Multipartite entanglement in quantum algorithms
Bruss, D.; Macchiavello, C.
2011-05-15
We investigate the entanglement features of the quantum states employed in quantum algorithms. In particular, we analyze the multipartite entanglement properties in the Deutsch-Jozsa, Grover, and Simon algorithms. Our results show that for these algorithms most instances involve multipartite entanglement.
Polygamy of entanglement in multipartite quantum systems
NASA Astrophysics Data System (ADS)
Kim, Jeong San
2009-08-01
We show that bipartite entanglement distribution (or entanglement of assistance) in multipartite quantum systems is by nature polygamous. We first provide an analytical upper bound for the concurrence of assistance in bipartite quantum systems and derive a polygamy inequality of multipartite entanglement in arbitrary-dimensional quantum systems.
Quantum Entanglement Swapping between Two Multipartite Entangled States
NASA Astrophysics Data System (ADS)
Su, Xiaolong; Tian, Caixing; Deng, Xiaowei; Li, Qiang; Xie, Changde; Peng, Kunchi
2016-12-01
Quantum entanglement swapping is one of the most promising ways to realize the quantum connection among local quantum nodes. In this Letter, we present an experimental demonstration of the entanglement swapping between two independent multipartite entangled states, each of which involves a tripartite Greenberger-Horne-Zeilinger (GHZ) entangled state of an optical field. The entanglement swapping is implemented deterministically by means of a joint measurement on two optical modes coming from the two multipartite entangled states respectively and the classical feedforward of the measurement results. After entanglement swapping the two independent multipartite entangled states are merged into a large entangled state in which all unmeasured quantum modes are entangled. The entanglement swapping between a tripartite GHZ state and an Einstein-Podolsky-Rosen entangled state is also demonstrated and the dependence of the resultant entanglement on transmission loss is investigated. The presented experiment provides a feasible technical reference for constructing more complicated quantum networks.
Quantum Entanglement Swapping between Two Multipartite Entangled States.
Su, Xiaolong; Tian, Caixing; Deng, Xiaowei; Li, Qiang; Xie, Changde; Peng, Kunchi
2016-12-09
Quantum entanglement swapping is one of the most promising ways to realize the quantum connection among local quantum nodes. In this Letter, we present an experimental demonstration of the entanglement swapping between two independent multipartite entangled states, each of which involves a tripartite Greenberger-Horne-Zeilinger (GHZ) entangled state of an optical field. The entanglement swapping is implemented deterministically by means of a joint measurement on two optical modes coming from the two multipartite entangled states respectively and the classical feedforward of the measurement results. After entanglement swapping the two independent multipartite entangled states are merged into a large entangled state in which all unmeasured quantum modes are entangled. The entanglement swapping between a tripartite GHZ state and an Einstein-Podolsky-Rosen entangled state is also demonstrated and the dependence of the resultant entanglement on transmission loss is investigated. The presented experiment provides a feasible technical reference for constructing more complicated quantum networks.
Multipartite entanglement accumulation in quantum states: Localizable generalized geometric measure
NASA Astrophysics Data System (ADS)
Sadhukhan, Debasis; Roy, Sudipto Singha; Pal, Amit Kumar; Rakshit, Debraj; SenDe, Aditi; Sen, Ujjwal
2017-02-01
Multiparty quantum states are useful for a variety of quantum information and computation protocols. We define a multiparty entanglement measure based on local measurements on a multiparty quantum state and an entanglement measure averaged on the postmeasurement ensemble. Using the generalized geometric measure as the measure of multipartite entanglement for the ensemble, we demonstrate, in the case of several well-known classes of multipartite pure states, that the localized multipartite entanglement can exceed the entanglement present in the original state. We also show that measurement over multiple parties may be beneficial in enhancing localizable multipartite entanglement. We point out that localizable generalized geometric measure faithfully signals quantum critical phenomena in well-known quantum spin models even when considerable finite-size effect is present in the system.
Maximally Entangled Set of Multipartite Quantum States
NASA Astrophysics Data System (ADS)
de Vicente, J. I.; Spee, C.; Kraus, B.
2013-09-01
Entanglement is a resource in quantum information theory when state manipulation is restricted to local operations assisted by classical communication (LOCC). It is therefore of paramount importance to decide which LOCC transformations are possible and, particularly, which states are maximally useful under this restriction. While the bipartite maximally entangled state is well known (it is the only state that cannot be obtained from any other and, at the same time, it can be transformed to any other by LOCC), no such state exists in the multipartite case. In order to cope with this fact, we introduce here the notion of the maximally entangled set (MES) of n-partite states. This is the set of states which are maximally useful under LOCC manipulation; i.e., any state outside of this set can be obtained via LOCC from one of the states within the set and no state in the set can be obtained from any other state via LOCC. We determine the MES for states of three and four qubits and provide a simple characterization for them. In both cases, infinitely many states are required. However, while the MES is of measure zero for 3-qubit states, almost all 4-qubit states are in the MES. This is because, in contrast to the 3-qubit case, deterministic LOCC transformations are almost never possible among fully entangled four-partite states. We determine the measure-zero subset of the MES of LOCC convertible states. This is the only relevant class of states for entanglement manipulation.
Multipartite quantum entanglement evolution in photosynthetic complexes.
Zhu, Jing; Kais, Sabre; Aspuru-Guzik, Alán; Rodriques, Sam; Brock, Ben; Love, Peter J
2012-08-21
We investigate the evolution of entanglement in the Fenna-Matthew-Olson (FMO) complex based on simulations using the scaled hierarchical equations of motion approach. We examine the role of entanglement in the FMO complex by direct computation of the convex roof. We use monogamy to give a lower bound for entanglement and obtain an upper bound from the evaluation of the convex roof. Examination of bipartite measures for all possible bipartitions provides a complete picture of the multipartite entanglement. Our results support the hypothesis that entanglement is maximum primary along the two distinct electronic energy transfer pathways. In addition, we note that the structure of multipartite entanglement is quite simple, suggesting that there are constraints on the mixed state entanglement beyond those due to monogamy.
Coherent feedback control of multipartite quantum entanglement for optical fields
Yan, Zhihui; Jia, Xiaojun; Xie, Changde; Peng, Kunchi
2011-12-15
Coherent feedback control (CFC) of multipartite optical entangled states produced by a nondegenerate optical parametric amplifier is theoretically studied. The features of the quantum correlations of amplitude and phase quadratures among more than two entangled optical modes can be controlled by tuning the transmissivity of the optical beam splitter in the CFC loop. The physical conditions to enhance continuous variable multipartite entanglement of optical fields utilizing the CFC loop are obtained. The numeric calculations based on feasible physical parameters of realistic systems provide direct references for the design of experimental devices.
Experimental verification of multipartite entanglement in quantum networks
NASA Astrophysics Data System (ADS)
McCutcheon, W.; Pappa, A.; Bell, B. A.; McMillan, A.; Chailloux, A.; Lawson, T.; Mafu, M.; Markham, D.; Diamanti, E.; Kerenidis, I.; Rarity, J. G.; Tame, M. S.
2016-11-01
Multipartite entangled states are a fundamental resource for a wide range of quantum information processing tasks. In particular, in quantum networks, it is essential for the parties involved to be able to verify if entanglement is present before they carry out a given distributed task. Here we design and experimentally demonstrate a protocol that allows any party in a network to check if a source is distributing a genuinely multipartite entangled state, even in the presence of untrusted parties. The protocol remains secure against dishonest behaviour of the source and other parties, including the use of system imperfections to their advantage. We demonstrate the verification protocol in a three- and four-party setting using polarization-entangled photons, highlighting its potential for realistic photonic quantum communication and networking applications.
Experimental verification of multipartite entanglement in quantum networks
McCutcheon, W.; Pappa, A.; Bell, B. A.; McMillan, A.; Chailloux, A.; Lawson, T.; Mafu, M.; Markham, D.; Diamanti, E.; Kerenidis, I.; Rarity, J. G.; Tame, M. S.
2016-01-01
Multipartite entangled states are a fundamental resource for a wide range of quantum information processing tasks. In particular, in quantum networks, it is essential for the parties involved to be able to verify if entanglement is present before they carry out a given distributed task. Here we design and experimentally demonstrate a protocol that allows any party in a network to check if a source is distributing a genuinely multipartite entangled state, even in the presence of untrusted parties. The protocol remains secure against dishonest behaviour of the source and other parties, including the use of system imperfections to their advantage. We demonstrate the verification protocol in a three- and four-party setting using polarization-entangled photons, highlighting its potential for realistic photonic quantum communication and networking applications. PMID:27827361
Experimental verification of multipartite entanglement in quantum networks.
McCutcheon, W; Pappa, A; Bell, B A; McMillan, A; Chailloux, A; Lawson, T; Mafu, M; Markham, D; Diamanti, E; Kerenidis, I; Rarity, J G; Tame, M S
2016-11-09
Multipartite entangled states are a fundamental resource for a wide range of quantum information processing tasks. In particular, in quantum networks, it is essential for the parties involved to be able to verify if entanglement is present before they carry out a given distributed task. Here we design and experimentally demonstrate a protocol that allows any party in a network to check if a source is distributing a genuinely multipartite entangled state, even in the presence of untrusted parties. The protocol remains secure against dishonest behaviour of the source and other parties, including the use of system imperfections to their advantage. We demonstrate the verification protocol in a three- and four-party setting using polarization-entangled photons, highlighting its potential for realistic photonic quantum communication and networking applications.
Detection of entanglement in asymmetric quantum networks and multipartite quantum steering.
Cavalcanti, D; Skrzypczyk, P; Aguilar, G H; Nery, R V; Ribeiro, P H Souto; Walborn, S P
2015-08-03
The future of quantum communication relies on quantum networks composed by observers sharing multipartite quantum states. The certification of multipartite entanglement will be crucial to the usefulness of these networks. In many real situations it is natural to assume that some observers are more trusted than others in the sense that they have more knowledge of their measurement apparatuses. Here we propose a general method to certify all kinds of multipartite entanglement in this asymmetric scenario and experimentally demonstrate it in an optical experiment. Our results, which can be seen as a definition of genuine multipartite quantum steering, give a method to detect entanglement in a scenario in between the standard entanglement and fully device-independent scenarios, and provide a basis for semi-device-independent cryptographic applications in quantum networks.
Detection of entanglement in asymmetric quantum networks and multipartite quantum steering
Cavalcanti, D.; Skrzypczyk, P.; Aguilar, G. H.; Nery, R. V.; Ribeiro, P.H. Souto; Walborn, S. P.
2015-01-01
The future of quantum communication relies on quantum networks composed by observers sharing multipartite quantum states. The certification of multipartite entanglement will be crucial to the usefulness of these networks. In many real situations it is natural to assume that some observers are more trusted than others in the sense that they have more knowledge of their measurement apparatuses. Here we propose a general method to certify all kinds of multipartite entanglement in this asymmetric scenario and experimentally demonstrate it in an optical experiment. Our results, which can be seen as a definition of genuine multipartite quantum steering, give a method to detect entanglement in a scenario in between the standard entanglement and fully device-independent scenarios, and provide a basis for semi-device-independent cryptographic applications in quantum networks. PMID:26235944
NASA Astrophysics Data System (ADS)
Cheng, Jun-Qing; Wu, Wei; Xu, Jing-Bo
2017-09-01
We investigate the multipartite entanglement and trace distance of the one-dimensional anisotropic spin-1/2 XXZ spin chain with the Dzyaloshinskii-Moriya interaction and find that the Dzyaloshinskii-Moriya interaction can influence the entanglement distribution and increase the proportion of multipartite entanglement in the entanglement structure. Furthermore, we explore the quantum phase transition of the XXZ spin chain with Dzyaloshinskii-Moriya interaction by making use of the multipartite entanglement and trace distance along with the quantum renormalization group method. It is found that the first derivatives of renormalized multipartite entanglement and trace distance for the ground state have dramatic changes near the critical point, and the renormalized multipartite entanglement and trace distance obey the universal finite-size scaling laws in the vicinity of the quantum critical point.
Multipartite entanglement for entanglement teleportation
Lee, Jinhyoung; Min, Hyegeun; Oh, Sung Dahm
2002-11-01
A scheme for entanglement teleportation is proposed to incorporate multipartite entanglement of four qubits as a quantum channel. Based on the invariance of entanglement teleportation under an arbitrary two-qubit unitary transformation, we derive relations for the separabilities of joint measurements at a sending station and of unitary operations at a receiving station. From the relations of the separabilities it is found that an inseparable quantum channel always leads to total teleportation of entanglement with an inseparable joint measurement and/or a nonlocal unitary operation.
Realignment criteria for recognizing multipartite entanglement of quantum states
NASA Astrophysics Data System (ADS)
Zhang, Yan-Hua; Lu, Yuan-Yuan; Wang, Guang-Bin; Shen, Shu-Qian
2017-04-01
By multiple realignments of density matrices, we present a new separability criterion for the multipartite quantum state, which includes the computable cross-norm or realignment criterion and the multipartite partial realignment criterion as special cases. An example is used to show that the new criterion can be more efficient than the corresponding multipartite realignment criteria given in Horodecki et al. (Open Syst Inf Dyn 13:103-111, 2006) and Shen et al. (Phys Rev A 92:042332, 2015).
Spatiotemporal multipartite entanglement
Kolobov, Mikhail I.; Patera, Giuseppe
2011-05-15
In this Rapid Communication, we propose, following the spirit of quantum imaging, to generalize the theory of multipartite entanglement for the continuous-variable Gaussian states by considering, instead of the global covariance matrix, the local correlation matrix at two different spatiotemporal points ({rho}-vector,t) and ({rho}-vector{sup '},t{sup '}), with {rho}-vector being the transverse coordinate. Our approach makes it possible to introduce the characteristic spatial length and the characteristic time of the multipartite entanglement, which in general depend on the number of 'parties' in the system. As an example, we consider tripartite entanglement in spontaneous parametric down-conversion with a spatially structured pump. We investigate spatiotemporal properties of such entanglement and calculate its characteristic spatial length and time.
General form of genuine multipartite entanglement quantum channels for teleportation
Chen Pingxing; Zhu Shiyao; Guo, Guangcan
2006-09-15
Recently Yeo and Chua [Phys. Rev. Lett. 96, 060502 (2006)] presented an explicit protocol for faithfully teleporting an arbitrary two-qubit state via a genuine four-qubit entanglement channel. Here we generalize completely their results to teleporting an arbitrary N-qubit state via genuine N-qubit entanglement channels. And we present the general form of the genuine multipartite entanglement channels, namely, the sufficient and necessary condition the genuine N-qubit entanglement channels must satisfy to teleport an arbitrary N-qubit state.
NASA Astrophysics Data System (ADS)
He, Juan; Xu, Shuai; Ye, Liu
2015-11-01
A scheme for inducing multipartite entanglement revival in the dissipative environment is proposed, which is implemented by performing a prior quantum uncollapsing (weak measurements or measurement reversals) procedure on partial qubits of the system simultaneously. This procedure preferentially equips our initial states, and make them hold more powerful ability to actively battle against degradation of entanglement, even postpone entanglement sudden death (ESD). Notably, the effect is more pronounced for the multipartite system with less initial entanglement. In addition, we found that our scheme also works for the N-qubit GHZ-class state.
Multipartite entanglement and firewalls
NASA Astrophysics Data System (ADS)
Luo, Shengqiao; Stoltenberg, Henry; Albrecht, Andreas
2017-03-01
Black holes offer an exciting area to explore the nature of quantum gravity. The classic work on Hawking radiation indicates that black holes should decay via quantum effects, but our ideas about how this might work at a technical level are incomplete. Recently Almheiri-Marolf-Polchinski-Sully (AMPS) have noted an apparent paradox in reconciling fundamental properties of quantum mechanics with standard beliefs about black holes. One way to resolve the paradox is to postulate the existence of a "firewall" inside the black hole horizon which prevents objects from falling smoothly toward the singularity. A fundamental limitation on the behavior of quantum entanglement known as "monogamy" plays a key role in the AMPS argument. Our goal is to study and apply many-body entanglement theory to consider the entanglement among different parts of Hawking radiation and black holes. Using the multipartite entanglement measure called negativity, we identify an example which could change the AMPS accounting of quantum entanglement and perhaps eliminate the need for a firewall. Specifically, we constructed a toy model for black hole decay which has different entanglement behavior than that assumed by AMPS. We discuss the additional steps that would be needed to bring lessons from our toy model to our understanding of realistic black holes.
Efficient deterministic secure quantum communication protocols using multipartite entangled states
NASA Astrophysics Data System (ADS)
Joy, Dintomon; Surendran, Supin P.; Sabir, M.
2017-06-01
We propose two deterministic secure quantum communication protocols employing three-qubit GHZ-like states and five-qubit Brown states as quantum channels for secure transmission of information in units of two bits and three bits using multipartite teleportation schemes developed here. In these schemes, the sender's capability in selecting quantum channels and the measuring bases leads to improved qubit efficiency of the protocols.
Bipartite quantum channels using multipartite cluster-type entangled coherent states
Munhoz, P. P.; Semiao, F. L.; Roversi, J. A.; Vidiella-Barranco, A.
2010-04-15
We propose a particular encoding for bipartite entangled states derived from multipartite cluster-type entangled coherent states (CTECSs). We investigate the effects of amplitude damping on the entanglement content of this bipartite state, as well as its usefulness as a quantum channel for teleportation. We find interesting relationships among the amplitude of the coherent states constituting the CTECSs, the number of subsystems forming the logical qubits (redundancy), and the extent to which amplitude damping affects the entanglement of the channel. For instance, in the sense of sudden death of entanglement, given a fixed value of the initial coherent state amplitude, the entanglement life span is shortened if redundancy is increased.
Multipartite entanglement for continuous variables: A quantum teleportation network
van Loock P; Braunstein
2000-04-10
We show that one single-mode squeezed state distributed among N parties using linear optics suffices to produce a truly N-partite entangled state for any nonzero squeezing and arbitrarily many parties. From this N-partite entangled state, via quadrature measurements of N-2 modes, bipartite entanglement between any two of the N parties can be "distilled," which enables quantum teleportation with an experimentally determinable fidelity better than could be achieved in any classical scheme.
Purified discord and multipartite entanglement
Brown, Eric G.; Webster, Eric J.; Martín-Martínez, Eduardo; Kempf, Achim
2013-10-15
We study bipartite quantum discord as a manifestation of a multipartite entanglement structure in the tripartite purified system. In particular, we find that bipartite quantum discord requires the presence of both bipartite and tripartite entanglement in the purification. This allows one to understand the asymmetry of quantum discord, D(A,B)≠D(B,A) in terms of entanglement monogamy. As instructive special cases, we study discord for qubits and Gaussian states in detail. As a result of this we shed new light on a counterintuitive property of Gaussian states: the presence of classical correlations necessarily requires the presence of quantum correlations. Finally, our results also shed new light on a protocol for remote activation of entanglement by a third party. -- Highlights: •Bipartite quantum discord as a manifestation of multipartite entanglement. •Relevance of quantum discord as a utilizable resource for quantum info. tasks. •Quantum discord manifests itself in entanglement in the purified state. •Relation between asymmetry of discord and entanglement monogamy. •Protocol for remote activation of entanglement by a third party.
Multi-partite entanglement can speed up quantum key distribution in networks
NASA Astrophysics Data System (ADS)
Epping, Michael; Kampermann, Hermann; macchiavello, Chiara; Bruß, Dagmar
2017-09-01
The laws of quantum mechanics allow for the distribution of a secret random key between two parties. Here we analyse the security of a protocol for establishing a common secret key between N parties (i.e. a conference key), using resource states with genuine N-partite entanglement. We compare this protocol to conference key distribution via bipartite entanglement, regarding the required resources, achievable secret key rates and threshold qubit error rates. Furthermore we discuss quantum networks with bottlenecks for which our multipartite entanglement-based protocol can benefit from network coding, while the bipartite protocol cannot. It is shown how this advantage leads to a higher secret key rate.
Multipartite entanglement and hypermatrices
NASA Astrophysics Data System (ADS)
Hilling, Joseph J.; Sudbery, Anthony
2010-05-01
We discuss how the entanglement properties of a multipartite pure state can be described by extending conventional matrix theory to the hypermatrix formed by the coefficients of the state with respect to a product basis. In particular, we show that the geometric measure of entanglement is given by an analogue of the largest singular value of a matrix.
Dissipative stabilization of quantum-feedback-based multipartite entanglement with Rydberg atoms
NASA Astrophysics Data System (ADS)
Shao, Xiao-Qiang; Wu, Jin-Hui; Yi, Xue-Xi
2017-02-01
A quantum-feedback-based scheme is proposed for generating multipartite entanglements of Rydberg atoms in a dissipative optical cavity. The Rydberg blockade mechanism efficiently prevents double excitations of the system, which is further exploited to speed up the stabilization of an entangled state with a single Rydberg state excitation. The corresponding feedback operations are greatly simplified, since only one regular atom needs to be controlled during the whole process, irrespective of the number of particles. The form of the entangled state is also adjustable via regulating the Rabi frequencies of driving fields. Moreover, a relatively long lifetime of the high-lying Rydberg level guarantees a high fidelity in a realistic situation.
Purification of genuine multipartite entanglement
Huber, Marcus; Plesch, Martin
2011-06-15
In tasks where multipartite entanglement plays a central role, state purification is, due to inevitable noise, a crucial part of the procedure. We consider a scenario exploiting the multipartite entanglement in a straightforward multipartite purification algorithm and compare it to bipartite purification procedures combined with state teleportation. While complete purification requires an infinite amount of input states in both cases, we show that for an imperfect output fidelity the multipartite procedure exhibits a major advantage in terms of input states used.
Elliott, T J; Kozlowski, W; Caballero-Benitez, S F; Mekhov, I B
2015-03-20
We show that the effect of measurement backaction results in the generation of multiple many-body spatial modes of ultracold atoms trapped in an optical lattice, when scattered light is detected. The multipartite mode entanglement properties and their nontrivial spatial overlap can be varied by tuning the optical geometry in a single setup. This can be used to engineer quantum states and dynamics of matter fields. We provide examples of multimode generalizations of parametric down-conversion, Dicke, and other states; investigate the entanglement properties of such states; and show how they can be transformed into a class of generalized squeezed states. Furthermore, we propose how these modes can be used to detect and measure entanglement in quantum gases.
Multipartite secret key distillation and bound entanglement
Augusiak, Remigiusz; Horodecki, Pawel
2009-10-15
Recently it has been shown that quantum cryptography beyond pure entanglement distillation is possible and a paradigm for the associated protocols has been established. Here we systematically generalize the whole paradigm to the multipartite scenario. We provide constructions of new classes of multipartite bound entangled states, i.e., those with underlying twisted Greenberger-Horne-Zeilinger (GHZ) structure and nonzero distillable cryptographic key. We quantitatively estimate the key from below with the help of the privacy squeezing technique.
NASA Astrophysics Data System (ADS)
Akulin, V. M.; Kabatiansky, G. A.; Mandilara, A.
2015-10-01
Using geometric means, we first consider a density matrix decomposition of a multipartite quantum system of a finite dimension into two density matrices: a separable one, also known as the best separable approximation, and an essentially entangled one, which contains no product state components. We show that this convex decomposition can be achieved in practice with the help of a linear programming algorithm that scales in the general case polynomially with the system dimension. We illustrate the algorithm implementation with an example of a composite system of dimension 12 that undergoes a loss of coherence due to classical noise and we trace the time evolution of its essentially entangled component. We suggest a "geometric" description of entanglement dynamics and demonstrate how it explains the well-known phenomena of sudden death and revival of multipartite entanglements. For a statistical weight loss of the essentially entangled component with time, its average entanglement content is not affected by the coherence loss.
NASA Astrophysics Data System (ADS)
Wu, Wei; Xu, Jing-Bo
2016-08-01
We investigate the quantum phase transitions of spin systems in one and two dimensions by employing trace distance and multipartite entanglement along with the real-space quantum renormalization group method. As illustration examples, a one-dimensional and a two-dimensional XY models are considered. It is shown that the quantum phase transitions of these spin-chain systems can be revealed by the singular behaviors of the first derivatives of renormalized trace distance and multipartite entanglement in the thermodynamics limit. Moreover, we find that the renormalized trace distance and multipartite entanglement obey certain universal exponential-type scaling laws in the vicinity of the quantum critical points.
Matched witness for multipartite entanglement
NASA Astrophysics Data System (ADS)
Chen, Xiao-yu; Jiang, Li-zhen; Xu, Zhu-an
2017-04-01
Entanglement criteria for multipartite entangled states are obtained by matching witnesses to multipartite entangled states. The necessary and sufficient criterion of separability for three qubit X states is given as an example to illustrate the procedure of finding a criterion. The result is utilized to obtain the noise tolerance of W state. The necessary and sufficient criteria of three partite separability and full separability for four qubit noisy cluster states, three partite separability for four qubit noisy GHZ states are obtained.
Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement
Rigolin, Gustavo
2005-03-01
We explicitly show a protocol in which an arbitrary two qubit state vertical bar {phi}>=a vertical bar 00>+b vertical bar 01>+c vertical bar 10>+d vertical bar 11> is faithfully and deterministically teleported from Alice to Bob. We construct the 16 orthogonal generalized Bell states that can be used to teleport the two qubits. The local operations Bob must perform on his qubits in order to recover the teleported state are also constructed. They are restricted only to single-qubit gates. This means that a controlled-NOT gate is not necessary to complete the protocol. A generalization where N qubits are teleported is also shown. We define a generalized magic basis, which possesses interesting properties. These properties help us to suggest a generalized concurrence from which we construct a measure of entanglement that has a clear physical interpretation: A multipartite state has maximum entanglement if it is a genuine quantum teleportation channel.
Multipartite Entanglement And Firewalls
NASA Astrophysics Data System (ADS)
Luo, Shengqiao; Stoltenberg, Henry; Albrecht, Andreas
2016-03-01
Black holes offer an exciting area to explore the nature of quantum gravity. The classic work on Hawking radiation indicates that black holes should decay via quantum effects, but our ideas about how this might work at a technical level are incomplete. Recently Almheiri-Marolf-Polchinski-Sully AMPS have noted an apparent paradox in reconciling fundamental properties of quantum mechanics with standard beliefs about black holes. One way to resolve the paradox is to postulate the existence of a ``firewall'' inside the black hole horizon which prevents objects from falling smoothly toward the singularity. A fundamental limitation on the behavior of quantum entanglement known as ``monogamy'' plays a key role in the AMPS argument. Our goal is to study and apply many-body entanglement theory to consider the entanglement among different parts of Hawking radiation and black holes. We identified an example which could change the AMPS accounting of quantum entanglement and perhaps eliminating the need for a firewall. Looking at different many body entanglement measures and their monogamy properties can tell us subtle ways in which different subsystems can share their entanglement. Specific measures we consider include negativity, concurrence, and mutual information. Taking insights from these different measures, we constructed toy models for black hole decay which have different entanglement behaviors than those assumed by AMPS. We hope to use our effective toy model to demonstrate interesting new ways of thinking about black holes.
Genuine-multipartite entanglement criteria based on positive maps
NASA Astrophysics Data System (ADS)
Clivaz, Fabien; Huber, Marcus; Lami, Ludovico; Murta, Gláucia
2017-08-01
Positive maps applied to a subsystem of a bipartite quantum state constitute a central tool in characterising entanglement. In the multipartite case, however, the direct application of a positive but not completely positive map cannot distinguish if a state is genuinely multipartite entangled or just entangled across some bipartition. We thus generalise this bipartite concept to the multipartite setting by introducing non-positive maps that are positive on the subset of biseparable states but can map to a non-positive element if applied to a genuine multipartite entangled state. We explicitly construct examples of multipartite non-positive maps, obtained from positive maps via a lifting procedure, that in this fashion can reveal genuine multipartite entanglement in a robust way.
Photonic multipartite entanglement conversion using nonlocal operations
NASA Astrophysics Data System (ADS)
Tashima, T.; Tame, M. S.; Özdemir, Ş. K.; Nori, F.; Koashi, M.; Weinfurter, H.
2016-11-01
We propose a simple setup for the conversion of multipartite entangled states in a quantum network with restricted access. The scheme uses nonlocal operations to enable the preparation of states that are inequivalent under local operations and classical communication, but most importantly does not require full access to the states. It is based on a flexible linear optical conversion gate that uses photons, which are ideally suited for distributed quantum computation and quantum communication in extended networks. In order to show the basic working principles of the gate, we focus on converting a four-qubit entangled cluster state to other locally inequivalent four-qubit states, such as the Greenberger-Horne-Zeilinger and symmetric Dicke states. We also show how the gate can be incorporated into extended graph state networks and can be used to generate variable entanglement and quantum correlations without entanglement but nonvanishing quantum discord.
Adesso, Gerardo; Ericsson, Marie; Illuminati, Fabrizio
2007-08-15
Quantum mechanics imposes 'monogamy' constraints on the sharing of entanglement. We show that, despite these limitations, entanglement can be fully 'promiscuous', i.e., simultaneously present in unlimited two-body and many-body forms in states living in an infinite-dimensional Hilbert space. Monogamy just bounds the divergence rate of the various entanglement contributions. This is demonstrated in simple families of N-mode (N{>=}4) Gaussian states of light fields or atomic ensembles, which therefore enable infinitely more freedom in the distribution of information, as opposed to systems of individual qubits. Such a finding is of importance for the quantification, understanding, and potential exploitation of shared quantum correlations in continuous variable systems. We discuss how promiscuity gradually arises when considering simple families of discrete variable states, with increasing Hilbert space dimension towards the continuous variable limit. Such models are somehow analogous to Gaussian states with asymptotically diverging, but finite, squeezing. In this respect, we find that non-Gaussian states (which in general are more entangled than Gaussian states) exhibit also the interesting feature that their entanglement is more shareable: in the non-Gaussian multipartite arena, unlimited promiscuity can be already achieved among three entangled parties, while this is impossible for Gaussian, even infinitely squeezed states.
Deng Fuguo
2005-09-15
The multipartite state in the Rigolin's protocol [Phys. Rev. A 71, 032303 (2005)] for teleporting an arbitrary two-qubit state is just a product state of N Einstein-Podolsky-Rosen pairs in essence, not a genuine multipartite entangled state, and this protocol in principle is equivalent to the Yang-Guo protocol [Chin. Phys. Lett. 17, 162 (2000)].
Construction of nonlocal multipartite quantum states
NASA Astrophysics Data System (ADS)
Zhang, Zhi-Chao; Zhang, Ke-Jia; Gao, Fei; Wen, Qiao-Yan; Oh, C. H.
2017-05-01
For general bipartite quantum systems, many sets of locally indistinguishable orthogonal product states have been constructed so far. Here, we first present a general method to construct multipartite orthogonal product states in d1⊗d2⊗⋯⊗dn(d1 ,2 ,⋯,n≥3 ,n ≥4 ) by using some locally indistinguishable bipartite orthogonal product states. And we prove that these multipartite orthogonal quantum states cannot be distinguished by local operations and classical communication. Furthermore, in d1⊗d2⊗⋯⊗dn(d1 ,2 ,⋯,n≥3 ,n ≥5 ) , we give a general method to construct a much smaller number of locally indistinguishable multipartite orthogonal product states for even and odd n separately. In addition, we also present a general method to construct complete orthogonal product bases for the multipartite quantum systems. Our results demonstrate the phenomenon of nonlocality without entanglement for the multipartite quantum systems.
Multipartite entangled states in particle mixing
Blasone, M.; Dell'Anno, F.; De Siena, S.; Di Mauro, M.; Illuminati, F.
2008-05-01
In the physics of flavor mixing, the flavor states are given by superpositions of mass eigenstates. By using the occupation number to define a multiqubit space, the flavor states can be interpreted as multipartite mode-entangled states. By exploiting a suitable global measure of entanglement, based on the entropies related to all possible bipartitions of the system, we analyze the correlation properties of such states in the instances of three- and four-flavor mixing. Depending on the mixing parameters, and, in particular, on the values taken by the free phases, responsible for the CP-violation, entanglement concentrates in certain bipartitions. We quantify in detail the amount and the distribution of entanglement in the physically relevant cases of flavor mixing in quark and neutrino systems. By using the wave packet description for localized particles, we use the global measure of entanglement, suitably adapted for the instance of multipartite mixed states, to analyze the decoherence, induced by the free evolution dynamics, on the quantum correlations of stationary neutrino beams. We define a decoherence length as the distance associated with the vanishing of the coherent interference effects among massive neutrino states. We investigate the role of the CP-violating phase in the decoherence process.
One-step error correction for multipartite polarization entanglement
Deng Fuguo
2011-06-15
We present two economical one-step error-correction protocols for multipartite polarization-entangled systems in a Greenberger-Horne-Zeilinger state. One uses spatial entanglement to correct errors in the polarization entanglement of an N-photon system, resorting to linear optical elements. The other uses frequency entanglement to correct errors in the polarization entanglement of an N-photon system. The parties in quantum communication can obtain a maximally entangled state from each N-photon system transmitted with one step in these two protocols, and both of their success probabilities are 100%, in principle. That is, they both work in a deterministic way, and they do not largely consume the less-entangled photon systems, which is far different from conventional multipartite entanglement purification schemes. These features may make these two protocols more useful for practical applications in long-distance quantum communication.
Coherent control of multipartite entanglement
NASA Astrophysics Data System (ADS)
Hashemi Rafsanjani, Seyed Mohammad; Eberly, Joseph H.
2015-01-01
Quantum entanglement between an arbitrary number of remote qubits is examined analytically. We show that there is a nonprobabilistic way to address in one context the management of entanglement of an arbitrary number of mixed-state qubits by engaging quantitative measures of entanglement and a specific external control mechanism. Both all-party entanglement and weak inseparability are considered. We show that for N ≥4 , the death of all-party entanglement is permanent after an initial collapse. In contrast, weak inseparability can be deterministically managed for an arbitrarily large number of qubits almost indefinitely. Our result suggests a picture of the path that the system traverses in the Hilbert space.
NASA Astrophysics Data System (ADS)
Chen, Moran; Menicucci, Nicolas C.; Pfister, Olivier
2014-03-01
We report the experimental realization and characterization of one 60-mode copy and of two 30-mode copies of a dual-rail quantum-wire cluster state in the quantum optical frequency comb of a bimodally pumped optical parametric oscillator. This is the largest entangled system ever created whose subsystems are all available simultaneously. The entanglement proceeds from the coherent concatenation of a multitude of Einstein, Podolsky, and Rosen pairs by a single beam splitter, a procedure which is also a building block for the realization of hypercubic-lattice cluster states for universal quantum computing.
Multipartite non-locality and entanglement signatures of a field-induced quantum phase transition
NASA Astrophysics Data System (ADS)
Batle, Josep; Alkhambashi, Majid; Farouk, Ahmed; Naseri, Mosayeb; Ghoranneviss, Mahmood
2017-02-01
Quantum correlation measures are limited in practice to a few number of parties, since no general theory is still capable of reaching the thermodynamic limit. In the present work we study entanglement and non-locality for a cluster of spins belonging to a compound that displays a magnetocaloric effect. A quantum phase transition (QPT) is induced by an external magnetic field B, in such a way that the corresponding quantum fluctuations are reproduced at a much smaller scale than the experimental outcomes, and then described by means of the aforementioned quantum measures.
A new method for quantifying entanglement of multipartite entangled states
NASA Astrophysics Data System (ADS)
Su, Pei-Yuan; Li, Wen-Dong; Ma, Xiao-Ping; Liu, Kai; Wang, Zhao-Ming; Gu, Yong-Jian
2017-08-01
We propose a new way for quantifying entanglement of multipartite entangled states which have a symmetrical structure and can be expressed as valence-bond-solid states. We put forward a new concept `unit.' The entangled state can be decomposed into a series of units or be reconstructed by multiplying the units successively, which simplifies the analyses of multipartite entanglement greatly. We compute and add up the generalized concurrence of each unit to quantify the entanglement of the whole state. We verify that the new method coincides with concurrence for two-partite pure states. We prove that the new method is a good entanglement measure obeying the three necessary conditions for all good entanglement quantification methods. Based on the method, we compute the entanglement of multipartite GHZ, cluster and AKLT states.
Multipartite entanglement in conditional states
NASA Astrophysics Data System (ADS)
Urbina, Juan Diego; Strunz, Walter T.; Viviescas, Carlos
2013-02-01
A key lesson of the decoherence program is that information flowing out from an open system is stored in the quantum state of the surroundings. Simultaneously, quantum measurement theory shows that the evolution of any open system when its environment is measured is nonlinear and leads to pure states conditioned on the measurement record. Here we report the discovery of a fundamental relation between measurement and entanglement which is characteristic of this scenario. It takes the form of a scaling law between the amount of entanglement in the conditional state of the system and the probabilities of the experimental outcomes obtained from measuring the state of the environment, with the latter modeled as a bosonic field linearly coupled with the system. Using the scaling, we construct the distribution of entanglement over the ensemble of experimental outcomes for standard models with one open channel and provide rigorous results on finite-time disentanglement in systems coupled to non-Markovian baths. In principle, the scaling allows the direct experimental detection and quantification of entanglement in conditional states of a large class of open systems by quantum tomography of the bath even when it consists of a single mode.
Multipartite quantum correlations and local recoverability
Wilde, Mark M.
2015-01-01
Characterizing genuine multipartite quantum correlations in quantum physical systems has historically been a challenging problem in quantum information theory. More recently, however, the total correlation or multipartite information measure has been helpful in accomplishing this goal, especially with the multipartite symmetric quantum (MSQ) discord (Piani et al. 2008 Phys. Rev. Lett. 100, 090502. (doi:10.1103/PhysRevLett.100.090502)) and the conditional entanglement of multipartite information (CEMI) (Yang et al. 2008 Phys. Rev. Lett. 101, 140501. (doi:10.1103/PhysRevLett.101.140501)). Here, we apply a recent and significant improvement of strong subadditivity of quantum entropy (Fawzi & Renner 2014 (http://arxiv.org/abs/1410.0664)) in order to develop these quantities further. In particular, we prove that the MSQ discord is nearly equal to zero if and only if the multipartite state for which it is evaluated is approximately locally recoverable after performing measurements on each of its systems. Furthermore, we prove that the CEMI is a faithful entanglement measure, i.e. it vanishes if and only if the multipartite state for which it is evaluated is a fully separable state. Along the way, we provide an operational interpretation of the MSQ discord in terms of the partial state distribution protocol, which in turn, as a special case, gives an interpretation for the original discord quantity. Finally, we prove an inequality that could potentially improve upon the Fawzi–Renner inequality in the multipartite context, but it remains an open question to determine whether this is so. PMID:27547097
Multipartite quantum correlations and local recoverability.
Wilde, Mark M
2015-05-08
Characterizing genuine multipartite quantum correlations in quantum physical systems has historically been a challenging problem in quantum information theory. More recently, however, the total correlation or multipartite information measure has been helpful in accomplishing this goal, especially with the multipartite symmetric quantum (MSQ) discord (Piani et al. 2008 Phys. Rev. Lett. 100, 090502. (doi:10.1103/PhysRevLett.100.090502)) and the conditional entanglement of multipartite information (CEMI) (Yang et al. 2008 Phys. Rev. Lett. 101, 140501. (doi:10.1103/PhysRevLett.101.140501)). Here, we apply a recent and significant improvement of strong subadditivity of quantum entropy (Fawzi & Renner 2014 (http://arxiv.org/abs/1410.0664)) in order to develop these quantities further. In particular, we prove that the MSQ discord is nearly equal to zero if and only if the multipartite state for which it is evaluated is approximately locally recoverable after performing measurements on each of its systems. Furthermore, we prove that the CEMI is a faithful entanglement measure, i.e. it vanishes if and only if the multipartite state for which it is evaluated is a fully separable state. Along the way, we provide an operational interpretation of the MSQ discord in terms of the partial state distribution protocol, which in turn, as a special case, gives an interpretation for the original discord quantity. Finally, we prove an inequality that could potentially improve upon the Fawzi-Renner inequality in the multipartite context, but it remains an open question to determine whether this is so.
Correlated multipartite quantum states
NASA Astrophysics Data System (ADS)
Batle, J.; Casas, M.; Plastino, A.
2013-03-01
We investigate quantum states that possess both maximum entanglement and maximum discord between the pertinent parties. Since entanglement (discord) is defined only for bipartite (two-qubit) systems, we use an appropriate sum over all bipartitions as the associated measure. The ensuing definition—not new for entanglement—is thus extended here to quantum discord. Also, additional dimensions within the parties are considered (qudits). We also discuss quantum correlations that induce Mermin's Bell-inequality violation for all multiqubit systems. One finds some differences when quantum mechanics is defined over the field of real or of complex numbers.
Einstein-Podolsky-Rosen-steering swapping between two Gaussian multipartite entangled states
NASA Astrophysics Data System (ADS)
Wang, Meihong; Qin, Zhongzhong; Wang, Yu; Su, Xiaolong
2017-08-01
Multipartite Einstein-Podolsky-Rosen (EPR) steering is a useful quantum resource for quantum communication in quantum networks. It has potential applications in secure quantum communication, such as one-sided device-independent quantum key distribution and quantum secret sharing. By distributing optical modes of a multipartite entangled state to space-separated quantum nodes, a local quantum network can be established. Based on the existing multipartite EPR steering in a local quantum network, secure quantum communication protocol can be accomplished. In this manuscript, we present swapping schemes for EPR steering between two space-separated Gaussian multipartite entangled states, which can be used to connect two space-separated quantum networks. Two swapping schemes, including the swapping between a tripartite Greenberger-Horne-Zeilinger (GHZ) entangled state and an EPR entangled state and that between two tripartite GHZ entangled states, are analyzed. Various types of EPR steering are presented after the swapping of two space-separated independent multipartite entanglement states without direct interaction, which can be used to implement quantum communication between two quantum networks. The presented schemes provide technical reference for more complicated quantum networks with EPR steering.
How to make optimal use of maximal multipartite entanglement in clock synchronization
Ren, Changliang; Hofmann, Holger F.
2014-12-04
We introduce a multi-party quantum clock synchronization protocol that makes optimal use of the maximal multipartite entanglement of GHZ-type states. The measurement statistics of the protocol are analyzed and the efficiency is evaluated.
Accurate calculation of the geometric measure of entanglement for multipartite quantum states
NASA Astrophysics Data System (ADS)
Teng, Peiyuan
2017-07-01
This article proposes an efficient way of calculating the geometric measure of entanglement using tensor decomposition methods. The connection between these two concepts is explored using the tensor representation of the wavefunction. Numerical examples are benchmarked and compared. Furthermore, we search for highly entangled qubit states to show the applicability of this method.
Multipartite Entanglement Detection with Minimal Effort
NASA Astrophysics Data System (ADS)
Knips, Lukas; Schwemmer, Christian; Klein, Nico; Wieśniak, Marcin; Weinfurter, Harald
2016-11-01
Certifying entanglement of a multipartite state is generally considered a demanding task. Since an N qubit state is parametrized by 4N-1 real numbers, one might naively expect that the measurement effort of generic entanglement detection also scales exponentially with N . Here, we introduce a general scheme to construct efficient witnesses requiring a constant number of measurements independent of the number of qubits for states like, e.g., Greenberger-Horne-Zeilinger states, cluster states, and Dicke states. For four qubits, we apply this novel method to experimental realizations of the aforementioned states and prove genuine four-partite entanglement with two measurement settings only.
Multipartite asymmetric quantum cloning
Iblisdir, S.; Gisin, N.; Acin, A.; Cerf, N.J.; Filip, R.; Fiurasek, J.
2005-10-15
We investigate the optimal distribution of quantum information over multipartite systems in asymmetric settings. We introduce cloning transformations that take N identical replicas of a pure state in any dimension as input and yield a collection of clones with nonidentical fidelities. As an example, if the clones are partitioned into a set of M{sub A} clones with fidelity F{sup A} and another set of M{sub B} clones with fidelity F{sup B}, the trade-off between these fidelities is analyzed, and particular cases of optimal N{yields}M{sub A}+M{sub B} cloning machines are exhibited. We also present an optimal 1{yields}1+1+1 cloning machine, which is an example of a tripartite fully asymmetric cloner. Finally, it is shown how these cloning machines can be optically realized.
Measure of genuine multipartite entanglement with computable lower bounds
Ma Zhihao; Chen Zhihua; Chen Jingling; Spengler, Christoph; Gabriel, Andreas; Huber, Marcus
2011-06-15
We introduce an intuitive measure of genuine multipartite entanglement, which is based on the well-known concurrence. We show how lower bounds on this measure can be derived and also meet important characteristics of an entanglement measure. These lower bounds are experimentally implementable in a feasible way enabling quantification of multipartite entanglement in a broad variety of cases.
Simplified Scheme for Teleportation of a Multipartite Quantum State Using a Single Entangled Pair
NASA Astrophysics Data System (ADS)
Yan, Li-Hua; Gao, Yun-Feng
2009-02-01
A simple scheme for teleporting an unknown M-qubit cat-like state is proposed. The steps of this scheme can be summarized simply: disentangle-teleport-reconstruct entanglement. If proper unitary operations and measurements from senders are given, the teleportation of an unknown M-qubit cat-like state can be converted into single qubit teleportation. In the meantime, the receiver should also carry out right unitary operations with the introduction of appropriate ancillary qubits to confirm the successful teleportation of the demanded entangled state. The present scheme can be generalized to teleport an unknown M-quNit state, i.e., an M-quNit state can be teleported by a single quNit entangled pair.
Manipulating mesoscopic multipartite entanglement with atom-light interfaces
Stasinska, J.; Rodo, C.; Paganelli, S.; Birkl, G.; Sanpera, A.
2009-12-15
Entanglement between two macroscopic atomic ensembles induced by measurement on an ancillary light system has proven to be a powerful method for engineering quantum memories and quantum state transfer. Here we investigate the feasibility of such methods for generation, manipulation, and detection of genuine multipartite entanglement (Greenberger-Horne-Zeilinger and clusterlike states) between mesoscopic atomic ensembles without the need of individual addressing of the samples. Our results extend in a nontrivial way the Einstein-Podolsky-Rosen entanglement between two macroscopic gas samples reported experimentally in [B. Julsgaard, A. Kozhekin, and E. Polzik, Nature (London) 413, 400 (2001)]. We find that under realistic conditions, a second orthogonal light pulse interacting with the atomic samples, can modify and even reverse the entangling action of the first one leaving the samples in a separable state.
NASA Astrophysics Data System (ADS)
Toscano, F.; Saboia, A.; Avelar, A. T.; Walborn, S. P.
2015-11-01
A general procedure to construct criteria for identifying genuine multipartite continuous-variable entanglement is presented. It relies on the definition of adequate global operators describing the multipartite system, the positive partial transpose criterion of separability, and quantum-mechanical uncertainty relations. As a consequence, each criterion encountered consists of a single inequality that is nicely computable and experimentally feasible. Violation of the inequality is a sufficient condition for genuine multipartite entanglement. Additionally, we show that the previous work of van Loock and Furusawa [P. van Loock and A. Furusawa, Phys. Rev. A 67, 052315 (2003), 10.1103/PhysRevA.67.052315] is a special case of our result.
Multipartite Continuous-Variable Entanglement Distribution with Separable Gaussian States
NASA Astrophysics Data System (ADS)
Zhong, Daili; Wang, Yijun; Guo, Ying
2017-05-01
Entangling quantum systems at distant locations is a newly discovered counterintuitive phenomenon. However, the generation effect will be reduced by imperfections of practical devices. In this paper, we demonstrate a Gaussian process approach for the scheme design of multipartite continuous-variable (CV) entanglement generation and distribution by using separable Gaussian states, which are superimposed on the beam splitters with the single auxiliary state, rendering the desirable CV entangled states. The superimposing operation not only can avoid the complexity and imperfection of the practical state-superimposing operations, which defends the eavesdropper as the auxiliary mode which is separable, but also can be regulated flexibly by performing suitable displacements with the regulated parameter of the initial states before being sent to the beam splitters to optimize the performance.
Efficient Device-Independent Entanglement Detection for Multipartite Systems
NASA Astrophysics Data System (ADS)
Baccari, F.; Cavalcanti, D.; Wittek, P.; Acín, A.
2017-04-01
Entanglement is one of the most studied properties of quantum mechanics for its application in quantum information protocols. Nevertheless, detecting the presence of entanglement in large multipartite states continues to be a great challenge both from the theoretical and the experimental point of view. Most of the known methods either have computational costs that scale inefficiently with the number of particles or require more information on the state than what is attainable in everyday experiments. We introduce a new technique for entanglement detection that provides several important advantages in these respects. First, it scales efficiently with the number of particles, thus allowing for application to systems composed by up to few tens of particles. Second, it needs only the knowledge of a subset of all possible measurements on the state, therefore being apt for experimental implementation. Moreover, since it is based on the detection of nonlocality, our method is device independent. We report several examples of its implementation for well-known multipartite states, showing that the introduced technique has a promising range of applications.
Strong monogamy of bipartite and genuine multipartite entanglement: the Gaussian case.
Adesso, Gerardo; Illuminati, Fabrizio
2007-10-12
We demonstrate the existence of general constraints on distributed quantum correlations, which impose a trade-off on bipartite and multipartite entanglement at once. For all N-mode Gaussian states under permutation invariance, we establish exactly a monogamy inequality, stronger than the traditional one, that by recursion defines a proper measure of genuine N-partite entanglement. Strong monogamy holds as well for subsystems of arbitrary size, and the emerging multipartite entanglement measure is found to be scale invariant. We unveil its operational connection with the optimal fidelity of continuous variable teleportation networks.
Experimentally implementable criteria revealing substructures of genuine multipartite entanglement
Huber, Marcus; Schimpf, Hans; Gabriel, Andreas; Spengler, Christoph; Bruss, Dagmar; Hiesmayr, Beatrix C.
2011-02-15
We present a general framework that reveals substructures of genuine multipartite entanglement. Via simple inequalities it is possible to discriminate different sets of multipartite qubit states. These inequalities are beneficial regarding experimental examinations as only local measurements are required. Furthermore, the number of observables scales favorably with system size. In exemplary cases we demonstrate the noise resistance and discuss implementations.
Quantification and scaling of multipartite entanglement in continuous variable systems.
Adesso, Gerardo; Serafini, Alessio; Illuminati, Fabrizio
2004-11-26
We present a theoretical method to determine the multipartite entanglement between different partitions of multimode, fully or partially symmetric Gaussian states of continuous variable systems. For such states, we determine the exact expression of the logarithmic negativity and show that it coincides with that of equivalent two-mode Gaussian states. Exploiting this reduction, we demonstrate the scaling of the multipartite entanglement with the number of modes and its reliable experimental estimate by direct measurements of the global and local purities.
Avoiding disentanglement of multipartite entangled optical beams with a correlated noisy channel
Deng, Xiaowei; Tian, Caixing; Su, Xiaolong; Xie, Changde
2017-01-01
A quantum communication network can be constructed by distributing a multipartite entangled state to space-separated nodes. Entangled optical beams with highest flying speed and measurable brightness can be used as carriers to convey information in quantum communication networks. Losses and noises existing in real communication channels will reduce or even totally destroy entanglement. The phenomenon of disentanglement will result in the complete failure of quantum communication. Here, we present the experimental demonstrations on the disentanglement and the entanglement revival of tripartite entangled optical beams used in a quantum network. We experimentally demonstrate that symmetric tripartite entangled optical beams are robust in pure lossy but noiseless channels. In a noisy channel, the excess noise will lead to the disentanglement and the destroyed entanglement can be revived by the use of a correlated noisy channel (non-Markovian environment). The presented results provide useful technical references for establishing quantum networks. PMID:28295024
Avoiding disentanglement of multipartite entangled optical beams with a correlated noisy channel
NASA Astrophysics Data System (ADS)
Deng, Xiaowei; Tian, Caixing; Su, Xiaolong; Xie, Changde
2017-03-01
A quantum communication network can be constructed by distributing a multipartite entangled state to space-separated nodes. Entangled optical beams with highest flying speed and measurable brightness can be used as carriers to convey information in quantum communication networks. Losses and noises existing in real communication channels will reduce or even totally destroy entanglement. The phenomenon of disentanglement will result in the complete failure of quantum communication. Here, we present the experimental demonstrations on the disentanglement and the entanglement revival of tripartite entangled optical beams used in a quantum network. We experimentally demonstrate that symmetric tripartite entangled optical beams are robust in pure lossy but noiseless channels. In a noisy channel, the excess noise will lead to the disentanglement and the destroyed entanglement can be revived by the use of a correlated noisy channel (non-Markovian environment). The presented results provide useful technical references for establishing quantum networks.
Huber, Marcus; Erker, Paul; Schimpf, Hans; Gabriel, Andreas; Hiesmayr, Beatrix
2011-04-15
We construct a set of criteria detecting genuine multipartite entanglement in arbitrary dimensional multipartite systems. These criteria are optimally suited for detecting multipartite entanglement in n-qubit Dicke states with m excitations, as shown in exemplary cases. Furthermore, they can be employed to detect multipartite entanglement in different states related to quantum cloning, decoherence-free communication, and quantum secret sharing. In a detailed analysis, we show that the criteria are also more robust to noise than any other criterion known so far, especially with increasing system size. Furthermore, it is shown that the number of required local observables scales only polynomially with size, thus making the criteria experimentally feasible.
Multipartite polariton entanglement in semiconductor microcavities
Liew, T. C. H.; Savona, V.
2011-09-15
We study the entanglement of multiple polariton modes, which results in continuous variable cluster states suitable for quantum computation. Schemes are based on parametric scattering between spin-polarized lower and upper polariton branches in planar microcavities or spin-polarized orbital angular momentum states in mesa structures. Such systems are modeled by numerical solution of truncated density matrices and compared to the solution of the Heisenberg equations for the set of field correlators up to third order. Four-body entanglement is evidenced by violation of the van Loock-Furusawa quadripartite inequalities. We show that the entanglement is able to withstand a realistic strength of pure dephasing present in typical systems.
Entanglement bound for multipartite pure states based on local measurements
Jiang Lizhen; Chen Xiaoyu; Ye Tianyu
2011-10-15
An entanglement bound based on local measurements is introduced for multipartite pure states. It is the upper bound of the geometric measure and the relative entropy of entanglement. It is the lower bound of the minimal-measurement entropy. For pure bipartite states, the bound is equal to the entanglement entropy. The bound is applied to pure tripartite qubit states and the exact tripartite relative entropy of entanglement is obtained for a wide class of states.
Detecting genuine multipartite entanglement in steering scenarios
NASA Astrophysics Data System (ADS)
Jebaratnam, C.
2016-05-01
Einstein-Podolsky-Rosen (EPR) steering is a form of quantum nonlocality which is intermediate between entanglement and Bell nonlocality. EPR steering is a resource for quantum key distribution that is device independent on only one side in that it certifies bipartite entanglement when one party's device is not characterized while the other party's device is fully characterized. In this work, we introduce two types of genuine tripartite EPR steering, and derive two steering inequalities to detect them. In a semi-device-independent scenario where only the dimensions of two parties are assumed, the correlations which violate one of these inequalities also certify genuine tripartite entanglement. It is known that Alice can demonstrate bipartite EPR steering to Bob if and only if her measurement settings are incompatible. We demonstrate that quantum correlations can also detect tripartite EPR steering from Alice to Bob and Charlie, even if Charlie's measurement settings are compatible.
NASA Astrophysics Data System (ADS)
Li, Hui; Wang, Shuhao; Cui, Jianlian; Long, Guilu
2013-04-01
The entanglement quantification and classification of multipartite quantum states are two important research fields in quantum information. In this work, we study the entanglement of arbitrary-dimensional multipartite pure states by looking at the averaged partial entropies of various bipartite partitions of the system, namely, the so-called Manhattan distance (l1 norm) of averaged partial entropies (MAPE), and it is proved to be an entanglement measure for pure states. We connected the MAPE with the coefficient matrices, which are important tools in entanglement classification and reexpressed the MAPE for arbitrary-dimensional multipartite pure states by the nonzero singular values of the coefficient matrices. The entanglement properties of the n-qubit Dicke states, arbitrary-dimensional Greenberger-Horne-Zeilinger states, and D3n states are investigated in terms of the MAPE, and the relation between the rank of the coefficient matrix and the degree of entanglement is demonstrated for symmetric states by two examples.
Strong-Driving-Assisted Multipartite Entanglement in Cavity QED
NASA Astrophysics Data System (ADS)
Solano, E.; Agarwal, G. S.; Walther, H.
2003-01-01
We propose a method of generating multipartite entanglement by considering the interaction of a system of N two-level atoms in a cavity of high quality factor with a strong classical driving field. It is shown that, with a judicious choice of the cavity detuning and the applied coherent field detuning, vacuum Rabi coupling produces a large number of important multipartite entangled states. It is even possible to produce entangled states involving different cavity modes. Tuning of parameters also permits us to switch from Jaynes-Cummings to anti-Jaynes-Cummings like interaction.
Global multipartite entanglement dynamics in Grover's search algorithm
NASA Astrophysics Data System (ADS)
Pan, Minghua; Qiu, Daowen; Zheng, Shenggen
2017-09-01
Entanglement is considered to be one of the primary reasons for why quantum algorithms are more efficient than their classical counterparts for certain computational tasks. The global multipartite entanglement of the multiqubit states in Grover's search algorithm can be quantified using the geometric measure of entanglement (GME). Rossi et al. (Phys Rev A 87:022331, 2013) found that the entanglement dynamics is scale invariant for large n. Namely, the GME does not depend on the number n of qubits; rather, it only depends on the ratio of iteration k to the total iteration. In this paper, we discuss the optimization of the GME for large n. We prove that "the GME is scale invariant" does not always hold. We show that there is generally a turning point that can be computed in terms of the number of marked states and their Hamming weights during the curve of the GME. The GME is scale invariant prior to the turning point. However, the GME is not scale invariant after the turning point since it also depends on n and the marked states.
NASA Astrophysics Data System (ADS)
Yamasaki, Hayata; Soeda, Akihito; Murao, Mio
2017-09-01
We introduce and analyze graph-associated entanglement cost, a generalization of the entanglement cost of quantum states to multipartite settings. We identify a necessary and sufficient condition for any multipartite entangled state to be constructible when quantum communication between the multiple parties is restricted to a quantum network represented by a tree. The condition for exact state construction is expressed in terms of the Schmidt ranks of the state defined with respect to edges of the tree. We also study approximate state construction and provide a second-order asymptotic analysis.
NASA Astrophysics Data System (ADS)
Ali, Mazhar
2017-01-01
We investigate the dynamics of entanglement and nonlocality for multipartite quantum systems under collective dephasing. Using an exact and computable measure for genuine entanglement, we demonstrate the possibility of a non trivial phenomenon of time-invariant entanglement for multipartite quantum systems. We find that for four qubits, there exist quantum states, which are changing continously nevertheless their genuine entanglement remains constant. Based on our numerical results, we conjecture that there is no evidence of time-invariant entanglement for quantum states of three qubits. We point out that quantum states exhibiting time-invariant entanglement must live in both decoherence free subspace and in the subspaces orthogonal to it. The previous studies on this feature for two qubits can be recovered from our studies as a special case. We also study the nonlocality of quantum states under collective dephasing. We find that although genuine entanglement of quantum states may not change, however their nonlocality changes. We discuss the possibility of finite time end of genuine nonlocality.
Universal quantum computation with little entanglement.
Van den Nest, Maarten
2013-02-08
We show that universal quantum computation can be achieved in the standard pure-state circuit model while the entanglement entropy of every bipartition is small in each step of the computation. The entanglement entropy required for large-scale quantum computation even tends to zero. Moreover we show that the same conclusion applies to many entanglement measures commonly used in the literature. This includes e.g., the geometric measure, localizable entanglement, multipartite concurrence, squashed entanglement, witness-based measures, and more generally any entanglement measure which is continuous in a certain natural sense. These results demonstrate that many entanglement measures are unsuitable tools to assess the power of quantum computers.
Classification of multipartite entangled states by multidimensional determinants
Miyake, Akimasa
2003-01-01
We find that multidimensional determinants 'hyperdeterminants', related to entanglement measures (the so-called concurrence, or 3-tangle for two or three qubits, respectively), are derived from a duality between entangled states and separable states. By means of the hyperdeterminant and its singularities, the single copy of multipartite pure entangled states is classified into an onion structure of every closed subset, similar to that by the local rank in the bipartite case. This reveals how inequivalent multipartite entangled classes are partially ordered under local actions. In particular, the generic entangled class of the maximal dimension, distinguished as the nonzero hyperdeterminant, does not include the maximally entangled states in Bell's inequalities in general (e.g., in the n{>=}4 qubits), contrary to the widely known bipartite or three-qubit cases. It suggests that not only are they never locally interconvertible with the majority of multipartite entangled states, but they would have no grounds for the canonical n-partite entangled states. Our classification is also useful for the mixed states.
Monogamy relation in multipartite continuous-variable quantum teleportation
NASA Astrophysics Data System (ADS)
Lee, Jaehak; Ji, Se-Wan; Park, Jiyong; Nha, Hyunchul
2016-12-01
Quantum teleportation (QT) is a fundamentally remarkable communication protocol that also finds many important applications for quantum informatics. Given a quantum entangled resource, it is crucial to know to what extent one can accomplish the QT. This is usually assessed in terms of output fidelity, which can also be regarded as an operational measure of entanglement. In the case of multipartite communication when each communicator possesses a part of an N -partite entangled state, not all pairs of communicators can achieve a high fidelity due to the monogamy property of quantum entanglement. We here investigate how such a monogamy relation arises in multipartite continuous-variable (CV) teleportation, particularly when using a Gaussian entangled state. We show a strict monogamy relation, i.e., a sender cannot achieve a fidelity higher than optimal cloning limit with more than one receiver. While this seems rather natural owing to the no-cloning theorem, a strict monogamy relation still holds even if the sender is allowed to individually manipulate the reduced state in collaboration with each receiver to improve fidelity. The local operations are further extended to non-Gaussian operations such as photon subtraction and addition, and we demonstrate that the Gaussian cloning bound cannot be beaten by more than one pair of communicators. Furthermore, we investigate a quantitative form of monogamy relation in terms of teleportation capability, for which we show that a faithful monogamy inequality does not exist.
Global quantum discord in multipartite systems
Rulli, C. C.; Sarandy, M. S.
2011-10-15
We propose a global measure for quantum correlations in multipartite systems, which is obtained by suitably recasting the quantum discord in terms of relative entropy and local von Neumann measurements. The measure is symmetric with respect to subsystem exchange and is shown to be nonnegative for an arbitrary state. As an illustration, we consider tripartite correlations in the Werner-GHZ (Greenberger-Horne-Zeilinger) state and multipartite correlations at quantum criticality. In particular, in contrast with the pairwise quantum discord, we show that the global quantum discord is able to characterize the infinite-order quantum phase transition in the Ashkin-Teller spin chain.
Wu Chunfeng; Chen Jingling; Oh, C.H.; Kwek, L.C.; Xue Kang
2005-02-01
We construct an explicit Wigner function for the N-mode squeezed state. Based on a previous observation that the Wigner function describes correlations in the joint measurement of the phase-space displaced parity operator, we investigate the nonlocality of the multipartite entangled state by the violation of the Zukowski-Brukner N-qubit Bell inequality. We find that quantum predictions for such a squeezed state violate these inequalities by an amount that grows with the number N.
NASA Astrophysics Data System (ADS)
Assadi, Leila; Jafarpour, Mojtaba
2016-11-01
We use concurrence to study bipartite entanglement, Meyer-Wallach measure and its generalizations to study multi-partite entanglement and MABK and SASA inequalities to study the non-local properties of the 4-qubit entangled graph states, quantitatively. Then, we present 3 classifications, each one in accordance with one of the aforementioned properties. We also observe that the classification according to multipartite entanglement does exactly coincide with that according to nonlocal properties, but does not match with that according to bipartite entanglement. This observation signifies the fact that non-locality and multipartite entanglement enjoy the same basic underlying principles, while bipartite entanglement may not reveal the non-locality issue in its entirety.
NASA Astrophysics Data System (ADS)
Adesso, Gerardo; Illuminati, Fabrizio
2008-10-01
We investigate the structural aspects of genuine multipartite entanglement in Gaussian states of continuous variable systems. Generalizing the results of Adesso and Illuminati [Phys. Rev. Lett. 99, 150501 (2007)], we analyze whether the entanglement shared by blocks of modes distributes according to a strong monogamy law. This property, once established, allows us to quantify the genuine N -partite entanglement not encoded into 2,…,K,…,(N-1) -partite quantum correlations. Strong monogamy is numerically verified, and the explicit expression of the measure of residual genuine multipartite entanglement is analytically derived, by a recursive formula, for a subclass of Gaussian states. These are fully symmetric (permutation-invariant) states that are multipartitioned into blocks, each consisting of an arbitrarily assigned number of modes. We compute the genuine multipartite entanglement shared by the blocks of modes and investigate its scaling properties with the number and size of the blocks, the total number of modes, the global mixedness of the state, and the squeezed resources needed for state engineering. To achieve the exact computation of the block entanglement, we introduce and prove a general result of symplectic analysis: Correlations among K blocks in N -mode multisymmetric and multipartite Gaussian states, which are locally invariant under permutation of modes within each block, can be transformed by a local (with respect to the partition) unitary operation into correlations shared by K single modes, one per block, in effective nonsymmetric states where N-K modes are completely uncorrelated. Due to this theorem, the above results, such as the derivation of the explicit expression for the residual multipartite entanglement, its nonnegativity, and its scaling properties, extend to the subclass of non-symmetric Gaussian states that are obtained by the unitary localization of the multipartite entanglement of symmetric states. These findings provide strong
NASA Astrophysics Data System (ADS)
Daoud, M.; Ahl Laamara, R.
2012-07-01
We give the explicit expressions of the pairwise quantum correlations present in superpositions of multipartite coherent states. A special attention is devoted to the evaluation of the geometric quantum discord. The dynamics of quantum correlations under a dephasing channel is analyzed. A comparison of geometric measure of quantum discord with that of concurrence shows that quantum discord in multipartite coherent states is more resilient to dissipative environments than is quantum entanglement. To illustrate our results, we consider some special superpositions of Weyl-Heisenberg, SU(2) and SU(1,1) coherent states which interpolate between Werner and Greenberger-Horne-Zeilinger states.
Unified criteria for multipartite quantum nonlocality
Cavalcanti, E. G.; He, Q. Y.; Reid, M. D.; Wiseman, H. M.
2011-09-15
Wiseman and co-workers [H. M. Wiseman, S. J. Jones, and A. C. Doherty, Phys. Rev. Lett. 98, 140402, (2007)] proposed a distinction among the nonlocality classes of Bell's nonlocality, Einstein-Podolsky-Rosen (EPR) paradox or steering, and entanglement based on whether or not an overseer trusts each party in a bipartite scenario where they are asked to demonstrate entanglement. Here we extend that concept to the multipartite case and derive inequalities that progressively test for those classes of nonlocality, with different thresholds for each level. This framework includes the three classes of nonlocality above in special cases and introduces a family of others.
Protocol using kicked Ising dynamics for generating states with maximal multipartite entanglement
NASA Astrophysics Data System (ADS)
Mishra, Sunil K.; Lakshminarayan, Arul; Subrahmanyam, V.
2015-02-01
We present a solvable model of iterating cluster state protocols that lead to entanglement production, between contiguous blocks, of 1 ebit per iteration. This continues until the blocks are maximally entangled, at which stage an unravelling begins at the same rate until the blocks are unentangled. The model is a variant of the transverse-field Ising model and can be implemented with controlled-not and single-qubit gates. The interqubit entanglement as measured by the concurrence is shown to be zero for periodic chain realizations, while for open boundaries there are very specific instances at which these can develop. Thus we introduce a class of simply produced states with very large multipartite entanglement content of potential use in measurement-based quantum computing.
Multipartite maximally entangled states in symmetric scenarios
NASA Astrophysics Data System (ADS)
González-Guillén, Carlos E.
2012-08-01
We consider the class of (N+1)-partite states suitable for protocols where there is a powerful party, the authority, and the other N parties play the same role, namely, the state of their system lies in the symmetric Hilbert space. We show that, within this scenario, there is a “maximally entangled state” that can be transform by a local operations and classical communication protocol into any other state. In addition, we show how to use the protocol efficiently, including the construction of the state, and discuss security issues for possible applications to cryptographic protocols. As an immediate consequence we recover a sequential protocol that implements the 1-to-N symmetric cloning.
Quantum correlations require multipartite information principles.
Gallego, Rodrigo; Würflinger, Lars Erik; Acín, Antonio; Navascués, Miguel
2011-11-18
Identifying which correlations among distant observers are possible within our current description of nature, based on quantum mechanics, is a fundamental problem in physics. Recently, information concepts have been proposed as the key ingredient to characterize the set of quantum correlations. Novel information principles, such as information causality or nontrivial communication complexity, have been introduced in this context and successfully applied to some concrete scenarios. We show in this work a fundamental limitation of this approach: no principle based on bipartite information concepts is able to singleout the set of quantum correlations for an arbitrary number of parties. Our results reflect the intricate structure of quantum correlations and imply that new and intrinsically multipartite information concepts are needed for their full understanding.
Quantum correlations in connected multipartite Bell experiments
NASA Astrophysics Data System (ADS)
Tavakoli, Armin
2016-04-01
Bell experiments measure correlations between outcomes of a number of observers measuring on a shared physical state emitted from a single source. Quantum correlations arising in such Bell experiments have been intensively studied over the last decades. Much less is known about the nature of quantum correlations arising in network structures beyond Bell experiments. Such networks can involve many independent sources emitting states to observers in accordance with the network configuration. Here, we will study classical and quantum correlations in a family of networks which can be regarded as compositions of several independent multipartite Bell experiments connected together through a central node. For such networks we present tight Bell-type inequalities which are satisfied by all classical correlations. We study properties of the violations of our inequalities by probability distributions arising in quantum theory.
Multipartite Continuous-Variable Entanglement Distribution with Separable Gaussian States
NASA Astrophysics Data System (ADS)
Zeng, Chuan; Zhang, Jian-Zhong; Xie, Shu-Cui
2017-03-01
In this paper, a quantum proxy blind signature scheme based on controlled quantum teleportation is proposed. This scheme uses a genuine five-qubit entangled state as quantum channel and adopts the classical Vernam algorithm to blind message. We use the physical characteristics of quantum mechanics to implement delegation, signature and verification. Security analysis shows that our scheme is valid and satisfy the properties of a proxy blind signature, such as blindness, verifiability, unforgeability, undeniability.
Entanglement of spin waves among four quantum memories.
Choi, K S; Goban, A; Papp, S B; van Enk, S J; Kimble, H J
2010-11-18
Quantum networks are composed of quantum nodes that interact coherently through quantum channels, and open a broad frontier of scientific opportunities. For example, a quantum network can serve as a 'web' for connecting quantum processors for computation and communication, or as a 'simulator' allowing investigations of quantum critical phenomena arising from interactions among the nodes mediated by the channels. The physical realization of quantum networks generically requires dynamical systems capable of generating and storing entangled states among multiple quantum memories, and efficiently transferring stored entanglement into quantum channels for distribution across the network. Although such capabilities have been demonstrated for diverse bipartite systems, entangled states have not been achieved for interconnects capable of 'mapping' multipartite entanglement stored in quantum memories to quantum channels. Here we demonstrate measurement-induced entanglement stored in four atomic memories; user-controlled, coherent transfer of the atomic entanglement to four photonic channels; and characterization of the full quadripartite entanglement using quantum uncertainty relations. Our work therefore constitutes an advance in the distribution of multipartite entanglement across quantum networks. We also show that our entanglement verification method is suitable for studying the entanglement order of condensed-matter systems in thermal equilibrium.
NASA Astrophysics Data System (ADS)
Wang, Meng; Xiang, Yu; He, Qiongyi; Gong, Qihuang
2015-01-01
The multipartite entangled state has drawn broad attention for both foundations of quantum mechanics and applications in quantum information processing. Here, we study the spatially separated N -partite continuous-variable Greenberger-Horne-Zeilinger-like states, which can be produced by a linear optical network with squeezed light and N -1 beamsplitters. We investigate the properties of multipartite Einstein-Podolsky-Rosen steering possessed by those states, and find that the steering of a given quantum mode is allowed when not less than half of the modes within the states take part in the steering group. This is certified by the detection of the correlation between position and momentum quadratures of the steered mode and a combination of quadratures of other modes inside the steering group. The steering is evidenced by the high correlation where the steering group can infer the quadratures of the steered mode to high precision, i.e., below the quantum limit for the position and momentum quadratures of the steered quantum mode. We also examine the influence of inefficiency on the multipartite steering, and derive the threshold of the loss tolerance. Furthermore, we discuss the collective N -partite steering induced by the asymmetric loss on beams, which exists when a given quantum mode can only be steered by all the remaining N -1 modes collaboratively. The present multipartite steering correlation may have potential applications in certain quantum information tasks where the issue of trust is important, such as one-sided device-independent quantum secret sharing.
Multipartite entanglement of fermionic systems in noninertial frames
NASA Astrophysics Data System (ADS)
Wang, Jieci; Jing, Jiliang
2011-02-01
The bipartite and tripartite entanglement of a 3-qubit fermionic system when one or two subsystems accelerate are investigated. It is shown that all the one-tangles decrease as the acceleration increases. However, unlike the scalar case, here one-tangles NCI(ABI) and NCI(AB) never reduce to zero for any acceleration. It is found that the system has only tripartite entanglement when either one or two subsystems accelerate, which means that the acceleration does not generate bipartite entanglement and does not affect the entanglement structure of the quantum states in this system. It is of interest to note that the π-tangle of the two-observer-accelerated case decreases much quicker than that of the one-observer-accelerated case and it reduces to a nonzero minimum in the infinite-acceleration limit. Thus we argue that the qutrit systems are better than qubit systems in performing quantum information processing tasks in noninertial systems.
Superadditivity of distillable entanglement from quantum teleportation
Bandyopadhyay, Somshubhro; Roychowdhury, Vwani
2005-12-15
We show that the phenomenon of superadditivity of distillable entanglement observed in multipartite quantum systems results from the consideration of states created during the execution of the standard end-to-end quantum teleportation protocol [and a few additional local operations and classical communication (LOCC) steps] on a linear chain of singlets. Some of these intermediate states are tensor products of bound entangled (BE) states, and hence, by construction possess distillable entanglement, which can be unlocked by simply completing the rest of the LOCC operations required by the underlying teleportation protocol. We use this systematic approach to construct both new and known examples of superactivation of bound entanglement, and examples of activation of BE states using other BE states. A surprising outcome is the construction of noiseless quantum relay channels with no distillable entanglement between any two parties, except for that between the two end nodes.
NASA Astrophysics Data System (ADS)
Zhou, Jian; Guo, Ying
2017-02-01
A continuous-variable measurement-device-independent (CV-MDI) multipartite quantum communication protocol is designed to realize multipartite communication based on the GHZ state analysis using Gaussian coherent states. It can remove detector side attack as the multi-mode measurement is blindly done in a suitable Black Box. The entanglement-based CV-MDI multipartite communication scheme and the equivalent prepare-and-measurement scheme are proposed to analyze the security and guide experiment, respectively. The general eavesdropping and coherent attack are considered for the security analysis. Subsequently, all the attacks are ascribed to coherent attack against imperfect links. The asymptotic key rate of the asymmetric configuration is also derived with the numeric simulations illustrating the performance of the proposed protocol.
NASA Astrophysics Data System (ADS)
Shi, Zhi-Cheng; Xia, Yan; Song, Jie
2013-10-01
In this paper, we propose a scheme to show signatures of multipartite optomechanical entanglement, which is based on two high quality factor (high-) silicon nitride () microdisk cavities coupled to a nanostring waveguide via evanescent field. Genuine tripartite optomechanical entanglement is shared in the subsystem even though the two fields of microdisk cavities do not have direct interaction. In addition, we study the behaviors of the bipartite entanglement between the pairs of the system constituents by numerical simulation.
No-local-broadcasting theorem for multipartite quantum correlations.
Piani, Marco; Horodecki, Paweł; Horodecki, Ryszard
2008-03-07
We prove that the correlations present in a multipartite quantum state have an operational quantum character even if the state is unentangled, as long as it does not simply encode a multipartite classical probability distribution. Said quantumness is revealed by the new task of local broadcasting, i.e., of locally sharing preestablished correlations, which is feasible if and only if correlations are stricly classical. Our operational approach leads to natural definitions of measures for quantumness of correlations. It also reproduces the standard no-broadcasting theorem as a special case.
Scaling of Tripartite Entanglement at Impurity Quantum Phase Transitions.
Bayat, Abolfazl
2017-01-20
The emergence of a diverging length scale in many-body systems at a quantum phase transition implies that total entanglement has to reach its maximum there. In order to fully characterize this, one has to consider multipartite entanglement as, for instance, bipartite entanglement between individual particles fails to signal this effect. However, quantification of multipartite entanglement is very hard, and detecting it may not be possible due to the lack of accessibility to all individual particles. For these reasons it will be more sensible to partition the system into relevant subsystems, each containing a few to many spins, and study entanglement between those constituents as a coarse-grain picture of multipartite entanglement between individual particles. In impurity systems, famously exemplified by two-impurity and two-channel Kondo models, it is natural to divide the system into three parts, namely, impurities and the left and right bulks. By exploiting two tripartite entanglement measures, based on negativity, we show that at impurity quantum phase transitions the tripartite entanglement diverges and shows scaling behavior. While the critical exponents are different for each tripartite entanglement measure, they both provide very similar critical exponents for the two-impurity and the two-channel Kondo models, suggesting that they belong to the same universality class.
Scaling of Tripartite Entanglement at Impurity Quantum Phase Transitions
NASA Astrophysics Data System (ADS)
Bayat, Abolfazl
2017-01-01
The emergence of a diverging length scale in many-body systems at a quantum phase transition implies that total entanglement has to reach its maximum there. In order to fully characterize this, one has to consider multipartite entanglement as, for instance, bipartite entanglement between individual particles fails to signal this effect. However, quantification of multipartite entanglement is very hard, and detecting it may not be possible due to the lack of accessibility to all individual particles. For these reasons it will be more sensible to partition the system into relevant subsystems, each containing a few to many spins, and study entanglement between those constituents as a coarse-grain picture of multipartite entanglement between individual particles. In impurity systems, famously exemplified by two-impurity and two-channel Kondo models, it is natural to divide the system into three parts, namely, impurities and the left and right bulks. By exploiting two tripartite entanglement measures, based on negativity, we show that at impurity quantum phase transitions the tripartite entanglement diverges and shows scaling behavior. While the critical exponents are different for each tripartite entanglement measure, they both provide very similar critical exponents for the two-impurity and the two-channel Kondo models, suggesting that they belong to the same universality class.
NASA Astrophysics Data System (ADS)
Guo, Ying; Zhao, Wei; Li, Fei; Huang, Duan; Liao, Qin; Xie, Cai-Lang
2017-08-01
The developing tendency of continuous-variable (CV) measurement-device-independent (MDI) quantum cryptography is to cope with the practical issue of implementing scalable quantum networks. Up to now, most theoretical and experimental researches on CV-MDI QKD are focused on two-party protocols. However, we suggest a CV-MDI multipartite quantum secret sharing (QSS) protocol use the EPR states coupled with optical amplifiers. More remarkable, QSS is the real application in multipartite CV-MDI QKD, in other words, is the concrete implementation method of multipartite CV-MDI QKD. It can implement a practical quantum network scheme, under which the legal participants create the secret correlations by using EPR states connecting to an untrusted relay via insecure links and applying the multi-entangled Greenberger-Horne-Zeilinger (GHZ) state analysis at relay station. Even if there is a possibility that the relay may be completely tampered, the legal participants are still able to extract a secret key from network communication. The numerical simulation indicates that the quantum network communication can be achieved in an asymmetric scenario, fulfilling the demands of a practical quantum network. Additionally, we illustrate that the use of optical amplifiers can compensate the partial inherent imperfections of detectors and increase the transmission distance of the CV-MDI quantum system.
Multipartite quantum and classical correlations in symmetric n-qubit mixed states
NASA Astrophysics Data System (ADS)
Giorgi, Gian Luca; Campbell, Steve
2016-11-01
We discuss how to calculate genuine multipartite quantum and classical correlations in symmetric, spatially invariant, mixed n-qubit density matrices. We show that the existence of symmetries greatly reduces the amount of free parameters to be optimized in order to find the optimal measurement that minimizes the conditional entropy in the discord calculation. We apply this approach to the states exhibited dynamically during a thermodynamic protocol to extract maximum work. We also apply the symmetry criterion to a wide class of physically relevant cases of spatially homogeneous noise over multipartite entangled states. Exploiting symmetries we are able to calculate the non-local and genuine quantum features of these states and note some interesting properties.
Quantum entanglement and geometry of determinantal varieties
Chen Hao
2006-05-15
Quantum entanglement was first recognized as a feature of quantum mechanics in the famous paper of Einstein, Podolsky, and Rosen. Recently it has been realized that quantum entanglement is a key ingredient in quantum computation, quantum communication, and quantum cryptography. In this paper, we introduce algebraic sets, which are determinantal varieties in the complex projective spaces or the products of complex projective spaces, for the mixed states on bipartite or multipartite quantum systems as their invariants under local unitary transformations. These invariants are naturally arised from the physical consideration of measuring mixed states by separable pure states. Our construction has applications in the following important topics in quantum information theory: (1) separability criterion, it is proved that the algebraic sets must be a union of the linear subspaces if the mixed states are separable; (2) simulation of Hamiltonians, it is proved that the simulation of semipositive Hamiltonians of the same rank implies the projective isomorphisms of the corresponding algebraic sets; (3) construction of bound entangled mixed states, examples of the entangled mixed states which are invariant under partial transpositions (thus PPT bound entanglement) are constructed systematically from our new separability criterion.
Generating multipartite entangled states of qubits distributed in different cavities
NASA Astrophysics Data System (ADS)
He, Xiao-Ling; Su, Qi-Ping; Zhang, Feng-Yang; Yang, Chui-Ping
2014-06-01
Cavity-based large-scale quantum information processing (QIP) needs a large number of qubits, and placing all of them in a single cavity quickly runs into many fundamental and practical problems such as the increase in cavity decay rate and decrease in qubit-cavity coupling strength. Therefore, future QIP most likely will require quantum networks consisting of a large number of cavities, each hosting and coupled to multiple qubits. In this work, we propose a way to prepare a -class entangled state of spatially separated multiple qubits in different cavities, which are connected to a coupler qubit. Because no cavity photon is excited, decoherence caused by the cavity decay is greatly suppressed during the entanglement preparation. This proposal needs only one coupler qubit and one operational step, and does not require using a classical pulse, so that the engineering complexity is much reduced and the operation is greatly simplified. As an example of the experimental implementation, we further give a numerical analysis, which shows that high-fidelity generation of the state using three superconducting phase qubits each embedded in a one-dimensional transmission line resonator is feasible within the present circuit QED technique. The proposal is quite general and can be applied to accomplish the same task with other types of qubits such as superconducting flux qubits, charge qubits, quantum dots, nitrogen-vacancy centers, and atoms.
The geometric measure of multipartite entanglement and the singular values of a hypermatrix
NASA Astrophysics Data System (ADS)
Hilling, Joseph J.; Sudbery, Anthony
2010-07-01
It is shown that the geometric measure of entanglement of a pure multipartite state satisfies a polynomial equation, generalizing the singular-value equation of the matrix of coefficients of a bipartite state. The equation is solved for a class of three-qubit states.
Multipartite Gaussian steering: Monogamy constraints and quantum cryptography applications
NASA Astrophysics Data System (ADS)
Xiang, Yu; Kogias, Ioannis; Adesso, Gerardo; He, Qiongyi
2017-01-01
We derive laws for the distribution of quantum steering among different parties in multipartite Gaussian states under Gaussian measurements. We prove that a monogamy relation akin to the generalized Coffman-Kundu-Wootters inequality holds quantitatively for a recently introduced measure of Gaussian steering. We then define the residual Gaussian steering, stemming from the monogamy inequality, as an indicator of collective steering-type correlations. For pure three-mode Gaussian states, the residual acts as a quantifier of genuine multipartite steering, and is interpreted operationally in terms of the guaranteed key rate in the task of secure quantum secret sharing. Optimal resource states for the latter protocol are identified, and their possible experimental implementation discussed. Our results pin down the role of multipartite steering for quantum communication.
Multipartite correlation degradation in amplitude-damping quantum channels
NASA Astrophysics Data System (ADS)
Batle, J.; Farouk, A.; Alkhambashi, M.; Abdalla, S.
2017-04-01
Multipartite correlations, such as entanglement and non-locality, are considered when particles pass through a generalized amplitude-damping channel. Results for pure and mixed states for two qubits suggest that initial mixed states can still be considered provided that their degree of mixture is low enough. Also, the ensuing small values for non-locality suggest that instances involving more than three parties cannot easily be considered for practical purposes.
Enhancement of multipartite entanglement in an open system under non-inertial frames
NASA Astrophysics Data System (ADS)
Sun, Wen-Yang; Wang, Dong; Yang, Jie; Ye, Liu
2017-04-01
In this paper, multipartite entanglement enhancement in an open system under non-inertial frames via local non-unitary operations is explored. Explicitly, we investigate an available methodology to enhance tripartite entanglement of X-state, when the systems suffer from amplitude damping (AD) noise and one subsystem is under non-inertial frames. As an illustration, we consider three cases (one subsystem or multi-subsystem suffers from decoherence) by using local non-unitary operations, and the corresponding entanglement behaviors are revealed. It turns out that the local non-unitary operation can enhance entanglement to some degree. The Unruh effect and decoherence will influence the tripartite entanglement. However, the impact of Unruh effect on tripartite entanglement is weaker than that of decoherence. In addition, we obtain an interesting result: One can estimate and probe the decoherence strength (AD noise) in accordance with the change of local non-unitary operation strength and genuinely multipartite entanglement variation. Therefore, our work may be beneficial to explore the dynamic behavior of tripartite entanglement in open systems under relativity frame.
Orieux, Adeline; Boutari, Joelle; Barbieri, Marco; Paternostro, Mauro; Mataloni, Paolo
2014-01-01
Critical phenomena involve structural changes in the correlations of its constituents. Such changes can be reproduced and characterized in quantum simulators able to tackle medium-to-large-size systems. We demonstrate these concepts by engineering the ground state of a three-spin Ising ring by using a pair of entangled photons. The effect of a simulated magnetic field, leading to a critical modification of the correlations within the ring, is analysed by studying two- and three-spin entanglement. In particular, we connect the violation of a multipartite Bell inequality with the amount of tripartite entanglement in our ring. PMID:25418153
NASA Astrophysics Data System (ADS)
Snyder, Douglas
2009-04-01
There are two steps in establishing a quantum entanglement. These two steps often are not considered as independent from one another. Step 1 involves the interaction through which the particles are to be entangled. Step 2 involves making the result of the interaction through which the development of the entanglement begins available to the environment. Step 1 can occur in isolation from the environment. Step 2 then occurs with making the result of the interaction available to the environment through no longer isolating the particles. The entanglement that begins to develop in step 1 can originate in a form where there is which-way information. With step 2, the entanglement is complete and which-way information is established (option 1). Instead of completing the entanglement with step 2, the developing entanglement can be eliminated with the result that which-way information is lost. The result is a distribution for each of the paired particles that exhibits interference (option 2). The elimination of the developing entanglement results in haunted quantum entanglement. Through the use of options 1 and 2, one need not associate measurements on each of two entangled particles after measurements on each of the particles in order to decipher information. Associating measurements can be done automatically as measurements are made through the ability to control whether a developing entanglement is allowed to be fully established or instead eliminated. Options 1 and 2 can be used in a communications device.
Operational multipartite entanglement classes for symmetric photonic qubit states
Kiesel, N.; Wieczorek, W.; Weinfurter, H.; Krins, S.; Bastin, T.; Solano, E.
2010-03-15
We present experimental schemes that allow us to study the entanglement classes of all symmetric states in multiqubit photonic systems. We compare the efficiency of the proposed schemes and highlight the relation between the entanglement properties of symmetric Dicke states and a recently proposed entanglement scheme for atoms. In analogy to the latter, we obtain a one-to-one correspondence between well-defined sets of experimental parameters and multiqubit entanglement classes inside the symmetric subspace of the photonic system.
Quantum entanglement percolation
NASA Astrophysics Data System (ADS)
Siomau, Michael
2016-09-01
Quantum communication demands efficient distribution of quantum entanglement across a network of connected partners. The search for efficient strategies for the entanglement distribution may be based on percolation theory, which describes evolution of network connectivity with respect to some network parameters. In this framework, the probability to establish perfect entanglement between two remote partners decays exponentially with the distance between them before the percolation transition point, which unambiguously defines percolation properties of any classical network or lattice. Here we introduce quantum networks created with local operations and classical communication, which exhibit non-classical percolation transition points leading to striking communication advantages over those offered by the corresponding classical networks. We show, in particular, how to establish perfect entanglement between any two nodes in the simplest possible network—the 1D chain—using imperfectly entangled pairs of qubits.
A quantifier of genuine multipartite quantum correlations and its dynamics
NASA Astrophysics Data System (ADS)
Wang, Xin; Qiu, Liang
2015-03-01
By using measurement-induced disturbance (S Luo 2008 Phys. Rev. A 77 022301), we propose a quantifier for genuine multipartite quantum correlations. The connection between this quantum correlations measure and the quantum advantage in multiport dense coding for pure three-qubit states is established. It is also used to investigate the dynamics of quantum correlations in a four-partite system. The phenomena of generation of quantum correlations and holding of quantum correlations in some time windows are found. As a byproduct, the monogamy score based on measurement-induced disturbance is related to the generalized geometric measure for pure three-qubit states.
Genuine quantum and classical correlations in multipartite systems.
Giorgi, Gian Luca; Bellomo, Bruno; Galve, Fernando; Zambrini, Roberta
2011-11-04
Generalizing the quantifiers used to classify correlations in bipartite systems, we define genuine total, quantum, and classical correlations in multipartite systems. The measure we give is based on the use of relative entropy to quantify the distance between two density matrices. Moreover, we show that, for pure states of three qubits, both quantum and classical bipartite correlations obey a ladder ordering law fixed by two-body mutual informations, or, equivalently, by one-qubit entropies.
Quantum Entanglement and Information
NASA Astrophysics Data System (ADS)
Zeilinger, Anton
2002-04-01
The development of quantum entanglement presents a very interesting and typical case how fundamental reasearch leads to new technologically interesting concepts. Initially it was introduced by Einstein and Schroedinger because of its philosophical interest. This, together with Bell's theorem, led to experiments beginning in the early 1970-s which also were only motivated by their importance for the foundations of physics. Most remarkably, in recent years people discovered that quantum entanglement can be useful in completely novel ways of transmitting and processing of information with no analog in classical physics. Here the most developed areas are quantum communication, quantum cryptography, quantum teleportation and quantum computation. In the talk I will present the basics of these applications of entanglement and I will discuss some existing experimental realisations. Finally I will argue that, while it is impossible to foresee where the present development will lead us, it is very likely that in the end a novel kind of information technology will emerge.
Dynamics of entanglement transfer through multipartite dissipative systems
Lopez, C. E.; Retamal, J. C.; Romero, G.
2010-06-15
We study the dynamics of entanglement transfer in a system composed of two initially correlated three-level atoms, each located in a cavity interacting with its own reservoir. Instead of tracing out reservoir modes to describe the dynamics using the master equation approach, we consider explicitly the dynamics of the reservoirs. In this situation, we show that the entanglement is completely transferred from atoms to reservoirs. Although the cavities mediate this entanglement transfer, we show that under certain conditions, no entanglement is found in cavities throughout the dynamics. Considering the entanglement dynamics of interacting and noninteracting bipartite subsystems, we found time windows where the entanglement can only flow through interacting subsystems, depending on the system parameters.
NASA Astrophysics Data System (ADS)
Adesso, Gerardo; Serafini, Alessio; Illuminati, Fabrizio
2006-03-01
We present a complete analysis of the multipartite entanglement of three-mode Gaussian states of continuous-variable systems. We derive standard forms which characterize the covariance matrix of pure and mixed three-mode Gaussian states up to local unitary operations, showing that the local entropies of pure Gaussian states are bound to fulfill a relationship which is stricter than the general Araki-Lieb inequality. Quantum correlations can be quantified by a proper convex roof extension of the squared logarithmic negativity, the continuous-variable tangle, or contangle. We review and elucidate in detail the proof that in multimode Gaussian states the contangle satisfies a monogamy inequality constraint [G. Adesso and F. Illuminati, New J. Phys8, 15 (2006)]. The residual contangle, emerging from the monogamy inequality, is an entanglement monotone under Gaussian local operations and classical communications and defines a measure of genuine tripartite entanglements. We determine the analytical expression of the residual contangle for arbitrary pure three-mode Gaussian states and study in detail the distribution of quantum correlations in such states. This analysis yields that pure, symmetric states allow for a promiscuous entanglement sharing, having both maximum tripartite entanglement and maximum couplewise entanglement between any pair of modes. We thus name these states GHZ/W states of continuous-variable systems because they are simultaneous continuous-variable counterparts of both the GHZ and the W states of three qubits. We finally consider the effect of decoherence on three-mode Gaussian states, studying the decay of the residual contangle. The GHZ/W states are shown to be maximally robust against losses and thermal noise.
Adesso, Gerardo; Serafini, Alessio; Illuminati, Fabrizio
2006-03-15
We present a complete analysis of the multipartite entanglement of three-mode Gaussian states of continuous-variable systems. We derive standard forms which characterize the covariance matrix of pure and mixed three-mode Gaussian states up to local unitary operations, showing that the local entropies of pure Gaussian states are bound to fulfill a relationship which is stricter than the general Araki-Lieb inequality. Quantum correlations can be quantified by a proper convex roof extension of the squared logarithmic negativity, the continuous-variable tangle, or contangle. We review and elucidate in detail the proof that in multimode Gaussian states the contangle satisfies a monogamy inequality constraint [G. Adesso and F. Illuminati, New J. Phys8, 15 (2006)]. The residual contangle, emerging from the monogamy inequality, is an entanglement monotone under Gaussian local operations and classical communications and defines a measure of genuine tripartite entanglements. We determine the analytical expression of the residual contangle for arbitrary pure three-mode Gaussian states and study in detail the distribution of quantum correlations in such states. This analysis yields that pure, symmetric states allow for a promiscuous entanglement sharing, having both maximum tripartite entanglement and maximum couplewise entanglement between any pair of modes. We thus name these states GHZ/W states of continuous-variable systems because they are simultaneous continuous-variable counterparts of both the GHZ and the W states of three qubits. We finally consider the effect of decoherence on three-mode Gaussian states, studying the decay of the residual contangle. The GHZ/W states are shown to be maximally robust against losses and thermal noise.
NASA Astrophysics Data System (ADS)
Kumar, Asutosh; Dhar, Himadri Shekhar; Prabhu, R.; Sen(De), Aditi; Sen, Ujjwal
2017-05-01
Monogamy is a nonclassical property that limits the distribution of quantum correlation among subparts of a multiparty system. We show that monogamy scores for different quantum correlation measures are bounded above by functions of genuine multipartite entanglement for a large majority of pure multiqubit states. The bound is universal for all three-qubit pure states. We derive necessary conditions to characterize the states that violate the bound, which can also be observed by numerical simulation for a small set of states, generated Haar uniformly. The results indicate that genuine multipartite entanglement restricts the distribution of bipartite quantum correlations in a multiparty system.
Comment on "Multipartite Entanglement in Four-qubit Graph States"
NASA Astrophysics Data System (ADS)
Haddadi, Saeed
2017-09-01
The following comment is based on an article by Jafarpour and Assadi (Eur. Phys. J. D 70, 62 2016) which with an exploitation of Scott measure (or generalized Meyer-Wallach measure) the entanglement quantity of four-qubit graph states has been calculated. We are to reveal that a 2-2 partition necessarily always does not provide a stronger entanglement than a 3-1 partition in all the graph states.
Complementarity and entanglement in quantum information theory
NASA Astrophysics Data System (ADS)
Tessier, Tracey Edward
This research investigates two inherently quantum mechanical phenomena, namely complementarity and entanglement, from an information-theoretic perspective. Beyond philosophical implications, a thorough grasp of these concepts is crucial for advancing our understanding of foundational issues in quantum mechanics, as well as in studying how the use of quantum systems might enhance the performance of certain information processing tasks. The primary goal of this thesis is to shed light on the natures and interrelationships of these phenomena by approaching them from the point of view afforded by information theory. We attempt to better understand these pillars of quantum mechanics by studying the various ways in which they govern the manipulation of information, while at the same time gaining valuable insight into the roles they play in specific applications. The restrictions that nature places on the distribution of correlations in a multipartite quantum system play fundamental roles in the evolution of such systems and yield vital insights into the design of protocols for the quantum control of ensembles with potential applications in the field of quantum computing. By augmenting the existing formalism for quantifying entangled correlations, we show how this entanglement sharing behavior may be studied in increasingly complex systems of both theoretical and experimental significance. Further, our results shed light on the dynamical generation and evolution of multipartite entanglement by demonstrating that individual members of an ensemble of identical systems coupled to a common probe can become entangled with one another, even when they do not interact directly. The findings presented in this thesis support the conjecture that Hilbert space dimension is an objective property of a quantum system since it constrains the number of valid conceptual divisions of the system into subsystems. These arbitrary observer-induced distinctions are integral to the theory since
NASA Astrophysics Data System (ADS)
Qi, Xianfei; Gao, Ting; Yan, Fengli
2017-01-01
Concurrence, as one of the entanglement measures, is a useful tool to characterize quantum entanglement in various quantum systems. However, the computation of the concurrence involves difficult optimizations and only for the case of two qubits, an exact formula was found. We investigate the concurrence of four-qubit quantum states and derive analytical lower bound of concurrence using the multiqubit monogamy inequality. It is shown that this lower bound is able to improve the existing bounds. This approach can be generalized to arbitrary qubit systems. We present an exact formula of concurrence for some mixed quantum states. For even-qubit states, we derive an improved lower bound of concurrence using a monogamy equality for qubit systems. At the same time, we show that a multipartite state is k-nonseparable if the multipartite concurrence is larger than a constant related to the value of k, the qudit number and the dimension of the subsystems. Our results can be applied to detect the multipartite k-nonseparable states.
Study of continuous variable entanglement in multipartite harmonic oscillator systems
NASA Astrophysics Data System (ADS)
Landau, Mayer Amitai
In this thesis we investigate the entanglement of Schrodinger cat states that derive from harmonic oscillator models. In order to extend the finite dimensional framework of entanglement to the infinite dimensional case we consider only initial conditions that have some type of symmetry. Systems with symmetry usually have fewer important parameters. In our case, symmetry allows us to discard the bulk of the Hilbert space as irrelevant to our particular entanglement problem. We are then left with an effectively finite dimensional Hilbert space, and the developed entanglement framework can therefore be followed. The dimension we derive for the reduced Hilbert space in each subsystem is equal to the number of coherent states in the Schrodinger cat superposition. We investigate the entanglement vs. time of our Schrodinger cat state for closed and open systems. For closed systems, we place no limit on the number of coherently summed linearly independent coherent states. So the dimension of our effective Hilbert space can be quite high. We also place no restriction on the number of subsystems (or parties). Consequently, we use the entanglement measure developed by Barnum, Knill, Ortiz, and Viola (BKOV). This is the only measure to our knowledge that has no restriction on the dimension of the Hilbert space or the number of subsystems. We also place no constraint on the magnitude of our coherent states. The coherent value may be quite large, or quite small. We find that the entanglement of the Schrodinger cat state has nontrivial dependence on the above mentioned three variables. That is, the entanglement is a non-separable function of the values of the coherent states, the number of coherent states in the superposition, and the number of partitions of the Hilbert space. For open systems, we model the reservoir as a harmonic oscillator zero temperature bath. Due to the interactions with the bath the Schrodinger cat state becomes a mixed density matrix. To investigate the
Teleportation and dense coding with genuine multipartite entanglement.
Yeo, Ye; Chua, Wee Kang
2006-02-17
We present an explicit protocol E0 for faithfully teleporting an arbitrary two-qubit state via a genuine four-qubit entangled state. By construction, our four-partite state is not reducible to a pair of Bell states. Its properties are compared and contrasted with those of the four-party Greenberger-Horne-Zeilinger and W states. We also give a dense coding scheme D0 involving our state as a shared resource of entanglement. Both D0 and E0 indicate that our four-qubit state is a likely candidate for the genuine four-partite analogue to a Bell state.
Theory of Multipartite Entanglement for X-States
2015-04-29
aspect of quantum theory and in mathematics it predated quantum mechanics by decades [2], only in recent decades it has been recognized that quantum ... mechanical sys- tems can be used for real world applications of significant importance, including quan- tum information processing [3, 4], quantum ...also allow us to probe the transition from quantum to classical behaviors in increasingly complex systems [7, 8]. These applications are of sufficient
Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles.
Yan, Zhihui; Wu, Liang; Jia, Xiaojun; Liu, Yanhong; Deng, Ruijie; Li, Shujing; Wang, Hai; Xie, Changde; Peng, Kunchi
2017-09-28
It is crucial for the physical realization of quantum information networks to first establish entanglement among multiple space-separated quantum memories and then, at a user-controlled moment, to transfer the stored entanglement to quantum channels for distribution and conveyance of information. Here we present an experimental demonstration on generation, storage, and transfer of deterministic quantum entanglement among three spatially separated atomic ensembles. The off-line prepared multipartite entanglement of optical modes is mapped into three distant atomic ensembles to establish entanglement of atomic spin waves via electromagnetically induced transparency light-matter interaction. Then the stored atomic entanglement is transferred into a tripartite quadrature entangled state of light, which is space-separated and can be dynamically allocated to three quantum channels for conveying quantum information. The existence of entanglement among three released optical modes verifies that the system has the capacity to preserve multipartite entanglement. The presented protocol can be directly extended to larger quantum networks with more nodes.Continuous-variable encoding is a promising approach for quantum information and communication networks. Here, the authors show how to map entanglement from three spatial optical modes to three separated atomic samples via electromagnetically induced transparency, releasing it later on demand.
Quantum cost for sending entanglement.
Streltsov, Alexander; Kampermann, Hermann; Bruß, Dagmar
2012-06-22
Establishing quantum entanglement between two distant parties is an essential step of many protocols in quantum information processing. One possibility for providing long-distance entanglement is to create an entangled composite state within a lab and then physically send one subsystem to a distant lab. However, is this the "cheapest" way? Here, we investigate the minimal "cost" that is necessary for establishing a certain amount of entanglement between two distant parties. We prove that this cost is intrinsically quantum, and is specified by quantum correlations. Our results provide an optimal protocol for entanglement distribution and show that quantum correlations are the essential resource for this task.
Quantum entanglement of moving bodies.
Gingrich, Robert M; Adami, Christoph
2002-12-30
We study the properties of quantum entanglement in moving frames, and show that, because spin and momentum become mixed when viewed by a moving observer, the entanglement between the spins of a pair of particles is not invariant. We give an example of a pair, fully spin entangled in the rest frame, which has its spin entanglement reduced in all other frames. Similarly, we show that there are pairs whose spin entanglement increases from zero to maximal entanglement when boosted. While spin and momentum entanglement separately are not Lorentz invariant, the joint entanglement of the wave function is.
Information-theoretical analysis of topological entanglement entropy and multipartite correlations
NASA Astrophysics Data System (ADS)
Kato, Kohtaro; Furrer, Fabian; Murao, Mio
2016-02-01
A special feature of the ground state in a topologically ordered phase is the existence of large-scale correlations depending only on the topology of the regions. These correlations can be detected by the topological entanglement entropy or by a measure called irreducible correlation. We show that these two measures coincide for states obeying an area law and having zero correlation length. Moreover, we provide an operational meaning for these measures by proving its equivalence to the optimal rate of a particular class of secret sharing protocols. This establishes an information-theoretical approach to multipartite correlations in topologically ordered systems.
Understanding Entanglement as a Resource for Quantum Information Processing
NASA Astrophysics Data System (ADS)
Cohen, Scott M.
2009-03-01
Ever since Erwin Schrodinger shocked the physics world by killing (and not killing) his cat, entanglement has played a critical role in attempts to understand quantum mechanics. More recently, entanglement has been shown to be a valuable resource, of central importance for quantum computation and the processing of quantum information. In this talk, I will describe a new diagrammatic approach to understanding why entanglement is so valuable, the key idea being that entanglement between two systems ``creates'' multiple images of the state of a third. By way of example, I will show how to ``visualize'' teleportation of unknown quantum states, and how to use entanglement to determine the (unknown) state of a spatially distributed, multipartite quantum system. Illustrative examples of this entanglement-assisted local state discrimination are sets of orthogonal product states exhibiting what is known as ``non-locality without entanglement'', including unextendible product bases. These ideas have also proven useful in using entanglement to implement a unitary interaction between spatially separated (and therefore non-interacting!) systems.
Polygamy of distributed entanglement
NASA Astrophysics Data System (ADS)
Buscemi, Francesco; Gour, Gilad; Kim, Jeong San
2009-07-01
While quantum entanglement is known to be monogamous (i.e., shared entanglement is restricted in multipartite settings), here we show that distributed entanglement (or the potential for entanglement) is by nature polygamous. By establishing the concept of one-way unlocalizable entanglement (UE) and investigating its properties, we provide a polygamy inequality of distributed entanglement in tripartite quantum systems of arbitrary dimension. We also provide a polygamy inequality in multiqubit systems and several trade-offs between UE and other correlation measures.
Entanglement of distinguishable quantum memories
NASA Astrophysics Data System (ADS)
Vittorini, G.; Hucul, D.; Inlek, I. V.; Crocker, C.; Monroe, C.
2014-10-01
Time-resolved photon detection can be used to generate entanglement between distinguishable photons. This technique can be extended to entangle quantum memories that emit photons with different frequencies and identical temporal profiles without the loss of entanglement rate or fidelity. We experimentally realize this process using remotely trapped 171Yb+ ions where heralded entanglement is generated by interfering distinguishable photons. This technique may be necessary for future modular quantum systems and networks that are composed of heterogeneous qubits.
Multipartite nonlocal quantum correlations resistant to imperfections
Buhrman, Harry; Hoeyer, Peter; Roehrig, Hein; Massar, Serge
2006-01-15
We use techniques for lower bounds on communication to derive necessary conditions in terms of detector efficiency or amount of superluminal communication for being able to reproduce with classical local hidden-variable theories the quantum correlations occurring in Einstein-Podolsky-Rosen (EPR) experiments in the presence of noise. We apply our method to an example involving n parties sharing a Greenberger-Horne-Zeilinger-type state on which they carry out local measurements. For this example, we show that for local hidden-variable theories to reproduce the quantum correlations, the amount of superluminal classical communication c and the detector efficiency {eta} are constrained by {eta}2{sup -c/n}{<=}O(n{sup -1/6}). This result holds even if the classical models are allowed to make an error with constant probability.
Lithography using quantum entangled particles
NASA Technical Reports Server (NTRS)
Williams, Colin (Inventor); Dowling, Jonathan (Inventor)
2001-01-01
A system of etching using quantum entangled particles to get shorter interference fringes. An interferometer is used to obtain an interference fringe. N entangled photons are input to the interferometer. This reduces the distance between interference fringes by n, where again n is the number of entangled photons.
Lithography using quantum entangled particles
NASA Technical Reports Server (NTRS)
Williams, Colin (Inventor); Dowling, Jonathan (Inventor)
2003-01-01
A system of etching using quantum entangled particles to get shorter interference fringes. An interferometer is used to obtain an interference fringe. N entangled photons are input to the interferometer. This reduces the distance between interference fringes by n, where again n is the number of entangled photons.
Lithography using quantum entangled particles
NASA Technical Reports Server (NTRS)
Williams, Colin (Inventor); Dowling, Jonathan (Inventor); della Rossa, Giovanni (Inventor)
2003-01-01
A system of etching using quantum entangled particles to get shorter interference fringes. An interferometer is used to obtain an interference fringe. N entangled photons are input to the interferometer. This reduces the distance between interference fringes by n, where again n is the number of entangled photons.
Quantum discord of bipartite entangled non-linear coherent states
NASA Astrophysics Data System (ADS)
Castro, E.; Zambrano, A.; Ladera, C. L.; Gómez, R.
2013-11-01
Quantum discord measures the fraction of the pair-wise mutual information that is locally inaccessible in a multipartite system. Nonzero quantum discord has interesting and significant applications because although non-zero entanglement guarantees the existence of quantum correlation in a bipartite quantum system, zero entanglement does not guarantee the absence of a quantum correlation. On the other hand, many quantum optics systems can be described as deformed quantum oscillators. In this work, we investigate the quantum discord of bipartite entangled nonlinear coherent states, in the context of the so-called f-deformed coherent states algebra. To calculate the quantum discord, we consider quasi- Werner mixed states bases on bipartite entangled f-deformed coherent states. Two explicit analytic expressions are derived for the quantum discord of two different nonlinear deformed coherent states. The first one considers deformed coherent states obtained as eigenstates of the annihilation deformed operator, and the second one is obtained by using a deformed displacement operator. We compare the quantum discord of those states, when the nonlinear deformation function is either associated with the SU(1,1) coherent states in the Gilmore-Perelomov or Barut-Girardello representations, respectively.
Liu, Kui; Guo, Jun; Cai, Chunxiao; Zhang, Junxiang; Gao, Jiangrui
2016-11-15
Multipartite entanglement is used for quantum information applications, such as building multipartite quantum communications. Generally, generation of multipartite entanglement is based on a complex beam-splitter network. Here, based on the spatial freedom of light, we experimentally demonstrated spatial quadripartite continuous variable entanglement among first-order Hermite-Gaussian modes using a single type II optical parametric oscillator operating below threshold with an HG0245° pump beam. The entanglement can be scalable for larger numbers of spatial modes by changing the spatial profile of the pump beam. In addition, spatial multipartite entanglement will be useful for future spatial multichannel quantum information applications.
Quantum fidelity of symmetric multipartite states
NASA Astrophysics Data System (ADS)
Neven, A.; Mathonet, P.; Gühne, O.; Bastin, T.
2016-11-01
For two symmetric quantum states one may be interested in maximizing the overlap under local operations applied to one of them. The question arises whether the maximal overlap can be obtained by applying the same local operation to each party. We show that for two symmetric multiqubit states and local unitary transformations this is the case; the maximal overlap can be reached by applying the same unitary matrix everywhere. For local invertible operations (stochastic local operations assisted by classical communication equivalence), however, we present counterexamples, demonstrating that considering the same operation everywhere is not enough.
Nonlinear cascades and concurrences for multipartite-entangled and non-Gaussian states of light
NASA Astrophysics Data System (ADS)
Pooser, Raphael
This thesis presents theoretical and experimental progress towards generating essential quantum optical building blocks for the implementation of quantum computing (QC) and quantum information (QI). Quantum optical systems such as Optical Parametric Oscillators (OPOs) provide a natural implementation of QC and QI by producing entanglement using nonlinear optical media. This dissertation covers the theoretical study of novel nonlinear optical systems such as concurrence- and cascade-based OPOs, in the spirit of developing them for use in QC and QI. The experimental research presents the first realizations of the novel nonlinear materials necessary to build these exotic OPOs. A further application of entanglement in quantum optics, Heisenberg-limited interferometry, is also discussed.
Quantum frequency doubling based on tripartite entanglement with cavities
NASA Astrophysics Data System (ADS)
Juan, Guo; Zhi-Feng, Wei; Su-Ying, Zhang
2016-02-01
We analyze the entanglement characteristics of three harmonic modes, which are the output fields from three cavities with an input tripartite entangled state at fundamental frequency. The entanglement properties of the input beams can be maintained after their frequencies have been up-converted by the process of second harmonic generation. We have calculated the parametric dependences of the correlation spectrum on the initial squeezing factor, the pump power, the transmission coefficient, and the normalized analysis frequency of cavity. The numerical results provide references to choose proper experimental parameters for designing the experiment. The frequency conversion of the multipartite entangled state can also be applied to a quantum communication network. Project supported by the National Natural Science Foundation of China (Grant No. 91430109), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20111401110004), and the Natural Science Foundation of Shanxi Province, China (Grant No. 2014011005-3).
Quantum Entanglement Oscillations
NASA Astrophysics Data System (ADS)
Dima, A.; Dima, M.
2009-09-01
Quantum entanglement is shown to exist as a means of lowering ground state energy for multi-component systems. Symmetric and anti-symmetric system wavefunctions are thus simply due to the inter-particle potential and not to fundamental particle types: fermions and bosons. The paper shows that additionally to the cases known, bosons— apart from the condensate minimum, can exhibit an energy minimum type allowing entanglement oscillations. This fundamentally new case could conceivably be the origin of the conflicting properties observed in super-solidity: lower (fluid-like) rotational inertia (Kim and Chan in Nature 427:225, 2004; J. Low Temp. Phys. 138:859, 2005), higher (solid-like) shear modulus (Chan in Science 319:29, 2008).
Dynamics of quantum entanglement in quantum channels
NASA Astrophysics Data System (ADS)
Liang, Shi-Dong
2017-08-01
Based on the von Neumann entropy, we give a computational formalism of the quantum entanglement dynamics in quantum channels, which can be applied to a general finite systems coupled with their environments in quantum channels. The quantum entanglement is invariant in the decoupled local unitary quantum channel, but it is variant in the non-local coupled unitary quantum channel. The numerical investigation for two examples, two-qubit and two-qutrit models, indicates that the quantum entanglement evolution in the quantum non-local coupling channel oscillates with the coupling strength and time, and depends on the quantum entanglement of the initial state. It implies that quantum information loses or gains when the state of systems evolves in the quantum non-local coupling channel.
Entanglement as a resource for local state discrimination in multipartite systems
NASA Astrophysics Data System (ADS)
Bandyopadhyay, Somshubhro; Halder, Saronath; Nathanson, Michael
2016-08-01
We explore the question of using an entangled state as a universal resource for implementing quantum measurements by local operations and classical communication (LOCC). We show that for most systems consisting of three or more subsystems, there is no entangled state from the same space that can enable all measurements by LOCC. This is in direct contrast to the bipartite case, where a maximally entangled state is a universal resource. Our results are obtained showing an equivalence between the problem of local state transformation and that of entanglement-assisted local unambiguous state discrimination.
On-chip continuous-variable quantum entanglement
NASA Astrophysics Data System (ADS)
Masada, Genta; Furusawa, Akira
2016-09-01
Entanglement is an essential feature of quantum theory and the core of the majority of quantum information science and technologies. Quantum computing is one of the most important fruits of quantum entanglement and requires not only a bipartite entangled state but also more complicated multipartite entanglement. In previous experimental works to demonstrate various entanglement-based quantum information processing, light has been extensively used. Experiments utilizing such a complicated state need highly complex optical circuits to propagate optical beams and a high level of spatial interference between different light beams to generate quantum entanglement or to efficiently perform balanced homodyne measurement. Current experiments have been performed in conventional free-space optics with large numbers of optical components and a relatively large-sized optical setup. Therefore, they are limited in stability and scalability. Integrated photonics offer new tools and additional capabilities for manipulating light in quantum information technology. Owing to integrated waveguide circuits, it is possible to stabilize and miniaturize complex optical circuits and achieve high interference of light beams. The integrated circuits have been firstly developed for discrete-variable systems and then applied to continuous-variable systems. In this article, we review the currently developed scheme for generation and verification of continuous-variable quantum entanglement such as Einstein-Podolsky-Rosen beams using a photonic chip where waveguide circuits are integrated. This includes balanced homodyne measurement of a squeezed state of light. As a simple example, we also review an experiment for generating discrete-variable quantum entanglement using integrated waveguide circuits.
Entanglement-induced quantum radiation
NASA Astrophysics Data System (ADS)
Iso, Satoshi; Tatsukawa, Rumi; Ueda, Kazushige; Yamamoto, Kazuhiro
2017-08-01
Quantum entanglement of the Minkowski vacuum state between left and right Rindler wedges generates thermal behavior in the right Rindler wedge, which is known as the Unruh effect. In this paper, we show that there is another consequence of this entanglement, namely entanglement-induced quantum radiation emanating from a uniformly accelerated object. We clarify why it is in agreement with our intuition that incoming and outgoing energy fluxes should cancel each other out in a thermalized state.
General polygamy inequality of multiparty quantum entanglement
NASA Astrophysics Data System (ADS)
Kim, Jeong San
2012-06-01
Using entanglement of assistance, we establish a general polygamy inequality of multiparty entanglement in arbitrary-dimensional quantum systems. For multiparty closed quantum systems, we relate our result with the monogamy of entanglement, and clarify that the entropy of entanglement bounds both monogamy and polygamy of multiparty quantum entanglement.
Generating entangled quantum microwaves in a Josephson-photonics device
NASA Astrophysics Data System (ADS)
Dambach, Simon; Kubala, Björn; Ankerhold, Joachim
2017-02-01
When connecting a voltage-biased Josephson junction in series to several microwave cavities, a Cooper-pair current across the junction gives rise to a continuous emission of strongly correlated photons into the cavity modes. Tuning the bias voltage to the resonance where a single Cooper pair provides the energy to create an additional photon in each of the cavities, we demonstrate the entangling nature of these creation processes by simple witnesses in terms of experimentally accessible observables. To characterize the entanglement properties of the such created quantum states of light to the fullest possible extent, we then proceed to more elaborate entanglement criteria based on the knowledge of the full density matrix and provide a detailed study of bi- and multipartite entanglement. In particular, we illustrate how due to the relatively simple design of these circuits changes of experimental parameters allow one to access a wide variety of entangled states differing, e.g., in the number of entangled parties or the dimension of state space. Such devices, besides their promising potential to act as a highly versatile source of entangled quantum microwaves, may thus represent an excellent natural testbed for classification and quantification schemes developed in quantum information theory.
Separable balls around the maximally mixed multipartite quantum states
NASA Astrophysics Data System (ADS)
Gurvits, Leonid; Barnum, Howard
2003-10-01
We show that for an m-partite quantum system, there is a ball of radius 2-(m/2-1) in Frobenius norm, centered at the identity matrix, of separable (unentangled) positive semidefinite matrices. This can be used to derive an ɛ below which mixtures of ɛ of any density matrix with 1-ɛ of the maximally mixed state will be separable. The ɛ thus obtained is exponentially better (in the number of systems) than existing results. This gives a number of qubits below which nuclear magnetic resonance with standard pseudopure-state preparation techniques can access only unentangled states; with parameters realistic for current experiments, this is 23 qubits (compared to 13 qubits via earlier results). A ball of radius 1 is obtained for multipartite states separable over the reals.
Evolution and Survival of Quantum Entanglement
2015-05-06
Entanglement and Optical Polarization " Changchun Inst. of Optics and Mechanics Changchun, Jilin, China 518. Heraeus Seminar on Quantum Optical...Evolution and Survival of Quantum Entanglement Theoretical foundations for methods to preserve quantum entanglement are explored and explained...Research Triangle Park, NC 27709-2211 quantum entanglement, decoherence, qubit, revival, survival, Jaynes-Cummings, Rabi, rotating wave approximation
Entanglement purification for quantum communication.
Pan, J W; Simon, C; Brukner, C; Zeilinger, A
2001-04-26
The distribution of entangled states between distant locations will be essential for the future large-scale realization of quantum communication schemes such as quantum cryptography and quantum teleportation. Because of unavoidable noise in the quantum communication channel, the entanglement between two particles is more and more degraded the further they propagate. Entanglement purification is thus essential to distil highly entangled states from less entangled ones. Existing general purification protocols are based on the quantum controlled-NOT (CNOT) or similar quantum logic operations, which are very difficult to implement experimentally. Present realizations of CNOT gates are much too imperfect to be useful for long-distance quantum communication. Here we present a scheme for the entanglement purification of general mixed entangled states, which achieves 50 per cent of the success probability of schemes based on the CNOT operation, but requires only simple linear optical elements. Because the perfection of such elements is very high, the local operations necessary for purification can be performed with the required precision. Our procedure is within the reach of current technology, and should significantly simplify the implementation of long-distance quantum communication.
Higher-order quantum entanglement
NASA Technical Reports Server (NTRS)
Zeilinger, Anton; Horne, Michael A.; Greenberger, Daniel M.
1992-01-01
In quantum mechanics, the general state describing two or more particles is a linear superposition of product states. Such a superposition is called entangled if it cannot be factored into just one product. When only two particles are entangled, the stage is set for Einstein-Podolsky-Rosen (EPR) discussions and Bell's proof that the EPR viewpoint contradicts quantum mechanics. If more than two particles are involved, new possibilities and phenomena arise. For example, the Greenberger, Horne, and Zeilinger (GHZ) disproof of EPR applies. Furthermore, as we point out, with three or more particles even entanglement itself can be an entangled property.
Hyperspherical Bloch Vectors with Applications to Entanglement and Quantum State Tomography
NASA Astrophysics Data System (ADS)
Hedemann, Samuel R.
Since the birth of quantum mechanics, it has become apparent that the density operator gives the most complete description of quantum states, both pure and mixed. However, Bloch vectors are also capable of describing all quantum states, with the added bonus that they are real-valued geometrical objects. While Bloch vectors are widely used in many fields such as quantum information and quantum measurement, they are often avoided and may be occasionally misused due to the lack of a complete, centralized theory describing Bloch vectors in depth. Therefore, the purpose of this work is to give a compact, complete introduction to a standard formalism of quantum mechanics for discrete systems in the language of Bloch vectors expressed using hyperspherical parameterizations. The subject matter covers representations of pure and mixed states, unipartite and multipartite systems, closed-form description of Bloch-vector physicality, reductions of state, new investigations of multipartite entanglement, rotations of state, quantum measurements, state and process tomography, quantum operations, and state dynamics in both closed and open quantum systems. A new multipartite entanglement monotone is also developed, with the benefit of being automatically normalized for all possible systems, and it is extended to mixed states with convex roof extension. Emphasis is placed on geometrical interpretations and parameterizations, and on applying the theory to common applications, particularly those related to entanglement and tomography.
Definitions of multipartite nonlocality
NASA Astrophysics Data System (ADS)
Bancal, Jean-Daniel; Barrett, Jonathan; Gisin, Nicolas; Pironio, Stefano
2013-07-01
In a multipartite setting, it is possible to distinguish quantum states that are genuinely n-way entangled from those that are separable with respect to some bipartition. Similarly, the nonlocal correlations that can arise from measurements on entangled states can be classified into those that are genuinely n-way nonlocal, and those that are local with respect to some bipartition. Svetlichny introduced an inequality intended as a test for genuine tripartite nonlocality. This work introduces two alternative definitions of n-way nonlocality, which we argue are better motivated both from the point of view of the study of nature, and from the point of view of quantum information theory. We show that these definitions are strictly weaker than Svetlichny's, and introduce a series of suitable Bell-type inequalities for the detection of three-way nonlocality. Numerical evidence suggests that all three-way entangled pure quantum states can produce three-way nonlocal correlations.
Inter-Universal Quantum Entanglement
NASA Astrophysics Data System (ADS)
Robles-Pérez, S. J.; González-Díaz, P. F.
2015-01-01
The boundary conditions to be imposed on the quantum state of the whole multiverse could be such that the universes would be created in entangled pairs. Then, interuniversal entanglement would provide us with a vacuum energy for each single universe that might be fitted with observational data, making testable not only the multiverse proposal but also the boundary conditions of the multiverse. Furthermore, the second law of the entanglement thermodynamics would enhance the expansion of the single universes.
Entanglement manipulation of multipartite pure states with finite rounds of classical communication
NASA Astrophysics Data System (ADS)
de Vicente, J. I.; Spee, C.; Sauerwein, D.; Kraus, B.
2017-01-01
We studied pure state transformations using local operations assisted by finitely many rounds of classical communication (LOCCIN) [C. Spee, J. I. de Vicente, D. Sauerwein, and B. Kraus [Phys. Rev. Lett. (to be published)], arXiv:1606.04418]. Here, we present the details of some of the proofs and generalize the construction of examples of state transformations via LOCCIN which require a probabilistic step. However, we also present explicit examples of SLOCC classes where any separable transformation can be realized by a protocol in which each step is deterministic (all-det-LOCCIN). Such transformations can be considered as natural generalizations of bipartite transformations. Furthermore, we provide examples of pure state transformations which are possible via separable transformations, but not via LOCCIN. We also analyze an interesting genuinely multipartite effect which we call locking or unlocking the power of other parties. This means that one party can prevent or enable the implementation of LOCC transformations by other parties. Moreover, we investigate the maximally entangled set restricted to LOCCIN and show how easily computable bounds on some entanglement measures can be derived by restricting to LOCCIN.
Entanglement for All Quantum States
ERIC Educational Resources Information Center
de la Torre, A. C.; Goyeneche, D.; Leitao, L.
2010-01-01
It is shown that a state that is factorizable in the Hilbert space corresponding to some choice of degrees of freedom becomes entangled for a different choice of degrees of freedom. Therefore, entanglement is not a special case but is ubiquitous in quantum systems. Simple examples are calculated and a general proof is provided. The physical…
Entanglement for All Quantum States
ERIC Educational Resources Information Center
de la Torre, A. C.; Goyeneche, D.; Leitao, L.
2010-01-01
It is shown that a state that is factorizable in the Hilbert space corresponding to some choice of degrees of freedom becomes entangled for a different choice of degrees of freedom. Therefore, entanglement is not a special case but is ubiquitous in quantum systems. Simple examples are calculated and a general proof is provided. The physical…
NASA Astrophysics Data System (ADS)
Wang, Zhao; Zhang, Chao; Huang, Yun-Feng; Liu, Bi-Heng; Li, Chuan-Feng; Guo, Guang-Can
2016-03-01
Multipartite quantum nonlocality is an important diagnostic tool and resource for both researches in fundamental quantum mechanics and applications in quantum information protocols. Shared reference frames among all parties are usually required for experimentally observing quantum nonlocality, which is not possible in many circumstances. Previous results have shown violations of bipartite Bell inequalities with approaching unit probability, without shared reference frames. Here we experimentally demonstrate genuine multipartite quantum nonlocality without shared reference frames, using the Svetlichny inequality. A significant violation probability of 0.58 is observed with a high-fidelity three-photon Greenberger-Horne-Zeilinger state. Furthermore, when there is one shared axis among all the parties, which is the usual case in fiber-optic or earth-satellite links, the experimental results demonstrate the genuine three-partite nonlocality with certainty. Our experiment will be helpful for applications in multipartite quantum communication protocols.
Multipartite nonlocality and random measurements
NASA Astrophysics Data System (ADS)
de Rosier, Anna; Gruca, Jacek; Parisio, Fernando; Vértesi, Tamás; Laskowski, Wiesław
2017-07-01
We present an exhaustive numerical analysis of violations of local realism by families of multipartite quantum states. As an indicator of nonclassicality we employ the probability of violation for randomly sampled observables. Surprisingly, it rapidly increases with the number of parties or settings and even for relatively small values local realism is violated for almost all observables. We have observed this effect to be typical in the sense that it emerged for all investigated states including some with randomly drawn coefficients. We also present the probability of violation as a witness of genuine multipartite entanglement.
Grudka, Andrzej; Horodecki, Pawel
2010-06-15
We analyze quantum network primitives which are entanglement breaking. We show superadditivity of quantum and classical capacity regions for quantum multiple-access channels and the quantum butterfly network. Since the effects are especially visible at high noise they suggest that quantum information effects may be particularly helpful in the case of the networks with occasional high noise rates. The present effects provide a qualitative borderline between superadditivities of bipartite and multipartite systems.
NASA Astrophysics Data System (ADS)
Thapliyal, Ashish Vachaspati
Entanglement is an essential element of quantum mechanics. The aim of this work is to explore various properties of entanglement from the viewpoints of both physics and information science, thus providing a unique picture of entanglement from an interdisciplinary point of view. The focus of this work is on quantifying entanglement as a resource. We start with bipartite states, proposing a new measure of bipartite entanglement called entanglement of assistance, showing that bound entangled states of rank two cannot exist, exploring the number of members required in the ensemble achieving the entanglement of formation and the possibility of bound entangled states that are negative under partial transposition (NPT bound entangled states). For multipartite states we introduce the notions of reducibilities and equivalences under entanglement non-increasing operations and we study the relations between various reducibilities and equivalences such as exact and asymptotic LOCC, asymptotic LOCCq, cLOCC, LOc, etc. We use this new language to attempt to quantify entanglement for multiple parties. We introduce the idea of entanglement span and minimal entanglement generating set and entanglement coefficients associated with it which are the entanglement measures, thus proposing a multicomponent measure of entanglement for three or more parties. We show that the class of Schmidt decomposable states have only GHZM or Cat-like entanglement. Further we introduce the class of multiseparable states for quantification of their entanglement and prove that they are equivalent to the Schmidt decomposable states, and thus have only Cat-like entanglement. We further explore the conditions under which LOCO equivalences are possible for multipartite isentropic states. We define Cat-distillability, EPRB-distillability and distillability for multipartite mixed states and show that distillability implies EPRB-distillability. Further we show that all non-factorizable pure states are Cat
Quantum Entanglement on a Hypersphere
NASA Astrophysics Data System (ADS)
Peters, James F.; Tozzi, Arturo
2016-08-01
A quantum entanglement's composite system does not display separable states and a single constituent cannot be fully described without considering the other states. We introduce quantum entanglement on a hypersphere - which is a 4D space undetectable by observers living in a 3D world -, derived from signals originating on the surface of an ordinary 3D sphere. From the far-flung branch of algebraic topology, the Borsuk-Ulam theorem states that, when a pair of opposite (antipodal) points on a hypersphere are projected onto the surface of 3D sphere, the projections have matching description. In touch with this theorem, we show that a separable state can be achieved for each of the entangled particles, just by embedding them in a higher dimensional space. We view quantum entanglement as the simultaneous activation of signals in a 3D space mapped into a hypersphere. By showing that the particles are entangled at the 3D level and un-entangled at the 4D hypersphere level, we achieved a composite system in which each local constituent is equipped with a pure state. We anticipate this new view of quantum entanglement leading to what are known as qubit information systems.
Quantum entanglement assisted key distribution
NASA Astrophysics Data System (ADS)
Tang, Ke; Ji, Ping; Zhang, Xiaowen
2007-04-01
Quantum correlations or entanglement is a basic ingredient for many applications of quantum information theory.One important application using quantum entanglement exploits the correlation nature of entangled photon states is quantum key distribution, which is proven unbreakable in principle and provides the highest possible security that is impossible in classical information theory. However, generating entangled photon pairs is not a simple task -- only approximately one out of a million pump photons decay into a signal and idler photon pair. This low rate of entangled photon pairs is further reduced by the overhead required in order for the rectification of the inevitable errors due to channel imperfections or caused by potential eavesdroppers. As a consequence, quantum key distribution suffers from a low bit rate, which is in the order of hundreds to thousands bits per second or below. On the other hand, the classical public key distribution does not impose a tight limit on the transmission rate. However, it is subject to the risks of eavesdroppers sitting in the middle of the insecure channel. In this paper, we propose a hybrid key distribution method which uses public key distribution method to generate a raw key, and then uses entanglement assisted communication to modify the raw key by inserting a number of quantum bits in the raw key. Building upon the foundation of the unconditional security of quantum key distribution, we use the privacy amplification to make the affection of inserted bits expand to a whole key. Our quantum entanglement assisted key distribution scheme greatly improves the efficiency of key distribution while without compromising the level of security achievable by quantum cryptography.
Quantum Entanglement and Chemical Reactivity.
Molina-Espíritu, M; Esquivel, R O; López-Rosa, S; Dehesa, J S
2015-11-10
The water molecule and a hydrogenic abstraction reaction are used to explore in detail some quantum entanglement features of chemical interest. We illustrate that the energetic and quantum-information approaches are necessary for a full understanding of both the geometry of the quantum probability density of molecular systems and the evolution of a chemical reaction. The energy and entanglement hypersurfaces and contour maps of these two models show different phenomena. The energy ones reveal the well-known stable geometry of the models, whereas the entanglement ones grasp the chemical capability to transform from one state system to a new one. In the water molecule the chemical reactivity is witnessed through quantum entanglement as a local minimum indicating the bond cleavage in the dissociation process of the molecule. Finally, quantum entanglement is also useful as a chemical reactivity descriptor by detecting the transition state along the intrinsic reaction path in the hypersurface of the hydrogenic abstraction reaction corresponding to a maximally entangled state.
Analytical recursive method to ascertain multisite entanglement in doped quantum spin ladders
NASA Astrophysics Data System (ADS)
Roy, Sudipto Singha; Dhar, Himadri Shekhar; Rakshit, Debraj; SenDe, Aditi; Sen, Ujjwal
2017-08-01
We formulate an analytical recursive method to generate the wave function of doped short-range resonating valence bond (RVB) states as a tool to efficiently estimate multisite entanglement as well as other physical quantities in doped quantum spin ladders. We prove that doped RVB ladder states are always genuine multipartite entangled. Importantly, our results show that within specific doping concentration and model parameter regimes, the doped RVB state essentially characterizes the trends of genuine multiparty entanglement in the exact ground states of the Hubbard model with large on-site interactions, in the limit that yields the t -J Hamiltonian.
Quantum entanglement distillation with metamaterials.
al Farooqui, Md Abdullah; Breeland, Justin; Aslam, Muhammad I; Sadatgol, Mehdi; Özdemir, Şahin K; Tame, Mark; Yang, Lan; Güney, Durdu Ö
2015-07-13
We propose a scheme for the distillation of partially entangled two-photon Bell and three-photon W states using metamaterials. The distillation of partially entangled Bell states is achieved by using two metamaterials with polarization dependence, one of which is rotated by π/2 around the direction of propagation of the photons. On the other hand, the distillation of three-photon W states is achieved by using one polarization dependent metamaterial and two polarization independent metamaterials. Upon transmission of the photons of the partially entangled states through the metamaterials the entanglement of the states increases and they become distilled. This work opens up new directions in quantum optical state engineering by showing how metamaterials can be used to carry out a quantum information processing task.
NASA Astrophysics Data System (ADS)
Bruschi, David Edward; Sabín, Carlos; Paraoanu, Gheorghe Sorin
2017-06-01
We study the properties of bisqueezed tripartite Gaussian states created by two spontaneous parametric down-conversion processes that share a common idler. We give a complete description of the quantum correlations across all partitions, as well as of the genuine multipartite entanglement, obtaining analytical expressions for most of the quantities of interest. We find that the state contains genuine tripartite entanglement, in addition to the bipartite entanglement among the modes that are directly squeezed. We also investigate the effect of homodyne detection of the photons in the common idler mode, and analyze the final reduced state of the remaining two signal modes. We find that this measurement leads to a conversion of the coherence of the two signal modes into entanglement, a phenomenon that can be regarded as a redistribution of quantum resources between the modes. The applications of these results to quantum optics and circuit quantum electrodynamics platforms are also discussed.
Dynamical Casimir effect entangles artificial atoms.
Felicetti, S; Sanz, M; Lamata, L; Romero, G; Johansson, G; Delsing, P; Solano, E
2014-08-29
We show that the physics underlying the dynamical Casimir effect may generate multipartite quantum correlations. To achieve it, we propose a circuit quantum electrodynamics scenario involving superconducting quantum interference devices, cavities, and superconducting qubits, also called artificial atoms. Our results predict the generation of highly entangled states for two and three superconducting qubits in different geometric configurations with realistic parameters. This proposal paves the way for a scalable method of multipartite entanglement generation in cavity networks through dynamical Casimir physics.
Entanglement evolution for quantum trajectories
NASA Astrophysics Data System (ADS)
Vogelsberger, S.; Spehner, D.
2011-07-01
Entanglement is a key resource in quantum information. It can be destroyed or sometimes created by interactions with a reservoir. In recent years, much attention has been devoted to the phenomena of entanglement sudden death and sudden birth, i.e., the sudden disappearance or revival of entanglement at finite times resulting from a coupling of the quantum system to its environment [1, 2, 3]. We investigate the evolution of the entanglement of noninteracting qubits coupled to reservoirs under monitoring of the reservoirs by means of continuous measurements. Because of these measurements, the qubits remain at all times in a pure state, which evolves randomly. To each measurement result (or "realization") corresponds a quantum trajectory in the Hilbert space of the qubits. We show that for two qubits coupled to independent baths subjected to local measurements, the average of the qubits' concurrence over all quantum trajectories is either constant or decays exponentially. The corresponding decay rate depends on the measurement scheme only. This result contrasts with the entanglement sudden death phenomenon exhibited by the qubits' density matrix in the absence of measurements. Our analysis applies to arbitrary quantum jump dynamics (photon counting) as well as to quantum state diffusion (homodyne or heterodyne detections) in the Markov limit. We discuss the best measurement schemes to protect the entanglement of the qubits. We also analyze the case of two qubits coupled to a common bath. Then, the average concurrence can vanish at discrete times and may coincide with the concurrence of the density matrix. The results explained in this article have been presented during the "Fifth International Workshop DICE2010" by the first author and have been the subject of a prior publication [4].
Quantum entanglement, quantum communication and the limits of quantum computing
NASA Astrophysics Data System (ADS)
Ambainis, Andris
Quantum entanglement is a term describing the quantum correlations between different parts of a quantum system. Quantum information theory has developed sophisticated techniques to quantify and study quantum entanglement. In this thesis, we show how to apply those techniques to problems in quantum algorithms, complexity theory, communication and cryptography. The main results are: (1) quantum communication protocols that are exponentially more efficient that conventional (classical) communication protocols, (2) unconditionally secure quantum protocols for cryptographic problems, (3) a new "quantum adversary" method for proving lower bounds on quantum algorithms, (4) a study of "one clean qubit computation", a model related to the experimental implementation of quantum computers using NMR (nucleo-magnetic resonance) technology.
Quantum Entanglement in Open Systems
Isar, Aurelian
2008-01-24
In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, the master equation for two independent harmonic oscillators interacting with an environment is solved in the asymptotic long-time regime. Using the Peres-Simon necessary and sufficient condition for separability of two-mode Gaussian states, we show that the two non-interacting systems become asymptotically entangled for certain environments, so that in the long-time regime they manifest non-local quantum correlations. We calculate also the logarithmic negativity characterizing the degree of entanglement of the asymptotic state.
Quantum entanglement in the multiverse
NASA Astrophysics Data System (ADS)
Robles-Pérez, S.; González-Díaz, P. F.
2014-01-01
We show that the quantum state of a multiverse made up of classically disconnected regions of the space-time, whose dynamical evolution is dominated by a homogeneous and isotropic fluid, is given by a squeezed state. These are typical quantum states that have no classical counterpart and therefore allow analyzing the violation of classical inequalities as well as the EPR argument in the context of the quantum multiverse. The thermodynamical properties of entanglement are calculated for a composite quantum state of two universes whose states are quantum-mechanically correlated. The energy of entanglement between the positive and negative modes of a scalar field, which correspond to the expanding and contracting branches of a phantom universe, are also computed.
Experimental quantum computing without entanglement.
Lanyon, B P; Barbieri, M; Almeida, M P; White, A G
2008-11-14
Deterministic quantum computation with one pure qubit (DQC1) is an efficient model of computation that uses highly mixed states. Unlike pure-state models, its power is not derived from the generation of a large amount of entanglement. Instead it has been proposed that other nonclassical correlations are responsible for the computational speedup, and that these can be captured by the quantum discord. In this Letter we implement DQC1 in an all-optical architecture, and experimentally observe the generated correlations. We find no entanglement, but large amounts of quantum discord-except in three cases where an efficient classical simulation is always possible. Our results show that even fully separable, highly mixed, states can contain intrinsically quantum mechanical correlations and that these could offer a valuable resource for quantum information technologies.
Robustness of entanglement as a resource
Chaves, Rafael; Davidovich, Luiz
2010-11-15
The robustness of multipartite entanglement of systems undergoing decoherence is of central importance to the area of quantum information. Its characterization depends, however, on the measure used to quantify entanglement and on how one partitions the system. Here we show that the unambiguous assessment of the robustness of multipartite entanglement is obtained by considering the loss of functionality in terms of two communication tasks, namely the splitting of information between many parties and the teleportation of states.
Measuring Quantum Coherence with Entanglement.
Streltsov, Alexander; Singh, Uttam; Dhar, Himadri Shekhar; Bera, Manabendra Nath; Adesso, Gerardo
2015-07-10
Quantum coherence is an essential ingredient in quantum information processing and plays a central role in emergent fields such as nanoscale thermodynamics and quantum biology. However, our understanding and quantitative characterization of coherence as an operational resource are still very limited. Here we show that any degree of coherence with respect to some reference basis can be converted to entanglement via incoherent operations. This finding allows us to define a novel general class of measures of coherence for a quantum system of arbitrary dimension, in terms of the maximum bipartite entanglement that can be generated via incoherent operations applied to the system and an incoherent ancilla. The resulting measures are proven to be valid coherence monotones satisfying all the requirements dictated by the resource theory of quantum coherence. We demonstrate the usefulness of our approach by proving that the fidelity-based geometric measure of coherence is a full convex coherence monotone, and deriving a closed formula for it on arbitrary single-qubit states. Our work provides a clear quantitative and operational connection between coherence and entanglement, two landmark manifestations of quantum theory and both key enablers for quantum technologies.
Partially entangled states bridge in quantum teleportation
NASA Astrophysics Data System (ADS)
Cai, Xiao-Fei; Yu, Xu-Tao; Shi, Li-Hui; Zhang, Zai-Chen
2014-10-01
The traditional method for information transfer in a quantum communication system using partially entangled state resource is quantum distillation or direct teleportation. In order to reduce the waiting time cost in hop-by-hop transmission and execute independently in each node, we propose a quantum bridging method with partially entangled states to teleport quantum states from source node to destination node. We also prove that the designed specific quantum bridging circuit is feasible for partially entangled states teleportation across multiple intermediate nodes. Compared to two traditional ways, our partially entanglement quantum bridging method uses simpler logic gates, has better security, and can be used in less quantum resource situation.
Quantum entanglement in circuit QED
Milburn, G. J.; Meaney, Charles
2008-11-07
We show that the ground state of a very strongly coupled two level system based on a superconducting island and a microwave cavity field can undergo a morphological change as the coupling strength is increased. This looks like a quantum phase transition and is characterized by the appearance of entanglement between the cavity field and the two level system.
Entanglement irreversibility from quantum discord and quantum deficit.
Cornelio, Marcio F; de Oliveira, Marcos C; Fanchini, Felipe F
2011-07-08
We relate the problem of irreversibility of entanglement with the recently defined measures of quantum correlation--quantum discord and one-way quantum deficit. We show that the entanglement of formation is always strictly larger than the coherent information and the entanglement cost is also larger in most cases. We prove irreversibility of entanglement under local operations and classical communication for a family of entangled states. This family is a generalization of the maximally correlated states for which we also give an analytic expression for the distillable entanglement, the relative entropy of entanglement, the distillable secret key, and the quantum discord.
Separability criteria and method of measurement for entanglement
Mohd, Siti Munirah; Idrus, Bahari; Mukhtar, Muriati
2014-06-19
Quantum computers have the potentials to solve certain problems faster than classical computers. In quantum computer, entanglement is one of the elements beside superposition. Recently, with the advent of quantum information theory, entanglement has become an important resource for Quantum Information and Computation. The purpose of this paper is to discuss the separability criteria and method of measurement for entanglement. This paper is aimed at viewing the method that has been proposed in previous works in bipartite and multipartite entanglement. The outcome of this paper is to classify the different method that used to measure entanglement for bipartite and multipartite cases including the advantage and disadvantage of each method.
Monogamy of quantum entanglement and other correlations
Koashi, Masato; Winter, Andreas
2004-02-01
It has been observed by numerous authors that a quantum system being entangled with another one limits its possible entanglement with a third system: this has been dubbed the 'monogamous nature of entanglement'. In this paper we present a simple identity which captures the trade off between entanglement and classical correlation, which can be used to derive rigorous monogamy relations. We also prove various other trade offs of a monogamy nature for other entanglement measures and secret and total correlation measures.
Erol, Volkan; Ozaydin, Fatih; Altintas, Azmi Ali
2014-06-24
Entanglement has been studied extensively for unveiling the mysteries of non-classical correlations between quantum systems. In the bipartite case, there are well known measures for quantifying entanglement such as concurrence, relative entropy of entanglement (REE) and negativity, which cannot be increased via local operations. It was found that for sets of non-maximally entangled states of two qubits, comparing these entanglement measures may lead to different entanglement orderings of the states. On the other hand, although it is not an entanglement measure and not monotonic under local operations, due to its ability of detecting multipartite entanglement, quantum Fisher information (QFI) has recently received an intense attraction generally with entanglement in the focus. In this work, we revisit the state ordering problem of general two qubit states. Generating a thousand random quantum states and performing an optimization based on local general rotations of each qubit, we calculate the maximal QFI for each state. We analyze the maximized QFI in comparison with concurrence, REE and negativity and obtain new state orderings. We show that there are pairs of states having equal maximized QFI but different values for concurrence, REE and negativity and vice versa.
Erol, Volkan; Ozaydin, Fatih; Altintas, Azmi Ali
2014-01-01
Entanglement has been studied extensively for unveiling the mysteries of non-classical correlations between quantum systems. In the bipartite case, there are well known measures for quantifying entanglement such as concurrence, relative entropy of entanglement (REE) and negativity, which cannot be increased via local operations. It was found that for sets of non-maximally entangled states of two qubits, comparing these entanglement measures may lead to different entanglement orderings of the states. On the other hand, although it is not an entanglement measure and not monotonic under local operations, due to its ability of detecting multipartite entanglement, quantum Fisher information (QFI) has recently received an intense attraction generally with entanglement in the focus. In this work, we revisit the state ordering problem of general two qubit states. Generating a thousand random quantum states and performing an optimization based on local general rotations of each qubit, we calculate the maximal QFI for each state. We analyze the maximized QFI in comparison with concurrence, REE and negativity and obtain new state orderings. We show that there are pairs of states having equal maximized QFI but different values for concurrence, REE and negativity and vice versa. PMID:24957694
Entanglement in quantum catastrophes
Emary, Clive; Lambert, Neill; Brandes, Tobias
2005-06-15
We classify entanglement singularities for various two-mode bosonic systems in terms of catastrophe theory. Employing an abstract phase-space representation, we obtain exact results in limiting cases for the entropy in cusp, butterfly, and two-dimensional catastrophes. We furthermore use numerical results to extract the scaling of the entropy with the nonlinearity parameter, and discuss the role of mixing entropies in more complex systems.
Quantum entanglement and temperature fluctuations.
Ourabah, Kamel; Tribeche, Mouloud
2017-04-01
In this paper, we consider entanglement in a system out of equilibrium, adopting the viewpoint given by the formalism of superstatistics. Such an approach yields a good effective description for a system in a slowly fluctuating environment within a weak interaction between the system and the environment. For this purpose, we introduce an alternative version of the formalism within a quantum mechanical picture and use it to study entanglement in the Heisenberg XY model, subject to temperature fluctuations. We consider both isotropic and anisotropic cases and explore the effect of different temperature fluctuations (χ^{2}, log-normal, and F distributions). Our results suggest that particular fluctuations may enhance entanglement and prevent it from vanishing at higher temperatures than those predicted for the same system at thermal equilibrium.
Entanglement enhances cooling in microscopic quantum refrigerators.
Brunner, Nicolas; Huber, Marcus; Linden, Noah; Popescu, Sandu; Silva, Ralph; Skrzypczyk, Paul
2014-03-01
Small self-contained quantum thermal machines function without external source of work or control but using only incoherent interactions with thermal baths. Here we investigate the role of entanglement in a small self-contained quantum refrigerator. We first show that entanglement is detrimental as far as efficiency is concerned-fridges operating at efficiencies close to the Carnot limit do not feature any entanglement. Moving away from the Carnot regime, we show that entanglement can enhance cooling and energy transport. Hence, a truly quantum refrigerator can outperform a classical one. Furthermore, the amount of entanglement alone quantifies the enhancement in cooling.
Quantum Entanglement and Quantum Discord in Gaussian Open Systems
Isar, Aurelian
2011-10-03
In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the continuous-variable quantum entanglement and quantum discord for a system consisting of two noninteracting modes embedded in a thermal environment. Entanglement and discord are used to quantify the quantum correlations of the system. For all values of the temperature of the thermal reservoir, an initial separable Gaussian state remains separable for all times. In the case of an entangled initial Gaussian state, entanglement suppression (entanglement sudden death) takes place for non-zero temperatures of the environment. Only for a zero temperature of the thermal bath the initial entangled state remains entangled for finite times. We analyze the time evolution of the Gaussian quantum discord, which is a measure of all quantum correlations in the bipartite state, including entanglement, and show that quantum discord decays asymptotically in time under the effect of the thermal bath.
Cloning quantum entanglement in arbitrary dimensions
Karpov, E.; Navez, P.; Cerf, N.J.
2005-10-15
We have found a quantum cloning machine that optimally duplicates the entanglement of a pair of d-dimensional quantum systems prepared in an arbitrary isotropic state. It maximizes the entanglement of formation contained in the two copies of any maximally entangled input state, while preserving the separability of unentangled input states. Moreover, it cannot increase the entanglement of formation of isotropic states. For large d, the entanglement of formation of each clone tends to one-half the entanglement of the input state, which corresponds to a classical behavior. Finally, we investigate a local entanglement cloner, which yields entangled clones with one-fourth the input entanglement in the large-d limit.
Sequential Path Entanglement for Quantum Metrology
Jin, Xian-Min; Peng, Cheng-Zhi; Deng, Youjin; Barbieri, Marco; Nunn, Joshua; Walmsley, Ian A.
2013-01-01
Path entanglement is a key resource for quantum metrology. Using path-entangled states, the standard quantum limit can be beaten, and the Heisenberg limit can be achieved. However, the preparation and detection of such states scales unfavourably with the number of photons. Here we introduce sequential path entanglement, in which photons are distributed across distinct time bins with arbitrary separation, as a resource for quantum metrology. We demonstrate a scheme for converting polarization Greenberger-Horne-Zeilinger entanglement into sequential path entanglement. We observe the same enhanced phase resolution expected for conventional path entanglement, independent of the delay between consecutive photons. Sequential path entanglement can be prepared comparably easily from polarization entanglement, can be detected without using photon-number-resolving detectors, and enables novel applications.
Efficient entanglement distillation without quantum memory.
Abdelkhalek, Daniela; Syllwasschy, Mareike; Cerf, Nicolas J; Fiurášek, Jaromír; Schnabel, Roman
2016-05-31
Entanglement distribution between distant parties is an essential component to most quantum communication protocols. Unfortunately, decoherence effects such as phase noise in optical fibres are known to demolish entanglement. Iterative (multistep) entanglement distillation protocols have long been proposed to overcome decoherence, but their probabilistic nature makes them inefficient since the success probability decays exponentially with the number of steps. Quantum memories have been contemplated to make entanglement distillation practical, but suitable quantum memories are not realised to date. Here, we present the theory for an efficient iterative entanglement distillation protocol without quantum memories and provide a proof-of-principle experimental demonstration. The scheme is applied to phase-diffused two-mode-squeezed states and proven to distil entanglement for up to three iteration steps. The data are indistinguishable from those that an efficient scheme using quantum memories would produce. Since our protocol includes the final measurement it is particularly promising for enhancing continuous-variable quantum key distribution.
Efficient entanglement distillation without quantum memory
Abdelkhalek, Daniela; Syllwasschy, Mareike; Cerf, Nicolas J.; Fiurášek, Jaromír; Schnabel, Roman
2016-01-01
Entanglement distribution between distant parties is an essential component to most quantum communication protocols. Unfortunately, decoherence effects such as phase noise in optical fibres are known to demolish entanglement. Iterative (multistep) entanglement distillation protocols have long been proposed to overcome decoherence, but their probabilistic nature makes them inefficient since the success probability decays exponentially with the number of steps. Quantum memories have been contemplated to make entanglement distillation practical, but suitable quantum memories are not realised to date. Here, we present the theory for an efficient iterative entanglement distillation protocol without quantum memories and provide a proof-of-principle experimental demonstration. The scheme is applied to phase-diffused two-mode-squeezed states and proven to distil entanglement for up to three iteration steps. The data are indistinguishable from those that an efficient scheme using quantum memories would produce. Since our protocol includes the final measurement it is particularly promising for enhancing continuous-variable quantum key distribution. PMID:27241946
Efficient entanglement distillation without quantum memory
NASA Astrophysics Data System (ADS)
Abdelkhalek, Daniela; Syllwasschy, Mareike; Cerf, Nicolas J.; Fiurášek, Jaromír; Schnabel, Roman
2016-05-01
Entanglement distribution between distant parties is an essential component to most quantum communication protocols. Unfortunately, decoherence effects such as phase noise in optical fibres are known to demolish entanglement. Iterative (multistep) entanglement distillation protocols have long been proposed to overcome decoherence, but their probabilistic nature makes them inefficient since the success probability decays exponentially with the number of steps. Quantum memories have been contemplated to make entanglement distillation practical, but suitable quantum memories are not realised to date. Here, we present the theory for an efficient iterative entanglement distillation protocol without quantum memories and provide a proof-of-principle experimental demonstration. The scheme is applied to phase-diffused two-mode-squeezed states and proven to distil entanglement for up to three iteration steps. The data are indistinguishable from those that an efficient scheme using quantum memories would produce. Since our protocol includes the final measurement it is particularly promising for enhancing continuous-variable quantum key distribution.
Entangled States, Holography and Quantum Surfaces
Chapline, G F
2003-08-13
Starting with an elementary discussion of quantum holography, we show that entangled quantum states of qubits provide a ''local'' representation of the global geometry and topology of quantum Riemann surfaces. This representation may play an important role in both mathematics and physics. Indeed, the simplest way to represent the fundamental objects in a ''theory of everything'' may be as muti-qubit entangled states.
Topological Quantum Entanglement
2014-02-19
Fractional Quantum Hall States (D.J. Clarke, J. Alicia, and K. Shtengel), Nature Commun. 4, 1348 (2013). arXiv:1204.5479 57. Andreev Bound States in...signatures of non-Abelian anyons (i) ν=5/2 state FQHE Perhaps the most striking signature of non-Abelian statistics of anyons in the ν=5/2 fractional...quantum Hall (FQH) state – the most likely FQH state to host such quasiparticles – is the so-called even-odd effect predicted for quantum interference
Quantum states prepared by realistic entanglement swapping
Scherer, Artur; Howard, Regina B.; Sanders, Barry C.; Tittel, Wolfgang
2009-12-15
Entanglement swapping between photon pairs is a fundamental building block in schemes using quantum relays or quantum repeaters to overcome the range limits of long-distance quantum key distribution. We develop a closed-form solution for the actual quantum states prepared by realistic entanglement swapping, which takes into account experimental deficiencies due to inefficient detectors, detector dark counts, and multiphoton-pair contributions of parametric down-conversion sources. We investigate how the entanglement present in the final state of the remaining modes is affected by the real-world imperfections. To test the predictions of our theory, comparison with previously published experimental entanglement swapping is provided.
Lithography system using quantum entangled photons
NASA Technical Reports Server (NTRS)
Williams, Colin (Inventor); Dowling, Jonathan (Inventor); della Rossa, Giovanni (Inventor)
2002-01-01
A system of etching using quantum entangled particles to get shorter interference fringes. An interferometer is used to obtain an interference fringe. N entangled photons are input to the interferometer. This reduces the distance between interference fringes by n, where again n is the number of entangled photons.
Entanglement and quantum teleportation via decohered tripartite entangled states
Metwally, N.
2014-12-15
The entanglement behavior of two classes of multi-qubit system, GHZ and GHZ like states passing through a generalized amplitude damping channel is discussed. Despite this channel causes degradation of the entangled properties and consequently their abilities to perform quantum teleportation, one can always improve the lower values of the entanglement and the fidelity of the teleported state by controlling on Bell measurements, analyzer angle and channel’s strength. Using GHZ-like state within a generalized amplitude damping channel is much better than using the normal GHZ-state, where the decay rate of entanglement and the fidelity of the teleported states are smaller than those depicted for GHZ state.
Banerjee, Subhashish; Alok, Ashutosh Kumar; Srikanth, R; Hiesmayr, Beatrix C
Correlations exhibited by neutrino oscillations are studied via quantum-information theoretic quantities. We show that the strongest type of entanglement, genuine multipartite entanglement, is persistent in the flavor changing states. We prove the existence of Bell-type nonlocal features, in both its absolute and genuine avatars. Finally, we show that a measure of nonclassicality, dissension, which is a generalization of quantum discord to the tripartite case, is nonzero for almost the entire range of time in the evolution of an initial electron-neutrino. Via these quantum-information theoretic quantities, capturing different aspects of quantum correlations, we elucidate the differences between the flavor types, shedding light on the quantum-information theoretic aspects of the weak force.
Noise and entanglement in quantum conductors
Lesovik, G. B.; Lebedev, A. V.
2009-05-14
In this article we discuss our two recent proposals on producing and detecting of entangled states in quantum conductors. First we analyze a setup where two electrons are scattered on a quantum dot with Coulomb repulsion and became orbitally entangled. Second, for identical noninteracting particles we suggest an operating scheme for the deliberate generation of spin-entangled electron pairs in a normal-metal mesoscopic structure with a fork geometry. The spin-entangled pair is created through a post-selection in the two branches of the fork. We also make comments on different ways of producing and quantifying the degree of entanglement.
Entanglement and quantum nonlocality demystified
NASA Astrophysics Data System (ADS)
Kupczynski, Marian
2012-12-01
Quantum nonlocality is presented often as the most remarkable and inexplicable phenomenon known to modern science. It has been known already for a long time that the probabilistic models used to prove Bell and Clauser-Horn-Shimony-Holt inequalities (BI-CHSH) for spin polarization correlation experiments (SPCE) are incompatible with the experimental protocols of SPCE. In particular these models use the same common probability space, joint probability distributions and/or conditional independence to describe coincidence experiments in incompatible experimental settings. Strangely enough these results are not known or simply neglected. This is why we will once again reanalyze Bell locality assumptions and show that they have nothing to do with the notion of Einsteinian locality therefore their violation should not be called quantum nonlocality but rather quantum non-Kolmogorovness or quantum contextuality. Moreover if local variables describing the measuring instruments are correctly taken into account then BI-CHSH can no longer be proven and one can easily construct non-signaling probabilistic models able to reproduce the predictions of QT. The violation of BI-CHSH is considered usually as a proof that a quantum state is entangled. Since BI-CHSH are violated also in some experiments from outside the domain of quantum physics therefore the entanglement is not exclusively a quantum phenomenon. In order to further demystify these notions we show that one can prepare two macroscopic systems in such a way that simple realizable local experiments on these systems violate BI. In view of these arguments the further testing of BI-CHSH inequalities in search for the loopholes does not seem to be necessary.
Real-time imaging of quantum entanglement.
Fickler, Robert; Krenn, Mario; Lapkiewicz, Radek; Ramelow, Sven; Zeilinger, Anton
2013-01-01
Quantum Entanglement is widely regarded as one of the most prominent features of quantum mechanics and quantum information science. Although, photonic entanglement is routinely studied in many experiments nowadays, its signature has been out of the grasp for real-time imaging. Here we show that modern technology, namely triggered intensified charge coupled device (ICCD) cameras are fast and sensitive enough to image in real-time the effect of the measurement of one photon on its entangled partner. To quantitatively verify the non-classicality of the measurements we determine the detected photon number and error margin from the registered intensity image within a certain region. Additionally, the use of the ICCD camera allows us to demonstrate the high flexibility of the setup in creating any desired spatial-mode entanglement, which suggests as well that visual imaging in quantum optics not only provides a better intuitive understanding of entanglement but will improve applications of quantum science.
Real-Time Imaging of Quantum Entanglement
Fickler, Robert; Krenn, Mario; Lapkiewicz, Radek; Ramelow, Sven; Zeilinger, Anton
2013-01-01
Quantum Entanglement is widely regarded as one of the most prominent features of quantum mechanics and quantum information science. Although, photonic entanglement is routinely studied in many experiments nowadays, its signature has been out of the grasp for real-time imaging. Here we show that modern technology, namely triggered intensified charge coupled device (ICCD) cameras are fast and sensitive enough to image in real-time the effect of the measurement of one photon on its entangled partner. To quantitatively verify the non-classicality of the measurements we determine the detected photon number and error margin from the registered intensity image within a certain region. Additionally, the use of the ICCD camera allows us to demonstrate the high flexibility of the setup in creating any desired spatial-mode entanglement, which suggests as well that visual imaging in quantum optics not only provides a better intuitive understanding of entanglement but will improve applications of quantum science. PMID:23715056
Multipartite nonlocality distillation
Hsu, Li-Yi; Wu, Keng-Shuo
2010-11-15
The stronger nonlocality than that allowed in quantum theory can provide an advantage in information processing and computation. Since quantum entanglement is distillable, can nonlocality be distilled in the nonsignalling condition? The answer is positive in the bipartite case. In this article the distillability of the multipartite nonlocality is investigated. We propose a distillation protocol solely exploiting xor operations on output bits. The probability-distribution vectors and matrix are introduced to tackle the correlators. It is shown that only the correlators with extreme values can survive the distillation process. As the main result, the amplified nonlocality cannot maximally violate any Bell-type inequality. Accordingly, a distillability criterion in the postquantum region is proposed.
Macroscopic quantum entanglement in modulated optomechanics
NASA Astrophysics Data System (ADS)
Wang, Mei; Lü, Xin-You; Wang, Ying-Dan; You, J. Q.; Wu, Ying
2016-11-01
Quantum entanglement in mechanical systems is not only a key signature of macroscopic quantum effects but has wide applications in quantum technologies. Here we propose an effective approach for creating strong steady-state entanglement between two directly coupled mechanical oscillators (or a mechanical oscillator and a microwave resonator) in a modulated optomechanical system. The entanglement is achieved by combining the processes of a cavity cooling and the two-mode parametric interaction, which can surpass the bound on the maximal stationary entanglement from the two-mode parametric interaction. In principle, our proposal allows one to cool the system from an initial thermal state to an entangled state with high purity by a monochromatic driving laser. Also, the obtained entangled state can be used to implement the continuous-variable teleportation with high fidelity. Moreover, our proposal is robust against the thermal fluctuations of the mechanical modes under the condition of strong optical pumping.
Evolution of Quantum Entanglement in Open Systems
Isar, A.
2010-08-04
In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the continuous-variable entanglement for a system consisting of two uncoupled harmonic oscillators interacting with a thermal environment. Using Peres-Simon necessary sufficient criterion for separability of two-mode Gaussian states, we show that for some values of diffusion coefficient, dissipation constant and temperature of the environment, the state keeps for all times its initial type: separable or entangled. In other cases, entanglement generation, entanglement sudden death or a periodic collapse revival of entanglement take place.
Monogamy of quantum entanglement and other correlations
NASA Astrophysics Data System (ADS)
Koashi, Masato; Winter, Andreas
2004-02-01
It has been observed by numerous authors that a quantum system being entangled with another one limits its possible entanglement with a third system: this has been dubbed the “monogamous nature of entanglement.” In this paper we present a simple identity which captures the trade off between entanglement and classical correlation, which can be used to derive rigorous monogamy relations. We also prove various other trade offs of a monogamy nature for other entanglement measures and secret and total correlation measures.
Quantum Entanglement of Quantum Dot Spin Using Flying Qubits
2015-05-01
QUANTUM ENTANGLEMENT OF QUANTUM DOT SPIN USING FLYING QUBITS UNIVERSITY OF MICHIGAN MAY 2015 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE...To) SEP 2012 – DEC 2014 4. TITLE AND SUBTITLE QUANTUM ENTANGLEMENT OF QUANTUM DOT SPIN USING FLYING QUBITS 5a. CONTRACT NUMBER FA8750-12-2-0333...semiconductor quantum dots doped with a single electron, made possible by the Coulomb blockade in this system. The quantum dots confine both electrons and
Quantum entanglement of high angular momenta.
Fickler, Robert; Lapkiewicz, Radek; Plick, William N; Krenn, Mario; Schaeff, Christoph; Ramelow, Sven; Zeilinger, Anton
2012-11-02
Single photons with helical phase structures may carry a quantized amount of orbital angular momentum (OAM), and their entanglement is important for quantum information science and fundamental tests of quantum theory. Because there is no theoretical upper limit on how many quanta of OAM a single photon can carry, it is possible to create entanglement between two particles with an arbitrarily high difference in quantum number. By transferring polarization entanglement to OAM with an interferometric scheme, we generate and verify entanglement between two photons differing by 600 in quantum number. The only restrictive factors toward higher numbers are current technical limitations. We also experimentally demonstrate that the entanglement of very high OAM can improve the sensitivity of angular resolution in remote sensing.
Entangled and sequential quantum protocols with dephasing.
Boixo, Sergio; Heunen, Chris
2012-03-23
Sequences of commuting quantum operators can be parallelized using entanglement. This transformation is behind some optimal quantum metrology protocols and recent results on quantum circuit complexity. We show that dephasing quantum maps in arbitrary dimension can also be parallelized. This implies that for general dephasing noise the protocol with entanglement is not more fragile than the corresponding sequential protocol and, conversely, the sequential protocol is not less effective than the entangled one. We derive this result using tensor networks. Furthermore, we only use transformations strictly valid within string diagrams in dagger compact closed categories. Therefore, they apply verbatim to other theories, such as geometric quantization and topological quantum field theory. This clarifies and characterizes to some extent the role of entanglement in general quantum theories.
Entanglement-assisted codeword stabilized quantum codes
Shin, Jeonghwan; Heo, Jun; Brun, Todd A.
2011-12-15
Entangled qubits can increase the capacity of quantum error-correcting codes based on stabilizer codes. In addition, by using entanglement quantum stabilizer codes can be construct from classical linear codes that do not satisfy the dual-containing constraint. We show that it is possible to construct both additive and nonadditive quantum codes using the codeword stabilized quantum code framework. Nonadditive codes may offer improved performance over the more common stabilizer codes. Like other entanglement-assisted codes, the encoding procedure acts only on the qubits on Alice's side, and only these qubits are assumed to pass through the channel. However, errors in the codeword stabilized quantum code framework give rise to effective Z errors on Bob's side. We use this scheme to construct entanglement-assisted nonadditive quantum codes, in particular, ((5,16,2;1)) and ((7,4,5;4)) codes.
2D quantum gravity from quantum entanglement.
Gliozzi, F
2011-01-21
In quantum systems with many degrees of freedom the replica method is a useful tool to study the entanglement of arbitrary spatial regions. We apply it in a way that allows them to backreact. As a consequence, they become dynamical subsystems whose position, form, and extension are determined by their interaction with the whole system. We analyze, in particular, quantum spin chains described at criticality by a conformal field theory. Its coupling to the Gibbs' ensemble of all possible subsystems is relevant and drives the system into a new fixed point which is argued to be that of the 2D quantum gravity coupled to this system. Numerical experiments on the critical Ising model show that the new critical exponents agree with those predicted by the formula of Knizhnik, Polyakov, and Zamolodchikov.
Geometric entanglement and quantum phase transitions in two-dimensional quantum lattice models
NASA Astrophysics Data System (ADS)
Shi, Qian-Qian; Wang, Hong-Lei; Li, Sheng-Hao; Cho, Sam Young; Batchelor, Murray T.; Zhou, Huan-Qiang
2016-06-01
Geometric entanglement (GE), as a measure of multipartite entanglement, has been investigated as a universal tool to detect phase transitions in quantum many-body lattice models. In this paper we outline a systematic method to compute GE for two-dimensional (2D) quantum many-body lattice models based on the translational invariant structure of infinite projected entangled pair state (iPEPS) representations. By employing this method, the q -state quantum Potts model on the square lattice with q ∈{2 ,3 ,4 ,5 } is investigated as a prototypical example. Further, we have explored three 2D Heisenberg models: the antiferromagnetic spin-1/2 X X X and anisotropic X Y X models in an external magnetic field, and the antiferromagnetic spin-1 X X Z model. We find that continuous GE does not guarantee a continuous phase transition across a phase transition point. We observe and thus classify three different types of continuous GE across a phase transition point: (i) GE is continuous with maximum value at the transition point and the phase transition is continuous, (ii) GE is continuous with maximum value at the transition point but the phase transition is discontinuous, and (iii) GE is continuous with nonmaximum value at the transition point and the phase transition is continuous. For the models under consideration, we find that the second and the third types are related to a point of dual symmetry and a fully polarized phase, respectively.
Quantum entanglement in condensed matter systems
NASA Astrophysics Data System (ADS)
Laflorencie, Nicolas
2016-08-01
This review focuses on the field of quantum entanglement applied to condensed matter physics systems with strong correlations, a domain which has rapidly grown over the last decade. By tracing out part of the degrees of freedom of correlated quantum systems, useful and non-trivial information can be obtained through the study of the reduced density matrix, whose eigenvalue spectrum (the entanglement spectrum) and the associated Rényi entropies are now well recognized to contain key features. In particular, the celebrated area law for the entanglement entropy of ground-states will be discussed from the perspective of its subleading corrections which encode universal details of various quantum states of matter, e.g. symmetry breaking states or topological order. Going beyond entropies, the study of the low-lying part of the entanglement spectrum also allows to diagnose topological properties or give a direct access to the excitation spectrum of the edges, and may also raise significant questions about the underlying entanglement Hamiltonian. All these powerful tools can be further applied to shed some light on disordered quantum systems where impurity/disorder can conspire with quantum fluctuations to induce non-trivial effects. Disordered quantum spin systems, the Kondo effect, or the many-body localization problem, which have all been successfully (re)visited through the prism of quantum entanglement, will be discussed in detail. Finally, the issue of experimental access to entanglement measurement will be addressed, together with its most recent developments.
Philosophy of Quantum Information and Entanglement
NASA Astrophysics Data System (ADS)
Bokulich, Alisa; Jaeger, Gregg
2010-06-01
Preface; Introduction; Part I. Quantum Entanglement and Nonlocality: 1. Nonlocality beyond quantum mechanics Sandu Popescu; 2. Entanglement and subsystems, entanglement beyond subsystems, and all that Lorenza Viola and Howard Barnum; 3. Formalism locality in quantum theory and quantum gravity Lucien Hardy; Part II. Quantum Probability: 4. Bell's inequality from the contextual probabilistic viewpoint Andrei Khrennikov; 5. Probabilistic theories: what is special about quantum mechanics? Giacomo Mauro D'Ariano; 6. What probabilities tell about quantum systems, with application to entropy and entanglement John Myers and Hadi Madjid; 7. Bayesian updating and information gain in quantum measurements Leah Henderson; Part III. Quantum Information: 8. Schumacher information and the philosophy of physics Arnold Duwell; 9. From physics to information theory and back Wayne Myrvold; 10. Information, immaterialism, and instrumentalism: old and new in quantum information Chris Timpson; Part IV. Quantum Communication and Computing: 11. Quantum computation: where does the speed-up come from? Jeff Bub; 12. Quantum mechanics, quantum computing and quantum cryptography Tai Wu.
General monogamy relations of quantum entanglement for multiqubit W-class states
NASA Astrophysics Data System (ADS)
Zhu, Xue-Na; Fei, Shao-Ming
2017-02-01
Entanglement monogamy is a fundamental property of multipartite entangled states. We investigate the monogamy relations for multiqubit generalized W-class states. Analytical monogamy inequalities are obtained for the concurrence of assistance, the entanglement of formation, and the entanglement of assistance.
Lamata, L.; Leon, J.; Solano, E.
2006-11-15
We propose an inductive procedure to classify N-partite entanglement under stochastic local operations and classical communication provided such a classification is known for N-1 qubits. The method is based upon the analysis of the coefficient matrix of the state in an arbitrary product basis. We illustrate this approach in detail with the well-known bipartite and tripartite systems, obtaining as a by-product a systematic criterion to establish the entanglement class of a given pure state without resourcing to any entanglement measure. The general case is proved by induction, allowing us to find an upper bound for the number of N-partite entanglement classes in terms of the number of entanglement classes for N-1 qubits.
Local copying of orthogonal entangled quantum states
NASA Astrophysics Data System (ADS)
Anselmi, Fabio; Chefles, Anthony; Plenio, Martin B.
2004-11-01
In classical information theory one can, in principle, produce a perfect copy of any input state. In quantum information theory, the no cloning theorem prohibits exact copying of non-orthogonal states. Moreover, if we wish to copy multiparticle entangled states and can perform only local operations and classical communication (LOCC), then further restrictions apply. We investigate the problem of copying orthogonal, entangled quantum states with an entangled blank state under the restriction to LOCC. Throughout, the subsystems have finite dimension D. We show that if all of the states to be copied are non-maximally entangled, then novel LOCC copying procedures based on entanglement catalysis are possible. We then study in detail the LOCC copying problem where both the blank state and at least one of the states to be copied are maximally entangled. For this to be possible, we find that all the states to be copied must be maximally entangled. We obtain a necessary and sufficient condition for LOCC copying under these conditions. For two orthogonal, maximally entangled states, we provide the general solution to this condition. We use it to show that for D = 2, 3, any pair of orthogonal, maximally entangled states can be locally copied using a maximally entangled blank state. However, we also show that for any D which is not prime, one can construct pairs of such states for which this is impossible.
Entanglement Measure and Quantum Violation of Bell-Type Inequality
NASA Astrophysics Data System (ADS)
Ding, Dong; He, Ying-Qiu; Yan, Feng-Li; Gao, Ting
2016-10-01
By calculating entanglement measures and quantum violation of Bell-type inequality, we reveal the relationship between entanglement measure and the amount of quantum violation for a family of four-qubit entangled states. It has been demonstrated that the Bell-type inequality is completely violated by these four-qubit entangled states. The plot of entanglement measure as a function of the expectation value of Bell operator shows that entanglement measure first decreases and then increases smoothly with increasing quantum violation.
Quantum entanglement of baby universes
Essman, Eric P.; Aganagic, Mina; Okuda, Takuya; Ooguri, Hirosi
2006-12-07
We study quantum entanglements of baby universes which appear in non-perturbative corrections to the OSV formula for the entropy of extremal black holes in type IIA string theory compactified on the local Calabi-Yau manifold defined as a rank 2 vector bundle over an arbitrary genus G Riemann surface. This generalizes the result for G=1 in hep-th/0504221. Non-perturbative terms can be organized into a sum over contributions from baby universes, and the total wave-function is their coherent superposition in the third quantized Hilbert space. We find that half of the universes preserve one set of supercharges while the other half preserve a different set, making the total universe stable but non-BPS. The parent universe generates baby universes by brane/anti-brane pair creation, and baby universes are correlated by conservation of non-normalizable D-brane charges under the process. There are no other source of entanglement of baby universes, and all possible states are superposed with the equal weight.
Quantum entanglement of baby universes
NASA Astrophysics Data System (ADS)
Aganagic, Mina; Okuda, Takuya; Ooguri, Hirosi
2007-08-01
We study quantum entanglements of baby universes which appear in non-perturbative corrections to the OSV formula for the entropy of extremal black holes in type IIA string theory compactified on the local Calabi Yau manifold defined as a rank 2 vector bundle over an arbitrary genus G Riemann surface. This generalizes the result for G=1 in hep-th/0504221. Non-perturbative terms can be organized into a sum over contributions from baby universes, and the total wave-function is their coherent superposition in the third quantized Hilbert space. We find that half of the universes preserve one set of supercharges while the other half preserve a different set, making the total universe stable but non-BPS. The parent universe generates baby universes by brane/anti-brane pair creation, and baby universes are correlated by conservation of non-normalizable D-brane charges under the process. There are no other source of entanglement of baby universes, and all possible states are superposed with the equal weight.
Entanglement-assisted quantum feedback control
NASA Astrophysics Data System (ADS)
Yamamoto, Naoki; Mikami, Tomoaki
2017-07-01
The main advantage of quantum metrology relies on the effective use of entanglement, which indeed allows us to achieve strictly better estimation performance over the standard quantum limit. In this paper, we propose an analogous method utilizing entanglement for the purpose of feedback control. The system considered is a general linear dynamical quantum system, where the control goal can be systematically formulated as a linear quadratic Gaussian control problem based on the quantum Kalman filtering method; in this setting, an entangled input probe field is effectively used to reduce the estimation error and accordingly the control cost function. In particular, we show that, in the problem of cooling an opto-mechanical oscillator, the entanglement-assisted feedback control can lower the stationary occupation number of the oscillator below the limit attainable by the controller with a coherent probe field and furthermore beats the controller with an optimized squeezed probe field.
Autonomously stabilized entanglement between two superconducting quantum bits.
Shankar, S; Hatridge, M; Leghtas, Z; Sliwa, K M; Narla, A; Vool, U; Girvin, S M; Frunzio, L; Mirrahimi, M; Devoret, M H
2013-12-19
Quantum error correction codes are designed to protect an arbitrary state of a multi-qubit register from decoherence-induced errors, but their implementation is an outstanding challenge in the development of large-scale quantum computers. The first step is to stabilize a non-equilibrium state of a simple quantum system, such as a quantum bit (qubit) or a cavity mode, in the presence of decoherence. This has recently been accomplished using measurement-based feedback schemes. The next step is to prepare and stabilize a state of a composite system. Here we demonstrate the stabilization of an entangled Bell state of a quantum register of two superconducting qubits for an arbitrary time. Our result is achieved using an autonomous feedback scheme that combines continuous drives along with a specifically engineered coupling between the two-qubit register and a dissipative reservoir. Similar autonomous feedback techniques have been used for qubit reset, single-qubit state stabilization, and the creation and stabilization of states of multipartite quantum systems. Unlike conventional, measurement-based schemes, the autonomous approach uses engineered dissipation to counteract decoherence, obviating the need for a complicated external feedback loop to correct errors. Instead, the feedback loop is built into the Hamiltonian such that the steady state of the system in the presence of drives and dissipation is a Bell state, an essential building block for quantum information processing. Such autonomous schemes, which are broadly applicable to a variety of physical systems, as demonstrated by the accompanying paper on trapped ion qubits, will be an essential tool for the implementation of quantum error correction.
Effect of Cavity QED on Entanglement
NASA Astrophysics Data System (ADS)
Rfifi, Saad; Siyouri, Fatimazahra
2016-11-01
We use a quantum electrodynamics model, to study the evolution of maximally entangled bipartite states (Bell states), as well as a maximally entangled tripartite states as a multipartite system. Furthermore, we study the entanglement behaviour of these output states in cavity QED as function of interaction time and the coupling strength. The present study discusses the separability and the entanglement limit of such states after interaction with a cavity QED.
Entanglement and the shareability of quantum states
NASA Astrophysics Data System (ADS)
Doherty, Andrew C.
2014-10-01
This brief review discusses the problem of determining whether a given quantum state is separable or entangled. I describe an established approach to this problem that is based on the monogamy of entanglement, which is the observation that a pair of quantum systems that are strongly entangled must be uncorrelated with the rest of the world. Unentangled states on the other hand involve correlations that can be shared with many other parties. Checking whether a given quantum state is shareable involves constructing certain symmetric quantum state extensions and I discuss how to do this using a class of optimizations known as semidefinite programs. An attractive feature of this approach is that it generates explicit entanglement witnesses that can be measured to demonstrate the entanglement experimentally. In recent years analysis of this approach has greatly increased our understanding of the complexity of determining whether a given quantum state is entangled and this review aims to give a unified discussion of these developments. Specifically, I describe how to use finite quantum de Finetti theorems to prove that highly shareable states are nearly separable and use these results to understand the computational complexity of the problem. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘50 years of Bell’s theorem’.
Notes on quantum entanglement of local operators
NASA Astrophysics Data System (ADS)
Nozaki, Masahiro
2014-10-01
This is an expanded version of the short report arXiv:1401.0539, where we studied the time evolution of (Renyi) entanglement entropies for the excited state defined by acting a given local operator on the ground state. In the present paper, we introduce (Renyi) entanglement entropies of given local operators which are defined by late time values of excesses of (Renyi) entanglement entropies. They measure the degrees of freedom of local operators and characterize them in conformal field theories from the viewpoint of quantum entanglement. We explain how to compute them in free massless scalar field theories and we also investigate their time evolution. Our results can be interpreted in terms of the relativistic propagation of entangled pairs. The main new results which we acquire in the present paper are as follows. Firstly, we provide an explanation which shows that (Renyi) entanglement entropies of a specific operator are given by (Renyi) entanglement entropies whose reduced density matrices are given by the binomial distribution. That operator is constructed of only the scalar field. Secondly, we found the sum rule which (Renyi) entanglement entropies of those local operators obey. Those local operators are located separately. Moreover we argue that (Renyi) entanglement entropies of specific operators in conformal field theories are given by (Renyi) entanglement entropies whose reduced density matrices are given by the binomial distribution. These specific operators are constructed of single-species operators. We also argue that general operators obey the sum rule which we mentioned above.
Quantum cryptography with perfect multiphoton entanglement.
Luo, Yuhui; Chan, Kam Tai
2005-05-01
Multiphoton entanglement in the same polarization has been shown theoretically to be obtainable by type-I spontaneous parametric downconversion (SPDC), which can generate bright pulses more easily than type-II SPDC. A new quantum cryptographic protocol utilizing polarization pairs with the detected type-I entangled multiphotons is proposed as quantum key distribution. We calculate the information capacity versus photon number corresponding to polarization after considering the transmission loss inside the optical fiber, the detector efficiency, and intercept-resend attacks at the level of channel error. The result compares favorably with all other schemes employing entanglement.
Using entanglement against noise in quantum metrology.
Demkowicz-Dobrzański, Rafal; Maccone, Lorenzo
2014-12-19
We analyze the role of entanglement among probes and with external ancillas in quantum metrology. In the absence of noise, it is known that unentangled sequential strategies can achieve the same Heisenberg scaling of entangled strategies and that external ancillas are useless. This changes in the presence of noise; here we prove that entangled strategies can have higher precision than unentangled ones and that the addition of passive external ancillas can also increase the precision. We analyze some specific noise models and use the results to conjecture a general hierarchy for quantum metrology strategies in the presence of noise.
Entanglement and Coherence in Quantum State Merging.
Streltsov, A; Chitambar, E; Rana, S; Bera, M N; Winter, A; Lewenstein, M
2016-06-17
Understanding the resource consumption in distributed scenarios is one of the main goals of quantum information theory. A prominent example for such a scenario is the task of quantum state merging, where two parties aim to merge their tripartite quantum state parts. In standard quantum state merging, entanglement is considered to be an expensive resource, while local quantum operations can be performed at no additional cost. However, recent developments show that some local operations could be more expensive than others: it is reasonable to distinguish between local incoherent operations and local operations which can create coherence. This idea leads us to the task of incoherent quantum state merging, where one of the parties has free access to local incoherent operations only. In this case the resources of the process are quantified by pairs of entanglement and coherence. Here, we develop tools for studying this process and apply them to several relevant scenarios. While quantum state merging can lead to a gain of entanglement, our results imply that no merging procedure can gain entanglement and coherence at the same time. We also provide a general lower bound on the entanglement-coherence sum and show that the bound is tight for all pure states. Our results also lead to an incoherent version of Schumacher compression: in this case the compression rate is equal to the von Neumann entropy of the diagonal elements of the corresponding quantum state.
Entanglement swapping secures multiparty quantum communication
NASA Astrophysics Data System (ADS)
Lee, Juhui; Lee, Soojoon; Kim, Jaewan; Oh, Sung Dahm
2004-09-01
Extending the eavesdropping strategy devised by Zhang, Li, and Guo [
Haunted Quantum Entanglement: Two Scenarios
NASA Astrophysics Data System (ADS)
Snyder, Douglas
2010-04-01
Two haunted quantum entanglement scenarios are proposed that are very close to the haunted measurement scenario in that: 1) the entity that is developing as a which-way marker is effectively restored to its state prior to its being fixed as a w-w marker, and 2) the entity for which the developing w-w marker provides information is restored to its state before it interacted with the entity which subsequent to the interaction begins developing as a w-w marker. In the hqe scenarios, the loss of developing w-w information through 1 relies on the loss of a developing entanglement. In scenario 1, the photon initially emitted in one of two micromaser cavities and developing into a w-w marker is effectively lost through the injection of classical microwave radiation into both of the microwave cavities after the atom initially emits the photon into one of the micromaser cavities, exits the cavity system, and before this atom reaches the 2 slit screen. The atom is restored in both of the two new scenarios to its original state before it emitted a photon by an rf coil situated at the exit of the micromaser cavity system. In scenario 2, the cavity system and everything from the atom source forward to the cavity system is enclosed in an evacuated box. After the atom that emits the photon exits the cavity system and before it reaches the 2 slit screen, the cavity system opens (and the photon escapes in the evacuated box) and then the box is opened and the photon escapes into the environment.
Quantum Entanglement Growth under Random Unitary Dynamics
NASA Astrophysics Data System (ADS)
Nahum, Adam; Ruhman, Jonathan; Vijay, Sagar; Haah, Jeongwan
2017-07-01
Characterizing how entanglement grows with time in a many-body system, for example, after a quantum quench, is a key problem in nonequilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time-dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the "entanglement tsunami" in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar-Parisi-Zhang (KPZ) equation. The mean entanglement grows linearly in time, while fluctuations grow like (time )1/3 and are spatially correlated over a distance ∝(time )2/3. We derive KPZ universal behavior in three complementary ways, by mapping random entanglement growth to (i) a stochastic model of a growing surface, (ii) a "minimal cut" picture, reminiscent of the Ryu-Takayanagi formula in holography, and (iii) a hydrodynamic problem involving the dynamical spreading of operators. We demonstrate KPZ universality in 1D numerically using simulations of random unitary circuits. Importantly, the leading-order time dependence of the entropy is deterministic even in the presence of noise, allowing us to propose a simple coarse grained minimal cut picture for the entanglement growth of generic Hamiltonians, even without noise, in arbitrary dimensionality. We clarify the meaning of the "velocity" of entanglement growth in the 1D entanglement tsunami. We show that in higher dimensions, noisy entanglement evolution maps to the well-studied problem of pinning of a membrane or domain wall by disorder.
A Subsystem-Independent Generalization of Entanglement
NASA Astrophysics Data System (ADS)
Barnum, Howard; Knill, Emanuel; Ortiz, Gerardo; Somma, Rolando; Viola, Lorenza
2004-03-01
We present a generalization of entanglement based on the idea that entanglement is relative to a distinguished subspace of observables rather than a distinguished subsystem decomposition. A pure quantum state is entangled relative to such a subspace if its expectations are a proper mixture of those of other states. Many information-theoretic aspects of entanglement can be extended to this observable-based setting, suggesting new ways of measuring and classifying multipartite entanglement. By going beyond the distinguishable-subsystem framework, generalized entanglement also provides novel tools for probing quantum correlations in interacting many-body systems.
Entanglement-Based Quantum Cryptography and Quantum Communication
NASA Astrophysics Data System (ADS)
Zeilinger, Anton
2007-03-01
Quantum entanglement, to Erwin Schroedinger the essential feature of quantum mechanics, has become a central resource in various quantum communication protocols including quantum cryptography and quantum teleportation. From a fundamental point of view what is exploited in these experiments is the very fact which led Schroedinger to his statement namely that in entangled states joint properties of the entangled systems may be well defined while the individual subsystems may carry no information at all. In entanglement-based quantum cryptography it leads to the most elegant possible solution of the classic key distribution problem. It implies that the key comes into existence at spatially distant location at the same time and does not need to be transported. A number recent developments include for example highly efficient, robust and stable sources of entangled photons with a broad bandwidth of desired features. Also, entanglement-based quantum cryptography is successfully joining other methods in the work towards demonstrating quantum key distribution networks. Along that line recently decoy-state quantum cryptography over a distance of 144 km between two Canary Islands was demonstrated successfully. Such experiments also open up the possibility of quantum communication on a really large scale using LEO satellites. Another important possible future branch of quantum communication involves quantum repeaters in order to cover larger distances with entangled states. Recently the connection of two fully independent lasers in an entanglement swapping experiment did demonstrate that the timing control of such systems on a femtosecond time scale is possible. A related development includes recent demonstrations of all-optical one-way quantum computation schemes with the extremely short cycle time of only 100 nanoseconds.
Huang, Chun Yu; Ma, Wenchao; Wang, Dong; Ye, Liu
2017-02-01
In this work, the quantum fisher information (QFI) and Bell non-locality of a multipartite fermionic system are investigated. Unlike the currently existing research of QFI, we focus our attention on the differences between quantum fisher information and Bell non-locality under the relativistic framework. The results show that although the relativistic motion affects the strength of the non-locality, it does not change the physical structure of non-locality. However, unlike the case of non-locality, the relativistic motion not only influence the precision of the QFI Fϕ but also broke the symmetry of the function Fϕ. The results also show that for a special multipartite system, , the number of particles of a initial state do not affect the Fθ. Furthermore, we also find that Fθ is completely unaffected in non-inertial frame if there are inertial observers. Finally, in view of the decay behavior of QFI and non-locality under the non-inertial frame, we proposed a effective scheme to battle against Unruh effect.
NASA Astrophysics Data System (ADS)
Huang, Chun Yu; Ma, Wenchao; Wang, Dong; Ye, Liu
2017-02-01
In this work, the quantum fisher information (QFI) and Bell non-locality of a multipartite fermionic system are investigated. Unlike the currently existing research of QFI, we focus our attention on the differences between quantum fisher information and Bell non-locality under the relativistic framework. The results show that although the relativistic motion affects the strength of the non-locality, it does not change the physical structure of non-locality. However, unlike the case of non-locality, the relativistic motion not only influence the precision of the QFI Fϕ but also broke the symmetry of the function Fϕ. The results also show that for a special multipartite system, , the number of particles of a initial state do not affect the Fθ. Furthermore, we also find that Fθ is completely unaffected in non-inertial frame if there are inertial observers. Finally, in view of the decay behavior of QFI and non-locality under the non-inertial frame, we proposed a effective scheme to battle against Unruh effect.
Huang, Chun Yu; Ma, Wenchao; Wang, Dong; Ye, Liu
2017-01-01
In this work, the quantum fisher information (QFI) and Bell non-locality of a multipartite fermionic system are investigated. Unlike the currently existing research of QFI, we focus our attention on the differences between quantum fisher information and Bell non-locality under the relativistic framework. The results show that although the relativistic motion affects the strength of the non-locality, it does not change the physical structure of non-locality. However, unlike the case of non-locality, the relativistic motion not only influence the precision of the QFI Fϕ but also broke the symmetry of the function Fϕ. The results also show that for a special multipartite system, , the number of particles of a initial state do not affect the Fθ. Furthermore, we also find that Fθ is completely unaffected in non-inertial frame if there are inertial observers. Finally, in view of the decay behavior of QFI and non-locality under the non-inertial frame, we proposed a effective scheme to battle against Unruh effect. PMID:28145437
Schmidt number of bipartite and multipartite states under local projections
NASA Astrophysics Data System (ADS)
Chen, Lin; Yang, Yu; Tang, Wai-Shing
2017-03-01
The Schmidt number is a fundamental parameter characterizing the properties of quantum states, and local projections are fundamental operations in quantum physics. We investigate the relation between the Schmidt numbers of bipartite states and their projected states. We show that there exist bipartite positive partial transpose entangled states of any given Schmidt number. We further construct the notion of joint Schmidt number for multipartite states and explore its relation with the Schmidt number of bipartite reduced density operators.
Entanglement by Path Identity.
Krenn, Mario; Hochrainer, Armin; Lahiri, Mayukh; Zeilinger, Anton
2017-02-24
Quantum entanglement is one of the most prominent features of quantum mechanics and forms the basis of quantum information technologies. Here we present a novel method for the creation of quantum entanglement in multipartite and high-dimensional systems. The two ingredients are (i) superposition of photon pairs with different origins and (ii) aligning photons such that their paths are identical. We explain the experimentally feasible creation of various classes of multiphoton entanglement encoded in polarization as well as in high-dimensional Hilbert spaces-starting only from nonentangled photon pairs. For two photons, arbitrary high-dimensional entanglement can be created. The idea of generating entanglement by path identity could also apply to quantum entities other than photons. We discovered the technique by analyzing the output of a computer algorithm. This shows that computer designed quantum experiments can be inspirations for new techniques.
NASA Astrophysics Data System (ADS)
Krenn, Mario; Hochrainer, Armin; Lahiri, Mayukh; Zeilinger, Anton
2017-02-01
Quantum entanglement is one of the most prominent features of quantum mechanics and forms the basis of quantum information technologies. Here we present a novel method for the creation of quantum entanglement in multipartite and high-dimensional systems. The two ingredients are (i) superposition of photon pairs with different origins and (ii) aligning photons such that their paths are identical. We explain the experimentally feasible creation of various classes of multiphoton entanglement encoded in polarization as well as in high-dimensional Hilbert spaces—starting only from nonentangled photon pairs. For two photons, arbitrary high-dimensional entanglement can be created. The idea of generating entanglement by path identity could also apply to quantum entities other than photons. We discovered the technique by analyzing the output of a computer algorithm. This shows that computer designed quantum experiments can be inspirations for new techniques.
Quantum entanglement in photoactive prebiotic systems.
Tamulis, Arvydas; Grigalavicius, Mantas
2014-06-01
This paper contains the review of quantum entanglement investigations in living systems, and in the quantum mechanically modelled photoactive prebiotic kernel systems. We define our modelled self-assembled supramolecular photoactive centres, composed of one or more sensitizer molecules, precursors of fatty acids and a number of water molecules, as a photoactive prebiotic kernel systems. We propose that life first emerged in the form of such minimal photoactive prebiotic kernel systems and later in the process of evolution these photoactive prebiotic kernel systems would have produced fatty acids and covered themselves with fatty acid envelopes to become the minimal cells of the Fatty Acid World. Specifically, we model self-assembling of photoactive prebiotic systems with observed quantum entanglement phenomena. We address the idea that quantum entanglement was important in the first stages of origins of life and evolution of the biospheres because simultaneously excite two prebiotic kernels in the system by appearance of two additional quantum entangled excited states, leading to faster growth and self-replication of minimal living cells. The quantum mechanically modelled possibility of synthesizing artificial self-reproducing quantum entangled prebiotic kernel systems and minimal cells also impacts the possibility of the most probable path of emergence of protocells on the Earth or elsewhere. We also examine the quantum entangled logic gates discovered in the modelled systems composed of two prebiotic kernels. Such logic gates may have application in the destruction of cancer cells or becoming building blocks of new forms of artificial cells including magnetically active ones.
Haunted Quantum Entanglement, Quantum Erasure, and Orthogonality
NASA Astrophysics Data System (ADS)
Snyder, Douglas
2010-02-01
Both haunted quantum entanglement (hqe) and quantum erasure (qe) demonstrate interference. For interference, overlapping waves are needed which are likely supplied by equations such as 1/√ 2 [\\vert P/u>+\\vert P/l>] = \\vert P/s> and 1/√ 2 [\\vert P/u>-\\vert P/l>] = \\vert P/a> where \\vert P/u> and \\vert P/l> are generally considered orthogonal (i.e., no overlap) and \\vert P/s> and \\vert P/a> are symmetric and anti-symmetric wave functions. The conventional consideration of orthogonality in hqe and qe may need adjustment given empirical support for the presence of fringes and anti-fringes in qe. Orthogonality as regards hqe and qe is tied to the possibility of obtaining which way information. If this possibility is lost, it would appear that orthogonality which is based on this possibility may be lost. A completed measurement appears central to establishing orthogonality as regards hqe and qe. In hqe, this completed measurement could be for example an atom passing through a double slit arrangement after having emitted a photon in one of two micromaser cavities, thus providing general which way information without specifying through which specific slit the atom passed. In qe, the completed measurement could be this atom subsequently striking a detection screen, providing the ability to obtain information regarding through which specific slit the atom passed. Hqe and qe occur when which way information is lost before their respective completed measurements are made. )
Multi-partite squash operation and its application to device-independent quantum key distribution
NASA Astrophysics Data System (ADS)
Tsurumaru, Toyohiro; Ichikawa, Tsubasa
2016-10-01
The squash operation, or the squashing model, is a useful mathematical tool for proving the security of quantum key distribution systems using practical (i.e., non-ideal) detectors. At the present, however, this method can only be applied to a limited class of detectors, such as the threshold detector of the Bennett-Brassard 1984 type. In this paper we generalize this method to include multi-partite measurements, such that it can be applied to a wider class of detectors. We demonstrate the effectiveness of this generalization by applying it to the device-independent security proof of the Ekert 1991 protocol, and by improving the associated key generation rate. For proving this result we use two physical assumptions, namely, that quantum mechanics is valid, and that Alice’s and Bob’s detectors are memoryless.
Bounds on multipartite concurrence and tangle
NASA Astrophysics Data System (ADS)
Wang, Jing; Li, Ming; Li, Hongfang; Fei, Shao-Ming; Li-Jost, Xianqing
2016-10-01
We present an analytical lower bound of multipartite concurrence based on the generalized Bloch representations of density matrices. It is shown that the lower bound can be used as an effective entanglement witness of genuine multipartite entanglement. Tight lower and upper bounds for multipartite tangles are also derived. Since the lower bounds depend on just part of the correlation tensors, the result is experimentally feasible.
Experimental estimation of entanglement at the quantum limit.
Brida, Giorgio; Degiovanni, Ivo Pietro; Florio, Angela; Genovese, Marco; Giorda, Paolo; Meda, Alice; Paris, Matteo G A; Shurupov, Alexander
2010-03-12
Entanglement is the central resource of quantum information processing and the precise characterization of entangled states is a crucial issue for the development of quantum technologies. This leads to the necessity of a precise, experimental feasible measure of entanglement. Nevertheless, such measurements are limited both from experimental uncertainties and intrinsic quantum bounds. Here we present an experiment where the amount of entanglement of a family of two-qubit mixed photon states is estimated with the ultimate precision allowed by quantum mechanics.
Performance limits of multilevel and multipartite quantum heat machines
NASA Astrophysics Data System (ADS)
Niedenzu, Wolfgang; Gelbwaser-Klimovsky, David; Kurizki, Gershon
2015-10-01
We present the general theory of a quantum heat machine based on an N -level system (working medium) whose N -1 excited levels are degenerate, a prerequisite for steady-state interlevel coherence. Our goal is to find out the extent to which coherence in the working medium is an asset for heat machines. The performance bounds of such a machine are common to (reciprocating) cycles that consist of consecutive strokes and continuous cycles wherein the periodically driven system is constantly coupled to cold and hot heat baths. Intriguingly, we find that the machine's performance strongly depends on the relative orientations of the transition-dipole vectors in the system. Perfectly aligned (parallel) transition dipoles allow for steady-state coherence effects, but also give rise to dark states, which hinder steady-state thermalization and thus reduce the machine's performance. Similar thermodynamic properties hold for N two-level atoms conforming to the Dicke model. We conclude that level degeneracy, but not necessarily coherence, is a thermodynamic resource, equally enhancing the heat currents and the power output of the heat machine. By contrast, the efficiency remains unaltered by this degeneracy and adheres to the Carnot bound.
Quantum Entanglement in Neural Network States
NASA Astrophysics Data System (ADS)
Deng, Dong-Ling; Li, Xiaopeng; Das Sarma, S.
2017-04-01
Machine learning, one of today's most rapidly growing interdisciplinary fields, promises an unprecedented perspective for solving intricate quantum many-body problems. Understanding the physical aspects of the representative artificial neural-network states has recently become highly desirable in the applications of machine-learning techniques to quantum many-body physics. In this paper, we explore the data structures that encode the physical features in the network states by studying the quantum entanglement properties, with a focus on the restricted-Boltzmann-machine (RBM) architecture. We prove that the entanglement entropy of all short-range RBM states satisfies an area law for arbitrary dimensions and bipartition geometry. For long-range RBM states, we show by using an exact construction that such states could exhibit volume-law entanglement, implying a notable capability of RBM in representing quantum states with massive entanglement. Strikingly, the neural-network representation for these states is remarkably efficient, in the sense that the number of nonzero parameters scales only linearly with the system size. We further examine the entanglement properties of generic RBM states by randomly sampling the weight parameters of the RBM. We find that their averaged entanglement entropy obeys volume-law scaling, and the meantime strongly deviates from the Page entropy of the completely random pure states. We show that their entanglement spectrum has no universal part associated with random matrix theory and bears a Poisson-type level statistics. Using reinforcement learning, we demonstrate that RBM is capable of finding the ground state (with power-law entanglement) of a model Hamiltonian with a long-range interaction. In addition, we show, through a concrete example of the one-dimensional symmetry-protected topological cluster states, that the RBM representation may also be used as a tool to analytically compute the entanglement spectrum. Our results uncover the
Entanglement enhances security in quantum communication
Demkowicz-Dobrzanski, Rafal; Sen, Aditi; Sen, Ujjwal; Lewenstein, Maciej
2009-07-15
Secret sharing is a protocol in which a 'boss' wants to send a classical message secretly to two 'subordinates', such that none of the subordinates is able to know the message alone, while they can find it if they cooperate. Quantum mechanics is known to allow for such a possibility. We analyze tolerable quantum bit error rates in such secret sharing protocols in the physically relevant case when the eavesdropping is local with respect to the two channels of information transfer from the boss to the two subordinates. We find that using entangled encoding states is advantageous to legitimate users of the protocol. We therefore find that entanglement is useful for secure quantum communication. We also find that bound entangled states with positive partial transpose are not useful as a local eavesdropping resource. Moreover, we provide a criterion for security in secret sharing--a parallel of the Csiszar-Koerner criterion in single-receiver classical cryptography.
Generalized Entanglement and Quantum Phase Transitions
NASA Astrophysics Data System (ADS)
Somma, Rolando; Barnum, Howard; Knill, Emanuel; Ortiz, Gerardo; Viola, Lorenzo
2006-07-01
Quantum phase transitions in matter are characterized by qualitative changes in some correlation functions of the system, which are ultimately related to entanglement. In this work, we study the second-order quantum phase transitions present in models of relevance to condensed-matter physics by exploiting the notion of generalized entanglement [Barnum et al., Phys. Rev. A 68, 032308 (2003)]. In particular, we focus on the illustrative case of a one-dimensional spin-1/2 Ising model in the presence of a transverse magnetic field. Our approach leads to tools useful for distinguishing between the ordered and disordered phases in the case of broken-symmetry quantum phase transitions. Possible extensions to the study of other kinds of phase transitions as well as of the relationship between generalized entanglement and computational efficiency are also discussed.
Generalized Entanglement and Quantum Phase Transitions
NASA Astrophysics Data System (ADS)
Somma, Rolando; Barnum, Howard; Knill, Emanuel; Ortiz, Gerardo; Viola, Lorenzo
Quantum phase transitions in matter are characterized by qualitative changes in some correlation functions of the system, which are ultimately related to entanglement. In this work, we study the second-order quantum phase transitions present in models of relevance to condensed-matter physics by exploiting the notion of generalized entanglement [Barnum et al., Phys. Rev. A 68, 032308 (2003)]. In particular, we focus on the illustrative case of a one-dimensional spin-1/2 Ising model in the presence of a transverse magnetic field. Our approach leads to tools useful for distinguishing between the ordered and disordered phases in the case of broken-symmetry quantum phase transitions. Possible extensions to the study of other kinds of phase transitions as well as of the relationship between generalized entanglement and computational efficiency are also discussed.
Entangled exciton states in quantum dot molecules
NASA Astrophysics Data System (ADS)
Bayer, Manfred
2002-03-01
Currently there is strong interest in quantum information processing(See, for example, The Physics of Quantum Information, eds. D. Bouwmeester, A. Ekert and A. Zeilinger (Springer, Berlin, 2000).) in a solid state environment. Many approaches mimic atomic physics concepts in which semiconductor quantum dots are implemented as artificial atoms. An essential building block of a quantum processor is a gate which entangles the states of two quantum bits. Recently a pair of vertically aligned quantum dots has been suggested as optically driven quantum gate(P. Hawrylak, S. Fafard, and Z. R. Wasilewski, Cond. Matter News 7, 16 (1999).)(M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z.R. Wasilewski, O. Stern, and A. Forchel, Science 291, 451 (2001).): The quantum bits are individual carriers either on dot zero or dot one. The different dot indices play the same role as a "spin", therefore we call them "isospin". Quantum mechanical tunneling between the dots rotates the isospin and leads to superposition of these states. The quantum gate is built when two different particles, an electron and a hole, are created optically. The two particles form entangled isospin states. Here we present spectrocsopic studies of single self-assembled InAs/GaAs quantum dot molecules that support the feasibility of this proposal. The evolution of the excitonic recombination spectrum with varying separation between the dots allows us to demonstrate coherent tunneling of carriers across the separating barrier and the formation of entangled exciton states: Due to the coupling between the dots the exciton states show a splitting that increases with decreasing barrier width. For barrier widths below 5 nm it exceeds the thermal energy at room temperature. For a given barrier width, we find only small variations of the tunneling induced splitting demonstrating a good homogeneity within a molecule ensemble. The entanglement may be controlled by application of electromagnetic field. For
Entanglement in Quantum-Classical Hybrid
NASA Technical Reports Server (NTRS)
Zak, Michail
2011-01-01
It is noted that the phenomenon of entanglement is not a prerogative of quantum systems, but also occurs in other, non-classical systems such as quantum-classical hybrids, and covers the concept of entanglement as a special type of global constraint imposed upon a broad class of dynamical systems. Application of hybrid systems for physics of life, as well as for quantum-inspired computing, has been outlined. In representing the Schroedinger equation in the Madelung form, there is feedback from the Liouville equation to the Hamilton-Jacobi equation in the form of the quantum potential. Preserving the same topology, the innovators replaced the quantum potential with other types of feedback, and investigated the property of these hybrid systems. A function of probability density has been introduced. Non-locality associated with a global geometrical constraint that leads to an entanglement effect was demonstrated. Despite such a quantum like characteristic, the hybrid can be of classical scale and all the measurements can be performed classically. This new emergence of entanglement sheds light on the concept of non-locality in physics.
Entanglement production in quantum decision making
Yukalov, V. I. Sornette, D.
2010-03-15
The quantum decision theory introduced recently is formulated as a quantum theory of measurement. It describes prospect states represented by complex vectors of a Hilbert space over a prospect lattice. The prospect operators, acting in this space, form an involutive bijective algebra. A measure is defined for quantifying the entanglement produced by the action of prospect operators. This measure characterizes the level of complexity of prospects involved in decision making. An explicit expression is found for the maximal entanglement produced by the operators of multimode prospects.
An Arbitrated Quantum Signature Scheme without Entanglement*
NASA Astrophysics Data System (ADS)
Li, Hui-Ran; Luo, Ming-Xing; Peng, Dai-Yuan; Wang, Xiao-Jun
2017-09-01
Several quantum signature schemes are recently proposed to realize secure signatures of quantum or classical messages. Arbitrated quantum signature as one nontrivial scheme has attracted great interests because of its usefulness and efficiency. Unfortunately, previous schemes cannot against Trojan horse attack and DoS attack and lack of the unforgeability and the non-repudiation. In this paper, we propose an improved arbitrated quantum signature to address these secure issues with the honesty arbitrator. Our scheme takes use of qubit states not entanglements. More importantly, the qubit scheme can achieve the unforgeability and the non-repudiation. Our scheme is also secure for other known quantum attacks.
Bell inequalities for multipartite qubit quantum systems and their maximal violation
NASA Astrophysics Data System (ADS)
Li, Ming; Fei, Shao-Ming
2012-11-01
We present a set of Bell inequalities for multiqubit quantum systems. These Bell inequalities are shown to be able to detect multiqubit entanglement better than previous Bell inequalities such as Werner-Wolf-Zukowski-Brukner ones. Computable formulas are presented for calculating the maximal violations of these Bell inequalities for any multiqubit states.
Quantum Entanglement Molecular Absorption Spectrum Simulator
NASA Technical Reports Server (NTRS)
Nguyen, Quang-Viet; Kojima, Jun
2006-01-01
Quantum Entanglement Molecular Absorption Spectrum Simulator (QE-MASS) is a computer program for simulating two photon molecular-absorption spectroscopy using quantum-entangled photons. More specifically, QE-MASS simulates the molecular absorption of two quantum-entangled photons generated by the spontaneous parametric down-conversion (SPDC) of a fixed-frequency photon from a laser. The two-photon absorption process is modeled via a combination of rovibrational and electronic single-photon transitions, using a wave-function formalism. A two-photon absorption cross section as a function of the entanglement delay time between the two photons is computed, then subjected to a fast Fourier transform to produce an energy spectrum. The program then detects peaks in the Fourier spectrum and displays the energy levels of very short-lived intermediate quantum states (or virtual states) of the molecule. Such virtual states were only previously accessible using ultra-fast (femtosecond) laser systems. However, with the use of a single-frequency continuous wave laser to produce SPDC photons, and QEMASS program, these short-lived molecular states can now be studied using much simpler laser systems. QE-MASS can also show the dependence of the Fourier spectrum on the tuning range of the entanglement time of any externally introduced optical-path delay time. QE-MASS can be extended to any molecule for which an appropriate spectroscopic database is available. It is a means of performing an a priori parametric analysis of entangled photon spectroscopy for development and implementation of emerging quantum-spectroscopic sensing techniques. QE-MASS is currently implemented using the Mathcad software package.
Postulates for measures of genuine multipartite correlations
Bennett, Charles H.; Grudka, Andrzej; Horodecki, Michal; Horodecki, Ryszard; Horodecki, Pawel
2011-01-15
A lot of research has been done on multipartite correlations, but the problem of satisfactorily defining genuine multipartite correlations--those not trivially reducible to lower partite correlations--remains unsolved. In this paper we propose three reasonable postulates which each measure or indicator of genuine multipartite correlations (or genuine multipartite entanglement) should satisfy. We also introduce the concept of degree of correlations, which gives partial characterization of multipartite correlations. Then, we show that covariance does not satisfy two postulates and hence it cannot be used as an indicator of genuine multipartite correlations. Finally, we propose a candidate for a measure of genuine multipartite correlations based on the work that can be drawn from a local heat bath by means of a multipartite state.
On measures of quantum entanglement — A brief review
NASA Astrophysics Data System (ADS)
Sarkar, Debasis
2016-08-01
Entanglement is one of the most useful resources in quantum information processing. It is effectively the quantum correlation between different subsystems of a composite system. Mathematically, one of the most hard tasks in quantum mechanics is to quantify entanglement. However, progress in this field is remarkable but not complete yet. There are many things to do with quantification of entanglement. In this review, we will discuss some of the important measures of bipartite entanglement.
Heralded amplification of path entangled quantum states
NASA Astrophysics Data System (ADS)
Monteiro, F.; Verbanis, E.; Caprara Vivoli, V.; Martin, A.; Gisin, N.; Zbinden, H.; Thew, R. T.
2017-06-01
Device-independent quantum key distribution (DI-QKD) represents one of the most fascinating challenges in quantum communication, exploiting concepts of fundamental physics, namely Bell tests of nonlocality, to ensure the security of a communication link. This requires the loophole-free violation of a Bell inequality, which is intrinsically difficult due to losses in fibre optic transmission channels. Heralded photon amplification (HPA) is a teleportation-based protocol that has been proposed as a means to overcome transmission loss for DI-QKD. Here we demonstrate HPA for path entangled states and characterise the entanglement before and after loss by exploiting a recently developed displacement-based detection scheme. We demonstrate that by exploiting HPA we are able to reliably maintain high fidelity entangled states over loss-equivalent distances of more than 50 km.
Measuring entanglement entropy in a quantum many-body system.
Islam, Rajibul; Ma, Ruichao; Preiss, Philipp M; Tai, M Eric; Lukin, Alexander; Rispoli, Matthew; Greiner, Markus
2015-12-03
Entanglement is one of the most intriguing features of quantum mechanics. It describes non-local correlations between quantum objects, and is at the heart of quantum information sciences. Entanglement is now being studied in diverse fields ranging from condensed matter to quantum gravity. However, measuring entanglement remains a challenge. This is especially so in systems of interacting delocalized particles, for which a direct experimental measurement of spatial entanglement has been elusive. Here, we measure entanglement in such a system of itinerant particles using quantum interference of many-body twins. Making use of our single-site-resolved control of ultracold bosonic atoms in optical lattices, we prepare two identical copies of a many-body state and interfere them. This enables us to directly measure quantum purity, Rényi entanglement entropy, and mutual information. These experiments pave the way for using entanglement to characterize quantum phases and dynamics of strongly correlated many-body systems.
Dissipative entanglement of quantum spin fluctuations
Benatti, F.; Carollo, F.; Floreanini, R.
2016-06-15
We consider two non-interacting infinite quantum spin chains immersed in a common thermal environment and undergoing a local dissipative dynamics of Lindblad type. We study the time evolution of collective mesoscopic quantum spin fluctuations that, unlike macroscopic mean-field observables, retain a quantum character in the thermodynamical limit. We show that the microscopic dissipative dynamics is able to entangle these mesoscopic degrees of freedom, through a purely mixing mechanism. Further, the behaviour of the dissipatively generated quantum correlations between the two chains is studied as a function of temperature and dissipation strength.
Dissipative entanglement of quantum spin fluctuations
NASA Astrophysics Data System (ADS)
Benatti, F.; Carollo, F.; Floreanini, R.
2016-06-01
We consider two non-interacting infinite quantum spin chains immersed in a common thermal environment and undergoing a local dissipative dynamics of Lindblad type. We study the time evolution of collective mesoscopic quantum spin fluctuations that, unlike macroscopic mean-field observables, retain a quantum character in the thermodynamical limit. We show that the microscopic dissipative dynamics is able to entangle these mesoscopic degrees of freedom, through a purely mixing mechanism. Further, the behaviour of the dissipatively generated quantum correlations between the two chains is studied as a function of temperature and dissipation strength.
Quantum entanglement of quark colour states
Buividovich, P. V.; Kuvshinov, V. I.
2010-03-24
An analysis of quantum entanglement between the states of static colour charges in the vacuum of pure Yang-Mills theory is carried out. Hilbert space of physical states of the fields and the charges is endowed with a direct product structure by attaching an infinite Dirac string to each charge.
Heralded Quantum Entanglement between Distant Matter Qubits
Yang, Wen-Juan; Wang, Xiang-Bin
2015-01-01
We propose a scheme to realize heralded quantum entanglement between two distant matter qubits using two Λ atom systems. Our proposal does not need any photon interference. We also present a general theory of outcome state of non-monochromatic incident light and finite interaction time. PMID:26041259
Entanglement distillation between solid-state quantum network nodes.
Kalb, N; Reiserer, A A; Humphreys, P C; Bakermans, J J W; Kamerling, S J; Nickerson, N H; Benjamin, S C; Twitchen, D J; Markham, M; Hanson, R
2017-06-02
The impact of future quantum networks hinges on high-quality quantum entanglement shared between network nodes. Unavoidable imperfections necessitate a means to improve remote entanglement by local quantum operations. We realize entanglement distillation on a quantum network primitive of distant electron-nuclear two-qubit nodes. The heralded generation of two copies of a remote entangled state is demonstrated through single-photon-mediated entangling of the electrons and robust storage in the nuclear spins. After applying local two-qubit gates, single-shot measurements herald the distillation of an entangled state with increased fidelity that is available for further use. The key combination of generating, storing, and processing entangled states should enable the exploration of multiparticle entanglement on an extended quantum network. Copyright © 2017, American Association for the Advancement of Science.
Entanglement distillation between solid-state quantum network nodes
NASA Astrophysics Data System (ADS)
Kalb, N.; Reiserer, A. A.; Humphreys, P. C.; Bakermans, J. J. W.; Kamerling, S. J.; Nickerson, N. H.; Benjamin, S. C.; Twitchen, D. J.; Markham, M.; Hanson, R.
2017-06-01
The impact of future quantum networks hinges on high-quality quantum entanglement shared between network nodes. Unavoidable imperfections necessitate a means to improve remote entanglement by local quantum operations. We realize entanglement distillation on a quantum network primitive of distant electron-nuclear two-qubit nodes. The heralded generation of two copies of a remote entangled state is demonstrated through single-photon-mediated entangling of the electrons and robust storage in the nuclear spins. After applying local two-qubit gates, single-shot measurements herald the distillation of an entangled state with increased fidelity that is available for further use. The key combination of generating, storing, and processing entangled states should enable the exploration of multiparticle entanglement on an extended quantum network.
Optimized entanglement-assisted quantum error correction
Taghavi, Soraya; Brun, Todd A.; Lidar, Daniel A.
2010-10-15
Using convex optimization, we propose entanglement-assisted quantum error-correction procedures that are optimized for given noise channels. We demonstrate through numerical examples that such an optimized error-correction method achieves higher channel fidelities than existing methods. This improved performance, which leads to perfect error correction for a larger class of error channels, is interpreted in at least some cases by quantum teleportation, but for general channels this interpretation does not hold.
Entanglement and Quantum Computation: An Overview
Perez, R.B.
2000-06-27
This report presents a selective compilation of basic facts from the fields of particle entanglement and quantum information processing prepared for those non-experts in these fields that may have interest in an area of physics showing counterintuitive, ''spooky'' (Einstein's words) behavior. In fact, quantum information processing could, in the near future, provide a new technology to sustain the benefits to the U.S. economy due to advanced computer technology.
Optimal dynamical control of many-body entanglement.
Platzer, Felix; Mintert, Florian; Buchleitner, Andreas
2010-07-09
We construct time-dependent optimal control pulses based on a multipartite entanglement measure as the target functional. The control Hamiltonian is given purely algebraically and drives a composite quantum system rapidly into a highly entangled state that is robust against decoherence.
Quantum entanglement in helium-like ions
NASA Astrophysics Data System (ADS)
Lin, Y.-C.; Ho, Y. K.
2012-06-01
Recently, there have been considerable interests to investigate quantum entanglement in two-electron atoms [1-3]. Here we investigate quantum entanglement for the ground and excited states of helium-like ions using correlated wave functions, concentrating on the particle-particle entanglement coming from the continuous spatial degrees of freedom. We use the two-electron wave functions constructed by employing B-spline basis to calculate the linear entropy of the reduced density matrix L=1-TrA(ρA^2 ) as a measure of the spatial entanglement. HereρA=TrB(| >AB AB<|) is the one-electron reduced density matrix obtained after tracing the two-electron density matrix over the degrees of freedom of the other electron. We have investigated the spatial entanglement for the helium-like systems with Z=1 to Z=10. For the helium atoms (Z=2), we have calculated the linear entropy for the ground state and the 1sns ^1S^e (n=2-10) excited states. Results are compared with other calculations [1-3]. [4pt] [1] J. P. Coe and I. D'Amico, J. Phys.: Conf. Ser. 254, 012010 (2010) [0pt] [2] D. Manzano et. al., J. Phys. A: Math. Theor. 43, 275301 (2010) [0pt] [3] J. S. Dehesa et. al., J. Phys. B 45, 015504 (2012)
Efficient Measurement of Multiparticle Entanglement with Embedding Quantum Simulator.
Chen, Ming-Cheng; Wu, Dian; Su, Zu-En; Cai, Xin-Dong; Wang, Xi-Lin; Yang, Tao; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei
2016-02-19
The quantum measurement of entanglement is a demanding task in the field of quantum information. Here, we report the direct and scalable measurement of multiparticle entanglement with embedding photonic quantum simulators. In this embedding framework [R. Di Candia et al. Phys. Rev. Lett. 111, 240502 (2013)], the N-qubit entanglement, which does not associate with a physical observable directly, can be efficiently measured with only two (for even N) and six (for odd N) local measurement settings. Our experiment uses multiphoton quantum simulators to mimic dynamical concurrence and three-tangle entangled systems and to track their entanglement evolutions.
Measuring entanglement entropy in a quantum many-body system
NASA Astrophysics Data System (ADS)
Rispoli, Matthew; Preiss, Philipp; Tai, Eric; Lukin, Alex; Schittko, Robert; Kaufman, Adam; Ma, Ruichao; Islam, Rajibul; Greiner, Markus
2016-05-01
The presence of large-scale entanglement is a defining characteristic of exotic quantum phases of matter. It describes non-local correlations between quantum objects, and is at the heart of quantum information sciences. However, measuring entanglement remains a challenge. This is especially true in systems of interacting delocalized particles, for which a direct experimental measurement of spatial entanglement has been elusive. Here we measure entanglement in such a system of itinerant particles using quantum interference of many-body twins. We demonstrate a novel approach to the measurement of entanglement entropy of any bosonic system, using a quantum gas microscope with tailored potential landscapes. This protocol enables us to directly measure quantum purity, Rényi entanglement entropy, and mutual information. In general, these experiments exemplify a method enabling the measurement and characterization of quantum phase transitions and in particular would be apt for studying systems such as magnetic ordering within the quantum Ising model.
Entanglement in macroscopic systems
NASA Astrophysics Data System (ADS)
Sperling, J.; Walmsley, I. A.
2017-06-01
We present a theoretical study of entanglement in ensembles consisting of an arbitrary number of particles. Multipartite entanglement criteria in terms of observables are formulated for a fixed number of particles as well as for systems with a fluctuating particle number. To access the quality of the verified entanglement, the operational measure of the entanglement visibility is introduced. As an example, we perform an analytical characterization of quantum systems composed of interacting harmonic oscillators and witness the entanglement via energy measurements. Our analysis shows that the detectable entanglement decays for macroscopic particle numbers without the need for decoherence processes and for all considered coupling regimes. We further study thermal states of the given correlated system together with the temperature dependence of entanglement.
Entanglement in fermion systems and quantum metrology
NASA Astrophysics Data System (ADS)
Benatti, F.; Floreanini, R.; Marzolino, U.
2014-03-01
Entanglement in fermion many-body systems is studied using a generalized definition of separability based on partitions of the set of observables, rather than on particle tensor products. In this way, the characterizing properties of nonseparable fermion states can be explicitly analyzed, allowing a precise description of the geometric structure of the corresponding state space. These results have direct applications in fermion quantum metrology: Sub-shot-noise accuracy in parameter estimation can be obtained without the need of a preliminary state entangling operation.
Quantum channels with correlated noise and entanglement teleportation
Yeo Ye
2003-05-01
Motivated by the results of Macchiavello and Palma on entanglement-enhanced information transmission over a quantum channel with correlated noise, we demonstrate how the entanglement teleportation scheme of Lee and Kim gives rise to two uncorrelated generalized depolarizing channels. In an attempt to find a teleportation scheme that yields two correlated generalized depolarizing channels, we discover a teleportation scheme that allows one to learn about the entanglement in an entangled pure input state, without decreasing the amount of entanglement associated with it.
Boundary quantum critical phenomena with entanglement renormalization
Evenbly, G.; Pfeifer, R. N. C.; Tagliacozzo, L.; McCulloch, I. P.; Vidal, G.; Pico, V.; Iblisdir, S.
2010-10-15
We propose the use of entanglement renormalization techniques to study boundary critical phenomena on a lattice system. The multiscale entanglement renormalization ansatz (MERA), in its scale invariant version, offers a very compact approximation to quantum critical ground states. Here we show that, by adding a boundary to the MERA, an accurate approximation to the ground state of a semi-infinite critical chain with an open boundary is obtained, from which one can extract boundary scaling operators and their scaling dimensions. As in Wilson's renormalization-group formulation of the Kondo problem, our construction produces, as a side result, an effective chain displaying explicit separation of energy scales. We present benchmark results for the quantum Ising and quantum XX models with free and fixed boundary conditions.
Generation of entangled photon holes using quantum interference
Pittman, T. B.; Franson, J. D.
2006-10-15
In addition to photon pairs entangled in polarization or other variables, quantum mechanics also allows optical beams that are entangled through the absence of the photons themselves. These correlated absences, or 'entangled photon holes', can lead to counterintuitive nonlocal effects analogous to those of the more familiar entangled photon pairs. Here we report an experimental observation of photon holes generated using quantum interference effects to suppress the probability that two photons in a weak laser pulse will separate at an optical beam splitter.
Quantum Trajectories and Their Statistics for Remotely Entangled Quantum Bits
NASA Astrophysics Data System (ADS)
Chantasri, Areeya; Kimchi-Schwartz, Mollie E.; Roch, Nicolas; Siddiqi, Irfan; Jordan, Andrew N.
2016-10-01
We experimentally and theoretically investigate the quantum trajectories of jointly monitored transmon qubits embedded in spatially separated microwave cavities. Using nearly quantum-noise-limited superconducting amplifiers and an optimized setup to reduce signal loss between cavities, we can efficiently track measurement-induced entanglement generation as a continuous process for single realizations of the experiment. The quantum trajectories of transmon qubits naturally split into low and high entanglement classes. The distribution of concurrence is found at any given time, and we explore the dynamics of entanglement creation in the state space. The distribution exhibits a sharp cutoff in the high concurrence limit, defining a maximal concurrence boundary. The most-likely paths of the qubits' trajectories are also investigated, resulting in three probable paths, gradually projecting the system to two even subspaces and an odd subspace, conforming to a "half-parity" measurement. We also investigate the most-likely time for the individual trajectories to reach their most entangled state, and we find that there are two solutions for the local maximum, corresponding to the low and high entanglement routes. The theoretical predictions show excellent agreement with the experimental entangled-qubit trajectory data.
Squashed entanglement and approximate private states
NASA Astrophysics Data System (ADS)
Wilde, Mark M.
2016-11-01
The squashed entanglement is a fundamental entanglement measure in quantum information theory, finding application as an upper bound on the distillable secret key or distillable entanglement of a quantum state or a quantum channel. This paper simplifies proofs that the squashed entanglement is an upper bound on distillable key for finite-dimensional quantum systems and solidifies such proofs for infinite-dimensional quantum systems. More specifically, this paper establishes that the logarithm of the dimension of the key system (call it log 2K) in an ɛ -approximate private state is bounded from above by the squashed entanglement of that state plus a term that depends only ɛ and log 2K. Importantly, the extra term does not depend on the dimension of the shield systems of the private state. The result holds for the bipartite squashed entanglement, and an extension of this result is established for two different flavors of the multipartite squashed entanglement.
Enhancing robustness of multiparty quantum correlations using weak measurement
Singh, Uttam; Mishra, Utkarsh; Dhar, Himadri Shekhar
2014-11-15
Multipartite quantum correlations are important resources for the development of quantum information and computation protocols. However, the resourcefulness of multipartite quantum correlations in practical settings is limited by its fragility under decoherence due to environmental interactions. Though there exist protocols to protect bipartite entanglement under decoherence, the implementation of such protocols for multipartite quantum correlations has not been sufficiently explored. Here, we study the effect of local amplitude damping channel on the generalized Greenberger–Horne–Zeilinger state, and use a protocol of optimal reversal quantum weak measurement to protect the multipartite quantum correlations. We observe that the weak measurement reversal protocol enhances the robustness of multipartite quantum correlations. Further it increases the critical damping value that corresponds to entanglement sudden death. To emphasize the efficacy of the technique in protection of multipartite quantum correlation, we investigate two proximately related quantum communication tasks, namely, quantum teleportation in a one sender, many receivers setting and multiparty quantum information splitting, through a local amplitude damping channel. We observe an increase in the average fidelity of both the quantum communication tasks under the weak measurement reversal protocol. The method may prove beneficial, for combating external interactions, in other quantum information tasks using multipartite resources. - Highlights: • Extension of weak measurement reversal scheme to protect multiparty quantum correlations. • Protection of multiparty quantum correlation under local amplitude damping noise. • Enhanced fidelity of quantum teleportation in one sender and many receivers setting. • Enhanced fidelity of quantum information splitting protocol.
Quantum discord bounds the amount of distributed entanglement.
Chuan, T K; Maillard, J; Modi, K; Paterek, T; Paternostro, M; Piani, M
2012-08-17
The ability to distribute quantum entanglement is a prerequisite for many fundamental tests of quantum theory and numerous quantum information protocols. Two distant parties can increase the amount of entanglement between them by means of quantum communication encoded in a carrier that is sent from one party to the other. Intriguingly, entanglement can be increased even when the exchanged carrier is not entangled with the parties. However, in light of the defining property of entanglement stating that it cannot increase under classical communication, the carrier must be quantum. Here we show that, in general, the increase of relative entropy of entanglement between two remote parties is bounded by the amount of nonclassical correlations of the carrier with the parties as quantified by the relative entropy of discord. We study implications of this bound, provide new examples of entanglement distribution via unentangled states, and put further limits on this phenomenon.
Probabilistic quantum teleportation via thermal entanglement
NASA Astrophysics Data System (ADS)
Fortes, Raphael; Rigolin, Gustavo
2017-08-01
We study the probabilistic (conditional) teleportation protocol when the entanglement needed for its implementation is given by thermal entanglement, i.e., when the entangled resource connecting Alice and Bob is an entangled mixed state described by the canonical ensemble density matrix. Specifically, the entangled resource we employ here is given by two interacting spin-1/2 systems (two qubits) in equilibrium with a thermal reservoir at temperature T . The interaction between the qubits is described by a Heisenberg-like Hamiltonian, encompassing the Ising, the X X , the X Y , the X X X , and X X Z models, with or without external fields. For all those models, we show analytically that the probabilistic protocol is exactly equal to the deterministic one whenever we have no external field. However, when we turn on the field, the probabilistic protocol outperforms the deterministic one in several interesting ways. Under certain scenarios, for example, the efficiency (average fidelity) of the probabilistic protocol is greater than the deterministic one and increases with increasing temperature, a counterintuitive behavior. We also show regimes in which the probabilistic protocol operates with relatively high success rates and, at the same time, with efficiency greater than the classical limit 2 /3 , a threshold that cannot be surpassed by any protocol using only classical resources (no entanglement shared between Alice and Bob). The deterministic protocol's efficiency under the same conditions is below 2 /3 , highlighting that the probabilistic protocol is the only one yielding a genuine quantum teleportation. We also show that near the quantum critical points for almost all those models the qualitative and quantitative behaviors of the efficiency change considerably, even at finite T .
Free-space entangled quantum carpets
NASA Astrophysics Data System (ADS)
Barros, Mariana R.; Ketterer, Andreas; Farías, Osvaldo Jiménez; Walborn, Stephen P.
2017-04-01
The Talbot effect in quantum physics is known to produce intricate patterns in the probability distribution of a particle, known as "quantum carpets," corresponding to the revival and replication of the initial wave function. Recently, it was shown that one can encode a D -level qudit in such a way that the Talbot effect can be used to process the D -dimensional quantum information [Farías et al., Phys. Rev. A 91, 062328 (2015), 10.1103/PhysRevA.91.062328]. Here we introduce a scheme to produce free-propagating "entangled quantum carpets" with pairs of photons produced by spontaneous parametric down-conversion. First we introduce an optical device that can be used to synthesize arbitrary superposition states of Talbot qudits. Sending spatially entangled photon pairs through a pair of these devices produces an entangled pair of qudits. As an application, we show how the Talbot effect can be used to test a D -dimensional Bell inequality. Numerical simulations show that violation of the Bell inequality depends strongly on the amount of spatial correlation in the initial two-photon state. We briefly discuss how our optical scheme might be adapted to matter wave experiments.
Quantum entanglement and coherence in molecular magnets
NASA Astrophysics Data System (ADS)
Shiddiq, Muhandis
Quantum computers are predicted to outperform classical computers in certain tasks, such as factoring large numbers and searching databases. The construction of a computer whose operation is based on the principles of quantum mechanics appears extremely challenging. Solid state approaches offer the potential to answer this challenge by tailor-making novel nanomaterials for quantum information processing (QIP). Molecular magnets, which are materials whose energy levels and magnetic quantum states are well defined at the molecular level, have been identified as a class of material with properties that make them attractive for quantum computing purpose. In this dissertation, I explore the possibilities and challenges for molecular magnets to be used in quantum computing architecture. The properties of molecular magnets that are critical for applications in quantum computing, i.e., quantum entanglement and coherence, are comprehensively investigated to probe the feasibility of molecular magnets to be used as quantum bits (qubits). Interactions of qubits with photons are at the core of QIP. Photons can be used to detect and manipulate qubits, after which information can then be transferred over long distances. As a potential candidate for qubits, the interactions between Fe8 single-molecule magnets (SMMs) and cavity photons were studied. An earlier report described that a cavity mode splitting was observed in a spectrum of a cavity filled with a single-crystal of Fe8 SMMs. This splitting was interpreted as a vacuum Rabi splitting (VRS), which is a signature of an entanglement between a large number of SMMs and a cavity photon. However, find that large absorption and dispersion of the magnetic susceptibility are the reasons for this splitting. This finding highlights the fact that an observation of a peak splitting in a cavity transmission spectrum neither represents an unambiguous indication of quantum coherence in a large number of spins, nor a signature of
Multipartite concurrence for identical-fermion systems
NASA Astrophysics Data System (ADS)
Majtey, A. P.; Bouvrie, P. A.; Valdés-Hernández, A.; Plastino, A. R.
2016-03-01
We study the problem of detecting multipartite entanglement among indistinguishable fermionic particles. A multipartite concurrence for pure states of N identical fermions, each one having a d -dimensional single-particle Hilbert space, is introduced. Such an entanglement measure, in particular, is optimized for maximally entangled states of three identical fermions that play a role analogous to the usual (qubit) Greenberger-Horne-Zeilinger state. In addition, it is shown that the fermionic multipartite concurrence can be expressed as the mean value of an observable, provided two copies of the composite state are available.
Witnessing entanglement without entanglement witness operators
Pezzè, Luca; Li, Yan; Li, Weidong; Smerzi, Augusto
2016-01-01
Quantum mechanics predicts the existence of correlations between composite systems that, although puzzling to our physical intuition, enable technologies not accessible in a classical world. Notwithstanding, there is still no efficient general method to theoretically quantify and experimentally detect entanglement of many qubits. Here we propose to detect entanglement by measuring the statistical response of a quantum system to an arbitrary nonlocal parametric evolution. We witness entanglement without relying on the tomographic reconstruction of the quantum state, or the realization of witness operators. The protocol requires two collective settings for any number of parties and is robust against noise and decoherence occurring after the implementation of the parametric transformation. To illustrate its user friendliness we demonstrate multipartite entanglement in different experiments with ions and photons by analyzing published data on fidelity visibilities and variances of collective observables. PMID:27681625
Witnessing entanglement without entanglement witness operators.
Pezzè, Luca; Li, Yan; Li, Weidong; Smerzi, Augusto
2016-10-11
Quantum mechanics predicts the existence of correlations between composite systems that, although puzzling to our physical intuition, enable technologies not accessible in a classical world. Notwithstanding, there is still no efficient general method to theoretically quantify and experimentally detect entanglement of many qubits. Here we propose to detect entanglement by measuring the statistical response of a quantum system to an arbitrary nonlocal parametric evolution. We witness entanglement without relying on the tomographic reconstruction of the quantum state, or the realization of witness operators. The protocol requires two collective settings for any number of parties and is robust against noise and decoherence occurring after the implementation of the parametric transformation. To illustrate its user friendliness we demonstrate multipartite entanglement in different experiments with ions and photons by analyzing published data on fidelity visibilities and variances of collective observables.
Witnessing entanglement without entanglement witness operators
NASA Astrophysics Data System (ADS)
Pezzè, Luca; Li, Yan; Li, Weidong; Smerzi, Augusto
2016-10-01
Quantum mechanics predicts the existence of correlations between composite systems that, although puzzling to our physical intuition, enable technologies not accessible in a classical world. Notwithstanding, there is still no efficient general method to theoretically quantify and experimentally detect entanglement of many qubits. Here we propose to detect entanglement by measuring the statistical response of a quantum system to an arbitrary nonlocal parametric evolution. We witness entanglement without relying on the tomographic reconstruction of the quantum state, or the realization of witness operators. The protocol requires two collective settings for any number of parties and is robust against noise and decoherence occurring after the implementation of the parametric transformation. To illustrate its user friendliness we demonstrate multipartite entanglement in different experiments with ions and photons by analyzing published data on fidelity visibilities and variances of collective observables.
A quantum router for high-dimensional entanglement
NASA Astrophysics Data System (ADS)
Erhard, Manuel; Malik, Mehul; Zeilinger, Anton
2017-03-01
In addition to being a workhorse for modern quantum technologies, entanglement plays a key role in fundamental tests of quantum mechanics. The entanglement of photons in multiple levels, or dimensions, explores the limits of how large an entangled state can be, while also greatly expanding its applications in quantum information. Here we show how a high-dimensional quantum state of two photons entangled in their orbital angular momentum can be split into two entangled states with a smaller dimensionality structure. Our work demonstrates that entanglement is a quantum property that can be subdivided into spatially separated parts. In addition, our technique has vast potential applications in quantum as well as classical communication systems.
Quantum key distribution with an entangled light emitting diode
Dzurnak, B.; Stevenson, R. M.; Nilsson, J.; Dynes, J. F.; Yuan, Z. L.; Skiba-Szymanska, J.; Shields, A. J.; Farrer, I.; Ritchie, D. A.
2015-12-28
Measurements performed on entangled photon pairs shared between two parties can allow unique quantum cryptographic keys to be formed, creating secure links between users. An advantage of using such entangled photon links is that they can be adapted to propagate entanglement to end users of quantum networks with only untrusted nodes. However, demonstrations of quantum key distribution with entangled photons have so far relied on sources optically excited with lasers. Here, we realize a quantum cryptography system based on an electrically driven entangled-light-emitting diode. Measurement bases are passively chosen and we show formation of an error-free quantum key. Our measurements also simultaneously reveal Bell's parameter for the detected light, which exceeds the threshold for quantum entanglement.
Energy transmission using recyclable quantum entanglement.
Ye, Ming-Yong; Lin, Xiu-Min
2016-07-28
It is known that faster-than-light (FTL) transmission of energy could be achieved if the transmission were considered in the framework of non-relativistic classical mechanics. Here we show that FTL transmission of energy could also be achieved if the transmission were considered in the framework of non-relativistic quantum mechanics. In our transmission protocol a two-spin Heisenberg model is considered and the energy is transmitted by two successive local unitary operations on the initially entangled spins. Our protocol does not mean that FTL transmission can be achieved in reality when the theory of relativity is considered, but it shows that quantum entanglement can be used in a recyclable way in energy transmission.
Energy transmission using recyclable quantum entanglement
Ye, Ming-Yong; Lin, Xiu-Min
2016-01-01
It is known that faster-than-light (FTL) transmission of energy could be achieved if the transmission were considered in the framework of non-relativistic classical mechanics. Here we show that FTL transmission of energy could also be achieved if the transmission were considered in the framework of non-relativistic quantum mechanics. In our transmission protocol a two-spin Heisenberg model is considered and the energy is transmitted by two successive local unitary operations on the initially entangled spins. Our protocol does not mean that FTL transmission can be achieved in reality when the theory of relativity is considered, but it shows that quantum entanglement can be used in a recyclable way in energy transmission. PMID:27465431
Quantum thermodynamics and quantum entanglement entropies in an expanding universe
NASA Astrophysics Data System (ADS)
Farahmand, Mehrnoosh; Mohammadzadeh, Hosein; Mehri-Dehnavi, Hossein
2017-05-01
We investigate an asymptotically spatially flat Robertson-Walker space-time from two different perspectives. First, using von Neumann entropy, we evaluate the entanglement generation due to the encoded information in space-time. Then, we work out the entropy of particle creation based on the quantum thermodynamics of the scalar field on the underlying space-time. We show that the general behavior of both entropies are the same. Therefore, the entanglement can be applied to the customary quantum thermodynamics of the universe. Also, using these entropies, we can recover some information about the parameters of space-time.
Quantum Communication Using Macroscopic Phase Entangled States
2015-12-10
goals of our program was to investigate several different ways in which to implement the Kerr medium that allows a single photon to change the phase ...E7(/(3+21(180%(5 ,QFOXGHDUHDFRGH 1 i. Quantum Communication Using Macroscopic Phase Entangled States Final Report Reporting...media that can produce a shift in the phase of a laser pulse provided that a single photon from another source and at a different frequency is also
Quantum entanglement establishment between two strangers
NASA Astrophysics Data System (ADS)
Hwang, Tzonelih; Lin, Tzu-Han; Kao, Shih-Hung
2016-01-01
This paper presents the first quantum entanglement establishment scheme for strangers who neither pre-share any secret nor have any authenticated classical channel between them. The proposed protocol requires only the help of two almost dishonest third parties (TPs) to achieve the goal. The security analyses indicate that the proposed protocol is secure against not only an external eavesdropper's attack, but also the TP's attack.
Entanglement over global distances via quantum repeaters with satellite links
NASA Astrophysics Data System (ADS)
Boone, K.; Bourgoin, J.-P.; Meyer-Scott, E.; Heshami, K.; Jennewein, T.; Simon, C.
2015-05-01
We study entanglement creation over global distances based on a quantum repeater architecture that uses low-Earth-orbit satellites equipped with entangled photon sources, as well as ground stations equipped with quantum nondemolition detectors and quantum memories. We show that this approach allows entanglement creation at viable rates over distances that are inaccessible via direct transmission through optical fibers or even from very distant satellites.
Quantum random number generator using photon-number path entanglement
NASA Astrophysics Data System (ADS)
Kwon, Osung; Cho, Young-Wook; Kim, Yoon-Ho
2010-08-01
We report an experimental implementation of quantum random number generator based on the photon-number-path entangled state. The photon-number-path entangled state is prepared by means of two-photon Hong-Ou-Mandel quantum interference at a beam splitter. The randomness in our scheme is of truly quantum mechanical origin as it comes from the projection measurement of the entangled two-photon state. The generated bit sequences satisfy the standard randomness test.
Robust entanglement distribution via quantum network coding
NASA Astrophysics Data System (ADS)
Epping, Michael; Kampermann, Hermann; Bruß, Dagmar
2016-10-01
Many protocols of quantum information processing, like quantum key distribution or measurement-based quantum computation, ‘consume’ entangled quantum states during their execution. When participants are located at distant sites, these resource states need to be distributed. Due to transmission losses quantum repeater become necessary for large distances (e.g. ≳ 300 {{km}}). Here we generalize the concept of the graph state repeater to D-dimensional graph states and to repeaters that can perform basic measurement-based quantum computations, which we call quantum routers. This processing of data at intermediate network nodes is called quantum network coding. We describe how a scheme to distribute general two-colourable graph states via quantum routers with network coding can be constructed from classical linear network codes. The robustness of the distribution of graph states against outages of network nodes is analysed by establishing a link to stabilizer error correction codes. Furthermore we show, that for any stabilizer error correction code there exists a corresponding quantum network code with similar error correcting capabilities.
Geometry of entanglement in the Bloch sphere
NASA Astrophysics Data System (ADS)
Boyer, Michel; Liss, Rotem; Mor, Tal
2017-03-01
Entanglement is an important concept in quantum information, quantum communication, and quantum computing. We provide a geometrical analysis of entanglement and separability for all the rank 2 quantum mixed states: complete analysis for the bipartite states and partial analysis for the multipartite states. For each rank 2 mixed state, we define its unique Bloch sphere, that is spanned by the eigenstates of its density matrix. We characterize those Bloch spheres into exactly five classes of entanglement and separability, give examples for each class, and prove that those are the only classes.
Encoding entanglement-assisted quantum stabilizer codes
NASA Astrophysics Data System (ADS)
Wang, Yun-Jiang; Bai, Bao-Ming; Li, Zhuo; Peng, Jin-Ye; Xiao, He-Ling
2012-02-01
We address the problem of encoding entanglement-assisted (EA) quantum error-correcting codes (QECCs) and of the corresponding complexity. We present an iterative algorithm from which a quantum circuit composed of CNOT, H, and S gates can be derived directly with complexity O(n2) to encode the qubits being sent. Moreover, we derive the number of each gate consumed in our algorithm according to which we can design EA QECCs with low encoding complexity. Another advantage brought by our algorithm is the easiness and efficiency of programming on classical computers.
Deterministic generation of multiparticle entanglement by quantum Zeno dynamics.
Barontini, Giovanni; Hohmann, Leander; Haas, Florian; Estève, Jérôme; Reichel, Jakob
2015-09-18
Multiparticle entangled quantum states, a key resource in quantum-enhanced metrology and computing, are usually generated by coherent operations exclusively. However, unusual forms of quantum dynamics can be obtained when environment coupling is used as part of the state generation. In this work, we used quantum Zeno dynamics (QZD), based on nondestructive measurement with an optical microcavity, to deterministically generate different multiparticle entangled states in an ensemble of 36 qubit atoms in less than 5 microseconds. We characterized the resulting states by performing quantum tomography, yielding a time-resolved account of the entanglement generation. In addition, we studied the dependence of quantum states on measurement strength and quantified the depth of entanglement. Our results show that QZD is a versatile tool for fast and deterministic entanglement generation in quantum engineering applications. Copyright © 2015, American Association for the Advancement of Science.
Quantum control on entangled bipartite qubits
Delgado, Francisco
2010-04-15
Ising interactions between qubits can produce distortion on entangled pairs generated for engineering purposes (e.g., for quantum computation or quantum cryptography). The presence of parasite magnetic fields destroys or alters the expected behavior for which it was intended. In addition, these pairs are generated with some dispersion in their original configuration, so their discrimination is necessary for applications. Nevertheless, discrimination should be made after Ising distortion. Quantum control helps in both problems; making some projective measurements upon the pair to decide the original state to replace it, or just trying to reconstruct it using some procedures which do not alter their quantum nature. Results about the performance of these procedures are reported. First, we will work with pure systems studying restrictions and advantages. Then, we will extend these operations for mixed states generated with uncertainty in the time of distortion, correcting them by assuming the control prescriptions for the most probable one.
Ultrafine Entanglement Witnessing
NASA Astrophysics Data System (ADS)
Shahandeh, Farid; Ringbauer, Martin; Loredo, Juan C.; Ralph, Timothy C.
2017-03-01
Entanglement witnesses are invaluable for efficient quantum entanglement certification without the need for expensive quantum state tomography. Yet, standard entanglement witnessing requires multiple measurements and its bounds can be elusive as a result of experimental imperfections. Here, we introduce and demonstrate a novel procedure for entanglement detection which simply and seamlessly improves any standard witnessing procedure by using additional available information to tighten the witnessing bounds. Moreover, by relaxing the requirements on the witness operators, our method removes the general need for the difficult task of witness decomposition into local observables. We experimentally demonstrate entanglement detection with our approach using a separable test operator and a simple fixed measurement device for each agent. Finally, we show that the method can be generalized to higher-dimensional and multipartite cases with a complexity that scales linearly with the number of parties.
Enhancing entanglement trapping by weak measurement and quantum measurement reversal
Zhang, Ying-Jie; Han, Wei; Fan, Heng; Xia, Yun-Jie
2015-03-15
In this paper, we propose a scheme to enhance trapping of entanglement of two qubits in the environment of a photonic band gap material. Our entanglement trapping promotion scheme makes use of combined weak measurements and quantum measurement reversals. The optimal promotion of entanglement trapping can be acquired with a reasonable finite success probability by adjusting measurement strengths. - Highlights: • Propose a scheme to enhance entanglement trapping in photonic band gap material. • Weak measurement and its reversal are performed locally on individual qubits. • Obtain an optimal condition for maximizing the concurrence of entanglement trapping. • Entanglement sudden death can be prevented by weak measurement in photonic band gap.
Entangling power and operator entanglement of nonunitary quantum evolutions
NASA Astrophysics Data System (ADS)
Kong, Fan-Zhen; Zhao, Jun-Long; Yang, Ming; Cao, Zhuo-Liang
2015-07-01
We propose a method to calculate the operator entanglement and entangling power of a noisy nonunitary operation in terms of linear entropy. By decomposing the Kraus operators of noisy evolution as the sum of products of Pauli matrices, we derive the analytical expression of the operator entanglement for a general nonunitary operation. The definition of entangling power is extended from the ideal unitary operation case to the nonunitary case via a Kraus operator representation and the analytical expression of the entangling power for a general nonunitary operation is derived. To demonstrate the effectiveness of the above method, we investigate the properties of operator entanglement and entangling power of nonunitary operations caused by phase damping noise. Our findings imply that the pure phase damping noise has its own operator entanglement and entangling power, which increase exponentially with time and asymptotically approach their respective upper bounds. In addition, when the phase damping noise is added to an ideal operation, such as an iswap operation or a controlled-Z operation, it can make the operation's entangling power grow exponentially with the strength of noise, but leave its operator entanglement invariant. In this sense, we can conclude that, for a general operation, operator entanglement is a more intrinsic property than entangling power.
Quantum secret sharing and random hopping: Using single states instead of entanglement
NASA Astrophysics Data System (ADS)
Karimipour, V.; Asoudeh, M.
2015-09-01
Quantum secret sharing (QSS) protocols between N players, for sharing classical secrets, either use multipartite entangled states or use sequential manipulation of single d -level states only when d is prime (A. Tavakoli et al., arXiv:1501.05582). We propose a sequential scheme which is valid for any value of d . In contrast to A. Tavakoli et al. whose efficiency (number of valid rounds) is 1/d , the efficiency of our scheme is 1/2 for any d . This, together with the fact that in the limit d ⟶∞ the scheme can be implemented by continuous variable optical states, brings the scheme into the domain of present day technology.
Monogamy Inequality for Any Local Quantum Resource and Entanglement
NASA Astrophysics Data System (ADS)
Camalet, S.
2017-09-01
We derive a monogamy inequality for any local quantum resource and entanglement. It results from the fact that there is always a convex measure for a quantum resource, as shown here, and from the relation between entanglement and local entropy. One of its consequences is an entanglement monogamy different from that usually discussed. If the local resource is nonuniformity or coherence, it is satisfied by familiar resource and entanglement measures. The ensuing upper bound for the local coherence, determined by the entanglement, is independent of the basis used to define the coherence.
Monogamy Inequality for Any Local Quantum Resource and Entanglement.
Camalet, S
2017-09-15
We derive a monogamy inequality for any local quantum resource and entanglement. It results from the fact that there is always a convex measure for a quantum resource, as shown here, and from the relation between entanglement and local entropy. One of its consequences is an entanglement monogamy different from that usually discussed. If the local resource is nonuniformity or coherence, it is satisfied by familiar resource and entanglement measures. The ensuing upper bound for the local coherence, determined by the entanglement, is independent of the basis used to define the coherence.
Exploring Tripartite Quantum Correlations: Entanglement Witness and Quantum Discord
NASA Astrophysics Data System (ADS)
Jafarizadeh, M. A.; Karimi, N.; Heshmati, A.; Amidi, D.
2017-04-01
In this study, we explore the tripartite quantum correlations by employing the quantum relative entropy as a distance measure. First, we evaluate the explicit expression for nonlinear entanglement witness (EW) of tripartite systems in the four dimensional space that lends itself to a straightforward algorithm for finding closest separable state (CSS) to the generic state. Then using nonlinear EW with specific feasible regions (FRs), quantum discord is derived analytically for the three-qubit and tripartite systems in the four dimensional space. Furthermore, we explicitly figure out the additivity relation of quantum correlations in tripartite systems.
Exploring Tripartite Quantum Correlations: Entanglement Witness and Quantum Discord
NASA Astrophysics Data System (ADS)
Jafarizadeh, M. A.; Karimi, N.; Heshmati, A.; Amidi, D.
2016-12-01
In this study, we explore the tripartite quantum correlations by employing the quantum relative entropy as a distance measure. First, we evaluate the explicit expression for nonlinear entanglement witness (EW) of tripartite systems in the four dimensional space that lends itself to a straightforward algorithm for finding closest separable state (CSS) to the generic state. Then using nonlinear EW with specific feasible regions (FRs), quantum discord is derived analytically for the three-qubit and tripartite systems in the four dimensional space. Furthermore, we explicitly figure out the additivity relation of quantum correlations in tripartite systems.
Origins and optimization of entanglement in plasmonically coupled quantum dots
Otten, Matthew; Larson, Jeffrey; Min, Misun; Wild, Stefan M.; Pelton, Matthew; Gray, Stephen K.
2016-08-11
In this paper, a system of two or more quantum dots interacting with a dissipative plasmonic nanostructure is investigated in detail by using a cavity quantum electrodynamics approach with a model Hamiltonian. We focus on determining and understanding system configurations that generate multiple bipartite quantum entanglements between the occupation states of the quantum dots. These configurations include allowing for the quantum dots to be asymmetrically coupled to the plasmonic system. Analytical solution of a simplified limit for an arbitrary number of quantum dots and numerical simulations and optimization for the two- and three-dot cases are used to develop guidelines for maximizing the bipartite entanglements. For any number of quantum dots, we show that through simple starting states and parameter guidelines, one quantum dot can be made to share a strong amount of bipartite entanglement with all other quantum dots in the system, while entangling all other pairs to a lesser degree.
Origins and optimization of entanglement in plasmonically coupled quantum dots
Otten, Matthew; Larson, Jeffrey; Min, Misun; ...
2016-08-11
In this paper, a system of two or more quantum dots interacting with a dissipative plasmonic nanostructure is investigated in detail by using a cavity quantum electrodynamics approach with a model Hamiltonian. We focus on determining and understanding system configurations that generate multiple bipartite quantum entanglements between the occupation states of the quantum dots. These configurations include allowing for the quantum dots to be asymmetrically coupled to the plasmonic system. Analytical solution of a simplified limit for an arbitrary number of quantum dots and numerical simulations and optimization for the two- and three-dot cases are used to develop guidelines formore » maximizing the bipartite entanglements. For any number of quantum dots, we show that through simple starting states and parameter guidelines, one quantum dot can be made to share a strong amount of bipartite entanglement with all other quantum dots in the system, while entangling all other pairs to a lesser degree.« less
Origins and optimization of entanglement in plasmonically coupled quantum dots
NASA Astrophysics Data System (ADS)
Otten, Matthew; Larson, Jeffrey; Min, Misun; Wild, Stefan M.; Pelton, Matthew; Gray, Stephen K.
2016-08-01
A system of two or more quantum dots interacting with a dissipative plasmonic nanostructure is investigated in detail by using a cavity quantum electrodynamics approach with a model Hamiltonian. We focus on determining and understanding system configurations that generate multiple bipartite quantum entanglements between the occupation states of the quantum dots. These configurations include allowing for the quantum dots to be asymmetrically coupled to the plasmonic system. Analytical solution of a simplified limit for an arbitrary number of quantum dots and numerical simulations and optimization for the two- and three-dot cases are used to develop guidelines for maximizing the bipartite entanglements. For any number of quantum dots, we show that through simple starting states and parameter guidelines, one quantum dot can be made to share a strong amount of bipartite entanglement with all other quantum dots in the system, while entangling all other pairs to a lesser degree.
Quantum secret sharing schemes and reversibility of quantum operations
Ogawa, Tomohiro; Sasaki, Akira; Iwamoto, Mitsugu; Yamamoto, Hirosuke
2005-09-15
Quantum secret sharing schemes encrypting a quantum state into a multipartite entangled state are treated. The lower bound on the dimension of each share given by Gottesman [Phys. Rev. A 61, 042311 (2000)] is revisited based on a relation between the reversibility of quantum operations and the Holevo information. We also propose a threshold ramp quantum secret sharing scheme and evaluate its coding efficiency.
Measurement-device-independent entanglement witnesses for all entangled quantum states.
Branciard, Cyril; Rosset, Denis; Liang, Yeong-Cherng; Gisin, Nicolas
2013-02-08
The problem of demonstrating entanglement is central to quantum information processing applications. Resorting to standard entanglement witnesses requires one to perfectly trust the implementation of the measurements to be performed on the entangled state, which may be an unjustified assumption. Inspired by the recent work of F. Buscemi [Phys. Rev. Lett. 108, 200401 (2012)], we introduce the concept of measurement-device-independent entanglement witnesses (MDI-EWs), which allow one to demonstrate entanglement of all entangled quantum states with untrusted measurement apparatuses. We show how to systematically obtain such MDI-EWs from standard entanglement witnesses. Our construction leads to MDI-EWs that are loss tolerant and can be implemented with current technology.
Quantum entanglement and a metaphysics of relations
NASA Astrophysics Data System (ADS)
Esfeld, Michael
This paper argues for a metaphysics of relations based on a characterization of quantum entanglement in terms of non-separability, thereby regarding entanglement as a sort of holism. By contrast to a radical metaphysics of relations, the position set out in this paper recognizes things that stand in the relations, but claims that, as far as the relations are concerned, there is no need for these things to have qualitative intrinsic properties underlying the relations. This position thus opposes a metaphysics of individual things that are characterized by intrinsic properties. A principal problem of the latter position is that it seems that we cannot gain any knowledge of these properties insofar as they are intrinsic. Against this background, the rationale behind a metaphysics of relations is to avoid a gap between epistemology and metaphysics.
Quantum quench and scaling of entanglement entropy
NASA Astrophysics Data System (ADS)
Caputa, Paweł; Das, Sumit R.; Nozaki, Masahiro; Tomiya, Akio
2017-09-01
Global quantum quench with a finite quench rate which crosses critical points is known to lead to universal scaling of correlation functions as functions of the quench rate. In this work, we explore scaling properties of the entanglement entropy of a subsystem in a harmonic chain during a mass quench which asymptotes to finite constant values at early and late times and for which the dynamics is exactly solvable. When the initial state is the ground state, we find that for large enough subsystem sizes the entanglement entropy becomes independent of size. This is consistent with Kibble-Zurek scaling for slow quenches, and with recently discussed "fast quench scaling" for quenches fast compared to physical scales, but slow compared to UV cutoff scales.
Manipulation of Entangled States for Quantum Information Processing
NASA Astrophysics Data System (ADS)
Bose, S.; Huelga, S. F.; Jonathan, D.; Knight, P. L.; Murao, M.; Plenio, M. B.; Vedral, V.
Entanglement manipulation, and especially Entanglement Swapping is at the heart of current work on quantum information processing, purification and quantum teleportation. We will discuss how it may be generalized to multiparticle systems and how this enables multi-user quantum cryptographic protocols to be developed. Our scheme allows us to establish multiparticle entanglement between particles which belong to distant users in a communication network through a prior distribution of Bell state singlets followed by local measurements. We compare our method for generating entanglement with existing schemes using simple quantum networks, and highlight the advantages and applications in cryptographic conferencing and in reading messages from more than one source through a single quantum measurement. We also discuss how entanglement leads to the idea of `telecloning', in which a teleportation-like protocol can be found which reproduces the output of an optimal quantum cloning machine.
Understanding Entanglement as a Resource for Quantum Information Processing
NASA Astrophysics Data System (ADS)
Cohen, Scott M.
2008-05-01
Ever since Erwin Schrodinger shocked the physics world by killing (and not killing) his cat, entanglement has played a critical role in attempts to understand quantum mechanics. More recently, entanglement has been shown to be a valuable resource, of central importance for quantum computation and the processing of quantum information. In this talk, I will describe a new diagrammatic approach to understanding why entanglement is so valuable, the key idea being that entanglement between two systems ``creates'' multiple images of the state of a third. By way of example, I will show how to ``visualize'' teleportation of unknown quantum states, and how to use entanglement to implement an interaction between spatially separated (and therefore non-interacting!) systems. These ideas have also proven useful in quantum state discrimination, where the state of a quantum system is unknown and is to be determined.
Entanglement in quantum impurity problems is nonperturbative
NASA Astrophysics Data System (ADS)
Saleur, H.; Schmitteckert, P.; Vasseur, R.
2013-08-01
We study the entanglement entropy of a region of length 2L with the remainder of an infinite one-dimensional gapless quantum system in the case where the region is centered on a quantum impurity. The coupling to this impurity is not scale invariant, and the physics involves a crossover between weak- and strong-coupling regimes. While the impurity contribution to the entanglement has been computed numerically in the past, little is known analytically about it, since in particular the methods of conformal invariance cannot be applied because of the presence of a crossover length. We show in this paper that the small coupling expansion of the entanglement entropy in this problem is quite generally plagued by strong infrared divergences, implying a nonperturbative dependence on the coupling. The large coupling expansion turns out to be better behaved, thanks to powerful results from the boundary CFT formulation and, in some cases, the underlying integrability of the problem. However, it is clear that this expansion does not capture well the crossover physics. In the integrable case—which includes problems such as an XXZ chain with a modified link, the interacting resonant level model or the anisotropic Kondo model—a nonperturbative approach is in principle possible using form factors. We adapt in this paper the ideas of Cardy [J. Stat. Phys.JSTPBS0022-471510.1007/s10955-007-9422-x 130, 129 (2008)] and Castro-Alvaredo and Doyon [J. Stat. Phys.JSTPBS0022-471510.1007/s10955-008-9664-2 134, 105 (2009)] to the gapless case and show that, in the rather simple case of the resonant level model, and after some additional renormalizations, the form-factors approach yields remarkably accurate results for the entanglement all the way from short to large distances. This is confirmed by detailed comparison with numerical simulations. Both our form factor and numerical results are compatible with a nonperturbative form at short distance.
Tripartite entanglement in single-neutron interferometer experiments
Erdösi, Daniel; Hasegawa, Yuji; Huber, Marcus; Hiesmayr, Beatrix C.
2014-12-04
We present experimental evidence of the generation of distinct types of genuine multipartite entanglement between the spin, energy, and path degrees of freedom within single-neutron quantum systems. This is achieved via the development of new spin manipulation apparatuses for neutron interferometry and the entanglement is detected via appropriately designed and optimized non-linear witnesses. We demonstrate the extraordinarily high controllability and fidelity of the generated entangled states.
Quantum entanglement in multiparticle systems of two-level atoms
Deb, Ram Narayan
2011-09-15
We propose the necessary and sufficient condition for the presence of quantum entanglement in arbitrary symmetric pure states of two-level atomic systems. We introduce a parameter to quantify quantum entanglement in such systems. We express the inherent quantum fluctuations of a composite system of two-level atoms as a sum of the quantum fluctuations of the individual constituent atoms and their correlation terms. This helps to separate out and study solely the quantum correlations among the atoms and obtain the criterion for the presence of entanglement in such multiatomic systems.
Sensing intruders using entanglement: a photonic quantum fence
Humble, Travis S; Bennink, Ryan S; Grice, Warren P; Owens, Israel J
2009-01-01
We describe the use of quantum-mechanically entangled photons for sensing intrusions across a physical perimeter. Our approach to intrusion detection uses the no-cloning principle of quantum information science as protection against an intruder s ability to spoof a sensor receiver using a classical intercept-resend attack. Moreover, we employ the correlated measurement outcomes from polarization-entangled photons to protect against quantum intercept-resend attacks, i.e., attacks using quantum teleportation. We explore the bounds on detection using quantum detection and estimation theory, and we experimentally demonstrate the underlying principle of entanglement-based detection using the visibility derived from polarization-correlation measurements.
Inequalities for the quantum privacy
NASA Astrophysics Data System (ADS)
Trindade, M. A. S.; Pinto, E.
2016-02-01
In this work, we investigate the asymptotic behavior related to the quantum privacy for multipartite systems. In this context, an inequality for quantum privacy was obtained by exploiting of quantum entropy properties. Subsequently, we derive a lower limit for the quantum privacy through the entanglement fidelity. In particular, we show that there is an interval where an increase in entanglement fidelity implies a decrease in quantum privacy.
Entanglement and Quantum Phase Transition in Low Dimensional Spin Systems
NASA Astrophysics Data System (ADS)
Chen, Yan; Zanardi, Paolo; Wang, Zidan; Zhang, Fuchun
2005-03-01
Entanglement of the ground states in XXZ and dimerized Heisenberg spin chains and in two-leg spin ladder is analyzed by using spin-spin concurrence and the entanglement entropy between a selected block of spins and the rest of the system. Quantum critical points as well as phase boundaries can be in some cases identified straightforwardly by analyzing the local extreme of the entanglement. We show that various subsystem partitions may provide complementary description of a quantum phase diagram.
Optimal entanglement generation for efficient hybrid quantum repeaters
Azuma, Koji; Sota, Naoya; Yamamoto, Takashi; Koashi, Masato; Imoto, Nobuyuki; Namiki, Ryo; Oezdemir, Sahin Kaya
2009-12-15
We propose a realistic protocol to generate entanglement between quantum memories at neighboring nodes in hybrid quantum repeaters. Generated entanglement includes only one type of error, which enables efficient entanglement distillation. In contrast to the known protocols with such a property, our protocol with ideal detectors achieves the theoretical limit of the success probability and the fidelity to a Bell state, promising higher efficiencies in the repeaters. We also show that the advantage of our protocol remains even with realistic threshold detectors.
Compensated Crystal Assemblies for Type-II Entangled Photon Generation in Quantum Cluster States
2010-03-01
multi-crystal sources, such as cluster states, entanglement swapping, and teleportation . 15. SUBJECT TERMS quantum , entangled photons, joint...entanglement swapping, and teleportation . Key Words: quantum , entangled photons, joint spectral function, spontaneous parametric downconversion 2...DATES COVERED (From - To) OCT 2009 – SEP 2011 4. TITLE AND SUBTITLE COMPENSATED CRYSTAL ASSEMBLIES FOR TYPE-II ENTANGLED PHOTO GENERATION IN QUANTUM
Simulation of n-qubit quantum systems. II. Separability and entanglement
NASA Astrophysics Data System (ADS)
Radtke, T.; Fritzsche, S.
2006-07-01
increase of the associated Hilbert space. No. of lines in distributed program, including test data, etc.:3107 No. of bytes in distributed program, including test data, etc.:13 859 Distribution format:tar.gz Reasons for new version:The first program version established the data structures and commands which are needed to build and manipulate quantum registers. Since the (evolution of) entanglement is a central aspect in quantum information processing the current version adds the capability to analyze separability and entanglement of quantum registers by implementing algebraic separability criteria and entanglement measures and related quantities. Does this version supersede the previous version: Yes Nature of the physical problem: Entanglement has been identified as an essential resource in virtually all aspects of quantum information theory. Therefore, the detection and quantification of entanglement is a necessary prerequisite for many applications, such as quantum computation, communications or quantum cryptography. Up to the present, however, the multipartite entanglement of n-qubit systems has remained largely unexplored owing to the exponential growth of complexity with the number of qubits involved. Method of solution: Using the computer algebra system MAPLE, a set of procedures has been developed which supports the definition and manipulation of n-qubit quantum registers and quantum logic gates [T. Radtke, S. Fritzsche, Comput. Phys. Comm. 173 (2005) 91]. The provided hierarchy of commands can be used interactively in order to simulate the behavior of n-qubit quantum systems (by applying a number of unitary or non-unitary operations) and to analyze their separability and entanglement properties. Restrictions onto the complexity of the problem: The present version of the program facilitates the setup and the manipulation of quantum registers by means of (predefined) quantum logic gates; it now also provides the tools for performing a symbolic and/or numeric analysis
Black hole entanglement and quantum error correction
NASA Astrophysics Data System (ADS)
Verlinde, Erik; Verlinde, Herman
2013-10-01
It was recently argued in [1] that black hole complementarity strains the basic rules of quantum information theory, such as monogamy of entanglement. Motivated by this argument, we develop a practical framework for describing black hole evaporation via unitary time evolution, based on a holographic perspective in which all black hole degrees of freedom live on the stretched horizon. We model the horizon as a unitary quantum system with finite entropy, and do not postulate that the horizon geometry is smooth. We then show that, with mild assumptions, one can reconstruct local effective field theory observables that probe the black hole interior, and relative to which the state near the horizon looks like a local Minkowski vacuum. The reconstruction makes use of the formalism of quantum error correcting codes, and works for black hole states whose entanglement entropy does not yet saturate the Bekenstein-Hawking bound. Our general framework clarifies the black hole final state proposal, and allows a quantitative study of the transition into the "firewall" regime of maximally mixed black hole states.
NASA Astrophysics Data System (ADS)
Snyder, Douglas
2011-04-01
Haunted quantum entanglement involves entanglement between 2 entities where entanglement is based on 1 entity supplying which-way information regarding the other. This ww information is lost before it is released to the environment with the result that the entanglement is also lost. The result of losing entanglement is Young interference as if ww information never existed (not fringes and anti-fringes as in a quantum eraser). In an earlier hqe scenario, ww information is eliminated at a distance between an entangled atom and photon. In the hqe scenario here, the entangled entities are both photons and ww information provided by one photon regarding the other is lost with the accompanying loss of entanglement between the two photons. The entangled photon pairs are created in a similar process to that used by Kim et al. in their quantum eraser. The photon carrying the ww information (i.e., the idler photon) is effectively lost through the release of classical em radiation of a similar character to the idler photon into a box that is evacuated (except for the idler photon that traverses the box initially on one of its two possible paths to a detector) before the signal photon reaches its detection axis. ``Two slit'' interference for the signal photon shows no evidence that ww information ever existed regarding the signal photon.
Quantum radiation produced by the entanglement of quantum fields
NASA Astrophysics Data System (ADS)
Iso, Satoshi; Oshita, Naritaka; Tatsukawa, Rumi; Yamamoto, Kazuhiro; Zhang, Sen
2017-01-01
We investigate the quantum radiation produced by an Unruh-De Witt detector in a uniformly accelerating motion coupled to the vacuum fluctuations. Quantum radiation is nonvanishing, which is consistent with the previous calculation by Lin and Hu [Phys. Rev. D 73, 124018 (2006), 10.1103/PhysRevD.73.124018]. We infer that this quantum radiation from the Unruh-De Witt detector is generated by the nonlocal correlation of the Minkowski vacuum state, which has its origin in the entanglement of the state between the left and the right Rindler wedges.
Deterministic entanglement generation from driving through quantum phase transitions
NASA Astrophysics Data System (ADS)
Luo, Xin-Yu; Zou, Yi-Quan; Wu, Ling-Na; Liu, Qi; Han, Ming-Fei; Tey, Meng Khoon; You, Li
2017-02-01
Many-body entanglement is often created through the system evolution, aided by nonlinear interactions between the constituting particles. These very dynamics, however, can also lead to fluctuations and degradation of the entanglement if the interactions cannot be controlled. Here, we demonstrate near-deterministic generation of an entangled twin-Fock condensate of ~11,000 atoms by driving a rubidium-87 Bose-Einstein condensate undergoing spin mixing through two consecutive quantum phase transitions (QPTs). We directly observe number squeezing of 10.7 ± 0.6 decibels and normalized collective spin length of 0.99 ± 0.01. Together, these observations allow us to infer an entanglement-enhanced phase sensitivity of ~6 decibels beyond the standard quantum limit and an entanglement breadth of ~910 atoms. Our work highlights the power of generating large-scale useful entanglement by taking advantage of the different entanglement landscapes separated by QPTs.
Quantum probabilities from quantum entanglement: experimentally unpacking the Born rule
Harris, Jérémie; Bouchard, Frédéric; Santamato, Enrico; Zurek, Wojciech H.; Boyd, Robert W.; Karimi, Ebrahim
2016-05-11
The Born rule, a foundational axiom used to deduce probabilities of events from wavefunctions, is indispensable in the everyday practice of quantum physics. It is also key in the quest to reconcile the ostensibly inconsistent laws of the quantum and classical realms, as it confers physical significance to reduced density matrices, the essential tools of decoherence theory. Following Bohr's Copenhagen interpretation, textbooks postulate the Born rule outright. But, recent attempts to derive it from other quantum principles have been successful, holding promise for simplifying and clarifying the quantum foundational bedrock. Moreover, a major family of derivations is based on envariance, a recently discovered symmetry of entangled quantum states. Here, we identify and experimentally test three premises central to these envariance-based derivations, thus demonstrating, in the microworld, the symmetries from which the Born rule is derived. Furthermore, we demonstrate envariance in a purely local quantum system, showing its independence from relativistic causality.
Quantum probabilities from quantum entanglement: experimentally unpacking the Born rule
Harris, Jérémie; Bouchard, Frédéric; Santamato, Enrico; ...
2016-05-11
The Born rule, a foundational axiom used to deduce probabilities of events from wavefunctions, is indispensable in the everyday practice of quantum physics. It is also key in the quest to reconcile the ostensibly inconsistent laws of the quantum and classical realms, as it confers physical significance to reduced density matrices, the essential tools of decoherence theory. Following Bohr's Copenhagen interpretation, textbooks postulate the Born rule outright. But, recent attempts to derive it from other quantum principles have been successful, holding promise for simplifying and clarifying the quantum foundational bedrock. Moreover, a major family of derivations is based on envariance,more » a recently discovered symmetry of entangled quantum states. Here, we identify and experimentally test three premises central to these envariance-based derivations, thus demonstrating, in the microworld, the symmetries from which the Born rule is derived. Furthermore, we demonstrate envariance in a purely local quantum system, showing its independence from relativistic causality.« less
Quantum probabilities from quantum entanglement: experimentally unpacking the Born rule
NASA Astrophysics Data System (ADS)
Harris, Jérémie; Bouchard, Frédéric; Santamato, Enrico; Zurek, Wojciech H.; Boyd, Robert W.; Karimi, Ebrahim
2016-05-01
The Born rule, a foundational axiom used to deduce probabilities of events from wavefunctions, is indispensable in the everyday practice of quantum physics. It is also key in the quest to reconcile the ostensibly inconsistent laws of the quantum and classical realms, as it confers physical significance to reduced density matrices, the essential tools of decoherence theory. Following Bohr’s Copenhagen interpretation, textbooks postulate the Born rule outright. However, recent attempts to derive it from other quantum principles have been successful, holding promise for simplifying and clarifying the quantum foundational bedrock. A major family of derivations is based on envariance, a recently discovered symmetry of entangled quantum states. Here, we identify and experimentally test three premises central to these envariance-based derivations, thus demonstrating, in the microworld, the symmetries from which the Born rule is derived. Further, we demonstrate envariance in a purely local quantum system, showing its independence from relativistic causality.
Quantum electron transport in magnetically entangled subbands
NASA Astrophysics Data System (ADS)
Mayer, William; Vitkalov, Sergey; Bykov, A. A.
2017-07-01
Transport properties of highly mobile two-dimensional (2D) electrons in symmetric GaAs quantum wells with two populated subbands placed in tilted magnetic fields are studied at high temperatures. Quantum positive magnetoresistance (QPMR) and magneto-intersubband resistance oscillations (MISO) are observed in quantizing magnetic fields, B⊥, applied perpendicular to the 2D layer. QPMR displays contributions from electrons with considerably different quantum lifetimes, τq(1 ,2 ), confirming the presence of two subbands in the studied system. MISO evolution with B⊥ agrees with the obtained quantum scattering times only if an additional reduction of the MISO magnitude is applied at small magnetic fields. This indicates the presence of a yet unknown mechanism leading to MISO damping. Application of an in-plane magnetic field produces a strong decrease of both QPMR and MISO magnitude. The reduction of QPMR is explained by spin splitting of Landau levels indicating a g factor, g ≈0.4 , which is considerably less than the g factor found in GaAs quantum well with a single subband populated. In contrast to QPMR, the decrease of MISO magnitude is largely related to the in-plane magnetic field induced entanglement between quantum levels in different subbands that, in addition, increases the MISO period.
Engineering Dissipation to Generate Entanglement Between Remote Superconducting Quantum Bits
NASA Astrophysics Data System (ADS)
Schwartz, Mollie Elisheva
Superconducting quantum circuits provide a promising avenue for scalable quantum computation and simulation. Their chief advantage is that, unlike physical atoms or electrons, these ''artificial atoms'' can be designed with nearly-arbitrarily large coupling to one another and to their electromagnetic environment. This strong coupling allows for fast quantum bit (qubit) operations, and for efficient readout. However, strong coupling comes at a price: a qubit that is strongly coupled to its environment is also strongly susceptible to losses and dissipation, as coherent information leaks from the quantum system under study into inaccessible ''bath'' modes. Extensive work in the field is dedicated to engineering away these losses to the extent possible, and to using error correction to undo the effects of losses that are unavoidable. This dissertation explores an alternate approach to dissipation: we study avenues by which dissipation itself can be used to generate, rather than destroy, quantum resources. We do so specifically in the context of quantum entanglement, one of the most important and most counter-intuitive aspects of quantum mechanics. Entanglement generation and stabilization is critical to most non-trivial implementations of quantum computing and quantum simulation, as it is the property that distinguishes a multi-qubit quantum system from a string of classical bits. The ability to harness dissipation to generate, purify, and stabilize entanglement is therefore highly desirable. We begin with an overview of quantum dissipation and measurement, followed by an introduction to entanglement and to the superconducting quantum information architecture. We then discuss three sets of experiments that highlight and explore the powerful uses of dissipation in quantum systems. First, we use an entangling measurement to probabilistically generate entanglement between two qubits separated by more than one meter of ordinary cable. This represents the first achievement
Entanglement of single-atom quantum bits at a distance
NASA Astrophysics Data System (ADS)
Moehring, D. L.; Maunz, P.; Olmschenk, S.; Younge, K. C.; Matsukevich, D. N.; Duan, L.-M.; Monroe, C.
2007-09-01
Quantum information science involves the storage, manipulation and communication of information encoded in quantum systems, where the phenomena of superposition and entanglement can provide enhancements over what is possible classically. Large-scale quantum information processors require stable and addressable quantum memories, usually in the form of fixed quantum bits (qubits), and a means of transferring and entangling the quantum information between memories that may be separated by macroscopic or even geographic distances. Atomic systems are excellent quantum memories, because appropriate internal electronic states can coherently store qubits over very long timescales. Photons, on the other hand, are the natural platform for the distribution of quantum information between remote qubits, given their ability to traverse large distances with little perturbation. Recently, there has been considerable progress in coupling small samples of atomic gases through photonic channels, including the entanglement between light and atoms and the observation of entanglement signatures between remotely located atomic ensembles. In contrast to atomic ensembles, single-atom quantum memories allow the implementation of conditional quantum gates through photonic channels, a key requirement for quantum computing. Along these lines, individual atoms have been coupled to photons in cavities, and trapped atoms have been linked to emitted photons in free space. Here we demonstrate the entanglement of two fixed single-atom quantum memories separated by one metre. Two remotely located trapped atomic ions each emit a single photon, and the interference and detection of these photons signals the entanglement of the atomic qubits. We characterize the entangled pair by directly measuring qubit correlations with near-perfect detection efficiency. Although this entanglement method is probabilistic, it is still in principle useful for subsequent quantum operations and scalable quantum
Distilling quantum entanglement via mode-matched filtering
Huang Yuping; Kumar, Prem
2011-09-15
We propose an avenue toward distillation of quantum entanglement that is implemented by directly passing the entangled qubits through a mode-matched filter. This approach can be applied to a common class of entanglement impurities appearing in photonic systems, where the impurities inherently occupy different spatiotemporal modes than the entangled qubits. As a specific application, we show that our method can be used to significantly purify the telecom-band entanglement generated via the Kerr nonlinearity in single-mode fibers where a substantial amount of Raman-scattering noise is concomitantly produced.
Quantum Phase Transition and Entanglement in Topological Quantum Wires.
Cho, Jaeyoon; Kim, Kun Woo
2017-06-05
We investigate the quantum phase transition of the Su-Schrieffer-Heeger (SSH) model by inspecting the two-site entanglements in the ground state. It is shown that the topological phase transition of the SSH model is signified by a nonanalyticity of local entanglement, which becomes discontinuous for finite even system sizes, and that this nonanalyticity has a topological origin. Such a peculiar singularity has a universal nature in one-dimensional topological phase transitions of noninteracting fermions. We make this clearer by pointing out that an analogous quantity in the Kitaev chain exhibiting the identical nonanalyticity is the local electron density. As a byproduct, we show that there exists a different type of phase transition, whereby the pattern of the two-site entanglements undergoes a sudden change. This transition is characterised solely by quantum information theory and does not accompany the closure of the spectral gap. We analyse the scaling behaviours of the entanglement in the vicinities of the transition points.
Entanglement and quantum teleportation with multi-atom ensembles.
Polzik, E S; Julsgaard, B; Sherson, J; Sørensen, J L
2003-07-15
Atomic ensembles containing a large number of atoms have been proved to be an effective medium for quantum-state (quantum information) engineering and processing via their coupling with multi-photon light pulses. The general mechanism of this coupling, which involves continuous quantum variables for light and atoms, is described. The efficient quantum interface between light and atoms has led to the recent demonstration of an entangled state of two macroscopic atomic objects, more precisely two caesium gas samples. Based on this result, a proposal for teleportation of an entangled state of two atomic samples (entanglement swapping) is presented.
Experimental Quantum Randomness Processing Using Superconducting Qubits.
Yuan, Xiao; Liu, Ke; Xu, Yuan; Wang, Weiting; Ma, Yuwei; Zhang, Fang; Yan, Zhaopeng; Vijay, R; Sun, Luyan; Ma, Xiongfeng
2016-07-01
Coherently manipulating multipartite quantum correlations leads to remarkable advantages in quantum information processing. A fundamental question is whether such quantum advantages persist only by exploiting multipartite correlations, such as entanglement. Recently, Dale, Jennings, and Rudolph negated the question by showing that a randomness processing, quantum Bernoulli factory, using quantum coherence, is strictly more powerful than the one with classical mechanics. In this Letter, focusing on the same scenario, we propose a theoretical protocol that is classically impossible but can be implemented solely using quantum coherence without entanglement. We demonstrate the protocol by exploiting the high-fidelity quantum state preparation and measurement with a superconducting qubit in the circuit quantum electrodynamics architecture and a nearly quantum-limited parametric amplifier. Our experiment shows the advantage of using quantum coherence of a single qubit for information processing even when multipartite correlation is not present.
Experimental Quantum Randomness Processing Using Superconducting Qubits
NASA Astrophysics Data System (ADS)
Yuan, Xiao; Liu, Ke; Xu, Yuan; Wang, Weiting; Ma, Yuwei; Zhang, Fang; Yan, Zhaopeng; Vijay, R.; Sun, Luyan; Ma, Xiongfeng
2016-07-01
Coherently manipulating multipartite quantum correlations leads to remarkable advantages in quantum information processing. A fundamental question is whether such quantum advantages persist only by exploiting multipartite correlations, such as entanglement. Recently, Dale, Jennings, and Rudolph negated the question by showing that a randomness processing, quantum Bernoulli factory, using quantum coherence, is strictly more powerful than the one with classical mechanics. In this Letter, focusing on the same scenario, we propose a theoretical protocol that is classically impossible but can be implemented solely using quantum coherence without entanglement. We demonstrate the protocol by exploiting the high-fidelity quantum state preparation and measurement with a superconducting qubit in the circuit quantum electrodynamics architecture and a nearly quantum-limited parametric amplifier. Our experiment shows the advantage of using quantum coherence of a single qubit for information processing even when multipartite correlation is not present.
Cosmological implications of quantum entanglement in the multiverse
NASA Astrophysics Data System (ADS)
Kanno, Sugumi
2015-12-01
We explore the cosmological implications of quantum entanglement between two causally disconnected universes in the multiverse. We first consider two causally separated de Sitter spaces with a state which is initially entangled. We derive the reduced density matrix of our universe and compute the spectrum of vacuum fluctuations. We then consider the same system with an initially non-entangled state. We find that due to quantum interference scale dependent modulations may enter the spectrum for the case of initially non-entangled state. This gives rise to the possibility that the existence of causally disconnected universes may be experimentally tested by analyzing correlators in detail.
Quantum imaging and spatial entanglement characterization with an EMCCD camera
NASA Astrophysics Data System (ADS)
Reichert, Matthew; Defienne, Hugo; Sun, Xiaohang; Fleischer, Jason W.
2017-05-01
We utilize a single-photon sensitive electron multiplying CCD camera as a massively parallel coincidence counting apparatus to study spatial entanglement of photon pairs. This allows rapid measurement of transverse spatial entanglement in a fraction of the time required with traditional point-scanning techniques. We apply this technique to quantum experiments on entangled photon pairs: characterization of the evolution of entanglement upon propagation, and measurement of one- and two-photon portions of the state transmitted through non-unitary (lossy) objects, and quantum phase imaging.
NASA Astrophysics Data System (ADS)
Wang, He; Zhang, Yu Qing; Liu, Xue Feng; Hu, Yu Pu
2016-06-01
We propose a novel quantum dialogue protocol by using the generalized Bell states and entanglement swapping. In the protocol, a sequence of ordered two-qutrit entangled states acts as quantum information channel for exchanging secret messages directly and simultaneously. Besides, a secret key string is shared between the communicants to overcome information leakage. Different from those previous information leakage-resistant quantum dialogue protocols, the particles, composed of one of each pair of entangled states, are transmitted only one time in the proposed protocol. Security analysis shows that our protocol can overcome information leakage and resist several well-known attacks. Moreover, the efficiency of our scheme is acceptable.
Self-healing of quantum entanglement after an obstruction
NASA Astrophysics Data System (ADS)
McLaren, Melanie; Mhlanga, Thandeka; Padgett, Miles J.; Roux, Filippus S.; Forbes, Andrew
2014-02-01
Quantum entanglement between photon pairs is fragile and can easily be masked by losses in transmission path and noise in the detection system. When observing the quantum entanglement between the spatial states of photon pairs produced by parametric down-conversion, the presence of an obstruction introduces losses that can mask the correlations associated with the entanglement. Here we show that we can overcome these losses by measuring in the Bessel basis, thus once again revealing the entanglement after propagation beyond the obstruction. We confirm that, for the entanglement of orbital angular momentum, measurement in the Bessel basis is more robust to these losses than measuring in the usually employed Laguerre-Gaussian basis. Our results show that appropriate choice of measurement basis can overcome some limitations of the transmission path, perhaps offering advantages in free-space quantum communication or quantum processing systems.
Quantum memory, entanglement and sensing with room temperature atoms
NASA Astrophysics Data System (ADS)
Jensen, K.; Wasilewski, W.; Krauter, H.; Fernholz, T.; Nielsen, B. M.; Petersen, J. M.; Renema, J. J.; Balabas, M. V.; Owari, M.; Plenio, M. B.; Serafini, A.; Wolf, M. M.; Muschik, C. A.; Cirac, J. I.; Müller, J. H.; Polzik, E. S.
2011-01-01
Room temperature atomic ensembles in a spin-protected environment are useful systems both for quantum information science and metrology. Here we utilize a setup consisting of two atomic ensembles as a memory for quantum information initially encoded in the polarization state of two entangled light modes. We also use the ensembles as a radio frequency entanglement-assisted magnetometer with projection noise limited sensitivity below femtoTesla/. The performance of the quantum memory as well as the magnetometer was improved by spin-squeezed or entangled atomic states generated by quantum non demolition measurements. Finally, we present preliminary results of long lived entangled atomic states generated by dissipation. With the method presented, one should be able to generate an entangled steady state.
Self-healing of quantum entanglement after an obstruction.
McLaren, Melanie; Mhlanga, Thandeka; Padgett, Miles J; Roux, Filippus S; Forbes, Andrew
2014-01-01
Quantum entanglement between photon pairs is fragile and can easily be masked by losses in transmission path and noise in the detection system. When observing the quantum entanglement between the spatial states of photon pairs produced by parametric down-conversion, the presence of an obstruction introduces losses that can mask the correlations associated with the entanglement. Here we show that we can overcome these losses by measuring in the Bessel basis, thus once again revealing the entanglement after propagation beyond the obstruction. We confirm that, for the entanglement of orbital angular momentum, measurement in the Bessel basis is more robust to these losses than measuring in the usually employed Laguerre-Gaussian basis. Our results show that appropriate choice of measurement basis can overcome some limitations of the transmission path, perhaps offering advantages in free-space quantum communication or quantum processing systems.
Li Zhenni; Jin Jiasen; Yu Changshui
2011-01-15
We present schemes for a type of one-parameter bipartite quantum state to probe quantum entanglement, quantum discord, the classical correlation, and the quantum state based on cavity QED. It is shown that our detection does not influence all these measured quantities. We also discuss how the spontaneous emission introduced by our probe atom influences our detection.
Time-bin entangled photons from a quantum dot
Jayakumar, Harishankar; Predojević, Ana; Kauten, Thomas; Huber, Tobias; Solomon, Glenn S.; Weihs, Gregor
2014-01-01
Long distance quantum communication is one of the prime goals in the field of quantum information science. With information encoded in the quantum state of photons, existing telecommunication fibre networks can be effectively used as a transport medium. To achieve this goal, a source of robust entangled single photon pairs is required. Here, we report the realization of a source of time-bin entangled photon pairs utilizing the biexciton-exciton cascade in a III/V self-assembled quantum dot. We analyse the generated photon pairs by an inherently phase-stable interferometry technique, facilitating uninterrupted long integration times. We confirm the entanglement by performing quantum state tomography of the emitted photons, which yields a fidelity of 0.69(3) and a concurrence of 0.41(6) for our realization of time-energy entanglement from a single quantum emitter. PMID:24968024
Entanglement and deterministic quantum computing with one qubit
NASA Astrophysics Data System (ADS)
Boyer, Michel; Brodutch, Aharon; Mor, Tal
2017-02-01
The role of entanglement and quantum correlations in complex physical systems and quantum information processing devices has become a topic of intense study in the past two decades. In this work we present tools for learning about entanglement and quantum correlations in dynamical systems where the quantum states are mixed and the eigenvalue spectrum is highly degenerate. We apply these results to the deterministic quantum computing with one qubit (DQC1) computation model and show that the states generated in a DQC1 circuit have an eigenvalue structure that makes them difficult to entangle, even when they are relatively far from the completely mixed state. Our results strengthen the conjecture that it may be possible to find quantum algorithms that do not generate entanglement and yet still have an exponential advantage over their classical counterparts.
Dynamics of Quantum Matter with Long-Range Entanglement
2013-06-07
REPORT Final Report: Dynamics of quantum matter with long-range entanglement. 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Recent experiments on...ultracold atoms in optical lattices have opened a remarkable new window on the dynamics of quantum matter with long-range entanglement. The simplest...paradigm of this is the boson superfluid-insulator quantum phase transition in two spatial dimensions. This project will study the theoretical
Quantum Fisher information, quantum entanglement and correlation close to quantum critical phenomena
NASA Astrophysics Data System (ADS)
Liu, Cheng-cheng; Wang, Dong; Sun, Wen-yang; Ye, Liu
2017-09-01
In this paper, we investigate the quantum Fisher information (QFI), quantum entanglement, quantum correlation and quantum phase transition (QPT) within the one-dimensional transverse Ising model by exploiting quantum renormalization-group method. The results show that quantum Fisher information, quantum entanglement, quantum correlation can evolve to two saturated values which exhibit QPT at the critical point after several iterations of the renormalization. Meanwhile, we find quantum entanglement or correlation can be detected perfectly by means of quantum Fisher information. Besides, it cannot capture any information about the system in the paramagnetic phase in view of quantum entanglement and correlation. Contrarily, it is evident the QFI is always nonzero even if the system is in the paramagnetic phase, i.e., the QFI can also be utilized as a highly favorable measure of quantum information in a broad of quantum spin systems. Furthermore, we disclose the nonanalytic and scaling behaviors of quantum Fisher information, which can be taken as a representation of quantum critical characterism.
Experimental nonlocality proof of quantum teleportation and entanglement swapping.
Jennewein, Thomas; Weihs, Gregor; Pan, Jian-Wei; Zeilinger, Anton
2002-01-07
Quantum teleportation strikingly underlines the peculiar features of the quantum world. We present an experimental proof of its quantum nature, teleporting an entangled photon with such high quality that the nonlocal quantum correlations with its original partner photon are preserved. This procedure is also known as entanglement swapping. The nonlocality is confirmed by observing a violation of Bell's inequality by 4.5 standard deviations. Thus, by demonstrating quantum nonlocality for photons that never interacted, our results directly confirm the quantum nature of teleportation.
Entanglement of a quantum field with a dispersive medium.
Klich, Israel
2012-08-10
In this Letter we study the entanglement of a quantum radiation field interacting with a dielectric medium. In particular, we describe the quantum mixed state of a field interacting with a dielectric through plasma and Drude models and show that these generate very different entanglement behavior, as manifested in the entanglement entropy of the field. We also present a formula for a "Casimir" entanglement entropy, i.e., the distance dependence of the field entropy. Finally, we study a toy model of the interaction between two plates. In this model, the field entanglement entropy is divergent; however, as in the Casimir effect, its distance-dependent part is finite, and the field matter entanglement is reduced when the objects are far.
Entanglement and thermodynamics after a quantum quench in integrable systems.
Alba, Vincenzo; Calabrese, Pasquale
2017-07-25
Entanglement and entropy are key concepts standing at the foundations of quantum and statistical mechanics. Recently, the study of quantum quenches revealed that these concepts are intricately intertwined. Although the unitary time evolution ensuing from a pure state maintains the system at zero entropy, local properties at long times are captured by a statistical ensemble with nonzero thermodynamic entropy, which is the entanglement accumulated during the dynamics. Therefore, understanding the entanglement evolution unveils how thermodynamics emerges in isolated systems. Alas, an exact computation of the entanglement dynamics was available so far only for noninteracting systems, whereas it was deemed unfeasible for interacting ones. Here, we show that the standard quasiparticle picture of the entanglement evolution, complemented with integrability-based knowledge of the steady state and its excitations, leads to a complete understanding of the entanglement dynamics in the space-time scaling limit. We thoroughly check our result for the paradigmatic Heisenberg chain.
Relating the Resource Theories of Entanglement and Quantum Coherence.
Chitambar, Eric; Hsieh, Min-Hsiu
2016-07-08
Quantum coherence and quantum entanglement represent two fundamental features of nonclassical systems that can each be characterized within an operational resource theory. In this Letter, we unify the resource theories of entanglement and coherence by studying their combined behavior in the operational setting of local incoherent operations and classical communication (LIOCC). Specifically, we analyze the coherence and entanglement trade-offs in the tasks of state formation and resource distillation. For pure states we identify the minimum coherence-entanglement resources needed to generate a given state, and we introduce a new LIOCC monotone that completely characterizes a state's optimal rate of bipartite coherence distillation. This result allows us to precisely quantify the difference in operational powers between global incoherent operations, LIOCC, and local incoherent operations without classical communication. Finally, a bipartite mixed state is shown to have distillable entanglement if and only if entanglement can be distilled by LIOCC, and we strengthen the well-known Horodecki criterion for distillability.
Entanglement in Nonunitary Quantum Critical Spin Chains
NASA Astrophysics Data System (ADS)
Couvreur, Romain; Jacobsen, Jesper Lykke; Saleur, Hubert
2017-07-01
Entanglement entropy has proven invaluable to our understanding of quantum criticality. It is natural to try to extend the concept to "nonunitary quantum mechanics," which has seen growing interest from areas as diverse as open quantum systems, noninteracting electronic disordered systems, or nonunitary conformal field theory (CFT). We propose and investigate such an extension here, by focusing on the case of one-dimensional quantum group symmetric or supergroup symmetric spin chains. We show that the consideration of left and right eigenstates combined with appropriate definitions of the trace leads to a natural definition of Rényi entropies in a large variety of models. We interpret this definition geometrically in terms of related loop models and calculate the corresponding scaling in the conformal case. This allows us to distinguish the role of the central charge and effective central charge in rational minimal models of CFT, and to define an effective central charge in other, less well-understood cases. The example of the s l (2 |1 ) alternating spin chain for percolation is discussed in detail.
Quantum coherence and entanglement in the avian compass.
Pauls, James A; Zhang, Yiteng; Berman, Gennady P; Kais, Sabre
2013-06-01
The radical-pair mechanism is one of two distinct mechanisms used to explain the navigation of birds in geomagnetic fields, however little research has been done to explore the role of quantum entanglement in this mechanism. In this paper we study the lifetime of radical-pair entanglement corresponding to the magnitude and direction of magnetic fields to show that the entanglement lasts long enough in birds to be used for navigation. We also find that the birds appear to not be able to orient themselves directly based on radical-pair entanglement due to a lack of orientation sensitivity of the entanglement in the geomagnetic field. To explore the entanglement mechanism further, we propose a model in which the hyperfine interactions are replaced by local magnetic fields of similar strength. The entanglement of the radical pair in this model lasts longer and displays an angular sensitivity in weak magnetic fields, both of which are not present in previous models.
Quantum entanglement in two-electron atomic models
NASA Astrophysics Data System (ADS)
Manzano, D.; Plastino, A. R.; Dehesa, J. S.; Koga, T.
2010-07-01
We explore the main entanglement properties exhibited by the eigenfunctions of two exactly soluble two-electron models, the Crandall atom and the Hooke atom, and compare them with the entanglement features of helium-like systems. We compute the amount of entanglement associated with the wavefunctions corresponding to the fundamental and first few excited states of these models. We investigate the dependence of the entanglement on the parameters of the models and on the quantum numbers of the eigenstates. It is found that the amount of entanglement of the system tends to increase with energy in both models. In addition, we study the entanglement of a few states of helium-like systems, which we compute using high-quality Kinoshita-like eigenfunctions. The dependence of the entanglement of helium-like atoms on the nuclear charge and on energy is found to be consistent with the trends observed in the previous two model systems.
Qasimi, Asma Al-; James, Daniel F. V.
2011-03-15
Measurements of quantum systems disturb their states. To quantify this nonclassical characteristic, Zurek and Ollivier [Phys. Rev. Lett. 88, 017901 (2001)] introduced the quantum discord, a quantum correlation that can be nonzero even when entanglement in the system is zero. Discord has aroused great interest as a resource that is more robust against the effects of decoherence and offers the exponential speed-up of certain computational algorithms. Here, we study general two-level bipartite systems and give general results on the relationship between discord, entanglement, and linear entropy. We also identify the states for which discord takes a maximal value for a given entropy or entanglement, thus placing strong bounds on entanglement-discord and entropy-discord relations. We find out that although discord and entanglement are identical for pure states, they differ when generalized to mixed states as a result of the difference in the method of generalization.
NASA Astrophysics Data System (ADS)
Viennot, David; Aubourg, Lucile
2016-02-01
We study a theoretical model of closed quasi-hermitian chain of spins which exhibits quantum analogues of chimera states, i.e. long life classical states for which a part of an oscillator chain presents an ordered dynamics whereas another part presents a disordered dynamics. For the quantum analogue, the chimera behaviour deals with the entanglement between the spins of the chain. We discuss the entanglement properties, quantum chaos, quantum disorder and semi-classical similarity of our quantum chimera system. The quantum chimera concept is novel and induces new perspectives concerning the entanglement of multipartite systems.
Macroscopic entanglement in many-particle quantum states
NASA Astrophysics Data System (ADS)
Tichy, Malte C.; Park, Chae-Yeun; Kang, Minsu; Jeong, Hyunseok; Mølmer, Klaus
2016-04-01
We elucidate the relationship between Schrödinger-cat-like macroscopicity and geometric entanglement and argue that these quantities are not interchangeable. While both properties are lost due to decoherence, we show that macroscopicity is rare in uniform and in so-called random physical ensembles of pure quantum states, despite possibly large geometric entanglement. In contrast, permutation-symmetric pure states feature rather low geometric entanglement and strong and robust macroscopicity.
Quantum phase gate and controlled entanglement with polar molecules
Charron, Eric; Keller, Arne; Atabek, Osman; Milman, Perola
2007-03-15
We propose an alternative scenario for the generation of entanglement between rotational quantum states of two polar molecules. This entanglement arises from dipole-dipole interaction, and is controlled by a sequence of laser pulses simultaneously exciting both molecules. We study the efficiency of the process, and discuss possible experimental implementations with cold molecules trapped in optical lattices or in solid matrices. Finally, various entanglement detection procedures are presented, and their suitability for these two physical situations is analyzed.
Exciton absorption of entangled photons in semiconductor quantum wells
NASA Astrophysics Data System (ADS)
Rodriguez, Ferney; Guzman, David; Salazar, Luis; Quiroga, Luis; Condensed Matter Physics Group Team
2013-03-01
The dependence of the excitonic two-photon absorption on the quantum correlations (entanglement) of exciting biphotons by a semiconductor quantum well is studied. We show that entangled photon absorption can display very unusual features depending on space-time-polarization biphoton parameters and absorber density of states for both bound exciton states as well as for unbound electron-hole pairs. We report on the connection between biphoton entanglement, as quantified by the Schmidt number, and absorption by a semiconductor quantum well. Comparison between frequency-anti-correlated, unentangled and frequency-correlated biphoton absorption is addressed. We found that exciton oscillator strengths are highly increased when photons arrive almost simultaneously in an entangled state. Two-photon-absorption becomes a highly sensitive probe of photon quantum correlations when narrow semiconductor quantum wells are used as two-photon absorbers. Research funds from Facultad de Ciencias, Universidad de los Andes
Remote Entanglement by Coherent Multiplication of Concurrent Quantum Signals.
Roy, Ananda; Jiang, Liang; Stone, A Douglas; Devoret, Michel
2015-10-09
Concurrent remote entanglement of distant, noninteracting quantum entities is a crucial function for quantum information processing. In contrast with the existing protocols which employ the addition of signals to generate entanglement between two remote qubits, the continuous variable protocol we present is based on the multiplication of signals. This protocol can be straightforwardly implemented by a novel Josephson junction mixing circuit. Our scheme would be able to generate provable entanglement even in the presence of practical imperfections: finite quantum efficiency of detectors and undesired photon loss in current state-of-the-art devices.
Non-equilibrium quantum phase transition via entanglement decoherence dynamics
Lin, Yu-Chen; Yang, Pei-Yun; Zhang, Wei-Min
2016-01-01
We investigate the decoherence dynamics of continuous variable entanglement as the system-environment coupling strength varies from the weak-coupling to the strong-coupling regimes. Due to the existence of localized modes in the strong-coupling regime, the system cannot approach equilibrium with its environment, which induces a nonequilibrium quantum phase transition. We analytically solve the entanglement decoherence dynamics for an arbitrary spectral density. The nonequilibrium quantum phase transition is demonstrated as the system-environment coupling strength varies for all the Ohmic-type spectral densities. The 3-D entanglement quantum phase diagram is obtained. PMID:27713556
Non-equilibrium quantum phase transition via entanglement decoherence dynamics.
Lin, Yu-Chen; Yang, Pei-Yun; Zhang, Wei-Min
2016-10-07
We investigate the decoherence dynamics of continuous variable entanglement as the system-environment coupling strength varies from the weak-coupling to the strong-coupling regimes. Due to the existence of localized modes in the strong-coupling regime, the system cannot approach equilibrium with its environment, which induces a nonequilibrium quantum phase transition. We analytically solve the entanglement decoherence dynamics for an arbitrary spectral density. The nonequilibrium quantum phase transition is demonstrated as the system-environment coupling strength varies for all the Ohmic-type spectral densities. The 3-D entanglement quantum phase diagram is obtained.
Natural Mode Entanglement as a Resource for Quantum Communication
Heaney, Libby; Vedral, Vlatko
2009-11-13
Natural particle-number entanglement resides between spatial modes in coherent ultracold atomic gases. However, operations on the modes are restricted by a superselection rule that forbids coherent superpositions of different particle numbers. This seemingly prevents mode entanglement being used as a resource for quantum communication. In this Letter, we demonstrate that mode entanglement of a single massive particle can be used for dense coding and quantum teleportation despite the superselection rule. In particular, we provide schemes where the dense coding linear photonic channel capacity is reached without a shared reservoir and where the full quantum channel capacity is achieved if both parties share a coherent particle reservoir.
Novel quantum phase transition from bounded to extensive entanglement.
Zhang, Zhao; Ahmadain, Amr; Klich, Israel
2017-05-16
The nature of entanglement in many-body systems is a focus of intense research with the observation that entanglement holds interesting information about quantum correlations in large systems and their relation to phase transitions. In particular, it is well known that although generic, many-body states have large, extensive entropy, ground states of reasonable local Hamiltonians carry much smaller entropy, often associated with the boundary length through the so-called area law. Here we introduce a continuous family of frustration-free Hamiltonians with exactly solvable ground states and uncover a remarkable quantum phase transition whereby the entanglement scaling changes from area law into extensively large entropy. This transition shows that entanglement in many-body systems may be enhanced under special circumstances with a potential for generating "useful" entanglement for the purpose of quantum computing and that the full implications of locality and its restrictions on possible ground states may hold further surprises.
Quantum entanglement produced in the formation of a black hole
Martin-Martinez, Eduardo; Leon, Juan; Garay, Luis J.
2010-09-15
A field in the vacuum state, which is in principle separable, can evolve to an entangled state in a dynamical gravitational collapse. We will study, quantify, and discuss the origin of this entanglement, showing that it could even reach the maximal entanglement limit for low frequencies or very small black holes, with consequences in micro-black hole formation and the final stages of evaporating black holes. This entanglement provides quantum information resources between the modes in the asymptotic future (thermal Hawking radiation) and those which fall to the event horizon. We will also show that fermions are more sensitive than bosons to this quantum entanglement generation. This fact could be helpful in finding experimental evidence of the genuine quantum Hawking effect in analog models.
Novel quantum phase transition from bounded to extensive entanglement
NASA Astrophysics Data System (ADS)
Zhang, Zhao; Ahmadain, Amr; Klich, Israel
2017-05-01
The nature of entanglement in many-body systems is a focus of intense research with the observation that entanglement holds interesting information about quantum correlations in large systems and their relation to phase transitions. In particular, it is well known that although generic, many-body states have large, extensive entropy, ground states of reasonable local Hamiltonians carry much smaller entropy, often associated with the boundary length through the so-called area law. Here we introduce a continuous family of frustration-free Hamiltonians with exactly solvable ground states and uncover a remarkable quantum phase transition whereby the entanglement scaling changes from area law into extensively large entropy. This transition shows that entanglement in many-body systems may be enhanced under special circumstances with a potential for generating “useful” entanglement for the purpose of quantum computing and that the full implications of locality and its restrictions on possible ground states may hold further surprises.
Haunted Quantum Entanglement: A New Scenario
NASA Astrophysics Data System (ADS)
Snyder, Douglas
2010-10-01
A haunted quantum entanglement scenario is proposed that is very close to Greenberger and YaSin's haunted measurement in that: 1) the entity that is developing as a which-way marker is effectively restored to its state prior to its developing as a which-way marker, and 2) the entity for which the developing which-way marker provides information enters the state it would have had if the development of the which-way marker had never begun. In the hqe scenario, the loss of developing which-way information through 1 relies on the loss of a developing entanglement. The photon initially emitted in one of two micromaser cavities and developing into a which-way marker is effectively lost through the injection of classical microwave radiation into both of the microwave cavities: 1) after the atom initially emits the photon into one of the micromaser cavities and exits the cavity system, and 2) before this atom reaches the 2 slit screen. The atom enters the state it would have had if the atom had never emitted the photon into one of the micromaser cavities because of the injection of classical microwave radiation into both of the microwave cavities and the presence of an rf coil situated at the exit of the micromaser cavity system.
Entanglement dynamics in critical random quantum Ising chain with perturbations
NASA Astrophysics Data System (ADS)
Huang, Yichen
2017-05-01
We simulate the entanglement dynamics in a critical random quantum Ising chain with generic perturbations using the time-evolving block decimation algorithm. Starting from a product state, we observe super-logarithmic growth of entanglement entropy with time. The numerical result is consistent with the analytical prediction of Vosk and Altman using a real-space renormalization group technique.
SU(4) Kondo entanglement in double quantum dot devices
NASA Astrophysics Data System (ADS)
Bonazzola, Rodrigo; Andrade, J. A.; Facio, Jorge I.; García, D. J.; Cornaglia, Pablo S.
2017-08-01
We analyze, from a quantum information theory perspective, the possibility of realizing an SU(4) entangled Kondo regime in semiconductor double quantum dot devices. We focus our analysis on the ground-state properties and consider the general experimental situation where the coupling parameters of the two quantum dots differ. We model each quantum dot with an Anderson-type Hamiltonian including an interdot Coulomb repulsion and tunnel couplings for each quantum dot to independent fermionic baths. We find that the spin and pseudospin entanglements can be made equal, and the SU(4) symmetry recovered, if the gate voltages are chosen in such a way that the average charge occupancies of the two quantum dots are equal, and the double occupancy on the double quantum dot is suppressed. We present density matrix renormalization group numerical results for the spin and pseudospin entanglement entropies, and analytical results for a simplified model that captures the main physics of the problem.
Quantum Entanglement: A Fundamental Concept Finding its Applications
NASA Astrophysics Data System (ADS)
Zeilinger, Anton
Entanglement, according to the Austrian physicist Erwin Schrödinger the Essence of Quantum Mechanics, has been known for a long time now to be the source of a number of paradoxical and counterintuitive phenomena. Of those the most remarkable one is usually called non-locality and it is at the heart of the Einstein-Podolsky-Rosen Paradox and of the fact that Quantum Mechanics violates Bell's inequalities. Recent years saw an emergence of novel ideas in entanglement of three or more particles. Most recently it turned out that entanglement is an important concept in the development of quantum communication, quantum cryptography and quantum computation. First explicit experimental realizations with two or more photons include quantum dense coding and quantum teleportation.
Tensor eigenvalues and entanglement of symmetric states
NASA Astrophysics Data System (ADS)
Bohnet-Waldraff, F.; Braun, D.; Giraud, O.
2016-10-01
Tensor eigenvalues and eigenvectors have been introduced in the recent mathematical literature as a generalization of the usual matrix eigenvalues and eigenvectors. We apply this formalism to a tensor that describes a multipartite symmetric state or a spin state, and we investigate to what extent the corresponding tensor eigenvalues contain information about the multipartite entanglement (or, equivalently, the quantumness) of the state. This extends previous results connecting entanglement to spectral properties related to the state. We show that if the smallest tensor eigenvalue is negative, the state is detected as entangled. While for spin-1 states the positivity of the smallest tensor eigenvalue is equivalent to separability, we show that for higher values of the angular momentum there is a correlation between entanglement and the value of the smallest tensor eigenvalue.
Classical synchronization indicates persistent entanglement in isolated quantum systems.
Witthaut, Dirk; Wimberger, Sandro; Burioni, Raffaella; Timme, Marc
2017-04-12
Synchronization and entanglement constitute fundamental collective phenomena in multi-unit classical and quantum systems, respectively, both equally implying coordinated system states. Here, we present a direct link for a class of isolated quantum many-body systems, demonstrating that synchronization emerges as an intrinsic system feature. Intriguingly, quantum coherence and entanglement arise persistently through the same transition as synchronization. This direct link between classical and quantum cooperative phenomena may further our understanding of strongly correlated quantum systems and can be readily observed in state-of-the-art experiments, for example, with ultracold atoms.
Classical synchronization indicates persistent entanglement in isolated quantum systems
NASA Astrophysics Data System (ADS)
Witthaut, Dirk; Wimberger, Sandro; Burioni, Raffaella; Timme, Marc
2017-04-01
Synchronization and entanglement constitute fundamental collective phenomena in multi-unit classical and quantum systems, respectively, both equally implying coordinated system states. Here, we present a direct link for a class of isolated quantum many-body systems, demonstrating that synchronization emerges as an intrinsic system feature. Intriguingly, quantum coherence and entanglement arise persistently through the same transition as synchronization. This direct link between classical and quantum cooperative phenomena may further our understanding of strongly correlated quantum systems and can be readily observed in state-of-the-art experiments, for example, with ultracold atoms.
Experimental generation of tripartite polarization entangled states of bright optical beams
Wu, Liang; Liu, Yanhong; Deng, Ruijie; Yan, Zhihui; Jia, Xiaojun Xie, Changde; Peng, Kunchi
2016-04-18
The multipartite polarization entangled states of bright optical beams directly associating with the spin states of atomic ensembles are one of the essential resources in the future quantum information networks, which can be conveniently utilized to transfer and convert quantum states across a network composed of many atomic nodes. In this letter, we present the experimental demonstration of tripartite polarization entanglement described by Stokes operators of optical field. The tripartite entangled states of light at the frequency resonant with D1 line of Rubidium atoms are transformed into the continuous variable polarization entanglement among three bright optical beams via an optical beam splitter network. The obtained entanglement is confirmed by the extended criterion for polarization entanglement of multipartite quantized optical modes.
Experimental generation of tripartite polarization entangled states of bright optical beams
NASA Astrophysics Data System (ADS)
Wu, Liang; Yan, Zhihui; Liu, Yanhong; Deng, Ruijie; Jia, Xiaojun; Xie, Changde; Peng, Kunchi
2016-04-01
The multipartite polarization entangled states of bright optical beams directly associating with the spin states of atomic ensembles are one of the essential resources in the future quantum information networks, which can be conveniently utilized to transfer and convert quantum states across a network composed of many atomic nodes. In this letter, we present the experimental demonstration of tripartite polarization entanglement described by Stokes operators of optical field. The tripartite entangled states of light at the frequency resonant with D1 line of Rubidium atoms are transformed into the continuous variable polarization entanglement among three bright optical beams via an optical beam splitter network. The obtained entanglement is confirmed by the extended criterion for polarization entanglement of multipartite quantized optical modes.
Quantum Discord Bounds the Amount of Distributed Entanglement
NASA Astrophysics Data System (ADS)
Piani, Marco; Kok Chuan, Tan; Maillard, Jean; Modi, Kavan; Paterek, Tomasz; Paternostro, Mauro
2013-03-01
The ability to distribute quantum entanglement is a prerequisite for many fundamental tests of quantum theory and numerous quantum information protocols. Two distant parties can increase the amount of entanglement between them by means of quantum communication encoded in a carrier that is sent from one party to the other. Intriguingly, entanglement can be increased even when the exchanged carrier is not entangled with the parties. However, in light of the defining property of entanglement stating that it cannot increase under classical communication, the carrier must be quantum. Here we show that, in general, the increase of relative entropy of entanglement between two remote parties is bounded by the amount of nonclassical correlations of the carrier with the parties as quantified by the relative entropy of discord. We study implications of this bound, provide new examples of entanglement distribution via unentangled states, and put further limits on this phenomenon. We thank the National Research Foundation and Ministry of Education in Singapore (T. K. Chuan, K. Modi, and T. Paterek), the John Templeton Foundation (K. Modi), the UK EPSRC (M. Paternostro), NSERC, CIFAR, and the Ontario Centres of Excellence (M. Piani)
Quantum Atomic Clock Synchronization: An Entangled Concept of Nonlocal Simultaneity
NASA Technical Reports Server (NTRS)
Abrams, D.; Dowling, J.; Williams, C.; Jozsa, R.
2000-01-01
We demonstrate that two spatially separated parties (Alice and Bob) can utilize shared prior quantum entanglement, as well as a classical information channel, to establish a synchronized pair of atomic clocks.
Nonlinear dynamics and quantum entanglement in optomechanical systems.
Wang, Guanglei; Huang, Liang; Lai, Ying-Cheng; Grebogi, Celso
2014-03-21
To search for and exploit quantum manifestations of classical nonlinear dynamics is one of the most fundamental problems in physics. Using optomechanical systems as a paradigm, we address this problem from the perspective of quantum entanglement. We uncover strong fingerprints in the quantum entanglement of two common types of classical nonlinear dynamical behaviors: periodic oscillations and quasiperiodic motion. There is a transition from the former to the latter as an experimentally adjustable parameter is changed through a critical value. Accompanying this process, except for a small region about the critical value, the degree of quantum entanglement shows a trend of continuous increase. The time evolution of the entanglement measure, e.g., logarithmic negativity, exhibits a strong dependence on the nature of classical nonlinear dynamics, constituting its signature.
Quantum Atomic Clock Synchronization: An Entangled Concept of Nonlocal Simultaneity
NASA Technical Reports Server (NTRS)
Abrams, D.; Dowling, J.; Williams, C.; Jozsa, R.
2000-01-01
We demonstrate that two spatially separated parties (Alice and Bob) can utilize shared prior quantum entanglement, as well as a classical information channel, to establish a synchronized pair of atomic clocks.
Entangling distant resonant exchange qubits via circuit quantum electrodynamics
NASA Astrophysics Data System (ADS)
Srinivasa, Vanita; Taylor, Jacob M.; Tahan, Charles
Enabling modularity within a quantum information processing device relies on robust entanglement of coherent qubits at macroscopic distances. To address this challenge, we investigate theoretically a hybrid quantum system consisting of spatially separated resonant exchange qubits, defined in three-electron semiconductor triple quantum dots, that are coupled via a superconducting transmission line resonator. By analyzing three specific approaches drawn from circuit quantum electrodynamics and Hartmann-Hahn double resonance techniques for implementing resonator-mediated two-qubit entangling gates in both dispersive and resonant regimes, we show that methods for entangling superconducting qubits map directly to resonant exchange qubits. We also calculate the rate of relaxation via phonons for resonant exchange qubits in silicon triple dots and show that such an implementation is particularly well-suited to achieving the strong coupling regime. Our approach combines the robustness of encoded spin qubits in silicon with the rapid and robust long-range entanglement provided by circuit QED systems.
Quantum Spin Baths Induced Transition of Decoherence and Entanglement
Chen Pochung; Lai Chengyan; Hung, J.-T.; Mou Chungyu
2008-11-07
We investigate the reduced dynamics of single or two qubits coupled to an interacting quantum spin bath modeled by a XXZ spin chain. By using the method of time-dependent density matrix renormalization group (t-DMRG), we evaluate nonperturbatively the induced decoherence and entanglement. We find that the behavior of both decoherence and entanglement strongly depend on the phase of the underlying spin bath. We show that spin baths can induce entanglement for an initially disentangled pair of qubits. We observe that entanglement sudden death only occurs in paramagnetic phase and discuss the effect of the coupling range.
NASA Astrophysics Data System (ADS)
Hong, Woo-Pyo; Jung, Young-Dae
2014-06-01
The influence of electron-exchange and quantum screening on the collisional entanglement fidelity for the elastic electron-ion collision is investigated in degenerate quantum plasmas. The effective Shukla-Eliasson potential and the partial wave method are used to obtain the collisional entanglement fidelity in quantum plasmas as a function of the electron-exchange parameter, Fermi energy, plasmon energy and collision energy. The results show that the quantum screening effect enhances the entanglement fidelity in quantum plasmas. However, it is found that the electron-exchange effect strongly suppresses the collisional entanglement fidelity. Hence, we have found that the influence of the electron-exchange reduces the transmission of quantum information in quantum plasmas. In addition, it is found that, although the entanglement fidelity decreases with an increase of the Fermi energy, it increases with increasing plasmon energy in degenerate quantum plasmas.
Efficient multiuser quantum cryptography network based on entanglement.
Xue, Peng; Wang, Kunkun; Wang, Xiaoping
2017-04-04
We present an efficient quantum key distribution protocol with a certain entangled state to solve a special cryptographic task. Also, we provide a proof of security of this protocol by generalizing the proof of modified of Lo-Chau scheme. Based on this two-user scheme, a quantum cryptography network protocol is proposed without any quantum memory.
Efficient multiuser quantum cryptography network based on entanglement
Xue, Peng; Wang, Kunkun; Wang, Xiaoping
2017-01-01
We present an efficient quantum key distribution protocol with a certain entangled state to solve a special cryptographic task. Also, we provide a proof of security of this protocol by generalizing the proof of modified of Lo-Chau scheme. Based on this two-user scheme, a quantum cryptography network protocol is proposed without any quantum memory. PMID:28374854
Preparing projected entangled pair states on a quantum computer.
Schwarz, Martin; Temme, Kristan; Verstraete, Frank
2012-03-16
We present a quantum algorithm to prepare injective projected entangled pair states (PEPS) on a quantum computer, a class of open tensor networks representing quantum states. The run time of our algorithm scales polynomially with the inverse of the minimum condition number of the PEPS projectors and, essentially, with the inverse of the spectral gap of the PEPS's parent Hamiltonian.
Efficient multiuser quantum cryptography network based on entanglement
NASA Astrophysics Data System (ADS)
Xue, Peng; Wang, Kunkun; Wang, Xiaoping
2017-04-01
We present an efficient quantum key distribution protocol with a certain entangled state to solve a special cryptographic task. Also, we provide a proof of security of this protocol by generalizing the proof of modified of Lo-Chau scheme. Based on this two-user scheme, a quantum cryptography network protocol is proposed without any quantum memory.
Optimal universal asymmetric covariant quantum cloning circuits for qubit entanglement manipulation
Szabo, Levente; Koniorczyk, Matyas; Adam, Peter; Janszky, Jozsef
2010-03-15
We consider the entanglement manipulation capabilities of the universal covariant quantum cloner or quantum processor circuit for quantum bits. We investigate its use for cloning a member of a bipartite or a genuine tripartite entangled state of quantum bits. We find that for bipartite pure entangled states a nontrivial behavior of concurrence appears, while for GHZ entangled states a possibility of the partial extraction of bipartite entanglement can be achieved.
Quantum entanglement for two qubits in a nonstationary cavity
NASA Astrophysics Data System (ADS)
Berman, Oleg L.; Kezerashvili, Roman Ya.; Lozovik, Yurii E.
2016-11-01
The quantum entanglement and the probability of the dynamical Lamb effect for two qubits caused by nonadiabatic fast change of the boundary conditions are studied. The conditional concurrence of the qubits for each fixed number of created photons in a nonstationary cavity is obtained as a measure of the dynamical quantum entanglement due to the dynamical Lamb effect. We discuss the physical realization of the dynamical Lamb effect, based on superconducting qubits.
Optimal estimation of parameters of an entangled quantum state
NASA Astrophysics Data System (ADS)
Virzì, S.; Avella, A.; Piacentini, F.; Gramegna, M.; Brida, G.; Degiovanni, I. P.; Genovese, M.
2017-05-01
Two-photon entangled quantum states are a fundamental tool for quantum information and quantum cryptography. A complete description of a generic quantum state is provided by its density matrix: the technique allowing experimental reconstruction of the density matrix is called quantum state tomography. Entangled states density matrix reconstruction requires a large number of measurements on many identical copies of the quantum state. An alternative way of certifying the amount of entanglement in two-photon states is represented by the estimation of specific parameters, e.g., negativity and concurrence. If we have a priori partial knowledge of our state, it’s possible to develop several estimators for these parameters that require lower amount of measurements with respect to full density matrix reconstruction. The aim of this work is to introduce and test different estimators for negativity and concurrence for a specific class of two-photon states.
Complementarity between entanglement-assisted and quantum distributed random access code
NASA Astrophysics Data System (ADS)
Hameedi, Alley; Saha, Debashis; Mironowicz, Piotr; Pawłowski, Marcin; Bourennane, Mohamed
2017-05-01
Collaborative communication tasks such as random access codes (RACs) employing quantum resources have manifested great potential in enhancing information processing capabilities beyond the classical limitations. The two quantum variants of RACs, namely, quantum random access code (QRAC) and the entanglement-assisted random access code (EARAC), have demonstrated equal prowess for a number of tasks. However, there do exist specific cases where one outperforms the other. In this article, we study a family of 3 →1 distributed RACs [J. Bowles, N. Brunner, and M. Pawłowski, Phys. Rev. A 92, 022351 (2015), 10.1103/PhysRevA.92.022351] and present its general construction of both the QRAC and the EARAC. We demonstrate that, depending on the function of inputs that is sought, if QRAC achieves the maximal success probability then EARAC fails to do so and vice versa. Moreover, a tripartite Bell-type inequality associated with the EARAC variants reveals the genuine multipartite nonlocality exhibited by our protocol. We conclude with an experimental realization of the 3 →1 distributed QRAC that achieves higher success probabilities than the maximum possible with EARACs for a number of tasks.
Quantum entanglement of local operators in conformal field theories.
Nozaki, Masahiro; Numasawa, Tokiro; Takayanagi, Tadashi
2014-03-21
We introduce a series of quantities which characterize a given local operator in any conformal field theory from the viewpoint of quantum entanglement. It is defined by the increased amount of (Rényi) entanglement entropy at late time for an excited state defined by acting the local operator on the vacuum. We consider a conformal field theory on an infinite space and take the subsystem in the definition of the entanglement entropy to be its half. We calculate these quantities for a free massless scalar field theory in two, four and six dimensions. We find that these results are interpreted in terms of quantum entanglement of a finite number of states, including Einstein-Podolsky-Rosen states. They agree with a heuristic picture of propagations of entangled particles.
Quantum Entanglement of Local Operators in Conformal Field Theories
NASA Astrophysics Data System (ADS)
Nozaki, Masahiro; Numasawa, Tokiro; Takayanagi, Tadashi
2014-03-01
We introduce a series of quantities which characterize a given local operator in any conformal field theory from the viewpoint of quantum entanglement. It is defined by the increased amount of (Rényi) entanglement entropy at late time for an excited state defined by acting the local operator on the vacuum. We consider a conformal field theory on an infinite space and take the subsystem in the definition of the entanglement entropy to be its half. We calculate these quantities for a free massless scalar field theory in two, four and six dimensions. We find that these results are interpreted in terms of quantum entanglement of a finite number of states, including Einstein-Podolsky-Rosen states. They agree with a heuristic picture of propagations of entangled particles.
Quantum frequency up-conversion of continuous variable entangled states
Liu, Wenyuan; Wang, Ning; Li, Zongyang; Li, Yongmin
2015-12-07
We demonstrate experimentally quantum frequency up-conversion of a continuous variable entangled optical field via sum-frequency-generation process. The two-color entangled state initially entangled at 806 and 1518 nm with an amplitude quadrature difference squeezing of 3.2 dB and phase quadrature sum squeezing of 3.1 dB is converted to a new entangled state at 530 and 1518 nm with the amplitude quadrature difference squeezing of 1.7 dB and phase quadrature sum squeezing of 1.8 dB. Our implementation enables the observation of entanglement between two light fields spanning approximately 1.5 octaves in optical frequency. The presented scheme is robust to the excess amplitude and phase noises of the pump field, making it a practical building block for quantum information processing and communication networks.
Quantum entanglement in topological phases on a torus
NASA Astrophysics Data System (ADS)
Luo, Zhu-Xi; Hu, Yu-Ting; Wu, Yong-Shi
2016-08-01
In this paper, we study the effect of nontrivial spatial topology on quantum entanglement by examining the degenerate ground states of a topologically ordered system on a torus. Using the string-net (fixed-point) wave function, we propose a general formula of the reduced density matrix when the system is partitioned into two cylinders. The cylindrical topology of the subsystems makes a significant difference in regard to entanglement: a global quantum number for the many-body states comes into play, together with a decomposition matrix M which describes how topological charges of the ground states decompose into boundary degrees of freedom. We obtain a general formula for entanglement entropy and generalize the concept of minimally entangled states to minimally entangled sectors. Concrete examples are demonstrated with data from both finite groups and modular tensor categories (i.e., Fibonacci, Ising, etc.), supported by numerical verification.
Collapse–revival of quantum discord and entanglement
Yan, Xue-Qun Zhang, Bo-Ying
2014-10-15
In this paper the correlations dynamics of two atoms in the case of a micromaser-type system is investigated. Our results predict certain quasi-periodic collapse and revival phenomena for quantum discord and entanglement when the field is in Fock state and the two atoms are initially in maximally mixed state, which is a special separable state. Our calculations also show that the oscillations of the time evolution of both quantum discord and entanglement are almost in phase and they both have similar evolution behavior in some time range. The fact reveals the consistency of quantum discord and entanglement in some dynamical aspects. - Highlights: • The correlations dynamics of two atoms in the case of a micromaser-type system is investigated. • A quasi-periodic collapse and revival phenomenon for quantum discord and entanglement is reported. • A phenomenon of correlations revivals different from that of non-Markovian dynamics is revealed. • The oscillations of time evolution of both quantum discord and entanglement are almost in phase in our system. • Quantum discord and entanglement have similar evolution behavior in some time range.
Quantum correlations in Gaussian states via Gaussian channels: steering, entanglement, and discord
NASA Astrophysics Data System (ADS)
Wang, Zhong-Xiao; Wang, Shuhao; Li, Qiting; Wang, Tie-Jun; Wang, Chuan
2016-06-01
Here we study the quantum steering, quantum entanglement, and quantum discord for Gaussian Einstein-Podolsky-Rosen states via Gaussian channels. And the sudden death phenomena for Gaussian steering and Gaussian entanglement are theoretically observed. We find that some Gaussian states have only one-way steering, which confirms the asymmetry of quantum steering. Also we investigate that the entangled Gaussian states without Gaussian steering and correlated Gaussian states own no Gaussian entanglement. Meanwhile, our results support the assumption that quantum entanglement is intermediate between quantum discord and quantum steering. Furthermore, we give experimental recipes for preparing quantum states with desired types of quantum correlations.
Use of entanglement in quantum optics
NASA Technical Reports Server (NTRS)
Horne, Michael A.; Bernstein, Herbert J.; Greenberger, Daniel M.; Zeilinger, Anton
1992-01-01
Several recent demonstrations of two-particle interferometry are reviewed and shown to be examples of either color entanglement or beam entanglement. A device, called a number filter, is described and shown to be of value in preparing beam entanglements. Finally, we note that all three concepts (color and beam entaglement, and number filtering) may be extended to three or more particles.
Sublattice entanglement and quantum phase transitions in antiferromagnetic spin chains
NASA Astrophysics Data System (ADS)
Chen, Yan; Zanardi, Paolo; Wang, Z. D.; Zhang, F. C.
2006-06-01
Entanglement of the ground states in the S = 1/2 XXZ chain, dimerized Heisenberg spin chain, two-leg spin ladders as well as S = 1 anisotropic Haldane chain is analysed using the entanglement entropy between a selected sublattice of spins and the rest of the system. In particular, we reveal that quantum phase transition points/boundaries may be identified based on the analysis on the local extreme of this sublattice entanglement entropy, which is illustrated to be superior over the concurrence scenario and may enable us to explore quantum phase transitions in many other systems including higher dimensional ones.
Privacy Preserving Quantum Anonymous Transmission via Entanglement Relay
NASA Astrophysics Data System (ADS)
Yang, Wei; Huang, Liusheng; Song, Fang
2016-06-01
Anonymous transmission is an interesting and crucial issue in computer communication area, which plays a supplementary role to data privacy. In this paper, we put forward a privacy preserving quantum anonymous transmission protocol based on entanglement relay, which constructs anonymous entanglement from EPR pairs instead of multi-particle entangled state, e.g. GHZ state. Our protocol achieves both sender anonymity and receiver anonymity against an active adversary and tolerates any number of corrupt participants. Meanwhile, our protocol obtains an improvement in efficiency compared to quantum schemes in previous literature.
Privacy Preserving Quantum Anonymous Transmission via Entanglement Relay
Yang, Wei; Huang, Liusheng; Song, Fang
2016-01-01
Anonymous transmission is an interesting and crucial issue in computer communication area, which plays a supplementary role to data privacy. In this paper, we put forward a privacy preserving quantum anonymous transmission protocol based on entanglement relay, which constructs anonymous entanglement from EPR pairs instead of multi-particle entangled state, e.g. GHZ state. Our protocol achieves both sender anonymity and receiver anonymity against an active adversary and tolerates any number of corrupt participants. Meanwhile, our protocol obtains an improvement in efficiency compared to quantum schemes in previous literature. PMID:27247078
Wang Chuan; Zhang Yong; Jin Guangsheng
2011-09-15
We present an entanglement purification protocol and an entanglement concentration protocol for electron-spin entangled states, resorting to quantum-dot spin and optical-microcavity-coupled systems. The parity-check gates (PCGs) constructed by the cavity-spin-coupling system provide a different method for the entanglement purification of electron-spin entangled states. This protocol can efficiently purify an electron ensemble in a mixed entangled state. The PCGs can also concentrate electron-spin pairs in less-entangled pure states efficiently. The proposed methods are more flexible as only single-photon detection and single-electron detection are needed.
Quantum entanglement for systems of identical bosons: I. General features
NASA Astrophysics Data System (ADS)
Dalton, B. J.; Goold, J.; Garraway, B. M.; Reid, M. D.
2017-02-01
These two accompanying papers are concerned with two mode entanglement for systems of identical massive bosons and the relationship to spin squeezing and other quantum correlation effects. Entanglement is a key quantum feature of composite systems in which the probabilities for joint measurements on the composite sub-systems are no longer determined from measurement probabilities on the separate sub-systems. There are many aspects of entanglement that can be studied. This two-part review focuses on the meaning of entanglement, the quantum paradoxes associated with entangled states, and the important tests that allow an experimentalist to determine whether a quantum state—in particular, one for massive bosons is entangled. An overall outcome of the review is to distinguish criteria (and hence experiments) for entanglement that fully utilize the symmetrization principle and the super-selection rules that can be applied to bosonic massive particles. In the first paper (I), the background is given for the meaning of entanglement in the context of systems of identical particles. For such systems, the requirement is that the relevant quantum density operators must satisfy the symmetrization principle and that global and local super-selection rules prohibit states in which there are coherences between differing particle numbers. The justification for these requirements is fully discussed. In the second quantization approach that is used, both the system and the sub-systems are modes (or sets of modes) rather than particles, particles being associated with different occupancies of the modes. The definition of entangled states is based on first defining the non-entangled states—after specifying which modes constitute the sub-systems. This work mainly focuses on the two mode entanglement for massive bosons, but is put in the context of tests of local hidden variable theories, where one may not be able to make the above restrictions. The review provides the detailed
Entanglement of quantum clocks through gravity.
Castro Ruiz, Esteban; Giacomini, Flaminia; Brukner, Časlav
2017-03-21
In general relativity, the picture of space-time assigns an ideal clock to each world line. Being ideal, gravitational effects due to these clocks are ignored and the flow of time according to one clock is not affected by the presence of clocks along nearby world lines. However, if time is defined operationally, as a pointer position of a physical clock that obeys the principles of general relativity and quantum mechanics, such a picture is, at most, a convenient fiction. Specifically, we show that the general relativistic mass-energy equivalence implies gravitational interaction between the clocks, whereas the quantum mechanical superposition of energy eigenstates leads to a nonfixed metric background. Based only on the assumption that both principles hold in this situation, we show that the clocks necessarily get entangled through time dilation effect, which eventually leads to a loss of coherence of a single clock. Hence, the time as measured by a single clock is not well defined. However, the general relativistic notion of time is recovered in the classical limit of clocks.
Entanglement of quantum clocks through gravity
Castro Ruiz, Esteban; Giacomini, Flaminia; Brukner, Časlav
2017-01-01
In general relativity, the picture of space–time assigns an ideal clock to each world line. Being ideal, gravitational effects due to these clocks are ignored and the flow of time according to one clock is not affected by the presence of clocks along nearby world lines. However, if time is defined operationally, as a pointer position of a physical clock that obeys the principles of general relativity and quantum mechanics, such a picture is, at most, a convenient fiction. Specifically, we show that the general relativistic mass–energy equivalence implies gravitational interaction between the clocks, whereas the quantum mechanical superposition of energy eigenstates leads to a nonfixed metric background. Based only on the assumption that both principles hold in this situation, we show that the clocks necessarily get entangled through time dilation effect, which eventually leads to a loss of coherence of a single clock. Hence, the time as measured by a single clock is not well defined. However, the general relativistic notion of time is recovered in the classical limit of clocks. PMID:28270623
Entanglement of quantum clocks through gravity
NASA Astrophysics Data System (ADS)
Castro Ruiz, Esteban; Giacomini, Flaminia; Brukner, Časlav
2017-03-01
In general relativity, the picture of space-time assigns an ideal clock to each world line. Being ideal, gravitational effects due to these clocks are ignored and the flow of time according to one clock is not affected by the presence of clocks along nearby world lines. However, if time is defined operationally, as a pointer position of a physical clock that obeys the principles of general relativity and quantum mechanics, such a picture is, at most, a convenient fiction. Specifically, we show that the general relativistic mass-energy equivalence implies gravitational interaction between the clocks, whereas the quantum mechanical superposition of energy eigenstates leads to a nonfixed metric background. Based only on the assumption that both principles hold in this situation, we show that the clocks necessarily get entangled through time dilation effect, which eventually leads to a loss of coherence of a single clock. Hence, the time as measured by a single clock is not well defined. However, the general relativistic notion of time is recovered in the classical limit of clocks.
Effect of weak measurement on entanglement distribution over noisy channels
Wang, Xin-Wen; Yu, Sixia; Zhang, Deng-Yu; Oh, C. H.
2016-01-01
Being able to implement effective entanglement distribution in noisy environments is a key step towards practical quantum communication, and long-term efforts have been made on the development of it. Recently, it has been found that the null-result weak measurement (NRWM) can be used to enhance probabilistically the entanglement of a single copy of amplitude-damped entangled state. This paper investigates remote distributions of bipartite and multipartite entangled states in the amplitudedamping environment by combining NRWMs and entanglement distillation protocols (EDPs). We show that the NRWM has no positive effect on the distribution of bipartite maximally entangled states and multipartite Greenberger-Horne-Zeilinger states, although it is able to increase the amount of entanglement of each source state (noisy entangled state) of EDPs with a certain probability. However, we find that the NRWM would contribute to remote distributions of multipartite W states. We demonstrate that the NRWM can not only reduce the fidelity thresholds for distillability of decohered W states, but also raise the distillation efficiencies of W states. Our results suggest a new idea for quantifying the ability of a local filtering operation in protecting entanglement from decoherence. PMID:26935775
Effect of weak measurement on entanglement distribution over noisy channels
NASA Astrophysics Data System (ADS)
Wang, Xin-Wen; Yu, Sixia; Zhang, Deng-Yu; Oh, C. H.
2016-03-01
Being able to implement effective entanglement distribution in noisy environments is a key step towards practical quantum communication, and long-term efforts have been made on the development of it. Recently, it has been found that the null-result weak measurement (NRWM) can be used to enhance probabilistically the entanglement of a single copy of amplitude-damped entangled state. This paper investigates remote distributions of bipartite and multipartite entangled states in the amplitudedamping environment by combining NRWMs and entanglement distillation protocols (EDPs). We show that the NRWM has no positive effect on the distribution of bipartite maximally entangled states and multipartite Greenberger-Horne-Zeilinger states, although it is able to increase the amount of entanglement of each source state (noisy entangled state) of EDPs with a certain probability. However, we find that the NRWM would contribute to remote distributions of multipartite W states. We demonstrate that the NRWM can not only reduce the fidelity thresholds for distillability of decohered W states, but also raise the distillation efficiencies of W states. Our results suggest a new idea for quantifying the ability of a local filtering operation in protecting entanglement from decoherence.
An investigation for quantum qutrit entanglements through colour wheel compass
NASA Astrophysics Data System (ADS)
Duran, Volkan; Gençten, Azmi
2016-10-01
In this study qutrits which have 3-level quantum systems will be used. The investigation of quantum qutrit states was done in a mathematical thought experiment in which most of the quantum phenomena (such as decoherence as well as charge and mass) are neglected. Hence, the model based on the investigation of qutrit states by using colour wheel was given in terms of set theory. Then the results of quantum qutrit entanglements in a hypothetical entangled universe will be analysed through the colour wheel compass.
Fundamental limitation on quantum broadcast networks
NASA Astrophysics Data System (ADS)
Bäuml, Stefan; Azuma, Koji
2017-06-01
The ability to distribute entanglement over complex quantum networks is an important step towards a quantum internet. Recently, there has been significant theoretical effort, mainly focusing on the distribution of bipartite entanglement via a simple quantum network composed only of bipartite quantum channels. There are, however, a number of quantum information processing protocols based on multipartite rather than bipartite entanglement. Whereas multipartite entanglement can be distributed by means of a network of such bipartite channels, a more natural way is to use a more general network, that is, a quantum broadcast network including quantum broadcast channels. In this work, we present a general framework for deriving upper bounds on the rates at which GHZ states or multipartite private states can be distributed among a number of different parties over an arbitrary quantum broadcast network. Our upper bounds are written in terms of the multipartite squashed entanglement, corresponding to a generalisation of recently derived bounds (Azuma et al, (2016), Nat. Commun. 7 13523). We also discuss how lower bounds can be obtained by combining a generalisation of an aggregated quantum repeater protocol with graph theoretic concepts.
Avoiding entanglement sudden death using single-qubit quantum measurement reversal.
Lim, Hyang-Tag; Lee, Jong-Chan; Hong, Kang-Hee; Kim, Yoon-Ho
2014-08-11
When two entangled qubits, each owned by Alice and Bob, undergo separate decoherence, the amount of entanglement is reduced, and often, weak decoherence causes complete loss of entanglement, known as entanglement sudden death. Here we show that it is possible to apply quantum measurement reversal on a single-qubit to avoid entanglement sudden death, rather than on both qubits. Our scheme has important applications in quantum information processing protocols based on distributed or stored entangled qubits as they are subject to decoherence.
Practical Entanglement Estimation for Spin-System Quantum Simulators.
Marty, O; Cramer, M; Plenio, M B
2016-03-11
We present practical methods to measure entanglement for quantum simulators that can be realized with trapped ions, cold atoms, and superconducting qubits. Focusing on long- and short-range Ising-type Hamiltonians, we introduce schemes that are applicable under realistic experimental conditions including mixedness due to, e.g., noise or temperature. In particular, we identify a single observable whose expectation value serves as a lower bound to entanglement and that may be obtained by a simple quantum circuit. As such circuits are not (yet) available for every platform, we investigate the performance of routinely measured observables as quantitative entanglement witnesses. Possible applications include experimental studies of entanglement scaling in critical systems and the reliable benchmarking of quantum simulators.
Thermal entanglement in two-atom cavity QED and the entangled quantum Otto engine
NASA Astrophysics Data System (ADS)
Wang, Hao; Liu, Sanqiu; He, Jizhou
2009-04-01
The simple system of two two-level identical atoms couple to single-mode optical cavity in the resonance case is studied for investigating the thermal entanglement. It is interesting to see that the critical temperature is only dependent on the coefficient of atom-atom dipole-dipole interaction. Based on the mode, we construct and investigate a entangled quantum Otto engine (QOE). Expressions for several important performance parameters such as the heat transferred, the work done in a cycle, and the efficiency of the entangled QOE in zero G are derived in terms of thermal concurrence. Some intriguing features and their qualitative explanations are given. Furthermore, the validity of the second law of thermodynamics is confirmed in the entangled QOE. The results obtained here have general significance and will be helpful to understand deeply the performance of an entangled QOE.
Thermal entanglement in two-atom cavity QED and the entangled quantum Otto engine.
Wang, Hao; Liu, Sanqiu; He, Jizhou
2009-04-01
The simple system of two two-level identical atoms couple to single-mode optical cavity in the resonance case is studied for investigating the thermal entanglement. It is interesting to see that the critical temperature is only dependent on the coefficient of atom-atom dipole-dipole interaction. Based on the mode, we construct and investigate a entangled quantum Otto engine (QOE). Expressions for several important performance parameters such as the heat transferred, the work done in a cycle, and the efficiency of the entangled QOE in zero G are derived in terms of thermal concurrence. Some intriguing features and their qualitative explanations are given. Furthermore, the validity of the second law of thermodynamics is confirmed in the entangled QOE. The results obtained here have general significance and will be helpful to understand deeply the performance of an entangled QOE.
Quantum Discord and Entanglement of Quasi-Werner States Based on Bipartite Entangled Coherent States
NASA Astrophysics Data System (ADS)
Mishra, Manoj K.; Maurya, Ajay K.; Prakash, Hari
2016-06-01
Present work is an attempt to compare quantum discord and quantum entanglement of quasi-Werner states formed with the four bipartite entangled coherent states (ECS) used recently for quantum teleportation of a qubit encoded in superposed coherent state. Out of these, the quasi-Werner states based on maximally ECS due to its invariant nature under local operation is independent of measurement basis and mean photon numbers, while for quasi-Werner states based on non-maximally ECS, it depends upon measurement basis as well as on mean photon number. However, for large mean photon numbers since non-maximally ECS becomes almost maximally entangled therefore dependence of quantum discord for non-maximally ECS based quasi-Werner states on the measurement basis disappears.
N identical particles and one particle to entangle them all
NASA Astrophysics Data System (ADS)
Bellomo, Bruno; Lo Franco, Rosario; Compagno, Giuseppe
2017-08-01
In quantum information, W states are a central class of multipartite entangled states because of their robustness against noise and their use in many quantum processes. Their generation, however, remains a demanding task whose difficulty increases with the number of particles. We report a simple scalable conceptual scheme where a single particle in an ancilla mode works as an entanglement catalyst of the W state for other N separated identical particles. A crucial aspect of the scheme, which exploits basically spatial indistinguishability, is its universality, being applicable without essential changes to both bosons and fermions. Our proposal represents a paradigm within the experimental preparation of many-particle entanglement based on quantum indistinguishability.
Quantum coordinated multi-point communication based on entanglement swapping
NASA Astrophysics Data System (ADS)
Du, Gang; Shang, Tao; Liu, Jian-wei
2017-05-01
In a quantum network, adjacent nodes can communicate with each other point to point by using pre-shared Einsten-Podolsky-Rosen (EPR) pairs, and furthermore remote nodes can establish entanglement channels by using quantum routing among intermediate nodes. However, with the rapid development of quantum networks, the demand of various message transmission among nodes inevitably emerges. In order to realize this goal and extend quantum networks, we propose a quantum coordinated multi-point communication scheme based on entanglement swapping. The scheme takes full advantage of EPR pairs between adjacent nodes and performs multi-party entanglement swapping to transmit messages. Considering various demands of communication, all nodes work cooperatively to realize different message transmission modes, including one to many, many to one and one to some. Scheme analysis shows that the proposed scheme can flexibly organize a coordinated group and efficiently use EPR resources, while it meets basic security requirement under the condition of coordinated communication.
Universal Entanglement Entropy in 2D Conformal Quantum Critical Points
Hsu, Benjamin; Mulligan, Michael; Fradkin, Eduardo; Kim, Eun-Ah
2008-12-05
We study the scaling behavior of the entanglement entropy of two dimensional conformal quantum critical systems, i.e. systems with scale invariant wave functions. They include two-dimensional generalized quantum dimer models on bipartite lattices and quantum loop models, as well as the quantum Lifshitz model and related gauge theories. We show that, under quite general conditions, the entanglement entropy of a large and simply connected sub-system of an infinite system with a smooth boundary has a universal finite contribution, as well as scale-invariant terms for special geometries. The universal finite contribution to the entanglement entropy is computable in terms of the properties of the conformal structure of the wave function of these quantum critical systems. The calculation of the universal term reduces to a problem in boundary conformal field theory.
Path Entanglement of Continuous-Variable Quantum Microwaves
NASA Astrophysics Data System (ADS)
Menzel, E. P.; Deppe, F.; Eder, P.; Zhong, L.; Haeberlein, M.; Baust, A.; Hoffmann, E.; Marx, A.; Gross, R.; di Candia, R.; Solano, E.; Ballester, D.; Ihmig, M.; Inomata, K.; Yamamoto, T.; Nakamura, Y.
2013-03-01
Entanglement is a quantum mechanical phenomenon playing a key role in quantum communication and information processing protocols. Here, we report on frequency-degenerate entanglement between continuous-variable quantum microwaves propagating along two separated paths. In our experiment, we combine a squeezed and a vacuum state via a beam splitter. Overcoming the challenges imposed by the low photon energies in the microwave regime, we reconstruct the squeezed state and, independently from this, detect and quantify the produced entanglement via correlation measurements (E. P. Menzel et al., arXiv:1210.4413). Our work paves the way towards quantum communication and teleportation with continuous variables in the microwave regime. This work is supported by SFB 631, German Excellence Initiative via NIM, EU projects SOLID, CCQED and PROMISCE, MEXT Kakenhi ``Quantum Cybernetics'', JSPS FIRST Program, the NICT Commissioned Research, EPSRC EP/H050434/1, Basque Government IT472-10, and Spanish MICINN FIS2009-12773-C02-01.
Quantum entanglement in a two-electron quantum dot in magnetic field
NASA Astrophysics Data System (ADS)
Nazmitdinov, R. G.; Chizhov, A. V.
2012-03-01
The properties of quantum entanglement of the ground state in an exactly solvable model of a two-electron QD have been investigated. It is shown that the degree of entanglement increases with enhancement of interaction between electrons, irrespective of the shape of electron confining potential in a QD. A magnetic field destroys electron entanglement. However, the entanglement in deformed QDs is more stable against magnetic field.
Quantum entanglement swapping of two arbitrary biqubit pure states
NASA Astrophysics Data System (ADS)
Xie, ChuanMei; Liu, YiMin; Chen, JianLan; Yin, XiaoFeng; Zhang, ZhanJun
2016-10-01
In this paper, the issue of swapping quantum entanglements in two arbitrary biqubit pure states via a local bipartite entangledstate projective measure in the middle node is studied in depth, especially with regard to quantitative aspects. Attention is mainly focused on the relation between the measure and the final entanglement obtained via swapping. During the study, the entanglement of formation (EoF) is employed as a quantifier to characterize and quantify the entanglements present in all involved states. All concerned EoFs are expressed analytically; thus, the relation between the final entanglement and the measuring state is established. Through concrete analyses, the measure demands for getting a certain amount of a final entanglement are revealed. It is found that a maximally entangled final state can be obtained from any two given initial entangled states via swapping with a certain probability; however, a peculiar measure should be performed. Moreover, some distinct properties are revealed and analyzed. Such a study will be useful in quantum information processes.
Generation of entanglement in quantum parametric oscillators using phase control
Gonzalez-Henao, J. C.; Pugliese, E.; Euzzor, S.; Abdalah, S.F.; Meucci, R.; Roversi, J. A.
2015-01-01
The control of quantum entanglement in systems in contact with environment plays an important role in information processing, cryptography and quantum computing. However, interactions with the environment, even when very weak, entail decoherence in the system with consequent loss of entanglement. Here we consider a system of two coupled oscillators in contact with a common heat bath and with a time dependent oscillation frequency. The possibility to control the entanglement of the oscillators by means of an external sinusoidal perturbation applied to the oscillation frequency has been theoretically explored. We demonstrate that the oscillators become entangled exactly in the region where the classical counterpart is unstable, otherwise when the classical system is stable, entanglement is not possible. Therefore, we can control the entanglement swapping from stable to unstable regions by adjusting amplitude and phase of our external controller. We also show that the entanglement rate is approximately proportional to the real part of the Floquet coefficient of the classical counterpart of the oscillators. Our results have the intriguing peculiarity of manipulating quantum information operating on a classical system. PMID:26286485
Generation of entanglement in quantum parametric oscillators using phase control.
Gonzalez-Henao, J C; Pugliese, E; Euzzor, S; Abdalah, S F; Meucci, R; Roversi, J A
2015-08-19
The control of quantum entanglement in systems in contact with environment plays an important role in information processing, cryptography and quantum computing. However, interactions with the environment, even when very weak, entail decoherence in the system with consequent loss of entanglement. Here we consider a system of two coupled oscillators in contact with a common heat bath and with a time dependent oscillation frequency. The possibility to control the entanglement of the oscillators by means of an external sinusoidal perturbation applied to the oscillation frequency has been theoretically explored. We demonstrate that the oscillators become entangled exactly in the region where the classical counterpart is unstable, otherwise when the classical system is stable, entanglement is not possible. Therefore, we can control the entanglement swapping from stable to unstable regions by adjusting amplitude and phase of our external controller. We also show that the entanglement rate is approximately proportional to the real part of the Floquet coefficient of the classical counterpart of the oscillators. Our results have the intriguing peculiarity of manipulating quantum information operating on a classical system.
Entanglement dynamics in quantum many-body systems
NASA Astrophysics Data System (ADS)
Ho, Wen Wei; Abanin, Dmitry A.
2017-03-01
The dynamics of entanglement has recently been realized as a useful probe in studying ergodicity and its breakdown in quantum many-body systems. In this paper, we study theoretically the growth of entanglement in quantum many-body systems and propose a method to measure it experimentally. We show that entanglement growth is related to the spreading of local operators in real space. We present a simple toy model for ergodic systems in which linear spreading of operators results in a universal, linear-in-time growth of entanglement for initial product states, in contrast with the logarithmic growth of entanglement in many-body localized (MBL) systems. Furthermore, we show that entanglement growth is directly related to the decay of the Loschmidt echo in a composite system comprised of several copies of the original system, in which connections are controlled by a quantum switch (two-level system). By measuring only the switch's dynamics, the growth of the Rényi entropies can be extracted. Our work provides a way of understanding entanglement dynamics in many-body systems and to directly measure its growth in time via a single local measurement.
NASA Astrophysics Data System (ADS)
Deng, Li; Chen, Ai-Xi; Zhang, Jian-Song
2011-11-01
We provide a scheme with which the transfer of the entangled state and the entanglement swapping can be realized in a system of neutral atoms via the Rydberg blockade. Our idea can be extended to teleport an unknown atomic state. According to the latest theoretical research of the Rydberg excitation and experimental reports of the Rydberg blockade effect in quantum information processing, we discuss the experimental feasibility of our scheme.
Exact stabilization of entangled states in finite time by dissipative quantum circuits
NASA Astrophysics Data System (ADS)
Johnson, Peter D.; Ticozzi, Francesco; Viola, Lorenza
2017-07-01
Open quantum systems evolving according to discrete-time dynamics are capable, unlike continuous-time counterparts, to converge to a stable equilibrium in finite time with zero error. We consider dissipative quantum circuits consisting of sequences of quantum channels subject to specified quasi-locality constraints, and determine conditions under which stabilization of a pure multipartite entangled state of interest may be exactly achieved in finite time. Special emphasis is devoted to characterizing scenarios where finite-time stabilization may be achieved robustly with respect to the order of the applied quantum maps, as suitable for unsupervised control architectures. We show that if a decomposition of the physical Hilbert space into virtual subsystems is found, which is compatible with the locality constraint and relative to which the target state factorizes, then robust stabilization may be achieved by independently cooling each component. We further show that if the same condition holds for a scalable class of pure states, a continuous-time quasi-local Markov semigroup ensuring rapid mixing can be obtained. Somewhat surprisingly, we find that the commutativity of the canonical parent Hamiltonian one may associate to the target state does not directly relate to its finite-time stabilizability properties, although in all cases where we can guarantee robust stabilization, a (possibly noncanonical) commuting parent Hamiltonian may be found. Aside from graph states, quantum states amenable to finite-time robust stabilization include a class of universal resource states displaying two-dimensional symmetry-protected topological order, along with tensor network states obtained by generalizing a construction due to Bravyi and Vyalyi [Quantum Inf. Comput. 5, 187 (2005)]. Extensions to representative classes of mixed graph-product and thermal states are also discussed.
Magnetic alteration of entanglement in two-electron quantum dots
NASA Astrophysics Data System (ADS)
Simonović, N. S.; Nazmitdinov, R. G.
2015-11-01
Quantum entanglement is analyzed thoroughly in the case of the ground and lowest states of two-electron axially symmetric quantum dots under a perpendicular magnetic field. The individual-particle and the center-of-mass representations are used to study the entanglement variation at the transition from interacting to noninteracting particle regimes. The mechanism of symmetry breaking due to the interaction, which results in the states with symmetries related to the latter representation only being entangled even at the vanishing interaction, is discussed. The analytical expression for the entanglement measure based on the linear entropy is derived in the limit of noninteracting electrons. It reproduces remarkably well the numerical results for the lowest states with the magnetic quantum number M ≥2 in the interacting regime. It is found that the entanglement of the ground state is a discontinuous function of the field strength. A method to estimate the entanglement of the ground state, characterized by the quantum number M , with the aid of the magnetic-field dependence of the addition energy is proposed.
Quantum communication using a multiqubit entangled channel
NASA Astrophysics Data System (ADS)
Ghose, Shohini; Hamel, Angele
2015-12-01
We describe a protocol in which two senders each teleport a qubit to a receiver using a multiqubit entangled state. The multiqubit channel used for teleportation is genuinely 4-qubit entangled and is not equivalent to a product of maximally entangled Bell pairs under local unitary operations. We discuss a scenario in which both senders must participate for the qubits to be successfully teleported. Such an all-or-nothing scheme cannot be implemented with standard two-qubit entangled Bell pairs and can be useful for different communication and computing tasks.
Quantum communication using a multiqubit entangled channel
Ghose, Shohini; Hamel, Angele
2015-12-31
We describe a protocol in which two senders each teleport a qubit to a receiver using a multiqubit entangled state. The multiqubit channel used for teleportation is genuinely 4-qubit entangled and is not equivalent to a product of maximally entangled Bell pairs under local unitary operations. We discuss a scenario in which both senders must participate for the qubits to be successfully teleported. Such an all-or-nothing scheme cannot be implemented with standard two-qubit entangled Bell pairs and can be useful for different communication and computing tasks.
Quantum teleportation of composite systems via mixed entangled states
Bandyopadhyay, Somshubhro; Sanders, Barry C.
2006-09-15
We analyze quantum teleportation for composite systems, specifically for concatenated teleporation (decomposing a large composite state into smaller states of dimension commensurate with the channel) and partial teleportation (teleporting one component of a larger quantum state). We obtain an exact expression for teleportation fidelity that depends solely on the dimension and singlet fraction for the entanglement channel and entanglement (measures by I concurrence) for the state; in fact quantum teleportation for composite systems provides an operational interpretation for I concurrence. In addition we obtain tight bounds on teleportation fidelity and prove that the average fidelity approaches the lower bound of teleportation fidelity in the high-dimension limit.
Quantum entanglement in three accelerating qubits coupled to scalar fields
NASA Astrophysics Data System (ADS)
Dai, Yue; Shen, Zhejun; Shi, Yu
2016-07-01
We consider quantum entanglement of three accelerating qubits, each of which is locally coupled with a real scalar field, without causal influence among the qubits or among the fields. The initial states are assumed to be the GHZ and W states, which are the two representative three-partite entangled states. For each initial state, we study how various kinds of entanglement depend on the accelerations of the three qubits. All kinds of entanglement eventually suddenly die if at least two of three qubits have large enough accelerations. This result implies the eventual sudden death of all kinds of entanglement among three particles coupled with scalar fields when they are sufficiently close to the horizon of a black hole.
Entanglement in Lifshitz-type quantum field theories
NASA Astrophysics Data System (ADS)
Mohammadi Mozaffar, M. Reza; Mollabashi, Ali
2017-07-01
We study different aspects of quantum entanglement and its measures, including entanglement entropy in the vacuum state of a certain Lifshitz free scalar theory. We present simple intuitive arguments based on "non-local" effects of this theory that the scaling of entanglement entropy depends on the dynamical exponent as a characteristic parameter of the theory. The scaling is such that in the massless theory for small entangling regions it leads to area law in the Lorentzian limit and volume law in the z → ∞ limit. We present strong numerical evidences in (1+1) and (2+1)-dimensions in support of this behavior. In (2 + 1)-dimensions we also study some shape dependent aspects of entanglement. We argue that in the massless limit corner contributions are no more additive for large enough dynamical exponent due to non-local effects of Lifshitz theories. We also comment on possible holographic duals of such theories based on the sign of tripartite information.
Asymptotic entanglement in quantum walks from delocalized initial states
NASA Astrophysics Data System (ADS)
Orthey, Alexandre C.; Amorim, Edgard P. M.
2017-09-01
We study the entanglement between the internal (spin) and external (position) degrees of freedom of the one-dimensional discrete time quantum walk starting from local and delocalized initial states whose time evolution is driven by Hadamard and Fourier coins. We obtain the dependence of the asymptotic entanglement with the initial dispersion of the state and establish a way to connect the asymptotic entanglement between local and delocalized states. We find out that the delocalization of the state increases the number of initial spin states which achieves maximal entanglement from two states (local) to a continuous set of spin states (delocalized) given by a simple relation between the angles of the initial spin state. We also carry out numerical simulations of the average entanglement along the time to confront with our analytical results.
Triple-server blind quantum computation using entanglement swapping
NASA Astrophysics Data System (ADS)
Li, Qin; Chan, Wai Hong; Wu, Chunhui; Wen, Zhonghua
2014-04-01
Blind quantum computation allows a client who does not have enough quantum resources or technologies to achieve quantum computation on a remote quantum server such that the client's input, output, and algorithm remain unknown to the server. Up to now, single- and double-server blind quantum computation have been considered. In this work, we propose a triple-server blind computation protocol where the client can delegate quantum computation to three quantum servers by the use of entanglement swapping. Furthermore, the three quantum servers can communicate with each other and the client is almost classical since one does not require any quantum computational power, quantum memory, and the ability to prepare any quantum states and only needs to be capable of getting access to quantum channels.
Optically induced multispin entanglement in a semiconductor quantum well.
Bao, Jiming; Bragas, Andrea V; Furdyna, Jacek K; Merlin, Roberto
2003-03-01
According to quantum mechanics, a many-particle system is allowed to exhibit non-local behaviour, in that measurements performed on one of the particles can affect a second one that is far away. These so-called entangled states are crucial for the implementation of most quantum information protocols and, in particular, gates for quantum computation. Here we use ultrafast optical pulses and coherent techniques to create and control spin-entangled states in an ensemble of non-interacting electrons bound to donors (at least three) and at least two Mn2+ ions in a CdTe quantum well. Our method, relying on the exchange interaction between localized excitons and paramagnetic impurities, can in principle be applied to entangle an arbitrarily large number of spins.
Simulating electron spin entanglement in a double quantum dot
NASA Astrophysics Data System (ADS)
Rodriguez-Moreno, M. A.; Hernandez de La Luz, A. D.; Meza-Montes, Lilia
2011-03-01
One of the biggest advantages of having a working quantum-computing device when compared with a classical one, is the exponential speedup of calculations. This exponential increase is based on the ability of a quantum system to create and operate on entangled states. In order to study theoretically the entanglement between two electron spins, we simulate the dynamics of two electron spins in an electrostatically-defined double quantum dot with a finite barrier height between the dots. Electrons are initially confined to separated quantum dots. Barrier height is varied and the spin entanglement as a function of this variation is investigated. The evolution of the system is simulated by using a numerical approach for solving the time-dependent Schrödinger equation for two particles. Partially supported by VIEP-BUAP.
Gravity from entanglement close to a quantum critical point
NASA Astrophysics Data System (ADS)
Faulkner, Thomas
2015-04-01
Entanglement entropy (EE) in quantum many-body systems reveal interesting non-local aspects of the state or phase of the system. For example, topological order in gapped phases may be characterized in this way. We present calculations of entanglement close to a quantum critical point with relativistic invariance that reveal the existence of an emergent gravitational theory in one higher dimension. The gravitational theory encodes the entanglement of the quantum system in an efficient way. In this way calculations of EE, a usually notoriously difficult quantity to calculate, are reduced to a simple computation in classical gravity. The answer we find is in the spirit of the AdS/CFT duality but goes beyond it since our results apply to any relativistic quantum critical point and not just the known theories with classical gravity duals.
Effect of multimode entanglement on lossy optical quantum metrology
NASA Astrophysics Data System (ADS)
Knott, P. A.; Proctor, T. J.; Nemoto, Kae; Dunningham, J. A.; Munro, W. J.
2014-09-01
In optical interferometry multimode entanglement is often assumed to be the driving force behind quantum enhanced measurements. Recent work has shown this assumption to be false: single-mode quantum states perform just as well as their multimode entangled counterparts. We go beyond this to show that when photon losses occur, an inevitability in any realistic system, multimode entanglement is actually detrimental to obtaining quantum enhanced measurements. We specifically apply this idea to a superposition of coherent states, demonstrating that these states show a robustness to loss that allows them to significantly outperform their competitors in realistic systems. A practically viable measurement scheme is then presented that allows measurements close to the theoretical bound, even with loss. These results promote an alternate way of approaching optical quantum metrology using single-mode states that we expect to have great implications for the future.
A Non-Entanglement Quantum Single Sign-On Protocol
NASA Astrophysics Data System (ADS)
Dai, Guiping; Wang, Yong
2014-08-01
Single Sign-On (SSO) is an important cryptography mechanism in distributed systems. Quantum cryptography has gained great successes and makes great influence on traditional cryptography. In this paper, A SSO protocol under almost pure quantum cryptography without entanglement is designed. Through security analysis, we show that this protocol has good security properties.
Atom-chip-based generation of entanglement for quantum metrology.
Riedel, Max F; Böhi, Pascal; Li, Yun; Hänsch, Theodor W; Sinatra, Alice; Treutlein, Philipp
2010-04-22
Atom chips provide a versatile quantum laboratory for experiments with ultracold atomic gases. They have been used in diverse experiments involving low-dimensional quantum gases, cavity quantum electrodynamics, atom-surface interactions, and chip-based atomic clocks and interferometers. However, a severe limitation of atom chips is that techniques to control atomic interactions and to generate entanglement have not been experimentally available so far. Such techniques enable chip-based studies of entangled many-body systems and are a key prerequisite for atom chip applications in quantum simulations, quantum information processing and quantum metrology. Here we report the experimental generation of multi-particle entanglement on an atom chip by controlling elastic collisional interactions with a state-dependent potential. We use this technique to generate spin-squeezed states of a two-component Bose-Einstein condensate; such states are a useful resource for quantum metrology. The observed reduction in spin noise of -3.7 +/- 0.4 dB, combined with the spin coherence, implies four-partite entanglement between the condensate atoms; this could be used to improve an interferometric measurement by -2.5 +/- 0.6 dB over the standard quantum limit. Our data show good agreement with a dynamical multi-mode simulation and allow us to reconstruct the Wigner function of the spin-squeezed condensate. The techniques reported here could be directly applied to chip-based atomic clocks, currently under development.
Caminati, Marco; De Martini, Francesco; Perris, Riccardo; Secondi, Veronica; Sciarrino, Fabio
2006-12-15
We investigate the multiparticle quantum superposition and the persistence of bipartite entanglement of the output field generated by the quantum injected high-gain optical parametric amplification of a single photon. The physical configuration based on the optimal universal quantum cloning has been adopted to investigate how the entanglement and the quantum coherence of the system persists for large values of the nonlinear parametric gain g.
Generation of heralded entanglement between distant quantum dot hole spins
NASA Astrophysics Data System (ADS)
Delteil, Aymeric
Entanglement plays a central role in fundamental tests of quantum mechanics as well as in the burgeoning field of quantum information processing. Particularly in the context of quantum networks and communication, some of the major challenges are the efficient generation of entanglement between stationary (spin) and propagating (photon) qubits, the transfer of information from flying to stationary qubits, and the efficient generation of entanglement between distant stationary (spin) qubits. In this talk, I will present such experimental implementations achieved in our team with semiconductor self-assembled quantum dots.Not only are self-assembled quantum dots good single-photon emitters, but they can host an electron or a hole whose spin serves as a quantum memory, and then present spin-dependent optical selection rules leading to an efficient spin-photon quantum interface. Moreover InGaAs quantum dots grown on GaAs substrate can profit from the maturity of III-V semiconductor technology and can be embedded in semiconductor structures like photonic cavities and Schottky diodes.I will report on the realization of heralded quantum entanglement between two semiconductor quantum dot hole spins separated by more than five meters. The entanglement generation scheme relies on single photon interference of Raman scattered light from both dots. A single photon detection projects the system into a maximally entangled state. We developed a delayed two-photon interference scheme that allows for efficient verification of quantum correlations. Moreover the efficient spin-photon interface provided by self-assembled quantum dots allows us to reach an unprecedented rate of 2300 entangled spin pairs per second, which represents an improvement of four orders of magnitude as compared to prior experiments carried out in other systems.Our results extend previous demonstrations in single trapped ions or neutral atoms, in atom ensembles and nitrogen vacancy centers to the domain of
All entangled pure quantum states violate the bilocality inequality
NASA Astrophysics Data System (ADS)
Gisin, Nicolas; Mei, Quanxin; Tavakoli, Armin; Renou, Marc Olivier; Brunner, Nicolas
2017-08-01
The nature of quantum correlations in networks featuring independent sources of entanglement remains poorly understood. Here, focusing on the simplest network of entanglement swapping, we start a systematic characterization of the set of quantum states leading to violation of the so-called "bilocality" inequality. First, we show that all possible pairs of entangled pure states can violate the inequality. Next, we derive a general criterion for violation for arbitrary pairs of mixed two-qubit states. Notably, this reveals a strong connection between the Clauser-Horne-Shimony-Holt (CHSH) Bell inequality and the bilocality inequality, namely, that any entangled state violating CHSH also violates the bilocality inequality. We conclude with a list of open questions.
Computing Partial Transposes and Related Entanglement Functions
NASA Astrophysics Data System (ADS)
Maziero, Jonas
2016-12-01
The partial transpose (PT) is an important function for entanglement testing and quantification and also for the study of geometrical aspects of the quantum state space. In this article, considering general bipartite and multipartite discrete systems, explicit formulas ready for the numerical implementation of the PT and of related entanglement functions are presented and the Fortran code produced for that purpose is described. What is more, we obtain an analytical expression for the Hilbert-Schmidt entanglement of two-qudit systems and for the associated closest separable state. In contrast to previous works on this matter, we only use the properties of the PT, not applying Lagrange multipliers.
Geometric descriptions of entangled states by auxiliary varieties
Holweck, Frederic; Luque, Jean-Gabriel; Thibon, Jean-Yves
2012-10-15
The aim of the paper is to propose geometric descriptions of multipartite entangled states using algebraic geometry. In the context of this paper, geometric means each stratum of the Hilbert space, corresponding to an entangled state, is an open subset of an algebraic variety built by classical geometric constructions (tangent lines, secant lines) from the set of separable states. In this setting, we describe well-known classifications of multipartite entanglement such as 2 Multiplication-Sign 2 Multiplication-Sign (n+ 1), for n Greater-Than-Or-Slanted-Equal-To 1, quantum systems and a new description with the 2 Multiplication-Sign 3 Multiplication-Sign 3 quantum system. Our results complete the approach of Miyake and make stronger connections with recent work of algebraic geometers. Moreover, for the quantum systems detailed in this paper, we propose an algorithm, based on the classical theory of invariants, to decide to which subvariety of the Hilbert space a given state belongs.
Deterministic entanglement generation from driving through quantum phase transitions.
Luo, Xin-Yu; Zou, Yi-Quan; Wu, Ling-Na; Liu, Qi; Han, Ming-Fei; Tey, Meng Khoon; You, Li
2017-02-10
Many-body entanglement is often created through the system evolution, aided by nonlinear interactions between the constituting particles. These very dynamics, however, can also lead to fluctuations and degradation of the entanglement if the interactions cannot be controlled. Here, we demonstrate near-deterministic generation of an entangled twin-Fock condensate of ~11,000 atoms by driving a arubidium-87 Bose-Einstein condensate undergoing spin mixing through two consecutive quantum phase transitions (QPTs). We directly observe number squeezing of 10.7 ± 0.6 decibels and normalized collective spin length of 0.99 ± 0.01. Together, these observations allow us to infer an entanglement-enhanced phase sensitivity of ~6 decibels beyond the standard quantum limit and an entanglement breadth of ~910 atoms. Our work highlights the power of generating large-scale useful entanglement by taking advantage of the different entanglement landscapes separated by QPTs. Copyright © 2017, American Association for the Advancement of Science.
Nature and measure of entanglement in quantum phase transitions
NASA Astrophysics Data System (ADS)
Somma, Rolando; Ortiz, Gerardo; Barnum, Howard; Knill, Emanuel; Viola, Lorenza
2003-03-01
Characterizing and quantifying entanglement of quantum states in many-particle systems is at the core of a full understanding of the nature of quantum phase transitions in matter. Entanglement is a relative notion and, although many measures of entanglement have been defined in the literature, assessing the utility of those measures to characterize quantum phase transitions is still an open problem. We introduce a new measure, based on a different concept of entanglement, which allows us to identify the transition. The traditional concept of entanglement refers to the property of many-parties states which cannot be expressed as a product of states of each party. We have recently [1] introduced a different concept of entanglement which makes no reference to the subsystem decomposition of the total Hilbert space and which reduces to the traditional concept in the case of two parties. In our framework an extremal (pure) quantum state is unentangled with respect to an algebra of observables if it induces an extremal state (set of expectation values) on that algebra. This identifies pure unentangled states with generalized coherent states of the algebra (mixed states will be unentangled if they are convex combinations of pure unentangled states). For example, a Slater determinant, i.e., a state of free spinless fermions (Fermi liquid), is unentangled with respect to the algebra generated by the bilinear fermionic operators c^i cj (algebra U(N)) but it is, in general, entangled with respect to the Pauli (spin 1/2) algebra. This concept leads to the definition of a "Purity" relative to a given subalgebra as a measure of entanglement. We will show how this measure applies to the study of different types of phase transitions. In particular, we will apply this concept to Ising-like and Kosterlitz-Thouless transitions in models of interest in condensed matter physics. [1] H. Barnum, E. Knill, G. Ortiz, and L. Viola (2002), quant-ph/0207149.
Multi-state Quantum Teleportation via One Entanglement State
NASA Astrophysics Data System (ADS)
Guo, Ying; Zeng, Gui-Hua; Moon Ho, Lee
2008-08-01
A multi-sender-controlled quantum teleportation scheme is proposed to teleport several secret quantum states from different senders to a distance receiver based on only one Einstein Podolsky Rosen (EPR) pair with controlled-NOT (CNOT) gates. In the present scheme, several secret single-qubit quantum states are encoded into a multi-qubit entangled quantum state. Two communication modes, i.e., the detecting mode and the message mode, are employed so that the eavesdropping can be detected easily and the teleported message may be recovered efficiently. It has an advantage over teleporting several different quantum states for one scheme run with more efficiency than the previous quantum teleportation schemes.
Entanglement entropy after selective measurements in quantum chains
NASA Astrophysics Data System (ADS)
Najafi, Khadijeh; Rajabpour, M. A.
2016-12-01
We study bipartite post measurement entanglement entropy after selective measurements in quantum chains. We first study the quantity for the critical systems that can be described by conformal field theories. We find a connection between post measurement entanglement entropy and the Casimir energy of floating objects. Then we provide formulas for the post measurement entanglement entropy for open and finite temperature systems. We also comment on the Affleck-Ludwig boundary entropy in the context of the post measurement entanglement entropy. Finally, we also provide some formulas regarding modular hamiltonians and entanglement spectrum in the after measurement systems. After through discussion regarding CFT systems we also provide some predictions regarding massive field theories. We then discuss a generic method to calculate the post measurement entanglement entropy in the free fermion systems. Using the method we study the post measurement entanglement entropy in the XY spin chain. We check numerically the CFT and the massive field theory results in the transverse field Ising chain and the XX model. In particular, we study the post meaurement entanglement entropy in the infinite, periodic and open critical transverse field Ising chain and the critical XX model. The effect of the temperature and the gap is also discussed in these models.
Quantum state regeneration in entanglement based quantum key distribution protocols
NASA Astrophysics Data System (ADS)
Erdmann, Reinhard
2014-05-01
Quantum Key Distribution (QKD) has been shown to be provably secure when certain idealized conditions are met in a physical realization. All implementations of QKD to date require non-orthogonal basis measurements to implement it; making it commonly assumed that measurement basis variation is fundamental to making QKD protocols secure from eavesdropping. We show here that in particular physical conditions this assumption is incorrect, and that provable security can be achieved without use of multiple bases. Basis setting information can in fact be shared with all potential eavesdroppers, as they are unable to use it to acquire or influence any part of the encryption key generation. Furthermore the key generation efficiency is limited to 100 % as compared with an inherent 50 % limit for alternating bases in BB84 or Entangled Ekert protocols.
Entanglement boost for extractable work from ensembles of quantum batteries.
Alicki, Robert; Fannes, Mark
2013-04-01
Motivated by the recent interest in thermodynamics of micro- and mesoscopic quantum systems we study the maximal amount of work that can be reversibly extracted from a quantum system used to temporarily store energy. Guided by the notion of passivity of a quantum state we show that entangling unitary controls extract in general more work than independent ones. In the limit of a large number of copies one can reach the thermodynamical bound given by the variational principle for the free energy.
Revisiting Quantum Authentication Scheme Based on Entanglement Swapping
NASA Astrophysics Data System (ADS)
Naseri, Mosayeb
2016-05-01
The crucial issue of quantum communication protocol is its security. In this paper, the security of the Quantum Authentication Scheme Based on Entanglement Swapping proposed by Penghao et al. (Int J Theor Phys., doi: 10.1007/s10773-015-2662-7) is reanalyzed. It is shown that the original does not complete the task of quantum authentication and communication securely. Furthermore a simple improvement on the protocol is proposed.
Entanglement boost for extractable work from ensembles of quantum batteries
NASA Astrophysics Data System (ADS)
Alicki, Robert; Fannes, Mark
2013-04-01
Motivated by the recent interest in thermodynamics of micro- and mesoscopic quantum systems we study the maximal amount of work that can be reversibly extracted from a quantum system used to temporarily store energy. Guided by the notion of passivity of a quantum state we show that entangling unitary controls extract in general more work than independent ones. In the limit of a large number of copies one can reach the thermodynamical bound given by the variational principle for the free energy.
NASA Astrophysics Data System (ADS)
Dalton, B. J.; Goold, J.; Garraway, B. M.; Reid, M. D.
2017-02-01
These two accompanying papers are concerned with entanglement for systems of identical massive bosons and the relationship to spin squeezing and other quantum correlation effects. The main focus is on two mode entanglement, but multi-mode entanglement is also considered. The bosons may be atoms or molecules as in cold quantum gases. The previous paper I dealt with the general features of quantum entanglement and its specific definition in the case of systems of identical bosons. Entanglement is a property shared between two (or more) quantum sub-systems. In defining entanglement for systems of identical massive particles, it was concluded that the single particle states or modes are the most appropriate choice for sub-systems that are distinguishable, that the general quantum states must comply both with the symmetrization principle and the super-selection rules (SSR) that forbid quantum superpositions of states with differing total particle number (global SSR compliance). Further, it was concluded that (in the separable states) quantum superpositions of sub-system states with differing sub-system particle number (local SSR compliance) also do not occur. The present paper II determines possible tests for entanglement based on the treatment of entanglement set out in paper I. Several inequalities involving variances and mean values of operators have been previously proposed as tests for entanglement between two sub-systems. These inequalities generally involve mode annihilation and creation operators and include the inequalities that define spin squeezing. In this paper, spin squeezing criteria for two mode systems are examined, and spin squeezing is also considered for principle spin operator components where the covariance matrix is diagonal. The proof, which is based on our SSR compliant approach shows that the presence of spin squeezing in any one of the spin components requires entanglement of the relevant pair of modes. A simple Bloch vector test for
Bell states and entanglement dynamics on two coupled quantum molecules
Oliveira, P.A.; Sanz, L.
2015-05-15
This work provides a complete description of entanglement properties between electrons inside coupled quantum molecules, nanoestructures which consist of two quantum dots. Each electron can tunnel between the two quantum dots inside the molecule, being also coupled by Coulomb interaction. First, it is shown that Bell states act as a natural basis for the description of this physical system, defining the characteristics of the energy spectrum and the eigenstates. Then, the entanglement properties of the eigenstates are discussed, shedding light on the roles of each physical parameters on experimental setup. Finally, a detailed analysis of the dynamics shows the path to generate states with a high degree of entanglement, as well as physical conditions associated with coherent oscillations between separable and Bell states.
Quantum Entanglement of Matter and Geometry in Large Systems
Hogan, Craig J.
2014-12-04
Standard quantum mechanics and gravity are used to estimate the mass and size of idealized gravitating systems where position states of matter and geometry become indeterminate. It is proposed that well-known inconsistencies of standard quantum field theory with general relativity on macroscopic scales can be reconciled by nonstandard, nonlocal entanglement of field states with quantum states of geometry. Wave functions of particle world lines are used to estimate scales of geometrical entanglement and emergent locality. Simple models of entanglement predict coherent fluctuations in position of massive bodies, of Planck scale origin, measurable on a laboratory scale, and may account for the fact that the information density of long lived position states in Standard Model fields, which is determined by the strong interactions, is the same as that determined holographically by the cosmological constant.
Entangling distant resonant exchange qubits via circuit quantum electrodynamics
NASA Astrophysics Data System (ADS)
Srinivasa, V.; Taylor, J. M.; Tahan, Charles
2016-11-01
We investigate a hybrid quantum system consisting of spatially separated resonant exchange qubits, defined in three-electron semiconductor triple quantum dots, that are coupled via a superconducting transmission line resonator. Drawing on methods from circuit quantum electrodynamics and Hartmann-Hahn double resonance techniques, we analyze three specific approaches for implementing resonator-mediated two-qubit entangling gates in both dispersive and resonant regimes of interaction. We calculate entangling gate fidelities as well as the rate of relaxation via phonons for resonant exchange qubits in silicon triple dots and show that such an implementation is particularly well suited to achieving the strong coupling regime. Our approach combines the favorable coherence properties of encoded spin qubits in silicon with the rapid and robust long-range entanglement provided by circuit QED systems.
Liu, Zhao; Bhatt, R N
2016-11-11
We investigate the disorder-driven phase transition from a fractional quantum Hall state to an Anderson insulator using quantum entanglement methods. We find that the transition is signaled by a sharp increase in the sensitivity of a suitably averaged entanglement entropy with respect to disorder-the magnitude of its disorder derivative appears to diverge in the thermodynamic limit. We also study the level statistics of the entanglement spectrum as a function of disorder. However, unlike the dramatic phase-transition signal in the entanglement entropy derivative, we find a gradual reduction of level repulsion only deep in the Anderson insulating phase.
Quantum-entanglement-initiated super Raman scattering
Agarwal, G. S.
2011-02-15
It has now been possible to prepare a chain of ions in an entangled state and thus the question arises: How will the optical properties of a chain of entangled ions differ from say a chain of independent particles? We investigate nonlinear optical processes in such chains. Since light scattering is quite a versatile technique to probe matter, we explicitly demonstrate the possibility of entanglement-produced super Raman scattering. Our results suggest the possibility of similar enhancement factors in other nonlinear processes like four-wave mixing.
Entanglement witness operator for quantum teleportation.
Ganguly, Nirman; Adhikari, Satyabrata; Majumdar, A S; Chatterjee, Jyotishman
2011-12-30
The ability of entangled states to act as a resource for teleportation is linked to a property of the fully entangled fraction. We show that the set of states with their fully entangled fraction bounded by a threshold value required for performing teleportation is both convex and compact. This feature enables the existence of Hermitian witness operators, the measurement of which could distinguish unknown states useful for performing teleportation. We present an example of such a witness operator illustrating it for different classes of states.
Superdense coding facilitated by hyper-entanglement and quantum networks
NASA Astrophysics Data System (ADS)
Smith, James F.
2017-05-01
A method of generating superdense coding based on quantum hyper-entanglement and facilitated by quantum networks is discussed. Superdense coding refers to the coding of more than one classical bit into each qubit. Quantum hyperentanglement refers to quantum entanglement in more than one degree of freedom, e.g. polarization, energy-time, and orbital angular momentum (OAM). The new superdense coding scheme permits 2L bits to be encoded into each qubit where L is the number of degrees of freedom used for quantum hyper-entanglement. The superdense coding procedure is based on a generalization of the Bell state for L degrees of freedom. Theory describing the structure, generation/transmission, and detection of the generalized Bell state is developed. Circuit models are provided describing the generation/transmission process and detection process. Detection processes are represented mathematically as projection operators. A mathematical proof that that the detection scheme permits the generalized Bell states to be distinguished with 100% probability is provided. Measures of effectiveness (MOEs) are derived for the superdense coding scheme based on open systems theory represented in terms of density operators. Noise and loss related to generation/transmission, detection and propagation are included. The MOEs include various probabilities, quantum Chernoff bound, a measure of the number of message photons that must be transmitted to successfully send and receive a message, SNR and the quantum Cramer Rao' lower bound. Quantum networks with quantum memory are used to increase the efficiency of the superdense coding scheme.
Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System.
He, Yong; Zhu, Ka-Di
2017-06-20
In this paper, we review the investigation for the light-matter interaction between surface plasmon field in metal nanoparticle (MNP) and the excitons in semiconductor quantum dots (SQDs) in hybrid SQD-MNP system under the full quantum description. The exciton-plasmon interaction gives rise to the modified decay rate and the exciton energy shift which are related to the exciton energy by using a quantum transformation method. We illustrate the responses of the hybrid SQD-MNP system to external field, and reveal Fano effect shown in the absorption spectrum. We demonstrate quantum entanglement between two SQD mediated by surface plasmon field. In the absence of a laser field, concurrence of quantum entanglement will disappear after a few ns. If the laser field is present, the steady states appear, so that quantum entanglement produced will reach a steady-state entanglement. Because one of all optical pathways to induce Fano effect refers to the generation of quantum entangled states, It is shown that the concurrence of quantum entanglement can be obtained by observation for Fano effect. In a hybrid system including two MNP and a SQD, because the two Fano quantum interference processes share a segment of all optical pathways, there is correlation between the Fano effects of the two MNP. The investigations for the light-matter interaction in hybrid SQD-MNP system can pave the way for the development of the optical processing devices and quantum information based on the exciton-plasmon interaction.
Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System
He, Yong; Zhu, Ka-Di
2017-01-01
In this paper, we review the investigation for the light-matter interaction between surface plasmon field in metal nanoparticle (MNP) and the excitons in semiconductor quantum dots (SQDs) in hybrid SQD-MNP system under the full quantum description. The exciton-plasmon interaction gives rise to the modified decay rate and the exciton energy shift which are related to the exciton energy by using a quantum transformation method. We illustrate the responses of the hybrid SQD-MNP system to external field, and reveal Fano effect shown in the absorption spectrum. We demonstrate quantum entanglement between two SQD mediated by surface plasmon field. In the absence of a laser field, concurrence of quantum entanglement will disappear after a few ns. If the laser field is present, the steady states appear, so that quantum entanglement produced will reach a steady-state entanglement. Because one of all optical pathways to induce Fano effect refers to the generation of quantum entangled states, It is shown that the concurrence of quantum entanglement can be obtained by observation for Fano effect. In a hybrid system including two MNP and a SQD, because the two Fano quantum interference processes share a segment of all optical pathways, there is correlation between the Fano effects of the two MNP. The investigations for the light-matter interaction in hybrid SQD-MNP system can pave the way for the development of the optical processing devices and quantum information based on the exciton-plasmon interaction. PMID:28632165
Entangled coherent states versus entangled photon pairs for practical quantum-information processing
Park, Kimin; Jeong, Hyunseok
2010-12-15
We compare effects of decoherence and detection inefficiency on entangled coherent states (ECSs) and entangled photon pairs (EPPs), both of which are known to be particularly useful for quantum-information processing (QIP). When decoherence effects caused by photon losses are heavy, the ECSs outperform the EPPs as quantum channels for teleportation both in fidelities and in success probabilities. On the other hand, when inefficient detectors are used, the teleportation scheme using the ECSs suffers undetected errors that result in the degradation of fidelity, while this is not the case for the teleportation scheme using the EPPs. Our study reveals the merits and demerits of the two types of entangled states in realizing practical QIP under realistic conditions.
Quantum Private Comparison Based on χ-Type Entangled States
NASA Astrophysics Data System (ADS)
Hong-Ming, Pan
2017-08-01
A two-party quantum private comparison (QPC) protocol is constructed with χ-type entangled states in this paper. The proposed protocol employs a semi-honest third party (TP) that is allowed to misbehave on his own but cannot conspire with the adversary. The proposed protocol need perform Bell basis measurements and single-particle measurements but neither unitary operations nor quantum entanglement swapping technology. The proposed protocol possesses good security toward both the outside attack and the participant attack. TP only knows the comparison result of the private information from two parties in the proposed protocol.
Quantum Private Comparison Based on χ-Type Entangled States
NASA Astrophysics Data System (ADS)
Hong-Ming, Pan
2017-10-01
A two-party quantum private comparison (QPC) protocol is constructed with χ-type entangled states in this paper. The proposed protocol employs a semi-honest third party (TP) that is allowed to misbehave on his own but cannot conspire with the adversary. The proposed protocol need perform Bell basis measurements and single-particle measurements but neither unitary operations nor quantum entanglement swapping technology. The proposed protocol possesses good security toward both the outside attack and the participant attack. TP only knows the comparison result of the private information from two parties in the proposed protocol.
Minimum-error discrimination of entangled quantum states
Lu, Y.; Coish, N.; Kaltenbaek, R.; Hamel, D. R.; Resch, K. J.; Croke, S.
2010-10-15
Strategies to optimally discriminate between quantum states are critical in quantum technologies. We present an experimental demonstration of minimum-error discrimination between entangled states, encoded in the polarization of pairs of photons. Although the optimal measurement involves projection onto entangled states, we use a result of J. Walgate et al. [Phys. Rev. Lett. 85, 4972 (2000)] to design an optical implementation employing only local polarization measurements and feed-forward, which performs at the Helstrom bound. Our scheme can achieve perfect discrimination of orthogonal states and minimum-error discrimination of nonorthogonal states. Our experimental results show a definite advantage over schemes not using feed-forward.
Mutually unbiased bases and bound entanglement
NASA Astrophysics Data System (ADS)
Hiesmayr, Beatrix C.; Löffler, Wolfgang
2014-04-01
In this contribution we relate two different key concepts: mutually unbiased bases (MUBs) and entanglement. We provide a general toolbox for analyzing and comparing entanglement of quantum states for different dimensions and numbers of particles. In particular we focus on bound entanglement, i.e. highly mixed states which cannot be distilled by local operations and classical communications. For a certain class of states—for which the state-space forms a ‘magic’ simplex—we analyze the set of bound entangled states detected by the MUB criterion for different dimensions d and number of particles n. We find that the geometry is similar for different d and n, consequently the MUB criterion opens possibilities to investigate the typicality of positivity under partial transposition (PPT)-bound and multipartite bound entanglement more deeply and provides a simple experimentally feasible tool to detect bound entanglement.
Post-Markovian dynamics of quantum correlations: entanglement versus discord
NASA Astrophysics Data System (ADS)
Mohammadi, Hamidreza
2017-02-01
Dynamics of an open two-qubit system is investigated in the post-Markovian regime, where the environments have a short-term memory. Each qubit is coupled to separate environment which is held in its own temperature. The inter-qubit interaction is modeled by XY-Heisenberg model in the presence of spin-orbit interaction and inhomogeneous magnetic field. The dynamical behavior of entanglement and discord has been considered. The results show that quantum discord is more robust than quantum entanglement, during the evolution. Also the asymmetric feature of quantum discord can be monitored by introducing the asymmetries due to inhomogeneity of magnetic field and temperature difference between the reservoirs. By employing proper parameters of the model, it is possible to maintain nonvanishing quantum correlation at high degree of temperature. The results can provide a useful recipe for studying dynamical behavior of two-qubit systems such as trapped spin electrons in coupled quantum dots.
Avalanche of entanglement and correlations at quantum phase transitions.
Krutitsky, Konstantin V; Osterloh, Andreas; Schützhold, Ralf
2017-06-16
We study the ground-state entanglement in the quantum Ising model with nearest neighbor ferromagnetic coupling J and find a sequential increase of entanglement depth d with growing J. This entanglement avalanche starts with two-point entanglement, as measured by the concurrence, and continues via the three-tangle and four-tangle, until finally, deep in the ferromagnetic phase for J = ∞, arriving at a pure L-partite (GHZ type) entanglement of all L spins. Comparison with the two, three, and four-point correlations reveals a similar sequence and shows strong ties to the above entanglement measures for small J. However, we also find a partial inversion of the hierarchy, where the four-point correlation exceeds the three- and two-point correlations, well before the critical point is reached. Qualitatively similar behavior is also found for the Bose-Hubbard model, suggesting that this is a general feature of a quantum phase transition. This should be taken into account in the approximations starting from a mean-field limit.
Entanglement and Quantum Error Correction with Superconducting Qubits
NASA Astrophysics Data System (ADS)
Reed, Matthew
2015-03-01
Quantum information science seeks to take advantage of the properties of quantum mechanics to manipulate information in ways that are not otherwise possible. Quantum computation, for example, promises to solve certain problems in days that would take a conventional supercomputer the age of the universe to decipher. This power does not come without a cost however, as quantum bits are inherently more susceptible to errors than their classical counterparts. Fortunately, it is possible to redundantly encode information in several entangled qubits, making it robust to decoherence and control imprecision with quantum error correction. I studied one possible physical implementation for quantum computing, employing the ground and first excited quantum states of a superconducting electrical circuit as a quantum bit. These ``transmon'' qubits are dispersively coupled to a superconducting resonator used for readout, control, and qubit-qubit coupling in the cavity quantum electrodynamics (cQED) architecture. In this talk I will give an general introduction to quantum computation and the superconducting technology that seeks to achieve it before explaining some of the specific results reported in my thesis. One major component is that of the first realization of three-qubit quantum error correction in a solid state device, where we encode one logical quantum bit in three entangled physical qubits and detect and correct phase- or bit-flip errors using a three-qubit Toffoli gate. My thesis is available at arXiv:1311.6759.
Quantum transitions and quantum entanglement from Dirac-like dynamics simulated by trapped ions
NASA Astrophysics Data System (ADS)
Bittencourt, Victor A. S. V.; Bernardini, Alex E.; Blasone, Massimo
2016-05-01
Quantum transition probabilities and quantum entanglement for two-qubit states of a four-level trapped ion quantum system are computed for time-evolving ionic states driven by Jaynes-Cummings Hamiltonians with interactions mapped onto a SU(2 )⊗SU(2 ) group structure. Using the correspondence of the method of simulating a 3 +1 dimensional Dirac-like Hamiltonian for bispinor particles into a single trapped ion, one preliminarily obtains the analytical tools for describing ionic state transition probabilities as a typical quantum oscillation feature. For Dirac-like structures driven by generalized Poincaré classes of coupling potentials, one also identifies the SU(2 )⊗SU(2 ) internal degrees of freedom corresponding to intrinsic parity and spin polarization as an adaptive platform for computing the quantum entanglement between the internal quantum subsystems which define two-qubit ionic states. The obtained quantum correlational content is then translated into the quantum entanglement of two-qubit ionic states with quantum numbers related to the total angular momentum and to its projection onto the direction of the trapping magnetic field. Experimentally, the controllable parameters simulated by ion traps can be mapped into a Dirac-like system in the presence of an electrostatic field which, in this case, is associated to ionic carrier interactions. Besides exhibiting a complete analytical profile for ionic quantum transitions and quantum entanglement, our results indicate that carrier interactions actively drive an overall suppression of the quantum entanglement.
Nanoshell-mediated robust entanglement between coupled quantum dots
NASA Astrophysics Data System (ADS)
Hakami, Jabir; Zubairy, M. Suhail
2016-02-01
The exact entanglement dynamics in a hybrid structure consisting of two quantum dots (QDs) in the proximity of a metal nanoshell is investigated. Nanoshells can enhance the local density of states, leading to a strong-coupling regime where the excitation energy can coherently be transferred between the QDs and the nanoshell in the form of Rabi oscillations. The long-lived entangled states can be created deterministically by optimizing the shell thickness as well as the ratio of the distances between the QDs and the surface of the shell. The loss of the system is greatly reduced even when the QDs are ultraclose to the shell, which signifies a slow decay rate of the coherence information and longtime entanglement preservation. Our protocol allows for an on-demand, fast, and almost perfect entanglement even at strong carrier-phonon interaction where other systems fail.
Fundamental Entangling Operators in Quantum Mechanics and Their Properties
NASA Astrophysics Data System (ADS)
Dao-Ming, Lu
2016-07-01
For the first time, we introduce so-called fundamental entangling operators e^{iQ1 P2} and e^{iP1 Q2 } for composing bipartite entangled states of continuum variables, where Q i and P i ( i = 1, 2) are coordinate and momentum operator, respectively. We then analyze how these entangling operators naturally appear in the quantum image of classical quadratic coordinate transformation ( q 1, q 2) → ( A q 1 + B q 2, C q 1 + D q 2), where A D- B C = 1, which means even the basic coordinate transformation ( Q 1, Q 2) → ( A Q 1 + B Q 2, C Q 1 + D Q 2) involves entangling mechanism. We also analyse their Lie algebraic properties and use the integration technique within an ordered product of operators to show they are also one- and two- mode combinatorial squeezing operators.
Deterministic generation of remote entanglement with active quantum feedback
Martin, Leigh; Motzoi, Felix; Li, Hanhan; Sarovar, Mohan; Whaley, K. Birgitta
2015-12-10
We develop and study protocols for deterministic remote entanglement generation using quantum feedback, without relying on an entangling Hamiltonian. In order to formulate the most effective experimentally feasible protocol, we introduce the notion of average-sense locally optimal feedback protocols, which do not require real-time quantum state estimation, a difficult component of real-time quantum feedback control. We use this notion of optimality to construct two protocols that can deterministically create maximal entanglement: a semiclassical feedback protocol for low-efficiency measurements and a quantum feedback protocol for high-efficiency measurements. The latter reduces to direct feedback in the continuous-time limit, whose dynamics can be modeled by a Wiseman-Milburn feedback master equation, which yields an analytic solution in the limit of unit measurement efficiency. Our formalism can smoothly interpolate between continuous-time and discrete-time descriptions of feedback dynamics and we exploit this feature to derive a superior hybrid protocol for arbitrary nonunit measurement efficiency that switches between quantum and semiclassical protocols. Lastly, we show using simulations incorporating experimental imperfections that deterministic entanglement of remote superconducting qubits may be achieved with current technology using the continuous-time feedback protocol alone.
Deterministic generation of remote entanglement with active quantum feedback
Martin, Leigh; Motzoi, Felix; Li, Hanhan; ...
2015-12-10
We develop and study protocols for deterministic remote entanglement generation using quantum feedback, without relying on an entangling Hamiltonian. In order to formulate the most effective experimentally feasible protocol, we introduce the notion of average-sense locally optimal feedback protocols, which do not require real-time quantum state estimation, a difficult component of real-time quantum feedback control. We use this notion of optimality to construct two protocols that can deterministically create maximal entanglement: a semiclassical feedback protocol for low-efficiency measurements and a quantum feedback protocol for high-efficiency measurements. The latter reduces to direct feedback in the continuous-time limit, whose dynamics can bemore » modeled by a Wiseman-Milburn feedback master equation, which yields an analytic solution in the limit of unit measurement efficiency. Our formalism can smoothly interpolate between continuous-time and discrete-time descriptions of feedback dynamics and we exploit this feature to derive a superior hybrid protocol for arbitrary nonunit measurement efficiency that switches between quantum and semiclassical protocols. Lastly, we show using simulations incorporating experimental imperfections that deterministic entanglement of remote superconducting qubits may be achieved with current technology using the continuous-time feedback protocol alone.« less
Quantum entanglement between an optical photon and a solid-state spin qubit.
Togan, E; Chu, Y; Trifonov, A S; Jiang, L; Maze, J; Childress, L; Dutt, M V G; Sørensen, A S; Hemmer, P R; Zibrov, A S; Lukin, M D
2010-08-05
Quantum entanglement is among the most fascinating aspects of quantum theory. Entangled optical photons are now widely used for fundamental tests of quantum mechanics and applications such as quantum cryptography. Several recent experiments demonstrated entanglement of optical photons with trapped ions, atoms and atomic ensembles, which are then used to connect remote long-term memory nodes in distributed quantum networks. Here we realize quantum entanglement between the polarization of a single optical photon and a solid-state qubit associated with the single electronic spin of a nitrogen vacancy centre in diamond. Our experimental entanglement verification uses the quantum eraser technique, and demonstrates that a high degree of control over interactions between a solid-state qubit and the quantum light field can be achieved. The reported entanglement source can be used in studies of fundamental quantum phenomena and provides a key building block for the solid-state realization of quantum optical networks.
Average subentropy, coherence and entanglement of random mixed quantum states
NASA Astrophysics Data System (ADS)
Zhang, Lin; Singh, Uttam; Pati, Arun K.
2017-02-01
Compact expressions for the average subentropy and coherence are obtained for random mixed states that are generated via various probability measures. Surprisingly, our results show that the average subentropy of random mixed states approaches the maximum value of the subentropy which is attained for the maximally mixed state as we increase the dimension. In the special case of the random mixed states sampled from the induced measure via partial tracing of random bipartite pure states, we establish the typicality of the relative entropy of coherence for random mixed states invoking the concentration of measure phenomenon. Our results also indicate that mixed quantum states are less useful compared to pure quantum states in higher dimension when we extract quantum coherence as a resource. This is because of the fact that average coherence of random mixed states is bounded uniformly, however, the average coherence of random pure states increases with the increasing dimension. As an important application, we establish the typicality of relative entropy of entanglement and distillable entanglement for a specific class of random bipartite mixed states. In particular, most of the random states in this specific class have relative entropy of entanglement and distillable entanglement equal to some fixed number (to within an arbitrary small error), thereby hugely reducing the complexity of computation of these entanglement measures for this specific class of mixed states.
Exploring the tripartite entanglement and quantum phase transition in the XXZ+h model
NASA Astrophysics Data System (ADS)
Joyia, Wajid; Khan, Khalid
2017-10-01
The behavior of bipartite and tripartite entanglement in Heisenberg XXZ+h spins chain is investigated with the size of system using the approach of quantum renormalization group method. In thermodynamics limit, both types of entanglement exhibit quantum phase transition (QPT). The boundary of QPT links the phases of saturated entanglement and zero entanglement. The first derivative of both entanglements becomes discontinuous at the critical point, which corresponds to the second-order phase transition. Furthermore, the amount of saturated bipartite entanglement strongly depends on relative positions of spins, while tripartite entanglement is robust than bipartite entanglement. It turns out that the tripartite entanglement can be a better candidate than bipartite entanglement for analyzing QPT and implementing quantum information tasks.
Entanglement entropy of U (1) quantum spin liquids
NASA Astrophysics Data System (ADS)
Pretko, Michael; Senthil, T.
2016-09-01
We here investigate the entanglement structure of the ground state of a (3 +1 )-dimensional U (1 ) quantum spin liquid, which is described by the deconfined phase of a compact U (1 ) gauge theory. A gapless photon is the only low-energy excitation, with matter existing as deconfined but gapped excitations of the system. It is found that, for a given bipartition of the system, the elements of the entanglement spectrum can be grouped according to the electric flux between the two regions, leading to a useful interpretation of the entanglement spectrum in terms of electric charges living on the boundary. The entanglement spectrum is also given additional structure due to the presence of the gapless photon. Making use of the Bisognano-Wichmann theorem and a local thermal approximation, these two contributions to the entanglement (particle and photon) are recast in terms of boundary and bulk contributions, respectively. Both pieces of the entanglement structure give rise to universal subleading terms (relative to the area law) in the entanglement entropy, which are logarithmic in the system size (logL ), as opposed to the subleading constant term in gapped topologically ordered systems. The photon subleading logarithm arises from the low-energy conformal field theory and is essentially local in character. The particle subleading logarithm arises due to the constraint of closed electric loops in the wave function and is shown to be the natural generalization of topological entanglement entropy to the U (1 ) spin liquid. This contribution to the entanglement entropy can be isolated by means of the Grover-Turner-Vishwanath construction (which generalizes the Kitaev-Preskill scheme to three dimensions).
Bulk entanglement spectrum reveals quantum criticality within a topological state.
Hsieh, Timothy H; Fu, Liang
2014-09-05
A quantum phase transition is usually achieved by tuning physical parameters in a Hamiltonian at zero temperature. Here, we show that the ground state of a topological phase itself encodes critical properties of its transition to a trivial phase. To extract this information, we introduce an extensive partition of the system into two subsystems both of which extend throughout the bulk in all directions. The resulting bulk entanglement spectrum has a low-lying part that resembles the excitation spectrum of a bulk Hamiltonian, which allows us to probe a topological phase transition from a single wave function by tuning either the geometry of the partition or the entanglement temperature. As an example, this remarkable correspondence between the topological phase transition and the entanglement criticality is rigorously established for integer quantum Hall states.
Quantum entanglement for helium atom in the Debye plasmas
Lin, Yen-Chang; Fang, Te-Kuei; Ho, Yew Kam
2015-03-15
In the present work, we present an investigation on quantum entanglement of the two-electron helium atom immersed in weakly coupled Debye plasmas, modeled by the Debye-Hückel, or screened Coulomb, potential to mimic the interaction between two charged particles inside the plasma. Quantum entanglement is related to correlation effects in a multi-particle system. In a bipartite system, a measurement made on one of the two entangled particles affects the outcome of the other particle, even if such two particles are far apart. Employing wave functions constructed with configuration interaction B-spline basis, we have quantified von Neumann entropy and linear entropy for a series of He {sup 1,3}S{sup e} and {sup 1,3}P{sup o} states in plasma-embedded helium atom.
Characterization of quantum phase transition using holographic entanglement entropy
NASA Astrophysics Data System (ADS)
Ling, Yi; Liu, Peng; Wu, Jian-Pin
2016-06-01
The entanglement exhibits extremal or singular behavior near quantum critical points (QCPs) in many condensed matter models. These intriguing phenomena, however, still call for a widely accepted understanding. In this paper we study this issue in holographic framework. We investigate the connection between the holographic entanglement entropy (HEE) and the quantum phase transition (QPT) in a lattice-deformed Einstein-Maxwell-Dilaton theory. Novel backgrounds exhibiting metal-insulator transitions (MIT) have been constructed in which both metallic phase and insulating phase have vanishing entropy density in zero temperature limit. We find that the first order derivative of HEE with respect to lattice parameters exhibits extremal behavior near QCPs. We propose that it would be a universal feature that HEE or its derivatives with respect to system parameters can characterize QPT in a generic holographic system. Our work opens a window for understanding the relation between entanglement and the QPT from a holographic perspective.
Role of entanglement in calibrating optical quantum gyroscopes
NASA Astrophysics Data System (ADS)
Kok, Pieter; Dunningham, Jacob; Ralph, Jason F.
2017-01-01
We consider the calibration of an optical quantum gyroscope by modeling two Sagnac interferometers, mounted approximately at right angles to each other. Reliable operation requires that we know the angle between the interferometers with high precision, and we show that a procedure akin to multiposition testing in inertial navigation systems can be generalized to the case of quantum interferometry. We find that while entanglement is a key resource within an individual Sagnac interferometer, its presence between the interferometers is a far more complicated story. The optimum level of entanglement depends strongly on the sought parameter values, and small but significant improvements may be gained from choosing states with the optimal amount of entanglement between the interferometers.
Dynamically Disordered Quantum Walk as a Maximal Entanglement Generator
NASA Astrophysics Data System (ADS)
Vieira, Rafael; Amorim, Edgard P. M.; Rigolin, Gustavo
2013-11-01
We show that the entanglement between the internal (spin) and external (position) degrees of freedom of a qubit in a random (dynamically disordered) one-dimensional discrete time quantum random walk (QRW) achieves its maximal possible value asymptotically in the number of steps, outperforming the entanglement attained by using ordered QRW. The disorder is modeled by introducing an extra random aspect to QRW, a classical coin that randomly dictates which quantum coin drives the system’s time evolution. We also show that maximal entanglement is achieved independently of the initial state of the walker, study the number of steps the system must move to be within a small fixed neighborhood of its asymptotic limit, and propose two experiments where these ideas can be tested.
Tunable quantum entanglement of three qubits in a nonstationary cavity
NASA Astrophysics Data System (ADS)
Amico, Mirko; Berman, Oleg L.; Kezerashvili, Roman Ya.
2017-09-01
We investigate the tunable quantum entanglement and the probabilities of excitations in a system of three qubits in a nonstationary cavity due to the dynamical Lamb effect, caused by nonadiabatic fast change of the boundary conditions of the cavity. The transition amplitudes and the probabilities of excitation of qubits due to the dynamical Lamb effect have been evaluated. The conditional concurrence and the conditional residual tangle for each fixed amount of created photons are introduced and calculated as measures of the pairwise or three-way dynamical quantum entanglement of the qubits. We also give a prescription on how to increase the values of those quantities by controlling the frequency of the cavity photons. A physical realization of the system with three superconducting qubits, coupled to a coplanar waveguide entangled due to the nonadiabatic fast change of boundary conditions of the cavity is proposed.
Entanglement verification of noisy NOON states
NASA Astrophysics Data System (ADS)
Bohmann, M.; Sperling, J.; Vogel, W.
2017-07-01
Entangled quantum states, such as NOON states, are of major importance for quantum technologies due to their quantum-enhanced performance. At the same time, their quantum correlations are relatively vulnerable when they are subjected to imperfections. Therefore, it is crucial to determine under which circumstances their distinct quantum features can be exploited. In this paper, we study the entanglement property of noisy NOON states. This class of states is a generalization of NOON states including various attenuation effects, such as mixing, constant or fluctuating losses, and dephasing. To verify their entanglement, we pursue two strategies: detection-based entanglement witnesses and entanglement quasiprobabilities. Both methods result from our solution of so-called separability eigenvalue equations. In particular, the entanglement quasiprobabilities allow for a full entanglement characterization. As examples of our general treatment, the cases of NOON states subjected to Gaussian dephasing and fluctuating atmospheric losses are explicitly studied. In any correlated fluctuating loss channel, entanglement is found to survive for nonzero transmissivity. In addition, an extension of our approach to multipartite systems is given, and the relation to the quantum-optical nonclassicality in phase space is discussed.
Berry phase and quantum entanglement in Majorana's stellar representation
NASA Astrophysics Data System (ADS)
Liu, H. D.; Fu, L. B.
2016-08-01
By presenting the evolution of a quantum state with the trajectories of the Majorana stars on the Bloch sphere, the Majorana's stellar provides an intuitive geometric picture to study a quantum system with high-dimensional Hilbert space. We study the Berry phase and quantum entanglement by distributions and motions of these stars on the Bloch sphere. It is shown that both of these unique characters of quantum state can be perfectly represented by the Majorana stars. The former is expressed by the solid angles of Majorana star loops and the distance between stars. For the latter, the distances between stars are also found to be a tool for measuring and classifying the multiparticle entanglement of a symmetric multiqubit pure state. To demonstrate our theory, we study a typical spin model which is equivalent to an interacting boson model or an interacting multiqubit system. The self-trapping phenomenon within is also discussed via the Majorana stars.
Two-particle quantum walks: Entanglement and graph isomorphism testing
Berry, Scott D.; Wang, Jingbo B.
2011-04-15
We study discrete-time quantum walks on the line and on general undirected graphs with two interacting or noninteracting particles. We introduce two simple interaction schemes and show that they both lead to a diverse range of probability distributions that depend on the correlations and relative phases between the initial coin states of the two particles. We investigate the characteristics of these quantum walks and the time evolution of the entanglement between the two particles from both separable and entangled initial states. We also test the capability of two-particle discrete-time quantum walks to distinguish nonisomorphic graphs. For strongly regular graphs, we show that noninteracting discrete-time quantum walks can distinguish some but not all nonisomorphic graphs with the same family parameters. By incorporating an interaction between the two particles, all nonisomorphic strongly regular graphs tested are successfully distinguished.
Multiparty quantum-key-distribution protocol without use of entanglement
Matsumoto, Ryutaroh
2007-12-15
We propose a quantum-key-distribution protocol that enables three parties to agree at once on a shared common random bit string in the presence of an eavesdropper without use of entanglement. We prove its unconditional security and analyze the key rate.
A simple quantum voting scheme with multi-qubit entanglement.
Xue, Peng; Zhang, Xin
2017-08-08
We propose a simple quantum voting scenario with a set of pairs of particles in a multi-particle entangled state. This scenario is suitable for large scale general votings. We also provide a proof of security of our scheme against the most general type of attack by generalizing Shor and Preskill's proof of security of the other schemes.
Deterministic generation of remote entanglement with active quantum feedback
NASA Astrophysics Data System (ADS)
Martin, Leigh; Motzoi, Felix; Li, Hanhan; Sarovar, Mohan; Whaley, K. Birgitta
2015-12-01
We consider the task of deterministically entangling two remote qubits using joint measurement and feedback, but no directly entangling Hamiltonian. In order to formulate the most effective experimentally feasible protocol, we introduce the notion of average-sense locally optimal feedback protocols, which do not require real-time quantum state estimation, a difficult component of real-time quantum feedback control. We use this notion of optimality to construct two protocols that can deterministically create maximal entanglement: a semiclassical feedback protocol for low-efficiency measurements and a quantum feedback protocol for high-efficiency measurements. The latter reduces to direct feedback in the continuous-time limit, whose dynamics can be modeled by a Wiseman-Milburn feedback master equation, which yields an analytic solution in the limit of unit measurement efficiency. Our formalism can smoothly interpolate between continuous-time and discrete-time descriptions of feedback dynamics and we exploit this feature to derive a superior hybrid protocol for arbitrary nonunit measurement efficiency that switches between quantum and semiclassical protocols. Finally, we show using simulations incorporating experimental imperfections that deterministic entanglement of remote superconducting qubits may be achieved with current technology using the continuous-time feedback protocol alone.
Entanglement, Holography, and the Quantum Phases of Matter
Sachdev, Subir
2012-11-07
Electrons in many interesting materials, such as the high temperature superconductors, exhibit low energy states with complex varieties of quantum entanglement. I will describe how the methods of holography, drawn from string theory, have given us a new tool to describe such states, by relating them to theories of gravitation in curved spacetimes with an extra dimension. I will discuss the impact of such ideas on studies of quantum phase transitions, and of novel metals.
Variable entangling in a quantum prisoner's dilemma cellular automaton
NASA Astrophysics Data System (ADS)
Alonso-Sanz, Ramón
2015-01-01
The effect of variable entangling on the dynamics of a spatial quantum formulation of the iterated prisoner's dilemma game is studied in this work. The game is played in the cellular automata manner, i.e., with local and synchronous interaction. The effect of spatial structure is assessed when allowing the players to adopt quantum and classical strategies, both in the two- and three-parameter strategy spaces.
Cavity-based architecture to preserve quantum coherence and entanglement
Man, Zhong-Xiao; Xia, Yun-Jie; Lo Franco, Rosario
2015-01-01
Quantum technology relies on the utilization of resources, like quantum coherence and entanglement, which allow quantum information and computation processing. This achievement is however jeopardized by the detrimental effects of the environment surrounding any quantum system, so that finding strategies to protect quantum resources is essential. Non-Markovian and structured environments are useful tools to this aim. Here we show how a simple environmental architecture made of two coupled lossy cavities enables a switch between Markovian and non-Markovian regimes for the dynamics of a qubit embedded in one of the cavity. Furthermore, qubit coherence can be indefinitely preserved if the cavity without qubit is perfect. We then focus on entanglement control of two independent qubits locally subject to such an engineered environment and discuss its feasibility in the framework of circuit quantum electrodynamics. With up-to-date experimental parameters, we show that our architecture allows entanglement lifetimes orders of magnitude longer than the spontaneous lifetime without local cavity couplings. This cavity-based architecture is straightforwardly extendable to many qubits for scalability. PMID:26351004
Cavity-based architecture to preserve quantum coherence and entanglement.
Man, Zhong-Xiao; Xia, Yun-Jie; Lo Franco, Rosario
2015-09-09
Quantum technology relies on the utilization of resources, like quantum coherence and entanglement, which allow quantum information and computation processing. This achievement is however jeopardized by the detrimental effects of the environment surrounding any quantum system, so that finding strategies to protect quantum resources is essential. Non-Markovian and structured environments are useful tools to this aim. Here we show how a simple environmental architecture made of two coupled lossy cavities enables a switch between Markovian and non-Markovian regimes for the dynamics of a qubit embedded in one of the cavity. Furthermore, qubit coherence can be indefinitely preserved if the cavity without qubit is perfect. We then focus on entanglement control of two independent qubits locally subject to such an engineered environment and discuss its feasibility in the framework of circuit quantum electrodynamics. With up-to-date experimental parameters, we show that our architecture allows entanglement lifetimes orders of magnitude longer than the spontaneous lifetime without local cavity couplings. This cavity-based architecture is straightforwardly extendable to many qubits for scalability.
Cavity-based architecture to preserve quantum coherence and entanglement
NASA Astrophysics Data System (ADS)
Man, Zhong-Xiao; Xia, Yun-Jie; Lo Franco, Rosario
2015-09-01
Quantum technology relies on the utilization of resources, like quantum coherence and entanglement, which allow quantum information and computation processing. This achievement is however jeopardized by the detrimental effects of the environment surrounding any quantum system, so that finding strategies to protect quantum resources is essential. Non-Markovian and structured environments are useful tools to this aim. Here we show how a simple environmental architecture made of two coupled lossy cavities enables a switch between Markovian and non-Markovian regimes for the dynamics of a qubit embedded in one of the cavity. Furthermore, qubit coherence can be indefinitely preserved if the cavity without qubit is perfect. We then focus on entanglement control of two independent qubits locally subject to such an engineered environment and discuss its feasibility in the framework of circuit quantum electrodynamics. With up-to-date experimental parameters, we show that our architecture allows entanglement lifetimes orders of magnitude longer than the spontaneous lifetime without local cavity couplings. This cavity-based architecture is straightforwardly extendable to many qubits for scalability.