
Chu, J.; Zhang, C.; Fu, G.; Li, Y.; Zhou, H.
2015-08-01
This study investigates the effectiveness of a sensitivity-informed method for multi-objective operation of reservoir systems, which uses global sensitivity analysis as a screening tool to reduce computational demands. Sobol's method is used to screen insensitive decision variables and guide the formulation of the optimization problems with a significantly reduced number of decision variables. This sensitivity-informed method dramatically reduces the computational demands required for attaining high-quality approximations of optimal trade-off relationships between conflicting design objectives. The search results obtained from the reduced complexity multi-objective reservoir operation problems are then used to pre-condition the full search of the original optimization problem. In two case studies, the Dahuofang reservoir and the inter-basin multi-reservoir system in Liaoning province, China, sensitivity analysis results show that reservoir performance is strongly controlled by a small proportion of decision variables. Sensitivity-informed dimension reduction and pre-conditioning are evaluated in their ability to improve the efficiency and effectiveness of multi-objective evolutionary optimization. Overall, this study illustrates the efficiency and effectiveness of the sensitivity-informed method and the use of global sensitivity analysis to inform dimension reduction of optimization problems when solving complex multi-objective reservoir operation problems.
NASA Astrophysics Data System (ADS)
Chu, J. G.; Zhang, C.; Fu, G. T.; Li, Y.; Zhou, H. C.
2015-04-01
This study investigates the effectiveness of a sensitivity-informed method for multi-objective operation of reservoir systems, which uses global sensitivity analysis as a screening tool to reduce the computational demands. Sobol's method is used to screen insensitive decision variables and guide the formulation of the optimization problems with a significantly reduced number of decision variables. This sensitivity-informed problem decomposition dramatically reduces the computational demands required for attaining high quality approximations of optimal tradeoff relationships between conflicting design objectives. The search results obtained from the reduced complexity multi-objective reservoir operation problems are then used to pre-condition the full search of the original optimization problem. In two case studies, the Dahuofang reservoir and the inter-basin multi-reservoir system in Liaoning province, China, sensitivity analysis results show that reservoir performance is strongly controlled by a small proportion of decision variables. Sensitivity-informed problem decomposition and pre-conditioning are evaluated in their ability to improve the efficiency and effectiveness of multi-objective evolutionary optimization. Overall, this study illustrates the efficiency and effectiveness of the sensitivity-informed method and the use of global sensitivity analysis to inform problem decomposition when solving the complex multi-objective reservoir operation problems.
Multi-object tracking of human spermatozoa
NASA Astrophysics Data System (ADS)
Sørensen, Lauge; Østergaard, Jakob; Johansen, Peter; de Bruijne, Marleen
2008-03-01
We propose a system for tracking of human spermatozoa in phase-contrast microscopy image sequences. One of the main aims of a computer-aided sperm analysis (CASA) system is to automatically assess sperm quality based on spermatozoa motility variables. In our case, the problem of assessing sperm quality is cast as a multi-object tracking problem, where the objects being tracked are the spermatozoa. The system combines a particle filter and Kalman filters for robust motion estimation of the spermatozoa tracks. Further, the combinatorial aspect of assigning observations to labels in the particle filter is formulated as a linear assignment problem solved using the Hungarian algorithm on a rectangular cost matrix, making the algorithm capable of handling missing or spurious observations. The costs are calculated using hidden Markov models that express the plausibility of an observation being the next position in the track history of the particle labels. Observations are extracted using a scale-space blob detector utilizing the fact that the spermatozoa appear as bright blobs in a phase-contrast microscope. The output of the system is the complete motion track of each of the spermatozoa. Based on these tracks, different CASA motility variables can be computed, for example curvilinear velocity or straight-line velocity. The performance of the system is tested on three different phase-contrast image sequences of varying complexity, both by visual inspection of the estimated spermatozoa tracks and by measuring the mean squared error (MSE) between the estimated spermatozoa tracks and manually annotated tracks, showing good agreement.
Connected Component Model for Multi-Object Tracking.
He, Zhenyu; Li, Xin; You, Xinge; Tao, Dacheng; Tang, Yuan Yan
2016-08-01
In multi-object tracking, it is critical to explore the data associations by exploiting the temporal information from a sequence of frames rather than the information from the adjacent two frames. Since straightforwardly obtaining data associations from multi-frames is an NP-hard multi-dimensional assignment (MDA) problem, most existing methods solve this MDA problem by either developing complicated approximate algorithms, or simplifying MDA as a 2D assignment problem based upon the information extracted only from adjacent frames. In this paper, we show that the relation between associations of two observations is the equivalence relation in the data association problem, based on the spatial-temporal constraint that the trajectories of different objects must be disjoint. Therefore, the MDA problem can be equivalently divided into independent subproblems by equivalence partitioning. In contrast to existing works for solving the MDA problem, we develop a connected component model (CCM) by exploiting the constraints of the data association and the equivalence relation on the constraints. Based upon CCM, we can efficiently obtain the global solution of the MDA problem for multi-object tracking by optimizing a sequence of independent data association subproblems. Experiments on challenging public data sets demonstrate that our algorithm outperforms the state-of-the-art approaches. PMID:27214900
Estimation of subsurface geomodels by multi-objective stochastic optimization
NASA Astrophysics Data System (ADS)
Emami Niri, Mohammad; Lumley, David E.
2016-06-01
We present a new method to estimate subsurface geomodels using a multi-objective stochastic search technique that allows a variety of direct and indirect measurements to simultaneously constrain the earth model. Inherent uncertainties and noise in real data measurements may result in conflicting geological and geophysical datasets for a given area; a realistic earth model can then only be produced by combining the datasets in a defined optimal manner. One approach to solving this problem is by joint inversion of the various geological and/or geophysical datasets, and estimating an optimal model by optimizing a weighted linear combination of several separate objective functions which compare simulated and observed datasets. In the present work, we consider the joint inversion of multiple datasets for geomodel estimation, as a multi-objective optimization problem in which separate objective functions for each subset of the observed data are defined, followed by an unweighted simultaneous stochastic optimization to find the set of best compromise model solutions that fits the defined objectives, along the so-called "Pareto front". We demonstrate that geostatistically constrained initializations of the algorithm improves convergence speed and produces superior geomodel solutions. We apply our method to a 3D reservoir lithofacies model estimation problem which is constrained by a set of geological and geophysical data measurements and attributes, and assess the sensitivity of the resulting geomodels to changes in the parameters of the stochastic optimization algorithm and the presence of realistic seismic noise conditions.
Borg: an auto-adaptive many-objective evolutionary computing framework.
Hadka, David; Reed, Patrick
2013-01-01
This study introduces the Borg multi-objective evolutionary algorithm (MOEA) for many-objective, multimodal optimization. The Borg MOEA combines ε-dominance, a measure of convergence speed named ε-progress, randomized restarts, and auto-adaptive multioperator recombination into a unified optimization framework. A comparative study on 33 instances of 18 test problems from the DTLZ, WFG, and CEC 2009 test suites demonstrates Borg meets or exceeds six state of the art MOEAs on the majority of the tested problems. The performance for each test problem is evaluated using a 1,000 point Latin hypercube sampling of each algorithm's feasible parameterization space. The statistical performance of every sampled MOEA parameterization is evaluated using 50 replicate random seed trials. The Borg MOEA is not a single algorithm; instead it represents a class of algorithms whose operators are adaptively selected based on the problem. The adaptive discovery of key operators is of particular importance for benchmarking how variation operators enhance search for complex many-objective problems. PMID:22385134
NASA Astrophysics Data System (ADS)
Piscopo, A. N.; Neupauer, R.; Kasprzyk, J. R.
2014-12-01
Ex situ remediation of sorbing contaminants in groundwater aquifers is especially difficult due to the tendency of sorbing contaminants to remain attached to the soil matrix. Consequently, in situ remediation, which typically involves injecting a treatment chemical into the aquifer to degrade the contaminant, is a more effective option. To enhance contaminant degradation during in situ remediation, a sequence of injections and extractions of clean water can be performed to increase the contact of treatment chemical and contaminant to enable more reaction. This technique is known as Engineered Injection and Extraction (EIE). In prior work, EIE was simulated for contaminants with varying sorption properties and reaction rates using two heuristically-developed sequences of injections and extractions. These EIE sequences achieved nearly complete contaminant degradation for weakly-sorbing contaminants with fast reaction rates; however, the sequences were much less effective for strongly-sorbing contaminants with slow reaction rates. In this work, we use multi-objective evolutionary algorithms to optimize the design of EIE sequences to determine sequences that achieve high amount of contaminant degradation for strongly-sorbing contaminants with slow reaction rates. We consider both homogeneous and heterogeneous aquifers.
NASA Astrophysics Data System (ADS)
Alongi, M.; Howard, C.; Kasprzyk, J. R.; Ryan, J. N.
2015-12-01
Unconventional oil and gas development (UOGD) using hydraulic fracturing and horizontal drilling has recently fostered an unprecedented acceleration in energy development. Regulations seek to protect environmental quality of areas surrounding UOGD, while maintaining economic benefits. One such regulation is a setback distance, which dictates the minimum proximity between an oil and gas well and an object such as a residential or commercial building, property line, or water source. In general, most setback regulations have been strongly politically motivated without a clear scientific basis for understanding the relationship between the setback distance and various performance outcomes. This presentation discusses a new decision support framework for setback regulations, as part of a large NSF-funded sustainability research network (SRN) on UOGD. The goal of the decision support framework is to integrate a wide array of scientific information from the SRN into a coherent framework that can help inform policy regarding UOGD. The decision support framework employs multiobjective evolutionary algorithm (MOEA) optimization coupled with simulation models of air quality and other performance-based outcomes on UOGD. The result of the MOEA optimization runs are quantitative tradeoff curves among different objectives. For example, one such curve could demonstrate air pollution concentrations versus estimates of energy development profits, for different levels of setback distance. Our results will also inform policy-relevant discussions surrounding UOGD such as comparing single- and multi-well pads, as well as regulations on the density of well development over a spatial area.
Approximating convex Pareto surfaces in multiobjective radiotherapy planning
Craft, David L.; Halabi, Tarek F.; Shih, Helen A.; Bortfeld, Thomas R.
2006-09-15
Radiotherapy planning involves inherent tradeoffs: the primary mission, to treat the tumor with a high, uniform dose, is in conflict with normal tissue sparing. We seek to understand these tradeoffs on a case-to-case basis, by computing for each patient a database of Pareto optimal plans. A treatment plan is Pareto optimal if there does not exist another plan which is better in every measurable dimension. The set of all such plans is called the Pareto optimal surface. This article presents an algorithm for computing well distributed points on the (convex) Pareto optimal surface of a multiobjective programming problem. The algorithm is applied to intensity-modulated radiation therapy inverse planning problems, and results of a prostate case and a skull base case are presented, in three and four dimensions, investigating tradeoffs between tumor coverage and critical organ sparing.
NASA Astrophysics Data System (ADS)
Grundmann, Jens; Heck, Vera; Schütze, Niels
2014-05-01
The scarcity of freshwater in coastal arid regions, coupled with an ongoing population growth, makes optimal water management crucial. Excessive use of groundwater for irrigation in agriculture puts those regions at risk of saltwater intrusion which limits the agricultural opportunities. To solve these problems, a simulation based integrated water management system has been developed to ensure a long-term profitable and sustainable water resources and agricultural management. Within the system, a groundwater module, assessing the water resources availability, and an agricultural module, controlling irrigation and cultivation, are connected in an optimisation module, optimising the water management. To reduce the computational complexity of the optimisation procedure, surrogate models are applied which describe the behaviour of the groundwater and agriculture process models regarding the most relevant variables for management. Furthermore, the optimisation problem is decomposed into a two-step optimisation. An analytical inner optimisation estimates irrigation practices and crop patterns, while an outer evolutionary optimisation algorithm determines the overall water abstraction scenarios, based on results of the inner optimisation. By these two features, consequent surrogate model application and decomposition of optimisation, the computational complexity of the optimisation problem is reduced considerably, allowing the consideration of specific regional and temporal aspects in the management tool. The methodology is demonstrated by an exemplary application of the south Batinah region in the Sultanate of Oman which is affected by saltwater intrusion into a coastal aquifer system due to excessive groundwater withdrawal for irrigated agriculture. Due to contradicting objectives like profit-oriented agriculture vs. aquifer sustainability, multi-objective optimisation is performed. Optimisation runs for different simulation periods and management strategies show that a
NASA Astrophysics Data System (ADS)
Klotz, Daniel; Herrnegger, Mathew; Schulz, Karsten
2016-04-01
This contribution presents a framework, which enables the use of an Evolutionary Algorithm (EA) for the calibration and regionalization of the hydrological model COSEROreg. COSEROreg uses an updated version of the HBV-type model COSERO (Kling et al. 2014) for the modelling of hydrological processes and is embedded in a parameter regionalization scheme based on Samaniego et al. (2010). The latter uses subscale-information to estimate model via a-priori chosen transfer functions (often derived from pedotransfer functions). However, the transferability of the regionalization scheme to different model-concepts and the integration of new forms of subscale information is not straightforward. (i) The usefulness of (new) single sub-scale information layers is unknown beforehand. (ii) Additionally, the establishment of functional relationships between these (possibly meaningless) sub-scale information layers and the distributed model parameters remain a central challenge in the implementation of a regionalization procedure. The proposed method theoretically provides a framework to overcome this challenge. The implementation of the EA encompasses the following procedure: First, a formal grammar is specified (Ryan et al., 1998). The construction of the grammar thereby defines the set of possible transfer functions and also allows to incorporate hydrological domain knowledge into the search itself. The EA iterates over the given space by combining parameterized basic functions (e.g. linear- or exponential functions) and sub-scale information layers into transfer functions, which are then used in COSEROreg. However, a pre-selection model is applied beforehand to sort out unfeasible proposals by the EA and to reduce the necessary model runs. A second optimization routine is used to optimize the parameters of the transfer functions proposed by the EA. This concept, namely using two nested optimization loops, is inspired by the idea of Lamarckian Evolution and Baldwin Effect
Hunt, Tam
2014-01-01
Evolution as an idea has a lengthy history, even though the idea of evolution is generally associated with Darwin today. Rebecca Stott provides an engaging and thoughtful overview of this history of evolutionary thinking in her 2013 book, Darwin's Ghosts: The Secret History of Evolution. Since Darwin, the debate over evolution—both how it takes place and, in a long war of words with religiously-oriented thinkers, whether it takes place—has been sustained and heated. A growing share of this debate is now devoted to examining how evolutionary thinking affects areas outside of biology. How do our lives change when we recognize that all is in flux? What can we learn about life more generally if we study change instead of stasis? Carter Phipps’ book, Evolutionaries: Unlocking the Spiritual and Cultural Potential of Science's Greatest Idea, delves deep into this relatively new development. Phipps generally takes as a given the validity of the Modern Synthesis of evolutionary biology. His story takes us into, as the subtitle suggests, the spiritual and cultural implications of evolutionary thinking. Can religion and evolution be reconciled? Can evolutionary thinking lead to a new type of spirituality? Is our culture already being changed in ways that we don't realize by evolutionary thinking? These are all important questions and Phipps book is a great introduction to this discussion. Phipps is an author, journalist, and contributor to the emerging “integral” or “evolutionary” cultural movement that combines the insights of Integral Philosophy, evolutionary science, developmental psychology, and the social sciences. He has served as the Executive Editor of EnlightenNext magazine (no longer published) and more recently is the co-founder of the Institute for Cultural Evolution, a public policy think tank addressing the cultural roots of America's political challenges. What follows is an email interview with Phipps. PMID:26478766
Multi-Objective Lake Superior Regulation
NASA Astrophysics Data System (ADS)
Asadzadeh, M.; Razavi, S.; Tolson, B.
2011-12-01
At the direction of the International Joint Commission (IJC) the International Upper Great Lakes Study (IUGLS) Board is investigating possible changes to the present method of regulating the outflows of Lake Superior (SUP) to better meet the contemporary needs of the stakeholders. In this study, a new plan in the form of a rule curve that is directly interpretable for regulation of SUP is proposed. The proposed rule curve has 18 parameters that should be optimized. The IUGLS Board is also interested in a regulation strategy that considers potential effects of climate uncertainty. Therefore, the quality of the rule curve is assessed simultaneously for multiple supply sequences that represent various future climate scenarios. The rule curve parameters are obtained by solving a computationally intensive bi-objective simulation-optimization problem that maximizes the total increase in navigation and hydropower benefits of the new regulation plan and minimizes the sum of all normalized constraint violations. The objective and constraint values are obtained from a Microsoft Excel based Shared Vision Model (SVM) that compares any new SUP regulation plan with the current regulation policy. The underlying optimization problem is solved by a recently developed, highly efficient multi-objective optimization algorithm called Pareto Archived Dynamically Dimensioned Search (PA-DDS). To further improve the computational efficiency of the simulation-optimization problem, the model pre-emption strategy is used in a novel way to avoid the complete evaluation of regulation plans with low quality in both objectives. Results show that the generated rule curve is robust and typically more reliable when facing unpredictable climate conditions compared to other SUP regulation plans.
NASA Astrophysics Data System (ADS)
Giuliani, Matteo; Mason, Emanuele; Castelletti, Andrea; Pianosi, Francesca
2014-05-01
The optimal operation of water resources systems is a wide and challenging problem due to non-linearities in the model and the objectives, high dimensional state-control space, and strong uncertainties in the hydroclimatic regimes. The application of classical optimization techniques (e.g., SDP, Q-learning, gradient descent-based algorithms) is strongly limited by the dimensionality of the system and by the presence of multiple, conflicting objectives. This study presents a novel approach which combines Direct Policy Search (DPS) and Multi-Objective Evolutionary Algorithms (MOEAs) to solve high-dimensional state and control space problems involving multiple objectives. DPS, also known as parameterization-simulation-optimization in the water resources literature, is a simulation-based approach where the reservoir operating policy is first parameterized within a given family of functions and, then, the parameters optimized with respect to the objectives of the management problem. The selection of a suitable class of functions to which the operating policy belong to is a key step, as it might restrict the search for the optimal policy to a subspace of the decision space that does not include the optimal solution. In the water reservoir literature, a number of classes have been proposed. However, many of these rules are based largely on empirical or experimental successes and they were designed mostly via simulation and for single-purpose reservoirs. In a multi-objective context similar rules can not easily inferred from the experience and the use of universal function approximators is generally preferred. In this work, we comparatively analyze two among the most common universal approximators: artificial neural networks (ANN) and radial basis functions (RBF) under different problem settings to estimate their scalability and flexibility in dealing with more and more complex problems. The multi-purpose HoaBinh water reservoir in Vietnam, accounting for hydropower
NASA Astrophysics Data System (ADS)
Selvam, Kayalvizhi; Vinod Kumar, D. M.; Siripuram, Ramakanth
2016-06-01
In this paper, an optimization technique called peer enhanced teaching learning based optimization (PeTLBO) algorithm is used in multi-objective problem domain. The PeTLBO algorithm is parameter less so it reduced the computational burden. The proposed peer enhanced multi-objective based TLBO (PeMOTLBO) algorithm has been utilized to find a set of non-dominated optimal solutions [distributed generation (DG) location and sizing in distribution network]. The objectives considered are: real power loss and the voltage deviation subjected to voltage limits and maximum penetration level of DG in distribution network. Since the DG considered is capable of injecting real and reactive power to the distribution network the power factor is considered as 0.85 lead. The proposed peer enhanced multi-objective optimization technique provides different trade-off solutions in order to find the best compromise solution a fuzzy set theory approach has been used. The effectiveness of this proposed PeMOTLBO is tested on IEEE 33-bus and Indian 85-bus distribution system. The performance is validated with Pareto fronts and two performance metrics (C-metric and S-metric) by comparing with robust multi-objective technique called non-dominated sorting genetic algorithm-II and also with the basic TLBO.
Multi-objective optimization by a new hybridized method: applications to random mechanical systems
NASA Astrophysics Data System (ADS)
Zidani, H.; Pagnacco, E.; Sampaio, R.; Ellaia, R.; Souza de Cursi, J. E.
2013-08-01
In this article two linear problems with random Gaussian loading are transformed into multi-objective optimization problems. The first problem is the design of a pillar geometry with respect to a compressive random load process. The second problem is the design of a truss structure with respect to a vertical random load process for several frequency bands. A new algorithm, motivated by the Pincus representation formula hybridized with the Nelder-Mead algorithm, is proposed to solve the two multi-objective optimization problems. To generate the Pareto curve, the normal boundary intersection method is used to produce a series of constrained single-objective optimizations. The second problem, depending on the frequency band of excitation, can have as Pareto curve a single point, a standard Pareto curve, or a discontinuous Pareto curve, a fact that has been reported here for the first time in the literature, to the best of the authors' knowledge.
Coupled Low-thrust Trajectory and System Optimization via Multi-Objective Hybrid Optimal Control
NASA Technical Reports Server (NTRS)
Vavrina, Matthew A.; Englander, Jacob Aldo; Ghosh, Alexander R.
2015-01-01
The optimization of low-thrust trajectories is tightly coupled with the spacecraft hardware. Trading trajectory characteristics with system parameters ton identify viable solutions and determine mission sensitivities across discrete hardware configurations is labor intensive. Local independent optimization runs can sample the design space, but a global exploration that resolves the relationships between the system variables across multiple objectives enables a full mapping of the optimal solution space. A multi-objective, hybrid optimal control algorithm is formulated using a multi-objective genetic algorithm as an outer loop systems optimizer around a global trajectory optimizer. The coupled problem is solved simultaneously to generate Pareto-optimal solutions in a single execution. The automated approach is demonstrated on two boulder return missions.
Gabora, Liane; Kauffman, Stuart
2016-04-01
Dietrich and Haider (Psychonomic Bulletin & Review, 21 (5), 897-915, 2014) justify their integrative framework for creativity founded on evolutionary theory and prediction research on the grounds that "theories and approaches guiding empirical research on creativity have not been supported by the neuroimaging evidence." Although this justification is controversial, the general direction holds promise. This commentary clarifies points of disagreement and unresolved issues, and addresses mis-applications of evolutionary theory that lead the authors to adopt a Darwinian (versus Lamarckian) approach. To say that creativity is Darwinian is not to say that it consists of variation plus selection - in the everyday sense of the term - as the authors imply; it is to say that evolution is occurring because selection is affecting the distribution of randomly generated heritable variation across generations. In creative thought the distribution of variants is not key, i.e., one is not inclined toward idea A because 60 % of one's candidate ideas are variants of A while only 40 % are variants of B; one is inclined toward whichever seems best. The authors concede that creative variation is partly directed; however, the greater the extent to which variants are generated non-randomly, the greater the extent to which the distribution of variants can reflect not selection but the initial generation bias. Since each thought in a creative process can alter the selective criteria against which the next is evaluated, there is no demarcation into generations as assumed in a Darwinian model. We address the authors' claim that reduced variability and individuality are more characteristic of Lamarckism than Darwinian evolution, and note that a Lamarckian approach to creativity has addressed the challenge of modeling the emergent features associated with insight. PMID:26527351
Gorelik, Gregory; Shackelford, Todd K
2014-01-01
In this article, we advance the concept of "evolutionary awareness," a metacognitive framework that examines human thought and emotion from a naturalistic, evolutionary perspective. We begin by discussing the evolution and current functioning of the moral foundations on which our framework rests. Next, we discuss the possible applications of such an evolutionarily-informed ethical framework to several domains of human behavior, namely: sexual maturation, mate attraction, intrasexual competition, culture, and the separation between various academic disciplines. Finally, we discuss ways in which an evolutionary awareness can inform our cross-generational activities-which we refer to as "intergenerational extended phenotypes"-by helping us to construct a better future for ourselves, for other sentient beings, and for our environment. PMID:25300054
Jia Yuxi; Sun Sheng; Liu Lili; Mu Yue; An Lijia
2004-08-16
The explicit expression between composition and mechanical properties of silicone rubber was derived from the physics of polymer elasticity, the implicit expression among material composition, reaction conditions and reaction efficiency was obtained from chemical thermodynamics and kinetics, and then an implicit multi-objective optimization model was constructed. Genetic algorithm was applied to optimize material composition and reaction conditions, and the finite element method of cross-linking reaction processes was used to solve multi-objective functions, on the basis of which a new optimization methodology of cross-linking reaction processes was established. Using this methodology, rubber materials can be designed according to pre-specified requirements.
NASA Astrophysics Data System (ADS)
Khoshbin, Fatemeh; Bonakdari, Hossein; Hamed Ashraf Talesh, Seyed; Ebtehaj, Isa; Zaji, Amir Hossein; Azimi, Hamed
2016-06-01
In the present article, the adaptive neuro-fuzzy inference system (ANFIS) is employed to model the discharge coefficient in rectangular sharp-crested side weirs. The genetic algorithm (GA) is used for the optimum selection of membership functions, while the singular value decomposition (SVD) method helps in computing the linear parameters of the ANFIS results section (GA/SVD-ANFIS). The effect of each dimensionless parameter on discharge coefficient prediction is examined in five different models to conduct sensitivity analysis by applying the above-mentioned dimensionless parameters. Two different sets of experimental data are utilized to examine the models and obtain the best model. The study results indicate that the model designed through GA/SVD-ANFIS predicts the discharge coefficient with a good level of accuracy (mean absolute percentage error = 3.362 and root mean square error = 0.027). Moreover, comparing this method with existing equations and the multi-layer perceptron-artificial neural network (MLP-ANN) indicates that the GA/SVD-ANFIS method has superior performance in simulating the discharge coefficient of side weirs.
NASA Astrophysics Data System (ADS)
Carpinelli, Guido; Noce, Christian; Russo, Angela; Varilone, Pietro
2014-12-01
Capacitors and series voltage regulators are used extensively in distribution systems to reduce power losses and improve the voltage profile along the feeders. This paper deals with the problem of contemporaneously choosing optimal locations and sizes for both capacitors and series voltage regulators in three-phase, unbalanced distribution systems. This is a mixed, non-linear, constrained, multi-objective optimization problem that usually is solved in deterministic scenarios. However, distribution systems are stochastic in nature, which can lead to inaccurate deterministic solutions. To take into account the unavoidable uncertainties that affect the input data related to the problem, in this paper, we have formulated and solved the multi-objective optimization problem in probabilistic scenarios. To address the multi-objective optimization problem, algorithms were used in which all the objective functions were combined to form a single function. These algorithms allow us to transform the original multi-objective optimization problem into an equivalent, single-objective, optimization problem, an approach that appeared to be particularly suitable since computational time was an important issue. To further reduce the computational efforts, a linearized form of the equality constraints of the optimization model was used, and a micro-genetic algorithm-based procedure was applied in the solution method.
Xu, Gongxian; Liu, Ying; Gao, Qunwang
2016-02-10
This paper deals with multi-objective optimization of continuous bio-dissimilation process of glycerol to 1, 3-propanediol. In order to maximize the production rate of 1, 3-propanediol, maximize the conversion rate of glycerol to 1, 3-propanediol, maximize the conversion rate of glycerol, and minimize the concentration of by-product ethanol, we first propose six new multi-objective optimization models that can simultaneously optimize any two of the four objectives above. Then these multi-objective optimization problems are solved by using the weighted-sum and normal-boundary intersection methods respectively. Both the Pareto filter algorithm and removal criteria are used to remove those non-Pareto optimal points obtained by the normal-boundary intersection method. The results show that the normal-boundary intersection method can successfully obtain the approximate Pareto optimal sets of all the proposed multi-objective optimization problems, while the weighted-sum approach cannot achieve the overall Pareto optimal solutions of some multi-objective problems. PMID:26704728
Multiobjective Optimization Of An Extremal Evolution Model
NASA Astrophysics Data System (ADS)
Elettreby, Mohamed Fathey
2005-05-01
We propose a two-dimensional model for a co-evolving ecosystem that generalizes the extremal coupled map lattice model. The model takes into account the concept of multiobjective optimization. We find that the system is self-organized into a critical state. The distribution of avalanche sizes follows a power law.
IOT Overview: Optical Multi-Object Spectrographs
NASA Astrophysics Data System (ADS)
Schmidtobreick, L.; Bagnulo, S.; Jehin, E.; Marconi, G.; O'Brien, K.; Pompei, E.; Saviane, I.
We give an introduction to the several instruments that ESO operates and which are able to perform optical multi-object spectroscopy. We point out the standard ways of reducing these spectra, the problems that occur, and the way we deal with them. A short introduction is given on how the quality control is performed.
Robust multi-objective calibration strategies - chances for improving flood forecasting
NASA Astrophysics Data System (ADS)
Krauße, T.; Cullmann, J.; Saile, P.; Schmitz, G. H.
2011-04-01
Process-oriented rainfall-runoff models are designed to approximate the complex hydrologic processes within a specific catchment and in particular to simulate the discharge at the catchment outlet. Most of these models exhibit a high degree of complexity and require the determination of various parameters by calibration. Recently automatic calibration methods became popular in order to identify parameter vectors with high corresponding model performance. The model performance is often assessed by a purpose-oriented objective function. Practical experience suggests that in many situations one single objective function cannot adequately describe the model's ability to represent any aspect of the catchment's behaviour. This is regardless whether the objective is aggregated of several criteria that measure different (possibly opposite) aspects of the system behaviour. One strategy to circumvent this problem is to define multiple objective functions and to apply a multi-objective optimisation algorithm to identify the set of Pareto optimal or non-dominated solutions. One possible approach to estimate the Pareto set effectively and efficiently is the particle swarm optimisation (PSO). It has already been successfully applied in various other fields and has been reported to show effective and efficient performance. Krauße and Cullmann (2011b) presented a method entitled ROPEPSO which merges the strengths of PSO and data depth measures in order to identify robust parameter vectors for hydrological models. In this paper we present a multi-objective parameter estimation algorithm, entitled the Multi-Objective Robust Particle Swarm Parameter Estimation (MO-ROPE). The algorithm is a further development of the previously mentioned single-objective ROPEPSO approach. It applies a newly developed multi-objective particle swarm optimisation algorithm in order to identify non-dominated robust model parameter vectors. Subsequently it samples robust parameter vectors by the
Tahriri, Farzad; Dawal, Siti Zawiah Md; Taha, Zahari
2014-01-01
A new multiobjective dynamic fuzzy genetic algorithm is applied to solve a fuzzy mixed-model assembly line sequencing problem in which the primary goals are to minimize the total make-span and minimize the setup number simultaneously. Trapezoidal fuzzy numbers are implemented for variables such as operation and travelling time in order to generate results with higher accuracy and representative of real-case data. An improved genetic algorithm called fuzzy adaptive genetic algorithm (FAGA) is proposed in order to solve this optimization model. In establishing the FAGA, five dynamic fuzzy parameter controllers are devised in which fuzzy expert experience controller (FEEC) is integrated with automatic learning dynamic fuzzy controller (ALDFC) technique. The enhanced algorithm dynamically adjusts the population size, number of generations, tournament candidate, crossover rate, and mutation rate compared with using fixed control parameters. The main idea is to improve the performance and effectiveness of existing GAs by dynamic adjustment and control of the five parameters. Verification and validation of the dynamic fuzzy GA are carried out by developing test-beds and testing using a multiobjective fuzzy mixed production assembly line sequencing optimization problem. The simulation results highlight that the performance and efficacy of the proposed novel optimization algorithm are more efficient than the performance of the standard genetic algorithm in mixed assembly line sequencing model. PMID:24982962
Tahriri, Farzad; Dawal, Siti Zawiah Md; Taha, Zahari
2014-01-01
A new multiobjective dynamic fuzzy genetic algorithm is applied to solve a fuzzy mixed-model assembly line sequencing problem in which the primary goals are to minimize the total make-span and minimize the setup number simultaneously. Trapezoidal fuzzy numbers are implemented for variables such as operation and travelling time in order to generate results with higher accuracy and representative of real-case data. An improved genetic algorithm called fuzzy adaptive genetic algorithm (FAGA) is proposed in order to solve this optimization model. In establishing the FAGA, five dynamic fuzzy parameter controllers are devised in which fuzzy expert experience controller (FEEC) is integrated with automatic learning dynamic fuzzy controller (ALDFC) technique. The enhanced algorithm dynamically adjusts the population size, number of generations, tournament candidate, crossover rate, and mutation rate compared with using fixed control parameters. The main idea is to improve the performance and effectiveness of existing GAs by dynamic adjustment and control of the five parameters. Verification and validation of the dynamic fuzzy GA are carried out by developing test-beds and testing using a multiobjective fuzzy mixed production assembly line sequencing optimization problem. The simulation results highlight that the performance and efficacy of the proposed novel optimization algorithm are more efficient than the performance of the standard genetic algorithm in mixed assembly line sequencing model. PMID:24982962
NASA Astrophysics Data System (ADS)
Imani, Moslem; You, Rey-Jer; Kuo, Chung-Yen
2014-10-01
Sea level forecasting at various time intervals is of great importance in water supply management. Evolutionary artificial intelligence (AI) approaches have been accepted as an appropriate tool for modeling complex nonlinear phenomena in water bodies. In the study, we investigated the ability of two AI techniques: support vector machine (SVM), which is mathematically well-founded and provides new insights into function approximation, and gene expression programming (GEP), which is used to forecast Caspian Sea level anomalies using satellite altimetry observations from June 1992 to December 2013. SVM demonstrates the best performance in predicting Caspian Sea level anomalies, given the minimum root mean square error (RMSE = 0.035) and maximum coefficient of determination (R2 = 0.96) during the prediction periods. A comparison between the proposed AI approaches and the cascade correlation neural network (CCNN) model also shows the superiority of the GEP and SVM models over the CCNN.
Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri
2016-01-01
This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality. PMID:26954783
Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri
2016-01-01
This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality. PMID:26954783
Multi-objective control for active vehicle suspension with wheelbase preview
NASA Astrophysics Data System (ADS)
Li, Panshuo; Lam, James; Cheung, Kie Chung
2014-10-01
This paper presents a multi-objective control method with wheelbase preview for active vehicle suspension. A four-degree-of-freedom half-car model with active suspension is considered in this study. H∞ norm and generalized H2 norm are used to improve ride quality and ensure that hard constraints are satisfied. Disturbances at the front wheel are obtained as preview information for the rear wheel. Static output-feedback is utilized in designing controllers, the solution is derived by iterative linear matrix inequality (ILMI) and cone complementarity linearization (CCL) algorithms. Simulation results confirm that multi-objective control with wheelbase preview achieves a significant improvement of ride quality (a maximum 27 percent and 60 percent improvement on vertical and angular acceleration, respectively) comparing with that of control without preview, while suspension deflections, tyre deflections and actuator forces remaining within given bounds. The extent of the improvement on the ride quality for different amount of preview information used is also illustrated.
A Practical Method for Multi-Objective Scheduling through Soft Computing Approach
NASA Astrophysics Data System (ADS)
Shimizu, Yoshiaki; Tanaka, Yasutsugu
Due to diversified customer demands and global competition, scheduling has been increasingly notified as an important problem-solving in manufacturing. Since the scheduling is considered at stage close to the practical operation in production planning, flexibility and agility in decision making should be most important in real world applications. In addition, since the final goal of such scheduling has many attributes, and their relative importance is likely changed depending on the decision environment, it is of great significance to derive a flexible scheduling through plain multi-objective optimization method. To derive such a rational scheduling, in this paper, we have applied a novel multi-objective optimization named MOON2R (MOON2 of radial basis function) by incorporating with simulated annealing as a solution algorithm. Finally, illustrative examples are provided to outline and verify the effectiveness of the proposed method.
A note on the estimation of the Pareto efficient set for multiobjective matrix permutation problems.
Brusco, Michael J; Steinley, Douglas
2012-02-01
There are a number of important problems in quantitative psychology that require the identification of a permutation of the n rows and columns of an n × n proximity matrix. These problems encompass applications such as unidimensional scaling, paired-comparison ranking, and anti-Robinson forms. The importance of simultaneously incorporating multiple objective criteria in matrix permutation applications is well recognized in the literature; however, to date, there has been a reliance on weighted-sum approaches that transform the multiobjective problem into a single-objective optimization problem. Although exact solutions to these single-objective problems produce supported Pareto efficient solutions to the multiobjective problem, many interesting unsupported Pareto efficient solutions may be missed. We illustrate the limitation of the weighted-sum approach with an example from the psychological literature and devise an effective heuristic algorithm for estimating both the supported and unsupported solutions of the Pareto efficient set. PMID:21711346
Liu, Chunming; Xu, Xin; Hu, Dewen
2013-04-29
Reinforcement learning is a powerful mechanism for enabling agents to learn in an unknown environment, and most reinforcement learning algorithms aim to maximize some numerical value, which represents only one long-term objective. However, multiple long-term objectives are exhibited in many real-world decision and control problems; therefore, recently, there has been growing interest in solving multiobjective reinforcement learning (MORL) problems with multiple conflicting objectives. The aim of this paper is to present a comprehensive overview of MORL. In this paper, the basic architecture, research topics, and naive solutions of MORL are introduced at first. Then, several representative MORL approaches and some important directions of recent research are reviewed. The relationships between MORL and other related research are also discussed, which include multiobjective optimization, hierarchical reinforcement learning, and multi-agent reinforcement learning. Finally, research challenges and open problems of MORL techniques are highlighted. PMID:24240065
A multi-objective scatter search for a bi-criteria no-wait flow shop scheduling problem
NASA Astrophysics Data System (ADS)
Rahimi-Vahed, A. R.; Javadi, B.; Rabbani, M.; Tavakkoli-Moghaddam, R.
2008-04-01
The flow shop problem as a typical manufacturing challenge has gained wide attention in academic fields. This article considers a bi-criteria no-wait flow shop scheduling problem (FSSP) in which weighted mean completion time and weighted mean tardiness are to be minimized simultaneously. Since a FSSP has been proved to be NP-hard in a strong sense, a new multi-objective scatter search (MOSS) is designed for finding the locally Pareto-optimal frontier of the problem. To prove the efficiency of the proposed algorithm, various test problems are solved and the reliability of the proposed algorithm, based on some comparison metrics, is compared with a distinguished multi-objective genetic algorithm (GA), i.e. SPEA-II. The computational results show that the proposed MOSS performs better than the above GA, especially for the large-sized problems.
NASA Astrophysics Data System (ADS)
Nicknam, Ahmad; Hosseini, A.; Jamnani, H. Hamidi; Barkhordari, M. A.
2013-12-01
This paper presents a technique to reproduce compatible seismograms involving permanent displacement effects at sites close to the fault source. A multi-objective evolutionary algorithm is used to minimize the differences between the response spectra and multi-tapered power spectral densities corresponding to the recorded and simulated waveforms. The multi-taper method is used to reduce the spectral leakage that is inherent in the Fourier transformed form of waveforms, leading to a reduction of variance in power spectral amplitudes, thus permitting the calibration of the two sets of data. The technique is implemented using the 1998-Fandoqa (Iran) earthquake data and the results are compared with the actual observed data. Additionally, a comparison is made with a SAR interferometry study leading to fair agreement with the reported dislocation along the main fault. The simulation procedure and results are discussed and assessed concluding that, although the technique may be associated with uncertainties, it can still be used to reproduce waveforms at near source sites that include permanent dislocation, and can be used for seismic performance evaluation of structures in the region under study.
A computer package for optimal multi-objective VAR planning in large scale power systems
Chiang, H.D. . School of Electrical Engineering); Liu, C.C.; Chen, Y.L. . Dept. of Electrical Engineering); Hsiao, Y.T.
1994-05-01
This paper presents a simulated annealing based computer package for multi-objective, VAR planning in large scale power systems - SAMVAR. This computer package has three distinct features. First, the optimal VAR planning is reformulated as a constrained, multi-objective, non-differentiable optimization problem. The new formulation considers four different objective functions related to system investment, system operational efficiency, system security and system service quality. The new formulation also takes into consideration load, operation and contingency constraints. Second, it allows both the objective functions and equality and inequality constraints to be non-differentiable; making the problem formulation more realistic. Third, the package employs a two-stage solution algorithm based on an extended simulated annealing technique and the [var epsilon]-constraint method. The first-stage of the solution algorithm uses an extended simulated annealing technique to find a global, non-inferior solution. The results obtained from the first stage provide a basis for planners to prioritize the objective functions such that a primary objective function is chosen and tradeoff tolerances for the other objective functions are set. The primary objective function and the trade-off tolerances are then used to transform the constrained multi-objective optimization problem into a single-objective optimization problem with more constraints by employing the [var epsilon]-constraint method. The second-stage uses the simulated annealing technique to find the global optimal solution. A salient feature of SAMVAR is that it allows planners to find an acceptable, global non-inferior solution for the VAR problem. Simulation results indicate that SAMVAR has the ability to handle the multi-objective VAR planning problem and meet with the planner's requirements.
Multiobjective blockmodeling for social network analysis.
Brusco, Michael; Doreian, Patrick; Steinley, Douglas; Satornino, Cinthia B
2013-07-01
To date, most methods for direct blockmodeling of social network data have focused on the optimization of a single objective function. However, there are a variety of social network applications where it is advantageous to consider two or more objectives simultaneously. These applications can broadly be placed into two categories: (1) simultaneous optimization of multiple criteria for fitting a blockmodel based on a single network matrix and (2) simultaneous optimization of multiple criteria for fitting a blockmodel based on two or more network matrices, where the matrices being fit can take the form of multiple indicators for an underlying relationship, or multiple matrices for a set of objects measured at two or more different points in time. A multiobjective tabu search procedure is proposed for estimating the set of Pareto efficient blockmodels. This procedure is used in three examples that demonstrate possible applications of the multiobjective blockmodeling paradigm. PMID:25106397
Multiobjective power dispatch using fuzzy linear programming
Yang, H.T.; Huang, C.M.; Lee, H.M.; Huang, C.L.
1995-12-31
This paper presents a new fuzzy linear programming (FLP) approach to determine the multiobjective power dispatch problem by taking into account fuel cost and environmental impact of NO{sub x} emission. The FLP technique first separately optimizes each objective. To further offer the best compromise solution out of the non-inferiority domain obtained by the FLP based operator, a preference index of distance membership function is used to aid the power system operator to adjust the generation levels in a most economic manner but also with minimal impact on the environments. The effectiveness of the proposed approach has been demonstrated on a 10-bus 5-generator system. Numerical results reveal that the FLP is a promising and efficient approach for dealing with the multiobjective nature of power dispatch problem.
Multiobjective optimization techniques for structural design
NASA Technical Reports Server (NTRS)
Rao, S. S.
1984-01-01
The multiobjective programming techniques are important in the design of complex structural systems whose quality depends generally on a number of different and often conflicting objective functions which cannot be combined into a single design objective. The applicability of multiobjective optimization techniques is studied with reference to simple design problems. Specifically, the parameter optimization of a cantilever beam with a tip mass and a three-degree-of-freedom vabration isolation system and the trajectory optimization of a cantilever beam are considered. The solutions of these multicriteria design problems are attempted by using global criterion, utility function, game theory, goal programming, goal attainment, bounded objective function, and lexicographic methods. It has been observed that the game theory approach required the maximum computational effort, but it yielded better optimum solutions with proper balance of the various objective functions in all the cases.
Evolutionary Dynamics of Biological Games
NASA Astrophysics Data System (ADS)
Nowak, Martin A.; Sigmund, Karl
2004-02-01
Darwinian dynamics based on mutation and selection form the core of mathematical models for adaptation and coevolution of biological populations. The evolutionary outcome is often not a fitness-maximizing equilibrium but can include oscillations and chaos. For studying frequency-dependent selection, game-theoretic arguments are more appropriate than optimization algorithms. Replicator and adaptive dynamics describe short- and long-term evolution in phenotype space and have found applications ranging from animal behavior and ecology to speciation, macroevolution, and human language. Evolutionary game theory is an essential component of a mathematical and computational approach to biology.
NASA Astrophysics Data System (ADS)
Mai, Juliane; Cuntz, Matthias; Shafii, Mahyar; Zink, Matthias; Schäfer, David; Thober, Stephan; Samaniego, Luis; Tolson, Bryan
2016-04-01
Hydrologic models are traditionally calibrated against observed streamflow. Recent studies have shown however, that only a few global model parameters are constrained using this kind of integral signal. They can be identified using prior screening techniques. Since different objectives might constrain different parameters, it is advisable to use multiple information to calibrate those models. One common approach is to combine these multiple objectives (MO) into one single objective (SO) function and allow the use of a SO optimization algorithm. Another strategy is to consider the different objectives separately and apply a MO Pareto optimization algorithm. In this study, two major research questions will be addressed: 1) How do multi-objective calibrations compare with corresponding single-objective calibrations? 2) How much do calibration results deteriorate when the number of calibrated parameters is reduced by a prior screening technique? The hydrologic model employed in this study is a distributed hydrologic model (mHM) with 52 model parameters, i.e. transfer coefficients. The model uses grid cells as a primary hydrologic unit, and accounts for processes like snow accumulation and melting, soil moisture dynamics, infiltration, surface runoff, evapotranspiration, subsurface storage and discharge generation. The model is applied in three distinct catchments over Europe. The SO calibrations are performed using the Dynamically Dimensioned Search (DDS) algorithm with a fixed budget while the MO calibrations are achieved using the Pareto Dynamically Dimensioned Search (PA-DDS) algorithm allowing for the same budget. The two objectives used here are the Nash Sutcliffe Efficiency (NSE) of the simulated streamflow and the NSE of the logarithmic transformation. It is shown that the SO DDS results are located close to the edges of the Pareto fronts of the PA-DDS. The MO calibrations are hence preferable due to their supply of multiple equivalent solutions from which the
Evolutionary software for autonomous path planning
Couture, S; Hage, M
1999-02-10
This research project demonstrated the effectiveness of using evolutionary software techniques in the development of path-planning algorithms and control programs for mobile vehicles in radioactive environments. The goal was to take maximum advantage of the programmer's intelligence by tasking the programmer with encoding the measures of success for a path-planning algorithm, rather than developing the path-planning algorithms themselves. Evolutionary software development techniques could then be used to develop algorithms most suitable to the particular environments of interest. The measures of path-planning success were encoded in the form of a fitness function for an evolutionary software development engine. The task for the evolutionary software development engine was to evaluate the performance of individual algorithms, select the best performers for the population based on the fitness function, and breed them to evolve the next generation of algorithms. The process continued for a set number of generations or until the algorithm converged to an optimal solution. The task environment was the navigation of a rover from an initial location to a goal, then to a processing point, in an environment containing physical and radioactive obstacles. Genetic algorithms were developed for a variety of environmental configurations. Algorithms were simple and non-robust strings of behaviors, but they could be evolved to be nearly optimal for a given environment. In addition, a genetic program was evolved in the form of a control algorithm that operates at every motion of the robot. Programs were more complex than algorithms and less optimal in a given environment. However, after training in a variety of different environments, they were more robust and could perform acceptably in environments they were not trained in. This paper describes the evolutionary software development engine and the performance of algorithms and programs evolved by it for the chosen task.
Improving quantitative structure-activity relationships through multiobjective optimization.
Nicolotti, Orazio; Giangreco, Ilenia; Miscioscia, Teresa Fabiola; Carotti, Angelo
2009-10-01
A multiobjective optimization algorithm was proposed for the automated integration of structure- and ligand-based molecular design. Driven by a genetic algorithm, the herein proposed approach enabled the detection of a number of trade-off QSAR models accounting simultaneously for two independent objectives. The first was biased toward best regressions among docking scores and biological affinities; the second minimized the atom displacements from a properly established crystal-based binding topology. Based on the concept of dominance, 3D QSAR equivalent models profiled the Pareto frontier and were, thus, designated as nondominated solutions of the search space. K-means clustering was, then, operated to select a representative subset of the available trade-off models. These were effectively subjected to GRID/GOLPE analyses for quantitatively featuring molecular determinants of ligand binding affinity. More specifically, it was demonstrated that a) diverse binding conformations occurred on the basis of the ligand ability to profitably contact different part of protein binding site; b) enzyme selectivity was better approached and interpreted by combining diverse equivalent models; and c) trade-off models were successful and even better than docking virtual screening, in retrieving at high sensitivity active hits from a large pool of chemically similar decoys. The approach was tested on a large series, very well-known to QSAR practitioners, of 3-amidinophenylalanine inhibitors of thrombin and trypsin, two serine proteases having rather different biological actions despite a high sequence similarity. PMID:19785453
NASA Astrophysics Data System (ADS)
Gong, Wei; Duan, Qingyun; Li, Jianduo; Wang, Chen; Di, Zhenhua; Ye, Aizhong; Miao, Chiyuan; Dai, Yongjiu
2016-03-01
Parameter specification is an important source of uncertainty in large, complex geophysical models. These models generally have multiple model outputs that require multiobjective optimization algorithms. Although such algorithms have long been available, they usually require a large number of model runs and are therefore computationally expensive for large, complex dynamic models. In this paper, a multiobjective adaptive surrogate modeling-based optimization (MO-ASMO) algorithm is introduced that aims to reduce computational cost while maintaining optimization effectiveness. Geophysical dynamic models usually have a prior parameterization scheme derived from the physical processes involved, and our goal is to improve all of the objectives by parameter calibration. In this study, we developed a method for directing the search processes toward the region that can improve all of the objectives simultaneously. We tested the MO-ASMO algorithm against NSGA-II and SUMO with 13 test functions and a land surface model - the Common Land Model (CoLM). The results demonstrated the effectiveness and efficiency of MO-ASMO.
Zhang, Yi-min; Wan, Xiao-le; Liu, Yuan-yuan; Wang, Yu-zhi
2016-01-01
CO2 emission influences not only global climate change but also international economic and political situations. Thus, reducing the emission of CO2, a major greenhouse gas, has become a major issue in China and around the world as regards preserving the environmental ecology. Energy consumption from coal, oil, and natural gas is primarily responsible for the production of greenhouse gases and air pollutants such as SO2 and NOX, which are the main air pollutants in China. In this study, a mathematical multi-objective optimization method was adopted to analyze the collaborative emission reduction of three kinds of gases on the basis of their common restraints in different ways of energy consumption to develop an economic, clean, and efficient scheme for energy distribution. The first part introduces the background research, the collaborative emission reduction for three kinds of gases, the multi-objective optimization, the main mathematical modeling, and the optimization method. The second part discusses the four mathematical tools utilized in this study, which include the Granger causality test to analyze the causality between air quality and pollutant emission, a function analysis to determine the quantitative relation between energy consumption and pollutant emission, a multi-objective optimization to set up the collaborative optimization model that considers energy consumption, and an optimality condition analysis for the multi-objective optimization model to design the optimal-pole algorithm and obtain an efficient collaborative reduction scheme. In the empirical analysis, the data of pollutant emission and final consumption of energies of Tianjin in 1996–2012 was employed to verify the effectiveness of the model and analyze the efficient solution and the corresponding dominant set. In the last part, several suggestions for collaborative reduction are recommended and the drawn conclusions are stated. PMID:27010658
A Generalized Decision Framework Using Multi-objective Optimization for Water Resources Planning
NASA Astrophysics Data System (ADS)
Basdekas, L.; Stewart, N.; Triana, E.
2013-12-01
Colorado Springs Utilities (CSU) is currently engaged in an Integrated Water Resource Plan (IWRP) to address the complex planning scenarios, across multiple time scales, currently faced by CSU. The modeling framework developed for the IWRP uses a flexible data-centered Decision Support System (DSS) with a MODSIM-based modeling system to represent the operation of the current CSU raw water system coupled with a state-of-the-art multi-objective optimization algorithm. Three basic components are required for the framework, which can be implemented for planning horizons ranging from seasonal to interdecadal. First, a water resources system model is required that is capable of reasonable system simulation to resolve performance metrics at the appropriate temporal and spatial scales of interest. The system model should be an existing simulation model, or one developed during the planning process with stakeholders, so that 'buy-in' has already been achieved. Second, a hydrologic scenario tool(s) capable of generating a range of plausible inflows for the planning period of interest is required. This may include paleo informed or climate change informed sequences. Third, a multi-objective optimization model that can be wrapped around the system simulation model is required. The new generation of multi-objective optimization models do not require parameterization which greatly reduces problem complexity. Bridging the gap between research and practice will be evident as we use a case study from CSU's planning process to demonstrate this framework with specific competing water management objectives. Careful formulation of objective functions, choice of decision variables, and system constraints will be discussed. Rather than treating results as theoretically Pareto optimal in a planning process, we use the powerful multi-objective optimization models as tools to more efficiently and effectively move out of the inferior decision space. The use of this framework will help CSU
Meng, Qing-chun; Rong, Xiao-xia; Zhang, Yi-min; Wan, Xiao-le; Liu, Yuan-yuan; Wang, Yu-zhi
2016-01-01
CO2 emission influences not only global climate change but also international economic and political situations. Thus, reducing the emission of CO2, a major greenhouse gas, has become a major issue in China and around the world as regards preserving the environmental ecology. Energy consumption from coal, oil, and natural gas is primarily responsible for the production of greenhouse gases and air pollutants such as SO2 and NOX, which are the main air pollutants in China. In this study, a mathematical multi-objective optimization method was adopted to analyze the collaborative emission reduction of three kinds of gases on the basis of their common restraints in different ways of energy consumption to develop an economic, clean, and efficient scheme for energy distribution. The first part introduces the background research, the collaborative emission reduction for three kinds of gases, the multi-objective optimization, the main mathematical modeling, and the optimization method. The second part discusses the four mathematical tools utilized in this study, which include the Granger causality test to analyze the causality between air quality and pollutant emission, a function analysis to determine the quantitative relation between energy consumption and pollutant emission, a multi-objective optimization to set up the collaborative optimization model that considers energy consumption, and an optimality condition analysis for the multi-objective optimization model to design the optimal-pole algorithm and obtain an efficient collaborative reduction scheme. In the empirical analysis, the data of pollutant emission and final consumption of energies of Tianjin in 1996-2012 was employed to verify the effectiveness of the model and analyze the efficient solution and the corresponding dominant set. In the last part, several suggestions for collaborative reduction are recommended and the drawn conclusions are stated. PMID:27010658
NASA Astrophysics Data System (ADS)
Barth, C.; Boyle, D. P.; Bastidas, L. A.; Schumer, R.
2008-12-01
In many of the mountainous regions of the western United States, much of the streamflow runoff at the mountain front originates as melt water from snow. As a result, many hydrologic models applied in these regions have components that represent the snow water equivalent (SWE) throughout the accumulation and depletion processes of the snow pack. The limited number of point observations of SWE in these regions, however, generally precludes an accurate estimate of the spatial and temporal distribution of SWE in most model applications. As a result, hydrologic model calibration and evaluation is generally focused on the fitting of simulated streamflow to observed streamflow data. In this study, we examine the utility of SWE estimates obtained from the Snow Data Assimilation System (SNODAS) product as a surrogate for SWE observations in the calibration and evaluation of the Precipitation-Runoff Modeling System (PRMS). Specifically, we employ a multi-objective analysis of several streamflow behaviors (e.g., rising limb, falling limb, and baseflow) and snow pack behaviors (e.g., accumulation, depletion, and no snow) aimed at better understanding the sensitivities of the different behaviors to changes in values of specific PRMS model parameters. The multi-objective approach is carried out with the Multi-Objective Generalized Sensitivity Analysis (MOGSA) algorithm and the Multi-Objective Complex Evolution (MOCOM).
Neurocontroller analysis via evolutionary network minimization.
Ganon, Zohar; Keinan, Alon; Ruppin, Eytan
2006-01-01
This study presents a new evolutionary network minimization (ENM) algorithm. Neurocontroller minimization is beneficial for finding small parsimonious networks that permit a better understanding of their workings. The ENM algorithm is specifically geared to an evolutionary agents setup, as it does not require any explicit supervised training error, and is very easily incorporated in current evolutionary algorithms. ENM is based on a standard genetic algorithm with an additional step during reproduction in which synaptic connections are irreversibly eliminated. It receives as input a successfully evolved neurocontroller and aims to output a pruned neurocontroller, while maintaining the original fitness level. The small neurocontrollers produced by ENM provide upper bounds on the neurocontroller size needed to perform a given task successfully, and can provide for more effcient hardware implementations. PMID:16859448
A Multi-Object Inversion Approach for Efficient Magnetic Discrimination of Unexploded Ordnance
NASA Astrophysics Data System (ADS)
Billings, S.; Oldenburg, D.; Pasion, L.
2005-05-01
Magnetometery is one of the primary methods used for detecting buried unexploded ordnances, either in a standalone mode, or in conjunction with electromagnetic induction. UXO's and other metallic debris generally appear as dipolar anomalies overprinting larger scale magnetic features due to near-surface magnetite variations and the regional geology. Non-linear high-pass filters are usually used to remove the larger scale effects and the remaining dipolar anomalies are inverted one at a time by an efficient bound-constrained optimization algorithm. This process works well when the individual anomalies are well separated and the geological variations are at larger scales than the UXO anomalies. When these conditions don't apply the inversion results are unreliable and the process of inverting each anomaly becomes time-consuming and unwieldy. We have developed an efficient multi-object inversion routine that allows simultaneous inversion of an arbitrary number of dipolar anomalies. Providing a good initial guess as to the number, location, magnitude and orientation of each dipole is critical to the success of the algorithm. We have found that an Automated Wavelet Detection algorithm we developed in a previous paper is ideal for this purpose. The multi-object inversion approach is very effective in most situations, but, like the original single-object approach, has trouble dealing with datasets with significant geological contamination. In an effort to overcome this problem we outline a framework for coupling our multi-object inversion scheme with an equivalent layer technique that attempts to model the background geology.
Toward a unifying framework for evolutionary processes
Paixão, Tiago; Badkobeh, Golnaz; Barton, Nick; Çörüş, Doğan; Dang, Duc-Cuong; Friedrich, Tobias; Lehre, Per Kristian; Sudholt, Dirk; Sutton, Andrew M.; Trubenová, Barbora
2015-01-01
The theory of population genetics and evolutionary computation have been evolving separately for nearly 30 years. Many results have been independently obtained in both fields and many others are unique to its respective field. We aim to bridge this gap by developing a unifying framework for evolutionary processes that allows both evolutionary algorithms and population genetics models to be cast in the same formal framework. The framework we present here decomposes the evolutionary process into its several components in order to facilitate the identification of similarities between different models. In particular, we propose a classification of evolutionary operators based on the defining properties of the different components. We cast several commonly used operators from both fields into this common framework. Using this, we map different evolutionary and genetic algorithms to different evolutionary regimes and identify candidates with the most potential for the translation of results between the fields. This provides a unified description of evolutionary processes and represents a stepping stone towards new tools and results to both fields. PMID:26215686
Regularized logistic regression and multiobjective variable selection for classifying MEG data.
Santana, Roberto; Bielza, Concha; Larrañaga, Pedro
2012-09-01
This paper addresses the question of maximizing classifier accuracy for classifying task-related mental activity from Magnetoencelophalography (MEG) data. We propose the use of different sources of information and introduce an automatic channel selection procedure. To determine an informative set of channels, our approach combines a variety of machine learning algorithms: feature subset selection methods, classifiers based on regularized logistic regression, information fusion, and multiobjective optimization based on probabilistic modeling of the search space. The experimental results show that our proposal is able to improve classification accuracy compared to approaches whose classifiers use only one type of MEG information or for which the set of channels is fixed a priori. PMID:22854976
Multiobjective Reinforcement Learning for Traffic Signal Control Using Vehicular Ad Hoc Network
NASA Astrophysics Data System (ADS)
Houli, Duan; Zhiheng, Li; Yi, Zhang
2010-12-01
We propose a new multiobjective control algorithm based on reinforcement learning for urban traffic signal control, named multi-RL. A multiagent structure is used to describe the traffic system. A vehicular ad hoc network is used for the data exchange among agents. A reinforcement learning algorithm is applied to predict the overall value of the optimization objective given vehicles' states. The policy which minimizes the cumulative value of the optimization objective is regarded as the optimal one. In order to make the method adaptive to various traffic conditions, we also introduce a multiobjective control scheme in which the optimization objective is selected adaptively to real-time traffic states. The optimization objectives include the vehicle stops, the average waiting time, and the maximum queue length of the next intersection. In addition, we also accommodate a priority control to the buses and the emergency vehicles through our model. The simulation results indicated that our algorithm could perform more efficiently than traditional traffic light control methods.
Hu, Xiao-Bing; Wang, Ming; Di Paolo, Ezequiel
2013-06-01
Searching the Pareto front for multiobjective optimization problems usually involves the use of a population-based search algorithm or of a deterministic method with a set of different single aggregate objective functions. The results are, in fact, only approximations of the real Pareto front. In this paper, we propose a new deterministic approach capable of fully determining the real Pareto front for those discrete problems for which it is possible to construct optimization algorithms to find the k best solutions to each of the single-objective problems. To this end, two theoretical conditions are given to guarantee the finding of the actual Pareto front rather than its approximation. Then, a general methodology for designing a deterministic search procedure is proposed. A case study is conducted, where by following the general methodology, a ripple-spreading algorithm is designed to calculate the complete exact Pareto front for multiobjective route optimization. When compared with traditional Pareto front search methods, the obvious advantage of the proposed approach is its unique capability of finding the complete Pareto front. This is illustrated by the simulation results in terms of both solution quality and computational efficiency. PMID:23193246
Fuzzy multi-objective chance-constrained programming model for hazardous materials transportation
NASA Astrophysics Data System (ADS)
Du, Jiaoman; Yu, Lean; Li, Xiang
2016-04-01
Hazardous materials transportation is an important and hot issue of public safety. Based on the shortest path model, this paper presents a fuzzy multi-objective programming model that minimizes the transportation risk to life, travel time and fuel consumption. First, we present the risk model, travel time model and fuel consumption model. Furthermore, we formulate a chance-constrained programming model within the framework of credibility theory, in which the lengths of arcs in the transportation network are assumed to be fuzzy variables. A hybrid intelligent algorithm integrating fuzzy simulation and genetic algorithm is designed for finding a satisfactory solution. Finally, some numerical examples are given to demonstrate the efficiency of the proposed model and algorithm.
The NIRSpec MSA Planning Tool for multi-object spectroscopy with JWST
NASA Astrophysics Data System (ADS)
Karakla, Diane; Shyrokov, Alexander; Pontoppidan, Klaus; Beck, Tracy; Gilbert, Karoline; Valenti, Jeff; Kassin, Susan; Soderblom, David
2014-08-01
The James Webb Space Telescope Near-Infrared Spectrograph (NIRSpec) instrument will offer a powerful multi-object spectroscopic capability enabled by the micro-shutter arrays (MSAs). The MSAs are fixed grids of configurable shutters that can be opened and closed on astronomical scenes. With this mode, the NIRSpec instrument can observe more than 100 targets simultaneously. The NIRSpec team and software developers at the Space Telescope Science Institute (STScI) have been implementing specialized algorithms in an MSA Planning Tool (MPT) to facilitate the complex observation planning process. Two main algorithms, the "Fixed Dithers" and "Flexible Dithers" algorithms, have been defined to achieve optimal multiplexing results with different observing strategies. The MPT is available to the astronomical community as part of the ASTRONOMER'S PROPOSAL TOOL (APT), an integrated software package for the preparation of observing proposals developed by STScI.
Multiobjective decision theory for computational optimization in radiation therapy.
Yu, Y
1997-09-01
Machine-guided iterative optimization in radiation oncology requires ordinal or cardinal ranking of competing treatment plans. When the clinical objectives are multifaceted and incommensurable, the ranking formalism must take into account the decision maker's tradeoff strategies in a multidimensional decision space. To capture the decision processes in treatment planning, a multiobjective decision-theoretic scheme is formulated. Ranking among a group of candidate plans is based on a generalized distance metric. A dynamic metric weighting function is defined based on the state energy of the decision system, which is assumed to undergo thermodynamic cooling with iteration time. The decision maker is required to specify a baseline ranking of the objectives, which is taken to be the ground state of the decision system. This decision-theoretic formalism was applied to idealized cases in stereotactic radiosurgery and prostatic implantation, using the genetic algorithm as the optimization engine. The optimization pathways and the outcome at limited horizons indicated that the combined scheme of decision-theoretic steering and iterative optimization was robust and produced treatment plans consistent with the user's expectation. The effect of treatment uncertainties was simulated using imperfect objectives; however, certain recurring plans could be identified as optimized baseline solutions. Overall, the present formalism provides a realistic alternative to complete utility assessment or human-guided exploration of the efficient solution set. PMID:9304573
Multi-objective optimization of aerostructures inspired by nature
NASA Astrophysics Data System (ADS)
Kearney, Adam C.
The focus of this doctoral work is on the optimization of aircraft wing structures. The optimization was performed against the shape, size and topology of simple aircraft wing designs. A simple morphing wing actuator optimization is performed as well as a wing panel buckling topology optimization. This is done with biologically-inspired mathematical systems including a map L-system, a multi-objective genetic algorithm, and cellular structures represented by Voronoi diagrams. As with most aircraft optimizations, both studies aim to minimize the total weight of a wing while simultaneously meeting stiffness and strength requirements. Optimization is performed with the scripts developed in MATLAB as well as through the use of finite element codes, NASTRAN and LS-Dyna. The intent of this methodology is to develop unique designs inspired by nature and optimized through natural selection. The optimal designs are those with minimal weight as well as additional requirements specific to the problems. The designs and methodology have the potential to be of use in determining minimum weight designs in aircraft structures. A literature review of optimization techniques, methodology and method validation, and optimization comparisons is presented. The buckling panel optimization considered here also includes composite buckling failure and manufacturing assumptions for composite panels. The panels are optimized for mass and strength by controlling the laminate stacking sequence, stiffener size, and topology. The morphing wing is optimized for actuator loading and redundancy.
Solving nonlinear equality constrained multiobjective optimization problems using neural networks.
Mestari, Mohammed; Benzirar, Mohammed; Saber, Nadia; Khouil, Meryem
2015-10-01
This paper develops a neural network architecture and a new processing method for solving in real time, the nonlinear equality constrained multiobjective optimization problem (NECMOP), where several nonlinear objective functions must be optimized in a conflicting situation. In this processing method, the NECMOP is converted to an equivalent scalar optimization problem (SOP). The SOP is then decomposed into several-separable subproblems processable in parallel and in a reasonable time by multiplexing switched capacitor circuits. The approach which we propose makes use of a decomposition-coordination principle that allows nonlinearity to be treated at a local level and where coordination is achieved through the use of Lagrange multipliers. The modularity and the regularity of the neural networks architecture herein proposed make it suitable for very large scale integration implementation. An application to the resolution of a physical problem is given to show that the approach used here possesses some advantages of the point of algorithmic view, and provides processes of resolution often simpler than the usual techniques. PMID:25647664
Multi-objective dynamic population shuffled frog-leaping biclustering of microarray data
2012-01-01
Background Multi-objective optimization (MOO) involves optimization problems with multiple objectives. Generally, theose objectives is used to estimate very different aspects of the solutions, and these aspects are often in conflict with each other. MOO first gets a Pareto set, and then looks for both commonality and systematic variations across the set. For the large-scale data sets, heuristic search algorithms such as EA combined with MOO techniques are ideal. Newly DNA microarray technology may study the transcriptional response of a complete genome to different experimental conditions and yield a lot of large-scale datasets. Biclustering technique can simultaneously cluster rows and columns of a dataset, and hlep to extract more accurate information from those datasets. Biclustering need optimize several conflicting objectives, and can be solved with MOO methods. As a heuristics-based optimization approach, the particle swarm optimization (PSO) simulate the movements of a bird flock finding food. The shuffled frog-leaping algorithm (SFL) is a population-based cooperative search metaphor combining the benefits of the local search of PSO and the global shuffled of information of the complex evolution technique. SFL is used to solve the optimization problems of the large-scale datasets. Results This paper integrates dynamic population strategy and shuffled frog-leaping algorithm into biclustering of microarray data, and proposes a novel multi-objective dynamic population shuffled frog-leaping biclustering (MODPSFLB) algorithm to mine maximum bicluesters from microarray data. Experimental results show that the proposed MODPSFLB algorithm can effectively find significant biological structures in terms of related biological processes, components and molecular functions. Conclusions The proposed MODPSFLB algorithm has good diversity and fast convergence of Pareto solutions and will become a powerful systematic functional analysis in genome research. PMID:22759615
Multi-object Spectroscopy Reduction Challenges
NASA Astrophysics Data System (ADS)
Zellem, Robert Thomas; Pearson, Kyle; Mireles, Ismael; Swain, Mark R.
2015-12-01
Here we present multiple observations of the primary transits of bright exoplanets with visible-wavelength multi-object spectroscopy. Multi-object spectroscopy allows simultaneous observations of both the exoplanet host star and one or more comparison stars. Ideally, the comparison star measures errors, such as airmass variations and telescope jitter. The hypothesis is that these errors can then be divided out from target star to achieve higher SNR and improve estimation of the small transit signal. However we find that the astrophysical signal can change depending on selection of comparison star, typically on the ~0.1% level. For example, small bumps during in-transit portion of the lightcurve indicative of star spots appear when using one check star but not the other. Our analysis suggests that comparison and target stars do not necessarily share same the systematics due to differing pixel properties across the detector. We conclude that one cannot blindly use a comparison star to remove systematics. Using our small sample we explore and compare multiple reduction methods to find the true underlying astrophysical signal.
Robust multi-objective calibration strategies - possibilities for improving flood forecasting
NASA Astrophysics Data System (ADS)
Krauße, T.; Cullmann, J.; Saile, P.; Schmitz, G. H.
2012-10-01
Process-oriented rainfall-runoff models are designed to approximate the complex hydrologic processes within a specific catchment and in particular to simulate the discharge at the catchment outlet. Most of these models exhibit a high degree of complexity and require the determination of various parameters by calibration. Recently, automatic calibration methods became popular in order to identify parameter vectors with high corresponding model performance. The model performance is often assessed by a purpose-oriented objective function. Practical experience suggests that in many situations one single objective function cannot adequately describe the model's ability to represent any aspect of the catchment's behaviour. This is regardless of whether the objective is aggregated of several criteria that measure different (possibly opposite) aspects of the system behaviour. One strategy to circumvent this problem is to define multiple objective functions and to apply a multi-objective optimisation algorithm to identify the set of Pareto optimal or non-dominated solutions. Nonet