Science.gov

Sample records for multiobjective evolutionary algorithm

  1. A Review of Surrogate Assisted Multiobjective Evolutionary Algorithms

    PubMed Central

    Díaz-Manríquez, Alan; Toscano, Gregorio; Barron-Zambrano, Jose Hugo; Tello-Leal, Edgar

    2016-01-01

    Multiobjective evolutionary algorithms have incorporated surrogate models in order to reduce the number of required evaluations to approximate the Pareto front of computationally expensive multiobjective optimization problems. Currently, few works have reviewed the state of the art in this topic. However, the existing reviews have focused on classifying the evolutionary multiobjective optimization algorithms with respect to the type of underlying surrogate model. In this paper, we center our focus on classifying multiobjective evolutionary algorithms with respect to their integration with surrogate models. This interaction has led us to classify similar approaches and identify advantages and disadvantages of each class. PMID:27382366

  2. Multiobjective Optimization of Rocket Engine Pumps Using Evolutionary Algorithm

    NASA Technical Reports Server (NTRS)

    Oyama, Akira; Liou, Meng-Sing

    2001-01-01

    A design optimization method for turbopumps of cryogenic rocket engines has been developed. Multiobjective Evolutionary Algorithm (MOEA) is used for multiobjective pump design optimizations. Performances of design candidates are evaluated by using the meanline pump flow modeling method based on the Euler turbine equation coupled with empirical correlations for rotor efficiency. To demonstrate the feasibility of the present approach, a single stage centrifugal pump design and multistage pump design optimizations are presented. In both cases, the present method obtains very reasonable Pareto-optimal solutions that include some designs outperforming the original design in total head while reducing input power by one percent. Detailed observation of the design results also reveals some important design criteria for turbopumps in cryogenic rocket engines. These results demonstrate the feasibility of the EA-based design optimization method in this field.

  3. Multidisciplinary Multiobjective Optimal Design for Turbomachinery Using Evolutionary Algorithm

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This report summarizes Dr. Lian s efforts toward developing a robust and efficient tool for multidisciplinary and multi-objective optimal design for turbomachinery using evolutionary algorithms. This work consisted of two stages. The first stage (from July 2003 to June 2004) Dr. Lian focused on building essential capabilities required for the project. More specifically, Dr. Lian worked on two subjects: an enhanced genetic algorithm (GA) and an integrated optimization system with a GA and a surrogate model. The second stage (from July 2004 to February 2005) Dr. Lian formulated aerodynamic optimization and structural optimization into a multi-objective optimization problem and performed multidisciplinary and multi-objective optimizations on a transonic compressor blade based on the proposed model. Dr. Lian s numerical results showed that the proposed approach can effectively reduce the blade weight and increase the stage pressure ratio in an efficient manner. In addition, the new design was structurally safer than the original design. Five conference papers and three journal papers were published on this topic by Dr. Lian.

  4. Multi-objective Job Shop Rescheduling with Evolutionary Algorithm

    NASA Astrophysics Data System (ADS)

    Hao, Xinchang; Gen, Mitsuo

    In current manufacturing systems, production processes and management are involved in many unexpected events and new requirements emerging constantly. This dynamic environment implies that operation rescheduling is usually indispensable. A wide variety of procedures and heuristics has been developed to improve the quality of rescheduling. However, most proposed approaches are derived usually with respect to simplified assumptions. As a consequence, these approaches might be inconsistent with the actual requirements in a real production environment, i.e., they are often unsuitable and inflexible to respond efficiently to the frequent changes. In this paper, a multi-objective job shop rescheduling problem (moJSRP) is formulated to improve the practical application of rescheduling. To solve the moJSRP model, an evolutionary algorithm is designed, in which a random key-based representation and interactive adaptive-weight (i-awEA) fitness assignment are embedded. To verify the effectiveness, the proposed algorithm has been compared with other apporaches and benchmarks on the robustness of moJRP optimziation. The comparison results show that iAWGA-A is better than weighted fitness method in terms of effectiveness and stability. Simlarly, iAWGA-A also outperforms other well stability approachessuch as non-dominated sorting genetic algorithm (NSGA-II) and strength Pareto evolutionary algorithm2 (SPEA2).

  5. EvoOligo: oligonucleotide probe design with multiobjective evolutionary algorithms.

    PubMed

    Shin, Soo-Yong; Lee, In-Hee; Cho, Young-Min; Yang, Kyung-Ae; Zhang, Byoung-Tak

    2009-12-01

    Probe design is one of the most important tasks in successful deoxyribonucleic acid microarray experiments. We propose a multiobjective evolutionary optimization method for oligonucleotide probe design based on the multiobjective nature of the probe design problem. The proposed multiobjective evolutionary approach has several distinguished features, compared with previous methods. First, the evolutionary approach can find better probe sets than existing simple filtering methods with fixed threshold values. Second, the multiobjective approach can easily incorporate the user's custom criteria or change the existing criteria. Third, our approach tries to optimize the combination of probes for the given set of genes, in contrast to other tools that independently search each gene for qualifying probes. Lastly, the multiobjective optimization method provides various sets of probe combinations, among which the user can choose, depending on the target application. The proposed method is implemented as a platform called EvoOligo and is available for service on the web. We test the performance of EvoOligo by designing probe sets for 19 types of Human Papillomavirus and 52 genes in the Arabidopsis Calmodulin multigene family. The design results from EvoOligo are proven to be superior to those from well-known existing probe design tools, such as OligoArray and OligoWiz.

  6. Runtime analysis of an evolutionary algorithm for stochastic multi-objective combinatorial optimization.

    PubMed

    Gutjahr, Walter J

    2012-01-01

    For stochastic multi-objective combinatorial optimization (SMOCO) problems, the adaptive Pareto sampling (APS) framework has been proposed, which is based on sampling and on the solution of deterministic multi-objective subproblems. We show that when plugging in the well-known simple evolutionary multi-objective optimizer (SEMO) as a subprocedure into APS, ε-dominance has to be used to achieve fast convergence to the Pareto front. Two general theorems are presented indicating how runtime complexity results for APS can be derived from corresponding results for SEMO. This may be a starting point for the runtime analysis of evolutionary SMOCO algorithms.

  7. A multiobjective evolutionary algorithm to find community structures based on affinity propagation

    NASA Astrophysics Data System (ADS)

    Shang, Ronghua; Luo, Shuang; Zhang, Weitong; Stolkin, Rustam; Jiao, Licheng

    2016-07-01

    Community detection plays an important role in reflecting and understanding the topological structure of complex networks, and can be used to help mine the potential information in networks. This paper presents a Multiobjective Evolutionary Algorithm based on Affinity Propagation (APMOEA) which improves the accuracy of community detection. Firstly, APMOEA takes the method of affinity propagation (AP) to initially divide the network. To accelerate its convergence, the multiobjective evolutionary algorithm selects nondominated solutions from the preliminary partitioning results as its initial population. Secondly, the multiobjective evolutionary algorithm finds solutions approximating the true Pareto optimal front through constantly selecting nondominated solutions from the population after crossover and mutation in iterations, which overcomes the tendency of data clustering methods to fall into local optima. Finally, APMOEA uses an elitist strategy, called "external archive", to prevent degeneration during the process of searching using the multiobjective evolutionary algorithm. According to this strategy, the preliminary partitioning results obtained by AP will be archived and participate in the final selection of Pareto-optimal solutions. Experiments on benchmark test data, including both computer-generated networks and eight real-world networks, show that the proposed algorithm achieves more accurate results and has faster convergence speed compared with seven other state-of-art algorithms.

  8. Assessing Activity Pattern Similarity with Multidimensional Sequence Alignment based on a Multiobjective Optimization Evolutionary Algorithm

    PubMed Central

    Kwan, Mei-Po; Xiao, Ningchuan; Ding, Guoxiang

    2015-01-01

    Due to the complexity and multidimensional characteristics of human activities, assessing the similarity of human activity patterns and classifying individuals with similar patterns remains highly challenging. This paper presents a new and unique methodology for evaluating the similarity among individual activity patterns. It conceptualizes multidimensional sequence alignment (MDSA) as a multiobjective optimization problem, and solves this problem with an evolutionary algorithm. The study utilizes sequence alignment to code multiple facets of human activities into multidimensional sequences, and to treat similarity assessment as a multiobjective optimization problem that aims to minimize the alignment cost for all dimensions simultaneously. A multiobjective optimization evolutionary algorithm (MOEA) is used to generate a diverse set of optimal or near-optimal alignment solutions. Evolutionary operators are specifically designed for this problem, and a local search method also is incorporated to improve the search ability of the algorithm. We demonstrate the effectiveness of our method by comparing it with a popular existing method called ClustalG using a set of 50 sequences. The results indicate that our method outperforms the existing method for most of our selected cases. The multiobjective evolutionary algorithm presented in this paper provides an effective approach for assessing activity pattern similarity, and a foundation for identifying distinctive groups of individuals with similar activity patterns. PMID:26190858

  9. Complex Network Clustering by a Multi-objective Evolutionary Algorithm Based on Decomposition and Membrane Structure

    PubMed Central

    Ju, Ying; Zhang, Songming; Ding, Ningxiang; Zeng, Xiangxiang; Zhang, Xingyi

    2016-01-01

    The field of complex network clustering is gaining considerable attention in recent years. In this study, a multi-objective evolutionary algorithm based on membranes is proposed to solve the network clustering problem. Population are divided into different membrane structures on average. The evolutionary algorithm is carried out in the membrane structures. The population are eliminated by the vector of membranes. In the proposed method, two evaluation objectives termed as Kernel J-means and Ratio Cut are to be minimized. Extensive experimental studies comparison with state-of-the-art algorithms proves that the proposed algorithm is effective and promising. PMID:27670156

  10. Detection of unusual trajectories using multi-objective evolutionary algorithms and rough sets

    NASA Astrophysics Data System (ADS)

    Smolinski, Tomasz G.; Newell, Trevor; McDaniel, Samantha; Pokrajac, David

    2013-09-01

    Detection of unusual trajectories of moving objects (e.g., people, automobiles, etc.) is an important problem in many civilian and military surveillance applications. In this work, we propose a multi-objective evolutionary algorithms and rough sets-based approach that breaks down 2-dimensional trajectories into a set of additive components, which then can be used to build a classifier capable of recognizing typical, but yet unseen trajectories, and identifying those that seem suspicious.

  11. Scheduling for the National Hockey League Using a Multi-objective Evolutionary Algorithm

    NASA Astrophysics Data System (ADS)

    Craig, Sam; While, Lyndon; Barone, Luigi

    We describe a multi-objective evolutionary algorithm that derives schedules for the National Hockey League according to three objectives: minimising the teams' total travel, promoting equity in rest time between games, and minimising long streaks of home or away games. Experiments show that the system is able to derive schedules that beat the 2008-9 NHL schedule in all objectives simultaneously, and that it returns a set of schedules that offer a range of trade-offs across the objectives.

  12. Comparison of Multiobjective Evolutionary Algorithms for Operations Scheduling under Machine Availability Constraints

    PubMed Central

    Frutos, M.; Méndez, M.; Tohmé, F.; Broz, D.

    2013-01-01

    Many of the problems that arise in production systems can be handled with multiobjective techniques. One of those problems is that of scheduling operations subject to constraints on the availability of machines and buffer capacity. In this paper we analyze different Evolutionary multiobjective Algorithms (MOEAs) for this kind of problems. We consider an experimental framework in which we schedule production operations for four real world Job-Shop contexts using three algorithms, NSGAII, SPEA2, and IBEA. Using two performance indexes, Hypervolume and R2, we found that SPEA2 and IBEA are the most efficient for the tasks at hand. On the other hand IBEA seems to be a better choice of tool since it yields more solutions in the approximate Pareto frontier. PMID:24489502

  13. Comparison of multiobjective evolutionary algorithms for operations scheduling under machine availability constraints.

    PubMed

    Frutos, M; Méndez, M; Tohmé, F; Broz, D

    2013-01-01

    Many of the problems that arise in production systems can be handled with multiobjective techniques. One of those problems is that of scheduling operations subject to constraints on the availability of machines and buffer capacity. In this paper we analyze different Evolutionary multiobjective Algorithms (MOEAs) for this kind of problems. We consider an experimental framework in which we schedule production operations for four real world Job-Shop contexts using three algorithms, NSGAII, SPEA2, and IBEA. Using two performance indexes, Hypervolume and R2, we found that SPEA2 and IBEA are the most efficient for the tasks at hand. On the other hand IBEA seems to be a better choice of tool since it yields more solutions in the approximate Pareto frontier. PMID:24489502

  14. Experiments with a Parallel Multi-Objective Evolutionary Algorithm for Scheduling

    NASA Technical Reports Server (NTRS)

    Brown, Matthew; Johnston, Mark D.

    2013-01-01

    Evolutionary multi-objective algorithms have great potential for scheduling in those situations where tradeoffs among competing objectives represent a key requirement. One challenge, however, is runtime performance, as a consequence of evolving not just a single schedule, but an entire population, while attempting to sample the Pareto frontier as accurately and uniformly as possible. The growing availability of multi-core processors in end user workstations, and even laptops, has raised the question of the extent to which such hardware can be used to speed up evolutionary algorithms. In this paper we report on early experiments in parallelizing a Generalized Differential Evolution (GDE) algorithm for scheduling long-range activities on NASA's Deep Space Network. Initial results show that significant speedups can be achieved, but that performance does not necessarily improve as more cores are utilized. We describe our preliminary results and some initial suggestions from parallelizing the GDE algorithm. Directions for future work are outlined.

  15. An Evolutionary Algorithm with Double-Level Archives for Multiobjective Optimization.

    PubMed

    Chen, Ni; Chen, Wei-Neng; Gong, Yue-Jiao; Zhan, Zhi-Hui; Zhang, Jun; Li, Yun; Tan, Yu-Song

    2015-09-01

    Existing multiobjective evolutionary algorithms (MOEAs) tackle a multiobjective problem either as a whole or as several decomposed single-objective sub-problems. Though the problem decomposition approach generally converges faster through optimizing all the sub-problems simultaneously, there are two issues not fully addressed, i.e., distribution of solutions often depends on a priori problem decomposition, and the lack of population diversity among sub-problems. In this paper, a MOEA with double-level archives is developed. The algorithm takes advantages of both the multiobjective-problem-level and the sub-problem-level approaches by introducing two types of archives, i.e., the global archive and the sub-archive. In each generation, self-reproduction with the global archive and cross-reproduction between the global archive and sub-archives both breed new individuals. The global archive and sub-archives communicate through cross-reproduction, and are updated using the reproduced individuals. Such a framework thus retains fast convergence, and at the same time handles solution distribution along Pareto front (PF) with scalability. To test the performance of the proposed algorithm, experiments are conducted on both the widely used benchmarks and a set of truly disconnected problems. The results verify that, compared with state-of-the-art MOEAs, the proposed algorithm offers competitive advantages in distance to the PF, solution coverage, and search speed. PMID:25343775

  16. Multi-objective optimization in spatial planning: Improving the effectiveness of multi-objective evolutionary algorithms (non-dominated sorting genetic algorithm II)

    NASA Astrophysics Data System (ADS)

    Karakostas, Spiros

    2015-05-01

    The multi-objective nature of most spatial planning initiatives and the numerous constraints that are introduced in the planning process by decision makers, stakeholders, etc., synthesize a complex spatial planning context in which the concept of solid and meaningful optimization is a unique challenge. This article investigates new approaches to enhance the effectiveness of multi-objective evolutionary algorithms (MOEAs) via the adoption of a well-known metaheuristic: the non-dominated sorting genetic algorithm II (NSGA-II). In particular, the contribution of a sophisticated crossover operator coupled with an enhanced initialization heuristic is evaluated against a series of metrics measuring the effectiveness of MOEAs. Encouraging results emerge for both the convergence rate of the evolutionary optimization process and the occupation of valuable regions of the objective space by non-dominated solutions, facilitating the work of spatial planners and decision makers. Based on the promising behaviour of both heuristics, topics for further research are proposed to improve their effectiveness.

  17. A diagnostic assessment of evolutionary algorithms for multi-objective surface water reservoir control

    NASA Astrophysics Data System (ADS)

    Zatarain Salazar, Jazmin; Reed, Patrick M.; Herman, Jonathan D.; Giuliani, Matteo; Castelletti, Andrea

    2016-06-01

    Globally, the pressures of expanding populations, climate change, and increased energy demands are motivating significant investments in re-operationalizing existing reservoirs or designing operating policies for new ones. These challenges require an understanding of the tradeoffs that emerge across the complex suite of multi-sector demands in river basin systems. This study benchmarks our current capabilities to use Evolutionary Multi-Objective Direct Policy Search (EMODPS), a decision analytic framework in which reservoirs' candidate operating policies are represented using parameterized global approximators (e.g., radial basis functions) then those parameterized functions are optimized using multi-objective evolutionary algorithms to discover the Pareto approximate operating policies. We contribute a comprehensive diagnostic assessment of modern MOEAs' abilities to support EMODPS using the Conowingo reservoir in the Lower Susquehanna River Basin, Pennsylvania, USA. Our diagnostic results highlight that EMODPS can be very challenging for some modern MOEAs and that epsilon dominance, time-continuation, and auto-adaptive search are helpful for attaining high levels of performance. The ɛ-MOEA, the auto-adaptive Borg MOEA, and ɛ-NSGAII all yielded superior results for the six-objective Lower Susquehanna benchmarking test case. The top algorithms show low sensitivity to different MOEA parameterization choices and high algorithmic reliability in attaining consistent results for different random MOEA trials. Overall, EMODPS poses a promising method for discovering key reservoir management tradeoffs; however algorithmic choice remains a key concern for problems of increasing complexity.

  18. A Self-adaptive Evolutionary Algorithm for Multi-objective Optimization

    NASA Astrophysics Data System (ADS)

    Cao, Ruifen; Li, Guoli; Wu, Yican

    Evolutionary algorithm has gained a worldwide popularity among multi-objective optimization. The paper proposes a self-adaptive evolutionary algorithm (called SEA) for multi-objective optimization. In the SEA, the probability of crossover and mutation,P c and P m , are varied depending on the fitness values of the solutions. Fitness assignment of SEA realizes the twin goals of maintaining diversity in the population and guiding the population to the true Pareto Front; fitness value of individual not only depends on improved density estimation but also depends on non-dominated rank. The density estimation can keep diversity in all instances including when scalars of all objectives are much different from each other. SEA is compared against the Non-dominated Sorting Genetic Algorithm (NSGA-II) on a set of test problems introduced by the MOEA community. Simulated results show that SEA is as effective as NSGA-II in most of test functions, but when scalar of objectives are much different from each other, SEA has better distribution of non-dominated solutions.

  19. An Improved Multiobjective Optimization Evolutionary Algorithm Based on Decomposition for Complex Pareto Fronts.

    PubMed

    Jiang, Shouyong; Yang, Shengxiang

    2016-02-01

    The multiobjective evolutionary algorithm based on decomposition (MOEA/D) has been shown to be very efficient in solving multiobjective optimization problems (MOPs). In practice, the Pareto-optimal front (POF) of many MOPs has complex characteristics. For example, the POF may have a long tail and sharp peak and disconnected regions, which significantly degrades the performance of MOEA/D. This paper proposes an improved MOEA/D for handling such kind of complex problems. In the proposed algorithm, a two-phase strategy (TP) is employed to divide the whole optimization procedure into two phases. Based on the crowdedness of solutions found in the first phase, the algorithm decides whether or not to delicate computational resources to handle unsolved subproblems in the second phase. Besides, a new niche scheme is introduced into the improved MOEA/D to guide the selection of mating parents to avoid producing duplicate solutions, which is very helpful for maintaining the population diversity when the POF of the MOP being optimized is discontinuous. The performance of the proposed algorithm is investigated on some existing benchmark and newly designed MOPs with complex POF shapes in comparison with several MOEA/D variants and other approaches. The experimental results show that the proposed algorithm produces promising performance on these complex problems.

  20. Decomposition-based multiobjective evolutionary algorithm for community detection in dynamic social networks.

    PubMed

    Ma, Jingjing; Liu, Jie; Ma, Wenping; Gong, Maoguo; Jiao, Licheng

    2014-01-01

    Community structure is one of the most important properties in social networks. In dynamic networks, there are two conflicting criteria that need to be considered. One is the snapshot quality, which evaluates the quality of the community partitions at the current time step. The other is the temporal cost, which evaluates the difference between communities at different time steps. In this paper, we propose a decomposition-based multiobjective community detection algorithm to simultaneously optimize these two objectives to reveal community structure and its evolution in dynamic networks. It employs the framework of multiobjective evolutionary algorithm based on decomposition to simultaneously optimize the modularity and normalized mutual information, which quantitatively measure the quality of the community partitions and temporal cost, respectively. A local search strategy dealing with the problem-specific knowledge is incorporated to improve the effectiveness of the new algorithm. Experiments on computer-generated and real-world networks demonstrate that the proposed algorithm can not only find community structure and capture community evolution more accurately, but also be steadier than the two compared algorithms.

  1. ETEA: a Euclidean minimum spanning tree-based evolutionary algorithm for multi-objective optimization.

    PubMed

    Li, Miqing; Yang, Shengxiang; Zheng, Jinhua; Liu, Xiaohui

    2014-01-01

    The Euclidean minimum spanning tree (EMST), widely used in a variety of domains, is a minimum spanning tree of a set of points in space where the edge weight between each pair of points is their Euclidean distance. Since the generation of an EMST is entirely determined by the Euclidean distance between solutions (points), the properties of EMSTs have a close relation with the distribution and position information of solutions. This paper explores the properties of EMSTs and proposes an EMST-based evolutionary algorithm (ETEA) to solve multi-objective optimization problems (MOPs). Unlike most EMO algorithms that focus on the Pareto dominance relation, the proposed algorithm mainly considers distance-based measures to evaluate and compare individuals during the evolutionary search. Specifically, in ETEA, four strategies are introduced: (1) An EMST-based crowding distance (ETCD) is presented to estimate the density of individuals in the population; (2) A distance comparison approach incorporating ETCD is used to assign the fitness value for individuals; (3) A fitness adjustment technique is designed to avoid the partial overcrowding in environmental selection; (4) Three diversity indicators-the minimum edge, degree, and ETCD-with regard to EMSTs are applied to determine the survival of individuals in archive truncation. From a series of extensive experiments on 32 test instances with different characteristics, ETEA is found to be competitive against five state-of-the-art algorithms and its predecessor in providing a good balance among convergence, uniformity, and spread.

  2. Multiobjective management of ecosystem services by integrative watershed modeling and evolutionary algorithms

    NASA Astrophysics Data System (ADS)

    Bekele, Elias G.; Nicklow, John W.

    2005-10-01

    This paper explores the role of landscapes in generating ecosystem services while maximizing gross margin associated with agricultural commodity production. Ecosystem services considered include the reduction of nonpoint source pollutants such as sediment, phosphorous, and nitrogen yields from a watershed. The analysis relies on an integrative modeling framework that combines a comprehensive watershed model (SWAT) with a multiobjective evolutionary algorithm (SPEA2). Application of the resulting model to a watershed in southern Illinois demonstrates the effectiveness of the approach in providing tradeoff solutions between gross margin and the generation of ecosystem services. These solutions are important to policy makers and planners in that they provide information about the cost-effectiveness of alternative agricultural landscapes.

  3. Comparison of Evolutionary (Genetic) Algorithm and Adjoint Methods for Multi-Objective Viscous Airfoil Optimizations

    NASA Technical Reports Server (NTRS)

    Pulliam, T. H.; Nemec, M.; Holst, T.; Zingg, D. W.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    A comparison between an Evolutionary Algorithm (EA) and an Adjoint-Gradient (AG) Method applied to a two-dimensional Navier-Stokes code for airfoil design is presented. Both approaches use a common function evaluation code, the steady-state explicit part of the code,ARC2D. The parameterization of the design space is a common B-spline approach for an airfoil surface, which together with a common griding approach, restricts the AG and EA to the same design space. Results are presented for a class of viscous transonic airfoils in which the optimization tradeoff between drag minimization as one objective and lift maximization as another, produces the multi-objective design space. Comparisons are made for efficiency, accuracy and design consistency.

  4. Identifying irregularly shaped crime hot-spots using a multiobjective evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Wu, Xiaolan; Grubesic, Tony H.

    2010-12-01

    Spatial cluster detection techniques are widely used in criminology, geography, epidemiology, and other fields. In particular, spatial scan statistics are popular and efficient techniques for detecting areas of elevated crime or disease events. The majority of spatial scan approaches attempt to delineate geographic zones by evaluating the significance of clusters using likelihood ratio statistics tested with the Poisson distribution. While this can be effective, many scan statistics give preference to circular clusters, diminishing their ability to identify elongated and/or irregular shaped clusters. Although adjusting the shape of the scan window can mitigate some of these problems, both the significance of irregular clusters and their spatial structure must be accounted for in a meaningful way. This paper utilizes a multiobjective evolutionary algorithm to find clusters with maximum significance while quantitatively tracking their geographic structure. Crime data for the city of Cincinnati are utilized to demonstrate the advantages of the new approach and highlight its benefits versus more traditional scan statistics.

  5. A multi-objective evolutionary algorithm for protein structure prediction with immune operators.

    PubMed

    Judy, M V; Ravichandran, K S; Murugesan, K

    2009-08-01

    Genetic algorithms (GA) are often well suited for optimisation problems involving several conflicting objectives. It is more suitable to model the protein structure prediction problem as a multi-objective optimisation problem since the potential energy functions used in the literature to evaluate the conformation of a protein are based on the calculations of two different interaction energies: local (bond atoms) and non-local (non-bond atoms) and experiments have shown that those types of interactions are in conflict, by using the potential energy function, Chemistry at Harvard Macromolecular Mechanics. In this paper, we have modified the immune inspired Pareto archived evolutionary strategy (I-PAES) algorithm and denoted it as MI-PAES. It can effectively exploit some prior knowledge about the hydrophobic interactions, which is one of the most important driving forces in protein folding to make vaccines. The proposed MI-PAES is comparable with other evolutionary algorithms proposed in literature, both in terms of best solution found and the computational time and often results in much better search ability than that of the canonical GA.

  6. A possibilistic approach to rotorcraft design through a multi-objective evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Chae, Han Gil

    Most of the engineering design processes in use today in the field may be considered as a series of successive decision making steps. The decision maker uses information at hand, determines the direction of the procedure, and generates information for the next step and/or other decision makers. However, the information is often incomplete, especially in the early stages of the design process of a complex system. As the complexity of the system increases, uncertainties eventually become unmanageable using traditional tools. In such a case, the tools and analysis values need to be "softened" to account for the designer's intuition. One of the methods that deals with issues of intuition and incompleteness is possibility theory. Through the use of possibility theory coupled with fuzzy inference, the uncertainties estimated by the intuition of the designer are quantified for design problems. By involving quantified uncertainties in the tools, the solutions can represent a possible set, instead of a crisp spot, for predefined levels of certainty. From a different point of view, it is a well known fact that engineering design is a multi-objective problem or a set of such problems. The decision maker aims to find satisfactory solutions, sometimes compromising the objectives that conflict with each other. Once the candidates of possible solutions are generated, a satisfactory solution can be found by various decision-making techniques. A number of multi-objective evolutionary algorithms (MOEAs) have been developed, and can be found in the literature, which are capable of generating alternative solutions and evaluating multiple sets of solutions in one single execution of an algorithm. One of the MOEA techniques that has been proven to be very successful for this class of problems is the strength Pareto evolutionary algorithm (SPEA) which falls under the dominance-based category of methods. The Pareto dominance that is used in SPEA, however, is not enough to account for the

  7. A hybrid multi-objective evolutionary algorithm for wind-turbine blade optimization

    NASA Astrophysics Data System (ADS)

    Sessarego, M.; Dixon, K. R.; Rival, D. E.; Wood, D. H.

    2015-08-01

    A concurrent-hybrid non-dominated sorting genetic algorithm (hybrid NSGA-II) has been developed and applied to the simultaneous optimization of the annual energy production, flapwise root-bending moment and mass of the NREL 5 MW wind-turbine blade. By hybridizing a multi-objective evolutionary algorithm (MOEA) with gradient-based local search, it is believed that the optimal set of blade designs could be achieved in lower computational cost than for a conventional MOEA. To measure the convergence between the hybrid and non-hybrid NSGA-II on a wind-turbine blade optimization problem, a computationally intensive case was performed using the non-hybrid NSGA-II. From this particular case, a three-dimensional surface representing the optimal trade-off between the annual energy production, flapwise root-bending moment and blade mass was achieved. The inclusion of local gradients in the blade optimization, however, shows no improvement in the convergence for this three-objective problem.

  8. Application of a multi-objective evolutionary algorithm to the spacecraft stationkeeping problem

    NASA Astrophysics Data System (ADS)

    Myers, Philip L.; Spencer, David B.

    2016-10-01

    Satellite operations are becoming an increasingly private industry, requiring increased profitability. Efficient and safe operation of satellites in orbit will ensure longer lasting and more profitable satellite services. This paper focuses on the use of a multi-objective evolutionary algorithm to schedule the maneuvers of a hypothetical satellite operating at geosynchronous altitude, by seeking to minimize the propellant consumed through the execution of stationkeeping maneuvers and the time the satellite is displaced from its desired orbital plane. Minimization of the time out of place increases the operational availability and minimizing the propellant usage which allows the spacecraft to operate longer. North-South stationkeeping was studied in this paper, through the use of a set of orbit inclination change maneuvers each year. Two cases for the maximum number of maneuvers to be executed were considered, with four and five maneuvers per year. The results delivered by the algorithm provide maneuver schedules which require 40-100 m/s of total Δv for two years of operation, with the satellite maintaining the satellite's orbital plane to within 0.1° between 84% and 96% of the two years being modeled.

  9. Multi-Objective Control Optimization for Greenhouse Environment Using Evolutionary Algorithms

    PubMed Central

    Hu, Haigen; Xu, Lihong; Wei, Ruihua; Zhu, Bingkun

    2011-01-01

    This paper investigates the issue of tuning the Proportional Integral and Derivative (PID) controller parameters for a greenhouse climate control system using an Evolutionary Algorithm (EA) based on multiple performance measures such as good static-dynamic performance specifications and the smooth process of control. A model of nonlinear thermodynamic laws between numerous system variables affecting the greenhouse climate is formulated. The proposed tuning scheme is tested for greenhouse climate control by minimizing the integrated time square error (ITSE) and the control increment or rate in a simulation experiment. The results show that by tuning the gain parameters the controllers can achieve good control performance through step responses such as small overshoot, fast settling time, and less rise time and steady state error. Besides, it can be applied to tuning the system with different properties, such as strong interactions among variables, nonlinearities and conflicting performance criteria. The results implicate that it is a quite effective and promising tuning method using multi-objective optimization algorithms in the complex greenhouse production. PMID:22163927

  10. Spatial multiobjective optimization of agricultural conservation practices using a SWAT model and an evolutionary algorithm.

    PubMed

    Rabotyagov, Sergey; Campbell, Todd; Valcu, Adriana; Gassman, Philip; Jha, Manoj; Schilling, Keith; Wolter, Calvin; Kling, Catherine

    2012-12-09

    multiobjective evolutionary algorithm SPEA2(26), and user-specified set of conservation practices and their costs to search for the complete tradeoff frontiers between costs of conservation practices and user-specified water quality objectives. The frontiers quantify the tradeoffs faced by the watershed managers by presenting the full range of costs associated with various water quality improvement goals. The program allows for a selection of watershed configurations achieving specified water quality improvement goals and a production of maps of optimized placement of conservation practices.

  11. How Do Severe Constraints Affect the Search Ability of Multiobjective Evolutionary Algorithms in Water Resources?

    NASA Astrophysics Data System (ADS)

    Clarkin, T. J.; Kasprzyk, J. R.; Raseman, W. J.; Herman, J. D.

    2015-12-01

    This study contributes a diagnostic assessment of multiobjective evolutionary algorithm (MOEA) search on a set of water resources problem formulations with different configurations of constraints. Unlike constraints in classical optimization modeling, constraints within MOEA simulation-optimization represent limits on acceptable performance that delineate whether solutions within the search problem are feasible. Constraints are relevant because of the emergent pressures on water resources systems: increasing public awareness of their sustainability, coupled with regulatory pressures on water management agencies. In this study, we test several state-of-the-art MOEAs that utilize restricted tournament selection for constraint handling on varying configurations of water resources planning problems. For example, a problem that has no constraints on performance levels will be compared with a problem with several severe constraints, and a problem with constraints that have less severe values on the constraint thresholds. One such problem, Lower Rio Grande Valley (LRGV) portfolio planning, has been solved with a suite of constraints that ensure high reliability, low cost variability, and acceptable performance in a single year severe drought. But to date, it is unclear whether or not the constraints are negatively affecting MOEAs' ability to solve the problem effectively. Two categories of results are explored. The first category uses control maps of algorithm performance to determine if the algorithm's performance is sensitive to user-defined parameters. The second category uses run-time performance metrics to determine the time required for the algorithm to reach sufficient levels of convergence and diversity on the solution sets. Our work exploring the effect of constraints will better enable practitioners to define MOEA problem formulations for real-world systems, especially when stakeholders are concerned with achieving fixed levels of performance according to one or

  12. A master-slave parallel hybrid multi-objective evolutionary algorithm for groundwater remediation design under general hydrogeological conditions

    NASA Astrophysics Data System (ADS)

    Wu, J.; Yang, Y.; Luo, Q.; Wu, J.

    2012-12-01

    This study presents a new hybrid multi-objective evolutionary algorithm, the niched Pareto tabu search combined with a genetic algorithm (NPTSGA), whereby the global search ability of niched Pareto tabu search (NPTS) is improved by the diversification of candidate solutions arose from the evolving nondominated sorting genetic algorithm II (NSGA-II) population. Also, the NPTSGA coupled with the commonly used groundwater flow and transport codes, MODFLOW and MT3DMS, is developed for multi-objective optimal design of groundwater remediation systems. The proposed methodology is then applied to a large-scale field groundwater remediation system for cleanup of large trichloroethylene (TCE) plume at the Massachusetts Military Reservation (MMR) in Cape Cod, Massachusetts. Furthermore, a master-slave (MS) parallelization scheme based on the Message Passing Interface (MPI) is incorporated into the NPTSGA to implement objective function evaluations in distributed processor environment, which can greatly improve the efficiency of the NPTSGA in finding Pareto-optimal solutions to the real-world application. This study shows that the MS parallel NPTSGA in comparison with the original NPTS and NSGA-II can balance the tradeoff between diversity and optimality of solutions during the search process and is an efficient and effective tool for optimizing the multi-objective design of groundwater remediation systems under complicated hydrogeologic conditions.

  13. Multi-objective entropy evolutionary algorithm for marine oil spill detection using cosmo-skymed satellite data

    NASA Astrophysics Data System (ADS)

    Marghany, M.

    2015-06-01

    Oil spill pollution has a substantial role in damaging the marine ecosystem. Oil spill that floats on top of water, as well as decreasing the fauna populations, affects the food chain in the ecosystem. In fact, oil spill is reducing the sunlight penetrates the water, limiting the photosynthesis of marine plants and phytoplankton. Moreover, marine mammals for instance, disclosed to oil spills their insulating capacities are reduced, and so making them more vulnerable to temperature variations and much less buoyant in the seawater. This study has demonstrated a design tool for oil spill detection in SAR satellite data using optimization of Entropy based Multi-Objective Evolutionary Algorithm (E-MMGA) which based on Pareto optimal solutions. The study also shows that optimization entropy based Multi-Objective Evolutionary Algorithm provides an accurate pattern of oil slick in SAR data. This shown by 85 % for oil spill, 10 % look-alike and 5 % for sea roughness using the receiver-operational characteristics (ROC) curve. The E-MMGA also shows excellent performance in SAR data. In conclusion, E-MMGA can be used as optimization for entropy to perform an automatic detection of oil spill in SAR satellite data.

  14. Confronting Decision Cliffs: Diagnostic Assessment of Multi-Objective Evolutionary Algorithms' Performance for Addressing Uncertain Environmental Thresholds

    NASA Astrophysics Data System (ADS)

    Ward, V. L.; Singh, R.; Reed, P. M.; Keller, K.

    2014-12-01

    As water resources problems typically involve several stakeholders with conflicting objectives, multi-objective evolutionary algorithms (MOEAs) are now key tools for understanding management tradeoffs. Given the growing complexity of water planning problems, it is important to establish if an algorithm can consistently perform well on a given class of problems. This knowledge allows the decision analyst to focus on eliciting and evaluating appropriate problem formulations. This study proposes a multi-objective adaptation of the classic environmental economics "Lake Problem" as a computationally simple but mathematically challenging MOEA benchmarking problem. The lake problem abstracts a fictional town on a lake which hopes to maximize its economic benefit without degrading the lake's water quality to a eutrophic (polluted) state through excessive phosphorus loading. The problem poses the challenge of maintaining economic activity while confronting the uncertainty of potentially crossing a nonlinear and potentially irreversible pollution threshold beyond which the lake is eutrophic. Objectives for optimization are maximizing economic benefit from lake pollution, maximizing water quality, maximizing the reliability of remaining below the environmental threshold, and minimizing the probability that the town will have to drastically change pollution policies in any given year. The multi-objective formulation incorporates uncertainty with a stochastic phosphorus inflow abstracting non-point source pollution. We performed comprehensive diagnostics using 6 algorithms: Borg, MOEAD, eMOEA, eNSGAII, GDE3, and NSGAII to ascertain their controllability, reliability, efficiency, and effectiveness. The lake problem abstracts elements of many current water resources and climate related management applications where there is the potential for crossing irreversible, nonlinear thresholds. We show that many modern MOEAs can fail on this test problem, indicating its suitability as a

  15. Multi-objective evolutionary algorithm for investigating the trade-off between pleiotropy and redundancy

    NASA Astrophysics Data System (ADS)

    Ong, Zhiyang; Lo, Andy Hao-Wei; Berryman, Matthew; Abbott, Derek

    2005-12-01

    The trade-off between pleiotropy and redundancy in telecommunications networks is analyzed in this paper. They are optimized to reduce installation costs and propagation delays. Pleiotropy of a server in a telecommunications network is defined as the number of clients and servers that it can service whilst redundancy is described as the number of servers servicing a client. Telecommunications networks containing many servers with large pleiotropy are cost-effective but vulnerable to network failures and attacks. Conversely, those networks containing many servers with high redundancy are reliable but costly. Several key issues regarding the choice of cost functions and techniques in evolutionary computation (such as the modeling of Darwinian evolution, and mutualism and commensalism) will be discussed, and a future research agenda is outlined. Experimental results indicate that the pleiotropy of servers in the optimum network does improve, whilst the redundancy of clients do not vary significantly, as expected, with evolving networks. This is due to the controlled evolution of networks that is modeled by the steady-state genetic algorithm; changes in telecommunications networks that occur drastically over a very short period of time are rare.

  16. Improving the Performance of Highly Constrained Water Resource Systems using Multiobjective Evolutionary Algorithms and RiverWare

    NASA Astrophysics Data System (ADS)

    Smith, R.; Kasprzyk, J. R.; Zagona, E. A.

    2015-12-01

    Instead of building new infrastructure to increase their supply reliability, water resource managers are often tasked with better management of current systems. The managers often have existing simulation models that aid their planning, and lack methods for efficiently generating and evaluating planning alternatives. This presentation discusses how multiobjective evolutionary algorithm (MOEA) decision support can be used with the sophisticated water infrastructure model, RiverWare, in highly constrained water planning environments. We first discuss a study that performed a many-objective tradeoff analysis of water supply in the Tarrant Regional Water District (TRWD) in Texas. RiverWare is combined with the Borg MOEA to solve a seven objective problem that includes systemwide performance objectives and individual reservoir storage reliability. Decisions within the formulation balance supply in multiple reservoirs and control pumping between the eastern and western parts of the system. The RiverWare simulation model is forced by two stochastic hydrology scenarios to inform how management changes in wet versus dry conditions. The second part of the presentation suggests how a broader set of RiverWare-MOEA studies can inform tradeoffs in other systems, especially in political situations where multiple actors are in conflict over finite water resources. By incorporating quantitative representations of diverse parties' objectives during the search for solutions, MOEAs may provide support for negotiations and lead to more widely beneficial water management outcomes.

  17. A Note on Evolutionary Algorithms and Its Applications

    ERIC Educational Resources Information Center

    Bhargava, Shifali

    2013-01-01

    This paper introduces evolutionary algorithms with its applications in multi-objective optimization. Here elitist and non-elitist multiobjective evolutionary algorithms are discussed with their advantages and disadvantages. We also discuss constrained multiobjective evolutionary algorithms and their applications in various areas.

  18. Multi-objective optimal design of lithium-ion battery packs based on evolutionary algorithms

    NASA Astrophysics Data System (ADS)

    Severino, Bernardo; Gana, Felipe; Palma-Behnke, Rodrigo; Estévez, Pablo A.; Calderón-Muñoz, Williams R.; Orchard, Marcos E.; Reyes, Jorge; Cortés, Marcelo

    2014-12-01

    Lithium-battery energy storage systems (LiBESS) are increasingly being used on electric mobility and stationary applications. Despite its increasing use and improvements of the technology there are still challenges associated with cost reduction, increasing lifetime and capacity, and higher safety. A correct battery thermal management system (BTMS) design is critical to achieve these goals. In this paper, a general framework for obtaining optimal BTMS designs is proposed. Due to the trade-off between the BTMS's design goals and the complex modeling of thermal response inside the battery pack, this paper proposes to solve this problem using a novel Multi-Objective Particle Swarm Optimization (MOPSO) approach. A theoretical case of a module with 6 cells and a real case of a pack used in a Solar Race Car are presented. The results show the capabilities of the proposal methodology, in which improved designs for battery packs are obtained.

  19. Multi-objective optimization of a low specific speed centrifugal pump using an evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    An, Zhao; Zhounian, Lai; Peng, Wu; Linlin, Cao; Dazhuan, Wu

    2016-07-01

    This paper describes the shape optimization of a low specific speed centrifugal pump at the design point. The target pump has already been manually modified on the basis of empirical knowledge. A genetic algorithm (NSGA-II) with certain enhancements is adopted to improve its performance further with respect to two goals. In order to limit the number of design variables without losing geometric information, the impeller is parametrized using the Bézier curve and a B-spline. Numerical simulation based on a Reynolds averaged Navier-Stokes (RANS) turbulent model is done in parallel to evaluate the flow field. A back-propagating neural network is constructed as a surrogate for performance prediction to save computing time, while initial samples are selected according to an orthogonal array. Then global Pareto-optimal solutions are obtained and analysed. The results manifest that unexpected flow structures, such as the secondary flow on the meridian plane, have diminished or vanished in the optimized pump.

  20. Evolutionary Multiobjective Design Targeting a Field Programmable Transistor Array

    NASA Technical Reports Server (NTRS)

    Aguirre, Arturo Hernandez; Zebulum, Ricardo S.; Coello, Carlos Coello

    2004-01-01

    This paper introduces the ISPAES algorithm for circuit design targeting a Field Programmable Transistor Array (FPTA). The use of evolutionary algorithms is common in circuit design problems, where a single fitness function drives the evolution process. Frequently, the design problem is subject to several goals or operating constraints, thus, designing a suitable fitness function catching all requirements becomes an issue. Such a problem is amenable for multi-objective optimization, however, evolutionary algorithms lack an inherent mechanism for constraint handling. This paper introduces ISPAES, an evolutionary optimization algorithm enhanced with a constraint handling technique. Several design problems targeting a FPTA show the potential of our approach.

  1. MOEPGA: A novel method to detect protein complexes in yeast protein-protein interaction networks based on MultiObjective Evolutionary Programming Genetic Algorithm.

    PubMed

    Cao, Buwen; Luo, Jiawei; Liang, Cheng; Wang, Shulin; Song, Dan

    2015-10-01

    The identification of protein complexes in protein-protein interaction (PPI) networks has greatly advanced our understanding of biological organisms. Existing computational methods to detect protein complexes are usually based on specific network topological properties of PPI networks. However, due to the inherent complexity of the network structures, the identification of protein complexes may not be fully addressed by using single network topological property. In this study, we propose a novel MultiObjective Evolutionary Programming Genetic Algorithm (MOEPGA) which integrates multiple network topological features to detect biologically meaningful protein complexes. Our approach first systematically analyzes the multiobjective problem in terms of identifying protein complexes from PPI networks, and then constructs the objective function of the iterative algorithm based on three common topological properties of protein complexes from the benchmark dataset, finally we describe our algorithm, which mainly consists of three steps, population initialization, subgraph mutation and subgraph selection operation. To show the utility of our method, we compared MOEPGA with several state-of-the-art algorithms on two yeast PPI datasets. The experiment results demonstrate that the proposed method can not only find more protein complexes but also achieve higher accuracy in terms of fscore. Moreover, our approach can cover a certain number of proteins in the input PPI network in terms of the normalized clustering score. Taken together, our method can serve as a powerful framework to detect protein complexes in yeast PPI networks, thereby facilitating the identification of the underlying biological functions.

  2. CCS Site Optimization by Applying a Multi-objective Evolutionary Algorithm to Semi-Analytical Leakage Models

    NASA Astrophysics Data System (ADS)

    Cody, B. M.; Gonzalez-Nicolas, A.; Bau, D. A.

    2011-12-01

    Carbon capture and storage (CCS) has been proposed as a method of reducing global carbon dioxide (CO2) emissions. Although CCS has the potential to greatly retard greenhouse gas loading to the atmosphere while cleaner, more sustainable energy solutions are developed, there is a possibility that sequestered CO2 may leak and intrude into and adversely affect groundwater resources. It has been reported [1] that, while CO2 intrusion typically does not directly threaten underground drinking water resources, it may cause secondary effects, such as the mobilization of hazardous inorganic constituents present in aquifer minerals and changes in pH values. These risks must be fully understood and minimized before CCS project implementation. Combined management of project resources and leakage risk is crucial for the implementation of CCS. In this work, we present a method of: (a) minimizing the total CCS cost, the summation of major project costs with the cost associated with CO2 leakage; and (b) maximizing the mass of injected CO2, for a given proposed sequestration site. Optimization decision variables include the number of CO2 injection wells, injection rates, and injection well locations. The capital and operational costs of injection wells are directly related to injection well depth, location, injection flow rate, and injection duration. The cost of leakage is directly related to the mass of CO2 leaked through weak areas, such as abandoned oil wells, in the cap rock layers overlying the injected formation. Additional constraints on fluid overpressure caused by CO2 injection are imposed to maintain predefined effective stress levels that prevent cap rock fracturing. Here, both mass leakage and fluid overpressure are estimated using two semi-analytical models based upon work by [2,3]. A multi-objective evolutionary algorithm coupled with these semi-analytical leakage flow models is used to determine Pareto-optimal trade-off sets giving minimum total cost vs. maximum mass

  3. Optimal operational strategies for a day-ahead electricity market in the presence of market power using multi-objective evolutionary algorithms

    NASA Astrophysics Data System (ADS)

    Rodrigo, Deepal

    2007-12-01

    This dissertation introduces a novel approach for optimally operating a day-ahead electricity market not only by economically dispatching the generation resources but also by minimizing the influences of market manipulation attempts by the individual generator-owning companies while ensuring that the power system constraints are not violated. Since economic operation of the market conflicts with the individual profit maximization tactics such as market manipulation by generator-owning companies, a methodology that is capable of simultaneously optimizing these two competing objectives has to be selected. Although numerous previous studies have been undertaken on the economic operation of day-ahead markets and other independent studies have been conducted on the mitigation of market power, the operation of a day-ahead electricity market considering these two conflicting objectives simultaneously has not been undertaken previously. These facts provided the incentive and the novelty for this study. A literature survey revealed that many of the traditional solution algorithms convert multi-objective functions into either a single-objective function using weighting schemas or undertake optimization of one function at a time. Hence, these approaches do not truly optimize the multi-objectives concurrently. Due to these inherent deficiencies of the traditional algorithms, the use of alternative non-traditional solution algorithms for such problems has become popular and widely used. Of these, multi-objective evolutionary algorithms (MOEA) have received wide acceptance due to their solution quality and robustness. In the present research, three distinct algorithms were considered: a non-dominated sorting genetic algorithm II (NSGA II), a multi-objective tabu search algorithm (MOTS) and a hybrid of multi-objective tabu search and genetic algorithm (MOTS/GA). The accuracy and quality of the results from these algorithms for applications similar to the problem investigated here

  4. Multiobjective Evolutionary Path Planning via Sugeno-Based Tournament Selection

    NASA Technical Reports Server (NTRS)

    Dozier, Gerry; McCullough, Shaun; Homaifar, Abdollah; Esterline, Albert

    1998-01-01

    This paper introduces a new tournament selection algorithm that can be used for evolutionary path planning systems. The fuzzy (Sugeno) tournament selection algorithm (STSA) described in this paper selects candidate paths (CPs) to be parents and undergo reproduction based on: (1) path feasibility, (2) the euclidean distance of a path from the origin to its destination, and (3) the average change in the slope of a path. In this paper, we provide a detailed description of the fuzzy inference system used in the STSA as well as some examples of its usefulness. We then use 12 instances of our STSA to rank a population of CPs based on the above criteria. We also show how the STSA can obviate the need for the development of an explicit (lexicographic multiobjective) evaluation function and use it to develop multiobjective motion paths.

  5. Hybrid multiobjective evolutionary design for artificial neural networks.

    PubMed

    Goh, Chi-Keong; Teoh, Eu-Jin; Tan, Kay Chen

    2008-09-01

    Evolutionary algorithms are a class of stochastic search methods that attempts to emulate the biological process of evolution, incorporating concepts of selection, reproduction, and mutation. In recent years, there has been an increase in the use of evolutionary approaches in the training of artificial neural networks (ANNs). While evolutionary techniques for neural networks have shown to provide superior performance over conventional training approaches, the simultaneous optimization of network performance and architecture will almost always result in a slow training process due to the added algorithmic complexity. In this paper, we present a geometrical measure based on the singular value decomposition (SVD) to estimate the necessary number of neurons to be used in training a single-hidden-layer feedforward neural network (SLFN). In addition, we develop a new hybrid multiobjective evolutionary approach that includes the features of a variable length representation that allow for easy adaptation of neural networks structures, an architectural recombination procedure based on the geometrical measure that adapts the number of necessary hidden neurons and facilitates the exchange of neuronal information between candidate designs, and a microhybrid genetic algorithm ( microHGA) with an adaptive local search intensity scheme for local fine-tuning. In addition, the performances of well-known algorithms as well as the effectiveness and contributions of the proposed approach are analyzed and validated through a variety of data set types.

  6. Combinatorial Multiobjective Optimization Using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Crossley, William A.; Martin. Eric T.

    2002-01-01

    The research proposed in this document investigated multiobjective optimization approaches based upon the Genetic Algorithm (GA). Several versions of the GA have been adopted for multiobjective design, but, prior to this research, there had not been significant comparisons of the most popular strategies. The research effort first generalized the two-branch tournament genetic algorithm in to an N-branch genetic algorithm, then the N-branch GA was compared with a version of the popular Multi-Objective Genetic Algorithm (MOGA). Because the genetic algorithm is well suited to combinatorial (mixed discrete / continuous) optimization problems, the GA can be used in the conceptual phase of design to combine selection (discrete variable) and sizing (continuous variable) tasks. Using a multiobjective formulation for the design of a 50-passenger aircraft to meet the competing objectives of minimizing takeoff gross weight and minimizing trip time, the GA generated a range of tradeoff designs that illustrate which aircraft features change from a low-weight, slow trip-time aircraft design to a heavy-weight, short trip-time aircraft design. Given the objective formulation and analysis methods used, the results of this study identify where turboprop-powered aircraft and turbofan-powered aircraft become more desirable for the 50 seat passenger application. This aircraft design application also begins to suggest how a combinatorial multiobjective optimization technique could be used to assist in the design of morphing aircraft.

  7. Multi-Objective Community Detection Based on Memetic Algorithm

    PubMed Central

    2015-01-01

    Community detection has drawn a lot of attention as it can provide invaluable help in understanding the function and visualizing the structure of networks. Since single objective optimization methods have intrinsic drawbacks to identifying multiple significant community structures, some methods formulate the community detection as multi-objective problems and adopt population-based evolutionary algorithms to obtain multiple community structures. Evolutionary algorithms have strong global search ability, but have difficulty in locating local optima efficiently. In this study, in order to identify multiple significant community structures more effectively, a multi-objective memetic algorithm for community detection is proposed by combining multi-objective evolutionary algorithm with a local search procedure. The local search procedure is designed by addressing three issues. Firstly, nondominated solutions generated by evolutionary operations and solutions in dominant population are set as initial individuals for local search procedure. Then, a new direction vector named as pseudonormal vector is proposed to integrate two objective functions together to form a fitness function. Finally, a network specific local search strategy based on label propagation rule is expanded to search the local optimal solutions efficiently. The extensive experiments on both artificial and real-world networks evaluate the proposed method from three aspects. Firstly, experiments on influence of local search procedure demonstrate that the local search procedure can speed up the convergence to better partitions and make the algorithm more stable. Secondly, comparisons with a set of classic community detection methods illustrate the proposed method can find single partitions effectively. Finally, the method is applied to identify hierarchical structures of networks which are beneficial for analyzing networks in multi-resolution levels. PMID:25932646

  8. MULTIOBJECTIVE PARALLEL GENETIC ALGORITHM FOR WASTE MINIMIZATION

    EPA Science Inventory

    In this research we have developed an efficient multiobjective parallel genetic algorithm (MOPGA) for waste minimization problems. This MOPGA integrates PGAPack (Levine, 1996) and NSGA-II (Deb, 2000) with novel modifications. PGAPack is a master-slave parallel implementation of a...

  9. Antimicrobial Peptides Design by Evolutionary Multiobjective Optimization

    PubMed Central

    Maccari, Giuseppe; Di Luca, Mariagrazia; Nifosí, Riccardo; Cardarelli, Francesco; Signore, Giovanni; Boccardi, Claudia; Bifone, Angelo

    2013-01-01

    Antimicrobial peptides (AMPs) are an abundant and wide class of molecules produced by many tissues and cell types in a variety of mammals, plant and animal species. Linear alpha-helical antimicrobial peptides are among the most widespread membrane-disruptive AMPs in nature, representing a particularly successful structural arrangement in innate defense. Recently, AMPs have received increasing attention as potential therapeutic agents, owing to their broad activity spectrum and their reduced tendency to induce resistance. The introduction of non-natural amino acids will be a key requisite in order to contrast host resistance and increase compound's life. In this work, the possibility to design novel AMP sequences with non-natural amino acids was achieved through a flexible computational approach, based on chemophysical profiles of peptide sequences. Quantitative structure-activity relationship (QSAR) descriptors were employed to code each peptide and train two statistical models in order to account for structural and functional properties of alpha-helical amphipathic AMPs. These models were then used as fitness functions for a multi-objective evolutional algorithm, together with a set of constraints for the design of a series of candidate AMPs. Two ab-initio natural peptides were synthesized and experimentally validated for antimicrobial activity, together with a series of control peptides. Furthermore, a well-known Cecropin-Mellitin alpha helical antimicrobial hybrid (CM18) was optimized by shortening its amino acid sequence while maintaining its activity and a peptide with non-natural amino acids was designed and tested, demonstrating the higher activity achievable with artificial residues. PMID:24039565

  10. PARETO: A novel evolutionary optimization approach to multiobjective IMRT planning

    SciTech Connect

    Fiege, Jason; McCurdy, Boyd; Potrebko, Peter; Champion, Heather; Cull, Andrew

    2011-09-15

    Purpose: In radiation therapy treatment planning, the clinical objectives of uniform high dose to the planning target volume (PTV) and low dose to the organs-at-risk (OARs) are invariably in conflict, often requiring compromises to be made between them when selecting the best treatment plan for a particular patient. In this work, the authors introduce Pareto-Aware Radiotherapy Evolutionary Treatment Optimization (pareto), a multiobjective optimization tool to solve for beam angles and fluence patterns in intensity-modulated radiation therapy (IMRT) treatment planning. Methods: pareto is built around a powerful multiobjective genetic algorithm (GA), which allows us to treat the problem of IMRT treatment plan optimization as a combined monolithic problem, where all beam fluence and angle parameters are treated equally during the optimization. We have employed a simple parameterized beam fluence representation with a realistic dose calculation approach, incorporating patient scatter effects, to demonstrate feasibility of the proposed approach on two phantoms. The first phantom is a simple cylindrical phantom containing a target surrounded by three OARs, while the second phantom is more complex and represents a paraspinal patient. Results: pareto results in a large database of Pareto nondominated solutions that represent the necessary trade-offs between objectives. The solution quality was examined for several PTV and OAR fitness functions. The combination of a conformity-based PTV fitness function and a dose-volume histogram (DVH) or equivalent uniform dose (EUD) -based fitness function for the OAR produced relatively uniform and conformal PTV doses, with well-spaced beams. A penalty function added to the fitness functions eliminates hotspots. Comparison of resulting DVHs to those from treatment plans developed with a single-objective fluence optimizer (from a commercial treatment planning system) showed good correlation. Results also indicated that pareto shows

  11. An Algorithmic Framework for Multiobjective Optimization

    PubMed Central

    Ganesan, T.; Elamvazuthi, I.; Shaari, Ku Zilati Ku; Vasant, P.

    2013-01-01

    Multiobjective (MO) optimization is an emerging field which is increasingly being encountered in many fields globally. Various metaheuristic techniques such as differential evolution (DE), genetic algorithm (GA), gravitational search algorithm (GSA), and particle swarm optimization (PSO) have been used in conjunction with scalarization techniques such as weighted sum approach and the normal-boundary intersection (NBI) method to solve MO problems. Nevertheless, many challenges still arise especially when dealing with problems with multiple objectives (especially in cases more than two). In addition, problems with extensive computational overhead emerge when dealing with hybrid algorithms. This paper discusses these issues by proposing an alternative framework that utilizes algorithmic concepts related to the problem structure for generating efficient and effective algorithms. This paper proposes a framework to generate new high-performance algorithms with minimal computational overhead for MO optimization. PMID:24470795

  12. Aerodynamic Shape Optimization using an Evolutionary Algorithm

    NASA Technical Reports Server (NTRS)

    Hoist, Terry L.; Pulliam, Thomas H.

    2003-01-01

    A method for aerodynamic shape optimization based on an evolutionary algorithm approach is presented and demonstrated. Results are presented for a number of model problems to access the effect of algorithm parameters on convergence efficiency and reliability. A transonic viscous airfoil optimization problem-both single and two-objective variations is used as the basis for a preliminary comparison with an adjoint-gradient optimizer. The evolutionary algorithm is coupled with a transonic full potential flow solver and is used to optimize the inviscid flow about transonic wings including multi-objective and multi-discipline solutions that lead to the generation of pareto fronts. The results indicate that the evolutionary algorithm approach is easy to implement, flexible in application and extremely reliable.

  13. Aerodynamic Shape Optimization using an Evolutionary Algorithm

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.; Pulliam, Thomas H.; Kwak, Dochan (Technical Monitor)

    2003-01-01

    A method for aerodynamic shape optimization based on an evolutionary algorithm approach is presented and demonstrated. Results are presented for a number of model problems to access the effect of algorithm parameters on convergence efficiency and reliability. A transonic viscous airfoil optimization problem, both single and two-objective variations, is used as the basis for a preliminary comparison with an adjoint-gradient optimizer. The evolutionary algorithm is coupled with a transonic full potential flow solver and is used to optimize the inviscid flow about transonic wings including multi-objective and multi-discipline solutions that lead to the generation of pareto fronts. The results indicate that the evolutionary algorithm approach is easy to implement, flexible in application and extremely reliable.

  14. Evolutionary multiobjective query workload optimization of Cloud data warehouses.

    PubMed

    Dokeroglu, Tansel; Sert, Seyyit Alper; Cinar, Muhammet Serkan

    2014-01-01

    With the advent of Cloud databases, query optimizers need to find paretooptimal solutions in terms of response time and monetary cost. Our novel approach minimizes both objectives by deploying alternative virtual resources and query plans making use of the virtual resource elasticity of the Cloud. We propose an exact multiobjective branch-and-bound and a robust multiobjective genetic algorithm for the optimization of distributed data warehouse query workloads on the Cloud. In order to investigate the effectiveness of our approach, we incorporate the devised algorithms into a prototype system. Finally, through several experiments that we have conducted with different workloads and virtual resource configurations, we conclude remarkable findings of alternative deployments as well as the advantages and disadvantages of the multiobjective algorithms we propose. PMID:24892048

  15. Evolutionary Multiobjective Query Workload Optimization of Cloud Data Warehouses

    PubMed Central

    Dokeroglu, Tansel; Sert, Seyyit Alper; Cinar, Muhammet Serkan

    2014-01-01

    With the advent of Cloud databases, query optimizers need to find paretooptimal solutions in terms of response time and monetary cost. Our novel approach minimizes both objectives by deploying alternative virtual resources and query plans making use of the virtual resource elasticity of the Cloud. We propose an exact multiobjective branch-and-bound and a robust multiobjective genetic algorithm for the optimization of distributed data warehouse query workloads on the Cloud. In order to investigate the effectiveness of our approach, we incorporate the devised algorithms into a prototype system. Finally, through several experiments that we have conducted with different workloads and virtual resource configurations, we conclude remarkable findings of alternative deployments as well as the advantages and disadvantages of the multiobjective algorithms we propose. PMID:24892048

  16. Comparing a Coevolutionary Genetic Algorithm for Multiobjective Optimization

    NASA Technical Reports Server (NTRS)

    Lohn, Jason D.; Kraus, William F.; Haith, Gary L.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    We present results from a study comparing a recently developed coevolutionary genetic algorithm (CGA) against a set of evolutionary algorithms using a suite of multiobjective optimization benchmarks. The CGA embodies competitive coevolution and employs a simple, straightforward target population representation and fitness calculation based on developmental theory of learning. Because of these properties, setting up the additional population is trivial making implementation no more difficult than using a standard GA. Empirical results using a suite of two-objective test functions indicate that this CGA performs well at finding solutions on convex, nonconvex, discrete, and deceptive Pareto-optimal fronts, while giving respectable results on a nonuniform optimization. On a multimodal Pareto front, the CGA finds a solution that dominates solutions produced by eight other algorithms, yet the CGA has poor coverage across the Pareto front.

  17. Evolutionary pattern search algorithms

    SciTech Connect

    Hart, W.E.

    1995-09-19

    This paper defines a class of evolutionary algorithms called evolutionary pattern search algorithms (EPSAs) and analyzes their convergence properties. This class of algorithms is closely related to evolutionary programming, evolutionary strategie and real-coded genetic algorithms. EPSAs are self-adapting systems that modify the step size of the mutation operator in response to the success of previous optimization steps. The rule used to adapt the step size can be used to provide a stationary point convergence theory for EPSAs on any continuous function. This convergence theory is based on an extension of the convergence theory for generalized pattern search methods. An experimental analysis of the performance of EPSAs demonstrates that these algorithms can perform a level of global search that is comparable to that of canonical EAs. We also describe a stopping rule for EPSAs, which reliably terminated near stationary points in our experiments. This is the first stopping rule for any class of EAs that can terminate at a given distance from stationary points.

  18. Flower pollination algorithm: A novel approach for multiobjective optimization

    NASA Astrophysics Data System (ADS)

    Yang, Xin-She; Karamanoglu, Mehmet; He, Xingshi

    2014-09-01

    Multiobjective design optimization problems require multiobjective optimization techniques to solve, and it is often very challenging to obtain high-quality Pareto fronts accurately. In this article, the recently developed flower pollination algorithm (FPA) is extended to solve multiobjective optimization problems. The proposed method is used to solve a set of multiobjective test functions and two bi-objective design benchmarks, and a comparison of the proposed algorithm with other algorithms has been made, which shows that the FPA is efficient with a good convergence rate. Finally, the importance for further parametric studies and theoretical analysis is highlighted and discussed.

  19. A tabu search evalutionary algorithm for multiobjective optimization: Application to a bi-criterion aircraft structural reliability problem

    NASA Astrophysics Data System (ADS)

    Long, Kim Chenming

    Real-world engineering optimization problems often require the consideration of multiple conflicting and noncommensurate objectives, subject to nonconvex constraint regions in a high-dimensional decision space. Further challenges occur for combinatorial multiobjective problems in which the decision variables are not continuous. Traditional multiobjective optimization methods of operations research, such as weighting and epsilon constraint methods, are ill-suited to solving these complex, multiobjective problems. This has given rise to the application of a wide range of metaheuristic optimization algorithms, such as evolutionary, particle swarm, simulated annealing, and ant colony methods, to multiobjective optimization. Several multiobjective evolutionary algorithms have been developed, including the strength Pareto evolutionary algorithm (SPEA) and the non-dominated sorting genetic algorithm (NSGA), for determining the Pareto-optimal set of non-dominated solutions. Although numerous researchers have developed a wide range of multiobjective optimization algorithms, there is a continuing need to construct computationally efficient algorithms with an improved ability to converge to globally non-dominated solutions along the Pareto-optimal front for complex, large-scale, multiobjective engineering optimization problems. This is particularly important when the multiple objective functions and constraints of the real-world system cannot be expressed in explicit mathematical representations. This research presents a novel metaheuristic evolutionary algorithm for complex multiobjective optimization problems, which combines the metaheuristic tabu search algorithm with the evolutionary algorithm (TSEA), as embodied in genetic algorithms. TSEA is successfully applied to bicriteria (i.e., structural reliability and retrofit cost) optimization of the aircraft tail structure fatigue life, which increases its reliability by prolonging fatigue life. A comparison for this

  20. Automatic generation of controllers for embodied legged organisms: a Pareto evolutionary multi-objective approach.

    PubMed

    Teo, Jason; Abbass, Hussein A

    2004-01-01

    In this paper, we investigate the use of a self-adaptive Pareto evolutionary multi-objective optimization (EMO) approach for evolving the controllers of virtual embodied organisms. The objective of this paper is to demonstrate the trade-off between quality of solutions and computational cost. We show empirically that evolving controllers using the proposed algorithm incurs significantly less computational cost when compared to a self-adaptive weighted sum EMO algorithm, a self-adaptive single-objective evolutionary algorithm (EA) and a hand-tuned Pareto EMO algorithm. The main contribution of the self-adaptive Pareto EMO approach is its ability to produce sufficiently good controllers with different locomotion capabilities in a single run, thereby reducing the evolutionary computational cost and allowing the designer to explore the space of good solutions simultaneously. Our results also show that self-adaptation was found to be highly beneficial in reducing redundancy when compared against the other algorithms. Moreover, it was also shown that genetic diversity was being maintained naturally by virtue of the system's inherent multi-objectivity. PMID:15355605

  1. A Pareto Optimal Design Analysis of Magnetic Thrust Bearings Using Multi-Objective Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Rao, Jagu S.; Tiwari, R.

    2015-03-01

    A Pareto optimal design analysis is carried out on the design of magnetic thrust bearings using multi-objective genetic algorithms. Two configurations of bearings have been considered with the minimization of power loss and weight of the bearing as objectives for performance comparisons. A multi-objective evolutionary algorithm is utilized to generate Pareto frontiers at different operating loads. As the load increases, the Pareto frontier reduces to a single point at a peak load for both configurations. Pareto optimal design analysis is used to study characteristics of design variables and other parameters. Three distinct operating load zones have been observed.

  2. Evolutionary Multi-objective Optimization for landscape system design

    NASA Astrophysics Data System (ADS)

    Roberts, S. A.; Hall, G. B.; Calamai, P. H.

    2011-09-01

    Increasing recognition of the extent and speed of habitat fragmentation and loss, particularly in the urban fringe, is driving the need to analyze qualitatively and quantitatively regional landscape structures in land-use planning and environmental policy implementation. This paper introduces an Evolutionary Multi-objective Optimization (EMO) methodology to estimate the Pareto optimal set of landscape designs generated from a series of underlying ecological principles. The results of applying these principles via EMO to a study site are presented and a hierarchical clustering methodology is introduced to assist in evaluating the population of solutions generated.

  3. Comparing Evolutionary Strategies on a Biobjective Cultural Algorithm

    PubMed Central

    Lagos, Carolina; Crawford, Broderick; Cabrera, Enrique; Rubio, José-Miguel; Paredes, Fernando

    2014-01-01

    Evolutionary algorithms have been widely used to solve large and complex optimisation problems. Cultural algorithms (CAs) are evolutionary algorithms that have been used to solve both single and, to a less extent, multiobjective optimisation problems. In order to solve these optimisation problems, CAs make use of different strategies such as normative knowledge, historical knowledge, circumstantial knowledge, and among others. In this paper we present a comparison among CAs that make use of different evolutionary strategies; the first one implements a historical knowledge, the second one considers a circumstantial knowledge, and the third one implements a normative knowledge. These CAs are applied on a biobjective uncapacitated facility location problem (BOUFLP), the biobjective version of the well-known uncapacitated facility location problem. To the best of our knowledge, only few articles have applied evolutionary multiobjective algorithms on the BOUFLP and none of those has focused on the impact of the evolutionary strategy on the algorithm performance. Our biobjective cultural algorithm, called BOCA, obtains important improvements when compared to other well-known evolutionary biobjective optimisation algorithms such as PAES and NSGA-II. The conflicting objective functions considered in this study are cost minimisation and coverage maximisation. Solutions obtained by each algorithm are compared using a hypervolume S metric. PMID:25254257

  4. Developer Tools for Evaluating Multi-Objective Algorithms

    NASA Technical Reports Server (NTRS)

    Giuliano, Mark E.; Johnston, Mark D.

    2011-01-01

    Multi-objective algorithms for scheduling offer many advantages over the more conventional single objective approach. By keeping user objectives separate instead of combined, more information is available to the end user to make trade-offs between competing objectives. Unlike single objective algorithms, which produce a single solution, multi-objective algorithms produce a set of solutions, called a Pareto surface, where no solution is strictly dominated by another solution for all objectives. From the end-user perspective a Pareto-surface provides a tool for reasoning about trade-offs between competing objectives. From the perspective of a software developer multi-objective algorithms provide an additional challenge. How can you tell if one multi-objective algorithm is better than another? This paper presents formal and visual tools for evaluating multi-objective algorithms and shows how the developer process of selecting an algorithm parallels the end-user process of selecting a solution for execution out of the Pareto-Surface.

  5. Multi-objective Automatic Calibration of a Semi-distributed Watershed Model Using Pareto Ordering Optimization and Genetic Algorithm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study explored the application of a multi-objective evolutionary algorithm (MOEA) and Pareto ordering in the multiple-objective automatic calibration of the Soil and Water Assessment Tool (SWAT). SWAT was calibrated in the Calapooia watershed, Oregon, USA, with two different pairs of objective ...

  6. An Efficient Chemical Reaction Optimization Algorithm for Multiobjective Optimization.

    PubMed

    Bechikh, Slim; Chaabani, Abir; Ben Said, Lamjed

    2015-10-01

    Recently, a new metaheuristic called chemical reaction optimization was proposed. This search algorithm, inspired by chemical reactions launched during collisions, inherits several features from other metaheuristics such as simulated annealing and particle swarm optimization. This fact has made it, nowadays, one of the most powerful search algorithms in solving mono-objective optimization problems. In this paper, we propose a multiobjective variant of chemical reaction optimization, called nondominated sorting chemical reaction optimization, in an attempt to exploit chemical reaction optimization features in tackling problems involving multiple conflicting criteria. Since our approach is based on nondominated sorting, one of the main contributions of this paper is the proposal of a new quasi-linear average time complexity quick nondominated sorting algorithm; thereby making our multiobjective algorithm efficient from a computational cost viewpoint. The experimental comparisons against several other multiobjective algorithms on a variety of benchmark problems involving various difficulties show the effectiveness and the efficiency of this multiobjective version in providing a well-converged and well-diversified approximation of the Pareto front.

  7. Autonomous robot navigation based on the evolutionary multi-objective optimization of potential fields

    NASA Astrophysics Data System (ADS)

    Herrera Ortiz, Juan Arturo; Rodríguez-Vázquez, Katya; Padilla Castañeda, Miguel A.; Arámbula Cosío, Fernando

    2013-01-01

    This article presents the application of a new multi-objective evolutionary algorithm called RankMOEA to determine the optimal parameters of an artificial potential field for autonomous navigation of a mobile robot. Autonomous robot navigation is posed as a multi-objective optimization problem with three objectives: minimization of the distance to the goal, maximization of the distance between the robot and the nearest obstacle, and maximization of the distance travelled on each field configuration. Two decision makers were implemented using objective reduction and discrimination in performance trade-off. The performance of RankMOEA is compared with NSGA-II and SPEA2, including both decision makers. Simulation experiments using three different obstacle configurations and 10 different routes were performed using the proposed methodology. RankMOEA clearly outperformed NSGA-II and SPEA2. The robustness of this approach was evaluated with the simulation of different sensor masks and sensor noise. The scheme reported was also combined with the wavefront-propagation algorithm for global path planning.

  8. Multi-objective nested algorithms for optimal reservoir operation

    NASA Astrophysics Data System (ADS)

    Delipetrev, Blagoj; Solomatine, Dimitri

    2016-04-01

    The optimal reservoir operation is in general a multi-objective problem, meaning that multiple objectives are to be considered at the same time. For solving multi-objective optimization problems there exist a large number of optimization algorithms - which result in a generation of a Pareto set of optimal solutions (typically containing a large number of them), or more precisely, its approximation. At the same time, due to the complexity and computational costs of solving full-fledge multi-objective optimization problems some authors use a simplified approach which is generically called "scalarization". Scalarization transforms the multi-objective optimization problem to a single-objective optimization problem (or several of them), for example by (a) single objective aggregated weighted functions, or (b) formulating some objectives as constraints. We are using the approach (a). A user can decide how many multi-objective single search solutions will generate, depending on the practical problem at hand and by choosing a particular number of the weight vectors that are used to weigh the objectives. It is not guaranteed that these solutions are Pareto optimal, but they can be treated as a reasonably good and practically useful approximation of a Pareto set, albeit small. It has to be mentioned that the weighted-sum approach has its known shortcomings because the linear scalar weights will fail to find Pareto-optimal policies that lie in the concave region of the Pareto front. In this context the considered approach is implemented as follows: there are m sets of weights {w1i, …wni} (i starts from 1 to m), and n objectives applied to single objective aggregated weighted sum functions of nested dynamic programming (nDP), nested stochastic dynamic programming (nSDP) and nested reinforcement learning (nRL). By employing the multi-objective optimization by a sequence of single-objective optimization searches approach, these algorithms acquire the multi-objective properties

  9. Optimal robust motion controller design using multiobjective genetic algorithm.

    PubMed

    Sarjaš, Andrej; Svečko, Rajko; Chowdhury, Amor

    2014-01-01

    This paper describes the use of a multiobjective genetic algorithm for robust motion controller design. Motion controller structure is based on a disturbance observer in an RIC framework. The RIC approach is presented in the form with internal and external feedback loops, in which an internal disturbance rejection controller and an external performance controller must be synthesised. This paper involves novel objectives for robustness and performance assessments for such an approach. Objective functions for the robustness property of RIC are based on simple even polynomials with nonnegativity conditions. Regional pole placement method is presented with the aims of controllers' structures simplification and their additional arbitrary selection. Regional pole placement involves arbitrary selection of central polynomials for both loops, with additional admissible region of the optimized pole location. Polynomial deviation between selected and optimized polynomials is measured with derived performance objective functions. A multiobjective function is composed of different unrelated criteria such as robust stability, controllers' stability, and time-performance indexes of closed loops. The design of controllers and multiobjective optimization procedure involve a set of the objectives, which are optimized simultaneously with a genetic algorithm-differential evolution. PMID:24987749

  10. Genetic Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    2005-01-01

    A genetic algorithm approach suitable for solving multi-objective problems is described and evaluated using a series of aerodynamic shape optimization problems. Several new features including two variations of a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding Pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. A new masking array capability is included allowing any gene or gene subset to be eliminated as decision variables from the design space. This allows determination of the effect of a single gene or gene subset on the Pareto optimal solution. Results indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning selection algorithms generally provide Pareto front quality enhancements and moderate convergence efficiency improvements for most of the problems solved.

  11. Genetic Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    2004-01-01

    A genetic algorithm approach suitable for solving multi-objective optimization problems is described and evaluated using a series of aerodynamic shape optimization problems. Several new features including two variations of a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. A new masking array capability is included allowing any gene or gene subset to be eliminated as decision variables from the design space. This allows determination of the effect of a single gene or gene subset on the pareto optimal solution. Results indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning selection algorithms generally provide pareto front quality enhancements and moderate convergence efficiency improvements for most of the problems solved.

  12. Multiobjective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation.

    PubMed

    Gonzalez, J; Rojas, I; Ortega, J; Pomares, H; Fernandez, F J; Diaz, A F

    2003-01-01

    This paper presents a multiobjective evolutionary algorithm to optimize radial basis function neural networks (RBFNNs) in order to approach target functions from a set of input-output pairs. The procedure allows the application of heuristics to improve the solution of the problem at hand by including some new genetic operators in the evolutionary process. These new operators are based on two well-known matrix transformations: singular value decomposition (SVD) and orthogonal least squares (OLS), which have been used to define new mutation operators that produce local or global modifications in the radial basis functions (RBFs) of the networks (the individuals in the population in the evolutionary procedure). After analyzing the efficiency of the different operators, we have shown that the global mutation operators yield an improved procedure to adjust the parameters of the RBFNNs.

  13. Effective and efficient algorithm for multiobjective optimization of hydrologic models

    NASA Astrophysics Data System (ADS)

    Vrugt, Jasper A.; Gupta, Hoshin V.; Bastidas, Luis A.; Bouten, Willem; Sorooshian, Soroosh

    2003-08-01

    Practical experience with the calibration of hydrologic models suggests that any single-objective function, no matter how carefully chosen, is often inadequate to properly measure all of the characteristics of the observed data deemed to be important. One strategy to circumvent this problem is to define several optimization criteria (objective functions) that measure different (complementary) aspects of the system behavior and to use multicriteria optimization to identify the set of nondominated, efficient, or Pareto optimal solutions. In this paper, we present an efficient and effective Markov Chain Monte Carlo sampler, entitled the Multiobjective Shuffled Complex Evolution Metropolis (MOSCEM) algorithm, which is capable of solving the multiobjective optimization problem for hydrologic models. MOSCEM is an improvement over the Shuffled Complex Evolution Metropolis (SCEM-UA) global optimization algorithm, using the concept of Pareto dominance (rather than direct single-objective function evaluation) to evolve the initial population of points toward a set of solutions stemming from a stable distribution (Pareto set). The efficacy of the MOSCEM-UA algorithm is compared with the original MOCOM-UA algorithm for three hydrologic modeling case studies of increasing complexity.

  14. Optimal Robust Motion Controller Design Using Multiobjective Genetic Algorithm

    PubMed Central

    Svečko, Rajko

    2014-01-01

    This paper describes the use of a multiobjective genetic algorithm for robust motion controller design. Motion controller structure is based on a disturbance observer in an RIC framework. The RIC approach is presented in the form with internal and external feedback loops, in which an internal disturbance rejection controller and an external performance controller must be synthesised. This paper involves novel objectives for robustness and performance assessments for such an approach. Objective functions for the robustness property of RIC are based on simple even polynomials with nonnegativity conditions. Regional pole placement method is presented with the aims of controllers' structures simplification and their additional arbitrary selection. Regional pole placement involves arbitrary selection of central polynomials for both loops, with additional admissible region of the optimized pole location. Polynomial deviation between selected and optimized polynomials is measured with derived performance objective functions. A multiobjective function is composed of different unrelated criteria such as robust stability, controllers' stability, and time-performance indexes of closed loops. The design of controllers and multiobjective optimization procedure involve a set of the objectives, which are optimized simultaneously with a genetic algorithm—differential evolution. PMID:24987749

  15. Evolutionary multiobjective optimization in water resources: The past, present, and future

    NASA Astrophysics Data System (ADS)

    Reed, P. M.; Hadka, D.; Herman, J. D.; Kasprzyk, J. R.; Kollat, J. B.

    2013-01-01

    This study contributes a rigorous diagnostic assessment of state-of-the-art multiobjective evolutionary algorithms (MOEAs) and highlights key advances that the water resources field can exploit to better discover the critical tradeoffs constraining our systems. This study provides the most comprehensive diagnostic assessment of MOEAs for water resources to date, exploiting more than 100,000 MOEA runs and trillions of design evaluations. The diagnostic assessment measures the effectiveness, efficiency, reliability, and controllability of ten benchmark MOEAs for a representative suite of water resources applications addressing rainfall-runoff calibration, long-term groundwater monitoring (LTM), and risk-based water supply portfolio planning. The suite of problems encompasses a range of challenging problem properties including (1) many-objective formulations with four or more objectives, (2) multi-modality (or false optima), (3) nonlinearity, (4) discreteness, (5) severe constraints, (6) stochastic objectives, and (7) non-separability (also called epistasis). The applications are representative of the dominant problem classes that have shaped the history of MOEAs in water resources and that will be dominant foci in the future. Recommendations are given for the new algorithms that should serve as the benchmarks for innovations in the water resources literature. The future of MOEAs in water resources needs to emphasize self-adaptive search, new technologies for visualizing tradeoffs, and the next generation of computing technologies.

  16. Multiobjective evolutionary optimization of water distribution systems: Exploiting diversity with infeasible solutions.

    PubMed

    Tanyimboh, Tiku T; Seyoum, Alemtsehay G

    2016-12-01

    This article investigates the computational efficiency of constraint handling in multi-objective evolutionary optimization algorithms for water distribution systems. The methodology investigated here encourages the co-existence and simultaneous development including crossbreeding of subpopulations of cost-effective feasible and infeasible solutions based on Pareto dominance. This yields a boundary search approach that also promotes diversity in the gene pool throughout the progress of the optimization by exploiting the full spectrum of non-dominated infeasible solutions. The relative effectiveness of small and moderate population sizes with respect to the number of decision variables is investigated also. The results reveal the optimization algorithm to be efficient, stable and robust. It found optimal and near-optimal solutions reliably and efficiently. The real-world system based optimization problem involved multiple variable head supply nodes, 29 fire-fighting flows, extended period simulation and multiple demand categories including water loss. The least cost solutions found satisfied the flow and pressure requirements consistently. The best solutions achieved indicative savings of 48.1% and 48.2% based on the cost of the pipes in the existing network, for populations of 200 and 1000, respectively. The population of 1000 achieved slightly better results overall. PMID:27589918

  17. MULTI-OBJECTIVE OPTIMAL DESIGN OF GROUNDWATER REMEDIATION SYSTEMS: APPLICATION OF THE NICHED PARETO GENETIC ALGORITHM (NPGA). (R826614)

    EPA Science Inventory

    A multiobjective optimization algorithm is applied to a groundwater quality management problem involving remediation by pump-and-treat (PAT). The multiobjective optimization framework uses the niched Pareto genetic algorithm (NPGA) and is applied to simultaneously minimize the...

  18. Development of antibiotic regimens using graph based evolutionary algorithms.

    PubMed

    Corns, Steven M; Ashlock, Daniel A; Bryden, Kenneth M

    2013-12-01

    This paper examines the use of evolutionary algorithms in the development of antibiotic regimens given to production animals. A model is constructed that combines the lifespan of the animal and the bacteria living in the animal's gastro-intestinal tract from the early finishing stage until the animal reaches market weight. This model is used as the fitness evaluation for a set of graph based evolutionary algorithms to assess the impact of diversity control on the evolving antibiotic regimens. The graph based evolutionary algorithms have two objectives: to find an antibiotic treatment regimen that maintains the weight gain and health benefits of antibiotic use and to reduce the risk of spreading antibiotic resistant bacteria. This study examines different regimens of tylosin phosphate use on bacteria populations divided into Gram positive and Gram negative types, with a focus on Campylobacter spp. Treatment regimens were found that provided decreased antibiotic resistance relative to conventional methods while providing nearly the same benefits as conventional antibiotic regimes. By using a graph to control the information flow in the evolutionary algorithm, a variety of solutions along the Pareto front can be found automatically for this and other multi-objective problems.

  19. Evolutionary multiobjective design of a flexible caudal fin for robotic fish.

    PubMed

    Clark, Anthony J; Tan, Xiaobo; McKinley, Philip K

    2015-12-01

    Robotic fish accomplish swimming by deforming their bodies or other fin-like appendages. As an emerging class of embedded computing system, robotic fish are anticipated to play an important role in environmental monitoring, inspection of underwater structures, tracking of hazardous wastes and oil spills, and the study of live fish behaviors. While integration of flexible materials (into the fins and/or body) holds the promise of improved swimming performance (in terms of both speed and maneuverability) for these robots, such components also introduce significant design challenges due to the complex material mechanics and hydrodynamic interactions. The problem is further exacerbated by the need for the robots to meet multiple objectives (e.g., both speed and energy efficiency). In this paper, we propose an evolutionary multiobjective optimization approach to the design and control of a robotic fish with a flexible caudal fin. Specifically, we use the NSGA-II algorithm to investigate morphological and control parameter values that optimize swimming speed and power usage. Several evolved fin designs are validated experimentally with a small robotic fish, where fins of different stiffness values and sizes are printed with a multi-material 3D printer. Experimental results confirm the effectiveness of the proposed design approach in balancing the two competing objectives. PMID:26601975

  20. A Diagnostic Assessment of Evolutionary Multiobjective Optimization for Water Resources Systems

    NASA Astrophysics Data System (ADS)

    Reed, P.; Hadka, D.; Herman, J.; Kasprzyk, J.; Kollat, J.

    2012-04-01

    This study contributes a rigorous diagnostic assessment of state-of-the-art multiobjective evolutionary algorithms (MOEAs) and highlights key advances that the water resources field can exploit to better discover the critical tradeoffs constraining our systems. This study provides the most comprehensive diagnostic assessment of MOEAs for water resources to date, exploiting more than 100,000 MOEA runs and trillions of design evaluations. The diagnostic assessment measures the effectiveness, efficiency, reliability, and controllability of ten benchmark MOEAs for a representative suite of water resources applications addressing rainfall-runoff calibration, long-term groundwater monitoring (LTM), and risk-based water supply portfolio planning. The suite of problems encompasses a range of challenging problem properties including (1) many-objective formulations with 4 or more objectives, (2) multi-modality (or false optima), (3) nonlinearity, (4) discreteness, (5) severe constraints, (6) stochastic objectives, and (7) non-separability (also called epistasis). The applications are representative of the dominant problem classes that have shaped the history of MOEAs in water resources and that will be dominant foci in the future. Recommendations are provided for which modern MOEAs should serve as tools and benchmarks in the future water resources literature.

  1. Evolutionary multiobjective design of a flexible caudal fin for robotic fish.

    PubMed

    Clark, Anthony J; Tan, Xiaobo; McKinley, Philip K

    2015-12-01

    Robotic fish accomplish swimming by deforming their bodies or other fin-like appendages. As an emerging class of embedded computing system, robotic fish are anticipated to play an important role in environmental monitoring, inspection of underwater structures, tracking of hazardous wastes and oil spills, and the study of live fish behaviors. While integration of flexible materials (into the fins and/or body) holds the promise of improved swimming performance (in terms of both speed and maneuverability) for these robots, such components also introduce significant design challenges due to the complex material mechanics and hydrodynamic interactions. The problem is further exacerbated by the need for the robots to meet multiple objectives (e.g., both speed and energy efficiency). In this paper, we propose an evolutionary multiobjective optimization approach to the design and control of a robotic fish with a flexible caudal fin. Specifically, we use the NSGA-II algorithm to investigate morphological and control parameter values that optimize swimming speed and power usage. Several evolved fin designs are validated experimentally with a small robotic fish, where fins of different stiffness values and sizes are printed with a multi-material 3D printer. Experimental results confirm the effectiveness of the proposed design approach in balancing the two competing objectives.

  2. A Review of Evolutionary Algorithms for Data Mining

    NASA Astrophysics Data System (ADS)

    Freitas, Alex A.

    Evolutionary Algorithms (EAs) are stochastic search algorithms inspired by the process of neo-Darwinian evolution. The motivation for applying EAs to data mining is that they are robust, adaptive search techniques that perform a global search in the solution space. This chapter first presents a brief overview of EAs, focusing mainly on two kinds of EAs, viz. Genetic Algorithms (GAs) and Genetic Programming (GP). Then the chapter reviews the main concepts and principles used by EAs designed for solving several data mining tasks, namely: discovery of classification rules, clustering, attribute selection and attribute construction. Finally, it discusses Multi-Objective EAs, based on the concept of Pareto dominance, and their use in several data mining tasks.

  3. Advantages of Task-Specific Multi-Objective Optimisation in Evolutionary Robotics.

    PubMed

    Trianni, Vito; López-Ibáñez, Manuel

    2015-01-01

    The application of multi-objective optimisation to evolutionary robotics is receiving increasing attention. A survey of the literature reveals the different possibilities it offers to improve the automatic design of efficient and adaptive robotic systems, and points to the successful demonstrations available for both task-specific and task-agnostic approaches (i.e., with or without reference to the specific design problem to be tackled). However, the advantages of multi-objective approaches over single-objective ones have not been clearly spelled out and experimentally demonstrated. This paper fills this gap for task-specific approaches: starting from well-known results in multi-objective optimisation, we discuss how to tackle commonly recognised problems in evolutionary robotics. In particular, we show that multi-objective optimisation (i) allows evolving a more varied set of behaviours by exploring multiple trade-offs of the objectives to optimise, (ii) supports the evolution of the desired behaviour through the introduction of objectives as proxies, (iii) avoids the premature convergence to local optima possibly introduced by multi-component fitness functions, and (iv) solves the bootstrap problem exploiting ancillary objectives to guide evolution in the early phases. We present an experimental demonstration of these benefits in three different case studies: maze navigation in a single robot domain, flocking in a swarm robotics context, and a strictly collaborative task in collective robotics. PMID:26295151

  4. Advantages of Task-Specific Multi-Objective Optimisation in Evolutionary Robotics

    PubMed Central

    Trianni, Vito; López-Ibáñez, Manuel

    2015-01-01

    The application of multi-objective optimisation to evolutionary robotics is receiving increasing attention. A survey of the literature reveals the different possibilities it offers to improve the automatic design of efficient and adaptive robotic systems, and points to the successful demonstrations available for both task-specific and task-agnostic approaches (i.e., with or without reference to the specific design problem to be tackled). However, the advantages of multi-objective approaches over single-objective ones have not been clearly spelled out and experimentally demonstrated. This paper fills this gap for task-specific approaches: starting from well-known results in multi-objective optimisation, we discuss how to tackle commonly recognised problems in evolutionary robotics. In particular, we show that multi-objective optimisation (i) allows evolving a more varied set of behaviours by exploring multiple trade-offs of the objectives to optimise, (ii) supports the evolution of the desired behaviour through the introduction of objectives as proxies, (iii) avoids the premature convergence to local optima possibly introduced by multi-component fitness functions, and (iv) solves the bootstrap problem exploiting ancillary objectives to guide evolution in the early phases. We present an experimental demonstration of these benefits in three different case studies: maze navigation in a single robot domain, flocking in a swarm robotics context, and a strictly collaborative task in collective robotics. PMID:26295151

  5. Advantages of Task-Specific Multi-Objective Optimisation in Evolutionary Robotics.

    PubMed

    Trianni, Vito; López-Ibáñez, Manuel

    2015-01-01

    The application of multi-objective optimisation to evolutionary robotics is receiving increasing attention. A survey of the literature reveals the different possibilities it offers to improve the automatic design of efficient and adaptive robotic systems, and points to the successful demonstrations available for both task-specific and task-agnostic approaches (i.e., with or without reference to the specific design problem to be tackled). However, the advantages of multi-objective approaches over single-objective ones have not been clearly spelled out and experimentally demonstrated. This paper fills this gap for task-specific approaches: starting from well-known results in multi-objective optimisation, we discuss how to tackle commonly recognised problems in evolutionary robotics. In particular, we show that multi-objective optimisation (i) allows evolving a more varied set of behaviours by exploring multiple trade-offs of the objectives to optimise, (ii) supports the evolution of the desired behaviour through the introduction of objectives as proxies, (iii) avoids the premature convergence to local optima possibly introduced by multi-component fitness functions, and (iv) solves the bootstrap problem exploiting ancillary objectives to guide evolution in the early phases. We present an experimental demonstration of these benefits in three different case studies: maze navigation in a single robot domain, flocking in a swarm robotics context, and a strictly collaborative task in collective robotics.

  6. Adaptive Multi-Objective Sub-Pixel Mapping Framework Based on Memetic Algorithm for Hyperspectral Remote Sensing Imagery

    NASA Astrophysics Data System (ADS)

    Zhong, Y.; Zhang, L.

    2012-07-01

    Sub-pixel mapping technique can specify the location of each class within the pixels based on the assumption of spatial dependence. Traditional sub-pixel mapping algorithms only consider the spatial dependence at the pixel level. The spatial dependence of each sub-pixel is ignored and sub-pixel spatial relation is lost. In this paper, a novel multi-objective sub-pixel mapping framework based on memetic algorithm, namely MSMF, is proposed. In MSMF, the sub-pixel mapping is transformed to a multi-objective optimization problem, which maximizing the spatial dependence index (SDI) and Moran's I, synchronously. Memetic algorithm is utilized to solve the multi-objective problem, which combines global search strategies with local search heuristics. In this framework, the sub-pixel mapping problem can be solved using different evolutionary algorithms and local algorithms. In this paper, memetic algorithm based on clonal selection algorithm (CSA) and random swapping as an example is designed and applied simultaneously in the proposed MSMF. In MSMF, CSA inherits the biologic properties of human immune systems, i.e. clone, mutation, memory, to search the possible sub-pixel mapping solution in the global space. After the exploration based on CSA, the local search based on random swapping is employed to dynamically decide which neighbourhood should be selected to stress exploitation in each generation. In addition, a solution set is used in MSMF to hold and update the obtained non-dominated solutions for multi-objective problem. Experimental results demonstrate that the proposed approach outperform traditional sub-pixel mapping algorithms, and hence provide an effective option for sub-pixel mapping of hyperspectral remote sensing imagery.

  7. A Multi-Objective Genetic Algorithm for Outlier Removal.

    PubMed

    Nahum, Oren E; Yosipof, Abraham; Senderowitz, Hanoch

    2015-12-28

    Quantitative structure activity relationship (QSAR) or quantitative structure property relationship (QSPR) models are developed to correlate activities for sets of compounds with their structure-derived descriptors by means of mathematical models. The presence of outliers, namely, compounds that differ in some respect from the rest of the data set, compromise the ability of statistical methods to derive QSAR models with good prediction statistics. Hence, outliers should be removed from data sets prior to model derivation. Here we present a new multi-objective genetic algorithm for the identification and removal of outliers based on the k nearest neighbors (kNN) method. The algorithm was used to remove outliers from three different data sets of pharmaceutical interest (logBBB, factor 7 inhibitors, and dihydrofolate reductase inhibitors), and its performances were compared with those of five other methods for outlier removal. The results suggest that the new algorithm provides filtered data sets that (1) better maintain the internal diversity of the parent data sets and (2) give rise to QSAR models with much better prediction statistics. Equally good filtered data sets in terms of these metrics were obtained when another objective function was added to the algorithm (termed "preservation"), forcing it to remove certain compounds with low probability only. This option is highly useful when specific compounds should be preferably kept in the final data set either because they have favorable activities or because they represent interesting molecular scaffolds. We expect this new algorithm to be useful in future QSAR applications.

  8. A Multi-Objective Genetic Algorithm for Outlier Removal.

    PubMed

    Nahum, Oren E; Yosipof, Abraham; Senderowitz, Hanoch

    2015-12-28

    Quantitative structure activity relationship (QSAR) or quantitative structure property relationship (QSPR) models are developed to correlate activities for sets of compounds with their structure-derived descriptors by means of mathematical models. The presence of outliers, namely, compounds that differ in some respect from the rest of the data set, compromise the ability of statistical methods to derive QSAR models with good prediction statistics. Hence, outliers should be removed from data sets prior to model derivation. Here we present a new multi-objective genetic algorithm for the identification and removal of outliers based on the k nearest neighbors (kNN) method. The algorithm was used to remove outliers from three different data sets of pharmaceutical interest (logBBB, factor 7 inhibitors, and dihydrofolate reductase inhibitors), and its performances were compared with those of five other methods for outlier removal. The results suggest that the new algorithm provides filtered data sets that (1) better maintain the internal diversity of the parent data sets and (2) give rise to QSAR models with much better prediction statistics. Equally good filtered data sets in terms of these metrics were obtained when another objective function was added to the algorithm (termed "preservation"), forcing it to remove certain compounds with low probability only. This option is highly useful when specific compounds should be preferably kept in the final data set either because they have favorable activities or because they represent interesting molecular scaffolds. We expect this new algorithm to be useful in future QSAR applications. PMID:26553402

  9. Multiobjective Memetic Estimation of Distribution Algorithm Based on an Incremental Tournament Local Searcher

    PubMed Central

    Yang, Kaifeng; Mu, Li; Yang, Dongdong; Zou, Feng; Wang, Lei; Jiang, Qiaoyong

    2014-01-01

    A novel hybrid multiobjective algorithm is presented in this paper, which combines a new multiobjective estimation of distribution algorithm, an efficient local searcher and ε-dominance. Besides, two multiobjective problems with variable linkages strictly based on manifold distribution are proposed. The Pareto set to the continuous multiobjective optimization problems, in the decision space, is a piecewise low-dimensional continuous manifold. The regularity by the manifold features just build probability distribution model by globally statistical information from the population, yet, the efficiency of promising individuals is not well exploited, which is not beneficial to search and optimization process. Hereby, an incremental tournament local searcher is designed to exploit local information efficiently and accelerate convergence to the true Pareto-optimal front. Besides, since ε-dominance is a strategy that can make multiobjective algorithm gain well distributed solutions and has low computational complexity, ε-dominance and the incremental tournament local searcher are combined here. The novel memetic multiobjective estimation of distribution algorithm, MMEDA, was proposed accordingly. The algorithm is validated by experiment on twenty-two test problems with and without variable linkages of diverse complexities. Compared with three state-of-the-art multiobjective optimization algorithms, our algorithm achieves comparable results in terms of convergence and diversity metrics. PMID:25170526

  10. Algorithmic Mechanism Design of Evolutionary Computation

    PubMed Central

    Pei, Yan

    2015-01-01

    We consider algorithmic design, enhancement, and improvement of evolutionary computation as a mechanism design problem. All individuals or several groups of individuals can be considered as self-interested agents. The individuals in evolutionary computation can manipulate parameter settings and operations by satisfying their own preferences, which are defined by an evolutionary computation algorithm designer, rather than by following a fixed algorithm rule. Evolutionary computation algorithm designers or self-adaptive methods should construct proper rules and mechanisms for all agents (individuals) to conduct their evolution behaviour correctly in order to definitely achieve the desired and preset objective(s). As a case study, we propose a formal framework on parameter setting, strategy selection, and algorithmic design of evolutionary computation by considering the Nash strategy equilibrium of a mechanism design in the search process. The evaluation results present the efficiency of the framework. This primary principle can be implemented in any evolutionary computation algorithm that needs to consider strategy selection issues in its optimization process. The final objective of our work is to solve evolutionary computation design as an algorithmic mechanism design problem and establish its fundamental aspect by taking this perspective. This paper is the first step towards achieving this objective by implementing a strategy equilibrium solution (such as Nash equilibrium) in evolutionary computation algorithm. PMID:26257777

  11. Distributed Query Plan Generation Using Multiobjective Genetic Algorithm

    PubMed Central

    Panicker, Shina; Vijay Kumar, T. V.

    2014-01-01

    A distributed query processing strategy, which is a key performance determinant in accessing distributed databases, aims to minimize the total query processing cost. One way to achieve this is by generating efficient distributed query plans that involve fewer sites for processing a query. In the case of distributed relational databases, the number of possible query plans increases exponentially with respect to the number of relations accessed by the query and the number of sites where these relations reside. Consequently, computing optimal distributed query plans becomes a complex problem. This distributed query plan generation (DQPG) problem has already been addressed using single objective genetic algorithm, where the objective is to minimize the total query processing cost comprising the local processing cost (LPC) and the site-to-site communication cost (CC). In this paper, this DQPG problem is formulated and solved as a biobjective optimization problem with the two objectives being minimize total LPC and minimize total CC. These objectives are simultaneously optimized using a multiobjective genetic algorithm NSGA-II. Experimental comparison of the proposed NSGA-II based DQPG algorithm with the single objective genetic algorithm shows that the former performs comparatively better and converges quickly towards optimal solutions for an observed crossover and mutation probability. PMID:24963513

  12. Multiobjective Image Color Quantization Algorithm Based on Self-Adaptive Hybrid Differential Evolution

    PubMed Central

    Xia, Xuewen

    2016-01-01

    In recent years, some researchers considered image color quantization as a single-objective problem and applied heuristic algorithms to solve it. This paper establishes a multiobjective image color quantization model with intracluster distance and intercluster separation as its objectives. Inspired by a multipopulation idea, a multiobjective image color quantization algorithm based on self-adaptive hybrid differential evolution (MoDE-CIQ) is then proposed to solve this model. Two numerical experiments on four common test images are conducted to analyze the effectiveness and competitiveness of the multiobjective model and the proposed algorithm. PMID:27738423

  13. A multi-objective discrete cuckoo search algorithm with local search for community detection in complex networks

    NASA Astrophysics Data System (ADS)

    Zhou, Xu; Liu, Yanheng; Li, Bin

    2016-03-01

    Detecting community is a challenging task in analyzing networks. Solving community detection problem by evolutionary algorithm is a heated topic in recent years. In this paper, a multi-objective discrete cuckoo search algorithm with local search (MDCL) for community detection is proposed. To the best of our knowledge, it is first time to apply cuckoo search algorithm for community detection. Two objective functions termed as negative ratio association and ratio cut are to be minimized. These two functions can break through the modularity limitation. In the proposed algorithm, the nest location updating strategy and abandon operator of cuckoo are redefined in discrete form. A local search strategy and a clone operator are proposed to obtain the optimal initial population. The experimental results on synthetic and real-world networks show that the proposed algorithm has better performance than other algorithms and can discover the higher quality community structure without prior information.

  14. Scheduling Earth Observing Satellites with Evolutionary Algorithms

    NASA Technical Reports Server (NTRS)

    Globus, Al; Crawford, James; Lohn, Jason; Pryor, Anna

    2003-01-01

    We hypothesize that evolutionary algorithms can effectively schedule coordinated fleets of Earth observing satellites. The constraints are complex and the bottlenecks are not well understood, a condition where evolutionary algorithms are often effective. This is, in part, because evolutionary algorithms require only that one can represent solutions, modify solutions, and evaluate solution fitness. To test the hypothesis we have developed a representative set of problems, produced optimization software (in Java) to solve them, and run experiments comparing techniques. This paper presents initial results of a comparison of several evolutionary and other optimization techniques; namely the genetic algorithm, simulated annealing, squeaky wheel optimization, and stochastic hill climbing. We also compare separate satellite vs. integrated scheduling of a two satellite constellation. While the results are not definitive, tests to date suggest that simulated annealing is the best search technique and integrated scheduling is superior.

  15. On the use of multi-algorithm, genetically adaptive multi-objective method for multi-site calibration of the SWAT model

    SciTech Connect

    Zhang, Xuesong; Srinivasan, Raghavan; Van Liew, M.

    2010-04-15

    With the availability of spatially distributed data, distributed hydrologic models are increasingly used for simulation of spatially varied hydrologic processes to understand and manage natural and human activities that affect watershed systems. Multi-objective optimization methods have been applied to calibrate distributed hydrologic models using observed data from multiple sites. As the time consumed by running these complex models is increasing substantially, selecting efficient and effective multi-objective optimization algorithms is becoming a nontrivial issue. In this study, we evaluated a multi-algorithm, genetically adaptive multi-objective method (AMALGAM) for multi-site calibration of a distributed hydrologic model—Soil and Water Assessment Tool (SWAT), and compared its performance with two widely used evolutionary multi-objective optimization (EMO) algorithms (i.e. Strength Pareto Evolutionary Algorithm 2 (SPEA2) and Non-dominated Sorted Genetic Algorithm II (NSGA-II)). In order to provide insights into each method’s overall performance, these three methods were tested in four watersheds with various characteristics. The test results indicate that the AMALGAM can consistently provide competitive or superior results compared with the other two methods. The multi-method search framework of AMALGAM, which can flexibly and adaptively utilize multiple optimization algorithms, makes it a promising tool for multi-site calibration of the distributed SWAT. For practical use of AMALGAM, it is suggested to implement this method in multiple trials with relatively small number of model runs rather than run it once with long iterations. In addition, incorporating different multiobjective optimization algorithms and multi-mode search operators into AMALGAM deserves further research.

  16. A statistical model-based algorithm for `black-box' multi-objective optimisation

    NASA Astrophysics Data System (ADS)

    Žilinskas, Antanas

    2014-01-01

    The problem of multi-objective optimisation with 'expensive' 'black-box' objective functions is considered. An algorithm is proposed that generalises the single objective P-algorithm constructed using the statistical model of multimodal functions and concepts of the theory of rational decisions under uncertainty. Computational examples are included demonstrating that the algorithm proposed possess several expected properties.

  17. A performance-oriented power transformer design methodology using multi-objective evolutionary optimization.

    PubMed

    Adly, Amr A; Abd-El-Hafiz, Salwa K

    2015-05-01

    Transformers are regarded as crucial components in power systems. Due to market globalization, power transformer manufacturers are facing an increasingly competitive environment that mandates the adoption of design strategies yielding better performance at lower costs. In this paper, a power transformer design methodology using multi-objective evolutionary optimization is proposed. Using this methodology, which is tailored to be target performance design-oriented, quick rough estimation of transformer design specifics may be inferred. Testing of the suggested approach revealed significant qualitative and quantitative match with measured design and performance values. Details of the proposed methodology as well as sample design results are reported in the paper.

  18. A performance-oriented power transformer design methodology using multi-objective evolutionary optimization

    PubMed Central

    Adly, Amr A.; Abd-El-Hafiz, Salwa K.

    2014-01-01

    Transformers are regarded as crucial components in power systems. Due to market globalization, power transformer manufacturers are facing an increasingly competitive environment that mandates the adoption of design strategies yielding better performance at lower costs. In this paper, a power transformer design methodology using multi-objective evolutionary optimization is proposed. Using this methodology, which is tailored to be target performance design-oriented, quick rough estimation of transformer design specifics may be inferred. Testing of the suggested approach revealed significant qualitative and quantitative match with measured design and performance values. Details of the proposed methodology as well as sample design results are reported in the paper. PMID:26257939

  19. Automatic design of decision-tree algorithms with evolutionary algorithms.

    PubMed

    Barros, Rodrigo C; Basgalupp, Márcio P; de Carvalho, André C P L F; Freitas, Alex A

    2013-01-01

    This study reports the empirical analysis of a hyper-heuristic evolutionary algorithm that is capable of automatically designing top-down decision-tree induction algorithms. Top-down decision-tree algorithms are of great importance, considering their ability to provide an intuitive and accurate knowledge representation for classification problems. The automatic design of these algorithms seems timely, given the large literature accumulated over more than 40 years of research in the manual design of decision-tree induction algorithms. The proposed hyper-heuristic evolutionary algorithm, HEAD-DT, is extensively tested using 20 public UCI datasets and 10 microarray gene expression datasets. The algorithms automatically designed by HEAD-DT are compared with traditional decision-tree induction algorithms, such as C4.5 and CART. Experimental results show that HEAD-DT is capable of generating algorithms which are significantly more accurate than C4.5 and CART.

  20. Multi-objective evolutionary optimization of biological pest control with impulsive dynamics in soybean crops.

    PubMed

    Cardoso, Rodrigo T N; da Cruz, André R; Wanner, Elizabeth F; Takahashi, Ricardo H C

    2009-08-01

    The biological pest control in agriculture, an environment-friendly practice, maintains the density of pests below an economic injury level by releasing a suitable quantity of their natural enemies. This work proposes a multi-objective numerical solution to biological pest control for soybean crops, considering both the cost of application of the control action and the cost of economic damages. The system model is nonlinear with impulsive control dynamics, in order to cope more effectively with the actual control action to be applied, which should be performed in a finite number of discrete time instants. The dynamic optimization problem is solved using the NSGA-II, a fast and trustworthy multi-objective genetic algorithm. The results suggest a dual pest control policy, in which the relative price of control action versus the associated additional harvest yield determines the usage of either a low control action strategy or a higher one.

  1. Evolutionary Algorithm for Optimal Vaccination Scheme

    NASA Astrophysics Data System (ADS)

    Parousis-Orthodoxou, K. J.; Vlachos, D. S.

    2014-03-01

    The following work uses the dynamic capabilities of an evolutionary algorithm in order to obtain an optimal immunization strategy in a user specified network. The produced algorithm uses a basic genetic algorithm with crossover and mutation techniques, in order to locate certain nodes in the inputted network. These nodes will be immunized in an SIR epidemic spreading process, and the performance of each immunization scheme, will be evaluated by the level of containment that provides for the spreading of the disease.

  2. Maximizing Submodular Functions under Matroid Constraints by Evolutionary Algorithms.

    PubMed

    Friedrich, Tobias; Neumann, Frank

    2015-01-01

    Many combinatorial optimization problems have underlying goal functions that are submodular. The classical goal is to find a good solution for a given submodular function f under a given set of constraints. In this paper, we investigate the runtime of a simple single objective evolutionary algorithm called (1 + 1) EA and a multiobjective evolutionary algorithm called GSEMO until they have obtained a good approximation for submodular functions. For the case of monotone submodular functions and uniform cardinality constraints, we show that the GSEMO achieves a (1 - 1/e)-approximation in expected polynomial time. For the case of monotone functions where the constraints are given by the intersection of K ≥ 2 matroids, we show that the (1 + 1) EA achieves a (1/k + δ)-approximation in expected polynomial time for any constant δ > 0. Turning to nonmonotone symmetric submodular functions with k ≥ 1 matroid intersection constraints, we show that the GSEMO achieves a 1/((k + 2)(1 + ε))-approximation in expected time O(n(k + 6)log(n)/ε.

  3. Effective multi-objective optimization with the coral reefs optimization algorithm

    NASA Astrophysics Data System (ADS)

    Salcedo-Sanz, S.; Pastor-Sánchez, A.; Portilla-Figueras, J. A.; Prieto, L.

    2016-06-01

    In this article a new algorithm for multi-objective optimization is presented, the Multi-Objective Coral Reefs Optimization (MO-CRO) algorithm. The algorithm is based on the simulation of processes in coral reefs, such as corals' reproduction and fight for space in the reef. The adaptation to multi-objective problems is a process based on domination or non-domination during the process of fight for space in the reef. The final MO-CRO is an easily-implemented and fast algorithm, simple and robust, since it is able to keep diversity in the population of corals (solutions) in a natural way. The experimental evaluation of this new approach for multi-objective optimization problems is carried out on different multi-objective benchmark problems, where the MO-CRO has shown excellent performance in cases with limited computational resources, and in a real-world problem of wind speed prediction, where the MO-CRO algorithm is used to find the best set of features to predict the wind speed, taking into account two objective functions related to the performance of the prediction and the computation time of the regressor.

  4. Evolutionary development of path planning algorithms

    SciTech Connect

    Hage, M

    1998-09-01

    This paper describes the use of evolutionary software techniques for developing both genetic algorithms and genetic programs. Genetic algorithms are evolved to solve a specific problem within a fixed and known environment. While genetic algorithms can evolve to become very optimized for their task, they often are very specialized and perform poorly if the environment changes. Genetic programs are evolved through simultaneous training in a variety of environments to develop a more general controller behavior that operates in unknown environments. Performance of genetic programs is less optimal than a specially bred algorithm for an individual environment, but the controller performs acceptably under a wider variety of circumstances. The example problem addressed in this paper is evolutionary development of algorithms and programs for path planning in nuclear environments, such as Chernobyl.

  5. A new optimization algorithm based on a combination of particle swarm optimization, convergence and divergence operators for single-objective and multi-objective problems

    NASA Astrophysics Data System (ADS)

    Mahmoodabadi, M. J.; Bagheri, A.; Nariman-zadeh, N.; Jamali, A.

    2012-10-01

    Particle swarm optimization (PSO) is a randomized and population-based optimization method that was inspired by the flocking behaviour of birds and human social interactions. In this work, multi-objective PSO is modified in two stages. In the first stage, PSO is combined with convergence and divergence operators. Here, this method is named CDPSO. In the second stage, to produce a set of Pareto optimal solutions which has good convergence, diversity and distribution, two mechanisms are used. In the first mechanism, a new leader selection method is defined, which uses the periodic iteration and the concept of the particle's neighbour number. This method is named periodic multi-objective algorithm. In the second mechanism, an adaptive elimination method is employed to limit the number of non-dominated solutions in the archive, which has influences on computational time, convergence and diversity of solution. Single-objective results show that CDPSO performs very well on the complex test functions in terms of solution accuracy and convergence speed. Furthermore, some benchmark functions are used to evaluate the performance of periodic multi-objective CDPSO. This analysis demonstrates that the proposed algorithm operates better in three metrics through comparison with three well-known elitist multi-objective evolutionary algorithms. Finally, the algorithm is used for Pareto optimal design of a two-degree of freedom vehicle vibration model. The conflicting objective functions are sprung mass acceleration and relative displacement between sprung mass and tyre. The feasibility and efficiency of periodic multi-objective CDPSO are assessed in comparison with multi-objective modified NSGAII.

  6. Multi-objective evolutionary optimization for greywater reuse in municipal sewer systems.

    PubMed

    Penn, Roni; Friedler, Eran; Ostfeld, Avi

    2013-10-01

    Sustainable design and implementation of greywater reuse (GWR) has to achieve an optimum compromise between costs and potable water demand reduction. Studies show that GWR is an efficient tool for reducing potable water demand. This study presents a multi-objective optimization model for estimating the optimal distribution of different types of GWR homes in an existing municipal sewer system. Six types of GWR homes were examined. The model constrains the momentary wastewater (WW) velocity in the sewer pipes (which is responsible for solids movement). The objective functions in the optimization model are the total WW flow at the outlet of the neighborhoods sewer system and the cost of the on-site GWR treatment system. The optimization routing was achieved by an evolutionary multi-objective optimization coupled with hydrodynamic simulations of a representative sewer system of a neighborhood located at the coast of Israel. The two non-dominated best solutions selected were the ones having either the smallest WW flow discharged at the outlet of the neighborhood sewer system or the lowest daily cost. In both solutions most of the GWR types chosen were the types resulting with the smallest water usage. This lead to only a small difference between the two best solutions, regarding the diurnal patterns of the WW flows at the outlet of the neighborhood sewer system. However, in the upstream link a substantial difference was depicted between the diurnal patterns. This difference occurred since to the upstream links only few homes, implementing the same type of GWR, discharge their WW, and in each solution a different type of GWR was implemented in these upstream homes. To the best of our knowledge this is the first multi-objective optimization model aimed at quantitatively trading off the cost of local/onsite GW spatially distributed reuse treatments, and the total amount of WW flow discharged into the municipal sewer system under unsteady flow conditions.

  7. Multi-Objective Algorithm for Blood Supply via Unmanned Aerial Vehicles to the Wounded in an Emergency Situation.

    PubMed

    Wen, Tingxi; Zhang, Zhongnan; Wong, Kelvin K L

    2016-01-01

    Unmanned aerial vehicle (UAV) has been widely used in many industries. In the medical environment, especially in some emergency situations, UAVs play an important role such as the supply of medicines and blood with speed and efficiency. In this paper, we study the problem of multi-objective blood supply by UAVs in such emergency situations. This is a complex problem that includes maintenance of the supply blood's temperature model during transportation, the UAVs' scheduling and routes' planning in case of multiple sites requesting blood, and limited carrying capacity. Most importantly, we need to study the blood's temperature change due to the external environment, the heating agent (or refrigerant) and time factor during transportation, and propose an optimal method for calculating the mixing proportion of blood and appendage in different circumstances and delivery conditions. Then, by introducing the idea of transportation appendage into the traditional Capacitated Vehicle Routing Problem (CVRP), this new problem is proposed according to the factors of distance and weight. Algorithmically, we use the combination of decomposition-based multi-objective evolutionary algorithm and local search method to perform a series of experiments on the CVRP public dataset. By comparing our technique with the traditional ones, our algorithm can obtain better optimization results and time performance.

  8. Multi-Objective Algorithm for Blood Supply via Unmanned Aerial Vehicles to the Wounded in an Emergency Situation

    PubMed Central

    Wen, Tingxi; Zhang, Zhongnan; Wong, Kelvin K. L.

    2016-01-01

    Unmanned aerial vehicle (UAV) has been widely used in many industries. In the medical environment, especially in some emergency situations, UAVs play an important role such as the supply of medicines and blood with speed and efficiency. In this paper, we study the problem of multi-objective blood supply by UAVs in such emergency situations. This is a complex problem that includes maintenance of the supply blood’s temperature model during transportation, the UAVs’ scheduling and routes’ planning in case of multiple sites requesting blood, and limited carrying capacity. Most importantly, we need to study the blood’s temperature change due to the external environment, the heating agent (or refrigerant) and time factor during transportation, and propose an optimal method for calculating the mixing proportion of blood and appendage in different circumstances and delivery conditions. Then, by introducing the idea of transportation appendage into the traditional Capacitated Vehicle Routing Problem (CVRP), this new problem is proposed according to the factors of distance and weight. Algorithmically, we use the combination of decomposition-based multi-objective evolutionary algorithm and local search method to perform a series of experiments on the CVRP public dataset. By comparing our technique with the traditional ones, our algorithm can obtain better optimization results and time performance. PMID:27163361

  9. Multi-Objective Algorithm for Blood Supply via Unmanned Aerial Vehicles to the Wounded in an Emergency Situation.

    PubMed

    Wen, Tingxi; Zhang, Zhongnan; Wong, Kelvin K L

    2016-01-01

    Unmanned aerial vehicle (UAV) has been widely used in many industries. In the medical environment, especially in some emergency situations, UAVs play an important role such as the supply of medicines and blood with speed and efficiency. In this paper, we study the problem of multi-objective blood supply by UAVs in such emergency situations. This is a complex problem that includes maintenance of the supply blood's temperature model during transportation, the UAVs' scheduling and routes' planning in case of multiple sites requesting blood, and limited carrying capacity. Most importantly, we need to study the blood's temperature change due to the external environment, the heating agent (or refrigerant) and time factor during transportation, and propose an optimal method for calculating the mixing proportion of blood and appendage in different circumstances and delivery conditions. Then, by introducing the idea of transportation appendage into the traditional Capacitated Vehicle Routing Problem (CVRP), this new problem is proposed according to the factors of distance and weight. Algorithmically, we use the combination of decomposition-based multi-objective evolutionary algorithm and local search method to perform a series of experiments on the CVRP public dataset. By comparing our technique with the traditional ones, our algorithm can obtain better optimization results and time performance. PMID:27163361

  10. Knowledge Guided Evolutionary Algorithms in Financial Investing

    ERIC Educational Resources Information Center

    Wimmer, Hayden

    2013-01-01

    A large body of literature exists on evolutionary computing, genetic algorithms, decision trees, codified knowledge, and knowledge management systems; however, the intersection of these computing topics has not been widely researched. Moving through the set of all possible solutions--or traversing the search space--at random exhibits no control…

  11. Multi-objective optimization of combined Brayton and inverse Brayton cycles using advanced optimization algorithms

    NASA Astrophysics Data System (ADS)

    Venkata Rao, R.; Patel, Vivek

    2012-08-01

    This study explores the use of teaching-learning-based optimization (TLBO) and artificial bee colony (ABC) algorithms for determining the optimum operating conditions of combined Brayton and inverse Brayton cycles. Maximization of thermal efficiency and specific work of the system are considered as the objective functions and are treated simultaneously for multi-objective optimization. Upper cycle pressure ratio and bottom cycle expansion pressure of the system are considered as design variables for the multi-objective optimization. An application example is presented to demonstrate the effectiveness and accuracy of the proposed algorithms. The results of optimization using the proposed algorithms are validated by comparing with those obtained by using the genetic algorithm (GA) and particle swarm optimization (PSO) on the same example. Improvement in the results is obtained by the proposed algorithms. The results of effect of variation of the algorithm parameters on the convergence and fitness values of the objective functions are reported.

  12. Protein Structure Prediction with Evolutionary Algorithms

    SciTech Connect

    Hart, W.E.; Krasnogor, N.; Pelta, D.A.; Smith, J.

    1999-02-08

    Evolutionary algorithms have been successfully applied to a variety of molecular structure prediction problems. In this paper we reconsider the design of genetic algorithms that have been applied to a simple protein structure prediction problem. Our analysis considers the impact of several algorithmic factors for this problem: the confirmational representation, the energy formulation and the way in which infeasible conformations are penalized, Further we empirically evaluated the impact of these factors on a small set of polymer sequences. Our analysis leads to specific recommendations for both GAs as well as other heuristic methods for solving PSP on the HP model.

  13. Bell-Curve Based Evolutionary Optimization Algorithm

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, J.; Laba, K.; Kincaid, R.

    1998-01-01

    The paper presents an optimization algorithm that falls in the category of genetic, or evolutionary algorithms. While the bit exchange is the basis of most of the Genetic Algorithms (GA) in research and applications in America, some alternatives, also in the category of evolutionary algorithms, but use a direct, geometrical approach have gained popularity in Europe and Asia. The Bell-Curve Based Evolutionary Algorithm (BCB) is in this alternative category and is distinguished by the use of a combination of n-dimensional geometry and the normal distribution, the bell-curve, in the generation of the offspring. The tool for creating a child is a geometrical construct comprising a line connecting two parents and a weighted point on that line. The point that defines the child deviates from the weighted point in two directions: parallel and orthogonal to the connecting line, the deviation in each direction obeying a probabilistic distribution. Tests showed satisfactory performance of BCB. The principal advantage of BCB is its controllability via the normal distribution parameters and the geometrical construct variables.

  14. Efficiency Enhancement Of Helix Traveling Wave Tube Based On ɛMulti-Objective Evolutionary Algorithm

    NASA Astrophysics Data System (ADS)

    Li, Guo-Chao; Liu, Pu-Kun; Xiao, Liu; Hao, Bao-Liang

    2010-04-01

    A two-dimensional non-linear helix traveling wave tube (TWT) theory in frequency-domain is described in this article and the theory is integrated with ɛ Multi-Objective Evolutionary Algorithm(MOEA). The efficiency optimization of a helix TWT with phase taper has been done. The optimization results was verified by a three dimensional nonlinear model. The results show the feasibility and reliability of the optimization algorithm and the two-dimensional nonlinear theory. The integrated program can provide calculable parameters for the design of helix TWT. It can also accelerate development process and reduce test costs.

  15. Optimal design of groundwater remediation systems using a multi-objective fast harmony search algorithm

    NASA Astrophysics Data System (ADS)

    Luo, Qiankun; Wu, Jianfeng; Sun, Xiaomin; Yang, Yun; Wu, Jichun

    2012-12-01

    A new multi-objective optimization methodology is developed, whereby a multi-objective fast harmony search (MOFHS) is coupled with a groundwater flow and transport model to search for optimal design of groundwater remediation systems under general hydrogeological conditions. The MOFHS incorporates the niche technique into the previously improved fast harmony search and is enhanced by adding the Pareto solution set filter and an elite individual preservation strategy to guarantee uniformity and integrity of the Pareto front of multi-objective optimization problems. Also, the operation library of individual fitness is introduced to improve calculation speed. Moreover, the MOFHS is coupled with the commonly used flow and transport codes MODFLOW and MT3DMS, to search for optimal design of pump-and-treat systems, aiming at minimization of the remediation cost and minimization of the mass remaining in aquifers. Compared with three existing multi-objective optimization methods, including the improved niched Pareto genetic algorithm (INPGA), the non-dominated sorting genetic algorithm II (NSGAII), and the multi-objective harmony search (MOHS), the proposed methodology then demonstrated its applicability and efficiency through a two-dimensional hypothetical test problem and a three-dimensional field problem in Indiana (USA).

  16. Efficiency of Evolutionary Algorithms for Calibration of Watershed Models

    NASA Astrophysics Data System (ADS)

    Ahmadi, M.; Arabi, M.

    2009-12-01

    Since the promulgation of the Clean Water Act in the U.S. and other similar legislations around the world over the past three decades, watershed management programs have focused on the nexus of pollution prevention and mitigation. In this context, hydrologic/water quality models have been increasingly embedded in the decision making process. Simulation models are now commonly used to investigate the hydrologic response of watershed systems under varying climatic and land use conditions, and also to study the fate and transport of contaminants at various spatiotemporal scales. Adequate calibration and corroboration of models for various outputs at varying scales is an essential component of watershed modeling. The parameter estimation process could be challenging when multiple objectives are important. For example, improving streamflow predictions of the model at a stream location may result in degradation of model predictions for sediments and/or nutrient at the same location or other outlets. This paper aims to evaluate the applicability and efficiency of single and multi objective evolutionary algorithms for parameter estimation of complex watershed models. To this end, the Shuffled Complex Evolution (SCE-UA) algorithm, a single-objective genetic algorithm (GA), and a multi-objective genetic algorithm (i.e., NSGA-II) were reconciled with the Soil and Water Assessment Tool (SWAT) to calibrate the model at various locations within the Wildcat Creek Watershed, Indiana. The efficiency of these methods were investigated using different error statistics including root mean square error, coefficient of determination and Nash-Sutcliffe efficiency coefficient for the output variables as well as the baseflow component of the stream discharge. A sensitivity analysis was carried out to screening model parameters that bear significant uncertainties. Results indicated that while flow processes can be reasonably ascertained, parameterization of nutrient and pesticide processes

  17. Evolutionary algorithms and multi-agent systems

    NASA Astrophysics Data System (ADS)

    Oh, Jae C.

    2006-05-01

    This paper discusses how evolutionary algorithms are related to multi-agent systems and the possibility of military applications using the two disciplines. In particular, we present a game theoretic model for multi-agent resource distribution and allocation where agents in the environment must help each other to survive. Each agent maintains a set of variables representing actual friendship and perceived friendship. The model directly addresses problems in reputation management schemes in multi-agent systems and Peer-to-Peer distributed systems. We present algorithms based on evolutionary game process for maintaining the friendship values as well as a utility equation used in each agent's decision making. For an application problem, we adapted our formal model to the military coalition support problem in peace-keeping missions. Simulation results show that efficient resource allocation and sharing with minimum communication cost is achieved without centralized control.

  18. Evolutionary multi-objective optimization based comparison of multi-column chromatographic separation processes for a ternary separation.

    PubMed

    Heinonen, Jari; Kukkonen, Saku; Sainio, Tuomo

    2014-09-01

    Performance characteristics of two advanced multi-column chromatographic separation processes with discontinuous feed, Multi-Column Recycling Chromatogrphy (MCRC) and Japan Organo (JO), were investigated for a ternary separation using multi-objective optimization with an evolutionary algorithm. Conventional batch process was used as a reference. Fractionation of a concentrated acid hydrolysate of wood biomass into sulfuric acid, monosaccharide, and acetic acid fractions was used as a model system. Comparison of the separation processes was based on selected performance parameters in their optimized states. Flow rates and step durations were taken as decision variables whereas the column configuration and dimensions were fixed. The MCRC process was found to be considerably more efficient than the other processes with respect to eluent consumption. The batch process gave the highest productivity and the JO process the lowest. Both of the multi-column processes gave significantly higher monosaccharide yield than the batch process. When eluent consumption and monosaccharide yield are taken into account together with productivity, the MCRC process was found to be the most efficient in the studied case. PMID:25060000

  19. PARALLEL MULTIOBJECTIVE EVOLUTIONARY ALGORITHMS FOR WASTE SOLVENT RECYCLING

    EPA Science Inventory

    Waste solvents are of great concern to the chemical process industries and to the public, and many technologies have been suggested and implemented in the chemical process industries to reduce waste and associated environmental impacts. In this article we have developed a novel p...

  20. Adaptive Routing Algorithm in Wireless Communication Networks Using Evolutionary Algorithm

    NASA Astrophysics Data System (ADS)

    Yan, Xuesong; Wu, Qinghua; Cai, Zhihua

    At present, mobile communications traffic routing designs are complicated because there are more systems inter-connecting to one another. For example, Mobile Communication in the wireless communication networks has two routing design conditions to consider, i.e. the circuit switching and the packet switching. The problem in the Packet Switching routing design is its use of high-speed transmission link and its dynamic routing nature. In this paper, Evolutionary Algorithms is used to determine the best solution and the shortest communication paths. We developed a Genetic Optimization Process that can help network planners solving the best solutions or the best paths of routing table in wireless communication networks are easily and quickly. From the experiment results can be noted that the evolutionary algorithm not only gets good solutions, but also a more predictable running time when compared to sequential genetic algorithm.

  1. DNA strand generation for DNA computing by using a multi-objective differential evolution algorithm.

    PubMed

    Chaves-González, José M; Vega-Rodríguez, Miguel A

    2014-02-01

    In this paper, we use an adapted multi-objective version of the differential evolution (DE) metaheuristics for the design and generation of reliable DNA libraries that can be used for computation. DNA sequence design is a very relevant task in many recent research fields, e.g. nanotechnology or DNA computing. Specifically, DNA computing is a new computational model which uses DNA molecules as information storage and their possible biological interactions as processing operators. Therefore, the possible reactions and interactions among molecules must be strictly controlled to prevent incorrect computations. The design of reliable DNA libraries for bio-molecular computing is an NP-hard combinatorial problem which involves many heterogeneous and conflicting design criteria. For this reason, we modelled DNA sequence design as a multiobjective optimization problem and we solved it by using an adapted multi-objective version of DE metaheuristics. Seven different bio-chemical design criteria have been simultaneously considered to obtain high quality DNA sequences which are suitable for molecular computing. Furthermore, we have developed the multiobjective standard fast non-dominated sorting genetic algorithm (NSGA-II) in order to perform a formal comparative study by using multi-objective indicators. Additionally, we have also compared our results with other relevant results published in the literature. We conclude that our proposal is a promising approach which is able to generate reliable real-world DNA sequences that significantly improve other DNA libraries previously published in the literature.

  2. Automated Antenna Design with Evolutionary Algorithms

    NASA Technical Reports Server (NTRS)

    Linden, Derek; Hornby, Greg; Lohn, Jason; Globus, Al; Krishunkumor, K.

    2006-01-01

    Current methods of designing and optimizing antennas by hand are time and labor intensive, and limit complexity. Evolutionary design techniques can overcome these limitations by searching the design space and automatically finding effective solutions. In recent years, evolutionary algorithms have shown great promise in finding practical solutions in large, poorly understood design spaces. In particular, spacecraft antenna design has proven tractable to evolutionary design techniques. Researchers have been investigating evolutionary antenna design and optimization since the early 1990s, and the field has grown in recent years as computer speed has increased and electromagnetic simulators have improved. Two requirements-compliant antennas, one for ST5 and another for TDRS-C, have been automatically designed by evolutionary algorithms. The ST5 antenna is slated to fly this year, and a TDRS-C phased array element has been fabricated and tested. Such automated evolutionary design is enabled by medium-to-high quality simulators and fast modern computers to evaluate computer-generated designs. Evolutionary algorithms automate cut-and-try engineering, substituting automated search though millions of potential designs for intelligent search by engineers through a much smaller number of designs. For evolutionary design, the engineer chooses the evolutionary technique, parameters and the basic form of the antenna, e.g., single wire for ST5 and crossed-element Yagi for TDRS-C. Evolutionary algorithms then search for optimal configurations in the space defined by the engineer. NASA's Space Technology 5 (ST5) mission will launch three small spacecraft to test innovative concepts and technologies. Advanced evolutionary algorithms were used to automatically design antennas for ST5. The combination of wide beamwidth for a circularly-polarized wave and wide impedance bandwidth made for a challenging antenna design problem. From past experience in designing wire antennas, we chose to

  3. Predicting polymeric crystal structures by evolutionary algorithms

    NASA Astrophysics Data System (ADS)

    Zhu, Qiang; Sharma, Vinit; Oganov, Artem R.; Ramprasad, Ramamurthy

    2014-10-01

    The recently developed evolutionary algorithm USPEX proved to be a tool that enables accurate and reliable prediction of structures. Here we extend this method to predict the crystal structure of polymers by constrained evolutionary search, where each monomeric unit is treated as a building block with fixed connectivity. This greatly reduces the search space and allows the initial structure generation with different sequences and packings of these blocks. The new constrained evolutionary algorithm is successfully tested and validated on a diverse range of experimentally known polymers, namely, polyethylene, polyacetylene, poly(glycolic acid), poly(vinyl chloride), poly(oxymethylene), poly(phenylene oxide), and poly (p-phenylene sulfide). By fixing the orientation of polymeric chains, this method can be further extended to predict the structures of complex linear polymers, such as all polymorphs of poly(vinylidene fluoride), nylon-6 and cellulose. The excellent agreement between predicted crystal structures and experimentally known structures assures a major role of this approach in the efficient design of the future polymeric materials.

  4. Intervals in evolutionary algorithms for global optimization

    SciTech Connect

    Patil, R.B.

    1995-05-01

    Optimization is of central concern to a number of disciplines. Interval Arithmetic methods for global optimization provide us with (guaranteed) verified results. These methods are mainly restricted to the classes of objective functions that are twice differentiable and use a simple strategy of eliminating a splitting larger regions of search space in the global optimization process. An efficient approach that combines the efficient strategy from Interval Global Optimization Methods and robustness of the Evolutionary Algorithms is proposed. In the proposed approach, search begins with randomly created interval vectors with interval widths equal to the whole domain. Before the beginning of the evolutionary process, fitness of these interval parameter vectors is defined by evaluating the objective function at the center of the initial interval vectors. In the subsequent evolutionary process the local optimization process returns an estimate of the bounds of the objective function over the interval vectors. Though these bounds may not be correct at the beginning due to large interval widths and complicated function properties, the process of reducing interval widths over time and a selection approach similar to simulated annealing helps in estimating reasonably correct bounds as the population evolves. The interval parameter vectors at these estimated bounds (local optima) are then subjected to crossover and mutation operators. This evolutionary process continues for predetermined number of generations in the search of the global optimum.

  5. Optimal Golomb Ruler Sequences Generation for Optical WDM Systems: A Novel Parallel Hybrid Multi-objective Bat Algorithm

    NASA Astrophysics Data System (ADS)

    Bansal, Shonak; Singh, Arun Kumar; Gupta, Neena

    2016-07-01

    In real-life, multi-objective engineering design problems are very tough and time consuming optimization problems due to their high degree of nonlinearities, complexities and inhomogeneity. Nature-inspired based multi-objective optimization algorithms are now becoming popular for solving multi-objective engineering design problems. This paper proposes original multi-objective Bat algorithm (MOBA) and its extended form, namely, novel parallel hybrid multi-objective Bat algorithm (PHMOBA) to generate shortest length Golomb ruler called optimal Golomb ruler (OGR) sequences at a reasonable computation time. The OGRs found their application in optical wavelength division multiplexing (WDM) systems as channel-allocation algorithm to reduce the four-wave mixing (FWM) crosstalk. The performances of both the proposed algorithms to generate OGRs as optical WDM channel-allocation is compared with other existing classical computing and nature-inspired algorithms, including extended quadratic congruence (EQC), search algorithm (SA), genetic algorithms (GAs), biogeography based optimization (BBO) and big bang-big crunch (BB-BC) optimization algorithms. Simulations conclude that the proposed parallel hybrid multi-objective Bat algorithm works efficiently as compared to original multi-objective Bat algorithm and other existing algorithms to generate OGRs for optical WDM systems. The algorithm PHMOBA to generate OGRs, has higher convergence and success rate than original MOBA. The efficiency improvement of proposed PHMOBA to generate OGRs up to 20-marks, in terms of ruler length and total optical channel bandwidth (TBW) is 100 %, whereas for original MOBA is 85 %. Finally the implications for further research are also discussed.

  6. Strength Pareto particle swarm optimization and hybrid EA-PSO for multi-objective optimization.

    PubMed

    Elhossini, Ahmed; Areibi, Shawki; Dony, Robert

    2010-01-01

    This paper proposes an efficient particle swarm optimization (PSO) technique that can handle multi-objective optimization problems. It is based on the strength Pareto approach originally used in evolutionary algorithms (EA). The proposed modified particle swarm algorithm is used to build three hybrid EA-PSO algorithms to solve different multi-objective optimization problems. This algorithm and its hybrid forms are tested using seven benchmarks from the literature and the results are compared to the strength Pareto evolutionary algorithm (SPEA2) and a competitive multi-objective PSO using several metrics. The proposed algorithm shows a slower convergence, compared to the other algorithms, but requires less CPU time. Combining PSO and evolutionary algorithms leads to superior hybrid algorithms that outperform SPEA2, the competitive multi-objective PSO (MO-PSO), and the proposed strength Pareto PSO based on different metrics.

  7. Selection of relevant input variables in storm water quality modeling by multiobjective evolutionary polynomial regression paradigm

    NASA Astrophysics Data System (ADS)

    Creaco, E.; Berardi, L.; Sun, Siao; Giustolisi, O.; Savic, D.

    2016-04-01

    The growing availability of field data, from information and communication technologies (ICTs) in "smart" urban infrastructures, allows data modeling to understand complex phenomena and to support management decisions. Among the analyzed phenomena, those related to storm water quality modeling have recently been gaining interest in the scientific literature. Nonetheless, the large amount of available data poses the problem of selecting relevant variables to describe a phenomenon and enable robust data modeling. This paper presents a procedure for the selection of relevant input variables using the multiobjective evolutionary polynomial regression (EPR-MOGA) paradigm. The procedure is based on scrutinizing the explanatory variables that appear inside the set of EPR-MOGA symbolic model expressions of increasing complexity and goodness of fit to target output. The strategy also enables the selection to be validated by engineering judgement. In such context, the multiple case study extension of EPR-MOGA, called MCS-EPR-MOGA, is adopted. The application of the proposed procedure to modeling storm water quality parameters in two French catchments shows that it was able to significantly reduce the number of explanatory variables for successive analyses. Finally, the EPR-MOGA models obtained after the input selection are compared with those obtained by using the same technique without benefitting from input selection and with those obtained in previous works where other data-modeling techniques were used on the same data. The comparison highlights the effectiveness of both EPR-MOGA and the input selection procedure.

  8. An Evolutionary Algorithm for Improved Diversity in DSL Spectrum Balancing Solutions

    NASA Astrophysics Data System (ADS)

    Bezerra, Johelden; Klautau, Aldebaro; Monteiro, Marcio; Pelaes, Evaldo; Medeiros, Eduardo; Dortschy, Boris

    2010-12-01

    There are many spectrum balancing algorithms to combat the deleterious impact of crosstalk interference in digital subscriber lines (DSL) networks. These algorithms aim to find a unique operating point by optimizing the power spectral densities (PSDs) of the modems. Typically, the figure of merit of this optimization is the bit rate, power consumption or margin. This work poses and solves a different problem: instead of providing the solution for one specific operation point, it finds a set of operating points, each one corresponding to a distinct matrix with PSDs. This solution is useful for planning DSL deployment, for example, helping operators to conveniently evaluate their network capabilities and better plan their usage. The proposed method is based on a multiobjective formulation and implemented as an evolutionary genetic algorithm. Simulation results show that this algorithm achieves a better diversity among the operating points with lower computational cost when compared to an alternative approach.

  9. Design and optimization of pulsed Chemical Exchange Saturation Transfer MRI using a multiobjective genetic algorithm.

    PubMed

    Yoshimaru, Eriko S; Randtke, Edward A; Pagel, Mark D; Cárdenas-Rodríguez, Julio

    2016-02-01

    Pulsed Chemical Exchange Saturation Transfer (CEST) MRI experimental parameters and RF saturation pulse shapes were optimized using a multiobjective genetic algorithm. The optimization was carried out for RF saturation duty cycles of 50% and 90%, and results were compared to continuous wave saturation and Gaussian waveform. In both simulation and phantom experiments, continuous wave saturation performed the best, followed by parameters and shapes optimized by the genetic algorithm and then followed by Gaussian waveform. We have successfully demonstrated that the genetic algorithm is able to optimize pulse CEST parameters and that the results are translatable to clinical scanners. PMID:26778301

  10. Design and optimization of pulsed Chemical Exchange Saturation Transfer MRI using a multiobjective genetic algorithm

    NASA Astrophysics Data System (ADS)

    Yoshimaru, Eriko S.; Randtke, Edward A.; Pagel, Mark D.; Cárdenas-Rodríguez, Julio

    2016-02-01

    Pulsed Chemical Exchange Saturation Transfer (CEST) MRI experimental parameters and RF saturation pulse shapes were optimized using a multiobjective genetic algorithm. The optimization was carried out for RF saturation duty cycles of 50% and 90%, and results were compared to continuous wave saturation and Gaussian waveform. In both simulation and phantom experiments, continuous wave saturation performed the best, followed by parameters and shapes optimized by the genetic algorithm and then followed by Gaussian waveform. We have successfully demonstrated that the genetic algorithm is able to optimize pulse CEST parameters and that the results are translatable to clinical scanners.

  11. Multi-objective optimization of a parallel ankle rehabilitation robot using modified differential evolution algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Congzhe; Fang, Yuefa; Guo, Sheng

    2015-07-01

    Dimensional synthesis is one of the most difficult issues in the field of parallel robots with actuation redundancy. To deal with the optimal design of a redundantly actuated parallel robot used for ankle rehabilitation, a methodology of dimensional synthesis based on multi-objective optimization is presented. First, the dimensional synthesis of the redundant parallel robot is formulated as a nonlinear constrained multi-objective optimization problem. Then four objective functions, separately reflecting occupied space, input/output transmission and torque performances, and multi-criteria constraints, such as dimension, interference and kinematics, are defined. In consideration of the passive exercise of plantar/dorsiflexion requiring large output moment, a torque index is proposed. To cope with the actuation redundancy of the parallel robot, a new output transmission index is defined as well. The multi-objective optimization problem is solved by using a modified Differential Evolution(DE) algorithm, which is characterized by new selection and mutation strategies. Meanwhile, a special penalty method is presented to tackle the multi-criteria constraints. Finally, numerical experiments for different optimization algorithms are implemented. The computation results show that the proposed indices of output transmission and torque, and constraint handling are effective for the redundant parallel robot; the modified DE algorithm is superior to the other tested algorithms, in terms of the ability of global search and the number of non-dominated solutions. The proposed methodology of multi-objective optimization can be also applied to the dimensional synthesis of other redundantly actuated parallel robots only with rotational movements.

  12. Multiobjective synchronization of coupled systems

    NASA Astrophysics Data System (ADS)

    Tang, Yang; Wang, Zidong; Wong, W. K.; Kurths, Jürgen; Fang, Jian-an

    2011-06-01

    In this paper, multiobjective synchronization of chaotic systems is investigated by especially simultaneously minimizing optimization of control cost and convergence speed. The coupling form and coupling strength are optimized by an improved multiobjective evolutionary approach that includes a hybrid chromosome representation. The hybrid encoding scheme combines binary representation with real number representation. The constraints on the coupling form are also considered by converting the multiobjective synchronization into a multiobjective constraint problem. In addition, the performances of the adaptive learning method and non-dominated sorting genetic algorithm-II as well as the effectiveness and contributions of the proposed approach are analyzed and validated through the Rössler system in a chaotic or hyperchaotic regime and delayed chaotic neural networks.

  13. Performance Comparison Of Evolutionary Algorithms For Image Clustering

    NASA Astrophysics Data System (ADS)

    Civicioglu, P.; Atasever, U. H.; Ozkan, C.; Besdok, E.; Karkinli, A. E.; Kesikoglu, A.

    2014-09-01

    Evolutionary computation tools are able to process real valued numerical sets in order to extract suboptimal solution of designed problem. Data clustering algorithms have been intensively used for image segmentation in remote sensing applications. Despite of wide usage of evolutionary algorithms on data clustering, their clustering performances have been scarcely studied by using clustering validation indexes. In this paper, the recently proposed evolutionary algorithms (i.e., Artificial Bee Colony Algorithm (ABC), Gravitational Search Algorithm (GSA), Cuckoo Search Algorithm (CS), Adaptive Differential Evolution Algorithm (JADE), Differential Search Algorithm (DSA) and Backtracking Search Optimization Algorithm (BSA)) and some classical image clustering techniques (i.e., k-means, fcm, som networks) have been used to cluster images and their performances have been compared by using four clustering validation indexes. Experimental test results exposed that evolutionary algorithms give more reliable cluster-centers than classical clustering techniques, but their convergence time is quite long.

  14. Pareto design of state feedback tracking control of a biped robot via multiobjective PSO in comparison with sigma method and genetic algorithms: modified NSGAII and MATLAB's toolbox.

    PubMed

    Mahmoodabadi, M J; Taherkhorsandi, M; Bagheri, A

    2014-01-01

    An optimal robust state feedback tracking controller is introduced to control a biped robot. In the literature, the parameters of the controller are usually determined by a tedious trial and error process. To eliminate this process and design the parameters of the proposed controller, the multiobjective evolutionary algorithms, that is, the proposed method, modified NSGAII, Sigma method, and MATLAB's Toolbox MOGA, are employed in this study. Among the used evolutionary optimization algorithms to design the controller for biped robots, the proposed method operates better in the aspect of designing the controller since it provides ample opportunities for designers to choose the most appropriate point based upon the design criteria. Three points are chosen from the nondominated solutions of the obtained Pareto front based on two conflicting objective functions, that is, the normalized summation of angle errors and normalized summation of control effort. Obtained results elucidate the efficiency of the proposed controller in order to control a biped robot.

  15. Seeking sustainability: multiobjective evolutionary optimization for urban wastewater reuse in China.

    PubMed

    Zhang, Wenlong; Wang, Chao; Li, Yi; Wang, Peifang; Wang, Qing; Wang, Dawei

    2014-01-21

    Sustainable design and implementation of wastewater reuse in China have to achieve an optimum compromise among water resources augmenting, pollutants reduction and economic profit. A systematic framework with a multiobjective optimization model is first developed considering the trade-offs among wastewater reuse supplies and demands, costs and profits, as well as pollutants reduction. Pareto fronts of wastewater reuse optimization for 31 provinces of China are obtained through nondominated sorting genetic algorithm trials. The control strategies for each province are selected on the basis of regional water resources and water environment status. On the national level, the control strategies of wastewater reuse scale, BOD5 reduction, and economic profit are 15.39 billion cubic meters, 176.31 kilotons, and 9.68 billion RMB Yuan, respectively. The driving forces of water resources augmenting and water pollution control play more important roles than economic profit during wastewater reuse expanding in China. According to the optimal allocations, reclaimed wastewater should be intensively used in municipal, domestic, and recreative sectors in the regions suffering from quantity-related water scarcity, while it should be focused on industrial users in the regions suffering from quality-related water scarcity. The results present a general picture of wastewater reuse for policy makers in China.

  16. Multi-objective Emergency Facility Location Problem Based on Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Zhao, Dan; Zhao, Yunsheng; Li, Zhenhua; Chen, Jin

    Recent years, emergent disasters have occurred frequently. This has attracted more attention on emergency management, especially the multi-objective emergency facility location problem (EFLP), a NP problem. However, few algorithms are efficient to solve the probleme and so the application of genetic algorithm (GA) can be a good choice. This paper first introduces the mathematical models for this problem and transforms it from complex constraints into simple constraints by punishment function. The solutions to the experiments are obtained by applying GA. The experiment results show that GA could solve the problems effectively.

  17. Multi-objective optimal design of feedback controls for dynamical systems with hybrid simple cell mapping algorithm

    NASA Astrophysics Data System (ADS)

    Xiong, Fu-Rui; Qin, Zhi-Chang; Xue, Yang; Schütze, Oliver; Ding, Qian; Sun, Jian-Qiao

    2014-05-01

    This paper presents a study of multi-objective optimal design of full state feedback controls. The goal of the design is to minimize several conflicting performance objective functions at the same time. The simple cell mapping method with a hybrid algorithm is used to find the multi-objective optimal design solutions. The multi-objective optimal design comes in a set of gains representing various compromises of the control system. Examples of regulation and tracking controls are presented to validate the control design.

  18. Multi-Objective Random Search Algorithm for Simultaneously Optimizing Wind Farm Layout and Number of Turbines

    NASA Astrophysics Data System (ADS)

    Feng, Ju; Shen, Wen Zhong; Xu, Chang

    2016-09-01

    A new algorithm for multi-objective wind farm layout optimization is presented. It formulates the wind turbine locations as continuous variables and is capable of optimizing the number of turbines and their locations in the wind farm simultaneously. Two objectives are considered. One is to maximize the total power production, which is calculated by considering the wake effects using the Jensen wake model combined with the local wind distribution. The other is to minimize the total electrical cable length. This length is assumed to be the total length of the minimal spanning tree that connects all turbines and is calculated by using Prim's algorithm. Constraints on wind farm boundary and wind turbine proximity are also considered. An ideal test case shows the proposed algorithm largely outperforms a famous multi-objective genetic algorithm (NSGA-II). In the real test case based on the Horn Rev 1 wind farm, the algorithm also obtains useful Pareto frontiers and provides a wide range of Pareto optimal layouts with different numbers of turbines for a real-life wind farm developer.

  19. Multi-objective optimization to predict muscle tensions in a pinch function using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Bensghaier, Amani; Romdhane, Lotfi; Benouezdou, Fethi

    2012-03-01

    This work is focused on the determination of the thumb and the index finger muscle tensions in a tip pinch task. A biomechanical model of the musculoskeletal system of the thumb and the index finger is developed. Due to the assumptions made in carrying out the biomechanical model, the formulated force analysis problem is indeterminate leading to an infinite number of solutions. Thus, constrained single and multi-objective optimization methodologies are used in order to explore the muscular redundancy and to predict optimal muscle tension distributions. Various models are investigated using the optimization process. The basic criteria to minimize are the sum of the muscle stresses, the sum of individual muscle tensions and the maximum muscle stress. The multi-objective optimization is solved using a Pareto genetic algorithm to obtain non-dominated solutions, defined as the set of optimal distributions of muscle tensions. The results show the advantage of the multi-objective formulation over the single objective one. The obtained solutions are compared to those available in the literature demonstrating the effectiveness of our approach in the analysis of the fingers musculoskeletal systems when predicting muscle tensions.

  20. Multidisciplinary design optimization of vehicle instrument panel based on multi-objective genetic algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Wu, Guangqiang

    2013-03-01

    Typical multidisciplinary design optimization(MDO) has gradually been proposed to balance performances of lightweight, noise, vibration and harshness(NVH) and safety for instrument panel(IP) structure in the automotive development. Nevertheless, plastic constitutive relation of Polypropylene(PP) under different strain rates, has not been taken into consideration in current reliability-based and collaborative IP MDO design. In this paper, based on tensile test under different strain rates, the constitutive relation of Polypropylene material is studied. Impact simulation tests for head and knee bolster are carried out to meet the regulation of FMVSS 201 and FMVSS 208, respectively. NVH analysis is performed to obtain mainly the natural frequencies and corresponding mode shapes, while the crashworthiness analysis is employed to examine the crash behavior of IP structure. With the consideration of lightweight, NVH, head and knee bolster impact performance, design of experiment(DOE), response surface model(RSM), and collaborative optimization(CO) are applied to realize the determined and reliability-based optimizations, respectively. Furthermore, based on multi-objective genetic algorithm(MOGA), the optimal Pareto sets are completed to solve the multi-objective optimization(MOO) problem. The proposed research ensures the smoothness of Pareto set, enhances the ability of engineers to make a comprehensive decision about multi-objectives and choose the optimal design, and improves the quality and efficiency of MDO.

  1. Automatic Tuning of a Retina Model for a Cortical Visual Neuroprosthesis Using a Multi-Objective Optimization Genetic Algorithm.

    PubMed

    Martínez-Álvarez, Antonio; Crespo-Cano, Rubén; Díaz-Tahoces, Ariadna; Cuenca-Asensi, Sergio; Ferrández Vicente, José Manuel; Fernández, Eduardo

    2016-11-01

    The retina is a very complex neural structure, which contains many different types of neurons interconnected with great precision, enabling sophisticated conditioning and coding of the visual information before it is passed via the optic nerve to higher visual centers. The encoding of visual information is one of the basic questions in visual and computational neuroscience and is also of seminal importance in the field of visual prostheses. In this framework, it is essential to have artificial retina systems to be able to function in a way as similar as possible to the biological retinas. This paper proposes an automatic evolutionary multi-objective strategy based on the NSGA-II algorithm for tuning retina models. Four metrics were adopted for guiding the algorithm in the search of those parameters that best approximate a synthetic retinal model output with real electrophysiological recordings. Results show that this procedure exhibits a high flexibility when different trade-offs has to be considered during the design of customized neuro prostheses.

  2. Automatic Tuning of a Retina Model for a Cortical Visual Neuroprosthesis Using a Multi-Objective Optimization Genetic Algorithm.

    PubMed

    Martínez-Álvarez, Antonio; Crespo-Cano, Rubén; Díaz-Tahoces, Ariadna; Cuenca-Asensi, Sergio; Ferrández Vicente, José Manuel; Fernández, Eduardo

    2016-11-01

    The retina is a very complex neural structure, which contains many different types of neurons interconnected with great precision, enabling sophisticated conditioning and coding of the visual information before it is passed via the optic nerve to higher visual centers. The encoding of visual information is one of the basic questions in visual and computational neuroscience and is also of seminal importance in the field of visual prostheses. In this framework, it is essential to have artificial retina systems to be able to function in a way as similar as possible to the biological retinas. This paper proposes an automatic evolutionary multi-objective strategy based on the NSGA-II algorithm for tuning retina models. Four metrics were adopted for guiding the algorithm in the search of those parameters that best approximate a synthetic retinal model output with real electrophysiological recordings. Results show that this procedure exhibits a high flexibility when different trade-offs has to be considered during the design of customized neuro prostheses. PMID:27354187

  3. Multiobjective Optimization Using a Pareto Differential Evolution Approach

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    Differential Evolution is a simple, fast, and robust evolutionary algorithm that has proven effective in determining the global optimum for several difficult single-objective optimization problems. In this paper, the Differential Evolution algorithm is extended to multiobjective optimization problems by using a Pareto-based approach. The algorithm performs well when applied to several test optimization problems from the literature.

  4. Evolutionary algorithm for vehicle driving cycle generation.

    PubMed

    Perhinschi, Mario G; Marlowe, Christopher; Tamayo, Sergio; Tu, Jun; Wayne, W Scott

    2011-09-01

    Modeling transit bus emissions and fuel economy requires a large amount of experimental data over wide ranges of operational conditions. Chassis dynamometer tests are typically performed using representative driving cycles defined based on vehicle instantaneous speed as sequences of "microtrips", which are intervals between consecutive vehicle stops. Overall significant parameters of the driving cycle, such as average speed, stops per mile, kinetic intensity, and others, are used as independent variables in the modeling process. Performing tests at all the necessary combinations of parameters is expensive and time consuming. In this paper, a methodology is proposed for building driving cycles at prescribed independent variable values using experimental data through the concatenation of "microtrips" isolated from a limited number of standard chassis dynamometer test cycles. The selection of the adequate "microtrips" is achieved through a customized evolutionary algorithm. The genetic representation uses microtrip definitions as genes. Specific mutation, crossover, and karyotype alteration operators have been defined. The Roulette-Wheel selection technique with elitist strategy drives the optimization process, which consists of minimizing the errors to desired overall cycle parameters. This utility is part of the Integrated Bus Information System developed at West Virginia University.

  5. A new multiobjective performance criterion used in PID tuning optimization algorithms

    PubMed Central

    Sahib, Mouayad A.; Ahmed, Bestoun S.

    2015-01-01

    In PID controller design, an optimization algorithm is commonly employed to search for the optimal controller parameters. The optimization algorithm is based on a specific performance criterion which is defined by an objective or cost function. To this end, different objective functions have been proposed in the literature to optimize the response of the controlled system. These functions include numerous weighted time and frequency domain variables. However, for an optimum desired response it is difficult to select the appropriate objective function or identify the best weight values required to optimize the PID controller design. This paper presents a new time domain performance criterion based on the multiobjective Pareto front solutions. The proposed objective function is tested in the PID controller design for an automatic voltage regulator system (AVR) application using particle swarm optimization algorithm. Simulation results show that the proposed performance criterion can highly improve the PID tuning optimization in comparison with traditional objective functions. PMID:26843978

  6. A data mining approach to evolutionary optimisation of noisy multi-objective problems

    NASA Astrophysics Data System (ADS)

    Chia, J. Y.; Goh, C. K.; Shim, V. A.; Tan, K. C.

    2012-07-01

    Many real world optimisation problems have opposing objective functions which are subjected to the influence of noise. Noise in the objective functions can adversely affect the stability, performance and convergence of evolutionary optimisers. This article proposes a Bayesian frequent data mining (DM) approach to identify optimal regions to guide the population amidst the presence of noise. The aggregated information provided by all the solutions helped to average out the effects of noise. This article proposes a DM crossover operator to make use of the rules mined. After implementation of this operator, a better convergence to the true Pareto front is achieved at the expense of the diversity of the solution. Consequently, an ExtremalExploration operator will be proposed in the later part of this article to help curb the loss in diversity caused by the DM operator. The result is a more directive search with a faster convergence rate. The search is effective in decision space where the Pareto set is in a tight cluster. A further investigation of the performance of the proposed algorithm in noisy and noiseless environment will also be studied with respect to non-convexity, discontinuity, multi-modality and uniformity. The proposed algorithm is evaluated on ZDT and other benchmarks problems. The results of the simulations indicate that the proposed method is effective in handling noise and is competitive against the other noise tolerant algorithms.

  7. Low-thrust orbit transfer optimization with refined Q-law and multi-objective genetic algorithm

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; Petropoulos, Anastassios E.; von Allmen, Paul

    2005-01-01

    An optimization method for low-thrust orbit transfers around a central body is developed using the Q-law and a multi-objective genetic algorithm. in the hybrid method, the Q-law generates candidate orbit transfers, and the multi-objective genetic algorithm optimizes the Q-law control parameters in order to simultaneously minimize both the consumed propellant mass and flight time of the orbit tranfer. This paper addresses the problem of finding optimal orbit transfers for low-thrust spacecraft.

  8. Learning evasive maneuvers using evolutionary algorithms and neural networks

    NASA Astrophysics Data System (ADS)

    Kang, Moung Hung

    In this research, evolutionary algorithms and recurrent neural networks are combined to evolve control knowledge to help pilots avoid being struck by a missile, based on a two-dimensional air combat simulation model. The recurrent neural network is used for representing the pilot's control knowledge and evolutionary algorithms (i.e., Genetic Algorithms, Evolution Strategies, and Evolutionary Programming) are used for optimizing the weights and/or topology of the recurrent neural network. The simulation model of the two-dimensional evasive maneuver problem evolved is used for evaluating the performance of the recurrent neural network. Five typical air combat conditions were selected to evaluate the performance of the recurrent neural networks evolved by the evolutionary algorithms. Analysis of Variance (ANOVA) tests and response graphs were used to analyze the results. Overall, there was little difference in the performance of the three evolutionary algorithms used to evolve the control knowledge. However, the number of generations of each algorithm required to obtain the best performance was significantly different. ES converges the fastest, followed by EP and then by GA. The recurrent neural networks evolved by the evolutionary algorithms provided better performance than the traditional recommendations for evasive maneuvers, maximum gravitational turn, for each air combat condition. Furthermore, the recommended actions of the recurrent neural networks are reasonable and can be used for pilot training.

  9. Identification of IPMC nonlinear model via single and multi-objective optimization algorithms.

    PubMed

    Caponetto, Riccardo; Graziani, Salvatore; Pappalardo, Fulvio; Sapuppo, Francesca

    2014-03-01

    Ionic Polymer-Metal Composites (IPMCs) are electro-active polymers transforming mechanical forces into electric signals and vice versa. This paper proposes an improved electro-mechanical grey-box model for IPMC membrane working as actuator. In particular the IPMC nonlinearity has been characterized through experimentation and included within the electric model. Moreover identification of the model parameters has been performed via optimization algorithms using both single- and multi-objective formulation. Minimization was attained via the Nelder-Mead simplex and the Genetic Algorithms considering as cost functions the error between the experimental and modeled absorbed current and the error between experimental and modeled displacement. The obtained results for the different formulations have been then compared.

  10. An overview of population-based algorithms for multi-objective optimisation

    NASA Astrophysics Data System (ADS)

    Giagkiozis, Ioannis; Purshouse, Robin C.; Fleming, Peter J.

    2015-07-01

    In this work we present an overview of the most prominent population-based algorithms and the methodologies used to extend them to multiple objective problems. Although not exact in the mathematical sense, it has long been recognised that population-based multi-objective optimisation techniques for real-world applications are immensely valuable and versatile. These techniques are usually employed when exact optimisation methods are not easily applicable or simply when, due to sheer complexity, such techniques could potentially be very costly. Another advantage is that since a population of decision vectors is considered in each generation these algorithms are implicitly parallelisable and can generate an approximation of the entire Pareto front at each iteration. A critique of their capabilities is also provided.

  11. Optimization of hybrid laminated composites using the multi-objective gravitational search algorithm (MOGSA)

    NASA Astrophysics Data System (ADS)

    Hemmatian, Hossein; Fereidoon, Abdolhossein; Assareh, Ehsanolah

    2014-09-01

    The multi-objective gravitational search algorithm (MOGSA) technique is applied to hybrid laminates to achieve minimum weight and cost. The investigated laminate is made of glass-epoxy and carbon-epoxy plies to combine the economical attributes of the first with the light weight and high-stiffness properties of the second in order to make the trade-off between the cost and weight as the objective functions. The first natural flexural frequency was considered as a constraint. The results obtained using the MOGSA, including the Pareto set, optimum stacking sequences and number of plies made of either glass or carbon fibres, were compared with those using the genetic algorithm (GA) and ant colony optimization (ACO) reported in the literature. The comparisons confirmed the advantages of hybridization and showed that the MOGSA outperformed the GA and ACO in terms of the functions' value and constraint accuracy.

  12. A multi-objective genetic algorithm for a mixed-model assembly U-line balancing type-I problem considering human-related issues, training, and learning

    NASA Astrophysics Data System (ADS)

    Rabbani, Masoud; Montazeri, Mona; Farrokhi-Asl, Hamed; Rafiei, Hamed

    2016-07-01

    Mixed-model assembly lines are increasingly accepted in many industrial environments to meet the growing trend of greater product variability, diversification of customer demands, and shorter life cycles. In this research, a new mathematical model is presented considering balancing a mixed-model U-line and human-related issues, simultaneously. The objective function consists of two separate components. The first part of the objective function is related to balance problem. In this part, objective functions are minimizing the cycle time, minimizing the number of workstations, and maximizing the line efficiencies. The second part is related to human issues and consists of hiring cost, firing cost, training cost, and salary. To solve the presented model, two well-known multi-objective evolutionary algorithms, namely non-dominated sorting genetic algorithm and multi-objective particle swarm optimization, have been used. A simple solution representation is provided in this paper to encode the solutions. Finally, the computational results are compared and analyzed.

  13. Evaluation of Genetic Algorithm Concepts Using Model Problems. Part 2; Multi-Objective Optimization

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.; Pulliam, Thomas H.

    2003-01-01

    A genetic algorithm approach suitable for solving multi-objective optimization problems is described and evaluated using a series of simple model problems. Several new features including a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. Results indicate that the genetic algorithm optimization approach is flexible in application and extremely reliable, providing optimal results for all optimization problems attempted. The binning algorithm generally provides pareto front quality enhancements and moderate convergence efficiency improvements for most of the model problems. The gene-space transformation procedure provides a large convergence efficiency enhancement for problems with non-convoluted pareto fronts and a degradation in efficiency for problems with convoluted pareto fronts. The most difficult problems --multi-mode search spaces with a large number of genes and convoluted pareto fronts-- require a large number of function evaluations for GA convergence, but always converge.

  14. Application of hybrid evolutionary algorithms to low exhaust emission diesel engine design

    NASA Astrophysics Data System (ADS)

    Jeong, S.; Obayashi, S.; Minemura, Y.

    2008-01-01

    A hybrid evolutionary algorithm, consisting of a genetic algorithm (GA) and particle swarm optimization (PSO), is proposed. Generally, GAs maintain diverse solutions of good quality in multi-objective problems, while PSO shows fast convergence to the optimum solution. By coupling these algorithms, GA will compensate for the low diversity of PSO, while PSO will compensate for the high computational costs of GA. The hybrid algorithm was validated using standard test functions. The results showed that the hybrid algorithm has better performance than either a pure GA or pure PSO. The method was applied to an engineering design problem—the geometry of diesel engine combustion chamber reducing exhaust emissions such as NOx, soot and CO was optimized. The results demonstrated the usefulness of the present method to this engineering design problem. To identify the relation between exhaust emissions and combustion chamber geometry, data mining was performed with a self-organising map (SOM). The results indicate that the volume near the lower central part of the combustion chamber has a large effect on exhaust emissions and the optimum chamber geometry will vary depending on fuel injection angle.

  15. Integrated fuzzy logic and genetic algorithms for multi-objective control of structures using MR dampers

    NASA Astrophysics Data System (ADS)

    Yan, Gang; Zhou, Lily L.

    2006-09-01

    This study presents a design strategy based on genetic algorithms (GA) for semi-active fuzzy control of structures that have magnetorheological (MR) dampers installed to prevent damage from severe dynamic loads such as earthquakes. The control objective is to minimize both the maximum displacement and acceleration responses of the structure. Interactive relationships between structural responses and input voltages of MR dampers are established by using a fuzzy controller. GA is employed as an adaptive method for design of the fuzzy controller, which is here known as a genetic adaptive fuzzy (GAF) controller. The multi-objectives are first converted to a fitness function that is used in standard genetic operations, i.e. selection, crossover, and mutation. The proposed approach generates an effective and reliable fuzzy logic control system by powerful searching and self-learning adaptive capabilities of GA. Numerical simulations for single and multiple damper cases are given to show the effectiveness and efficiency of the proposed intelligent control strategy.

  16. Investigation on Multiple Algorithms for Multi-Objective Optimization of Gear Box

    NASA Astrophysics Data System (ADS)

    Ananthapadmanabhan, R.; Babu, S. Arun; Hareendranath, KR; Krishnamohan, C.; Krishnapillai, S.; A, Krishnan

    2016-09-01

    The field of gear design is an extremely important area in engineering. In this work a spur gear reduction unit is considered. A review of relevant literatures in the area of gear design indicates that compact design of gearbox involves a complicated engineering analysis. This work deals with the simultaneous optimization of the power and dimensions of a gearbox, which are of conflicting nature. The focus is on developing a design space which is based on module, pinion teeth and face-width by using MATLAB. The feasible points are obtained through different multi-objective algorithms using various constraints obtained from different novel literatures. Attention has been devoted in various novel constraints like critical scoring criterion number, flash temperature, minimum film thickness, involute interference and contact ratio. The output from various algorithms like genetic algorithm, fmincon (constrained nonlinear minimization), NSGA-II etc. are compared to generate the best result. Hence, this is a much more precise approach for obtaining practical values of the module, pinion teeth and face-width for a minimum centre distance and a maximum power transmission for any given material.

  17. Solving multi-objective job shop scheduling problems using a non-dominated sorting genetic algorithm

    NASA Astrophysics Data System (ADS)

    Piroozfard, Hamed; Wong, Kuan Yew

    2015-05-01

    The efforts of finding optimal schedules for the job shop scheduling problems are highly important for many real-world industrial applications. In this paper, a multi-objective based job shop scheduling problem by simultaneously minimizing makespan and tardiness is taken into account. The problem is considered to be more complex due to the multiple business criteria that must be satisfied. To solve the problem more efficiently and to obtain a set of non-dominated solutions, a meta-heuristic based non-dominated sorting genetic algorithm is presented. In addition, task based representation is used for solution encoding, and tournament selection that is based on rank and crowding distance is applied for offspring selection. Swapping and insertion mutations are employed to increase diversity of population and to perform intensive search. To evaluate the modified non-dominated sorting genetic algorithm, a set of modified benchmarking job shop problems obtained from the OR-Library is used, and the results are considered based on the number of non-dominated solutions and quality of schedules obtained by the algorithm.

  18. Multi-objective design of vehicle suspension systems via a local diffusion genetic algorithm for disjoint Pareto frontiers

    NASA Astrophysics Data System (ADS)

    Aly, Mohamed F.; Nassef, Ashraf O.; Hamza, Karim

    2015-05-01

    This article presents a multi-objective design optimization study of a vehicle suspension system with passive variable stiffness and active damping. Design of suspension systems is particularly challenging when the effective mass of the vehicle is subject to considerable variation during service. Perfectly maintaining the suspension performance under the variable load typically requires a controlled actuator to emulate variable stiffness. This is typically done through a hydraulic or pneumatic system, which can be too costly for small/medium pick-up trucks. The system in this article employs two springs with an offset to the second spring so that it engages during large deformation only, thereby providing passive variable stiffness without expensive hydraulics. The system damping is assumed to be controlled via variable viscosity magnetizable fluid, which can be implemented in a compact, low-power set-up. Performance indices from the literature are evaluated at minimum and maximum weight, and regarded as objectives in a multi-objective problem. As the individual objectives are prone to having local optima, the multi-objective problem is prone to having a disjointed Pareto-space. To deal with this issue, a modification is proposed to a multi-objective genetic algorithm. The algorithm performance is investigated via analytical test functions as well as the design case of the suspension system.

  19. An evolutionary algorithm technique for intelligence, surveillance, and reconnaissance plan optimization

    NASA Astrophysics Data System (ADS)

    Langton, John T.; Caroli, Joseph A.; Rosenberg, Brad

    2008-04-01

    To support an Effects Based Approach to Operations (EBAO), Intelligence, Surveillance, and Reconnaissance (ISR) planners must optimize collection plans within an evolving battlespace. A need exists for a decision support tool that allows ISR planners to rapidly generate and rehearse high-performing ISR plans that balance multiple objectives and constraints to address dynamic collection requirements for assessment. To meet this need we have designed an evolutionary algorithm (EA)-based "Integrated ISR Plan Analysis and Rehearsal System" (I2PARS) to support Effects-based Assessment (EBA). I2PARS supports ISR mission planning and dynamic replanning to coordinate assets and optimize their routes, allocation and tasking. It uses an evolutionary algorithm to address the large parametric space of route-finding problems which is sometimes discontinuous in the ISR domain because of conflicting objectives such as minimizing asset utilization yet maximizing ISR coverage. EAs are uniquely suited for generating solutions in dynamic environments and also allow user feedback. They are therefore ideal for "streaming optimization" and dynamic replanning of ISR mission plans. I2PARS uses the Non-dominated Sorting Genetic Algorithm (NSGA-II) to automatically generate a diverse set of high performing collection plans given multiple objectives, constraints, and assets. Intended end users of I2PARS include ISR planners in the Combined Air Operations Centers and Joint Intelligence Centers. Here we show the feasibility of applying the NSGA-II algorithm and EAs in general to the ISR planning domain. Unique genetic representations and operators for optimization within the ISR domain are presented along with multi-objective optimization criteria for ISR planning. Promising results of the I2PARS architecture design, early software prototype, and limited domain testing of the new algorithm are discussed. We also present plans for future research and development, as well as technology

  20. Using Evolutionary Algorithms to Induce Oblique Decision Trees

    SciTech Connect

    Cantu-Paz, E.; Kamath, C.

    2000-01-21

    This paper illustrates the application of evolutionary algorithms (EAs) to the problem of oblique decision tree induction. The objectives are to demonstrate that EAs can find classifiers whose accuracy is competitive with other oblique tree construction methods, and that this can be accomplished in a shorter time. Experiments were performed with a (1+1) evolutionary strategy and a simple genetic algorithm on public domain and artificial data sets. The empirical results suggest that the EAs quickly find Competitive classifiers, and that EAs scale up better than traditional methods to the dimensionality of the domain and the number of training instances.

  1. Multiobjective optimization of temporal processes.

    PubMed

    Song, Zhe; Kusiak, Andrew

    2010-06-01

    This paper presents a dynamic predictive-optimization framework of a nonlinear temporal process. Data-mining (DM) and evolutionary strategy algorithms are integrated in the framework for solving the optimization model. DM algorithms learn dynamic equations from the process data. An evolutionary strategy algorithm is then applied to solve the optimization problem guided by the knowledge extracted by the DM algorithm. The concept presented in this paper is illustrated with the data from a power plant, where the goal is to maximize the boiler efficiency and minimize the limestone consumption. This multiobjective optimization problem can be either transformed into a single-objective optimization problem through preference aggregation approaches or into a Pareto-optimal optimization problem. The computational results have shown the effectiveness of the proposed optimization framework. PMID:19900853

  2. Aero-gravity Assisted Manoeuvers within Preliminary Interplanetary Mission Design: a Multi-objective Evolutive Algorithm Approach

    NASA Astrophysics Data System (ADS)

    Povoleri, A.; Lavagna, M.; Finzi, A. E.

    The paper presents a new approach to deal with the preliminary space mission analysis design of particularly complex trajectories focused on interplanetary targets. According to an optimisation approach, a multi-objective strategy is selected on a mixed continuous and discrete state variables domain in order to deal with possible multi-gravity assist manoeuvres (GAM) as further degrees of freedom of the problem, in terms of both number and planets sequence selection to minimize both the ?v expense and the time trip time span. A further added value to the proposed algorithm stays in that, according to planets having an atmosphere, aero-gravity assist manoeuvres (AGAM) are considered too within the overall mission design optimisation, and the consequent optimal control problem related to the aerodynamic angles history, is solved. According to the target planet different capture strategies are managed by the algorithm, the aerocapture manoeuvre too, whenever possible (e.g. Venus, Mars target planets). In order not to be trapped in local solution the Evolutionary Algorithms (EAs) have been selected to solve such a complex problem. Simulations and comparison with already designed space missions showed the ability of the proposed architecture in correctly selecting both the sequences and the planets type of either GAMs or AGAMs to optimise the selected criteria vector, in a multidisciplinary environment, switching on the optimal control problem whenever the atmospheric interaction is involved in the optimisation by the search process. Symbols δ = semi-angular deviation for GAM between the v∞ -, v∞ + inoutcoming vectors [rad] φ = Angular deviation for AGAM between the v∞ -, v∞ + inoutcoming vectors [rad] ρ = Atmospheric density [kgm-3 ] γ = Flight path angle [rad] µ = Bank angle [rad] δ?ttransf j = j-th heliocentric transfer time variation with respect to the linked conics solution ?|v∞| = Relative velocity losses because of drag [ms-1 ] ωI = i

  3. A novel fitness evaluation method for evolutionary algorithms

    NASA Astrophysics Data System (ADS)

    Wang, Ji-feng; Tang, Ke-zong

    2013-03-01

    Fitness evaluation is a crucial task in evolutionary algorithms because it can affect the convergence speed and also the quality of the final solution. But these algorithms may require huge computation power for solving nonlinear programming problems. This paper proposes a novel fitness evaluation approach which employs similarity-base learning embedded in a classical differential evolution (SDE) to evaluate all new individuals. Each individual consists of three elements: parameter vector (v), a fitness value (f), and a reliability value(r). The f is calculated using NFEA, and only when the r is below a threshold is the f calculated using true fitness function. Moreover, applying error compensation system to the proposed algorithm further enhances the performance of the algorithm to make r much closer to true fitness value for each new child. Simulation results over a comprehensive set of benchmark functions show that the convergence rate of the proposed algorithm is much faster than much that of the compared algorithms.

  4. Robust Multiobjective Controllability of Complex Neuronal Networks.

    PubMed

    Tang, Yang; Gao, Huijun; Du, Wei; Lu, Jianquan; Vasilakos, Athanasios V; Kurths, Jurgen

    2016-01-01

    This paper addresses robust multiobjective identification of driver nodes in the neuronal network of a cat's brain, in which uncertainties in determination of driver nodes and control gains are considered. A framework for robust multiobjective controllability is proposed by introducing interval uncertainties and optimization algorithms. By appropriate definitions of robust multiobjective controllability, a robust nondominated sorting adaptive differential evolution (NSJaDE) is presented by means of the nondominated sorting mechanism and the adaptive differential evolution (JaDE). The simulation experimental results illustrate the satisfactory performance of NSJaDE for robust multiobjective controllability, in comparison with six statistical methods and two multiobjective evolutionary algorithms (MOEAs): nondominated sorting genetic algorithms II (NSGA-II) and nondominated sorting composite differential evolution. It is revealed that the existence of uncertainties in choosing driver nodes and designing control gains heavily affects the controllability of neuronal networks. We also unveil that driver nodes play a more drastic role than control gains in robust controllability. The developed NSJaDE and obtained results will shed light on the understanding of robustness in controlling realistic complex networks such as transportation networks, power grid networks, biological networks, etc.

  5. Optimal design of groundwater remediation systems using a probabilistic multi-objective fast harmony search algorithm under uncertainty

    NASA Astrophysics Data System (ADS)

    Luo, Q.; Wu, J.; Qian, J.

    2013-12-01

    This study develops a new probabilistic multi-objective fast harmony search algorithm (PMOFHS) for optimal design of groundwater remediation system under uncertainty associated with the hydraulic conductivity of aquifers. The PMOFHS integrates the previously developed deterministic multi-objective optimization method, namely multi-objective fast harmony search algorithm (MOFHS) with a probabilistic Pareto domination ranking and probabilistic niche technique to search for Pareto-optimal solutions to multi-objective optimization problems in a noisy hydrogeological environment arising from insufficient hydraulic conductivity data. The PMOFHS is then coupled with the commonly used flow and transport codes, MODFLOW and MT3DMS, to identify the optimal groundwater remediation system of a two-dimensional hypothetical test problem involving two objectives: (i) minimization of the total remediation cost through the engineering planning horizon, and (ii) minimization of the percentage of mass remaining in the aquifer at the end of the operational period, which uses the Pump-and-Treat (PAT) technology to clean up contaminated groundwater. Also, Monte Carlo (MC) analysis is used to demonstrate the effectiveness of the proposed methodology. The MC analysis is taken to each Pareto solutions for every K realization. Then the statistical mean and the upper and lower bounds of uncertainty intervals of 95% confidence level are calculated. The MC analysis results show that all of the Pareto-optimal solutions are located between the upper and lower bounds of the MC analysis. Moreover, the root mean square errors (RMSEs) between the Pareto-optimal solutions by the PMOFHS and the average values of optimal solutions by the MC analysis are 0.0204 for the first objective and 0.0318 for the second objective, quite smaller than those RMSEs between the results by the existing probabilistic multi-objective genetic algorithm (PMOGA) and the MC analysis, 0.0384 and 0.0397, respectively. In

  6. Comparison of evolutionary algorithms for LPDA antenna optimization

    NASA Astrophysics Data System (ADS)

    Lazaridis, Pavlos I.; Tziris, Emmanouil N.; Zaharis, Zaharias D.; Xenos, Thomas D.; Cosmas, John P.; Gallion, Philippe B.; Holmes, Violeta; Glover, Ian A.

    2016-08-01

    A novel approach to broadband log-periodic antenna design is presented, where some of the most powerful evolutionary algorithms are applied and compared for the optimal design of wire log-periodic dipole arrays (LPDA) using Numerical Electromagnetics Code. The target is to achieve an optimal antenna design with respect to maximum gain, gain flatness, front-to-rear ratio (F/R) and standing wave ratio. The parameters of the LPDA optimized are the dipole lengths, the spacing between the dipoles, and the dipole wire diameters. The evolutionary algorithms compared are the Differential Evolution (DE), Particle Swarm (PSO), Taguchi, Invasive Weed (IWO), and Adaptive Invasive Weed Optimization (ADIWO). Superior performance is achieved by the IWO (best results) and PSO (fast convergence) algorithms.

  7. Exploring the Pareto frontier using multisexual evolutionary algorithms: an application to a flexible manufacturing problem

    NASA Astrophysics Data System (ADS)

    Bonissone, Stefano R.; Subbu, Raj

    2002-12-01

    In multi-objective optimization (MOO) problems we need to optimize many possibly conflicting objectives. For instance, in manufacturing planning we might want to minimize the cost and production time while maximizing the product's quality. We propose the use of evolutionary algorithms (EAs) to solve these problems. Solutions are represented as individuals in a population and are assigned scores according to a fitness function that determines their relative quality. Strong solutions are selected for reproduction, and pass their genetic material to the next generation. Weak solutions are removed from the population. The fitness function evaluates each solution and returns a related score. In MOO problems, this fitness function is vector-valued, i.e. it returns a value for each objective. Therefore, instead of a global optimum, we try to find the Pareto-optimal or non-dominated frontier. We use multi-sexual EAs with as many genders as optimization criteria. We have created new crossover and gender assignment functions, and experimented with various parameters to determine the best setting (yielding the highest number of non-dominated solutions.) These experiments are conducted using a variety of fitness functions, and the algorithms are later evaluated on a flexible manufacturing problem with total cost and time minimization objectives.

  8. Multi-objective global optimization of a butterfly valve using genetic algorithms.

    PubMed

    Corbera, Sergio; Olazagoitia, José Luis; Lozano, José Antonio

    2016-07-01

    A butterfly valve is a type of valve typically used for isolating or regulating flow where the closing mechanism takes the form of a disc. For a long time, the attention of many researchers has focused on carrying out structural (FEM) and computational fluid dynamics (CFD) analysis in order to increase the performance of this type of flow-control device. This paper proposes a novel multi-objective approach for the design optimization of a butterfly valve using advanced genetic algorithms based on Pareto dominance. Firstly, after defining the need for this study and analyzing previous papers on the subject, the initial butterfly valve is presented and the initial fluid and structural analysis are carried out. Secondly, the optimization problem is defined and the optimization strategy is presented. The design variables are identified and a parameterization model of the valve is made. Thirdly, initial design candidates are generated by DOE and design optimization using genetic algorithms is performed. In this part of the process structural and CFD analysis are calculated for each candidate simultaneously. The optimization process involves various types of software and Python scripts are needed for their interaction and the connection of all steps. Finally, a set of optimal solutions is obtained and the optimum design that provides a 65.4% stress reduction, a 5% mass reduction and a 11.3% flow increase is selected in accordance with manufacturer preferences. Validation of the results is provided by comparing experimental test results with the values obtained for the initial design. The results demonstrate the capability and potential of the proposed methodology.

  9. A Multiobjective Interval Programming Model for Wind-Hydrothermal Power System Dispatching Using 2-Step Optimization Algorithm

    PubMed Central

    Jihong, Qu

    2014-01-01

    Wind-hydrothermal power system dispatching has received intensive attention in recent years because it can help develop various reasonable plans to schedule the power generation efficiency. But future data such as wind power output and power load would not be accurately predicted and the nonlinear nature involved in the complex multiobjective scheduling model; therefore, to achieve accurate solution to such complex problem is a very difficult task. This paper presents an interval programming model with 2-step optimization algorithm to solve multiobjective dispatching. Initially, we represented the future data into interval numbers and simplified the object function to a linear programming problem to search the feasible and preliminary solutions to construct the Pareto set. Then the simulated annealing method was used to search the optimal solution of initial model. Thorough experimental results suggest that the proposed method performed reasonably well in terms of both operating efficiency and precision. PMID:24895663

  10. A multiobjective interval programming model for wind-hydrothermal power system dispatching using 2-step optimization algorithm.

    PubMed

    Ren, Kun; Jihong, Qu

    2014-01-01

    Wind-hydrothermal power system dispatching has received intensive attention in recent years because it can help develop various reasonable plans to schedule the power generation efficiency. But future data such as wind power output and power load would not be accurately predicted and the nonlinear nature involved in the complex multiobjective scheduling model; therefore, to achieve accurate solution to such complex problem is a very difficult task. This paper presents an interval programming model with 2-step optimization algorithm to solve multiobjective dispatching. Initially, we represented the future data into interval numbers and simplified the object function to a linear programming problem to search the feasible and preliminary solutions to construct the Pareto set. Then the simulated annealing method was used to search the optimal solution of initial model. Thorough experimental results suggest that the proposed method performed reasonably well in terms of both operating efficiency and precision.

  11. A survey on evolutionary algorithm based hybrid intelligence in bioinformatics.

    PubMed

    Li, Shan; Kang, Liying; Zhao, Xing-Ming

    2014-01-01

    With the rapid advance in genomics, proteomics, metabolomics, and other types of omics technologies during the past decades, a tremendous amount of data related to molecular biology has been produced. It is becoming a big challenge for the bioinformatists to analyze and interpret these data with conventional intelligent techniques, for example, support vector machines. Recently, the hybrid intelligent methods, which integrate several standard intelligent approaches, are becoming more and more popular due to their robustness and efficiency. Specifically, the hybrid intelligent approaches based on evolutionary algorithms (EAs) are widely used in various fields due to the efficiency and robustness of EAs. In this review, we give an introduction about the applications of hybrid intelligent methods, in particular those based on evolutionary algorithm, in bioinformatics. In particular, we focus on their applications to three common problems that arise in bioinformatics, that is, feature selection, parameter estimation, and reconstruction of biological networks.

  12. Available Transfer Capability Determination Using Hybrid Evolutionary Algorithm

    NASA Astrophysics Data System (ADS)

    Jirapong, Peeraool; Ongsakul, Weerakorn

    2008-10-01

    This paper proposes a new hybrid evolutionary algorithm (HEA) based on evolutionary programming (EP), tabu search (TS), and simulated annealing (SA) to determine the available transfer capability (ATC) of power transactions between different control areas in deregulated power systems. The optimal power flow (OPF)-based ATC determination is used to evaluate the feasible maximum ATC value within real and reactive power generation limits, line thermal limits, voltage limits, and voltage and angle stability limits. The HEA approach simultaneously searches for real power generations except slack bus in a source area, real power loads in a sink area, and generation bus voltages to solve the OPF-based ATC problem. Test results on the modified IEEE 24-bus reliability test system (RTS) indicate that ATC determination by the HEA could enhance ATC far more than those from EP, TS, hybrid TS/SA, and improved EP (IEP) algorithms, leading to an efficient utilization of the existing transmission system.

  13. A Survey on Evolutionary Algorithm Based Hybrid Intelligence in Bioinformatics

    PubMed Central

    Li, Shan; Zhao, Xing-Ming

    2014-01-01

    With the rapid advance in genomics, proteomics, metabolomics, and other types of omics technologies during the past decades, a tremendous amount of data related to molecular biology has been produced. It is becoming a big challenge for the bioinformatists to analyze and interpret these data with conventional intelligent techniques, for example, support vector machines. Recently, the hybrid intelligent methods, which integrate several standard intelligent approaches, are becoming more and more popular due to their robustness and efficiency. Specifically, the hybrid intelligent approaches based on evolutionary algorithms (EAs) are widely used in various fields due to the efficiency and robustness of EAs. In this review, we give an introduction about the applications of hybrid intelligent methods, in particular those based on evolutionary algorithm, in bioinformatics. In particular, we focus on their applications to three common problems that arise in bioinformatics, that is, feature selection, parameter estimation, and reconstruction of biological networks. PMID:24729969

  14. Optimization of media by evolutionary algorithms for production of polyols.

    PubMed

    Patil, S V; Jayaraman, V K; Kulkarni, B D

    2002-01-01

    Biotransformation of sucrose-based medium to polyols has been reported for the first time using osmophilic yeast, Hansenula anomala. A new, real coded evolutionary algorithm was developed for optimization of fermentation medium in parallel shake-flask experiments. By iteratively employing the nature-inspired techniques of selection, crossover, and mutation for a fixed number of generations, the algorithm obtains the optimal values of important process variables, namely, inoculum size and sugar, yeast extract, urea, and MgSO4 concentrations. Maximum polyols yield of 76.43% has been achieved. The method is useful for reducing the overall development time to obtain an efficient fermentation process. PMID:12396116

  15. A filter-based evolutionary algorithm for constrained optimization.

    SciTech Connect

    Clevenger, Lauren M.; Hart, William Eugene; Ferguson, Lauren Ann

    2004-02-01

    We introduce a filter-based evolutionary algorithm (FEA) for constrained optimization. The filter used by an FEA explicitly imposes the concept of dominance on a partially ordered solution set. We show that the algorithm is provably robust for both linear and nonlinear problems and constraints. FEAs use a finite pattern of mutation offsets, and our analysis is closely related to recent convergence results for pattern search methods. We discuss how properties of this pattern impact the ability of an FEA to converge to a constrained local optimum.

  16. Evolutionary algorithm for optimization of nonimaging Fresnel lens geometry.

    PubMed

    Yamada, N; Nishikawa, T

    2010-06-21

    In this study, an evolutionary algorithm (EA), which consists of genetic and immune algorithms, is introduced to design the optical geometry of a nonimaging Fresnel lens; this lens generates the uniform flux concentration required for a photovoltaic cell. Herein, a design procedure that incorporates a ray-tracing technique in the EA is described, and the validity of the design is demonstrated. The results show that the EA automatically generated a unique geometry of the Fresnel lens; the use of this geometry resulted in better uniform flux concentration with high optical efficiency.

  17. Receiver diversity combining using evolutionary algorithms in Rayleigh fading channel.

    PubMed

    Akbari, Mohsen; Manesh, Mohsen Riahi; El-Saleh, Ayman A; Reza, Ahmed Wasif

    2014-01-01

    In diversity combining at the receiver, the output signal-to-noise ratio (SNR) is often maximized by using the maximal ratio combining (MRC) provided that the channel is perfectly estimated at the receiver. However, channel estimation is rarely perfect in practice, which results in deteriorating the system performance. In this paper, an imperialistic competitive algorithm (ICA) is proposed and compared with two other evolutionary based algorithms, namely, particle swarm optimization (PSO) and genetic algorithm (GA), for diversity combining of signals travelling across the imperfect channels. The proposed algorithm adjusts the combiner weights of the received signal components in such a way that maximizes the SNR and minimizes the bit error rate (BER). The results indicate that the proposed method eliminates the need of channel estimation and can outperform the conventional diversity combining methods.

  18. Receiver Diversity Combining Using Evolutionary Algorithms in Rayleigh Fading Channel

    PubMed Central

    Akbari, Mohsen; Manesh, Mohsen Riahi

    2014-01-01

    In diversity combining at the receiver, the output signal-to-noise ratio (SNR) is often maximized by using the maximal ratio combining (MRC) provided that the channel is perfectly estimated at the receiver. However, channel estimation is rarely perfect in practice, which results in deteriorating the system performance. In this paper, an imperialistic competitive algorithm (ICA) is proposed and compared with two other evolutionary based algorithms, namely, particle swarm optimization (PSO) and genetic algorithm (GA), for diversity combining of signals travelling across the imperfect channels. The proposed algorithm adjusts the combiner weights of the received signal components in such a way that maximizes the SNR and minimizes the bit error rate (BER). The results indicate that the proposed method eliminates the need of channel estimation and can outperform the conventional diversity combining methods. PMID:25045725

  19. Comparing Evolutionary Programs and Evolutionary Pattern Search Algorithms: A Drug Docking Application

    SciTech Connect

    Hart, W.E.

    1999-02-10

    Evolutionary programs (EPs) and evolutionary pattern search algorithms (EPSAS) are two general classes of evolutionary methods for optimizing on continuous domains. The relative performance of these methods has been evaluated on standard global optimization test functions, and these results suggest that EPSAs more robustly converge to near-optimal solutions than EPs. In this paper we evaluate the relative performance of EPSAs and EPs on a real-world application: flexible ligand binding in the Autodock docking software. We compare the performance of these methods on a suite of docking test problems. Our results confirm that EPSAs and EPs have comparable performance, and they suggest that EPSAs may be more robust on larger, more complex problems.

  20. Optimization of Processing Parameters in ECM of Die Tool Steel Using Nanofluid by Multiobjective Genetic Algorithm

    PubMed Central

    Sathiyamoorthy, V.; Sekar, T.; Elango, N.

    2015-01-01

    Formation of spikes prevents achievement of the better material removal rate (MRR) and surface finish while using plain NaNO3 aqueous electrolyte in electrochemical machining (ECM) of die tool steel. Hence this research work attempts to minimize the formation of spikes in the selected workpiece of high carbon high chromium die tool steel using copper nanoparticles suspended in NaNO3 aqueous electrolyte, that is, nanofluid. The selected influencing parameters are applied voltage and electrolyte discharge rate with three levels and tool feed rate with four levels. Thirty-six experiments were designed using Design Expert 7.0 software and optimization was done using multiobjective genetic algorithm (MOGA). This tool identified the best possible combination for achieving the better MRR and surface roughness. The results reveal that voltage of 18 V, tool feed rate of 0.54 mm/min, and nanofluid discharge rate of 12 lit/min would be the optimum values in ECM of HCHCr die tool steel. For checking the optimality obtained from the MOGA in MATLAB software, the maximum MRR of 375.78277 mm3/min and respective surface roughness Ra of 2.339779 μm were predicted at applied voltage of 17.688986 V, tool feed rate of 0.5399705 mm/min, and nanofluid discharge rate of 11.998816 lit/min. Confirmatory tests showed that the actual performance at the optimum conditions was 361.214 mm3/min and 2.41 μm; the deviation from the predicted performance is less than 4% which proves the composite desirability of the developed models. PMID:26167538

  1. Optimization of Processing Parameters in ECM of Die Tool Steel Using Nanofluid by Multiobjective Genetic Algorithm.

    PubMed

    Sathiyamoorthy, V; Sekar, T; Elango, N

    2015-01-01

    Formation of spikes prevents achievement of the better material removal rate (MRR) and surface finish while using plain NaNO3 aqueous electrolyte in electrochemical machining (ECM) of die tool steel. Hence this research work attempts to minimize the formation of spikes in the selected workpiece of high carbon high chromium die tool steel using copper nanoparticles suspended in NaNO3 aqueous electrolyte, that is, nanofluid. The selected influencing parameters are applied voltage and electrolyte discharge rate with three levels and tool feed rate with four levels. Thirty-six experiments were designed using Design Expert 7.0 software and optimization was done using multiobjective genetic algorithm (MOGA). This tool identified the best possible combination for achieving the better MRR and surface roughness. The results reveal that voltage of 18 V, tool feed rate of 0.54 mm/min, and nanofluid discharge rate of 12 lit/min would be the optimum values in ECM of HCHCr die tool steel. For checking the optimality obtained from the MOGA in MATLAB software, the maximum MRR of 375.78277 mm(3)/min and respective surface roughness Ra of 2.339779 μm were predicted at applied voltage of 17.688986 V, tool feed rate of 0.5399705 mm/min, and nanofluid discharge rate of 11.998816 lit/min. Confirmatory tests showed that the actual performance at the optimum conditions was 361.214 mm(3)/min and 2.41 μm; the deviation from the predicted performance is less than 4% which proves the composite desirability of the developed models.

  2. Optimization of Processing Parameters in ECM of Die Tool Steel Using Nanofluid by Multiobjective Genetic Algorithm.

    PubMed

    Sathiyamoorthy, V; Sekar, T; Elango, N

    2015-01-01

    Formation of spikes prevents achievement of the better material removal rate (MRR) and surface finish while using plain NaNO3 aqueous electrolyte in electrochemical machining (ECM) of die tool steel. Hence this research work attempts to minimize the formation of spikes in the selected workpiece of high carbon high chromium die tool steel using copper nanoparticles suspended in NaNO3 aqueous electrolyte, that is, nanofluid. The selected influencing parameters are applied voltage and electrolyte discharge rate with three levels and tool feed rate with four levels. Thirty-six experiments were designed using Design Expert 7.0 software and optimization was done using multiobjective genetic algorithm (MOGA). This tool identified the best possible combination for achieving the better MRR and surface roughness. The results reveal that voltage of 18 V, tool feed rate of 0.54 mm/min, and nanofluid discharge rate of 12 lit/min would be the optimum values in ECM of HCHCr die tool steel. For checking the optimality obtained from the MOGA in MATLAB software, the maximum MRR of 375.78277 mm(3)/min and respective surface roughness Ra of 2.339779 μm were predicted at applied voltage of 17.688986 V, tool feed rate of 0.5399705 mm/min, and nanofluid discharge rate of 11.998816 lit/min. Confirmatory tests showed that the actual performance at the optimum conditions was 361.214 mm(3)/min and 2.41 μm; the deviation from the predicted performance is less than 4% which proves the composite desirability of the developed models. PMID:26167538

  3. Optimal classification of standoff bioaerosol measurements using evolutionary algorithms

    NASA Astrophysics Data System (ADS)

    Nyhavn, Ragnhild; Moen, Hans J. F.; Farsund, Øystein; Rustad, Gunnar

    2011-05-01

    Early warning systems based on standoff detection of biological aerosols require real-time signal processing of a large quantity of high-dimensional data, challenging the systems efficiency in terms of both computational complexity and classification accuracy. Hence, optimal feature selection is essential in forming a stable and efficient classification system. This involves finding optimal signal processing parameters, characteristic spectral frequencies and other data transformations in large magnitude variable space, stating the need for an efficient and smart search algorithm. Evolutionary algorithms are population-based optimization methods inspired by Darwinian evolutionary theory. These methods focus on application of selection, mutation and recombination on a population of competing solutions and optimize this set by evolving the population of solutions for each generation. We have employed genetic algorithms in the search for optimal feature selection and signal processing parameters for classification of biological agents. The experimental data were achieved with a spectrally resolved lidar based on ultraviolet laser induced fluorescence, and included several releases of 5 common simulants. The genetic algorithm outperform benchmark methods involving analytic, sequential and random methods like support vector machines, Fisher's linear discriminant and principal component analysis, with significantly improved classification accuracy compared to the best classical method.

  4. Multi-objective optimization of long-term groundwater monitoring network design using a probabilistic Pareto genetic algorithm under uncertainty

    NASA Astrophysics Data System (ADS)

    Luo, Qiankun; Wu, Jianfeng; Yang, Yun; Qian, Jiazhong; Wu, Jichun

    2016-03-01

    Optimal design of long term groundwater monitoring (LTGM) network often involves conflicting objectives and substantial uncertainty arising from insufficient hydraulic conductivity (K) data. This study develops a new multi-objective simulation-optimization model involving four objectives: minimizations of (i) the total sampling costs for monitoring contaminant plume, (ii) mass estimation error, (iii) the first moment estimation error, and (iv) the second moment estimation error of the contaminant plume, for LTGM network design problems. Then a new probabilistic Pareto genetic algorithm (PPGA) coupled with the commonly used flow and transport codes, MODFLOW and MT3DMS, is developed to search for the Pareto-optimal solutions to the multi-objective LTGM problems under uncertainty of the K-fields. The PPGA integrates the niched Pareto genetic algorithm with probabilistic Pareto sorting scheme to deal with the uncertainty of objectives caused by the uncertain K-field. Also, the elitist selection strategy, the operation library and the Pareto solution set filter are conducted to improve the diversity and reliability of Pareto-optimal solutions by the PPGA. Furthermore, the sampling strategy of noisy genetic algorithm is adopted to cope with the uncertainty of the K-fields and improve the computational efficiency of the PPGA. In particular, Monte Carlo (MC) analysis is employed to evaluate the effectiveness of the proposed methodology in finding Pareto-optimal sampling network designs of LTGM systems through a two-dimensional hypothetical example and a three-dimensional field application in Indiana (USA). Comprehensive analysis demonstrates that the proposed PPGA can find Pareto optimal solutions with low variability and high reliability and is a promising tool for optimizing multi-objective LTGM network designs under uncertainty.

  5. Virus evolutionary genetic algorithm for task collaboration of logistics distribution

    NASA Astrophysics Data System (ADS)

    Ning, Fanghua; Chen, Zichen; Xiong, Li

    2005-12-01

    In order to achieve JIT (Just-In-Time) level and clients' maximum satisfaction in logistics collaboration, a Virus Evolutionary Genetic Algorithm (VEGA) was put forward under double constraints of logistics resource and operation sequence. Based on mathematic description of a multiple objective function, the algorithm was designed to schedule logistics tasks with different due dates and allocate them to network members. By introducing a penalty item, make span and customers' satisfaction were expressed in fitness function. And a dynamic adaptive probability of infection was used to improve performance of local search. Compared to standard Genetic Algorithm (GA), experimental result illustrates the performance superiority of VEGA. So the VEGA can provide a powerful decision-making technique for optimizing resource configuration in logistics network.

  6. A Multiobjective Sparse Feature Learning Model for Deep Neural Networks.

    PubMed

    Gong, Maoguo; Liu, Jia; Li, Hao; Cai, Qing; Su, Linzhi

    2015-12-01

    Hierarchical deep neural networks are currently popular learning models for imitating the hierarchical architecture of human brain. Single-layer feature extractors are the bricks to build deep networks. Sparse feature learning models are popular models that can learn useful representations. But most of those models need a user-defined constant to control the sparsity of representations. In this paper, we propose a multiobjective sparse feature learning model based on the autoencoder. The parameters of the model are learnt by optimizing two objectives, reconstruction error and the sparsity of hidden units simultaneously to find a reasonable compromise between them automatically. We design a multiobjective induced learning procedure for this model based on a multiobjective evolutionary algorithm. In the experiments, we demonstrate that the learning procedure is effective, and the proposed multiobjective model can learn useful sparse features.

  7. Combining Interactive Infrastructure Modeling and Evolutionary Algorithm Optimization for Sustainable Water Resources Design

    NASA Astrophysics Data System (ADS)

    Smith, R.; Kasprzyk, J. R.; Zagona, E. A.

    2013-12-01

    Population growth and climate change, combined with difficulties in building new infrastructure, motivate portfolio-based solutions to ensuring sufficient water supply. Powerful simulation models with graphical user interfaces (GUI) are often used to evaluate infrastructure portfolios; these GUI based models require manual modification of the system parameters, such as reservoir operation rules, water transfer schemes, or system capacities. Multiobjective evolutionary algorithm (MOEA) based optimization can be employed to balance multiple objectives and automatically suggest designs for infrastructure systems, but MOEA based decision support typically uses a fixed problem formulation (i.e., a single set of objectives, decisions, and constraints). This presentation suggests a dynamic framework for linking GUI-based infrastructure models with MOEA search. The framework begins with an initial formulation which is solved using a MOEA. Then, stakeholders can interact with candidate solutions, viewing their properties in the GUI model. This is followed by changes in the formulation which represent users' evolving understanding of exigent system properties. Our case study is built using RiverWare, an object-oriented, data-centered model that facilitates the representation of a diverse array of water resources systems. Results suggest that assumptions within the initial MOEA search are violated after investigating tradeoffs and reveal how formulations should be modified to better capture stakeholders' preferences.

  8. Peptide identification via constrained multi-objective optimization: Pareto-based genetic algorithms

    SciTech Connect

    Malard, Joel M.; Heredia-Langner, Alejandro; Cannon, William R.; Mooney, Ryan W.; Baxter, Douglas J.

    2005-12-10

    Automatic data-base independent peptide identification from collision-induced dissociation tandem mass spectrometry data is made difficult by large plateaus in the fitness landscapes of scoring functions and the fuzzy nature of the constraints that is due to noise in the data. Two different scoring functions are combined into a parallel multi-objective optimization framework.

  9. An evolutionary algorithm for interval solid transportation problems.

    PubMed

    Jiménez, F; Verdegay, J L

    1999-01-01

    The Solid Transportation Problem arises when bounds are given on three item properties. Usually, these properties are source, destination and mode of transport (conveyance), and may be given in an interval way. This paper deals with solid transportation problems in which the data in the constraint set are expressed in an interval form, i.e. when sources, destinations and conveyances have interval values instead of point values. An arbitrary linear or nonlinear objective function is also considered. To solve the problem, an Evolutionary Algorithm which extends and generalizes other approaches considering only point values, is proposed.

  10. Multi-objective genetic algorithms based structural optimization and experimental investigation of the planet carrier in wind turbine gearbox

    NASA Astrophysics Data System (ADS)

    Yi, Pengxing; Dong, Lijian; Shi, Tielin

    2014-12-01

    To improve the dynamic performance and reduce the weight of the planet carrier in wind turbine gearbox, a multi-objective optimization method, which is driven by the maximum deformation, the maximum stress and the minimum mass of the studied part, is proposed by combining the response surface method and genetic algorithms in this paper. Firstly, the design points' distribution for the design variables of the planet carrier is established with the central composite design (CCD) method. Then, based on the computing results of finite element analysis (FEA), the response surface analysis is conducted to find out the proper sets of design variable values. And a multi-objective genetic algorithm (MOGA) is applied to determine the direction of optimization. As well, this method is applied to design and optimize the planet carrier in a 1.5MW wind turbine gearbox, the results of which are validated by an experimental modal test. Compared with the original design, the mass and the stress of the optimized planet carrier are respectively reduced by 9.3% and 40%. Consequently, the cost of planet carrier is greatly reduced and its stability is also improved.

  11. Multiobjective Optimization Design of Spinal Pedicle Screws Using Neural Networks and Genetic Algorithm: Mathematical Models and Mechanical Validation

    PubMed Central

    Amaritsakul, Yongyut; Chao, Ching-Kong

    2013-01-01

    Short-segment instrumentation for spine fractures is threatened by relatively high failure rates. Failure of the spinal pedicle screws including breakage and loosening may jeopardize the fixation integrity and lead to treatment failure. Two important design objectives, bending strength and pullout strength, may conflict with each other and warrant a multiobjective optimization study. In the present study using the three-dimensional finite element (FE) analytical results based on an L25 orthogonal array, bending and pullout objective functions were developed by an artificial neural network (ANN) algorithm, and the trade-off solutions known as Pareto optima were explored by a genetic algorithm (GA). The results showed that the knee solutions of the Pareto fronts with both high bending and pullout strength ranged from 92% to 94% of their maxima, respectively. In mechanical validation, the results of mathematical analyses were closely related to those of experimental tests with a correlation coefficient of −0.91 for bending and 0.93 for pullout (P < 0.01 for both). The optimal design had significantly higher fatigue life (P < 0.01) and comparable pullout strength as compared with commercial screws. Multiobjective optimization study of spinal pedicle screws using the hybrid of ANN and GA could achieve an ideal with high bending and pullout performances simultaneously. PMID:23983810

  12. Multiobjective Aerodynamic Shape Optimization Using Pareto Differential Evolution and Generalized Response Surface Metamodels

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.

    2004-01-01

    Differential Evolution (DE) is a simple, fast, and robust evolutionary algorithm that has proven effective in determining the global optimum for several difficult single-objective optimization problems. The DE algorithm has been recently extended to multiobjective optimization problem by using a Pareto-based approach. In this paper, a Pareto DE algorithm is applied to multiobjective aerodynamic shape optimization problems that are characterized by computationally expensive objective function evaluations. To improve computational expensive the algorithm is coupled with generalized response surface meta-models based on artificial neural networks. Results are presented for some test optimization problems from the literature to demonstrate the capabilities of the method.

  13. Evolutionary pattern search algorithms for unconstrained and linearly constrained optimization

    SciTech Connect

    HART,WILLIAM E.

    2000-06-01

    The authors describe a convergence theory for evolutionary pattern search algorithms (EPSAs) on a broad class of unconstrained and linearly constrained problems. EPSAs adaptively modify the step size of the mutation operator in response to the success of previous optimization steps. The design of EPSAs is inspired by recent analyses of pattern search methods. The analysis significantly extends the previous convergence theory for EPSAs. The analysis applies to a broader class of EPSAs,and it applies to problems that are nonsmooth, have unbounded objective functions, and which are linearly constrained. Further, they describe a modest change to the algorithmic framework of EPSAs for which a non-probabilistic convergence theory applies. These analyses are also noteworthy because they are considerably simpler than previous analyses of EPSAs.

  14. Characterization of atmospheric contaminant sources using adaptive evolutionary algorithms

    NASA Astrophysics Data System (ADS)

    Cervone, Guido; Franzese, Pasquale; Grajdeanu, Adrian

    2010-10-01

    The characteristics of an unknown source of emissions in the atmosphere are identified using an Adaptive Evolutionary Strategy (AES) methodology based on ground concentration measurements and a Gaussian plume model. The AES methodology selects an initial set of source characteristics including position, size, mass emission rate, and wind direction, from which a forward dispersion simulation is performed. The error between the simulated concentrations from the tentative source and the observed ground measurements is calculated. Then the AES algorithm prescribes the next tentative set of source characteristics. The iteration proceeds towards minimum error, corresponding to convergence towards the real source. The proposed methodology was used to identify the source characteristics of 12 releases from the Prairie Grass field experiment of dispersion, two for each atmospheric stability class, ranging from very unstable to stable atmosphere. The AES algorithm was found to have advantages over a simple canonical ES and a Monte Carlo (MC) method which were used as benchmarks.

  15. Parallel and Preemptable Dynamically Dimensioned Search Algorithms for Single and Multi-objective Optimization in Water Resources

    NASA Astrophysics Data System (ADS)

    Tolson, B.; Matott, L. S.; Gaffoor, T. A.; Asadzadeh, M.; Shafii, M.; Pomorski, P.; Xu, X.; Jahanpour, M.; Razavi, S.; Haghnegahdar, A.; Craig, J. R.

    2015-12-01

    We introduce asynchronous parallel implementations of the Dynamically Dimensioned Search (DDS) family of algorithms including DDS, discrete DDS, PA-DDS and DDS-AU. These parallel algorithms are unique from most existing parallel optimization algorithms in the water resources field in that parallel DDS is asynchronous and does not require an entire population (set of candidate solutions) to be evaluated before generating and then sending a new candidate solution for evaluation. One key advance in this study is developing the first parallel PA-DDS multi-objective optimization algorithm. The other key advance is enhancing the computational efficiency of solving optimization problems (such as model calibration) by combining a parallel optimization algorithm with the deterministic model pre-emption concept. These two efficiency techniques can only be combined because of the asynchronous nature of parallel DDS. Model pre-emption functions to terminate simulation model runs early, prior to completely simulating the model calibration period for example, when intermediate results indicate the candidate solution is so poor that it will definitely have no influence on the generation of further candidate solutions. The computational savings of deterministic model preemption available in serial implementations of population-based algorithms (e.g., PSO) disappear in synchronous parallel implementations as these algorithms. In addition to the key advances above, we implement the algorithms across a range of computation platforms (Windows and Unix-based operating systems from multi-core desktops to a supercomputer system) and package these for future modellers within a model-independent calibration software package called Ostrich as well as MATLAB versions. Results across multiple platforms and multiple case studies (from 4 to 64 processors) demonstrate the vast improvement over serial DDS-based algorithms and highlight the important role model pre-emption plays in the performance

  16. An observation planning algorithm applied to multi-objective astronomical observations and its simulation in COSMOS field

    NASA Astrophysics Data System (ADS)

    Jin, Yi; Gu, Yonggang; Zhai, Chao

    2012-09-01

    Multi-Object Fiber Spectroscopic sky surveys are now booming, such as LAMOST already built by China, BIGBOSS project put forward by the U.S. Lawrence Berkeley National Lab and GTC (Gran Telescopio Canarias) telescope developed by the United States, Mexico and Spain. They all use or will use this approach and each fiber can be moved within a certain area for one astrology target, so observation planning is particularly important for this Sky Surveys. One observation planning algorithm used in multi-objective astronomical observations is developed. It can avoid the collision and interference between the fiber positioning units in the focal plane during the observation in one field of view, and the interested objects can be ovserved in a limited round with the maximize efficiency. Also, the observation simulation can be made for wide field of view through multi-FOV observation. After the observation planning is built ,the simulation is made in COSMOS field using GTC telescope. Interested galaxies, stars and high-redshift LBG galaxies are selected after the removal of the mask area, which may be bright stars. Then 9 FOV simulation is completed and observation efficiency and fiber utilization ratio for every round are given. Otherwise,allocating a certain number of fibers for background sky, giving different weights for different objects and how to move the FOV to improve the overall observation efficiency are discussed.

  17. Optimization of multi-objective integrated process planning and scheduling problem using a priority based optimization algorithm

    NASA Astrophysics Data System (ADS)

    Ausaf, Muhammad Farhan; Gao, Liang; Li, Xinyu

    2015-12-01

    For increasing the overall performance of modern manufacturing systems, effective integration of process planning and scheduling functions has been an important area of consideration among researchers. Owing to the complexity of handling process planning and scheduling simultaneously, most of the research work has been limited to solving the integrated process planning and scheduling (IPPS) problem for a single objective function. As there are many conflicting objectives when dealing with process planning and scheduling, real world problems cannot be fully captured considering only a single objective for optimization. Therefore considering multi-objective IPPS (MOIPPS) problem is inevitable. Unfortunately, only a handful of research papers are available on solving MOIPPS problem. In this paper, an optimization algorithm for solving MOIPPS problem is presented. The proposed algorithm uses a set of dispatching rules coupled with priority assignment to optimize the IPPS problem for various objectives like makespan, total machine load, total tardiness, etc. A fixed sized external archive coupled with a crowding distance mechanism is used to store and maintain the non-dominated solutions. To compare the results with other algorithms, a C-matric based method has been used. Instances from four recent papers have been solved to demonstrate the effectiveness of the proposed algorithm. The experimental results show that the proposed method is an efficient approach for solving the MOIPPS problem.

  18. An Allele Real-Coded Quantum Evolutionary Algorithm Based on Hybrid Updating Strategy

    PubMed Central

    Zhang, Yu-Xian; Qian, Xiao-Yi; Peng, Hui-Deng; Wang, Jian-Hui

    2016-01-01

    For improving convergence rate and preventing prematurity in quantum evolutionary algorithm, an allele real-coded quantum evolutionary algorithm based on hybrid updating strategy is presented. The real variables are coded with probability superposition of allele. A hybrid updating strategy balancing the global search and local search is presented in which the superior allele is defined. On the basis of superior allele and inferior allele, a guided evolutionary process as well as updating allele with variable scale contraction is adopted. And Hε gate is introduced to prevent prematurity. Furthermore, the global convergence of proposed algorithm is proved by Markov chain. Finally, the proposed algorithm is compared with genetic algorithm, quantum evolutionary algorithm, and double chains quantum genetic algorithm in solving continuous optimization problem, and the experimental results verify the advantages on convergence rate and search accuracy. PMID:27057159

  19. Toward a theory of evolutionary computation.

    PubMed

    Eberbach, Eugene

    2005-10-01

    We outline a theory of evolutionary computation using a formal model of evolutionary computation--the Evolutionary Turing Machine--which is introduced as the extension of the Turing Machine model. Evolutionary Turing Machines provide a better and a more complete model for evolutionary computing than conventional Turing Machines, algorithms, and Markov chains. The convergence and convergence rate are defined and investigated in terms of this new model. The sufficient conditions needed for the completeness and optimality of evolutionary search are investigated. In particular, the notion of the total optimality as an instance of the multiobjective optimization of the Universal Evolutionary Turing Machine is introduced. This provides an automatic way to deal with the intractability of evolutionary search by optimizing the quality of solutions and search costs simultaneously. Based on a new model a very flexible classification of optimization problem hardness for the evolutionary techniques is proposed. The expressiveness of evolutionary computation is investigated. We show that the problem of the best evolutionary algorithm is undecidable independently of whether the fitness function is time dependent or fixed. It is demonstrated that the evolutionary computation paradigm is more expressive than Turing Machines, and thus the conventional computer science based on them. We show that an Evolutionary Turing Machine is able to solve nonalgorithmically the halting problem of the Universal Turing Machine and, asymptotically, the best evolutionary algorithm problem. In other words, the best evolutionary algorithm does not exist, but it can be potentially indefinitely approximated using evolutionary techniques.

  20. Automatic Calibration of Hydrologic Models with Multi-Objective Evolutionary Algorithm and Pareto Optimization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In optimization problems with at least two conflicting objectives, a set of solutions rather than a unique one exists because of the trade-offs between these objectives. The Pareto optimal set is achieved when no solution can be improved without degrading another one. This study investigated the ap...

  1. Optimizing quantum gas production by an evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Lausch, T.; Hohmann, M.; Kindermann, F.; Mayer, D.; Schmidt, F.; Widera, A.

    2016-05-01

    We report on the application of an evolutionary algorithm (EA) to enhance performance of an ultra-cold quantum gas experiment. The production of a ^{87}rubidium Bose-Einstein condensate (BEC) can be divided into fundamental cooling steps, specifically magneto-optical trapping of cold atoms, loading of atoms to a far-detuned crossed dipole trap, and finally the process of evaporative cooling. The EA is applied separately for each of these steps with a particular definition for the feedback, the so-called fitness. We discuss the principles of an EA and implement an enhancement called differential evolution. Analyzing the reasons for the EA to improve, e.g., the atomic loading rates and increase the BEC phase-space density, yields an optimal parameter set for the BEC production and enables us to reduce the BEC production time significantly. Furthermore, we focus on how additional information about the experiment and optimization possibilities can be extracted and how the correlations revealed allow for further improvement. Our results illustrate that EAs are powerful optimization tools for complex experiments and exemplify that the application yields useful information on the dependence of these experiments on the optimized parameters.

  2. An Airway Network Flow Assignment Approach Based on an Efficient Multiobjective Optimization Framework

    PubMed Central

    Guan, Xiangmin; Zhang, Xuejun; Zhu, Yanbo; Sun, Dengfeng; Lei, Jiaxing

    2015-01-01

    Considering reducing the airspace congestion and the flight delay simultaneously, this paper formulates the airway network flow assignment (ANFA) problem as a multiobjective optimization model and presents a new multiobjective optimization framework to solve it. Firstly, an effective multi-island parallel evolution algorithm with multiple evolution populations is employed to improve the optimization capability. Secondly, the nondominated sorting genetic algorithm II is applied for each population. In addition, a cooperative coevolution algorithm is adapted to divide the ANFA problem into several low-dimensional biobjective optimization problems which are easier to deal with. Finally, in order to maintain the diversity of solutions and to avoid prematurity, a dynamic adjustment operator based on solution congestion degree is specifically designed for the ANFA problem. Simulation results using the real traffic data from China air route network and daily flight plans demonstrate that the proposed approach can improve the solution quality effectively, showing superiority to the existing approaches such as the multiobjective genetic algorithm, the well-known multiobjective evolutionary algorithm based on decomposition, and a cooperative coevolution multiobjective algorithm as well as other parallel evolution algorithms with different migration topology. PMID:26180840

  3. An Airway Network Flow Assignment Approach Based on an Efficient Multiobjective Optimization Framework.

    PubMed

    Guan, Xiangmin; Zhang, Xuejun; Zhu, Yanbo; Sun, Dengfeng; Lei, Jiaxing

    2015-01-01

    Considering reducing the airspace congestion and the flight delay simultaneously, this paper formulates the airway network flow assignment (ANFA) problem as a multiobjective optimization model and presents a new multiobjective optimization framework to solve it. Firstly, an effective multi-island parallel evolution algorithm with multiple evolution populations is employed to improve the optimization capability. Secondly, the nondominated sorting genetic algorithm II is applied for each population. In addition, a cooperative coevolution algorithm is adapted to divide the ANFA problem into several low-dimensional biobjective optimization problems which are easier to deal with. Finally, in order to maintain the diversity of solutions and to avoid prematurity, a dynamic adjustment operator based on solution congestion degree is specifically designed for the ANFA problem. Simulation results using the real traffic data from China air route network and daily flight plans demonstrate that the proposed approach can improve the solution quality effectively, showing superiority to the existing approaches such as the multiobjective genetic algorithm, the well-known multiobjective evolutionary algorithm based on decomposition, and a cooperative coevolution multiobjective algorithm as well as other parallel evolution algorithms with different migration topology. PMID:26180840

  4. Robust design of multiple trailing edge flaps for helicopter vibration reduction: A multi-objective bat algorithm approach

    NASA Astrophysics Data System (ADS)

    Mallick, Rajnish; Ganguli, Ranjan; Seetharama Bhat, M.

    2015-09-01

    The objective of this study is to determine an optimal trailing edge flap configuration and flap location to achieve minimum hub vibration levels and flap actuation power simultaneously. An aeroelastic analysis of a soft in-plane four-bladed rotor is performed in conjunction with optimal control. A second-order polynomial response surface based on an orthogonal array (OA) with 3-level design describes both the objectives adequately. Two new orthogonal arrays called MGB2P-OA and MGB4P-OA are proposed to generate nonlinear response surfaces with all interaction terms for two and four parameters, respectively. A multi-objective bat algorithm (MOBA) approach is used to obtain the optimal design point for the mutually conflicting objectives. MOBA is a recently developed nature-inspired metaheuristic optimization algorithm that is based on the echolocation behaviour of bats. It is found that MOBA inspired Pareto optimal trailing edge flap design reduces vibration levels by 73% and flap actuation power by 27% in comparison with the baseline design.

  5. Multi-Objective Analysis Applied to Mixed-Model Assembly Line Sequencing Problem through Elite Induced Evolutionary Method

    NASA Astrophysics Data System (ADS)

    Shimizu, Yoshiaki; Sakaguchi, Tatsuhiko; Pralomkarn, Theerayoth

    To meet higher customer satisfaction and shorter production lead time, assembly lines are shifting to mixed-model assembly lines. Accordingly, sequencing is becoming an increasingly important operation scheduling that directly affects on efficiency of the entire process. In this study, such sequencing problem at the mixed-model assembly line has been formulated as a bi-objective integer programming problem so that decision making through trade-off analysis can bring about significant production improvements. Then we have developed a multi-objective analysis method by hybridizing conventional and recent meta-heuristic methods. After showing its generic idea, the car mixed-model assembly line sequencing problem is concerned as a case study. Certain measures are also introduced to quantitatively evaluate the performances of the method through comparison.

  6. Complexity of line-seru conversion for different scheduling rules and two improved exact algorithms for the multi-objective optimization.

    PubMed

    Yu, Yang; Wang, Sihan; Tang, Jiafu; Kaku, Ikou; Sun, Wei

    2016-01-01

    Productivity can be greatly improved by converting the traditional assembly line to a seru system, especially in the business environment with short product life cycles, uncertain product types and fluctuating production volumes. Line-seru conversion includes two decision processes, i.e., seru formation and seru load. For simplicity, however, previous studies focus on the seru formation with a given scheduling rule in seru load. We select ten scheduling rules usually used in seru load to investigate the influence of different scheduling rules on the performance of line-seru conversion. Moreover, we clarify the complexities of line-seru conversion for ten different scheduling rules from the theoretical perspective. In addition, multi-objective decisions are often used in line-seru conversion. To obtain Pareto-optimal solutions of multi-objective line-seru conversion, we develop two improved exact algorithms based on reducing time complexity and space complexity respectively. Compared with the enumeration based on non-dominated sorting to solve multi-objective problem, the two improved exact algorithms saves computation time greatly. Several numerical simulation experiments are performed to show the performance improvement brought by the two proposed exact algorithms. PMID:27390649

  7. EVO—Evolutionary algorithm for crystal structure prediction

    NASA Astrophysics Data System (ADS)

    Bahmann, Silvia; Kortus, Jens

    2013-06-01

    We present EVO—an evolution strategy designed for crystal structure search and prediction. The concept and main features of biological evolution such as creation of diversity and survival of the fittest have been transferred to crystal structure prediction. EVO successfully demonstrates its applicability to find crystal structures of the elements of the 3rd main group with their different spacegroups. For this we used the number of atoms in the conventional cell and multiples of it. Running EVO with different numbers of carbon atoms per unit cell yields graphite as the lowest energy structure as well as a diamond-like structure, both in one run. Our implementation also supports the search for 2D structures and was able to find a boron sheet with structural features so far not considered in literature. Program summaryProgram title: EVO Catalogue identifier: AEOZ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOZ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 3 No. of lines in distributed program, including test data, etc.: 23488 No. of bytes in distributed program, including test data, etc.: 1830122 Distribution format: tar.gz Programming language: Python. Computer: No limitations known. Operating system: Linux. RAM: Negligible compared to the requirements of the electronic structure programs used Classification: 7.8. External routines: Quantum ESPRESSO (http://www.quantum-espresso.org/), GULP (https://projects.ivec.org/gulp/) Nature of problem: Crystal structure search is a global optimisation problem in 3N+3 dimensions where N is the number of atoms in the unit cell. The high dimensional search space is accompanied by an unknown energy landscape. Solution method: Evolutionary algorithms transfer the main features of biological evolution to use them in global searches. The combination of the "survival of the fittest" (deterministic) and the

  8. Fuzzy evolutionary algorithm to solve chromosomes conflict and its application to lecture schedule problems

    NASA Astrophysics Data System (ADS)

    Marwati, Rini; Yulianti, Kartika; Pangestu, Herny Wulandari

    2016-02-01

    A fuzzy evolutionary algorithm is an integration of an evolutionary algorithm and a fuzzy system. In this paper, we present an application of a genetic algorithm to a fuzzy evolutionary algorithm to detect and to solve chromosomes conflict. A chromosome conflict is identified by existence of any two genes in a chromosome that has the same values as two genes in another chromosome. Based on this approach, we construct an algorithm to solve a lecture scheduling problem. Time codes, lecture codes, lecturer codes, and room codes are defined as genes. They are collected to become chromosomes. As a result, the conflicted schedule turns into chromosomes conflict. Built in the Delphi program, results show that the conflicted lecture schedule problem is solvable by this algorithm.

  9. Binary Bees Algorithm - bioinspiration from the foraging mechanism of honeybees to optimize a multiobjective multidimensional assignment problem

    NASA Astrophysics Data System (ADS)

    Xu, Shuo; Ji, Ze; Truong Pham, Duc; Yu, Fan

    2011-11-01

    The simultaneous mission assignment and home allocation for hospital service robots studied is a Multidimensional Assignment Problem (MAP) with multiobjectives and multiconstraints. A population-based metaheuristic, the Binary Bees Algorithm (BBA), is proposed to optimize this NP-hard problem. Inspired by the foraging mechanism of honeybees, the BBA's most important feature is an explicit functional partitioning between global search and local search for exploration and exploitation, respectively. Its key parts consist of adaptive global search, three-step elitism selection (constraint handling, non-dominated solutions selection, and diversity preservation), and elites-centred local search within a Hamming neighbourhood. Two comparative experiments were conducted to investigate its single objective optimization, optimization effectiveness (indexed by the S-metric and C-metric) and optimization efficiency (indexed by computational burden and CPU time) in detail. The BBA outperformed its competitors in almost all the quantitative indices. Hence, the above overall scheme, and particularly the searching history-adapted global search strategy was validated.

  10. Multi-objective constrained design of nickel-base superalloys using data mining- and thermodynamics-driven genetic algorithms

    NASA Astrophysics Data System (ADS)

    Menou, Edern; Ramstein, Gérard; Bertrand, Emmanuel; Tancret, Franck

    2016-06-01

    A new computational framework for systematic and optimal alloy design is introduced. It is based on a multi-objective genetic algorithm which allows (i) the screening of vast compositional ranges and (ii) the optimisation of the performance of novel alloys. Alloys performance is evaluated on the basis of their predicted constitutional and thermomechanical properties. To this end, the CALPHAD method is used for assessing equilibrium characteristics (such as constitution, stability or processability) while Gaussian processes provide an estimate of thermomechanical properties (such as tensile strength or creep resistance), based on a multi-variable non-linear regression of existing data. These three independently well-assessed tools were unified within a single C++ routine. The method was applied to the design of affordable nickel-base superalloys for service in power plants, providing numerous candidates with superior expected microstructural stability and strength. An overview of the metallurgy of optimised alloys, as well as two detailed examples of optimal alloys, suggest that improvements over current commercial alloys are achievable at lower costs.

  11. Extraction of battery parameters using a multi-objective genetic algorithm with a non-linear circuit model

    NASA Astrophysics Data System (ADS)

    Malik, Aimun; Zhang, Zheming; Agarwal, Ramesh K.

    2014-08-01

    There is need for a battery model that can accurately describe the battery performance for an electrical system, such as the electric drive train of electric vehicles. In this paper, both linear and non-linear equivalent circuit models (ECM) are employed as a means of extracting the battery parameters that can be used to model the performance of a battery. The linear and non-linear equivalent circuit models differ in the numbers of capacitance and resistance; the non-linear model has an added circuit; however their numerical characteristics are equivalent. A multi-objective genetic algorithm is employed to accurately extract the values of the battery model parameters. The battery model parameters are obtained for several existing industrial batteries as well as for two recently proposed high performance batteries. Once the model parameters are optimally determined, the results demonstrate that both linear and non-linear equivalent circuit models can predict with acceptable accuracy the performance of various batteries of different sizes, characteristics, capacities, and materials. However, the comparisons of results with catalog and experimental data shows that the predictions of results using the non-linear equivalent circuit model are slightly better than those predicted by the linear model, calculating voltages that are closer to the manufacturers' values.

  12. Quantum dot ternary-valued full-adder: Logic synthesis by a multiobjective design optimization based on a genetic algorithm

    SciTech Connect

    Klymenko, M. V.; Remacle, F.

    2014-10-28

    A methodology is proposed for designing a low-energy consuming ternary-valued full adder based on a quantum dot (QD) electrostatically coupled with a single electron transistor operating as a charge sensor. The methodology is based on design optimization: the values of the physical parameters of the system required for implementing the logic operations are optimized using a multiobjective genetic algorithm. The searching space is determined by elements of the capacitance matrix describing the electrostatic couplings in the entire device. The objective functions are defined as the maximal absolute error over actual device logic outputs relative to the ideal truth tables for the sum and the carry-out in base 3. The logic units are implemented on the same device: a single dual-gate quantum dot and a charge sensor. Their physical parameters are optimized to compute either the sum or the carry out outputs and are compatible with current experimental capabilities. The outputs are encoded in the value of the electric current passing through the charge sensor, while the logic inputs are supplied by the voltage levels on the two gate electrodes attached to the QD. The complex logic ternary operations are directly implemented on an extremely simple device, characterized by small sizes and low-energy consumption compared to devices based on switching single-electron transistors. The design methodology is general and provides a rational approach for realizing non-switching logic operations on QD devices.

  13. The multi-objective optimization of the horizontal-axis marine current turbine based on NSGA-II algorithm

    NASA Astrophysics Data System (ADS)

    Zhu, G. J.; Guo, P. C.; Luo, X. Q.; Feng, J. J.

    2012-11-01

    The present paper describes a hydrodynamic optimization technique for horizontal-axial marine current turbine. The pitch angle distribution is important to marine current turbine. In this paper, the pitch angle distribution curve is parameterized as four control points by Bezier curve method. The coordinates of the four control points are chosen as optimization variables, and the sample space are structured according to the Box-Behnken experimental design method (BBD). Then the power capture coefficient and axial thrust coefficient in design tip-speed ratio is obtained for all the elements in the sample space by CFD numerical simulation. The power capture coefficient and axial thrust are chosen as objective function, and quadratic polynomial regression equations are constructed to fit the relationship between the optimization variables and each objective function according to response surface model. With the obtained quadratic polynomial regression equations as performance prediction model, the marine current turbine is optimized using the NSGA-II multi-objective genetic algorithm, which finally offers an improved marine current turbine.

  14. Multi-objective optimal design of magnetorheological engine mount based on an improved non-dominated sorting genetic algorithm

    NASA Astrophysics Data System (ADS)

    Zheng, Ling; Duan, Xuwei; Deng, Zhaoxue; Li, Yinong

    2014-03-01

    A novel flow-mode magneto-rheological (MR) engine mount integrated a diaphragm de-coupler and the spoiler plate is designed and developed to isolate engine and the transmission from the chassis in a wide frequency range and overcome the stiffness in high frequency. A lumped parameter model of the MR engine mount in single degree of freedom system is further developed based on bond graph method to predict the performance of the MR engine mount accurately. The optimization mathematical model is established to minimize the total of force transmissibility over several frequency ranges addressed. In this mathematical model, the lumped parameters are considered as design variables. The maximum of force transmissibility and the corresponding frequency in low frequency range as well as individual lumped parameter are limited as constraints. The multiple interval sensitivity analysis method is developed to select the optimized variables and improve the efficiency of optimization process. An improved non-dominated sorting genetic algorithm (NSGA-II) is used to solve the multi-objective optimization problem. The synthesized distance between the individual in Pareto set and the individual in possible set in engineering is defined and calculated. A set of real design parameters is thus obtained by the internal relationship between the optimal lumped parameters and practical design parameters for the MR engine mount. The program flowchart for the improved non-dominated sorting genetic algorithm (NSGA-II) is given. The obtained results demonstrate the effectiveness of the proposed optimization approach in minimizing the total of force transmissibility over several frequency ranges addressed.

  15. Development and validation of evolutionary algorithm software as an optimization tool for biological and environmental applications.

    PubMed

    Sys, K; Boon, N; Verstraete, W

    2004-06-01

    A flexible, extendable tool for the optimization of (micro)biological processes and protocols using evolutionary algorithms was developed. It has been tested using three different theoretical optimization problems: 2 two-dimensional problems, one with three maxima and one with five maxima and a river autopurification optimization problem with boundary conditions. For each problem, different evolutionary parameter settings were used for the optimization. For each combination of evolutionary parameters, 15 generations were run 20 times. It has been shown that in all cases, the evolutionary algorithm gave rise to valuable results. Generally, the algorithms were able to detect the more stable sub-maximum even if there existed less stable maxima. The latter is, from a practical point of view, generally more desired. The most important factors influencing the convergence process were the parameter value randomization rate and distribution. The developed software, described in this work, is available for free.

  16. Multiobjective optimisation design for enterprise system operation in the case of scheduling problem with deteriorating jobs

    NASA Astrophysics Data System (ADS)

    Wang, Hongfeng; Fu, Yaping; Huang, Min; Wang, Junwei

    2016-03-01

    The operation process design is one of the key issues in the manufacturing and service sectors. As a typical operation process, the scheduling with consideration of the deteriorating effect has been widely studied; however, the current literature only studied single function requirement and rarely considered the multiple function requirements which are critical for a real-world scheduling process. In this article, two function requirements are involved in the design of a scheduling process with consideration of the deteriorating effect and then formulated into two objectives of a mathematical programming model. A novel multiobjective evolutionary algorithm is proposed to solve this model with combination of three strategies, i.e. a multiple population scheme, a rule-based local search method and an elitist preserve strategy. To validate the proposed model and algorithm, a series of randomly-generated instances are tested and the experimental results indicate that the model is effective and the proposed algorithm can achieve the satisfactory performance which outperforms the other state-of-the-art multiobjective evolutionary algorithms, such as nondominated sorting genetic algorithm II and multiobjective evolutionary algorithm based on decomposition, on all the test instances.

  17. Multi Objective Aerodynamic Optimization Using Parallel Nash Evolutionary/deterministic Hybrid Algorithms

    NASA Astrophysics Data System (ADS)

    Tang, Zhili

    2016-06-01

    This paper solved aerodynamic drag reduction of transport wing fuselage configuration in transonic regime by using a parallel Nash evolutionary/deterministic hybrid optimization algorithm. Two sets of parameters are used, namely globally and locally. It is shown that optimizing separately local and global parameters by using Nash algorithms is far more efficient than considering these variables as a whole.

  18. Performance comparison of some evolutionary algorithms on job shop scheduling problems

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Rao, C. S. P.

    2016-09-01

    Job Shop Scheduling as a state space search problem belonging to NP-hard category due to its complexity and combinational explosion of states. Several naturally inspire evolutionary methods have been developed to solve Job Shop Scheduling Problems. In this paper the evolutionary methods namely Particles Swarm Optimization, Artificial Intelligence, Invasive Weed Optimization, Bacterial Foraging Optimization, Music Based Harmony Search Algorithms are applied and find tuned to model and solve Job Shop Scheduling Problems. To compare about 250 Bench Mark instances have been used to evaluate the performance of these algorithms. The capabilities of each these algorithms in solving Job Shop Scheduling Problems are outlined.

  19. Path planning using a hybrid evolutionary algorithm based on tree structure encoding.

    PubMed

    Ju, Ming-Yi; Wang, Siao-En; Guo, Jian-Horn

    2014-01-01

    A hybrid evolutionary algorithm using scalable encoding method for path planning is proposed in this paper. The scalable representation is based on binary tree structure encoding. To solve the problem of hybrid genetic algorithm and particle swarm optimization, the "dummy node" is added into the binary trees to deal with the different lengths of representations. The experimental results show that the proposed hybrid method demonstrates using fewer turning points than traditional evolutionary algorithms to generate shorter collision-free paths for mobile robot navigation. PMID:24971389

  20. Path planning using a hybrid evolutionary algorithm based on tree structure encoding.

    PubMed

    Ju, Ming-Yi; Wang, Siao-En; Guo, Jian-Horn

    2014-01-01

    A hybrid evolutionary algorithm using scalable encoding method for path planning is proposed in this paper. The scalable representation is based on binary tree structure encoding. To solve the problem of hybrid genetic algorithm and particle swarm optimization, the "dummy node" is added into the binary trees to deal with the different lengths of representations. The experimental results show that the proposed hybrid method demonstrates using fewer turning points than traditional evolutionary algorithms to generate shorter collision-free paths for mobile robot navigation.

  1. On the Improvement of Convergence Performance for Integrated Design of Wind Turbine Blade Using a Vector Dominating Multi-objective Evolution Algorithm

    NASA Astrophysics Data System (ADS)

    Wang, L.; Wang, T. G.; Wu, J. H.; Cheng, G. P.

    2016-09-01

    A novel multi-objective optimization algorithm incorporating evolution strategies and vector mechanisms, referred as VD-MOEA, is proposed and applied in aerodynamic- structural integrated design of wind turbine blade. In the algorithm, a set of uniformly distributed vectors is constructed to guide population in moving forward to the Pareto front rapidly and maintain population diversity with high efficiency. For example, two- and three- objective designs of 1.5MW wind turbine blade are subsequently carried out for the optimization objectives of maximum annual energy production, minimum blade mass, and minimum extreme root thrust. The results show that the Pareto optimal solutions can be obtained in one single simulation run and uniformly distributed in the objective space, maximally maintaining the population diversity. In comparison to conventional evolution algorithms, VD-MOEA displays dramatic improvement of algorithm performance in both convergence and diversity preservation for handling complex problems of multi-variables, multi-objectives and multi-constraints. This provides a reliable high-performance optimization approach for the aerodynamic-structural integrated design of wind turbine blade.

  2. Multiobjective optimization approach: thermal food processing.

    PubMed

    Abakarov, A; Sushkov, Y; Almonacid, S; Simpson, R

    2009-01-01

    The objective of this study was to utilize a multiobjective optimization technique for the thermal sterilization of packaged foods. The multiobjective optimization approach used in this study is based on the optimization of well-known aggregating functions by an adaptive random search algorithm. The applicability of the proposed approach was illustrated by solving widely used multiobjective test problems taken from the literature. The numerical results obtained for the multiobjective test problems and for the thermal processing problem show that the proposed approach can be effectively used for solving multiobjective optimization problems arising in the food engineering field.

  3. Multi-objective decoupling algorithm for active distance control of intelligent hybrid electric vehicle

    NASA Astrophysics Data System (ADS)

    Luo, Yugong; Chen, Tao; Li, Keqiang

    2015-12-01

    The paper presents a novel active distance control strategy for intelligent hybrid electric vehicles (IHEV) with the purpose of guaranteeing an optimal performance in view of the driving functions, optimum safety, fuel economy and ride comfort. Considering the complexity of driving situations, the objects of safety and ride comfort are decoupled from that of fuel economy, and a hierarchical control architecture is adopted to improve the real-time performance and the adaptability. The hierarchical control structure consists of four layers: active distance control object determination, comprehensive driving and braking torque calculation, comprehensive torque distribution and torque coordination. The safety distance control and the emergency stop algorithms are designed to achieve the safety and ride comfort goals. The optimal rule-based energy management algorithm of the hybrid electric system is developed to improve the fuel economy. The torque coordination control strategy is proposed to regulate engine torque, motor torque and hydraulic braking torque to improve the ride comfort. This strategy is verified by simulation and experiment using a forward simulation platform and a prototype vehicle. The results show that the novel control strategy can achieve the integrated and coordinated control of its multiple subsystems, which guarantees top performance of the driving functions and optimum safety, fuel economy and ride comfort.

  4. A novel evolutionary approach for optimizing content-based image indexing algorithms.

    PubMed

    Saadatmand-Tarzjan, Mahdi; Moghaddam, Hamid Abrishami

    2007-02-01

    Optimization of content-based image indexing and retrieval (CBIR) algorithms is a complicated and time-consuming task since each time a parameter of the indexing algorithm is changed, all images in the database should be indexed again. In this paper, a novel evolutionary method called evolutionary group algorithm (EGA) is proposed for complicated time-consuming optimization problems such as finding optimal parameters of content-based image indexing algorithms. In the new evolutionary algorithm, the image database is partitioned into several smaller subsets, and each subset is used by an updating process as training patterns for each chromosome during evolution. This is in contrast to genetic algorithms that use the whole database as training patterns for evolution. Additionally, for each chromosome, a parameter called age is defined that implies the progress of the updating process. Similarly, the genes of the proposed chromosomes are divided into two categories: evolutionary genes that participate to evolution and history genes that save previous states of the updating process. Furthermore, a new fitness function is defined which evaluates the fitness of the chromosomes of the current population with different ages in each generation. We used EGA to optimize the quantization thresholds of the wavelet-correlogram algorithm for CBIR. The optimal quantization thresholds computed by EGA improved significantly all the evaluation measures including average precision, average weighted precision, average recall, and average rank for the wavelet-correlogram method.

  5. Modeling the performance of evolutionary algorithms on the root identification problem: a case study with PBIL and CHC algorithms.

    PubMed

    Yeguas, Enrique; Joan-Arinyo, Robert; Victoria Luz N, Mar A

    2011-01-01

    The availability of a model to measure the performance of evolutionary algorithms is very important, especially when these algorithms are applied to solve problems with high computational requirements. That model would compute an index of the quality of the solution reached by the algorithm as a function of run-time. Conversely, if we fix an index of quality for the solution, the model would give the number of iterations to be expected. In this work, we develop a statistical model to describe the performance of PBIL and CHC evolutionary algorithms applied to solve the root identification problem. This problem is basic in constraint-based, geometric parametric modeling, as an instance of general constraint-satisfaction problems. The performance model is empirically validated over a benchmark with very large search spaces.

  6. Parameterized runtime analyses of evolutionary algorithms for the planar euclidean traveling salesperson problem.

    PubMed

    Sutton, Andrew M; Neumann, Frank; Nallaperuma, Samadhi

    2014-01-01

    Parameterized runtime analysis seeks to understand the influence of problem structure on algorithmic runtime. In this paper, we contribute to the theoretical understanding of evolutionary algorithms and carry out a parameterized analysis of evolutionary algorithms for the Euclidean traveling salesperson problem (Euclidean TSP). We investigate the structural properties in TSP instances that influence the optimization process of evolutionary algorithms and use this information to bound their runtime. We analyze the runtime in dependence of the number of inner points k. In the first part of the paper, we study a [Formula: see text] EA in a strictly black box setting and show that it can solve the Euclidean TSP in expected time [Formula: see text] where A is a function of the minimum angle [Formula: see text] between any three points. Based on insights provided by the analysis, we improve this upper bound by introducing a mixed mutation strategy that incorporates both 2-opt moves and permutation jumps. This strategy improves the upper bound to [Formula: see text]. In the second part of the paper, we use the information gained in the analysis to incorporate domain knowledge to design two fixed-parameter tractable (FPT) evolutionary algorithms for the planar Euclidean TSP. We first develop a [Formula: see text] EA based on an analysis by M. Theile, 2009, "Exact solutions to the traveling salesperson problem by a population-based evolutionary algorithm," Lecture notes in computer science, Vol. 5482 (pp. 145-155), that solves the TSP with k inner points in [Formula: see text] generations with probability [Formula: see text]. We then design a [Formula: see text] EA that incorporates a dynamic programming step into the fitness evaluation. We prove that a variant of this evolutionary algorithm using 2-opt mutation solves the problem after [Formula: see text] steps in expectation with a cost of [Formula: see text] for each fitness evaluation.

  7. Optimization of aeroelastic composite structures using evolutionary algorithms

    NASA Astrophysics Data System (ADS)

    Manan, A.; Vio, G. A.; Harmin, M. Y.; Cooper, J. E.

    2010-02-01

    The flutter/divergence speed of a simple rectangular composite wing is maximized through the use of different ply orientations. Four different biologically inspired optimization algorithms (binary genetic algorithm, continuous genetic algorithm, particle swarm optimization, and ant colony optimization) and a simple meta-modeling approach are employed statistically on the same problem set. In terms of the best flutter speed, it was found that similar results were obtained using all of the methods, although the continuous methods gave better answers than the discrete methods. When the results were considered in terms of the statistical variation between different solutions, ant colony optimization gave estimates with much less scatter.

  8. A Fuzzy Goal Programming Procedure for Solving Multiobjective Load Flow Problems via Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Biswas, Papun; Chakraborti, Debjani

    2010-10-01

    This paper describes how the genetic algorithms (GAs) can be efficiently used to fuzzy goal programming (FGP) formulation of optimal power flow problems having multiple objectives. In the proposed approach, the different constraints, various relationships of optimal power flow calculations are fuzzily described. In the model formulation of the problem, the membership functions of the defined fuzzy goals are characterized first for measuring the degree of achievement of the aspiration levels of the goals specified in the decision making context. Then, the achievement function for minimizing the regret for under-deviations from the highest membership value (unity) of the defined membership goals to the extent possible on the basis of priorities is constructed for optimal power flow problems. In the solution process, the GA method is employed to the FGP formulation of the problem for achievement of the highest membership value (unity) of the defined membership functions to the extent possible in the decision making environment. In the GA based solution search process, the conventional Roulette wheel selection scheme, arithmetic crossover and random mutation are taken into consideration to reach a satisfactory decision. The developed method has been tested on IEEE 6-generator 30-bus System. Numerical results show that this method is promising for handling uncertain constraints in practical power systems.

  9. Scheduling Earth Observing Fleets Using Evolutionary Algorithms: Problem Description and Approach

    NASA Technical Reports Server (NTRS)

    Globus, Al; Crawford, James; Lohn, Jason; Morris, Robert; Clancy, Daniel (Technical Monitor)

    2002-01-01

    We describe work in progress concerning multi-instrument, multi-satellite scheduling. Most, although not all, Earth observing instruments currently in orbit are unique. In the relatively near future, however, we expect to see fleets of Earth observing spacecraft, many carrying nearly identical instruments. This presents a substantially new scheduling challenge. Inspired by successful commercial applications of evolutionary algorithms in scheduling domains, this paper presents work in progress regarding the use of evolutionary algorithms to solve a set of Earth observing related model problems. Both the model problems and the software are described. Since the larger problems will require substantial computation and evolutionary algorithms are embarrassingly parallel, we discuss our parallelization techniques using dedicated and cycle-scavenged workstations.

  10. A Multiobjective Approach to Homography Estimation

    PubMed Central

    Osuna-Enciso, Valentín; Oliva, Diego; Zúñiga, Virgilio; Pérez-Cisneros, Marco; Zaldívar, Daniel

    2016-01-01

    In several machine vision problems, a relevant issue is the estimation of homographies between two different perspectives that hold an extensive set of abnormal data. A method to find such estimation is the random sampling consensus (RANSAC); in this, the goal is to maximize the number of matching points given a permissible error (Pe), according to a candidate model. However, those objectives are in conflict: a low Pe value increases the accuracy of the model but degrades its generalization ability that refers to the number of matching points that tolerate noisy data, whereas a high Pe value improves the noise tolerance of the model but adversely drives the process to false detections. This work considers the estimation process as a multiobjective optimization problem that seeks to maximize the number of matching points whereas Pe is simultaneously minimized. In order to solve the multiobjective formulation, two different evolutionary algorithms have been explored: the Nondominated Sorting Genetic Algorithm II (NSGA-II) and the Nondominated Sorting Differential Evolution (NSDE). Results considering acknowledged quality measures among original and transformed images over a well-known image benchmark show superior performance of the proposal than Random Sample Consensus algorithm. PMID:26839532

  11. MOD* Lite: An Incremental Path Planning Algorithm Taking Care of Multiple Objectives.

    PubMed

    Oral, Tugcem; Polat, Faruk

    2016-01-01

    The need for determining a path from an initial location to a target one is a crucial task in many applications, such as virtual simulations, robotics, and computer games. Almost all of the existing algorithms are designed to find optimal or suboptimal solutions considering only a single objective, namely path length. However, in many real life application path length is not the sole criteria for optimization, there are more than one criteria to be optimized that cannot be transformed to each other. In this paper, we introduce a novel multiobjective incremental algorithm, multiobjective D* lite (MOD* lite) built upon a well-known path planning algorithm, D* lite. A number of experiments are designed to compare the solution quality and execution time requirements of MOD* lite with the multiobjective A* algorithm, an alternative genetic algorithm we developed multiobjective genetic path planning and the strength Pareto evolutionary algorithm.

  12. First principles prediction of amorphous phases using evolutionary algorithms

    NASA Astrophysics Data System (ADS)

    Nahas, Suhas; Gaur, Anshu; Bhowmick, Somnath

    2016-07-01

    We discuss the efficacy of evolutionary method for the purpose of structural analysis of amorphous solids. At present, ab initio molecular dynamics (MD) based melt-quench technique is used and this deterministic approach has proven to be successful to study amorphous materials. We show that a stochastic approach motivated by Darwinian evolution can also be used to simulate amorphous structures. Applying this method, in conjunction with density functional theory based electronic, ionic and cell relaxation, we re-investigate two well known amorphous semiconductors, namely silicon and indium gallium zinc oxide. We find that characteristic structural parameters like average bond length and bond angle are within ˜2% of those reported by ab initio MD calculations and experimental studies.

  13. First principles prediction of amorphous phases using evolutionary algorithms.

    PubMed

    Nahas, Suhas; Gaur, Anshu; Bhowmick, Somnath

    2016-07-01

    We discuss the efficacy of evolutionary method for the purpose of structural analysis of amorphous solids. At present, ab initio molecular dynamics (MD) based melt-quench technique is used and this deterministic approach has proven to be successful to study amorphous materials. We show that a stochastic approach motivated by Darwinian evolution can also be used to simulate amorphous structures. Applying this method, in conjunction with density functional theory based electronic, ionic and cell relaxation, we re-investigate two well known amorphous semiconductors, namely silicon and indium gallium zinc oxide. We find that characteristic structural parameters like average bond length and bond angle are within ∼2% of those reported by ab initio MD calculations and experimental studies. PMID:27394098

  14. Predicting patchy particle crystals: variable box shape simulations and evolutionary algorithms.

    PubMed

    Bianchi, Emanuela; Doppelbauer, Günther; Filion, Laura; Dijkstra, Marjolein; Kahl, Gerhard

    2012-06-01

    We consider several patchy particle models that have been proposed in literature and we investigate their candidate crystal structures in a systematic way. We compare two different algorithms for predicting crystal structures: (i) an approach based on Monte Carlo simulations in the isobaric-isothermal ensemble and (ii) an optimization technique based on ideas of evolutionary algorithms. We show that the two methods are equally successful and provide consistent results on crystalline phases of patchy particle systems. PMID:22697525

  15. Simulation of Biochemical Pathway Adaptability Using Evolutionary Algorithms

    SciTech Connect

    Bosl, W J

    2005-01-26

    The systems approach to genomics seeks quantitative and predictive descriptions of cells and organisms. However, both the theoretical and experimental methods necessary for such studies still need to be developed. We are far from understanding even the simplest collective behavior of biomolecules, cells or organisms. A key aspect to all biological problems, including environmental microbiology, evolution of infectious diseases, and the adaptation of cancer cells is the evolvability of genomes. This is particularly important for Genomes to Life missions, which tend to focus on the prospect of engineering microorganisms to achieve desired goals in environmental remediation and climate change mitigation, and energy production. All of these will require quantitative tools for understanding the evolvability of organisms. Laboratory biodefense goals will need quantitative tools for predicting complicated host-pathogen interactions and finding counter-measures. In this project, we seek to develop methods to simulate how external and internal signals cause the genetic apparatus to adapt and organize to produce complex biochemical systems to achieve survival. This project is specifically directed toward building a computational methodology for simulating the adaptability of genomes. This project investigated the feasibility of using a novel quantitative approach to studying the adaptability of genomes and biochemical pathways. This effort was intended to be the preliminary part of a larger, long-term effort between key leaders in computational and systems biology at Harvard University and LLNL, with Dr. Bosl as the lead PI. Scientific goals for the long-term project include the development and testing of new hypotheses to explain the observed adaptability of yeast biochemical pathways when the myosin-II gene is deleted and the development of a novel data-driven evolutionary computation as a way to connect exploratory computational simulation with hypothesis

  16. Non-Evolutionary Algorithms for Scheduling Dependent Tasks in Distributed Heterogeneous Computing Environments

    SciTech Connect

    Wayne F. Boyer; Gurdeep S. Hura

    2005-09-01

    The Problem of obtaining an optimal matching and scheduling of interdependent tasks in distributed heterogeneous computing (DHC) environments is well known to be an NP-hard problem. In a DHC system, task execution time is dependent on the machine to which it is assigned and task precedence constraints are represented by a directed acyclic graph. Recent research in evolutionary techniques has shown that genetic algorithms usually obtain more efficient schedules that other known algorithms. We propose a non-evolutionary random scheduling (RS) algorithm for efficient matching and scheduling of inter-dependent tasks in a DHC system. RS is a succession of randomized task orderings and a heuristic mapping from task order to schedule. Randomized task ordering is effectively a topological sort where the outcome may be any possible task order for which the task precedent constraints are maintained. A detailed comparison to existing evolutionary techniques (GA and PSGA) shows the proposed algorithm is less complex than evolutionary techniques, computes schedules in less time, requires less memory and fewer tuning parameters. Simulation results show that the average schedules produced by RS are approximately as efficient as PSGA schedules for all cases studied and clearly more efficient than PSGA for certain cases. The standard formulation for the scheduling problem addressed in this paper is Rm|prec|Cmax.,

  17. Genetic algorithm for investigating flight MH370 in Indian Ocean using remotely sensed data

    NASA Astrophysics Data System (ADS)

    Marghany, Maged; Mansor, Shattri; Shariff, Abdul Rashid Bin Mohamed

    2016-06-01

    This study utilized Genetic algorithm (GA) for automatic detection and simulation trajectory movements of flight MH370 debris. In doing so, the Ocean Surface Topography Mission(OSTM) on the Jason- 2 satellite have been used within 1 and half year covers data to simulate the pattern of Flight MH370 debris movements across the southern Indian Ocean. Further, multi-objectives evolutionary algorithm also used to discriminate uncertainty of flight MH370 imagined and detection. The study shows that the ocean surface current speed is 0.5 m/s. This current patterns have developed a large anticlockwise gyre over a water depth of 8,000 m. The multi-objectives evolutionary algorithm suggested that objects are existed on satellite data are not flight MH370 debris. In addition, multiobjectives evolutionary algorithm suggested that the difficulties to acquire the exact location of flight MH370 due to complicated hydrodynamic movements across the southern Indian Ocean.

  18. On Polymorphic Circuits and Their Design Using Evolutionary Algorithms

    NASA Technical Reports Server (NTRS)

    Stoica, Adrian; Zebulum, Ricardo; Keymeulen, Didier; Lohn, Jason; Clancy, Daniel (Technical Monitor)

    2002-01-01

    This paper introduces the concept of polymorphic electronics (polytronics) - referring to electronics with superimposed built-in functionality. A function change does not require switches/reconfiguration as in traditional approaches. Instead the change comes from modifications in the characteristics of devices involved in the circuit, in response to controls such as temperature, power supply voltage (VDD), control signals, light, etc. The paper illustrates polytronic circuits in which the control is done by temperature, morphing signals, and VDD respectively. Polytronic circuits are obtained by evolutionary design/evolvable hardware techniques. These techniques are ideal for the polytronics design, a new area that lacks design guidelines, know-how,- yet the requirements/objectives are easy to specify and test. The circuits are evolved/synthesized in two different modes. The first mode explores an unstructured space, in which transistors can be interconnected freely in any arrangement (in simulations only). The second mode uses a Field Programmable Transistor Array (FPTA) model, and the circuit topology is sought as a mapping onto a programmable architecture (these experiments are performed both in simulations and on FPTA chips). The experiments demonstrated the synthesis. of polytronic circuits by evolution. The capacity of storing/hiding "extra" functions provides for watermark/invisible functionality, thus polytronics may find uses in intelligence/security applications.

  19. An improved version of the multiple trajectory search for real value multi-objective optimization problems

    NASA Astrophysics Data System (ADS)

    Chen, Chun; Tseng, Lin-Yu

    2014-10-01

    Multi-objective optimization is widely used in science, engineering and business. In this article, an improved version of the multiple trajectory search (MTS) called MTS2 is presented and successfully applied to real-value multi-objective optimization problems. In the first step, MTS2 generates M initial solutions distributed over the solution space. These solutions are called seeds. Some seeds with good objective values are selected as foreground seeds. Then, MTS2 chooses a suitable region search method for each foreground seed according to the landscape of the neighbourhood of the seed. During the search, MTS2 focuses its search on some promising areas specified by the foreground seeds. The performance of MTS2 was examined by applying it to solve the benchmark problems provided by the Competition of Performance Assessment of Constrained/Bound Constrained Multi-Objective Optimization Algorithms held at the 2009 IEEE Congress on Evolutionary Computation.

  20. Runtime Analysis of (1+1) Evolutionary Algorithm for a TSP Instance

    NASA Astrophysics Data System (ADS)

    Zhang, Yu Shan; Hao, Zhi Feng

    Evolutionary Algorithms (EAs) have been used widely and successfully in solving a famous classical combinatorial optimization problem-the traveling salesman problem (TSP). There are lots of experimental results concerning the TSP. However, relatively few theoretical results on the runtime analysis of EAs on the TSP are available. This paper conducts a runtime analysis of a simple Evolutionary Algorithm called (1+1) EA on a TSP instance. We represent a tour as a string of integer, and randomly choose 2-opt and 3-opt operator as the mutation operator at each iteration. The expected runtime of (1+1) EA on this TSP instance is proved to be O(n 4), which is tighter than O(n 6 + (1/ρ)nln n) of (1+1) MMAA (Max-Min ant algorithms). It is also shown that the selection of mutation operator is very important in (1+1) EA.

  1. Application of an evolutionary algorithm in the optimal design of micro-sensor.

    PubMed

    Lu, Qibing; Wang, Pan; Guo, Sihai; Sheng, Buyun; Liu, Xingxing; Fan, Zhun

    2015-01-01

    This paper introduces an automatic bond graph design method based on genetic programming for the evolutionary design of micro-resonator. First, the system-level behavioral model is discussed, which based on genetic programming and bond graph. Then, the geometry parameters of components are automatically optimized, by using the genetic algorithm with constraints. To illustrate this approach, a typical device micro-resonator is designed as an example in biomedicine. This paper provides a new idea for the automatic optimization design of biomedical sensors by evolutionary calculation.

  2. A Guiding Evolutionary Algorithm with Greedy Strategy for Global Optimization Problems.

    PubMed

    Cao, Leilei; Xu, Lihong; Goodman, Erik D

    2016-01-01

    A Guiding Evolutionary Algorithm (GEA) with greedy strategy for global optimization problems is proposed. Inspired by Particle Swarm Optimization, the Genetic Algorithm, and the Bat Algorithm, the GEA was designed to retain some advantages of each method while avoiding some disadvantages. In contrast to the usual Genetic Algorithm, each individual in GEA is crossed with the current global best one instead of a randomly selected individual. The current best individual served as a guide to attract offspring to its region of genotype space. Mutation was added to offspring according to a dynamic mutation probability. To increase the capability of exploitation, a local search mechanism was applied to new individuals according to a dynamic probability of local search. Experimental results show that GEA outperformed the other three typical global optimization algorithms with which it was compared. PMID:27293421

  3. A Guiding Evolutionary Algorithm with Greedy Strategy for Global Optimization Problems

    PubMed Central

    Cao, Leilei; Xu, Lihong; Goodman, Erik D.

    2016-01-01

    A Guiding Evolutionary Algorithm (GEA) with greedy strategy for global optimization problems is proposed. Inspired by Particle Swarm Optimization, the Genetic Algorithm, and the Bat Algorithm, the GEA was designed to retain some advantages of each method while avoiding some disadvantages. In contrast to the usual Genetic Algorithm, each individual in GEA is crossed with the current global best one instead of a randomly selected individual. The current best individual served as a guide to attract offspring to its region of genotype space. Mutation was added to offspring according to a dynamic mutation probability. To increase the capability of exploitation, a local search mechanism was applied to new individuals according to a dynamic probability of local search. Experimental results show that GEA outperformed the other three typical global optimization algorithms with which it was compared. PMID:27293421

  4. A Guiding Evolutionary Algorithm with Greedy Strategy for Global Optimization Problems.

    PubMed

    Cao, Leilei; Xu, Lihong; Goodman, Erik D

    2016-01-01

    A Guiding Evolutionary Algorithm (GEA) with greedy strategy for global optimization problems is proposed. Inspired by Particle Swarm Optimization, the Genetic Algorithm, and the Bat Algorithm, the GEA was designed to retain some advantages of each method while avoiding some disadvantages. In contrast to the usual Genetic Algorithm, each individual in GEA is crossed with the current global best one instead of a randomly selected individual. The current best individual served as a guide to attract offspring to its region of genotype space. Mutation was added to offspring according to a dynamic mutation probability. To increase the capability of exploitation, a local search mechanism was applied to new individuals according to a dynamic probability of local search. Experimental results show that GEA outperformed the other three typical global optimization algorithms with which it was compared.

  5. Optimization of an ammonia-cooled rectangular microchannel heat sink using multi-objective non-dominated sorting genetic algorithm (NSGA2)

    NASA Astrophysics Data System (ADS)

    Adham, Ahmed Mohammed; Mohd-Ghazali, Normah; Ahmad, Robiah

    2012-10-01

    The ever decreasing size of modern electronic packaging has induced researchers to search for an effective and efficient heat removal system to handle the continuously increasing power density. Investigations have involved different geometry, material and coolant to address the thermal management issues. This paper reports the potential improvement in the overall performance of a rectangular microchannel heat sink using a new gaseous coolant namely ammonia gas. Using a multi-objective general optimization scheme with the thermal resistance model as an analysis method in combination with a non-dominated sorting genetic algorithm as an optimization technique, it was found that significant reduction in the total thermal resistance up to 34 % for ammonia-cooled compared to air-cooled microchannel heat sink under the same operating conditions is achievable. In addition, a considerable decrease in the microchannel heat sink's mass up to 30 % was achieved due to the different heat sink's material used.

  6. Multiobjective optimization design of a fractional order PID controller for a gun control system.

    PubMed

    Gao, Qiang; Chen, Jilin; Wang, Li; Xu, Shiqing; Hou, Yuanlong

    2013-01-01

    Motion control of gun barrels is an ongoing topic for the development of gun control equipments possessing excellent performances. In this paper, a typical fractional order PID control strategy is employed for the gun control system. To obtain optimal parameters of the controller, a multiobjective optimization scheme is developed from the loop-shaping perspective. To solve the specified nonlinear optimization problem, a novel Pareto optimal solution based multiobjective differential evolution algorithm is proposed. To enhance the convergent rate of the optimization process, an opposition based learning method is embedded in the chaotic population initialization process. To enhance the robustness of the algorithm for different problems, an adapting scheme of the mutation operation is further employed. With assistance of the evolutionary algorithm, the optimal solution for the specified problem is selected. The numerical simulation results show that the control system can rapidly follow the demand signal with high accuracy and high robustness, demonstrating the efficiency of the proposed controller parameter tuning method.

  7. THE APPLICATION OF AN EVOLUTIONARY ALGORITHM TO THE OPTIMIZATION OF A MESOSCALE METEOROLOGICAL MODEL

    SciTech Connect

    Werth, D.; O'Steen, L.

    2008-02-11

    We show that a simple evolutionary algorithm can optimize a set of mesoscale atmospheric model parameters with respect to agreement between the mesoscale simulation and a limited set of synthetic observations. This is illustrated using the Regional Atmospheric Modeling System (RAMS). A set of 23 RAMS parameters is optimized by minimizing a cost function based on the root mean square (rms) error between the RAMS simulation and synthetic data (observations derived from a separate RAMS simulation). We find that the optimization can be efficient with relatively modest computer resources, thus operational implementation is possible. The optimization efficiency, however, is found to depend strongly on the procedure used to perturb the 'child' parameters relative to their 'parents' within the evolutionary algorithm. In addition, the meteorological variables included in the rms error and their weighting are found to be an important factor with respect to finding the global optimum.

  8. Models of performance of evolutionary program induction algorithms based on indicators of problem difficulty.

    PubMed

    Graff, Mario; Poli, Riccardo; Flores, Juan J

    2013-01-01

    Modeling the behavior of algorithms is the realm of evolutionary algorithm theory. From a practitioner's point of view, theory must provide some guidelines regarding which algorithm/parameters to use in order to solve a particular problem. Unfortunately, most theoretical models of evolutionary algorithms are difficult to apply to realistic situations. However, in recent work (Graff and Poli, 2008, 2010), where we developed a method to practically estimate the performance of evolutionary program-induction algorithms (EPAs), we started addressing this issue. The method was quite general; however, it suffered from some limitations: it required the identification of a set of reference problems, it required hand picking a distance measure in each particular domain, and the resulting models were opaque, typically being linear combinations of 100 features or more. In this paper, we propose a significant improvement of this technique that overcomes the three limitations of our previous method. We achieve this through the use of a novel set of features for assessing problem difficulty for EPAs which are very general, essentially based on the notion of finite difference. To show the capabilities or our technique and to compare it with our previous performance models, we create models for the same two important classes of problems-symbolic regression on rational functions and Boolean function induction-used in our previous work. We model a variety of EPAs. The comparison showed that for the majority of the algorithms and problem classes, the new method produced much simpler and more accurate models than before. To further illustrate the practicality of the technique and its generality (beyond EPAs), we have also used it to predict the performance of both autoregressive models and EPAs on the problem of wind speed forecasting, obtaining simpler and more accurate models that outperform in all cases our previous performance models. PMID:23136918

  9. Models of performance of evolutionary program induction algorithms based on indicators of problem difficulty.

    PubMed

    Graff, Mario; Poli, Riccardo; Flores, Juan J

    2013-01-01

    Modeling the behavior of algorithms is the realm of evolutionary algorithm theory. From a practitioner's point of view, theory must provide some guidelines regarding which algorithm/parameters to use in order to solve a particular problem. Unfortunately, most theoretical models of evolutionary algorithms are difficult to apply to realistic situations. However, in recent work (Graff and Poli, 2008, 2010), where we developed a method to practically estimate the performance of evolutionary program-induction algorithms (EPAs), we started addressing this issue. The method was quite general; however, it suffered from some limitations: it required the identification of a set of reference problems, it required hand picking a distance measure in each particular domain, and the resulting models were opaque, typically being linear combinations of 100 features or more. In this paper, we propose a significant improvement of this technique that overcomes the three limitations of our previous method. We achieve this through the use of a novel set of features for assessing problem difficulty for EPAs which are very general, essentially based on the notion of finite difference. To show the capabilities or our technique and to compare it with our previous performance models, we create models for the same two important classes of problems-symbolic regression on rational functions and Boolean function induction-used in our previous work. We model a variety of EPAs. The comparison showed that for the majority of the algorithms and problem classes, the new method produced much simpler and more accurate models than before. To further illustrate the practicality of the technique and its generality (beyond EPAs), we have also used it to predict the performance of both autoregressive models and EPAs on the problem of wind speed forecasting, obtaining simpler and more accurate models that outperform in all cases our previous performance models.

  10. Trajectory optimization of spacecraft high-thrust orbit transfer using a modified evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Shirazi, Abolfazl

    2016-10-01

    This article introduces a new method to optimize finite-burn orbital manoeuvres based on a modified evolutionary algorithm. Optimization is carried out based on conversion of the orbital manoeuvre into a parameter optimization problem by assigning inverse tangential functions to the changes in direction angles of the thrust vector. The problem is analysed using boundary delimitation in a common optimization algorithm. A method is introduced to achieve acceptable values for optimization variables using nonlinear simulation, which results in an enlarged convergence domain. The presented algorithm benefits from high optimality and fast convergence time. A numerical example of a three-dimensional optimal orbital transfer is presented and the accuracy of the proposed algorithm is shown.

  11. Sum-of-squares-based fuzzy controller design using quantum-inspired evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Gwo-Ruey; Huang, Yu-Chia; Cheng, Chih-Yung

    2016-07-01

    In the field of fuzzy control, control gains are obtained by solving stabilisation conditions in linear-matrix-inequality-based Takagi-Sugeno fuzzy control method and sum-of-squares-based polynomial fuzzy control method. However, the optimal performance requirements are not considered under those stabilisation conditions. In order to handle specific performance problems, this paper proposes a novel design procedure with regard to polynomial fuzzy controllers using quantum-inspired evolutionary algorithms. The first contribution of this paper is a combination of polynomial fuzzy control and quantum-inspired evolutionary algorithms to undertake an optimal performance controller design. The second contribution is the proposed stability condition derived from the polynomial Lyapunov function. The proposed design approach is dissimilar to the traditional approach, in which control gains are obtained by solving the stabilisation conditions. The first step of the controller design uses the quantum-inspired evolutionary algorithms to determine the control gains with the best performance. Then, the stability of the closed-loop system is analysed under the proposed stability conditions. To illustrate effectiveness and validity, the problem of balancing and the up-swing of an inverted pendulum on a cart is used.

  12. Multiobjective information theoretic ensemble selection

    NASA Astrophysics Data System (ADS)

    Card, Stuart W.; Mohan, Chilukuri K.

    2009-05-01

    In evolutionary learning, the sine qua non is evolvability, which requires heritability of fitness and a balance between exploitation and exploration. Unfortunately, commonly used fitness measures, such as root mean squared error (RMSE), often fail to reward individuals whose presence in the population is needed to explain important data variance; and indicators of diversity generally are not only incommensurate with those of fitness but also essentially arbitrary. Thus, due to poor scaling, deception, etc., apparently relatively high fitness individuals in early generations may not contain the building blocks needed to evolve optimal solutions in later generations. To reward individuals for their potential incremental contributions to the solution of the overall problem, heritable information theoretic functionals are developed that incorporate diversity considerations into fitness, explicitly identifying building blocks suitable for recombination (e.g. for non-random mating). Algorithms for estimating these functionals from either discrete or continuous data are illustrated by application to input selection in a high dimensional industrial process control data set. Multiobjective information theoretic ensemble selection is shown to avoid some known feature selection pitfalls.

  13. Optimal Wavelengths Selection Using Hierarchical Evolutionary Algorithm for Prediction of Firmness and Soluble Solids Content in Apples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hyperspectral scattering is a promising technique for rapid and noninvasive measurement of multiple quality attributes of apple fruit. A hierarchical evolutionary algorithm (HEA) approach, in combination with subspace decomposition and partial least squares (PLS) regression, was proposed to select o...

  14. Evolutionary algorithm based offline/online path planner for UAV navigation.

    PubMed

    Nikolos, I K; Valavanis, K P; Tsourveloudis, N C; Kostaras, A N

    2003-01-01

    An evolutionary algorithm based framework, a combination of modified breeder genetic algorithms incorporating characteristics of classic genetic algorithms, is utilized to design an offline/online path planner for unmanned aerial vehicles (UAVs) autonomous navigation. The path planner calculates a curved path line with desired characteristics in a three-dimensional (3-D) rough terrain environment, represented using B-spline curves, with the coordinates of its control points being the evolutionary algorithm artificial chromosome genes. Given a 3-D rough environment and assuming flight envelope restrictions, two problems are solved: i) UAV navigation using an offline planner in a known environment, and, ii) UAV navigation using an online planner in a completely unknown environment. The offline planner produces a single B-Spline curve that connects the starting and target points with a predefined initial direction. The online planner, based on the offline one, is given on-board radar readings which gradually produces a smooth 3-D trajectory aiming at reaching a predetermined target in an unknown environment; the produced trajectory consists of smaller B-spline curves smoothly connected with each other. Both planners have been tested under different scenarios, and they have been proven effective in guiding an UAV to its final destination, providing near-optimal curved paths quickly and efficiently.

  15. Design and Optimization of Low-thrust Orbit Transfers Using Q-law and Evolutionary Algorithms

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; vonAllmen, Paul; Fink, Wolfgang; Petropoulos, Anastassios; Terrile, Richard

    2005-01-01

    Future space missions will depend more on low-thrust propulsion (such as ion engines) thanks to its high specific impulse. Yet, the design of low-thrust trajectories is complex and challenging. Third-body perturbations often dominate the thrust, and a significant change to the orbit requires a long duration of thrust. In order to guide the early design phases, we have developed an efficient and efficacious method to obtain approximate propellant and flight-time requirements (i.e., the Pareto front) for orbit transfers. A search for the Pareto-optimal trajectories is done in two levels: optimal thrust angles and locations are determined by Q-law, while the Q-law is optimized with two evolutionary algorithms: a genetic algorithm and a simulated-annealing-related algorithm. The examples considered are several types of orbit transfers around the Earth and the asteroid Vesta.

  16. Classification of Medical Datasets Using SVMs with Hybrid Evolutionary Algorithms Based on Endocrine-Based Particle Swarm Optimization and Artificial Bee Colony Algorithms.

    PubMed

    Lin, Kuan-Cheng; Hsieh, Yi-Hsiu

    2015-10-01

    The classification and analysis of data is an important issue in today's research. Selecting a suitable set of features makes it possible to classify an enormous quantity of data quickly and efficiently. Feature selection is generally viewed as a problem of feature subset selection, such as combination optimization problems. Evolutionary algorithms using random search methods have proven highly effective in obtaining solutions to problems of optimization in a diversity of applications. In this study, we developed a hybrid evolutionary algorithm based on endocrine-based particle swarm optimization (EPSO) and artificial bee colony (ABC) algorithms in conjunction with a support vector machine (SVM) for the selection of optimal feature subsets for the classification of datasets. The results of experiments using specific UCI medical datasets demonstrate that the accuracy of the proposed hybrid evolutionary algorithm is superior to that of basic PSO, EPSO and ABC algorithms, with regard to classification accuracy using subsets with a reduced number of features.

  17. Anticipation versus adaptation in Evolutionary Algorithms: The case of Non-Stationary Clustering

    NASA Astrophysics Data System (ADS)

    González, A. I.; Graña, M.; D'Anjou, A.; Torrealdea, F. J.

    1998-07-01

    From the technological point of view is usually more important to ensure the ability to react promptly to changing environmental conditions than to try to forecast them. Evolution Algorithms were proposed initially to drive the adaptation of complex systems to varying or uncertain environments. In the general setting, the adaptive-anticipatory dilemma reduces itself to the placement of the interaction with the environment in the computational schema. Adaptation consists of the estimation of the proper parameters from present data in order to react to a present environment situation. Anticipation consists of the estimation from present data in order to react to a future environment situation. This duality is expressed in the Evolutionary Computation paradigm by the precise location of the consideration of present data in the computation of the individuals fitness function. In this paper we consider several instances of Evolutionary Algorithms applied to precise problem and perform an experiment that test their response as anticipative and adaptive mechanisms. The non stationary problem considered is that of Non Stationary Clustering, more precisely the adaptive Color Quantization of image sequences. The experiment illustrates our ideas and gives some quantitative results that may support the proposition of the Evolutionary Computation paradigm for other tasks that require the interaction with a Non-Stationary environment.

  18. Evolutionary algorithm based optimization of hydraulic machines utilizing a state-of-the-art block coupled CFD solver and parametric geometry and mesh generation tools

    NASA Astrophysics Data System (ADS)

    S, Kyriacou; E, Kontoleontos; S, Weissenberger; L, Mangani; E, Casartelli; I, Skouteropoulou; M, Gattringer; A, Gehrer; M, Buchmayr

    2014-03-01

    An efficient hydraulic optimization procedure, suitable for industrial use, requires an advanced optimization tool (EASY software), a fast solver (block coupled CFD) and a flexible geometry generation tool. EASY optimization software is a PCA-driven metamodel-assisted Evolutionary Algorithm (MAEA (PCA)) that can be used in both single- (SOO) and multiobjective optimization (MOO) problems. In MAEAs, low cost surrogate evaluation models are used to screen out non-promising individuals during the evolution and exclude them from the expensive, problem specific evaluation, here the solution of Navier-Stokes equations. For additional reduction of the optimization CPU cost, the PCA technique is used to identify dependences among the design variables and to exploit them in order to efficiently drive the application of the evolution operators. To further enhance the hydraulic optimization procedure, a very robust and fast Navier-Stokes solver has been developed. This incompressible CFD solver employs a pressure-based block-coupled approach, solving the governing equations simultaneously. This method, apart from being robust and fast, also provides a big gain in terms of computational cost. In order to optimize the geometry of hydraulic machines, an automatic geometry and mesh generation tool is necessary. The geometry generation tool used in this work is entirely based on b-spline curves and surfaces. In what follows, the components of the tool chain are outlined in some detail and the optimization results of hydraulic machine components are shown in order to demonstrate the performance of the presented optimization procedure.

  19. Exploiting Genomic Knowledge in Optimising Molecular Breeding Programmes: Algorithms from Evolutionary Computing

    PubMed Central

    O'Hagan, Steve; Knowles, Joshua; Kell, Douglas B.

    2012-01-01

    Comparatively few studies have addressed directly the question of quantifying the benefits to be had from using molecular genetic markers in experimental breeding programmes (e.g. for improved crops and livestock), nor the question of which organisms should be mated with each other to best effect. We argue that this requires in silico modelling, an approach for which there is a large literature in the field of evolutionary computation (EC), but which has not really been applied in this way to experimental breeding programmes. EC seeks to optimise measurable outcomes (phenotypic fitnesses) by optimising in silico the mutation, recombination and selection regimes that are used. We review some of the approaches from EC, and compare experimentally, using a biologically relevant in silico landscape, some algorithms that have knowledge of where they are in the (genotypic) search space (G-algorithms) with some (albeit well-tuned ones) that do not (F-algorithms). For the present kinds of landscapes, F- and G-algorithms were broadly comparable in quality and effectiveness, although we recognise that the G-algorithms were not equipped with any ‘prior knowledge’ of epistatic pathway interactions. This use of algorithms based on machine learning has important implications for the optimisation of experimental breeding programmes in the post-genomic era when we shall potentially have access to the full genome sequence of every organism in a breeding population. The non-proprietary code that we have used is made freely available (via Supplementary information). PMID:23185279

  20. Tuning of MEMS Gyroscope using Evolutionary Algorithm and "Switched Drive-Angle" Method

    NASA Technical Reports Server (NTRS)

    Keymeulen, Didier; Ferguson, Michael I.; Breuer, Luke; Peay, Chris; Oks, Boris; Cheng, Yen; Kim, Dennis; MacDonald, Eric; Foor, David; Terrile, Rich; Yee, Karl

    2006-01-01

    We propose a tuning method for Micro-Electro-Mechanical Systems (MEMS) gyroscopes based on evolutionary computation that has the capacity to efficiently increase the sensitivity of MEMS gyroscopes through tuning and, furthermore, to find the optimally tuned configuration for this state of increased sensitivity. We present the results of an experiment to determine the speed and efficiency of an evolutionary algorithm applied to electrostatic tuning of MEMS micro gyros. The MEMS gyro used in this experiment is a pyrex post resonator gyro (PRG) in a closed-loop control system. A measure of the quality of tuning is given by the difference in resonant frequencies, or frequency split, for the two orthogonal rocking axes. The current implementation of the closed-loop platform is able to measure and attain a relative stability in the sub-millihertz range, leading to a reduction of the frequency split to less than 100 mHz.

  1. Optimising operational amplifiers by evolutionary algorithms and gm/Id method

    NASA Astrophysics Data System (ADS)

    Tlelo-Cuautle, E.; Sanabria-Borbon, A. C.

    2016-10-01

    The evolutionary algorithm called non-dominated sorting genetic algorithm (NSGA-II) is applied herein in the optimisation of operational transconductance amplifiers. NSGA-II is accelerated by applying the gm/Id method to estimate reduced search spaces associated to widths (W) and lengths (L) of the metal-oxide-semiconductor field-effect-transistor (MOSFETs), and to guarantee their appropriate bias levels conditions. In addition, we introduce an integer encoding for the W/L sizes of the MOSFETs to avoid a post-processing step for rounding-off their values to be multiples of the integrated circuit fabrication technology. Finally, from the feasible solutions generated by NSGA-II, we introduce a second optimisation stage to guarantee that the final feasible W/L sizes solutions support process, voltage and temperature (PVT) variations. The optimisation results lead us to conclude that the gm/Id method and integer encoding are quite useful to accelerate the convergence of the evolutionary algorithm NSGA-II, while the second optimisation stage guarantees robustness of the feasible solutions to PVT variations.

  2. A Gaze-Driven Evolutionary Algorithm to Study Aesthetic Evaluation of Visual Symmetry.

    PubMed

    Makin, Alexis D J; Bertamini, Marco; Jones, Andrew; Holmes, Tim; Zanker, Johannes M

    2016-03-01

    Empirical work has shown that people like visual symmetry. We used a gaze-driven evolutionary algorithm technique to answer three questions about symmetry preference. First, do people automatically evaluate symmetry without explicit instruction? Second, is perfect symmetry the best stimulus, or do people prefer a degree of imperfection? Third, does initial preference for symmetry diminish after familiarity sets in? Stimuli were generated as phenotypes from an algorithmic genotype, with genes for symmetry (coded as deviation from a symmetrical template, deviation-symmetry, DS gene) and orientation (0° to 90°, orientation, ORI gene). An eye tracker identified phenotypes that were good at attracting and retaining the gaze of the observer. Resulting fitness scores determined the genotypes that passed to the next generation. We recorded changes to the distribution of DS and ORI genes over 20 generations. When participants looked for symmetry, there was an increase in high-symmetry genes. When participants looked for the patterns they preferred, there was a smaller increase in symmetry, indicating that people tolerated some imperfection. Conversely, there was no increase in symmetry during free viewing, and no effect of familiarity or orientation. This work demonstrates the viability of the evolutionary algorithm approach as a quantitative measure of aesthetic preference.

  3. A Gaze-Driven Evolutionary Algorithm to Study Aesthetic Evaluation of Visual Symmetry

    PubMed Central

    Bertamini, Marco; Jones, Andrew; Holmes, Tim; Zanker, Johannes M.

    2016-01-01

    Empirical work has shown that people like visual symmetry. We used a gaze-driven evolutionary algorithm technique to answer three questions about symmetry preference. First, do people automatically evaluate symmetry without explicit instruction? Second, is perfect symmetry the best stimulus, or do people prefer a degree of imperfection? Third, does initial preference for symmetry diminish after familiarity sets in? Stimuli were generated as phenotypes from an algorithmic genotype, with genes for symmetry (coded as deviation from a symmetrical template, deviation–symmetry, DS gene) and orientation (0° to 90°, orientation, ORI gene). An eye tracker identified phenotypes that were good at attracting and retaining the gaze of the observer. Resulting fitness scores determined the genotypes that passed to the next generation. We recorded changes to the distribution of DS and ORI genes over 20 generations. When participants looked for symmetry, there was an increase in high-symmetry genes. When participants looked for the patterns they preferred, there was a smaller increase in symmetry, indicating that people tolerated some imperfection. Conversely, there was no increase in symmetry during free viewing, and no effect of familiarity or orientation. This work demonstrates the viability of the evolutionary algorithm approach as a quantitative measure of aesthetic preference. PMID:27433324

  4. A Gaze-Driven Evolutionary Algorithm to Study Aesthetic Evaluation of Visual Symmetry.

    PubMed

    Makin, Alexis D J; Bertamini, Marco; Jones, Andrew; Holmes, Tim; Zanker, Johannes M

    2016-03-01

    Empirical work has shown that people like visual symmetry. We used a gaze-driven evolutionary algorithm technique to answer three questions about symmetry preference. First, do people automatically evaluate symmetry without explicit instruction? Second, is perfect symmetry the best stimulus, or do people prefer a degree of imperfection? Third, does initial preference for symmetry diminish after familiarity sets in? Stimuli were generated as phenotypes from an algorithmic genotype, with genes for symmetry (coded as deviation from a symmetrical template, deviation-symmetry, DS gene) and orientation (0° to 90°, orientation, ORI gene). An eye tracker identified phenotypes that were good at attracting and retaining the gaze of the observer. Resulting fitness scores determined the genotypes that passed to the next generation. We recorded changes to the distribution of DS and ORI genes over 20 generations. When participants looked for symmetry, there was an increase in high-symmetry genes. When participants looked for the patterns they preferred, there was a smaller increase in symmetry, indicating that people tolerated some imperfection. Conversely, there was no increase in symmetry during free viewing, and no effect of familiarity or orientation. This work demonstrates the viability of the evolutionary algorithm approach as a quantitative measure of aesthetic preference. PMID:27433324

  5. GMDH-type neural network modeling and genetic algorithm-based multi-objective optimization of thermal and friction characteristics in heat exchanger tubes with wire-rod bundles

    NASA Astrophysics Data System (ADS)

    Rahimi, Masoud; Beigzadeh, Reza; Parvizi, Mehdi; Eiamsa-ard, Smith

    2016-08-01

    The group method of data handling (GMDH) technique was used to predict heat transfer and friction characteristics in heat exchanger tubes equipped with wire-rod bundles. Nusselt number and friction factor were determined as functions of wire-rod bundle geometric parameters and Reynolds number. The performance of the developed GMDH-type neural networks was found to be superior in comparison with the proposed empirical correlations. For optimization, the genetic algorithm-based multi-objective optimization was applied.

  6. Creating ensembles of oblique decision trees with evolutionary algorithms and sampling

    DOEpatents

    Cantu-Paz, Erick; Kamath, Chandrika

    2006-06-13

    A decision tree system that is part of a parallel object-oriented pattern recognition system, which in turn is part of an object oriented data mining system. A decision tree process includes the step of reading the data. If necessary, the data is sorted. A potential split of the data is evaluated according to some criterion. An initial split of the data is determined. The final split of the data is determined using evolutionary algorithms and statistical sampling techniques. The data is split. Multiple decision trees are combined in ensembles.

  7. Searching for the Optimal Working Point of the MEIC at JLab Using an Evolutionary Algorithm

    SciTech Connect

    Balsa Terzic, Matthew Kramer, Colin Jarvis

    2011-03-01

    The Medium-energy Electron Ion Collider (MEIC), a proposed medium-energy ring-ring electron-ion collider based on CEBAF at Jefferson Lab. The collider luminosity and stability are sensitive to the choice of a working point - the betatron and synchrotron tunes of the two colliding beams. Therefore, a careful selection of the working point is essential for stable operation of the collider, as well as for achieving high luminosity. Here we describe a novel approach for locating an optimal working point based on evolutionary algorithm techniques.

  8. A mission-oriented orbit design method of remote sensing satellite for region monitoring mission based on evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Shen, Xin; Zhang, Jing; Yao, Huang

    2015-12-01

    Remote sensing satellites play an increasingly prominent role in environmental monitoring and disaster rescue. Taking advantage of almost the same sunshine condition to same place and global coverage, most of these satellites are operated on the sun-synchronous orbit. However, it brings some problems inevitably, the most significant one is that the temporal resolution of sun-synchronous orbit satellite can't satisfy the demand of specific region monitoring mission. To overcome the disadvantages, two methods are exploited: the first one is to build satellite constellation which contains multiple sunsynchronous satellites, just like the CHARTER mechanism has done; the second is to design non-predetermined orbit based on the concrete mission demand. An effective method for remote sensing satellite orbit design based on multiobjective evolution algorithm is presented in this paper. Orbit design problem is converted into a multi-objective optimization problem, and a fast and elitist multi-objective genetic algorithm is utilized to solve this problem. Firstly, the demand of the mission is transformed into multiple objective functions, and the six orbit elements of the satellite are taken as genes in design space, then a simulate evolution process is performed. An optimal resolution can be obtained after specified generation via evolution operation (selection, crossover, and mutation). To examine validity of the proposed method, a case study is introduced: Orbit design of an optical satellite for regional disaster monitoring, the mission demand include both minimizing the average revisit time internal of two objectives. The simulation result shows that the solution for this mission obtained by our method meet the demand the users' demand. We can draw a conclusion that the method presented in this paper is efficient for remote sensing orbit design.

  9. A novel evolutionary algorithm applied to algebraic modifications of the RANS stress-strain relationship

    NASA Astrophysics Data System (ADS)

    Weatheritt, Jack; Sandberg, Richard

    2016-11-01

    This paper presents a novel and promising approach to turbulence model formulation, rather than putting forward a particular new model. Evolutionary computation has brought symbolic regression of scalar fields into the domain of algorithms and this paper describes a novel expansion of Gene Expression Programming for the purpose of tensor modeling. By utilizing high-fidelity data and uncertainty measures, mathematical models for tensors are created. The philosophy behind the framework is to give freedom to the algorithm to produce a constraint-free model; its own functional form that was not previously imposed. Turbulence modeling is the target application, specifically the improvement of separated flow prediction. Models are created by considering the anisotropy of the turbulent stress tensor and formulating non-linear constitutive stress-strain relationships. A previously unseen flow field is computed and compared to the baseline linear model and an established non-linear model of comparable complexity. The results are highly encouraging.

  10. A Cooperative Co-Evolutionary Genetic Algorithm for Tree Scoring and Ancestral Genome Inference.

    PubMed

    Gao, Nan; Zhang, Yan; Feng, Bing; Tang, Jijun

    2015-01-01

    Recent advances of technology have made it easy to obtain and compare whole genomes. Rearrangements of genomes through operations such as reversals and transpositions are rare events that enable researchers to reconstruct deep evolutionary history among species. Some of the popular methods need to search a large tree space for the best scored tree, thus it is desirable to have a fast and accurate method that can score a given tree efficiently. During the tree scoring procedure, the genomic structures of internal tree nodes are also provided, which provide important information for inferring ancestral genomes and for modeling the evolutionary processes. However, computing tree scores and ancestral genomes are very difficult and a lot of researchers have to rely on heuristic methods which have various disadvantages. In this paper, we describe the first genetic algorithm for tree scoring and ancestor inference, which uses a fitness function considering co-evolution, adopts different initial seeding methods to initialize the first population pool, and utilizes a sorting-based approach to realize evolution. Our extensive experiments show that compared with other existing algorithms, this new method is more accurate and can infer ancestral genomes that are much closer to the true ancestors. PMID:26671797

  11. An evolutionary firefly algorithm for the estimation of nonlinear biological model parameters.

    PubMed

    Abdullah, Afnizanfaizal; Deris, Safaai; Anwar, Sohail; Arjunan, Satya N V

    2013-01-01

    The development of accurate computational models of biological processes is fundamental to computational systems biology. These models are usually represented by mathematical expressions that rely heavily on the system parameters. The measurement of these parameters is often difficult. Therefore, they are commonly estimated by fitting the predicted model to the experimental data using optimization methods. The complexity and nonlinearity of the biological processes pose a significant challenge, however, to the development of accurate and fast optimization methods. We introduce a new hybrid optimization method incorporating the Firefly Algorithm and the evolutionary operation of the Differential Evolution method. The proposed method improves solutions by neighbourhood search using evolutionary procedures. Testing our method on models for the arginine catabolism and the negative feedback loop of the p53 signalling pathway, we found that it estimated the parameters with high accuracy and within a reasonable computation time compared to well-known approaches, including Particle Swarm Optimization, Nelder-Mead, and Firefly Algorithm. We have also verified the reliability of the parameters estimated by the method using an a posteriori practical identifiability test.

  12. MONSS: A multi-objective nonlinear simplex search approach

    NASA Astrophysics Data System (ADS)

    Zapotecas-Martínez, Saúl; Coello Coello, Carlos A.

    2016-01-01

    This article presents a novel methodology for dealing with continuous box-constrained multi-objective optimization problems (MOPs). The proposed algorithm adopts a nonlinear simplex search scheme in order to obtain multiple elements of the Pareto optimal set. The search is directed by a well-distributed set of weight vectors, each of which defines a scalarization problem that is solved by deforming a simplex according to the movements described by Nelder and Mead's method. Considering an MOP with n decision variables, the simplex is constructed using n+1 solutions which minimize different scalarization problems defined by n+1 neighbor weight vectors. All solutions found in the search are used to update a set of solutions considered to be the minima for each separate problem. In this way, the proposed algorithm collectively obtains multiple trade-offs among the different conflicting objectives, while maintaining a proper representation of the Pareto optimal front. In this article, it is shown that a well-designed strategy using just mathematical programming techniques can be competitive with respect to the state-of-the-art multi-objective evolutionary algorithms against which it was compared.

  13. Developing Multiple Diverse Potential Designs for Heat Transfer Utilizing Graph Based Evolutionary Algorithms

    SciTech Connect

    David J. Muth Jr.

    2006-09-01

    This paper examines the use of graph based evolutionary algorithms (GBEAs) to find multiple acceptable solutions for heat transfer in engineering systems during the optimization process. GBEAs are a type of evolutionary algorithm (EA) in which a topology, or geography, is imposed on an evolving population of solutions. The rates at which solutions can spread within the population are controlled by the choice of topology. As in nature geography can be used to develop and sustain diversity within the solution population. Altering the choice of graph can create a more or less diverse population of potential solutions. The choice of graph can also affect the convergence rate for the EA and the number of mating events required for convergence. The engineering system examined in this paper is a biomass fueled cookstove used in developing nations for household cooking. In this cookstove wood is combusted in a small combustion chamber and the resulting hot gases are utilized to heat the stove’s cooking surface. The spatial temperature profile of the cooking surface is determined by a series of baffles that direct the flow of hot gases. The optimization goal is to find baffle configurations that provide an even temperature distribution on the cooking surface. Often in engineering, the goal of optimization is not to find the single optimum solution but rather to identify a number of good solutions that can be used as a starting point for detailed engineering design. Because of this a key aspect of evolutionary optimization is the diversity of the solutions found. The key conclusion in this paper is that GBEA’s can be used to create multiple good solutions needed to support engineering design.

  14. Multi-objective optimization of combustion, performance and emission parameters in a jatropha biodiesel engine using Non-dominated sorting genetic algorithm-II

    NASA Astrophysics Data System (ADS)

    Dhingra, Sunil; Bhushan, Gian; Dubey, Kashyap Kumar

    2014-03-01

    The present work studies and identifies the different variables that affect the output parameters involved in a single cylinder direct injection compression ignition (CI) engine using jatropha biodiesel. Response surface methodology based on Central composite design (CCD) is used to design the experiments. Mathematical models are developed for combustion parameters (Brake specific fuel consumption (BSFC) and peak cylinder pressure (Pmax)), performance parameter brake thermal efficiency (BTE) and emission parameters (CO, NO x , unburnt HC and smoke) using regression techniques. These regression equations are further utilized for simultaneous optimization of combustion (BSFC, Pmax), performance (BTE) and emission (CO, NO x , HC, smoke) parameters. As the objective is to maximize BTE and minimize BSFC, Pmax, CO, NO x , HC, smoke, a multiobjective optimization problem is formulated. Nondominated sorting genetic algorithm-II is used in predicting the Pareto optimal sets of solution. Experiments are performed at suitable optimal solutions for predicting the combustion, performance and emission parameters to check the adequacy of the proposed model. The Pareto optimal sets of solution can be used as guidelines for the end users to select optimal combination of engine output and emission parameters depending upon their own requirements.

  15. Multi-objective shape optimization of plate structure under stress criteria based on sub-structured mixed FEM and genetic algorithms

    NASA Astrophysics Data System (ADS)

    Garambois, Pierre; Besset, Sebastien; Jézéquel, Louis

    2015-07-01

    This paper presents a methodology for the multi-objective (MO) shape optimization of plate structure under stress criteria, based on a mixed Finite Element Model (FEM) enhanced with a sub-structuring method. The optimization is performed with a classical Genetic Algorithm (GA) method based on Pareto-optimal solutions and considers thickness distributions parameters and antagonist objectives among them stress criteria. We implement a displacement-stress Dynamic Mixed FEM (DM-FEM) for plate structure vibrations analysis. Such a model gives a privileged access to the stress within the plate structure compared to primal classical FEM, and features a linear dependence to the thickness parameters. A sub-structuring reduction method is also computed in order to reduce the size of the mixed FEM and split the given structure into smaller ones with their own thickness parameters. Those methods combined enable a fast and stress-wise efficient structure analysis, and improve the performance of the repetitive GA. A few cases of minimizing the mass and the maximum Von Mises stress within a plate structure under a dynamic load put forward the relevance of our method with promising results. It is able to satisfy multiple damage criteria with different thickness distributions, and use a smaller FEM.

  16. An archived multi-objective simulated annealing for a dynamic cellular manufacturing system

    NASA Astrophysics Data System (ADS)

    Shirazi, Hossein; Kia, Reza; Javadian, Nikbakhsh; Tavakkoli-Moghaddam, Reza

    2014-05-01

    To design a group layout of a cellular manufacturing system (CMS) in a dynamic environment, a multi-objective mixed-integer non-linear programming model is developed. The model integrates cell formation, group layout and production planning (PP) as three interrelated decisions involved in the design of a CMS. This paper provides an extensive coverage of important manufacturing features used in the design of CMSs and enhances the flexibility of an existing model in handling the fluctuations of part demands more economically by adding machine depot and PP decisions. Two conflicting objectives to be minimized are the total costs and the imbalance of workload among cells. As the considered objectives in this model are in conflict with each other, an archived multi-objective simulated annealing (AMOSA) algorithm is designed to find Pareto-optimal solutions. Matrix-based solution representation, a heuristic procedure generating an initial and feasible solution and efficient mutation operators are the advantages of the designed AMOSA. To demonstrate the efficiency of the proposed algorithm, the performance of AMOSA is compared with an exact algorithm (i.e., ∈-constraint method) solved by the GAMS software and a well-known evolutionary algorithm, namely NSGA-II for some randomly generated problems based on some comparison metrics. The obtained results show that the designed AMOSA can obtain satisfactory solutions for the multi-objective model.

  17. Interactive evolutionary computation with minimum fitness evaluation requirement and offline algorithm design.

    PubMed

    Ishibuchi, Hisao; Sudo, Takahiko; Nojima, Yusuke

    2016-01-01

    In interactive evolutionary computation (IEC), each solution is evaluated by a human user. Usually the total number of examined solutions is very small. In some applications such as hearing aid design and music composition, only a single solution can be evaluated at a time by a human user. Moreover, accurate and precise numerical evaluation is difficult. Based on these considerations, we formulated an IEC model with the minimum requirement for fitness evaluation ability of human users under the following assumptions: They can evaluate only a single solution at a time, they can memorize only a single previous solution they have just evaluated, their evaluation result on the current solution is whether it is better than the previous one or not, and the best solution among the evaluated ones should be identified after a pre-specified number of evaluations. In this paper, we first explain our IEC model in detail. Next we propose a ([Formula: see text])ES-style algorithm for our IEC model. Then we propose an offline meta-level approach to automated algorithm design for our IEC model. The main feature of our approach is the use of a different mechanism (e.g., mutation, crossover, random initialization) to generate each solution to be evaluated. Through computational experiments on test problems, our approach is compared with the ([Formula: see text])ES-style algorithm where a solution generation mechanism is pre-specified and fixed throughout the execution of the algorithm. PMID:27026888

  18. Hybrid Pareto artificial bee colony algorithm for multi-objective single machine group scheduling problem with sequence-dependent setup times and learning effects.

    PubMed

    Yue, Lei; Guan, Zailin; Saif, Ullah; Zhang, Fei; Wang, Hao

    2016-01-01

    Group scheduling is significant for efficient and cost effective production system. However, there exist setup times between the groups, which require to decrease it by sequencing groups in an efficient way. Current research is focused on a sequence dependent group scheduling problem with an aim to minimize the makespan in addition to minimize the total weighted tardiness simultaneously. In most of the production scheduling problems, the processing time of jobs is assumed as fixed. However, the actual processing time of jobs may be reduced due to "learning effect". The integration of sequence dependent group scheduling problem with learning effects has been rarely considered in literature. Therefore, current research considers a single machine group scheduling problem with sequence dependent setup times and learning effects simultaneously. A novel hybrid Pareto artificial bee colony algorithm (HPABC) with some steps of genetic algorithm is proposed for current problem to get Pareto solutions. Furthermore, five different sizes of test problems (small, small medium, medium, large medium, large) are tested using proposed HPABC. Taguchi method is used to tune the effective parameters of the proposed HPABC for each problem category. The performance of HPABC is compared with three famous multi objective optimization algorithms, improved strength Pareto evolutionary algorithm (SPEA2), non-dominated sorting genetic algorithm II (NSGAII) and particle swarm optimization algorithm (PSO). Results indicate that HPABC outperforms SPEA2, NSGAII and PSO and gives better Pareto optimal solutions in terms of diversity and quality for almost all the instances of the different sizes of problems. PMID:27652166

  19. Hybrid Pareto artificial bee colony algorithm for multi-objective single machine group scheduling problem with sequence-dependent setup times and learning effects.

    PubMed

    Yue, Lei; Guan, Zailin; Saif, Ullah; Zhang, Fei; Wang, Hao

    2016-01-01

    Group scheduling is significant for efficient and cost effective production system. However, there exist setup times between the groups, which require to decrease it by sequencing groups in an efficient way. Current research is focused on a sequence dependent group scheduling problem with an aim to minimize the makespan in addition to minimize the total weighted tardiness simultaneously. In most of the production scheduling problems, the processing time of jobs is assumed as fixed. However, the actual processing time of jobs may be reduced due to "learning effect". The integration of sequence dependent group scheduling problem with learning effects has been rarely considered in literature. Therefore, current research considers a single machine group scheduling problem with sequence dependent setup times and learning effects simultaneously. A novel hybrid Pareto artificial bee colony algorithm (HPABC) with some steps of genetic algorithm is proposed for current problem to get Pareto solutions. Furthermore, five different sizes of test problems (small, small medium, medium, large medium, large) are tested using proposed HPABC. Taguchi method is used to tune the effective parameters of the proposed HPABC for each problem category. The performance of HPABC is compared with three famous multi objective optimization algorithms, improved strength Pareto evolutionary algorithm (SPEA2), non-dominated sorting genetic algorithm II (NSGAII) and particle swarm optimization algorithm (PSO). Results indicate that HPABC outperforms SPEA2, NSGAII and PSO and gives better Pareto optimal solutions in terms of diversity and quality for almost all the instances of the different sizes of problems.

  20. XTALOPT: An open-source evolutionary algorithm for crystal structure prediction

    NASA Astrophysics Data System (ADS)

    Lonie, David C.; Zurek, Eva

    2011-02-01

    The implementation and testing of XTALOPT, an evolutionary algorithm for crystal structure prediction, is outlined. We present our new periodic displacement (ripple) operator which is ideally suited to extended systems. It is demonstrated that hybrid operators, which combine two pure operators, reduce the number of duplicate structures in the search. This allows for better exploration of the potential energy surface of the system in question, while simultaneously zooming in on the most promising regions. A continuous workflow, which makes better use of computational resources as compared to traditional generation based algorithms, is employed. Various parameters in XTALOPT are optimized using a novel benchmarking scheme. XTALOPT is available under the GNU Public License, has been interfaced with various codes commonly used to study extended systems, and has an easy to use, intuitive graphical interface. Program summaryProgram title:XTALOPT Catalogue identifier: AEGX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPL v2.1 or later [1] No. of lines in distributed program, including test data, etc.: 36 849 No. of bytes in distributed program, including test data, etc.: 1 149 399 Distribution format: tar.gz Programming language: C++ Computer: PCs, workstations, or clusters Operating system: Linux Classification: 7.7 External routines: QT [2], OpenBabel [3], AVOGADRO [4], SPGLIB [8] and one of: VASP [5], PWSCF [6], GULP [7]. Nature of problem: Predicting the crystal structure of a system from its stoichiometry alone remains a grand challenge in computational materials science, chemistry, and physics. Solution method: Evolutionary algorithms are stochastic search techniques which use concepts from biological evolution in order to locate the global minimum on their potential energy surface. Our evolutionary algorithm, XTALOPT, is freely

  1. Integrative systems modeling and multi-objective optimization

    EPA Science Inventory

    This presentation presents a number of algorithms, tools, and methods for utilizing multi-objective optimization within integrated systems modeling frameworks. We first present innovative methods using a genetic algorithm to optimally calibrate the VELMA and SWAT ecohydrological ...

  2. An evolutionary algorithm for the segmentation of muscles and bones of the lower limb.

    NASA Astrophysics Data System (ADS)

    Lpez, Marco A.; Braidot, A.; Sattler, Anbal; Schira, Claudia; Uriburu, E.

    2016-04-01

    In the field of medical image segmentation, muscles segmentation is a problem that has not been fully resolved yet. This is due to the fact that the basic assumption of image segmentation, which asserts that a visual distinction should ex- ist between the different structures to be identified, is infringed. As the tissue composition of two different muscles is the same, it becomes extremely difficult to distinguish one another if they are near. We have developed an evolutionary algorithm which selects the set and the sequence of morphological operators that better segments muscles and bones from an MRI image. The achieved results shows that the developed algorithm presents average sensitivity values close to 75% in the segmentation of the different processed muscles and bones. It also presents average specificity values close to 93% for the same structures. Furthermore, the algorithm can identify muscles that are closely located through the path from their origin point to their insertions, with very low error values (below 7%) .

  3. Human creativity, evolutionary algorithms, and predictive representations: The mechanics of thought trials.

    PubMed

    Dietrich, Arne; Haider, Hilde

    2015-08-01

    Creative thinking is arguably the pinnacle of cerebral functionality. Like no other mental faculty, it has been omnipotent in transforming human civilizations. Probing the neural basis of this most extraordinary capacity, however, has been doggedly frustrated. Despite a flurry of activity in cognitive neuroscience, recent reviews have shown that there is no coherent picture emerging from the neuroimaging work. Based on this, we take a different route and apply two well established paradigms to the problem. First is the evolutionary framework that, despite being part and parcel of creativity research, has no informed experimental work in cognitive neuroscience. Second is the emerging prediction framework that recognizes predictive representations as an integrating principle of all cognition. We show here how the prediction imperative revealingly synthesizes a host of new insights into the way brains process variation-selection thought trials and present a new neural mechanism for the partial sightedness in human creativity. Our ability to run offline simulations of expected future environments and action outcomes can account for some of the characteristic properties of cultural evolutionary algorithms running in brains, such as degrees of sightedness, the formation of scaffolds to jump over unviable intermediate forms, or how fitness criteria are set for a selection process that is necessarily hypothetical. Prospective processing in the brain also sheds light on how human creating and designing - as opposed to biological creativity - can be accompanied by intentions and foresight. This paper raises questions about the nature of creative thought that, as far as we know, have never been asked before.

  4. Characterization and classification of adherent cells in monolayer culture using automated tracking and evolutionary algorithms.

    PubMed

    Zhang, Zhen; Bedder, Matthew; Smith, Stephen L; Walker, Dawn; Shabir, Saqib; Southgate, Jennifer

    2016-08-01

    This paper presents a novel method for tracking and characterizing adherent cells in monolayer culture. A system of cell tracking employing computer vision techniques was applied to time-lapse videos of replicate normal human uro-epithelial cell cultures exposed to different concentrations of adenosine triphosphate (ATP) and a selective purinergic P2X antagonist (PPADS), acquired over a 24h period. Subsequent analysis following feature extraction demonstrated the ability of the technique to successfully separate the modulated classes of cell using evolutionary algorithms. Specifically, a Cartesian Genetic Program (CGP) network was evolved that identified average migration speed, in-contact angular velocity, cohesivity and average cell clump size as the principal features contributing to the separation. Our approach not only provides non-biased and parsimonious insight into modulated class behaviours, but can be extracted as mathematical formulae for the parameterization of computational models. PMID:27267455

  5. Improvement of the Analysis of the Peroxy Radicals Using AN Evolutionary Algorithm

    NASA Astrophysics Data System (ADS)

    Just, Gabriel M. P.; Rupper, Patrick; Miller, Terry A.; Meerts, W. Leo

    2009-06-01

    For quite awhile, our laboratory has had interestin the organic peroxy radicals which are relevant to atmospheric chemistry as well as low temperature combustion. We first studied these radicals via room temperature cavity ringdown spectroscopy (CRDS). We continued our investigation of the same radicals using a quasi-Fourier-transform laser source using a supersonic jet expansion in order to obtain partially rotationally resolved spectra which are nearly doppler limited. In order to analyze our spectra we decided to complement our conventional least-square-fit method of simulating spectra by using a evolutionary algorithm (EA) approach which uses both the frequency and the intensity information that are contained in our dense and complicated spectra. This presentation will focus on the CD_3O_2 spectrum to demonstrate the capabilities and the quality of the fits obtained via the EA method and compare it with the traditional least-square-fit method.

  6. Signal design using nonlinear oscillators and evolutionary algorithms: Application to phase-locked loop disruption

    NASA Astrophysics Data System (ADS)

    Olson, C. C.; Nichols, J. M.; Michalowicz, J. V.; Bucholtz, F.

    2011-06-01

    This work describes an approach for efficiently shaping the response characteristics of a fixed dynamical system by forcing with a designed input. We obtain improved inputs by using an evolutionary algorithm to search a space of possible waveforms generated by a set of nonlinear, ordinary differential equations (ODEs). Good solutions are those that result in a desired system response subject to some input efficiency constraint, such as signal power. In particular, we seek to find inputs that best disrupt a phase-locked loop (PLL). Three sets of nonlinear ODEs are investigated and found to have different disruption capabilities against a model PLL. These differences are explored and implications for their use as input signal models are discussed. The PLL was chosen here as an archetypal example but the approach has broad applicability to any input/output system for which a desired input cannot be obtained analytically.

  7. Scenario-Based Multi-Objective Optimum Allocation Model for Earthquake Emergency Shelters Using a Modified Particle Swarm Optimization Algorithm: A Case Study in Chaoyang District, Beijing, China

    PubMed Central

    Zhao, Xiujuan; Xu, Wei; Ma, Yunjia; Hu, Fuyu

    2015-01-01

    The correct location of earthquake emergency shelters and their allocation to residents can effectively reduce the number of casualties by providing safe havens and efficient evacuation routes during the chaotic period of the unfolding disaster. However, diverse and strict constraints and the discrete feasible domain of the required models make the problem of shelter location and allocation more difficult. A number of models have been developed to solve this problem, but there are still large differences between the models and the actual situation because the characteristics of the evacuees and the construction costs of the shelters have been excessively simplified. We report here the development of a multi-objective model for the allocation of residents to earthquake shelters by considering these factors using the Chaoyang district, Beijing, China as a case study. The two objectives of this model were to minimize the total weighted evacuation time from residential areas to a specified shelter and to minimize the total area of all the shelters. The two constraints were the shelter capacity and the service radius. Three scenarios were considered to estimate the number of people who would need to be evacuated. The particle swarm optimization algorithm was first modified by applying the von Neumann structure in former loops and global structure in later loops, and then used to solve this problem. The results show that increasing the shelter area can result in a large decrease in the total weighted evacuation time from scheme 1 to scheme 9 in scenario A, from scheme 1 to scheme 9 in scenario B, from scheme 1 to scheme 19 in scenario C. If the funding were not a limitation, then the final schemes of each scenario are the best solutions, otherwise the earlier schemes are more reasonable. The modified model proved to be useful for the optimization of shelter allocation, and the result can be used as a scientific reference for planning shelters in the Chaoyang district

  8. Multi-objective optimisation and decision-making of space station logistics strategies

    NASA Astrophysics Data System (ADS)

    Zhu, Yue-he; Luo, Ya-zhong

    2016-10-01

    Space station logistics strategy optimisation is a complex engineering problem with multiple objectives. Finding a decision-maker-preferred compromise solution becomes more significant when solving such a problem. However, the designer-preferred solution is not easy to determine using the traditional method. Thus, a hybrid approach that combines the multi-objective evolutionary algorithm, physical programming, and differential evolution (DE) algorithm is proposed to deal with the optimisation and decision-making of space station logistics strategies. A multi-objective evolutionary algorithm is used to acquire a Pareto frontier and help determine the range parameters of the physical programming. Physical programming is employed to convert the four-objective problem into a single-objective problem, and a DE algorithm is applied to solve the resulting physical programming-based optimisation problem. Five kinds of objective preference are simulated and compared. The simulation results indicate that the proposed approach can produce good compromise solutions corresponding to different decision-makers' preferences.

  9. Constraint satisfaction using a hybrid evolutionary hill-climbing algorithm that performs opportunistic arc and path revision

    SciTech Connect

    Bowen, J.; Dozier, G.

    1996-12-31

    This paper introduces a hybrid evolutionary hill-climbing algorithm that quickly solves (Constraint Satisfaction Problems (CSPs)). This hybrid uses opportunistic arc and path revision in an interleaved fashion to reduce the size of the search space and to realize when to quit if a CSP is based on an inconsistent constraint network. This hybrid outperforms a well known hill-climbing algorithm, the Iterative Descent Method, on a test suite of 750 randomly generated CSPs.

  10. Challenges and Benefits of Direct Policy Search in Advancing Multiobjective Reservoir Management

    NASA Astrophysics Data System (ADS)

    Castelletti, Andrea; Giuliani, Matteo; Zatarain-Salazar, Jazmin; Hermann, John; Pianosi, Francesca; Reed, Patrick

    2015-04-01

    Optimal management policies for water reservoir operation are generally designed via stochastic dynamic programming (SDP). Yet, the adoption of SDP in complex real-world problems is challenged by the three curses of dimensionality, of modeling, and of multiple objectives. These three curses considerably limit SDP's practical application. Alternatively, in this study, we focus on the use of evolutionary multi-objective direct policy search (EMODPS), a simulation-based optimization approach that combines direct policy search, nonlinear approximating networks and multi-objective evolutionary algorithms to design Pareto approximate operating policies for multi-purpose water reservoirs. Our analysis explores the technical and practical implications of using EMODPS through a careful diagnostic assessment of the EMODPS Pareto approximate solutions attained and the overall reliability of the policy design process. A key choice in the EMODPS approach is the selection of alternative formulations of the operating policies. In this study, we distinguish the relative performance of two widely used nonlinear approximating networks, namely Artificial Neural Networks and Radial Basis Functions, and we further compare them with SDP. Besides, we comparatively assess state-of-the-art multi-objective evolutionary algorithms (MOEAs) in terms of efficiency, effectiveness, reliability, and controllability. Our diagnostic results show that RBFs solutions are more effective that ANNs in designing Pareto approximate policies for several water reservoir systems. They also highlight that EMODPS is very challenging for modern MOEAs and that epsilon dominance is critical for attaining high levels of performance. Epsilon dominance algorithms epsilon-MOEA, epsilon-NSGAII and the auto adaptive Borg MOEA, are statistically superior for the class of problems considered.

  11. Combining evolutionary algorithms with oblique decision trees to detect bent double galaxies

    SciTech Connect

    Cantu-Paz, E; Kamath, C

    2000-06-22

    Decision trees have long been popular in classification as they use simple and easy-to-understand tests at each node. Most variants of decision trees test a single attribute at a node, leading to axis-parallel trees, where the test results in a hyperplane which is parallel to one of the dimensions in the attribute space. These trees can be rather large and inaccurate in cases where the concept to be learnt is best approximated by oblique hyperplanes. In such cases, it may be more appropriate to use an oblique decision tree, where the decision at each node is a linear combination of the attributes. Oblique decision trees have not gained wide popularity in part due to the complexity of constructing good oblique splits and the tendency of existing splitting algorithms to get stuck in local minima. Several alternatives have been proposed to handle these problems including randomization in conjunction with deterministic hill climbing and the use of simulated annealing. In this paper, they use evolutionary algorithms (EAs) to determine the split. EAs are well suited for this problem because of their global search properties, their tolerance to noisy fitness evaluations, and their scalability to large dimensional search spaces. They demonstrate the technique on a practical problem from astronomy, namely, the classification of galaxies with a bent-double morphology, and describe their experiences with several split evaluation criteria.

  12. Projector Augmented Wave (PAW) Datasets for Multi-Mbar Simulations: An Evolutionary Algorithm Based Recipe

    NASA Astrophysics Data System (ADS)

    Sarkar, K.; Topsakal, M.; Wentzcovitch, R. M.

    2015-12-01

    We attempt to achieve the accuracy of full-potential linearized augmented-plane-wave (FLAPW) method, as implemented in the WIEN2k code, at the favorable computational efficiency of the projector augmented wave (PAW) method for ab initio calculations of solids. For decades, PAW datasets have been generated by manually choosing its parameters and by visually inspecting its logarithmic derivatives, partial wave, and projector basis set. In addition to being tedious and error-prone, this procedure is inadequate because it is impractical to manually explore the full parameter space, as an infinite number of PAW parameter sets for a given augmentation radius can be generated maintaining all the constraints on logarithmic derivatives and basis sets. Performance verification of all plausible solutions against FLAPW is also impractical. Here we report the development of a hybrid algorithm to construct optimized PAW basis sets that can closely reproduce FLAPW results from zero to ultra-high pressures. The approach applies evolutionary computing (EC) to generate optimum PAW parameter sets using the ATOMPAW code. We have the Quantum ESPRESSO distribution to generate equation of state (EOS) to be compared with WIEN2k EOSs set as target. Softer PAW potentials reproducing yet more closely FLAPW EOSs can be found with this method. We demonstrate its working principles and workability by optimizing PAW basis functions for carbon, magnesium, aluminum, silicon, calcium, and iron atoms. The algorithm requires minimal user intervention in a sense that there is no requirement of visual inspection of logarithmic derivatives or of projector functions.

  13. Solving Large-scale Spatial Optimization Problems in Water Resources Management through Spatial Evolutionary Algorithms

    NASA Astrophysics Data System (ADS)

    Wang, J.; Cai, X.

    2007-12-01

    A water resources system can be defined as a large-scale spatial system, within which distributed ecological system interacts with the stream network and ground water system. Water resources management, the causative factors and hence the solutions to be developed have a significant spatial dimension. This motivates a modeling analysis of water resources management within a spatial analytical framework, where data is usually geo- referenced and in the form of a map. One of the important functions of Geographic information systems (GIS) is to identify spatial patterns of environmental variables. The role of spatial patterns in water resources management has been well established in the literature particularly regarding how to design better spatial patterns for satisfying the designated objectives of water resources management. Evolutionary algorithms (EA) have been demonstrated to be successful in solving complex optimization models for water resources management due to its flexibility to incorporate complex simulation models in the optimal search procedure. The idea of combining GIS and EA motivates the development and application of spatial evolutionary algorithms (SEA). SEA assimilates spatial information into EA, and even changes the representation and operators of EA. In an EA used for water resources management, the mathematical optimization model should be modified to account the spatial patterns; however, spatial patterns are usually implicit, and it is difficult to impose appropriate patterns to spatial data. Also it is difficult to express complex spatial patterns by explicit constraints included in the EA. The GIS can help identify the spatial linkages and correlations based on the spatial knowledge of the problem. These linkages are incorporated in the fitness function for the preference of the compatible vegetation distribution. Unlike a regular GA for spatial models, the SEA employs a special hierarchical hyper-population and spatial genetic operators

  14. Pareto-based evolutionary algorithms for the calculation of transformation parameters and accuracy assessment of historical maps

    NASA Astrophysics Data System (ADS)

    Manzano-Agugliaro, F.; San-Antonio-Gómez, C.; López, S.; Montoya, F. G.; Gil, C.

    2013-08-01

    When historical map data are compared with modern cartography, the old map coordinates must be transformed to the current system. However, historical data often exhibit heterogeneous quality. In calculating the transformation parameters between the historical and modern maps, it is often necessary to discard highly uncertain data. An optimal balance between the objectives of minimising the transformation error and eliminating as few points as possible can be achieved by generating a Pareto front of solutions using evolutionary genetic algorithms. The aim of this paper is to assess the performance of evolutionary algorithms in determining the accuracy of historical maps in regard to modern cartography. When applied to the 1787 Tomas Lopez map, the use of evolutionary algorithms reduces the linear error by 40% while eliminating only 2% of the data points. The main conclusion of this paper is that evolutionary algorithms provide a promising alternative for the transformation of historical map coordinates and determining the accuracy of historical maps in regard to modern cartography, particularly when the positional quality of the data points used cannot be assured.

  15. Innovization procedure applied to a multi-objective optimization of a biped robot locomotion

    NASA Astrophysics Data System (ADS)

    Oliveira, Miguel; Santos, Cristina P.; Costa, Lino

    2013-10-01

    This paper proposes an Innovization procedure approach for a bio-inspired biped gait locomotion controller. We combine a multi-objective evolutionary algorithm and a bio-inspired Central Patterns Generator locomotion controller to generates the necessary limb movements to perform the walking gait of a biped robot. The search for the best set of CPG parameters is optimized by considering multiple objectives along a staged evolution. An innovation analysis is issued to verify relationships between the parameters and the objectives and between objectives themselves in order to find relevant motor behaviors characteristics. The simulation results show the effectiveness of the proposed approach.

  16. Internal combustion engine control for series hybrid electric vehicles by parallel and distributed genetic programming/multiobjective genetic algorithms

    NASA Astrophysics Data System (ADS)

    Gladwin, D.; Stewart, P.; Stewart, J.

    2011-02-01

    This article addresses the problem of maintaining a stable rectified DC output from the three-phase AC generator in a series-hybrid vehicle powertrain. The series-hybrid prime power source generally comprises an internal combustion (IC) engine driving a three-phase permanent magnet generator whose output is rectified to DC. A recent development has been to control the engine/generator combination by an electronically actuated throttle. This system can be represented as a nonlinear system with significant time delay. Previously, voltage control of the generator output has been achieved by model predictive methods such as the Smith Predictor. These methods rely on the incorporation of an accurate system model and time delay into the control algorithm, with a consequent increase in computational complexity in the real-time controller, and as a necessity relies to some extent on the accuracy of the models. Two complementary performance objectives exist for the control system. Firstly, to maintain the IC engine at its optimal operating point, and secondly, to supply a stable DC supply to the traction drive inverters. Achievement of these goals minimises the transient energy storage requirements at the DC link, with a consequent reduction in both weight and cost. These objectives imply constant velocity operation of the IC engine under external load disturbances and changes in both operating conditions and vehicle speed set-points. In order to achieve these objectives, and reduce the complexity of implementation, in this article a controller is designed by the use of Genetic Programming methods in the Simulink modelling environment, with the aim of obtaining a relatively simple controller for the time-delay system which does not rely on the implementation of real time system models or time delay approximations in the controller. A methodology is presented to utilise the miriad of existing control blocks in the Simulink libraries to automatically evolve optimal control

  17. Multi-objective approach for the automatic design of optical systems.

    PubMed

    Carneiro de Albuquerque, Bráulio Fonseca; Luis de Sousa, Fabiano; Montes, Amauri Silva

    2016-03-21

    An innovative method for the automatic design of optical systems is presented and verified. The proposed method is based on a multi-objective evolutionary memetic optimization algorithm. The multi-objective approach simultaneously, but separately, addresses the image quality, tolerance, and complexity of the system. The memetic technique breaks down the search for optical designs in to three different parts or phases: optical glass selection, exploration, and exploitation. The optical glass selection phase defines the most appropriate set of glasses for the system under design. The glass selection phase limits the available glasses from hundreds to just a few, drastically reducing the design space and significantly increasing the efficiency of the automatic design method. The exploration phase is based on an evolutionary algorithm (EA), more specifically, on a problem-tailored generalized extremal optimization (GEO) algorithm, named Optical GEO (O-GEO). The new EA incorporates many features customized for lens design, such as optical system codification and diversity operators. The trade-off systems found in the exploration phase are refined by a local search, based on the damped least square method in the exploitation phase. As a result, the method returns a set of trade-off solutions, generating a Pareto front. Our method delivers alternative and useful insights for the compromise solutions in a lens design problem. The efficiency of the proposed method is verified through real-world examples, showing excellent results for the tested problems. PMID:27136851

  18. A low-cost evolutionary algorithm for the unit commitment problem considering probabilistic unit outages

    NASA Astrophysics Data System (ADS)

    Asouti, V. G.; Giannakoglou, K. C.

    2012-07-01

    This article presents a solution method to the unit commitment problem with probabilistic unit failures and repairs, which is based on evolutionary algorithms and Monte Carlo simulations. Regarding the latter, thousands of availability-unavailability trial time patterns along the scheduling horizon are generated. The objective function to be minimised is the expected total operating cost, computed after adapting any candidate solution, i.e. any series of generating/non-generating (ON/OFF) unit states, to the availability-unavailability patterns and performing evaluations by considering fuel, start-up and shutdown costs as well as the cost for buying electricity from external resources, if necessary. The proposed method introduces a new efficient chromosome representation: the decision variables are integer IDs corresponding to the binary-to-decimal converted ON/OFF (1/0) scenarios that cover the demand in each hour. In contrast to previous methods using binary strings as chromosomes, the new chromosome must be penalised only if any of the constraints regarding start-up, shutdown and ramp times cannot be met, chromosome repair is avoided and, consequently, the dispatch problems are solved once in the preparatory phase instead of during the evolution. For all these reasons, with or without probabilistic outages, the proposed algorithm has much lower CPU cost. In addition, if probabilistic outages are taken into account, a hierarchical evaluation scheme offers extra noticeable gain in CPU cost: the population members are approximately pre-evaluated using a small 'representative' set of the Monte Carlo simulations and only a few top population members undergo evaluations through the full Monte Carlo simulations. The hierarchical scheme makes the proposed method about one order of magnitude faster than its conventional counterpart.

  19. Land use zoning at the county level based on a multi-objective particle swarm optimization algorithm: a case study from Yicheng, China.

    PubMed

    Liu, Yaolin; Wang, Hua; Ji, Yingli; Liu, Zhongqiu; Zhao, Xiang

    2012-08-01

    Comprehensive land-use planning (CLUP) at the county level in China must include land-use zoning. This is specifically stipulated by the China Land Management Law and aims to achieve strict control on the usages of land. The land-use zoning problem is treated as a multi-objective optimization problem (MOOP) in this article, which is different from the traditional treatment. A particle swarm optimization (PSO) based model is applied to the problem and is developed to maximize the attribute differences between land-use zones, the spatial compactness, the degree of spatial harmony and the ecological benefits of the land-use zones. This is subject to some constraints such as: the quantity limitations for varying land-use zones, regulations assigning land units to a certain land-use zone, and the stipulation of a minimum parcel area in a land-use zoning map. In addition, a crossover and mutation operator from a genetic algorithm is adopted to avoid the prematurity of PSO. The results obtained for Yicheng, a county in central China, using different objective weighting schemes, are compared and suggest that: (1) the fundamental demand for attribute difference between land-use zones leads to a mass of fragmentary land-use zones; (2) the spatial pattern of land-use zones is remarkably optimized when a weight is given to the sub-objectives of spatial compactness and the degree of spatial harmony, simultaneously, with a reduction of attribute difference between land-use zones; (3) when a weight is given to the sub-objective of ecological benefits of the land-use zones, the ecological benefits get a slight increase also at the expense of a reduction in attribute difference between land-use zones; (4) the pursuit of spatial harmony or spatial compactness may have a negative effect on each other; (5) an increase in the ecological benefits may improve the spatial compactness and spatial harmony of the land-use zones; (6) adjusting the weights assigned to each sub-objective can

  20. Multi-objective optimization of typhoon inundation forecast models with cross-site structures for a water-level gauging network by integrating ARMAX with a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Ouyang, Huei-Tau

    2016-08-01

    The forecasting of inundation levels during typhoons requires that multiple objectives be taken into account, including the forecasting capacity with regard to variations in water level throughout the entire weather event, the accuracy that can be attained in forecasting peak water levels, and the time at which peak water levels are likely to occur. This paper proposed a means of forecasting inundation levels in real time using monitoring data from a water-level gauging network. ARMAX was used to construct water-level forecast models for each gauging station using input variables including cumulative rainfall and water-level data from other gauging stations in the network. Analysis of the correlation between cumulative rainfall and water-level data makes it possible to obtain the appropriate accumulation duration of rainfall and the time lags associated with each gauging station. Analyses on cross-site water levels as well as on cumulative rainfall enable the identification of associate sites pertaining to each gauging station that share high correlations with regard to water level and low mutual information with regard to cumulative rainfall. Water-level data from the identified associate sites are used as a second input variable for the water-level forecast model of the target site. Three indices were considered in the selection of an optimal model: the coefficient of efficiency (CE), error in the stage of peak water level (ESP), and relative time shift (RTS). A multi-objective genetic algorithm was employed to derive an optimal Pareto set of models capable of performing well in the three objectives. A case study was conducted on the Xinnan area of Yilan County, Taiwan, in which optimal water-level forecast models were established for each of the four water-level gauging stations in the area. Test results demonstrate that the model best able to satisfy ESP exhibited significant time shift, whereas the models best able to satisfy CE and RTS provide accurate

  1. Complexity reduction in the use of evolutionary algorithms to function optimization: a variable reduction strategy.

    PubMed

    Wu, Guohua; Pedrycz, Witold; Li, Haifeng; Qiu, Dishan; Ma, Manhao; Liu, Jin

    2013-01-01

    Discovering and utilizing problem domain knowledge is a promising direction towards improving the efficiency of evolutionary algorithms (EAs) when solving optimization problems. We propose a knowledge-based variable reduction strategy (VRS) that can be integrated into EAs to solve unconstrained and first-order derivative optimization functions more efficiently. VRS originates from the knowledge that, in an unconstrained and first-order derivative optimization function, the optimal solution locates in a local extreme point at which the partial derivative over each variable equals zero. Through this collective of partial derivative equations, some quantitative relations among different variables can be obtained. These variable relations have to be satisfied in the optimal solution. With the use of such relations, VRS could reduce the number of variables and shrink the solution space when using EAs to deal with the optimization function, thus improving the optimizing speed and quality. When we apply VRS to optimization problems, we just need to modify the calculation approach of the objective function. Therefore, practically, it can be integrated with any EA. In this study, VRS is combined with particle swarm optimization variants and tested on several benchmark optimization functions and a real-world optimization problem. Computational results and comparative study demonstrate the effectiveness of VRS. PMID:24250256

  2. Multi-criteria optimal pole assignment robust controller design for uncertainty systems using an evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Sarjaš, Andrej; Chowdhury, Amor; Svečko, Rajko

    2016-09-01

    This paper presents the synthesis of an optimal robust controller design using the polynomial pole placement technique and multi-criteria optimisation procedure via an evolutionary computation algorithm - differential evolution. The main idea of the design is to provide a reliable fixed-order robust controller structure and an efficient closed-loop performance with a preselected nominally characteristic polynomial. The multi-criteria objective functions have quasi-convex properties that significantly improve convergence and the regularity of the optimal/sub-optimal solution. The fundamental aim of the proposed design is to optimise those quasi-convex functions with fixed closed-loop characteristic polynomials, the properties of which are unrelated and hard to present within formal algebraic frameworks. The objective functions are derived from different closed-loop criteria, such as robustness with metric ?∞, time performance indexes, controller structures, stability properties, etc. Finally, the design results from the example verify the efficiency of the controller design and also indicate broader possibilities for different optimisation criteria and control structures.

  3. Modeling an aquatic ecosystem: application of an evolutionary algorithm with genetic doping to reduce prediction uncertainty

    NASA Astrophysics Data System (ADS)

    Friedel, Michael; Buscema, Massimo

    2016-04-01

    Aquatic ecosystem models can potentially be used to understand the influence of stresses on catchment resource quality. Given that catchment responses are functions of natural and anthropogenic stresses reflected in sparse and spatiotemporal biological, physical, and chemical measurements, an ecosystem is difficult to model using statistical or numerical methods. We propose an artificial adaptive systems approach to model ecosystems. First, an unsupervised machine-learning (ML) network is trained using the set of available sparse and disparate data variables. Second, an evolutionary algorithm with genetic doping is applied to reduce the number of ecosystem variables to an optimal set. Third, the optimal set of ecosystem variables is used to retrain the ML network. Fourth, a stochastic cross-validation approach is applied to quantify and compare the nonlinear uncertainty in selected predictions of the original and reduced models. Results are presented for aquatic ecosystems (tens of thousands of square kilometers) undergoing landscape change in the USA: Upper Illinois River Basin and Central Colorado Assessment Project Area, and Southland region, NZ.

  4. Analysis of high resolution FTIR spectra from synchrotron sources using evolutionary algorithms

    NASA Astrophysics Data System (ADS)

    van Wijngaarden, Jennifer; Desmond, Durell; Leo Meerts, W.

    2015-09-01

    Room temperature Fourier transform infrared spectra of the four-membered heterocycle trimethylene sulfide were collected with a resolution of 0.00096 cm-1 using synchrotron radiation from the Canadian Light Source from 500 to 560 cm-1. The in-plane ring deformation mode (ν13) at ∼529 cm-1 exhibits dense rotational structure due to the presence of ring inversion tunneling and leads to a doubling of all transitions. Preliminary analysis of the experimental spectrum was pursued via traditional methods involving assignment of quantum numbers to individual transitions in order to conduct least squares fitting to determine the spectroscopic parameters. Following this approach, the assignment of 2358 transitions led to the experimental determination of an effective Hamiltonian. This model describes transitions in the P and R branches to J‧ = 60 and Ka‧ = 10 that connect the tunneling split ground and vibrationally excited states of the ν13 band although a small number of low intensity features remained unassigned. The use of evolutionary algorithms (EA) for automated assignment was explored in tandem and yielded a set of spectroscopic constants that re-create this complex experimental spectrum to a similar degree. The EA routine was also applied to the previously well-understood ring puckering vibration of another four-membered ring, azetidine (Zaporozan et al., 2010). This test provided further evidence of the robust nature of the EA method when applied to spectra for which the underlying physics is well understood.

  5. Complexity Reduction in the Use of Evolutionary Algorithms to Function Optimization: A Variable Reduction Strategy

    PubMed Central

    Pedrycz, Witold; Qiu, Dishan; Ma, Manhao; Liu, Jin

    2013-01-01

    Discovering and utilizing problem domain knowledge is a promising direction towards improving the efficiency of evolutionary algorithms (EAs) when solving optimization problems. We propose a knowledge-based variable reduction strategy (VRS) that can be integrated into EAs to solve unconstrained and first-order derivative optimization functions more efficiently. VRS originates from the knowledge that, in an unconstrained and first-order derivative optimization function, the optimal solution locates in a local extreme point at which the partial derivative over each variable equals zero. Through this collective of partial derivative equations, some quantitative relations among different variables can be obtained. These variable relations have to be satisfied in the optimal solution. With the use of such relations, VRS could reduce the number of variables and shrink the solution space when using EAs to deal with the optimization function, thus improving the optimizing speed and quality. When we apply VRS to optimization problems, we just need to modify the calculation approach of the objective function. Therefore, practically, it can be integrated with any EA. In this study, VRS is combined with particle swarm optimization variants and tested on several benchmark optimization functions and a real-world optimization problem. Computational results and comparative study demonstrate the effectiveness of VRS. PMID:24250256

  6. Enhancements of evolutionary algorithm for the complex requirements of a nurse scheduling problem

    NASA Astrophysics Data System (ADS)

    Tein, Lim Huai; Ramli, Razamin

    2014-12-01

    Over the years, nurse scheduling is a noticeable problem that is affected by the global nurse turnover crisis. The more nurses are unsatisfied with their working environment the more severe the condition or implication they tend to leave. Therefore, the current undesirable work schedule is partly due to that working condition. Basically, there is a lack of complimentary requirement between the head nurse's liability and the nurses' need. In particular, subject to highly nurse preferences issue, the sophisticated challenge of doing nurse scheduling is failure to stimulate tolerance behavior between both parties during shifts assignment in real working scenarios. Inevitably, the flexibility in shifts assignment is hard to achieve for the sake of satisfying nurse diverse requests with upholding imperative nurse ward coverage. Hence, Evolutionary Algorithm (EA) is proposed to cater for this complexity in a nurse scheduling problem (NSP). The restriction of EA is discussed and thus, enhancement on the EA operators is suggested so that the EA would have the characteristic of a flexible search. This paper consists of three types of constraints which are the hard, semi-hard and soft constraints that can be handled by the EA with enhanced parent selection and specialized mutation operators. These operators and EA as a whole contribute to the efficiency of constraint handling, fitness computation as well as flexibility in the search, which correspond to the employment of exploration and exploitation principles.

  7. Particle Swarm and Ant Colony Approaches in Multiobjective Optimization

    NASA Astrophysics Data System (ADS)

    Rao, S. S.

    2010-10-01

    The social behavior of groups of birds, ants, insects and fish has been used to develop evolutionary algorithms known as swarm intelligence techniques for solving optimization problems. This work presents the development of strategies for the application of two of the popular swarm intelligence techniques, namely the particle swarm and ant colony methods, for the solution of multiobjective optimization problems. In a multiobjective optimization problem, the objectives exhibit a conflicting nature and hence no design vector can minimize all the objectives simultaneously. The concept of Pareto-optimal solution is used in finding a compromise solution. A modified cooperative game theory approach, in which each objective is associated with a different player, is used in this work. The applicability and computational efficiencies of the proposed techniques are demonstrated through several illustrative examples involving unconstrained and constrained problems with single and multiple objectives and continuous and mixed design variables. The present methodologies are expected to be useful for the solution of a variety of practical continuous and mixed optimization problems involving single or multiple objectives with or without constraints.

  8. Implementation and comparative analysis of the optimisations produced by evolutionary algorithms for the parameter extraction of PSP MOSFET model

    NASA Astrophysics Data System (ADS)

    Hadia, Sarman K.; Thakker, R. A.; Bhatt, Kirit R.

    2016-05-01

    The study proposes an application of evolutionary algorithms, specifically an artificial bee colony (ABC), variant ABC and particle swarm optimisation (PSO), to extract the parameters of metal oxide semiconductor field effect transistor (MOSFET) model. These algorithms are applied for the MOSFET parameter extraction problem using a Pennsylvania surface potential model. MOSFET parameter extraction procedures involve reducing the error between measured and modelled data. This study shows that ABC algorithm optimises the parameter values based on intelligent activities of honey bee swarms. Some modifications have also been applied to the basic ABC algorithm. Particle swarm optimisation is a population-based stochastic optimisation method that is based on bird flocking activities. The performances of these algorithms are compared with respect to the quality of the solutions. The simulation results of this study show that the PSO algorithm performs better than the variant ABC and basic ABC algorithm for the parameter extraction of the MOSFET model; also the implementation of the ABC algorithm is shown to be simpler than that of the PSO algorithm.

  9. The Earth's spectrum constrained directly from global seismic data: an evolutionary-algorithm approach

    NASA Astrophysics Data System (ADS)

    Della Mora, S.; Boschi, L.; Becker, T. W.; Giardini, D.

    2010-12-01

    The wavelength spectrum of three-dimensional (3D) heterogeneity naturally reflects the nature of Earth dynamics, and is in its own right an important constraint for geodynamical modeling. The Earth's spectrum has been usually evaluated indirectly, on the basis of previously derived tomographic models. If the geographic distribution of seismic heterogeneities is neglected, however, one can invert global seismic data directly to find the spectrum of the Earth. Inverting for the spectrum is in principle (fewer unknowns) cheaper and robust than inverting for the 3D structure of a planet: this should allow us to constrain planetary structure at smaller scales than by current 3D models. Based on the work of Gudmundsson and coworkers in the early 1990s, we have developed a linear algorithm for surface waves. The spectra we obtain are in qualitative agreement with results from 3D tomography, but the resolving power is generally lower, due to the simplifications required to linearise the ``spectral'' inversion. To overcome this problem, we performed full nonlinear inversions of synthetically generated and real datasets, and compare the obtained spectra with the input and tomographic models respectively. The inversions are calculated on a distributed memory parallel nodes cluster, employing the MPI package. An evolutionary strategy approach is used to explore the parameter space, using the PIKAIA software. The first preliminary results show a resolving power higher than that of linearised inversion. This confirms that the approximations required in the linear formulation affect the solution quality, and suggests that the nonlinear approach might effectively help to constrain the heterogeneity spectrum more robustly than currently possible.

  10. Investigating preferences for color-shape combinations with gaze driven optimization method based on evolutionary algorithms

    PubMed Central

    Holmes, Tim; Zanker, Johannes M.

    2013-01-01

    Studying aesthetic preference is notoriously difficult because it targets individual experience. Eye movements provide a rich source of behavioral measures that directly reflect subjective choice. To determine individual preferences for simple composition rules we here use fixation duration as the fitness measure in a Gaze Driven Evolutionary Algorithm (GDEA), which has been demonstrated as a tool to identify aesthetic preferences (Holmes and Zanker, 2012). In the present study, the GDEA was used to investigate the preferred combination of color and shape which have been promoted in the Bauhaus arts school. We used the same three shapes (square, circle, triangle) used by Kandinsky (1923), with the three color palette from the original experiment (A), an extended seven color palette (B), and eight different shape orientation (C). Participants were instructed to look for their preferred circle, triangle or square in displays with eight stimuli of different shapes, colors and rotations, in an attempt to test for a strong preference for red squares, yellow triangles and blue circles in such an unbiased experimental design and with an extended set of possible combinations. We Tested six participants extensively on the different conditions and found consistent preferences for color-shape combinations for individuals, but little evidence at the group level for clear color/shape preference consistent with Kandinsky's claims, apart from some weak link between yellow and triangles. Our findings suggest substantial inter-individual differences in the presence of stable individual associations of color and shapes, but also that these associations are robust within a single individual. These individual differences go some way toward challenging the claims of the universal preference for color/shape combinations proposed by Kandinsky, but also indicate that a much larger sample size would be needed to confidently reject that hypothesis. Moreover, these experiments highlight the

  11. Investigating preferences for color-shape combinations with gaze driven optimization method based on evolutionary algorithms.

    PubMed

    Holmes, Tim; Zanker, Johannes M

    2013-01-01

    Studying aesthetic preference is notoriously difficult because it targets individual experience. Eye movements provide a rich source of behavioral measures that directly reflect subjective choice. To determine individual preferences for simple composition rules we here use fixation duration as the fitness measure in a Gaze Driven Evolutionary Algorithm (GDEA), which has been demonstrated as a tool to identify aesthetic preferences (Holmes and Zanker, 2012). In the present study, the GDEA was used to investigate the preferred combination of color and shape which have been promoted in the Bauhaus arts school. We used the same three shapes (square, circle, triangle) used by Kandinsky (1923), with the three color palette from the original experiment (A), an extended seven color palette (B), and eight different shape orientation (C). Participants were instructed to look for their preferred circle, triangle or square in displays with eight stimuli of different shapes, colors and rotations, in an attempt to test for a strong preference for red squares, yellow triangles and blue circles in such an unbiased experimental design and with an extended set of possible combinations. We Tested six participants extensively on the different conditions and found consistent preferences for color-shape combinations for individuals, but little evidence at the group level for clear color/shape preference consistent with Kandinsky's claims, apart from some weak link between yellow and triangles. Our findings suggest substantial inter-individual differences in the presence of stable individual associations of color and shapes, but also that these associations are robust within a single individual. These individual differences go some way toward challenging the claims of the universal preference for color/shape combinations proposed by Kandinsky, but also indicate that a much larger sample size would be needed to confidently reject that hypothesis. Moreover, these experiments highlight the

  12. Evolutionary algorithms for the optimal management of coastal groundwater: A comparative study toward future challenges

    NASA Astrophysics Data System (ADS)

    Ketabchi, Hamed; Ataie-Ashtiani, Behzad

    2015-01-01

    This paper surveys the literature associated with the application of evolutionary algorithms (EAs) in coastal groundwater management problems (CGMPs). This review demonstrates that previous studies were mostly relied on the application of limited and particular EAs, mainly genetic algorithm (GA) and its variants, to a number of specific problems. The exclusive investigation of these problems is often not the representation of the variety of feasible processes may be occurred in coastal aquifers. In this study, eight EAs are evaluated for CGMPs. The considered EAs are: GA, continuous ant colony optimization (CACO), particle swarm optimization (PSO), differential evolution (DE), artificial bee colony optimization (ABC), harmony search (HS), shuffled complex evolution (SCE), and simplex simulated annealing (SIMPSA). The first application of PSO, ABC, HS, and SCE in CGMPs is reported here. Moreover, the four benchmark problems with different degree of difficulty and variety are considered to address the important issues of groundwater resources in coastal regions. Hence, the wide ranges of popular objective functions and constraints with the number of decision variables ranging from 4 to 15 are included. These benchmark problems are applied in the combined simulation-optimization model to examine the optimization scenarios. Some preliminary experiments are performed to select the most efficient parameters values for EAs to set a fair comparison. The specific capabilities of each EA toward CGMPs in terms of results quality and required computational time are compared. The evaluation of the results highlights EA's applicability in CGMPs, besides the remarkable strengths and weaknesses of them. The comparisons show that SCE, CACO, and PSO yield superior solutions among the EAs according to the quality of solutions whereas ABC presents the poor performance. CACO provides the better solutions (up to 17%) than the worst EA (ABC) for the problem with the highest decision

  13. Asynchronous master-slave parallelization of differential evolution for multi-objective optimization.

    PubMed

    Depolli, Matjaž; Trobec, Roman; Filipič, Bogdan

    2013-01-01

    In this paper, we present AMS-DEMO, an asynchronous master-slave implementation of DEMO, an evolutionary algorithm for multi-objective optimization. AMS-DEMO was designed for solving time-intensive problems efficiently on both homogeneous and heterogeneous parallel computer architectures. The algorithm is used as a test case for the asynchronous master-slave parallelization of multi-objective optimization that has not yet been thoroughly investigated. Selection lag is identified as the key property of the parallelization method, which explains how its behavior depends on the type of computer architecture and the number of processors. It is arrived at analytically and from the empirical results. AMS-DEMO is tested on a benchmark problem and a time-intensive industrial optimization problem, on homogeneous and heterogeneous parallel setups, providing performance results for the algorithm and an insight into the parallelization method. A comparison is also performed between AMS-DEMO and generational master-slave DEMO to demonstrate how the asynchronous parallelization method enhances the algorithm and what benefits it brings compared to the synchronous method.

  14. Towards an Extended Evolutionary Game Theory with Survival Analysis and Agreement Algorithms for Modeling Uncertainty, Vulnerability, and Deception

    NASA Astrophysics Data System (ADS)

    Ma, Zhanshan (Sam)

    Competition, cooperation and communication are the three fundamental relationships upon which natural selection acts in the evolution of life. Evolutionary game theory (EGT) is a 'marriage' between game theory and Darwin's evolution theory; it gains additional modeling power and flexibility by adopting population dynamics theory. In EGT, natural selection acts as optimization agents and produces inherent strategies, which eliminates some essential assumptions in traditional game theory such as rationality and allows more realistic modeling of many problems. Prisoner's Dilemma (PD) and Sir Philip Sidney (SPS) games are two well-known examples of EGT, which are formulated to study cooperation and communication, respectively. Despite its huge success, EGT exposes a certain degree of weakness in dealing with time-, space- and covariate-dependent (i.e., dynamic) uncertainty, vulnerability and deception. In this paper, I propose to extend EGT in two ways to overcome the weakness. First, I introduce survival analysis modeling to describe the lifetime or fitness of game players. This extension allows more flexible and powerful modeling of the dynamic uncertainty and vulnerability (collectively equivalent to the dynamic frailty in survival analysis). Secondly, I introduce agreement algorithms, which can be the Agreement algorithms in distributed computing (e.g., Byzantine Generals Problem [6][8], Dynamic Hybrid Fault Models [12]) or any algorithms that set and enforce the rules for players to determine their consensus. The second extension is particularly useful for modeling dynamic deception (e.g., asymmetric faults in fault tolerance and deception in animal communication). From a computational perspective, the extended evolutionary game theory (EEGT) modeling, when implemented in simulation, is equivalent to an optimization methodology that is similar to evolutionary computing approaches such as Genetic algorithms with dynamic populations [15][17].

  15. An evolutionary computation based algorithm for calculating solar differential rotation by automatic tracking of coronal bright points

    NASA Astrophysics Data System (ADS)

    Shahamatnia, Ehsan; Dorotovič, Ivan; Fonseca, Jose M.; Ribeiro, Rita A.

    2016-03-01

    Developing specialized software tools is essential to support studies of solar activity evolution. With new space missions such as Solar Dynamics Observatory (SDO), solar images are being produced in unprecedented volumes. To capitalize on that huge data availability, the scientific community needs a new generation of software tools for automatic and efficient data processing. In this paper a prototype of a modular framework for solar feature detection, characterization, and tracking is presented. To develop an efficient system capable of automatic solar feature tracking and measuring, a hybrid approach combining specialized image processing, evolutionary optimization, and soft computing algorithms is being followed. The specialized hybrid algorithm for tracking solar features allows automatic feature tracking while gathering characterization details about the tracked features. The hybrid algorithm takes advantages of the snake model, a specialized image processing algorithm widely used in applications such as boundary delineation, image segmentation, and object tracking. Further, it exploits the flexibility and efficiency of Particle Swarm Optimization (PSO), a stochastic population based optimization algorithm. PSO has been used successfully in a wide range of applications including combinatorial optimization, control, clustering, robotics, scheduling, and image processing and video analysis applications. The proposed tool, denoted PSO-Snake model, was already successfully tested in other works for tracking sunspots and coronal bright points. In this work, we discuss the application of the PSO-Snake algorithm for calculating the sidereal rotational angular velocity of the solar corona. To validate the results we compare them with published manual results performed by an expert.

  16. Linear antenna array optimization using flower pollination algorithm.

    PubMed

    Saxena, Prerna; Kothari, Ashwin

    2016-01-01

    Flower pollination algorithm (FPA) is a new nature-inspired evolutionary algorithm used to solve multi-objective optimization problems. The aim of this paper is to introduce FPA to the electromagnetics and antenna community for the optimization of linear antenna arrays. FPA is applied for the first time to linear array so as to obtain optimized antenna positions in order to achieve an array pattern with minimum side lobe level along with placement of deep nulls in desired directions. Various design examples are presented that illustrate the use of FPA for linear antenna array optimization, and subsequently the results are validated by benchmarking along with results obtained using other state-of-the-art, nature-inspired evolutionary algorithms such as particle swarm optimization, ant colony optimization and cat swarm optimization. The results suggest that in most cases, FPA outperforms the other evolutionary algorithms and at times it yields a similar performance. PMID:27066339

  17. Multiobjective Optimization Design of a Fractional Order PID Controller for a Gun Control System

    PubMed Central

    Chen, Jilin; Wang, Li; Xu, Shiqing; Hou, Yuanlong

    2013-01-01

    Motion control of gun barrels is an ongoing topic for the development of gun control equipments possessing excellent performances. In this paper, a typical fractional order PID control strategy is employed for the gun control system. To obtain optimal parameters of the controller, a multiobjective optimization scheme is developed from the loop-shaping perspective. To solve the specified nonlinear optimization problem, a novel Pareto optimal solution based multiobjective differential evolution algorithm is proposed. To enhance the convergent rate of the optimization process, an opposition based learning method is embedded in the chaotic population initialization process. To enhance the robustness of the algorithm for different problems, an adapting scheme of the mutation operation is further employed. With assistance of the evolutionary algorithm, the optimal solution for the specified problem is selected. The numerical simulation results show that the control system can rapidly follow the demand signal with high accuracy and high robustness, demonstrating the efficiency of the proposed controller parameter tuning method. PMID:23766721

  18. Capability of the Maximax&Maximin selection operator in the evolutionary algorithm for a nurse scheduling problem

    NASA Astrophysics Data System (ADS)

    Ramli, Razamin; Tein, Lim Huai

    2016-08-01

    A good work schedule can improve hospital operations by providing better coverage with appropriate staffing levels in managing nurse personnel. Hence, constructing the best nurse work schedule is the appropriate effort. In doing so, an improved selection operator in the Evolutionary Algorithm (EA) strategy for a nurse scheduling problem (NSP) is proposed. The smart and efficient scheduling procedures were considered. Computation of the performance of each potential solution or schedule was done through fitness evaluation. The best so far solution was obtained via special Maximax&Maximin (MM) parent selection operator embedded in the EA, which fulfilled all constraints considered in the NSP.

  19. Automated Hardware Design via Evolutionary Search

    NASA Technical Reports Server (NTRS)

    Lohn, Jason D.; Colombano, Silvano P.

    2000-01-01

    The goal of this research is to investigate the application of evolutionary search to the process of automated engineering design. Evolutionary search techniques involve the simulation of Darwinian mechanisms by computer algorithms. In recent years, such techniques have attracted much attention because they are able to tackle a wide variety of difficult problems and frequently produce acceptable solutions. The results obtained are usually functional, often surprising, and typically "messy" because the algorithms are told to concentrate on the overriding objective and not elegance or simplicity. advantages. First, faster design cycles translate into time and, hence, cost savings. Second, automated design techniques can be made to scale well and hence better deal with increasing amounts of design complexity. Third, design quality can increase because design properties can be specified a priori. For example, size and weight specifications of a device, smaller and lighter than the best known design, might be optimized by the automated design technique. The domain of electronic circuit design is an advantageous platform in which to study automated design techniques because it is a rich design space that is well understood, permitting human-created designs to be compared to machine- generated designs. developed for circuit design was to automatically produce high-level integrated electronic circuit designs whose properties permit physical implementation in silicon. This process entailed designing an effective evolutionary algorithm and solving a difficult multiobjective optimization problem. FY 99 saw many accomplishments in this effort.

  20. An evolutionary algorithm for global optimization based on self-organizing maps

    NASA Astrophysics Data System (ADS)

    Barmada, Sami; Raugi, Marco; Tucci, Mauro

    2016-10-01

    In this article, a new population-based algorithm for real-parameter global optimization is presented, which is denoted as self-organizing centroids optimization (SOC-opt). The proposed method uses a stochastic approach which is based on the sequential learning paradigm for self-organizing maps (SOMs). A modified version of the SOM is proposed where each cell contains an individual, which performs a search for a locally optimal solution and it is affected by the search for a global optimum. The movement of the individuals in the search space is based on a discrete-time dynamic filter, and various choices of this filter are possible to obtain different dynamics of the centroids. In this way, a general framework is defined where well-known algorithms represent a particular case. The proposed algorithm is validated through a set of problems, which include non-separable problems, and compared with state-of-the-art algorithms for global optimization.

  1. Comparison of Algorithms for Prediction of Protein Structural Features from Evolutionary Data

    PubMed Central

    Bywater, Robert P.

    2016-01-01

    Proteins have many functions and predicting these is still one of the major challenges in theoretical biophysics and bioinformatics. Foremost amongst these functions is the need to fold correctly thereby allowing the other genetically dictated tasks that the protein has to carry out to proceed efficiently. In this work, some earlier algorithms for predicting protein domain folds are revisited and they are compared with more recently developed methods. In dealing with intractable problems such as fold prediction, when different algorithms show convergence onto the same result there is every reason to take all algorithms into account such that a consensus result can be arrived at. In this work it is shown that the application of different algorithms in protein structure prediction leads to results that do not converge as such but rather they collude in a striking and useful way that has never been considered before. PMID:26963911

  2. Comparison of Algorithms for Prediction of Protein Structural Features from Evolutionary Data.

    PubMed

    Bywater, Robert P

    2016-01-01

    Proteins have many functions and predicting these is still one of the major challenges in theoretical biophysics and bioinformatics. Foremost amongst these functions is the need to fold correctly thereby allowing the other genetically dictated tasks that the protein has to carry out to proceed efficiently. In this work, some earlier algorithms for predicting protein domain folds are revisited and they are compared with more recently developed methods. In dealing with intractable problems such as fold prediction, when different algorithms show convergence onto the same result there is every reason to take all algorithms into account such that a consensus result can be arrived at. In this work it is shown that the application of different algorithms in protein structure prediction leads to results that do not converge as such but rather they collude in a striking and useful way that has never been considered before.

  3. Multi-Objective Multi-User Scheduling for Space Science Missions

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.; Giuliano, Mark

    2010-01-01

    We have developed an architecture called MUSE (Multi-User Scheduling Environment) to enable the integration of multi-objective evolutionary algorithms with existing domain planning and scheduling tools. Our approach is intended to make it possible to re-use existing software, while obtaining the advantages of multi-objective optimization algorithms. This approach enables multiple participants to actively engage in the optimization process, each representing one or more objectives in the optimization problem. As initial applications, we apply our approach to scheduling the James Webb Space Telescope, where three objectives are modeled: minimizing wasted time, minimizing the number of observations that miss their last planning opportunity in a year, and minimizing the (vector) build up of angular momentum that would necessitate the use of mission critical propellant to dump the momentum. As a second application area, we model aspects of the Cassini science planning process, including the trade-off between collecting data (subject to onboard recorder capacity) and transmitting saved data to Earth. A third mission application is that of scheduling the Cluster 4-spacecraft constellation plasma experiment. In this paper we describe our overall architecture and our adaptations for these different application domains. We also describe our plans for applying this approach to other science mission planning and scheduling problems in the future.

  4. Detection of cancerous masses in mammograms by template matching: optimization of template brightness distribution by means of evolutionary algorithm.

    PubMed

    Bator, Marcin; Nieniewski, Mariusz

    2012-02-01

    Optimization of brightness distribution in the template used for detection of cancerous masses in mammograms by means of correlation coefficient is presented. This optimization is performed by the evolutionary algorithm using an auxiliary mass classifier. Brightness along the radius of the circularly symmetric template is coded indirectly by its second derivative. The fitness function is defined as the area under curve (AUC) of the receiver operating characteristic (ROC) for the mass classifier. The ROC and AUC are obtained for a teaching set of regions of interest (ROIs), for which it is known whether a ROI is true-positive (TP) or false-positive (F). The teaching set is obtained by running the mass detector using a template with a predetermined brightness. Subsequently, the evolutionary algorithm optimizes the template by classifying masses in the teaching set. The optimal template (OT) can be used for detection of masses in mammograms with unknown ROIs. The approach was tested on the training and testing sets of the Digital Database for Screening Mammography (DDSM). The free-response receiver operating characteristic (FROC) obtained with the new mass detector seems superior to the FROC for the hemispherical template (HT). Exemplary results are the following: in the case of the training set in the DDSM, the true-positive fraction (TPF) = 0.82 for the OT and 0.79 for the HT; in the case of the testing set, TPF = 0.79 for the OT and 0.72 for the HT. These values were obtained for disease cases, and the false-positive per image (FPI) = 2.

  5. The molecule evoluator. An interactive evolutionary algorithm for the design of drug-like molecules.

    PubMed

    Lameijer, Eric-Wubbo; Kok, Joost N; Bäck, Thomas; Ijzerman, Ad P

    2006-01-01

    We developed a software tool to design drug-like molecules, the "Molecule Evoluator", which we introduce and describe here. An atom-based evolutionary approach was used allowing both several types of mutation and crossover to occur. The novelty, we claim, is the unprecedented interactive evolution, in which the user acts as a fitness function. This brings a human being's creativity, implicit knowledge, and imagination into the design process, next to the more standard chemical rules. Proof-of-concept was demonstrated in a number of ways, both computationally and in the lab. Thus, we synthesized a number of compounds designed with the aid of the Molecule Evoluator. One of these is described here, a new chemical entity with activity on alpha-adrenergic receptors.

  6. Application of multi-objective nonlinear optimization technique for coordinated ramp-metering

    SciTech Connect

    Haj Salem, Habib; Farhi, Nadir; Lebacque, Jean Patrick E-mail: nadir.frahi@ifsttar.fr

    2015-03-10

    This paper aims at developing a multi-objective nonlinear optimization algorithm applied to coordinated motorway ramp metering. The multi-objective function includes two components: traffic and safety. Off-line simulation studies were performed on A4 France Motorway including 4 on-ramps.

  7. Constructing large-scale genetic maps using an evolutionary strategy algorithm.

    PubMed Central

    Mester, D; Ronin, Y; Minkov, D; Nevo, E; Korol, A

    2003-01-01

    This article is devoted to the problem of ordering in linkage groups with many dozens or even hundreds of markers. The ordering problem belongs to the field of discrete optimization on a set of all possible orders, amounting to n!/2 for n loci; hence it is considered an NP-hard problem. Several authors attempted to employ the methods developed in the well-known traveling salesman problem (TSP) for multilocus ordering, using the assumption that for a set of linked loci the true order will be the one that minimizes the total length of the linkage group. A novel, fast, and reliable algorithm developed for the TSP and based on evolution-strategy discrete optimization was applied in this study for multilocus ordering on the basis of pairwise recombination frequencies. The quality of derived maps under various complications (dominant vs. codominant markers, marker misclassification, negative and positive interference, and missing data) was analyzed using simulated data with approximately 50-400 markers. High performance of the employed algorithm allows systematic treatment of the problem of verification of the obtained multilocus orders on the basis of computing-intensive bootstrap and/or jackknife approaches for detecting and removing questionable marker scores, thereby stabilizing the resulting maps. Parallel calculation technology can easily be adopted for further acceleration of the proposed algorithm. Real data analysis (on maize chromosome 1 with 230 markers) is provided to illustrate the proposed methodology. PMID:14704202

  8. An asynchronous metamodel-assisted memetic algorithm for CFD-based shape optimization

    NASA Astrophysics Data System (ADS)

    Kontoleontos, Evgenia A.; Asouti, Varvara G.; Giannakoglou, Kyriakos C.

    2012-02-01

    This article presents an asynchronous metamodel-assisted memetic algorithm for the solution of CFD-based optimization problems. This algorithm is appropriate for use on multiprocessor platforms and may solve computationally expensive optimization problems in reduced wall-clock time, compared to conventional evolutionary or memetic algorithms. It is, in fact, a hybridization of non-generation-based (asynchronous) evolutionary algorithms, assisted by surrogate evaluation models, a local search method and the Lamarckian learning process. For the objective function gradient computation, in CFD applications, the adjoint method is used. Issues concerning the 'smart' implementation of local search in multi-objective problems are discussed. In this respect, an algorithmic scheme for reducing the number of calls to the adjoint equations to just one, irrespective of the number of objectives, is proposed. The algorithm is applied to the CFD-based shape optimization of the tubes of a heat exchanger and of a turbomachinery cascade.

  9. Crossover versus Mutation: A Comparative Analysis of the Evolutionary Strategy of Genetic Algorithms Applied to Combinatorial Optimization Problems

    PubMed Central

    Osaba, E.; Carballedo, R.; Diaz, F.; Onieva, E.; de la Iglesia, I.; Perallos, A.

    2014-01-01

    Since their first formulation, genetic algorithms (GAs) have been one of the most widely used techniques to solve combinatorial optimization problems. The basic structure of the GAs is known by the scientific community, and thanks to their easy application and good performance, GAs are the focus of a lot of research works annually. Although throughout history there have been many studies analyzing various concepts of GAs, in the literature there are few studies that analyze objectively the influence of using blind crossover operators for combinatorial optimization problems. For this reason, in this paper a deep study on the influence of using them is conducted. The study is based on a comparison of nine techniques applied to four well-known combinatorial optimization problems. Six of the techniques are GAs with different configurations, and the remaining three are evolutionary algorithms that focus exclusively on the mutation process. Finally, to perform a reliable comparison of these results, a statistical study of them is made, performing the normal distribution z-test. PMID:25165731

  10. On the Effects of Migration on the Fitness Distribution of Parallel Evolutionary Algorithms

    SciTech Connect

    Cantu-Paz, E.

    2000-04-25

    Migration of individuals between populations may increase the selection pressure. This has the desirable consequence of speeding up convergence, but it may result in an excessively rapid loss of variation that may cause the search to fail. This paper investigates the effects of migration on the distribution of fitness. It considers arbitrary migration rates and topologies with different number of neighbors, and it compares algorithms that are configured to have the same selection intensity. The results suggest that migration preserves more diversity as the number of neighbors of a deme increases.

  11. Bands selection and classification of hyperspectral images based on hybrid kernels SVM by evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Hu, Yan-Yan; Li, Dong-Sheng

    2016-01-01

    The hyperspectral images(HSI) consist of many closely spaced bands carrying the most object information. While due to its high dimensionality and high volume nature, it is hard to get satisfactory classification performance. In order to reduce HSI data dimensionality preparation for high classification accuracy, it is proposed to combine a band selection method of artificial immune systems (AIS) with a hybrid kernels support vector machine (SVM-HK) algorithm. In fact, after comparing different kernels for hyperspectral analysis, the approach mixed radial basis function kernel (RBF-K) with sigmoid kernel (Sig-K) and applied the optimized hybrid kernels in SVM classifiers. Then the SVM-HK algorithm used to induce the bands selection of an improved version of AIS. The AIS was composed of clonal selection and elite antibody mutation, including evaluation process with optional index factor (OIF). Experimental classification performance was on a San Diego Naval Base acquired by AVIRIS, the HRS dataset shows that the method is able to efficiently achieve bands redundancy removal while outperforming the traditional SVM classifier.

  12. P-RnaPredict--a parallel evolutionary algorithm for RNA folding: effects of pseudorandom number quality.

    PubMed

    Wiese, Kay C; Hendriks, Andrew; Deschênes, Alain; Ben Youssef, Belgacem

    2005-09-01

    This paper presents a fully parallel version of RnaPredict, a genetic algorithm (GA) for RNA secondary structure prediction. The research presented here builds on previous work and examines the impact of three different pseudorandom number generators (PRNGs) on the GA's performance. The three generators tested are the C standard library PRNG RAND, a parallelized multiplicative congruential generator (MCG), and a parallelized Mersenne Twister (MT). A fully parallel version of RnaPredict using the Message Passing Interface (MPI) was implemented on a 128-node Beowulf cluster. The PRNG comparison tests were performed with known structures whose sequences are 118, 122, 468, 543, and 556 nucleotides in length. The effects of the PRNGs are investigated and the predicted structures are compared to known structures. Results indicate that P-RnaPredict demonstrated good prediction accuracy, particularly so for shorter sequences.

  13. Multi-objective optimisation of wastewater treatment plant control to reduce greenhouse gas emissions.

    PubMed

    Sweetapple, Christine; Fu, Guangtao; Butler, David

    2014-05-15

    This study investigates the potential of control strategy optimisation for the reduction of operational greenhouse gas emissions from wastewater treatment in a cost-effective manner, and demonstrates that significant improvements can be realised. A multi-objective evolutionary algorithm, NSGA-II, is used to derive sets of Pareto optimal operational and control parameter values for an activated sludge wastewater treatment plant, with objectives including minimisation of greenhouse gas emissions, operational costs and effluent pollutant concentrations, subject to legislative compliance. Different problem formulations are explored, to identify the most effective approach to emissions reduction, and the sets of optimal solutions enable identification of trade-offs between conflicting objectives. It is found that multi-objective optimisation can facilitate a significant reduction in greenhouse gas emissions without the need for plant redesign or modification of the control strategy layout, but there are trade-offs to consider: most importantly, if operational costs are not to be increased, reduction of greenhouse gas emissions is likely to incur an increase in effluent ammonia and total nitrogen concentrations. Design of control strategies for a high effluent quality and low costs alone is likely to result in an inadvertent increase in greenhouse gas emissions, so it is of key importance that effects on emissions are considered in control strategy development and optimisation.

  14. Deep Space Network Scheduling Using Multi-Objective Optimization with Uncertainty

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.

    2008-01-01

    We have developed a novel technique to incorporate uncertainty modeling within an evolutionary algorithm approach to multi-objective scheduling, with the goal of identifying a Pareto frontier (tradeoff curve) that recognizes the likelihood of events that can impact the schedule outcome. Our approach is particularly applicable to the generation of multiobjective optimized robust schedules, where objectives are assigned a service level, for example that we require an objective value to be greater than or equal to X with Y% confidence. We have demonstrated that such an approach can, for example, minimize scheduling on less reliable resources, based solely on a resource reliability model and not on any ad hoc heuristics. We have also investigated an alternative method of optimizing for robustness, in which we add to the set of objectives a failure risk objective to minimize. We compare the advantages and disadvantages of these two approaches. Future plans for further developing this technology include its application to space-based observatory scheduling problems.

  15. A multiobjective discrete stochastic optimization approach to shared aquifer management: Methodology and application

    NASA Astrophysics Data System (ADS)

    Siegfried, Tobias; Kinzelbach, Wolfgang

    2006-02-01

    Negative effects from groundwater mining are observed globally. They threaten future supply locally. Especially in semiarid to arid regions, where aquifers are the sole freshwater resource, this is problematic and can lead to an excessive rise of provision costs. Proper resource management in such environments is crucial. In many instances, however, aquifers are common property resources. In such cases and depending on resource characteristics and the nature of competing uses, their management is inherently multiobjective, and benefits from cooperative management are likely to be substantial. This paper presents a methodology for the determination of optimal, cooperative allocation policies in multiobjective aquifer management problems. Our model couples a finite difference aquifer model with an economic model that accounts for water provision costs. Discounted temporal installation and pumping and conveyance costs determine the vector-valued objective function. Each of the objectives characterizes the individual present costs over a given time horizon that the corresponding decision makers wish to minimize. Constraint handling is implemented by the option of moving wells. A multiobjective evolutionary algorithm is coupled to the management model so as to approximate cooperative tradeoff policies on the Pareto surface. These solutions can be ranked against existing, noncooperative status quo strategies. Consequently, the simulation-optimization model is applied to the northwest Sahara aquifer system which is used noncooperatively as a resource by Algeria, Tunisia, and Libya. We find that significant capital gains can be achieved by the establishment of intelligent pump scheduling. Since each country could benefit, a strong incentive toward the implementation of such cooperative strategies exists.

  16. An effective evolutionary algorithm for protein folding on 3D FCC HP model by lattice rotation and generalized move sets

    PubMed Central

    2013-01-01

    Background Proteins are essential biological molecules which play vital roles in nearly all biological processes. It is the tertiary structure of a protein that determines its functions. Therefore the prediction of a protein's tertiary structure based on its primary amino acid sequence has long been the most important and challenging subject in biochemistry, molecular biology and biophysics. In the past, the HP lattice model was one of the ab initio methods that many researchers used to forecast the protein structure. Although these kinds of simplified methods could not achieve high resolution, they provided a macrocosm-optimized protein structure. The model has been employed to investigate general principles of protein folding, and plays an important role in the prediction of protein structures. Methods In this paper, we present an improved evolutionary algorithm for the protein folding problem. We study the problem on the 3D FCC lattice HP model which has been widely used in previous research. Our focus is to develop evolutionary algorithms (EA) which are robust, easy to implement and can handle various energy functions. We propose to combine three different local search methods, including lattice rotation for crossover, K-site move for mutation, and generalized pull move; these form our key components to improve previous EA-based approaches. Results We have carried out experiments over several data sets which were used in previous research. The results of the experiments show that our approach is able to find optimal conformations which were not found by previous EA-based approaches. Conclusions We have investigated the geometric properties of the 3D FCC lattice and developed several local search techniques to improve traditional EA-based approaches to the protein folding problem. It is known that EA-based approaches are robust and can handle arbitrary energy functions. Our results further show that by extensive development of local searches, EA can also be very

  17. Convergence analysis of evolutionary algorithms that are based on the paradigm of information geometry.

    PubMed

    Beyer, Hans-Georg

    2014-01-01

    The convergence behaviors of so-called natural evolution strategies (NES) and of the information-geometric optimization (IGO) approach are considered. After a review of the NES/IGO ideas, which are based on information geometry, the implications of this philosophy w.r.t. optimization dynamics are investigated considering the optimization performance on the class of positive quadratic objective functions (the ellipsoid model). Exact differential equations describing the approach to the optimizer are derived and solved. It is rigorously shown that the original NES philosophy optimizing the expected value of the objective functions leads to very slow (i.e., sublinear) convergence toward the optimizer. This is the real reason why state of the art implementations of IGO algorithms optimize the expected value of transformed objective functions, for example, by utility functions based on ranking. It is shown that these utility functions are localized fitness functions that change during the IGO flow. The governing differential equations describing this flow are derived. In the case of convergence, the solutions to these equations exhibit an exponentially fast approach to the optimizer (i.e., linear convergence order). Furthermore, it is proven that the IGO philosophy leads to an adaptation of the covariance matrix that equals in the asymptotic limit-up to a scalar factor-the inverse of the Hessian of the objective function considered.

  18. Convergence analysis of evolutionary algorithms that are based on the paradigm of information geometry.

    PubMed

    Beyer, Hans-Georg

    2014-01-01

    The convergence behaviors of so-called natural evolution strategies (NES) and of the information-geometric optimization (IGO) approach are considered. After a review of the NES/IGO ideas, which are based on information geometry, the implications of this philosophy w.r.t. optimization dynamics are investigated considering the optimization performance on the class of positive quadratic objective functions (the ellipsoid model). Exact differential equations describing the approach to the optimizer are derived and solved. It is rigorously shown that the original NES philosophy optimizing the expected value of the objective functions leads to very slow (i.e., sublinear) convergence toward the optimizer. This is the real reason why state of the art implementations of IGO algorithms optimize the expected value of transformed objective functions, for example, by utility functions based on ranking. It is shown that these utility functions are localized fitness functions that change during the IGO flow. The governing differential equations describing this flow are derived. In the case of convergence, the solutions to these equations exhibit an exponentially fast approach to the optimizer (i.e., linear convergence order). Furthermore, it is proven that the IGO philosophy leads to an adaptation of the covariance matrix that equals in the asymptotic limit-up to a scalar factor-the inverse of the Hessian of the objective function considered. PMID:24922548

  19. Fuzzy multiobjective models for optimal operation of a hydropower system

    NASA Astrophysics Data System (ADS)

    Teegavarapu, Ramesh S. V.; Ferreira, André R.; Simonovic, Slobodan P.

    2013-06-01

    Optimal operation models for a hydropower system using new fuzzy multiobjective mathematical programming models are developed and evaluated in this study. The models use (i) mixed integer nonlinear programming (MINLP) with binary variables and (ii) integrate a new turbine unit commitment formulation along with water quality constraints used for evaluation of reservoir downstream impairment. Reardon method used in solution of genetic algorithm optimization problems forms the basis for development of a new fuzzy multiobjective hydropower system optimization model with creation of Reardon type fuzzy membership functions. The models are applied to a real-life hydropower reservoir system in Brazil. Genetic Algorithms (GAs) are used to (i) solve the optimization formulations to avoid computational intractability and combinatorial problems associated with binary variables in unit commitment, (ii) efficiently address Reardon method formulations, and (iii) deal with local optimal solutions obtained from the use of traditional gradient-based solvers. Decision maker's preferences are incorporated within fuzzy mathematical programming formulations to obtain compromise operating rules for a multiobjective reservoir operation problem dominated by conflicting goals of energy production, water quality and conservation releases. Results provide insight into compromise operation rules obtained using the new Reardon fuzzy multiobjective optimization framework and confirm its applicability to a variety of multiobjective water resources problems.

  20. Analysis of the Cavity Ringdown Spectra of the Smallest Jet-Cooled Alkyl Peroxy Radicals Using a Evolutionary Algorithm

    NASA Astrophysics Data System (ADS)

    Just, Gabriel M. P.; Rupper, Patrick; Miller, Terry A.; Meerts, W. Leo

    2009-06-01

    Alkyl peroxy radicals long have been well known to bekey intermediates in atmospheric chemistry as well as in low temperature combustion. For the last several years, our group has generated a data set for these radicals using room temperature cavity ringdown spectroscopy. We have recently extended our investigations of these radicals to obtain a similar data set of spectra under jet cooled conditions using a quasi-Fourier-transform-limited laser source, a supersonic slit jet expansion, and a discharge. We were able to observe partially rotationally resolved spectra of isomers and conformers of several peroxy radicals such as methyl peroxy, CH_3O_2/CD_3O_2, ethyl peroxy, C_2H_5O_2 and C_2D_5O_2, propyl peroxy, C_3H_7O_2, and phenyl peroxy, C_6H_5O_2. To analyze our results we employed a new approach by using the evolutionary algorithm method, whereby we can effectively use both the frequency and the intensity information contained in the experimental spectra. This presentation will focus on the results from our fitted spectra which were obtained using this semi-automated method and will demonstrate the power of our technique .

  1. A simple methodology for characterization of germanium coaxial detectors by using Monte Carlo simulation and evolutionary algorithms.

    PubMed

    Guerra, J G; Rubiano, J G; Winter, G; Guerra, A G; Alonso, H; Arnedo, M A; Tejera, A; Gil, J M; Rodríguez, R; Martel, P; Bolivar, J P

    2015-11-01

    The determination in a sample of the activity concentration of a specific radionuclide by gamma spectrometry needs to know the full energy peak efficiency (FEPE) for the energy of interest. The difficulties related to the experimental calibration make it advisable to have alternative methods for FEPE determination, such as the simulation of the transport of photons in the crystal by the Monte Carlo method, which requires an accurate knowledge of the characteristics and geometry of the detector. The characterization process is mainly carried out by Canberra Industries Inc. using proprietary techniques and methodologies developed by that company. It is a costly procedure (due to shipping and to the cost of the process itself) and for some research laboratories an alternative in situ procedure can be very useful. The main goal of this paper is to find an alternative to this costly characterization process, by establishing a method for optimizing the parameters of characterizing the detector, through a computational procedure which could be reproduced at a standard research lab. This method consists in the determination of the detector geometric parameters by using Monte Carlo simulation in parallel with an optimization process, based on evolutionary algorithms, starting from a set of reference FEPEs determined experimentally or computationally. The proposed method has proven to be effective and simple to implement. It provides a set of characterization parameters which it has been successfully validated for different source-detector geometries, and also for a wide range of environmental samples and certified materials.

  2. A simple methodology for characterization of germanium coaxial detectors by using Monte Carlo simulation and evolutionary algorithms.

    PubMed

    Guerra, J G; Rubiano, J G; Winter, G; Guerra, A G; Alonso, H; Arnedo, M A; Tejera, A; Gil, J M; Rodríguez, R; Martel, P; Bolivar, J P

    2015-11-01

    The determination in a sample of the activity concentration of a specific radionuclide by gamma spectrometry needs to know the full energy peak efficiency (FEPE) for the energy of interest. The difficulties related to the experimental calibration make it advisable to have alternative methods for FEPE determination, such as the simulation of the transport of photons in the crystal by the Monte Carlo method, which requires an accurate knowledge of the characteristics and geometry of the detector. The characterization process is mainly carried out by Canberra Industries Inc. using proprietary techniques and methodologies developed by that company. It is a costly procedure (due to shipping and to the cost of the process itself) and for some research laboratories an alternative in situ procedure can be very useful. The main goal of this paper is to find an alternative to this costly characterization process, by establishing a method for optimizing the parameters of characterizing the detector, through a computational procedure which could be reproduced at a standard research lab. This method consists in the determination of the detector geometric parameters by using Monte Carlo simulation in parallel with an optimization process, based on evolutionary algorithms, starting from a set of reference FEPEs determined experimentally or computationally. The proposed method has proven to be effective and simple to implement. It provides a set of characterization parameters which it has been successfully validated for different source-detector geometries, and also for a wide range of environmental samples and certified materials. PMID:26188622

  3. An Interactive Multiobjective Programming Approach to Combinatorial Data Analysis.

    ERIC Educational Resources Information Center

    Brusco, Michael J.; Stahl, Stephanie

    2001-01-01

    Describes an interactive procedure for multiobjective asymmetric unidimensional seriation problems that uses a dynamic-programming algorithm to generate partially the efficient set of sequences for small to medium-sized problems and a multioperational heuristic to estimate the efficient set for larger problems. Applies the procedure to an…

  4. From prompt gamma distribution to dose: a novel approach combining an evolutionary algorithm and filtering based on Gaussian-powerlaw convolutions

    NASA Astrophysics Data System (ADS)

    Schumann, A.; Priegnitz, M.; Schoene, S.; Enghardt, W.; Rohling, H.; Fiedler, F.

    2016-10-01

    Range verification and dose monitoring in proton therapy is considered as highly desirable. Different methods have been developed worldwide, like particle therapy positron emission tomography (PT-PET) and prompt gamma imaging (PGI). In general, these methods allow for a verification of the proton range. However, quantification of the dose from these measurements remains challenging. For the first time, we present an approach for estimating the dose from prompt γ-ray emission profiles. It combines a filtering procedure based on Gaussian-powerlaw convolution with an evolutionary algorithm. By means of convolving depth dose profiles with an appropriate filter kernel, prompt γ-ray depth profiles are obtained. In order to reverse this step, the evolutionary algorithm is applied. The feasibility of this approach is demonstrated for a spread-out Bragg-peak in a water target.

  5. An evolutionary model-based algorithm for accurate phylogenetic breakpoint mapping and subtype prediction in HIV-1.

    PubMed

    Kosakovsky Pond, Sergei L; Posada, David; Stawiski, Eric; Chappey, Colombe; Poon, Art F Y; Hughes, Gareth; Fearnhill, Esther; Gravenor, Mike B; Leigh Brown, Andrew J; Frost, Simon D W

    2009-11-01

    Genetically diverse pathogens (such as Human Immunodeficiency virus type 1, HIV-1) are frequently stratified into phylogenetically or immunologically defined subtypes for classification purposes. Computational identification of such subtypes is helpful in surveillance, epidemiological analysis and detection of novel variants, e.g., circulating recombinant forms in HIV-1. A number of conceptually and technically different techniques have been proposed for determining the subtype of a query sequence, but there is not a universally optimal approach. We present a model-based phylogenetic method for automatically subtyping an HIV-1 (or other viral or bacterial) sequence, mapping the location of breakpoints and assigning parental sequences in recombinant strains as well as computing confidence levels for the inferred quantities. Our Subtype Classification Using Evolutionary ALgorithms (SCUEAL) procedure is shown to perform very well in a variety of simulation scenarios, runs in parallel when multiple sequences are being screened, and matches or exceeds the performance of existing approaches on typical empirical cases. We applied SCUEAL to all available polymerase (pol) sequences from two large databases, the Stanford Drug Resistance database and the UK HIV Drug Resistance Database. Comparing with subtypes which had previously been assigned revealed that a minor but substantial (approximately 5%) fraction of pure subtype sequences may in fact be within- or inter-subtype recombinants. A free implementation of SCUEAL is provided as a module for the HyPhy package and the Datamonkey web server. Our method is especially useful when an accurate automatic classification of an unknown strain is desired, and is positioned to complement and extend faster but less accurate methods. Given the increasingly frequent use of HIV subtype information in studies focusing on the effect of subtype on treatment, clinical outcome, pathogenicity and vaccine design, the importance of accurate

  6. A Multistage Method for Multiobjective Route Selection

    NASA Astrophysics Data System (ADS)

    Wen, Feng; Gen, Mitsuo

    The multiobjective route selection problem (m-RSP) is a key research topic in the car navigation system (CNS) for ITS (Intelligent Transportation System). In this paper, we propose an interactive multistage weight-based Dijkstra genetic algorithm (mwD-GA) to solve it. The purpose of the proposed approach is to create enough Pareto-optimal routes with good distribution for the car driver depending on his/her preference. At the same time, the routes can be recalculated according to the driver's preferences by the multistage framework proposed. In the solution approach proposed, the accurate route searching ability of the Dijkstra algorithm and the exploration ability of the Genetic algorithm (GA) are effectively combined together for solving the m-RSP problems. Solutions provided by the proposed approach are compared with the current research to show the effectiveness and practicability of the solution approach proposed.

  7. Mapping the Conformation Space of Wildtype and Mutant H-Ras with a Memetic, Cellular, and Multiscale Evolutionary Algorithm.

    PubMed

    Clausen, Rudy; Ma, Buyong; Nussinov, Ruth; Shehu, Amarda

    2015-09-01

    An important goal in molecular biology is to understand functional changes upon single-point mutations in proteins. Doing so through a detailed characterization of structure spaces and underlying energy landscapes is desirable but continues to challenge methods based on Molecular Dynamics. In this paper we propose a novel algorithm, SIfTER, which is based instead on stochastic optimization to circumvent the computational challenge of exploring the breadth of a protein's structure space. SIfTER is a data-driven evolutionary algorithm, leveraging experimentally-available structures of wildtype and variant sequences of a protein to define a reduced search space from where to efficiently draw samples corresponding to novel structures not directly observed in the wet laboratory. The main advantage of SIfTER is its ability to rapidly generate conformational ensembles, thus allowing mapping and juxtaposing landscapes of variant sequences and relating observed differences to functional changes. We apply SIfTER to variant sequences of the H-Ras catalytic domain, due to the prominent role of the Ras protein in signaling pathways that control cell proliferation, its well-studied conformational switching, and abundance of documented mutations in several human tumors. Many Ras mutations are oncogenic, but detailed energy landscapes have not been reported until now. Analysis of SIfTER-computed energy landscapes for the wildtype and two oncogenic variants, G12V and Q61L, suggests that these mutations cause constitutive activation through two different mechanisms. G12V directly affects binding specificity while leaving the energy landscape largely unchanged, whereas Q61L has pronounced, starker effects on the landscape. An implementation of SIfTER is made available at http://www.cs.gmu.edu/~ashehu/?q=OurTools. We believe SIfTER is useful to the community to answer the question of how sequence mutations affect the function of a protein, when there is an abundance of experimental

  8. Mapping the Conformation Space of Wildtype and Mutant H-Ras with a Memetic, Cellular, and Multiscale Evolutionary Algorithm

    PubMed Central

    Clausen, Rudy; Ma, Buyong; Nussinov, Ruth; Shehu, Amarda

    2015-01-01

    An important goal in molecular biology is to understand functional changes upon single-point mutations in proteins. Doing so through a detailed characterization of structure spaces and underlying energy landscapes is desirable but continues to challenge methods based on Molecular Dynamics. In this paper we propose a novel algorithm, SIfTER, which is based instead on stochastic optimization to circumvent the computational challenge of exploring the breadth of a protein’s structure space. SIfTER is a data-driven evolutionary algorithm, leveraging experimentally-available structures of wildtype and variant sequences of a protein to define a reduced search space from where to efficiently draw samples corresponding to novel structures not directly observed in the wet laboratory. The main advantage of SIfTER is its ability to rapidly generate conformational ensembles, thus allowing mapping and juxtaposing landscapes of variant sequences and relating observed differences to functional changes. We apply SIfTER to variant sequences of the H-Ras catalytic domain, due to the prominent role of the Ras protein in signaling pathways that control cell proliferation, its well-studied conformational switching, and abundance of documented mutations in several human tumors. Many Ras mutations are oncogenic, but detailed energy landscapes have not been reported until now. Analysis of SIfTER-computed energy landscapes for the wildtype and two oncogenic variants, G12V and Q61L, suggests that these mutations cause constitutive activation through two different mechanisms. G12V directly affects binding specificity while leaving the energy landscape largely unchanged, whereas Q61L has pronounced, starker effects on the landscape. An implementation of SIfTER is made available at http://www.cs.gmu.edu/~ashehu/?q=OurTools. We believe SIfTER is useful to the community to answer the question of how sequence mutations affect the function of a protein, when there is an abundance of experimental

  9. Evaluating the Efficiency of a Multi-core Aware Multi-objective Optimization Tool for Calibrating the SWAT Model

    SciTech Connect

    Zhang, X.; Izaurralde, R. C.; Zong, Z.; Zhao, K.; Thomson, A. M.

    2012-08-20

    The efficiency of calibrating physically-based complex hydrologic models is a major concern in the application of those models to understand and manage natural and human activities that affect watershed systems. In this study, we developed a multi-core aware multi-objective evolutionary optimization algorithm (MAMEOA) to improve the efficiency of calibrating a worldwide used watershed model (Soil and Water Assessment Tool (SWAT)). The test results show that MAMEOA can save about 1-9%, 26-51%, and 39-56% time consumed by calibrating SWAT as compared with sequential method by using dual-core, quad-core, and eight-core machines, respectively. Potential and limitations of MAMEOA for calibrating SWAT are discussed. MAMEOA is open source software.

  10. A multi-resolution strategy for a multi-objective deformable image registration framework that accommodates large anatomical differences

    NASA Astrophysics Data System (ADS)

    Alderliesten, Tanja; Bosman, Peter A. N.; Sonke, Jan-Jakob; Bel, Arjan

    2014-03-01

    Currently, two major challenges dominate the field of deformable image registration. The first challenge is related to the tuning of the developed methods to specific problems (i.e. how to best combine different objectives such as similarity measure and transformation effort). This is one of the reasons why, despite significant progress, clinical implementation of such techniques has proven to be difficult. The second challenge is to account for large anatomical differences (e.g. large deformations, (dis)appearing structures) that occurred between image acquisitions. In this paper, we study a framework based on multi-objective optimization to improve registration robustness and to simplify tuning for specific applications. Within this framework we specifically consider the use of an advanced model-based evolutionary algorithm for optimization and a dual-dynamic transformation model (i.e. two "non-fixed" grids: one for the source- and one for the target image) to accommodate for large anatomical differences. The framework computes and presents multiple outcomes that represent efficient trade-offs between the different objectives (a so-called Pareto front). In image processing it is common practice, for reasons of robustness and accuracy, to use a multi-resolution strategy. This is, however, only well-established for single-objective registration methods. Here we describe how such a strategy can be realized for our multi-objective approach and compare its results with a single-resolution strategy. For this study we selected the case of prone-supine breast MRI registration. Results show that the well-known advantages of a multi-resolution strategy are successfully transferred to our multi-objective approach, resulting in superior (i.e. Pareto-dominating) outcomes.

  11. Application of multi-objective controller to optimal tuning of PID gains for a hydraulic turbine regulating system using adaptive grid particle swam optimization.

    PubMed

    Chen, Zhihuan; Yuan, Yanbin; Yuan, Xiaohui; Huang, Yuehua; Li, Xianshan; Li, Wenwu

    2015-05-01

    A hydraulic turbine regulating system (HTRS) is one of the most important components of hydropower plant, which plays a key role in maintaining safety, stability and economical operation of hydro-electrical installations. At present, the conventional PID controller is widely applied in the HTRS system for its practicability and robustness, and the primary problem with respect to this control law is how to optimally tune the parameters, i.e. the determination of PID controller gains for satisfactory performance. In this paper, a kind of multi-objective evolutionary algorithms, named adaptive grid particle swarm optimization (AGPSO) is applied to solve the PID gains tuning problem of the HTRS system. This newly AGPSO optimized method, which differs from a traditional one-single objective optimization method, is designed to take care of settling time and overshoot level simultaneously, in which a set of non-inferior alternatives solutions (i.e. Pareto solution) is generated. Furthermore, a fuzzy-based membership value assignment method is employed to choose the best compromise solution from the obtained Pareto set. An illustrative example associated with the best compromise solution for parameter tuning of the nonlinear HTRS system is introduced to verify the feasibility and the effectiveness of the proposed AGPSO-based optimization approach, as compared with two another prominent multi-objective algorithms, i.e. Non-dominated Sorting Genetic Algorithm II (NSGAII) and Strength Pareto Evolutionary Algorithm II (SPEAII), for the quality and diversity of obtained Pareto solutions set. Consequently, simulation results show that this AGPSO optimized approach outperforms than compared methods with higher efficiency and better quality no matter whether the HTRS system works under unload or load conditions.

  12. Evolutionary model selection and parameter estimation for protein-protein interaction network based on differential evolution algorithm

    PubMed Central

    Huang, Lei; Liao, Li; Wu, Cathy H.

    2016-01-01

    Revealing the underlying evolutionary mechanism plays an important role in understanding protein interaction networks in the cell. While many evolutionary models have been proposed, the problem about applying these models to real network data, especially for differentiating which model can better describe evolutionary process for the observed network urgently remains as a challenge. The traditional way is to use a model with presumed parameters to generate a network, and then evaluate the fitness by summary statistics, which however cannot capture the complete network structures information and estimate parameter distribution. In this work we developed a novel method based on Approximate Bayesian Computation and modified Differential Evolution (ABC-DEP) that is capable of conducting model selection and parameter estimation simultaneously and detecting the underlying evolutionary mechanisms more accurately. We tested our method for its power in differentiating models and estimating parameters on the simulated data and found significant improvement in performance benchmark, as compared with a previous method. We further applied our method to real data of protein interaction networks in human and yeast. Our results show Duplication Attachment model as the predominant evolutionary mechanism for human PPI networks and Scale-Free model as the predominant mechanism for yeast PPI networks. PMID:26357273

  13. Automatic Clustering Using Multi-objective Particle Swarm and Simulated Annealing

    PubMed Central

    Abubaker, Ahmad; Baharum, Adam; Alrefaei, Mahmoud

    2015-01-01

    This paper puts forward a new automatic clustering algorithm based on Multi-Objective Particle Swarm Optimization and Simulated Annealing, “MOPSOSA”. The proposed algorithm is capable of automatic clustering which is appropriate for partitioning datasets to a suitable number of clusters. MOPSOSA combines the features of the multi-objective based particle swarm optimization (PSO) and the Multi-Objective Simulated Annealing (MOSA). Three cluster validity indices were optimized simultaneously to establish the suitable number of clusters and the appropriate clustering for a dataset. The first cluster validity index is centred on Euclidean distance, the second on the point symmetry distance, and the last cluster validity index is based on short distance. A number of algorithms have been compared with the MOPSOSA algorithm in resolving clustering problems by determining the actual number of clusters and optimal clustering. Computational experiments were carried out to study fourteen artificial and five real life datasets. PMID:26132309

  14. Automatic Clustering Using Multi-objective Particle Swarm and Simulated Annealing.

    PubMed

    Abubaker, Ahmad; Baharum, Adam; Alrefaei, Mahmoud

    2015-01-01

    This paper puts forward a new automatic clustering algorithm based on Multi-Objective Particle Swarm Optimization and Simulated Annealing, "MOPSOSA". The proposed algorithm is capable of automatic clustering which is appropriate for partitioning datasets to a suitable number of clusters. MOPSOSA combines the features of the multi-objective based particle swarm optimization (PSO) and the Multi-Objective Simulated Annealing (MOSA). Three cluster validity indices were optimized simultaneously to establish the suitable number of clusters and the appropriate clustering for a dataset. The first cluster validity index is centred on Euclidean distance, the second on the point symmetry distance, and the last cluster validity index is based on short distance. A number of algorithms have been compared with the MOPSOSA algorithm in resolving clustering problems by determining the actual number of clusters and optimal clustering. Computational experiments were carried out to study fourteen artificial and five real life datasets.

  15. Generalized Labeled Multi-Bernoulli Approximation of Multi-Object Densities

    NASA Astrophysics Data System (ADS)

    Papi, Francesco; Vo, Ba-Ngu; Vo, Ba-Tuong; Fantacci, Claudio; Beard, Michael

    2015-10-01

    In multi-object inference, the multi-object probability density captures the uncertainty in the number and the states of the objects as well as the statistical dependence between the objects. Exact computation of the multi-object density is generally intractable and tractable implementations usually require statistical independence assumptions between objects. In this paper we propose a tractable multi-object density approximation that can capture statistical dependence between objects. In particular, we derive a tractable Generalized Labeled Multi-Bernoulli (GLMB) density that matches the cardinality distribution and the first moment of the labeled multi-object distribution of interest. It is also shown that the proposed approximation minimizes the Kullback-Leibler divergence over a special tractable class of GLMB densities. Based on the proposed GLMB approximation we further demonstrate a tractable multi-object tracking algorithm for generic measurement models. Simulation results for a multi-object Track-Before-Detect example using radar measurements in low signal-to-noise ratio (SNR) scenarios verify the applicability of the proposed approach.

  16. Multiobjective Particle Swarm Optimization for the optimal design of photovoltaic grid-connected systems

    SciTech Connect

    Kornelakis, Aris

    2010-12-15

    Particle Swarm Optimization (PSO) is a highly efficient evolutionary optimization algorithm. In this paper a multiobjective optimization algorithm based on PSO applied to the optimal design of photovoltaic grid-connected systems (PVGCSs) is presented. The proposed methodology intends to suggest the optimal number of system devices and the optimal PV module installation details, such that the economic and environmental benefits achieved during the system's operational lifetime period are both maximized. The objective function describing the economic benefit of the proposed optimization process is the lifetime system's total net profit which is calculated according to the method of the Net Present Value (NPV). The second objective function, which corresponds to the environmental benefit, equals to the pollutant gas emissions avoided due to the use of the PVGCS. The optimization's decision variables are the optimal number of the PV modules, the PV modules optimal tilt angle, the optimal placement of the PV modules within the available installation area and the optimal distribution of the PV modules among the DC/AC converters. (author)

  17. Study on the evolutionary optimisation of the topology of network control systems

    NASA Astrophysics Data System (ADS)

    Zhou, Zude; Chen, Benyuan; Wang, Hong; Fan, Zhun

    2010-08-01

    Computer networks have been very popular in enterprise applications. However, optimisation of network designs that allows networks to be used more efficiently in industrial environment and enterprise applications remains an interesting research topic. This article mainly discusses the topology optimisation theory and methods of the network control system based on switched Ethernet in an industrial context. Factors that affect the real-time performance of the industrial control network are presented in detail, and optimisation criteria with their internal relations are analysed. After the definition of performance parameters, the normalised indices for the evaluation of the topology optimisation are proposed. The topology optimisation problem is formulated as a multi-objective optimisation problem and the evolutionary algorithm is applied to solve it. Special communication characteristics of the industrial control network are considered in the optimisation process. In respect to the evolutionary algorithm design, an improved arena algorithm is proposed for the construction of the non-dominated set of the population. In addition, for the evaluation of individuals, the integrated use of the dominative relation method and the objective function combination method, for reducing the computational cost of the algorithm, are given. Simulation tests show that the performance of the proposed algorithm is preferable and superior compared to other algorithms. The final solution greatly improves the following indices: traffic localisation, traffic balance and utilisation rate balance of switches. In addition, a new performance index with its estimation process is proposed.

  18. Scalable multi-objective control for large scale water resources systems under uncertainty

    NASA Astrophysics Data System (ADS)

    Giuliani, Matteo; Quinn, Julianne; Herman, Jonathan; Castelletti, Andrea; Reed, Patrick

    2016-04-01

    The use of mathematical models to support the optimal management of environmental systems is rapidly expanding over the last years due to advances in scientific knowledge of the natural processes, efficiency of the optimization techniques, and availability of computational resources. However, undergoing changes in climate and society introduce additional challenges for controlling these systems, ultimately motivating the emergence of complex models to explore key causal relationships and dependencies on uncontrolled sources of variability. In this work, we contribute a novel implementation of the evolutionary multi-objective direct policy search (EMODPS) method for controlling environmental systems under uncertainty. The proposed approach combines direct policy search (DPS) with hierarchical parallelization of multi-objective evolutionary algorithms (MOEAs) and offers a threefold advantage: the DPS simulation-based optimization can be combined with any simulation model and does not add any constraint on modeled information, allowing the use of exogenous information in conditioning the decisions. Moreover, the combination of DPS and MOEAs prompts the generation or Pareto approximate set of solutions for up to 10 objectives, thus overcoming the decision biases produced by cognitive myopia, where narrow or restrictive definitions of optimality strongly limit the discovery of decision relevant alternatives. Finally, the use of large-scale MOEAs parallelization improves the ability of the designed solutions in handling the uncertainty due to severe natural variability. The proposed approach is demonstrated on a challenging water resources management problem represented by the optimal control of a network of four multipurpose water reservoirs in the Red River basin (Vietnam). As part of the medium-long term energy and food security national strategy, four large reservoirs have been constructed on the Red River tributaries, which are mainly operated for hydropower

  19. Modeling and optimization of the multiobjective stochastic joint replenishment and delivery problem under supply chain environment.

    PubMed

    Wang, Lin; Qu, Hui; Liu, Shan; Dun, Cai-xia

    2013-01-01

    As a practical inventory and transportation problem, it is important to synthesize several objectives for the joint replenishment and delivery (JRD) decision. In this paper, a new multiobjective stochastic JRD (MSJRD) of the one-warehouse and n-retailer systems considering the balance of service level and total cost simultaneously is proposed. The goal of this problem is to decide the reasonable replenishment interval, safety stock factor, and traveling routing. Secondly, two approaches are designed to handle this complex multi-objective optimization problem. Linear programming (LP) approach converts the multi-objective to single objective, while a multi-objective evolution algorithm (MOEA) solves a multi-objective problem directly. Thirdly, three intelligent optimization algorithms, differential evolution algorithm (DE), hybrid DE (HDE), and genetic algorithm (GA), are utilized in LP-based and MOEA-based approaches. Results of the MSJRD with LP-based and MOEA-based approaches are compared by a contrastive numerical example. To analyses the nondominated solution of MOEA, a metric is also used to measure the distribution of the last generation solution. Results show that HDE outperforms DE and GA whenever LP or MOEA is adopted. PMID:24302880

  20. Modeling and Optimization of the Multiobjective Stochastic Joint Replenishment and Delivery Problem under Supply Chain Environment

    PubMed Central

    Dun, Cai-xia

    2013-01-01

    As a practical inventory and transportation problem, it is important to synthesize several objectives for the joint replenishment and delivery (JRD) decision. In this paper, a new multiobjective stochastic JRD (MSJRD) of the one-warehouse and n-retailer systems considering the balance of service level and total cost simultaneously is proposed. The goal of this problem is to decide the reasonable replenishment interval, safety stock factor, and traveling routing. Secondly, two approaches are designed to handle this complex multi-objective optimization problem. Linear programming (LP) approach converts the multi-objective to single objective, while a multi-objective evolution algorithm (MOEA) solves a multi-objective problem directly. Thirdly, three intelligent optimization algorithms, differential evolution algorithm (DE), hybrid DE (HDE), and genetic algorithm (GA), are utilized in LP-based and MOEA-based approaches. Results of the MSJRD with LP-based and MOEA-based approaches are compared by a contrastive numerical example. To analyses the nondominated solution of MOEA, a metric is also used to measure the distribution of the last generation solution. Results show that HDE outperforms DE and GA whenever LP or MOEA is adopted. PMID:24302880

  1. A multi-objective optimization framework to model 3D river and landscape evolution processes

    NASA Astrophysics Data System (ADS)

    Bizzi, Simone; Castelletti, Andrea; Cominola, Andrea; Mason, Emanuele; Paik, Kyungrock

    2013-04-01

    conflicting optimality principles proposed in the literature, are computed by evolutionary multiobjective algorithm. Generated landscapes and their river networks are compared with the ones observed in nature through state of the art indicators, and visualized with erosion-deposition contour maps in order to make the comprehension easier. Preliminary results show that multiobjective frameworks allow powerfully comparing how different optimality principles affect the simulation of landscape evolution and river organization. These findings prove that the single criteria proposed so far in literature can describe only part of the landscape evolution processes and that more comprehensive optimality criteria need to be proposed in order to prove that least action principle drives river network formation and to use this knowledge to simulate river and landscape evolution.

  2. A cross-disciplinary technology transfer for search-based evolutionary computing: from engineering design to software engineering design

    NASA Astrophysics Data System (ADS)

    Simons, C. L.; Parmee, I. C.

    2007-07-01

    Although object-oriented conceptual software design is difficult to learn and perform, computational tool support for the conceptual software designer is limited. In conceptual engineering design, however, computational tools exploiting interactive evolutionary computation (EC) have shown significant utility. This article investigates the cross-disciplinary technology transfer of search-based EC from engineering design to software engineering design in an attempt to provide support for the conceptual software designer. Firstly, genetic operators inspired by genetic algorithms (GAs) and evolutionary programming are evaluated for their effectiveness against a conceptual software design representation using structural cohesion as an objective fitness function. Building on this evaluation, a multi-objective GA inspired by a non-dominated Pareto sorting approach is investigated for an industrial-scale conceptual design problem. Results obtained reveal a mass of interesting and useful conceptual software design solution variants of equivalent optimality—a typical characteristic of successful multi-objective evolutionary search techniques employed in conceptual engineering design. The mass of software design solution variants produced suggests that transferring search-based technology across disciplines has significant potential to provide computationally intelligent tool support for the conceptual software designer.

  3. Multiobjective Optimization of Evacuation Routes in Stadium Using Superposed Potential Field Network Based ACO

    PubMed Central

    Xiong, Shengwu; Zong, Xinlu

    2013-01-01

    Multiobjective evacuation routes optimization problem is defined to find out optimal evacuation routes for a group of evacuees under multiple evacuation objectives. For improving the evacuation efficiency, we abstracted the evacuation zone as a superposed potential field network (SPFN), and we presented SPFN-based ACO algorithm (SPFN-ACO) to solve this problem based on the proposed model. In Wuhan Sports Center case, we compared SPFN-ACO algorithm with HMERP-ACO algorithm and traditional ACO algorithm under three evacuation objectives, namely, total evacuation time, total evacuation route length, and cumulative congestion degree. The experimental results show that SPFN-ACO algorithm has a better performance while comparing with HMERP-ACO algorithm and traditional ACO algorithm for solving multi-objective evacuation routes optimization problem. PMID:23861678

  4. Sensitivity versus accuracy in multiclass problems using memetic Pareto evolutionary neural networks.

    PubMed

    Fernández Caballero, Juan Carlos; Martínez, Francisco José; Hervás, César; Gutiérrez, Pedro Antonio

    2010-05-01

    This paper proposes a multiclassification algorithm using multilayer perceptron neural network models. It tries to boost two conflicting main objectives of multiclassifiers: a high correct classification rate level and a high classification rate for each class. This last objective is not usually optimized in classification, but is considered here given the need to obtain high precision in each class in real problems. To solve this machine learning problem, we use a Pareto-based multiobjective optimization methodology based on a memetic evolutionary algorithm. We consider a memetic Pareto evolutionary approach based on the NSGA2 evolutionary algorithm (MPENSGA2). Once the Pareto front is built, two strategies or automatic individual selection are used: the best model in accuracy and the best model in sensitivity (extremes in the Pareto front). These methodologies are applied to solve 17 classification benchmark problems obtained from the University of California at Irvine (UCI) repository and one complex real classification problem. The models obtained show high accuracy and a high classification rate for each class.

  5. Application of SPEA2 and Monte-Carlo Simulation in Correlation of Specific Values to Multi-objective Optimal Allocations of SVRs

    NASA Astrophysics Data System (ADS)

    Yoshida, Takafumi; Mori, Hiroyuki

    This paper proposes an efficient multi-objective meta-heuristics (MOMH) for optimal allocation of step voltage regulators. The step voltage regulators (SVRs) deal with the voltage deviations in distribution networks. Recently, the deregulated and competitive power markets bring about uncertainties such as load growths and output of renewable energy like wind power generators, etc. This paper considers the uncertainties in Monte-Carlo-simulation-based method. Also, this paper makes use of improved the strength pareto evolutionary algorithm (SPEA2) for the problems efficiently. It has the remarkable accuracy and the diversity of the solution sets in MOMH. Therefore, it allows system planners to evaluate with many high quality solutions. The proposed method is successfully applied to a sample system.

  6. Multiobjective insensitive design of airplane control systems with uncertain parameters

    NASA Technical Reports Server (NTRS)

    Schy, A. A.; Giesy, D. P.

    1981-01-01

    A multiobjective computer-aided design algorithm has been developed which minimizes the sensitivity of the design objectives to uncertainties in system parameters. The more important uncertain parameters are described by a gaussian random vector with known covariance matrix, and a vector sensitivity objective function is defined as the probabilities that the design objectives will violate specified requirements constraints. Control system parameters are found which minimize the sensitivity vector in a Pareto-optimal sense, using constrained minimization algorithms. Example results are shown for lateral stability augmentation system (SAS) design for three Shuttle flight conditions.

  7. Multiobjective genetic approach for optimal control of photoinduced processes

    SciTech Connect

    Bonacina, Luigi; Extermann, Jerome; Rondi, Ariana; Wolf, Jean-Pierre; Boutou, Veronique

    2007-08-15

    We have applied a multiobjective genetic algorithm to the optimization of multiphoton-excited fluorescence. Our study shows the advantages that this approach can offer to experiments based on adaptive shaping of femtosecond pulses. The algorithm outperforms single-objective optimizations, being totally independent from the bias of user defined parameters and giving simultaneous access to a large set of feasible solutions. The global inspection of their ensemble represents a powerful support to unravel the connections between pulse spectral field features and excitation dynamics of the sample.

  8. Handling packet dropouts and random delays for unstable delayed processes in NCS by optimal tuning of PIλDμ controllers with evolutionary algorithms.

    PubMed

    Pan, Indranil; Das, Saptarshi; Gupta, Amitava

    2011-10-01

    The issues of stochastically varying network delays and packet dropouts in Networked Control System (NCS) applications have been simultaneously addressed by time domain optimal tuning of fractional order (FO) PID controllers. Different variants of evolutionary algorithms are used for the tuning process and their performances are compared. Also the effectiveness of the fractional order PI(λ)D(μ) controllers over their integer order counterparts is looked into. Two standard test bench plants with time delay and unstable poles which are encountered in process control applications are tuned with the proposed method to establish the validity of the tuning methodology. The proposed tuning methodology is independent of the specific choice of plant and is also applicable for less complicated systems. Thus it is useful in a wide variety of scenarios. The paper also shows the superiority of FOPID controllers over their conventional PID counterparts for NCS applications. PMID:21621208

  9. LEED I/V determination of the structure of a MoO3 monolayer on Au(111): Testing the performance of the CMA-ES evolutionary strategy algorithm, differential evolution, a genetic algorithm and tensor LEED based structural optimization

    NASA Astrophysics Data System (ADS)

    Primorac, E.; Kuhlenbeck, H.; Freund, H.-J.

    2016-07-01

    The structure of a thin MoO3 layer on Au(111) with a c(4 × 2) superstructure was studied with LEED I/V analysis. As proposed previously (Quek et al., Surf. Sci. 577 (2005) L71), the atomic structure of the layer is similar to that of a MoO3 single layer as found in regular α-MoO3. The layer on Au(111) has a glide plane parallel to the short unit vector of the c(4 × 2) unit cell and the molybdenum atoms are bridge-bonded to two surface gold atoms with the structure of the gold surface being slightly distorted. The structural refinement of the structure was performed with the CMA-ES evolutionary strategy algorithm which could reach a Pendry R-factor of ∼ 0.044. In the second part the performance of CMA-ES is compared with that of the differential evolution method, a genetic algorithm and the Powell optimization algorithm employing I/V curves calculated with tensor LEED.

  10. Multi-objective metaheuristics for preprocessing EEG data in brain-computer interfaces

    NASA Astrophysics Data System (ADS)

    Aler, Ricardo; Vega, Alicia; Galván, Inés M.; Nebro, Antonio J.

    2012-03-01

    In the field of brain-computer interfaces, one of the main issues is to classify the electroencephalogram (EEG) accurately. EEG signals have a good temporal resolution, but a low spatial one. In this article, metaheuristics are used to compute spatial filters to improve the spatial resolution. Additionally, from a physiological point of view, not all frequency bands are equally relevant. Both spatial filters and relevant frequency bands are user-dependent. In this article a multi-objective formulation for spatial filter optimization and frequency-band selection is proposed. Several multi-objective metaheuristics have been tested for this purpose. The experimental results show, in general, that multi-objective algorithms are able to select a subset of the available frequency bands, while maintaining or improving the accuracy obtained with the whole set. Also, among the different metaheuristics tested, GDE3, which is based on differential evolution, is the most useful algorithm in this context.

  11. Hypervolume Subset Selection in Two Dimensions: Formulations and Algorithms.

    PubMed

    Kuhn, Tobias; Fonseca, Carlos M; Paquete, Luís; Ruzika, Stefan; Duarte, Miguel M; Figueira, José Rui

    2016-01-01

    The hypervolume subset selection problem consists of finding a subset, with a given cardinality k, of a set of nondominated points that maximizes the hypervolume indicator. This problem arises in selection procedures of evolutionary algorithms for multiobjective optimization, for which practically efficient algorithms are required. In this article, two new formulations are provided for the two-dimensional variant of this problem. The first is a (linear) integer programming formulation that can be solved by solving its linear programming relaxation. The second formulation is a k-link shortest path formulation on a special digraph with the Monge property that can be solved by dynamic programming in [Formula: see text] time. This improves upon the result of [Formula: see text] in Bader ( 2009 ), and slightly improves upon the result of [Formula: see text] in Bringmann et al. ( 2014b ), which was developed independently from this work using different techniques. Numerical results are shown for several values of n and k.

  12. Enhanced Multiobjective Optimization Technique for Comprehensive Aerospace Design. Part A

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Rajadas, John N.

    1997-01-01

    A multidisciplinary design optimization procedure which couples formal multiobjectives based techniques and complex analysis procedures (such as computational fluid dynamics (CFD) codes) developed. The procedure has been demonstrated on a specific high speed flow application involving aerodynamics and acoustics (sonic boom minimization). In order to account for multiple design objectives arising from complex performance requirements, multiobjective formulation techniques are used to formulate the optimization problem. Techniques to enhance the existing Kreisselmeier-Steinhauser (K-S) function multiobjective formulation approach have been developed. The K-S function procedure used in the proposed work transforms a constrained multiple objective functions problem into an unconstrained problem which then is solved using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. Weight factors are introduced during the transformation process to each objective function. This enhanced procedure will provide the designer the capability to emphasize specific design objectives during the optimization process. The demonstration of the procedure utilizes a computational Fluid dynamics (CFD) code which solves the three-dimensional parabolized Navier-Stokes (PNS) equations for the flow field along with an appropriate sonic boom evaluation procedure thus introducing both aerodynamic performance as well as sonic boom as the design objectives to be optimized simultaneously. Sensitivity analysis is performed using a discrete differentiation approach. An approximation technique has been used within the optimizer to improve the overall computational efficiency of the procedure in order to make it suitable for design applications in an industrial setting.

  13. Analyzing the evolutionary mechanisms of the Air Transportation System-of-Systems using network theory and machine learning algorithms

    NASA Astrophysics Data System (ADS)

    Kotegawa, Tatsuya

    Complexity in the Air Transportation System (ATS) arises from the intermingling of many independent physical resources, operational paradigms, and stakeholder interests, as well as the dynamic variation of these interactions over time. Currently, trade-offs and cost benefit analyses of new ATS concepts are carried out on system-wide evaluation simulations driven by air traffic forecasts that assume fixed airline routes. However, this does not well reflect reality as airlines regularly add and remove routes. A airline service route network evolution model that projects route addition and removal was created and combined with state-of-the-art air traffic forecast methods to better reflect the dynamic properties of the ATS in system-wide simulations. Guided by a system-of-systems framework, network theory metrics and machine learning algorithms were applied to develop the route network evolution models based on patterns extracted from historical data. Constructing the route addition section of the model posed the greatest challenge due to the large pool of new link candidates compared to the actual number of routes historically added to the network. Of the models explored, algorithms based on logistic regression, random forests, and support vector machines showed best route addition and removal forecast accuracies at approximately 20% and 40%, respectively, when validated with historical data. The combination of network evolution models and a system-wide evaluation tool quantified the impact of airline route network evolution on air traffic delay. The expected delay minutes when considering network evolution increased approximately 5% for a forecasted schedule on 3/19/2020. Performance trade-off studies between several airline route network topologies from the perspectives of passenger travel efficiency, fuel burn, and robustness were also conducted to provide bounds that could serve as targets for ATS transformation efforts. The series of analysis revealed that high

  14. Combining Environment-Driven Adaptation and Task-Driven Optimisation in Evolutionary Robotics

    PubMed Central

    Haasdijk, Evert; Bredeche, Nicolas; Eiben, A. E.

    2014-01-01

    Embodied evolutionary robotics is a sub-field of evolutionary robotics that employs evolutionary algorithms on the robotic hardware itself, during the operational period, i.e., in an on-line fashion. This enables robotic systems that continuously adapt, and are therefore capable of (re-)adjusting themselves to previously unknown or dynamically changing conditions autonomously, without human oversight. This paper addresses one of the major challenges that such systems face, viz. that the robots must satisfy two sets of requirements. Firstly, they must continue to operate reliably in their environment (viability), and secondly they must competently perform user-specified tasks (usefulness). The solution we propose exploits the fact that evolutionary methods have two basic selection mechanisms–survivor selection and parent selection. This allows evolution to tackle the two sets of requirements separately: survivor selection is driven by the environment and parent selection is based on task-performance. This idea is elaborated in the Multi-Objective aNd open-Ended Evolution (monee) framework, which we experimentally validate. Experiments with robotic swarms of 100 simulated e-pucks show that monee does indeed promote task-driven behaviour without compromising environmental adaptation. We also investigate an extension of the parent selection process with a ‘market mechanism’ that can ensure equitable distribution of effort over multiple tasks, a particularly pressing issue if the environment promotes specialisation in single tasks. PMID:24901702

  15. Combining environment-driven adaptation and task-driven optimisation in evolutionary robotics.

    PubMed

    Haasdijk, Evert; Bredeche, Nicolas; Eiben, A E

    2014-01-01

    Embodied evolutionary robotics is a sub-field of evolutionary robotics that employs evolutionary algorithms on the robotic hardware itself, during the operational period, i.e., in an on-line fashion. This enables robotic systems that continuously adapt, and are therefore capable of (re-)adjusting themselves to previously unknown or dynamically changing conditions autonomously, without human oversight. This paper addresses one of the major challenges that such systems face, viz. that the robots must satisfy two sets of requirements. Firstly, they must continue to operate reliably in their environment (viability), and secondly they must competently perform user-specified tasks (usefulness). The solution we propose exploits the fact that evolutionary methods have two basic selection mechanisms-survivor selection and parent selection. This allows evolution to tackle the two sets of requirements separately: survivor selection is driven by the environment and parent selection is based on task-performance. This idea is elaborated in the Multi-Objective aNd open-Ended Evolution (monee) framework, which we experimentally validate. Experiments with robotic swarms of 100 simulated e-pucks show that monee does indeed promote task-driven behaviour without compromising environmental adaptation. We also investigate an extension of the parent selection process with a 'market mechanism' that can ensure equitable distribution of effort over multiple tasks, a particularly pressing issue if the environment promotes specialisation in single tasks.

  16. Multi-Objective Differential Evolution for Automatic Clustering with Application to Micro-Array Data Analysis

    PubMed Central

    Suresh, Kaushik; Kundu, Debarati; Ghosh, Sayan; Das, Swagatam; Abraham, Ajith; Han, Sang Yong

    2009-01-01

    This paper applies the Differential Evolution (DE) algorithm to the task of automatic fuzzy clustering in a Multi-objective Optimization (MO) framework. It compares the performances of two multi-objective variants of DE over the fuzzy clustering problem, where two conflicting fuzzy validity indices are simultaneously optimized. The resultant Pareto optimal set of solutions from each algorithm consists of a number of non-dominated solutions, from which the user can choose the most promising ones according to the problem specifications. A real-coded representation of the search variables, accommodating variable number of cluster centers, is used for DE. The performances of the multi-objective DE-variants have also been contrasted to that of two most well-known schemes of MO clustering, namely the Non Dominated Sorting Genetic Algorithm (NSGA II) and Multi-Objective Clustering with an unknown number of Clusters K (MOCK). Experimental results using six artificial and four real life datasets of varying range of complexities indicate that DE holds immense promise as a candidate algorithm for devising MO clustering schemes. PMID:22412346

  17. Multiobjective hyper heuristic scheme for system design and optimization

    NASA Astrophysics Data System (ADS)

    Rafique, Amer Farhan

    2012-11-01

    As system design is becoming more and more multifaceted, integrated, and complex, the traditional single objective optimization trends of optimal design are becoming less and less efficient and effective. Single objective optimization methods present a unique optimal solution whereas multiobjective methods present pareto front. The foremost intent is to predict a reasonable distributed pareto-optimal solution set independent of the problem instance through multiobjective scheme. Other objective of application of intended approach is to improve the worthiness of outputs of the complex engineering system design process at the conceptual design phase. The process is automated in order to provide the system designer with the leverage of the possibility of studying and analyzing a large multiple of possible solutions in a short time. This article presents Multiobjective Hyper Heuristic Optimization Scheme based on low level meta-heuristics developed for the application in engineering system design. Herein, we present a stochastic function to manage meta-heuristics (low-level) to augment surety of global optimum solution. Generic Algorithm, Simulated Annealing and Swarm Intelligence are used as low-level meta-heuristics in this study. Performance of the proposed scheme is investigated through a comprehensive empirical analysis yielding acceptable results. One of the primary motives for performing multiobjective optimization is that the current engineering systems require simultaneous optimization of conflicting and multiple. Random decision making makes the implementation of this scheme attractive and easy. Injecting feasible solutions significantly alters the search direction and also adds diversity of population resulting in accomplishment of pre-defined goals set in the proposed scheme.

  18. GUESS-ing Polygenic Associations with Multiple Phenotypes Using a GPU-Based Evolutionary Stochastic Search Algorithm

    PubMed Central

    Hastie, David I.; Zeller, Tanja; Liquet, Benoit; Newcombe, Paul; Yengo, Loic; Wild, Philipp S.; Schillert, Arne; Ziegler, Andreas; Nielsen, Sune F.; Butterworth, Adam S.; Ho, Weang Kee; Castagné, Raphaële; Munzel, Thomas; Tregouet, David; Falchi, Mario; Cambien, François; Nordestgaard, Børge G.; Fumeron, Fredéric; Tybjærg-Hansen, Anne; Froguel, Philippe; Danesh, John; Petretto, Enrico; Blankenberg, Stefan; Tiret, Laurence; Richardson, Sylvia

    2013-01-01

    Genome-wide association studies (GWAS) yielded significant advances in defining the genetic architecture of complex traits and disease. Still, a major hurdle of GWAS is narrowing down multiple genetic associations to a few causal variants for functional studies. This becomes critical in multi-phenotype GWAS where detection and interpretability of complex SNP(s)-trait(s) associations are complicated by complex Linkage Disequilibrium patterns between SNPs and correlation between traits. Here we propose a computationally efficient algorithm (GUESS) to explore complex genetic-association models and maximize genetic variant detection. We integrated our algorithm with a new Bayesian strategy for multi-phenotype analysis to identify the specific contribution of each SNP to different trait combinations and study genetic regulation of lipid metabolism in the Gutenberg Health Study (GHS). Despite the relatively small size of GHS (n = 3,175), when compared with the largest published meta-GWAS (n>100,000), GUESS recovered most of the major associations and was better at refining multi-trait associations than alternative methods. Amongst the new findings provided by GUESS, we revealed a strong association of SORT1 with TG-APOB and LIPC with TG-HDL phenotypic groups, which were overlooked in the larger meta-GWAS and not revealed by competing approaches, associations that we replicated in two independent cohorts. Moreover, we demonstrated the increased power of GUESS over alternative multi-phenotype approaches, both Bayesian and non-Bayesian, in a simulation study that mimics real-case scenarios. We showed that our parallel implementation based on Graphics Processing Units outperforms alternative multi-phenotype methods. Beyond multivariate modelling of multi-phenotypes, our Bayesian model employs a flexible hierarchical prior structure for genetic effects that adapts to any correlation structure of the predictors and increases the power to identify associated variants. This

  19. Cascaded evolutionary algorithm for nonlinear system identification based on correlation functions and radial basis functions neural networks

    NASA Astrophysics Data System (ADS)

    Ayala, Helon Vicente Hultmann; Coelho, Leandro dos Santos

    2016-02-01

    The present work introduces a procedure for input selection and parameter estimation for system identification based on Radial Basis Functions Neural Networks (RBFNNs) models with an improved objective function based on the residuals and its correlation function coefficients. We show the results when the proposed methodology is applied to model a magnetorheological damper, with real acquired data, and other two well-known benchmarks. The canonical genetic and differential evolution algorithms are used in cascade to decompose the problem of defining the lags taken as the inputs of the model and its related parameters based on the simultaneous minimization of the residuals and higher orders correlation functions. The inner layer of the cascaded approach is composed of a population which represents the lags on the inputs and outputs of the system and an outer layer represents the corresponding parameters of the RBFNN. The approach is able to define both the inputs of the model and its parameters. This is interesting as it frees the designer of manual procedures, which are time consuming and prone to error, usually done to define the model inputs. We compare the proposed methodology with other works found in the literature, showing overall better results for the cascaded approach.

  20. On the Use of Evolutionary Algorithms to Improve the Robustness of Continuous Speech Recognition Systems in Adverse Conditions

    NASA Astrophysics Data System (ADS)

    Selouani, Sid-Ahmed; O'Shaughnessy, Douglas

    2003-12-01

    Limiting the decrease in performance due to acoustic environment changes remains a major challenge for continuous speech recognition (CSR) systems. We propose a novel approach which combines the Karhunen-Loève transform (KLT) in the mel-frequency domain with a genetic algorithm (GA) to enhance the data representing corrupted speech. The idea consists of projecting noisy speech parameters onto the space generated by the genetically optimized principal axis issued from the KLT. The enhanced parameters increase the recognition rate for highly interfering noise environments. The proposed hybrid technique, when included in the front-end of an HTK-based CSR system, outperforms that of the conventional recognition process in severe interfering car noise environments for a wide range of signal-to-noise ratios (SNRs) varying from 16 dB to[InlineEquation not available: see fulltext.] dB. We also showed the effectiveness of the KLT-GA method in recognizing speech subject to telephone channel degradations.

  1. a Gis-Based Model for Post-Earthquake Personalized Route Planning Using the Integration of Evolutionary Algorithm and Owa

    NASA Astrophysics Data System (ADS)

    Moradi, M.; Delavar, M. R.; Moradi, A.

    2015-12-01

    Being one of the natural disasters, earthquake can seriously damage buildings, urban facilities and cause road blockage. Post-earthquake route planning is problem that has been addressed in frequent researches. The main aim of this research is to present a route planning model for after earthquake. It is assumed in this research that no damage data is available. The presented model tries to find the optimum route based on a number of contributing factors which mainly indicate the length, width and safety of the road. The safety of the road is represented by a number of criteria such as distance to faults, percentage of non-standard buildings and percentage of high buildings around the route. An integration of genetic algorithm and ordered weighted averaging operator is employed in the model. The former searches the problem space among all alternatives, while the latter aggregates the scores of road segments to compute an overall score for each alternative. Ordered weighted averaging operator enables the users of the system to evaluate the alternative routes based on their decision strategy. Based on the proposed model, an optimistic user tries to find the shortest path between the two points, whereas a pessimistic user tends to pay more attention to safety parameters even if it enforces a longer route. The results depicts that decision strategy can considerably alter the optimum route. Moreover, post-earthquake route planning is a function of not only the length of the route but also the probability of the road blockage.

  2. Optimization of bioenergy crop selection and placement based on a stream health indicator using an evolutionary algorithm.

    PubMed

    Herman, Matthew R; Nejadhashemi, A Pouyan; Daneshvar, Fariborz; Abouali, Mohammad; Ross, Dennis M; Woznicki, Sean A; Zhang, Zhen

    2016-10-01

    The emission of greenhouse gases continues to amplify the impacts of global climate change. This has led to the increased focus on using renewable energy sources, such as biofuels, due to their lower impact on the environment. However, the production of biofuels can still have negative impacts on water resources. This study introduces a new strategy to optimize bioenergy landscapes while improving stream health for the region. To accomplish this, several hydrological models including the Soil and Water Assessment Tool, Hydrologic Integrity Tool, and Adaptive Neruro Fuzzy Inference System, were linked to develop stream health predictor models. These models are capable of estimating stream health scores based on the Index of Biological Integrity. The coupling of the aforementioned models was used to guide a genetic algorithm to design watershed-scale bioenergy landscapes. Thirteen bioenergy managements were considered based on the high probability of adaptation by farmers in the study area. Results from two thousand runs identified an optimum bioenergy crops placement that maximized the stream health for the Flint River Watershed in Michigan. The final overall stream health score was 50.93, which was improved from the current stream health score of 48.19. This was shown to be a significant improvement at the 1% significant level. For this final bioenergy landscape the most often used management was miscanthus (27.07%), followed by corn-soybean-rye (19.00%), corn stover-soybean (18.09%), and corn-soybean (16.43%). The technique introduced in this study can be successfully modified for use in different regions and can be used by stakeholders and decision makers to develop bioenergy landscapes that maximize stream health in the area of interest. PMID:27420165

  3. Optimization of bioenergy crop selection and placement based on a stream health indicator using an evolutionary algorithm.

    PubMed

    Herman, Matthew R; Nejadhashemi, A Pouyan; Daneshvar, Fariborz; Abouali, Mohammad; Ross, Dennis M; Woznicki, Sean A; Zhang, Zhen

    2016-10-01

    The emission of greenhouse gases continues to amplify the impacts of global climate change. This has led to the increased focus on using renewable energy sources, such as biofuels, due to their lower impact on the environment. However, the production of biofuels can still have negative impacts on water resources. This study introduces a new strategy to optimize bioenergy landscapes while improving stream health for the region. To accomplish this, several hydrological models including the Soil and Water Assessment Tool, Hydrologic Integrity Tool, and Adaptive Neruro Fuzzy Inference System, were linked to develop stream health predictor models. These models are capable of estimating stream health scores based on the Index of Biological Integrity. The coupling of the aforementioned models was used to guide a genetic algorithm to design watershed-scale bioenergy landscapes. Thirteen bioenergy managements were considered based on the high probability of adaptation by farmers in the study area. Results from two thousand runs identified an optimum bioenergy crops placement that maximized the stream health for the Flint River Watershed in Michigan. The final overall stream health score was 50.93, which was improved from the current stream health score of 48.19. This was shown to be a significant improvement at the 1% significant level. For this final bioenergy landscape the most often used management was miscanthus (27.07%), followed by corn-soybean-rye (19.00%), corn stover-soybean (18.09%), and corn-soybean (16.43%). The technique introduced in this study can be successfully modified for use in different regions and can be used by stakeholders and decision makers to develop bioenergy landscapes that maximize stream health in the area of interest.

  4. Evolutionary tree reconstruction

    NASA Technical Reports Server (NTRS)

    Cheeseman, Peter; Kanefsky, Bob

    1990-01-01

    It is described how Minimum Description Length (MDL) can be applied to the problem of DNA and protein evolutionary tree reconstruction. If there is a set of mutations that transform a common ancestor into a set of the known sequences, and this description is shorter than the information to encode the known sequences directly, then strong evidence for an evolutionary relationship has been found. A heuristic algorithm is described that searches for the simplest tree (smallest MDL) that finds close to optimal trees on the test data. Various ways of extending the MDL theory to more complex evolutionary relationships are discussed.

  5. A balanced calibration of water quantity and quality by multi-objective optimization for integrated water system model

    NASA Astrophysics Data System (ADS)

    Zhang, Yongyong; Shao, Quanxi; Taylor, John A.

    2016-07-01

    Due to the high interactions among multiple processes in integrated water system models, it is extremely difficult, if not impossible, to achieve reasonable solutions for all objectives by using the traditional step-by-step calibration. In many cases, water quantity and quality are equally important but their objectives in model calibration usually conflict with each other, so it is not a good practice to calibrate one after another. In this study, a combined auto-calibration multi-process approach was proposed for the integrated water system model (HEQM) using a multi-objective evolutionary algorithm. This ensures that the model performance among inseparable or interactive processes could be balanced by users based on the Pareto front. The Huai River Basin, a highly regulated and heavily polluted region of China, was selected as a case study. The hydrological and water quality parameters of HEQM were calibrated simultaneously based on the observed series of runoff and ammonia-nitrogen (NH4-N) concentrations. The results were compared with those of the step-by-step calibration to demonstrate the rationality and feasibility of the multi-objective approach. The results showed that a Pareto optimal front was formed and could be divided into three clear sections based on the elastic coefficient of model performance between NH4-N and runoff, i.e., the dominated section for NH4-N improvement, the trade-off section between NH4-N and runoff, and the dominated section for runoff improvement. The trade-off of model performance between runoff and NH4-N concentration was clear. The results of the step-by-step calibration fell in the dominated section for NH4-N improvement, where just the optimum of the runoff simulation was achieved with a large potential to improve NH4-N simulation without a significant degradation of the runoff simulation. The overall optimal solutions for all the simulations appeared in the trade-off section. Therefore, the Pareto front provided different

  6. Multi-objective engineering design using preferences

    NASA Astrophysics Data System (ADS)

    Sanchis, J.; Martinez, M.; Blasco, X.

    2008-03-01

    System design is a complex task when design parameters have to satisy a number of specifications and objectives which often conflict with those of others. This challenging problem is called multi-objective optimization (MOO). The most common approximation consists in optimizing a single cost index with a weighted sum of objectives. However, once weights are chosen the solution does not guarantee the best compromise among specifications, because there is an infinite number of solutions. A new approach can be stated, based on the designer's experience regarding the required specifications and the associated problems. This valuable information can be translated into preferences for design objectives, and will lead the search process to the best solution in terms of these preferences. This article presents a new method, which enumerates these a priori objective preferences. As a result, a single objective is built automatically and no weight selection need be performed. Problems occuring because of the multimodal nature of the generated single cost index are managed with genetic algorithms (GAs).

  7. Multiobjective sensitivity analysis and optimization of distributed hydrologic model MOBIDIC

    NASA Astrophysics Data System (ADS)

    Yang, J.; Castelli, F.; Chen, Y.

    2014-10-01

    Calibration of distributed hydrologic models usually involves how to deal with the large number of distributed parameters and optimization problems with multiple but often conflicting objectives that arise in a natural fashion. This study presents a multiobjective sensitivity and optimization approach to handle these problems for the MOBIDIC (MOdello di Bilancio Idrologico DIstribuito e Continuo) distributed hydrologic model, which combines two sensitivity analysis techniques (the Morris method and the state-dependent parameter (SDP) method) with multiobjective optimization (MOO) approach ɛ-NSGAII (Non-dominated Sorting Genetic Algorithm-II). This approach was implemented to calibrate MOBIDIC with its application to the Davidson watershed, North Carolina, with three objective functions, i.e., the standardized root mean square error (SRMSE) of logarithmic transformed discharge, the water balance index, and the mean absolute error of the logarithmic transformed flow duration curve, and its results were compared with those of a single objective optimization (SOO) with the traditional Nelder-Mead simplex algorithm used in MOBIDIC by taking the objective function as the Euclidean norm of these three objectives. Results show that (1) the two sensitivity analysis techniques are effective and efficient for determining the sensitive processes and insensitive parameters: surface runoff and evaporation are very sensitive processes to all three objective functions, while groundwater recession and soil hydraulic conductivity are not sensitive and were excluded in the optimization. (2) Both MOO and SOO lead to acceptable simulations; e.g., for MOO, the average Nash-Sutcliffe value is 0.75 in the calibration period and 0.70 in the validation period. (3) Evaporation and surface runoff show similar importance for watershed water balance, while the contribution of baseflow can be ignored. (4) Compared to SOO, which was dependent on the initial starting location, MOO provides more

  8. Multiobjective optimization in bioinformatics and computational biology.

    PubMed

    Handl, Julia; Kell, Douglas B; Knowles, Joshua

    2007-01-01

    This paper reviews the application of multiobjective optimization in the fields of bioinformatics and computational biology. A survey of existing work, organized by application area, forms the main body of the review, following an introduction to the key concepts in multiobjective optimization. An original contribution of the review is the identification of five distinct "contexts," giving rise to multiple objectives: These are used to explain the reasons behind the use of multiobjective optimization in each application area and also to point the way to potential future uses of the technique.

  9. Improving multi-objective reservoir operation optimization with sensitivity-informed dimension reduction

    NASA Astrophysics Data System (ADS)

    Chu, J.; Zhang, C.; Fu, G.; Li, Y.; Zhou, H.

    2015-08-01

    This study investigates the effectiveness of a sensitivity-informed method for multi-objective operation of reservoir systems, which uses global sensitivity analysis as a screening tool to reduce computational demands. Sobol's method is used to screen insensitive decision variables and guide the formulation of the optimization problems with a significantly reduced number of decision variables. This sensitivity-informed method dramatically reduces the computational demands required for attaining high-quality approximations of optimal trade-off relationships between conflicting design objectives. The search results obtained from the reduced complexity multi-objective reservoir operation problems are then used to pre-condition the full search of the original optimization problem. In two case studies, the Dahuofang reservoir and the inter-basin multi-reservoir system in Liaoning province, China, sensitivity analysis results show that reservoir performance is strongly controlled by a small proportion of decision variables. Sensitivity-informed dimension reduction and pre-conditioning are evaluated in their ability to improve the efficiency and effectiveness of multi-objective evolutionary optimization. Overall, this study illustrates the efficiency and effectiveness of the sensitivity-informed method and the use of global sensitivity analysis to inform dimension reduction of optimization problems when solving complex multi-objective reservoir operation problems.

  10. Improving multi-objective reservoir operation optimization with sensitivity-informed problem decomposition

    NASA Astrophysics Data System (ADS)

    Chu, J. G.; Zhang, C.; Fu, G. T.; Li, Y.; Zhou, H. C.

    2015-04-01

    This study investigates the effectiveness of a sensitivity-informed method for multi-objective operation of reservoir systems, which uses global sensitivity analysis as a screening tool to reduce the computational demands. Sobol's method is used to screen insensitive decision variables and guide the formulation of the optimization problems with a significantly reduced number of decision variables. This sensitivity-informed problem decomposition dramatically reduces the computational demands required for attaining high quality approximations of optimal tradeoff relationships between conflicting design objectives. The search results obtained from the reduced complexity multi-objective reservoir operation problems are then used to pre-condition the full search of the original optimization problem. In two case studies, the Dahuofang reservoir and the inter-basin multi-reservoir system in Liaoning province, China, sensitivity analysis results show that reservoir performance is strongly controlled by a small proportion of decision variables. Sensitivity-informed problem decomposition and pre-conditioning are evaluated in their ability to improve the efficiency and effectiveness of multi-objective evolutionary optimization. Overall, this study illustrates the efficiency and effectiveness of the sensitivity-informed method and the use of global sensitivity analysis to inform problem decomposition when solving the complex multi-objective reservoir operation problems.

  11. An Investigation of Generalized Differential Evolution Metaheuristic for Multiobjective Optimal Crop-Mix Planning Decision

    PubMed Central

    Olugbara, Oludayo

    2014-01-01

    This paper presents an annual multiobjective crop-mix planning as a problem of concurrent maximization of net profit and maximization of crop production to determine an optimal cropping pattern. The optimal crop production in a particular planting season is a crucial decision making task from the perspectives of economic management and sustainable agriculture. A multiobjective optimal crop-mix problem is formulated and solved using the generalized differential evolution 3 (GDE3) metaheuristic to generate a globally optimal solution. The performance of the GDE3 metaheuristic is investigated by comparing its results with the results obtained using epsilon constrained and nondominated sorting genetic algorithms—being two representatives of state-of-the-art in evolutionary optimization. The performance metrics of additive epsilon, generational distance, inverted generational distance, and spacing are considered to establish the comparability. In addition, a graphical comparison with respect to the true Pareto front for the multiobjective optimal crop-mix planning problem is presented. Empirical results generally show GDE3 to be a viable alternative tool for solving a multiobjective optimal crop-mix planning problem. PMID:24883369

  12. Connected Component Model for Multi-Object Tracking.

    PubMed

    He, Zhenyu; Li, Xin; You, Xinge; Tao, Dacheng; Tang, Yuan Yan

    2016-08-01

    In multi-object tracking, it is critical to explore the data associations by exploiting the temporal information from a sequence of frames rather than the information from the adjacent two frames. Since straightforwardly obtaining data associations from multi-frames is an NP-hard multi-dimensional assignment (MDA) problem, most existing methods solve this MDA problem by either developing complicated approximate algorithms, or simplifying MDA as a 2D assignment problem based upon the information extracted only from adjacent frames. In this paper, we show that the relation between associations of two observations is the equivalence relation in the data association problem, based on the spatial-temporal constraint that the trajectories of different objects must be disjoint. Therefore, the MDA problem can be equivalently divided into independent subproblems by equivalence partitioning. In contrast to existing works for solving the MDA problem, we develop a connected component model (CCM) by exploiting the constraints of the data association and the equivalence relation on the constraints. Based upon CCM, we can efficiently obtain the global solution of the MDA problem for multi-object tracking by optimizing a sequence of independent data association subproblems. Experiments on challenging public data sets demonstrate that our algorithm outperforms the state-of-the-art approaches. PMID:27214900

  13. Estimation of subsurface geomodels by multi-objective stochastic optimization

    NASA Astrophysics Data System (ADS)

    Emami Niri, Mohammad; Lumley, David E.

    2016-06-01

    We present a new method to estimate subsurface geomodels using a multi-objective stochastic search technique that allows a variety of direct and indirect measurements to simultaneously constrain the earth model. Inherent uncertainties and noise in real data measurements may result in conflicting geological and geophysical datasets for a given area; a realistic earth model can then only be produced by combining the datasets in a defined optimal manner. One approach to solving this problem is by joint inversion of the various geological and/or geophysical datasets, and estimating an optimal model by optimizing a weighted linear combination of several separate objective functions which compare simulated and observed datasets. In the present work, we consider the joint inversion of multiple datasets for geomodel estimation, as a multi-objective optimization problem in which separate objective functions for each subset of the observed data are defined, followed by an unweighted simultaneous stochastic optimization to find the set of best compromise model solutions that fits the defined objectives, along the so-called "Pareto front". We demonstrate that geostatistically constrained initializations of the algorithm improves convergence speed and produces superior geomodel solutions. We apply our method to a 3D reservoir lithofacies model estimation problem which is constrained by a set of geological and geophysical data measurements and attributes, and assess the sensitivity of the resulting geomodels to changes in the parameters of the stochastic optimization algorithm and the presence of realistic seismic noise conditions.

  14. Tracing the efficient curve for multi-objective control-structure optimization

    NASA Technical Reports Server (NTRS)

    Rakowska, J.; Haftka, R. T.; Watson, L. T.

    1992-01-01

    A recently developed active set algorithm for tracing parameterized optima is adapted to multiobjective optimization. The algorithm traces a path of Kuhn-Tucker points using homotopy curve tracking techniques, and is based on identifying and maintaining the set of active constraints. Second order necessary optimality conditions are used to determine nonoptimal stationary points on the path. In the bi-objective optimization case the algorithm is used to trace the curve of efficient solution (Pareto optima). As an example, the algorithm is applied to the simultaneous minimization of the weight and control force of a ten-bar truss with two collocated sensors and actuators, with some interesting results.

  15. Multi-objective optimization in systematic conservation planning and the representation of genetic variability among populations.

    PubMed

    Schlottfeldt, S; Walter, M E M T; Carvalho, A C P L F; Soares, T N; Telles, M P C; Loyola, R D; Diniz-Filho, J A F

    2015-06-18

    Biodiversity crises have led scientists to develop strategies for achieving conservation goals. The underlying principle of these strategies lies in systematic conservation planning (SCP), in which there are at least 2 conflicting objectives, making it a good candidate for multi-objective optimization. Although SCP is typically applied at the species level (or hierarchically higher), it can be used at lower hierarchical levels, such as using alleles as basic units for analysis, for conservation genetics. Here, we propose a method of SCP using a multi-objective approach. We used non-dominated sorting genetic algorithm II in order to identify the smallest set of local populations of Dipteryx alata (baru) (a Brazilian Cerrado species) for conservation, representing the known genetic diversity and using allele frequency information associated with heterozygosity and Hardy-Weinberg equilibrium. We worked in 3 variations for the problem. First, we reproduced a previous experiment, but using a multi-objective approach. We found that the smallest set of populations needed to represent all alleles under study was 7, corroborating the results of the previous study, but with more distinct solutions. In the 2nd and 3rd variations, we performed simultaneous optimization of 4 and 5 objectives, respectively. We found similar but refined results for 7 populations, and a larger portfolio considering intra-specific diversity and persistence with populations ranging from 8-22. This is the first study to apply multi-objective algorithms to an SCP problem using alleles at the population level as basic units for analysis.

  16. Approximating convex Pareto surfaces in multiobjective radiotherapy planning

    SciTech Connect

    Craft, David L.; Halabi, Tarek F.; Shih, Helen A.; Bortfeld, Thomas R.

    2006-09-15

    Radiotherapy planning involves inherent tradeoffs: the primary mission, to treat the tumor with a high, uniform dose, is in conflict with normal tissue sparing. We seek to understand these tradeoffs on a case-to-case basis, by computing for each patient a database of Pareto optimal plans. A treatment plan is Pareto optimal if there does not exist another plan which is better in every measurable dimension. The set of all such plans is called the Pareto optimal surface. This article presents an algorithm for computing well distributed points on the (convex) Pareto optimal surface of a multiobjective programming problem. The algorithm is applied to intensity-modulated radiation therapy inverse planning problems, and results of a prostate case and a skull base case are presented, in three and four dimensions, investigating tradeoffs between tumor coverage and critical organ sparing.

  17. Toward a multi-objective decision support framework to support regulations of unconventional oil and gas development

    NASA Astrophysics Data System (ADS)

    Alongi, M.; Howard, C.; Kasprzyk, J. R.; Ryan, J. N.

    2015-12-01

    Unconventional oil and gas development (UOGD) using hydraulic fracturing and horizontal drilling has recently fostered an unprecedented acceleration in energy development. Regulations seek to protect environmental quality of areas surrounding UOGD, while maintaining economic benefits. One such regulation is a setback distance, which dictates the minimum proximity between an oil and gas well and an object such as a residential or commercial building, property line, or water source. In general, most setback regulations have been strongly politically motivated without a clear scientific basis for understanding the relationship between the setback distance and various performance outcomes. This presentation discusses a new decision support framework for setback regulations, as part of a large NSF-funded sustainability research network (SRN) on UOGD. The goal of the decision support framework is to integrate a wide array of scientific information from the SRN into a coherent framework that can help inform policy regarding UOGD. The decision support framework employs multiobjective evolutionary algorithm (MOEA) optimization coupled with simulation models of air quality and other performance-based outcomes on UOGD. The result of the MOEA optimization runs are quantitative tradeoff curves among different objectives. For example, one such curve could demonstrate air pollution concentrations versus estimates of energy development profits, for different levels of setback distance. Our results will also inform policy-relevant discussions surrounding UOGD such as comparing single- and multi-well pads, as well as regulations on the density of well development over a spatial area.

  18. Multi-Objective Optimization of Engineered Injection and Extraction to Remediate Sorbing Contaminants in Homogeneous and Heterogeneous Aquifers

    NASA Astrophysics Data System (ADS)

    Piscopo, A. N.; Neupauer, R.; Kasprzyk, J. R.

    2014-12-01

    Ex situ remediation of sorbing contaminants in groundwater aquifers is especially difficult due to the tendency of sorbing contaminants to remain attached to the soil matrix. Consequently, in situ remediation, which typically involves injecting a treatment chemical into the aquifer to degrade the contaminant, is a more effective option. To enhance contaminant degradation during in situ remediation, a sequence of injections and extractions of clean water can be performed to increase the contact of treatment chemical and contaminant to enable more reaction. This technique is known as Engineered Injection and Extraction (EIE). In prior work, EIE was simulated for contaminants with varying sorption properties and reaction rates using two heuristically-developed sequences of injections and extractions. These EIE sequences achieved nearly complete contaminant degradation for weakly-sorbing contaminants with fast reaction rates; however, the sequences were much less effective for strongly-sorbing contaminants with slow reaction rates. In this work, we use multi-objective evolutionary algorithms to optimize the design of EIE sequences to determine sequences that achieve high amount of contaminant degradation for strongly-sorbing contaminants with slow reaction rates. We consider both homogeneous and heterogeneous aquifers.

  19. Hybrid Evolutionary Approaches to Maximum Lifetime Routing and Energy Efficiency in Sensor Mesh Networks.

    PubMed

    Rahat, Alma A M; Everson, Richard M; Fieldsend, Jonathan E

    2015-01-01

    Mesh network topologies are becoming increasingly popular in battery-powered wireless sensor networks, primarily because of the extension of network range. However, multihop mesh networks suffer from higher energy costs, and the routing strategy employed directly affects the lifetime of nodes with limited energy resources. Hence when planning routes there are trade-offs to be considered between individual and system-wide battery lifetimes. We present a multiobjective routing optimisation approach using hybrid evolutionary algorithms to approximate the optimal trade-off between the minimum lifetime and the average lifetime of nodes in the network. In order to accomplish this combinatorial optimisation rapidly, our approach prunes the search space using k-shortest path pruning and a graph reduction method that finds candidate routes promoting long minimum lifetimes. When arbitrarily many routes from a node to the base station are permitted, optimal routes may be found as the solution to a well-known linear program. We present an evolutionary algorithm that finds good routes when each node is allowed only a small number of paths to the base station. On a real network deployed in the Victoria & Albert Museum, London, these solutions, using only three paths per node, are able to achieve minimum lifetimes of over 99% of the optimum linear program solution's time to first sensor battery failure. PMID:25950392

  20. Hybrid Evolutionary Approaches to Maximum Lifetime Routing and Energy Efficiency in Sensor Mesh Networks.

    PubMed

    Rahat, Alma A M; Everson, Richard M; Fieldsend, Jonathan E

    2015-01-01

    Mesh network topologies are becoming increasingly popular in battery-powered wireless sensor networks, primarily because of the extension of network range. However, multihop mesh networks suffer from higher energy costs, and the routing strategy employed directly affects the lifetime of nodes with limited energy resources. Hence when planning routes there are trade-offs to be considered between individual and system-wide battery lifetimes. We present a multiobjective routing optimisation approach using hybrid evolutionary algorithms to approximate the optimal trade-off between the minimum lifetime and the average lifetime of nodes in the network. In order to accomplish this combinatorial optimisation rapidly, our approach prunes the search space using k-shortest path pruning and a graph reduction method that finds candidate routes promoting long minimum lifetimes. When arbitrarily many routes from a node to the base station are permitted, optimal routes may be found as the solution to a well-known linear program. We present an evolutionary algorithm that finds good routes when each node is allowed only a small number of paths to the base station. On a real network deployed in the Victoria & Albert Museum, London, these solutions, using only three paths per node, are able to achieve minimum lifetimes of over 99% of the optimum linear program solution's time to first sensor battery failure.

  1. Borg: an auto-adaptive many-objective evolutionary computing framework.

    PubMed

    Hadka, David; Reed, Patrick

    2013-01-01

    This study introduces the Borg multi-objective evolutionary algorithm (MOEA) for many-objective, multimodal optimization. The Borg MOEA combines ε-dominance, a measure of convergence speed named ε-progress, randomized restarts, and auto-adaptive multioperator recombination into a unified optimization framework. A comparative study on 33 instances of 18 test problems from the DTLZ, WFG, and CEC 2009 test suites demonstrates Borg meets or exceeds six state of the art MOEAs on the majority of the tested problems. The performance for each test problem is evaluated using a 1,000 point Latin hypercube sampling of each algorithm's feasible parameterization space. The statistical performance of every sampled MOEA parameterization is evaluated using 50 replicate random seed trials. The Borg MOEA is not a single algorithm; instead it represents a class of algorithms whose operators are adaptively selected based on the problem. The adaptive discovery of key operators is of particular importance for benchmarking how variation operators enhance search for complex many-objective problems. PMID:22385134

  2. Multi-objective optimisation for a sustainable groundwater resources and agricultural management in arid coastal regions

    NASA Astrophysics Data System (ADS)

    Grundmann, Jens; Heck, Vera; Schütze, Niels

    2014-05-01

    The scarcity of freshwater in coastal arid regions, coupled with an ongoing population growth, makes optimal water management crucial. Excessive use of groundwater for irrigation in agriculture puts those regions at risk of saltwater intrusion which limits the agricultural opportunities. To solve these problems, a simulation based integrated water management system has been developed to ensure a long-term profitable and sustainable water resources and agricultural management. Within the system, a groundwater module, assessing the water resources availability, and an agricultural module, controlling irrigation and cultivation, are connected in an optimisation module, optimising the water management. To reduce the computational complexity of the optimisation procedure, surrogate models are applied which describe the behaviour of the groundwater and agriculture process models regarding the most relevant variables for management. Furthermore, the optimisation problem is decomposed into a two-step optimisation. An analytical inner optimisation estimates irrigation practices and crop patterns, while an outer evolutionary optimisation algorithm determines the overall water abstraction scenarios, based on results of the inner optimisation. By these two features, consequent surrogate model application and decomposition of optimisation, the computational complexity of the optimisation problem is reduced considerably, allowing the consideration of specific regional and temporal aspects in the management tool. The methodology is demonstrated by an exemplary application of the south Batinah region in the Sultanate of Oman which is affected by saltwater intrusion into a coastal aquifer system due to excessive groundwater withdrawal for irrigated agriculture. Due to contradicting objectives like profit-oriented agriculture vs. aquifer sustainability, multi-objective optimisation is performed. Optimisation runs for different simulation periods and management strategies show that a

  3. Universal approximators for multi-objective direct policy search in water reservoir management problems: a comparative analysis

    NASA Astrophysics Data System (ADS)

    Giuliani, Matteo; Mason, Emanuele; Castelletti, Andrea; Pianosi, Francesca

    2014-05-01

    The optimal operation of water resources systems is a wide and challenging problem due to non-linearities in the model and the objectives, high dimensional state-control space, and strong uncertainties in the hydroclimatic regimes. The application of classical optimization techniques (e.g., SDP, Q-learning, gradient descent-based algorithms) is strongly limited by the dimensionality of the system and by the presence of multiple, conflicting objectives. This study presents a novel approach which combines Direct Policy Search (DPS) and Multi-Objective Evolutionary Algorithms (MOEAs) to solve high-dimensional state and control space problems involving multiple objectives. DPS, also known as parameterization-simulation-optimization in the water resources literature, is a simulation-based approach where the reservoir operating policy is first parameterized within a given family of functions and, then, the parameters optimized with respect to the objectives of the management problem. The selection of a suitable class of functions to which the operating policy belong to is a key step, as it might restrict the search for the optimal policy to a subspace of the decision space that does not include the optimal solution. In the water reservoir literature, a number of classes have been proposed. However, many of these rules are based largely on empirical or experimental successes and they were designed mostly via simulation and for single-purpose reservoirs. In a multi-objective context similar rules can not easily inferred from the experience and the use of universal function approximators is generally preferred. In this work, we comparatively analyze two among the most common universal approximators: artificial neural networks (ANN) and radial basis functions (RBF) under different problem settings to estimate their scalability and flexibility in dealing with more and more complex problems. The multi-purpose HoaBinh water reservoir in Vietnam, accounting for hydropower

  4. Distributed Generation Planning using Peer Enhanced Multi-objective Teaching-Learning based Optimization in Distribution Networks

    NASA Astrophysics Data System (ADS)

    Selvam, Kayalvizhi; Vinod Kumar, D. M.; Siripuram, Ramakanth

    2016-06-01

    In this paper, an optimization technique called peer enhanced teaching learning based optimization (PeTLBO) algorithm is used in multi-objective problem domain. The PeTLBO algorithm is parameter less so it reduced the computational burden. The proposed peer enhanced multi-objective based TLBO (PeMOTLBO) algorithm has been utilized to find a set of non-dominated optimal solutions [distributed generation (DG) location and sizing in distribution network]. The objectives considered are: real power loss and the voltage deviation subjected to voltage limits and maximum penetration level of DG in distribution network. Since the DG considered is capable of injecting real and reactive power to the distribution network the power factor is considered as 0.85 lead. The proposed peer enhanced multi-objective optimization technique provides different trade-off solutions in order to find the best compromise solution a fuzzy set theory approach has been used. The effectiveness of this proposed PeMOTLBO is tested on IEEE 33-bus and Indian 85-bus distribution system. The performance is validated with Pareto fronts and two performance metrics (C-metric and S-metric) by comparing with robust multi-objective technique called non-dominated sorting genetic algorithm-II and also with the basic TLBO.

  5. Coupled Low-thrust Trajectory and System Optimization via Multi-Objective Hybrid Optimal Control

    NASA Technical Reports Server (NTRS)

    Vavrina, Matthew A.; Englander, Jacob Aldo; Ghosh, Alexander R.

    2015-01-01

    The optimization of low-thrust trajectories is tightly coupled with the spacecraft hardware. Trading trajectory characteristics with system parameters ton identify viable solutions and determine mission sensitivities across discrete hardware configurations is labor intensive. Local independent optimization runs can sample the design space, but a global exploration that resolves the relationships between the system variables across multiple objectives enables a full mapping of the optimal solution space. A multi-objective, hybrid optimal control algorithm is formulated using a multi-objective genetic algorithm as an outer loop systems optimizer around a global trajectory optimizer. The coupled problem is solved simultaneously to generate Pareto-optimal solutions in a single execution. The automated approach is demonstrated on two boulder return missions.

  6. An efficient local improvement operator for the multi-objective wireless sensor network deployment problem

    NASA Astrophysics Data System (ADS)

    Molina, Guillermo; Luna, Francisco; Nebro, Antonio J.; Alba, Enrique

    2011-10-01

    Wireless sensor network layout, also known as sensor node deployment, is a complex NP-complete optimization task that determines most of the functioning features of a wireless sensor network. Coverage, connectivity and lifetime (handled through its opposing parameter, power consumption), are three of the most important characteristics of the service, and are taken into consideration in this article within a multi-objective approach of the problem. Leveraging on the specific properties of the wireless sensor nodes and networks, the Proximity Avoidance Coverage-preserving Operator (PACO) for local improvement is presented, described and tested. The testbed consists of a set of state-of-the-art multi-objective optimization algorithms with different configurations, and problem instances of varying size. In all the scenarios, and more specially in the algorithmic settings that already produce high performance solutions, PACO has proven to be a robust enhancement to the raw optimization technique, without requiring additional computation, that easily scales through problem complexity.

  7. Design of silicone rubber according to requirements based on the multi-objective optimization of chemical reactions

    SciTech Connect

    Jia Yuxi; Sun Sheng; Liu Lili; Mu Yue; An Lijia

    2004-08-16

    The explicit expression between composition and mechanical properties of silicone rubber was derived from the physics of polymer elasticity, the implicit expression among material composition, reaction conditions and reaction efficiency was obtained from chemical thermodynamics and kinetics, and then an implicit multi-objective optimization model was constructed. Genetic algorithm was applied to optimize material composition and reaction conditions, and the finite element method of cross-linking reaction processes was used to solve multi-objective functions, on the basis of which a new optimization methodology of cross-linking reaction processes was established. Using this methodology, rubber materials can be designed according to pre-specified requirements.

  8. Incorporation of an evolutionary algorithm to estimate transfer-functions for a parameter regionalization scheme of a rainfall-runoff model

    NASA Astrophysics Data System (ADS)

    Klotz, Daniel; Herrnegger, Mathew; Schulz, Karsten

    2016-04-01

    This contribution presents a framework, which enables the use of an Evolutionary Algorithm (EA) for the calibration and regionalization of the hydrological model COSEROreg. COSEROreg uses an updated version of the HBV-type model COSERO (Kling et al. 2014) for the modelling of hydrological processes and is embedded in a parameter regionalization scheme based on Samaniego et al. (2010). The latter uses subscale-information to estimate model via a-priori chosen transfer functions (often derived from pedotransfer functions). However, the transferability of the regionalization scheme to different model-concepts and the integration of new forms of subscale information is not straightforward. (i) The usefulness of (new) single sub-scale information layers is unknown beforehand. (ii) Additionally, the establishment of functional relationships between these (possibly meaningless) sub-scale information layers and the distributed model parameters remain a central challenge in the implementation of a regionalization procedure. The proposed method theoretically provides a framework to overcome this challenge. The implementation of the EA encompasses the following procedure: First, a formal grammar is specified (Ryan et al., 1998). The construction of the grammar thereby defines the set of possible transfer functions and also allows to incorporate hydrological domain knowledge into the search itself. The EA iterates over the given space by combining parameterized basic functions (e.g. linear- or exponential functions) and sub-scale information layers into transfer functions, which are then used in COSEROreg. However, a pre-selection model is applied beforehand to sort out unfeasible proposals by the EA and to reduce the necessary model runs. A second optimization routine is used to optimize the parameters of the transfer functions proposed by the EA. This concept, namely using two nested optimization loops, is inspired by the idea of Lamarckian Evolution and Baldwin Effect

  9. Multiobjective trajectory optimization by goal programming with fuzzy decision

    NASA Astrophysics Data System (ADS)

    Suzuki, Shinji; Yoshizawa, Takeshi

    A sequential goal programming approach is presented to solve flight trajectory problems. Using a time integration algorithm, trajectory optimization problems were transformed into nonlinear optimization problems in terms of finite control variables at discrete time points. By regarding both the performance index and the design constraints as goals to be achieved and by prioritizing each goal, goal programming (GP) formulation can solve these optimal problems. In trajectory problems having multiobjectives such as the fuel consumption minimization and the final time minimization, a fuzzy decision making method is applied for the conflicting goals. The accuracy of the present method's solution is shown in a simple ascent trajectory problem having the analytical solutions. Finally, the method is applied to a flight path optimization of a jet-transport.

  10. Adaptive neuro-fuzzy inference system multi-objective optimization using the genetic algorithm/singular value decomposition method for modelling the discharge coefficient in rectangular sharp-crested side weirs

    NASA Astrophysics Data System (ADS)

    Khoshbin, Fatemeh; Bonakdari, Hossein; Hamed Ashraf Talesh, Seyed; Ebtehaj, Isa; Zaji, Amir Hossein; Azimi, Hamed

    2016-06-01

    In the present article, the adaptive neuro-fuzzy inference system (ANFIS) is employed to model the discharge coefficient in rectangular sharp-crested side weirs. The genetic algorithm (GA) is used for the optimum selection of membership functions, while the singular value decomposition (SVD) method helps in computing the linear parameters of the ANFIS results section (GA/SVD-ANFIS). The effect of each dimensionless parameter on discharge coefficient prediction is examined in five different models to conduct sensitivity analysis by applying the above-mentioned dimensionless parameters. Two different sets of experimental data are utilized to examine the models and obtain the best model. The study results indicate that the model designed through GA/SVD-ANFIS predicts the discharge coefficient with a good level of accuracy (mean absolute percentage error = 3.362 and root mean square error = 0.027). Moreover, comparing this method with existing equations and the multi-layer perceptron-artificial neural network (MLP-ANN) indicates that the GA/SVD-ANFIS method has superior performance in simulating the discharge coefficient of side weirs.

  11. Evolutionary thinking

    PubMed Central

    Hunt, Tam

    2014-01-01

    Evolution as an idea has a lengthy history, even though the idea of evolution is generally associated with Darwin today. Rebecca Stott provides an engaging and thoughtful overview of this history of evolutionary thinking in her 2013 book, Darwin's Ghosts: The Secret History of Evolution. Since Darwin, the debate over evolution—both how it takes place and, in a long war of words with religiously-oriented thinkers, whether it takes place—has been sustained and heated. A growing share of this debate is now devoted to examining how evolutionary thinking affects areas outside of biology. How do our lives change when we recognize that all is in flux? What can we learn about life more generally if we study change instead of stasis? Carter Phipps’ book, Evolutionaries: Unlocking the Spiritual and Cultural Potential of Science's Greatest Idea, delves deep into this relatively new development. Phipps generally takes as a given the validity of the Modern Synthesis of evolutionary biology. His story takes us into, as the subtitle suggests, the spiritual and cultural implications of evolutionary thinking. Can religion and evolution be reconciled? Can evolutionary thinking lead to a new type of spirituality? Is our culture already being changed in ways that we don't realize by evolutionary thinking? These are all important questions and Phipps book is a great introduction to this discussion. Phipps is an author, journalist, and contributor to the emerging “integral” or “evolutionary” cultural movement that combines the insights of Integral Philosophy, evolutionary science, developmental psychology, and the social sciences. He has served as the Executive Editor of EnlightenNext magazine (no longer published) and more recently is the co-founder of the Institute for Cultural Evolution, a public policy think tank addressing the cultural roots of America's political challenges. What follows is an email interview with Phipps. PMID:26478766

  12. IOT Overview: Optical Multi-Object Spectrographs

    NASA Astrophysics Data System (ADS)

    Schmidtobreick, L.; Bagnulo, S.; Jehin, E.; Marconi, G.; O'Brien, K.; Pompei, E.; Saviane, I.

    We give an introduction to the several instruments that ESO operates and which are able to perform optical multi-object spectroscopy. We point out the standard ways of reducing these spectra, the problems that occur, and the way we deal with them. A short introduction is given on how the quality control is performed.

  13. Robust multi-objective calibration strategies - chances for improving flood forecasting

    NASA Astrophysics Data System (ADS)

    Krauße, T.; Cullmann, J.; Saile, P.; Schmitz, G. H.

    2011-04-01

    Process-oriented rainfall-runoff models are designed to approximate the complex hydrologic processes within a specific catchment and in particular to simulate the discharge at the catchment outlet. Most of these models exhibit a high degree of complexity and require the determination of various parameters by calibration. Recently automatic calibration methods became popular in order to identify parameter vectors with high corresponding model performance. The model performance is often assessed by a purpose-oriented objective function. Practical experience suggests that in many situations one single objective function cannot adequately describe the model's ability to represent any aspect of the catchment's behaviour. This is regardless whether the objective is aggregated of several criteria that measure different (possibly opposite) aspects of the system behaviour. One strategy to circumvent this problem is to define multiple objective functions and to apply a multi-objective optimisation algorithm to identify the set of Pareto optimal or non-dominated solutions. One possible approach to estimate the Pareto set effectively and efficiently is the particle swarm optimisation (PSO). It has already been successfully applied in various other fields and has been reported to show effective and efficient performance. Krauße and Cullmann (2011b) presented a method entitled ROPEPSO which merges the strengths of PSO and data depth measures in order to identify robust parameter vectors for hydrological models. In this paper we present a multi-objective parameter estimation algorithm, entitled the Multi-Objective Robust Particle Swarm Parameter Estimation (MO-ROPE). The algorithm is a further development of the previously mentioned single-objective ROPEPSO approach. It applies a newly developed multi-objective particle swarm optimisation algorithm in order to identify non-dominated robust model parameter vectors. Subsequently it samples robust parameter vectors by the

  14. Fuzzy Mixed Assembly Line Sequencing and Scheduling Optimization Model Using Multiobjective Dynamic Fuzzy GA

    PubMed Central

    Tahriri, Farzad; Dawal, Siti Zawiah Md; Taha, Zahari

    2014-01-01

    A new multiobjective dynamic fuzzy genetic algorithm is applied to solve a fuzzy mixed-model assembly line sequencing problem in which the primary goals are to minimize the total make-span and minimize the setup number simultaneously. Trapezoidal fuzzy numbers are implemented for variables such as operation and travelling time in order to generate results with higher accuracy and representative of real-case data. An improved genetic algorithm called fuzzy adaptive genetic algorithm (FAGA) is proposed in order to solve this optimization model. In establishing the FAGA, five dynamic fuzzy parameter controllers are devised in which fuzzy expert experience controller (FEEC) is integrated with automatic learning dynamic fuzzy controller (ALDFC) technique. The enhanced algorithm dynamically adjusts the population size, number of generations, tournament candidate, crossover rate, and mutation rate compared with using fixed control parameters. The main idea is to improve the performance and effectiveness of existing GAs by dynamic adjustment and control of the five parameters. Verification and validation of the dynamic fuzzy GA are carried out by developing test-beds and testing using a multiobjective fuzzy mixed production assembly line sequencing optimization problem. The simulation results highlight that the performance and efficacy of the proposed novel optimization algorithm are more efficient than the performance of the standard genetic algorithm in mixed assembly line sequencing model. PMID:24982962

  15. Toward an evolutionary-predictive foundation for creativity : Commentary on "Human creativity, evolutionary algorithms, and predictive representations: The mechanics of thought trials" by Arne Dietrich and Hilde Haider, 2014 (Accepted pending minor revisions for publication in Psychonomic Bulletin & Review).

    PubMed

    Gabora, Liane; Kauffman, Stuart

    2016-04-01

    Dietrich and Haider (Psychonomic Bulletin & Review, 21 (5), 897-915, 2014) justify their integrative framework for creativity founded on evolutionary theory and prediction research on the grounds that "theories and approaches guiding empirical research on creativity have not been supported by the neuroimaging evidence." Although this justification is controversial, the general direction holds promise. This commentary clarifies points of disagreement and unresolved issues, and addresses mis-applications of evolutionary theory that lead the authors to adopt a Darwinian (versus Lamarckian) approach. To say that creativity is Darwinian is not to say that it consists of variation plus selection - in the everyday sense of the term - as the authors imply; it is to say that evolution is occurring because selection is affecting the distribution of randomly generated heritable variation across generations. In creative thought the distribution of variants is not key, i.e., one is not inclined toward idea A because 60 % of one's candidate ideas are variants of A while only 40 % are variants of B; one is inclined toward whichever seems best. The authors concede that creative variation is partly directed; however, the greater the extent to which variants are generated non-randomly, the greater the extent to which the distribution of variants can reflect not selection but the initial generation bias. Since each thought in a creative process can alter the selective criteria against which the next is evaluated, there is no demarcation into generations as assumed in a Darwinian model. We address the authors' claim that reduced variability and individuality are more characteristic of Lamarckism than Darwinian evolution, and note that a Lamarckian approach to creativity has addressed the challenge of modeling the emergent features associated with insight.

  16. An Efficacious Multi-Objective Fuzzy Linear Programming Approach for Optimal Power Flow Considering Distributed Generation

    PubMed Central

    Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri

    2016-01-01

    This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality. PMID:26954783

  17. An Efficacious Multi-Objective Fuzzy Linear Programming Approach for Optimal Power Flow Considering Distributed Generation.

    PubMed

    Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri

    2016-01-01

    This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality. PMID:26954783

  18. An Efficacious Multi-Objective Fuzzy Linear Programming Approach for Optimal Power Flow Considering Distributed Generation.

    PubMed

    Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri

    2016-01-01

    This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality.

  19. "Notice of Violation of IEEE Publication Principles" Multiobjective Reinforcement Learning: A Comprehensive Overview.

    PubMed

    Liu, Chunming; Xu, Xin; Hu, Dewen

    2013-04-29

    Reinforcement learning is a powerful mechanism for enabling agents to learn in an unknown environment, and most reinforcement learning algorithms aim to maximize some numerical value, which represents only one long-term objective. However, multiple long-term objectives are exhibited in many real-world decision and control problems; therefore, recently, there has been growing interest in solving multiobjective reinforcement learning (MORL) problems with multiple conflicting objectives. The aim of this paper is to present a comprehensive overview of MORL. In this paper, the basic architecture, research topics, and naive solutions of MORL are introduced at first. Then, several representative MORL approaches and some important directions of recent research are reviewed. The relationships between MORL and other related research are also discussed, which include multiobjective optimization, hierarchical reinforcement learning, and multi-agent reinforcement learning. Finally, research challenges and open problems of MORL techniques are highlighted.

  20. Design for sustainability of industrial symbiosis based on emergy and multi-objective particle swarm optimization.

    PubMed

    Ren, Jingzheng; Liang, Hanwei; Dong, Liang; Sun, Lu; Gao, Zhiqiu

    2016-08-15

    Industrial symbiosis provides novel and practical pathway to the design for the sustainability. Decision support tool for its verification is necessary for practitioners and policy makers, while to date, quantitative research is limited. The objective of this work is to present an innovative approach for supporting decision-making in the design for the sustainability with the implementation of industrial symbiosis in chemical complex. Through incorporating the emergy theory, the model is formulated as a multi-objective approach that can optimize both the economic benefit and sustainable performance of the integrated industrial system. A set of emergy based evaluation index are designed. Multi-objective Particle Swarm Algorithm is proposed to solve the model, and the decision-makers are allowed to choose the suitable solutions form the Pareto solutions. An illustrative case has been studied by the proposed method, a few of compromises between high profitability and high sustainability can be obtained for the decision-makers/stakeholders to make decision.

  1. Multi-objective control for active vehicle suspension with wheelbase preview

    NASA Astrophysics Data System (ADS)

    Li, Panshuo; Lam, James; Cheung, Kie Chung

    2014-10-01

    This paper presents a multi-objective control method with wheelbase preview for active vehicle suspension. A four-degree-of-freedom half-car model with active suspension is considered in this study. H∞ norm and generalized H2 norm are used to improve ride quality and ensure that hard constraints are satisfied. Disturbances at the front wheel are obtained as preview information for the rear wheel. Static output-feedback is utilized in designing controllers, the solution is derived by iterative linear matrix inequality (ILMI) and cone complementarity linearization (CCL) algorithms. Simulation results confirm that multi-objective control with wheelbase preview achieves a significant improvement of ride quality (a maximum 27 percent and 60 percent improvement on vertical and angular acceleration, respectively) comparing with that of control without preview, while suspension deflections, tyre deflections and actuator forces remaining within given bounds. The extent of the improvement on the ride quality for different amount of preview information used is also illustrated.

  2. A note on the estimation of the Pareto efficient set for multiobjective matrix permutation problems.

    PubMed

    Brusco, Michael J; Steinley, Douglas

    2012-02-01

    There are a number of important problems in quantitative psychology that require the identification of a permutation of the n rows and columns of an n × n proximity matrix. These problems encompass applications such as unidimensional scaling, paired-comparison ranking, and anti-Robinson forms. The importance of simultaneously incorporating multiple objective criteria in matrix permutation applications is well recognized in the literature; however, to date, there has been a reliance on weighted-sum approaches that transform the multiobjective problem into a single-objective optimization problem. Although exact solutions to these single-objective problems produce supported Pareto efficient solutions to the multiobjective problem, many interesting unsupported Pareto efficient solutions may be missed. We illustrate the limitation of the weighted-sum approach with an example from the psychological literature and devise an effective heuristic algorithm for estimating both the supported and unsupported solutions of the Pareto efficient set.

  3. Evolutionary awareness.

    PubMed

    Gorelik, Gregory; Shackelford, Todd K

    2014-08-27

    In this article, we advance the concept of "evolutionary awareness," a metacognitive framework that examines human thought and emotion from a naturalistic, evolutionary perspective. We begin by discussing the evolution and current functioning of the moral foundations on which our framework rests. Next, we discuss the possible applications of such an evolutionarily-informed ethical framework to several domains of human behavior, namely: sexual maturation, mate attraction, intrasexual competition, culture, and the separation between various academic disciplines. Finally, we discuss ways in which an evolutionary awareness can inform our cross-generational activities-which we refer to as "intergenerational extended phenotypes"-by helping us to construct a better future for ourselves, for other sentient beings, and for our environment.

  4. Application of evolutionary algorithm methods to polypeptide folding: Comparison with experimental results for unsolvated Ac-(Ala-Gly-Gly)5-LysH+

    PubMed Central

    Damsbo, Martin; Kinnear, Brian S.; Hartings, Matthew R.; Ruhoff, Peder T.; Jarrold, Martin F.; Ratner, Mark A.

    2004-01-01

    We present an evolutionary method for finding the low-energy conformations of polypeptides. The application, called foldaway,is based on a generic framework and uses several evolutionary operators as well as local optimization to navigate the complex energy landscape of polypeptides. It maintains two complementary representations of the structures and uses the charmm force field for evaluating the energies. The method is applied to unsolvated Met-enkephalin and Ac-(Ala-Gly-Gly)5-Lys+H+. Unsolvated Ac-(Ala-Gly-Gly)5-Lys+H+ has been the object of recent experimental studies using ion mobility measurements. It has a flat energy landscape where helical and globular conformations have similar energies. foldaway locates several large groups of structures not found in previous molecular dynamics simulations for this peptide, including compact globular conformations, which are probably present in the experiments. However, the relative energies of the different conformations found by foldaway do not accurately match the relative energies expected from the experimental observations. PMID:15123828

  5. Evolutionary medicine.

    PubMed

    Swynghedauw, B

    2004-04-01

    Nothing in biology makes sense except in the light of evolution. Evolutionary, or darwinian, medicine takes the view that contemporary diseases result from incompatibility between the conditions under which the evolutionary pressure had modified our genetic endowment and the lifestyle and dietary habits in which we are currently living, including the enhanced lifespan, the changes in dietary habits and the lack of physical activity. An evolutionary trait express a genetic polymorphism which finally improve fitness, it needs million years to become functional. A limited genetic diversity is a necessary prerequisite for evolutionary medicine. Nevertheless, search for a genetic endowment would become nearly impossible if the human races were genetically different. From a genetic point of view, homo sapiens, is homogeneous, and the so-called human races have only a socio-economic definition. Historically, Heart Failure, HF, had an infectious origin and resulted from mechanical overload which triggered mechanoconversion by using phylogenically ancient pleiotropic pathways. Adaptation was mainly caused by negative inotropism. Recently, HF was caused by a complex remodelling caused by the trophic effects of mechanics, ischemia, senescence, diabetes and, neurohormones. The generally admitted hypothesis is that cancers were largely caused by a combination of modern reproductive and dietary lifestyles mismatched with genotypic traits, plus the longer time available for a confrontation. Such a concept is illustrated for skin and breast cancers, and also for the link between cancer risk and dietary habits.

  6. Multiobjective power dispatch using fuzzy linear programming

    SciTech Connect

    Yang, H.T.; Huang, C.M.; Lee, H.M.; Huang, C.L.

    1995-12-31

    This paper presents a new fuzzy linear programming (FLP) approach to determine the multiobjective power dispatch problem by taking into account fuel cost and environmental impact of NO{sub x} emission. The FLP technique first separately optimizes each objective. To further offer the best compromise solution out of the non-inferiority domain obtained by the FLP based operator, a preference index of distance membership function is used to aid the power system operator to adjust the generation levels in a most economic manner but also with minimal impact on the environments. The effectiveness of the proposed approach has been demonstrated on a 10-bus 5-generator system. Numerical results reveal that the FLP is a promising and efficient approach for dealing with the multiobjective nature of power dispatch problem.

  7. Multi-objective vs. single-objective calibration of a hydrologic model using single- and multi-objective screening

    NASA Astrophysics Data System (ADS)

    Mai, Juliane; Cuntz, Matthias; Shafii, Mahyar; Zink, Matthias; Schäfer, David; Thober, Stephan; Samaniego, Luis; Tolson, Bryan

    2016-04-01

    Hydrologic models are traditionally calibrated against observed streamflow. Recent studies have shown however, that only a few global model parameters are constrained using this kind of integral signal. They can be identified using prior screening techniques. Since different objectives might constrain different parameters, it is advisable to use multiple information to calibrate those models. One common approach is to combine these multiple objectives (MO) into one single objective (SO) function and allow the use of a SO optimization algorithm. Another strategy is to consider the different objectives separately and apply a MO Pareto optimization algorithm. In this study, two major research questions will be addressed: 1) How do multi-objective calibrations compare with corresponding single-objective calibrations? 2) How much do calibration results deteriorate when the number of calibrated parameters is reduced by a prior screening technique? The hydrologic model employed in this study is a distributed hydrologic model (mHM) with 52 model parameters, i.e. transfer coefficients. The model uses grid cells as a primary hydrologic unit, and accounts for processes like snow accumulation and melting, soil moisture dynamics, infiltration, surface runoff, evapotranspiration, subsurface storage and discharge generation. The model is applied in three distinct catchments over Europe. The SO calibrations are performed using the Dynamically Dimensioned Search (DDS) algorithm with a fixed budget while the MO calibrations are achieved using the Pareto Dynamically Dimensioned Search (PA-DDS) algorithm allowing for the same budget. The two objectives used here are the Nash Sutcliffe Efficiency (NSE) of the simulated streamflow and the NSE of the logarithmic transformation. It is shown that the SO DDS results are located close to the edges of the Pareto fronts of the PA-DDS. The MO calibrations are hence preferable due to their supply of multiple equivalent solutions from which the

  8. Improving quantitative structure-activity relationships through multiobjective optimization.

    PubMed

    Nicolotti, Orazio; Giangreco, Ilenia; Miscioscia, Teresa Fabiola; Carotti, Angelo

    2009-10-01

    A multiobjective optimization algorithm was proposed for the automated integration of structure- and ligand-based molecular design. Driven by a genetic algorithm, the herein proposed approach enabled the detection of a number of trade-off QSAR models accounting simultaneously for two independent objectives. The first was biased toward best regressions among docking scores and biological affinities; the second minimized the atom displacements from a properly established crystal-based binding topology. Based on the concept of dominance, 3D QSAR equivalent models profiled the Pareto frontier and were, thus, designated as nondominated solutions of the search space. K-means clustering was, then, operated to select a representative subset of the available trade-off models. These were effectively subjected to GRID/GOLPE analyses for quantitatively featuring molecular determinants of ligand binding affinity. More specifically, it was demonstrated that a) diverse binding conformations occurred on the basis of the ligand ability to profitably contact different part of protein binding site; b) enzyme selectivity was better approached and interpreted by combining diverse equivalent models; and c) trade-off models were successful and even better than docking virtual screening, in retrieving at high sensitivity active hits from a large pool of chemically similar decoys. The approach was tested on a large series, very well-known to QSAR practitioners, of 3-amidinophenylalanine inhibitors of thrombin and trypsin, two serine proteases having rather different biological actions despite a high sequence similarity. PMID:19785453

  9. New technique for real-time distortion-invariant multiobject recognition and classification

    NASA Astrophysics Data System (ADS)

    Hong, Rutong; Li, Xiaoshun; Hong, En; Wang, Zuyi; Wei, Hongan

    2001-04-01

    A real-time hybrid distortion-invariant OPR system was established to make 3D multiobject distortion-invariant automatic pattern recognition. Wavelet transform technique was used to make digital preprocessing of the input scene, to depress the noisy background and enhance the recognized object. A three-layer backpropagation artificial neural network was used in correlation signal post-processing to perform multiobject distortion-invariant recognition and classification. The C-80 and NOA real-time processing ability and the multithread programming technology were used to perform high speed parallel multitask processing and speed up the post processing rate to ROIs. The reference filter library was constructed for the distortion version of 3D object model images based on the distortion parameter tolerance measuring as rotation, azimuth and scale. The real-time optical correlation recognition testing of this OPR system demonstrates that using the preprocessing, post- processing, the nonlinear algorithm os optimum filtering, RFL construction technique and the multithread programming technology, a high possibility of recognition and recognition rate ere obtained for the real-time multiobject distortion-invariant OPR system. The recognition reliability and rate was improved greatly. These techniques are very useful to automatic target recognition.

  10. Multi-objective and reliable control for trajectory-tracking of rendezvous via parameter-dependent Lyapunov functions

    NASA Astrophysics Data System (ADS)

    Ma, Lichao; Meng, Xiuyun; Liu, Zaozhen; Du, Lifu

    2012-12-01

    A reliable, multi-objective and state-feedback controller design algorithm is presented for trajectory-tracking of circular-orbit rendezvous, in which H∞ performance, H2 performance and regional pole placement are taken into account. Given actuator failures and exogenous disturbances, the dynamical model is described as a polytopic system. By applying parameter-dependent Lyapunov functions and introducing slack matrices, the condition for the existence of multi-objective controller is described as a non-convex optimization subject to nonlinear matrix inequality constraints. Then, a hybrid genetic algorithm is proposed to obtain the desired controller. Numerical simulations are given to show that the proposed method can (a) handle actuator failures and exogenous disturbances effectively, and (b) provide better disturbance-attenuation performances than conventional methods.

  11. Collaborative Emission Reduction Model Based on Multi-Objective Optimization for Greenhouse Gases and Air Pollutants.

    PubMed

    Meng, Qing-chun; Rong, Xiao-xia; Zhang, Yi-min; Wan, Xiao-le; Liu, Yuan-yuan; Wang, Yu-zhi

    2016-01-01

    CO2 emission influences not only global climate change but also international economic and political situations. Thus, reducing the emission of CO2, a major greenhouse gas, has become a major issue in China and around the world as regards preserving the environmental ecology. Energy consumption from coal, oil, and natural gas is primarily responsible for the production of greenhouse gases and air pollutants such as SO2 and NOX, which are the main air pollutants in China. In this study, a mathematical multi-objective optimization method was adopted to analyze the collaborative emission reduction of three kinds of gases on the basis of their common restraints in different ways of energy consumption to develop an economic, clean, and efficient scheme for energy distribution. The first part introduces the background research, the collaborative emission reduction for three kinds of gases, the multi-objective optimization, the main mathematical modeling, and the optimization method. The second part discusses the four mathematical tools utilized in this study, which include the Granger causality test to analyze the causality between air quality and pollutant emission, a function analysis to determine the quantitative relation between energy consumption and pollutant emission, a multi-objective optimization to set up the collaborative optimization model that considers energy consumption, and an optimality condition analysis for the multi-objective optimization model to design the optimal-pole algorithm and obtain an efficient collaborative reduction scheme. In the empirical analysis, the data of pollutant emission and final consumption of energies of Tianjin in 1996-2012 was employed to verify the effectiveness of the model and analyze the efficient solution and the corresponding dominant set. In the last part, several suggestions for collaborative reduction are recommended and the drawn conclusions are stated.

  12. Collaborative Emission Reduction Model Based on Multi-Objective Optimization for Greenhouse Gases and Air Pollutants

    PubMed Central

    Zhang, Yi-min; Wan, Xiao-le; Liu, Yuan-yuan; Wang, Yu-zhi

    2016-01-01

    CO2 emission influences not only global climate change but also international economic and political situations. Thus, reducing the emission of CO2, a major greenhouse gas, has become a major issue in China and around the world as regards preserving the environmental ecology. Energy consumption from coal, oil, and natural gas is primarily responsible for the production of greenhouse gases and air pollutants such as SO2 and NOX, which are the main air pollutants in China. In this study, a mathematical multi-objective optimization method was adopted to analyze the collaborative emission reduction of three kinds of gases on the basis of their common restraints in different ways of energy consumption to develop an economic, clean, and efficient scheme for energy distribution. The first part introduces the background research, the collaborative emission reduction for three kinds of gases, the multi-objective optimization, the main mathematical modeling, and the optimization method. The second part discusses the four mathematical tools utilized in this study, which include the Granger causality test to analyze the causality between air quality and pollutant emission, a function analysis to determine the quantitative relation between energy consumption and pollutant emission, a multi-objective optimization to set up the collaborative optimization model that considers energy consumption, and an optimality condition analysis for the multi-objective optimization model to design the optimal-pole algorithm and obtain an efficient collaborative reduction scheme. In the empirical analysis, the data of pollutant emission and final consumption of energies of Tianjin in 1996–2012 was employed to verify the effectiveness of the model and analyze the efficient solution and the corresponding dominant set. In the last part, several suggestions for collaborative reduction are recommended and the drawn conclusions are stated. PMID:27010658

  13. Collaborative Emission Reduction Model Based on Multi-Objective Optimization for Greenhouse Gases and Air Pollutants.

    PubMed

    Meng, Qing-chun; Rong, Xiao-xia; Zhang, Yi-min; Wan, Xiao-le; Liu, Yuan-yuan; Wang, Yu-zhi

    2016-01-01

    CO2 emission influences not only global climate change but also international economic and political situations. Thus, reducing the emission of CO2, a major greenhouse gas, has become a major issue in China and around the world as regards preserving the environmental ecology. Energy consumption from coal, oil, and natural gas is primarily responsible for the production of greenhouse gases and air pollutants such as SO2 and NOX, which are the main air pollutants in China. In this study, a mathematical multi-objective optimization method was adopted to analyze the collaborative emission reduction of three kinds of gases on the basis of their common restraints in different ways of energy consumption to develop an economic, clean, and efficient scheme for energy distribution. The first part introduces the background research, the collaborative emission reduction for three kinds of gases, the multi-objective optimization, the main mathematical modeling, and the optimization method. The second part discusses the four mathematical tools utilized in this study, which include the Granger causality test to analyze the causality between air quality and pollutant emission, a function analysis to determine the quantitative relation between energy consumption and pollutant emission, a multi-objective optimization to set up the collaborative optimization model that considers energy consumption, and an optimality condition analysis for the multi-objective optimization model to design the optimal-pole algorithm and obtain an efficient collaborative reduction scheme. In the empirical analysis, the data of pollutant emission and final consumption of energies of Tianjin in 1996-2012 was employed to verify the effectiveness of the model and analyze the efficient solution and the corresponding dominant set. In the last part, several suggestions for collaborative reduction are recommended and the drawn conclusions are stated. PMID:27010658

  14. Gene expression data clustering using a multiobjective symmetry based clustering technique.

    PubMed

    Saha, Sriparna; Ekbal, Asif; Gupta, Kshitija; Bandyopadhyay, Sanghamitra

    2013-11-01

    The invention of microarrays has rapidly changed the state of biological and biomedical research. Clustering algorithms play an important role in clustering microarray data sets where identifying groups of co-expressed genes are a very difficult task. Here we have posed the problem of clustering the microarray data as a multiobjective clustering problem. A new symmetry based fuzzy clustering technique is developed to solve this problem. The effectiveness of the proposed technique is demonstrated on five publicly available benchmark data sets. Results are compared with some widely used microarray clustering techniques. Statistical and biological significance tests have also been carried out. PMID:24209942

  15. Calculating complete and exact Pareto front for multiobjective optimization: a new deterministic approach for discrete problems.

    PubMed

    Hu, Xiao-Bing; Wang, Ming; Di Paolo, Ezequiel

    2013-06-01

    Searching the Pareto front for multiobjective optimization problems usually involves the use of a population-based search algorithm or of a deterministic method with a set of different single aggregate objective functions. The results are, in fact, only approximations of the real Pareto front. In this paper, we propose a new deterministic approach capable of fully determining the real Pareto front for those discrete problems for which it is possible to construct optimization algorithms to find the k best solutions to each of the single-objective problems. To this end, two theoretical conditions are given to guarantee the finding of the actual Pareto front rather than its approximation. Then, a general methodology for designing a deterministic search procedure is proposed. A case study is conducted, where by following the general methodology, a ripple-spreading algorithm is designed to calculate the complete exact Pareto front for multiobjective route optimization. When compared with traditional Pareto front search methods, the obvious advantage of the proposed approach is its unique capability of finding the complete Pareto front. This is illustrated by the simulation results in terms of both solution quality and computational efficiency.

  16. Evolutionary software for autonomous path planning

    SciTech Connect

    Couture, S; Hage, M

    1999-02-10

    This research project demonstrated the effectiveness of using evolutionary software techniques in the development of path-planning algorithms and control programs for mobile vehicles in radioactive environments. The goal was to take maximum advantage of the programmer's intelligence by tasking the programmer with encoding the measures of success for a path-planning algorithm, rather than developing the path-planning algorithms themselves. Evolutionary software development techniques could then be used to develop algorithms most suitable to the particular environments of interest. The measures of path-planning success were encoded in the form of a fitness function for an evolutionary software development engine. The task for the evolutionary software development engine was to evaluate the performance of individual algorithms, select the best performers for the population based on the fitness function, and breed them to evolve the next generation of algorithms. The process continued for a set number of generations or until the algorithm converged to an optimal solution. The task environment was the navigation of a rover from an initial location to a goal, then to a processing point, in an environment containing physical and radioactive obstacles. Genetic algorithms were developed for a variety of environmental configurations. Algorithms were simple and non-robust strings of behaviors, but they could be evolved to be nearly optimal for a given environment. In addition, a genetic program was evolved in the form of a control algorithm that operates at every motion of the robot. Programs were more complex than algorithms and less optimal in a given environment. However, after training in a variety of different environments, they were more robust and could perform acceptably in environments they were not trained in. This paper describes the evolutionary software development engine and the performance of algorithms and programs evolved by it for the chosen task.

  17. Fuzzy multi-objective chance-constrained programming model for hazardous materials transportation

    NASA Astrophysics Data System (ADS)

    Du, Jiaoman; Yu, Lean; Li, Xiang

    2016-04-01

    Hazardous materials transportation is an important and hot issue of public safety. Based on the shortest path model, this paper presents a fuzzy multi-objective programming model that minimizes the transportation risk to life, travel time and fuel consumption. First, we present the risk model, travel time model and fuel consumption model. Furthermore, we formulate a chance-constrained programming model within the framework of credibility theory, in which the lengths of arcs in the transportation network are assumed to be fuzzy variables. A hybrid intelligent algorithm integrating fuzzy simulation and genetic algorithm is designed for finding a satisfactory solution. Finally, some numerical examples are given to demonstrate the efficiency of the proposed model and algorithm.

  18. Evolutionary Dynamics of Biological Games

    NASA Astrophysics Data System (ADS)

    Nowak, Martin A.; Sigmund, Karl

    2004-02-01

    Darwinian dynamics based on mutation and selection form the core of mathematical models for adaptation and coevolution of biological populations. The evolutionary outcome is often not a fitness-maximizing equilibrium but can include oscillations and chaos. For studying frequency-dependent selection, game-theoretic arguments are more appropriate than optimization algorithms. Replicator and adaptive dynamics describe short- and long-term evolution in phenotype space and have found applications ranging from animal behavior and ecology to speciation, macroevolution, and human language. Evolutionary game theory is an essential component of a mathematical and computational approach to biology.

  19. Multi-objective optimization of aerostructures inspired by nature

    NASA Astrophysics Data System (ADS)

    Kearney, Adam C.

    The focus of this doctoral work is on the optimization of aircraft wing structures. The optimization was performed against the shape, size and topology of simple aircraft wing designs. A simple morphing wing actuator optimization is performed as well as a wing panel buckling topology optimization. This is done with biologically-inspired mathematical systems including a map L-system, a multi-objective genetic algorithm, and cellular structures represented by Voronoi diagrams. As with most aircraft optimizations, both studies aim to minimize the total weight of a wing while simultaneously meeting stiffness and strength requirements. Optimization is performed with the scripts developed in MATLAB as well as through the use of finite element codes, NASTRAN and LS-Dyna. The intent of this methodology is to develop unique designs inspired by nature and optimized through natural selection. The optimal designs are those with minimal weight as well as additional requirements specific to the problems. The designs and methodology have the potential to be of use in determining minimum weight designs in aircraft structures. A literature review of optimization techniques, methodology and method validation, and optimization comparisons is presented. The buckling panel optimization considered here also includes composite buckling failure and manufacturing assumptions for composite panels. The panels are optimized for mass and strength by controlling the laminate stacking sequence, stiffener size, and topology. The morphing wing is optimized for actuator loading and redundancy.

  20. Multi-Object Spectroscopy with MUSE

    NASA Astrophysics Data System (ADS)

    Kelz, A.; Kamann, S.; Urrutia, T.; Weilbacher, P.; Bacon, R.

    2016-10-01

    Since 2014, MUSE, the Multi-Unit Spectroscopic Explorer, is in operation at the ESO-VLT. It combines a superb spatial sampling with a large wavelength coverage. By design, MUSE is an integral-field instrument, but its field-of-view and large multiplex make it a powerful tool for multi-object spectroscopy too. Every data-cube consists of 90,000 image-sliced spectra and 3700 monochromatic images. In autumn 2014, the observing programs with MUSE have commenced, with targets ranging from distant galaxies in the Hubble Deep Field to local stellar populations, star formation regions and globular clusters. This paper provides a brief summary of the key features of the MUSE instrument and its complex data reduction software. Some selected examples are given, how multi-object spectroscopy for hundreds of continuum and emission-line objects can be obtained in wide, deep and crowded fields with MUSE, without the classical need for any target pre-selection.

  1. Robust multi-objective calibration strategies - possibilities for improving flood forecasting

    NASA Astrophysics Data System (ADS)

    Krauße, T.; Cullmann, J.; Saile, P.; Schmitz, G. H.

    2012-10-01

    Process-oriented rainfall-runoff models are designed to approximate the complex hydrologic processes within a specific catchment and in particular to simulate the discharge at the catchment outlet. Most of these models exhibit a high degree of complexity and require the determination of various parameters by calibration. Recently, automatic calibration methods became popular in order to identify parameter vectors with high corresponding model performance. The model performance is often assessed by a purpose-oriented objective function. Practical experience suggests that in many situations one single objective function cannot adequately describe the model's ability to represent any aspect of the catchment's behaviour. This is regardless of whether the objective is aggregated of several criteria that measure different (possibly opposite) aspects of the system behaviour. One strategy to circumvent this problem is to define multiple objective functions and to apply a multi-objective optimisation algorithm to identify the set of Pareto optimal or non-dominated solutions. Nonetheless, there is a major disadvantage of automatic calibration procedures that understand the problem of model calibration just as the solution of an optimisation problem: due to the complex-shaped response surface, the estimated solution of the optimisation problem can result in different near-optimum parameter vectors that can lead to a very different performance on the validation data. Bárdossy and Singh (2008) studied this problem for single-objective calibration problems using the example of hydrological models and proposed a geometrical sampling approach called Robust Parameter Estimation (ROPE). This approach applies the concept of data depth in order to overcome the shortcomings of automatic calibration procedures and find a set of robust parameter vectors. Recent studies confirmed the effectivity of this method. However, all ROPE approaches published so far just identify robust model

  2. Applying the partitioned multiobjective risk method (PMRM) to portfolio selection.

    PubMed

    Reyes Santos, Joost; Haimes, Yacov Y

    2004-06-01

    The analysis of risk-return tradeoffs and their practical applications to portfolio analysis paved the way for Modern Portfolio Theory (MPT), which won Harry Markowitz a 1992 Nobel Prize in Economics. A typical approach in measuring a portfolio's expected return is based on the historical returns of the assets included in a portfolio. On the other hand, portfolio risk is usually measured using volatility, which is derived from the historical variance-covariance relationships among the portfolio assets. This article focuses on assessing portfolio risk, with emphasis on extreme risks. To date, volatility is a major measure of risk owing to its simplicity and validity for relatively small asset price fluctuations. Volatility is a justified measure for stable market performance, but it is weak in addressing portfolio risk under aberrant market fluctuations. Extreme market crashes such as that on October 19, 1987 ("Black Monday") and catastrophic events such as the terrorist attack of September 11, 2001 that led to a four-day suspension of trading on the New York Stock Exchange (NYSE) are a few examples where measuring risk via volatility can lead to inaccurate predictions. Thus, there is a need for a more robust metric of risk. By invoking the principles of the extreme-risk-analysis method through the partitioned multiobjective risk method (PMRM), this article contributes to the modeling of extreme risks in portfolio performance. A measure of an extreme portfolio risk, denoted by f(4), is defined as the conditional expectation for a lower-tail region of the distribution of the possible portfolio returns. This article presents a multiobjective problem formulation consisting of optimizing expected return and f(4), whose solution is determined using Evolver-a software that implements a genetic algorithm. Under business-as-usual market scenarios, the results of the proposed PMRM portfolio selection model are found to be compatible with those of the volatility-based model

  3. Applying the partitioned multiobjective risk method (PMRM) to portfolio selection.

    PubMed

    Reyes Santos, Joost; Haimes, Yacov Y

    2004-06-01

    The analysis of risk-return tradeoffs and their practical applications to portfolio analysis paved the way for Modern Portfolio Theory (MPT), which won Harry Markowitz a 1992 Nobel Prize in Economics. A typical approach in measuring a portfolio's expected return is based on the historical returns of the assets included in a portfolio. On the other hand, portfolio risk is usually measured using volatility, which is derived from the historical variance-covariance relationships among the portfolio assets. This article focuses on assessing portfolio risk, with emphasis on extreme risks. To date, volatility is a major measure of risk owing to its simplicity and validity for relatively small asset price fluctuations. Volatility is a justified measure for stable market performance, but it is weak in addressing portfolio risk under aberrant market fluctuations. Extreme market crashes such as that on October 19, 1987 ("Black Monday") and catastrophic events such as the terrorist attack of September 11, 2001 that led to a four-day suspension of trading on the New York Stock Exchange (NYSE) are a few examples where measuring risk via volatility can lead to inaccurate predictions. Thus, there is a need for a more robust metric of risk. By invoking the principles of the extreme-risk-analysis method through the partitioned multiobjective risk method (PMRM), this article contributes to the modeling of extreme risks in portfolio performance. A measure of an extreme portfolio risk, denoted by f(4), is defined as the conditional expectation for a lower-tail region of the distribution of the possible portfolio returns. This article presents a multiobjective problem formulation consisting of optimizing expected return and f(4), whose solution is determined using Evolver-a software that implements a genetic algorithm. Under business-as-usual market scenarios, the results of the proposed PMRM portfolio selection model are found to be compatible with those of the volatility-based model

  4. Multi-objective generation scheduling with hybrid energy resources

    NASA Astrophysics Data System (ADS)

    Trivedi, Manas

    emission targets. Since minimizing the emissions and fuel cost are conflicting objectives, a practical approach based on multi-objective optimization is applied to obtain compromised solutions in a single simulation run using genetic algorithm. These solutions are known as non-inferior or Pareto-optimal solutions, graphically illustrated by the trade-off curves between criterions fuel cost and pollutant emission. The efficacy of the proposed approach is illustrated with the help of different sample test cases. This research would be useful for society, electric utilities, consultants, regulatory bodies, policy makers and planners.

  5. Data-based robust multiobjective optimization of interconnected processes: energy efficiency case study in papermaking.

    PubMed

    Afshar, Puya; Brown, Martin; Maciejowski, Jan; Wang, Hong

    2011-12-01

    Reducing energy consumption is a major challenge for "energy-intensive" industries such as papermaking. A commercially viable energy saving solution is to employ data-based optimization techniques to obtain a set of "optimized" operational settings that satisfy certain performance indices. The difficulties of this are: 1) the problems of this type are inherently multicriteria in the sense that improving one performance index might result in compromising the other important measures; 2) practical systems often exhibit unknown complex dynamics and several interconnections which make the modeling task difficult; and 3) as the models are acquired from the existing historical data, they are valid only locally and extrapolations incorporate risk of increasing process variability. To overcome these difficulties, this paper presents a new decision support system for robust multiobjective optimization of interconnected processes. The plant is first divided into serially connected units to model the process, product quality, energy consumption, and corresponding uncertainty measures. Then multiobjective gradient descent algorithm is used to solve the problem in line with user's preference information. Finally, the optimization results are visualized for analysis and decision making. In practice, if further iterations of the optimization algorithm are considered, validity of the local models must be checked prior to proceeding to further iterations. The method is implemented by a MATLAB-based interactive tool DataExplorer supporting a range of data analysis, modeling, and multiobjective optimization techniques. The proposed approach was tested in two U.K.-based commercial paper mills where the aim was reducing steam consumption and increasing productivity while maintaining the product quality by optimization of vacuum pressures in forming and press sections. The experimental results demonstrate the effectiveness of the method.

  6. Multistage and multiobjective formulations of globally optimal upgradable expansions for electric power distribution systems

    NASA Astrophysics Data System (ADS)

    Vaziri Yazdi Pin, Mohammad

    Electric power distribution systems are the last high voltage link in the chain of production, transport, and delivery of the electric energy, the fundamental goals of which are to supply the users' demand safely, reliably, and economically. The number circuit miles traversed by distribution feeders in the form of visible overhead or imbedded underground lines, far exceed those of all other bulk transport circuitry in the transmission system. Development and expansion of the distribution systems, similar to other systems, is directly proportional to the growth in demand and requires careful planning. While growth of electric demand has recently slowed through efforts in the area of energy management, the need for a continued expansion seems inevitable for the near future. Distribution system and expansions are also independent of current issues facing both the suppliers and the consumers of electrical energy. For example, deregulation, as an attempt to promote competition by giving more choices to the consumers, while it will impact the suppliers' planning strategies, it cannot limit the demand growth or the system expansion in the global sense. Curiously, despite presence of technological advancements and a 40-year history of contributions in the area, many of the major utilities still relay on experience and resort to rudimentary techniques when planning expansions. A comprehensive literature review of the contributions and careful analyses of the proposed algorithms for distribution expansion, confirmed that the problem is a complex, multistage and multiobjective problem for which a practical solution remains to be developed. In this research, based on the 15-year experience of a utility engineer, the practical expansion problem has been clearly defined and the existing deficiencies in the previous work identified and analyzed. The expansion problem has been formulated as a multistage planning problem in line with a natural course of development and industry

  7. Evolutionary Design in Biology

    NASA Astrophysics Data System (ADS)

    Wiese, Kay C.

    Much progress has been achieved in recent years in molecular biology and genetics. The sheer volume of data in the form of biological sequences has been enormous and efficient methods for dealing with these huge amounts of data are needed. In addition, the data alone does not provide information on the workings of biological systems; hence much research effort has focused on designing mathematical and computational models to address problems from molecular biology. Often, the terms bioinformatics and computational biology are used to refer to the research fields concerning themselves with designing solutions to molecular problems in biology. However, there is a slight distinction between bioinformatics and computational biology: the former is concerned with managing the enormous amounts of biological data and extracting information from it, while the latter is more concerned with the design and development of new algorithms to address problems such as protein or RNA folding. However, the boundary is blurry, and there is no consistent usage of the terms. We will use the term bioinformatics to encompass both fields. To cover all areas of research in bioinformatics is beyond the scope of this section and we refer the interested reader to [2] for a general introduction. A large part of what bioinformatics is concerned about is evolution and function of biological systems on a molecular level. Evolutionary computation and evolutionary design are concerned with developing computational systems that "mimic" certain aspects of natural evolution (mutation, crossover, selection, fitness). Much of the inner workings of natural evolutionary systems have been copied, sometimes in modified format into evolutionary computation systems. Artificial neural networks mimic the functioning of simple brain cell clusters. Fuzzy systems are concerned with the "fuzzyness" in decision making, similar to a human expert. These three computational paradigms fall into the category of

  8. Neurocontroller analysis via evolutionary network minimization.

    PubMed

    Ganon, Zohar; Keinan, Alon; Ruppin, Eytan

    2006-01-01

    This study presents a new evolutionary network minimization (ENM) algorithm. Neurocontroller minimization is beneficial for finding small parsimonious networks that permit a better understanding of their workings. The ENM algorithm is specifically geared to an evolutionary agents setup, as it does not require any explicit supervised training error, and is very easily incorporated in current evolutionary algorithms. ENM is based on a standard genetic algorithm with an additional step during reproduction in which synaptic connections are irreversibly eliminated. It receives as input a successfully evolved neurocontroller and aims to output a pruned neurocontroller, while maintaining the original fitness level. The small neurocontrollers produced by ENM provide upper bounds on the neurocontroller size needed to perform a given task successfully, and can provide for more effcient hardware implementations. PMID:16859448

  9. Evolutionary engineering for industrial microbiology.

    PubMed

    Vanee, Niti; Fisher, Adam B; Fong, Stephen S

    2012-01-01

    Superficially, evolutionary engineering is a paradoxical field that balances competing interests. In natural settings, evolution iteratively selects and enriches subpopulations that are best adapted to a particular ecological niche using random processes such as genetic mutation. In engineering desired approaches utilize rational prospective design to address targeted problems. When considering details of evolutionary and engineering processes, more commonality can be found. Engineering relies on detailed knowledge of the problem parameters and design properties in order to predict design outcomes that would be an optimized solution. When detailed knowledge of a system is lacking, engineers often employ algorithmic search strategies to identify empirical solutions. Evolution epitomizes this iterative optimization by continuously diversifying design options from a parental design, and then selecting the progeny designs that represent satisfactory solutions. In this chapter, the technique of applying the natural principles of evolution to engineer microbes for industrial applications is discussed to highlight the challenges and principles of evolutionary engineering.

  10. Theoretical developments in evolutionary computation

    NASA Astrophysics Data System (ADS)

    Fogel, David B.

    1999-11-01

    Recent developments in the theory of evolutionary computation offer evidence and proof that overturns several conventionally held beliefs. In particular, the no free lunch theorem and other related theorems show that there can be no best evolutionary algorithm, and that no particular variation operator or selection mechanism provides a general advantage over another choice. Furthermore, the fundamental nature of the notion of schema processing is called into question by recent theory that shows that the schema theorem does not hold when schema fitness is stochastic. Moreover, the analysis that underlies schema theory, namely the k- armed bandit analysis, does not generate a sampling plan that yields an optimal allocation of trials, as has been suggested in the literature for almost 25 years. The importance of these new findings is discussed in the context of future progress in the field of evolutionary computation.

  11. Identification of mutated driver pathways in cancer using a multi-objective optimization model.

    PubMed

    Zheng, Chun-Hou; Yang, Wu; Chong, Yan-Wen; Xia, Jun-Feng

    2016-05-01

    New-generation high-throughput technologies, including next-generation sequencing technology, have been extensively applied to solve biological problems. As a result, large cancer genomics projects such as the Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium are producing large amount of rich and diverse data in multiple cancer types. The identification of mutated driver genes and driver pathways from these data is a significant challenge. Genome aberrations in cancer cells can be divided into two types: random 'passenger mutation' and functional 'driver mutation'. In this paper, we introduced a Multi-objective Optimization model based on a Genetic Algorithm (MOGA) to solve the maximum weight submatrix problem, which can be employed to identify driver genes and driver pathways promoting cancer proliferation. The maximum weight submatrix problem defined to find mutated driver pathways is based on two specific properties, i.e., high coverage and high exclusivity. The multi-objective optimization model can adjust the trade-off between high coverage and high exclusivity. We proposed an integrative model by combining gene expression data and mutation data to improve the performance of the MOGA algorithm in a biological context. PMID:26995027

  12. Toward a unifying framework for evolutionary processes

    PubMed Central

    Paixão, Tiago; Badkobeh, Golnaz; Barton, Nick; Çörüş, Doğan; Dang, Duc-Cuong; Friedrich, Tobias; Lehre, Per Kristian; Sudholt, Dirk; Sutton, Andrew M.; Trubenová, Barbora

    2015-01-01

    The theory of population genetics and evolutionary computation have been evolving separately for nearly 30 years. Many results have been independently obtained in both fields and many others are unique to its respective field. We aim to bridge this gap by developing a unifying framework for evolutionary processes that allows both evolutionary algorithms and population genetics models to be cast in the same formal framework. The framework we present here decomposes the evolutionary process into its several components in order to facilitate the identification of similarities between different models. In particular, we propose a classification of evolutionary operators based on the defining properties of the different components. We cast several commonly used operators from both fields into this common framework. Using this, we map different evolutionary and genetic algorithms to different evolutionary regimes and identify candidates with the most potential for the translation of results between the fields. This provides a unified description of evolutionary processes and represents a stepping stone towards new tools and results to both fields. PMID:26215686

  13. Multi-Objective Scheduling for the Cluster II Constellation

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.; Giuliano, Mark

    2011-01-01

    This paper describes the application of the MUSE multiobjecctive scheduling framework to the Cluster II WBD scheduling domain. Cluster II is an ESA four-spacecraft constellation designed to study the plasma environment of the Earth and it's magnetosphere. One of the instruments on each of the four spacecraft is the Wide Band Data (WBD) plasma wave experiment. We have applied the MUSE evolutionary algorithm to the scheduling problem represented by this instrument, and the result has been adopted and utilized by the WBD schedulers for nearly a year. This paper describes the WBD scheduling problem, its representation in MUSE, and some of the visualization elements that provide insight into objective value tradeoffs.

  14. A hierarchical-multiobjective framework for risk management

    NASA Technical Reports Server (NTRS)

    Haimes, Yacov Y.; Li, Duan

    1991-01-01

    A broad hierarchical-multiobjective framework is established and utilized to methodologically address the management of risk. United into the framework are the hierarchical character of decision-making, the multiple decision-makers at separate levels within the hierarchy, the multiobjective character of large-scale systems, the quantitative/empirical aspects, and the qualitative/normative/judgmental aspects. The methodological components essentially consist of hierarchical-multiobjective coordination, risk of extreme events, and impact analysis. Examples of applications of the framework are presented. It is concluded that complex and interrelated forces require an analysis of trade-offs between engineering analysis and societal preferences, as in the hierarchical-multiobjective framework, to successfully address inherent risk.

  15. Aircraft design for mission performance using nonlinear multiobjective optimization methods

    NASA Technical Reports Server (NTRS)

    Dovi, Augustine R.; Wrenn, Gregory A.

    1990-01-01

    A new technique which converts a constrained optimization problem to an unconstrained one where conflicting figures of merit may be simultaneously considered was combined with a complex mission analysis system. The method is compared with existing single and multiobjective optimization methods. A primary benefit from this new method for multiobjective optimization is the elimination of separate optimizations for each objective, which is required by some optimization methods. A typical wide body transport aircraft is used for the comparative studies.

  16. The Combined Multi-objective Optimization Design for a Light Guide Rod

    NASA Astrophysics Data System (ADS)

    Yang, Yu-Sen; Shih, Chun-Yao; Chien, Hong-Yao; Fung, Rong-Fong

    2013-06-01

    The light guide rod (LGR) has been popularly used for the vehicles, and the automobile lamp industries need mass production to match this trend. This paper aims to develop a systemic way to find the best parameters' combination for the LGR, and the parameters are usually restricted to some levels and random values. In this paper, the LGR example with two optical performances of illuminance flux and uniformity is to be optimized by use of the real-coded genetic algorithm (RGA) and grey relational analysis (GRA). The illuminance flux and uniformity of the best parameters' combination are obtained and compared with the initial set. Comparisons with Taguchi-Grey can improve 5% of gain and comparisons with Pareto genetic algorithm (PaGA) can improve 1.7% of gain. The combined multi-objective optimization can saving 7% time and it is found that the new proposed method has positive gains in performances.

  17. Multiobjective sensitivity analysis and optimization of a distributed hydrologic model MOBIDIC

    NASA Astrophysics Data System (ADS)

    Yang, J.; Castelli, F.; Chen, Y.

    2014-03-01

    Calibration of distributed hydrologic models usually involves how to deal with the large number of distributed parameters and optimization problems with multiple but often conflicting objectives which arise in a natural fashion. This study presents a multiobjective sensitivity and optimization approach to handle these problems for a distributed hydrologic model MOBIDIC, which combines two sensitivity analysis techniques (Morris method and State Dependent Parameter method) with a multiobjective optimization (MOO) approach ϵ-NSGAII. This approach was implemented to calibrate MOBIDIC with its application to the Davidson watershed, North Carolina with three objective functions, i.e., standardized root mean square error of logarithmic transformed discharge, water balance index, and mean absolute error of logarithmic transformed flow duration curve, and its results were compared with those with a single objective optimization (SOO) with the traditional Nelder-Mead Simplex algorithm used in MOBIDIC by taking the objective function as the Euclidean norm of these three objectives. Results show: (1) the two sensitivity analysis techniques are effective and efficient to determine the sensitive processes and insensitive parameters: surface runoff and evaporation are very sensitive processes to all three objective functions, while groundwater recession and soil hydraulic conductivity are not sensitive and were excluded in the optimization; (2) both MOO and SOO lead to acceptable simulations, e.g., for MOO, average Nash-Sutcliffe is 0.75 in the calibration period and 0.70 in the validation period; (3) evaporation and surface runoff shows similar importance to watershed water balance while the contribution of baseflow can be ignored; (4) compared to SOO which was dependent of initial starting location, MOO provides more insight on parameter sensitivity and conflicting characteristics of these objective functions. Multiobjective sensitivity analysis and optimization

  18. Evolutionary approach to image reconstruction from projections

    NASA Astrophysics Data System (ADS)

    Nakao, Zensho; Ali, Fathelalem F.; Takashibu, Midori; Chen, Yen-Wei

    1997-10-01

    We present an evolutionary approach for reconstructing CT images; the algorithm reconstructs two-dimensional unknown images from four one-dimensional projections. A genetic algorithm works on a randomly generated population of strings each of which contains encodings of an image. The traditional, as well as new, genetic operators are applied on each generation. The mean square error between the projection data of the image encoded into a string and original projection data is used to estimate the string fitness. A Laplacian constraint term is included in the fitness function of the genetic algorithm for handling smooth images. Two new modified versions of the original genetic algorithm are presented. Results obtained by the original algorithm and the modified versions are compared to those obtained by the well-known algebraic reconstruction technique (ART), and it was found that the evolutionary method is more effective than ART in the particular case of limiting projection directions to four.

  19. Valuing hydrological alteration in multi-objective water resources management

    NASA Astrophysics Data System (ADS)

    Bizzi, Simone; Pianosi, Francesca; Soncini-Sessa, Rodolfo

    2012-11-01

    SummaryThe management of water through the impoundment of rivers by dams and reservoirs is necessary to support key human activities such as hydropower production, agriculture and flood risk mitigation. Advances in multi-objective optimization techniques and ever growing computing power make it possible to design reservoir operating policies that represent Pareto-optimal tradeoffs between multiple interests. On the one hand, such optimization methods can enhance performances of commonly targeted objectives (such as hydropower production or water supply), on the other hand they risk strongly penalizing all the interests not directly (i.e. mathematically) included in the optimization algorithm. The alteration of the downstream hydrological regime is a well established cause of ecological degradation and its evaluation and rehabilitation is commonly required by recent legislation (as the Water Framework Directive in Europe). However, it is rarely embedded in reservoir optimization routines and, even when explicitly considered, the criteria adopted for its evaluation are doubted and not commonly trusted, undermining the possibility of real implementation of environmentally friendly policies. The main challenges in defining and assessing hydrological alterations are: how to define a reference state (referencing); how to define criteria upon which to build mathematical indicators of alteration (measuring); and finally how to aggregate the indicators in a single evaluation index (valuing) that can serve as objective function in the optimization problem. This paper aims to address these issues by: (i) discussing the benefits and constrains of different approaches to referencing, measuring and valuing hydrological alteration; (ii) testing two alternative indices of hydrological alteration, one based on the established framework of Indicators of Hydrological Alteration (Richter et al., 1996), and one satisfying the mathematical properties required by widely used optimization

  20. Multiobjective optimisation of bogie suspension to boost speed on curves

    NASA Astrophysics Data System (ADS)

    Milad Mousavi-Bideleh, Seyed; Berbyuk, Viktor

    2016-01-01

    To improve safety and maximum admissible speed on different operational scenarios, multiobjective optimisation of bogie suspension components of a one-car railway vehicle model is considered. The vehicle model has 50 degrees of freedom and is developed in multibody dynamics software SIMPACK. Track shift force, running stability, and risk of derailment are selected as safety objective functions. The improved maximum admissible speeds of the vehicle on curves are determined based on the track plane accelerations up to 1.5 m/s2. To attenuate the number of design parameters for optimisation and improve the computational efficiency, a global sensitivity analysis is accomplished using the multiplicative dimensional reduction method (M-DRM). A multistep optimisation routine based on genetic algorithm (GA) and MATLAB/SIMPACK co-simulation is executed at three levels. The bogie conventional secondary and primary suspension components are chosen as the design parameters in the first two steps, respectively. In the last step semi-active suspension is in focus. The input electrical current to magnetorheological yaw dampers is optimised to guarantee an appropriate safety level. Semi-active controllers are also applied and the respective effects on bogie dynamics are explored. The safety Pareto optimised results are compared with those associated with in-service values. The global sensitivity analysis and multistep approach significantly reduced the number of design parameters and improved the computational efficiency of the optimisation. Furthermore, using the optimised values of design parameters give the possibility to run the vehicle up to 13% faster on curves while a satisfactory safety level is guaranteed. The results obtained can be used in Pareto optimisation and active bogie suspension design problems.

  1. Parameter Estimation of Computationally Expensive Watershed Models Through Efficient Multi-objective Optimization and Interactive Decision Analytics

    NASA Astrophysics Data System (ADS)

    Akhtar, Taimoor; Shoemaker, Christine

    2016-04-01

    Watershed model calibration is inherently a multi-criteria problem. Conflicting trade-offs exist between different quantifiable calibration criterions indicating the non-existence of a single optimal parameterization. Hence, many experts prefer a manual approach to calibration where the inherent multi-objective nature of the calibration problem is addressed through an interactive, subjective, time-intensive and complex decision making process. Multi-objective optimization can be used to efficiently identify multiple plausible calibration alternatives and assist calibration experts during the parameter estimation process. However, there are key challenges to the use of multi objective optimization in the parameter estimation process which include: 1) multi-objective optimization usually requires many model simulations, which is difficult for complex simulation models that are computationally expensive; and 2) selection of one from numerous calibration alternatives provided by multi-objective optimization is non-trivial. This study proposes a "Hybrid Automatic Manual Strategy" (HAMS) for watershed model calibration to specifically address the above-mentioned challenges. HAMS employs a 3-stage framework for parameter estimation. Stage 1 incorporates the use of an efficient surrogate multi-objective algorithm, GOMORS, for identification of numerous calibration alternatives within a limited simulation evaluation budget. The novelty of HAMS is embedded in Stages 2 and 3 where an interactive visual and metric based analytics framework is available as a decision support tool to choose a single calibration from the numerous alternatives identified in Stage 1. Stage 2 of HAMS provides a goodness-of-fit measure / metric based interactive framework for identification of a small subset (typically less than 10) of meaningful and diverse set of calibration alternatives from the numerous alternatives obtained in Stage 1. Stage 3 incorporates the use of an interactive visual

  2. Transonic Wing Shape Optimization Using a Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.; Pulliam, Thomas H.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    A method for aerodynamic shape optimization based on a genetic algorithm approach is demonstrated. The algorithm is coupled with a transonic full potential flow solver and is used to optimize the flow about transonic wings including multi-objective solutions that lead to the generation of pareto fronts. The results indicate that the genetic algorithm is easy to implement, flexible in application and extremely reliable.

  3. A multi-objective optimization model for hub network design under uncertainty: An inexact rough-interval fuzzy approach

    NASA Astrophysics Data System (ADS)

    Niakan, F.; Vahdani, B.; Mohammadi, M.

    2015-12-01

    This article proposes a multi-objective mixed-integer model to optimize the location of hubs within a hub network design problem under uncertainty. The considered objectives include minimizing the maximum accumulated travel time, minimizing the total costs including transportation, fuel consumption and greenhouse emissions costs, and finally maximizing the minimum service reliability. In the proposed model, it is assumed that for connecting two nodes, there are several types of arc in which their capacity, transportation mode, travel time, and transportation and construction costs are different. Moreover, in this model, determining the capacity of the hubs is part of the decision-making procedure and balancing requirements are imposed on the network. To solve the model, a hybrid solution approach is utilized based on inexact programming, interval-valued fuzzy programming and rough interval programming. Furthermore, a hybrid multi-objective metaheuristic algorithm, namely multi-objective invasive weed optimization (MOIWO), is developed for the given problem. Finally, various computational experiments are carried out to assess the proposed model and solution approaches.

  4. A multi-objective optimization approach accurately resolves protein domain architectures

    PubMed Central

    Bernardes, J.S.; Vieira, F.R.J.; Zaverucha, G.; Carbone, A.

    2016-01-01

    Motivation: Given a protein sequence and a number of potential domains matching it, what are the domain content and the most likely domain architecture for the sequence? This problem is of fundamental importance in protein annotation, constituting one of the main steps of all predictive annotation strategies. On the other hand, when potential domains are several and in conflict because of overlapping domain boundaries, finding a solution for the problem might become difficult. An accurate prediction of the domain architecture of a multi-domain protein provides important information for function prediction, comparative genomics and molecular evolution. Results: We developed DAMA (Domain Annotation by a Multi-objective Approach), a novel approach that identifies architectures through a multi-objective optimization algorithm combining scores of domain matches, previously observed multi-domain co-occurrence and domain overlapping. DAMA has been validated on a known benchmark dataset based on CATH structural domain assignments and on the set of Plasmodium falciparum proteins. When compared with existing tools on both datasets, it outperforms all of them. Availability and implementation: DAMA software is implemented in C++ and the source code can be found at http://www.lcqb.upmc.fr/DAMA. Contact: juliana.silva_bernardes@upmc.fr or alessandra.carbone@lip6.fr Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26458889

  5. Long Series Multi-objectives Optimal Operation of Water And Sediment Regulation

    NASA Astrophysics Data System (ADS)

    Bai, T.; Jin, W.

    2015-12-01

    Secondary suspended river in Inner Mongolia reaches have formed and the security of reach and ecological health of the river are threatened. Therefore, researches on water-sediment regulation by cascade reservoirs are urgent and necessary. Under this emergency background, multi-objectives water and sediment regulation are studied in this paper. Firstly, multi-objective optimal operation models of Longyangxia and Liujiaxia cascade reservoirs are established. Secondly, based on constraints handling and feasible search space techniques, the Non-dominated Sorting Genetic Algorithm (NSGA-II) is greatly improved to solve the model. Thirdly, four different scenarios are set. It is demonstrated that: (1) scatter diagrams of perato front are obtained to show optimal solutions of power generation maximization, sediment maximization and the global equilibrium solutions between the two; (2) the potentiality of water-sediment regulation by Longyangxia and Liujiaxia cascade reservoirs are analyzed; (3) with the increasing water supply in future, conflict between water supply and water-sediment regulation occurred, and the sustainability of water and sediment regulation will confront with negative influences for decreasing transferable water in cascade reservoirs; (4) the transfer project has less benefit for water-sediment regulation. The research results have an important practical significance and application on water-sediment regulation by cascade reservoirs in the Upper Yellow River, to construct water and sediment control system in the whole Yellow River basin.

  6. A niched Pareto tabu search for multi-objective optimal design of groundwater remediation systems

    NASA Astrophysics Data System (ADS)

    Yang, Yun; Wu, Jianfeng; Sun, Xiaomin; Wu, Jichun; Zheng, Chunmiao

    2013-05-01

    This study presents a new multi-objective optimization method, the niched Pareto tabu search (NPTS), for optimal design of groundwater remediation systems. The proposed NPTS is then coupled with the commonly used flow and transport code, MODFLOW and MT3DMS, to search for the near Pareto-optimal tradeoffs of groundwater remediation strategies. The difference between the proposed NPTS and the existing multiple objective tabu search (MOTS) lies in the use of the niche selection strategy and fitness archiving to maintain the diversity of the optimal solutions along the Pareto front and avoid repetitive calculations of the objective functions associated with the flow and transport model. Sensitivity analysis of the NPTS parameters is evaluated through a synthetic pump-and-treat remediation application involving two conflicting objectives, minimizations of both remediation cost and contaminant mass remaining in the aquifer. Moreover, the proposed NPTS is applied to a large-scale pump-and-treat groundwater remediation system of the field site at the Massachusetts Military Reservation (MMR) in Cape Cod, Massachusetts, involving minimizations of both total pumping rates and contaminant mass remaining in the aquifer. Additional comparison of the results based on the NPTS with those obtained from other two methods, namely the single objective tabu search (SOTS) and the nondominated sorting genetic algorithm II (NSGA-II), further indicates that the proposed NPTS has desirable computation efficiency, stability, and robustness and is a promising tool for optimizing the multi-objective design of groundwater remediation systems.

  7. Development of a pump-turbine runner based on multiobjective optimization

    NASA Astrophysics Data System (ADS)

    Xuhe, W.; Baoshan, Z.; Lei, T.; Jie, Z.; Shuliang, C.

    2014-03-01

    As a key component of reversible pump-turbine unit, pump-turbine runner rotates at pump or turbine direction according to the demand of power grid, so higher efficiencies under both operating modes have great importance for energy saving. In the present paper, a multiobjective optimization design strategy, which includes 3D inverse design method, CFD calculations, response surface method (RSM) and multiobjective genetic algorithm (MOGA), is introduced to develop a model pump-turbine runner for middle-high head pumped storage plant. Parameters that controlling blade shape, such as blade loading and blade lean angle at high pressure side are chosen as input parameters, while runner efficiencies under both pump and turbine modes are selected as objective functions. In order to validate the availability of the optimization design system, one runner configuration from Pareto front is manufactured for experimental research. Test results show that the highest unit efficiency is 91.0% under turbine mode and 90.8% under pump mode for the designed runner, of which prototype efficiencies are 93.88% and 93.27% respectively. Viscous CFD calculations for full passage model are also conducted, which aim at finding out the hydraulic improvement from internal flow analyses.

  8. Design for sustainability of industrial symbiosis based on emergy and multi-objective particle swarm optimization.

    PubMed

    Ren, Jingzheng; Liang, Hanwei; Dong, Liang; Sun, Lu; Gao, Zhiqiu

    2016-08-15

    Industrial symbiosis provides novel and practical pathway to the design for the sustainability. Decision support tool for its verification is necessary for practitioners and policy makers, while to date, quantitative research is limited. The objective of this work is to present an innovative approach for supporting decision-making in the design for the sustainability with the implementation of industrial symbiosis in chemical complex. Through incorporating the emergy theory, the model is formulated as a multi-objective approach that can optimize both the economic benefit and sustainable performance of the integrated industrial system. A set of emergy based evaluation index are designed. Multi-objective Particle Swarm Algorithm is proposed to solve the model, and the decision-makers are allowed to choose the suitable solutions form the Pareto solutions. An illustrative case has been studied by the proposed method, a few of compromises between high profitability and high sustainability can be obtained for the decision-makers/stakeholders to make decision. PMID:27110990

  9. Pareto archived dynamically dimensioned search with hypervolume-based selection for multi-objective optimization

    NASA Astrophysics Data System (ADS)

    Asadzadeh, Masoud; Tolson, Bryan

    2013-12-01

    Pareto archived dynamically dimensioned search (PA-DDS) is a parsimonious multi-objective optimization algorithm with only one parameter to diminish the user's effort for fine-tuning algorithm parameters. This study demonstrates that hypervolume contribution (HVC) is a very effective selection metric for PA-DDS and Monte Carlo sampling-based HVC is very effective for higher dimensional problems (five objectives in this study). PA-DDS with HVC performs comparably to algorithms commonly applied to water resources problems (ɛ-NSGAII and AMALGAM under recommended parameter values). Comparisons on the CEC09 competition show that with sufficient computational budget, PA-DDS with HVC performs comparably to 13 benchmark algorithms and shows improved relative performance as the number of objectives increases. Lastly, it is empirically demonstrated that the total optimization runtime of PA-DDS with HVC is dominated (90% or higher) by solution evaluation runtime whenever evaluation exceeds 10 seconds/solution. Therefore, optimization algorithm runtime associated with the unbounded archive of PA-DDS is negligible in solving computationally intensive problems.

  10. Multiobjective process optimization of a power unit

    SciTech Connect

    Garduno-Ramirez, R.; Lee, K.Y.

    1999-11-01

    Recent years have witnessed an increased participation of fossil fuel power units (FFPU) in wide-range load-following duties in order to match current power demand patterns and to deal with uncertain economic contexts. This mode of operation imposes high physical stress on the main components and leads to conflicting operational and control situations, since most power units were designed to operate most efficiently at constant rated conditions. The needs for extended periods without maintenance and replacement, compliance with stringent emission regulations and efficient operation requirements, call for the development of effective plant wide optimization and control methods and systems. Supervisory control, as an interface between the feedback control loops and the economic dispatch and unit commitment systems at upper control layers in power systems, could certainly play a key role in this regard. This paper presents a systematic procedure to generate optimal set-points for the feedback control loops in a FFPU from a given unit load demand profile. The method is flexible enough to accommodate any number of set-points. Also, the optimization procedure is formulated as a multiobjective optimization problem for which the form and number of the objective functions, as well as their preferences, may be modified as required. This approach facilitates adaptation to different operating policies and the realization of performance trade-off analyses.

  11. An Opto-MEMS Multiobject Spectrograph

    NASA Astrophysics Data System (ADS)

    Kearney, K.; Ninkov, Z.; Zwarg, D.

    2000-05-01

    Optical MEMS (Micro-Electro-Mechanical-Structures) are an enabling technology for a new class of optical instrumentation designs. An opto-MEMS device consists of an array of microfabricated structures, each of which modulates the phase and/or amplitude of an incident light beam. Typically the devices consist of an array of moveable micromirrors - each of which reflects an incident beam in a unique direction (tilt), or with a unique phase shift (piston). One widely available opto-MEMS device is the Texas Instruments' Digital Micromirror Device (DMD). The DMD is an array of 16 micron x 16 micron square mirrors postioned on a 17 micron pitch. Each mirror can tilt +/- 10 degrees from the normal - reflecting a normally incident light beam +/- 20 degrees. By positioning the DMD in an intermediate image plane in an optical system, portions of the image can be directed into- or out-of the input pupil of the follow-on imaging optics. RIT is utilizing the DMD to construct a prototype multiobject spectrograph (RIT-MOS) for visible observations with terrestrial telescopes. The DMD array replaces the input slit of an imaging spectrograph, forming a 'virtual', programmable slit assembly. By acquiring a pre-image of the astronomical field, it is possible to select a multidude of objects, and to program the DMD to pass only those objects into the input optics of the imaging spectrograph. We will report on the design and characterizatotion of the RIT-MOS, as well as preliminary imaging results.

  12. Product quality multi-objective dryer design

    SciTech Connect

    Kiranoudis, C.T.; Maroulis, Z.B.; Marinos-Kouris, D.

    1999-11-01

    Design of conveyor-belt dryers constitutes a mathematical programming problem involving the evaluation of appropriate structural and operational process variables so that total annual plant cost involved is optimized. The increasing need for dehydrated products of the highest quality, imposes the development of criteria that, together with cost, determine the design rules for drying processes. Quality of dehydrated products is a complex resultant of properties characterizing the final products, where the most important one is color. Color is determined as a three-parameter resultant, whose values for products, which have undergone drying should deviate from the corresponding ones of natural products, as little as possible. In this case, product quality dryer design is a complex multi-objective optimization problem, involving the color deviation vector as an objective function and as constraints the ones deriving from the process mathematical model. The mathematical model of the dryer was developed and the fundamental color deterioration laws were determined for the drying process. Non-preference multi-criteria optimization methods were used and the Pareto-optimal set of efficient solutions was evaluated. An example was included to demonstrate the performance of the design procedure, as well as the effectiveness of the proposed approach.

  13. Valuing hydrological alteration in Multi-Objective reservoir management

    NASA Astrophysics Data System (ADS)

    Bizzi, S.; Pianosi, F.; Soncini-Sessa, R.

    2012-04-01

    Water management through dams and reservoirs is worldwide necessary to support key human-related activities ranging from hydropower production to water allocation for agricultural production, and flood risk mitigation. Advances in multi-objectives (MO) optimization techniques and ever growing computing power make it possible to design reservoir operating policies that represent Pareto-optimal tradeoffs between the multiple interests analysed. These progresses if on one hand are likely to enhance performances of commonly targeted objectives (such as hydropower production or water supply), on the other risk to strongly penalize all the interests not directly (i.e. mathematically) optimized within the MO algorithm. Alteration of hydrological regime, although is a well established cause of ecological degradation and its evaluation and rehabilitation are commonly required by recent legislation (as the Water Framework Directive in Europe), is rarely embedded as an objective in MO planning of optimal releases from reservoirs. Moreover, even when it is explicitly considered, the criteria adopted for its evaluation are doubted and not commonly trusted, undermining the possibility of real implementation of environmentally friendly policies. The main challenges in defining and assessing hydrological alterations are: how to define a reference state (referencing); how to define criteria upon which to build mathematical indicators of alteration (measuring); and finally how to aggregate the indicators in a single evaluation index that can be embedded in a MO optimization problem (valuing). This paper aims to address these issues by: i) discussing benefits and constrains of different approaches to referencing, measuring and valuing hydrological alteration; ii) testing two alternative indices of hydrological alteration in the context of MO problems, one based on the established framework of Indices of Hydrological Alteration (IHA, Richter et al., 1996), and a novel satisfying the

  14. Evolutionary design of corrugated horn antennas

    NASA Technical Reports Server (NTRS)

    Hoorfar, F.; Manshadi, V.; Jamnejad, A.

    2002-01-01

    An evolutionary progranirnitzg (EP) algorithm is used to optimize pattern of a corrugated circularhorn subject to various constraints on return loss and antenna beamwidth and pattern circularity and low crosspolarization. The EP algorithm uses a Gaussian mutation operator. Examples on design synthesis of a 45 section corrugated horn, with a total of 90 optimization parameters, are presented. The results show excellent and efficient optimization of the desired horn parameters.

  15. Planning the Next Decade of Multi-Object Spectroscopy

    NASA Astrophysics Data System (ADS)

    Balcells, M.

    2016-10-01

    We review the science drivers for the next generation of multi-object spectrographs, including Milky Way archaeology, stellar and circumstellar physics, galaxy evolution and cosmology; these new instruments will provide key data needed to reap science from some of the largest facilities on the ground and in space, such as Gaia, LOFAR or LSST. The technology developments and challenges of new instrumentation projects are presented together with an overview of 25 years of development of multi-object spectroscopy instruments on 4-meter and 10-meter class telescopes. We also review the technical challenges that need to be addressed to ensure success for the massive spectroscopic surveys currently planned.

  16. Fatigue design of a cellular phone folder using regression model-based multi-objective optimization

    NASA Astrophysics Data System (ADS)

    Kim, Young Gyun; Lee, Jongsoo

    2016-08-01

    In a folding cellular phone, the folding device is repeatedly opened and closed by the user, which eventually results in fatigue damage, particularly to the front of the folder. Hence, it is important to improve the safety and endurance of the folder while also reducing its weight. This article presents an optimal design for the folder front that maximizes its fatigue endurance while minimizing its thickness. Design data for analysis and optimization were obtained experimentally using a test jig. Multi-objective optimization was carried out using a nonlinear regression model. Three regression methods were employed: back-propagation neural networks, logistic regression and support vector machines. The AdaBoost ensemble technique was also used to improve the approximation. Two-objective Pareto-optimal solutions were identified using the non-dominated sorting genetic algorithm (NSGA-II). Finally, a numerically optimized solution was validated against experimental product data, in terms of both fatigue endurance and thickness index.

  17. Multi-objective control of nonlinear boiler-turbine dynamics with actuator magnitude and rate constraints.

    PubMed

    Chen, Pang-Chia

    2013-01-01

    This paper investigates multi-objective controller design approaches for nonlinear boiler-turbine dynamics subject to actuator magnitude and rate constraints. System nonlinearity is handled by a suitable linear parameter varying system representation with drum pressure as the system varying parameter. Variation of the drum pressure is represented by suitable norm-bounded uncertainty and affine dependence on system matrices. Based on linear matrix inequality algorithms, the magnitude and rate constraints on the actuator and the deviations of fluid density and water level are formulated while the tracking abilities on the drum pressure and power output are optimized. Variation ranges of drum pressure and magnitude tracking commands are used as controller design parameters, determined according to the boiler-turbine's operation range.

  18. Multi-objective optimization of two-dimensional phoxonic crystals with multi-level substructure scheme

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Yin, J.; Zhang, H. W.; Chen, B. S.

    2016-03-01

    Phoxonic crystal (PXC) is a promising artificial periodic material for optomechanical systems and acousto-optical devices. The multi-objective topology optimization of dual phononic and photonic max relative bandgaps in a kind of two-dimensional (2D) PXC is investigated to find the regular pattern of topological configurations. In order to improve the efficiency, a multi-level substructure scheme is proposed to analyze phononic and photonic band structures, which is stable, efficient and less memory-consuming. The efficient and reliable numerical algorithm provides a powerful tool to optimize and design crystal devices. The results show that with the reduction of the relative phononic bandgap (PTBG), the central dielectric scatterer becomes smaller and the dielectric veins of cross-connections between different dielectric scatterers turn into the horizontal and vertical shape gradually. These characteristics can be of great value to the design and synthesis of new materials with different topological configurations for applications of the PXC.

  19. Optimizing municipal wastewater treatment plants using an improved multi-objective optimization method.

    PubMed

    Zhang, Rui; Xie, Wen-Ming; Yu, Han-Qing; Li, Wen-Wei

    2014-04-01

    An improved multi-objective optimization (MOO) model was established and used for simultaneously optimizing the treatment cost and multiple effluent quality indexes (including effluent COD, NH4(+)-N, NO3(-)-N) of a municipal wastewater treatment plant (WWTP). Compared with previous models that were mainly based on the use of fixed decision factors and did not taken into account the treatment cost, this model introduces a relationship model based on back propagation algorithm to determine the set of decision factors according to the expected optimization targets. Thus, a more flexible and precise optimization of the treatment process was allowed. Moreover, a MOO of conflicting objectives (i.e., treatment cost and effluent quality) was achieved. Applying this method, an optimal balance between operating cost and effluent quality of a WWTP can be found. This model may offer a useful tool for optimized design and control of practical WWTPs.

  20. Pattern recognition with composite correlation filters designed with multi-object combinatorial optimization

    DOE PAGESBeta

    Awwal, Abdul; Diaz-Ramirez, Victor H.; Cuevas, Andres; Kober, Vitaly; Trujillo, Leonardo

    2014-10-23

    Composite correlation filters are used for solving a wide variety of pattern recognition problems. These filters are given by a combination of several training templates chosen by a designer in an ad hoc manner. In this work, we present a new approach for the design of composite filters based on multi-objective combinatorial optimization. Given a vast search space of training templates, an iterative algorithm is used to synthesize a filter with an optimized performance in terms of several competing criteria. Furthermore, by employing a suggested binary-search procedure a filter bank with a minimum number of filters can be constructed, formore » a prespecified trade-off of performance metrics. Computer simulation results obtained with the proposed method in recognizing geometrically distorted versions of a target in cluttered and noisy scenes are discussed and compared in terms of recognition performance and complexity with existing state-of-the-art filters.« less

  1. Pattern recognition with composite correlation filters designed with multi-object combinatorial optimization

    SciTech Connect

    Awwal, Abdul; Diaz-Ramirez, Victor H.; Cuevas, Andres; Kober, Vitaly; Trujillo, Leonardo

    2014-10-23

    Composite correlation filters are used for solving a wide variety of pattern recognition problems. These filters are given by a combination of several training templates chosen by a designer in an ad hoc manner. In this work, we present a new approach for the design of composite filters based on multi-objective combinatorial optimization. Given a vast search space of training templates, an iterative algorithm is used to synthesize a filter with an optimized performance in terms of several competing criteria. Furthermore, by employing a suggested binary-search procedure a filter bank with a minimum number of filters can be constructed, for a prespecified trade-off of performance metrics. Computer simulation results obtained with the proposed method in recognizing geometrically distorted versions of a target in cluttered and noisy scenes are discussed and compared in terms of recognition performance and complexity with existing state-of-the-art filters.

  2. Multi-objective approach for energy-aware workflow scheduling in cloud computing environments.

    PubMed

    Yassa, Sonia; Chelouah, Rachid; Kadima, Hubert; Granado, Bertrand

    2013-01-01

    We address the problem of scheduling workflow applications on heterogeneous computing systems like cloud computing infrastructures. In general, the cloud workflow scheduling is a complex optimization problem which requires considering different criteria so as to meet a large number of QoS (Quality of Service) requirements. Traditional research in workflow scheduling mainly focuses on the optimization constrained by time or cost without paying attention to energy consumption. The main contribution of this study is to propose a new approach for multi-objective workflow scheduling in clouds, and present the hybrid PSO algorithm to optimize the scheduling performance. Our method is based on the Dynamic Voltage and Frequency Scaling (DVFS) technique to minimize energy consumption. This technique allows processors to operate in different voltage supply levels by sacrificing clock frequencies. This multiple voltage involves a compromise between the quality of schedules and energy. Simulation results on synthetic and real-world scientific applications highlight the robust performance of the proposed approach.

  3. Design of a Motorcycle Composite Swing-Arm by Means of Multi-objective Optimisation

    NASA Astrophysics Data System (ADS)

    Airoldi, Alessandro; Bertoli, Simone; Lanzi, Luca; Sirna, Marco; Sala, Giuseppe

    2012-06-01

    A study for the replacement of a metallic swing-arm of a high performance motorcycle with a composite part is presented. Considering the high structural effectiveness of the original metallic component, the case study evaluates the potential of composites in a challenging application. The FE model of the original component is developed to evaluate the structural performance in the most significant load conditions. A manufacturing process, based on a RTM technique, is proposed and analysed in order to develop realistic design hypotheses. The design approach is based on an optimisation process with 60 design variables. A constrained multi-objective genetic algorithm is applied to identify the solutions representing the best trade-off between mass reduction and improvement of torsional stiffness. Results show that composite materials can enhance the structural efficiency of the original metallic part, even considering technological limitations and damage tolerance requirements.

  4. A comparative study of corrugated horn design by evolutionary techniques

    NASA Technical Reports Server (NTRS)

    Hoorfar, A.

    2003-01-01

    Here an evolutionary programming algorithm is used to optimize the pattern of a corrugated circular horn subject to various constraints on return loss, antenna beamwidth, pattern circularity, and low cross polarization.

  5. Adaptive surrogate model based multi-objective transfer trajectory optimization between different libration points

    NASA Astrophysics Data System (ADS)

    Peng, Haijun; Wang, Wei

    2016-10-01

    An adaptive surrogate model-based multi-objective optimization strategy that combines the benefits of invariant manifolds and low-thrust control toward developing a low-computational-cost transfer trajectory between libration orbits around the L1 and L2 libration points in the Sun-Earth system has been proposed in this paper. A new structure for a multi-objective transfer trajectory optimization model that divides the transfer trajectory into several segments and gives the dominations for invariant manifolds and low-thrust control in different segments has been established. To reduce the computational cost of multi-objective transfer trajectory optimization, a mixed sampling strategy-based adaptive surrogate model has been proposed. Numerical simulations show that the results obtained from the adaptive surrogate-based multi-objective optimization are in agreement with the results obtained using direct multi-objective optimization methods, and the computational workload of the adaptive surrogate-based multi-objective optimization is only approximately 10% of that of direct multi-objective optimization. Furthermore, the generating efficiency of the Pareto points of the adaptive surrogate-based multi-objective optimization is approximately 8 times that of the direct multi-objective optimization. Therefore, the proposed adaptive surrogate-based multi-objective optimization provides obvious advantages over direct multi-objective optimization methods.

  6. Algorithms and Algorithmic Languages.

    ERIC Educational Resources Information Center

    Veselov, V. M.; Koprov, V. M.

    This paper is intended as an introduction to a number of problems connected with the description of algorithms and algorithmic languages, particularly the syntaxes and semantics of algorithmic languages. The terms "letter, word, alphabet" are defined and described. The concept of the algorithm is defined and the relation between the algorithm and…

  7. Wireless Sensor Network Optimization: Multi-Objective Paradigm.

    PubMed

    Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad

    2015-07-20

    Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks.

  8. Wireless Sensor Network Optimization: Multi-Objective Paradigm

    PubMed Central

    Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad

    2015-01-01

    Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks. PMID:26205271

  9. Development of Multiobjective Optimization Techniques for Sonic Boom Minimization

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Rajadas, John Narayan; Pagaldipti, Naryanan S.

    1996-01-01

    A discrete, semi-analytical sensitivity analysis procedure has been developed for calculating aerodynamic design sensitivities. The sensitivities of the flow variables and the grid coordinates are numerically calculated using direct differentiation of the respective discretized governing equations. The sensitivity analysis techniques are adapted within a parabolized Navier Stokes equations solver. Aerodynamic design sensitivities for high speed wing-body configurations are calculated using the semi-analytical sensitivity analysis procedures. Representative results obtained compare well with those obtained using the finite difference approach and establish the computational efficiency and accuracy of the semi-analytical procedures. Multidisciplinary design optimization procedures have been developed for aerospace applications namely, gas turbine blades and high speed wing-body configurations. In complex applications, the coupled optimization problems are decomposed into sublevels using multilevel decomposition techniques. In cases with multiple objective functions, formal multiobjective formulation such as the Kreisselmeier-Steinhauser function approach and the modified global criteria approach have been used. Nonlinear programming techniques for continuous design variables and a hybrid optimization technique, based on a simulated annealing algorithm, for discrete design variables have been used for solving the optimization problems. The optimization procedure for gas turbine blades improves the aerodynamic and heat transfer characteristics of the blades. The two-dimensional, blade-to-blade aerodynamic analysis is performed using a panel code. The blade heat transfer analysis is performed using an in-house developed finite element procedure. The optimization procedure yields blade shapes with significantly improved velocity and temperature distributions. The multidisciplinary design optimization procedures for high speed wing-body configurations simultaneously

  10. From evolutionary computation to the evolution of things.

    PubMed

    Eiben, Agoston E; Smith, Jim

    2015-05-28

    Evolution has provided a source of inspiration for algorithm designers since the birth of computers. The resulting field, evolutionary computation, has been successful in solving engineering tasks ranging in outlook from the molecular to the astronomical. Today, the field is entering a new phase as evolutionary algorithms that take place in hardware are developed, opening up new avenues towards autonomous machines that can adapt to their environment. We discuss how evolutionary computation compares with natural evolution and what its benefits are relative to other computing approaches, and we introduce the emerging area of artificial evolution in physical systems.

  11. Multi-object Feature Detection and Error Correction for NIF Automatic Optical Alignment

    SciTech Connect

    Awwal, A S

    2006-07-17

    Fiducials imprinted on laser beams are used to perform video image based alignment of the beams in the National Ignition Facility (NIF) of Lawrence Livermore National Laboratory. In any laser beam alignment operation, a beam needs to be aligned to a reference location. Generally, the beam and reference fiducials are composed of separate beams, as a result only a single feature of each beam needs to be identified for determining the position of the beam or reference. However, it is possible to have the same beam image contain both the beam and reference fiducials. In such instances, it is essential to separately identify these features. In the absence of wavefront correction or when image quality is poor, the features of such beams may get distorted making it difficult to distinguish between different fiducials. Error checking and correction mechanism must be implemented to avoid misidentification of one type of feature as the other. This work presents the algorithm for multi-object detection and error correction implemented for such a beam line image in the NIF facility. Additionally, we show how when the original algorithm fails a secondary algorithm takes over and provides required location outputs.

  12. [Evolution of evolutionary physiology].

    PubMed

    Natochin, Iu V

    2008-09-01

    In 19th century and at the beginning 20th century, reports appeared in the field of comparative and ontogenetic physiology and the value of these methods for understanding of evolution of functions. The term "evolutionary physiology" was suggested by A. N. Severtsov in 1914. In the beginning of 30s, in the USSR, laboratories for researches in problems of evolutionary physiology were created, the results of these researches having been published. In 1956 in Leningrad, the Institute of Evolutionary Physiology was founded by L. A. Orbeli. He formulates the goals and methods of evolutionary physiology. In the following half a century, the evolutionary physiology was actively developed. The evolutionary physiology solves problems of evolution of function of functions evolution, often involving methods of adjacent sciences, including biochemistry, morphology, molecular biology.

  13. On evolutionary causes and evolutionary processes.

    PubMed

    Laland, Kevin N

    2015-08-01

    In this essay I consider how biologists understand 'causation' and 'evolutionary process', drawing attention to some idiosyncrasies in the use of these terms. I suggest that research within the evolutionary sciences has been channeled in certain directions and not others by scientific conventions, many of which have now become counterproductive. These include the views (i) that evolutionary processes are restricted to those phenomena that directly change gene frequencies, (ii) that understanding the causes of both ecological change and ontogeny is beyond the remit of evolutionary biology, and (iii) that biological causation can be understood by a dichotomous proximate-ultimate distinction, with developmental processes perceived as solely relevant to proximate causation. I argue that the notion of evolutionary process needs to be broadened to accommodate phenomena such as developmental bias and niche construction that bias the course of evolution, but do not directly change gene frequencies, and that causation in biological systems is fundamentally reciprocal in nature. This article is part of a Special Issue entitled: In Honor of Jerry Hogan.

  14. A multi-objective optimization tool for the selection and placement of BMPs for pesticide control

    NASA Astrophysics Data System (ADS)

    Maringanti, C.; Chaubey, I.; Arabi, M.; Engel, B.

    2008-07-01

    Pesticides (particularly atrazine used in corn fields) are the foremost source of water contamination in many of the water bodies in Midwestern corn belt, exceeding the 3 ppb MCL established by the U.S. EPA for drinking water. Best management practices (BMPs), such as buffer strips and land management practices, have been proven to effectively reduce the pesticide pollution loads from agricultural areas. However, selection and placement of BMPs in watersheds to achieve an ecologically effective and economically feasible solution is a daunting task. BMP placement decisions under such complex conditions require a multi-objective optimization algorithm that would search for the best possible solution that satisfies the given watershed management objectives. Genetic algorithms (GA) have been the most popular optimization algorithms for the BMP selection and placement problem. Most optimization models also had a dynamic linkage with the water quality model, which increased the computation time considerably thus restricting them to apply models on field scale or relatively smaller (11 or 14 digit HUC) watersheds. However, most previous works have considered the two objectives individually during the optimization process by introducing a constraint on the other objective, therefore decreasing the degree of freedom to find the solution. In this study, the optimization for atrazine reduction is performed by considering the two objectives simultaneously using a multi-objective genetic algorithm (NSGA-II). The limitation with the dynamic linkage with a distributed parameter watershed model was overcome through the utilization of a BMP tool, a database that stores the pollution reduction and cost information of different BMPs under consideration. The model was used for the selection and placement of BMPs in Wildcat Creek Watershed (located in Indiana, for atrazine reduction. The most ecologically effective solution from the model had an annual atrazine concentration reduction

  15. Remembering the evolutionary Freud.

    PubMed

    Young, Allan

    2006-03-01

    Throughout his career as a writer, Sigmund Freud maintained an interest in the evolutionary origins of the human mind and its neurotic and psychotic disorders. In common with many writers then and now, he believed that the evolutionary past is conserved in the mind and the brain. Today the "evolutionary Freud" is nearly forgotten. Even among Freudians, he is regarded to be a red herring, relevant only to the extent that he diverts attention from the enduring achievements of the authentic Freud. There are three ways to explain these attitudes. First, the evolutionary Freud's key work is the "Overview of the Transference Neurosis" (1915). But it was published at an inopportune moment, forty years after the author's death, during the so-called "Freud wars." Second, Freud eventually lost interest in the "Overview" and the prospect of a comprehensive evolutionary theory of psychopathology. The publication of The Ego and the Id (1923), introducing Freud's structural theory of the psyche, marked the point of no return. Finally, Freud's evolutionary theory is simply not credible. It is based on just-so stories and a thoroughly discredited evolutionary mechanism, Lamarckian use-inheritance. Explanations one and two are probably correct but also uninteresting. Explanation number three assumes that there is a fundamental difference between Freud's evolutionary narratives (not credible) and the evolutionary accounts of psychopathology that currently circulate in psychiatry and mainstream journals (credible). The assumption is mistaken but worth investigating.

  16. Estimation of the discharges of the multiple water level stations by multi-objective optimization

    NASA Astrophysics Data System (ADS)

    Matsumoto, Kazuhiro; Miyamoto, Mamoru; Yamakage, Yuzuru; Tsuda, Morimasa; Yanami, Hitoshi; Anai, Hirokazu; Iwami, Yoichi

    2016-04-01

    This presentation shows two aspects of the parameter identification to estimate the discharges of the multiple water level stations by multi-objective optimization. One is how to adjust the parameters to estimate the discharges accurately. The other is which optimization algorithms are suitable for the parameter identification. Regarding the previous studies, there is a study that minimizes the weighted error of the discharges of the multiple water level stations by single-objective optimization. On the other hand, there are some studies that minimize the multiple error assessment functions of the discharge of a single water level station by multi-objective optimization. This presentation features to simultaneously minimize the errors of the discharges of the multiple water level stations by multi-objective optimization. Abe River basin in Japan is targeted. The basin area is 567.0km2. There are thirteen rainfall stations and three water level stations. Nine flood events are investigated. They occurred from 2005 to 2012 and the maximum discharges exceed 1,000m3/s. The discharges are calculated with PWRI distributed hydrological model. The basin is partitioned into the meshes of 500m x 500m. Two-layer tanks are placed on each mesh. Fourteen parameters are adjusted to estimate the discharges accurately. Twelve of them are the hydrological parameters and two of them are the parameters of the initial water levels of the tanks. Three objective functions are the mean squared errors between the observed and calculated discharges at the water level stations. Latin Hypercube sampling is one of the uniformly sampling algorithms. The discharges are calculated with respect to the parameter values sampled by a simplified version of Latin Hypercube sampling. The observed discharge is surrounded by the calculated discharges. It suggests that it might be possible to estimate the discharge accurately by adjusting the parameters. In a sense, it is true that the discharge of a water

  17. Expansion of biological pathways based on evolutionary inference

    PubMed Central

    Li, Yang; Calvo, Sarah E.; Gutman, Roee

    2014-01-01

    Summary Availability of diverse genomes makes it possible to predict gene function based on shared evolutionary history. This approach can be challenging, however, for pathways whose components do not exhibit a shared history, but rather, consist of distinct “evolutionary modules.” We introduce a computational algorithm, CLIME (clustering by inferred models of evolution), which inputs a eukaryotic species tree, homology matrix, and pathway (gene set) of interest. CLIME partitions the gene set into disjoint evolutionary modules, simultaneously learning the number of modules and a tree-based evolutionary history that defines each module. CLIME then expands each module by scanning the genome for new components that likely arose under the inferred evolutionary model. Application of CLIME to ∼1000 annotated human pathways, organelles and proteomes of yeast, red algae, and malaria, reveals unanticipated evolutionary modularity and novel, co-evolving components. CLIME is freely available and should become increasingly powerful with the growing wealth of eukaryotic genomes. PMID:24995987

  18. Large-Scale Multi-Objective Optimization for the Management of Seawater Intrusion, Santa Barbara, CA

    NASA Astrophysics Data System (ADS)

    Stanko, Z. P.; Nishikawa, T.; Paulinski, S. R.

    2015-12-01

    The City of Santa Barbara, located in coastal southern California, is concerned that excessive groundwater pumping will lead to chloride (Cl) contamination of its groundwater system from seawater intrusion (SWI). In addition, the city wishes to estimate the effect of continued pumping on the groundwater basin under a variety of initial and climatic conditions. A SEAWAT-based groundwater-flow and solute-transport model of the Santa Barbara groundwater basin was optimized to produce optimal pumping schedules assuming 5 different scenarios. Borg, a multi-objective genetic algorithm, was coupled with the SEAWAT model to identify optimal management strategies. The optimization problems were formulated as multi-objective so that the tradeoffs between maximizing pumping, minimizing SWI, and minimizing drawdowns can be examined by the city. Decisions can then be made on a pumping schedule in light of current preferences and climatic conditions. Borg was used to produce Pareto optimal results for all 5 scenarios, which vary in their initial conditions (high water levels, low water levels, or current basin state), simulated climate (normal or drought conditions), and problem formulation (objective equations and decision-variable aggregation). Results show mostly well-defined Pareto surfaces with a few singularities. Furthermore, the results identify the precise pumping schedule per well that was suitable given the desired restriction on drawdown and Cl concentrations. A system of decision-making is then possible based on various observations of the basin's hydrologic states and climatic trends without having to run any further optimizations. In addition, an assessment of selected Pareto-optimal solutions was analyzed with sensitivity information using the simulation model alone. A wide range of possible groundwater pumping scenarios is available and depends heavily on the future climate scenarios and the Pareto-optimal solution selected while managing the pumping wells.

  19. An efficient hybrid approach for multiobjective optimization of water distribution systems

    NASA Astrophysics Data System (ADS)

    Zheng, Feifei; Simpson, Angus R.; Zecchin, Aaron C.

    2014-05-01

    An efficient hybrid approach for the design of water distribution systems (WDSs) with multiple objectives is described in this paper. The objectives are the minimization of the network cost and maximization of the network resilience. A self-adaptive multiobjective differential evolution (SAMODE) algorithm has been developed, in which control parameters are automatically adapted by means of evolution instead of the presetting of fine-tuned parameter values. In the proposed method, a graph algorithm is first used to decompose a looped WDS into a shortest-distance tree (T) or forest, and chords (Ω). The original two-objective optimization problem is then approximated by a series of single-objective optimization problems of the T to be solved by nonlinear programming (NLP), thereby providing an approximate Pareto optimal front for the original whole network. Finally, the solutions at the approximate front are used to seed the SAMODE algorithm to find an improved front for the original entire network. The proposed approach is compared with two other conventional full-search optimization methods (the SAMODE algorithm and the NSGA-II) that seed the initial population with purely random solutions based on three case studies: a benchmark network and two real-world networks with multiple demand loading cases. Results show that (i) the proposed NLP-SAMODE method consistently generates better-quality Pareto fronts than the full-search methods with significantly improved efficiency; and (ii) the proposed SAMODE algorithm (no parameter tuning) exhibits better performance than the NSGA-II with calibrated parameter values in efficiently offering optimal fronts.

  20. Polymorphic Evolutionary Games.

    PubMed

    Fishman, Michael A

    2016-06-01

    In this paper, I present an analytical framework for polymorphic evolutionary games suitable for explicitly modeling evolutionary processes in diploid populations with sexual reproduction. The principal aspect of the proposed approach is adding diploid genetics cum sexual recombination to a traditional evolutionary game, and switching from phenotypes to haplotypes as the new game׳s pure strategies. Here, the relevant pure strategy׳s payoffs derived by summing the payoffs of all the phenotypes capable of producing gametes containing that particular haplotype weighted by the pertinent probabilities. The resulting game is structurally identical to the familiar Evolutionary Games with non-linear pure strategy payoffs (Hofbauer and Sigmund, 1998. Cambridge University Press), and can be analyzed in terms of an established analytical framework for such games. And these results can be translated into the terms of genotypic, and whence, phenotypic evolutionary stability pertinent to the original game.