Science.gov

Sample records for multiphase flow transport

  1. Multiphase flow and transport in porous media

    NASA Astrophysics Data System (ADS)

    Parker, J. C.

    1989-08-01

    Multiphase flow and transport of compositionally complex fluids in geologic media is of importance in a number of applied problems which have major social and economic effects. In petroleum reservoir engineering, efficient recovery of energy reserves is the principal goal. Unfortunately, some of these hydrocarbons and other organic chemicals often find their way unwanted into the soils and groundwater supplies. Removal in the latter case is predicated on ensuring the public health and safety. In this paper, principles of modeling fluid flow in systems containing up to three fluid phases (namely, water, air, and organic liquid) are described. Solution of the governing equations for multiphase flow requires knowledge of functional relationships between fluid pressures, saturations, and permeabilities which may be formulated on the basis of conceptual models of fluid-porous media interactions. Mechanisms of transport in multicomponent multiphase systems in which species may partition between phases are also described, and the governing equations are presented for the case in which local phase equilibrium may be assumed. A number of hypothetical numerical problems are presented to illustrate the physical behavior of systems in which multiphase flow and transport arise.

  2. Computational modeling of multiphase flow and transport with Python

    NASA Astrophysics Data System (ADS)

    Kees, C. E.; Farthing, M. W.; Hines, A. M.; Howington, S. E.

    2008-12-01

    Computational flow and transport models play an important role in many hydrological investigations. Unfortunately, developing simulators that are efficient, widely applicable, and robust is a challenge. This is particularly true if the target applications include complications like multiple fluid phases with multiple components and material heterogeneity. To be specific, these problems often involve physical phenomena at multiple spatial and temporal scales. The appropriate formulation may evolve, and the systems of partial differential equations (PDEs) that arise from traditional formulations can be hard to solve efficiently at the desired resolution. Here, we discuss the development of a Python-based modeling framework for finite element approximation of systems of nonlinear PDEs with an emphasis on multiphase, multicomponent systems relevant for surface and subsurface hydrology. In addition to the overall approach and application, we consider the role of Python in managing code complexity, providing user interfaces, developing solution algorithms, and implementing numerical methods for execution on serial and parallel platforms. We evaluate trade-offs and design choices that follow from our use of Python versus other languages like C++ or Fortran and consider the impact on performance measured in terms of metrics like memory usage, execution time, and developer time.

  3. Multiphase flow calculation software

    DOEpatents

    Fincke, James R.

    2003-04-15

    Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.

  4. A Coupled Model of Multiphase Flow, Reactive Biogeochemical Transport, Thermal Transport and Geo-Mechanics.

    NASA Astrophysics Data System (ADS)

    Tsai, C. H.; Yeh, G. T.

    2015-12-01

    In this investigation, a coupled model of multiphase flow, reactive biogeochemical transport, thermal transport and geo-mechanics in subsurface media is presented. It iteratively solves the mass conservation equation for fluid flow, thermal transport equation for temperature, reactive biogeochemical transport equations for concentration distributions, and solid momentum equation for displacement with successive linearization algorithm. With species-based equations of state, density of a phase in the system is obtained by summing up concentrations of all species. This circumvents the problem of having to use empirical functions. Moreover, reaction rates of all species are incorporated in mass conservation equation for fluid flow. Formation enthalpy of all species is included in the law of energy conservation as a source-sink term. Finite element methods are used to discretize the governing equations. Numerical experiments are presented to examine the accuracy and robustness of the proposed model. The results demonstrate the feasibility and capability of present model in subsurface media.

  5. Investigation of hydrate formation and transportability in multiphase flow systems

    NASA Astrophysics Data System (ADS)

    Grasso, Giovanny A.

    The oil and gas industry is moving towards offshore developments in more challenging environments, where evaluating hydrate plugging risks to avoid operational/safety hazards becomes more difficult (Sloan, 2005). Even though mechanistic models for hydrate plug formation have been developed, components for a full comprehensive model are still missing. Prior to this work, research efforts were focused on flowing hydrate particles with relatively little research on hydrate accumulation, leaving hydrate deposition in multiphase flow an unexplored subject. The focus of this thesis was to better understand hydrate deposition as a form of accumu- lation in pipelines. To incorporate the multiphase flow effect, hydrate formation experiments were carried out at varying water cut (WC) from 15 to 100 vol.%, liquid loading (LL) from 50 to 85 vol.%, mixture velocity (vmix) from 0.75 to 3 m/s, for three fluids systems (100 % WC, water in Conroe crude oil emulsions and King Ranch condensate + water) on the ExxonMobil flowloop (4 in. nominal size and 314 ft. long) at Friendswood, TX. For the 100 % WC flowloop tests, hydrate particle distribution transitions beyond a critical hydrate volume concentration, observed values were between 8.2 to 29.4 vol.%, causing a sudden increase in pressure drop (DP). A revised correlation of the transition as a function of Reynolds number and liquid loading was developed. For Conroe emulsions, DP starts increasing at higher hydrate concentrations than King Ranch condensate, many times at 10 vol.%. Experiments with King Ranch show higher relative DP (10 to 25) than Conroe (2 to 10) performed at the same vmix and LL. Cohesive force measurements between cyclopentane hydrate particles were reduced from a value of 3.32 mN/m to 1.26 mN/m when 6 wt.% Conroe was used and to 0.41 mN/m when 5 wt.% Caratinga crude oil was used; similar values were obtained when extracted asphaltenes were used. King Ranch condensate (11 wt.%) did not significantly change the

  6. Investigation of hydrate formation and transportability in multiphase flow systems

    NASA Astrophysics Data System (ADS)

    Grasso, Giovanny A.

    The oil and gas industry is moving towards offshore developments in more challenging environments, where evaluating hydrate plugging risks to avoid operational/safety hazards becomes more difficult (Sloan, 2005). Even though mechanistic models for hydrate plug formation have been developed, components for a full comprehensive model are still missing. Prior to this work, research efforts were focused on flowing hydrate particles with relatively little research on hydrate accumulation, leaving hydrate deposition in multiphase flow an unexplored subject. The focus of this thesis was to better understand hydrate deposition as a form of accumu- lation in pipelines. To incorporate the multiphase flow effect, hydrate formation experiments were carried out at varying water cut (WC) from 15 to 100 vol.%, liquid loading (LL) from 50 to 85 vol.%, mixture velocity (vmix) from 0.75 to 3 m/s, for three fluids systems (100 % WC, water in Conroe crude oil emulsions and King Ranch condensate + water) on the ExxonMobil flowloop (4 in. nominal size and 314 ft. long) at Friendswood, TX. For the 100 % WC flowloop tests, hydrate particle distribution transitions beyond a critical hydrate volume concentration, observed values were between 8.2 to 29.4 vol.%, causing a sudden increase in pressure drop (DP). A revised correlation of the transition as a function of Reynolds number and liquid loading was developed. For Conroe emulsions, DP starts increasing at higher hydrate concentrations than King Ranch condensate, many times at 10 vol.%. Experiments with King Ranch show higher relative DP (10 to 25) than Conroe (2 to 10) performed at the same vmix and LL. Cohesive force measurements between cyclopentane hydrate particles were reduced from a value of 3.32 mN/m to 1.26 mN/m when 6 wt.% Conroe was used and to 0.41 mN/m when 5 wt.% Caratinga crude oil was used; similar values were obtained when extracted asphaltenes were used. King Ranch condensate (11 wt.%) did not significantly change the

  7. Development of Benchmark Experimental Transport and Multiphase Flow Data Sets to Test and Validate Pore-scale Numerical Simulators

    NASA Astrophysics Data System (ADS)

    Oostrom, M.; Wietsma, T. W.; Hess, N. J.

    2014-12-01

    Developing predictive models of multiphase flow and reactive transport and multiphase flow at the pore scale is a challenge common to diverse science areas. Increasingly, it has become more important in subsurface flow and transport research due to its relevance to research areas such as contaminant and colloidal transport and multiphase flow. Goals of pore-scale simulations include identification of key parameters and physicochemical processes controlling macroscopic phenomena, validation of continuum descriptions, and determination of appropriate forms of the continuum formulation for approximation of the pore-scale results. Numerical modeling of pore-scale (multiphase) flow and transport is an active research area. However, with the exception of a few studies, direct comparisons between pore-scale experiments and simulations have been limited. Some of the reasons experimental data have not been used extensively so far to test pore-scale models are related to quality and reproducibility issues with available micromodels. However, rapid advances in microfabrication and imaging have led to the development of experimental procedures ensuring high quality, reproducible results. Several of these advances have been implemented in the new microfluidics laboratory at the Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL). In this contribution, recently obtained benchmark data sets for nonreactive transport, reactive transport, and multiphase flow are discussed. The data sets are offered to pore-scale numerical modelers for testing and validation purposes.

  8. THC-MP: High performance numerical simulation of reactive transport and multiphase flow in porous media

    NASA Astrophysics Data System (ADS)

    Wei, Xiaohui; Li, Weishan; Tian, Hailong; Li, Hongliang; Xu, Haixiao; Xu, Tianfu

    2015-07-01

    The numerical simulation of multiphase flow and reactive transport in the porous media on complex subsurface problem is a computationally intensive application. To meet the increasingly computational requirements, this paper presents a parallel computing method and architecture. Derived from TOUGHREACT that is a well-established code for simulating subsurface multi-phase flow and reactive transport problems, we developed a high performance computing THC-MP based on massive parallel computer, which extends greatly on the computational capability for the original code. The domain decomposition method was applied to the coupled numerical computing procedure in the THC-MP. We designed the distributed data structure, implemented the data initialization and exchange between the computing nodes and the core solving module using the hybrid parallel iterative and direct solver. Numerical accuracy of the THC-MP was verified through a CO2 injection-induced reactive transport problem by comparing the results obtained from the parallel computing and sequential computing (original code). Execution efficiency and code scalability were examined through field scale carbon sequestration applications on the multicore cluster. The results demonstrate successfully the enhanced performance using the THC-MP on parallel computing facilities.

  9. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    SciTech Connect

    Yortsos, Yanis C.

    2001-08-07

    This project is an investigation of various multi-phase and multiscale transport and reaction processes associated with heavy oil recovery. The thrust areas of the project include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

  10. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    SciTech Connect

    Yortsos, Y.C.

    2001-05-29

    This report is an investigation of various multi-phase and multiscale transport and reaction processes associated with heavy oil recovery. The thrust areas of the project include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

  11. Multiphase Modeling of Flow, Transport, and Biodegradation in a Mesoscale Landfill Bioreactor

    SciTech Connect

    Oldenburg, Curtis M.; Borglin, Sharon E.; Hazen, Terry C.

    2002-02-01

    The need to control gas and leachate production and minimize refuse volume in municipal solid waste landfills has motivated the development of landfill simulation models to predict and design optimal treatment processes. We have developed a multiphase and multicomponent nonisothermal module called T2LBM for the three-dimensional TOUGH2 flow and transport simulator. T2LBM can be used to simulate aerobic or anaerobic biodegradation of municipal solid waste and the associated flow and transport of gas and liquid through the refuse mass. Acetic acid is used as a proxy for all biodegradable substrates in the refuse. T2LBM incorporates a Monod kinetic rate law for the biodegradation of acetic acid by either aerobic or anaerobic microbes as controlled by the local oxygen concentration. We have verified the model against published data, and applied it to our own mesoscale laboratory aerobic landfill bioreactor experiments. We observe spatial variability of flow and biodegradation consistent with permeability heterogeneity and the geometry of the radial grid. The model is capable of matching results of a shut-in test where the respiration of the system is measured over time.

  12. Multiphase flow and multicomponent reactive transport model of the ventilation experiment in Opalinus clay

    SciTech Connect

    Zheng, L.; Samper, J.; Montenegro, L.; Major, J.C.

    2008-10-15

    During the construction and operational phases of a high-level radioactive waste (HLW) repository constructed in a clay formation, ventilation of underground drifts will cause desaturation and oxidation of the rock. The Ventilation Experiment (VE) was performed in a 1.3 m diameter unlined horizontal microtunnel on Opalinus clay at Mont Terri underground research laboratory in Switzerland to evaluate the impact of desaturation on rock properties. A multiphase flow and reactive transport model of VE is presented here. The model accounts for liquid, vapor and air flow, evaporation/condensation and multicomponent reactive solute transport with kinetic dissolution of pyrite and siderite and local-equilibrium dissolution/precipitation of calcite, ferrihydrite, dolomite, gypsum and quartz. Model results reproduce measured vapor flow, liquid pressure and hydrochemical data and capture the trends of measured relative humidities, although such data are slightly overestimated near the rock interface due to uncertainties in the turbulence factor. Rock desaturation allows oxygen to diffuse into the rock and triggers pyrite oxidation, dissolution of calcite and siderite, precipitation of ferrihydrite, dolomite and gypsum and cation exchange. pH in the unsaturated rock varies from 7.8 to 8 and is buffered by calcite. Computed changes in the porosity and the permeability of Opalinus clay in the unsaturated zone caused by oxidation and mineral dissolution/precipitation are smaller than 5%. Therefore, rock properties are not expected to be affected significantly by ventilation of underground drifts during construction and operational phases of a HLW repository in clay.

  13. Subsurface Transport Over Reactive Multiphases (STORM): A general, coupled, nonisothermal multiphase flow, reactive transport, and porous medium alteration simulator, Version 2 user's guide

    SciTech Connect

    DH Bacon; MD White; BP McGrail

    2000-03-07

    The Hanford Site, in southeastern Washington State, has been used extensively to produce nuclear materials for the US strategic defense arsenal by the Department of Energy (DOE) and its predecessors, the US Atomic Energy Commission and the US Energy Research and Development Administration. A large inventory of radioactive and mixed waste has accumulated in 177 buried single- and double shell tanks. Liquid waste recovered from the tanks will be pretreated to separate the low-activity fraction from the high-level and transuranic wastes. Vitrification is the leading option for immobilization of these wastes, expected to produce approximately 550,000 metric tons of Low Activity Waste (LAW) glass. This total tonnage, based on nominal Na{sub 2}O oxide loading of 20% by weight, is destined for disposal in a near-surface facility. Before disposal of the immobilized waste can proceed, the DOE must approve a performance assessment, a document that described the impacts, if any, of the disposal facility on public health and environmental resources. Studies have shown that release rates of radionuclides from the glass waste form by reaction with water determine the impacts of the disposal action more than any other independent parameter. This report describes the latest accomplishments in the development of a computational tool, Subsurface Transport Over Reactive Multiphases (STORM), Version 2, a general, coupled non-isothermal multiphase flow and reactive transport simulator. The underlying mathematics in STORM describe the rate of change of the solute concentrations of pore water in a variably saturated, non-isothermal porous medium, and the alteration of waste forms, packaging materials, backfill, and host rocks.

  14. Subsurface Multiphase Flow and Multicomponent Reactive Transport Modeling using High-Performance Computing

    SciTech Connect

    Hammond, Glenn E.; Lichtner, Peter C.; Lu, Chuan

    2007-08-01

    Numerical modeling has become a critical tool to the Department of Energy for evaluating the environmental impact of alternative energy sources and remediation strategies for legacy waste sites. Unfortunately, the physical and chemical complexity of many sites overwhelms the capabilities of even most “state of the art” groundwater models. Of particular concern are the representation of highly-heterogeneous stratified rock/soil layers in the subsurface and the biological and geochemical interactions of chemical species within multiple fluid phases. Clearly, there is a need for higher-resolution modeling (i.e. more spatial, temporal, and chemical degrees of freedom) and increasingly mechanistic descriptions of subsurface physicochemical processes. We present research being performed in the development of PFLOTRAN, a parallel multiphase flow and multicomponent reactive transport model. Written in Fortran90, PFLOTRAN is founded upon PETSc data structures and solvers and has exhibited impressive strong scalability on up to 4000 processors on the ORNL Cray XT3. We are employing PFLOTRAN in the simulation of uranium transport at the Hanford 300 Area, a contaminated site of major concern to the Department of Energy, the State of Washington, and other government agencies where overly-simplistic historical modeling erroneously predicted decade removal times for uranium by ambient groundwater flow. By leveraging the billions of degrees of freedom available through high-performance computation using tens of thousands of processors, we can better characterize the release of uranium into groundwater and its subsequent transport to the Columbia River, and thereby better understand and evaluate the effectiveness of various proposed remediation strategies.

  15. On the Effective Continuum Method for Modeling MultiphaseFlow, Multicomponent Transport and Heat Transfer in FracturedRock

    SciTech Connect

    Wu, Yu-Shu

    1999-01-01

    Flow and transport through fractured porous media occurs in many subsurface systems and has received considerable attention in recent years due to the importance in the areas of underground natural resource recovery, waste storage, and environmental remediation scheme. Among the methods of handling fracture/matrix flow and transport through geological media, the effective continuum method (ECM) has been widely used, and misused in some cases, because of its simplicity in terms of data requirements and computational efficiency. This paper presents a rigorous, generalized effective continuum formulation, which has been implemented into the TOUGH2 code (Pruess, 1991) for modeling multiphase, multicomponent, non-isothermal flow and transport in fractured rocks. Also included in the paper are discussions of the conditions under which the ECM approach applies and the procedures for evaluating the effective parameters for both flow and transport simulations. Three application examples, one multiphase flow, one heat flow and one chemical transport problem, are given to demonstrate the usefulness of the ECM method.

  16. Multiphase Fluid Flow and Multicomponent Reactive Transport at the Hanford SX Tank Farm

    SciTech Connect

    Yabusaki, Steven B.

    2002-03-01

    In the next five years, critical decisions on the future disposition of wastes on the Hanford Site will be made: * barriers to control recharge at the ground surface,* procedures for retrieval and stabilization of tank waste, and* remediation of contaminated sediments.These decisions will be based, in part, on model predictions of contaminant transport in the vadose zone. Our investigation focuses on high-level radioactive waste tanks in the SX Tank Farm in the 200 West Area of the Hanford Site. The historical SX tank wastes were the hottest, highest pH, highest ionic strength, highest aluminum wastes in Hanford single-shell tanks (SST); 10 of these tanks are confirmed or suspected leakers. Over the last two years, an integrated program of scientific and engineering study has been directed at the SX tank farm, including (1) laboratory experiments on waste-sediment interactions, (2) field experiments on the migration of dense, hypersaline solutions, (3) estimates of historical tank leak source-terms, (4) characterization of hydrostratigraphic units, and (5) physical and chemical analyses of soil samples from the SX tank farm. In this presentation, we describe how these disparate data sets have been used to identify detailed process models and parameterizations that are incorporated into simulators of nonisothermal multiphase fluid flow and multicomponent reactive transport. This modeling framework provides a testbed to systematically assess the appropriateness of the identified process representations in the context of site-specific, field-scale properties, and more importantly, observed historical and contemporary behaviors (e.g., hydrology, chemistry). The ultimate goal is to provide a technically defensible basis for the prediction of long-term contaminant behavior. An important technological issue in the comprehensively detailed modeling approach is addressing the computationally intensive calculations that are required.

  17. Review of multiphase flow and pollutant transport models for the Hanford site

    SciTech Connect

    Kincaid, C.T.; Mitchell. P.J.

    1986-11-01

    This report provides a review of the physical processes, geochemical reactions, and microbiological kinetics that interact to determine the migration and fate of these pollutants. This review of processes and reactions provides a background from which codes for the analysis of contaminant migration and fate can be evaluated. Single codes representing classes of pollutant migration problems are cited to show how commonly employed and publicly available codes are not always applicable to the complex problems of multiphase fluid flow and pollutant migration. This review provides guidance on selecting and using codes; it also provides recommendations for development work needed to address deficiencies identified in existing models, codes, and data bases.

  18. Modeling and simulation of pore-scale multiphase fluid flow and reactive transport in fractured and porous media

    NASA Astrophysics Data System (ADS)

    Meakin, Paul; Tartakovsky, Alexandre M.

    2009-07-01

    In the subsurface, fluids play a critical role by transporting dissolved minerals, colloids, and contaminants (sometimes over long distances); by mediating dissolution and precipitation processes; and by enabling chemical transformations in solution and at mineral surfaces. Although the complex geometries of fracture apertures, fracture networks, and pore spaces may make it difficult to accurately predict fluid flow in saturated (single-phase) subsurface systems, well-developed methods are available. The simulation of multiphase fluid flow in the subsurface is much more challenging because of the large density and/or viscosity ratios found in important applications (water/air in the vadose zone; water/oil, water/gas, gas/oil, and water/oil/gas in hydrocarbon reservoirs; water/air/nonaqueous phase liquids (nonaqueous phase liquids/dense nonaqueous phase liquids) in contaminated vadose zone systems; and gas/molten rock in volcanic systems, for example). In addition, the complex behavior of fluid-fluid-solid contact lines and their impact on dynamic contact angles must also be taken into account and coupled with the fluid flow. Here we review the methods that are currently being used to simulate pore-scale multiphase fluid flow and reactive transport in fractured and porous media. After the introduction, the review begins with an overview of the fundamental physics of multiphase fluids flow followed by a more detailed discussion of the complex dynamic behavior of contact lines and contact angles, an important barrier to accurate pore-scale modeling and simulation. The main part of the review focuses on five different approaches: pore network models, lattice gas and lattice Boltzmann methods, Monte Carlo methods, particle methods (molecular dynamics, dissipative particle dynamics, and smoothed particle hydrodynamics), and traditional grid-based computational fluid dynamics coupled with interface tracking and a contact angle model. Finally, the review closes with a

  19. Multiphase fluid flow and subsequent geochemical transport invariably saturated fractured rocks: 1. Approaches

    SciTech Connect

    Xu, Tianfu; Pruess, Karsten

    2000-08-08

    Reactive fluid flow and geochemical transport in unsaturated fractured rocks has received increasing attention for studies of contaminant transport, groundwater quality, waste disposal, acid mine drainage remediation, mineral deposits, sedimentary diagenesis, and fluid-rock interactions in hydrothermal systems. This paper presents methods for modeling geochemical systems that emphasize: (1) involvement of the gas phase in addition to liquid and solid phases in fluid flow, mass transport and chemical reactions, (2) treatment of physically and chemically heterogeneous and fractured rocks, (3) the effect of heat on fluid flow and reaction properties and processes, and (4) the kinetics of fluid-rock interaction. The physical and chemical process model is embodied in a system of partial differential equations for flow and transport, coupled to algebraic equations and ordinary differential equations for chemical interactions. For numerical solution, the continuum equations are discretized in space and time. Space discretization is based on a flexible integral finite difference approach that can use irregular gridding to model geologic structure; time is discretized fully implicitly as a first-order finite difference. Heterogeneous and fractured media are treated with a general multiple interacting continua method that includes double-porosity, dual-permeability, and multi-region models as special cases. A sequential iteration approach is used to treat the coupling between fluid flow and mass transport on the one hand, chemical reactions on the other. Applications of the methods developed here to variably saturated geochemical systems are presented in a companion paper (part 2, this issue).

  20. Modeling and Simulation of Pore Scale Multiphase Fluid Flow and Reactive Transport in Fractured and Porous Media

    SciTech Connect

    Paul Meakin; Alexandre Tartakovsky

    2009-07-01

    In the subsurface fluids play a critical role by transporting dissolved minerals, colloids and contaminants (sometimes over long distances), by mediating dissolution and precipitation processes and enabling chemical transformations in solution and at mineral surfaces. Although the complex geometries of fracture apertures, fracture networks and pore spaces may make it difficult to accurately predict fluid flow in saturated (single-phase) subsurface systems, well developed methods are available. The simulation of multiphase fluid flow in the subsurface is much more challenging because of the large density and/or viscosity ratios found in important applications (water/air in the vadose zone, water/oil, water/gas, gas/oil and water/oil/gas in oil reservoirs, water/air/non-aqueous phase liquids (NAPL) in contaminated vadose zone systems and gas/molten rock in volcanic systems, for example). In addition, the complex behavior of fluid-fluid-solid contact lines, and its impact on dynamic contact angles, must also be taken into account, and coupled with the fluid flow. Pore network models and simple statistical physics based models such as the invasion percolation and diffusion-limited aggregation models have been used quite extensively. However, these models for multiphase fluid flow are based on simplified models for pore space geometries and simplified physics. Other methods such a lattice Boltzmann and lattice gas models, molecular dynamics, Monte Carlo methods, and particle methods such as dissipative particle dynamics and smoothed particle hydrodynamics are based more firmly on first principles, and they do not require simplified pore and/or fracture geometries. However, they are less (in some cases very much less) computationally efficient that pore network and statistical physics models. Recently a combination of continuum computation fluid dynamics, fluid-fluid interface tracking or capturing and simple models for the dependence of contact angles on fluid velocity

  1. Modeling and simulation of pore-scale multiphase fluid flow and reactive transport in fractured and porous media

    SciTech Connect

    Meakin, Paul; Tartakovsky, Alexandre M.

    2009-07-14

    In the subsurface fluids play a critical role by transporting dissolved minerals, colloids and contaminants (sometimes over long distances), by mediating dissolution and precipitation processes and enabling chemical transformations in solution and at mineral surfaces. Although the complex geometries of fracture apertures, fracture networks and pore spaces may make it difficult to accurately predict fluid flow in saturated (single-phase) subsurface systems, well developed methods are available. The simulation of multiphase fluid flow in the subsurface is much more challenging because of the large density and/or viscosity ratios found in important applications (water/air in the vadose zone, water/oil, water/gas, gas/oil and water/oil/gas in oil reservoirs, water/air/non-aqueous phase liquids (NAPL) in contaminated vadose zone systems and gas/molten rock in volcanic systems, for example). In addition, the complex behavior of fluid-fluid-solid contact lines, and its impact on dynamic contact angles, must also be taken into account, and coupled with the fluid flow. Pore network models and simple statistical physics based models such as the invasion percolation and diffusion-limited aggregation models have been used quite extensively. However, these models for multiphase fluid flow are based on simplified models for pore space geometries and simplified physics. Other methods such a lattice Boltzmann and lattice gas models, molecular dynamics, Monte Carlo methods, and particle methods such as dissipative particle dynamics and smoothed particle hydrodynamics are based more firmly on first principles, and they do not require simplified pore and/or fracture geometries. However, they are less (in some cases very much less) computationally efficient that pore network and statistical physics models. Recently a combination of continuum computation fluid dynamics, fluid-fluid interface tracking or capturing and simple models for the dependence of contact angles on fluid velocity

  2. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    SciTech Connect

    Yorstos, Yanis C.

    2002-03-11

    The emphasis of this work was on investigating the mechanisms and factors that control the recovery of heavy oil with the objective to improve recovery efficiencies. For this purpose the interaction of flow transport and reaction at various scales from the pore network to the field scales were studied. Particular mechanisms to be investigated included the onset of gas flow in foamy oil production and in in-situ steam drive, gravity drainage in steam processes, the development of sustained combustion fronts and the propagation of foams in porous media. Analytical, computational and experimental methods were utilized to advance the state of the art in heavy oil recovery. Successful completion of this research was expected to lead to improvements in the Recovery efficiency of various heavy oil processes.

  3. INVESTIGATION OF MULTISCALE AND MULTIPHASE FLOW, TRANSPORT AND REACTION IN HEAVY OIL RECOVERY PROCESSES

    SciTech Connect

    Yannis C. Yortsos

    2003-02-01

    This is final report for contract DE-AC26-99BC15211. The report describes progress made in the various thrust areas of the project, which include internal drives for oil recovery, vapor-liquid flows, combustion and reaction processes and the flow of fluids with yield stress. The report consists mainly of a compilation of various topical reports, technical papers and research reports published produced during the three-year project, which ended on May 6, 2002 and was no-cost extended to January 5, 2003. Advances in multiple processes and at various scales are described. In the area of internal drives, significant research accomplishments were made in the modeling of gas-phase growth driven by mass transfer, as in solution-gas drive, and by heat transfer, as in internal steam drives. In the area of vapor-liquid flows, we studied various aspects of concurrent and countercurrent flows, including stability analyses of vapor-liquid counterflow, and the development of novel methods for the pore-network modeling of the mobilization of trapped phases and liquid-vapor phase changes. In the area of combustion, we developed new methods for the modeling of these processes at the continuum and pore-network scales. These models allow us to understand a number of important aspects of in-situ combustion, including steady-state front propagation, multiple steady-states, effects of heterogeneity and modes of combustion (forward or reverse). Additional aspects of reactive transport in porous media were also studied. Finally, significant advances were made in the flow and displacement of non-Newtonian fluids with Bingham plastic rheology, which is characteristic of various heavy oil processes. Various accomplishments in generic displacements in porous media and corresponding effects of reservoir heterogeneity are also cited.

  4. Nonisothermal multiphase subsurface transport on parallel computers

    SciTech Connect

    Martinez, M.J.; Hopkins, P.L.; Shadid, J.N.

    1997-10-01

    We present a numerical method for nonisothermal, multiphase subsurface transport in heterogeneous porous media. The mathematical model considers nonisothermal two-phase (liquid/gas) flow, including capillary pressure effects, binary diffusion in the gas phase, conductive, latent, and sensible heat transport. The Galerkin finite element method is used for spatial discretization, and temporal integration is accomplished via a predictor/corrector scheme. Message-passing and domain decomposition techniques are used for implementing a scalable algorithm for distributed memory parallel computers. An illustrative application is shown to demonstrate capabilities and performance.

  5. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    SciTech Connect

    Yorstos, Yannis C.

    2003-03-19

    The report describes progress made in the various thrust areas of the project, which include internal drives for oil recovery, vapor-liquid flows, combustion and reaction processes and the flow of fluids with yield stress.

  6. Turbulent Mixing of Multiphase Flow

    NASA Technical Reports Server (NTRS)

    Young, Y.-N.; Ferziger, J.; Ham, F. E.; Herrmann, M.

    2003-01-01

    Thus we conduct numerical simulations of multiphase fluids stirred by two-dimensional turbulence to assess the possibility of self-similar drop size distribution in turbulence. In our turbulence simulations, we also explore the non-diffusive limit, where molecular mobility for the interface is vanishing. Special care is needed to transport the non-diffusive interface. Numerically, we use the particle level set method to evolve the interface. Instead of using the usual methods to calculate the surface tension force from the level set function, we reconstruct the interface based on phase- field modeling, and calculate the continuum surface tension forcing from the reconstructed interface.

  7. Innovative Techniques of Multiphase Flow in Pipeline System for Oil-Gas Gathering and Transportation with Energy-Saving and Emission-Reduction

    NASA Astrophysics Data System (ADS)

    Bai, Bofeng; Guo, Liejin; Zhang, Shaojun; Zhang, Ximin; Gu, Hanyang

    2010-03-01

    Multiphase flow measurement, desanding, dehumidification and heat furnace are critical techniques for the oil and gas gathering and transportation, which influnce intensively the energy-saving and emission-reduction in the petroleum industry. Some innovative techniques were developed for the first time by the present research team, including an online recognation instrument of multiphase flow regime, a water fraction instrument for multuphase flow, a coiled tube desanding separator with low pressure loss and high efficiency, a supersonic swirling natural gas dehumifier, and a vacuum phase-change boiler. With an integration of the above techniques, a new oil gas gathering and transpotation system was proposed, which reduced the establishment of one metering station and several transfer stations compared with the tranditional system. The oil and gas mixture transpotation in single pipes was realized. The improved techniques were applied in the oilfields in China and promoted the productivity of the oilfields by low energy consumption, low emissions, high efficiency and great security.

  8. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    SciTech Connect

    Yortsos, Yanis C.

    2002-10-08

    In this report, the thrust areas include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

  9. Multiphase Flow Analysis in Hydra-TH

    SciTech Connect

    Christon, Mark A.; Bakosi, Jozsef; Francois, Marianne M.; Lowrie, Robert B.; Nourgaliev, Robert

    2012-06-20

    This talk presents an overview of the multiphase flow efforts with Hydra-TH. The presentation begins with a definition of the requirements and design principles for multiphase flow relevant to CASL-centric problems. A brief survey of existing codes and their solution algorithms is presented before turning the model formulation selected for Hydra-TH. The issues of hyperbolicity and wellposedness are outlined, and a three candidate solution algorithms are discussed. The development status of Hydra-TH for multiphase flow is then presented with a brief summary and discussion of future directions for this work.

  10. Reactive multiphase flow simulation workshop summary

    SciTech Connect

    VanderHeyden, W.B.

    1995-09-01

    A workshop on computer simulation of reactive multiphase flow was held on May 18 and 19, 1995 in the Computational Testbed for Industry at Los Alamos National Laboratory (LANL), Los Alamos, New Mexico. Approximately 35 to 40 people attended the workshop. This included 21 participants from 12 companies representing the petroleum, chemical, environmental and consumer products industries, two representatives from the DOE Office of Industrial Technologies and several from Los Alamos. The dialog at the meeting suggested that reactive multiphase flow simulation represents an excellent candidate for government/industry/academia collaborative research. A white paper on a potential consortium for reactive multiphase flow with input from workshop participants will be issued separately.

  11. TOUGHREACT Version 2.0: A simulator for subsurface reactive transport under non-isothermal multiphase flow conditions

    NASA Astrophysics Data System (ADS)

    Xu, Tianfu; Spycher, Nicolas; Sonnenthal, Eric; Zhang, Guoxiang; Zheng, Liange; Pruess, Karsten

    2011-06-01

    TOUGHREACT is a numerical simulation program for chemically reactive non-isothermal flows of multiphase fluids in porous and fractured media, and was developed by introducing reactive chemistry into the multiphase fluid and heat flow simulator TOUGH2 V2. The first version of TOUGHREACT was released to the public through the U.S. Department of Energy's Energy Science and Technology Software Center (ESTSC) in August 2004. It is among the most frequently requested of ESTSC's codes. The code has been widely used for studies in CO 2 geological sequestration, nuclear waste isolation, geothermal energy development, environmental remediation, and increasingly for petroleum applications. Over the past several years, many new capabilities have been developed, which were incorporated into Version 2 of TOUGHREACT. Major additions and improvements in Version 2 are discussed here, and two application examples are presented: (1) long-term fate of injected CO 2 in a storage reservoir and (2) biogeochemical cycling of metals in mining-impacted lake sediments.

  12. TOUGHREACT Version 2.0: A simulator for subsurface reactive transport under non-isothermal multiphase flow conditions

    SciTech Connect

    Xu, T.; Spycher, N.; Sonnenthal, E.; Zhang, G.; Zheng, L.; Pruess, K.

    2010-08-01

    TOUGHREACT is a numerical simulation program for chemically reactive non-isothermal flows of multiphase fluids in porous and fractured media, and was developed by introducing reactive chemistry into the multiphase fluid and heat flow simulator TOUGH2 V2. The first version of TOUGHREACT was released to the public through the U.S. Department of Energy's Energy Science and Technology Software Center (ESTSC) in August 2004. It is among the most frequently requested of ESTSC's codes. The code has been widely used for studies in CO{sub 2} geological sequestration, nuclear waste isolation, geothermal energy development, environmental remediation, and increasingly for petroleum applications. Over the past several years, many new capabilities have been developed, which were incorporated into Version 2 of TOUGHREACT. Major additions and improvements in Version 2 are discussed here, and two application examples are presented: (1) long-term fate of injected CO{sub 2} in a storage reservoir and (2) biogeochemical cycling of metals in mining-impacted lake sediments.

  13. Simulation of multiphase flow in hydrocyclone

    NASA Astrophysics Data System (ADS)

    Rudolf, P.

    2013-04-01

    Multiphase gas-liquid-solid swirling flow within hydrocyclone is simulated. Geometry and boundary conditions are based on Hsieh's 75 mm hydrocyclone. Extensive simulations point that standard mixture model with careful selection of interphase drag law is suitable for correct prediction of particle classification in case of dilute suspensions. However this approach fails for higher mass loading. It is also confirmed that Reynolds stress model is the best choice for multiphase modeling of the swirling flow on relatively coarse grids.

  14. Viscous and gravitational fingering in multiphase compositional and compressible flow

    NASA Astrophysics Data System (ADS)

    Moortgat, Joachim

    2016-03-01

    Viscous and gravitational fingering refer to flow instabilities in porous media that are triggered by adverse mobility or density ratios, respectively. These instabilities have been studied extensively in the past for (1) single-phase flow (e.g., contaminant transport in groundwater, first-contact-miscible displacement of oil by gas in hydrocarbon production), and (2) multi-phase immiscible and incompressible flow (e.g., water-alternating-gas (WAG) injection in oil reservoirs). Fingering in multiphase compositional and compressible flow has received much less attention, perhaps due to its high computational complexity. However, many important subsurface processes involve multiple phases that exchange species. Examples are carbon sequestration in saline aquifers and enhanced oil recovery (EOR) by gas or WAG injection below the minimum miscibility pressure. In multiphase flow, relative permeabilities affect the mobility contrast for a given viscosity ratio. Phase behavior can also change local fluid properties, which can either enhance or mitigate viscous and gravitational instabilities. This work presents a detailed study of fingering behavior in compositional multiphase flow in two and three dimensions and considers the effects of (1) Fickian diffusion, (2) mechanical dispersion, (3) flow rates, (4) domain size and geometry, (5) formation heterogeneities, (6) gravity, and (7) relative permeabilities. Results show that fingering in compositional multiphase flow is profoundly different from miscible conditions and upscaling techniques used for the latter case are unlikely to be generalizable to the former.

  15. Development of Next Generation Multiphase Pipe Flow Prediction Tools

    SciTech Connect

    Cem Sarica; Holden Zhang

    2006-05-31

    basic continuity and momentum equations is established for each phase, and used for both flow pattern and flow behavior predictions. The required closure relationships are being developed, and will be verified with experimental results. Gas-oil-water experimental studies are currently underway for the horizontal pipes. Industry-driven consortia provide a cost-efficient vehicle for developing, transferring, and deploying new technologies into the private sector. The Tulsa University Fluid Flow Projects (TUFFP) is one of the earliest cooperative industry-university research consortia. TUFFP's mission is to conduct basic and applied multiphase flow research addressing the current and future needs of hydrocarbon production and transportation. TUFFP participants and The University of Tulsa are supporting this study through 55% cost sharing.

  16. Multiphase flow in wells and pipelines

    SciTech Connect

    Sharma, M.P. ); Rohatgi, U.S. )

    1992-01-01

    This conference focuses primarily on multi-phase flow modeling and calculation methods for oil and gas although two papers focus more on the fluid mechanics of fluidized beds. Papers include theoretical, numerical modeling, experimental investigation, and state-of-the-art review aspects of multiphase flow. The theme of the symposium being general, the papers reflect generality of gas-liquid, liquid-solid, and gas solid flows. One paper deals with nuclear reactor safety as it relates to fluid flow through the reactor.

  17. KINEMATIC MODELING OF MULTIPHASE SOLUTE TRANSPORT IN THE VADOSE ZONE

    EPA Science Inventory

    The goal of this research was the development of a computationally efficient simulation model for multiphase flow of organic hazardous waste constituents in the shallow soil environment. Such a model is appropriate for investigation of fate and transport of organic chemicals intr...

  18. Mixing and Demixing Processes in Multiphase Flows With Application to Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Decker, Rand (Editor); Schafer, Charles F. (Editor)

    1988-01-01

    A workshop on transport processes in multiphase flow was held at the Marshall Space Flight Center on February 25 and 26, 1988. The program, abstracts and text of the presentations at this workshop are presented. The objective of the workshop was to enhance our understanding of mass, momentum, and energy transport processes in laminar and turbulent multiphase shear flows in combustion and propulsion environments.

  19. Anisotropic distributions in a multiphase transport model

    NASA Astrophysics Data System (ADS)

    Zhou, You; Xiao, Kai; Feng, Zhao; Liu, Feng; Snellings, Raimond

    2016-03-01

    With a multiphase transport (AMPT) model we investigate the relation between the magnitude, fluctuations, and correlations of the initial state spatial anisotropy ɛn and the final state anisotropic flow coefficients vn in Au+Au collisions at √{s NN}=200 GeV. It is found that the relative eccentricity fluctuations in AMPT account for the observed elliptic flow fluctuations, both are in agreement with the elliptic flow fluctuation measurements from the STAR collaboration. In addition, the studies based on two- and multiparticle correlations and event-by-event distributions of the anisotropies suggest that the elliptic-power function is a promising candidate of the underlying probability density function of the event-by-event distributions of ɛn as well as vn. Furthermore, the correlations between different order symmetry planes and harmonics in the initial coordinate space and final state momentum space are presented. Nonzero values of these correlations have been observed. The comparison between our calculations and data will, in the future, shed new insight into the nature of the fluctuations of the quark-gluon plasma produced in heavy ion collisions.

  20. Ultrasonic rate measurement of multiphase flow

    NASA Astrophysics Data System (ADS)

    Dannert, David A.; Horne, Roland N.

    1993-01-01

    One of the most important tools in production logging and well testing is the downhole flowmeter. Unfortunately, existing tools are inaccurate outside of an idealized single phase flow regime. Spinner tools are inaccurate at extremely high or low flow rates and when the flow rate is variable. Radioactive tracer tools have similar inaccuracies and are extremely sensitive to the flow regime. Both tools completely fail in the presence of multiphase flow, whether for gas/oil, gas/water, or fluid/solid. Downhole flowmetering is important for locating producing zones and thief zones and monitoring production and injection rates. The effects of stimulation can also be determined. The goal of this project is the investigation of accurate downhole flowmetering techniques for all single phase flow regimes and multiphase flows. The measurement method investigated in this report is the use of ultrasound. There are two ways to use ultrasound for fluid velocity measurement. The first method, examined in Chapter 2, is the contrapropagation, or transit-time, method which compares travel times with and against fluid flow. Chapter 3 details the second method which measures the Doppler frequency shift of a reflected sound wave in the moving fluid. Both of these technologies need to be incorporated in order to build a true multiphase flowmeter. Chapter 4 describes the proposed downhole multiphase flowmeter.

  1. Ultrasonic rate measurement of multiphase flow

    SciTech Connect

    Dannert, D.A.; Horne, R.N.

    1993-01-01

    On of the most important tools in production logging and well testing is the downhole flowmeter. Unfortunately, existing tools are inaccurate outside of an idealized single phase flow, regime. Spinner tools are inaccurate at extremely high or low, flow rates and when the flow rate is variable. Radioactive tracer tools have similar inaccuracies and are extremely sensitive to the flow regime. Both tools completely fail in the presence of multiphase flow, whether gas/ oil, gas/water or fluid/solid. Downhole flowmetering is important for locating producing zones and thief zones and monitoring production and injection rates. The effects of stimulation can also be determined. This goal of this project is the investigation of accurate downhole flowmetering techniques for all single phase flow regimes and multiphase flows. The measurement method investigated in this report is the use of ultrasound. There are two ways to use ultrasound for fluid velocity measurement. The first method, examined in Chapter 2, is the contrapropagation, or transit-time, method which compares travel times with and against fluid flow. Chapter 3 details the second method which measures the Doppler frequency shift of a reflected sound wave in the moving fluid. Both of these technologies need to be incorporated in order to build a true multiphase flowmeter. Chapter 4 describes the proposed downhole multiphase flowmeter. It has many advantages besides the ones previously mentioned and is in full in that chapter.

  2. Multiphase transport: Fundamentals, reactor safety, applications Proceedings of the Multi-Phase Flow and Heat Transfer Symposium-Workshop, Miami Beach, FL, April 16-18, 1979. Vol. 1-5

    SciTech Connect

    Veziroglu, T.N.

    1980-01-01

    The symposium focused on multiphase flow and heat transfer, mathematical modeling, boiling condensation, pressure drops, instabilities, and reactor safety. Papers were presented on gas-liquid flow in pipes, investigation of liquid droplet diffusion in annular mist flow, energy and entropy equations for a dispersed-phase flow, a mathematical model for heat transfer in rocket motor nozzle walls, numerical predictions for film condensation problems using boundary layer equations, and the liquid contribution to heat transfer to dispersed flows and sprays.

  3. EDITORIAL: Measurement techniques for multiphase flows Measurement techniques for multiphase flows

    NASA Astrophysics Data System (ADS)

    Okamoto, Koji; Murai, Yuichi

    2009-11-01

    Research on multiphase flows is very important for industrial applications, including power stations, vehicles, engines, food processing and so on. Multiphase flows originally have nonlinear features because of multiphase systems. The interaction between the phases plays a very interesting role in the flows. The nonlinear interaction causes the multiphase flows to be very complicated. Therefore techniques for measuring multiphase flows are very useful in helping to understand the nonlinear phenomena. The state-of-the-art measurement techniques were presented and discussed at the sixth International Symposium on Measurement Techniques for Multiphase Flows (ISMTMF2008) held in Okinawa, Japan, on 15-17 December 2008. This special feature of Measurement Science and Technology includes selected papers from ISMTMF2008. Okinawa has a long history as the Ryukyus Kingdom. China, Japan and many western Pacific countries have had cultural and economic exchanges through Okinawa for over 1000 years. Much technical and scientific information was exchanged at the symposium in Okinawa. The proceedings of ISMTMF2008 apart from these special featured papers were published in Journal of Physics: Conference Series vol. 147 (2009). We would like to express special thanks to all the contributors to the symposium and this special feature. This special feature will be a milestone in measurement techniques for multiphase flows.

  4. MSTS - Multiphase Subsurface Transport Simulator theory manual

    SciTech Connect

    White, M.D.; Nichols, W.E.

    1993-05-01

    The US Department of Energy, through the Yucca Mountain Site Characterization Project Office, has designated the Yucca Mountain site in Nevada for detailed study as the candidate US geologic repository for spent nuclear fuel and high-level radioactive waste. Site characterization will determine the suitability of the Yucca Mountain site for the potential waste repository. If the site is determined suitable, subsequent studies and characterization will be conducted to obtain authorization from the Nuclear Regulatory Commission to construct the potential waste repository. A principal component of the characterization and licensing processes involves numerically predicting the thermal and hydrologic response of the subsurface environment of the Yucca Mountain site to the potential repository over a 10,000-year period. The thermal and hydrologic response of the subsurface environment to the repository is anticipated to include complex processes of countercurrent vapor and liquid migration, multiple-phase heat transfer, multiple-phase transport, and geochemical reactions. Numerical simulators based on mathematical descriptions of these subsurface phenomena are required to make numerical predictions of the thermal and hydrologic response of the Yucca Mountain subsurface environment The engineering simulator called the Multiphase Subsurface Transport Simulator (MSTS) was developed at the request of the Yucca Mountain Site Characterization Project Office to produce numerical predictions of subsurface flow and transport phenomena at the potential Yucca Mountain site. This document delineates the design architecture and describes the specific computational algorithms that compose MSTS. Details for using MSTS and sample problems are given in the {open_quotes}User`s Guide and Reference{close_quotes} companion document.

  5. A Course in Transport Phenomena in Multicomponent, Multiphase, Reacting Systems.

    ERIC Educational Resources Information Center

    Carbonell, R. G.; Whitaker, S.

    1978-01-01

    This course concentrates on a rigorous development of the multicomponent transport equations, boundary conditions at phase interfaces, and volume-averaged transport equations for multiphase reacting systems. (BB)

  6. Using pore-scale imaging and modeling to provide new insights in multi-phase flow, transport and reaction phenomena in porous media (Invited)

    NASA Astrophysics Data System (ADS)

    Bijeljic, B.; Andrew, M. G.; Menke, H. P.; Blunt, M. J.

    2013-12-01

    Advances in X ray imaging techniques made it possible not only to accurately describe solid and fluid(s) distributions in the pore space but also to study dynamics of multi-phase flow and reactive transport in-situ. This has opened up a range of new opportunities to better understand fundamental physics at the pore scale by experiment, and test and validate theoretical models in order to develop predictive tools at the pore scale and use it for upscaling. Firstly, we illustrate this concept by describing a new methodology for predicting non-Fickian transport in millimeter-sized three-dimensional micro-CT images of a beadpack, a sandstone, and a carbonate, representing porous media with an increasing degree of pore-scale complexity. The key strategy is to retain the full information on flow and transport signature of a porous medium by using probability distribution functions (PDFs) of voxel velocities for flow, and both PDFs of particle displacements and PDFs of particle transit times between voxels for transport. For this purpose, direct-simulation flow and transport model is used to analyse the relationship between pore structure, velocity, and the dynamics of the evolving plume. The model predictions for PDFs of particle displacements obtained by the model are in excellent agreement with those measured on similar cores in nuclear magnetic resonance experiments. A key determinant for non-Fickian transport is the spread in velocity distribution in the pore space. Further, we present micro-CT imaging of capillary trapping of scCO2 at reservoir conditions in a range of carbonates and sandstones having different pore structure and demonstrate that substantial quantities of scCO2 can be trapped in the pore space. Higher residual scCO2 saturations are found in sandstones compared to carbonates. The trapped ganglia exhibit different distribution of size, related to the inherent structure of pore space. Pore structures with large, open pores that are well connected lead

  7. A Coupled Multiphase Fluid Flow And Heat And Vapor Transport Model For Air-Gap Membrane Distillation

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sumit

    2010-05-01

    Membrane distillation (MD) is emerging as a viable desalination technology because of its low energy requirements that can be provided from low-grade, waste heat and because it causes less fouling. In MD, desalination is accomplished by transporting water vapour through a porous hydrophobic membrane. The vapour transport process is governed by the vapour pressure difference between the two sides of a membrane. A variety of configurations have been tested to impose this vapour pressure gradient, however, the air-gap membrane distillation (AGMD) has been found to be the most efficient. The separation mechanism of AGMD and its overall efficiency is based on vapour-liquid equilibrium (VLE). At present, little knowledge is available about the optimal design of such a transmembrane VLE-based evaporation, and subsequent condensation processes. While design parameters for MD have evolved mostly through experimentations, a comprehensive mathematical model is yet to be developed. This is primarily because the coupling and non-linearity of the equations, the interactions between the flow, heat and mass transport regimes, and the complex geometries involved pose a challenging modelling and simulation problem. Yet a comprehensive mathematical model is needed for systematic evaluation of the processes, design parameterization, and performance prediction. This paper thus presents a coupled fluid flow, heat and mass transfer model to investigate the main processes and parameters affecting the performance of an AGMD.

  8. Pore-scale experimental study of multiphase flow relevant to CO2 sequestration and biogeochemical reactive transport relevant to contaminant fate in the subsurface

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Oostrom, M.; Liu, C.

    2012-12-01

    Pore-scale micromodel experiments are being conducted at EMSL PNNL to gain better understanding of i) fundamental interfacial processes that control multiphase flow relevant to CO2 sequestration, and ii) biogeochemical reactive transport that affect the fate of contaminants in the subsurface. During the main drainage process, unstable capillary and viscous fingering mechanisms were observed in a nearly homogeneous micromodel and a dual-permeability micromodel that affect supercritical CO2 (scCO2, 9 MPa, 41 degree C) displacement of water from the pore space. During primary imbibition, water flooding of a micromodel partially saturated with scCO2 resulted in preferential dissolution of scCO2 (i.e., dissolution fingering). Micromodel experiments were also performed to investigate kinetics of reductive dissolution of hematite coating on grain surfaces when coupled with pore diffusion. Results showed hematite reduction rate in micropores where transport is dominated by diffusion is 1 to 2 orders of magnitude lower than macropores where transport is controlled by advection.

  9. NMR studies of multiphase flows II

    SciTech Connect

    Altobelli, S.A.; Caprihan, A.; Fukushima, E.

    1995-12-31

    NMR techniques for measurements of spatial distribution of material phase, velocity and velocity fluctuation are being developed and refined. Versions of these techniques which provide time average liquid fraction and fluid phase velocity have been applied to several concentrated suspension systems which will not be discussed extensively here. Technical developments required to further extend the use of NMR to the multi-phase flow arena and to provide measurements of previously unobtainable parameters are the focus of this report.

  10. Tomographic segmentation in multiphase flow measurement

    NASA Astrophysics Data System (ADS)

    Sætre, Camilla; Tjugum, Stein-Arild; Anton Johansen, Geir

    2014-02-01

    Measurement of multiphase pipe flow of gas, oil and water is not at all trivial and in spite of considerable achievements over the past two decades, important challenges remain. These are related to reducing measurement uncertainties arising from variations in the flow regime and the fluid properties, improving long term stability and developing new means for calibration, adjustment and verification of the multiphase flow meters. In this work the pipe flow is split into temporal segments using multiple gamma-ray measurements. One 241Am source with principal emission at 59.5 keV was used because this relatively low energy enables efficient collimation and thereby shaping of the beams, as well as use of compact detectors. One detector is placed diametrically opposite the source whereas the second and eventually the third are positioned to the sides so that these beams are close to the pipe wall. The principle is then straight forward, that is to compare the measured intensities of these detectors, and through those identify the instantaneous cross sectional gas-liquid distribution, i.e. the instantaneous flow pattern. By counting the intensity in short time slots of <100 ms, experiments verify that rapid variations exist. The water salinity is one of the fluid properties which challenge most multiphase flow meters because its variations affects component volume fraction calculations based on gamma-ray, electrical conductance and other measurements methods. At the University of Bergen a dual modality method has been developed using simultaneous measurements of transmitted and scattered gamma-rays from a 241Am source. This allows the gas volume fraction to be determined independent of changes in the water salinity, provided that the fluid is fairly homogeneously mixed. Tomographic flow segmentation allows selection of low gas fraction segments where the salinity, in combination with running averaging methods, can be calculated with higher accuracy.

  11. Multiphase, multicomponent flow and transport models for Nuclear Test-Ban Treaty monitoring and nuclear waste disposal applications

    NASA Astrophysics Data System (ADS)

    Jordan, Amy

    Open challenges remain in using numerical models of subsurface flow and transport systems to make useful predictions related to nuclear waste storage and nonproliferation. The work presented here addresses the sensitivity of model results to unknown parameters, states, and processes, particularly uncertainties related to incorporating previously unrepresented processes (e.g., explosion-induced fracturing, hydrous mineral dehydration) into a subsurface flow and transport numerical simulator. The Finite Element Heat and Mass (FEHM) transfer code is used for all numerical models in this research. An experimental campaign intended to validate the predictive capability of numerical models that include the strongly coupled thermal, hydrological, and chemical processes in bedded salt is also presented. Underground nuclear explosions (UNEs) produce radionuclide gases that may seep to the surface over weeks to months. The estimated timing of gas arrival at the surface may be used to deploy personnel and equipment to the site of a suspected UNE, if allowed under the terms of the Comprehensive Nuclear Test-Ban Treaty. A model was developed using FEHM that considers barometrically pumped gas transport through a simplified fractured medium and was used to quantify the impact of uncertainties in hydrologic parameters (fracture aperture, matrix permeability, porosity, and saturation) and season of detonation on the timing of gas breakthrough. Numerical sensitivity analyses were performed for the case of a 1 kt UNE at a 400 m burial depth. Gas arrival time was found to be most affected by matrix permeability and fracture aperture. Gases having higher diffusivity were more sensitive to uncertainty in the rock properties. The effect of seasonality in the barometric pressure forcing was found to be important, with detonations in March the least likely to be detectable based on barometric data for Rainier Mesa, Nevada. Monte Carlo modeling was also used to predict the window of

  12. Multiphase, multicomponent flow and transport models for Nuclear Test-Ban Treaty monitoring and nuclear waste disposal applications

    NASA Astrophysics Data System (ADS)

    Jordan, Amy

    Open challenges remain in using numerical models of subsurface flow and transport systems to make useful predictions related to nuclear waste storage and nonproliferation. The work presented here addresses the sensitivity of model results to unknown parameters, states, and processes, particularly uncertainties related to incorporating previously unrepresented processes (e.g., explosion-induced fracturing, hydrous mineral dehydration) into a subsurface flow and transport numerical simulator. The Finite Element Heat and Mass (FEHM) transfer code is used for all numerical models in this research. An experimental campaign intended to validate the predictive capability of numerical models that include the strongly coupled thermal, hydrological, and chemical processes in bedded salt is also presented. Underground nuclear explosions (UNEs) produce radionuclide gases that may seep to the surface over weeks to months. The estimated timing of gas arrival at the surface may be used to deploy personnel and equipment to the site of a suspected UNE, if allowed under the terms of the Comprehensive Nuclear Test-Ban Treaty. A model was developed using FEHM that considers barometrically pumped gas transport through a simplified fractured medium and was used to quantify the impact of uncertainties in hydrologic parameters (fracture aperture, matrix permeability, porosity, and saturation) and season of detonation on the timing of gas breakthrough. Numerical sensitivity analyses were performed for the case of a 1 kt UNE at a 400 m burial depth. Gas arrival time was found to be most affected by matrix permeability and fracture aperture. Gases having higher diffusivity were more sensitive to uncertainty in the rock properties. The effect of seasonality in the barometric pressure forcing was found to be important, with detonations in March the least likely to be detectable based on barometric data for Rainier Mesa, Nevada. Monte Carlo modeling was also used to predict the window of

  13. Technical Report on NETL's Non Newtonian Multiphase Slurry Workshop: A path forward to understanding non-Newtonian multiphase slurry flows

    SciTech Connect

    Edited by Guenther, Chris; Garg, Rahul

    2013-08-19

    The Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) sponsored a workshop on non-Newtonian multiphase slurry at NETL’s Morgantown campus August 19 and 20, 2013. The objective of this special two-day meeting of 20-30 invited experts from industry, National Labs and academia was to identify and address technical issues associated with handling non-Newtonian multiphase slurries across various facilities managed by DOE. Particular emphasis during this workshop was placed on applications managed by the Office of Environmental Management (EM). The workshop was preceded by two webinars wherein personnel from ORP and NETL provided background information on the Hanford WTP project and discussed the critical design challenges facing this project. In non-Newtonian fluids, viscosity is not constant and exhibits a complex dependence on applied shear stress or deformation. Many applications under EM’s tank farm mission involve non-Newtonian slurries that are multiphase in nature; tank farm storage and handling, slurry transport, and mixing all involve multiphase flow dynamics, which require an improved understanding of the mechanisms responsible for rheological changes in non-Newtonian multiphase slurries (NNMS). To discuss the issues in predicting the behavior of NNMS, the workshop focused on two topic areas: (1) State-of-the-art in non-Newtonian Multiphase Slurry Flow, and (2) Scaling up with Confidence and Ensuring Safe and Reliable Long-Term Operation.

  14. Using turbine flowmeters to measure multiphase flow

    SciTech Connect

    Cole, J.H.; Fincke, J.R.

    1997-07-01

    Numerous ways of measuring multiphase flow are under research investigation. However, the concept of using turbine flowmeters has been largely overlooked. Testing of drag turbine mass flowmeter prototypes demonstrated that fluid flow past a turbine rotor produces a drag force that is proportional to momentum flux. Simultaneous measurements of momentum flux and velocity allow the extraction of density. Use of this type of meter to measure homogenized two-phase flow with void fractions below 90% appears feasible. Further mass turbine flowmeter research is encouraged. Drag turbine test data strongly suggests that a turbine flowmeter can be developed into a mass flowmeter by installing pressure taps across the rotor and using the differential pressure measurement to infer momentum flux. Also, using diamond film force sensing would allow the fabrication of a more compact, rugged, and faster-responding drag turbine mass flowmeter than is possible with alternative force sensing methods.

  15. Impact of normal stress on multiphase flow through rough fractures

    NASA Astrophysics Data System (ADS)

    Alves da Silva Junior, J.; Kang, P. K.; Yang, Z.; Cueto-Felgueroso, L.; Juanes, R.

    2015-12-01

    Fluid flow and transport through geologic fractures plays a key role in several areas such as groundwater hydrology, geothermal energy, oil and gas production, CO2 sequestration and nuclear waste disposal. High-permeability zones associated with fracture corridors often serve as fast fluid conduits for both single and multiphase flow in otherwise low-permeability media. When multiphase flow occurs, the presence of one phase interferes with the flow of the other phase, resulting in complex displacement patterns through the fracture, and macroscopic descriptors (such as fracture-scale capillary pressure and relative permeability) that depend on the phase concentration of both phases. Here, we investigate the impact of normal stress on single and multiphase flow through rough-walled fractures: (1) we generate synthetic aperture fields that honor the fractal roughness structure observed in real fractures; (2) we model the effect of normal stress on the fracture aperture geometry by solving the contact problem between fracture walls; and (3) we use invasion percolation with trapping to model immiscible fluid displacement and then compute relative permeability numerically for each stress scenario. Our results indicate that normal stress increases the amount of contact area in the fracture wall, which results in an increase of the tortuosity of the available path for fluid displacement. Increasing normal stress results in low relative permeability for the wetting phase due to a decrease of the available path for fluid flow, and therefore a small amount of non-wetting fluid has a large impact on the flow of the wetting fluid. We find that the relative permeability of the non-wetting fluid shows less variation with stress than the wetting fluid, and that both fluids exhibit strong phase interference at intermediate saturations. Finally, we show early results from our experimental work currently underway to validate the modeling results.

  16. Quantitative tomographic measurements of opaque multiphase flows

    SciTech Connect

    GEORGE,DARIN L.; TORCZYNSKI,JOHN R.; SHOLLENBERGER,KIM ANN; O'HERN,TIMOTHY J.; CECCIO,STEVEN L.

    2000-03-01

    An electrical-impedance tomography (EIT) system has been developed for quantitative measurements of radial phase distribution profiles in two-phase and three-phase vertical column flows. The EIT system is described along with the computer algorithm used for reconstructing phase volume fraction profiles. EIT measurements were validated by comparison with a gamma-densitometry tomography (GDT) system. The EIT system was used to accurately measure average solid volume fractions up to 0.05 in solid-liquid flows, and radial gas volume fraction profiles in gas-liquid flows with gas volume fractions up to 0.15. In both flows, average phase volume fractions and radial volume fraction profiles from GDT and EIT were in good agreement. A minor modification to the formula used to relate conductivity data to phase volume fractions was found to improve agreement between the methods. GDT and EIT were then applied together to simultaneously measure the solid, liquid, and gas radial distributions within several vertical three-phase flows. For average solid volume fractions up to 0.30, the gas distribution for each gas flow rate was approximately independent of the amount of solids in the column. Measurements made with this EIT system demonstrate that EIT may be used successfully for noninvasive, quantitative measurements of dispersed multiphase flows.

  17. An Advanced Reservoir Simulator for Tracer Transport in Multicomponent Multiphase Compositional Flow and Applications to the Cranfield CO2 Sequestration Site

    NASA Astrophysics Data System (ADS)

    Moortgat, J.

    2015-12-01

    Reservoir simulators are widely used to constrain uncertainty in the petrophysical properties of subsurface formations by matching the history of injection and production data. However, such measurements may be insufficient to uniquely characterize a reservoir's properties. Monitoring of natural (isotopic) and introduced tracers is a developing technology to further interrogate the subsurface for applications such as enhanced oil recovery from conventional and unconventional resources, and CO2 sequestration. Oak Ridge National Laboratory has been piloting this tracer technology during and following CO2 injection at the Cranfield, Mississippi, CO2 sequestration test site. Two campaigns of multiple perfluorocarbon tracers were injected together with CO2 and monitored at two wells at 68 m and 112 m from the injection site. The tracer data suggest that multiple CO2 flow paths developed towards the monitoring wells, indicative of either channeling through high permeability pathways or of fingering. The results demonstrate that tracers provide an important complement to transient pressure data. Numerical modeling is essential to further explain and interpret the observations. To aid the development of tracer technology, we enhanced a compositional multiphase reservoir simulator to account for tracer transport. Our research simulator uses higher-order finite element (FE) methods that can capture the small-scale onset of fingering on the coarse grids required for field-scale modeling, and allows for unstructured grids and anisotropic heterogeneous permeability fields. Mass transfer between fluid phases and phase behavior are modeled with rigorous equation-of-state based phase-split calculations. We present our tracer simulator and preliminary results related to the Cranfield experiments. Applications to noble gas tracers in unconventional resources are presented by Darrah et al.

  18. Multiphase groundwater flow near cooling plutons

    USGS Publications Warehouse

    Hayba, D.O.; Ingebritsen, S.E.

    1997-01-01

    We investigate groundwater flow near cooling plutons with a computer program that can model multiphase flow, temperatures up to 1200??C, thermal pressurization, and temperature-dependent rock properties. A series of experiments examines the effects of host-rock permeability, size and depth of pluton emplacement, single versus multiple intrusions, the influence of a caprock, and the impact of topographically driven groundwater flow. We also reproduce and evaluate some of the pioneering numerical experiments on flow around plutons. Host-rock permeability is the principal factor influencing fluid circulation and heat transfer in hydrothermal systems. The hottest and most steam-rich systems develop where permeability is of the order of 10-15 m2. Temperatures and life spans of systems decrease with increasing permeability. Conduction-dominated systems, in which permeabilities are ???10-16m2, persist longer but exhibit relatively modest increases in near-surface temperatures relative to ambient conditions. Pluton size, emplacement depth, and initial thermal conditions have less influence on hydrothermal circulation patterns but affect the extent of boiling and duration of hydrothermal systems. Topographically driven groundwater flow can significantly alter hydrothermal circulation; however, a low-permeability caprock effectively decouples the topographically and density-driven systems and stabilizes the mixing interface between them thereby defining a likely ore-forming environment.

  19. Multiphase Flow Measurement System of Oil Well

    NASA Astrophysics Data System (ADS)

    Huang, Zhiyao; He, Chaohong; Liang, Qilin

    2007-06-01

    A new multiphase flow measurement system of oil well was developed. This measurement system was based on the combination of a separator, two level meters and three commercial flowmeters. The separator separated the crude oil into three components: gas, water and oil-water mixture. By means of the automatic control of two interface levels (the oil-water interface level and the oil-gas interface level), three components were measured by the corresponding commercial flowmeters. The developed measurement system had been tested at Shengli Oilfield in China. The test results show that the developed measurement system is effective. It is suitable for the flowrate measurement of Chinese oil well with high water fraction and its accuracy is also satisfactory.

  20. Multiphase lattice Boltzmann flux solver for incompressible multiphase flows with large density ratio

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Shu, C.; Huang, H. B.; Teo, C. J.

    2015-01-01

    A multiphase lattice Boltzmann flux solver (MLBFS) is proposed in this paper for incompressible multiphase flows with low- and large-density-ratios. In the solver, the flow variables at cell centers are given from the solution of macroscopic governing differential equations (Navier-Stokes equations recovered by multiphase lattice Boltzmann (LB) model) by the finite volume method. At each cell interface, the viscous and inviscid fluxes are evaluated simultaneously by local reconstruction of solution for the standard lattice Boltzmann equation (LBE). The forcing terms in the governing equations are directly treated by the finite volume discretization. The phase interfaces are captured by solving the phase-field Cahn-Hilliard equation with a fifth order upwind scheme. Unlike the conventional multiphase LB models, which restrict their applications on uniform grids with fixed time step, the MLBFS has the capability and advantage to simulate multiphase flows on non-uniform grids. The proposed solver is validated by several benchmark problems, such as two-phase co-current flow, Taylor-Couette flow in an annulus, Rayleigh-Taylor instability, and droplet splashing on a thin film at density ratio of 1000 with Reynolds numbers ranging from 20 to 1000. Numerical results show the reliability of the proposed solver for multiphase flows with high density ratio and high Reynolds number.

  1. Dan Joseph's contributions to disperse multiphase flow

    NASA Astrophysics Data System (ADS)

    Prosperetti, Andrea

    2012-11-01

    During his distinguished career, Dan Joseph worked on a vast array of problems. One of these, which occupied him off and on over the last two decades of his life, was that of flows with suspended finite-size particles at finite Reynolds numbers. He realized early on that progress in this field had to rely on the insight gained from numerical simulation, an area in which he was a pioneer. On the basis of the early numerical results he recognized the now famous ``drafting, kissing and tumbling'' mechanism of particle-particle interaction, the possibility of fluidization by lift and many others. With a number of colleagues and a series of gifted students he produced a significant body of work summarized in his on-line book Interrogations of Direct Numerical Simulation of Solid-Liquid Flows available from http://www.efluids.com/efluids/books/joseph.htm. This presentation will describe Joseph's contribution to the understanding of disperse multiphase flow and conclude with some examples from the author's recent work in this area. Supported by NSF.

  2. Workshop on Scientific Issues in Multiphase Flow

    SciTech Connect

    Hanratty, Thomas J.

    2003-01-02

    This report outlines scientific issues whose resolution will help advance and define the field of multiphase flow. It presents the findings of four study groups and of a workshop sponsored by the Program on Engineering Physics of the Department of Energy. The reason why multiphase flows are much more difficult to analyze than single phase flows is that the phases assume a large number of complicated configurations. Therefore, it should not be surprising that the understanding of why the phases configure in a certain way is the principal scientific issue. Research is needed which identifies the microphysics controlling the organization of the phases, which develops physical models for the resultant multi-scale interactions and which tests their validity in integrative experiments/theories that look at the behavior of a system. New experimental techniques and recently developed direct numerical simulations will play important roles in this endeavor. In gas-liquid flows a top priority is to develop an understanding of why the liquid phase in quasi fully-developed pipe flow changes from one configuration to another. Mixing flows offer a more complicated situation in which several patterns can exist at the same time. They introduce new physical challenges. A second priority is to provide a quantitative description of the phase distribution for selected fully-developed flows and for simple mixing flows (that could include heat transfer and phase change). Microphysical problems of interest are identified – including the coupling of molecular and macroscopic behavior that can be observed in many situations and the formation/destruction of interfaces in the coalescence/breakup of drops and bubbles. Solid-fluid flows offer a simpler system in that interfaces are not changing. However, a variety of patterns exist, that depend on the properties of the particles, their concentration and the Reynolds number characterizing the relative velocity. A top priority is the

  3. Online recognition of the multiphase flow regime and study of slug flow in pipeline

    NASA Astrophysics Data System (ADS)

    Liejin, Guo; Bofeng, Bai; Liang, Zhao; Xin, Wang; Hanyang, Gu

    2009-02-01

    Multiphase flow is the phenomenon existing widely in nature, daily life, as well as petroleum and chemical engineering industrial fields. The interface structure among multiphase and their movement are complicated, which distribute random and heterogeneously in the spatial and temporal scales and have multivalue of the flow structure and state[1]. Flow regime is defined as the macro feature about the multiphase interface structure and its distribution, which is an important feature to describe multiphase flow. The energy and mass transport mechanism differ much for each flow regimes. It is necessary to solve the flow regime recognition to get a clear understanding of the physical phenomena and their mechanism of multiphase flow. And the flow regime is one of the main factors affecting the online measurement accuracy of phase fraction, flow rate and other phase parameters. Therefore, it is of great scientific and technological importance to develop new principles and methods of multiphase flow regime online recognition, and of great industrial background. In this paper, the key reasons that the present method cannot be used to solve the industrial multiphase flow pattern recognition are clarified firstly. Then the prerequisite to realize the online recognition of multiphase flow regime is analyzed, and the recognition rules for partial flow pattern are obtained based on the massive experimental data. The standard templates for every flow regime feature are calculated with self-organization cluster algorithm. The multi-sensor data fusion method is proposed to realize the online recognition of multiphase flow regime with the pressure and differential pressure signals, which overcomes the severe influence of fluid flow velocity and the oil fraction on the recognition. The online recognition method is tested in the practice, which has less than 10 percent measurement error. The method takes advantages of high confidence, good fault tolerance and less requirement of

  4. APPROXIMATE MULTIPHASE FLOW MODELING BY CHARACTERISTIC METHODS

    EPA Science Inventory

    The flow of petroleum hydrocarbons, organic solvents and other liquids that are immiscible with water presents the nation with some of the most difficult subsurface remediation problems. One aspect of contaminant transport associated releases of such liquids is the transport as a...

  5. The TOUGH codes - a family of simulation tools for multiphase flowand transport processes in permeable media

    SciTech Connect

    Pruess, Karsten

    2003-08-08

    Numerical simulation has become a widely practiced andaccepted technique for studying flow and transport processes in thevadose zone and other subsurface flow systems. This article discusses asuite of codes, developed primarily at Lawrence Berkeley NationalLaboratory (LBNL), with the capability to model multiphase flows withphase change. We summarize history and goals in the development of theTOUGH codes, and present the governing equations for multiphase,multicomponent flow. Special emphasis is given to space discretization bymeans of integral finite differences (IFD). Issues of code implementationand architecture are addressed, as well as code applications,maintenance, and future developments.

  6. Multiphase transport in polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Gauthier, Eric D.

    Polymer electrolyte membrane fuel cells (PEMFCs) enable efficient conversion of fuels to electricity. They have enormous potential due to the high energy density of the fuels they utilize (hydrogen or alcohols). Power density is a major limitation to wide-scale introduction of PEMFCs. Power density in hydrogen fuel cells is limited by accumulation of water in what is termed fuel cell `flooding.' Flooding may occur in either the gas diffusion layer (GDL) or within the flow channels of the bipolar plate. These components comprise the electrodes of the fuel cell and balance transport of reactants/products with electrical conductivity. This thesis explores the role of electrode materials in the fuel cell and examines the fundamental connection between material properties and multiphase transport processes. Water is generated at the cathode catalyst layer. As liquid water accumulates it will utilize the largest pores in the GDL to go from the catalyst layer to the flow channels. Water collects to large pores via lateral transport at the interface between the GDL and catalyst layer. We have shown that water may be collected in these large pores from several centimeters away, suggesting that we could engineer the GDL to control flooding with careful placement and distribution of large flow-directing pores. Once liquid water is in the flow channels it forms slugs that block gas flow. The slugs are pushed along the channel by a pressure gradient that is dependent on the material wettability. The permeable nature of the GDL also plays a major role in slug growth and allowing bypass of gas between adjacent channels. Direct methanol fuel cells (DMFCs) have analogous multiphase flow issues where carbon dioxide bubbles accumulate, `blinding' regions of the fuel cell. This problem is fundamentally similar to water management in hydrogen fuel cells but with a gas/liquid phase inversion. Gas bubbles move laterally through the porous GDL and emerge to form large bubbles within the

  7. FOREWORD: International Symposium of Cavitation and Multiphase Flow (ISCM 2014)

    NASA Astrophysics Data System (ADS)

    Wu, Yulin

    2015-01-01

    The International Symposium on Cavitation and Multiphase Flow (ISCM 2014) was held in Beijing, China during 18th-21st October, 2014, which was jointly organized by Tsinghua University, Beijing, China and Jiangsu University, Zhenjiang, China. The co-organizer was the State Key Laboratory of Hydroscience and Engineering, Beijing, China. Cavitation and multiphase flow is one of paramount topics of fluid mechanics with many engineering applications covering a broad range of topics, e.g. hydraulic machinery, biomedical engineering, chemical and process industry. In order to improve the performances of engineering facilities (e.g. hydraulic turbines) and to accelerate the development of techniques for medical treatment of serious diseases (e.g. tumors), it is essential to improve our understanding of cavitation and Multiphase Flow. For example, the present development towards the advanced hydrodynamic systems (e.g. space engine, propeller, hydraulic machinery system) often requires that the systems run under cavitating conditions and the risk of cavitation erosion needs to be controlled. The purpose of the ISCM 2014 was to discuss the state-of-the-art cavitation and multiphase flow research and their up-to-date applications, and to foster discussion and exchange of knowledge, and to provide an opportunity for the researchers, engineers and graduate students to report their latest outputs in these fields. Furthermore, the participants were also encouraged to present their work in progress with short lead time and discuss the encountered problems. ISCM 2014 covers all aspects of cavitation and Multiphase Flow, e.g. both fundamental and applied research with a focus on physical insights, numerical modelling and applications in engineering. Some specific topics are: Cavitating and Multiphase Flow in hydroturbines, pumps, propellers etc. Numerical simulation techniques Cavitation and multiphase flow erosion and anti-erosion techniques Measurement techniques for cavitation and

  8. A model for multiphase flows through poroelastic media

    SciTech Connect

    Ahmadi, Goodarz; Mazaheri, Ali Reza; Smith, D.H

    2003-01-01

    A continuum model for multiphase fluid mixture flows through poroelastic media is presented. The basic conservation laws developed via a volume averaging technique are considered. Effects of phasic equilibrated forces are included in the model. Based on the thermodynamics of the multiphase mixture flows, appropriate constitutive equations are formulated. The entropy inequality is exploited, and the method of Lagrangian multiplier is used along with the phasic conservation laws to derive the constitutive equations for the phasic stress tensors, equilibrated stress vectors, and the interactions terms. The special cases of wave propagation in poroelastic media saturated with multiphase fluids, and multiphase flows through porous media, are studied. It is shown that the present theory leads to the extended Darcy’s law and contains, as a special case, Biot’s theory of saturated poroelastic media.

  9. On-line subsea multiphase flow measurement

    SciTech Connect

    High, G.; Frantzen, K.H.; Marshall, M.

    1995-12-31

    This paper describes the final detailed design, engineering, and installation phase of a Joint Industry Program to qualify a robust subsea multiphase flowmeter module for long-term installation on a North Sea manifold tie-in. Multiphase subsea production has become a common method of hydrocarbon recovery in all areas of offshore E and P. In the North Sea, many developments are subsea satellites with multiphase well-fluids being comingled prior to processing. The system described meets this challenge by offering a cost effective solution to real-time well monitoring as an alternative to the conventional test separator, removing the need for test lines and shutting in wells for testing. The multiphase instrument allows on-line well fluid analysis, and is also an important tool for reservoir management and field analysis, and provides a means of implementing field allocation metering thereby simplifying small marginal field developments. This project is one of the first subsea multiphase flowmeter installations engineered for long-term subsea service, and designed as an integrated component of the subsea production control system.

  10. Multiphase pumps and flow meters -- Status of field testing

    SciTech Connect

    Skiftesvik, P.K.; Svaeren, J.A.

    1995-12-31

    With the development and qualification of multiphase pumps and multiphase flow meters, two new tools have been made available to the oil and gas industry for enhanced production from existing installations or new field developments. This paper presents an overview of the major achievements gained from various test installations carried out the last years using equipment qualified by Framo Engineering AS. The experience from the extensive Field Verification Programmes as described shows that multiphase pumps and meters can operate in various and often harsh well environments providing significant well stream pressure boost or acceptable phase accuracy measurements of oil, water and gas.

  11. Multi-phase multi-component reactive flow in Geodynamics

    NASA Astrophysics Data System (ADS)

    Oliveira, Beñat; Afonso, Juan Carlos; Zlotnik, Sergio

    2016-04-01

    Multi-phase multi-component reactive flow (MPMCRF) controls a number of important complex geodynamic/geochemical problems, such as melt generation and percolation, metasomatism, rheological weakening, magmatic differentiation, ore emplacement, and fractionation of chemical elements, to name a few. These interacting processes occur over very different spatial and temporal scales and under very different physico-chemical conditions. Therefore, there is a strong motivation in geodynamics for investigating the equations governing MPMCRF, their mathematical structure and properties, and the numerical techniques necessary to obtain reliable and accurate results. In this contribution we present results from a novel numerical framework to solve multiscale MPMCRF problems in geodynamic contexts. Our approach is based on the effective tracking of the most basic building blocks: internal energy and chemical composition. This is achieved through the combination of rigorous solutions to the conservation equations (mass, energy and momentum) for each dynamic phase (instead of the more common "mixture-type" approach) and the transport equation for the chemical species, within the context of classical irreversible thermodynamics. Interfacial processes such as phase changes, chemical diffusion+reaction, and surface tension effects are explicitly incorporated in the context of ensemble averaging. Phase assemblages, mineral and melt compositions, and all other physical parameters of multi-phase systems are obtained through dynamic free-energy minimization procedures.

  12. MSTS Multiphase Subsurface Transport Simulator User's Guide and Reference

    SciTech Connect

    Nichols, W.E.; White, M.D.

    1993-05-01

    This User's Guide and Reference provides information and instructions on the use of the Multiphase Subsurface Transport Simulator (MSTS) code and the associated MSTS Graphical Input. The MSTS code is used to simulate water flow, air flow, heat transfer, and dilute species mass transport in variably saturated geologic media for one, two, or three dimensions using an integrated finite-difference numerical scheme. Any or all of these processes may be simulated in a fully coupled manner. MSTS is a two-phase, two-component code with secondary processes that include binary diffusion and vapor pressure lowering. The geologic media may be homogeneous or heterogeneous, isotropic or anisotropic, and unfractured or highly fractured. A problem geometry may be described by either Cartesian or cylindrical coordinates. MSTS is written in FORTRAN 77, following the American National Standards Institute (ANSI) standards, and is machine-independent with the exception of some time and date calls required for quality control (provisions are made in the code for relatively easy adoption to a number of machines for these calls).

  13. System for measuring multiphase flow using multiple pressure differentials

    DOEpatents

    Fincke, James R.

    2003-01-01

    An improved method and system for measuring a multi-phase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multi-phase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The system for determining the mass flow of the high void fraction fluid flow and the gas flow includes taking into account a pressure drop experienced by the gas phase due to work performed by the gas phase in accelerating the liquid phase.

  14. Simulations of Multiphase Flow in a T-junction and Distributor Header

    NASA Astrophysics Data System (ADS)

    Horwitz, Jeremy; Kumar, Purushotam; Vanka, Pratap

    2012-11-01

    Multiphase flow is widely encountered in industrial applications including air conditioning and refrigeration systems. In this study, we simulate multiphase flow in complex micro-channels using two approaches: a multiphase Lattice Boltzmann Method (LBM) and a finite volume Volume of Fluid (VOF) method. In LBM, fluids are represented on a mesoscopic scale by particle distribution functions which evolve via a discretized Boltzmann equation. Macroscopic flow variables such as density and velocity are related to the moments of the distribution functions. In contrast, VOF calculates flow variables via three coupled equations: the continuity equation, the Navier-Stokes equation, and the volume-fraction transport equation which tracks the interface between disparate phases. An emphasis is placed on comparison of these schemes to determine their respective advantages in calculation of multiphase flow for these geometries. The principle geometries are a T-junction and multi-branch distributor header. We study bubble-laden flow and immiscible liquid-liquid flow and explore the effect of Reynolds number, buoyancy, and density ratio on the flow physics. Simulation results are compared with experiments. Air Conditioning and Refrigeration Center, The University of Illinois at Urbana-Champaign.

  15. Multiphase flow parameter estimation based on laser scattering

    NASA Astrophysics Data System (ADS)

    Vendruscolo, Tiago P.; Fischer, Robert; Martelli, Cicero; Rodrigues, Rômulo L. P.; Morales, Rigoberto E. M.; da Silva, Marco J.

    2015-07-01

    The flow of multiple constituents inside a pipe or vessel, known as multiphase flow, is commonly found in many industry branches. The measurement of the individual flow rates in such flow is still a challenge, which usually requires a combination of several sensor types. However, in many applications, especially in industrial process control, it is not necessary to know the absolute flow rate of the respective phases, but rather to continuously monitor flow conditions in order to quickly detect deviations from the desired parameters. Here we show how a simple and low-cost sensor design can achieve this, by using machine-learning techniques to distinguishing the characteristic patterns of oblique laser light scattered at the phase interfaces. The sensor is capable of estimating individual phase fluxes (as well as their changes) in multiphase flows and may be applied to safety applications due to its quick response time.

  16. Numerical Methods and Simulations of Complex Multiphase Flows

    NASA Astrophysics Data System (ADS)

    Brady, Peter

    Multiphase flows are an important part of many natural and technological phenomena such as ocean-air coupling (which is important for climate modeling) and the atomization of liquid fuel jets in combustion engines. The unique challenges of multiphase flow often make analytical solutions to the governing equations impossible and experimental investigations very difficult. Thus, high-fidelity numerical simulations can play a pivotal role in understanding these systems. This dissertation describes numerical methods developed for complex multiphase flows and the simulations performed using these methods. First, the issue of multiphase code verification is addressed. Code verification answers the question "Is this code solving the equations correctly?" The method of manufactured solutions (MMS) is a procedure for generating exact benchmark solutions which can test the most general capabilities of a code. The chief obstacle to applying MMS to multiphase flow lies in the discontinuous nature of the material properties at the interface. An extension of the MMS procedure to multiphase flow is presented, using an adaptive marching tetrahedron style algorithm to compute the source terms near the interface. Guidelines for the use of the MMS to help locate coding mistakes are also detailed. Three multiphase systems are then investigated: (1) the thermocapillary motion of three-dimensional and axisymmetric drops in a confined apparatus, (2) the flow of two immiscible fluids completely filling an enclosed cylinder and driven by the rotation of the bottom endwall, and (3) the atomization of a single drop subjected to a high shear turbulent flow. The systems are simulated numerically by solving the full multiphase Navier-Stokes equations coupled to the various equations of state and a level set interface tracking scheme based on the refined level set grid method. The codes have been parallelized using MPI in order to take advantage of today's very large parallel computational

  17. Gasificaton Transport: A Multiphase CFD Approach & Measurements

    SciTech Connect

    Dimitri Gidaspow; Veeraya Jiradilok; Mayank Kashyap; Benjapon Chalermsinsuwan

    2009-02-14

    The objective of this project was to develop predictive theories for the dispersion and mass transfer coefficients and to measure them in the turbulent fluidization regime, using existing facilities. A second objective was to use our multiphase CFD tools to suggest optimized gasifier designs consistent with aims of Future Gen. We have shown that the kinetic theory based CFD codes correctly compute: (1) Dispersion coefficients; and (2) Mass transfer coefficients. Hence, the kinetic theory based CFD codes can be used for fluidized bed reactor design without any such inputs. We have also suggested a new energy efficient method of gasifying coal and producing electricity using a molten carbonate fuel cell. The principal product of this new scheme is carbon dioxide which can be converted into useful products such as marble, as is done very slowly in nature. We believe this scheme is a lot better than the canceled FutureGen, since the carbon dioxide is safely sequestered.

  18. Finite-Element Analysis of Multiphase Immiscible Flow Through Soils

    NASA Astrophysics Data System (ADS)

    Kuppusamy, T.; Sheng, J.; Parker, J. C.; Lenhard, R. J.

    1987-04-01

    A finite-element model is developed for multiphase flow through soil involving three immiscible fluids: namely, air, water, and a nonaqueous phase liquid (NAPL). A variational method is employed for the finite-element formulation corresponding to the coupled differential equations governing flow in a three-fluid phase porous medium system with constant air phase pressure. Constitutive relationships for fluid conductivities and saturations as functions of fluid pressures, which are derived in a companion paper by J. C. Parker et al. (this issue) and which may be calibrated from two-phase laboratory measurements, are employed in the finite-element program. The solution procedure uses backward time integration with iteration by a modified Picard method to handle the nonlinear properties. Laboratory experiments involving water displacement from soil columns by p cymene (a benzene-derivative hydrocarbon) under constant pressure were simulated by the finite-element program to validate the numerical model and formulation for constitutive properties. Transient water outflow predicted using independently measured saturation-capillary head data agreed with observed outflow data within the limits of precision of the predictions as estimated by a first-order Taylor series approximation considering parameter uncertainty due to experimental reproducability and constitutive model accuracy. Two-dimensional simulations are presented for a hypothetical field case involving introduction of NAPL near the soil surface due to leakage from an underground storage tank. Subsequent transport of NAPL in the variably saturated vadose and groundwater zones is analyzed.

  19. The effect of drag reducing agent in multiphase flow pipelines

    SciTech Connect

    Kang, C.; Vancho, R.M. Jr.; Jepson, W.P.; Green, A.S.; Kerr, H.

    1998-12-31

    The effect of drag reducing agents (DRA) on pressure gradient and flow regime has been studied in horizontal and 2 degree inclination. Experiments were conducted for full pipe, stratified, slug, and annular flow in a 10 cm inside diameter, 18 m long plexiglass section and inclinable flow loops from horizontal to vertical. Superficial liquid velocity between 0.06 and 1.5 m/s and superficial gas velocity between 1 and 14 m/s were studied. The DRA effectiveness was examined for DRA concentrations between 0 and 75 ppm. The results indicate that DRA was effective in reducing the pressure gradients in single and multiphase flow. The DRA was more effective for lower superficial liquid velocities and gas velocities for both single phase and multiphase flow. The DRA was effective to reduce pressure gradients up to 42% for full pipe flow, 91% for stratified flow and up to 35% for annular flow in horizontal pipes. Kang, Wilkens and Jepson (1996) showed that the stratified flow disappears entirely and slug flow dominates the flow regime map in inclined upward flow. In 2 degree inclination, the pressure gradient reduction for slug flow with a concentration of 50 ppm DRA is 28% and 38% at superficial gas velocities of 2 and 6 m/s respectively. Flow regimes maps with DRA were determined in horizontal pipes. The transition to the slug flow with DRA was observed to occur at a higher superficial liquid due to higher liquid flow rates. There is a conspicuous absence of drag reduction work for multiphase (oil-water-gas) flow in horizontal and inclined pipes.

  20. Wettability control on multiphase flow in patterned microfluidics.

    PubMed

    Zhao, Benzhong; MacMinn, Christopher W; Juanes, Ruben

    2016-09-13

    Multiphase flow in porous media is important in many natural and industrial processes, including geologic CO2 sequestration, enhanced oil recovery, and water infiltration into soil. Although it is well known that the wetting properties of porous media can vary drastically depending on the type of media and pore fluids, the effect of wettability on multiphase flow continues to challenge our microscopic and macroscopic descriptions. Here, we study the impact of wettability on viscously unfavorable fluid-fluid displacement in disordered media by means of high-resolution imaging in microfluidic flow cells patterned with vertical posts. By systematically varying the wettability of the flow cell over a wide range of contact angles, we find that increasing the substrate's affinity to the invading fluid results in more efficient displacement of the defending fluid up to a critical wetting transition, beyond which the trend is reversed. We identify the pore-scale mechanisms-cooperative pore filling (increasing displacement efficiency) and corner flow (decreasing displacement efficiency)-responsible for this macroscale behavior, and show that they rely on the inherent 3D nature of interfacial flows, even in quasi-2D media. Our results demonstrate the powerful control of wettability on multiphase flow in porous media, and show that the markedly different invasion protocols that emerge-from pore filling to postbridging-are determined by physical mechanisms that are missing from current pore-scale and continuum-scale descriptions. PMID:27559089

  1. The study of multiphase flow control during odor reproduction

    NASA Astrophysics Data System (ADS)

    Luo, Dehan; Yu, Hao; Fan, Danjun; He, Meiqiu

    2014-04-01

    Odor reproduction, is the use of the chemical composition of the basic components of odor recipe, according to a certain proportion, to control the flow of the various components, which make them sufficiently blended to achieve reproduction. In this paper, reproducing method is to find the corresponding liquid flavor, and then based on chemical flavor recipes, using flowmeters to control the chemical composition of the liquid flavor ratio. In the proportional control, the liquid chemical composition is very likely to be volatile, so that the proportional control is multiphase flow control. Measurement of the flow control will directly affect the odor reproducible results. Using electronic nose to obtain reproducible odor data, and then use pattern recognition algorithm to determine reproducible results. The experimental results can be achieved on the process of odor components multiphase flow proportional control parameter adjustment.

  2. A Fully-Coupled, Fully-Implicit, Finite Element Model for Solving Multiphase Fluid Flow, Heat Transport and Rock Deformation in Enhanced Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Lu, C.; Deng, S.; Podgorney, R. K.; Huang, H.

    2011-12-01

    Reliable reservoir performance predictions of enhanced geothermal reservoir systems require accurate and robust modeling for the coupled thermal-hydrological-mechanical processes. Conventionally, in order to reduce computational cost, these types of problems are solved using operator splitting method, usually by sequentially coupling a subsurface flow and heat transport simulator with a solid mechanics simulator via input files. However, such operator splitting approaches are applicable only to loosely coupled problems and usually converge slowly. As in most enhanced geothermal systems (EGS), fluid flow, heat transport, and rock deformation are typically strongly nonlinearly coupled, an alternative is to solve the system of nonlinear partial differential equations that govern the system simultaneously using a fully coupled solution procedure for fluid flow, heat transport, and solid mechanics. This procedure solves for all solution variables (fluid pressure, temperature and rock displacement fields) simultaneously, which leads to one large nonlinear algebraic system that needs to be solved by a strongly convergent nonlinear solver. Development over the past 10 years in the area of physics-based conditioning, strongly convergent nonlinear solvers (such as Jacobian Free Newton methods) and efficient linear solvers (such as GMRES, AMG), makes such an approach competitive. In this presentation, we will introduce a continuum-scaled parallel physics-based, fully coupled, modeling tool for predicting the dynamics of fracture initiation and propagation, fluid flow, rock deformation, and heat transport in a single integrated code named FALCON (Fracturing And Liquid-steam CONvection). FALCON is built upon a parallel computing framework developed at Idaho National Laboratory (INL) for solving coupled systems of nonlinear equations with finite element method with unstructured and adaptively refined/coarsened grids. Currently, FALCON contains poro- and thermal- elastic models

  3. Grain transport mechanics in shallow flow

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A physical model based on continuum multiphase flow is described to represent saltating transport of grains in shallow overland flows. The two-phase continuum flow of water and sediment considers coupled St.Venant type equations. The interactive cumulative effect of grains is incorporated by a dispe...

  4. Grain transport mechanics in shallow overland flow

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A physical model based on continuum multiphase flow is described to represent saltating transport of grains in shallow overland flow. The two phase continuum flow of water and sediment considers coupled St.Venant type equations. The interactive cumulative effect of grains is incorporated by a disper...

  5. An Approach for Modeling Rock Discontinuous Mechanical Behavior Under Multiphase Fluid Flow Conditions

    NASA Astrophysics Data System (ADS)

    Pan, Peng-Zhi; Rutqvist, Jonny; Feng, Xia-Ting; Yan, Fei

    2014-03-01

    In this paper, the two computer codes TOUGH2 and RDCA (for "rock discontinuous cellular automaton") are integrated for coupled hydromechanical analysis of multiphase fluid flow and discontinuous mechanical behavior in heterogeneous rock. TOUGH2 is a well-established code for geohydrological analysis involving multiphase, multicomponent fluid flow and heat transport; RDCA is a numerical model developed for simulating the nonlinear and discontinuous geomechanical behavior of rock. The RDCA incorporates the discontinuity of a fracture independently of the mesh, such that the fracture can be arbitrarily located within an element, while the fluid pressure calculated by TOUGH2 can be conveniently applied to fracture surfaces. We verify and demonstrate the coupled TOUGH-RDCA simulator by modeling a number of simulation examples related to coupled multiphase flow and geomechanical processes associated with the deep geological storage of carbon dioxide—including modeling of ground surface uplift, stress-dependent permeability, and the coupled multiphase flow and geomechanical behavior of fractures intersecting the caprock.

  6. Applying uncertainty quantification to multiphase flow computational fluid dynamics

    SciTech Connect

    Gel, A; Garg, R; Tong, C; Shahnam, M; Guenther, C

    2013-07-01

    Multiphase computational fluid dynamics plays a major role in design and optimization of fossil fuel based reactors. There is a growing interest in accounting for the influence of uncertainties associated with physical systems to increase the reliability of computational simulation based engineering analysis. The U.S. Department of Energy's National Energy Technology Laboratory (NETL) has recently undertaken an initiative to characterize uncertainties associated with computer simulation of reacting multiphase flows encountered in energy producing systems such as a coal gasifier. The current work presents the preliminary results in applying non-intrusive parametric uncertainty quantification and propagation techniques with NETL's open-source multiphase computational fluid dynamics software MFIX. For this purpose an open-source uncertainty quantification toolkit, PSUADE developed at the Lawrence Livermore National Laboratory (LLNL) has been interfaced with MFIX software. In this study, the sources of uncertainty associated with numerical approximation and model form have been neglected, and only the model input parametric uncertainty with forward propagation has been investigated by constructing a surrogate model based on data-fitted response surface for a multiphase flow demonstration problem. Monte Carlo simulation was employed for forward propagation of the aleatory type input uncertainties. Several insights gained based on the outcome of these simulations are presented such as how inadequate characterization of uncertainties can affect the reliability of the prediction results. Also a global sensitivity study using Sobol' indices was performed to better understand the contribution of input parameters to the variability observed in response variable.

  7. Development of Next Generation Multiphase Pipe Flow Prediction Tools

    SciTech Connect

    Tulsa Fluid Flow

    2008-08-31

    The developments of fields in deep waters (5000 ft and more) is a common occurrence. It is inevitable that production systems will operate under multiphase flow conditions (simultaneous flow of gas-oil-and water possibly along with sand, hydrates, and waxes). Multiphase flow prediction tools are essential for every phase of the hydrocarbon recovery from design to operation. The recovery from deep-waters poses special challenges and requires accurate multiphase flow predictive tools for several applications including the design and diagnostics of the production systems, separation of phases in horizontal wells, and multiphase separation (topside, seabed or bottom-hole). It is very crucial to any multiphase separation technique that is employed either at topside, seabed or bottom-hole to know inlet conditions such as the flow rates, flow patterns, and volume fractions of gas, oil and water coming into the separation devices. The overall objective was to develop a unified model for gas-oil-water three-phase flow in wells, flow lines, and pipelines to predict the flow characteristics such as flow patterns, phase distributions, and pressure gradient encountered during petroleum production at different flow conditions (pipe diameter and inclination, fluid properties and flow rates). The project was conducted in two periods. In Period 1 (four years), gas-oil-water flow in pipes were investigated to understand the fundamental physical mechanisms describing the interaction between the gas-oil-water phases under flowing conditions, and a unified model was developed utilizing a novel modeling approach. A gas-oil-water pipe flow database including field and laboratory data was formed in Period 2 (one year). The database was utilized in model performance demonstration. Period 1 primarily consisted of the development of a unified model and software to predict the gas-oil-water flow, and experimental studies of the gas-oil-water project, including flow behavior description and

  8. Multiphase flow of miscible liquids: jets and drops

    NASA Astrophysics Data System (ADS)

    Walker, Travis W.; Logia, Alison N.; Fuller, Gerald G.

    2015-05-01

    Drops and jets of liquids that are miscible with the surrounding bulk liquid are present in many processes from cleaning surfaces with the aid of liquid soaps to the creation of biocompatible implants for drug delivery. Although the interactions of immiscible drops and jets show similarities to miscible systems, the small, transient interfacial tension associated with miscible systems create distinct outcomes such as intricate droplet shapes and breakup resistant jets. Experiments have been conducted to understand several basic multiphase flow problems involving miscible liquids. Using high-speed imaging of the morphological evolution of the flows, we have been able to show that these processes are controlled by interfacial tensions. Further multiphase flows include investigating miscible jets, which allow the creation of fibers from inelastic materials that are otherwise difficult to process due to capillary breakup. This work shows that stabilization from the diminishing interfacial tensions of the miscible jets allows various elongated morphologies to be formed.

  9. Multiphase flow in geometrically simple fracture intersections

    USGS Publications Warehouse

    Basagaoglu, H.; Meakin, P.; Green, C.T.; Mathew, M.; ,

    2006-01-01

    A two-dimensional lattice Boltzmann (LB) model with fluid-fluid and solid-fluid interaction potentials was used to study gravity-driven flow in geometrically simple fracture intersections. Simulated scenarios included fluid dripping from a fracture aperture, two-phase flow through intersecting fractures and thin-film flow on smooth and undulating solid surfaces. Qualitative comparisons with recently published experimental findings indicate that for these scenarios the LB model captured the underlying physics reasonably well.

  10. Multiphase Flow: The Gravity of the Situation

    NASA Technical Reports Server (NTRS)

    Hewitt, Geoffrey F.

    1996-01-01

    A brief survey is presented of flow patterns in two-phase, gas-liquid flows at normal and microgravity, the differences between them being explored. It seems that the flow patterns in zero gravity are in general much simpler than those in normal gravity with only three main regimes (namely bubbly, slug and annular flows) being observed. Each of these three regimes is then reviewed, with particular reference to identification of areas of study where investigation of flows at microgravity might not only be interesting in themselves, but also throw light on mechanisms at normal earth gravity. In bubbly flow, the main area of interest seems to be that of bubble coalescence. In slug flow, the extension of simple displacement experiments to the zero gravity case would appear to be a useful option, supplemented by computational fluid dynamics (CFD) studies. For annular flow, the most interesting area appears to be the study of the mechanisms of disturbance waves; it should be possible to extend the region of investigation of the onset and behavior of these waves to much low gas velocities where measurements are clearly much easier.

  11. Multiphase Flow Modeling of Biofuel Production Processes

    SciTech Connect

    D. Gaston; D. P. Guillen; J. Tester

    2011-06-01

    As part of the Idaho National Laboratory's (INL's) Secure Energy Initiative, the INL is performing research in areas that are vital to ensuring clean, secure energy supplies for the future. The INL Hybrid Energy Systems Testing (HYTEST) Laboratory is being established to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. HYTEST involves producing liquid fuels in a Hybrid Energy System (HES) by integrating carbon-based (i.e., bio-mass, oil-shale, etc.) with non-carbon based energy sources (i.e., wind energy, hydro, geothermal, nuclear, etc.). Advances in process development, control and modeling are the unifying vision for HES. This paper describes new modeling tools and methodologies to simulate advanced energy processes. Needs are emerging that require advanced computational modeling of multiphase reacting systems in the energy arena, driven by the 2007 Energy Independence and Security Act, which requires production of 36 billion gal/yr of biofuels by 2022, with 21 billion gal of this as advanced biofuels. Advanced biofuels derived from microalgal biomass have the potential to help achieve the 21 billion gal mandate, as well as reduce greenhouse gas emissions. Production of biofuels from microalgae is receiving considerable interest due to their potentially high oil yields (around 600 gal/acre). Microalgae have a high lipid content (up to 50%) and grow 10 to 100 times faster than terrestrial plants. The use of environmentally friendly alternatives to solvents and reagents commonly employed in reaction and phase separation processes is being explored. This is accomplished through the use of hydrothermal technologies, which are chemical and physical transformations in high-temperature (200-600 C), high-pressure (5-40 MPa) liquid or supercritical water. Figure 1 shows a simplified diagram of the production of biofuels from algae. Hydrothermal processing has significant

  12. Multiphase Flow and Cavern Abandonment in Salt

    SciTech Connect

    Ehgartner, Brian; Tidwell, Vince

    2001-02-13

    This report will explore the hypothesis that an underground cavity in gassy salt will eventually be gas filled as is observed on a small scale in some naturally occurring salt inclusions. First, a summary is presented on what is known about gas occurrences, flow mechanisms, and cavern behavior after abandonment. Then, background information is synthesized into theory on how gas can fill a cavern and simultaneously displace cavern fluids into the surrounding salt. Lastly, two-phase (gas and brine) flow visualization experiments are presented that demonstrate some of the associated flow mechanisms and support the theory and hypothesis that a cavity in salt can become gas filled after plugging and abandonment

  13. Experimental and computational analysis of pressure response in a multiphase flow loop

    NASA Astrophysics Data System (ADS)

    Morshed, Munzarin; Amin, Al; Rahman, Mohammad Azizur; Imtiaz, Syed

    2016-07-01

    The characteristics of multiphase fluid flow in pipes are useful to understand fluid mechanics encountered in the oil and gas industries. In the present day oil and gas exploration is successively inducing subsea operation in the deep sea and arctic condition. During the transport of petroleum products, understanding the fluid dynamics inside the pipe network is important for flow assurance. In this case the information regarding static and dynamic pressure response, pressure loss, optimum flow rate, pipe diameter etc. are the important parameter for flow assurance. The principal aim of this research is to represents computational analysis and experimental analysis of multi-phase (L/G) in a pipe network. This computational study considers a two-phase fluid flow through a horizontal flow loop with at different Reynolds number in order to determine the pressure distribution, frictional pressure loss profiles by volume of fluid (VOF) method. However, numerical simulations are validated with the experimental data. The experiment is conducted in 76.20 mm ID transparent circular pipe using water and air in the flow loop. Static pressure transducers are used to measure local pressure response in multiphase pipeline.

  14. Multiphase flow in fractured porous media

    SciTech Connect

    Firoozabadi, A.

    1995-02-01

    The major goal of this research project was to improve the understanding of the gas-oil two-phase flow in fractured porous media. In addition, miscible displacement was studied to evaluate its promise for enhanced recovery.

  15. Considerations for developing models of multiphase flow in deformable porous media.

    SciTech Connect

    Martinez, Mario J.; Stone, Charles Michael

    2008-09-01

    This document summarizes research and planning for the development of a numerical simulation capability for nonisothermal multiphase, multicomponent transport in heterogeneous deformable porous materials. Particular attention is given to describing a mathematical formulation for flow in deformable media and for numerical techniques for dealing with phase transitions. A development plan is formulated to provide a computational capability motivated by current and future needs in geosystems management for energy security.

  16. Multiphase flow and phase change in microgravity: Fundamental research and strategic research for exploration of space

    NASA Technical Reports Server (NTRS)

    Singh, Bhim S.

    2003-01-01

    NASA is preparing to undertake science-driven exploration missions. The NASA Exploration Team's vision is a cascade of stepping stones. The stepping-stone will build the technical capabilities needed for each step with multi-use technologies and capabilities. An Agency-wide technology investment and development program is necessary to implement the vision. The NASA Exploration Team has identified a number of areas where significant advances are needed to overcome all engineering and medical barriers to the expansion of human space exploration beyond low-Earth orbit. Closed-loop life support systems and advanced propulsion and power technologies are among the areas requiring significant advances from the current state-of-the-art. Studies conducted by the National Academy of Science's National Research Council and Workshops organized by NASA have shown that multiphase flow and phase change play a crucial role in many of these advanced technology concepts. Lack of understanding of multiphase flow, phase change, and interfacial phenomena in the microgravity environment has been a major hurdle. An understanding of multiphase flow and phase change in microgravity is, therefore, critical to advancing many technologies needed. Recognizing this, the Office of Biological and Physical Research (OBPR) has initiated a strategic research thrust to augment the ongoing fundamental research in fluid physics and transport phenomena discipline with research especially aimed at understanding key multiphase flow related issues in propulsion, power, thermal control, and closed-loop advanced life support systems. A plan for integrated theoretical and experimental research that has the highest probability of providing data, predictive tools, and models needed by the systems developers to incorporate highly promising multiphase-based technologies is currently in preparation. This plan is being developed with inputs from scientific community, NASA mission planners and industry personnel

  17. A method for incorporating equilibrium chemical reactions into multiphase flow models for CO2 storage

    NASA Astrophysics Data System (ADS)

    Saaltink, Maarten W.; Vilarrasa, Victor; De Gaspari, Francesca; Silva, Orlando; Carrera, Jesús; Rötting, Tobias S.

    2013-12-01

    CO2 injection and storage in deep saline aquifers involves many coupled processes, including multiphase flow, heat and mass transport, rock deformation and mineral precipitation and dissolution. Coupling is especially critical in carbonate aquifers, where minerals will tend to dissolve in response to the dissolution of CO2 into the brine. The resulting neutralization will drive further dissolution of both CO2 and calcite. This suggests that large cavities may be formed and that proper simulation may require full coupling of reactive transport and multiphase flow. We show that solving the latter may suffice whenever two requirements are met: (1) all reactions can be assumed to occur in equilibrium and (2) the chemical system can be calculated as a function of the state variables of the multiphase flow model (i.e., liquid and gas pressure, and temperature). We redefine the components of multiphase flow codes (traditionally, water and CO2), so that they are conservative for all reactions of the chemical system. This requires modifying the traditional constitutive relationships of the multiphase flow codes, but yields the concentrations of all species and all reaction rates by simply performing speciation and mass balance calculations at the end of each time step. We applied this method to the H2O-CO2-Na-Cl-CaCO3 system, so as to model CO2 injection into a carbonate aquifer containing brine. Results were very similar to those obtained with traditional formulations, which implies that full coupling of reactive transport and multi-phase flow is not really needed for this kind of systems, but the resulting simplifications may make it advisable even for cases where the above requirements are not met. Regarding the behavior of carbonate rocks, we find that porosity development near the injection well is small because of the low solubility of calcite. Moreover, dissolution concentrates at the front of the advancing CO2 plume because the brine below the plume tends to reach

  18. Uncertainty analysis of flow rate measurement for multiphase flow using CFD

    NASA Astrophysics Data System (ADS)

    Kim, Joon-Hyung; Jung, Uk-Hee; Kim, Sung; Yoon, Joon-Yong; Choi, Young-Seok

    2015-10-01

    The venturi meter has an advantage in its use, because it can measure flow without being much affected by the type of the measured fluid or flow conditions. Hence, it has excellent versatility and is being widely applied in many industries. The flow of a liquid containing air is a representative example of a multiphase flow and exhibits complex flow characteristics. In particular, the greater the gas volume fraction (GVF), the more inhomogeneous the flow becomes. As a result, using a venturi meter to measure the rate of a flow that has a high GVF generates an error. In this study, the cause of the error occurred in measuring the flow rate for the multiphase flow when using the venturi meter for analysis by CFD. To ensure the reliability of this study, the accuracy of the multiphase flow models for numerical analysis was verified through comparison between the calculated results of numerical analysis and the experimental data. As a result, the Grace model, which is a multiphase flow model established by an experiment with water and air, was confirmed to have the highest reliability. Finally, the characteristics of the internal flow field about the multiphase flow analysis result generated by applying the Grace model were analyzed to find the cause of the uncertainty occurring when measuring the flow rate of the multiphase flow using the venturi meter. A phase separation phenomenon occurred due to a density difference of water and air inside the venturi, and flow inhomogeneity happened according to the flow velocity difference of each phase. It was confirmed that this flow inhomogeneity increased as the GVF increased due to the uncertainty of the flow measurement.

  19. Pore-scale modeling of multiphase reactive transport with phase transitions and dissolution-precipitation processes in closed systems.

    PubMed

    Chen, Li; Kang, Qinjun; Robinson, Bruce A; He, Ya-Ling; Tao, Wen-Quan

    2013-04-01

    A pore-scale model based on the lattice Boltzmann (LB) method is developed for multiphase reactive transport with phase transitions and dissolution-precipitation processes. The model combines the single-component multiphase Shan-Chen LB model [X. Shan and H. Chen, Phys. Rev. E 47, 1815 (1993)], the mass transport LB model [S. P. Sullivan et al., Chem. Eng. Sci. 60, 3405 (2005)], and the dissolution-precipitation model [Q. Kang et al., J. Geophys. Res. 111, B05203 (2006)]. Care is taken to handle information on computational nodes undergoing solid-liquid or liquid-vapor phase changes to guarantee mass and momentum conservation. A general LB concentration boundary condition is proposed that can handle various concentration boundaries including reactive and moving boundaries with complex geometries. The pore-scale model can capture coupled nonlinear multiple physicochemical processes including multiphase flow with phase separations, mass transport, chemical reactions, dissolution-precipitation processes, and dynamic evolution of the pore geometries. The model is validated using several multiphase flow and reactive transport problems and then used to study the thermal migration of a brine inclusion in a salt crystal. Multiphase reactive transport phenomena with phase transitions between liquid-vapor phases and dissolution-precipitation processes of the salt in the closed inclusion are simulated and the effects of the initial inclusion size and temperature gradient on the thermal migration are investigated.

  20. Modeling non-isothermal multiphase multi-species reactive chemical transport in geologic media

    SciTech Connect

    Tianfu Xu; Gerard, F.; Pruess, K.; Brimhall, G.

    1997-07-01

    The assessment of mineral deposits, the analysis of hydrothermal convection systems, the performance of radioactive, urban and industrial waste disposal, the study of groundwater pollution, and the understanding of natural groundwater quality patterns all require modeling tools that can consider both the transport of dissolved species as well as their interactions with solid (or other) phases in geologic media and engineered barriers. Here, a general multi-species reactive transport formulation has been developed, which is applicable to homogeneous and/or heterogeneous reactions that can proceed either subject to local equilibrium conditions or kinetic rates under non-isothermal multiphase flow conditions. Two numerical solution methods, the direct substitution approach (DSA) and sequential iteration approach (SIA) for solving the coupled complex subsurface thermo-physical-chemical processes, are described. An efficient sequential iteration approach, which solves transport of solutes and chemical reactions sequentially and iteratively, is proposed for the current reactive chemical transport computer code development. The coupled flow (water, vapor, air and heat) and solute transport equations are also solved sequentially. The existing multiphase flow code TOUGH2 and geochemical code EQ3/6 are used to implement this SIA. The flow chart of the coupled code TOUGH2-EQ3/6, required modifications of the existing codes and additional subroutines needed are presented.

  1. Multiphase Flow with Interphase eXchanges

    1995-03-01

    MFIX is a general-purpose hydrodynamic model that describes chemical reactions and heat transfer in dense or dilute fluid-solids flows, flows typically occurring in energy conversion and chemical processing reactors. With such information, the engineer can visualize the conditions in the reactor, conduct parametric studies and what-if experiments, and, thereby, assist in the design process. MFIX has the following modeling capabilities: mass and momentum balance equations for gas and multiple solids phases; a gas phase andmore » two solids phase energy equation; an arbitrary number of species balance equations for each of the phases; granular stress equations based on kinetic theory and frictional flow theory; a user-defined chemistry subroutine; three-dimensional Cartesin or cylindrical coordinate systems; nonuniform mesh size; impermeable and semi-permeable internal surfaces; user-friendly input data file; multiple, single-precision, binary direct-access output files that minimize disk storage and accelerate data retrieval; extensive error reporting; post-processors for creating animations and for extracting and manipulating output data.« less

  2. Phase segregation in multiphase turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Bianco, Federico; Soldati, Alfredo

    2014-11-01

    The phase segregation of a rapidly quenched mixture (namely spinodal decomposition) is numerically investigated. A phase field approach is considered. Direct numerical simulation of the coupled Navier-Stokes and Cahn-Hilliard equations is performed with spectral accuracy and focus has been put on domain growth scaling laws, in a wide range of regimes. The numerical method has been first validated against well known results of literature, then spinodal decomposition in a turbulent bounded flow (channel flow) has been considered. As for homogeneous isotropic case, turbulent fluctuations suppress the segregation process when surface tension at the interfaces is relatively low (namely low Weber number regimes). For these regimes, segregated domains size reaches a statistically steady state due to mixing and break-up phenomena. In contrast with homogenous and isotropic turbulence, the presence of mean shear, leads to a typical domain size that show a wall-distance dependence. Finally, preliminary results on the effects to the drag forces at the wall, due to phase segregation, have been discussed. Regione FVG, program PAR-FSC.

  3. Lagrangian-based investigation of multiphase flows by finite-time Lyapunov exponents

    NASA Astrophysics Data System (ADS)

    Tang, Jia-Ning; Tseng, Chien-Chou; Wang, Ning-Fei

    2012-06-01

    Multiphase flows are ubiquitous in our daily life and engineering applications. It is important to investigate the flow structures to predict their dynamical behaviors effectively. Lagrangian coherent structures (LCS) defined by the ridges of the finite-time Lyapunov exponent (FTLE) is utilized in this study to elucidate the multiphase interactions in gaseous jets injected into water and time-dependent turbulent cavitation under the framework of Navier-Stokes flow computations. For the gaseous jets injected into water, the highlighted phenomena of the jet transportation can be observed by the LCS method, including expansion, bulge, necking/breaking, and back-attack. Besides, the observation of the LCS reveals that the back-attack phenomenon arises from the fact that the injected gas has difficulties to move toward downstream region after the necking/breaking. For the turbulent cavitating flow, the ridge of the FTLE field can form a LCS to capture the front and boundary of the re-entraint jet when the adverse pressure gradient is strong enough. It represents a barrier between particles trapped inside the circulation region and those moving downstream. The results indicate that the FTLE field has the potential to identify the structures of multiphase flows, and the LCS can capture the interface/barrier or the vortex/circulation region.

  4. Investigation on Online Multiphase Flow Meter in oilfield Based on Open Channel Flow

    NASA Astrophysics Data System (ADS)

    Meng, L. Y.; Wang, W. C.; Li, Y. X.; Zhang, J.; Dong, S. P.

    2010-03-01

    Flow metering of multiphase pipeline is an urgently problem needed to be solved in oilfield producing in China. Based on the principle of multiphase oil and gas flow in the open channel, four liquid metering models(Falling Model I, Falling Model II, Open Channel Model and Element Resistance Model) and one gas model were obtained to calculate the gas and liquid flow rate, in which the water cut was measured by the differential pressure. And then a new type of multiphase meter system was developed based on these models and neural networks were developed to improve the estimating results of gas and liquid flow rate with the new metering system. At last a lot of experiments of multiphase metering were finished in lab and field. According to the experiments, the results of the metering system show that the liquid flow rate error was no more than 10%, and gas flow rate error was no more than 15%, which can meet the demand of the field flow rate measurement. Furthermore the relationship between liquid and gas flow rate and characteristic signals was found out through the experiments so as to deepening the study on multiphase flow metering technology.

  5. Experimental research of multiphase flow with cavitation in the nozzle

    NASA Astrophysics Data System (ADS)

    Kozubkova, Milada; Bojko, Marian; Jablonska, Jana; Homa, Dorota; Tůma, Jiří

    2016-03-01

    The paper deals with the problems of cavitation in water flow in the nozzle. The area of research is divided into two directions (experimental and numerical research). During the experimental research the equipment with the nozzle is under the measurement and basic physical quantities such as pressure and volume flow rate are recorded. In the following phase measuring of noise which is generated during flow through the nozzle in the area of cavitation is measured at various operating conditions of the pump. In the second part the appropriate multiphase mathematical model including the consideration of cavitation is defined. Boundary conditions for numerical simulation are defined on the basis of experimental measurements. Undissolved air in the flow is taken into account to obtain pressure distribution in accordance to measured one. Results of the numerical simulation are presented by means of basic current quantities such as pressure, velocity and volume fractions of each phase. The conclusions obtained from experimental research of cavitation were applied to modify the multiphase mathematical model.

  6. Interface effects on multiphase flows in porous media

    SciTech Connect

    Zhang, Duan Z

    2008-01-01

    Most models for multiphase flows in a porous medium are based on the straightforward extension of Darcy's law, in which each fluid phase is driven by its own pressure gradient. The pressure difference between the phases is thought to be an effect of surface tension and is called capillary pressure. Independent of Darcy's law, for liquid imbibition processes in a porous material, diffusion models are sometime used. In this paper, an ensemble phase averaging technique for continuous multi phase flows is applied to derive averaged equations and to examine the validity of the commonly used models. The closure for the averaged equations is quite complicated for general multiphase flows in a porous material. For flows with a small ratio of the characteristic length of the phase interfaces to the macroscopic length, the closure relations can be simplified significantly by an approximation with a second order error in the length ratio. The approximation reveals the information of the length scale separation obscured during the ensemble averaging process, and leads to an equation system similar to Darcy's law, but with additional terms. Based on interactions on phase interfaces, relations among closure quantities are studied.

  7. Multiphase Flow of Immiscible Fluids on Unstructured Moving Meshes.

    PubMed

    Misztal, Marek K; Erleben, Kenny; Bargteil, Adam; Fursund, Jens; Christensen, Brian Bunch; Bærentzen, J Andreas; Bridson, Robert

    2013-07-01

    In this paper, we present a method for animating multiphase flow of immiscible fluids using unstructured moving meshes. Our underlying discretization is an unstructured tetrahedral mesh, the deformable simplicial complex (DSC), that moves with the flow in a Lagrangian manner. Mesh optimization operations improve element quality and avoid element inversion. In the context of multiphase flow, we guarantee that every element is occupied by a single fluid and, consequently, the interface between fluids is represented by a set of faces in the simplicial complex. This approach ensures that the underlying discretization matches the physics and avoids the additional book-keeping required in grid-based methods where multiple fluids may occupy the same cell. Our Lagrangian approach naturally leads us to adopt a finite element approach to simulation, in contrast to the finite volume approaches adopted by a majority of fluid simulation techniques that use tetrahedral meshes. We characterize fluid simulation as an optimization problem allowing for full coupling of the pressure and velocity fields and the incorporation of a second-order surface energy. We introduce a preconditioner based on the diagonal Schur complement and solve our optimization on the GPU. We provide the results of parameter studies as well as a performance analysis of our method, together with suggestions for performance optimization. PMID:23836703

  8. Multiphase flow of immiscible fluids on unstructured moving meshes.

    PubMed

    Misztal, Marek Krzysztof; Erleben, Kenny; Bargteil, Adam; Fursund, Jens; Christensen, Brian Bunch; Bærentzen, Jakob Andreas; Bridson, Robert

    2014-01-01

    In this paper, we present a method for animating multiphase flow of immiscible fluids using unstructured moving meshes. Our underlying discretization is an unstructured tetrahedral mesh, the deformable simplicial complex (DSC), that moves with the flow in a Lagrangian manner. Mesh optimization operations improve element quality and avoid element inversion. In the context of multiphase flow, we guarantee that every element is occupied by a single fluid and, consequently, the interface between fluids is represented by a set of faces in the simplicial complex. This approach ensures that the underlying discretization matches the physics and avoids the additional book-keeping required in grid-based methods where multiple fluids may occupy the same cell. Our Lagrangian approach naturally leads us to adopt a finite element approach to simulation, in contrast to the finite volume approaches adopted by a majority of fluid simulation techniques that use tetrahedral meshes. We characterize fluid simulation as an optimization problem allowing for full coupling of the pressure and velocity fields and the incorporation of a second-order surface energy. We introduce a preconditioner based on the diagonal Schur complement and solve our optimization on the GPU. We provide the results of parameter studies as well as a performance analysis of our method, together with suggestions for performance optimization. PMID:24201322

  9. A Geohydrologic Modeling Study of Faults and Large-Scale Multiphase Flow and Heat Transport in the Los Angeles Basin, California

    NASA Astrophysics Data System (ADS)

    Jung, B.; Garven, G.; Boles, J. R.

    2009-12-01

    Large-scale faults can have profound effects on fluid migration in sedimentary basins, especially those like the petroleum-rich Los Angeles Basin, which is densely faulted and tectonically active. To explore this topic, we have constructed numerical simulations to characterize the geohydrologic history of the LA Basin for both single and two-phase fluid migration. The numerical model was developed in our lab at Tufts, and is based on a hybrid finite-element/finite-volume method and an IMPES (implicit pressure explicit saturation) numerical algorithm. This numerical approach allowed us to model large differentials in fluid saturation, caused by complex geological heterogeneities associated with changes in sedimentation and faulting. The single-phase flow models are numerically similar to those of Hayba and Bethke [1995] and Person et al. [2000], and simulate the compaction-driven flow associated with early subsidence, and later topography-driven flow during uplift of the San Gabriel Mountains. The two-phase flow models replicate the formation-scale patterns of petroleum accumulation associated with the basin margin, where deep faults resulted in stacked petroleum reservoirs over multiple sets of interbedded sandstone and shale. Our model results suggest a long history of transient and episodic flow from the basin depocenter towards the western flank of the LA Basin and the Palos Verdes Peninsula. The models also predict a strong preference for focused upward flow along the Newport-Inglewood Fault Zone, which even today hosts deep borehole-observed thermal anomalies. The peak of petroleum generation and flow was synchronous with the peak intervals of Miocene to Pliocene extension/subsidence.

  10. Equations and simulations for multiphase compressible gas-dust flows

    NASA Astrophysics Data System (ADS)

    Oran, Elaine; Houim, Ryan

    2014-11-01

    Dust-gas multiphase flows are important in physical scenarios such as dust explosions in coal mines, asteroid impact disturbing lunar regolith, and soft aircraft landings dispersing desert or beach sand. In these cases, the gas flow regime can range from highly subsonic and nearly incompressible to supersonic and shock-laden flow, the grain packing can range from fully packed to completely dispersed, and both the gas and the dust can range from chemically inert to highly exothermic. To cover the necessary parameter range in a single model, we solve coupled sets of Navier-Stokes equations describing the background gas and the dust. As an example, a reactive-dust explosion that results in a type of shock-flame complex is described and discussed. Sponsored by the University of Maryland through Minta Martin Endowment Funds in the Department of Aerospace Engineering, and through the Glenn L. Martin Institute Chaired Professorship at the A. James Clark School of Engineering.

  11. Modeling oceanic multiphase flow by using Lagrangian particle tracking

    NASA Astrophysics Data System (ADS)

    Matsumura, Y.

    2014-12-01

    While the density of seawater is basically determined by its temperature, salinity and pressure, the effective density becomes higher when the water mass contains suspended sediment. On the other hands, effective density declines when water mass contains fine scale materials of lower density such as bubbles and ice crystals. Such density anomaly induced by small scale materials suspended in water masses sometimes plays important roles in the sub-mesoscale ocean physics. To simulate these small scale oceanic multiphase flow, a new modeling framework using an online Lagrangian particle tracking method is developed. A Lagrangian particle tracking method has substantial advantages such as an explicit treatment of buoyancy force acting on each individual particle, no numerical diffusion and dissipation, high dynamic range and an ability to track the history and each individual particle. However, its numerical cost causes difficulty when we try to simulate a large number of particles. In the present study we implement a numerically efficient particle tracking scheme using linked-list data structure, which is coupled with a nonhydrostatic dynamical core. This newly developed model successfully reproduces characteristics of some interesting small scale multiphase processes, for example hyperpycnal flow (a sediment-rich river water plume trapped at ocean floor) and grease ice cover (a slurry mixture of frazil ice crystals and seawater).

  12. Advanced tomographic flow diagnostics for opaque multiphase fluids

    SciTech Connect

    Torczynski, J.R.; O`Hern, T.J.; Adkins, D.R.; Jackson, N.B.; Shollenberger, K.A.

    1997-05-01

    This report documents the work performed for the ``Advanced Tomographic Flow Diagnostics for Opaque Multiphase Fluids`` LDRD (Laboratory-Directed Research and Development) project and is presented as the fulfillment of the LDRD reporting requirement. Dispersed multiphase flows, particularly gas-liquid flows, are industrially important to the chemical and applied-energy industries, where bubble-column reactors are employed for chemical synthesis and waste treatment. Due to the large range of length scales (10{sup {minus}6}-10{sup 1}m) inherent in real systems, direct numerical simulation is not possible at present, so computational simulations are forced to use models of subgrid-scale processes, the accuracy of which strongly impacts simulation fidelity. The development and validation of such subgrid-scale models requires data sets at representative conditions. The ideal measurement techniques would provide spatially and temporally resolved full-field measurements of the distributions of all phases, their velocity fields, and additional associated quantities such as pressure and temperature. No technique or set of techniques is known that satisfies this requirement. In this study, efforts are focused on characterizing the spatial distribution of the phases in two-phase gas-liquid flow and in three-phase gas-liquid-solid flow. Due to its industrial importance, the bubble-column geometry is selected for diagnostics development and assessment. Two bubble-column testbeds are utilized: one at laboratory scale and one close to industrial scale. Several techniques for measuring the phase distributions at conditions of industrial interest are examined: level-rise measurements, differential-pressure measurements, bulk electrical impedance measurements, electrical bubble probes, x-ray tomography, gamma-densitometry tomography, and electrical impedance tomography.

  13. Multiphase flow-enhanced corrosion mechanisms in horizontal pipelines

    SciTech Connect

    Jiang, L.; Gopal, M.

    1998-12-31

    Previous work has demonstrated the mechanism of enhanced corrosion in slug flow due to entrained pulses of bubbles. Corrosion rate measurements have been made at pressures up to 0.79 MPa, and temperatures up to 90 C and it has been shown that the effect of these pulses of bubbles increases with pressure and Froude number. This paper describes mass transfer measurements under multiphase slug and annular flows using the limiting current density technique. The experiments are carried out in a 10 cm diameter pipe using a 0.1 M potassium ferro-ferricyanide solution in 1.3 N sodium hydroxide for the liquid phase and nitrogen in the gas phase. Froude numbers of 4, 6 and 9 in slug flow have been studied, while gas velocities up to 10 m/s are investigated in annular flows. The results show instantaneous peaks in the mass transfer rates corresponding to the pulses of bubbles in slug flow. Instantaneous increases of 10--100 times the average values in single phase flow are seen. Peaks are also seen in instantaneous mass transfer rates in some annular flows.

  14. Multiple light scattering methods for multiphase flow diagnostics

    NASA Astrophysics Data System (ADS)

    Estevadeordal, Jordi

    2015-11-01

    Multiphase flows of gases and liquids containing droplets, bubbles, or particulates present light scattering imaging challenges due to the interference from each phase, such as secondary reflections, extinctions, absorptions, and refractions. These factors often prevent the unambiguous detection of each phase and also produce undesired beam steering. The effects can be especially complex in presence of dense phases, multispecies flows, and high pressure environments. This investigation reports new methods for overcoming these effects for quantitative measurements of velocity, density, and temperature fields. The methods are based on light scattering techniques combining Mie and filtered Rayleigh scattering and light extinction analyses and measurements. The optical layout is designed to perform multiple property measurements with improved signal from each phase via laser spectral and polarization characterization, etalon decontamination, and use of multiple wavelengths and imaging detectors.

  15. A new look at measurement uncertainty of multiphase flow meters

    SciTech Connect

    Kouba, G.E.

    1998-12-31

    At present no standard of presenting multiphase flow meter (MPFM) uncertainties has been accepted by industry. Consequently, vendors specifications may only indicate velocity and component fraction uncertainties, while customers will typically need to know the overall uncertainty of the hydrocarbon (gas or oil) flow rate. Moreover, comparisons between different meters, meter locations, and metering strategies are difficult without the combined uncertainties of the hydrocarbon measurement. A simple uncertainty analysis (UA) is presented as a means of combining individual measurement uncertainties to determine an overall uncertainty for a single component, e.g., oil rate. The results are displayed as contour lines of constant oil rate uncertainty on plots of gas fraction versus water cut. Examples illustrate how the uncertainty of oil rate measurement might be reduced by operating the meter at higher pressure, or employing partial separation strategies, and limitations of such strategies.

  16. Multicomponent, multiphase flow in porous media with temperature variation

    SciTech Connect

    Wingard, J.S.; Orr, F.M. Jr.

    1990-10-01

    Recovery of hydrocarbons from porous media is an ongoing concern. Advanced techniques augment conventional recovery methods by injecting fluids that favorably interact with the oil. These fluids interact with the oil by energy transfer, in the case of steam injection, or by mass transfer, as in a miscible gas flood. Often both thermal and compositional considerations are important. An understanding of these injection methods requires knowledge of how temperature variations, phase equilibrium and multiphase flow in porous media interact. The material balance for each component and energy balance are cast as a system of non-strictly hyperbolic partial differential equations. This system of equations is solved using the method of characteristics. The model takes into account the phase behavior by using the Peng-Robinson equation of state to partition the individual components into different phases. Temperature effects are accounted for by the energy balance. Flow effects are modelled by using fractional flow curves and a Stone's three phase relative permeability model. Three problems are discussed. The first problem eliminates the phase behavior aspect of the problem by studying the flow of a single component as it undergoes an isothermal phase change. The second couples the effects of temperature and flow behavior by including a second component that is immiscible with the original component. Phase behavior is added by using a set of three partially miscible components that partition into two or three separate phases. 66 refs., 54 figs., 14 tabs.

  17. Thermodynamic framework for discrete optimal control in multiphase flow systems

    NASA Astrophysics Data System (ADS)

    Sieniutycz, Stanislaw

    1999-08-01

    Bellman's method of dynamic programming is used to synthesize diverse optimization approaches to active (work producing) and inactive (entropy generating) multiphase flow systems. Thermal machines, optimally controlled unit operations, nonlinear heat conduction, spontaneous relaxation processes, and self-propagating wave fronts are all shown to satisfy a discrete Hamilton-Jacobi-Bellman equation and a corresponding discrete optimization algorithm of Pontryagin's type, with the maximum principle for a Hamiltonian. The extremal structures are always canonical. A common unifying criterion is set for all considered systems, which is the criterion of a minimum generated entropy. It is shown that constraints can modify the entropy functionals in a different way for each group of the processes considered; thus the resulting structures of these functionals may differ significantly. Practical conclusions are formulated regarding the energy savings and energy policy in optimally controlled systems.

  18. Complementary Constrains on Component based Multiphase Flow Problems, Should It Be Implemented Locally or Globally?

    NASA Astrophysics Data System (ADS)

    Shao, H.; Huang, Y.; Kolditz, O.

    2015-12-01

    Multiphase flow problems are numerically difficult to solve, as it often contains nonlinear Phase transition phenomena A conventional technique is to introduce the complementarity constraints where fluid properties such as liquid saturations are confined within a physically reasonable range. Based on such constraints, the mathematical model can be reformulated into a system of nonlinear partial differential equations coupled with variational inequalities. They can be then numerically handled by optimization algorithms. In this work, two different approaches utilizing the complementarity constraints based on persistent primary variables formulation[4] are implemented and investigated. The first approach proposed by Marchand et.al[1] is using "local complementary constraints", i.e. coupling the constraints with the local constitutive equations. The second approach[2],[3] , namely the "global complementary constrains", applies the constraints globally with the mass conservation equation. We will discuss how these two approaches are applied to solve non-isothermal componential multiphase flow problem with the phase change phenomenon. Several benchmarks will be presented for investigating the overall numerical performance of different approaches. The advantages and disadvantages of different models will also be concluded. References[1] E.Marchand, T.Mueller and P.Knabner. Fully coupled generalized hybrid-mixed finite element approximation of two-phase two-component flow in porous media. Part I: formulation and properties of the mathematical model, Computational Geosciences 17(2): 431-442, (2013). [2] A. Lauser, C. Hager, R. Helmig, B. Wohlmuth. A new approach for phase transitions in miscible multi-phase flow in porous media. Water Resour., 34,(2011), 957-966. [3] J. Jaffré, and A. Sboui. Henry's Law and Gas Phase Disappearance. Transp. Porous Media. 82, (2010), 521-526. [4] A. Bourgeat, M. Jurak and F. Smaï. Two-phase partially miscible flow and transport modeling in

  19. TOUGH2: A general-purpose numerical simulator for multiphase nonisothermal flows

    SciTech Connect

    Pruess, K.

    1991-06-01

    Numerical simulators for multiphase fluid and heat flows in permeable media have been under development at Lawrence Berkeley Laboratory for more than 10 yr. Real geofluids contain noncondensible gases and dissolved solids in addition to water, and the desire to model such `compositional` systems led to the development of a flexible multicomponent, multiphase simulation architecture known as MULKOM. The design of MULKOM was based on the recognition that the mass-and energy-balance equations for multiphase fluid and heat flows in multicomponent systems have the same mathematical form, regardless of the number and nature of fluid components and phases present. Application of MULKOM to different fluid mixtures, such as water and air, or water, oil, and gas, is possible by means of appropriate `equation-of-state` (EOS) modules, which provide all thermophysical and transport parameters of the fluid mixture and the permeable medium as a function of a suitable set of primary thermodynamic variables. Investigations of thermal and hydrologic effects from emplacement of heat-generating nuclear wastes into partially water-saturated formations prompted the development and release of a specialized version of MULKOM for nonisothermal flow of water and air, named TOUGH. TOUGH is an acronym for `transport of unsaturated groundwater and heat` and is also an allusion to the tuff formations at Yucca Mountain, Nevada. The TOUGH2 code is intended to supersede TOUGH. It offers all the capabilities of TOUGH and includes a considerably more general subset of MULKOM modules with added capabilities. The paper briefly describes the simulation methodology and user features.

  20. PArallel Reacting Multiphase FLOw Computational Fluid Dynamic Analysis

    2002-06-01

    PARMFLO is a parallel multiphase reacting flow computational fluid dynamics (CFD) code. It can perform steady or unsteady simulations in three space dimensions. It is intended for use in engineering CFD analysis of industrial flow system components. Its parallel processing capabilities allow it to be applied to problems that use at least an order of magnitude more computational cells than the number that can be used on a typical single processor workstation (about 106 cellsmore » in parallel processing mode versus about io cells in serial processing mode). Alternately, by spreading the work of a CFD problem that could be run on a single workstation over a group of computers on a network, it can bring the runtime down by an order of magnitude or more (typically from many days to less than one day). The software was implemented using the industry standard Message-Passing Interface (MPI) and domain decomposition in one spatial direction. The phases of a flow problem may include an ideal gas mixture with an arbitrary number of chemical species, and dispersed droplet and particle phases. Regions of porous media may also be included within the domain. The porous media may be packed beds, foams, or monolith catalyst supports. With these features, the code is especially suited to analysis of mixing of reactants in the inlet chamber of catalytic reactors coupled to computation of product yields that result from the flow of the mixture through the catalyst coaled support structure.« less

  1. Multiphase Flow Technology Impacts on Thermal Control Systems for Exploration

    NASA Technical Reports Server (NTRS)

    McQuillen, John; Sankovic, John; Lekan, Jack

    2006-01-01

    The Two-Phase Flow Facility (TPHIFFy) Project focused on bridging the critical knowledge gap by developing and demonstrating critical multiphase fluid products for advanced life support, thermal management and power conversion systems that are required to enable the Vision for Space Exploration. Safety and reliability of future systems will be enhanced by addressing critical microgravity fluid physics issues associated with flow boiling, condensation, phase separation, and system stability. The project included concept development, normal gravity testing, and reduced gravity aircraft flight campaigns, in preparation for the development of a space flight experiment implementation. Data will be utilized to develop predictive models that could be used for system design and operation. A single fluid, two-phase closed thermodynamic loop test bed was designed, assembled and tested. The major components in this test bed include: a boiler, a condenser, a phase separator and a circulating pump. The test loop was instrumented with flow meters, thermocouples, pressure transducers and both high speed and normal speed video cameras. A low boiling point surrogate fluid, FC-72, was selected based on scaling analyses using preliminary designs for operational systems. Preliminary results are presented which include flow regime transitions and some observations regarding system stability.

  2. A Stochastic Differential Equation Approach To Multiphase Flow In Porous Media

    NASA Astrophysics Data System (ADS)

    Dean, D.; Russell, T.

    2003-12-01

    The motivation for using stochastic differential equations in multiphase flow systems stems from our work in developing an upscaling methodology for single phase flow. The long term goals of this project include: I. Extending this work to a nonlinear upscaling methodology II. Developing a macro-scale stochastic theory of multiphase flow and transport that accounts for micro-scale heterogeneities and interfaces. In this talk, we present a stochastic differential equation approach to multiphase flow, a typical example of which is flow in the unsaturated domain. Specifically, a two phase problem is studied which consists of a wetting phase and a non-wetting phase. The approach given results in a nonlinear stochastic differential equation describing the position of the non-wetting phase fluid particle. Our fundamental assumption is that the flow of fluid particles is described by a stochastic process and that the positions of the fluid particles over time are governed by the law of the process. It is this law which we seek to determine. The nonlinearity in the stochastic differential equation arises because both the drift and diffusion coefficients depend on the volumetric fraction of the phase which in turn depends on the position of the fluid particles in the experimental domain. The concept of a fluid particle is central to the development of the model described in this talk. Expressions for both saturation and volumetric fraction are developed using the fluid particle concept. Darcy's law and the continuity equation are then used to derive a Fokker-Planck equation using these expressions. The Ito calculus is then applied to derive a stochastic differential equation for the non-wetting phase. This equation has both drift and diffusion terms which depend on the volumetric fraction of the non-wetting phase. Standard stochastic theories based on the Ito calculus and the Wiener process and the equivalent Fokker-Planck PDE's are typically used to model dispersion

  3. Multiphase flow experiments, mathematical modeling and numerical simulation of the water - gas - solute movement

    NASA Astrophysics Data System (ADS)

    Li, Y.; Ma, X.; Su, N.

    2013-12-01

    The movement of water and solute into and through the vadose zone is, in essence, an issue of immiscible displacement in pore-space network of a soil. Therefore, multiphase flow and transport in porous media, referring to three medium: air, water, and the solute, pose one of the largest unresolved challenges for porous medium fluid seepage. However, this phenomenon has always been largely neglected. It is expected that a reliable analysis model of the multi-phase flow in soil can truly reflect the process of natural movement about the infiltration, which is impossible to be observed directly. In such cases, geophysical applications of the nuclear magnetic resonance (NMR) provides the opportunity to measure the water movements into soils directly over a large scale from tiny pore to regional scale, accordingly enable it available both on the laboratory and on the field. In addition, the NMR provides useful information about the pore space properties. In this study, we proposed both laboratory and field experiments to measure the multi-phase flow parameters, together with optimize the model in computer programming based on the fractional partial differential equations (fPDE). In addition, we establish, for the first time, an infiltration model including solute flowing with water, which has huge influence on agriculture and soil environment pollution. Afterwards, with data collected from experiments, we simulate the model and analyze the spatial variability of parameters. Simulations are also conducted according to the model to evaluate the effects of airflow on water infiltration and other effects such as solute and absorption. It has significant meaning to oxygen irrigation aiming to higher crop yield, and shed more light into the dam slope stability. In summary, our framework is a first-time model added in solute to have a mathematic analysis with the fPDE and more instructive to agriculture activities.

  4. Towards a Modern Theory of Multiphase Filtration Flow

    NASA Technical Reports Server (NTRS)

    Buyevich, Yu A.; Webbon, Bruce W. (Technical Monitor)

    1994-01-01

    An alternative theoretical model of joint filtration flow of immiscible incompressible fluids is presented. The model takes into account relaxation processes due to the interchange of the fluids between pores of difference sizes which is driven by capillary forces. The fluids occupy connected regions in a four-dimensional space formed by three coordinates and the pore length scale. When the fluid exchange between pores of given sizes is effected by way of successive flow through pores of all the intermediate sizes, the pressure within each region is governed by a hyperbolic equation, the role of time being played by the pore linear scale. Pressure jumps across hypersurfaces separating the regions equal corresponding values of the capillary pressure. A supplementary condition at any such hypersurface requires the speed of its displacement in the four-dimensional space to coincide with the normal velocity components of both the adjoining fluids. As a result, a principally new statement of multiphase filtration flow problems is gained with allowance for capillary relaxation in the porous space.

  5. Multiphase ferrofluid flows for micro-particle focusing and separation.

    PubMed

    Zhou, Ran; Wang, Cheng

    2016-05-01

    Ferrofluids have demonstrated great potential for a variety of manipulations of diamagnetic (or non-magnetic) micro-particles/cells in microfluidics, including sorting, focusing, and enriching. By utilizing size dependent magnetophoresis velocity, most of the existing techniques employ single phase ferrofluids to push the particles towards the channel walls. In this work, we demonstrate a novel strategy for focusing and separating diamagnetic micro-particles by using the laminar fluid interface of two co-flowing fluids-a ferrofluid and a non-magnetic fluid. Next to the microfluidic channel, microscale magnets are fabricated to generate strong localized magnetic field gradients and forces. Due to the magnetic force, diamagnetic particles suspended in the ferrofluid phase migrate across the ferrofluid stream at the size-dependent velocities. Because of the low Reynolds number and high Péclet number associated with the flow, the fluid interface is sharp and stable. When the micro-particles migrate to the interface, they are accumulated near the interface, resulting in effective focusing and separation of particles. We investigated several factors that affect the focusing and separation efficiency, including susceptibility of the ferrofluid, distance between the microfluidic channel and microscale magnet, and width of the microfluidic channel. This concept can be extended to multiple fluid interfaces. For example, a complete separation of micro-particles was demonstrated by using a three-stream multiphase flow configuration. PMID:27190567

  6. Multiphase transport of gas and low loads of liquids in pipelines

    NASA Astrophysics Data System (ADS)

    Asante, Ben

    Multiphase flow of gas and low loads of liquids occurs frequently in natural gas gathering and transmission pipelines for both onshore and offshore operations. Literature and experimental investigations indicate that dispersed droplet and stratified flow patterns are obtained when gas and small quantities of liquids flow concurrently in a pipe. Very few correlations exist for the prediction of holdup and pressure drop for these systems and fewer still give satisfactory results. Experimental studies for air-oil and air-water systems flowing through small diameter plastic and steel horizontal pipes ranging in size from 1-inch to 3-inches were performed. The experiments were carried out at the multiphase flow laboratories of Imperial College in London and the University of Calgary in Canada. Data from actual operating gas pipeline systems transporting small amounts of hydrocarbon liquids were also evaluated. Based on the experimental results and the operating data, two approaches for modeling these systems are proposed: (1) A homogeneous approach for very low liquid loads (holdups up to 0.005), typical in gas transmission systems. A friction factor correlation based on the mixture Reynolds number and the holdup has been developed for this flow regime. (2) A mechanistic stratified two-phase approach for higher liquid loads (holdups greater than 0.005) usually found in gas gathering systems with consideration given to: (a) The reduction in the available flow area and extent of wetting of the pipe perimeter by the liquid film. The gas/liquid interface was observed to be either flat or carved. (b) The interfacial fiction factor between the liquid film and the gas. A new correlation based on the liquid and gas Reynolds numbers as well as the film thickness and hold up has been developed. This correlation has been successfully tested against both experimental and actual pipeline operating data.

  7. Rheological flow laws for multiphase magmas: An empirical approach

    NASA Astrophysics Data System (ADS)

    Pistone, Mattia; Cordonnier, Benoît; Ulmer, Peter; Caricchi, Luca

    2016-07-01

    The physical properties of magmas play a fundamental role in controlling the eruptive dynamics of volcanoes. Magmas are multiphase mixtures of crystals and gas bubbles suspended in a silicate melt and, to date, no flow laws describe their rheological behaviour. In this study we present a set of equations quantifying the flow of high-viscosity (> 105 Pa·s) silica-rich multiphase magmas, containing both crystals (24-65 vol.%) and gas bubbles (9-12 vol.%). Flow laws were obtained using deformation experiments performed at high temperature (673-1023 K) and pressure (200-250 MPa) over a range of strain-rates (5 · 10- 6 s- 1 to 4 · 10- 3 s- 1), conditions that are relevant for volcanic conduit processes of silica-rich systems ranging from crystal-rich lava domes to crystal-poor obsidian flows. We propose flow laws in which stress exponent, activation energy, and pre-exponential factor depend on a parameter that includes the volume fraction of weak phases (i.e. melt and gas bubbles) present in the magma. The bubble volume fraction has opposing effects depending on the relative crystal volume fraction: at low crystallinity bubble deformation generates gas connectivity and permeability pathways, whereas at high crystallinity bubbles do not connect and act as "lubricant" objects during strain localisation within shear bands. We show that such difference in the evolution of texture is mainly controlled by the strain-rate (i.e. the local stress within shear bands) at which the experiments are performed, and affect the empirical parameters used for the flow laws. At low crystallinity (< 44 vol.%) we observe an increase of viscosity with increasing strain-rate, while at high crystallinity (> 44 vol.%) the viscosity decreases with increasing strain-rate. Because these behaviours are also associated with modifications of sample textures during the experiment and, thus, are not purely the result of different deformation rates, we refer to "apparent shear-thickening" and

  8. Laser velocimeter measurements of multiphase flow of solids

    SciTech Connect

    Kadambi, J.R.; Chen, R.C.; Bhunia, S.

    1989-01-01

    A unique refractive index matched facility for studying solid-liquid multiphase flow has been developed. The refractive index matching of the solid and the liquid allows the use of non-intrusive Laser Doppler Velocimetry (LDV) to measure the solid and the liquid velocities. These measurements will be useful in developing a better understanding of solid-liquid flows, especially solid-liquid and solid-solid interactions. Silica gel and 50% sodium iodide solution in water (refractive index {approx}1.443) are used as the refractive index matched solid and liquid respectively. A two color back scatter mode LDV is used for making velocity measurements. Tests were conducted in solid-liquid slurries with volumetric solid concentration levels of 5% and 15% in the Reynolds number (Re) range of 400 to 9200. Silica gel particles of mean diameter 40 microns were used. Measurements included mapping of the solid and liquid velocities and obtaining the pressure drop data. Signal processing technique utilizing histogram of velocity measurements made at a point and signal amplitude discrimination was successfully used for differentiating between solid and liquid velocities. 34 refs., 61 figs., 5 tabs.

  9. Algebraic dynamic multilevel (ADM) method for fully implicit simulations of multiphase flow in porous media

    NASA Astrophysics Data System (ADS)

    Cusini, Matteo; van Kruijsdijk, Cor; Hajibeygi, Hadi

    2016-06-01

    This paper presents the development of an algebraic dynamic multilevel method (ADM) for fully implicit simulations of multiphase flow in homogeneous and heterogeneous porous media. Built on the fine-scale fully implicit (FIM) discrete system, ADM constructs a multilevel FIM system describing the coupled process on a dynamically defined grid of hierarchical nested topology. The multilevel adaptive resolution is determined at each time step on the basis of an error criterion. Once the grid resolution is established, ADM employs sequences of restriction and prolongation operators in order to map the FIM system across the considered resolutions. Several choices can be considered for prolongation (interpolation) operators, e.g., constant, bilinear and multiscale basis functions, all of which form partition of unity. The adaptive multilevel restriction operators, on the other hand, are constructed using a finite-volume scheme. This ensures mass conservation of the ADM solutions, and as such, the stability and accuracy of the simulations with multiphase transport. For several homogeneous and heterogeneous test cases, it is shown that ADM applies only a small fraction of the full FIM fine-scale grid cells in order to provide accurate solutions. The sensitivity of the solutions with respect to the employed fraction of grid cells (determined automatically based on the threshold value of the error criterion) is investigated for all test cases. ADM is a significant step forward in the application of dynamic local grid refinement methods, in the sense that it is algebraic, allows for systematic mapping across different scales, and applicable to heterogeneous test cases without any upscaling of fine-scale high resolution quantities. It also develops a novel multilevel multiscale method for FIM multiphase flow simulations in natural subsurface formations.

  10. Multiphase flow modeling based on the hyperbolic thermodynamically compatible systems theory

    SciTech Connect

    Romenski, E.

    2015-03-10

    An application of the theory of thermodynamically compatible hyperbolic systems to design a multiphase compressible flow models is discussed. With the use of such approach the governing equations are derived from the first principles, formulated in a divergent form and can be transformed to a symmetric hyperbolic system in the sense of Friedrichs. A usage of the proposed approach is described for the development of multiphase compressible fluid models, including two-phase flow models.

  11. Constitutive Relationships and Models in Continuum Theories of Multiphase Flows. [conferences

    NASA Technical Reports Server (NTRS)

    Decker, Rand (Editor)

    1989-01-01

    In April, 1989, a workshop on constitutive relationships and models in continuum theories of multiphase flows was held at NASA's Marshall Space Flight Center. Topics of constitutive relationships for the partial or per phase stresses, including the concept of solid phase pressure are discussed. Models used for the exchange of mass, momentum, and energy between the phases in a multiphase flow are also discussed. The program, abstracts, and texts of the presentations from the workshop are included.

  12. The Effect of Surface Treated Nanoparticles on Single and Multi-Phase Flow in Porous Media

    NASA Astrophysics Data System (ADS)

    DiCarlo, D. A.; Aminzadeh, B.; Chung, D.; Zhang, X.; Wung, R.; Huh, C.; Bryant, S. L.

    2013-12-01

    Surface treated nanoparticles have been suggested to be an additive to CO2 storage scenarios. This is because 1) the nanoparticles have been shown to freely transport through permeable media, and 2) the nanoparticles can stabilize a CO2 in water foam by adhering to the surface of CO2 bubbles/droplets preventing their coalescence. In terms of storage, The formation of CO2 foam will limit the CO2 mobility which can potentially help limit the CO2 leakage. Here, we will show how nanoparticles in porous media can have many interesting properties in single and multi-phase flow. For multi-phase CO2, we have performed experiments where high pressure liquid CO2 displaces brine and vice versa with and without nanoparticles in the brine. We measure the displacement pattern and in-situ CO2 saturation using CT scanning and measure the pressure drop using pressure transducers. We find that the flow is less preferential and the pressure drop is greater than when nanoparticles are present. This suggest the formation of in-situ foam/emulsion. We also show that on a brine chase, the residual saturation of CO2 is greater in the presence of nanoparticles. In terms of nanoparticle transport, it is observed that nanoparticles accumulate at the front of a brine/octane displacement. We hypothesize that this occurs due to the nanoparticles being size excluded from portions of the pore-space. To determine if this occurs in single phase flow, we have also performed experiments single-phase flow with the nanoparticles and tracer. We find that the nanoparticles arrive roughly 5% faster than the tracer. This also has implications for the positioning of nanoparticles in the pore space and how this can change the effective viscosity of the nanoparticle suspension.

  13. A spectrally refined interface approach for simulating multiphase flows

    SciTech Connect

    Desjardins, Olivier Pitsch, Heinz

    2009-03-20

    This paper presents a novel approach to phase-interface transport based on pseudo-spectral sub-grid refinement of a level set function. In each flow solver grid cell, a set of quadrature points is introduced on which the value of the level set function is known. This methodology allows to define a polynomial reconstruction of the level set function in each cell. The transport is performed using a semi-Lagrangian technique, removing all constraints on the time step size. Such an approach provides sub-cell resolution of the phase-interface and leads to excellent accuracy in the transport, while a reasonable cost is obtained by pre-computing some of the metrics associated with the polynomials. To couple this approach with a flow solver, an converging curvature computation is introduced. First, a second order explicit distance to the sub-grid interface is reconstructed on the flow solver mesh. Then, a least squares approach is employed to extract the curvature from this distance function. This technique is found to combine the high accuracy and good conservation found in the particle level set method with the converging curvature usually obtained with classical high order PDE transport of the level set function. Tests are presented for both transport as well as two-phase flows, that suggest that this technique is capable of retaining the thin liquid structures that are expected in turbulent atomization of liquids.

  14. Identifying Methane Sources in Groundwater; Quantifying Changes in Compositional and Stable Isotope Values during Multiphase Transport

    NASA Astrophysics Data System (ADS)

    Larson, T.; Sathaye, K.

    2014-12-01

    A dramatic expansion of hydraulic fracturing and horizontal drilling for natural gas in unconventional reserves is underway. This expansion is fueling considerable public concern, however, that extracted natural gas, reservoir brines and associated fracking fluids may infiltrate to and contaminate shallower (< 500m depth) groundwater reservoirs, thereby posing a health threat. Attributing methane found in shallow groundwater to either deep thermogenic 'fracking' operations or locally-derived shallow microbial sources utilizes geochemical methods including alkane wetness and stable carbon and hydrogen isotope ratios of short chain (C1-C5) hydrocarbons. Compared to shallow microbial gas, thermogenic gas is wetter and falls within a different range of δ13C and δD values. What is not clear, however, is how the transport of natural gas through water saturated geological media may affect its compositional and stable isotope values. What is needed is a means to differentiate potential flow paths of natural gas including 'fast paths' along preexisting fractures and drill casings vs. 'slow paths' through low permeability rocks. In this study we attempt quantify transport-related effects using experimental 1-dimensional two-phase column experiments and analytical solutions to multi-phase gas injection equations. Two-phase experimental results for an injection of natural gas into a water saturated column packed with crushed illite show that the natural gas becomes enriched in methane compared to ethane and propane during transport. Carbon isotope measurements are ongoing. Results from the multi-phase gas injection equations that include methane isotopologue solubility and diffusion effects predict the development of a 'bank' of methane depleted in 13C relative to 12C at the front of a plume of fugitive natural gas. These results, therefore, suggest that transport of natural gas through water saturated geological media may complicate attribution methods needed to distinguish

  15. A novel heterogeneous algorithm to simulate multiphase flow in porous media on multicore CPU-GPU systems

    NASA Astrophysics Data System (ADS)

    McClure, J. E.; Prins, J. F.; Miller, C. T.

    2014-07-01

    Multiphase flow implementations of the lattice Boltzmann method (LBM) are widely applied to the study of porous medium systems. In this work, we construct a new variant of the popular “color” LBM for two-phase flow in which a three-dimensional, 19-velocity (D3Q19) lattice is used to compute the momentum transport solution while a three-dimensional, seven velocity (D3Q7) lattice is used to compute the mass transport solution. Based on this formulation, we implement a novel heterogeneous GPU-accelerated algorithm in which the mass transport solution is computed by multiple shared memory CPU cores programmed using OpenMP while a concurrent solution of the momentum transport is performed using a GPU. The heterogeneous solution is demonstrated to provide speedup of 2.6× as compared to multi-core CPU solution and 1.8× compared to GPU solution due to concurrent utilization of both CPU and GPU bandwidths. Furthermore, we verify that the proposed formulation provides an accurate physical representation of multiphase flow processes and demonstrate that the approach can be applied to perform heterogeneous simulations of two-phase flow in porous media using a typical GPU-accelerated workstation.

  16. On the inclusion of the interfacial area between phases in the physical and mathematical description of subsurface multiphase flow. 1998 annual progress report

    SciTech Connect

    Gray, W.G.; Tompson, A.; Soll, W.E.

    1998-06-01

    'Improved capabilities for modeling multiphase flow in the subsurface requires that several aspects of the system which impact the flow and transport processes be more properly accounted for. A distinguishing feature of multiphase flow in comparison to single phase flow is the existence of interfaces between fluids. At the microscopic (pore) scale, these interfaces are known to influence system behavior by supporting non-zero stresses such that the pressures in adjacent phases are not equal. In problems of interphase transport at the macroscopic (core) scale, knowledge of the total amount of interfacial area in the system provides a clue to the effectiveness of the communication between phases. Although interfacial processes are central to multiphase flow physics, their treatment in traditional porous-media theories has been implicit rather than explicit; and no attempts have been made to systematically account for the evolution of the interfacial area in dynamic systems or to include the dependence of constitutive functions, such as capillary pressure, on the interfacial area. This project implements a three-pronged approach to assessing the importance of various features of multiphase flow to its description. The research contributes to the improved understanding and precise physical description of multiphase subsurface flow by combining: (1) theoretical derivation of equations, (2) lattice Boltzmann modeling of hydrodynamics to identify characteristics and parameters, and (3) solution of the field-scale equations using a discrete numerical method to assess the advantages and disadvantages of the complete theory. This approach includes both fundamental scientific inquiry and a path for inclusion of the scientific results obtained in a technical tool that will improve assessment capabilities for multiphase flow situations that have arisen due to the introduction of organic materials in the natural environment. This report summarizes work after 1.5 years of a 3

  17. Pattern recognition techniques for horizontal and vertically upward multiphase flow measurement

    NASA Astrophysics Data System (ADS)

    Arubi, Tesi I. M.; Yeung, Hoi

    2012-03-01

    The oil and gas industry need for high performing and low cost multiphase meters is ever more justified given the rapid depletion of conventional oil reserves that has led oil companies to develop smaller and marginal fields and reservoirs in remote locations and deep offshore, thereby placing great demands for compact and more cost effective solutions of on-line continuous multiphase flow measurement for well testing, production monitoring, production optimisation, process control and automation. The pattern recognition approach for clamp-on multiphase measurement employed in this study provides one means for meeting this need. High speed caesium-137 radioisotope-based densitometers were installed vertically at the top of a 50.8mm and 101.6mm riser as well as horizontally at the riser base in the Cranfield University multiphase flow test facility. A comprehensive experimental campaign comprising flow conditions typical of operating conditions found in the Petroleum Industry was conducted. The application of a single gamma densitometer unit, in conjunction with pattern recognition techniques to determine both the phase volume fractions and velocities to yield the individual phase flow rates of horizontal and vertically upward multiphase flows was investigated. The pattern recognition systems were trained to map the temporal fluctuations in the multiphase mixture density with the individual phase flow rates using statistical features extracted from the gamma counts signals as their inputs. Initial results yielded individual phase flow rate predictions to within ±5% relative error for the two phase airwater flows and ±10% for three phase air-oil-water flows data.

  18. PREFACE: The 6th International Symposium on Measurement Techniques for Multiphase Flows

    NASA Astrophysics Data System (ADS)

    Okamoto, Koji; Murai, Yuichi

    2009-02-01

    Research on multi-phase flows is very important for industrial applications, including power stations, vehicles, engines, food processing, and so on. Also, from the environmental viewpoint, multi-phase flows need to be investigated to overcome global warming. Multi-phase flows originally have non-linear features because they are multi-phased. The interaction between the phases plays a very interesting role in the flows. The non-linear interaction causes the multi-phase flows to be very difficult to understand phenomena. The International Symposium on Measurement Techniques for Multi-phase Flows (ISMTMF) is a unique symposium. The target of the symposium is to exchange the state-of-the-art knowledge on the measurement techniques for non-linear multi-phase flows. Measurement technique is the key technology to understanding non-linear phenomena. The ISMTMF began in 1995 in Nanjing, China. The symposium has continuously been held every two or three years. The ISMTMF-2008 was held in Okinawa, Japan as the 6th symposium of ISMTMF on 15-17 December 2008. Okinawa has a long history as the Ryukyus Kingdom. China and Japan have had cultural and economic exchanges through Okinawa for more than 1000 years. Please enjoy Okinawa and experience its history to enhance our international communication. The present symposium was attended by 124 participants, the program included 107 contributions with 5 plenary lectures, 2 keynote lectures, and 100 oral regular paper presentations. The topics include, besides the ordinary measurement techniques for multiphase flows, acoustic and electric sensors, bubbles and microbubbles, computed tomography, gas-liquid interface, laser-imaging and PIV, oil/coal/drop and spray, solid and powder, spectral and multi-physics. This volume includes the presented papers at ISMTMF-2008. In addition to this volume, ten selected papers will be published in a special issue of Measurement Science and Technology. We would like to express special thanks to all

  19. Preliminary flashing multiphase flow analysis with application to letdown valves in coal-conversion processes

    SciTech Connect

    Ott, L. J.; Khan, A. A.

    1982-09-01

    As part of the Oak Ridge National Laboratory's technical support to large coal liquefaction projects, attempts have been made to (1) develop the methodology for characterizing and predicting multicomponent, multiphase, non-Newtonian flow behavior within letdown valves and devices, and (2) analyze the fluid flow in the entire letdown region of the process. An engineering model that can be used in the analysis of multicomponent, multiphase, flashing, flowing systems has been developed. A preliminary version of a user-oriented computer code for this model has been developed and is fully described.

  20. Comparison of Frameworks for Next Generation Multiphase Flow Solver, MFIX: A Group Decision-Making Exercise

    SciTech Connect

    Gel, Aytekin; Pannala, Sreekanth; Syamlal, M; O'Brien, T. J.; Gel, Esma

    2007-01-01

    Computational Fluid Dynamics (CFD) simulations have emerged as a powerful tool for understanding multiphase flows that occur in a wide range of engineering applications and natural processes. A multiphase CFD code called MFIX has been under development at the National Energy Technology Laboratory (NETL) since the 1980s for modeling multiphase flows that occur in fossil fuel reactors. CFD codes such as MFIX are equipped with a number of numerical algorithms to solve a large set of coupled partial differential equations over three-dimensional grids consisting of hundreds of thousands of cells on parallel computers. Currently, the next generation version of MFIX is under development with the goal of building a multiphase problem solving environment (PSE) that would facilitate the simple reuse of modern software components by application scientists. Several open-source frameworks were evaluated to identify the best-suited framework for the multiphase PSE. There are many requirements for the multiphase PSE, and each of these open-source frameworks offers functionalities that satisfy the requirements to varying extents. Therefore, matching the requirements and the functionalities is not a simple task and requires a systematic and quantitative decision making procedure. We present a multi-criteria decision making approach to determining a major system design decision, and demonstrate its application on the framework selection problem.

  1. Consistent and conservative framework for incompressible multiphase flow simulations

    NASA Astrophysics Data System (ADS)

    Owkes, Mark; Desjardins, Olivier

    2015-11-01

    We present a computational methodology for convection that handles discontinuities with second order accuracy and maintains conservation to machine precision. We use this method in the context of an incompressible gas-liquid flow to transport the phase interface, momentum, and scalars. Using the same methodology for all the variables ensures discretely consistent transport, which is necessary for robust and accurate simulations of turbulent atomizing flows with high-density ratios. The method achieves conservative transport by computing consistent fluxes on a refined mesh, which ensures all conserved quantities are fluxed with the same discretization. Additionally, the method seamlessly couples semi-Lagrangian fluxes used near the interface with finite difference fluxes used away from the interface. The semi-Lagrangian fluxes are three-dimensional, un-split, and conservatively handle discontinuities. Careful construction of the fluxes ensures they are divergence-free and no gaps or overlaps form between neighbors. We have tested and used the scheme for many cases and demonstrate a simulation of an atomizing liquid jet.

  2. MSTS. Multiphase Subsurface Transport Simulator User`s Guide and Reference

    SciTech Connect

    Nichols, W.E.; White, M.D.

    1993-05-01

    This User`s Guide and Reference provides information and instructions on the use of the Multiphase Subsurface Transport Simulator (MSTS) code and the associated MSTS Graphical Input. The MSTS code is used to simulate water flow, air flow, heat transfer, and dilute species mass transport in variably saturated geologic media for one, two, or three dimensions using an integrated finite-difference numerical scheme. Any or all of these processes may be simulated in a fully coupled manner. MSTS is a two-phase, two-component code with secondary processes that include binary diffusion and vapor pressure lowering. The geologic media may be homogeneous or heterogeneous, isotropic or anisotropic, and unfractured or highly fractured. A problem geometry may be described by either Cartesian or cylindrical coordinates. MSTS is written in FORTRAN 77, following the American National Standards Institute (ANSI) standards, and is machine-independent with the exception of some time and date calls required for quality control (provisions are made in the code for relatively easy adoption to a number of machines for these calls).

  3. Multiphase flow, deformation and wave propagation in porous media

    NASA Astrophysics Data System (ADS)

    Pazdniakou, A.; Adler, P. M.

    2010-12-01

    Our goals are to determine some of the most important macroscopic properties of porous media whether they are dry or saturated by one or two fluids such as permeabilities, solid deformations and acoustic velocities. Therefore, one needs to calculate fluid flow through the pores and the deformation of the solid matrix. Single and multiphase flows are determined by Lattice Boltzmann Models (LBM) where fluid motion is described in terms of a discretized particle distribution function which obeys a Lattice Boltzmann Equation equivalent to the Navier-Stokes equations at the macroscopic level. Complex boundary conditions can be easily treated by LBM which makes it convenient for flow simulations in porous media. Applications to the determination of the absolute permeability and of the relative permeabilities in complex media are given as well as examples of transient phenomena. Elastic deformations of the solid matrix whether they are static or time dependent can be determined by Lattice Spring Models (LSM). The solid matrix is represented by a regular cubic lattice whose points are connected by springs which are either linear (between the lattice points) or angular (between the linear springs). The spring set is selected in order to obtain an equivalent isotropic solid. The elastic properties of the medium can be calculated from the elastic energy stored in the elementary cell. A mass can be assigned to the lattice points. Applications to the determination of the macroscopic Young modulus and Poisson ratio of porous solids are given as well as direct simulations of wave propagation through dry porous solids. In order to study wave propagation in porous media containing one or two fluids, the LBM and LSM codes are coupled by using a momentum exchange algorithm which equates the velocities and the normal stresses at the solid-fluid interface. Then, two different methods can be used to study wave propagation. In the first direct method, a pressure variation is induced at a

  4. Numerical Simulation of the Multiphase Flow in the Rheinsahl-Heraeus (RH) System

    NASA Astrophysics Data System (ADS)

    Geng, Dian-Qiao; Lei, Hong; He, Ji-Cheng

    2010-02-01

    Knowledge of gas-liquid multiphase flow behavior in the Rheinsahl-Heraeus (RH) system is of great significance to clarify the circulation flow rate, decarburization, and inclusion removal with a reliable description. Thus, based on the separate model of injecting gas behavior, a novel mathematical model of multiphase flow has been developed to give the distribution of gas holdup in the RH system. The numerical results show that the predicted circulation flow rates, the predicted flow velocities, and the predicted mixing times agree with the measured results in a water model and that the predicted tracer concentration curve agrees with the results obtained in an actual RH system. With a lower lifting gas flow rate, the rising gas bubbles are concentrated near the wall; with a higher lifting gas flow rate, gas bubbles can reach the center of the up-snorkel. A critical lifting gas flow rate is used to obtain the maximum circulation flow rate.

  5. Efficient Schemes for Reducing Numerical Dispersion in ModelingMultiphase Transport through Porous and Fractured Media

    SciTech Connect

    Wu, Yu-Shu; Forsyth, Peter A.

    2006-04-13

    Numerical issues with modeling transport of chemicals or solute in realistic large-scale subsurface systems have been a serious concern, even with the continual progress made in both simulation algorithms and computer hardware in the past few decades. The problem remains and becomes even more difficult when dealing with chemical transport in a multiphase flow system using coarse, multidimensional regular or irregular grids, because of the known effects of numerical dispersion associated with moving plume fronts. We have investigated several total-variation-diminishing (TVD) or flux-limiter schemes by implementing and testing them in the T2R3D code, one of the TOUGH2 family of codes. The objectives of this paper are (1) to investigate the possibility of applying these TVD schemes, using multi-dimensional irregular unstructured grids, and (2) to help select more accurate spatial averaging methods for simulating chemical transport given a numerical grid or spatial discretization. We present an application example to show that such TVD schemes are able to effectively reduce numerical dispersion.

  6. Multiphase flow predictions from carbonate pore space images using extracted network models

    NASA Astrophysics Data System (ADS)

    Al-Kharusi, Anwar S.; Blunt, Martin J.

    2008-06-01

    A methodology to extract networks from pore space images is used to make predictions of multiphase transport properties for subsurface carbonate samples. The extraction of the network model is based on the computation of the location and sizes of pores and throats to create a topological representation of the void space of three-dimensional (3-D) rock images, using the concept of maximal balls. In this work, we follow a multistaged workflow. We start with a 2-D thin-section image; convert it statistically into a 3-D representation of the pore space; extract a network model from this image; and finally, simulate primary drainage, waterflooding, and secondary drainage flow processes using a pore-scale simulator. We test this workflow for a reservoir carbonate rock. The network-predicted absolute permeability is similar to the core plug measured value and the value computed on the 3-D void space image using the lattice Boltzmann method. The predicted capillary pressure during primary drainage agrees well with a mercury-air experiment on a core sample, indicating that we have an adequate representation of the rock's pore structure. We adjust the contact angles in the network to match the measured waterflood and secondary drainage capillary pressures. We infer a significant degree of contact angle hysteresis. We then predict relative permeabilities for primary drainage, waterflooding, and secondary drainage that agree well with laboratory measured values. This approach can be used to predict multiphase transport properties when wettability and pore structure vary in a reservoir, where experimental data is scant or missing. There are shortfalls to this approach, however. We compare results from three networks, one of which was derived from a section of the rock containing vugs. Our method fails to predict properties reliably when an unrepresentative image is processed to construct the 3-D network model. This occurs when the image volume is not sufficient to represent the

  7. Using a multiphase flow code to model the coupled effects of repository consolidation and multiphase brine and gas flow at the Waste Isolation Pilot Plant

    SciTech Connect

    Freeze, G.A.; Larson, K.W.; Davies, P.B.; Webb, S.W.

    1995-10-01

    Long-term repository assessment must consider the processes of (1) gas generation, (2) room closure and expansions due to salt creep, and (3) multiphase (brine and gas) fluid flow, as well as the complex coupling between these three processes. The mechanical creep closure code SANCHO was used to simulate the closure of a single, perfectly sealed disposal room filled with water and backfill. SANCHO uses constitutive models to describe salt creep, waste consolidation, and backfill consolidation, Five different gas-generation rate histories were simulated, differentiated by a rate multiplier, f, which ranged from 0.0 (no gas generation) to 1.0 (expected gas generation under brine-dominated conditions). The results of the SANCHO f-series simulations provide a relationship between gas generation, room closure, and room pressure for a perfectly sealed room. Several methods for coupling this relationship with multiphase fluid flow into and out of a room were examined. Two of the methods are described.

  8. Numerical simulation of multiphase flows of CO2 storage in saline aquifers in Daqingzijing oilfield, China

    NASA Astrophysics Data System (ADS)

    Yang, D.

    2010-12-01

    In this paper, according to in-site geological and geophysical data archived of Daqingzijing oilfield, a 3D multiphase flow model based on hydrodynamic trapping mechanism is set up, with the phase interface mechanism proposed. A high-order CE/SE (space-time conservation element and solution element) method coupled with (HPLS) Hybrid level-set method is updated to simulate transport and accumulation of CO2 in saline aquifer formations at the short-term time scales. Results (as shown in Fig.1) illustrate that CO2 distribution is characterized as the belt-shaped zone with direction from west to east due to effects depth, height and physical properties of sand formations. Heterogeneity of the stratigraphy has a dominant control of the evolution of CO2 transport and build-up. After 20 years of injection, CO2 front penetrates 8-9 km away from injection wells. The present work provides a novel approach for simulation of hydrodynamic trapping mechanism for CO2 geological storage in saline aquifers of Songliao Basin of China, which could be a suitable location for a CO2 storage demonstration project. Caption Fig.1 Transport and accumulation of CO2 storage in saline aquifers at different time scales, (a) 1year, (b) 5 years, (c ) 10 years and (d) 20 years after the beginning of injection, respectively. Legend denotes the density (kg/m3) of CO2.

  9. Model coupling for multiphase flow in porous media

    NASA Astrophysics Data System (ADS)

    Helmig, Rainer; Flemisch, Bernd; Wolff, Markus; Ebigbo, Anozie; Class, Holger

    2013-01-01

    Numerical models for flow and transport in porous media are valid for a particular set of processes, scales, levels of simplification and abstraction, grids etc. The coupling of two or more specialised models is a method of increasing the overall range of validity while keeping the computational costs relatively low. Several coupling concepts are reviewed in this article with a focus on the authors’ work in this field. The concepts are divided into temporal and spatial coupling concepts, of which the latter is subdivided into multi-process, multi-scale, multi-dimensional, and multi-compartment coupling strategies. Examples of applications for which these concepts can be relevant include groundwater protection and remediation, carbon dioxide storage, nuclear-waste disposal, soil dry-out and evaporation processes as well as fuel cells and technical filters.

  10. Progress in the Development of Compressible, Multiphase Flow Modeling Capability for Nuclear Reactor Flow Applications

    SciTech Connect

    R. A. Berry; R. Saurel; F. Petitpas; E. Daniel; O. Le Metayer; S. Gavrilyuk; N. Dovetta

    2008-10-01

    In nuclear reactor safety and optimization there are key issues that rely on in-depth understanding of basic two-phase flow phenomena with heat and mass transfer. Within the context of multiphase flows, two bubble-dynamic phenomena – boiling (heterogeneous) and flashing or cavitation (homogeneous boiling), with bubble collapse, are technologically very important to nuclear reactor systems. The main difference between boiling and flashing is that bubble growth (and collapse) in boiling is inhibited by limitations on the heat transfer at the interface, whereas bubble growth (and collapse) in flashing is limited primarily by inertial effects in the surrounding liquid. The flashing process tends to be far more explosive (and implosive), and is more violent and damaging (at least in the near term) than the bubble dynamics of boiling. However, other problematic phenomena, such as crud deposition, appear to be intimately connecting with the boiling process. In reality, these two processes share many details.

  11. Local volume-time averaged equations of motion for dispersed, turbulent, multiphase flows

    SciTech Connect

    Sha, W.T.; Slattery, J.C.

    1980-11-01

    In most flows of liquids and their vapors, the phases are dispersed randomly in both space and time. These dispersed flows can be described only statistically or in terms of averages. Local volume-time averaging is used here to derive a self-consistent set of equations governing momentum and energy transfer in dispersed, turbulent, multiphase flows. The empiricisms required for use with these equations are the subject of current research.

  12. A comparison of results obtained with two subsurface non-isothermal multiphase reactive transport simulators, FADES-CORE and TOUGHREACT

    SciTech Connect

    Juncosa Rivera, Ricardo; Xu, Tianfu; Pruess, Karsten

    2001-01-01

    FADES-CORE and TOUGHREACT are codes used to model the non-isothermal multiphase flow with multicomponent reactive transport in porous media. Different flow and reactive transport problems were used to compare the FADES-CORE and TOUGHREACT codes. These problems take into account the different cases of multiphase flow with and without heat transport, conservative transport, and reactive transport. Consistent results were obtained from both codes, which use different numerical methods to solve the differential equations resulting from the various physicochemical processes. Here we present the results obtained from both codes for various cases. Some results are slightly different with minor discrepancies, which have been remedied, so that both codes would be able to reproduce the same processes using the same parameters. One of the discrepancies found is related to the different calculation for thermal conductivity in heat transport, which affects the calculation of the temperatures, as well as the pH of the reaction of calcite dissolution problem modeled. Therefore it is possible to affirm that the pH is highly sensitive to temperature. Generally speaking, the comparison was concluded to be highly satisfactory, leading to the complete verification of the FADES-CORE code. However, we must keep in mind that, as there are no analytical solutions available with which to verify the codes, the TOUGHREACT code has been thoroughly corroborated, given that the only possible way to prove that the code simulation is correct, is by comparing the results obtained with both codes for the identical problems, or to validate the simulation results with actual measured data.

  13. Characterization of non-Darcy multiphase flow in petroleum bearing formations. Annual status report, May 14, 1991--May 13, 1992

    SciTech Connect

    Evans, R.D.; Civan, F.

    1992-12-31

    The objectives of this research are: Develop a proper theoretical model for characterizing non-Darcy multi-phase flow in petroleum bearing formations. Develop an experimental technique for measuring non-Darcy flow coefficients under multiphase flow at insitu reservoir conditions. Develop dimensional consistent correlations to express the non-Darcy flow coefficient as a function of rock and fluid properties for consolidated and unconsolidated porous media. The research accomplished during the period May 1991--May 1992 focused upon theoretical and experimental studies of multiphase non-Darcy flow in porous media.

  14. Coupling of geochemical and multiphase flow processes for validation of the MUFITS reservoir simulator against TOUGHREACT

    NASA Astrophysics Data System (ADS)

    De Lucia, Marco; Kempka, Thomas; Afanasyev, Andrey; Melnik, Oleg; Kühn, Michael

    2016-04-01

    Coupled reactive transport simulations, especially in heterogeneous settings considering multiphase flow, are extremely time consuming and suffer from significant numerical issues compared to purely hydrodynamic simulations. This represents a major hurdle in the assessment of geological subsurface utilization, since it constrains the practical application of reactive transport modelling to coarse spatial discretization or oversimplified geological settings. In order to overcome such limitations, De Lucia et al. [1] developed and validated a one-way coupling approach between geochemistry and hydrodynamics, which is particularly well suited for CO2 storage simulations, while being of general validity. In the present study, the models used for the validation of the one-way coupling approach introduced by De Lucia et al. (2015), and originally performed with the TOUGHREACT simulator, are transferred to and benchmarked against the multiphase reservoir simulator MUFITS [2]. The geological model is loosely inspired by an existing CO2 storage site. Its grid comprises 2,950 elements enclosed in a single layer, but reflecting a realistic three-dimensional anticline geometry. For the purpose of this comparison, homogeneous and heterogeneous scenarios in terms of porosity and permeability were investigated. In both cases, the results of the MUFITS simulator are in excellent agreement with those produced with the fully-coupled TOUGHREACT simulator, while profiting from significantly higher computational performance. This study demonstrates how a computationally efficient simulator such as MUFITS can be successfully included in a coupled process simulation framework, and also suggests ameliorations and specific strategies for the coupling of chemical processes with hydrodynamics and heat transport, aiming at tackling geoscientific problems beyond the storage of CO2. References [1] De Lucia, M., Kempka, T., and Kühn, M. A coupling alternative to reactive transport simulations

  15. Computational Flow Modeling of Hydrodynamics in Multiphase Trickle-Bed Reactors

    NASA Astrophysics Data System (ADS)

    Lopes, Rodrigo J. G.; Quinta-Ferreira, Rosa M.

    2008-05-01

    This study aims to incorporate most recent multiphase models in order to investigate the hydrodynamic behavior of a TBR in terms of pressure drop and liquid holdup. Taking into account transport phenomena such as mass and heat transfer, an Eulerian k-fluid model was developed resulting from the volume averaging of the continuity and momentum equations and solved for a 3D representation of the catalytic bed. Computational fluid dynamics (CFD) model predicts hydrodynamic parameters quite well if good closures for fluid/fluid and fluid/particle interactions are incorporated in the multiphase model. Moreover, catalytic performance is investigated with the catalytic wet oxidation of a phenolic pollutant.

  16. Multiphase Flow Characterization Using Simultaneous High Resolution Neutron and X-Ray Imaging

    NASA Astrophysics Data System (ADS)

    LaManna, J.; Anovitz, L. M.; Hussey, D. S.; Jacobson, D. L.

    2015-12-01

    Multiphase flow in geologic materials is an important area of research for hydrology and oil recovery. A valuable tool for determining how liquid water and/or hydrocarbons transport through soils and rocks is neutron tomography due to its high sensitivity to hydrogen. This technique allows for the 3D reconstruction of the liquid phase in the sample. In order to resolve the solid phase structure of the sample it is necessary to perform x-ray tomography which often must be conducted at a separate facility from the neutron imaging. When imaging deformable samples or stochastic flow this delay in imaging modes ruins the analysis as the sample is no longer in an identical state. To address this issue and bring a unique capability to NIST, an instrument has been commissioned for the simultaneous imaging with neutrons and x-rays. The new system orients a micro-focus 90 kV x-ray beam 90° to the neutron beam which facilitates rapid dual-mode tomography of samples. Current highest spatial resolutions are 20 μm and 10 μm for the neutron and x-ray detectors, respectively, with upcoming improvements. This presentation will focus on introducing the new system and demonstrating its ability with several cases. Examples of high resolution water uptake and high speed imaging of uptake dynamics will be given.

  17. Some Specific CASL Requirements for Advanced Multiphase Flow Simulation of Light Water Reactors

    SciTech Connect

    R. A. Berry

    2010-11-01

    Because of the diversity of physical phenomena occuring in boiling, flashing, and bubble collapse, and of the length and time scales of LWR systems, it is imperative that the models have the following features: • Both vapor and liquid phases (and noncondensible phases, if present) must be treated as compressible. • Models must be mathematically and numerically well-posed. • The models methodology must be multi-scale. A fundamental derivation of the multiphase governing equation system, that should be used as a basis for advanced multiphase modeling in LWR coolant systems, is given in the Appendix using the ensemble averaging method. The remainder of this work focuses specifically on the compressible, well-posed, and multi-scale requirements of advanced simulation methods for these LWR coolant systems, because without these are the most fundamental aspects, without which widespread advancement cannot be claimed. Because of the expense of developing multiple special-purpose codes and the inherent inability to couple information from the multiple, separate length- and time-scales, efforts within CASL should be focused toward development of a multi-scale approaches to solve those multiphase flow problems relevant to LWR design and safety analysis. Efforts should be aimed at developing well-designed unified physical/mathematical and high-resolution numerical models for compressible, all-speed multiphase flows spanning: (1) Well-posed general mixture level (true multiphase) models for fast transient situations and safety analysis, (2) DNS (Direct Numerical Simulation)-like models to resolve interface level phenmena like flashing and boiling flows, and critical heat flux determination (necessarily including conjugate heat transfer), and (3) Multi-scale methods to resolve both (1) and (2) automatically, depending upon specified mesh resolution, and to couple different flow models (single-phase, multiphase with several velocities and pressures, multiphase with single

  18. Lattice-Boltzmann Simulations of Multiphase Flows in Gas-Diffusion-Layer (GDL) of a PEM Fuel Cell

    SciTech Connect

    Mukherjeea, Shiladitya; Cole, J Vernon; Jainb, Kunal; Gidwania, Ashok

    2008-11-01

    Improved power density and freeze-thaw durability in automotive applications of Proton Exchange Membrane Fuel Cells (PEMFCs) requires effective water management at the membrane. This is controlled by a porous hydrophobic gas-diffusion-layer (GDL) inserted between the membrane catalyst layer and the gas reactant channels. The GDL distributes the incoming gaseous reactants on the catalyst surface and removes excess water by capillary action. There is, however, limited understanding of the multiphase, multi-component transport of liquid water, vapor and gaseous reactants within these porous materials. This is due primarily to the challenges of in-situ diagnostics for such thin (200 -“ 300 {microns}), optically opaque (graphite) materials. Transport is typically analyzed by fitting Darcy's Law type expressions for permeability, in conjunction with capillary pressure relations based on formulations derived for media such as soils. Therefore, there is significant interest in developing predictive models for transport in GDLs and related porous media. Such models could be applied to analyze and optimize systems based on the interactions between cell design, materials, and operating conditions, and could also be applied to evaluating material design concepts. Recently, the Lattice Boltzmann Method (LBM) has emerged as an effective tool in modeling multiphase flows in general, and flows through porous media in particular. This method is based on the solution of a discrete form of the well-known Boltzmann Transport Equation (BTE) for molecular distribution, tailored to recover the continuum Navier-Stokes flow. The kinetic theory basis of the method allows simple implementation of molecular forces responsible for liquid-gas phase separation and capillary effects. The solution advances by a streaming and collision type algorithm that makes it suitable to implement for domains with complex boundaries. We have developed both single and multiphase LB models and applied them to

  19. Pore-scale studies of multiphase flow and reaction involving CO2 sequestration in geologic formations

    NASA Astrophysics Data System (ADS)

    Kang, Q.; Wang, M.; Lichtner, P. C.

    2008-12-01

    In geologic CO2 sequestration, pore-scale interfacial phenomena ultimately govern the key processes of fluid mobility, chemical transport, adsorption, and reaction. However, spatial heterogeneity at the pore scale cannot be resolved at the continuum scale, where averaging occurs over length scales much larger than typical pore sizes. Natural porous media, such as sedimentary rocks and other geological media encountered in subsurface formations, are inherently heterogeneous. This pore-scale heterogeneity can produce variabilities in flow, transport, and reaction processes that take place within a porous medium, and can result in spatial variations in fluid velocity, aqueous concentrations, and reaction rates. Consequently, the unresolved spatial heterogeneity at the pore scale may be important for reactive transport modeling at the larger scale. In addition, current continuum models of surface complexation reactions ignore a fundamental property of physical systems, namely conservation of charge. Therefore, to better understand multiphase flow and reaction involving CO2 sequestration in geologic formations, it is necessary to quantitatively investigate the influence of the pore-scale heterogeneity on the emergent behavior at the field scale. We have applied the lattice Boltzmann method to simulating the injection of CO2 saturated brine or supercritical CO2 into geological formations at the pore scale. Multiple pore-scale processes, including advection, diffusion, homogeneous reactions among multiple aqueous species, heterogeneous reactions between the aqueous solution and minerals, ion exchange and surface complexation, as well as changes in solid and pore geometry are all taken into account. The rich pore scale information will provide a basis for upscaling to the continuum scale.

  20. LDRD final report: Physical simulation of nonisothermal multiphase multicomponent flow in porous media

    SciTech Connect

    Martinez, M.J.; Hopkins, P.L.; Shadid, J.N.

    1997-07-01

    This document reports on the accomplishments of a laboratory-directed research and development (LDRD) project whose objective was to initiate a research program for developing a fundamental understanding of multiphase multicomponent subsurface transport in heterogeneous porous media and to develop parallel processing computational tools for numerical simulation of such problems. The main achievement of this project was the successful development of a general-purpose, unstructured grid, multiphase thermal simulator for subsurface transport in heterogeneous porous media implemented for use on massively parallel (MP) computers via message-passing and domain decomposition techniques. The numerical platform provides an excellent base for new and continuing project development in areas of current interest to SNL and the DOE complex including, subsurface nuclear waste disposal and cleanup, groundwater availability and contamination studies, fuel-spill transport for accident analysis, and DNAPL transport and remediation.

  1. Modelling of fluid-structure interaction with multiphase viscous flows using an immersed-body method

    NASA Astrophysics Data System (ADS)

    Yang, P.; Xiang, J.; Fang, F.; Pavlidis, D.; Latham, J.-P.; Pain, C. C.

    2016-09-01

    An immersed-body method is developed here to model fluid-structure interaction for multiphase viscous flows. It does this by coupling a finite element multiphase fluid model and a combined finite-discrete element solid model. A coupling term containing the fluid stresses is introduced within a thin shell mesh surrounding the solid surface. The thin shell mesh acts as a numerical delta function in order to help apply the solid-fluid boundary conditions. When used with an advanced interface capturing method, the immersed-body method has the capability to solve problems with fluid-solid interfaces in the presence of multiphase fluid-fluid interfaces. Importantly, the solid-fluid coupling terms are treated implicitly to enable larger time steps to be used. This two-way coupling method has been validated by three numerical test cases: a free falling cylinder in a fluid at rest, elastic membrane and a collapsing column of water moving an initially stationary solid square. A fourth simulation example is of a water-air interface with a floating solid square being moved around by complex hydrodynamic flows including wave breaking. The results show that the immersed-body method is an effective approach for two-way solid-fluid coupling in multiphase viscous flows.

  2. Unsteady immiscible multiphase flow validation of a multiple-relaxation-time lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Leclaire, S.; Pellerin, N.; Reggio, M.; Trépanier, J.-Y.

    2014-03-01

    The lattice Boltzmann modeling of immiscible multiphase flows needs to be further validated, especially when density variation occurs between the different flow phases. From this perspective, the goal of this research is to introduce the multiple-relaxation-time operator into a lattice Boltzmann model in order to improve its numerical stability in the presence of large density and viscosity ratios. Essentially, this research shows that the introduction of this operator greatly improves the numerical stability of the approach compared to the original single-relaxation-time collision operator. In many lattice Boltzmann research studies, multiphase lattice Boltzmann methods are validated using a reduced number of test cases, and unsteady flow test cases are frequently omitted before much more complex flow configurations are simulated. In this context, several test cases are proposed to evaluate the behavior of a lattice Boltzmann method for simulating immiscible multiphase flows with high density and viscosity ratios. These are: (1) two-phase Couette flow; (2) three-phase Laplace law; (3) three-phase Zalesak disk; (4) two-phase flow between oscillating plates; (5) two-phase capillary wave; and (6) the two-phase oscillating cylindrical bubble. The first two involve a steady regime, and the remaining four an unsteady regime.

  3. Optical diagnostics for turbulent and multiphase flows: Particle image velocimetry and photorefractive optics

    SciTech Connect

    O`Hern, T.J.; Torczynski, J.R.; Shagam, R.N.; Blanchat, T.K.; Chu, T.Y.; Tassin-Leger, A.L.; Henderson, J.A.

    1997-01-01

    This report summarizes the work performed under the Sandia Laboratory Directed Research and Development (LDRD) project ``Optical Diagnostics for Turbulent and Multiphase Flows.`` Advanced optical diagnostics have been investigated and developed for flow field measurements, including capabilities for measurement in turbulent, multiphase, and heated flows. Particle Image Velocimetry (PIV) includes several techniques for measurement of instantaneous flow field velocities and associated turbulence quantities. Nonlinear photorefractive optical materials have been investigated for the possibility of measuring turbulence quantities (turbulent spectrum) more directly. The two-dimensional PIV techniques developed under this LDRD were shown to work well, and were compared with more traditional laser Doppler velocimetry (LDV). Three-dimensional PIV techniques were developed and tested, but due to several experimental difficulties were not as successful. The photorefractive techniques were tested, and both potential capabilities and possible problem areas were elucidated.

  4. Preface: Recent Advances in Modeling Multiphase Flow and Transportwith the TOUGH Family of Codes

    SciTech Connect

    Liu, Hui-Hai; Illangasekare, Tissa H.

    2007-11-15

    A symposium on research carried out using the TOUGH family of numerical codes was held from May 15 to 17, 2006, at the Lawrence Berkeley National Laboratory. This special issue of the 'Vadose Zone Journal' contains revised and expanded versions of a selected set of papers presented at this symposium (TOUGH Symposium 2006; http://esd.lbl.gov/TOUGHsymposium), all of which focus on multiphase flow, including flow in the vadose zone.

  5. Modeling of multiphase flow with solidification and chemical reaction in materials processing

    NASA Astrophysics Data System (ADS)

    Wei, Jiuan

    moving the side insulation layer upward. It is possible to produce high quality crystal with a good combination of heating and cooling. SiC based ceramic materials fabricated by polymer pyrolysis and synthesis becomes a promising candidate for nuclear applications. To obtain high uniformity of microstructure/concentration fuel without crack at high operating temperature, it is important to understand transport phenomena in material processing at different scale levels. In our prior work, a system level model based on reactive porous media theory was developed to account for the pyrolysis process in uranium-ceramic nuclear fabrication In this thesis, a particle level mesoscopic model based on the Smoothed Particle Hydrodynamics (SPH) is developed for modeling the synthesis of filler U3O8 particles and SiC matrix. The system-level model provides the thermal boundary conditions needed in the particle level simulation. The evolution of particle concentration and structure as well as composition of composite produced will be investigated. Since the process temperature and heat flux play the important roles in material quality and uniformity, the effects of heating rate at different directions, filler particle size and distribution on uniformity and microstructure of the final product are investigated. Uncertainty issue is also discussed. For the multiphase flow with directional solidification, a system level based on FVM is established. In this model, melt convection, temperature distribution, phase change and solidification interface can be investigated. For the multiphase flow with chemical reaction, a particle level model based on SPH method is developed to describe the pyrolysis and synthesis process of uranium-ceramic nuclear fuel. Due to its mesh-free nature, SPH can easily handle the problems with multi phases and components, large deformation, chemical reactions and even solidifications. A multi-scale meso-macroscopic approach, which combine a mesoscopic model based

  6. Comparison of ECN and EIS measurement for corrosion monitoring under multiphase flow conditions

    SciTech Connect

    Chen, Y.; Gopal, M.; Jepson, W.P.

    1997-12-01

    Electrochemical Noise (ECN) and Electrochemical Impedance Spectroscope (EIS) measurements were made simultaneously in a 75 mm I.D., 10 m long acrylic pipeline using salt-water/carbon dioxide mixtures. Full pipe flow was studied for liquid velocities of 0.5, 0.75, 1.1, 1.5 m/s and slug flow for Froude numbers 4, 6 and 9. Experiments were carried out at a constant pressure of 136 kPa and temperature of 40 C. ECN data were measured with a fast auto zero resistance ammeter. The ECN technique is able to detect changes in flow regime, showing distinct differences between full pipe flow and slug flow. The choice of sampling rate when using ECN is very important. For slug flows, sampling rates as high as 100 Hz are necessary to include most of the transients in the flow. Distinct differences can be seen in the Fast Fourier Transforms where dominant frequencies exist which correspond to possible bubble action in the slug body. EIS can be used to measure corrosion rate in multiphase flows. It does show an increase in the corrosion rate with liquid flow rates for full pipe flow and Froude numbers for stationary slug flow. A simple statistical analysis of ECN response gives a correlation with corrosion rate. These show ECN could be a very powerful tool for determining corrosion rate and corrosion mechanism in multiphase flow.

  7. An SPH model for multiphase flows with complex interfaces and large density differences

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Zong, Z.; Liu, M. B.; Zou, L.; Li, H. T.; Shu, C.

    2015-02-01

    In this paper, an improved SPH model for multiphase flows with complex interfaces and large density differences is developed. The multiphase SPH model is based on the assumption of pressure continuity over the interfaces and avoids directly using the information of neighboring particles' densities or masses in solving governing equations. In order to improve computational accuracy and to obtain smooth pressure fields, a corrected density re-initialization is applied. A coupled dynamic solid boundary treatment (SBT) is implemented both to reduce numerical oscillations and to prevent unphysical particle penetration in the boundary area. The density correction and coupled dynamics SBT algorithms are modified to adapt to the density discontinuity on fluid interfaces in multiphase simulation. A cut-off value of the particle density is set to avoid negative pressure, which can lead to severe numerical difficulties and may even terminate the simulations. Three representative numerical examples, including a Rayleigh-Taylor instability test, a non-Boussinesq problem and a dam breaking simulation, are presented and compared with analytical results or experimental data. It is demonstrated that the present SPH model is capable of modeling complex multiphase flows with large interfacial deformations and density ratios.

  8. TOUGHREACT User's Guide: A Simulation Program for Non-isothermal Multiphase Reactive geochemical Transport in Variable Saturated Geologic Media

    SciTech Connect

    Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten

    2004-05-24

    Coupled modeling of subsurface multiphase fluid and heat flow, solute transport and chemical reactions can be used for the assessment of mineral alteration in hydrothermal systems, waste disposal sites, acid mine drainage remediation, contaminant transport, and groundwater quality. A comprehensive non-isothermal multi-component reactive fluid flow and geochemical transport simulator, TOUGHREACT, has been developed. A wide range of subsurface thermo-physical-chemical processes is considered under various thermohydrological and geochemical conditions of pressure, temperature, water saturation, and ionic strength. The program can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity. The model can accommodate any number of chemical species present in liquid, gas and solid phases. A variety of equilibrium chemical reactions are considered, such as aqueous complexation, gas dissolution/exsolution, and cation exchange. Mineral dissolution/precipitation can proceed either subject to local equilibrium or kinetic conditions. Changes in porosity and permeability due to mineral dissolution and precipitation can be considered. Linear adsorption and decay can be included. For the purpose of future extensions, surface complexation by double layer model is coded in the program. Xu and Pruess (1998) developed a first version of a non-isothermal reactive geochemical transport model, TOUGHREACT, by introducing reactive geochemistry into the framework of the existing multi-phase fluid and heat flow code TOUGH2 (Pruess, 1991). Xu, Pruess, and their colleagues have applied the program to a variety of problems such as: (1) supergene copper enrichment (Xu et al, 2001), (2) caprock mineral alteration in a hydrothermal system (Xu and Pruess, 2001a), and (3) mineral trapping for CO{sub 2} disposal in deep saline aquifers (Xu et al, 2003b and 2004a). For modeling the coupled thermal, hydrological, and chemical processes during

  9. Compressible flow of a multiphase fluid between two vessels. Part 1: Ideal carrier gas

    NASA Astrophysics Data System (ADS)

    Chenoweth, Donald R.; Paolucci, Samuel

    1990-06-01

    The transfer of a multiphase fluid from a high pressure vessel to one initially at lower pressure is investigated. The fluid is composed of two phases which do not undergo any change. The phases consist of an ideal gas, and solid particles (or liquid droplets) having constant density. The mixture is assumed to be stagnant and always perfectly mixed as well as at thermal equilibrium in each constant volume vessel. The fluid also remains homogeneous and at equilibrium while flowing between vessels. The transport properties of the mixture are taken to be zero. One important finding is that the expanding mixture or pseudo-fluid behaves similar to a polytropic Abel-Noble gas. The mixture thermodynamic properties, the end state in each vessel at pressure equilibrium, the critical parameters, and time dependent results are given for the adiabatic and isothermal limiting cases. The results include both initially sonic and initially subsonic transfer. No mathematical restriction is placed on the particle concentration, although some limiting results are given for small particle volume fraction. The mass transferred at adiabatic pressure equilibrium can be significantly less than that when thermal equilibrium is also reached. Furthermore, the adiabatic pressure equilibrium level may not be the same as that obtained at thermal equilibrium, even when all initial temperatures are the same. Finally, it is shown that the transfer times can be very slow compared to those of a pure gas due to the large reduction possible in the mixture sound speed.

  10. Pattern formation in multiphase flow through porous media: continuum models and phase diagrams

    NASA Astrophysics Data System (ADS)

    Cueto-Felgueroso, L.; Juanes, R.

    2009-12-01

    Carbon capture and geologic storage, dissociation of methane hydrates in permafrost, infiltration of water in soil, and enhanced oil recovery, are some relevant examples of multiphase flow in porous media. While flow instabilities and pattern formation play a central role in these processes, our ability to describe them using mathematical models has been hampered by the lack of a macroscopic theory that explains the patterns observed in experimental and field conditions. We propose a new approach —phase-field modeling— to advance our fundamental understanding of multiphase porous media flow. The basic tenet, with origins in the mathematical description of solidification processes, is that the energy of the system is a function of the inhomogeneous distribution of fluid phases in the pore space, and should account for the presence of macroscopic interfaces. We present numerical simulations and compare our predictions with experimental observations. Numerical simulation of viscous fingering in a Hele-Shaw cell using the proposed phase-field modeling approach

  11. Benchmark initiative on coupled multiphase flow and geomechanical processes during CO2 injection

    NASA Astrophysics Data System (ADS)

    Benisch, K.; Annewandter, R.; Olden, P.; Mackay, E.; Bauer, S.; Geiger, S.

    2012-12-01

    CO2 injection into deep saline aquifers involves multiple strongly interacting processes such as multiphase flow and geomechanical deformation, which threat to the seal integrity of CO2 repositories. Coupled simulation codes are required to establish realistic prognoses of the coupled process during CO2 injection operations. International benchmark initiatives help to evaluate, to compare and to validate coupled simulation results. However, there is no published code comparison study so far focusing on the impact of coupled multiphase flow and geomechanics on the long-term integrity of repositories, which is required to obtain confidence in the predictive capabilities of reservoir simulators. We address this gap by proposing a benchmark study. A wide participation from academic and industrial institutions is sought, as the aim of building confidence in coupled simulators become more plausible with many participants. Most published benchmark studies on coupled multiphase flow and geomechanical processes have been performed within the field of nuclear waste disposal (e.g. the DECOVALEX project), using single-phase formulation only. As regards CO2 injection scenarios, international benchmark studies have been published comparing isothermal and non-isothermal multiphase flow processes such as the code intercomparison by LBNL, the Stuttgart Benchmark study, the CLEAN benchmark approach and other initiatives. Recently, several codes have been developed or extended to simulate the coupling of hydraulic and geomechanical processes (OpenGeoSys, ELIPSE-Visage, GEM, DuMuX and others), which now enables a comprehensive code comparison. We propose four benchmark tests of increasing complexity, addressing the coupling between multiphase flow and geomechanical processes during CO2 injection. In the first case, a horizontal non-faulted 2D model consisting of one reservoir and one cap rock is considered, focusing on stress and strain regime changes in the storage formation and the

  12. The application of single particle hydrodynamics in continuum models of multiphase flow

    NASA Technical Reports Server (NTRS)

    Decker, Rand

    1988-01-01

    A review of the application of single particle hydrodynamics in models for the exchange of interphase momentum in continuum models of multiphase flow is presented. Considered are the equations of motion for a laminar, mechanical two phase flow. Inherent to this theory is a model for the interphase exchange of momentum due to drag between the dispersed particulate and continuous fluid phases. In addition, applications of two phase flow theory to de-mixing flows require the modeling of interphase momentum exchange due to lift forces. The applications of single particle analysis in deriving models for drag and lift are examined.

  13. Advanced Multi-Phase Flow CFD Model Development for Solid Rocket Motor Flowfield Analysis

    NASA Technical Reports Server (NTRS)

    Liaw, Paul; Chen, Y. S.; Shang, H. M.; Doran, Denise

    1993-01-01

    It is known that the simulations of solid rocket motor internal flow field with AL-based propellants require complex multi-phase turbulent flow model. The objective of this study is to develop an advanced particulate multi-phase flow model which includes the effects of particle dynamics, chemical reaction and hot gas flow turbulence. The inclusion of particle agglomeration, particle/gas reaction and mass transfer, particle collision, coalescence and breakup mechanisms in modeling the particle dynamics will allow the proposed model to realistically simulate the flowfield inside a solid rocket motor. The Finite Difference Navier-Stokes numerical code FDNS is used to simulate the steady-state multi-phase particulate flow field for a 3-zone 2-D axisymmetric ASRM model and a 6-zone 3-D ASRM model at launch conditions. The 2-D model includes aft-end cavity and submerged nozzle. The 3-D model represents the whole ASRM geometry, including additional grain port area in the gas cavity and two inhibitors. FDNS is a pressure based finite difference Navier-Stokes flow solver with time-accurate adaptive second-order upwind schemes, standard and extended k-epsilon models with compressibility corrections, multi zone body-fitted formulations, and turbulence particle interaction model. Eulerian/Lagrangian multi-phase solution method is applied for multi-zone mesh. To simulate the chemical reaction, penalty function corrected efficient finite-rate chemistry integration method is used in FDNS. For the AL particle combustion rate, the Hermsen correlation is employed. To simulate the turbulent dispersion of particles, the Gaussian probability distribution with standard deviation equal to (2k/3)(exp 1/2) is used for the random turbulent velocity components. The computational results reveal that the flow field near the juncture of aft-end cavity and the submerged nozzle is very complex. The effects of the turbulent particles affect the flow field significantly and provide better

  14. Noninvasive characterization of a flowing multiphase fluid using ultrasonic interferometry

    DOEpatents

    Sinha, Dipen N.

    2007-06-12

    An apparatus for noninvasively monitoring the flow and/or the composition of a flowing liquid using ultrasound is described. The position of the resonance peaks for a fluid excited by a swept-frequency ultrasonic signal have been found to change frequency both in response to a change in composition and in response to a change in the flow velocity thereof. Additionally, the distance between successive resonance peaks does not change as a function of flow, but rather in response to a change in composition. Thus, a measurement of both parameters (resonance position and resonance spacing), once calibrated, permits the simultaneous determination of flow rate and composition using the apparatus and method of the present invention.

  15. Noninvasive characterization of a flowing multiphase fluid using ultrasonic interferometry

    DOEpatents

    Sinha, Dipen N.

    2003-11-11

    An apparatus for noninvasively monitoring the flow and/or the composition of a flowing liquid using ultrasound is described. The position of the resonance peaks for a fluid excited by a swept-frequency ultrasonic signal have been found to change frequency both in response to a change in composition and in response to a change in the flow velocity thereof. Additionally, the distance between successive resonance peaks does not change as a function of flow, but rather in response to a change in composition. Thus, a measurement of both parameters (resonance position and resonance spacing), once calibrated, permits the simultaneous determination of flow rate and composition using the apparatus and method of the present invention.

  16. Noninvasive Characterization Of A Flowing Multiphase Fluid Using Ultrasonic Interferometry

    DOEpatents

    Sinha, Dipen N.

    2005-05-10

    An apparatus for noninvasively monitoring the flow and/or the composition of a flowing liquid using ultrasound is described. The position of the resonance peaks for a fluid excited by a swept-frequency ultrasonic signal have been found to change frequency both in response to a change in composition and in response to a change in the flow velocity thereof. Additionally, the distance between successive resonance peaks does not change as a function of flow, but rather in response to a change in composition. Thus, a measurement of both parameters (resonance position and resonance spacing), once calibrated, permits the simultaneous determination of flow rate and composition using the apparatus and method of the present invention.

  17. TOURGHREACT: A Simulation Program for Non-isothermal MultiphaseReactive Geochemical Transport in Variably Saturated GeologicMedia

    SciTech Connect

    Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten

    2004-12-07

    TOUGHREACT is a numerical simulation program for chemically reactive non-isothermal flows of multiphase fluids in porous and fractured media. The program was written in Fortran 77 and developed by introducing reactive geochemistry into the multiphase fluid and heat flow simulator TOUGH2. A variety of subsurface thermo-physical-chemical processes are considered under a wide range of conditions of pressure, temperature, water saturation, ionic strength, and pH and Eh. Interactions between mineral assemblages and fluids can occur under local equilibrium or kinetic rates. The gas phase can be chemically active. Precipitation and dissolution reactions can change formation porosity and permeability. The program can be applied to many geologic systems and environmental problems, including geothermal systems, diagenetic and weathering processes, subsurface waste disposal, acid mine drainage remediation, contaminant transport, and groundwater quality. Here we present two examples to illustrate applicability of the program: (1) injectivity effects of mineral scaling in a fractured geothermal reservoir and (2) CO2 disposal in a deep saline aquifer.

  18. Laboratory setup and results of experiments on two-dimensional multiphase flow in porous media

    SciTech Connect

    McBride, J.F. ); Graham, D.N.; Schiegg, H.O. )

    1990-10-01

    In the event of an accidental release into earth's subsurface of an immiscible organic liquid, such as a petroleum hydrocarbon or chlorinated organic solvent, the spatial and temporal distribution of the organic liquid is of great interest when considering efforts to prevent groundwater contamination or restore contaminated groundwater. An accurate prediction of immiscible organic liquid migration requires the incorporation of relevant physical principles in models of multiphase flow in porous media; these physical principles must be determined from physical experiments. This report presents a series of such experiments performed during the 1970s at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland. The experiments were designed to study the transient, two-dimensional displacement of three immiscible fluids in a porous medium. This experimental study appears to be the most detailed published to date. The data obtained from these experiments are suitable for the validation and test calibration of multiphase flow codes. 73 refs., 140 figs.

  19. Experimental and Numerical Study of Pore-Scale Multi-Phase Flow Dynamics

    NASA Astrophysics Data System (ADS)

    Tartakovsky, A. M.; Ling, B.; Oostrom, M.; Bao, J.; Kim, K.; Trask, N.; Battiato, I.

    2015-12-01

    Understanding multiphase fluid flow is critical for many applications, including CO2 sequestration, bioremediation, and oil recovery. Micro-fluidic experiments and pore-scale simulations become important tools in studying multiphase flow in porous media. At the same time, many pore-scale numerical models lack rigorous validation and verification, and micro-fluidic experiments are hard to reproduce due to physical instabilities and challenges in precisely controlling the experiments. We performed a set of microcell experiments and determined conditions necessary to obtain reproducible pore-scale evolution of the fluid-fluid interfaces during both infiltration and drainage phases. Next, we modeled the experiments using Finite Volume and Smoothed Particle Hydrodynamics codes. The point-by-point comparison of the experimental results and numerical simulations revealed advantages and disadvantages of these two methods in capturing the overall behavior and pore-scale phenomena, including residual saturations, formation of thin films, fluid bridges and various fluid trapping mechanisms.

  20. Modelling of multiphase flow in ironmaking blast furnace

    SciTech Connect

    Dong, X.F.; Yu, A.B.; Burgess, J.M.; Pinson, D.; Chew, S.; Zulli, P.

    2009-01-15

    A mathematical model for the four-phase (gas, powder, liquid, and solids) flow in a two-dimensional ironmaking blast furnace is presented by extending the existing two-fluid flow models. The model describes the motion of gas, solid, and powder phases, based on the continuum approach, and implements the so-called force balance model for the flow of liquids, such as metal and slag in a blast furnace. The model results demonstrate a solid stagnant zone and dense powder hold-up region, as well as a dense liquid flow region that exists in the lower part of a blast furnace, which are consistent with the experimental observations reported in the literature. The simulation is extended to investigate the effects of packing properties and operational conditions on the flow and the volume fraction distribution of each phase in a blast furnace. It is found that solid movement has a significant effect on powder holdup distribution. Small solid particles and low porosity distribution are predicted to affect the fluid flow considerably, and this can cause deterioration in bed permeability. The dynamic powder holdup in a furnace increases significantly with the increase of powder diameter. The findings should be useful to better understand and control blast furnace operations.

  1. Assessment of the application of acoustic emission technology for monitoring the presence of sand under multiphase flow condition

    SciTech Connect

    El-Alej, M. Mba, D. Yeung, H.

    2014-04-11

    The monitoring of multiphase flow is an established process that has spanned several decades. This paper demonstrates the use of acoustic emission (AE) technology to investigate sand transport characteristic in three-phase (air-water-sand) flow in a horizontal pipe where the superficial gas velocity (VSG) had a range of between 0.2 ms{sup −1} to 2.0 ms{sup −1} and superficial liquid velocity (VSL) had a range of between 0.2 ms{sup −1} to 1.0 ms{sup −1}. The experimental findings clearly show a correlation exists between AE energy levels, sand concentration, superficial gas velocity (VSG) and superficial liquid velocity (VSL)

  2. CFD of mixing of multi-phase flow in a bioreactor using population balance model.

    PubMed

    Sarkar, Jayati; Shekhawat, Lalita Kanwar; Loomba, Varun; Rathore, Anurag S

    2016-05-01

    Mixing in bioreactors is known to be crucial for achieving efficient mass and heat transfer, both of which thereby impact not only growth of cells but also product quality. In a typical bioreactor, the rate of transport of oxygen from air is the limiting factor. While higher impeller speeds can enhance mixing, they can also cause severe cell damage. Hence, it is crucial to understand the hydrodynamics in a bioreactor to achieve optimal performance. This article presents a novel approach involving use of computational fluid dynamics (CFD) to model the hydrodynamics of an aerated stirred bioreactor for production of a monoclonal antibody therapeutic via mammalian cell culture. This is achieved by estimating the volume averaged mass transfer coefficient (kL a) under varying conditions of the process parameters. The process parameters that have been examined include the impeller rotational speed and the flow rate of the incoming gas through the sparger inlet. To undermine the two-phase flow and turbulence, an Eulerian-Eulerian multiphase model and k-ε turbulence model have been used, respectively. These have further been coupled with population balance model to incorporate the various interphase interactions that lead to coalescence and breakage of bubbles. We have successfully demonstrated the utility of CFD as a tool to predict size distribution of bubbles as a function of process parameters and an efficient approach for obtaining optimized mixing conditions in the reactor. The proposed approach is significantly time and resource efficient when compared to the hit and trial, all experimental approach that is presently used. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:613-628, 2016.

  3. CFD of mixing of multi-phase flow in a bioreactor using population balance model.

    PubMed

    Sarkar, Jayati; Shekhawat, Lalita Kanwar; Loomba, Varun; Rathore, Anurag S

    2016-05-01

    Mixing in bioreactors is known to be crucial for achieving efficient mass and heat transfer, both of which thereby impact not only growth of cells but also product quality. In a typical bioreactor, the rate of transport of oxygen from air is the limiting factor. While higher impeller speeds can enhance mixing, they can also cause severe cell damage. Hence, it is crucial to understand the hydrodynamics in a bioreactor to achieve optimal performance. This article presents a novel approach involving use of computational fluid dynamics (CFD) to model the hydrodynamics of an aerated stirred bioreactor for production of a monoclonal antibody therapeutic via mammalian cell culture. This is achieved by estimating the volume averaged mass transfer coefficient (kL a) under varying conditions of the process parameters. The process parameters that have been examined include the impeller rotational speed and the flow rate of the incoming gas through the sparger inlet. To undermine the two-phase flow and turbulence, an Eulerian-Eulerian multiphase model and k-ε turbulence model have been used, respectively. These have further been coupled with population balance model to incorporate the various interphase interactions that lead to coalescence and breakage of bubbles. We have successfully demonstrated the utility of CFD as a tool to predict size distribution of bubbles as a function of process parameters and an efficient approach for obtaining optimized mixing conditions in the reactor. The proposed approach is significantly time and resource efficient when compared to the hit and trial, all experimental approach that is presently used. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:613-628, 2016. PMID:26850863

  4. Sampling device for withdrawing a representative sample from single and multi-phase flows

    DOEpatents

    Apley, Walter J.; Cliff, William C.; Creer, James M.

    1984-01-01

    A fluid stream sampling device has been developed for the purpose of obtaining a representative sample from a single or multi-phase fluid flow. This objective is carried out by means of a probe which may be inserted into the fluid stream. Individual samples are withdrawn from the fluid flow by sampling ports with particular spacings, and the sampling parts are coupled to various analytical systems for characterization of the physical, thermal, and chemical properties of the fluid flow as a whole and also individually.

  5. Method and system for measuring multiphase flow using multiple pressure differentials

    DOEpatents

    Fincke, James R.

    2001-01-01

    An improved method and system for measuring a multiphase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multiphase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The method for determining the mass flow of the high void fraction fluid flow and the gas flow includes certain steps. The first step is calculating a gas density for the gas flow. The next two steps are finding a normalized gas mass flow rate through the venturi and computing a gas mass flow rate. The following step is estimating the gas velocity in the venturi tube throat. The next step is calculating the pressure drop experienced by the gas-phase due to work performed by the gas phase in accelerating the liquid phase between the upstream pressure measuring point and the pressure measuring point in the venturi throat. Another step is estimating the liquid velocity in the venturi throat using the calculated pressure drop experienced by the gas-phase due to work performed by the gas phase. Then the friction is computed between the liquid phase and a wall in the venturi tube. Finally, the total mass flow rate based on measured pressure in the venturi throat is calculated, and the mass flow rate of the liquid phase is calculated from the difference of the total mass flow rate and the gas mass flow rate.

  6. Development of an Efficient Meso- scale Multi-phase Flow Solver in Nuclear Applications

    SciTech Connect

    Lee, Taehun

    2015-10-20

    The proposed research aims at formulating a predictive high-order Lattice Boltzmann Equation for multi-phase flows relevant to nuclear energy related application - namely, saturated and sub-cooled boiling in reactors, and liquid- liquid mixing and extraction for fuel cycle separation. An efficient flow solver will be developed based on the Finite Element based Lattice Boltzmann Method (FE- LBM), accounting for phase-change heat transfer and capable of treating multiple phases over length scales from the submicron to the meter. A thermal LBM will be developed in order to handle adjustable Prandtl number, arbitrary specific heat ratio, a wide range of temperature variations, better numerical stability during liquid-vapor phase change, and full thermo-hydrodynamic consistency. Two-phase FE-LBM will be extended to liquid–liquid–gas multi-phase flows for application to high-fidelity simulations building up from the meso-scale up to the equipment sub-component scale. While several relevant applications exist, the initial applications for demonstration of the efficient methods to be developed as part of this project include numerical investigations of Critical Heat Flux (CHF) phenomena in nuclear reactor fuel bundles, and liquid-liquid mixing and interfacial area generation for liquid-liquid separations. In addition, targeted experiments will be conducted for validation of this advanced multi-phase model.

  7. A lattice Boltzmann model for multiphase flows interacting with deformable bodies

    NASA Astrophysics Data System (ADS)

    De Rosis, Alessandro

    2014-11-01

    In this paper, a numerical model to simulate a multiphase flow interacting with deformable solid bodies is proposed. The fluid domain is modeled through the lattice Boltzmann method and the Shan-Chen model is adopted to handle the multiphase feature. The interaction of the flow with immersed solid bodies is accounted for by using the Immersed Boundary method. Corotational beam finite elements are used to model the deformable bodies and non-linear structure dynamics is predicted through the Time Discontinuous Galerkin method. A numerical campaign is carried out in order to assess the effectiveness and accuracy of the proposed modeling by involving different scenarios. In particular, the model is validated by performing the bubble test and by comparing present results with the ones from a numerical commercial software. Moreover, the properties in terms of convergence are discussed. In addition, the effectiveness of the proposed methodology is evaluated by computing the error in terms of the energy that is artificially introduced in the system at the fluid-solid interface. Present findings show that the proposed approach is robust, accurate and suitable of being applied to a lot of practical applications involving the interaction between multiphase flows and deformable solid bodies.

  8. Simulation of Inviscid Compressible Multi-Phase Flow with Condensation

    NASA Technical Reports Server (NTRS)

    Kelleners, Philip

    2003-01-01

    Condensation of vapours in rapid expansions of compressible gases is investigated. In the case of high temperature gradients the condensation will start at conditions well away from thermodynamic equilibrium of the fluid. In those cases homogeneous condensation is dominant over heterogeneous condensation. The present work is concerned with development of a simulation tool for computation of high speed compressible flows with homogeneous condensation. The resulting ow solver should preferably be accurate and robust to be used for simulation of industrial flows in general geometries.

  9. A Three-Dimensional Vortex Sheet Method for Multiphase Flows

    NASA Astrophysics Data System (ADS)

    Stock, Mark; Dahm, Werner; Tryggvason, Gretar

    2002-11-01

    Previous work on a three-dimensional vortex-in-cell method is extended to include baroclinic vorticity generation in flows with large density ratios. A vortex sheet discretization is used both to maintain the boundary between different fluids or fluid phases, and to provide for a divergence-free vorticity field at all times. Automatic insertion and deletion of triangular elements allow the vortex sheet to maintain its connectivity and resolution during the simulation, despite extensive stretching of the material surface. The VIC grid provides regularization, and the simulation is inviscid at resolved scales. Computational results for flows with weak and strong density variations are presented.

  10. Modification of Fracture Apertures by Reactive Multiphase Flow

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Sheets, J.; Li, Q.; Kneafsey, T. J.; Cole, D. R.; Jun, Y. S.; Pyrak-Nolte, L. J.

    2015-12-01

    Geochemical interactions during the withdrawal/injection of fluids into the subsurface can modify fracture apertures through dissolution and/or precipitation of minerals. Modification of fracture apertures during reactive flow is strongly affected by non-reactive, non-wetting fluids that limit the fracture surface area and void volume that can be affected by reactive phases. We present results on the effect of a non-reactive, non-wetting phase during reactive flow on the distribution of precipitates and channelization caused by dissolution in fractures. Transparent acrylic casts of a fracture in Austin chalk were used to image mineral precipitation during reactive flow. Initially, the fracture was saturated with a solution of 0.6mol/L NaHCO3 and 0.00085mol/L NaCl. Then, both the aqueous NaHCO3 - NaCl and a solution containing 3mol/L CaCl2 were pumped into the sample (0.5 ml/min) for 2 hrs. When the two solutions mix inside the fracture, CaCO3 precipitates form and CO2 bubbles are generated. CO2 bubbles affect the amount of precipitation. X-ray CT data show that precipitate thickness varies within the fracture, occurs on both fracture surfaces and also bridges the surfaces. In the test, where a CO2 bubble filled a void, precipitation did not occur. If the CO2 bubble was smaller than the pore, thin films of precipitates occurred on the fracture surfaces above and below the bubble. While fracture apertures controlled the mixing of the fluids, CO2 bubbles affected the thickness and distribution of the precipitates. From our numerical study, channelization in a fracture is affected by the presence of a non-wetting non-reactive phase (e.g. gas) during dissolution. A modified Navier-Stokes approach was used to calculate fluxes through spatially correlated aperture distributions as a function of gas saturation. Dissolution was taken to be proportional to flux. For gas saturations < 15%, channelization occurred along the dominant flow path. However, for gas saturations >25

  11. Frictional Fluid Dynamics and Plug Formation in Multiphase Millifluidic Flow.

    PubMed

    Dumazer, Guillaume; Sandnes, Bjørnar; Ayaz, Monem; Måløy, Knut Jørgen; Flekkøy, Eirik Grude

    2016-07-01

    We study experimentally the flow and patterning of a granular suspension displaced by air inside a narrow tube. The invading air-liquid interface accumulates a plug of granular material that clogs the tube due to friction with the confining walls. The gas percolates through the static plug once the gas pressure exceeds the pore capillary entry pressure of the packed grains, and a moving accumulation front is reestablished at the far side of the plug. The process repeats, such that the advancing interface leaves a trail of plugs in its wake. Further, we show that the system undergoes a fluidization transition-and complete evacuation of the granular suspension-when the liquid withdrawal rate increases beyond a critical value. An analytical model of the stability condition for the granular accumulation predicts the flow regime. PMID:27447527

  12. Are upwind techniques in multi-phase flow models necessary?

    SciTech Connect

    Park, C.-H.; Boettcher, N.; Wang, W.; Kolditz, O.

    2011-09-10

    Two alternatives of primary variables are compared for two-phase flow in heterogeneous media by solving fully established benchmarks. The first combination utilizes pressure of the wetting fluid and saturation of the non-wetting fluid as primary variables, while the second employs capillary pressure of the wetting fluid and pressure of the non-wetting fluid. While the standard Galerkin finite element method (SGFEM) is known to fail in the physical reproduction of two-phase flow in heterogeneous media (unless employing a fully upwind correction), the second scheme with capillary pressure as a primary variable without applying an upwind technique produces correct physical fluid behaviour in heterogeneous media, as observed from experiments.

  13. Multiphase ferrofluid flows for micro-particle sorting

    NASA Astrophysics Data System (ADS)

    Zhou, Ran; Wang, Cheng

    2015-11-01

    Utilizing negative magnetophoresis, ferrofluids have demonstrated great potential for sorting nonmagnetic micro-particles by size. Most of the existing techniques use single phase ferrofluids by pushing micro-particles to channel walls; the sorting speed is thus hindered. We demonstrate a novel sorting strategy by co-flowing a ferrofluid and a non-magnetic fluid in microchannels. Due to the magnetic force, the particles migrate across the ferrofluid stream at size-dependent velocities as they travel downstream. The laminar interface between the two fluids functions as a virtual boundary to accumulate particles, resulting in effective separation of particles. A stable and sharp interface is important to the success of this sorting technique. We investigate several factors that affect sorting efficiency, including magnetic field, susceptibility difference of the fluids, flow velocity, and channel geometry.

  14. Frictional Fluid Dynamics and Plug Formation in Multiphase Millifluidic Flow

    NASA Astrophysics Data System (ADS)

    Dumazer, Guillaume; Sandnes, Bjørnar; Ayaz, Monem; Mâløy, Knut Jørgen; Flekkøy, Eirik Grude

    2016-07-01

    We study experimentally the flow and patterning of a granular suspension displaced by air inside a narrow tube. The invading air-liquid interface accumulates a plug of granular material that clogs the tube due to friction with the confining walls. The gas percolates through the static plug once the gas pressure exceeds the pore capillary entry pressure of the packed grains, and a moving accumulation front is reestablished at the far side of the plug. The process repeats, such that the advancing interface leaves a trail of plugs in its wake. Further, we show that the system undergoes a fluidization transition—and complete evacuation of the granular suspension—when the liquid withdrawal rate increases beyond a critical value. An analytical model of the stability condition for the granular accumulation predicts the flow regime.

  15. Stochastic Rotation Dynamics simulations of wetting multi-phase flows

    NASA Astrophysics Data System (ADS)

    Hiller, Thomas; Sanchez de La Lama, Marta; Brinkmann, Martin

    2016-06-01

    Multi-color Stochastic Rotation Dynamics (SRDmc) has been introduced by Inoue et al. [1,2] as a particle based simulation method to study the flow of emulsion droplets in non-wetting microchannels. In this work, we extend the multi-color method to also account for different wetting conditions. This is achieved by assigning the color information not only to fluid particles but also to virtual wall particles that are required to enforce proper no-slip boundary conditions. To extend the scope of the original SRDmc algorithm to e.g. immiscible two-phase flow with viscosity contrast we implement an angular momentum conserving scheme (SRD+mc). We perform extensive benchmark simulations to show that a mono-phase SRDmc fluid exhibits bulk properties identical to a standard SRD fluid and that SRDmc fluids are applicable to a wide range of immiscible two-phase flows. To quantify the adhesion of a SRD+mc fluid in contact to the walls we measure the apparent contact angle from sessile droplets in mechanical equilibrium. For a further verification of our wettability implementation we compare the dewetting of a liquid film from a wetting stripe to experimental and numerical studies of interfacial morphologies on chemically structured surfaces.

  16. Droplet tracer characterization in shock-driven multiphase flow

    NASA Astrophysics Data System (ADS)

    Vigil, Francisco; Trujillo, Miquela; Vorobieff, Peter; Truman, C. Randall

    2014-11-01

    Small glycol droplets have long been introduced into shock-accelerated gas as a tracer, to track the evolution of Richtmyer-Meshkov instability (RMI). However, it was observed that droplets are not passive tracers when shock-accelerated - to the extent that their introduction itself can lead to vortex formation. Because of the complex interplay between the droplets and surrounding gas, it is imperative to know the droplet size and population density. The absence of this knowledge has led to differences between results from numerical models, Planar Laser-Induced Fluorescence (PLIF) measurements, and Mie scattering observations. To gain a better understanding of the droplet velocity and inertial flow fields, a more involved study of droplet sizing is required. A Malvern laser diagnostic system is used to determine the sizes of the glycol droplets seeded into the flow. A series of tests are performed to analyze differences in glycol droplet size and population distribution that result from changing gaseous mediums in the test section. These measurements facilitate better quantification of the velocity fields in shock accelerated flow and improve interpretation of results from Mie scattering. This research is supported by the US DOE National Nuclear Security Administration (NNSA) Grant DE-NA0002220.

  17. Grayscale lattice Boltzmann model for multiphase heterogeneous flow through porous media

    NASA Astrophysics Data System (ADS)

    Pereira, Gerald G.

    2016-06-01

    The grayscale lattice Boltzmann (LB) model has been recently developed to model single-phase fluid flow through heterogeneous porous media. Flow is allowed in each voxel but the degree of flow depends on that voxel's resistivity to fluid motion. Here we extend the grayscale LB model to multiphase, immiscible flow. The new model is outlined and then applied to a number of test cases, which show good agreement with theory. This method is subsequently used to model the important case where each voxel may have a different resistance to each particular fluid that is passing through it. Finally, the method is applied to model fluid flow through real porous media to demonstrate its capability. Both the capillary and viscous flow regimes are recovered in these simulations.

  18. Smoothed dissipative particle dynamics model for mesoscopic multiphase flows in the presence of thermal fluctuations

    NASA Astrophysics Data System (ADS)

    Lei, Huan; Baker, Nathan A.; Wu, Lei; Schenter, Gregory K.; Mundy, Christopher J.; Tartakovsky, Alexandre M.

    2016-08-01

    Thermal fluctuations cause perturbations of fluid-fluid interfaces and highly nonlinear hydrodynamics in multiphase flows. In this work, we develop a multiphase smoothed dissipative particle dynamics (SDPD) model. This model accounts for both bulk hydrodynamics and interfacial fluctuations. Interfacial surface tension is modeled by imposing a pairwise force between SDPD particles. We show that the relationship between the model parameters and surface tension, previously derived under the assumption of zero thermal fluctuation, is accurate for fluid systems at low temperature but overestimates the surface tension for intermediate and large thermal fluctuations. To analyze the effect of thermal fluctuations on surface tension, we construct a coarse-grained Euler lattice model based on the mean field theory and derive a semianalytical formula to directly relate the surface tension to model parameters for a wide range of temperatures and model resolutions. We demonstrate that the present method correctly models dynamic processes, such as bubble coalescence and capillary spectra across the interface.

  19. Smoothed dissipative particle dynamics model for mesoscopic multiphase flows in the presence of thermal fluctuations.

    PubMed

    Lei, Huan; Baker, Nathan A; Wu, Lei; Schenter, Gregory K; Mundy, Christopher J; Tartakovsky, Alexandre M

    2016-08-01

    Thermal fluctuations cause perturbations of fluid-fluid interfaces and highly nonlinear hydrodynamics in multiphase flows. In this work, we develop a multiphase smoothed dissipative particle dynamics (SDPD) model. This model accounts for both bulk hydrodynamics and interfacial fluctuations. Interfacial surface tension is modeled by imposing a pairwise force between SDPD particles. We show that the relationship between the model parameters and surface tension, previously derived under the assumption of zero thermal fluctuation, is accurate for fluid systems at low temperature but overestimates the surface tension for intermediate and large thermal fluctuations. To analyze the effect of thermal fluctuations on surface tension, we construct a coarse-grained Euler lattice model based on the mean field theory and derive a semianalytical formula to directly relate the surface tension to model parameters for a wide range of temperatures and model resolutions. We demonstrate that the present method correctly models dynamic processes, such as bubble coalescence and capillary spectra across the interface. PMID:27627409

  20. Multiphase flow measurement using multiple energy gamma ray absorption (MEGRA) composition measurement

    SciTech Connect

    Scheers, A.M.; Slijkerman, W.F.J.

    1996-12-31

    Some multiphase flowmeters use the principle of Dual Energy Gamma Ray Absorption (DEGRA) composition measurement to determine the individual water, oil and gas fractions. Under homogeneous flow conditions the ultimate uncertainty in phase fractions achievable with this technique depends strongly on the choice of hardware. The meter presented in this paper uses unique components that have been optimized for the water, oil and gas fraction measurement with theoretical uncertainties of 2% in the fractions over a 1 second measurement period. Generally, composition meters are sensitive to a change in production water salinity and this will cause significant systematic effort in the fraction and watercut measurements. A new measurement concept is presented that is not sensitive to salinity variations and based on Multiple Energy Gamma Ray Absorption (MEGRA) composition measurement. A multiphase flowmeter equipped with the MEGRA concept does not require field-calibration, a decisive advantage in subsea or marginal field developments.

  1. Modeling of multiphase transport of multicomponent organic contaminants and heat in the subsurface: Numerical model formulation

    NASA Astrophysics Data System (ADS)

    Adenekan, A. E.; Patzek, T. W.; Pruess, K.

    1993-11-01

    A numerical compositional simulator (Multiphase Multicomponent Nonisothermal Organics Transport Simulator (M2NOTS)) has been developed for modeling transient, three-dimensional, nonisothermal, and multiphase transport of multicomponent organic contaminants in the subsurface. The governing equations include (1) advection of all three phases in response to pressure, capillary, and gravity forces; (2) interphase mass transfer that allows every component to partition into each phase present; (3) diffusion; and (4) transport of sensible and latent heat energy. Two other features distinguish M2NOTS from other simulators reported in the groundwater literature: (1) the simulator allows for any number of chemical components and every component is allowed to partition into all fluid phases present, and (2) each phase is allowed to completely disappear from, or appear in, any region of the domain during a simulation. These features are required to model realistic field problems involving transport of mixtures of nonaqueous phase liquid contaminants, and to quantify performance of existing and emerging remediation methods such as vacuum extraction and steam injection.

  2. Model for sweet corrosion in horizontal multiphase slug flow

    SciTech Connect

    Jepson, W.P.; Stitzel, S.; Kang, C.; Gopal, M.

    1997-08-01

    A model has been developed that can predict the corrosion rate in horizontal slug flows. The effect of the slug frequency and oil type on corrosion rate have been included. The model has been compared to experimental data, and, to the model and field data of Gunaltun (1996). For all conditions, the corrosion rate increased with increase in slug frequency until a maximum in corrosion rate is reached at approximately 35 slugs/minute. At 60 C, the model compares well with that of Gunaltun (1996) if a slug frequency of 10 to 12 is used. For 80 C, the Gunaltun model is in good agreement if a frequency of 1 slug/minute is used. His model does not include a term that predicts a maximum in the corrosion rate between 60 and 80 C. This has not been noticed in this laboratory for slug flows. For horizontal pipelines, field data suggests that, the slug frequency is usually in the range of 1 to 20 slugs/minute, depending on the liquid velocity. When the pipe is inclined, the slug frequency can increase to values much greater than these and this may lead to higher levels of corrosion. The oil type is accounted for using the suggestion of Efird (1989) based on the product of oil acid number and % nitrogen. When this relation is used, the results compare very well with those of Efird for the oils he studied.

  3. Predictions for √{sNN}=5.02 TeV Pb + Pb collisions from a multiphase transport model

    NASA Astrophysics Data System (ADS)

    Ma, Guo-Liang; Lin, Zi-Wei

    2016-05-01

    We present predictions from the string melting version of a multiphase transport model on various observables in Pb+Pb collisions at √{sNN}=5.02 TeV . We use the same version of the model as an earlier study that reasonably reproduced d N /d y , pT spectra and elliptic flow of charged pions and kaons at low-pT for central and semicentral heavy ion collisions at 200 GeV and 2.76 TeV. While we compare with the already-available centrality dependence data on charged particle d N /d η at mid-pseudorapidity in Pb+Pb collisions at 5.02 TeV, we make predictions on identified particle d N /d y , pT spectra, azimuthal anisotropies vn(n =2 ,3 ,4 ) , and factorization ratios rn(ηa,ηb) (n =2 ,3 ) for longitudinal correlations.

  4. Modeling and Numerical Challenges in Eulerian-Lagrangian Computations of Shock-driven Multiphase Flows

    NASA Astrophysics Data System (ADS)

    Diggs, Angela; Balachandar, Sivaramakrishnan

    2015-06-01

    The present work addresses the numerical methods required for particle-gas and particle-particle interactions in Eulerian-Lagrangian simulations of multiphase flow. Local volume fraction as seen by each particle is the quantity of foremost importance in modeling and evaluating such interactions. We consider a general multiphase flow with a distribution of particles inside a fluid flow discretized on an Eulerian grid. Particle volume fraction is needed both as a Lagrangian quantity associated with each particle and also as an Eulerian quantity associated with the flow. In Eulerian Projection (EP) methods, the volume fraction is first obtained within each cell as an Eulerian quantity and then interpolated to each particle. In Lagrangian Projection (LP) methods, the particle volume fraction is obtained at each particle and then projected onto the Eulerian grid. Traditionally, EP methods are used in multiphase flow, but sub-grid resolution can be obtained through use of LP methods. By evaluating the total error and its components we compare the performance of EP and LP methods. The standard von Neumann error analysis technique has been adapted for rigorous evaluation of rate of convergence. The methods presented can be extended to obtain accurate field representations of other Lagrangian quantities. Most importantly, we will show that such careful attention to numerical methodologies is needed in order to capture complex shock interaction with a bed of particles. Supported by U.S. Department of Defense SMART Program and the U.S. Department of Energy PSAAP-II program under Contract No. DE-NA0002378.

  5. A lattice Boltzmann model for multiphase flows with large density ratio

    NASA Astrophysics Data System (ADS)

    Zheng, H. W.; Shu, C.; Chew, Y. T.

    2006-10-01

    A lattice Boltzmann model for simulating multiphase flows with large density ratios is described in this paper. The method is easily implemented. It does not require solving the Poisson equation and does not involve the complex treatments of derivative terms. The interface capturing equation is recovered without any additional terms as compared to other methods [M.R. Swift, W.R. Osborn, J.M. Yeomans, Lattice Boltzmann simulation of liquid-gas and binary fluid systems, Phys. Rev. E 54 (1996) 5041-5052; T. Inamuro, T. Ogata, S. Tajima, N. Konishi, A lattice Boltzmann method for incompressible two-phase flows with large density differences, J. Comput. Phys. 198 (2004) 628-644; T. Lee, C.-L. Lin, A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio, J. Comput. Phys. 206 (2005) 16-47]. Besides, it requires less discrete velocities. As a result, its efficiency could be greatly improved, especially in 3D applications. It is validated by several cases: a bubble in a stationary flow and the capillary wave. The numerical surface tension obtained from the Laplace law and the interface profile agrees very well with the respective analytical solution. The method is further verified by its application to capillary wave and the bubble rising under buoyancy with comparison to other methods. All the numerical experiments show that the present approach can be used to model multiphase flows with large density ratios.

  6. Trials of a gamma-ray multiphase flow meter on oil production pipelines at Thevenard Island

    SciTech Connect

    Roach, G.J.; Watt, J.S.; Zastawny, H.W.; Hartley, P.E.; Ellis, W.K.

    1994-12-31

    CSIRO has developed a gamma-ray multiphase flow meter (MFM) for the on-line determination of the flow rates of oil, water and gas in oil production pipelines. It is based on two gamma-ray transmission gauges mounted on a pipe carrying the full flow of the multiphase fluid. In trials, two of these MFMs were mounted on a test pipeline linking the test manifold to the test separator at the oil processing facilities on Thevenard Island. One MFM was always mounted on the vertical upflow section of the pipe. The other was in turn mounted on the vertical downflow section, and on two horizontal sections with different upstream conditions. The MFM mounted on the vertical (upflow) pipeline determined the flow rates to 4.0% relative for liquids, 7.5% for oil, 4.5% for water and 7.9% for gas. Water cut was determined to 3.6% relative. The MFM mounted on the vertical downflow pipeline determined flow rates to 3.3% relative for liquids, 6.1% for oil, 4.5% for water, and 7.7% for gas. Water cut was determined to 3.7%.

  7. Numerical modeling of geophysical granular flows: 1. A comprehensive approach to granular rheologies and geophysical multiphase flows

    NASA Astrophysics Data System (ADS)

    Dartevelle, SéBastien

    2004-08-01

    Geophysical granular materials display a wide variety of behaviors and features. Typically, granular flows (1) are multiphase flows, (2) are very dissipative over many different scales, (3) display a wide range of grain concentrations, and (4), as a final result of these previous features, display complex nonlinear, nonuniform, and unsteady rheologies. Therefore the objectives of this manuscript are twofold: (1) setting up a hydrodynamic model which acknowledges the multiphase nature of granular flows and (2) defining a comprehensive rheological model which accounts for all the different forms of viscous dissipations within granular flows at any concentration. Hence three important regimes within granular flows must be acknowledged: kinetic (pure free flights of grain), kinetic-collisional, and frictional. The momentum and energy transfer will be different according to the granular regimes, i.e., strain rate dependent in the kinetic and kinetic-collisional cases and strain rate independent in the frictional case. A "universal" granular rheological model requires a comprehensive unified stress tensor able to adequately describe viscous stress within the flow for any of these regimes, and without imposing a priori what regime will dominate over the others. The kinetic-collisional viscous regime is defined from a modified Boltzmann's kinetic theory of dense gas. The frictional viscous regime is defined from the plastic potential and the critical state theories which account for compressibility of granular matter (e.g., dilatancy, consolidation, and critical state). In the companion paper [, 2004] we will introduce a multiphase computer code, (G)MFIX, which accounts for all the granular regimes and rheology and present typical simulations of diluted (e.g., plinian clouds) and concentrated geophysical granular flows (i.e., pyroclastic flows and surges).

  8. Direct Numerical Simulation of Boiling Multiphase Flows: State-of-the-Art, Modeling, Algorithmic and Computer Needs

    SciTech Connect

    Nourgaliev R.; Knoll D.; Mousseau V.; Berry R.

    2007-04-01

    The state-of-the-art for Direct Numerical Simulation (DNS) of boiling multiphase flows is reviewed, focussing on potential of available computational techniques, the level of current success for their applications to model several basic flow regimes (film, pool-nucleate and wall-nucleate boiling -- FB, PNB and WNB, respectively). Then, we discuss multiphysics and multiscale nature of practical boiling flows in LWR reactors, requiring high-fidelity treatment of interfacial dynamics, phase-change, hydrodynamics, compressibility, heat transfer, and non-equilibrium thermodynamics and chemistry of liquid/vapor and fluid/solid-wall interfaces. Finally, we outline the framework for the {\\sf Fervent} code, being developed at INL for DNS of reactor-relevant boiling multiphase flows, with the purpose of gaining insight into the physics of multiphase flow regimes, and generating a basis for effective-field modeling in terms of its formulation and closure laws.

  9. Lattice Boltzmann Simulation of Multiphase Transport in Nanostructured PEM Fuel Cells

    NASA Astrophysics Data System (ADS)

    Stiles, Christopher D.

    As the fossil fuel crisis becomes more critical, it is imperative to develop renewable sources of power generation. Polymer electrolyte membrane (PEM) fuel cells are considered a viable option. However, the cost of the platinum catalyst has hindered their commercialization. PEM fuel cells with platinum loading of >0.4 mg cm2 are common. Efforts towards further reducing this loading are currently underway utilizing nanostructured electrodes. A consequence of increased platinum utilization per unit area and thinner nanostructured electrodes is flooding, which is detrimental to fuel cell performance. Flooding causes a two-fold impact on cell performance: a drop in cell voltage and a rise in parasitic pumping power to overcome the increased pressure drop, which together result in a significant reduction in system efficiency. Proper water management is therefore crucial for optimum performance of the fuel cell and also for enhancing membrane durability. The goal of this thesis is to simulate the multiphase fluid transport in the nanostructured PEMFC of H2O in air with realistic density ratios. In order to pursue this goal, the ability of the pseudopotential based multiphase lattice Boltzmann method to realistically model the coexistence of the gas and liquid phases of H2O at low temperatures is explored. This method is expanded to include a gas mixture of O2 and N 2 into the multiphase H2O systems. Beginning with the examination of the phase transition region described by the current implementation of the multiphase pseudopotential lattice Boltzmann model. Following this, a modified form of the pressure term with the use of a scalar multiplier kappa for the Peng-Robinson equation of state is thoroughly investigated. This method proves to be very effective at enabling numerically stable simulations at low temperatures with large density ratios. It is found that for decreasing values of kappa, this model leads to an increase in multiphase interface thickness and a

  10. Numerical Simulation of Dynamic Contact Angles and Contact Lines in Multiphase Flows using Level Set Method

    NASA Astrophysics Data System (ADS)

    Pendota, Premchand

    Many physical phenomena and industrial applications involve multiphase fluid flows and hence it is of high importance to be able to simulate various aspects of these flows accurately. The Dynamic Contact Angles (DCA) and the contact lines at the wall boundaries are a couple of such important aspects. In the past few decades, many mathematical models were developed for predicting the contact angles of the inter-face with the wall boundary under various flow conditions. These models are used to incorporate the physics of DCA and contact line motion in numerical simulations using various interface capturing/tracking techniques. In the current thesis, a simple approach to incorporate the static and dynamic contact angle boundary conditions using the level set method is developed and implemented in multiphase CFD codes, LIT (Level set Interface Tracking) (Herrmann (2008)) and NGA (flow solver) (Desjardins et al (2008)). Various DCA models and associated boundary conditions are reviewed. In addition, numerical aspects such as the occurrence of a stress singularity at the contact lines and grid convergence of macroscopic interface shape are dealt with in the context of the level set approach.

  11. Simulation of three-component fluid flows using the multiphase lattice Boltzmann flux solver

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Tang, G. H.; Wang, Y.

    2016-06-01

    In this work, we extend the multiphase lattice Boltzmann flux solver, which was proposed in [1] for simulating incompressible flows of binary fluids based on two-component Cahn-Hilliard model, to three-component fluid flows. In the present method, the multiphase lattice Boltzmann flux solver is applied to solve for the flow field and the three-component Cahn-Hilliard model is used to predict the evolution of the interfaces. The proposed method is first validated through the classical problem of simulation of partial spreading of a liquid lens between the other two components. Numerical results of interface shapes and contact angles agree well with theoretical solutions. After that, to further demonstrate the capability of the present method, several numerical examples of three-component fluid flows are presented, including a bubble rising across a fluid-fluid interface, single droplet falling through a fluid-fluid interface, the collision-coalescence of two droplets, and the non-contact collision of two droplets. It is shown that the present method can successfully handle complex interactions among three components.

  12. An open-source toolbox for multiphase flow in porous media

    NASA Astrophysics Data System (ADS)

    Horgue, P.; Soulaine, C.; Franc, J.; Guibert, R.; Debenest, G.

    2015-02-01

    Multiphase flow in porous media provides a wide range of applications: from the environmental understanding (aquifer, site-pollution) to industrial process improvements (oil production, waste management). Modeling of such flows involves specific volume-averaged equations and therefore specific computational fluid dynamics (CFD) tools. In this work, we develop a toolbox for modeling multiphase flow in porous media with OpenFOAM®, an open-source platform for CFD. The underlying idea of this approach is to provide an easily adaptable tool that can be used in further studies to test new mathematical models or numerical methods. The package provides the most common effective properties models of the literature (relative permeability, capillary pressure) and specific boundary conditions related to porous media flows. To validate this package, solvers based on the IMplicit Pressure Explicit Saturation (IMPES) method are developed in the toolbox. The numerical validation is performed by comparison with analytical solutions on academic cases. Then, a satisfactory parallel efficiency of the solver is shown on a more complex configuration.

  13. The Impact of Mineral Dissolution on Multiphase Flow in Permeable Carbonates

    NASA Astrophysics Data System (ADS)

    Krevor, S. C.; Niu, B.

    2015-12-01

    Carbon dioxide injection into deep saline aquifers is governed by a number of physicochemical processes at a broad range of spatial scales including mineral dissolution and precipitation, fluid flow, and capillary trapping. Past efforts have mostly focused on measuring the multiphase flow properties, capillarity, relative permeability, and residual trapping. However, the impact of fluid-rock interaction on these properties is less well understood. In this work we have made a series of measurements characterizing the impact of rock mineral dissolution on multiphase flow in three carbonate rocks. We used core flooding techniques to mimic reactive conditions representative of the near the well bore and far field regions of a carbonate reservoir CO2 injection project. Tests sequentially induced mineral dissolution and characterized the impacts on multiphase flow properties. Temperature retarded acid was used to uniformly dissolve calcite in Ketton, Estaillades, and Edward Brown rock cores. A single dissolution stages removed approximately 0.5% of the mass of the rocks and measurements of relative permeability and residual trapping were made after each stage along with mercury injection capillary pressure (MICP) to quantify the variation of in the pore size distribution. Three Stages were performed on each of carbonates rocks. Imaging with x-ray micro-CT and medical CT were used to quantify the porosity variation and observe the changes in pore structure and multiphase flow properties at scales from the um to the cm. The pore size distribution of the rocks was observed to both increase and become less uniform with progressive dissolution, as shown in Figure 1. For Ketton, the micro-pores, with size range from 0.01 um to 0.1um, have less been involved in the reaction than the macro-pores (10 um to 100 um). A larger spread in capillary trapping was seen around a characteristic initial-residual curve. Relative permeability changes with progressive dissolution was not well

  14. Density and Cavitating Flow Results from a Full-Scale Optical Multiphase Cryogenic Flowmeter

    NASA Technical Reports Server (NTRS)

    Korman, Valentin

    2007-01-01

    Liquid propulsion systems are hampered by poor flow measurements. The measurement of flow directly impacts safe motor operations, performance parameters as well as providing feedback from ground testing and developmental work. NASA Marshall Space Flight Center, in an effort to improve propulsion sensor technology, has developed an all optical flow meter that directly measures the density of the fluid. The full-scale sensor was tested in a transient, multiphase liquid nitrogen fluid environment. Comparison with traditional density models shows excellent agreement with fluid density with an error of approximately 0.8%. Further evaluation shows the sensor is able to detect cavitation or bubbles in the flow stream and separate out their resulting effects in fluid density.

  15. Effect of multiphase slug flow on the stability of corrosion product layer

    SciTech Connect

    Gopal, M.; Rajappa, S.

    1999-11-01

    Corrosion experiments were carried out under iron carbonate scale-forming conditions in a large diameter, multiphase flow system. Both oil/water and oil/water/gas slug flows were studied at pressures up to 0.79 MPa and temperatures of 60 C and 80 C. It was found that with increasing iron concentration, the corrosion rates were reduced to negligible values in oil/water flows. However, significant corrosion was seen in slug flow with clear evidence of damage to the corrosion product layer due to impact and possible collapse of gas bubbles and a considerable reduction in the layer thickness. Details of corrosion rates and corrosion coupon surface analysis are presented.

  16. Reactive transport modeling of stable carbon isotope fractionation in a multi-phase multi-component system during carbon sequestration

    SciTech Connect

    Zhang, Shuo; DePaolo, Donald J.; Zheng, Liange; Mayer, Bernhard

    2014-12-31

    Carbon stable isotopes can be used in characterization and monitoring of CO2 sequestration sites to track the migration of the CO2 plume and identify leakage sources, and to evaluate the chemical reactions that take place in the CO2-water-rock system. However, there are few tools available to incorporate stable isotope information into flow and transport codes used for CO2 sequestration problems. We present a numerical tool for modeling the transport of stable carbon isotopes in multiphase reactive systems relevant to geologic carbon sequestration. The code is an extension of the reactive transport code TOUGHREACT. The transport module of TOUGHREACT was modified to include separate isotopic species of CO2 gas and dissolved inorganic carbon (CO2, CO32-, HCO3-,…). Any process of transport or reaction influencing a given carbon species also influences its isotopic ratio. Isotopic fractionation is thus fully integrated within the dynamic system. The chemical module and database have been expanded to include isotopic exchange and fractionation between the carbon species in both gas and aqueous phases. The performance of the code is verified by modeling ideal systems and comparing with theoretical results. Efforts are also made to fit field data from the Pembina CO2 injection project in Canada. We show that the exchange of carbon isotopes between dissolved and gaseous carbon species combined with fluid flow and transport, produce isotopic effects that are significantly different from simple two-component mixing. These effects are important for understanding the isotopic variations observed in field demonstrations.

  17. Reactive transport modeling of stable carbon isotope fractionation in a multi-phase multi-component system during carbon sequestration

    DOE PAGES

    Zhang, Shuo; DePaolo, Donald J.; Zheng, Liange; Mayer, Bernhard

    2014-12-31

    Carbon stable isotopes can be used in characterization and monitoring of CO2 sequestration sites to track the migration of the CO2 plume and identify leakage sources, and to evaluate the chemical reactions that take place in the CO2-water-rock system. However, there are few tools available to incorporate stable isotope information into flow and transport codes used for CO2 sequestration problems. We present a numerical tool for modeling the transport of stable carbon isotopes in multiphase reactive systems relevant to geologic carbon sequestration. The code is an extension of the reactive transport code TOUGHREACT. The transport module of TOUGHREACT was modifiedmore » to include separate isotopic species of CO2 gas and dissolved inorganic carbon (CO2, CO32-, HCO3-,…). Any process of transport or reaction influencing a given carbon species also influences its isotopic ratio. Isotopic fractionation is thus fully integrated within the dynamic system. The chemical module and database have been expanded to include isotopic exchange and fractionation between the carbon species in both gas and aqueous phases. The performance of the code is verified by modeling ideal systems and comparing with theoretical results. Efforts are also made to fit field data from the Pembina CO2 injection project in Canada. We show that the exchange of carbon isotopes between dissolved and gaseous carbon species combined with fluid flow and transport, produce isotopic effects that are significantly different from simple two-component mixing. These effects are important for understanding the isotopic variations observed in field demonstrations.« less

  18. Large Eddy Simulation of a Cavitating Multiphase Flow for Liquid Injection

    NASA Astrophysics Data System (ADS)

    Cailloux, M.; Helie, J.; Reveillon, J.; Demoulin, F. X.

    2015-12-01

    This paper presents a numerical method for modelling a compressible multiphase flow that involves phase transition between liquid and vapour in the context of gasoline injection. A discontinuous compressible two fluid mixture based on the Volume of Fluid (VOF) implementation is employed to represent the phases of liquid, vapour and air. The mass transfer between phases is modelled by standard models such as Kunz or Schnerr-Sauer but including the presence of air in the gas phase. Turbulence is modelled using a Large Eddy Simulation (LES) approach to catch instationnarities and coherent structures. Eventually the modelling approach matches favourably experimental data concerning the effect of cavitation on atomisation process.

  19. Evaluation of multi-phase heat transfer and droplet evaporation in petroleum cracking flows

    SciTech Connect

    Chang, S.L.; Lottes, S.A.; Petrick, M.; Zhou, C.Q.

    1996-04-01

    A computer code ICRKFLO was used to simulate the multiphase reacting flow of fluidized catalytic cracking (FCC) riser reactors. The simulation provided a fundamental understanding of the hydrodynamics and heat transfer processes in an FCC riser reactor, critical to the development of a new high performance unit. The code was able to make predictions that are in good agreement with available pilot-scale test data. Computational results indicate that the heat transfer and droplet evaporation processes have a significant impact on the performance of a pilot-scale FCC unit. The impact could become even greater on scale-up units.

  20. Numerical models of caldera deformation: Effects of multiphase and multicomponent hydrothermal fluid flow

    USGS Publications Warehouse

    Hutnak, M.; Hurwitz, S.; Ingebritsen, S.E.; Hsieh, P.A.

    2009-01-01

    Ground surface displacement (GSD) in large calderas is often interpreted as resulting from magma intrusion at depth. Recent advances in geodetic measurements of GSD, notably interferometric synthetic aperture radar, reveal complex and multifaceted deformation patterns that often require complex source models to explain the observed GSD. Although hydrothermal fluids have been discussed as a possible deformation agent, very few quantitative studies addressing the effects of multiphase flow on crustal mechanics have been attempted. Recent increases in the power and availability of computing resources allow robust quantitative assessment of the complex time-variant thermal interplay between aqueous fluid flow and crustal deformation. We carry out numerical simulations of multiphase (liquid-gas), multicomponent (H 2O-CO2) hydrothermal fluid flow and poroelastic deformation using a range of realistic physical parameters and processes. Hydrothermal fluid injection, circulation, and gas formation can generate complex, temporally and spatially varying patterns of GSD, with deformation rates, magnitudes, and geometries (including subsidence) similar to those observed in several large calderas. The potential for both rapid and gradual deformation resulting from magma-derived fluids suggests that hydrothermal fluid circulation may help explain deformation episodes at calderas that have not culminated in magmatic eruption.

  1. Multiphase Transport in Porous Media: Gas-Liquid Separation Using Capillary Pressure Gradients International Space Station (ISS) Flight Experiment Development

    NASA Technical Reports Server (NTRS)

    Wheeler, Richard R., Jr.; Holtsnider, John T.; Dahl, Roger W.; Deeks, Dalton; Javanovic, Goran N.; Parker, James M.; Ehlert, Jim

    2013-01-01

    Advances in the understanding of multiphase flow characteristics under variable gravity conditions will ultimately lead to improved and as of yet unknown process designs for advanced space missions. Such novel processes will be of paramount importance to the success of future manned space exploration as we venture into our solar system and beyond. In addition, because of the ubiquitous nature and vital importance of biological and environmental processes involving airwater mixtures, knowledge gained about fundamental interactions and the governing properties of these mixtures will clearly benefit the quality of life here on our home planet. The techniques addressed in the current research involving multiphase transport in porous media and gas-liquid phase separation using capillary pressure gradients are also a logical candidate for a future International Space Station (ISS) flight experiment. Importantly, the novel and potentially very accurate Lattice-Boltzmann (LB) modeling of multiphase transport in porous media developed in this work offers significantly improved predictions of real world fluid physics phenomena, thereby promoting advanced process designs for both space and terrestrial applications.This 3-year research effort has culminated in the design and testing of a zero-g demonstration prototype. Both the hydrophilic (glass) and hydrophobic (Teflon) media Capillary Pressure Gradient (CPG) cartridges prepared during the second years work were evaluated. Results obtained from ground testing at 1-g were compared to those obtained at reduced gravities spanning Martian (13-g), Lunar (16-g) and zero-g. These comparisons clearly demonstrate the relative strength of the CPG phenomena and the efficacy of its application to meet NASAs unique gas-liquid separation (GLS) requirements in non-terrestrial environments.LB modeling software, developed concurrently with the zero-g test effort, was shown to accurately reproduce observed CPG driven gas-liquid separation

  2. Mixed-hybrid and vertex-discontinuous-Galerkin finite element modeling of multiphase compositional flow on 3D unstructured grids

    NASA Astrophysics Data System (ADS)

    Moortgat, Joachim; Firoozabadi, Abbas

    2016-06-01

    Problems of interest in hydrogeology and hydrocarbon resources involve complex heterogeneous geological formations. Such domains are most accurately represented in reservoir simulations by unstructured computational grids. Finite element methods accurately describe flow on unstructured meshes with complex geometries, and their flexible formulation allows implementation on different grid types. In this work, we consider for the first time the challenging problem of fully compositional three-phase flow in 3D unstructured grids, discretized by any combination of tetrahedra, prisms, and hexahedra. We employ a mass conserving mixed hybrid finite element (MHFE) method to solve for the pressure and flux fields. The transport equations are approximated with a higher-order vertex-based discontinuous Galerkin (DG) discretization. We show that this approach outperforms a face-based implementation of the same polynomial order. These methods are well suited for heterogeneous and fractured reservoirs, because they provide globally continuous pressure and flux fields, while allowing for sharp discontinuities in compositions and saturations. The higher-order accuracy improves the modeling of strongly non-linear flow, such as gravitational and viscous fingering. We review the literature on unstructured reservoir simulation models, and present many examples that consider gravity depletion, water flooding, and gas injection in oil saturated reservoirs. We study convergence rates, mesh sensitivity, and demonstrate the wide applicability of our chosen finite element methods for challenging multiphase flow problems in geometrically complex subsurface media.

  3. DENSE MULTIPHASE FLOW SIMULATION: CONTINUUM MODEL FOR POLY-DISPERSED SYSTEMS USING KINETIC THEORY

    SciTech Connect

    Moses Bogere

    2011-08-31

    The overall objective of the project was to verify the applicability of the FCMOM approach to the kinetic equations describing the particle flow dynamics. For monodispersed systems the fundamental equation governing the particle flow dynamics is the Boltzmann equation. During the project, the FCMOM was successfully applied to several homogeneous and in-homogeneous problems in different flow regimes, demonstrating that the FCMOM has the potential to be used to solve efficiently the Boltzmann equation. However, some relevant issues still need to be resolved, i.e. the homogeneous cooling problem (inelastic particles cases) and the transition between different regimes. In this report, the results obtained in homogeneous conditions are discussed first. Then a discussion of the validation results for in-homogeneous conditions is provided. And finally, a discussion will be provided about the transition between different regimes. Alongside the work on development of FCMOM approach studies were undertaken in order to provide insights into anisotropy or particles kinetics in riser hydrodynamics. This report includes results of studies of multiphase flow with unequal granular temperatures and analysis of momentum re-distribution in risers due to particle-particle and fluid-particle interactions. The study of multiphase flow with unequal granular temperatures entailed both simulation and experimental studies of two particles sizes in a riser and, a brief discussion of what was accomplished will be provided. And finally, a discussion of the analysis done on momentum re-distribution of gas-particles flow in risers will be provided. In particular a discussion of the remaining work needed in order to improve accuracy and predictability of riser hydrodynamics based on two-fluid models and how they can be used to model segregation in risers.

  4. Application of partially-coupled hydro-mechanical schemes to multiphase flow problems

    NASA Astrophysics Data System (ADS)

    Tillner, Elena; Kempka, Thomas

    2016-04-01

    Utilization of subsurface reservoirs by fluid storage or production generally triggers pore pressure changes and volumetric strains in reservoirs and cap rocks. The assessment of hydro-mechanical effects can be undertaken using different process coupling strategies. The fully-coupled geomechanics and flow simulation, constituting a monolithic system of equations, is rarely applied for simulations involving multiphase fluid flow due to the high computational efforts required. Pseudo-coupled simulations are driven by static tabular data on porosity and permeability changes as function of pore pressure or mean stress, resulting in a rather limited flexibility when encountering complex subsurface utilization schedules and realistic geological settings. Partially-coupled hydro-mechanical simulations can be distinguished into one-way and iterative two-way coupled schemes, whereby the latter one is based on calculations of flow and geomechanics, taking into account the iterative exchange of coupling parameters between the two respective numerical simulators until convergence is achieved. In contrast, the one-way coupling scheme is determined by the provision of pore pressure changes calculated by the flow simulator to the geomechanical simulator neglecting any feedback. In the present study, partially-coupled two-way schemes are discussed in view of fully-coupled single-phase flow and geomechanics, and their applicability to multiphase flow simulations. For that purpose, we introduce a comparison study between the different coupling schemes, using selected benchmarks to identify the main requirements for the partially-coupled approach to converge with the numerical solution of the fully-coupled one.

  5. Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery.

    PubMed

    Zhao, Chun-Xia

    2013-11-01

    Considerable effort has been directed towards developing novel drug delivery systems. Microfluidics, capable of generating monodisperse single and multiple emulsion droplets, executing precise control and operations on these droplets, is a powerful tool for fabricating complex systems (microparticles, microcapsules, microgels) with uniform size, narrow size distribution and desired properties, which have great potential in drug delivery applications. This review presents an overview of the state-of-the-art multiphase flow microfluidics for the production of single emulsions or multiple emulsions for drug delivery. The review starts with a brief introduction of the approaches for making single and multiple emulsions, followed by presentation of some potential drug delivery systems (microparticles, microcapsules and microgels) fabricated in microfluidic devices using single or multiple emulsions as templates. The design principles, manufacturing processes and properties of these drug delivery systems are also discussed and compared. Furthermore, drug encapsulation and drug release (including passive and active controlled release) are provided and compared highlighting some key findings and insights. Finally, site-targeting delivery using multiphase flow microfluidics is also briefly introduced.

  6. Energetics of the multi-phase fluid flow in a narrow kerf in laser cutting conditions

    NASA Astrophysics Data System (ADS)

    Golyshev, A. A.; Orishich, A. M.; Shulyatyev, V. B.

    2016-10-01

    The energy balance of the multi-phase medium flow is studied experimentally under the laser cutting. Experimental data are generalized due to the condition of minimal roughness of the created surface used as a quality criterion of the melt flow, and also due to the application of dimensionless parameters: Peclet number and dimensionless absorbed laser power. For the first time ever it is found that, regardless the assistant gas (oxygen or nitrogen), laser type (the fiber one with the wavelength of 1.07 µm or CO2-laser with the wavelength of 10.6 µm), the minimal roughness is provided at a certain energy input in a melt unit, about 26 J/mm3. With oxygen, 50% of this input is provided by the radiation, the other 50% - by the exothermic reaction of iron oxidation.

  7. A Second Order JFNK-based IMEX Method for Single and Multi-phase Flows

    SciTech Connect

    Samet Kadioglu; Dana Knoll; Mark Sussman; Richard Martineau

    2010-07-01

    Abstract We present a second order time accurate IMplicit/EXplicit (IMEX) method for solving single and multi-phase flow problems. The algorithm consists of a combination of an explicit and an implicit blocks. The explicit block solves the non-stiff parts of the governing system whereas the implicit block operates on the stiff terms. In our self-conisstent IMEX implementation, the explicit part is always executed inside the implicit block as part of the nonlinear functions evaluation making use of the Jacobian-freeNewton Krylov (JFNK) method [7]. This leads to an implicitly balanced algorithm in that all non-linearities due to the coupling of different time terms are consistently converged. In this paper, we present computational results when this IMEX strategy is applied to single/multi-phase incompressible flow models. Samet

  8. Adaptive mesh refinement and multilevel iteration for multiphase, multicomponent flow in porous media

    SciTech Connect

    Hornung, R.D.

    1996-12-31

    An adaptive local mesh refinement (AMR) algorithm originally developed for unsteady gas dynamics is extended to multi-phase flow in porous media. Within the AMR framework, we combine specialized numerical methods to treat the different aspects of the partial differential equations. Multi-level iteration and domain decomposition techniques are incorporated to accommodate elliptic/parabolic behavior. High-resolution shock capturing schemes are used in the time integration of the hyperbolic mass conservation equations. When combined with AMR, these numerical schemes provide high resolution locally in a more efficient manner than if they were applied on a uniformly fine computational mesh. We will discuss the interplay of physical, mathematical, and numerical concerns in the application of adaptive mesh refinement to flow in porous media problems of practical interest.

  9. Dripping and jetting in microfluidic multiphase flows applied to particle and fiber synthesis

    PubMed Central

    Nunes, J K; Tsai, S S H; Wan, J; Stone, H A

    2013-01-01

    Dripping and jetting regimes in microfluidic multiphase flows have been investigated extensively, and this review summarizes the main observations and physical understandings in this field to date for three common device geometries: coaxial, flow-focusing and T-junction. The format of the presentation allows for simple and direct comparison of the different conditions for drop and jet formation, as well as the relative ease and utility of forming either drops or jets among the three geometries. The emphasis is on the use of drops and jets as templates for microparticle and microfiber syntheses, and a description is given of the more common methods of solidification and strategies for achieving complex multicomponent microparticles and microfibers. PMID:23626378

  10. High-resolution simulations of multi-phase flow in magmatic-hydrothermal systems with realistic fluid properties

    NASA Astrophysics Data System (ADS)

    Geiger, S.; Driesner, T.; Matthai, S.; Heinrich, C.

    2002-12-01

    Realistic modelling of multi-phase fluid flow, energy and component transport in magmatic-hydrothermal systems is very challenging because hydrological properties of fluids and rocks vary over many orders of magnitude and the geometric complexities of such systems. Furthermore, density dependent component transport and transient permeability variations due to P-T changes and fluid-rock interactions introduce additional difficulties. As a result, the governing equations for the hydrodynamics, energy and component transport, and thermodynamics in magmatic hydrothermal systems are highly non-linear and strongly coupled. Essential requirements of a numerical formulation for such a system are: (1) a treatment of the hydrodynamics that can accurately resolve complex geological structures and represent the highly variable fluid velocities herein, (2) a realistic thermodynamic representation of the fluid properties including the wide P-T-X range of liquid+vapour coexistence for the highly saline fluids, and (3) an accurate handling of the highly contrasting transport properties of the two fluids. We are combining higher order finite-element (FE) methods with total variation diminishing finite volume (TVDFV) methods to model the hydrodynamics and energy and component transport of magmatic hydrothermal systems. Combined FE and TVDFV methods are mass and shock preserving, yield great geometric flexibility in 2D and 3D [2]. Furthermore, efficient matrix solvers can be employed to model fluid flow in geologically realistic structures [5]. The governing equations are linearized by operator-splitting and solved sequentially using a Picard iteration scheme. We chose the system water-NaCl as a realistic proxy for natural fluids occurring in magmatic-hydrothermal systems. An in-depth evaluation of the available experimental and theoretical data led to a consistent and accurate set of formulations for the PVTXH relations that are valid from 0 to 800 C, 0 to 500 MPa, and 0 to 1 XNa

  11. Multiphase flow modeling of spinodal decomposition based on the cascaded lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Leclaire, Sébastien; Pellerin, Nicolas; Reggio, Marcelo; Trépanier, Jean-Yves

    2014-07-01

    A new multiphase lattice Boltzmann model based on the cascaded collision operator is developed to study the spinodal decomposition of critical quenches in the inertial hydrodynamic regime. The proposed lattice Boltzmann model is able to investigate simulations of multiphase spinodal decomposition with a very high Reynolds number. The law governing the growth of the average domain size, i.e. L∝tα, is studied numerically in the late-time regime, when multiple immiscible fluids are considered in the spinodal decomposition. It is found numerically that the growth exponent, α, is inversely proportional to the number, N, of immiscible fluids in the system. In fact, α=6/(N+7) is a simple law that matches the numerical results very well, even up to N=20. As the number of immiscible fluids increases, the corresponding drop in the connectivity of the various fluid domains is believed to be the main factor that drives and slows down the growth rate. Various videos that accurately demonstrate spinodal decomposition with different transport mechanisms are provided (see Appendix A). The remarks and statement made in this research are based on the analysis of 5120 numerical simulations and the postprocessing of about 3.5 TB of data.

  12. Computational methods for reactive transport modeling: A Gibbs energy minimization approach for multiphase equilibrium calculations

    NASA Astrophysics Data System (ADS)

    Leal, Allan M. M.; Kulik, Dmitrii A.; Kosakowski, Georg

    2016-02-01

    We present a numerical method for multiphase chemical equilibrium calculations based on a Gibbs energy minimization approach. The method can accurately and efficiently determine the stable phase assemblage at equilibrium independently of the type of phases and species that constitute the chemical system. We have successfully applied our chemical equilibrium algorithm in reactive transport simulations to demonstrate its effective use in computationally intensive applications. We used FEniCS to solve the governing partial differential equations of mass transport in porous media using finite element methods in unstructured meshes. Our equilibrium calculations were benchmarked with GEMS3K, the numerical kernel of the geochemical package GEMS. This allowed us to compare our results with a well-established Gibbs energy minimization algorithm, as well as their performance on every mesh node, at every time step of the transport simulation. The benchmark shows that our novel chemical equilibrium algorithm is accurate, robust, and efficient for reactive transport applications, and it is an improvement over the Gibbs energy minimization algorithm used in GEMS3K. The proposed chemical equilibrium method has been implemented in Reaktoro, a unified framework for modeling chemically reactive systems, which is now used as an alternative numerical kernel of GEMS.

  13. Application of a geocentrifuge and sterolithographically fabricated apertures to multiphase flow in complex fracture apertures.

    SciTech Connect

    Glenn E. McCreery; Robert D. Stedtfeld; Alan T. Stadler; Daphne L. Stoner; Paul Meakin

    2005-09-01

    A geotechnical centrifuge was used to investigate unsaturated multiphase fluid flow in synthetic fracture apertures under a variety of flow conditions. The geocentrifuge subjected the fluids to centrifugal forces allowing the Bond number to be systematically changed without adjusting the fracture aperture of the fluids. The fracture models were based on the concept that surfaces generated by the fracture of brittle geomaterials have a self-affine fractal geometry. The synthetic fracture surfaces were fabricated from a transparent epoxy photopolymer using sterolithography, and fluid flow through the transparent fracture models was monitored by an optical image acquisition system. Aperture widths were chosen to be representative of the wide range of geological fractures in the vesicular basalt that lies beneath the Idaho Nation Laboratory (INL). Transitions between different flow regimes were observed as the acceleration was changed under constant flow conditions. The experiments showed the transition between straight and meandering rivulets in smooth walled apertures (aperture width = 0.508 mm), the dependence of the rivulet width on acceleration in rough walled fracture apertures (average aperture width = 0.25 mm), unstable meandering flow in rough walled apertures at high acceleration (20g) and the narrowing of the wetted region with increasing acceleration during the penetration of water into an aperture filled with wetted particles (0.875 mm diameter glass spheres).

  14. Multiphase flow modelling of explosive volcanic eruptions using adaptive unstructured meshes

    NASA Astrophysics Data System (ADS)

    Jacobs, Christian T.; Collins, Gareth S.; Piggott, Matthew D.; Kramer, Stephan C.

    2014-05-01

    Explosive volcanic eruptions generate highly energetic plumes of hot gas and ash particles that produce diagnostic deposits and pose an extreme environmental hazard. The formation, dispersion and collapse of these volcanic plumes are complex multiscale processes that are extremely challenging to simulate numerically. Accurate description of particle and droplet aggregation, movement and settling requires a model capable of capturing the dynamics on a range of scales (from cm to km) and a model that can correctly describe the important multiphase interactions that take place. However, even the most advanced models of eruption dynamics to date are restricted by the fixed mesh-based approaches that they employ. The research presented herein describes the development of a compressible multiphase flow model within Fluidity, a combined finite element / control volume computational fluid dynamics (CFD) code, for the study of explosive volcanic eruptions. Fluidity adopts a state-of-the-art adaptive unstructured mesh-based approach to discretise the domain and focus numerical resolution only in areas important to the dynamics, while decreasing resolution where it is not needed as a simulation progresses. This allows the accurate but economical representation of the flow dynamics throughout time, and potentially allows large multi-scale problems to become tractable in complex 3D domains. The multiphase flow model is verified with the method of manufactured solutions, and validated by simulating published gas-solid shock tube experiments and comparing the numerical results against pressure gauge data. The application of the model considers an idealised 7 km by 7 km domain in which the violent eruption of hot gas and volcanic ash high into the atmosphere is simulated. Although the simulations do not correspond to a particular eruption case study, the key flow features observed in a typical explosive eruption event are successfully captured. These include a shock wave resulting

  15. Coupled multiphase flow and geomechanics analysis of the 2011 Lorca earthquake

    NASA Astrophysics Data System (ADS)

    Jha, B.; Hager, B. H.; Juanes, R.; Bechor, N.

    2013-12-01

    We present a new approach for modeling coupled multiphase flow and geomechanics of faulted reservoirs. We couple a flow simulator with a mechanics simulator using the unconditionally stable fixed-stress sequential solution scheme [Kim et al, 2011]. We model faults as surfaces of discontinuity using interface elements [Aagaard et al, 2008]. This allows us to model stick-slip behavior on the fault surface for dynamically evolving fault strength. We employ a rigorous formulation of nonlinear multiphase geomechanics [Coussy, 1995], which is based on the increment in mass of fluid phases instead of the traditional, and less accurate, scheme based on the change in porosity. Our nonlinear formulation is capable of handling strong capillarity and large changes in saturation in the reservoir. To account for the effect of surface stresses along fluid-fluid interfaces, we use the equivalent pore pressure in the definition of the multiphase effective stress [Coussy et al, 1998; Kim et al, 2013]. We use our simulation tool to study the 2011 Lorca earthquake [Gonzalez et al, 2012], which has received much attention because of its potential anthropogenic triggering (long-term groundwater withdrawal leading to slip along the regional Alhama de Murcia fault). Our coupled fluid flow and geomechanics approach to model fault slip allowed us to take a fresh look at this seismic event, which to date has only been analyzed using simple elastic dislocation models and point source solutions. Using a three-dimensional model of the Lorca region, we simulate the groundwater withdrawal and subsequent unloading of the basin over the period of interest (1960-2010). We find that groundwater withdrawal leads to unloading of the crust and changes in the stress across the impermeable fault plane. Our analysis suggests that the combination of these two factors played a critical role in inducing the fault slip that ultimately led to the Lorca earthquake. Aagaard, B. T., M. G. Knepley, and C. A

  16. Theoretical analysis of multiphase flow during oil-well drilling by a conservative model

    NASA Astrophysics Data System (ADS)

    Nicolas-Lopez, Ruben

    2005-11-01

    In order to decrease cost and improve drilling operations is necessary a better understood of the flow mechanisms. Therefore, it was carried out a multiphase conservative model that includes three mass equations and a momentum equation. Also, the measured geothermal gradient is utilized by state equations for estimating physical properties of the phases flowing. The mathematical model is solved by numerical conservative schemes. It is used to analyze the interaction among solid-liquid-gas phases. The circulating system consists as follow, the circulating fluid is pumped downward into the drilling pipe until the bottom of the open hole then it flows through the drill bit, and at this point formation cuttings are incorporated to the circulating fluid and carried upward to the surface. The mixture returns up to the surface by an annular flow area. The real operational conditions are fed to conservative model and the results are matched up to field measurements in several oil wells. Mainly, flow rates, drilling rate, well and tool geometries are data to estimate the profiles of pressure, mixture density, equivalent circulating density, gas fraction and solid carrying capacity. Even though the problem is very complex, the model describes, properly, the hydrodynamics of drilling techniques applied at oil fields. *Authors want to thank to Instituto Mexicano del Petroleo and Petroleos Mexicanos for supporting this research.

  17. On the Inclusion of the Interfacial Area Between Phases in the Physical and Mathematical Description of Subsurface Multiphase Flow

    SciTech Connect

    Gray, W.G.

    2001-01-25

    This project has contributed to the improved understanding and precise physical description of multiphase subsurface flow by combining theoretical derivation of equations, lattice Boltzmann modeling of hydrodynamics to identify characteristics and parameters, and simplification of field-scale equations to assess the advantages and disadvantages of the complete theory.

  18. A minimally diffusive interface function steepening approach for compressible multiphase flows

    NASA Astrophysics Data System (ADS)

    Regele, Jonathan

    2015-11-01

    Interface capturing methods for contacts and shocks are commonly used in compressible multiphase flows. Artificial diffusion is inherently necessary to stabilize jump discontinuities across shocks and contacts. Contacts suffer from diffusion more severely than shock waves because their characteristics are not convergent like shocks. Interface steepening procedures are commonly used to counteract numerical diffusion necessary to maintain a sharp interface function. In this work, a modification to the sharpening approach used in Shukla, Pantano, and Freund [J. Comp. Phys, 229, 2010] is developed that minimizes the artificial diffusion across the interface while maintaining a monotonic interface function. The method requires fewer iterations for convergence and provides a steeper interface function. Examples in one and two dimensions demonstrate the method's performance.

  19. Particle methods for simulation of subsurface multiphase fluid flow and biogeological processes

    SciTech Connect

    Paul Meakin; Alexandre Tartakovsky; Tim Scheibe; Daniel Tartakovsky; Georgr Redden; Philip E. Long; Scott C. Brooks; Zhijie Xu

    2007-06-01

    A number of particle models that are suitable for simulating multiphase fluid flow and biogeological processes have been developed during the last few decades. Here we discuss three of them: a microscopic model - molecular dynamics; a mesoscopic model - dissipative particle dynamics; and a macroscopic model - smoothed particle hydrodynamics. Particle methods are robust and versatile, and it is relatively easy to add additional physical, chemical and biological processes into particle codes. However, the computational efficiency of particle methods is low relative to continuum methods. Multiscale particle methods and hybrid (particle–particle and particle–continuum) methods are needed to improve computational efficiency and make effective use of emerging computational capabilities. These new methods are under development.

  20. The impact of interfacial tension on multiphase flow in the CO2-brine-sandstone system

    NASA Astrophysics Data System (ADS)

    Reynolds, C. A.; Blunt, M. J.; Krevor, S. C.

    2013-12-01

    Two dominant controls on continuum scale multiphase flow properties are interfacial tension (IFT) and wetting. In hydrocarbon-brine systems, relative permeability is known to increase with decreasing IFT, while residual trapping is controlled by the wetting properties of a permeable rock and the hysteresis between drainage and imbibtion (Amaefule & Handy, 1982; Bardon & Longeron, 1980; Juanes et al., 2006). Fluid properties of the CO2-brine system, such as viscosity, density and interfacial tension, are well characterised and have known dependencies on temperature, pressure and brine salinity. Interest in this particular fluid system is motivated by CO2 storage and enhanced oil recovery. Despite increased interest in CO2 storage, the response of the CO2-brine relative permeability to varying IFT has yet to be comprehensively evaluated. Additionally the wide range of thermophysical properties (density, viscosity etc.) that exist across a relatively small range of pressures and temperatures makes it an ideal system with which to investigate the physics of multiphase flow in general. This is the first systematic study to investigate the impact of IFT on drainage and imbibition relative permeability for the CO2-brine-sandstone system. The experimental design has been adapted from a traditional steady state core flood in two ways. First, while conditions may be easily selected to obtain a range of interfacial tensions, isolating the independent impact of interfacial tension on relative permeability is less simple. Thus experimental conditions are selected so as to vary interfacial tension, while minimising the variation in viscosity ratio between CO2 and brine. Second, in order to attribute the impacts of changing conditions, it is necessary to have precise results such that small shifts in observations can be identified. Multiphase flow theory is used to both design the conditions of the test and interpret the observations, leading to a much higher precision in

  1. Overestimating climate warming-induced methane gas escape from the seafloor by neglecting multiphase flow dynamics

    NASA Astrophysics Data System (ADS)

    Stranne, C.; O'Regan, M.; Jakobsson, M.

    2016-08-01

    Continental margins host large quantities of methane stored partly as hydrates in sediments. Release of methane through hydrate dissociation is implicated as a possible feedback mechanism to climate change. Large-scale estimates of future warming-induced methane release are commonly based on a hydrate stability approach that omits dynamic processes. Here we use the multiphase flow model TOUGH + hydrate (T + H) to quantitatively investigate how dynamic processes affect dissociation rates and methane release. The simulations involve shallow, 20-100 m thick hydrate deposits, forced by a bottom water temperature increase of 0.03°C yr-1 over 100 years. We show that on a centennial time scale, the hydrate stability approach can overestimate gas escape quantities by orders of magnitude. Our results indicate a time lag of > 40 years between the onset of warming and gas escape, meaning that recent climate warming may soon be manifested as widespread gas seepages along the world's continental margins.

  2. Multiphase flow simulations of a moving fluidized bed regenerator in a carbon capture unit

    SciTech Connect

    Sarkar, Avik; Pan, Wenxiao; Suh, Dong-Myung; Huckaby, E. D.; Sun, Xin

    2014-10-01

    To accelerate the commercialization and deployment of carbon capture technologies, computational fluid dynamics (CFD)-based tools may be used to model and analyze the performance of carbon capture devices. This work presents multiphase CFD-based flow simulations for the regeneration device responsible for extracting CO2 from CO2-loaded sorbent particles before the particles are recycled. The use of solid particle sorbents in this design is a departure from previously reported systems, where aqueous sorbents are employed. Another new feature is the inclusion of a series of perforated plates along the regenerator height. The influence of these plates on sorbent distribution is examined for varying sorbent holdup, fluidizing gas velocity, and particle size. The residence time distribution of sorbents is also measured to classify the low regime as plug flow or well-mixed flow. The purpose of this work is to better understand the sorbent flow characteristics before reaction kinetics of CO2 desorption can be implemented.

  3. Modeling of multiphase flow and heat transfer in radiant syngas cooler of an entrained-flow coal gasification

    SciTech Connect

    Yu, G.S.; Ni, J.J.; Liang, Q.F.; Guo, Q.H.; Zhou, Z.J.

    2009-11-15

    A comprehensive model has been developed to analyze the multiphase flow and heat transfer in the radiant syngas cooler (RSC) of an industrial-scale entrained-flow coal gasification. The three-dimensional multiphase flow field and temperature field were reconstructed. The realizable {kappa}-{epsilon} turbulence model is applied to calculate the gas flow field, while the discrete random walk model is applied to trace the particles, and the interaction between the gas and the particle is considered using a two-way coupling model. The radiative properties of syngas mixture are calculated by weighted-sum-of-gray-gases model (WSGGM). The Ranz-Marshall correlation for the Nusselt number is used to account for convection heat transfer between the gas phase and the particles. The discrete ordinate model is applied to model the radiative heat transfer, and the effect of ash/slag particles on radiative heat transfer is considered. The model was successfully validated by comparison with the industrial plant measurement data, which demonstrated the ability of the model to optimize the design. The results show that a torch shape inlet jet was formed in the RSC, and its length increased with the diameter of the central channel. The recirculation zones appeared around the inlet jet, top, and bottom of the RSC. The overall temperature decreased with the heat-transfer surface area of the fins. The concentration distribution, velocity distribution, residence time distribution, and temperature distribution of particles with different diameters have been discussed. Finally, the slag/ash particles size distribution and temperature profile at the bottom of the RSC have been presented.

  4. Radiotracer method for residence time distribution study in multiphase flow system.

    PubMed

    Sugiharto, S; Su'ud, Z; Kurniadi, R; Wibisono, W; Abidin, Z

    2009-01-01

    [(131)I] isotope in different chemical compounds have been injected into 24in hydrocarbon transmission pipeline containing approximately 95% water, 3% crude oil, 2% gas and negligible solid material, respectively. The system is operated at the temperature around 70 degrees C enabling fluids flow is easier in the pipeline. The segment of measurement was chosen far from the junction point of the pipeline, therefore, it was reasonably to assume that the fluids in such multiphase system were separated distinctively. Expandable tubing of injector was used to ensure that the isotopes were injected at the proper place in the sense that [(131)I]Na isotope was injected into water layer and iodo-benzene, ([131])IC(6)H(5,) was injected into crude oil regime. The radiotracer selection was based on the compatibility of radiotracer with each of fluids under investigation. [(131)I]Na was used for measuring flow of water while iodo-benzene, ([131])IC(6)H(5,) was used for measuring flow of crude oil. Two scintillation detectors were used and they are put at the distances 80 and 100m, respectively, from injection point. The residence time distribution data were utilized for calculation water and crude oil flows. Several injections were conducted in the experiments. Although the crude oil density is lighter than the density of water, the result of measurement shows that the water flow is faster than the crude oil flow. As the system is water-dominated, water may act as carrier and the movement of crude oil is slowed due to friction between crude oil with water and crude oil with gas at top layer. Above of all, this result was able to give answer on the question why crude oil always arrives behind water as it is checked at gathering station. In addition, the flow patterns of the water in the pipeline calculated by Reynolds number and predicted by simple tank-in-series model is turbulence in character.

  5. Computational methods for multiphase equilibrium and kinetics calculations for geochemical and reactive transport applications

    NASA Astrophysics Data System (ADS)

    Leal, Allan; Saar, Martin

    2016-04-01

    Computational methods for geochemical and reactive transport modeling are essential for the understanding of many natural and industrial processes. Most of these processes involve several phases and components, and quite often requires chemical equilibrium and kinetics calculations. We present an overview of novel methods for multiphase equilibrium calculations, based on both the Gibbs energy minimization (GEM) approach and on the solution of the law of mass-action (LMA) equations. We also employ kinetics calculations, assuming partial equilibrium (e.g., fluid species in equilibrium while minerals are in disequilibrium) using automatic time stepping to improve simulation efficiency and robustness. These methods are developed specifically for applications that are computationally expensive, such as reactive transport simulations. We show how efficient the new methods are, compared to other algorithms, and how easy it is to use them for geochemical modeling via a simple script language. All methods are available in Reaktoro, a unified open-source framework for modeling chemically reactive systems, which we also briefly describe.

  6. Evolution of natural gas composition: Predictive multi-phase reaction-transport modeling

    SciTech Connect

    Ortoleva, P.J.; Chang, K.A.; Maxwell, J.M.

    1995-12-31

    A computational modeling approach is used to investigate reaction and transport processes affecting natural gas composition over geological time. Three basic stages are integrated -- gas generation from organic solids or liquids, interactions during source rock expulsion to the reservoir and reactions within the reservoir. Multi-phase dynamics is handled by solving the fully coupled problem of phase-to-phase transfer, intra-phase organic and inorganic reactions and redox and other reactions between fluid phase molecules and minerals. Effects of capillarity and relative permeability are accounted for. Correlations will be determined between gas composition, temperature history, the mineralogy of rocks with which the gas was in contact and the composition of source organic phases. Questions of H{sub 2}S scavenging by oxidizing minerals and the production or removal of CO{sub 2} are focused upon. Our three spatial dimensional, reaction-transport simulation approach has great promise for testing general concepts and as a practical tool for the exploration and production of natural gas.

  7. Numerical analysis for the multi-phase flow of pulverized coal injection inside blast furnace tuyere

    SciTech Connect

    Chen, C.W.

    2005-09-01

    The pulverized coal injection (PCI) system was modified from single lance injection into double lance injection at No. 3 Blast Furnace of CSC. It is beneficial to reduce the cost of coke. However, the injected coal was found very close to the inner wall of the tuyere during the operation, such as to cause the possibility of erosion for the tuyere. In this study a three-dimensional mathematical model has been developed based on a computational fluid dynamics software PHOENICS to simulate the fluid flow phenomena inside blast furnace tuyere. The model was capable of handling steady-state, three-dimensional multi-phase flow of pulverized coal injection. The model was applied to simulate the flow patterns of the injection coal inside the tuyere with two kinds of lance design for the PCI system. The distribution of injection coal was simulated such as to estimate the possibility of erosion for the tuyere. The calculated results agreed with the operating experience of CSC plant and the optimum design of double lance was suggested. The model was also applied to simulate the oxygen concentration distribution with these different oxygen enrichments for the coal/oxygen lance system. The calculated results agreed with the experimental measurement. These test results demonstrate that the model is both reasonably reliable and efficient.

  8. Tar Production from Biomass Pyrolysis in a Fluidized Bed Reactor: A Novel Turbulent Multiphase Flow Formulation

    NASA Technical Reports Server (NTRS)

    Bellan, J.; Lathouwers, D.

    2000-01-01

    A novel multiphase flow model is presented for describing the pyrolysis of biomass in a 'bubbling' fluidized bed reactor. The mixture of biomass and sand in a gaseous flow is conceptualized as a particulate phase composed of two classes interacting with the carrier gaseous flow. The solid biomass is composed of three initial species: cellulose, hemicellulose and lignin. From each of these initial species, two new solid species originate during pyrolysis: an 'active' species and a char, thus totaling seven solid-biomass species. The gas phase is composed of the original carrier gas (steam), tar and gas; the last two species originate from the volumetric pyrolysis reaction. The conservation equations are derived from the Boltzmann equations through ensemble averaging. Stresses in the gaseous phase are the sum of the Newtonian and Reynolds (turbulent) contributions. The particulate phase stresses are the sum of collisional and Reynolds contributions. Heat transfer between phases, and heat transfer between classes in the particulate phase is modeled, the last resulting from collisions between sand and biomass. Closure of the equations must be performed by modeling the Reynolds stresses for both phases. The results of a simplified version (first step) of the model are presented.

  9. Hybrid Modeling of Multiphase Flow in Porous Media: Coupling Darcy and Pore-Scale Description

    NASA Astrophysics Data System (ADS)

    Tomin, P.; Lunati, I.

    2012-12-01

    Flow through porous media is usually modeled employing Darcy's law to relate the macroscopic velocity (volumetric flux density) to the pressure gradient. This relationship represents the momentum balance equation and provides a reliable description under the assumptions of short relaxation times and scale separation. In case of multiphase flow, however, the interaction between the nonlinear interface dynamics and the complexity of pore structure generates a variety of flow regimes and can lead to situations, in which these assumptions are not satisfied and Darcy's law might become inadequate. In this case, multiphysics models that combine the Darcy and pore-scale description become attractive. Here, we use the Multiscale Finite Volume method (MsFV) as a framework for construction a hybrid algorithm that couples a Darcy description of the flow with a pore-scale description. The Navier-Stokes equations are solved to compute the velocity field in the pore geometry; the dynamics of the fluid-fluid interface is described by the Volume Of Fluid method (VOF) in combination with the Continuum Surface Force model (a classic diffuse-interface model for surface tension). A Darcy-like model based on conservation principles is used to construct the approximate coarse-scale problem. The results of the hybrid algorithm (Hybrid Multiscale Finite Volume method, HMsFV) are compared with full pore-scale simulations for several flow regimes to assess the robustness of the method with respect to changes in the morphology of fluid distribution. As the reconstruction of the fine-scale details can be done adaptively, the HMsFV method offers a flexible framework for hybrid modeling of different coexisting flow regimes.

  10. Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model.

    PubMed

    Li, Q; Luo, K H; Li, X J

    2013-05-01

    Owing to its conceptual simplicity and computational efficiency, the pseudopotential multiphase lattice Boltzmann (LB) model has attracted significant attention since its emergence. In this work, we aim to extend the pseudopotential LB model to simulate multiphase flows at large density ratio and relatively high Reynolds number. First, based on our recent work [Q. Li, K. H. Luo, and X. J. Li, Phys. Rev. E 86, 016709 (2012)], an improved forcing scheme is proposed for the multiple-relaxation-time pseudopotential LB model in order to achieve thermodynamic consistency and large density ratio in the model. Next, through investigating the effects of the parameter a in the Carnahan-Starling equation of state, we find that the interface thickness is approximately proportional to 1/√a. Using a smaller a will lead to a wider interface thickness, which can reduce the spurious currents and enhance the numerical stability of the pseudopotential model at large density ratio. Furthermore, it is found that a lower liquid viscosity can be gained in the pseudopotential model by increasing the kinematic viscosity ratio between the vapor and liquid phases. The improved pseudopotential LB model is numerically validated via the simulations of stationary droplet and droplet oscillation. Using the improved model as well as the above treatments, numerical simulations of droplet splashing on a thin liquid film are conducted at a density ratio in excess of 500 with Reynolds numbers ranging from 40 to 1000. The dynamics of droplet splashing is correctly reproduced and the predicted spread radius is found to obey the power law reported in the literature. PMID:23767651

  11. DEVELOPMENT OF MULTI-PHASE AND MULTI-COMPONENT FLOW MODEL WITH REACTION IN POROUS MEDIA FOR RISK ASSESSMENT ON SOIL CONTAMINATION DUE TO MINERAL OIL

    NASA Astrophysics Data System (ADS)

    Sakamoto, Yasuhide; Nishiwaki, Junko; Hara, Junko; Kawabe, Yoshishige; Sugai, Yuichi; Komai, Takeshi

    In late years, soil contamination due to mineral oil in vacant lots of oil factory and oil field has become obvious. Measure for soil contamina tion and risk assessment are neces sary for sustainable development of industrial activity. Especially, in addition to contaminated sites, various exposure paths for human body such as well water, soil and farm crop are supposed. So it is very important to comprehend the transport phenomena of contaminated material under the environments of soil and ground water. In this study, mineral oil as c ontaminated material consisting of mu lti-component such as aliphatic and aromatic series was modeled. Then numerical mode l for transport phenomena in surface soil and aquifer was constructed. On the basis of modeling for mineral oil, our numerical model consists of three-phase (oil, water and gas) forty three-component. This numerical model becomes base program for risk assessment system on soil contamination due to mineral oil. Using this numerical model, we carried out some numerical simulation for a laboratory-scale experiment on oil-water multi-phase flow. Relative permeability that dominate flow behavior in multi-phase condition was formulated and the validity of the numerical model developed in this study was considered.

  12. Multiphase integral reacting flow computer code (ICOMFLO): User`s guide

    SciTech Connect

    Chang, S.L.; Lottes, S.A.; Petrick, M.

    1997-11-01

    A copyrighted computational fluid dynamics computer code, ICOMFLO, has been developed for the simulation of multiphase reacting flows. The code solves conservation equations for gaseous species and droplets (or solid particles) of various sizes. General conservation laws, expressed by elliptic type partial differential equations, are used in conjunction with rate equations governing the mass, momentum, enthalpy, species, turbulent kinetic energy, and turbulent dissipation. Associated phenomenological submodels of the code include integral combustion, two parameter turbulence, particle evaporation, and interfacial submodels. A newly developed integral combustion submodel replacing an Arrhenius type differential reaction submodel has been implemented to improve numerical convergence and enhance numerical stability. A two parameter turbulence submodel is modified for both gas and solid phases. An evaporation submodel treats not only droplet evaporation but size dispersion. Interfacial submodels use correlations to model interfacial momentum and energy transfer. The ICOMFLO code solves the governing equations in three steps. First, a staggered grid system is constructed in the flow domain. The staggered grid system defines gas velocity components on the surfaces of a control volume, while the other flow properties are defined at the volume center. A blocked cell technique is used to handle complex geometry. Then, the partial differential equations are integrated over each control volume and transformed into discrete difference equations. Finally, the difference equations are solved iteratively by using a modified SIMPLER algorithm. The results of the solution include gas flow properties (pressure, temperature, density, species concentration, velocity, and turbulence parameters) and particle flow properties (number density, temperature, velocity, and void fraction). The code has been used in many engineering applications, such as coal-fired combustors, air

  13. Subsecond pore-scale displacement processes and relaxation dynamics in multiphase flow

    PubMed Central

    Armstrong, Ryan T; Ott, Holger; Georgiadis, Apostolos; Rücker, Maja; Schwing, Alex; Berg, Steffen

    2014-01-01

    With recent advances at X-ray microcomputed tomography (μCT) synchrotron beam lines, it is now possible to study pore-scale flow in porous rock under dynamic flow conditions. The collection of four-dimensional data allows for the direct 3-D visualization of fluid-fluid displacement in porous rock as a function of time. However, even state-of-the-art fast-μCT scans require between one and a few seconds to complete and the much faster fluid movement occurring during that time interval is manifested as imaging artifacts in the reconstructed 3-D volume. We present an approach to analyze the 2-D radiograph data collected during fast-μCT to study the pore-scale displacement dynamics on the time scale of 40 ms which is near the intrinsic time scale of individual Haines jumps. We present a methodology to identify the time intervals at which pore-scale displacement events in the observed field of view occur and hence, how reconstruction intervals can be chosen to avoid fluid-movement-induced reconstruction artifacts. We further quantify the size, order, frequency, and location of fluid-fluid displacement at the millisecond time scale. We observe that after a displacement event, the pore-scale fluid distribution relaxes to (quasi-) equilibrium in cascades of pore-scale fluid rearrangements with an average relaxation time for the whole cascade between 0.5 and 2.0 s. These findings help to identify the flow regimes and intrinsic time and length scales relevant to fractional flow. While the focus of the work is in the context of multiphase flow, the approach could be applied to many different μCT applications where morphological changes occur at a time scale less than that required for collecting a μCT scan. PMID:25745271

  14. FINAL PROJECT REPORT DOE Early Career Principal Investigator Program Project Title: Developing New Mathematical Models for Multiphase Flows Based on a Fundamental Probability Density Function Approach

    SciTech Connect

    Shankar Subramaniam

    2009-04-01

    This final project report summarizes progress made towards the objectives described in the proposal entitled “Developing New Mathematical Models for Multiphase Flows Based on a Fundamental Probability Density Function Approach”. Substantial progress has been made in theory, modeling and numerical simulation of turbulent multiphase flows. The consistent mathematical framework based on probability density functions is described. New models are proposed for turbulent particle-laden flows and sprays.

  15. Thickness-based adaptive mesh refinement methods for multi-phase flow simulations with thin regions

    SciTech Connect

    Chen, Xiaodong; Yang, Vigor

    2014-07-15

    In numerical simulations of multi-scale, multi-phase flows, grid refinement is required to resolve regions with small scales. A notable example is liquid-jet atomization and subsequent droplet dynamics. It is essential to characterize the detailed flow physics with variable length scales with high fidelity, in order to elucidate the underlying mechanisms. In this paper, two thickness-based mesh refinement schemes are developed based on distance- and topology-oriented criteria for thin regions with confining wall/plane of symmetry and in any situation, respectively. Both techniques are implemented in a general framework with a volume-of-fluid formulation and an adaptive-mesh-refinement capability. The distance-oriented technique compares against a critical value, the ratio of an interfacial cell size to the distance between the mass center of the cell and a reference plane. The topology-oriented technique is developed from digital topology theories to handle more general conditions. The requirement for interfacial mesh refinement can be detected swiftly, without the need of thickness information, equation solving, variable averaging or mesh repairing. The mesh refinement level increases smoothly on demand in thin regions. The schemes have been verified and validated against several benchmark cases to demonstrate their effectiveness and robustness. These include the dynamics of colliding droplets, droplet motions in a microchannel, and atomization of liquid impinging jets. Overall, the thickness-based refinement technique provides highly adaptive meshes for problems with thin regions in an efficient and fully automatic manner.

  16. Parameter estimation from flowing fluid temperature logging data in unsaturated fractured rock using multiphase inverse modeling

    SciTech Connect

    Mukhopadhyay, S.; Tsang, Y.; Finsterle, S.

    2009-01-15

    A simple conceptual model has been recently developed for analyzing pressure and temperature data from flowing fluid temperature logging (FFTL) in unsaturated fractured rock. Using this conceptual model, we developed an analytical solution for FFTL pressure response, and a semianalytical solution for FFTL temperature response. We also proposed a method for estimating fracture permeability from FFTL temperature data. The conceptual model was based on some simplifying assumptions, particularly that a single-phase airflow model was used. In this paper, we develop a more comprehensive numerical model of multiphase flow and heat transfer associated with FFTL. Using this numerical model, we perform a number of forward simulations to determine the parameters that have the strongest influence on the pressure and temperature response from FFTL. We then use the iTOUGH2 optimization code to estimate these most sensitive parameters through inverse modeling and to quantify the uncertainties associated with these estimated parameters. We conclude that FFTL can be utilized to determine permeability, porosity, and thermal conductivity of the fracture rock. Two other parameters, which are not properties of the fractured rock, have strong influence on FFTL response. These are pressure and temperature in the borehole that were at equilibrium with the fractured rock formation at the beginning of FFTL. We illustrate how these parameters can also be estimated from FFTL data.

  17. MODELING COUPLED PROCESSES OF MULTIPHASE FLOW AND HEAT TRANSFER IN UNSATURATED FRACTURED ROCK

    SciTech Connect

    Y. Wu; S. Mukhopadhyay; K. Zhang; G.S. Bodvarsson

    2006-02-28

    A mountain-scale, thermal-hydrologic (TH) numerical model is developed for investigating unsaturated flow behavior in response to decay heat from the radioactive waste repository at Yucca Mountain, Nevada, USA. The TH model, consisting of three-dimensional (3-D) representations of the unsaturated zone, is based on the current repository design, drift layout, and thermal loading scenario under estimated current and future climate conditions. More specifically, the TH model implements the current geological framework and hydrogeological conceptual models, and incorporates the most updated, best-estimated input parameters. This mountain-scale TH model simulates the coupled TH processes related to mountain-scale multiphase fluid flow, and evaluates the impact of radioactive waste heat on the hydrogeological system, including thermally perturbed liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature elevations, as well as the changes in water flux driven by evaporation/condensation processes and drainage between drifts. For a better description of the ambient geothermal condition of the unsaturated zone system, the TH model is first calibrated against measured borehole temperature data. The ambient temperature calibration provides the necessary surface and water table boundary as well as initial conditions. Then, the TH model is used to obtain scientific understanding of TH processes in the Yucca Mountain unsaturated zone under the designed schedule of repository thermal load.

  18. An incompressible two-dimensional multiphase particle-in-cell model for dense particle flows

    SciTech Connect

    Snider, D.M.; O`Rourke, P.J.; Andrews, M.J.

    1997-06-01

    A two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method is presented for dense particle flows. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Difficulties associated with calculating interparticle interactions for dense particle flows with volume fractions above 5% have been eliminated by mapping particle properties to a Eulerian grid and then mapping back computed stress tensors to particle positions. This approach utilizes the best of Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. The solution scheme allows for distributions of types, sizes, and density of particles, with no numerical diffusion from the Lagrangian particle calculations. The computational method is implicit with respect to pressure, velocity, and volume fraction in the continuum solution thus avoiding courant limits on computational time advancement. MP-PIC simulations are compared with one-dimensional problems that have analytical solutions and with two-dimensional problems for which there are experimental data.

  19. Multiphase flow of carbon dioxide and brine in dual porosity carbonates

    NASA Astrophysics Data System (ADS)

    Pentland, Christopher; Oedai, Sjaam; Ott, Holger

    2014-05-01

    The storage of carbon dioxide in subsurface formations presents a challenge in terms of multiphase flow characterisation. Project planning requires an understanding of multiphase flow characteristics such as the relationship between relative permeability and saturation. At present there are only a limited number of relative permeability relations for carbon dioxide-brine fluid systems, most of which are measured on sandstone rocks. In this study coreflood experiments are performed to investigate the relative permeability of carbon dioxide and brine in two dual porosity carbonate systems. Carbon dioxide is injected into the brine saturated rocks in a primary drainage process. The rock fluid system is pre-equilibrated to avoid chemical reactions and physical mass transfer between phases. The pressure drop across the samples, the amount of brine displaced and the saturation distribution within the rocks are measured. The experiments are repeated on the same rocks for the decane-brine fluid system. The experimental data is interpreted by simulating the experiments with a continuum scale Darcy solver. Selected functional representations of relative permeability are investigated, the parameters of which are chosen such that a least squares objective function is minimised (i.e. the difference between experimental observations and simulated response). The match between simulation and measurement is dependent upon the form of the functional representations. The best agreement is achieved with the Corey [Brooks and Corey, 1964] or modified Corey [Masalmeh et al., 2007] functions which best represent the relative permeability of brine at low brine saturations. The relative permeability of carbon dioxide is shown to be lower than the relative permeability of decane over the saturation ranges investigated. The relative permeability of the brine phase is comparable for the two fluid systems. These observations are consistent with the rocks being water-wet. During the experiment

  20. Groundwater flow and transport modeling

    USGS Publications Warehouse

    Konikow, L.F.; Mercer, J.W.

    1988-01-01

    Deterministic, distributed-parameter, numerical simulation models for analyzing groundwater flow and transport problems have come to be used almost routinely during the past decade. A review of the theoretical basis and practical use of groundwater flow and solute transport models is used to illustrate the state-of-the-art. Because of errors and uncertainty in defining model parameters, models must be calibrated to obtain a best estimate of the parameters. For flow modeling, data generally are sufficient to allow calibration. For solute-transport modeling, lack of data not only limits calibration, but also causes uncertainty in process description. Where data are available, model reliability should be assessed on the basis of sensitivity tests and measures of goodness-of-fit. Some of these concepts are demonstrated by using two case histories. ?? 1988.

  1. An application of numerical simulation of multiphase flow for the redesign of a mixer agitator in Pb refining process

    NASA Astrophysics Data System (ADS)

    Donizak, J.; Jarosz, P.; Kraszewska, A.; Sarre, P.

    2014-08-01

    The paper presents numerical simulation of multiphase turbulent flow in a mixing crucible unit. Results of simulation were used for redesign of mixer agitator to achieve better performance of the Pb refining process. The simulation is based on Euler-Lagrange description of turbulent multiphase flow with the one way coupling, due to low concentration of solid state particles and significant differences in density of coexisting phases, base metal and particles. Dispersions of solid particles are traced using stochastic-deterministic approach. The developed construction of an agitator has been tested in the industrial Pb refining factory, giving very promising results in comparison with long term statistical data. Duration of unit operations of removal copper and tin was reduced of about 40% together with even better removal efficiency and less energy and reagents consumption.

  2. Interface deformation in low reynolds number multiphase flows: Applications to selected problems in geodynamics

    SciTech Connect

    Gable, C.; Travis, B.J.; O`Connell, R.J.; Stone, H.A.

    1995-06-01

    Flow in the mantle of terrestrial planets produces stresses and topography on the planet`s surface which may allow us to infer the dynamics and evolution of the planet`s -interior. This project is directed towards understanding the relationship between dynamical processes related to buoyancy-driven flow and the observable expression (e.g. earthquakes, surface topography) of the flow. Problems considered include the ascent of mantle plumes and their interaction with compositional discontinuities, the deformation of subducted slabs, and effects of lateral viscosity variations on post-glacial rebound. We find that plumes rising from the lower mantle into a lower-viscosity upper mantle become extended vertically. As the plume spreads beneath the planet`s surface, the dynamic topography changes from a bell-shape to a plateau shape. The topography and surface stresses associated . with surface features called arachnoids, novae and coronae on Venus are consistent with the surface expression of a rising and spreading buoyant volume of fluid. Short wavelength viscosity variations, or sharp variations of lithosphere thickness, have a large effect on surface stresses. This study also considers the interaction and deformation of buoyancy-driven drops and bubbles in low Reynolds number multiphase systems. Applications include bubbles in magmas, the coalescence of liquid iron drops during core formation, and a wide range of industrial applications. Our methodology involves a combination of numerical boundary integral calculations, experiments and analytical work. For example, we find that for deformable drops the effects of deformation result in the vertical alignment of initially horizontally offset drops, thus enhancing the rate of coalescence.

  3. Investigating the effect of external water on magma ascent dynamics with a new multiphase flow numerical model

    NASA Astrophysics Data System (ADS)

    De'Michieli Vitturi, M.; Neri, A.; La Spina, G.; Clarke, A. B.

    2013-12-01

    The study of deposits produced by explosive eruptions of Campi Flegrei and Vesuvio suggests that important phases of these events have been characterized by a significant interaction of magma with external water. Despite that, the influence of external water on eruption dynamics and its potential hazard have not been studied in depth. In this work we adopted a 1D non-isothermal multi-phase flow model describing the dynamics of magma ascent inside a volcanic conduit. The new model is based on the theory of thermodynamically compatible systems that allows formulation of the governing transport equations as a hyperbolic system of partial differential equations in conservative form. The model represents a significant advance with respect to previous simplified descriptions of the magma ascent dynamics in that it: 1) is capable of treating both dilute and dense flow regimes; 2) describes flow above and below the fragmentation level in a coupled and consistent way; 3) quantifies the interaction between the two phases forming the magmatic mixture (both in the bubbly-flow and gas-particle regimes) with two distinct pressures and velocities; 4) accounts for disequilibrium crystallization and degassing; 5) treats the dissolved water as a separate phase with its own equation of state and; 6) allows for instantaneous or delayed vaporization of the external water from an aquifer. Here we investigate, through a sensitivity analysis, the role of different system parameters, in particular those related to the inflow of non-magmatic volatiles, in controlling vent conditions and eruptive style for conditions representative of Plinian (e.g. Agnano Monte Spina) eruptions at Campi Flegrei. Model results show that mass flux at the vent is primarily controlled by the quantity of engulfed external water, when this inflow occurs below the fragmentation level, whereas small changes in mass flux are produced when the interaction occurs above the fragmentation level. In particular it is worth

  4. Investigation of Gas and Liquid Multiphase Flow in the Rheinsahl-Heraeus (RH) Reactor by Using the Euler-Euler Approach

    NASA Astrophysics Data System (ADS)

    Chen, Gujun; He, Shengping; Li, Yugang; Guo, Yintao; Wang, Qian

    2016-08-01

    In the present work, a mathematical model was developed to understand the multiphase flow behavior in a Rheinsahl-Heraeus (RH) reactor by using the Euler-Euler approach, and the effects of initial bubble diameter, nonequilibrium expansion of bubble caused by sudden thermal effect and sharp pressure drop, and various interphase forces were considered and clarified. The simulation results of mixing time, liquid circulation rate, and local liquid velocity in RH agree well with the measured results. The result indicates that the initial bubble diameter has a weak impact on the multiphase flow but that the bubble expansion has a tremendous impact on it for an actual RH. Meanwhile, the drag force and turbulent dispersion force strongly influence the multiphase flow, whereas the lift force and virtual mass force only have negligible influence on it. Furthermore, the turbulent dispersion force should be responsible for reasonable prediction of multiphase flow behavior in the RH reactor.

  5. AOI 1— COMPUTATIONAL ENERGY SCIENCES:MULTIPHASE FLOW RESEARCH High-fidelity multi-phase radiation module for modern coal combustion systems

    SciTech Connect

    Modest, Michael

    2013-11-15

    The effects of radiation in particle-laden flows were the object of the present research. The presence of particles increases optical thickness substantially, making the use of the “optically thin” approximation in most cases a very poor assumption. However, since radiation fluxes peak at intermediate optical thicknesses, overall radiative effects may not necessarily be stronger than in gas combustion. Also, the spectral behavior of particle radiation properties is much more benign, making spectral models simpler (and making the assumption of a gray radiator halfway acceptable, at least for fluidized beds when gas radiation is not large). On the other hand, particles scatter radiation, making the radiative transfer equation (RTE) much more di fficult to solve. The research carried out in this project encompassed three general areas: (i) assessment of relevant radiation properties of particle clouds encountered in fluidized bed and pulverized coal combustors, (ii) development of proper spectral models for gas–particulate mixtures for various types of two-phase combustion flows, and (iii) development of a Radiative Transfer Equation (RTE) solution module for such applications. The resulting models were validated against artificial cases since open literature experimental data were not available. The final models are in modular form tailored toward maximum portability, and were incorporated into two research codes: (i) the open-source CFD code OpenFOAM, which we have extensively used in our previous work, and (ii) the open-source multi-phase flow code MFIX, which is maintained by NETL.

  6. A Multiphase Flow in the Antroduodenal Portion of the Gastrointestinal Tract: A Mathematical Model.

    PubMed

    Trusov, P V; Zaitseva, N V; Kamaltdinov, M R

    2016-01-01

    A group of authors has developed a multilevel mathematical model that focuses on functional disorders in a human body associated with various chemical, physical, social, and other factors. At this point, the researchers have come up with structure, basic definitions and concepts of a mathematical model at the "macrolevel" that allow describing processes in a human body as a whole. Currently we are working at the "mesolevel" of organs and systems. Due to complexity of the tasks, this paper deals with only one meso-fragment of a digestive system model. It describes some aspects related to modeling multiphase flow in the antroduodenal portion of the gastrointestinal tract. Biochemical reactions, dissolution of food particles, and motor, secretory, and absorbing functions of the tract are taken into consideration. The paper outlines some results concerning influence of secretory function disorders on food dissolution rate and tract contents acidity. The effect which food density has on inflow of food masses from a stomach to a bowel is analyzed. We assume that the future development of the model will include digestive enzymes and related reactions of lipolysis, proteolysis, and carbohydrates breakdown. PMID:27413393

  7. Sub-grid drag models for horizontal cylinder arrays immersed in gas-particle multiphase flows

    SciTech Connect

    Sarkar, Avik; Sun, Xin; Sundaresan, Sankaran

    2013-09-08

    Immersed cylindrical tube arrays often are used as heat exchangers in gas-particle fluidized beds. In multiphase computational fluid dynamics (CFD) simulations of large fluidized beds, explicit resolution of small cylinders is computationally infeasible. Instead, the cylinder array may be viewed as an effective porous medium in coarse-grid simulations. The cylinders' influence on the suspension as a whole, manifested as an effective drag force, and on the relative motion between gas and particles, manifested as a correction to the gas-particle drag, must be modeled via suitable sub-grid constitutive relationships. In this work, highly resolved unit-cell simulations of flow around an array of horizontal cylinders, arranged in a staggered configuration, are filtered to construct sub-grid, or `filtered', drag models, which can be implemented in coarse-grid simulations. The force on the suspension exerted by the cylinders is comprised of, as expected, a buoyancy contribution, and a kinetic component analogous to fluid drag on a single cylinder. Furthermore, the introduction of tubes also is found to enhance segregation at the scale of the cylinder size, which, in turn, leads to a reduction in the filtered gas-particle drag.

  8. A Multiphase Flow in the Antroduodenal Portion of the Gastrointestinal Tract: A Mathematical Model

    PubMed Central

    Trusov, P. V.

    2016-01-01

    A group of authors has developed a multilevel mathematical model that focuses on functional disorders in a human body associated with various chemical, physical, social, and other factors. At this point, the researchers have come up with structure, basic definitions and concepts of a mathematical model at the “macrolevel” that allow describing processes in a human body as a whole. Currently we are working at the “mesolevel” of organs and systems. Due to complexity of the tasks, this paper deals with only one meso-fragment of a digestive system model. It describes some aspects related to modeling multiphase flow in the antroduodenal portion of the gastrointestinal tract. Biochemical reactions, dissolution of food particles, and motor, secretory, and absorbing functions of the tract are taken into consideration. The paper outlines some results concerning influence of secretory function disorders on food dissolution rate and tract contents acidity. The effect which food density has on inflow of food masses from a stomach to a bowel is analyzed. We assume that the future development of the model will include digestive enzymes and related reactions of lipolysis, proteolysis, and carbohydrates breakdown. PMID:27413393

  9. Entropic lattice Boltzmann method for multiphase flows: Fluid-solid interfaces

    NASA Astrophysics Data System (ADS)

    Mazloomi M., Ali; Chikatamarla, Shyam S.; Karlin, Iliya V.

    2015-08-01

    The recently introduced entropic lattice Boltzmann model (ELBM) for multiphase flows [A. Mazloomi M., S. S. Chikatamarla, and I. V. Karlin, Phys. Rev. Lett. 114, 174502 (2015), 10.1103/PhysRevLett.114.174502] is extended to the simulation of dynamic fluid-solid interface problems. The thermodynamically consistent, nonlinearly stable ELBM together with a polynomial representation of the equation of state enables us to investigate the dynamics of the contact line in a wide range of applications, from capillary filling to liquid drop impact onto a flat surfaces with different wettability. The static interface behavior is tested by means of the liquid column in a channel to verify the Young-Laplace law. The numerical results of a capillary filling problem in a channel with wettability gradient show an excellent match with the existing analytical solution. Simulations of drop impact onto both wettable and nonwettable surfaces show that the ELBM reproduces the experimentally observed drop behavior in a quantitative manner. Results reported herein demonstrate that the present model is a promising alternative for studying the vapor-liquid-solid interface dynamics.

  10. Unstructured LES of Reacting Multiphase Flows in Realistic Gas Turbine Combustors

    NASA Technical Reports Server (NTRS)

    Ham, Frank; Apte, Sourabh; Iaccarino, Gianluca; Wu, Xiao-Hua; Herrmann, Marcus; Constantinescu, George; Mahesh, Krishnan; Moin, Parviz

    2003-01-01

    As part of the Accelerated Strategic Computing Initiative (ASCI) program, an accurate and robust simulation tool is being developed to perform high-fidelity LES studies of multiphase, multiscale turbulent reacting flows in aircraft gas turbine combustor configurations using hybrid unstructured grids. In the combustor, pressurized gas from the upstream compressor is reacted with atomized liquid fuel to produce the combustion products that drive the downstream turbine. The Large Eddy Simulation (LES) approach is used to simulate the combustor because of its demonstrated superiority over RANS in predicting turbulent mixing, which is central to combustion. This paper summarizes the accomplishments of the combustor group over the past year, concentrating mainly on the two major milestones achieved this year: 1) Large scale simulation: A major rewrite and redesign of the flagship unstructured LES code has allowed the group to perform large eddy simulations of the complete combustor geometry (all 18 injectors) with over 100 million control volumes; 2) Multi-physics simulation in complex geometry: The first multi-physics simulations including fuel spray breakup, coalescence, evaporation, and combustion are now being performed in a single periodic sector (1/18th) of an actual Pratt & Whitney combustor geometry.

  11. Computational Fluid Dynamics (CFD) Simulations on Multiphase Flow in Mechanically Agitated Seed Precipitation Tank

    NASA Astrophysics Data System (ADS)

    Zhao, Hong-Liang; Liu, Yan; Zhang, Ting-An; Gu, Songqing; Zhang, Chao

    2014-07-01

    The large-scale mechanically agitated tank has been widely used in the decomposition process of sodium aluminate solution in the alumina industry. The mixing process in three types of seed precipitation tanks (Robin, Ekato, and improved Ekato) stirred with multiple impellers was compared by using computational fluid dynamics, respectively. The flow field, solid distribution, mixing time, and power consumption were numerically simulated by adopting a Eulerian granular multiphase model and a standard k- ɛ turbulence model. A steady multiple reference frame approach was used to represent impeller rotation. Compared with the Robin tank, the Ekato tank can generate an axial circulation loop, which is better for fluid mixing and solid suspension; meanwhile about half of the power can be saved. With future improvements in the Ekato tank, the fluid mixing and exchanging can be enhanced under the interaction of a lengthened Intermig impeller coupled with sloped baffles. With a little increase in power consumption, the maximum of the relative solid concentration difference in the whole tank can be maintained within 3%, which meets the design requirement.

  12. Ensemble phase averaging equations for multiphase flows in porous media, part I: the bundle-of-tubes model

    SciTech Connect

    Yang, Dali; Zhang, Duan; Currier, Robert

    2008-01-01

    A bundle-of-tubes construct is used as a model system to study ensemble averaged equations for multiphase flow in a porous material. Momentum equations for the fluid phases obtained from the method are similar to Darcy's law, but with additional terms. We study properties of the additional terms, and the conditions under which the averaged equations can be approximated by the diffusion model or the extended Darcy's law as often used in models for multiphase flows in porous media. Although the bundle-of-tubes model is perhaps the simplest model for a porous material, the ensemble averaged equation technique developed in this paper assumes the very same form in more general treatments described in Part 2 of the present work (Zhang 2009). Any model equation system intended for the more general cases must be understood and tested first using simple models. The concept of ensemble phase averaging is dissected here in physical terms, without involved mathematics through its application to the idealized bundle-of-tubes model for multiphase flow in porous media.

  13. Subsurface Flow and Contaminant Transport

    2000-09-19

    FACT is a transient three-dimensional, finite element code for simulating isothermal groundwater flow, moisture movement, and solute transport in variably and/or fully saturated subsurface porous media. Both single and dual-domain transport formulations are available. Transport mechanisms considered include advection, hydrodynamic dispersion, linear adsorption, mobile/immobile mass transfer and first-order degradation. A wide range of acquifier conditions and remediation systems commonly encountered in the field can be simulated. Notable boundary condition (BC) options include, a combined rechargemore » and drain BC for simulating recirculation wells, and a head dependent well BC that computes flow based on specified drawdown. The code is designed to handle highly heterogenous, multi-layer, acquifer systems in a numerically efficient manner. Subsurface structure is represented with vertically distorted rectangular brick elements in a Cartesian system. The groundwater flow equation is approximated using the Bubnov-Galerkin finite element method in conjunction with an efficient symmetric Preconditioned Conjugate Gradient (PCG) ICCG matrix solver. The solute transport equation is approximated using an upstream weighted residual finite element method designed to alleviate numerical oscillation. An efficient asymmetric PCG (ORTHOMIN) matrix solver is employed for transport. For both the flow and transport equations, element matrices are computed from either influence coefficient formulas for speed, or two point Gauss-Legendre quadrature for accuracy. Non-linear flow problems can be solved using either Newton-Ralphson linearization or Picard iteration, with under-relaxation formulas to further enhance convergence. Dynamic memory allocation is implemented using Fortran 90 constructs. FACT coding is clean and modular.« less

  14. Multiphase flow modeling of a crude-oil spill site with a bimodal permeability distribution

    USGS Publications Warehouse

    Dillard, L.A.; Essaid, H.I.; Herkelrath, W.N.

    1997-01-01

    Fluid saturation, particle-size distribution, and porosity measurements were obtained from 269 core samples collected from six boreholes along a 90-m transect at a subregion of a crude-oil spill site, the north pool, near Bemidji, Minnesota. The oil saturation data, collected 11 years after the spill, showed an irregularly shaped oil body that appeared to be affected by sediment spatial variability. The particle-size distribution data were used to estimate the permeability (k) and retention curves for each sample. An additional 344 k estimates were obtained from samples previously collected at the north pool. The 613 k estimates were distributed bimodal log normally with the two population distributions corresponding to the two predominant lithologies: a coarse glacial outwash deposit and fine-grained interbedded lenses. A two-step geostatistical approach was used to generate a conditioned realization of k representing the bimodal heterogeneity. A cross-sectional multiphase flow model was used to simulate the flow of oil and water in the presence of air along the north pool transect for an 11-year period. The inclusion of a representation of the bimodal aquifer heterogeneity was crucial for reproduction of general features of the observed oil body. If the bimodal heterogeneity was characterized, hysteresis did not have to be incorporated into the model because a hysteretic effect was produced by the sediment spatial variability. By revising the relative permeability functional relation, an improved reproduction of the observed oil saturation distribution was achieved. The inclusion of water table fluctuations in the model did not significantly affect the simulated oil saturation distribution.

  15. Inter-phase heat transfer and energy coupling in turbulent dispersed multiphase flows

    NASA Astrophysics Data System (ADS)

    Ling, Y.; Balachandar, S.; Parmar, M.

    2016-03-01

    The present paper addresses important fundamental issues of inter-phase heat transfer and energy coupling in turbulent dispersed multiphase flows through scaling analysis. In typical point-particle or two-fluid approaches, the fluid motion and convective heat transfer at the particle scale are not resolved and the momentum and energy coupling between fluid and particles are provided by proper closure models. By examining the kinetic energy transfer due to the coupling forces from the macroscale to microscale fluid motion, closure models are obtained for the contributions of the coupling forces to the energy coupling. Due to the inviscid origin of the added-mass force, its contribution to the microscale kinetic energy does not contribute to dissipative transfer to fluid internal energy as was done by the quasi-steady force. Time scale analysis shows that when the particle is larger than a critical diameter, the diffusive-unsteady kernel decays at a time scale that is smaller than the Kolmogorov time scale. As a result, the computationally costly Basset-like integral form of diffusive-unsteady heat transfer can be simplified to a non-integral form. Conventionally, the fluid-to-particle volumetric heat capacity ratio is used to evaluate the relative importance of the unsteady heat transfer to the energy balance of the particles. Therefore, for gas-particle flows, where the fluid-to-particle volumetric heat capacity ratio is small, unsteady heat transfer is usually ignored. However, the present scaling analysis shows that for small fluid-to-particle volumetric heat capacity ratio, the importance of the unsteady heat transfer actually depends on the ratio between the particle size and the Kolmogorov scale. Furthermore, the particle mass loading multiplied by the heat capacity ratio is usually used to estimate the importance of the thermal two-way coupling effect. Through scaling argument, improved estimates are established for the energy coupling parameters of each

  16. Effect of wettability on scale-up of multiphase flow from core-scale to reservoir fine-grid-scale

    SciTech Connect

    Chang, Y.C.; Mani, V.; Mohanty, K.K.

    1997-08-01

    Typical field simulation grid-blocks are internally heterogeneous. The objective of this work is to study how the wettability of the rock affects its scale-up of multiphase flow properties from core-scale to fine-grid reservoir simulation scale ({approximately} 10{prime} x 10{prime} x 5{prime}). Reservoir models need another level of upscaling to coarse-grid simulation scale, which is not addressed here. Heterogeneity is modeled here as a correlated random field parameterized in terms of its variance and two-point variogram. Variogram models of both finite (spherical) and infinite (fractal) correlation length are included as special cases. Local core-scale porosity, permeability, capillary pressure function, relative permeability functions, and initial water saturation are assumed to be correlated. Water injection is simulated and effective flow properties and flow equations are calculated. For strongly water-wet media, capillarity has a stabilizing/homogenizing effect on multiphase flow. For small variance in permeability, and for small correlation length, effective relative permeability can be described by capillary equilibrium models. At higher variance and moderate correlation length, the average flow can be described by a dynamic relative permeability. As the oil wettability increases, the capillary stabilizing effect decreases and the deviation from this average flow increases. For fractal fields with large variance in permeability, effective relative permeability is not adequate in describing the flow.

  17. The role of fault zones in affecting multiphase flow at Yucca Mountain

    SciTech Connect

    Tsang, Y.W.; Pruess, K.; Wang, J.S.Y.

    1993-01-01

    Within Yucca Mountain, the potential High Level Nuclear-Waste Repository site, there are large scale fault zones, most notably the Ghost Dance Fault. The effect of such high-permeability, large scale discontinuities on the flow and transport is a question of concern in assessing the ability of the site to isolate radio-nuclides from the biosphere. In this paper, we present a numerical study to investigate the role of the fault in affecting both the liquid and gas phase flows in the natural state at Yucca Mountain prior to waste emplacement, as well as after the waste emplacement when the fluid flow is strongly heat-driven. Our study shows that if the characteristic curves of the Ghost Dance Fault obey the same relationship between saturated permeability and capillary scaling parameter, as is observed from the measured data of Yucca Mountain welded and nonwelded tuffs. Apache Leap tuffs, and Las Cruces soil, then a large saturated permeability of the Ghost Dance Fault will play little role in channeling water into the fault, or inenhancing the flow of water down the fault. However, the Fault may greatly enhance the upward gas flow after emplacement of waste. This may have implications on the transport of gaseous radio-nuclides such as C{sup 14}. The results of this study also focus attention on the need for field measurements of fluid flow in the fault zones.

  18. Coupled modeling of non-isothermal multiphase flow, solutetransport and reactive chemistry in porous and fractured media: 1. ModelDevelopment and Validation

    SciTech Connect

    Xu, Tianfu; Pruess, Karsten

    1998-09-01

    Coupled modeling of subsurface multiphase fluid and heat flow, solute transport and chemical reactions can be used for the assessment of acid mine drainage remediation, mineral deposition, waste disposal sites, hydrothermal convection, contaminant transport, and groundwater quality. Here they present a numerical simulation model, TOUGHREACT, which considers non-isothermal multi-component chemical transport in both liquid and gas phases. A wide range of subsurface thermo-physical-chemical processes is considered. The model can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity. The model can accommodate any number of chemical species present in liquid, gas and solid phases. A variety of equilibrium chemical reactions is considered, such as aqueous complexation, gas dissolution/exsolution, cation exchange, and surface complexation. Mineral dissolution/precipitation can proceed either subject to local equilibrium or kinetic conditions. The coupled model employs a sequential iteration approach with reasonable computing efficiency. The development of the governing equations and numerical approach is presented along with the discussion of the model implementation and capabilities. The model is verified for a wide range of subsurface physical and chemical processes. The model is well suited for flow and reactive transport in variably saturated porous and fractured media. In the second of this two-part paper, three applications covering a variety of problems are presented to illustrate the capabilities of the model.

  19. Multiphase imaging of gas flow in a nanoporous material usingremote detection NMR

    SciTech Connect

    Harel, Elad; Granwehr, Josef; Seeley, Juliette A.; Pines, Alex

    2005-10-03

    Pore structure and connectivity determine how microstructured materials perform in applications such as catalysis, fluid storage and transport, filtering, or as reactors. We report a model study on silica aerogel using a recently introduced time-of-flight (TOF) magnetic resonance imaging technique to characterize the flow field and elucidate the effects of heterogeneities in the pore structure on gas flow and dispersion with Xe-129 as the gas-phase sensor. The observed chemical shift allows the separate visualization of unrestricted xenon and xenon confined in the pores of the aerogel. The asymmetrical nature of the dispersion pattern alludes to the existence of a stationary and a flow regime in the aerogel. An exchange time constant is determined to characterize the gas transfer between them. As a general methodology, this technique provides new insights into the dynamics of flow in porous media where multiple phases or chemical species may be present.

  20. An application of miniscale experiments on Earth to refine microgravity analysis of adiabatic multiphase flow in space

    NASA Technical Reports Server (NTRS)

    Rothe, Paul H.; Martin, Christine; Downing, Julie

    1994-01-01

    Adiabatic two-phase flow is of interest to the design of multiphase fluid and thermal management systems for spacecraft. This paper presents original data and unifies existing data for capillary tubes as a step toward assessing existing multiphase flow analysis and engineering software. Comparisons of theory with these data once again confirm the broad accuracy of the theory. Due to the simplicity and low cost of the capillary tube experiments, which were performed on earth, we were able to closely examine for the first time a flow situation that had not previously been examined appreciably by aircraft tests. This is the situation of a slug flow at high quality, near transition to annular flow. Our comparison of software calculations with these data revealed overprediction of pipeline pressure drop by up to a factor of three. In turn, this finding motivated a reexamination of the existing theory, and then development of a new analytical and is in far better agreement with the data. This sequence of discovery illustrates the role of inexpensive miniscale modeling on earth to anticipate microgravity behavior in space and to complete and help define needs for aircraft tests.

  1. Numerical Modeling of Multiphase Fluid Flow in Ore-Forming Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Weis, P.; Driesner, T.; Coumou, D.; Heinrich, C. A.

    2007-12-01

    Two coexisting fluid phases - a variably saline liquid and a vapor phase - are ubiquitous in ore-forming and other hydrothermal systems. Understanding the dynamics of phase separation and the distinct physical and chemical evolution of the two fluids probably plays a key role in generating different ore deposit types, e.g. porphyry type, high and low sulfidation Cu-Mo-Au deposits. To this end, processes within hydrothermal systems have been studied with a refined numerical model describing fluid flow in transient porous media (CSP~5.0). The model is formulated on a mass, energy and momentum conserving finite-element-finite-volume (FEFV) scheme and is capable of simulating multiphase flow of NaCl-H20 fluids. Fluid properties are computed from an improved equation of state (SOWAT~2.0). It covers conditions with temperatures of up to 1000 degrees~C, pressures of up to 500 MPa, and fluid salinities of 0~to 100%~NaCl. In particular, the new set-up allows for a more accurate description of fluid phase separation during boiling of hydrothermal fluids into a vapor and a brine phase. The geometric flexibility of the FEFV-meshes allows for investigations of a large variety of geological settings, ranging from ore-forming processes in magmatic hydrothermal system to the dynamics of black smokers at mid-ocean ridges. Simulations demonstrated that hydrothermal convection patterns above cooling plutons are primarily controlled by the system-scale permeability structure. In porphyry systems, high fluid pressures develop in a stock rising from the magma chamber which can lead to rock failure and, eventually, an increase in permeability due to hydrofracturing. Comparisons of the thermal evolution as inferred from modeling studies with data from fluid inclusion studies of the Pb-Zn deposits of Madan, Bulgaria are in a strikingly good agreement. This indicates that cross-comparisons of field observations, analytical data and numerical simulations will become a powerful tool towards a

  2. Three Dimensional Simulations of Multiphase Flows Using a Lattice Boltzmann Method Suitable for High Density Ratios - 12126

    SciTech Connect

    Gokaltun, Seckin; McDaniel, Dwayne; Roelant, David

    2012-07-01

    Multiphase flows involving gas and liquid phases can be observed in engineering operations at various Department of Energy sites, such as mixing of slurries using pulsed-air mixers and hydrogen gas generation in liquid waste tanks etc. The dynamics of the gas phase in the liquid domain play an important role in the mixing effectiveness of the pulsed-air mixers or in the level of gas pressure build-up in waste tanks. To understand such effects, computational fluid dynamics methods (CFD) can be utilized by developing a three-dimensional computerized multiphase flow model that can predict accurately the behavior of gas motion inside liquid-filled tanks by solving the governing mathematical equations that represent the physics of the phenomena. In this paper, such a CFD method, lattice Boltzmann method (LBM), is presented that can model multiphase flows accurately and efficiently. LBM is favored over traditional Navier-Stokes based computational models since interfacial forces are handled more effectively in LBM. The LBM is easier to program, more efficient to solve on parallel computers, and has the ability to capture the interface between different fluid phases intrinsically. The LBM used in this paper can solve for the incompressible and viscous flow field in three dimensions, while at the same time, solve the Cahn-Hillard equation to track the position of the gas-liquid interface specifically when the density and viscosity ratios between the two fluids are high. This feature is of primary importance since the previous LBM models proposed for multiphase flows become unstable when the density ratio is larger than 10. The ability to provide stable and accurate simulations at large density ratios becomes important when the simulation case involves fluids such as air and water with a density ratio around 1000 that are common to many engineering problems. In order to demonstrate the capability of the 3D LBM method at high density ratios, a static bubble simulation is

  3. Stochastic Simulation of Lagrangian Particle Transport in Turbulent Flows

    NASA Astrophysics Data System (ADS)

    Sun, Guangyuan

    This dissertation presents the development and validation of the One Dimensional Turbulence (ODT) multiphase model in the Lagrangian reference frame. ODT is a stochastic model that captures the full range of length and time scales and provides statistical information on fine-scale turbulent-particle mixing and transport at low computational cost. The flow evolution is governed by a deterministic solution of the viscous processes and a stochastic representation of advection through stochastic domain mapping processes. The three algorithms for Lagrangian particle transport are presented within the context of the ODT approach. The Type-I and -C models consider the particle-eddy interaction as instantaneous and continuous change of the particle position and velocity, respectively. The Type-IC model combines the features of the Type-I and -C models. The models are applied to the multi-phase flows in the homogeneous decaying turbulence and turbulent round jet. Particle dispersion, dispersion coefficients, and velocity statistics are predicted and compared with experimental data. The models accurately reproduces the experimental data sets and capture particle inertial effects and trajectory crossing effect. A new adjustable particle parameter is introduced into the ODT model, and sensitivity analysis is performed to facilitate parameter estimation and selection. A novel algorithm of the two-way momentum coupling between the particle and carrier phases is developed in the ODT multiphase model. Momentum exchange between the phases is accounted for through particle source terms in the viscous diffusion. The source term is implemented in eddy events through a new kernel transformation and an iterative procedure is required for eddy selection. This model is applied to a particle-laden turbulent jet flow, and simulation results are compared with experimental measurements. The effect of particle addition on the velocities of the gas phase is investigated. The development of

  4. The multiphase flow system used in exploiting depleted reservoirs: water-based Micro-bubble drilling fluid

    NASA Astrophysics Data System (ADS)

    Li-hui, Zheng; Xiao-qing, He; Li-xia, Fu; Xiang-chun, Wang

    2009-02-01

    Water-based micro-bubble drilling fluid, which is used to exploit depleted reservoirs, is a complicated multiphase flow system that is composed of gas, water, oil, polymer, surfactants and solids. The gas phase is separate from bulk water by two layers and three membranes. They are "surface tension reducing membrane", "high viscosity layer", "high viscosity fixing membrane", "compatibility enhancing membrane" and "concentration transition layer of liner high polymer (LHP) & surfactants" from every gas phase centre to the bulk water. "Surface tension reducing membrane", "high viscosity layer" and "high viscosity fixing membrane" bond closely to pack air forming "air-bag", "compatibility enhancing membrane" and "concentration transition layer of LHP & surfactants" absorb outside "air-bag" to form "incompact zone". From another point of view, "air-bag" and "incompact zone" compose micro-bubble. Dynamic changes of "incompact zone" enable micro-bubble to exist lonely or aggregate together, and lead the whole fluid, which can wet both hydrophilic and hydrophobic surface, to possess very high viscosity at an extremely low shear rate but to possess good fluidity at a higher shear rate. When the water-based micro-bubble drilling fluid encounters leakage zones, it will automatically regulate the sizes and shapes of the bubbles according to the slot width of fracture, the height of cavern as well as the aperture of openings, or seal them by making use of high viscosity of the system at a very low shear rate. Measurements of the rheological parameters indicate that water-based micro-bubble drilling fluid has very high plastic viscosity, yield point, initial gel, final gel and high ratio of yield point and plastic viscosity. All of these properties make the multiphase flow system meet the requirements of petroleum drilling industry. Research on interface between gas and bulk water of this multiphase flow system can provide us with information of synthesizing effective agents to

  5. Modeling GPR data to interpret porosity and DNAPL saturations for calibration of a 3-D multiphase flow simulation

    USGS Publications Warehouse

    Sneddon, Kristen W.; Powers, Michael H.; Johnson, Raymond H.; Poeter, Eileen P.

    2002-01-01

    Dense nonaqueous phase liquids (DNAPLs) are a pervasive and persistent category of groundwater contamination. In an effort to better understand their unique subsurface behavior, a controlled and carefully monitored injection of PCE (perchloroethylene), a typical DNAPL, was performed in conjunction with the University of Waterloo at Canadian Forces Base Borden in 1991. Of the various geophysical methods used to monitor the migration of injected PCE, the U.S. Geological Survey collected 500-MHz ground penetrating radar (GPR) data. These data are used in determining calibration parameters for a multiphase flow simulation. GPR data were acquired over time on a fixed two-dimensional surficial grid as the DNAPL was injected into the subsurface. Emphasis is on the method of determining DNAPL saturation values from this time-lapse GPR data set. Interactive full-waveform GPR modeling of regularized field traces resolves relative dielectric permittivity versus depth profiles for pre-injection and later-time data. Modeled values are end members in recursive calculations of the Bruggeman-Hanai-Sen (BHS) mixing formula, yielding interpreted pre-injection porosity and post-injection DNAPL saturation values. The resulting interpreted physical properties of porosity and DNAPL saturation of the Borden test cell, defined on a grid spacing of 50 cm with 1-cm depth resolution, are used as observations for calibration of a 3-D multiphase flow simulation. Calculated values of DNAPL saturation in the subsurface at 14 and 22 hours after the start of injection, from both the GPR and the multiphase flow modeling, are interpolated volumetrically and presented for visual comparison.

  6. Insights into the use of time-lapse GPR data as observations for inverse multiphase flow simulations of DNAPL migration

    USGS Publications Warehouse

    Johnson, R.H.; Poeter, E.P.

    2007-01-01

    Perchloroethylene (PCE) saturations determined from GPR surveys were used as observations for inversion of multiphase flow simulations of a PCE injection experiment (Borden 9??m cell), allowing for the estimation of optimal bulk intrinsic permeability values. The resulting fit statistics and analysis of residuals (observed minus simulated PCE saturations) were used to improve the conceptual model. These improvements included adjustment of the elevation of a permeability contrast, use of the van Genuchten versus Brooks-Corey capillary pressure-saturation curve, and a weighting scheme to account for greater measurement error with larger saturation values. A limitation in determining PCE saturations through one-dimensional GPR modeling is non-uniqueness when multiple GPR parameters are unknown (i.e., permittivity, depth, and gain function). Site knowledge, fixing the gain function, and multiphase flow simulations assisted in evaluating non-unique conceptual models of PCE saturation, where depth and layering were reinterpreted to provide alternate conceptual models. Remaining bias in the residuals is attributed to the violation of assumptions in the one-dimensional GPR interpretation (which assumes flat, infinite, horizontal layering) resulting from multidimensional influences that were not included in the conceptual model. While the limitations and errors in using GPR data as observations for inverse multiphase flow simulations are frustrating and difficult to quantify, simulation results indicate that the error and bias in the PCE saturation values are small enough to still provide reasonable optimal permeability values. The effort to improve model fit and reduce residual bias decreases simulation error even for an inversion based on biased observations and provides insight into alternate GPR data interpretations. Thus, this effort is warranted and provides information on bias in the observation data when this bias is otherwise difficult to assess. ?? 2006 Elsevier B

  7. Modeling axisymmetric flow and transport.

    PubMed

    Langevin, Christian D

    2008-01-01

    Unmodified versions of common computer programs such as MODFLOW, MT3DMS, and SEAWAT that use Cartesian geometry can accurately simulate axially symmetric ground water flow and solute transport. Axisymmetric flow and transport are simulated by adjusting several input parameters to account for the increase in flow area with radial distance from the injection or extraction well. Logarithmic weighting of interblock transmissivity, a standard option in MODFLOW, can be used for axisymmetric models to represent the linear change in hydraulic conductance within a single finite-difference cell. Results from three test problems (ground water extraction, an aquifer push-pull test, and upconing of saline water into an extraction well) show good agreement with analytical solutions or with results from other numerical models designed specifically to simulate the axisymmetric geometry. Axisymmetric models are not commonly used but can offer an efficient alternative to full three-dimensional models, provided the assumption of axial symmetry can be justified. For the upconing problem, the axisymmetric model was more than 1000 times faster than an equivalent three-dimensional model. Computational gains with the axisymmetric models may be useful for quickly determining appropriate levels of grid resolution for three-dimensional models and for estimating aquifer parameters from field tests. PMID:18384599

  8. Modeling axisymmetric flow and transport

    USGS Publications Warehouse

    Langevin, C.D.

    2008-01-01

    Unmodified versions of common computer programs such as MODFLOW, MT3DMS, and SEAWAT that use Cartesian geometry can accurately simulate axially symmetric ground water flow and solute transport. Axisymmetric flow and transport are simulated by adjusting several input parameters to account for the increase in flow area with radial distance from the injection or extraction well. Logarithmic weighting of interblock transmissivity, a standard option in MODFLOW, can be used for axisymmetric models to represent the linear change in hydraulic conductance within a single finite-difference cell. Results from three test problems (ground water extraction, an aquifer push-pull test, and upconing of saline water into an extraction well) show good agreement with analytical solutions or with results from other numerical models designed specifically to simulate the axisymmetric geometry. Axisymmetric models are not commonly used but can offer an efficient alternative to full three-dimensional models, provided the assumption of axial symmetry can be justified. For the upconing problem, the axisymmetric model was more than 1000 times faster than an equivalent three-dimensional model. Computational gains with the axisymmetric models may be useful for quickly determining appropriate levels of grid resolution for three-dimensional models and for estimating aquifer parameters from field tests.

  9. A sectional coupling approach for the simulation of multi-phase reacting flow in a bent reactor

    SciTech Connect

    Chang, S.L.; Lottes, S.A.; Bouillard, J.X.; Petrick, M.

    1996-04-01

    Multi-phase reacting flows of a bent fluidized catalytic cracking (FCC) reactor have been simulated using the ICRKFLO code. A new sectional coupling approach has been developed to handle the complex geometry, which divides the bent reactor into two sections and computations are performed for the two sections successively. The computational results show that the ICRKFLO incorporated with the new sectional coupling approach can predict product yields very well compared with experimental data and can be used to identify critical processes and parameters which may be modified to improve the quality and quantity of the FCC products.

  10. Thermodynamics and Mass Transport in Multicomponent, Multiphase H2O Systems of Planetary Interest

    NASA Astrophysics Data System (ADS)

    Lu, Xinli; Kieffer, Susan W.

    2009-05-01

    Heat and mass transport in low-temperature, low-pressure H2O systems are important processes on Earth, and on a number of planets and moons in the Solar System. In most occurrences, these systems will contain other components, the so-called noncondensible gases, such as CO2, CO, SO2, CH4, and N2. The presence of the noncondensible components can greatly alter the thermodynamic properties of the phases and their flow properties as they move in and on the planets. We review various forms of phase diagrams that give information about pressure-temperature-volume-entropy-enthalpy-composition conditions in these complex systems. Fluid dynamic models must be coupled to the thermodynamics to accurately describe flow in gas-driven liquid and solid systems. The concepts are illustrated in detail by considering flow and flow instabilities such as geysering in modern geothermal systems on Earth, paleofluid systems on Mars, and cryogenic ice-gas systems on Mars and Enceladus. We emphasize that consideration of single-component end-member systems often leads to conclusions that exclude many qualitatively and quantitatively important phenomena.

  11. Coupling of Multiphase Flow and Geomechanics in Fractured Porous Media: Application to CO2 Leakages from Natural and Stimulated Fractures

    NASA Astrophysics Data System (ADS)

    Ezzedine, S. M.

    2015-12-01

    Leakage to the atmosphere of a significant fraction of injected CO2 would constitute a failure of a geological CO2 storage project from a greenhouse gas mitigation perspective. We present a numerical model that simulates flow and transport of CO2 into heterogeneous subsurface systems. The model, StoTran, is a flexible numerical environment that uses state-of-the-art finite element and finite volume methods and unstructured adaptive mesh refinement scheme implemented using MPI and OpenMP protocols. Multiphase flow equations and the geomechanical equations are implicitly solved and either fully or sequentially coupled. StoTran can address inverse and forward problems under deterministic or stochastic conditions. For the current study, StoTran has been used to simulate several scenarios spanning from a homogeneous single layered reservoir to heterogeneous multi-layered systems, which including cap-rock with embedded fractures, have been simulated under different operations of CO2 injection and CO2 leakages conditions. Results show the impact of the injection and leakage rates on the time evolution of the spread of the CO2 plume, its interception of the fractured cap-rock and the risk associated with the contamination of the overlaying aquifer. Spatial and temporal moments have been calculated for different, deterministic of stochastic, subsurface physical and chemical properties. Spatial moments enable assessing the extent of the region of investigation under conditions of uncertainty. Furthermore, several leakage scenarios show the intermittence behavior and development of the CO2 plume in the subsurface; its first interception with the fractures located further far from the injection well then, at a second stage, its interception with the fracture within the immediate vicinity of the injection well. We will present a remedy to CO2 leakages from the reservoir in order to enhance a long term containment of the injected CO2. This work performed under the auspices of

  12. DEVELOPMENT OF A COMPUTATIONAL MULTIPHASE FLOW MODEL FOR FISCHER TROPSCH SYNTHESIS IN A SLURRY BUBBLE COLUMN REACTOR

    SciTech Connect

    Donna Post Guillen; Tami Grimmett; Anastasia M. Gribik; Steven P. Antal

    2010-09-01

    The Hybrid Energy Systems Testing (HYTEST) Laboratory is being established at the Idaho National Laboratory to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. A central component of the HYTEST is the slurry bubble column reactor (SBCR) in which the gas-to-liquid reactions will be performed to synthesize transportation fuels using the Fischer Tropsch (FT) process. SBCRs are cylindrical vessels in which gaseous reactants (for example, synthesis gas or syngas) is sparged into a slurry of liquid reaction products and finely dispersed catalyst particles. The catalyst particles are suspended in the slurry by the rising gas bubbles and serve to promote the chemical reaction that converts syngas to a spectrum of longer chain hydrocarbon products, which can be upgraded to gasoline, diesel or jet fuel. These SBCRs operate in the churn-turbulent flow regime which is characterized by complex hydrodynamics, coupled with reacting flow chemistry and heat transfer, that effect reactor performance. The purpose of this work is to develop a computational multiphase fluid dynamic (CMFD) model to aid in understanding the physico-chemical processes occurring in the SBCR. Our team is developing a robust methodology to couple reaction kinetics and mass transfer into a four-field model (consisting of the bulk liquid, small bubbles, large bubbles and solid catalyst particles) that includes twelve species: (1) CO reactant, (2) H2 reactant, (3) hydrocarbon product, and (4) H2O product in small bubbles, large bubbles, and the bulk fluid. Properties of the hydrocarbon product were specified by vapor liquid equilibrium calculations. The absorption and kinetic models, specifically changes in species concentrations, have been incorporated into the mass continuity equation. The reaction rate is determined based on the macrokinetic model for a cobalt catalyst developed by Yates and Satterfield [1]. The

  13. Rugged Energy Landscapes in Multiphase Porous Media Flow: A Discrete-Domain Description

    NASA Astrophysics Data System (ADS)

    Cueto-Felgueroso, L.; Juanes, R.

    2015-12-01

    Immiscible displacements in porous media involve a complex sequence of pore-scale events, from the smooth, reversible displacement of interfaces to abrupt interfacial reconfigurations and rapid pore invasion cascades. Discontinuous changes in pressure or saturation have been referred to as Haines jumps, and they emerge as a key mechanism to understand the origin of hysteresis in porous media flow. Hysteresis persists at the many-pore scale: when multiple cycles of drainage and imbibition of a porous sample are conducted, a dense hysteresis diagram emerges. The interpretation of hysteresis as a consequence of irreversible transitions and multistability is at the heart of early hysteresis models, and in recent experiments, and points to an inherently non-equilibrium behavior. For a given volume fraction of fluids occupying the pore space, many stable configurations are possible, due to the tortuous network of nonuniform pores and throats that compose the porous medium, and to complex wetting and capillary transitions. Multistability indicates that porous media systems exhibit rugged energy landscapes, where the system may remain pinned at local energy minima for long times. We address the question of developing a zero-dimensional model that inherits the path-dependence and `'bursty'' behavior of immiscible displacements, and propose a discrete-domain model that captures the role of metastability and local equilibria in the origin of hysteresis. We describe the porous medium and fluid system as a discrete set of weakly connected, multistable compartments, charaterized by a unique free energy function. This description does not depend explicitly on past saturations, turning points, or drainage/imbibition labels. The system behaves hysteretically, and we rationalize its behavior as sweeping a complex metastability diagram, with dissipation arising from discrete switches among metastable branches. The hysteretic behavior of the pressure-saturation curve is controlled by

  14. The impact of reservoir conditions and rock heterogeneity on multiphase flow in CO2-brine-sandstone systems

    NASA Astrophysics Data System (ADS)

    Krevor, S. C.; Reynolds, C. A.; Al-Menhali, A.; Niu, B.

    2015-12-01

    Capillary strength and multiphase flow are key for modeling CO2 injection for CO2 storage. Past observations of multiphase flow in this system have raised important questions about the impact of reservoir conditions on flow through effects on wettability, interfacial tension and fluid-fluid mass transfer. In this work we report the results of an investigation aimed at resolving many of these outstanding questions for flow in sandstone rocks. The drainage capillary pressure, drainage and imbibition relative permeability, and residual trapping [1] characteristic curves have been characterized in Bentheimer and Berea sandstone rocks across a pressure range 5 - 20 MPa, temperatures 25 - 90 C and brine salinities 0-5M NaCl. Over 30 reservoir condition core flood tests were performed using techniques including the steady state relative permeability test, the semi-dynamic capillary pressure test, and a new test for the construction of the residual trapping initial-residual curve. Test conditions were designed to isolate effects of interfacial tension, viscosity ratio, density ratio, and salinity. The results of the tests show that, in the absence of rock heterogeneity, reservoir conditions have little impact on flow properties, consistent with continuum scale multiphase flow theory for water wet systems. The invariance of the properties is observed, including transitions of the CO2 from a gas to a liquid to a supercritical fluid, and in comparison with N2-brine systems. Variations in capillary pressure curves are well explained by corresponding changes in IFT although some variation may reflect small changes in wetting properties. The low viscosity of CO2at certain conditions results in sensitivity to rock heterogeneity. We show that (1) heterogeneity is the likely source of uncertainty around past relative permeability observations and (2) that appropriate scaling of the flow potential by a quantification of capillary heterogeneity allows for the selection of core flood

  15. Modeling and Measurements of Multiphase Flow and Bubble Entrapment in Steel Continuous Casting

    NASA Astrophysics Data System (ADS)

    Jin, Kai; Thomas, Brian G.; Ruan, Xiaoming

    2016-02-01

    In steel continuous casting, argon gas is usually injected to prevent clogging, but the bubbles also affect the flow pattern, and may become entrapped to form defects in the final product. To investigate this behavior, plant measurements were conducted, and a computational model was applied to simulate turbulent flow of the molten steel and the transport and capture of argon gas bubbles into the solidifying shell in a continuous slab caster. First, the flow field was solved with an Eulerian k- ɛ model of the steel, which was two-way coupled with a Lagrangian model of the large bubbles using a discrete random walk method to simulate their turbulent dispersion. The flow predicted on the top surface agreed well with nailboard measurements and indicated strong cross flow caused by biased flow of Ar gas due to the slide-gate orientation. Then, the trajectories and capture of over two million bubbles (25 μm to 5 mm diameter range) were simulated using two different capture criteria (simple and advanced). Results with the advanced capture criterion agreed well with measurements of the number, locations, and sizes of captured bubbles, especially for larger bubbles. The relative capture fraction of 0.3 pct was close to the measured 0.4 pct for 1 mm bubbles and occurred mainly near the top surface. About 85 pct of smaller bubbles were captured, mostly deeper down in the caster. Due to the biased flow, more bubbles were captured on the inner radius, especially near the nozzle. On the outer radius, more bubbles were captured near to narrow face. The model presented here is an efficient tool to study the capture of bubbles and inclusion particles in solidification processes.

  16. TOUGHREACT User's Guide: A Simulation Program for Non-isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geologic Media, V1.2.1

    SciTech Connect

    Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten

    2008-09-29

    Coupled modeling of subsurface multiphase fluid and heat flow, solute transport, and chemical reactions can be applied to many geologic systems and environmental problems, including geothermal systems, diagenetic and weathering processes, subsurface waste disposal, acid mine drainage remediation, contaminant transport, and groundwater quality. TOUGHREACT has been developed as a comprehensive non-isothermal multi-component reactive fluid flow and geochemical transport simulator to investigate these and other problems. A number of subsurface thermo-physical-chemical processes are considered under various thermohydrological and geochemical conditions of pressure, temperature, water saturation, and ionic strength. TOUGHREACT can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity. The code can accommodate any number of chemical species present in liquid, gas and solid phases. A variety of equilibrium chemical reactions are considered, such as aqueous complexation, gas dissolution/exsolution, and cation exchange. Mineral dissolution/precipitation can take place subject to either local equilibrium or kinetic controls, with coupling to changes in porosity and permeability and capillary pressure in unsaturated systems. Chemical components can also be treated by linear adsorption and radioactive decay. The first version of the non-isothermal reactive geochemical transport code TOUGHREACT was developed (Xu and Pruess, 1998) by introducing reactive geochemistry into the framework of the existing multi-phase fluid and heat flow code TOUGH2 (Pruess, 1991). TOUGHREACT was further enhanced with the addition of (1) treatment of mineral-water-gas reactive-transport under boiling conditions, (2) an improved HKF activity model for aqueous species, (3) gas species diffusion coefficients calculated as a function of pressure, temperature, and molecular properties, (4) mineral reactive surface area formulations for fractured

  17. Modeling and simulation of multiphase multicomponent multiphysics porous media flows in the context of chemical enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Dutta, Sourav; Daripa, Prabir; Fluids Team

    2015-11-01

    One of the most important methods of chemical enhanced oil recovery (EOR) involves the use of complex flooding schemes comprising of various layers of fluids mixed with suitable amounts of polymer or surfactant or both. The fluid flow is characterized by the spontaneous formation of complex viscous fingering patterns which is considered detrimental to oil recovery. Here we numerically study the physics of such EOR processes using a modern, hybrid method based on a combination of a discontinuous, multiscale finite element formulation and the method of characteristics. We investigate the effect of different types of heterogeneity on the fingering mechanism of these complex multiphase flows and determine the impact on oil recovery. We also study the effect of surfactants on the dynamics of the flow via reduction of capillary forces and increase in relative permeabilities. Supported by the grant NPRP 08-777-1-141 from the Qatar National Research Fund (a member of The Qatar Foundation).

  18. Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend

    DOEpatents

    Ortiz, Marcos German

    1998-01-01

    A system for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.

  19. Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend

    DOEpatents

    Ortiz, M.G.

    1998-02-10

    A system is described for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.

  20. A modelling study of the multiphase leakage flow from pressurised CO2 pipeline.

    PubMed

    Zhou, Xuejin; Li, Kang; Tu, Ran; Yi, Jianxin; Xie, Qiyuan; Jiang, Xi

    2016-04-01

    The accidental leakage is one of the main risks during the pipeline transportation of high pressure CO2. The decompression process of high pressure CO2 involves complex phase transition and large variations of the pressure and temperature fields. A mathematical method based on the homogeneous equilibrium mixture assumption is presented for simulating the leakage flow through a nozzle in a pressurised CO2 pipeline. The decompression process is represented by two sub-models: the flow in the pipe is represented by the blowdown model, while the leakage flow through the nozzle is calculated with the capillary tube assumption. In the simulation, two kinds of real gas equations of state were employed in this model instead of the ideal gas equation of state. Moreover, results of the flow through the nozzle and measurement data obtained from laboratory experiments of pressurised CO2 pipeline leakage were compared for the purpose of validation. The thermodynamic processes of the fluid both in the pipeline and the nozzle were described and analysed.

  1. A modelling study of the multiphase leakage flow from pressurised CO2 pipeline.

    PubMed

    Zhou, Xuejin; Li, Kang; Tu, Ran; Yi, Jianxin; Xie, Qiyuan; Jiang, Xi

    2016-04-01

    The accidental leakage is one of the main risks during the pipeline transportation of high pressure CO2. The decompression process of high pressure CO2 involves complex phase transition and large variations of the pressure and temperature fields. A mathematical method based on the homogeneous equilibrium mixture assumption is presented for simulating the leakage flow through a nozzle in a pressurised CO2 pipeline. The decompression process is represented by two sub-models: the flow in the pipe is represented by the blowdown model, while the leakage flow through the nozzle is calculated with the capillary tube assumption. In the simulation, two kinds of real gas equations of state were employed in this model instead of the ideal gas equation of state. Moreover, results of the flow through the nozzle and measurement data obtained from laboratory experiments of pressurised CO2 pipeline leakage were compared for the purpose of validation. The thermodynamic processes of the fluid both in the pipeline and the nozzle were described and analysed. PMID:26774983

  2. Monitoring CO 2 sequestration into deep saline aquifer and associated salt intrusion using coupled multiphase flow modeling and time lapse electrical resistivity tomography

    SciTech Connect

    Chuan Lu; CHI Zhang; Hai Hanag; Timothy C. Johnson

    2014-04-01

    Successful geological storage and sequestration of carbon dioxide (CO2) require efficient monitoring of the migration of CO2 plume during and after large-scale injection in order to verify the containment of the injected CO2 within the target formation and to evaluate potential leakage risk. Field studies have shown that surface and cross-borehole electrical resistivity tomography (ERT) can be a useful tool in imaging and characterizing solute transport in heterogeneous subsurface. In this synthetic study, we have coupled a 3-D multiphase flow model with a parallel 3-D time-lapse ERT inversion code to explore the feasibility of using time-lapse ERT for simultaneously monitoring the migration of CO2 plume in deep saline formation and potential brine intrusion into shallow fresh water aquifer. Direct comparisons of the inverted CO2 plumes resulting from ERT with multiphase flow simulation results indicate the ERT could be used to delineate the migration of CO2 plume. Detailed comparisons on the locations, sizes and shapes of CO2 plume and intruded brine plumes suggest that ERT inversion tends to underestimate the area review of the CO2 plume, but overestimate the thickness and total volume of the CO2 plume. The total volume of intruded brine plumes is overestimated as well. However, all discrepancies remain within reasonable ranges. Our study suggests that time-lapse ERT is a useful monitoring tool in characterizing the movement of injected CO2 into deep saline aquifer and detecting potential brine intrusion under large-scale field injection conditions.

  3. Small scale laboratory studies of flow and transport phenomena in pores and fractures: Phase 2. Technical completion report

    SciTech Connect

    Wilson, J.L.

    1997-01-01

    Pore level laboratory experiments using microscopy permit the in situ visualization of flow and transport phenomena, that can be recorded on film or videotape. One of the principal tools for visualization is the etched glass micromodel, which is composed of a transparent two dimensional network of three dimensional pores. The spatial scale of interest in these models extends from the individual pore, up to a network of pores, perhaps with small scale heterogeneities. Micromodels are best used to help validate concepts and assumptions, and to elucidate new, previously unrecognized phenomena for further study. They are not quantitative tools, but should be used in combination with quantitative tools such as column studies or mathematical models. There are three applications: multi-phase flow, colloid transport, and bacterial transport and colonization. Specifically the authors have examined behavior of relevance to liquid-liquid mass transfer (solubilization of capillary trapped organic liquids); liquid-gas mass transfer (in situ volatilization); mathematical models of multi-phase pressure-saturation relationships; colloid movement, attachment and detachment in the presence of fluid-fluid interfaces, clay interference with multi-phase flow; and heterogeneity effects on multi-phase flow and colloid movement.

  4. New developments in the analysis of column-collapse pyroclastic density currents through numerical simulations of multiphase flows

    NASA Astrophysics Data System (ADS)

    Lepore, S.; Scarpati, C.

    2012-06-01

    A granular multiphase model has been used to evaluate the action of differently sized particles on the dynamics of fountains and associated pyroclastic density currents. The model takes into account the overall disequilibrium conditions between a gas phase and several solid phases, each characterized by its own physical properties. The dynamics of the granular flows (fountains and pyroclastic density currents) has been simulated by adopting a Reynolds-averaged Navier-Stokes model for describing the turbulence effects. Numerical simulations have been carried out by using different values for the eruptive column temperature at the vent, solid particle frictional concentration, turbulent kinetic energy, and dissipation. The results obtained provide evidence of the multiphase nature of the model and describe several disequilibrium effects. The low concentration (≤5 × 10-4) zones lie in the upper part of the granular flow, above the fountain, and above the tail and body of pyroclastic density current as thermal plumes. The high concentration zones, on the contrary, lie in the fountain and at the base of the current. Hence, pyroclastic density currents are assimilated to granular flows constituted by a low concentration suspension flowing above a high concentration basal layer (boundary layer), from the proximal regions to the distal ones. Interactions among the solid particles in the boundary layer of the granular flow are controlled by collisions between particles, whereas the dispersal of particles in the suspension is determined by the dragging of the gas phase. The simulations describe well the dynamics of a tractive boundary layer leading to the formation of stratified facies during Strombolian to Plinian eruptions.

  5. Simulating Subsurface Flow and Transport on Ultrascale Computers using PFLOTRAN

    SciTech Connect

    Mills, Richard T; Lu, Chuan; Hammond, Glenn; Lichtner, Peter

    2007-01-01

    We describe PFLOTRAN, a recently developed code for modeling multi-phase, multicomponent subsurface flow and reactive transport using massively parallel computers. PFLOTRAN is built on top of PETSc, the Portable, Extensible Toolkit for Scientific Computation. Leveraging PETSc has allowed us to develop--with a relatively modest investment in development effort--a code that exhibits excellent performance on the largest-scale supercomputers. Very significant enhancements to the code are planned during our SciDAC-2 project. Here we describe the current state of the code, present an example of its use on Jaguar, the Cray XT3/4 system at Oak Ridge National Laboratory consisting of 11706 dual-core Opteron processor nodes, and briefly outline our future plans for the code.

  6. Simulating subsurface flow and transport on ultrascale computers using PFLOTRAN

    NASA Astrophysics Data System (ADS)

    Tran Mills, Richard; Lu, Chuan; Lichtner, Peter C.; Hammond, Glenn E.

    2007-07-01

    We describe PFLOTRAN, a recently developed code for modeling multi-phase, multi-component subsurface flow and reactive transport using massively parallel computers. PFLOTRAN is built on top of PETSc, the Portable, Extensible Toolkit for Scientific Computation. Leveraging PETSc has allowed us to develop—with a relatively modest investment in development effort—a code that exhibits excellent performance on the largest-scale supercomputers. Very significant enhancements to the code are planned during our SciDAC-2 project. Here we describe the current state of the code, present an example of its use on Jaguar, the Cray XT3/4 system at Oak Ridge National Laboratory consisting of 11706 dual-core Opteron processor nodes, and briefly outline our future plans for the code.

  7. A computer code for multiphase all-speed transient flows in complex geometries. MAST version 1.0

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Jiang, Y.; Kim, Y. M.; Shang, H. M.

    1991-01-01

    The operation of the MAST code, which computes transient solutions to the multiphase flow equations applicable to all-speed flows, is described. Two-phase flows are formulated based on the Eulerian-Lagrange scheme in which the continuous phase is described by the Navier-Stokes equation (or Reynolds equations for turbulent flows). Dispersed phase is formulated by a Lagrangian tracking scheme. The numerical solution algorithms utilized for fluid flows is a newly developed pressure-implicit algorithm based on the operator-splitting technique in generalized nonorthogonal coordinates. This operator split allows separate operation on each of the variable fields to handle pressure-velocity coupling. The obtained pressure correction equation has the hyperbolic nature and is effective for Mach numbers ranging from the incompressible limit to supersonic flow regimes. The present code adopts a nonstaggered grid arrangement; thus, the velocity components and other dependent variables are collocated at the same grid. A sequence of benchmark-quality problems, including incompressible, subsonic, transonic, supersonic, gas-droplet two-phase flows, as well as spray-combustion problems, were performed to demonstrate the robustness and accuracy of the present code.

  8. Multiphase Model of Heat and Mass Transport during Laser Alloying of Iron with Electrodeposited Chromium Layer

    SciTech Connect

    Didenko, T.; Kusinski, J.; Kusinski, G.

    2008-02-15

    The aim of this research was to study the laser alloying process of iron with chromium. In the paper, a multiphase model of mass and heat transfer for the laser alloying is presented. Laser melting of the chromium layer and the substrate was performed using a continuous laser source operated with a TEM{sub 10} mode, with constant beam diameter ({phi}), scanning velocity (V) and varied output beam power. The partial differential equations of the conservation of mass, momentum and energy in the melted pool for multiphase system were solved. The distribution of chromium in iron after laser alloying was obtained by including the Volume of Fluid algorithm in the model. The results of the computations were compared with the experimental evaluation of the microstructure and the chromium concentration, which were based on scanning electron microscopy and x-ray microanalysis (Energy Dispersive Spectroscopy) of the laser alloyed layers. The comparison of computational calculations and experimental results is presented and a good accuracy of the proposed model is shown.

  9. Factorization of event-plane correlations over transverse momentum in relativistic heavy ion collisions in a multiphase transport model

    NASA Astrophysics Data System (ADS)

    Xiao, Kai; Yi, Li; Liu, Feng; Wang, Fuqiang

    2016-08-01

    Momentum-space azimuthal harmonic event planes (EP) are constructed from final-state midrapidity particles binned in transverse momentum (pT) in √{sN N}=200 GeV Au+Au collisions in a multiphase transport (AMPT) model. The EP correlations between pT bins, corrected by EP resolutions, are smaller than unity. This indicates that the EP's decorrelate over pT in AMPT, qualitatively consistent with data and hydrodynamic calculations. It is further found that the EP correlations approximately factorize into single pT-bin EP correlations to a common plane. This common plane appears to be the momentum-space EP integrated over all pT, not the configuration-space participant plane (PP).

  10. Liquid-liquid phase separation: characterisation of a novel device capable of separating particle carrying multiphase flows.

    PubMed

    Castell, Oliver K; Allender, Christopher J; Barrow, David A

    2009-02-01

    Capillary forces on the microscale are exploited to create a continuous flow liquid-liquid phase separator. Segmented flow regimes of immiscible fluids are generated and subsequently separated into their component phases through an array of high aspect ratio, laser machined, separation ducts (36 microm wide, 130 microm deep) in a planar, integrated, polytetrafluoroethylene (PTFE) microdevice. A controlled pressure differential across the phase separator architecture facilitates the selective passage of the wetting, organic, phase through the separator ducts, enabling separation of microfluidic multiphase flow streams. The reported device is demonstrated to separate water and chloroform segmented flow regimes at flow rates up to 0.4 ml min(-1). Separation efficiency is quantified over a range of flow rates and applied pressure differentials, characterising device behaviour and limits of operation. Experimental measurements and observations are supported by theoretical hydrodynamic and capillary pressure modelling. The influence of material properties and geometric design parameters on phase separation is quantified and optimisation strategies proposed. The novel ability of the membrane free device to separate an organic phase containing suspended microparticulates, from an aqueous phase, is also demonstrated.

  11. Analytic expressions for first order correction to inviscid unsteady forces due to surrounding particles in a multiphase flow

    NASA Astrophysics Data System (ADS)

    Annamalai, Subramanian; Balachandar, S.; Mehta, Yash

    2015-11-01

    The various inviscid and viscous forces experienced by an isolated spherical particle situated in a compressible fluid have been widely studied in literature and are well established. Further, these force expressions are used even in the context of particulate (multiphase) flows with appropriate empirical correction factors that depend on local particle volume fraction. Such approach can capture the mean effect of the neighboring particles, but fails to capture the effect of the precise arrangement of the neighborhood of particles. To capture this inherent dependence of force on local particle arrangement a more accurate evaluation of the drag forces proves necessary. Towards this end, we consider an acoustic wave of a given frequency to impinge on a sphere. Scattering due to this particle (reference) is computed and termed ``scattering coefficients.'' The effect of the reference particle on another particle in its vicinity, is analytically computed via the above mentioned ``scattering coefficients'' and as a function of distance between particles. In this study, we consider only the first-order scattering effect. Moreover, this theory is extended to compressible spheres and used to compute the pressure in the interior of the sphere and to shock interaction over an array of spheres. We would like to thank the center for compressible multiphase turbulence (CCMT) and acknowledge support from the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program.

  12. Surge Across the Chambo: Entrainment, topographical influences, and flow transformation of pyroclastic density currents using a combined field and multiphase modeling approach

    NASA Astrophysics Data System (ADS)

    Benage, M. C.; Dufek, J.; Geist, D.; Harpp, K. S.

    2011-12-01

    simulations in concert with detailed measurements of these flows from both up flow and down flow from the transformation to document the process of dense to dilute flow transition. The field characterization includes mapping of the flows, grain size analysis, documenting flow direction indicators, comminution rounding, thermal proxies for air entrainment, and bed form documentation. We used a three-dimensional, multiphase (Eulerian-Eulerian-Lagrangian, EEL) modeling approach to describe size sorting, concentration gradients, and stresses in these evolving flows using the topography of the near Chambo River crossing (Dufek and Bergantz, 2007). The numerical models reveal extensive entrainment in the surge-generating phase of the flow, and secondary plume generation as fine ash in transported by hot gases higher into the atmosphere. Granular waves develop in the confined channels of the dense flow resulting bed shear stress perturbations. These granular instabilities and entrainment result in pulsing conditions in the surge, accounting for much of the unsteady behavior that results in fluctuations in grain size and bed form in the surge deposits.

  13. Analysis of acid transport through multi-phase epoxy mortars for wastewater structures.

    PubMed

    Valix, M

    2015-01-01

    The characteristics of acid migration through epoxy mortars were examined. Diffusion coefficients of typical sewer bio-metabolised acids: sulphuric, nitric, citric and oxalic acids were determined by gravimetric sorption method and fitted to the multi-phase Jacob-Jones model. Acid permeation was characterised by hindered pore diffusion with the extent being determined by the polarity of the acid and epoxy, and by the microstructure of the epoxy. Epoxy with higher polarity was able to reduce the diffusion coefficients by 49, while dense phases of the coating reduced the diffusion coefficient by 5,100. These results reflect the relative influence of epoxy polarity and microstructure on their performance as protective liners in sewers.

  14. Multiphase multi-velocity discrete population balance model of fragmenting particulate flows

    NASA Astrophysics Data System (ADS)

    Panchagnula, Mahesh; Rayapati, Prasad; Peddieson, John

    2008-11-01

    Fragmenting particulate flows are studied using discrete population balance modeling. The range of particle sizes is divided into N classes with each size class being allowed to behave as an individual fluid-like phase. The particulate phases are embedded in a continuous phase with which they share a pressure field and are coupled through drag forces. The particulate material is therefore modeled as a mixture of N+1 inter-penetrating continua. The fragmentation process is modeled using the population balance approach which allows for parent size-class particles to break up into any of the smaller daughter size-classes following a pre-defined breakage phenomenology. The accompanying mass and momentum exchange between the size-classes is modeled as source terms in the conservation equations. The model is applied to a micro-centrifuge flow field. We show here that the larger particles, while being encouraged to break up are also preferentially transported towards the walls of the centrifuge, owing to the swirl induced radial pressure gradient. By experimenting with various breakage phenomenologies, we show that the classical log-normal particle size distribution can be recovered in the long time limit for all breakage phenomenologies but the short time evolution of the particle size distribution is sensitive to that choice.

  15. Corrosion-induced gas generation in a nuclear waste repository: Reactive geochemistry and multiphase flow effect

    SciTech Connect

    Xu, T.; Senger, R.; Finsterle, S.

    2008-10-15

    Corrosion of steel canisters, stored in a repository for spent fuel and high-level nuclear wastes, leads to the generation and accumulation of hydrogen gas in the backfilled emplacement tunnels, which may significantly affect long-term repository safety. Previous studies used H{sub 2} generation rates based on the volume of the waste or canister material and the stoichiometry of the corrosion reaction. However, iron corrosion and H{sub 2} generation rates vary with time, depending on factors such as amount of iron, water availability, water contact area, and aqueous and solid chemistry. To account for these factors and feedback mechanisms, we developed a chemistry model related to iron corrosion, coupled with two-phase (liquid and gas) flow phenomena that are driven by gas-pressure buildup associated with H{sub 2} generation and water consumption. Results indicate that by dynamically calculating H{sub 2} generation rates based on a simple model of corrosion chemistry, and by coupling this corrosion reaction with two-phase flow processes, the degree and extent of gas pressure buildup could be much smaller compared to a model that neglects the coupling between flow and reactive transport mechanisms. By considering the feedback of corrosion chemistry, the gas pressure increases initially at the canister, but later decreases and eventually returns to a stabilized pressure that is slightly higher than the background pressure. The current study focuses on corrosion under anaerobic conditions for which the coupled hydrogeochemical model was used to examine the role of selected physical parameters on the H{sub 2} gas generation and corresponding pressure buildup in a nuclear waste repository. The developed model can be applied to evaluate the effect of water and mineral chemistry of the buffer and host rock on the corrosion reaction for future site-specific studies.

  16. Multiphase Carbon-14 Transport in a Near-Field-Scale Unsaturated Column of Natural Sediments

    SciTech Connect

    D. T. Fox; Mitchell A. Plummer; Larry C. Hull; D. Craig Cooper

    2004-03-01

    Wastes buried at the Subsurface Disposal Area (SDA) of the Idaho National Engineering and Environmental Laboratory include activated metals that release radioactive carbon-14 (14C) as they corrode. To better understand 14C phase partitioning and transport in the SDA sediments, we conducted a series of transport experiments using 14C (radio-labeled sodium carbonate) and nonreactive gas (sulfur hexafluoride) and aqueous (bromide and tritiated water) tracers in a large (2.6-m high by 0.9-m diameter) column of sediments similar to those used as cover material at the SDA. We established steady-state unsaturated flow prior to injecting tracers into the column. Tracer migration was monitored using pore-water and pore-gas samples taken from co-located suction lysimeters and gas ports inserted at ~0.3-m intervals along the column’s length. Measurements of 14C discharged from the sediment to the atmosphere (i.e., 14CO2 flux) indicate a positive correlation between CO2 partial pressure (pCO2) in the column and changes in 14CO2 flux. Though 14CO2 diffusion is expected to be independent of pCO2, changes of pCO2 affect pore water chemistry sufficiently to affect aqueous/gas phase 14C partitioning and consequently 14C2 flux. Pore-water and -gas 14C activity measurements provide an average aqueous/gas partitioning ratio, Kag, of 4.5 (±0.3). This value is consistent with that calculated using standard carbonate equilibrium expressions with measured pH, suggesting the ability to estimate Kag from carbonate equilibrium. One year after the 14C injection, the column was cored and solid-phase 14C activity was measured. The average aqueous/solid partition coefficient, Kd, (1.6 L kg-1) was consistent with those derived from small-scale and short-term batch and column experiments using SDA sediments, suggesting that bench-scale measurements are a valid means of estimating aqueous/solid partitioning at the much larger spatial scale considered in these meso-scale experiments. However

  17. Eulerian Multiphase CFD Analysis of Particle Transport and Deposition in the Human Lung

    NASA Astrophysics Data System (ADS)

    Haworth, D. C.; Kunz, R. F.; Leemhuis, L. S.; Davison, A. C.

    2002-11-01

    An Eulerian n-fluid CFD model is used to model the transport and deposition of particles in the human lung. Separate continuity, momentum, energy and turbulence model equations are carried for an arbitrary number of fluid phases. Physical models for non-equilibrium interfacial transfer are incorporated to account for particle dispersion, drag, lift and wall deposition. The numerical scheme combines a fully unstructured second-order spatial discretization, distributed-memory scalable parallelism, and a novel coupled phasic exchange algorithm to accommodate the significant influence of inter-field transfer on discretization, operator splitting and linear solution elements of the algorithm. Here there is one carrier phase (air) and multiple particulate fields representing particles of different sizes. Current geometric models include an idealized three-generation branching duct configuration, and a more biologically realistic configuration that extends from the mouth down to approximately the seventh generation of branching in the lung. The models have been exercised to determine the fraction of particles of different sizes that are deposited as a function of depth in the lung. Initial wall deposition results from steady-flow calculations reveal qualitatively good agreement with limited available experimental data and phenomenological models.

  18. Droplet fragmentation: 3D imaging of a previously unidentified pore-scale process during multiphase flow in porous media

    PubMed Central

    Pak, Tannaz; Butler, Ian B.; Geiger, Sebastian; van Dijke, Marinus I. J.; Sorbie, Ken S.

    2015-01-01

    Using X-ray computed microtomography, we have visualized and quantified the in situ structure of a trapped nonwetting phase (oil) in a highly heterogeneous carbonate rock after injecting a wetting phase (brine) at low and high capillary numbers. We imaged the process of capillary desaturation in 3D and demonstrated its impacts on the trapped nonwetting phase cluster size distribution. We have identified a previously unidentified pore-scale event during capillary desaturation. This pore-scale event, described as droplet fragmentation of the nonwetting phase, occurs in larger pores. It increases volumetric production of the nonwetting phase after capillary trapping and enlarges the fluid−fluid interface, which can enhance mass transfer between the phases. Droplet fragmentation therefore has implications for a range of multiphase flow processes in natural and engineered porous media with complex heterogeneous pore spaces. PMID:25646491

  19. TOUGHREACT—A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: Applications to geothermal injectivity and CO 2 geological sequestration

    NASA Astrophysics Data System (ADS)

    Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten

    2006-03-01

    TOUGHREACT is a numerical simulation program for chemically reactive non-isothermal flows of multiphase fluids in porous and fractured media. The program was written in Fortran 77 and developed by introducing reactive geochemistry into the multiphase fluid and heat flow simulator TOUGH2. A variety of subsurface thermo-physical-chemical processes are considered under a wide range of conditions of pressure, temperature, water saturation, ionic strength, and pH and Eh. Interactions between mineral assemblages and fluids can occur under local equilibrium or kinetic rates. The gas phase can be chemically active. Precipitation and dissolution reactions can change formation porosity and permeability. The program can be applied to many geologic systems and environmental problems, including geothermal systems, diagenetic, and weathering processes, subsurface waste disposal, acid mine drainage remediation, contaminant transport, and groundwater quality. Here we present two examples to illustrate applicability of the program. The first example deals with injectivity effects of mineral scaling in a fractured geothermal reservoir. A major concern in the development of hot dry rock and hot fractured rock reservoirs is achieving and maintaining adequate injectivity, while avoiding the development of preferential short-circuiting flow paths. Rock-fluid interactions and associated mineral dissolution and precipitation effects could have a major impact on the long-term performance of these reservoirs. We used recent European studies as a starting point to explore chemically induced effects of fluid circulation in the geothermal systems. We examine ways in which the chemical composition of reinjected waters can be modified to improve reservoir performance by maintaining or even enhancing injectivity. The second TOUGHREACT application example is related to CO 2 geologic sequestration in a saline aquifer. We performed numerical simulations for a commonly encountered Gulf Coast sediment

  20. A summary of methods for approximating salt creep and disposal room closure in numerical models of multiphase flow

    SciTech Connect

    Freeze, G.A.; Larson, K.W.; Davies, P.B.

    1995-10-01

    Eight alternative methods for approximating salt creep and disposal room closure in a multiphase flow model of the Waste Isolation Pilot Plant (WIPP) were implemented and evaluated: Three fixed-room geometries three porosity functions and two fluid-phase-salt methods. The pressure-time-porosity line interpolation method is the method used in current WIPP Performance Assessment calculations. The room closure approximation methods were calibrated against a series of room closure simulations performed using a creep closure code, SANCHO. The fixed-room geometries did not incorporate a direct coupling between room void volume and room pressure. The two porosity function methods that utilized moles of gas as an independent parameter for closure coupling. The capillary backstress method was unable to accurately simulate conditions of re-closure of the room. Two methods were found to be accurate enough to approximate the effects of room closure; the boundary backstress method and pressure-time-porosity line interpolation. The boundary backstress method is a more reliable indicator of system behavior due to a theoretical basis for modeling salt deformation as a viscous process. It is a complex method and a detailed calibration process is required. The pressure lines method is thought to be less reliable because the results were skewed towards SANCHO results in simulations where the sequence of gas generation was significantly different from the SANCHO gas-generation rate histories used for closure calibration. This limitation in the pressure lines method is most pronounced at higher gas-generation rates and is relatively insignificant at lower gas-generation rates. Due to its relative simplicity, the pressure lines method is easier to implement in multiphase flow codes and simulations have a shorter execution time.

  1. Direct numerical simulation of rigid bodies in multiphase flow within an Eulerian framework

    NASA Astrophysics Data System (ADS)

    Rauschenberger, P.; Weigand, B.

    2015-06-01

    A new method is presented to simulate rigid body motion in the Volume-of-Fluid based multiphase code Free Surface 3D. The specific feature of the new method is that it works within an Eulerian framework without the need for a Lagrangian representation of rigid bodies. Several test cases are shown to prove the validity of the numerical scheme. The technique is able to conserve the shape of arbitrarily shaped rigid bodies and predict terminal velocities of rigid spheres. The instability of a falling ellipsoid is captured. Multiple rigid bodies including collisions may be considered using only one Volume-of-Fluid variable which allows to simulate the drafting, kissing and tumbling phenomena of two rigid spheres. The method can easily be extended to rigid bodies undergoing phase change processes.

  2. Multiphase Fluid Flow in Deformable Variable-Aperture Fractures - Final Report

    SciTech Connect

    Detwiler, Russell

    2014-04-30

    capillary forces and redistribution of fluids. These coupled processes enhance channel formation and the potential for development of fast flow paths through fractures. (2) Dissolution in fractures subjected to normal stress can result in behaviors ranging from development of dissolution channels and rapid permeability increases to fracture healing and significant permeability decreases. The timescales associated with advective transport of dissolved ions in the fracture, mineral dissolution rates, and diffusion within the adjacent porous matrix dictate the sign and magnitude of the resulting permeability changes. Furthermore, a high--resolution mechanistic model that couples elastic deformation of contacts and aperture-­dependent dissolution rates predicts the range of observed behaviors reasonably well. (3) ERT has potential as a tool for monitoring gas leakage in deep formations. Using probabilistic inversion methods further enhances the results by providing uncertainty estimates of inverted parameters.

  3. A discontinuous Galerkin conservative level set scheme for interface capturing in multiphase flows

    NASA Astrophysics Data System (ADS)

    Owkes, Mark; Desjardins, Olivier

    2013-09-01

    The accurate conservative level set (ACLS) method of Desjardins et al. [O. Desjardins, V. Moureau, H. Pitsch, An accurate conservative level set/ghost fluid method for simulating turbulent atomization, J. Comput. Phys. 227 (18) (2008) 8395-8416] is extended by using a discontinuous Galerkin (DG) discretization. DG allows for the scheme to have an arbitrarily high order of accuracy with the smallest possible computational stencil resulting in an accurate method with good parallel scaling. This work includes a DG implementation of the level set transport equation, which moves the level set with the flow field velocity, and a DG implementation of the reinitialization equation, which is used to maintain the shape of the level set profile to promote good mass conservation. A near second order converging interface curvature is obtained by following a height function methodology (common amongst volume of fluid schemes) in the context of the conservative level set. Various numerical experiments are conducted to test the properties of the method and show excellent results, even on coarse meshes. The tests include Zalesak’s disk, two-dimensional deformation of a circle, time evolution of a standing wave, and a study of the Kelvin-Helmholtz instability. Finally, this novel methodology is employed to simulate the break-up of a turbulent liquid jet.

  4. A discontinuous Galerkin conservative level set scheme for interface capturing in multiphase flows

    SciTech Connect

    Owkes, Mark Desjardins, Olivier

    2013-09-15

    The accurate conservative level set (ACLS) method of Desjardins et al. [O. Desjardins, V. Moureau, H. Pitsch, An accurate conservative level set/ghost fluid method for simulating turbulent atomization, J. Comput. Phys. 227 (18) (2008) 8395–8416] is extended by using a discontinuous Galerkin (DG) discretization. DG allows for the scheme to have an arbitrarily high order of accuracy with the smallest possible computational stencil resulting in an accurate method with good parallel scaling. This work includes a DG implementation of the level set transport equation, which moves the level set with the flow field velocity, and a DG implementation of the reinitialization equation, which is used to maintain the shape of the level set profile to promote good mass conservation. A near second order converging interface curvature is obtained by following a height function methodology (common amongst volume of fluid schemes) in the context of the conservative level set. Various numerical experiments are conducted to test the properties of the method and show excellent results, even on coarse meshes. The tests include Zalesak’s disk, two-dimensional deformation of a circle, time evolution of a standing wave, and a study of the Kelvin–Helmholtz instability. Finally, this novel methodology is employed to simulate the break-up of a turbulent liquid jet.

  5. ϕ -meson production at forward/backward rapidity in high-energy nuclear collisions from a multiphase transport model

    NASA Astrophysics Data System (ADS)

    Ye, Y. J.; Chen, J. H.; Ma, Y. G.; Zhang, S.; Zhong, C.

    2016-04-01

    Within the framework of a multiphase transport model (AMPT), the ϕ -meson production is studied in d +Au collisions at √{sNN}=200 GeV in the forward (d -going, 1.2 transport scenario of the AMPT model underestimates the ϕ -meson production rate in comparison with the data. Detailed investigations including the rapidity, transverse momentum, and collision system size dependencies of ϕ -meson nuclear modification factor indicate that a combination of the initial-state effect and a follow-up parton cascade is required in the AMPT model to describe the data. Similar calculations are also present in p +Pb collisions at √{s NN}=5.02 TeV and p +p collisions at √{s NN}=2.76 TeV. The findings from a comparison of AMPT model study with the data are consistent with that at RHIC energy.

  6. Comprehensive Approaches to Multiphase Flows in Geophysics - Application to nonisothermal, nonhomogenous, unsteady, large-scale, turbulent dusty clouds I. Hydrodynamic and Thermodynamic RANS and LES Models

    SciTech Connect

    S. Dartevelle

    2005-09-05

    The objective of this manuscript is to fully derive a geophysical multiphase model able to ''accommodate'' different multiphase turbulence approaches; viz., the Reynolds Averaged Navier-Stokes (RANS), the Large Eddy Simulation (LES), or hybrid RANSLES. This manuscript is the first part of a larger geophysical multiphase project--lead by LANL--that aims to develop comprehensive modeling tools for large-scale, atmospheric, transient-buoyancy dusty jets and plume (e.g., plinian clouds, nuclear ''mushrooms'', ''supercell'' forest fire plumes) and for boundary-dominated geophysical multiphase gravity currents (e.g., dusty surges, diluted pyroclastic flows, dusty gravity currents in street canyons). LES is a partially deterministic approach constructed on either a spatial- or a temporal-separation between the large and small scales of the flow, whereas RANS is an entirely probabilistic approach constructed on a statistical separation between an ensemble-averaged mean and higher-order statistical moments (the so-called ''fluctuating parts''). Within this specific multiphase context, both turbulence approaches are built up upon the same phasic binary-valued ''function of presence''. This function of presence formally describes the occurrence--or not--of any phase at a given position and time and, therefore, allows to derive the same basic multiphase Navier-Stokes model for either the RANS or the LES frameworks. The only differences between these turbulence frameworks are the closures for the various ''turbulence'' terms involving the unknown variables from the fluctuating (RANS) or from the subgrid (LES) parts. Even though the hydrodynamic and thermodynamic models for RANS and LES have the same set of Partial Differential Equations, the physical interpretations of these PDEs cannot be the same, i.e., RANS models an averaged field, while LES simulates a filtered field. In this manuscript, we also demonstrate that this multiphase model fully fulfills the second law of

  7. Numerical Simulation of Liquid Sheet Instability in a Multiphase Flow Domain

    NASA Astrophysics Data System (ADS)

    Souvick, Chatterjee; Mahapatra, Soumik; Mukhopadhyay, Achintya; Sen, Swarnendu

    2013-11-01

    Instability of a liquid sheet leading to the formation of droplets is a classical problem finding a wide range of multi-scale applications like gas turbine engines and inkjet printers. Numerical simulation of such a phenomenon is crucial because of its cost and time effective nature. In this work, the hydrodynamics in a custom designed nozzle is analyzed using Volume of Fluid method in Ansys Fluent. This innovative nozzle design includes an annular liquid sheet sandwiched between two air streams such that the inner air channel is recessed to a certain length. Such a recession leads to interaction between the two multiphase streams inside the atomizer resulting to an increased shear layer instability which augments the disintegration process. The numerical technique employed in this work couples Navier Stokes equation with VoF surface tracking technique. A parametric study with the hydrodynamic parameters involved in the problem, as well as the recession length, is performed while monitoring the axial and tangential exit velocities along with the spray cone angle. Comparison between the full 3D model and two different equivalent 2D axisymmetric models have been shown. The two axisymmetric models vary based on conserving different physical parameters between the 2D and 3D cases.

  8. FT-IR Spectroscopic Imaging of Reactions in Multiphase Flow in Microfluidic Channels

    PubMed Central

    2012-01-01

    Rapid, in situ, and label-free chemical analysis in microfluidic devices is highly desirable. FT-IR spectroscopic imaging has previously been shown to be a powerful tool to visualize the distribution of different chemicals in flows in a microfluidic device at near video rate imaging speed without tracers or dyes. This paper demonstrates the possibility of using this imaging technology to capture the chemical information of all reactants and products at different points in time and space in a two-phase system. Differences in the rates of chemical reactions in laminar flow and segmented flow systems are also compared. Neutralization of benzoic acid in decanol with disodium phosphate in water has been used as the model reaction. Quantitative information, such as concentration profiles of reactant and products, can be extracted from the imaging data. The same feed flow rate was used in both the laminar flow and segmented flow systems. The laminar flow pattern was achieved using a plain wide T-junction, whereas the segmented flow was achieved by introducing a narrowed section and a nozzle at the T-junction. The results show that the reaction rate is limited by diffusion and is much slower with the laminar flow pattern, whereas the reaction is completed more quickly in the segmented flow due to better mixing. PMID:22468788

  9. Microtomographic imaging of multiphase flow in porous media: Validation of image analysis algorithms, and assessment of data representativeness and quality

    NASA Astrophysics Data System (ADS)

    Wildenschild, D.; Porter, M. L.

    2009-04-01

    Significant strides have been made in recent years in imaging fluid flow in porous media using x-ray computerized microtomography (CMT) with 1-20 micron resolution; however, difficulties remain in combining representative sample sizes with optimal image resolution and data quality; and in precise quantification of the variables of interest. Tomographic imaging was for many years focused on volume rendering and the more qualitative analyses necessary for rapid assessment of the state of a patient's health. In recent years, many highly quantitative CMT-based studies of fluid flow processes in porous media have been reported; however, many of these analyses are made difficult by the complexities in processing the resulting grey-scale data into reliable applicable information such as pore network structures, phase saturations, interfacial areas, and curvatures. Yet, relatively few rigorous tests of these analysis tools have been reported so far. The work presented here was designed to evaluate the effect of image resolution and quality, as well as the validity of segmentation and surface generation algorithms as they were applied to CMT images of (1) a high-precision glass bead pack and (2) gas-fluid configurations in a number of glass capillary tubes. Interfacial areas calculated with various algorithms were compared to actual interfacial geometries and we found very good agreement between actual and measured surface and interfacial areas. (The test images used are available for download at the website listed below). http://cbee.oregonstate.edu/research/multiphase_data/index.html

  10. A Phase-Field Method for Simulating Fluid-Structure Interactions in Multi-Phase Flow

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaoning; Karniadakis, George

    2015-11-01

    We investigate two-phase flow instabilities by numerical simulations of fluid structure interactions in two-phase flow. The first case is a flexible pipe conveying two fluids, which exhibits self-sustained oscillations at high Reynolds number and tension related parameter. Well-defined two-phase flow patterns, i.e., slug flow and bubbly flow, are observed. The second case is external two-phase cross flow past a circular cylinder, which induces a Kelvin-Helmholtz instability due to density stratification. We solve the Navier-Stokes equation coupled with the Cahn-Hilliard equation and the structure equation in an arbitrary Lagrangian Eulerian (ALE) framework. For the fluid solver, a spectral/hp element method is employed for spatial discretization and backward differentiation for time discretization. For the structure solver, a Galerkin method is used in Lagrangian coordinates for spatial discretization and the Newmark- β scheme for time discretization.

  11. Advanced Multi-phase Flow CFD Model Development for Solid Rocket Motor Flowfield Analysis

    NASA Technical Reports Server (NTRS)

    Liaw, Paul; Chen, Yen-Sen

    1995-01-01

    A Navier-Stokes code, finite difference Navier-Stokes (FDNS), is used to analyze the complicated internal flowfield of the SRM (solid rocket motor) to explore the impacts due to the effects of chemical reaction, particle dynamics, and slag accumulation on the solid rocket motor (SRM). The particulate multi-phase flowfield with chemical reaction, particle evaporation, combustion, breakup, and agglomeration models are included in present study to obtain a better understanding of the SRM design. Finite rate chemistry model is applied to simulate the chemical reaction effects. Hermsen correlation model is used for the combustion simulation. The evaporation model introduced by Spalding is utilized to include the heat transfer from the particulate phase to the gase phase due to the evaporation of the particles. A correlation of the minimum particle size for breakup expressed in terms of the Al/Al2O3 surface tension and shear force was employed to simulate the breakup of particles. It is assumed that the breakup occurs when the Weber number exceeds 6. A simple L agglomeration model is used to investigate the particle agglomeration. However, due to the large computer memory requirements for the agglomeration model, only 2D cases are tested with the agglomeration model. The VOF (Volume of Fluid) method is employed to simulate the slag buildup in the aft-end cavity of the redesigned solid rocket motor (RSRM). Monte Carlo method is employed to calculate the turbulent dispersion effect of the particles. The flowfield analysis obtained using the FDNS code in the present research with finite rate chemical reaction, particle evaporation, combustion, breakup, agglomeration, and VOG models will provide a design guide for the potential improvement of the SRM including the use of materials and the shape of nozzle geometry such that a better performance of the SRM can be achieved. The simulation of the slag buildup in the aft-end cavity can assist the designer to improve the design of

  12. Advanced multi-phase flow CFD model development for solid rocket motor flowfield analysis

    NASA Astrophysics Data System (ADS)

    Liaw, Paul; Chen, Yen-Sen

    1995-03-01

    A Navier-Stokes code, finite difference Navier-Stokes (FDNS), is used to analyze the complicated internal flowfield of the SRM (solid rocket motor) to explore the impacts due to the effects of chemical reaction, particle dynamics, and slag accumulation on the solid rocket motor (SRM). The particulate multi-phase flowfield with chemical reaction, particle evaporation, combustion, breakup, and agglomeration models are included in present study to obtain a better understanding of the SRM design. Finite rate chemistry model is applied to simulate the chemical reaction effects. Hermsen correlation model is used for the combustion simulation. The evaporation model introduced by Spalding is utilized to include the heat transfer from the particulate phase to the gase phase due to the evaporation of the particles. A correlation of the minimum particle size for breakup expressed in terms of the Al/Al2O3 surface tension and shear force was employed to simulate the breakup of particles. It is assumed that the breakup occurs when the Weber number exceeds 6. A simple L agglomeration model is used to investigate the particle agglomeration. However, due to the large computer memory requirements for the agglomeration model, only 2D cases are tested with the agglomeration model. The VOF (Volume of Fluid) method is employed to simulate the slag buildup in the aft-end cavity of the redesigned solid rocket motor (RSRM). Monte Carlo method is employed to calculate the turbulent dispersion effect of the particles. The flowfield analysis obtained using the FDNS code in the present research with finite rate chemical reaction, particle evaporation, combustion, breakup, agglomeration, and VOG models will provide a design guide for the potential improvement of the SRM including the use of materials and the shape of nozzle geometry such that a better performance of the SRM can be achieved. The simulation of the slag buildup in the aft-end cavity can assist the designer to improve the design of

  13. Effect of an equilibrium phase transition on multiphase transport in relativistic heavy ion collisions

    SciTech Connect

    Yu Meiling; Du Jiaxin; Liu Lianshou

    2006-10-15

    The hadronization scheme for parton transport in relativistic heavy ion collisions is considered in detail. It is pointed out that the traditional scheme for particles being freezed out one by one leads to serious problem on unreasonable long lifetime of partons. A collective phase transition following a supercooling is implemented in a simple way. It turns out that the modified model with a sudden phase transition is able to reproduce the experimental longitudinal distributions of final state particles better than the original one does. The encouraging results indicate that equilibrium phase transition should be taken into proper account in parton transport models for relativistic heavy ion collisions.

  14. SATURATED ZONE FLOW AND TRANSPORT MODEL ABSTRACTION

    SciTech Connect

    B.W. ARNOLD

    2004-10-27

    The purpose of the saturated zone (SZ) flow and transport model abstraction task is to provide radionuclide-transport simulation results for use in the total system performance assessment (TSPA) for license application (LA) calculations. This task includes assessment of uncertainty in parameters that pertain to both groundwater flow and radionuclide transport in the models used for this purpose. This model report documents the following: (1) The SZ transport abstraction model, which consists of a set of radionuclide breakthrough curves at the accessible environment for use in the TSPA-LA simulations of radionuclide releases into the biosphere. These radionuclide breakthrough curves contain information on radionuclide-transport times through the SZ. (2) The SZ one-dimensional (I-D) transport model, which is incorporated in the TSPA-LA model to simulate the transport, decay, and ingrowth of radionuclide decay chains in the SZ. (3) The analysis of uncertainty in groundwater-flow and radionuclide-transport input parameters for the SZ transport abstraction model and the SZ 1-D transport model. (4) The analysis of the background concentration of alpha-emitting species in the groundwater of the SZ.

  15. Characterization of non-Darcy multiphase flow in petroleum bearing formation. Final report

    SciTech Connect

    Evans, R.D.; Civan, F.

    1994-04-01

    The productive capacity of oil and gas bearing rocks depends on various parameters characterizing the flow conditions in the reservoir. Among these, the non-Darcy flow coefficient specifically plays an important role for cases involving fluid accelerations or decelerations around the well bore and in the reservoir. However, most reservoir simulators used for reservoir management assume Darcy flow, and yield misleading results causing an incorrect analysis or projection of reservoir performance. A few attempts have been made to incorporate non-Darcy effect in reservoir models but many of these lack a reliable accuracy since they use simplified correlations which ignore the effects of the variation of the fluid and formation conditions. The present study developed an accurate non-Darcy flow model that will lead to more accurate reservoir management decisions. First, a rigorous analysis and derivation of the porous media mass and momentum equations are presented considering the non-Darcy flow behavior. Second, steady-state and unsteady-state methods for simultaneous determination of relative permeability, capillary pressure, and interfacial drag during non-Darcy flow in laboratory cores are derived. This work results in several algebraic, integral, and differential interpretation methods. Third, correlations for the non-Darcy flow coefficient are investigated and improved. The study presented in this report provides new insights and formulations in the description of non-Darcy flow in oil and gas bearing formations.

  16. The effect of drag reducing agents on corrosion in multiphase flow

    SciTech Connect

    Kang, C.; Jepson, W.P.; Gopal, M.

    1998-12-31

    The effect of drag reducing agents (DRA) on corrosion and flow regime has been studied in a 10 cm diameter, 18 m long plexiglass flow loop in 50% oil/water mixtures with carbon dioxide gas. Superficial liquid velocities between 0.1 and 1 m/s and gas velocities between 1 and 10 m/s respectively were studied. The corrosion rate was measured for stratified, slug and annular flow. The height of liquid film, slug velocity, and slug frequency were obtained from the video image using a super-VHS camera. The DRA effectiveness was examined for DRA concentrations between 0 and 75 ppm. Flow regimes maps were determined with 25 and 75 ppm DRA. These results were compared to the flow regime map with no DRA. The results indicate that the transition from stratified to slug flow is obtained at a higher superficial liquid velocities. This resulted in much lower corrosion rates due to the elimination of the highly turbulent slugs. The corrosion rate for stratified and annular flow did not generally reduce with adding DRA concentrations. For slug flow, the slug frequency decreased with the addition of 50 ppm DRA. This led to decrease of corrosion rate by almost 50%

  17. Non-Invasive Characterization Of A Flowing Multi-Phase Fluid Using Ultrasonic Interferometry

    DOEpatents

    Sinha, Dipen N.

    2005-11-01

    An apparatus for noninvasively monitoring the flow and/or the composition of a flowing liquid using ultrasound is described. The position of the resonance peaks for a fluid excited by a swept-frequency ultrasonic signal have been found to change frequency both in response to a change in composition and in response to a change in the flow velocity thereof. Additionally, the distance between successive resonance peaks does not change as a function of flow, but rather in response to a change in composition. Thus, a measurement of both parameters (resonance position and resonance spacing), once calibrated, permits the simultaneous determination of flow rate and composition using the apparatus and method of the present invention.

  18. Investigation of Multiphase Flow in a Packed Bed Reactor Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Lian, Yongsheng; Motil, Brian; Rame, Enrique

    2016-01-01

    In this paper we study the two-phase flow phenomena in a packed bed reactor using an integrated experimental and numerical method. The cylindrical bed is filled with uniformly sized spheres. In the experiment water and air are injected into the bed simultaneously. The pressure distribution along the bed will be measured. The numerical simulation is based on a two-phase flow solver which solves the Navier-Stokes equations on Cartesian grids. A novel coupled level set and moment of fluid method is used to construct the interface. A sequential method is used to position spheres in the cylinder. Preliminary experimental results showed that the tested flow rates resulted in pulse flow. The numerical simulation revealed that air bubbles could merge into larger bubbles and also could break up into smaller bubbles to pass through the pores in the bed. Preliminary results showed that flow passed through regions where the porosity is high. Comparison between the experimental and numerical results in terms of pressure distributions at different flow injection rates will be conducted. Comparison of flow phenomena under terrestrial gravity and microgravity will be made.

  19. Multiphase flow of the late Wisconsinan Cordilleran ice sheet in Western Canada

    USGS Publications Warehouse

    Stumpf, A.J.; Broster, B.E.; Levson, V.M.

    2000-01-01

    In central British Columbia, ice flow during the late Wisconsinan Fraser glaciation (ca. 25-10 ka) occurred in three phases. The ice expansion phase occurred during an extended period when glaciers flowed westward to the Pacific Ocean and east-southeastward onto the Nechako Plateau from ice centers in the Skeena, Hazelton, Coast, and Omineca Mountains. Initially, glacier flow was confined by topography along major valleys, but eventually piedmont and montane glaciers coalesced to form an integrated glacier system, the Cordilleran ice sheet. In the maximum phase, a Cordilleran ice divide developed over the Nechako Plateau to 300 km inland from the Pacific coast. At this time, the surface of the ice sheet extended well above 2500 m above sea level, and flowed westward over the Skeena, Hazelton, and Coast Mountains onto the continental shelf, and eastward across the Rocky Mountains into Alberta. In the late glacial phase, a rapid rise of the equilibrium line caused ice lobes to stagnate in valleys, and restricted accumulation centers to high mountains. Discordant directions in ice flow are attributed to fluctuations of the ice divide representing changes in the location of accumulation centers and ice thickness. Ice centers probably shifted in response to climate, irregular growth in the ice sheet, rapid calving, ice streaming, and drainage of proglacial and subglacial water bodies. Crosscutting ice-flow indicators and preservation of early (valley parallel) flow features in areas exposed to later (cross-valley) glacier erosion indicate that the ice expansion phase was the most erosive and protracted event.

  20. On Simulations of High-Density Ratio Flows Using Color-Gradient Multiphase Lattice Boltzmann Models

    NASA Astrophysics Data System (ADS)

    Huang, Haibo; Huang, Jun-Jie; Lu, Xi-Yun; Sukop, Michael C.

    2013-04-01

    Originally, the color-gradient model proposed by Rothman and Keller (R-K) was unable to simulate immiscible two-phase flows with different densities. Later, a revised version of the R-K model was proposed by Grunau et al. [D. Grunau, S. Chen and K. Eggert, Phys. Fluids A: Fluid Dyn. 5, 2557 (1993).] and claimed it was able to simulate two-phase flows with high-density contrast. Some studies investigate high-density contrast two-phase flows using this revised R-K model but they are mainly focused on the stationary spherical droplet and bubble cases. Through theoretical analysis of the model, we found that in the recovered Navier-Stokes (N-S) equations which are derived from the R-K model, there are unwanted extra terms. These terms disappear for simulations of two-phase flows with identical densities, so the correct N-S equations are fully recovered. Hence, the R-K model is able to give accurate results for flows with identical densities. However, the unwanted terms may affect the accuracy of simulations significantly when the densities of the two fluids are different. For the simulations of spherical bubbles and droplets immersed in another fluid (where the densities of the two fluids are different), the extra terms may not be important and hence, in terms of surface tension, accurate results can be obtained. However, generally speaking, the unwanted term may be significant in many flows and the R-K model is unable to obtain the correct results due to the effect of the extra terms. Through numerical simulations of parallel two-phase flows in a channel, we confirm that the R-K model is not appropriate for general two-phase flows with different densities. A scheme to eliminate the unwanted terms is also proposed and the scheme works well for cases of density ratios less than 10.

  1. A mass-conserved diffuse interface method and its application for incompressible multiphase flows with large density ratio

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Shu, C.; Shao, J. Y.; Wu, J.; Niu, X. D.

    2015-06-01

    In this work a mass-conserved diffuse interface method is proposed for simulating incompressible flows of binary fluids with large density ratio. In the method, a mass correction term is introduced into the Cahn-Hilliard equation to compensate the mass losses or offset the mass increases caused by the numerical and modeling diffusion. Since the mass losses or increases are through the phase interfaces and at each time step, their values are very small, to keep mass conservation, mass sources or sinks are introduced and uniformly distributed in the volume of diffuse layer. With the uniform distribution, the mass correction term representing mass sources or sinks is derived analytically by applying mass conservation principle. By including the mass correction, the modified Cahn-Hilliard equation is solved by the fifth-order upwind scheme to capture the phase field of the bindery fluids. The flow field is simulated by the newly-developed multiphase lattice Boltzmann flux solver [20]. The proposed approach is validated by simulating the Laplace law, the merging of two bubbles, Rayleigh-Taylor instability and bubble rising under gravity with density ratio of 1000 and viscosity ratio of 100. Numerical results of interface shapes and flow properties agree well with both analytical solutions and benchmark data in the literature. Numerical results also show that the mass is well-conserved in all cases considered. In addition, it is demonstrated that the mass correction term at each time step is in the order of 10-4 ∼10-5, which is a small number compared with the magnitude of order parameter.

  2. Evaluation of inhomogeneous model and the LCS based investigation in multiphase flows

    NASA Astrophysics Data System (ADS)

    Y Bai, Z.; Y Wang, G.; Wu, Q.; Huang, X.; Huang, B.

    2013-12-01

    In this paper, an evaluation of inhomogeneous model for computations of gas-liquid two-phase flow is presented, and the mechanism of gas-liquid two-phase flow in a bubble column is studied based on Finite-Time Lyapunov Exponents (FTLE) and Lagrangian Coherent Structures (LCS). The simulation is conducted with the homogeneous and inhomogeneous models respectively, and the numerical results are compared with the experimental data. It is shown that the inhomogeneous model can calculate the force of the gas more accurately and simulates the details of transient flows well due to the consideration of the interaction between the two phases. With inhomogeneous model, the periodic fluctuation of the bubble hose is captured and the velocity distribution coincides exactly with the experimental data. For the gas-liquid two-phase flow in the bubble column, the process of gaseous flow injected into water can be divided into two stages: the gas rising and gas fluctuation. The Lagrangian Coherent Structures (LCS) which consist of the ridges of the FTLE field can capture the boundary of vortex and the interface between the forward and backward flows in the liquid region, and the LCS have unique value for representing the divergence extent of neighboring particles in regions with different dynamics characteristics.

  3. Dual FIB-SEM 3D imaging and lattice boltzmann modeling of porosimetry and multiphase flow in chalk.

    SciTech Connect

    Rinehart, Alex; Petrusak, Robin; Heath, Jason E.; Dewers, Thomas A.; Yoon, Hongkyu

    2010-12-01

    Mercury intrusion porosimetry (MIP) is an often-applied technique for determining pore throat distributions and seal analysis of fine-grained rocks. Due to closure effects, potential pore collapse, and complex pore network topologies, MIP data interpretation can be ambiguous, and often biased toward smaller pores in the distribution. We apply 3D imaging techniques and lattice-Boltzmann modeling in interpreting MIP data for samples of the Cretaceous Selma Group Chalk. In the Mississippi Interior Salt Basin, the Selma Chalk is the apparent seal for oil and gas fields in the underlying Eutaw Fm., and, where unfractured, the Selma Chalk is one of the regional-scale seals identified by the Southeast Regional Carbon Sequestration Partnership for CO2 injection sites. Dual focused ion - scanning electron beam and laser scanning confocal microscopy methods are used for 3D imaging of nanometer-to-micron scale microcrack and pore distributions in the Selma Chalk. A combination of image analysis software is used to obtain geometric pore body and throat distributions and other topological properties, which are compared to MIP results. 3D data sets of pore-microfracture networks are used in Lattice Boltzmann simulations of drainage (wetting fluid displaced by non-wetting fluid via the Shan-Chen algorithm), which in turn are used to model MIP procedures. Results are used in interpreting MIP results, understanding microfracture-matrix interaction during multiphase flow, and seal analysis for underground CO2 storage.

  4. Interface control volume finite element method for modelling multi-phase fluid flow in highly heterogeneous and fractured reservoirs

    NASA Astrophysics Data System (ADS)

    Abushaikha, Ahmad S.; Blunt, Martin J.; Gosselin, Olivier R.; Pain, Christopher C.; Jackson, Matthew D.

    2015-10-01

    We present a new control volume finite element method that improves the modelling of multi-phase fluid flow in highly heterogeneous and fractured reservoirs, called the Interface Control Volume Finite Element (ICVFE) method. The method drastically decreases the smearing effects in other CVFE methods, while being mass conservative and numerically consistent. The pressure is computed at the interfaces of elements, and the control volumes are constructed around them, instead of at the elements' vertices. This assures that a control volume straddles, at most, two elements, which decreases the fluid smearing between neighbouring elements when large variations in their material properties are present. Lowest order Raviart-Thomas vectorial basis functions are used for the pressure calculation and first-order Courant basis functions are used to compute fluxes. The method is a combination of Mixed Hybrid Finite Element (MHFE) and CVFE methods. Its accuracy and convergence are tested using three dimensional tetrahedron elements to represent heterogeneous reservoirs. Our new approach is shown to be more accurate than current CVFE methods.

  5. Constrained pressure residual multiscale (CPR-MS) method for fully implicit simulation of multiphase flow in porous media

    NASA Astrophysics Data System (ADS)

    Cusini, Matteo; Lukyanov, Alexander A.; Natvig, Jostein; Hajibeygi, Hadi

    2015-10-01

    We develop the first multiscale method for fully implicit (FIM) simulations of multiphase flow in porous media, namely CPR-MS method. Built on the FIM Jacobian matrix, the pressure system is obtained by employing a Constrained Pressure Residual (CPR) operator. Multiscale Finite Element (MSFE) and Finite Volume (MSFV) methods are then formulated algebraically to obtain efficient and accurate solutions of this pressure equation. The multiscale prediction stage (first-stage) is coupled with a corrector stage (second-stage) employed on the full system residual. The converged solution is enhanced through outer GMRES iterations preconditioned by these first and second stage operators. While the second-stage FIM stage is solved using a classical iterative solver, the multiscale stage is investigated in full detail. Several choices for fine-scale pre- and post-smoothing along with different choices of coarse-scale solvers are considered for a range of heterogeneous three-dimensional cases with capillarity and three-phase systems. The CPR-MS method is the first of its kind, and extends the applicability of the so-far developed multiscale methods (both MSFE and MSFV) to displacements with strong coupling terms.

  6. Notes on Well-Posed, Ensemble Averaged Conservation Equations for Multiphase, Multi-Component, and Multi-Material Flows

    SciTech Connect

    Ray A. Berry

    2005-07-01

    At the INL researchers and engineers routinely encounter multiphase, multi-component, and/or multi-material flows. Some examples include: Reactor coolant flows Molten corium flows Dynamic compaction of metal powders Spray forming and thermal plasma spraying Plasma quench reactor Subsurface flows, particularly in the vadose zone Internal flows within fuel cells Black liquor atomization and combustion Wheat-chaff classification in combine harvesters Generation IV pebble bed, high temperature gas reactor The complexity of these flows dictates that they be examined in an averaged sense. Typically one would begin with known (or at least postulated) microscopic flow relations that hold on the “small” scale. These include continuum level conservation of mass, balance of species mass and momentum, conservation of energy, and a statement of the second law of thermodynamics often in the form of an entropy inequality (such as the Clausius-Duhem inequality). The averaged or macroscopic conservation equations and entropy inequalities are then obtained from the microscopic equations through suitable averaging procedures. At this stage a stronger form of the second law may also be postulated for the mixture of phases or materials. To render the evolutionary material flow balance system unique, constitutive equations and phase or material interaction relations are introduced from experimental observation, or by postulation, through strict enforcement of the constraints or restrictions resulting from the averaged entropy inequalities. These averaged equations form the governing equation system for the dynamic evolution of these mixture flows. Most commonly, the averaging technique utilized is either volume or time averaging or a combination of the two. The flow restrictions required for volume and time averaging to be valid can be severe, and violations of these restrictions are often found. A more general, less restrictive (and far less commonly used) type of averaging known

  7. Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter

    DOEpatents

    Ortiz, Marcos G.; Boucher, Timothy J.

    1997-01-01

    A system for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit.

  8. Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter

    DOEpatents

    Ortiz, M.G.; Boucher, T.J.

    1997-06-24

    A system is described for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit. 2 figs.

  9. Study of multi-phase flow characteristics in an MHD power train

    SciTech Connect

    Chang, S.L.; Lottes, S.A.; Bouillard, J.X.; Petrick, M.

    1993-08-01

    Computer simulation was used to predict two-phase flow processes in the CDIF MHD power train system. The predictions were used to evaluate the effects of operating and design parameters on the performance of the system and a parametric evaluation provides information to enhance the performance of the system. Major components of the system under investigation are the two-stage combustor, the converging/diverging nozzle, the supersonic MHD channel, and the diffuser. Flow in each component was simulated using a computer code. Integrating the computer codes, the two-phase flow processes in the system was calculated. Recently, the computer codes were used to investigate problems of nozzle erosion and the non-uniform iron oxide coverage on the cathode wall in the channel. A limited parametric study was conducted. The results indicated that (1) among the three nozzle geometries under investigation a {number_sign}5 nozzle has the smoothest flow development in the nozzle and has the lowest droplet deposition on wall and (2) smaller particle size and lower injection velocity tend to disperse the iron oxide particles more uniformly in the nozzle.

  10. a Marker-Based Eulerian-Lagrangian Method for Multiphase Flow with Supersonic Combustion Applications

    NASA Astrophysics Data System (ADS)

    Fan, Xiaofeng; Wang, Jiangfeng

    2016-06-01

    The atomization of liquid fuel is a kind of intricate dynamic process from continuous phase to discrete phase. Procedures of fuel spray in supersonic flow are modeled with an Eulerian-Lagrangian computational fluid dynamics methodology. The method combines two distinct techniques and develops an integrated numerical simulation method to simulate the atomization processes. The traditional finite volume method based on stationary (Eulerian) Cartesian grid is used to resolve the flow field, and multi-component Navier-Stokes equations are adopted in present work, with accounting for the mass exchange and heat transfer occupied by vaporization process. The marker-based moving (Lagrangian) grid is utilized to depict the behavior of atomized liquid sprays injected into a gaseous environment, and discrete droplet model 13 is adopted. To verify the current approach, the proposed method is applied to simulate processes of liquid atomization in supersonic cross flow. Three classic breakup models, TAB model, wave model and K-H/R-T hybrid model, are discussed. The numerical results are compared with multiple perspectives quantitatively, including spray penetration height and droplet size distribution. In addition, the complex flow field structures induced by the presence of liquid spray are illustrated and discussed. It is validated that the maker-based Eulerian-Lagrangian method is effective and reliable.

  11. Deterministic particle transport in a ratchet flow

    NASA Astrophysics Data System (ADS)

    Beltrame, Philippe; Makhoul, Mounia; Joelson, Maminirina

    2016-01-01

    This study is motivated by the issue of the pumping of particle through a periodic modulated channel. We focus on a simplified deterministic model of small inertia particles within the Stokes flow framework that we call "ratchet flow." A path-following method is employed in the parameter space in order to retrace the scenario which from bounded periodic solutions leads to particle transport. Depending on whether the magnitude of the particle drag is moderate or large, two main transport mechanisms are identified in which the role of the parity symmetry of the flow differs. For large drag, transport is induced by flow asymmetry, while for moderate drag, since the full transport solution bifurcation structure already exists for symmetric settings, flow asymmetry only makes the transport effective. We analyzed the scenarios of current reversals for each mechanism as well as the role of synchronization. In particular we show that, for large drag, the particle drift is similar to phase slip in a synchronization problem.

  12. Small scale laboratory studies of flow and transport phenonmena in pores and fractures, Phase II

    SciTech Connect

    Wilson, J.L.

    1993-04-01

    Small scale laboratory experiments, equipped with an ability to actually observe behavior on the pore level using microscopy, provide an economical and easily understood scientific tool to help us validateconcepts and assumptions about the transport of contaminants, and offers the propensity to discover heretofore unrecognized phenomena or behavior. The main technique employs etched glass micromodels, composed of two etched glass plates, sintered together, to form a two dimensional network of three dimensional pores. Flow and transport behavior is observed on a pore or pore network level, and recorded on film and video tape. This technique is coupled with related column studies. Specifically we're examining multiphase flow behavior of relevance, for example, to liquid-liquid mass transfer (solubilization of capillary trapped organic liquids); liquid-gas mass transfer (in situ volatilization); colloid movement, attachment and detachment in the presence of fluid-fluid interfaces; bacteria colonization and motility in porous systems; and heterogeneity effects on multi-phase flow, colloid movement and bacteria behavior.

  13. Pairwise Force Smoothed Particle Hydrodynamics model for multiphase flow: Surface tension and contact line dynamics

    NASA Astrophysics Data System (ADS)

    Tartakovsky, Alexandre M.; Panchenko, Alexander

    2016-01-01

    We present a novel formulation of the Pairwise Force Smoothed Particle Hydrodynamics (PF-SPH) model and use it to simulate two- and three-phase flows in bounded domains. In the PF-SPH model, the Navier-Stokes equations are discretized with the Smoothed Particle Hydrodynamics (SPH) method, and the Young-Laplace boundary condition at the fluid-fluid interface and the Young boundary condition at the fluid-fluid-solid interface are replaced with pairwise forces added into the Navier-Stokes equations. We derive a relationship between the parameters in the pairwise forces and the surface tension and static contact angle. Next, we demonstrate the model's accuracy under static and dynamic conditions. Finally, we use the Pf-SPH model to simulate three phase flow in a porous medium.

  14. Laser Doppler anemometry and fibreoptical spatial filter anemometry - A comparison for the multiphase flow measurement

    NASA Astrophysics Data System (ADS)

    Petrak, D.; Haedrich, T.

    The paper presents a comparison between the fiber-optical spatial filter anemometry (FOA) and LDA for the particle velocity measurement in a two-phase flow. An LDA two beam anemometer and a differential-type optical fiber array spatial filter were used for the velocity measurements on glass particles with a mean diameter of 116 microns in a horizontal channel air flow. Two different probe pipe constructions were investigated. In general the results show that the FOA-probe signals have a low signal-to-noise ratio in comparison with the LDA-signals and that the mean FOA-particle velocity is smaller than the mean LDA-particle velocity. A FOA-system with a probe construction like a Pitot tube is preferred for the application.

  15. Multiphase Flow Modeling of Slag Entrainment During Ladle Change-Over Operation

    NASA Astrophysics Data System (ADS)

    Morales, Rodolfo D.; Garcia-Hernandez, Saul; Barreto, Jose de Jesus; Ceballos-Huerta, Ariana; Calderon-Ramos, Ismael; Gutierrez, Enif

    2016-08-01

    Steel transfer from the ladle to a single-strand tundish using a conventional ladle shroud (CLS), and a dissipative ladle shroud (DLS) is studied during the transient period of ladle change-over operation. Fluid velocities and fluid flow turbulence statistics during this unsteady operation were recorded by an ultrasound velocimetry probe in a 1/3 scale water-oil-air analog model (to emulate steel-slag-air system). Reynolds stress model and volume of fluid model allow the tracking of water-oil, water-air, and oil-air interfaces during this operation. Velocity measurements indicate a very high turbulence with the formation of a water-air bubbles-oil emulsion. Flow turbulence and the intensity of the emulsification decrease considerably due to an efficient dissipation of the turbulent kinetic energy employing the DLS instead of the CLS. The modeling results indicate that DLS is widely recommended to substitute flow control devices to improve the fluid dynamics of liquid steel during this transient operation.

  16. Lattice Boltzmann Model of 3D Multiphase Flow in Artery Bifurcation Aneurysm Problem.

    PubMed

    Abas, Aizat; Mokhtar, N Hafizah; Ishak, M H H; Abdullah, M Z; Ho Tian, Ang

    2016-01-01

    This paper simulates and predicts the laminar flow inside the 3D aneurysm geometry, since the hemodynamic situation in the blood vessels is difficult to determine and visualize using standard imaging techniques, for example, magnetic resonance imaging (MRI). Three different types of Lattice Boltzmann (LB) models are computed, namely, single relaxation time (SRT), multiple relaxation time (MRT), and regularized BGK models. The results obtained using these different versions of the LB-based code will then be validated with ANSYS FLUENT, a commercially available finite volume- (FV-) based CFD solver. The simulated flow profiles that include velocity, pressure, and wall shear stress (WSS) are then compared between the two solvers. The predicted outcomes show that all the LB models are comparable and in good agreement with the FVM solver for complex blood flow simulation. The findings also show minor differences in their WSS profiles. The performance of the parallel implementation for each solver is also included and discussed in this paper. In terms of parallelization, it was shown that LBM-based code performed better in terms of the computation time required. PMID:27239221

  17. Nonlinear waves and pattern formation in multiphase flows in porous media

    NASA Astrophysics Data System (ADS)

    Elperin, T.; Kleeorin, N.; Rogachevskii, I.

    The paper analyzes pattern formation in initially homogeneous one-dimensional two-phase flows in porous medium. It is shown that generally these flows are unstable. The mechanism of the instabilities is associated with inertial effects. Such instabilities are of explosive type and are probably important in various engineering applications and natural phenomena. In small-amplitude finite approximation the evolution of patterns is governed by the Korteweg-de Vries-Burgers equation. Pattern formation occurs when the coefficient multiplying the Burgers term becomes negative. During nonlinear evolution a soliton with a tail is formed. The amplitude of the soliton increases while the tail decreases. These results can be regarded as a generalization of results by Harris and Crighton (1994) to the case of two-phase flows in porous medium. The obtained solution in form of soliton with a tail can be interpreted as initial phase of formation of the phase composition inhomogeneities in porous media. In the case of fluidized beds this pattern can be regarded as initial phase of bubble formation in a fluidized bed of granular material. The characteristic size of bubbles and time of its formation are estimated.

  18. Lattice Boltzmann Model of 3D Multiphase Flow in Artery Bifurcation Aneurysm Problem

    PubMed Central

    Abas, Aizat; Mokhtar, N. Hafizah; Ishak, M. H. H.; Abdullah, M. Z.; Ho Tian, Ang

    2016-01-01

    This paper simulates and predicts the laminar flow inside the 3D aneurysm geometry, since the hemodynamic situation in the blood vessels is difficult to determine and visualize using standard imaging techniques, for example, magnetic resonance imaging (MRI). Three different types of Lattice Boltzmann (LB) models are computed, namely, single relaxation time (SRT), multiple relaxation time (MRT), and regularized BGK models. The results obtained using these different versions of the LB-based code will then be validated with ANSYS FLUENT, a commercially available finite volume- (FV-) based CFD solver. The simulated flow profiles that include velocity, pressure, and wall shear stress (WSS) are then compared between the two solvers. The predicted outcomes show that all the LB models are comparable and in good agreement with the FVM solver for complex blood flow simulation. The findings also show minor differences in their WSS profiles. The performance of the parallel implementation for each solver is also included and discussed in this paper. In terms of parallelization, it was shown that LBM-based code performed better in terms of the computation time required. PMID:27239221

  19. Error handling strategies in multiphase inverse modeling

    SciTech Connect

    Finsterle, S.; Zhang, Y.

    2010-12-01

    Parameter estimation by inverse modeling involves the repeated evaluation of a function of residuals. These residuals represent both errors in the model and errors in the data. In practical applications of inverse modeling of multiphase flow and transport, the error structure of the final residuals often significantly deviates from the statistical assumptions that underlie standard maximum likelihood estimation using the least-squares method. Large random or systematic errors are likely to lead to convergence problems, biased parameter estimates, misleading uncertainty measures, or poor predictive capabilities of the calibrated model. The multiphase inverse modeling code iTOUGH2 supports strategies that identify and mitigate the impact of systematic or non-normal error structures. We discuss these approaches and provide an overview of the error handling features implemented in iTOUGH2.

  20. Thermodynamically Constrained Averaging Theory Approach for Modeling Flow and Transport Phenomena in Porous Medium Systems: 4. Species Transport Fundamentals

    PubMed Central

    Gray, William G.

    2008-01-01

    This work is the fourth in a series of papers on the thermodynamically constrained averaging theory (TCAT) approach for modeling flow and transport phenomena in multiscale porous medium systems. The general TCAT framework and the mathematical foundation presented in previous works are built upon by formulating macroscale models for conservation of mass, momentum, and energy, and the balance of entropy for a species in a phase volume, interface, and common curve. In addition, classical irreversible thermodynamic relations for species in entities are averaged from the microscale to the macroscale. Finally, we comment on alternative approaches that can be used to connect species and entity conservation equations to a constrained system entropy inequality, which is a key component of the TCAT approach. The formulations detailed in this work can be built upon to develop models for species transport and reactions in a variety of multiphase systems. PMID:19255613

  1. Symposium on unsaturated flow and transport modeling

    SciTech Connect

    Arnold, E.M.; Gee, G.W.; Nelson, R.W.

    1982-09-01

    This document records the proceedings of a symposium on flow and transport processes in partially saturated groundwater systems, conducted at the Battelle Seattle Research Center on March 22-24, 1982. The symposium was sponsored by the US Nuclear Regulatory Commission for the purpose of assessing the state-of-the-art of flow and transport modeling for use in licensing low-level nuclear waste repositories in partially saturated zones. The first day of the symposium centered around research in flow through partially saturated systems. Papers were presented with the opportunity for questions following each presentation. In addition, after all the talks, a formal panel discussion was held during which written questions were addressed to the panel of the days speakers. The second day of the Symposium was devoted to solute and contaminant transport in partially saturated media in an identical format. Individual papers are abstracted.

  2. Modeling Unsaturated Flow and Transport Processes in Fractured Tuffs of Yucca Mountain

    SciTech Connect

    Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Bodvarsson, G.S.

    2003-07-15

    This paper presents a field modeling study characterizing fluid flow and tracer transport in the unsaturated zone of Yucca Mountain, Nevada, a proposed underground repository for storing high-level radioactive waste. The 500 to 700 meter thick unsaturated zone of Yucca Mountain consists of highly heterogeneous layers of anisotropic, fractured ash flow and air fall tuffs. Characterization of fluid flow and heat transfer through such a system has been a challenge due to the heterogeneities prevalent on various scales. Quantitative evaluation of water, gas, and heat flow by means of numerical simulation is essential for design and performance assessment of the repository. A three-dimensional numerical flow and transport model will be discussed. The model has been calibrated against field-measured data and takes into account the coupled processes of unsaturated flow and tracer transport in the highly heterogeneous, unsaturated fractured porous rock. The modeling approach of the model is based on a dual-continuum formulation of coupled multiphase fluid and tracer transport through fractured porous rock. As application examples, effects of current and future climates on the unsaturated zone processes are evaluated to aid in the assessment of the proposed repository's system performance.

  3. Characterization of multiphase fluid flow during air-sparged hydrocyclone flotation by x-ray CT. Final report, 14 August 1990--13 August 1994

    SciTech Connect

    Miller, J.D.

    1994-10-18

    Air sparged hydrocyclone (ASH) flotation is a new particle separation technology that has been developed at the University of Utah. This technology combines froth flotation principles with the flow characteristics of a hydrocyclone such that the ASH system can perform flotation separations in less than a second. This feature provides the ASH with a high specific capacity, 100 to 600 times greater than the specific capacity of conventional flotation machines. In an effort to develop a more detailed understanding of ASH flotation, multiphase flow characteristics of the air sparged hydrocyclone were studied and the relationship of these characteristics with flotation performance was investigated. This investigation was divided into four phases. In the first phase, the time-averaged multiphase flow characteristics of the ASH during its steady state operation were studied using x-ray computed tomography (x-ray CT). In this regard, a model system, mono-sized quartz flotation with dodecyl amine as collector, using a 2 in. diameter ASH unit (ASH-2C), was selected for study. Various flow regimes, namely, the air core, the froth phase, and the swirl layer, were identified and their spatial extent established for different experimental conditions by x-ray CT analysis. In the second phase, a detailed parametric study of flotation response of the ASH for the same system was carried out in order to establish the effect of various operating variables on flotation response. The findings of this phase of investigation were then correlated with the multiphase flow characteristics as revealed by x-ray CT in the first phase. Thus, the impact of various operating variables on the flow regimes, and hence, on flotation response was established.

  4. Dissipative Particle Dynamics and Other Particle Methods for Multiphase Fluid Flow in Fractured and Porous Media

    SciTech Connect

    Paul Meakin; Zhijie Xu

    2008-06-01

    Particle methods are much less computationally efficient than grid based numerical solution of the Navier Stokes equation, and they have been used much less extensively, particularly for engineering applications. However, they have important advantages for some applications. These advantages include rigorous mast conservation, momentum conservation and isotropy. In addition, there is no need for explicit interface tracking/capturing. Code development effort is relatively low, and it is relatively simple to simulate flows with moving boundaries. In addition, it is often quite easy to include coupling of fluid flow with other physical phenomena such a phase separation. Here we describe the application of three particle methods: molecular dynamics, dissipative particle dynamics and smoothed particle hydrodynamics. While these methods were developed to simulate fluids and other materials on three quite different scales – the molecular, meso and continuum scales, they are very closely related from a computational point of view. The mesoscale (between the molecular and continuum scales) dissipative particle dynamics method can be used to simulate systems that are too large to simulate using molecular dynamics but small enough for thermal fluctuations to play an important role. Important examples include polymer solutions, gels, small particle suspensions and membranes. In these applications inter particle and intra molecular hydrodynamic interactions are automatically included

  5. Experimental and Theoretical Investigation of Multiphase Flow in Fractured Porous media, SUPRI TR-116, Topical Report

    SciTech Connect

    Akin, Serhat; Castanier, Louis M.; German, Edgar Rene Rangel

    1999-08-09

    The fluid transfer parameters between rock matrix and fracture are not well known. Consequently, simulation of fractured reservoirs uses, in general, very crude and unproven hypotheses such as zero capillary pressure in the fracture and/or relative permeability linear with saturation. In order to improve the understanding of flow in fractured media, an experimental study was conducted and numerical simulations of the experiments were made. A laboratory flow apparatus was built to obtain data on water- air imbibition and oil-water drainage displacements in horizontal single-fractured block systems. For this purpose, two configurations have been used: a two-block system with a 1 mm spacer between the blocks, and a two-block system with no spacer. During the experiments, porosity and saturation measurements along the cores have been made utilizing an X-ray Computerized Tomography (CT) scanner. Saturation images were reconstructed in 3-D to observe matrix-fracture interactions. Differences in fluid saturations and relative permeabilities caused by changes in fracture width have also been analyzed.

  6. Shear-slip analysis in multiphase fluid-flow reservoir engineeringap plications using TOUGH-FLAC

    SciTech Connect

    Rutqvist, Jonny; Birkholzer, Jens; Cappa, Frederic; Oldenburg,Curt; Tsang, Chin-Fu

    2006-01-15

    This paper describes and demonstrates the use of the coupledTOUGH-FLAC simulator for geomechanical shear-slip (failure) analysis inmultiphase fluid-flow reservoir-engineering applications. Two approachesfor analyzing shear-slip are described, one using continuum stress-strainanalysis and another using discrete fault analysis. The use of shear-slipanalysis in TOUGH-FLAC is demonstrated on application examples related toCO2 sequestration and geothermal energy extraction. In the case of CO2sequestration, the shear-slip analysis is used to evaluate maximumsustainable CO2-injection pressure under increasing reservoir pressure,whereas in the case of geothermal energy extraction, the shear-slipanalysis is used to study induced seismicity during steam productionunder decreasing reservoir pressure and temperature.

  7. Dual FIB-SEM 3D Imaging and Lattice Boltzmann Modeling of Porosimetry and Multiphase Flow in Chalk

    NASA Astrophysics Data System (ADS)

    Rinehart, A. J.; Yoon, H.; Dewers, T. A.; Heath, J. E.; Petrusak, R.

    2010-12-01

    Mercury intrusion porosimetry (MIP) is an often-applied technique for determining pore throat distributions and seal analysis of fine-grained rocks. Due to closure effects, potential pore collapse, and complex pore network topologies, MIP data interpretation can be ambiguous, and often biased toward smaller pores in the distribution. We apply 3D imaging techniques and lattice-Boltzmann modeling in interpreting MIP data for samples of the Cretaceous Selma Group Chalk. In the Mississippi Interior Salt Basin, the Selma Chalk is the apparent seal for oil and gas fields in the underlying Eutaw Fm., and, where unfractured, the Selma Chalk is one of the regional-scale seals identified by the Southeast Regional Carbon Sequestration Partnership for CO2 injection sites. Dual focused ion - scanning electron beam and laser scanning confocal microscopy methods are used for 3D imaging of nanometer-to-micron scale microcrack and pore distributions in the Selma Chalk. A combination of image analysis software is used to obtain geometric pore body and throat distributions and other topological properties, which are compared to MIP results. 3D data sets of pore-microfracture networks are used in Lattice Boltzmann simulations of drainage (wetting fluid displaced by non-wetting fluid via the Shan-Chen algorithm), which in turn are used to model MIP procedures. Results are used in interpreting MIP results, understanding microfracture-matrix interaction during multiphase flow, and seal analysis for underground CO2 storage. This work was supported by the US Department of Energy, Office of Basic Energy Sciences as part of an Energy Frontier Research Center. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. An Experimenting Field Approach for the Numerical Solution of Multiphase Flow in Porous Media.

    PubMed

    Salama, Amgad; Sun, Shuyu; Bao, Kai

    2016-03-01

    In this work, we apply the experimenting pressure field technique to the problem of the flow of two or more immiscible phases in porous media. In this technique, a set of predefined pressure fields are introduced to the governing partial differential equations. This implies that the velocity vector field and the divergence at each cell of the solution mesh can be determined. However, since none of these fields is the true pressure field entailed by the boundary conditions and/or the source terms, the divergence at each cell will not be the correct one. Rather the residue which is the difference between the true divergence and the calculated one is obtained. These fields are designed such that these residuals are used to construct the matrix of coefficients of the pressure equation and the right-hand side. The experimenting pressure fields are generated in the solver routine and are fed to the different routines, which may be called physics routines, which return to the solver the elements of the matrix of coefficients. Therefore, this methodology separates the solver routines from the physics routines and therefore results in simpler, easy to construct, maintain, and update algorithms.

  9. Computer assisted gamma and X-ray tomography: Applications to multiphase flow systems

    SciTech Connect

    Kumar, S.B.; Dudukovic, M.

    1998-01-01

    In process vessels, involving two or three phases it is often important not only to know the volume fraction (holdup) of each phase but also the spatial distribution of such holdups. This information is needed in control, trouble shooting and assessment of flow patterns and can be observed noninvasively by the application of Computed Tomography (CT). This report presents a complete overview of X-ray and gamma ray transmission tomography principles, equipment design to specific tasks and application in process industry. The fundamental principles of tomography, the algorithms for image reconstruction, the measurement method and the possible sources of error are discussed in detail. A case study highlights the methodology involved in designing a scanning system for the study of a given process unit, e.g., reactor, separations column etc. Results obtained in the authors` laboratory for the gas holdup distribution in bubble columns are also presented. Recommendations are made for the Advanced Fuels Development Unit (AFDU) in LaPorte, TX.

  10. Towards an integrated petrophysical tool for multiphase flow properties of core samples

    SciTech Connect

    Lenormand, R.

    1997-08-01

    This paper describes the first use of an Integrated Petrophysical Tool (IPT) on reservoir rock samples. The IPT simultaneously measures the following petrophysical properties: (1) Complete capillary pressure cycle: primary drainage, spontaneous and forced imbibitions, secondary drainage (the cycle leads to the wettability of the core by using the USBM index); End-points and parts of the relative permeability curves; Formation factor and resistivity index. The IPT is based on the steady-state injection of one fluid through the sample placed in a Hassler cell. The experiment leading to the whole Pc cycle on two reservoir sandstones consists of about 30 steps at various oil or water flow rates. It takes about four weeks and is operated at room conditions. Relative permeabilities are in line with standard steady-state measurements. Capillary pressures are in accordance with standard centrifuge measurements. There is no comparison for the resistivity index, but the results are in agreement with literature data. However, the accurate determination of saturation remains the main difficulty and some improvements are proposed. In conclusion, the Integrated Petrophysical Tool is as accurate as standard methods and has the advantage of providing the various parameters on the same sample and during a single experiment. The FIT is easy to use and can be automated. In addition, it can be operated in reservoir conditions.

  11. Application of micro-PIV technique to study multiphase flow of water and liquid CO2 in 2D porous media

    NASA Astrophysics Data System (ADS)

    Kazemifar, F.; Blois, G.; Kyritsis, D. C.; Christensen, K. T.

    2014-11-01

    We study the multiphase flow of water and liquid/supercritical CO2 in 2D porous micromodels, with the goal of developing a more complete understanding of pore-scale flow dynamics for the scenario of geological sequestration of carbon dioxide. Fluorescent microscopy and the micro-PIV technique are employed to simultaneously visualize both phases and obtain the velocity field in the aqueous phase. This technique provides a powerful tool for studying such flow systems and the results give valuable insight into flow processes at the pore scale. The fluid-fluid interface curvature from the images can be used to estimate the local capillary pressure. The velocity measurements illustrate active and passive flow pathways and circulation regions near the fluid-fluid interfaces induced by shear. Thin water films observed on the solid surfaces confirm the hydrophilic nature of the micromodels. The velocity of the said films is measured by particle tracking.

  12. New insights from velocity field measurements in multiphase flow of water and liquid CO2 in 2D porous micromodels for

    NASA Astrophysics Data System (ADS)

    Kazemifar, F.; Blois, G.; Kyritsis, D. C.; Christensen, K. T.

    2014-12-01

    We study the multiphase flow of water and liquid/supercritical CO2 in 2D porous micromodels, with the goal of developing a more complete understanding of pore-scale flow dynamics for the scenario of geological sequestration of carbon dioxide. Fluorescent microscopy and the microscopic particle image velocimetry (micro-PIV) technique are employed to simultaneously visualize both phases and obtain the velocity field in the aqueous phase. This technique provides a powerful tool for studying such flow systems and the results give valuable insight into flow processes at the pore scale. The fluid-fluid interface curvature from the images can be used to estimate the local capillary pressure. The velocity measurements illustrate active and passive flow pathways and circulation regions near the fluid-fluid interfaces induced by shear. Thin water films observed on the solid surfaces confirm the hydrophilic nature of the micromodels. The velocity of the said films is measured by particle tracking.

  13. Toroidal Flow Shear Driven turbulence and Transport

    NASA Astrophysics Data System (ADS)

    Wang, Weixing; Ethier, S.; Hinton, F. L.; Hahm, T. S.; Tang, W. M.

    2012-10-01

    New results from global nonlinear gyrokinetic simulations with the GTS code show that strong flow shear can drive a negative compressibility mode [1-3] unstable in tokamak geometry in some experimentally relevant parameter regimes. The modes reside in a low-k range, similar to that of ITG mode, with smaller but almost constant growth rate over a wider kθ range, while the mode frequency increases strongly with kθ. More interestingly, the flow shear modes show significantly finite k//, unlike ITG and TEM. The nonlinear energy transfer to longer wavelength via toroidal mode coupling and corresponding strong zonal flow and geodestic acoustic mode (GAM) generation are shown to play a critical role in the nonlinear saturation of the instability. The associated turbulence fluctuations can produce significant momentum and energy transport, including an intrinsic torque in the co-current direction. Remarkably, strong ``resonance'' in the fluctuations and associated transport peaks at the lowest order rational surfaces with integer q-number (rather than fractional), consistent with theoretical calculation. As a consequence, local ``corrugations'' are generated in all plasma profiles (temperatures, density and toroidal rotation), potentially impacting transport barrier formation near the rational surface. Discussions on flow optimization for minimizing plasma transport will be reported.[4pt] [1] N. Mattor and P. H. Diamond, Phys. Fluids 31, 1180 (1988).[0pt] [2] P. J. Catto et al., Phys. Fluids 16, 1719 (1973).[0pt] [3] M. Artun and W. M. Tang, Phys. Fluids B4, 1102 (1992).

  14. Flow and Transport Through Unsaturated Fractured Rock

    NASA Astrophysics Data System (ADS)

    Evans, Daniel D.; Nicholson, Thomas J.; Rasmussen, Todd C.

    This monograph is an update and revision of the first edition, Geophysical Monograph 42, on ground-water flow and transport through unsaturated, fractured rock, published by AGU in 1987. The first edition evolved from a special symposium held during the American Geophysical Union fall meetings in San Francisco in December 1986. Invited and contributed papers at that AGU session, as well as panel presentations, focused on conceptualizing, measuring and modeling flow and transport through unsaturated fractured rock. As noted in the preface to the first edition, "the expanded interest in the topic (water flow and contaminant transport through unsaturated fractured rock) was initiated when the U.S. Geological Survey proposed that deep unsaturated zones in arid regions be considered in the site selection for the first high-level, commercially generated radioactive waste repository." Much of the research reported in that first edition was motivated by the U.S. Department of Energy's program to investigate Yucca Mountain at the Nevada Test Site as a possible geologic repository for commercially generated, high-level radioactive waste. As noted in the overview paper of the first edition, "characterization methods and modeling are in their developmental stage with the greatest lack of knowledge being the interaction between fracture and matrix flow and transport properties." Although the first edition of this monograph reflected the state-of-the science, laboratory and field experimental programs were novel and limited and, in general, followed from the principles and methods developed in the soil science community.

  15. Numerical Modeling of Reactive Multiphase Flow for FCC and Hot Gas Desulfurization Circulating Fluidized Beds

    SciTech Connect

    2005-07-01

    This work was carried out to understand the behavior of the solid and gas phases in a CFB riser. Only the riser is modeled as a straight pipe. A model with linear algebraic approximation to solids viscosity of the form, {musubs} = 5.34{epsisubs}, ({espisubs} is the solids volume fraction) with an appropriate boundary condition at the wall obtained by approximate momentum balance solution at the wall to acount for the solids recirculation is tested against experimental results. The work done was to predict the flow patterns in the CFB risers from available experimental data, including data from a 7.5-cm-ID CFB riser at the Illinois Institute of Technology and data from a 20.0-cm-ID CFB riser at the Particulate Solid Research, Inc., facility. This research aims at modeling the removal of hydrogen sulfide from hot coal gas using zinc oxide as the sorbent in a circulating fluidized bed and in the process indentifying the parameters that affect the performance of the sulfidation reactor. Two different gas-solid reaction models, the unreacted shrinking core (USC) and the grain model were applied to take into account chemical reaction resistances. Also two different approaches were used to affect the hydrodynamics of the process streams. The first model takes into account the effect of micro-scale particle clustering by adjusting the gas-particle drag law and the second one assumes a turbulent core with pseudo-steady state boundary condition at the wall. A comparison is made with experimental results.

  16. Advanced optical diagnostics of multiphase combustion flow field using OH planar laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Cho, Kevin Young-jin

    High-repetition-rate (5 kHz, 10 kHz) OH planar laser induced fluorescence (PLIF) was used to investigate the combustion of liquid, gelled, and solid propellants. For the liquid monomethyl hydrazine (MMH) droplet combustion experiment in N2O/N2 using 5 kHz OH PLIF and visible imaging system, the OH profile and the droplet diameter were measured. The N2O partial pressure was varied by 20% and 40%, and the total pressure was varied by 103, 172, 276, 414, 552 kPa. The OH location indicated that the oxidation flame front is between the visible dual flame fronts. The results showed thicker flame sheet and higher burning rate for increased N2O concentration for a given pressure. The burning rate increased with increased pressure at 20% partial pressure N2O, and the burning rate decreased with increased pressure at 40% partial pressure N2O. This work provides experimental data for validating chemical kinetics models. For the gelled droplet combustion experiment using a 5 kHz OH PLIF system, speeds and locations of fuel jets emanating from the burning gelled droplets were quantified for the first time. MMH was gelled with organic gellant HPC at 3 wt.% and 6 wt.%, and burned in air at 35, 103, 172, 276, and 414 kPa. Different types of interaction of vapor jets and flame front were distinguished for the first time. For high jet speed, local extinction of the flame was observed. By analyzing the jet speed statistics, it was concluded that pressure and jet speed had an inverse relationship and gellant concentration and jet speed had a direct relationship. This work provides more fundamental insight into the physics of gelled fuel droplet combustion. A 3D OH PLIF system was assembled and demonstrated using a 10 kHz OH PLIF system and a galvanometric scanning mirror. This is the first time that a reacting flow field was imaged with a 3D optical technique using OH PLIF. A 3D scan time of 1 ms was achieved, with ten slices generated per sweep with 1000 Hz scan rate. Alternatively

  17. Image analysis algorithms for estimating porous media multiphase flow variables from computed microtomography data: a validation study

    SciTech Connect

    Porter, Mark L.; Wildenschild, Dorthe

    2010-09-03

    Image analysis of three-dimensional microtomographic image data has become an integral component of pore scale investigations of multiphase flow through porous media. This study focuses on the validation of image analysis algorithms for identifying phases and estimating porosity, saturation, solid surface area, and interfacial area between fluid phases from gray-scale X-ray microtomographic image data. The data used in this study consisted of (1) a two-phase high precision bead pack from which porosity and solid surface area estimates were obtained and (2) three-phase cylindrical capillary tubes of three different radii, each containing an air-water interface, from which interfacial area was estimated. The image analysis algorithm employed here combines an anisotropic diffusion filter to remove noise from the original gray-scale image data, a k-means cluster analysis to obtain segmented data, and the construction of isosurfaces to estimate solid surface area and interfacial area. Our method was compared with laboratory measurements, as well as estimates obtained from a number of other image analysis algorithms presented in the literature. Porosity estimates for the two-phase bead pack were within 1.5% error of laboratory measurements and agreed well with estimates obtained using an indicator kriging segmentation algorithm. Additionally, our method estimated the solid surface area of the high precision beads within 10% of the laboratory measurements, whereas solid surface area estimates obtained from voxel counting and two-point correlation functions overestimated the surface area by 20--40%. Interfacial area estimates for the air-water menisci contained within the capillary tubes were obtained using our image analysis algorithm, and using other image analysis algorithms, including voxel counting, two-point correlation functions, and the porous media marching cubes. Our image analysis algorithm, and other algorithms based on marching cubes, resulted in errors

  18. Study on multiphase flow and mixing in semidry flue gas desulfurization with a multifluid alkaline spray generator using particle image velocimetry

    SciTech Connect

    Zhou, Y.G.; Wang, D.F.; Zhang, M.C.

    2009-06-15

    Particle image velocimetry (PIV) technique was used to measure the velocity fields of gas-droplet-solid multiphase flow in the experimental setup of a novel semidry flue gas desulfurization process with a multifluid alkaline spray generator. The flow structure, mixing characteristic, and interphase interaction of gas-droplet-solid multiphase flow were investigated both in the confined alkaline spray generator and in the duct bent pipe section. The results show that sorbent particles in the confined alkaline spray generator are entrained into the spray core zone by a high-speed spray jet and most of the sorbent particles can be effectively humidified by spray water fine droplets to form aqueous lime slurry droplets. Moreover, a minimum amount of air stream in the generator is necessary to achieve higher collision humidification efficiency between sorbent particles and spray water droplets and to prevent the possible deposition of fine droplets on the wall. The appropriate penetration length of the slurry droplets from the generator can make uniform mixing between the formed slurry droplets and main air stream in the duct bent pipe section, which is beneficial to improving sulfur dioxide removal efficiency and to preventing the deposition of droplets on the wall.

  19. TORAC. Tornado-Induced Flow Material Transport

    SciTech Connect

    Andrae, R.W.; Tang, P.K.; Martin, R.A.; Gregory, W.S.

    1992-01-13

    TORAC models tornado-induced flows, pressures, and material transport within structures. Its use is directed toward nuclear fuel cycle facilities and their primary release pathway, the ventilation system. However, it is applicable to other structures and can model other airflow pathways within a facility. In a nuclear facility, this network system could include process cells, canyons, laboratory offices, corridors, and offgas systems. TORAC predicts flow through a network system that also includes ventilation system components such as filters, dampers, ducts, and blowers. These ventilation system components are connected to the rooms and corridors of the facility to form a complete network for moving air through the structure and, perhaps, maintaining pressure levels in certain areas. The material transport capability in TORAC is very basic and includes convection, depletion, entrainment, and filtration of material.

  20. Interfacial area transport in bubbly flow

    SciTech Connect

    Ishii, M.; Wu, Q.; Revankar, S.T.

    1997-12-31

    In order to close the two-fluid model for two-phase flow analyses, the interfacial area concentration needs to be modeled as a constitutive relation. In this study, the focus was on the investigation of the interfacial area concentration transport phenomena, both theoretically and experimentally. The interfacial area concentration transport equation for air-water bubbly up-flow in a vertical pipe was developed, and the models for the source and sink terms were provided. The necessary parameters for the experimental studies were identified, including the local time-averaged void fraction, interfacial area concentration, bubble interfacial velocity, liquid velocity and turbulent intensity. Experiments were performed with air-water mixture at atmospheric pressure. Double-sensor conductivity probe and hot-film probe were employed to measure the identified parameters. With these experimental data, the preliminary model evaluation was carried out for the simplest form of the developed interfacial area transport equation, i.e., the one-dimensional transport equation.

  1. Device and method for measuring multi-phase fluid flow and density of fluid in a conduit having a gradual bend

    DOEpatents

    Ortiz, Marcos German; Boucher, Timothy J.

    1998-01-01

    A system for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.

  2. Device and method for measuring multi-phase fluid flow and density of fluid in a conduit having a gradual bend

    DOEpatents

    Ortiz, M.G.; Boucher, T.J.

    1998-10-27

    A system is described for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.

  3. Multiphase fluid characterization system

    DOEpatents

    Sinha, Dipen N.

    2014-09-02

    A measurement system and method for permitting multiple independent measurements of several physical parameters of multiphase fluids flowing through pipes are described. Multiple acoustic transducers are placed in acoustic communication with or attached to the outside surface of a section of existing spool (metal pipe), typically less than 3 feet in length, for noninvasive measurements. Sound speed, sound attenuation, fluid density, fluid flow, container wall resonance characteristics, and Doppler measurements for gas volume fraction may be measured simultaneously by the system. Temperature measurements are made using a temperature sensor for oil-cut correction.

  4. 2-Phase Fluid Flow & Heat Transport

    1993-03-13

    GEOTHER is a three-dimensional, geothermal reservoir simulation code. The model describes heat transport and flow of a single component, two-phase fluid in porous media. It is based on the continuity equations for steam and water, which are reduced to two nonlinear partial differential equations in which the dependent variables are fluid pressure and enthalpy. GEOTHER can be used to simulate the fluid-thermal interaction in rock that can be approximated by a porous media representation. Itmore » can simulate heat transport and the flow of compressed water, two-phase mixtures, and superheated steam in porous media over a temperature range of 10 to 300 degrees C. In addition, it can treat the conversion from single to two-phase flow, and vice versa. It can be used for evaluation of a near repository spatial scale and a time scale of a few years to thousands of years. The model can be used to investigate temperature and fluid pressure changes in response to thermal loading by waste materials.« less

  5. Modeling the influence of MgSO4 invariant points on multiphase reactive transport process during saline soil evaporation

    NASA Astrophysics Data System (ADS)

    Gamazo, P.; Saaltink, M. W.; Carrera, J.; Slooten, L.; Bea, S. A.; Gran, M.

    In the present work, we modeled a laboratory experiment where a sand column saturated with a MgSO4 solution is subject to evaporation. We used a compositional formulation capable of representing the effect of geochemistry on flow and transport for concentrated solutions under extreme dry conditions. The model accounts for the water sink/sources terms due to hydrated mineral dissolution/precipitation and the occurrence of invariant points, which prescribe the water activity. Results show that the occurrence of the invariant points at the top of the domain could affect the vapor flux at the column top and salt precipitation along the column. In fact, the invariant points occurrence could explain the spatial fluctuation on the salt precipitates formation. Results also suggest that the complex hydrochemical interactions occurring during soil salinization, including osmotic effects, are crucial not only to understand the salt precipitation, but also the evaporation rate.

  6. Lagrangian transport properties of pulmonary interfacial flows.

    PubMed

    Smith, Bradford J; Lukens, Sarah; Yamaguchi, Eiichiro; Gaver, Donald P

    2011-11-01

    Disease states characterized by airway fluid occlusion and pulmonary surfactant insufficiency, such as respiratory distress syndrome, have a high mortality rate. Understanding the mechanics of airway reopening, particularly involving surfactant transport, may provide an avenue to increase patient survival via optimized mechanical ventilation waveforms. We model the occluded airway as a liquid-filled rigid tube with the fluid phase displaced by a finger of air that propagates with both mean and sinusoidal velocity components. Finite-time Lyapunov exponent (FTLE) fields are employed to analyse the convective transport characteristics, taking note of Lagrangian coherent structures (LCSs) and their effects on transport. The Lagrangian perspective of these techniques reveals flow characteristics that are not readily apparent by observing Eulerian measures. These analysis techniques are applied to surfactant-free velocity fields determined computationally, with the boundary element method, and measured experimentally with micro particle image velocimetry (μ-PIV). We find that the LCS divides the fluid into two regimes, one advected upstream (into the thin residual film) and the other downstream ahead of the advancing bubble. At higher oscillatory frequencies particles originating immediately inside the LCS experience long residence times at the air-liquid interface, which may be conducive to surfactant transport. At high frequencies a well-mixed attractor region is identified; this volume of fluid cyclically travels along the interface and into the bulk fluid. The Lagrangian analysis is applied to velocity data measured with 0.01 mg ml(-1) of the clinical pulmonary surfactant Infasurf in the bulk fluid, demonstrating flow field modifications with respect to the surfactant-free system that were not visible in the Eulerian frame.

  7. Lagrangian transport properties of pulmonary interfacial flows

    PubMed Central

    Smith, Bradford J.; Lukens, Sarah; Yamaguchi, Eiichiro; Gaver, Donald P.

    2012-01-01

    Disease states characterized by airway fluid occlusion and pulmonary surfactant insufficiency, such as respiratory distress syndrome, have a high mortality rate. Understanding the mechanics of airway reopening, particularly involving surfactant transport, may provide an avenue to increase patient survival via optimized mechanical ventilation waveforms. We model the occluded airway as a liquid-filled rigid tube with the fluid phase displaced by a finger of air that propagates with both mean and sinusoidal velocity components. Finite-time Lyapunov exponent (FTLE) fields are employed to analyse the convective transport characteristics, taking note of Lagrangian coherent structures (LCSs) and their effects on transport. The Lagrangian perspective of these techniques reveals flow characteristics that are not readily apparent by observing Eulerian measures. These analysis techniques are applied to surfactant-free velocity fields determined computationally, with the boundary element method, and measured experimentally with micro particle image velocimetry (μ-PIV). We find that the LCS divides the fluid into two regimes, one advected upstream (into the thin residual film) and the other downstream ahead of the advancing bubble. At higher oscillatory frequencies particles originating immediately inside the LCS experience long residence times at the air–liquid interface, which may be conducive to surfactant transport. At high frequencies a well-mixed attractor region is identified; this volume of fluid cyclically travels along the interface and into the bulk fluid. The Lagrangian analysis is applied to velocity data measured with 0.01 mg ml−1 of the clinical pulmonary surfactant Infasurf in the bulk fluid, demonstrating flow field modifications with respect to the surfactant-free system that were not visible in the Eulerian frame. PMID:23049141

  8. Pdf - Transport equations for chemically reacting flows

    NASA Technical Reports Server (NTRS)

    Kollmann, W.

    1989-01-01

    The closure problem for the transport equations for pdf and the characteristic functions of turbulent, chemically reacting flows is addressed. The properties of the linear and closed equations for the characteristic functional for Eulerian and Lagrangian variables are established, and the closure problem for the finite-dimensional case is discussed for pdf and characteristic functions. It is shown that the closure for the scalar dissipation term in the pdf equation developed by Dopazo (1979) and Kollmann et al. (1982) results in a single integral, in contrast to the pdf, where double integration is required. Some recent results using pdf methods obtained for turbulent flows with combustion, including effects of chemical nonequilibrium, are discussed.

  9. Modelling multi-phase liquid-sediment scour and resuspension induced by rapid flows using Smoothed Particle Hydrodynamics (SPH) accelerated with a Graphics Processing Unit (GPU)

    NASA Astrophysics Data System (ADS)

    Fourtakas, G.; Rogers, B. D.

    2016-06-01

    A two-phase numerical model using Smoothed Particle Hydrodynamics (SPH) is applied to two-phase liquid-sediments flows. The absence of a mesh in SPH is ideal for interfacial and highly non-linear flows with changing fragmentation of the interface, mixing and resuspension. The rheology of sediment induced under rapid flows undergoes several states which are only partially described by previous research in SPH. This paper attempts to bridge the gap between the geotechnics, non-Newtonian and Newtonian flows by proposing a model that combines the yielding, shear and suspension layer which are needed to predict accurately the global erosion phenomena, from a hydrodynamics prospective. The numerical SPH scheme is based on the explicit treatment of both phases using Newtonian and the non-Newtonian Bingham-type Herschel-Bulkley-Papanastasiou constitutive model. This is supplemented by the Drucker-Prager yield criterion to predict the onset of yielding of the sediment surface and a concentration suspension model. The multi-phase model has been compared with experimental and 2-D reference numerical models for scour following a dry-bed dam break yielding satisfactory results and improvements over well-known SPH multi-phase models. With 3-D simulations requiring a large number of particles, the code is accelerated with a graphics processing unit (GPU) in the open-source DualSPHysics code. The implementation and optimisation of the code achieved a speed up of x58 over an optimised single thread serial code. A 3-D dam break over a non-cohesive erodible bed simulation with over 4 million particles yields close agreement with experimental scour and water surface profiles.

  10. Massively parallel simulation of flow and transport in variably saturated porous and fractured media

    SciTech Connect

    Wu, Yu-Shu; Zhang, Keni; Pruess, Karsten

    2002-01-15

    This paper describes a massively parallel simulation method and its application for modeling multiphase flow and multicomponent transport in porous and fractured reservoirs. The parallel-computing method has been implemented into the TOUGH2 code and its numerical performance is tested on a Cray T3E-900 and IBM SP. The efficiency and robustness of the parallel-computing algorithm are demonstrated by completing two simulations with more than one million gridblocks, using site-specific data obtained from a site-characterization study. The first application involves the development of a three-dimensional numerical model for flow in the unsaturated zone of Yucca Mountain, Nevada. The second application is the study of tracer/radionuclide transport through fracture-matrix rocks for the same site. The parallel-computing technique enhances modeling capabilities by achieving several-orders-of-magnitude speedup for large-scale and high resolution modeling studies. The resulting modeling results provide many new insights into flow and transport processes that could not be obtained from simulations using the single-CPU simulator.

  11. Coupled multiphase flow and closure analysis of repository response to waste-generated gas at the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect

    Freeze, G.A.; Larson, K.W.; Davies, P.B.

    1995-10-01

    A long-term assessment of the Waste Isolation Pilot Plant (WIPP) repository performance must consider the impact of gas generation resulting from the corrosion and microbial degradation of the emplaced waste. A multiphase fluid flow code, TOUGH2/EOS8, was adapted to model the processes of gas generation, disposal room creep closure, and multiphase (brine and gas) fluid flow, as well as the coupling between the three processes. System response to gas generation was simulated with a single, isolated disposal room surrounded by homogeneous halite containing two anhydrite interbeds, one above and one below the room. The interbeds were assumed to have flow connections to the room through high-permeability, excavation-induced fractures. System behavior was evaluated by tracking four performance measures: (1) peak room pressure; (2) maximum brine volume in the room; (3) total mass of gas expelled from the room; and (4) the maximum gas migration distance in an interbed. Baseline simulations used current best estimates of system parameters, selected through an evaluation of available data, to predict system response to gas generation under best-estimate conditions. Sensitivity simulations quantified the effects of parameter uncertainty by evaluating the change in the performance measures in response to parameter variations. In the sensitivity simulations, a single parameter value was varied to its minimum and maximum values, representative of the extreme expected values, with all other parameters held at best-estimate values. Sensitivity simulations identified the following parameters as important to gas expulsion and migration away from a disposal room: interbed porosity; interbed permeability; gas-generation potential; halite permeability; and interbed threshold pressure. Simulations also showed that the inclusion of interbed fracturing and a disturbed rock zone had a significant impact on system performance.

  12. In-flight surface-flow measurements on a subsonic transport high-lift flap system

    NASA Technical Reports Server (NTRS)

    Yip, Long P.; Vijgen, Paul M. H. W.; Hardin, Jay D.

    1992-01-01

    As part of a multiphased program for subsonic transport high-lift flight research, flight tests were conducted on the Transport Systems Research Vehicle (B737-100 aircraft) at the NASA Langley Research Center, to obtain detailed flow characteristics of the high-lift flap system for correlation with computational and wind-tunnel investigations. Pressure distributions, skin friction, and flow-visualization measurements were made on a triple-slotted flap system for a range of flap deflections, chord Reynolds numbers (10 to 21 million), and Mach numbers (0.16 to 0.36). Experimental test results are given for representative flap settings indicating flow separation on the fore-flap element for the largest flap deflection. Comparisons of the in-flight flow measurements were made with predictions from available viscous multielement computational methods modified with simple-sweep theory. Computational results overpredicted the experimentally measured pressures, particularly in the case involving separation of the fore lap, indicating the need for better modeling of confluent boundary layers and three-dimensional sweep effects.

  13. Stratigraphic control of flow and transport characteristics.

    PubMed

    Edington, Dwaine; Poeter, Eileen

    2007-01-01

    Ground water flow and travel time are dependent on stratigraphic architecture, which is governed by competing processes that control the spatial and temporal distribution of accommodation and sediment supply. Accommodation is the amount of space in which sediment may accumulate as defined by the difference between the energy gradient and the topographic surface. The temporal and spatial distribution of accommodation is affected by processes that change the distribution of energy (e.g., sea level or subsidence). Fluvial stratigraphic units, generated by FLUVSIM (a stratigraphic simulator based on accommodation and sediment supply), with varying magnitudes and causes of accommodation, were incorporated into a hydraulic regime using MODFLOW (a ground water flow simulator), and particles were tracked using MODPATH (a particle-tracking algorithm). These experiments illustrate that the dominant type of accommodation process influences the degree of continuity of stratigraphic units and thus affects ground water flow and transport. When the hydraulic gradient is parallel to the axis of the fluvial system in the depositional environment, shorter travel times occur in low-total accommodation environments and longer travel times in high-total accommodation environments. Given the same total accommodation, travel times are longer when sea-level change is the dominant process than those in systems dominated by subsidence.

  14. Stratigraphic control of flow and transport characteristics.

    PubMed

    Edington, Dwaine; Poeter, Eileen

    2006-01-01

    Ground water flow and travel time are dependent on stratigraphic architecture, which is governed by competing processes that control the spatial and temporal distribution of accommodation and sediment supply. Accommodation is the amount of space in which sediment may accumulate as defined by the difference between the energy gradient and the topographic surface. The temporal and spatial distribution of accommodation is affected by processes that change the distribution of energy (e.g., sea level or subsidence). Fluvial stratigraphic units, generated by FLUVSIM (a stratigraphic simulator based on accommodation and sediment supply), with varying magnitudes and causes of accommodation, were incorporated into a hydraulic regime using MODFLOW (a ground water flow simulator), and particles were tracked using MODPATH (a particle-tracking algorithm). These experiments illustrate that the dominant type of accommodation process influences the degree of continuity of stratigraphic units and thus affects ground water flow and transport. When the hydraulic gradient is parallel to the axis of the fluvial system in the depositional environment, shorter travel times occur in low-total accommodation environments and longer travel times in high-total accommodation environments. Given the same total accommodation, travel times are longer when sea-level change is the dominant process than those in systems dominated by subsidence.

  15. Numerical simulation of multiphase flow and collision humidification in the multifluid alkaline spray generator for a novel semidry flue gas desulfurization system

    SciTech Connect

    Zhou, Y.G.; Cao, W.C.; Wang, L.; Zhang, M.C.

    2008-07-15

    A hybrid Eulerian-Lagrangian model was developed to simulate gas-droplet-particle multiphase flow and the collision humidification between sorbent particles and spray droplets in the confined multifluid alkaline spray generator for a novel semidry flue gas desulfurization system. In this model, the motions of discrete phases were tracked simultaneously by using a stochastic trajectory approach, and a probability model of droplets catching particles was presented to judge whether sorbent particles were caught with direct simulation Monte Carlo method. Numerical humidification efficiency of sorbent particles is validated by the experimental one deduced from the measured desulfurization efficiency. The effects of flue gas flow rate, spray droplet diameter, sorbent particle diameter, and particle injection location on the humidification efficiency were optimized. Numerical results show that the collision humidification efficiency of sorbent particles increases significantly at the axial distance of 1.67 times the generator diameter from the nozzle tip and reaches 78.5% without recirculation flow in the alkaline spray generator when the ratio of flue gas mass flow rate to spray water mass flow rate is 6.7. Moreover, there is an optimal droplet diameter ranging from 125 to 150 {mu} m and an optimal particle injection location corresponding to the maximum humidification efficiency in this paper.

  16. Small scale laboratory studies of flow and transport phenonmena in pores and fractures, Phase II. Second yearly progress report

    SciTech Connect

    Wilson, J.L.

    1993-04-01

    Small scale laboratory experiments, equipped with an ability to actually observe behavior on the pore level using microscopy, provide an economical and easily understood scientific tool to help us validateconcepts and assumptions about the transport of contaminants, and offers the propensity to discover heretofore unrecognized phenomena or behavior. The main technique employs etched glass micromodels, composed of two etched glass plates, sintered together, to form a two dimensional network of three dimensional pores. Flow and transport behavior is observed on a pore or pore network level, and recorded on film and video tape. This technique is coupled with related column studies. Specifically we`re examining multiphase flow behavior of relevance, for example, to liquid-liquid mass transfer (solubilization of capillary trapped organic liquids); liquid-gas mass transfer (in situ volatilization); colloid movement, attachment and detachment in the presence of fluid-fluid interfaces; bacteria colonization and motility in porous systems; and heterogeneity effects on multi-phase flow, colloid movement and bacteria behavior.

  17. Higher-order conservative interpolation between control-volume meshes: Application to advection and multiphase flow problems with dynamic mesh adaptivity

    NASA Astrophysics Data System (ADS)

    Adam, A.; Pavlidis, D.; Percival, J. R.; Salinas, P.; Xie, Z.; Fang, F.; Pain, C. C.; Muggeridge, A. H.; Jackson, M. D.

    2016-09-01

    A general, higher-order, conservative and bounded interpolation for the dynamic and adaptive meshing of control-volume fields dual to continuous and discontinuous finite element representations is presented. Existing techniques such as node-wise interpolation are not conservative and do not readily generalise to discontinuous fields, whilst conservative methods such as Grandy interpolation are often too diffusive. The new method uses control-volume Galerkin projection to interpolate between control-volume fields. Bounded solutions are ensured by using a post-interpolation diffusive correction. Example applications of the method to interface capturing during advection and also to the modelling of multiphase porous media flow are presented to demonstrate the generality and robustness of the approach.

  18. Flow characteristics in a crowded transport model

    NASA Astrophysics Data System (ADS)

    Burger, Martin; Pietschmann, Jan-Frederik

    2016-11-01

    The aim of this paper is to discuss the appropriate modelling of in- and outflow boundary conditions for nonlinear drift-diffusion models for the transport of particles including size exclusion and their effect on the behaviour of solutions. We use a derivation from a microscopic asymmetric exclusion process and its extension to particles entering or leaving on the boundaries. This leads to specific Robin-type boundary conditions for inflow and outflow, respectively. For the stationary equation we prove the existence of solutions in a suitable set-up. Moreover, we investigate the flow characteristics for a small diffusion parameter \\varepsilon , which yields the occurrence of a maximal current phase in addition to well-known one-sided boundary layer effects for linear drift-diffusion problems. In a 1D set-up we provide rigorous estimates in terms of ε, which confirm three different phases. Finally, we derive a numerical approach to solve the problem also in multiple dimensions.

  19. Toward a laminar-flow-control transport

    NASA Technical Reports Server (NTRS)

    Sturgeon, R. F.

    1978-01-01

    Analyses were conducted to define a practical design for an advanced technology laminar flow control (LRC) transport for initial passenger operation in the early 1990's. Mission requirements, appropriate design criteria, and level of technology for the study aircraft were defined. The characteristics of the selected configuration were established, aircraft and LFC subsystems compatible with the mission requirements were defined, and the aircraft was evaluated in terms of fuel efficiency. A wing design integrating the LFC ducting and metering system into advanced composite wing structure was developed, manufacturing procedures for the surface panel design were established, and environmental and structural testing of surface panel components were conducted. Test results revealed a requirement for relatively minor changes in the manufacturing procedures employed, but have shown the general compatibility of both the selected design and the use of composite materials with the requirements of LFC wing surface panels.

  20. Abstracts of the symposium on unsaturated flow and transport modeling

    SciTech Connect

    Not Available

    1982-03-01

    Abstract titles are: Recent developments in modeling variably saturated flow and transport; Unsaturated flow modeling as applied to field problems; Coupled heat and moisture transport in unsaturated soils; Influence of climatic parameters on movement of radionuclides in a multilayered saturated-unsaturated media; Modeling water and solute transport in soil containing roots; Simulation of consolidation in partially saturated soil materials; modeling of water and solute transport in unsaturated heterogeneous fields; Fluid dynamics and mass transfer in variably-saturated porous media; Solute transport through soils; One-dimensional analytical transport modeling; Convective transport of ideal tracers in unsaturated soils; Chemical transport in macropore-mesopore media under partially saturated conditions; Influence of the tension-saturated zone on contaminant migration in shallow water regimes; Influence of the spatial distribution of velocities in porous media on the form of solute transport; Stochastic vs deterministic models for solute movement in the field; and Stochastic analysis of flow and solute transport. (DMC)

  1. Hybrid Upwind Discretization for the Implicit Simulation of Three-Phase Coupled Flow and Transport with Gravity

    NASA Astrophysics Data System (ADS)

    Hamon, F. P.; Mallison, B.; Tchelepi, H.

    2015-12-01

    The systems of algebraic equations arising from implicit (backward-Euler) finite-volume discretization of the conservation laws governing multiphase flow in porous media are quite challenging for nonlinear solvers. In the presence of counter-current flow due to buoyancy, the coupling between flow (pressure) and transport (saturations) is often the cause of nonlinear problems when single-point Phase-Potential Upwinding (PPU) is used. To overcome such convergence problems in practice, the time step is reduced and Newton's method is restarted from the solution at the previous converged time step. Here, we generalize the work of Lee, Efendiev and Tchelepi [Advances in Water Resources, 2015] to propose an Implicit Hybrid Upwinding (IHU) scheme for coupled flow and transport. In the pure transport problem, we show that the numerical flux obtained with IHU is differentiable, monotone and consistent for two and three-phase flow. For coupled flow and transport, we prove saturation physical bounds as well as the existence of a solution to our scheme. Challenging two- and three-phase heterogeneous multi-dimensional numerical tests confirm that the new scheme is non-oscillatory and convergent, and illustrate the superior convergence rate of our IHU-based Newton solver for large time steps.

  2. Multiphase-flow numerical modeling of the 18 May 1980 lateral blast at Mount St. Helens, USA

    USGS Publications Warehouse

    Ongaro, T.E.; Widiwijayanti, C.; Clarke, A.B.; Voight, B.; Neri, A.

    2011-01-01

    Volcanic lateral blasts are among the most spectacular and devastating of natural phenomena, but their dynamics are still poorly understood. Here we investigate the best documented and most controversial blast at Mount St. Helens (Washington State, United States), on 18 May 1980. By means of three-dimensional multiphase numerical simulations we demonstrate that the blast front propagation, fi nal runout, and damage can be explained by the emplacement of an unsteady, stratifi ed pyroclastic density current, controlled by gravity and terrain morphology. Such an interpretation is quantitatively supported by large-scale observations at Mount St. Helens and will infl uence the defi nition and predictive mapping of hazards on blast-dangerous volcanoes worldwide. ?? 2011 Geological Society of America.

  3. Calibration of Yucca Mountain unsaturated zone flow and transport model using porewater chloride data

    SciTech Connect

    Liu, Jianchun; Sonnenthal, Eric L.; Bodvarsson, Gudmundur S.

    2002-09-01

    In this study, porewater chloride data from Yucca Mountain, Nevada, are analyzed and modeled by 3-D chemical transport simulations and analytical methods. The simulation modeling approach is based on a continuum formulation of coupled multiphase fluid flow and tracer transport processes through fractured porous rock, using a dual-continuum concept. Infiltration-rate calibrations were using the pore water chloride data. Model results of chloride distributions were improved in matching the observed data with the calibrated infiltration rates. Statistical analyses of the frequency distribution for overall percolation fluxes and chloride concentration in the unsaturated zone system demonstrate that the use of the calibrated infiltration rates had insignificant effect on the distribution of simulated percolation fluxes but significantly changed the predicated distribution of simulated chloride concentrations. An analytical method was also applied to model transient chloride transport. The method was verified by 3-D simulation results as able to capture major chemical transient behavior and trends. Effects of lateral flow in the Paintbrush nonwelded unit on percolation fluxes and chloride distribution were studied by 3-D simulations with increased horizontal permeability. The combined results from these model calibrations furnish important information for the UZ model studies, contributing to performance assessment of the potential repository.

  4. Reynolds transport theorem for a two-phase flow

    NASA Astrophysics Data System (ADS)

    Collado, Francisco J.

    2007-01-01

    Transport equations for one-dimensional (1d), steady, two-phase flow have been proposed based on the fact that if the phases have different velocities, they cannot cover the same distance (the control volume length) in the same time. Thus, working in the same control volume for the two phases, the time scales of the phases have to be different. From this approach, transport balances for 1D, steady, two-phase flow have been already derived, supplying acceptable correlations for two-phase flow. Here, based on the strict application of the Reynolds transport theorem, general transport balances for two-phase flow are suggested.

  5. Measurement of Fracture Aperture Fields Using Ttransmitted Light: An Evaluation of Measurement Errors and their Influence on Simulations of Flow and Transport through a Single Fracture

    SciTech Connect

    Detwiler, Russell L.; Glass, Robert J.; Pringle, Scott E.

    1999-05-06

    Understanding of single and multi-phase flow and transport in fractures can be greatly enhanced through experimentation in transparent systems (analogs or replicas) where light transmission techniques yield quantitative measurements of aperture, solute concentration, and phase saturation fields. Here we quanti@ aperture field measurement error and demonstrate the influence of this error on the results of flow and transport simulations (hypothesized experimental results) through saturated and partially saturated fractures. find that precision and accuracy can be balanced to greatly improve the technique and We present a measurement protocol to obtain a minimum error field. Simulation results show an increased sensitivity to error as we move from flow to transport and from saturated to partially saturated conditions. Significant sensitivity under partially saturated conditions results in differences in channeling and multiple-peaked breakthrough curves. These results emphasize the critical importance of defining and minimizing error for studies of flow and transpoti in single fractures.

  6. Feasibility of aseptic processing of a low-acid multiphase food product (salsa con queso) using a continuous flow microwave system.

    PubMed

    Kumar, P; Coronel, P; Simunovic, J; Sandeep, K P

    2007-04-01

    Aseptic processing of a low-acid multiphase food product using a continuous flow microwave heating system can combine the advantages of an aseptic process along with those of microwave heating. Dielectric properties of 2 different brands of 1 such product (salsa con queso) were measured under continuous flow conditions at a temperature range of 20 to 130 degrees C. At 915 MHz, the dielectric constant ranged from 58.7 at 20 degrees C to 41.3 at 130 degrees C with dielectric loss factor ranging from 41.0 at 20 degrees C to 145.5 at 130 degrees C. The loss tangent at 915 MHz ranged from 0.61 at 20 degrees C to 3.52 at 130 degrees C. The temperature profiles at the outlet during processing of salsa con queso in a 5-kW microwave unit showed a narrow temperature distribution between the center and the wall of the tube. The study showed the feasibility of aseptic processing of salsa con queso using a continuous flow microwave system.

  7. Nonlinear analysis of multiphase transport in porous media in the presence of viscous, buoyancy, and capillary forces

    NASA Astrophysics Data System (ADS)

    Li, Boxiao; Tchelepi, Hamdi A.

    2015-09-01

    Nonlinear convergence problems in numerical reservoir simulation can lead to unacceptably large computational time and are often the main impediment to performing simulation studies of large-scale problems. We analyze the nonlinearity of the discrete transport (mass conservation) equation for immiscible, incompressible, two-phase flow in porous media in the presence of viscous, buoyancy, and capillary forces. Although simulation problems are multi-dimensional with large numbers of cells and variables, we find that the essence of the nonlinear behavior can be understood by studying the discretized (numerical) flux function for the interface between two cells. The numerical flux is expressed in terms of the saturations of the two cells. Discontinuities in the first-order derivative of the flux function (referred to as kinks) and inflection lines are identified as the cause of convergence difficulty. These critical features (kinks and inflections) change the curvature of the numerical flux function abruptly, and can lead to overshoots, oscillations, or divergence in Newton iterations. Based on our understanding of the nonlinearity, a nonlinear solver is developed, referred to as the Numerical Trust Region (NTR) solver. The solver is able to guide the Newton iterations safely and efficiently through the different saturation 'trust-regions' delineated by the kinks and inflections. Specifically, overshoots and oscillations that often lead to convergence failure are avoided. Numerical examples demonstrate that our NTR solver has superior convergence performance compared with existing methods. In particular, convergence is achieved for a wide range of timestep sizes and Courant-Friedrichs-Lewy (CFL) numbers spanning several orders of magnitude. In addition, a discretization scheme is proposed for handling heterogeneities in capillary-pressure-saturation relationship. The scheme has less degree of nonlinearity compared with the standard Single-point Phase-based Upstream

  8. Simulating Anomalous Dispersion and Multiphase Segregation in Porous Media with the Lattice Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Matin, Rastin; Misztal, Marek K.; Hernandez-Garcia, Anier; Mathiesen, Joachim

    2015-11-01

    Many hydrodynamic phenomena such as flows at micron scale in porous media, large Reynolds numbers flows, non-Newtonian and multiphase flows have been simulated numerically using the lattice Boltzmann method. By solving the Lattice Boltzmann Equation on three-dimensional unstructured meshes, we efficiently model single-phase fluid flow in real rock samples. We use the flow field to estimate the permeability and further investigate the anomalous dispersion of passive tracers in porous media. By extending our single-phase model with a free-energy based method, we are able to simulate binary systems with moderate density ratios in a thermodynamically consistent way. In this presentation we will present our recent results on both anomalous transport and multiphase segregation.

  9. Code System to Calculate Waste-Isolation Flow and Transport.

    1999-10-18

    Version 00 SWIFT solves the coupled or individual equations governing fluid flow, heat transport, brine displacement, and radionuclide displacement in geologic media. Fluid flow may be transient or steady state. One, two, or three dimensions are available, and transport of radionuclides chains is possible.

  10. Computational modeling technique for numerical simulation of immiscible two-phase flow problems involving flow and transport phenomena in porous media with hysteresis

    NASA Astrophysics Data System (ADS)

    Abreu, Eduardo; Lambert, Wanderson

    2012-05-01

    Numerical methods are necessary, and are extremely important, in developing an understanding of the dynamics of multiphase flow of fluids in porous media applications to maximize hydrocarbon recovery as well as to simulate contaminant transport of soluble or insoluble species in groundwater contamination problems. This work deals with a problem very common in water-flooding process in petroleum reservoir to motivate the proposed modeling: the flow of two immiscible and incompressible fluid phases. The system of equations which describe this type of flow is a coupled, highly nonlinear system of time-dependent partial differential equations. The equation for the invading fluid (e.g., water phase) is a convection-dominated, degenerate parabolic partial differential equation whose solutions typically exhibit sharp moving fronts (e.g., moving internal layers with strong gradients) and it is very difficult to approximate numerically. We propose a two-stage numerical method to describe the injection problem for a model of two-phase (water-oil) flow in a porous rock, taking into account both gravity and hysteresis effects for solving transport flow problems in porous media. Indeed, we also investigate the Riemann problem for the one-dimensional, purely hyperbolic system, associated to the full differential model problem at hand. Thus, the use of accurate numerical methods in conjunction with one-dimensional semi-analytical Riemann solutions might provide valuable insight into the qualitative solution behavior of the full nonlinear governing flow system.

  11. Conceptual and Numerical Models for UZ Flow and Transport

    SciTech Connect

    H. Liu

    2000-03-03

    The purpose of this Analysis/Model Report (AMR) is to document the conceptual and numerical models used for modeling of unsaturated zone (UZ) fluid (water and air) flow and solute transport processes. This is in accordance with ''AMR Development Plan for U0030 Conceptual and Numerical Models for Unsaturated Zone (UZ) Flow and Transport Processes, Rev 00''. The conceptual and numerical modeling approaches described in this AMR are used for models of UZ flow and transport in fractured, unsaturated rock under ambient and thermal conditions, which are documented in separate AMRs. This AMR supports the UZ Flow and Transport Process Model Report (PMR), the Near Field Environment PMR, and the following models: Calibrated Properties Model; UZ Flow Models and Submodels; Mountain-Scale Coupled Processes Model; Thermal-Hydrologic-Chemical (THC) Seepage Model; Drift Scale Test (DST) THC Model; Seepage Model for Performance Assessment (PA); and UZ Radionuclide Transport Models.

  12. dfnWorks: A HPC Workflow for Discrete Fracture Network Modeling with Subsurface Flow and Transport Applications

    NASA Astrophysics Data System (ADS)

    Gable, C. W.; Hyman, J.; Karra, S.; Makedonska, N.; Painter, S. L.; Viswanathan, H. S.

    2015-12-01

    dfnWorks generates discrete fracture networks (DFN) of planar polygons, creates a high quality conforming Delaunay triangulation of the intersecting DFN polygons, assigns properties (aperture, permeability) using geostatistics, sets boundary and initial conditions, solves pressure/flow in single or multi-phase fluids (water, air, CO2) using the parallel PFLOTRAN or serial FEHM, and solves for transport using Lagrangian particle tracking. We outline the dfnWorks workflow and present applications from a range of fractured rock systems. dfnWorks (http://www.lanl.gov/expertise/teams/view/dfnworks) is composed of three main components, all of which are freely available. dfnGen generates a distribution of fracture polygons from site characterization data (statistics or deterministic fractures) and utilizes the FRAM (Feature Rejection Algorithm for Meshing) to guarantee the mesh generation package LaGriT (lagrit.lanl.gov) will generate a high quality conforming Delaunay triangular mesh. dfnWorks links the mesh to either PFLOTRAN (pflotran.org) or FEHM (fehm.lanl.gov) for solving flow and transport. The various physics options available in FEHM and PFLOTRAN such as single and multi-phase flow and reactive transport are all available with appropriate initial and boundary conditions and material property models. dfnTrans utilizes explicit Lagrangian particle tracking on the DFN using a velocity field reconstructed from the steady state pressure/flow field solution obtained in PFLOTRAN or FEHM. Applications are demonstrated for nuclear waste repository in fractured granite, CO2 sequestration and extraction of unconventional hydrocarbon resources.

  13. Computational methods for reactive transport modeling: An extended law of mass-action, xLMA, method for multiphase equilibrium calculations

    NASA Astrophysics Data System (ADS)

    Leal, Allan M. M.; Kulik, Dmitrii A.; Kosakowski, Georg; Saar, Martin O.

    2016-10-01

    We present an extended law of mass-action (xLMA) method for multiphase equilibrium calculations and apply it in the context of reactive transport modeling. This extended LMA formulation differs from its conventional counterpart in that (i) it is directly derived from the Gibbs energy minimization (GEM) problem (i.e., the fundamental problem that describes the state of equilibrium of a chemical system under constant temperature and pressure); and (ii) it extends the conventional mass-action equations with Lagrange multipliers from the Gibbs energy minimization problem, which can be interpreted as stability indices of the chemical species. Accounting for these multipliers enables the method to determine all stable phases without presuming their types (e.g., aqueous, gaseous) or their presence in the equilibrium state. Therefore, the here proposed xLMA method inherits traits of Gibbs energy minimization algorithms that allow it to naturally detect the phases present in equilibrium, which can be single-component phases (e.g., pure solids or liquids) or non-ideal multi-component phases (e.g., aqueous, melts, gaseous, solid solutions, adsorption, or ion exchange). Moreover, our xLMA method requires no technique that tentatively adds or removes reactions based on phase stability indices (e.g., saturation indices for minerals), since the extended mass-action equations are valid even when their corresponding reactions involve unstable species. We successfully apply the proposed method to a reactive transport modeling problem in which we use PHREEQC and GEMS as alternative backends for the calculation of thermodynamic properties such as equilibrium constants of reactions, standard chemical potentials of species, and activity coefficients. Our tests show that our algorithm is efficient and robust for demanding applications, such as reactive transport modeling, where it converges within 1-3 iterations in most cases. The proposed xLMA method is implemented in Reaktoro, a

  14. Fundamentals and recent advances in X-ray micro computed tomography (microCT) applied on thermal-fluid dynamics and multiphase flows

    NASA Astrophysics Data System (ADS)

    Santini, Maurizio

    2015-11-01

    X-ray computed tomography (CT) is a well-known technique nowadays, since its first practical application by Sir. G. Hounsfield (Nobel price for medicine 1979) has continually benefited from optimising improvements, especially in medical applications. Indeed, also application of CT in various engineering research fields provides fundamental informations on a wide range of applications, considering that the technique is not destructive, allowing 3D visualization without perturbation of the analysed material. Nowadays, it is technologically possible to design and realize an equipment that achieve a micrometric resolution and even improve the sensibility in revealing differences in materials having very radiotransparency, allowing i.e. to distinguish between different fluids (with different density) or states of matter (like with two-phase flows). At the University of Bergamo, a prototype of an X-ray microCT system was developed since 2008, so being fully operative from 2012, with specific customizations for investigations in thermal-fluid dynamics and multiphase flow researches. A technical session held at the UIT International Conference in L'Aquila (Italy), at which this paper is referring, has presented some microCT fundamentals, to allow the audience to gain basics to follow the “fil-rouge” that links all the instrumentation developments, till the recent applications. Hereinafter are reported some applications currently developed at Bergamo University at the X-ray computed micro-tomography laboratory.

  15. Mathematical modelling of flow and transport processes in tissue engineering bioreactors

    NASA Astrophysics Data System (ADS)

    Waters, Sarah; Pearson, Natalie; Oliver, James; Shipley, Rebecca

    2014-11-01

    To artificially engineer tissues numerous biophysical and biochemical processes must be integrated to produce tissues with the desired in vivo properties. Tissue engineering bioreactors are cell culture systems which aim to mimic the in vivo environment. We consider a hollow fibre membrane bioreactor (HFMB), which utilises fluid flow to enhance the delivery of growth factors and nutrients to, and metabolite removal from, the cells, as well as provide appropriate mechanical stimuli to the cells. Biological tissues comprise a wide variety of interacting components, and multiphase models provide a natural framework to investigate such interactions. We present a suite of mathematical models (capturing different experimental setups) which consider the fluid flow, solute transport, and cell yield and distribution within a HFMB. The governing equations are simplified by exploiting the slender geometry of the bioreactor system, so that, e.g., lubrication theory may be used to describe flow in the lumen. We interrogate the models to illustrate typical behaviours of each setup in turn, and highlight the dependence of results on key experimentally controllable parameter values. Once validated, such models can be used to inform and direct future experiments.

  16. PHAST Version 2-A Program for Simulating Groundwater Flow, Solute Transport, and Multicomponent Geochemical Reactions

    USGS Publications Warehouse

    Parkhurst, David L.; Kipp, Kenneth L.; Charlton, Scott R.

    2010-01-01

    The computer program PHAST (PHREEQC And HST3D) simulates multicomponent, reactive solute transport in three-dimensional saturated groundwater flow systems. PHAST is a versatile groundwater flow and solute-transport simulator with capabilities to model a wide range of equilibrium and kinetic geochemical reactions. The flow and transport calculations are based on a modified version of HST3D that is restricted to constant fluid density and constant temperature. The geochemical reactions are simulated with the geochemical model PHREEQC, which is embedded in PHAST. Major enhancements in PHAST Version 2 allow spatial data to be defined in a combination of map and grid coordinate systems, independent of a specific model grid (without node-by-node input). At run time, aquifer properties are interpolated from the spatial data to the model grid; regridding requires only redefinition of the grid without modification of the spatial data. PHAST is applicable to the study of natural and contaminated groundwater systems at a variety of scales ranging from laboratory experiments to local and regional field scales. PHAST can be used in studies of migration of nutrients, inorganic and organic contaminants, and radionuclides; in projects such as aquifer storage and recovery or engineered remediation; and in investigations of the natural rock/water interactions in aquifers. PHAST is not appropriate for unsaturated-zone flow, multiphase flow, or density-dependent flow. A variety of boundary conditions are available in PHAST to simulate flow and transport, including specified-head, flux (specified-flux), and leaky (head-dependent) conditions, as well as the special cases of rivers, drains, and wells. Chemical reactions in PHAST include (1) homogeneous equilibria using an ion-association or Pitzer specific interaction thermodynamic model; (2) heterogeneous equilibria between the aqueous solution and minerals, ion exchange sites, surface complexation sites, solid solutions, and gases; and

  17. A quasilinear model for solute transport under unsaturated flow

    SciTech Connect

    Houseworth, J.E.; Leem, J.

    2009-05-15

    We developed an analytical solution for solute transport under steady-state, two-dimensional, unsaturated flow and transport conditions for the investigation of high-level radioactive waste disposal. The two-dimensional, unsaturated flow problem is treated using the quasilinear flow method for a system with homogeneous material properties. Dispersion is modeled as isotropic and is proportional to the effective hydraulic conductivity. This leads to a quasilinear form for the transport problem in terms of a scalar potential that is analogous to the Kirchhoff potential for quasilinear flow. The solutions for both flow and transport scalar potentials take the form of Fourier series. The particular solution given here is for two sources of flow, with one source containing a dissolved solute. The solution method may easily be extended, however, for any combination of flow and solute sources under steady-state conditions. The analytical results for multidimensional solute transport problems, which previously could only be solved numerically, also offer an additional way to benchmark numerical solutions. An analytical solution for two-dimensional, steady-state solute transport under unsaturated flow conditions is presented. A specific case with two sources is solved but may be generalized to any combination of sources. The analytical results complement numerical solutions, which were previously required to solve this class of problems.

  18. Thaw flow control for liquid heat transport systems

    DOEpatents

    Kirpich, Aaron S.

    1989-01-01

    In a liquid metal heat transport system including a source of thaw heat for use in a space reactor power system, the thaw flow throttle or control comprises a fluid passage having forward and reverse flow sections and a partition having a plurality of bleed holes therein to enable fluid flow between the forward and reverse sections. The flow throttle is positioned in the system relatively far from the source of thaw heat.

  19. Understanding pseudorapidity dependence of elliptic flow in heavy-ion collisions using a transport model

    NASA Astrophysics Data System (ADS)

    Nasim, Md.; Esha, Roli; Huang, Huan Zhong

    2016-04-01

    A systematic study of the pseudorapidity dependence of elliptic flow parameter using transport models (e.g., a multiphase transport model, AMPT, and ultrarelativistic quantum molecular dynamics, UrQMD) has been presented. We have observed that while at mid-pseudorapidity the elliptic flow measured using the event-plane method differs significantly from that measured by actual reaction plane method, both the event-plane and reaction-plane methods give the same elliptic flow for far forward and backward pseudorapidity. This indicates that the magnitude of measured v2 around midrapidity strongly depends on the analysis method. Therefore, one should use the same procedure (as used in data analysis) in model calculations while comparing model results and experimental data. We find the shape of v2(η ) measured by the PHOBOS experiment is not reproduced by using actual v2 (i.e., measured with respect to the reaction plane) from AMPT and UrQMD models. The shape and magnitude of measured v2(η ) can be explained by the AMPT model with string-melting mode only if one uses the same procedure as used in data analysis. Magnitude of elliptic flow can be reproduced for all pseudorapidity range by taking the parton-parton interaction cross section to be 3 mb at √{sN N}=62.4 and 200 GeV. This implies that the partonic interactions are necessary to reproduce data at √{sN N}=62.4 and 200 GeV and the strength of partonic interactions at far forward and backward rapidity is as strong as at midrapidity. Both UrQMD and AMPT with default mode fail to explain the data.

  20. Multiphase problems related to safety studies in the process industries

    NASA Astrophysics Data System (ADS)

    Baron, R. Grollier

    Safety risk and analysis, particularly in the petrochemical industry, are discussed. Multiphase flow problems resulting from loss of confinement are described: rupture of long pipes used for transporting liquefied gas; rupture of short pipes and branch connections in an installation; rupture of a container holding liquefied gas or another liquid at a temperature higher than its normal boiling temperature; and rupture of a container holding gas in the supercritical state. Operation of valves and rupture disks during reaction runaway; and artificial dispersion of gas layers are considered.

  1. Development of multiphase Navier-Stokes simulation capability for turbulent gas flow over laminar liquid for Cartesian grids

    NASA Astrophysics Data System (ADS)

    Miao, Sha; Hendrickson, Kelli; Liu, Yuming; Subramani, Hariprasad

    2015-11-01

    This work presents a novel and efficient Cartesian-grid based simulation capability for the study of an incompressible, turbulent gas layer over a liquid flow with disparate Reynolds numbers in two phases. This capability couples a turbulent gas-flow solver and a liquid-layer based on a second-order accurate Boundary Data Immersion Method (BDIM) at the deformable interface. The turbulent gas flow solver solves the incompressible Navier-Stokes equations via direct numerical simulation or through turbulence closure (unsteady Reynolds-Averaged Navier-Stokes Models) for Reynolds numbers O(106). In this application, a laminar liquid layer solution is obtained from depth-integrated Navier-Stokes equations utilizing shallow water wave assumptions. The immersed boundary method (BDIM) enforces the coupling at the deformable interface, the boundary conditions to turbulence closure equations and defines the domain geometry on the Cartesian grid. Validations are made for the turbulent gas channel flow over high-viscosity liquid. This simulation capability can be applied to problems in the oil and industrial sector such as channel and pipe flows with heavy oils as well as wind wave generation in shallow waters. Sponsored by the Chevron Energy Technology Company.

  2. PHAST--a program for simulating ground-water flow, solute transport, and multicomponent geochemical reactions

    USGS Publications Warehouse

    Parkhurst, David L.; Kipp, Kenneth L.; Engesgaard, Peter; Charlton, Scott R.

    2004-01-01

    The computer program PHAST simulates multi-component, reactive solute transport in three-dimensional saturated ground-water flow systems. PHAST is a versatile ground-water flow and solute-transport simulator with capabilities to model a wide range of equilibrium and kinetic geochemical reactions. The flow and transport calculations are based on a modified version of HST3D that is restricted to constant fluid density and constant temperature. The geochemical reactions are simulated with the geochemical model PHREEQC, which is embedded in PHAST. PHAST is applicable to the study of natural and contaminated ground-water systems at a variety of scales ranging from laboratory experiments to local and regional field scales. PHAST can be used in studies of migration of nutrients, inorganic and organic contaminants, and radionuclides; in projects such as aquifer storage and recovery or engineered remediation; and in investigations of the natural rock-water interactions in aquifers. PHAST is not appropriate for unsaturated-zone flow, multiphase flow, density-dependent flow, or waters with high ionic strengths. A variety of boundary conditions are available in PHAST to simulate flow and transport, including specified-head, flux, and leaky conditions, as well as the special cases of rivers and wells. Chemical reactions in PHAST include (1) homogeneous equilibria using an ion-association thermodynamic model; (2) heterogeneous equilibria between the aqueous solution and minerals, gases, surface complexation sites, ion exchange sites, and solid solutions; and (3) kinetic reactions with rates that are a function of solution composition. The aqueous model (elements, chemical reactions, and equilibrium constants), minerals, gases, exchangers, surfaces, and rate expressions may be defined or modified by the user. A number of options are available to save results of simulations to output files. The data may be saved in three formats: a format suitable for viewing with a text editor; a

  3. Multiphase transport simulation and venting experiments to identify NAPL source in vadose zone at a site contaminated with chlorinated solvents

    NASA Astrophysics Data System (ADS)

    Joun, W.; Lee, K.

    2013-12-01

    In many countries, groundwater is threatened by contamination from Non-Aqueous Phase Liquids such as chlorinated solvents (e.g. TCE). Existing as a residual or trapped source in the unsaturated zone, NAPLs remain in a continuous contamination source to groundwater even after groundwater itself was remediated because the residual NAPL source could be dissolved into the groundwater intermittently. In this study, 1-D and 2-D experiments were conducted. For 1-D experiment, a column (1 m) packed with well-sorted sand was used for developing the hydraulic properties in VOC transport. In 2-D experiment, hydraulic and contaminant properties in unsaturated condition were investigated including gas-phase concentration of a volatile organic compound (trichloroethylene, TCE) originated from residual or trapped NAPLs with different distances between an extraction well and source point, with different extraction rates and with different extraction intervals. While extracting air from the sand-tank (50 x 30 x 5 cm), temperature, humidity and pressure data were compiled with logging sensors. One and two-dimensional STOMP (Subsurface Transport Over Multiple Phases) simulator were used to simulate the experimental conditions. The experimental and simulation results can be used to estimate distances from extraction wells to source locations of residual NAPLs.

  4. Massively parallel multiple interacting continua formulation for modeling flow in fractured porous media using the subsurface reactive flow and transport code PFLOTRAN

    NASA Astrophysics Data System (ADS)

    Kumar, J.; Mills, R. T.; Lichtner, P. C.; Hammond, G. E.

    2010-12-01

    Fracture dominated flows occur in numerous subsurface geochemical processes and at many different scales in rock pore structures, micro-fractures, fracture networks and faults. Fractured porous media can be modeled as multiple interacting continua which are connected to each other through transfer terms that capture the flow of mass and energy in response to pressure, temperature and concentration gradients. However, the analysis of large-scale transient problems using the multiple interacting continuum approach presents an algorithmic and computational challenge for problems with very large numbers of degrees of freedom. A generalized dual porosity model based on the Dual Continuum Disconnected Matrix approach has been implemented within a massively parallel multiphysics-multicomponent-multiphase subsurface reactive flow and transport code PFLOTRAN. Developed as part of the Department of Energy's SciDAC-2 program, PFLOTRAN provides subsurface simulation capabilities that can scale from laptops to ultrascale supercomputers, and utilizes the PETSc framework to solve the large, sparse algebraic systems that arises in complex subsurface reactive flow and transport problems. It has been successfully applied to the solution of problems composed of more than two billions degrees of freedom, utilizing up to 131,072 processor cores on Jaguar, the Cray XT5 system at Oak Ridge National Laboratory that is the world’s fastest supercomputer. Building upon the capabilities and computational efficiency of PFLOTRAN, we will present an implementation of the multiple interacting continua formulation for fractured porous media along with an application case study.

  5. National laboratories` capabilities summaries for the DOE Virtual Center for Multiphase Dynamics (VCMD)

    SciTech Connect

    Joyce, E.L.

    1997-03-01

    The Virtual Center For Multiphase Dynamics (VCMD) integrates and develops the resources of industry, government, academia, and professional societies to enable reliable analysis in multiphase computational fluid dynamics. The primary means of the VCMD focus will be by the creation, support, and validation of a computerized simulation capability for multiphase flow and multiphase flow applications. This paper briefly describes the capabilities of the National Laboratories in this effort.

  6. Study on the Multi-phase Flow and Fluid Saturation in 2D Fractured Media by Light Transmission Technique

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Ye, S.; Wu, J.

    2013-12-01

    Immiscible two-phase flows in fractured media are encountered in many engineering processes such as recovery of oil and gas, exploitation of geothermal energy, and groundwater contamination by immiscible chemicals. A two-dimensional rough wall parallel plate fracture model was set up and light transmission method (LTM) was applied to study two-phase flow system in fractured media. The fracture model stood with up and bottom flow and no flow on other two sides. A charge-coupled device (CCD) camera was used to monitor the migration of DNAPL and gas bubbles in the fracture model. To simulate two-phase system in fracture media, air was injected into the water saturated cell (C1) through the middle of the bottom and NAPL was injected into another water saturated cell (C2) through the middle of the top of the cell. The results show LTM was an effective way in monitoring the migration of DNAPL and gas bubbles in the fracture models. Gas moved upwards quickly to the top of C1 in the way of air bubbles generated at the injection position and formed a continuous distribution. The migration of TCE was controlled by its own weight and fracture aperture. TCE migrated to large aperture firstly when moving downwards, and intruded into smaller one with accumulation of TCE. Light Intensity-Saturation Models (LISMs) were developed to estimate the gas or NAPL saturation in two-phase system. The volume amount of infiltration of gas bubbles or NAPL could be estimated from light intensities by LISMs. There were strong correlations between the added and calculated amounts of gas or TCE. It is feasible to use the light transmission method to characterize the movement and spatial distribution of gas or NAPL in fractured media.

  7. Visualization and measurement of multiphase flow in porous media using light transmission and synchrotron x-rays.

    PubMed

    Darnault, Christophe J G; Dicarlo, David A; Bauters, Tim W J; Steenhuis, Tammo S; Parlange, J-Yves; Montemagno, Carlo D; Baveye, Philippe

    2002-10-01

    Non-aqueous phase liquids enter the vadose zone as a result of spills or leaking underground storage facilities, thus contaminating groundwater resources. Measuring the contaminant concentrations is important in assessing the risk to human health and the environment and to develop effective remediation. This research presents the development and application of the light transmission method (LTM) for three-phase flow systems, aimed at investigating unstable fingered flow in a soil-air-oil-water system. The LTM uses the hue and intensity of light transmitted through a slab chamber to measure fluid content, since total liquid content is a function of both hue and light intensity. Evaluation of the LTM is obtained by comparing experiments with LTM and synchrotron X-rays. The LTM captures the spatial resolution of the fluid contents and can provide new insights into rapidly changing, two-phase and three-phase flow systems. Application of the LTM as a visualization technique for environmental and physical phenomena is noted. Visualization by LTM of groundwater remediation by surfactants as well as visualization of model cluster growth and fractal dimensions was also explored.

  8. Modeling flow and solute transport in irrigation furrows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper presents an internally coupled flow and solute transport model for free-draining irrigation furrows. Furrow hydraulics is simulated with a numerical zero-inertia model and solute transport is computed with a model based on a numerical solution of the cross-section averaged advection-dispe...

  9. Simulating unsteady flow and sediment transport in vegetated channel network

    NASA Astrophysics Data System (ADS)

    Bai, Yang; Duan, Jennifer G.

    2014-07-01

    This paper presents a one-dimensional model for simulating flood routing and sediment transport over mobile alluvium in a vegetated channel network. The modified St. Venant equations together with the governing equations for suspended sediment and bed load transport were solved simultaneously to obtain flow properties and sediment transport rate. The Godunov-type finite volume method is employed to discretize the governing equations. Then, the Exner equation was solved for bed elevation change. Since sediment transport is non-equilibrium when bed is degrading or aggrading, a recovery coefficient for suspended sediment and an adaptation length for bed load transport were used to quantify the differences between equilibrium and non-equilibrium sediment transport rate. The influence of vegetation on floodplain and main channel was accounted for by adjusting resistance terms in the momentum equations for flow field. A procedure to separate the grain resistance from the total resistance was proposed and implemented to calculate sediment transport rate. The model was tested by a flume experiment case and an unprecedented flood event occurred in the Santa Cruz River, Tucson, Arizona, in July 2006. Simulated results of flow discharge and bed elevation changes showed satisfactory agreements with the measurements. The impacts of vegetation density on sediment transport and significance of non-equilibrium sediment transport model were discussed.

  10. Features, Events, and Processes in UZ Flow and Transport

    SciTech Connect

    J.E. Houseworth

    2001-04-10

    Unsaturated zone (UZ) flow and radionuclide transport is a component of the natural barriers that affects potential repository performance. The total system performance assessment (TSPA) model, and underlying process models, of this natural barrier component capture some, but not all, of the associated features, events, and processes (FEPs) as identified in the FEPs Database (Freeze, et al. 2001 [154365]). This analysis and model report (AMR) discusses all FEPs identified as associated with UZ flow and radionuclide transport. The purpose of this analysis is to give a comprehensive summary of all UZ flow and radionuclide transport FEPs and their treatment in, or exclusion from, TSPA models. The scope of this analysis is to provide a summary of the FEPs associated with the UZ flow and radionuclide transport and to provide a reference roadmap to other documentation where detailed discussions of these FEPs, treated explicitly in TSPA models, are offered. Other FEPs may be screened out from treatment in TSPA by direct regulatory exclusion or through arguments concerning low probability and/or low consequence of the FEPs on potential repository performance. Arguments for exclusion of FEPs are presented in this analysis. Exclusion of specific FEPs from the UZ flow and transport models does not necessarily imply that the FEP is excluded from the TSPA. Similarly, in the treatment of included FEPs, only the way in which the FEPs are included in the UZ flow and transport models is discussed in this document. This report has been prepared in accordance with the technical work plan for the unsaturated zone subproduct element (CRWMS M&O 2000 [153447]). The purpose of this report is to document that all FEPs are either included in UZ flow and transport models for TSPA, or can be excluded from UZ flow and transport models for TSPA on the basis of low probability or low consequence. Arguments for exclusion are presented in this analysis. Exclusion of specific FEPs from UZ flow and

  11. A unified numerical framework model for simulating flow, transport, and heat transfer in porous and fractured media

    SciTech Connect

    Wu, Yu-Shu

    2004-02-13

    It has long been recognized that a common ground exists between governing equations used for describing various flow and transport phenomena in porous media. Put another way they are all generally based on the same form of mass and/or energy conservation laws. This implies that there may exist a unified formulation and numerical scheme applicable to modeling all of these physical processes. This paper explores such a possibility and proposes a generalized framework, as well as a mathematical formulation for modeling all known transport phenomena in porous media. Based on this framework, a unified numerical approach is developed and tested using multidimensional, multiphase flow, isothermal and nonisothermal reservoir simulators. In this approach, a spatial domain of interest is discretized with an unstructured grid, then a time discretization is carried out with a backward, first-order, finite-difference method. The final discrete nonlinear equations are handled fully implicitly, using Newton iteration. In addition, the fracture medium is handled using a general dual-continuum concept with continuum or discrete modeling methods. A number of applications are discussed to demonstrate that with this unified approach, modeling a particular porous-medium flow and transport process simply becomes a matter of defining a set of state variables, along with their interrelations or mutual influence.

  12. Low-flow sediment transport in the Colorado River

    USGS Publications Warehouse

    Gray, John R.; Webb, Robert H.; Hyndman, David W.

    1991-01-01

    In support of beach-stability research, bedload and suspended sediment were measured during a steady flow of 5,880 ft3/s and receding flows from 12,100 to 5,660 ft3/s in the Colorado River above National Canyon, near Supai, Arizona, October 7-12, 1989. During steady flows, 75 percent of the mean total-sediment discharge of 128 t/d was in suspension and about half the total-sediement load was finer than 0.062 mm. Median grain sizes of bedload and bed material were 0.43 and 0.40 mm, respecively. Although steady-flow bedload transport varied from the mean by about 45 percent, suspended-sediment discharge remained constant within sampling error. Helley-Smith and BL-86-3 bedload samplers were not significantly different. At larger transport rates, however, the rates measured by the Helley-Smith exceeded those measure by the BL-86-3. Transport rates from bedload samples collected with Helley-Smith and BL-86-3 bedload samplers in sections 8 ft apart demonstrate no consistent autocorrelation or cross correlation. Cross-sectional bedload-transport rates measured concurrently or consecutively with the bedload samplers showed good agreement indicating that bedload varied by at least a factor of 2.4 during the steady-flow period. Ninety-five percent of the bedload transport during low flow occured in the center one-third of the channel.

  13. Finite-time transport in volume-preserving flows.

    PubMed

    Mosovsky, B A; Speetjens, M F M; Meiss, J D

    2013-05-24

    Finite-time transport between distinct flow regions is of great relevance to many scientific applications, yet quantitative studies remain scarce to date. The primary obstacle is computing the evolution of material volumes, which is often infeasible due to extreme interfacial stretching. We present a framework for describing and computing finite-time transport in n-dimensional (chaotic) volume-preserving flows that relies on the reduced dynamics of an (n-2)-dimensional "minimal set" of fundamental trajectories. This approach has essential advantages over existing methods: the regions between which transport is investigated can be arbitrarily specified; no knowledge of the flow outside the finite transport interval is needed; and computational effort is substantially reduced. We demonstrate our framework in 2D for an industrial mixing device.

  14. Flow and transport in single fracture with roughness.

    NASA Astrophysics Data System (ADS)

    Olkiewicz, Piotr; Dabrowski, Marcin

    2016-04-01

    Fracture flow may dominate in rocks with low porosity and it can accompany both industrial and natural processes. Typical examples of such processes are natural flows in crystalline rocks and industrial flows in geothermal systems or hydraulic fracturing. Fracture flow provides an important mechanism for transporting mass and energy. For example, geothermal energy is primarily transported by the flow of the heated water or steam rather than by the thermal diffusion. The geometry of the fracture network and the distribution of the mean apertures of individual fractures are the key parameters with regard to the fracture network transmissivity. Transport in fractures can occur through the combination of advection and diffusion processes like in the case of dissolved chemical components. The local distribution of the fracture aperture may play an important role for both flow and transport processes. In this work, we compare numerical solution for flow and transport processes in a single fracture in 2D and 3D. Fracture aperture distributions are generated by random correlated field method. We examine a single-phase flow of an incompressible viscous Newtonian fluid in the low Reynolds number limit. The velocity field is found using the Stokes equations with periodic boundary condition and a gravity force is imposed in the background. We systematically compare the obtained velocity field to the results obtained by solving the Reynolds equation, where pressure difference is imposed in the background. This allows us to examine the impact of the aperture distribution on the permeability of the medium and the local velocity distribution for two different mathematical descriptions of the fracture flow. Furthermore, we analyse the impact of aperture distribution on the front characteristics.

  15. CMT for transport in porous media

    SciTech Connect

    Schwartz, L.

    1997-02-01

    This session is comprised of an outline of uses for x-ray microtomography in the field of petroleum geology. Calculations, diagrams, and color photomicrographs depict the many applications of synchrotron x-ray microtomograpy in determining transport properties and fluid flow characteristics of reservoir rocks, micro-porosity in carbonates, and aspects of multi-phase transport.

  16. New upscaled equations for multiphase flows in porous media based on a phase field formulation for general free energies

    NASA Astrophysics Data System (ADS)

    Schmuck, Markus; Pradas, Marc; Pavliotis, Grigorios A.; Kalliadasis, Serafim

    2014-11-01

    Based on thermodynamic and variational principles we formulate novel equations for mixtures of incompressible fluids in strongly heterogeneous domains, such as composites and porous media, using elements from the regular solution theory. Starting with equations that fully resolve the pores of a porous medium, represented as a periodic covering of a single reference pore, we rigorously derive effective macroscopic phase field equations under the assumption of periodic and strongly convective flow. Our derivation is based on the multiple scale method with drift and our recently introduced splitting strategy for Ginzburg-Landau/Cahn-Hilliard-type equations. We discover systematically diffusion-dispersion relations (including Taylor-Aris-dispersion) as in classical convection-diffusion problems. Our results represent a systematic and efficient computational strategy to macroscopically track interfaces in heterogeneous media which together with the well-known versatility of phase field models forms a promising basis for the analysis of a wide spectrum of engineering and scientific applications such as oil recovery, for instance.

  17. THE INFLUENCE OF REPOSITORY THERMAL LOAD ON MULTIPHASE FLOW AND HEAT TRANSFER IN THE UNSATURATED ZONE OF YUCCA MOUNTAIN

    SciTech Connect

    Yu-Shu Wu, Sumit Mukhopadhyay, Keni Zhang, and G. S. Bodvarsson

    2006-04-16

    This paper investigates the impact of proposed repository thermal-loading on mountain-scale flow and heat transfer in the unsaturated fractured rock of Yucca Mountain, Nevada. In this context, a model has been developed to study the coupled thermal-hydrological (TH) processes at the scale of the entire Yucca Mountain. This mountain-scale TH model implements the current geological framework and hydrogeological conceptual models, and incorporates the latest rock thermal and hydrological properties. The TH model consists of a two-dimensional north-south vertical cross section across the entire unsaturated zone model domain and uses refined meshes near and around the proposed repository block, based on the current repository design, drift layout, thermal loading scenario, and estimated current and future climatic conditions. The model simulations provide insights into thermally affected liquid saturation, gas- and liquid-phase fluxes, and elevated water and rock temperature, which in turn allow modelers to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts.

  18. Coupling Flow and Thermal and Reactive Geochemical Transport

    NASA Astrophysics Data System (ADS)

    Yeh, G.

    2004-12-01

    The couplings among fluid flows, thermal transport, geochemical reactions, advective and diffusive transport of solutes in fractured media or soils, and changes in hydraulic properties due to precipitation and dissolution along fractures and rock matrix are important for understanding interplays between fluid flows and dynamic transport processes. This paper describes the development and demonstrative applications of a mechanistic-based numerical model of coupled fluid flow and thermal and reactive geochemical transport, including both fast and slow reactions, in variably saturated media. Theoretical bases, numerical implementations, and two numerical experiments using the model will be presented. The first example deals with the effect of precipitation-dissolution on fluid flow and matrix diffusion in a two-dimensional fractured media. Because of the precipitation and decreased diffusion of solute from the fracture into the matrix, retardation in the fractured medium is not as large as the case wherein interactions between geochemical reactions and transport are not considered. The second example focuses on a complicated but realistic advective-dispersive-reactive transport problem. This example exemplifies the need for innovative numerical algorithms to solve problems involving stiff geochemical reactions.

  19. Experimental investigation of sediment transport through vegetated flow

    NASA Astrophysics Data System (ADS)

    Le Bouteiller, C.; Venditti, J. G.

    2012-12-01

    Morphology evolves as the sediment fluxes constantly adjust to the flow transport capacity by scour or deposition. Natural flows in rivers or wetlands often interact with vegetation, and their transport capacity may be modified by these interactions. While the effect of aquatic plants on water flow has long been acknowledged, little quantitative data is available on their influence on sediment transport. Vegetation can not only modify the bottom roughness but also the whole flow structure. It is therefore expected to affect both bedload and suspended load fluxes. The purpose of the experiments presented here is therefore to quantify the influence of bottom vegetation (like grass) on the sediment transport capacity of a flow. We performed a series of experiments in a 12m-long, 1-m wide flume. Half of the flume length was covered with plastic blades representing submerged flexible vegetation, like coastal eelgrass. Two plant densities were used. A range of flows was used to study different sediment transport stages: just above the entrainment threshold, bedload-dominated and suspension-dominated. Each flow was run until morphodynamic equilibrium was reached. With the lower plant density, the velocity is slightly decreased close to the bottom but the velocity profiles do not present an inflection point. Ripples are observed along the flume both in the vegetated and unvegetated region, although they tend to be smaller in the vegetated region. The equilibrium sediment flux is similar to what is predicted without vegetation. The plants effective height decreases with the higher flows as the plants bend more. With the higher plant density, the velocity is much decreased in the vegetated region, i.e. below the plant effective height. Suspended load and bedload are both reduced in the vegetated area. The equilibrium fluxes are lower than in the low density case, which means that a higher slope is needed to transport the same amount of material. In a hydraulic point of view

  20. Transport bifurcation induced by sheared toroidal flow in tokamak plasmasa)

    NASA Astrophysics Data System (ADS)

    Highcock, E. G.; Barnes, M.; Parra, F. I.; Schekochihin, A. A.; Roach, C. M.; Cowley, S. C.

    2011-10-01

    First-principles numerical simulations are used to describe a transport bifurcation in a differentially rotating tokamak plasma. Such a bifurcation is more probable in a region of zero magnetic shear than one of finite magnetic shear, because in the former case the component of the sheared toroidal flow that is perpendicular to the magnetic field has the strongest suppressing effect on the turbulence. In the zero-magnetic-shear regime, there are no growing linear eigenmodes at any finite value of flow shear. However, subcritical turbulence can be sustained, owing to the existence of modes, driven by the ion temperature gradient and the parallel velocity gradient, which grow transiently. Nonetheless, in a parameter space containing a wide range of temperature gradients and velocity shears, there is a sizeable window where all turbulence is suppressed. Combined with the relatively low transport of momentum by collisional (neoclassical) mechanisms, this produces the conditions for a bifurcation from low to high temperature and velocity gradients. A parametric model is constructed which accurately describes the combined effect of the temperature gradient and the flow gradient over a wide range of their values. Using this parametric model, it is shown that in the reduced-transport state, heat is transported almost neoclassically, while momentum transport is dominated by subcritical parallel-velocity-gradient-driven turbulence. It is further shown that for any given input of torque, there is an optimum input of heat which maximises the temperature gradient. The parametric model describes both the behaviour of the subcritical turbulence (which cannot be modelled by the quasi-linear methods used in current transport codes) and the complicated effect of the flow shear on the transport stiffness. It may prove useful for transport modelling of tokamaks with sheared flows.

  1. Dynamic Flow Management Problems in Air Transportation

    NASA Technical Reports Server (NTRS)

    Patterson, Sarah Stock

    1997-01-01

    In 1995, over six hundred thousand licensed pilots flew nearly thirty-five million flights into over eighteen thousand U.S. airports, logging more than 519 billion passenger miles. Since demand for air travel has increased by more than 50% in the last decade while capacity has stagnated, congestion is a problem of undeniable practical significance. In this thesis, we will develop optimization techniques that reduce the impact of congestion on the national airspace. We start by determining the optimal release times for flights into the airspace and the optimal speed adjustment while airborne taking into account the capacitated airspace. This is called the Air Traffic Flow Management Problem (TFMP). We address the complexity, showing that it is NP-hard. We build an integer programming formulation that is quite strong as some of the proposed inequalities are facet defining for the convex hull of solutions. For practical problems, the solutions of the LP relaxation of the TFMP are very often integral. In essence, we reduce the problem to efficiently solving large scale linear programming problems. Thus, the computation times are reasonably small for large scale, practical problems involving thousands of flights. Next, we address the problem of determining how to reroute aircraft in the airspace system when faced with dynamically changing weather conditions. This is called the Air Traffic Flow Management Rerouting Problem (TFMRP) We present an integrated mathematical programming approach for the TFMRP, which utilizes several methodologies, in order to minimize delay costs. In order to address the high dimensionality, we present an aggregate model, in which we formulate the TFMRP as a multicommodity, integer, dynamic network flow problem with certain side constraints. Using Lagrangian relaxation, we generate aggregate flows that are decomposed into a collection of flight paths using a randomized rounding heuristic. This collection of paths is used in a packing integer

  2. Fluid Flow, Heat Transfer, and Solute Transport at Nuclear Waste Storage Tanks in the Hanford Vadose Zone

    SciTech Connect

    Pruess, Karsten; Yabusaki, Steven B.; Steefel, Carl I.; Lichtner, Peter C.

    2002-03-01

    At the Hanford site, highly radioactive and chemically aggressive waste fluids have leaked from underground storage tanks into the vadose zone. This paper addresses hydrogeological issues at the 241-SX tank farm, especially focusing on tank SX-108 which is one of the highest heat load, supernate density and ionic strength tanks at Hanford and a known leaker. The behavior of contaminants in the unsaturated zone near SX-108 is determined by an interplay of multiphase fluid flow and heat transfer processes with reactive chemical transport in a complex geological setting. Numerical simulation studies were performed to obtain a better understanding of mass and energy transport in the unique hydrogeologic system created by the SX tank farm. Problem parameters are patterned after conditions at tank SX-108, and measured data were used whenever possible. Borrowing from techniques developed in geothermal and petroleum reservoir engineering, our simulations feature a comprehensive description of multiphase processes, including boiling and condensation phenomena, and precipitation and dissolution of solids. We find that the thermal perturbation from the tank causes large-scale redistribution of moisture and alters water seepage patterns. During periods of high heat load, fluid and heat flow near the tank is dominated by vapor-liquid counterflow (heat pipe), which provides a much more efficient mechanism than heat conduction for dissipating tank heat. The heat pipe mechanism is also very effective in concentrating dissolved solids near the heat source, where salts may precipitate even if they were only present in small concentrations in ambient fluids. Tank leaks that released aqueous fluids of high ionic strength into the vadose zone were also modeled. The heat load causes formation dryout beneath the tank, which is accompanied by precipitation of solutes.

  3. Shear flow effects on ion thermal transport in tokamaks

    SciTech Connect

    Tajima, T.; Horton, W.; Dong, J.Q.; Kishimoto, Y.

    1995-03-01

    From various laboratory and numerical experiments, there is clear evidence that under certain conditions the presence of sheared flows in a tokamak plasma can significantly reduce the ion thermal transport. In the presence of plasma fluctuations driven by the ion temperature gradient, the flows of energy and momentum parallel and perpendicular to the magnetic field are coupled with each other. This coupling manifests itself as significant off-diagonal coupling coefficients that give rise to new terms for anomalous transport. The authors derive from the gyrokinetic equation a set of velocity moment equations that describe the interaction among plasma turbulent fluctuations, the temperature gradient, the toroidal velocity shear, and the poloidal flow in a tokamak plasma. Four coupled equations for the amplitudes of the state variables radially extended over the transport region by toroidicity induced coupling are derived. The equations show bifurcations from the low confinement mode without sheared flows to high confinement mode with substantially reduced transport due to strong shear flows. Also discussed is the reduced version with three state variables. In the presence of sheared flows, the radially extended coupled toroidal modes driven by the ion temperature gradient disintegrate into smaller, less elongated vortices. Such a transition to smaller spatial correlation lengths changes the transport from Bohm-like to gyrobohm-like. The properties of these equations are analyzed. The conditions for the improved confined regime are obtained as a function of the momentum-energy deposition rates and profiles. The appearance of a transport barrier is a consequence of the present theory.

  4. Guide to the Revised Ground-Water Flow and Heat Transport Simulator: HYDROTHERM - Version 3

    USGS Publications Warehouse

    Kipp, Kenneth L.; Hsieh, Paul A.; Charlton, Scott R.

    2008-01-01

    The HYDROTHERM computer program simulates multi-phase ground-water flow and associated thermal energy transport in three dimensions. It can handle high fluid pressures, up to 1 ? 109 pascals (104 atmospheres), and high temperatures, up to 1,200 degrees Celsius. This report documents the release of Version 3, which includes various additions, modifications, and corrections that have been made to the original simulator. Primary changes to the simulator include: (1) the ability to simulate unconfined ground-water flow, (2) a precipitation-recharge boundary condition, (3) a seepage-surface boundary condition at the land surface, (4) the removal of the limitation that a specified-pressure boundary also have a specified temperature, (5) a new iterative solver for the linear equations based on a generalized minimum-residual method, (6) the ability to use time- or depth-dependent functions for permeability, (7) the conversion of the program code to Fortran 90 to employ dynamic allocation of arrays, and (8) the incorporation of a graphical user interface (GUI) for input and output. The graphical user interface has been developed for defining a simulation, running the HYDROTHERM simulator interactively, and displaying the results. The combination of the graphical user interface and the HYDROTHERM simulator forms the HYDROTHERM INTERACTIVE (HTI) program. HTI can be used for two-dimensional simulations only. New features in Version 3 of the HYDROTHERM simulator have been verified using four test problems. Three problems come from the published literature and one problem was simulated by another partially saturated flow and thermal transport simulator. The test problems include: transient partially saturated vertical infiltration, transient one-dimensional horizontal infiltration, two-dimensional steady-state drainage with a seepage surface, and two-dimensional drainage with coupled heat transport. An example application to a hypothetical stratovolcano system with unconfined

  5. Swimming and transport of bacteria in time-periodic flows

    NASA Astrophysics Data System (ADS)

    Winter, Rebecca; Patteson, Alison; Gagnon, David; Arratia, Paulo

    The transport of bacteria can be highly influenced by external flows in oceans, rivers, and intestinal tracts. This has implications in biological systems for the performance of major biological processes, such as biofilm formation. In this study, we experimentally investigate the aggregation and transport of swimming Vibrio cholerae bacteria in time-periodic flows. Bacteria are placed in a well-characterized flow, and bacterial concentrations are recorded for a range of Reynolds numbers (Re) that spans two orders of magnitude, from 0.1 to 10. It is generally found that bacteria deplete from regions of high deformation rate and accumulate near vortices. This phenomenon seems to be dictated by a combination of bacterial activity and background flow vorticity. R.W. supported by NSF-GRFP.

  6. Wave-particle transport by weak electrostatic flow shear fluctuations

    NASA Technical Reports Server (NTRS)

    Gary, S. P.; Schwartz, S. J.

    1981-01-01

    A description is presented of the first consistent theoretical treatment of transport due to weak electrostatic fluctuations from microinstabilities driven by a shear in plasma flow parallel to a uniform magnetic field. The model used considers electrostatic fluctuations in a Vlasov plasma with sheared bulk velocity parallel to a uniform magnetic field. The linear stability theory for the model has been studied by Gary and Schwartz (1980). In the current investigation, a calculation is performed of the wave-particle transport associated with the electrostatic flow shear instability.

  7. Advanced experimental upscaling of flow and transport in porous media

    NASA Astrophysics Data System (ADS)

    Englert, A.; Musch, T.; Gevers, M.; Gebhardt, P.; Groth, S.; Kersting, R.; Goekpinar, T.

    2013-12-01

    It has been found that for precise understanding and prediction of passive and reactive transport, physical and chemical processes, their interaction and feedbacks have to be considered. These processes are known to be governed by the physical and chemical heterogeneity of the subsurface, which appear to be inherent at all spatiotemporal scales. As sampling at every point in space is unfeasible, upscaling of flow and transport is strongly needed. As mathematical and numerical upscaling of such processes is challenging and such upscaling procedures need to be verified to become useful for proper transport prediction, experimental laboratory upscaling of flow and transport from the pore- to the meter-scale is required. Our recently developed methodology based on the combination of column and sandbox experiments is capable for experimental upscaling of flow and transport as follows: In a first step, a cubic Darcy cell of 0.1 m x 0.1 m x 0.1 m is used to experimentally estimate flow and transport characteristics of an unconsolidated sediment, means flow and transport is experimentally upscaled from the pore-scale to the 0.1 m- scale. In a second step, the sediment filled Darcy cell is frozen and the frozen sediment cube is extracted from the Darcy cell. In a third step, nine frozen sediment cubes are composed in a sandbox model such that a sediment body of 0.3 m x 0.3 m x 0.1 m is formed. Finally the flow and transport characteristics of the sediment body are estimated based on flow and transport experiments. Such procedure could allow for successive experimental upscaling from the pore- to the 0.1 m- to the 1 m-scale of flow and reactive transport. First tests of the recently developed setup for experimental upscaling showed that it is feasible to form sediment cubes, extract them from the experimental apparatus and assemble them in a sandbox model. It could also be shown that the developed experimental set up is well suited to study flow and transport in single

  8. Preferential Flow and Transport of Biocolloids in Soils

    NASA Astrophysics Data System (ADS)

    Harter, T.; Atwill, E. R.; Hou, L.; Carle, B.

    2006-12-01

    We develop a conceptual model of the physics of flow and transport in packed, tilted, and vegetated soil boxes during and immediately after simulated rainfall events and apply it to 54 experiments implemented for three different soils at three different slopes and two different rainfall rates. By simple parameter estimation, we show that a significant amount of the subsurface outflow from the soil boxes is due to preferential macropore flow. The effective hydraulic properties of the macropore space were obtained by calibration of a simple two-domain flow and transport model that accounts for coupled flow in the matrix and in the macropores of the soils. While the macropore hydraulic properties are highly variable, linear mixed effects (LME) modeling showed significant association with soil bulk density and with the rainfall rate. Macropore flow is shown to be responsible for both, tracer (bromide) and C. parvum transport through the soil into the underlying pore space observed during the 4-hour experiments. Over a 20 cm thick soil horizon, the soil attenuation rate for C. parvum due to straining in the soil matrix and due to filtration to the macropore surfaces is 0.6 (half an order of magnitude). The LME and logistic regression models developed from the soil box experiments provide a basis for estimating macropore hydraulic properties and the risk of C. parvum transport through shallow soils from bulk density, precipitation, and subflow rates.

  9. Code System to Calculate Waste-Isolation Flow and Transport.

    2001-01-26

    Version 00 Distribution is restricted to the United States Only. SWIFT2 (Sandia Waste Isolation Flow and Transport) is a fully transient, three-dimensional code that solves the coupled equations for transport in geologic media. The processes considered are fluid flow, heat transport, brine migration, and radionuclide-chain transport. Flow, heat and brine transport are coupled via fluid density, fluid viscosity, and porosity. Together they provide the velocity field on which the radionuclide transport depends. Both porous andmore » fractured media are considered. SWIFT2 was developed for use in the analysis of deep geologic nuclear waste-disposal facilities. However, it may be used in other areas such as waste injection into saline aquifers and heat storage in aquifers. Both dual-porosity and discrete-fracture conceptualizations may be considered for the fractured zones. A variable density is included throughout, and a variety of options are available to facilitate the various uses of the code.« less

  10. Measurement of Flow and Transport in Macroporous Soils

    NASA Astrophysics Data System (ADS)

    Köhne, J. M.; Mohanty, B. P.; Castiglione, P.

    2002-12-01

    Preferential flow in agricultural regions poses a serious environmental threat by allowing chemicals to bypass the soil matrix and to be channeled into ground water. Although a long-known phenomenon, our understanding of and ability to predict macropore flow and transport remain far from complete. To analyze the processes that control macropore flow in soil, we have built large (25 cm diam., 80 cm length) repacked soil columns with different macropore/matrix domain configurations: (i) In column I, multiple macropores were created in one-half cross-section. Water flow and chloride transport experiments were performed for macropores open to the atmosphere and buried-macropores. Measurements at the bottom boundary as well as across the profile consistently revealed the higher degree of preferential flow in open macropores as compared to the buried macropores. (ii) In column II, a single cylindrical macropore was located in the center of the surrounding soil matrix. We conducted experiments of water flow and solute transport using KBr as a conservative tracer. In the soil matrix, TDR-probes measure soil water content and solute concentration, and mini-tensiometers register matric potential. In and adjacent to the macropore-system, TDR-coil probes (diam. 0.3 cm, length of copper coil 1.5 cm) and mini-tensiometers (ceramic cup diam. 0.1-0.2 cm) monitored macropore flow and provided information to quantify inter-region water transfer. Bromide specific electrodes measured the bromide concentration in the effluent of the macropore region and of the matrix region as well as directly inside the soil matrix. The experimental setup seems promising for analyzing basic flow and transport processes in macroporous soils. In future experimental analyses, the complexity of the macropore configuration will be systematically increased in terms of macropore number, geometry, continuity, and physical properties of macropore walls.

  11. Influence of surfactants on unsaturated water flow and solute transport

    NASA Astrophysics Data System (ADS)

    Karagunduz, Ahmet; Young, Michael H.; Pennell, Kurt D.

    2015-04-01

    Surfactants can reduce soil water retention by changing the surface tension of water and the contact angle between the liquid and solid phases. As a result, water flow and solute transport in unsaturated soil may be altered in the presence of surfactants. In this study, the effects of a representative nonionic surfactant, Triton X-100, on coupled water flow and nonreactive solute transport during unsaturated flow conditions were evaluated. Batch reactor experiments were conducted to measure the surfactant sorption characteristics, while unsaturated transport experiments were performed in columns packed with 40-270 mesh Ottawa sand at five initial water contents. Following the introduction of surfactant solution, the rate of water percolation through the sand increased; however, this period of rapid water drainage was followed by decreased water percolation due to the reduction in soil water content and the corresponding decrease in unsaturated hydraulic conductivity behind the surfactant front. The observed changes in water percolation occurred sequentially, and resulted in faster nonreactive solute transport than was observed in the absence of surfactant. A one-dimensional mathematical model accurately described coupled water flow, surfactant, and solute transport under most experimental conditions. Differences between model predictions and experimental data were observed in the column study performed at the lowest water content (0.115 cm3/cm3), which was attributed to surfactant adsorption at the air-water interface. These findings demonstrate the potential influence of surfactants additives on unsaturated water flow and solute transport in soils, and demonstrate a methodology to couple these processes in a predictive modeling tool.

  12. Upscaling flow and transport properties in synthetic porous media

    NASA Astrophysics Data System (ADS)

    Jasinski, Lukasz; Dabrowski, Marcin

    2015-04-01

    Flow and transport through the porous media has instances in nature and industry: contaminant migration in geological formations, gas/oil extraction from proppant filled hydraulic fractures and surrounding porous matrix, underground carbon dioxide sequestration and many others. We would like to understand the behavior of propagating solute front in such medium, mainly flow preferential pathways and the solute dispersion due to the porous medium geometry. The motivation of our investigation is to find connection between the effective flow and transport properties and porous media geometry in 2D and 3D for large system sizes. The challenge is to discover a good way of upscaling flow and transport processes to obtain results comparable to these calculated on pore-scale in much faster way. We study synthetic porous media made of densely packed poly-disperse disk-or spherical-shaped grains in 2D and 3D, respectively. We use various protocols such as the random sequential addition (RSA) algorithm to generate densely packed grains. Imposed macroscopic pressure gradient invokes fluid flow through the pore space of generated porous medium samples. As the flow is considered in the low Reynolds number regime, a stationary velocity field is obtained by solving the Stokes equations by means of finite element method. Void space between the grains is accurately discretized by using body-fitting triangular or tetrahedral mesh. Finally, pure advection of a front carried by the velocity field is studied. Periodicity in all directions is applied to microstructure, flow and transport processes. Effective permeability of the media can be calculated by integrating the velocity field on cross sections, whereas effective dispersion coefficient is deduced by application of centered moment methods on the concentration field of transported solute in time. The effective parameters are investigated as a function of geometrical parameters of the media, such as porosity, specific surface area

  13. Sediment transport and shear stress partitioning in a vegetated flow

    NASA Astrophysics Data System (ADS)

    Le Bouteiller, Caroline; Venditti, J. G.

    2015-04-01

    Vegetation is a common feature in natural coastal and riverine water ways, interacting with both the water flow and sediment transport. However, the physical processes governing these interactions are still poorly understood, which makes it difficult to predict sediment transport and morphodynamics in a vegetated environment. We performed a simple experiment to study how sediment transport responds to the presence of flexible, single-blade vegetation, and how this response is influenced by the vegetation density. We found that the skin friction and sediment transport are reduced in a plant patch, and that this effect is larger for denser vegetation. We then evaluated several methods to calculate the skin friction in a vegetated flow, which is the key to sediment transport prediction. Among these, the inversion of bed load transport formulas and the Einstein and Banks (1950) methods appeared to produce the most reasonable values of the skin friction. Finally, we suggest using the parameter α, which is the ratio of the skin friction computed by these methods to the total bed shear stress, to make more realistic sediment transport predictions in morphodynamic models.

  14. Flow dynamics and solute transport in unsaturated rock fractures

    SciTech Connect

    Su, G. W.

    1999-10-01

    Rock fractures play an important role in flow and contaminant transport in fractured aquifers, production of oil from petroleum reservoirs, and steam generation from geothermal reservoirs. In this dissertation, phenomenological aspects of flow in unsaturated fractures were studied in visualization experiments conducted on a transparent replica of a natural, rough-walled rock fracture for inlet conditions of constant pressure and flow rate over a range of angles of inclination. The experiments demonstrated that infiltrating liquid proceeds through unsaturated rock fractures along non-uniform, localized preferential flow paths. Even in the presence of constant boundary conditions, intermittent flow was a persistent flow feature observed, where portions of the flow channel underwent cycles of snapping and reforming. Two modes of intermittent flow were observed, the pulsating blob mode and the rivulet snapping mode. A conceptual model for the rivulet snapping mode was proposed and examined using idealized, variable-aperture fractures. The frequency of intermittent flow events was measured in several experiments and related to the capillary and Bond numbers to characterize this flow behavior.

  15. Large Eddy Simulation of Flow and Sediment Transport over Dunes

    NASA Astrophysics Data System (ADS)

    Agegnehu, G.; Smith, H. D.

    2012-12-01

    Understanding the nature of flow over bedforms has a great importance in fluvial and coastal environments. For example, a bedform is one source of energy dissipation in water waves outside the surf zone in coastal environments. In rivers, the migration of dunes often affects the stability of the river bed and banks. In general, when a fluid flows over a sediment bed, the sediment transport generated by the interaction of the flow field with the bed results in the periodic deformation of the bed in the form of dunes. Dunes generally reach an equilibrium shape, and slowly propagate in the direction of the flow, as sand is lifted in the high shear regions, and redeposited in the separated flow areas. Different numerical approaches have been used in the past to study the flow and sediment transport over bedforms. In most research works, Reynolds Averaged Navier Stokes (RANS) equations are employed to study fluid motions over ripples and dunes. However, evidences suggests that these models can not represent key turbulent quantities in unsteady boundary layers. The use of Large Eddy Simulation (LES) can resolve a much larger range of smaller scales than RANS. Moreover, unsteady simulations using LES give vital turbulent quantities which can help to study fluid motion and sediment transport over dunes. For this steady, we use a three-dimensional, non-hydrostatic model, OpenFOAM. It is a freely available tool which has different solvers to simulate specific problems in engineering and fluid mechanics. Our objective is to examine the flow and sediment transport from numerical stand point for bed geometries that are typical of fixed dunes. At the first step, we performed Large Eddy Simulation of the flow over dune geometries based on the experimental data of Nelson et al. (1993). The instantaneous flow field is investigated with special emphasis on the occurrence of coherent structures. To assess the effect of bed geometries on near bed turbulence, we considered different

  16. Direction of scalar transport in turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Srinivasan, Chiranth; Papavassiliou, Dimitrios V.

    2011-11-01

    The concept of reverse diffusion, introduced by Corrsin to describe the motion of particles as they move towards a location in the flow field, is fundamental to the understanding of mixing. In this work, direct numerical simulations in conjunction with the tracking of scalar markers are utilized in infinitely long channels to study the principal direction of transport of heat (or mass) for both forwards and backwards single particle dispersion. The viscous sub-layer, the transition region (between the viscous sub-layer and the logarithmic region), and the logarithmic region of a Poiseuille flow and a plane Couette flow channel are studied. Fluctuating velocities of scalar markers captured in these regions are used to obtain the full autocorrelation coefficient tensor forwards and backwards with time. The highest eigenvalue of the velocity correlation coefficient tensor quantifies the highest amount of turbulent heat transport, while the corresponding eigenvector points to the main direction of transport. Different Prandtl number, Pr, fluids are simulated for the two types of flow. It is found that the highest eigenvalues are higher in the case of backwards dispersion compared to the case of forwards dispersion for any Pr, in both flow cases. The principal direction for backwards and forwards dispersion is different than for forwards dispersion, for all Pr, and in all flow regions for both flows. Fluids with lower Pr behave different than the higher Pr fluids because of increased molecular diffusion effects. The current study also establishes an interesting analogy of turbulent dispersion to optics defining the turbulent dispersive ratio, a parameter that can be used to identify the differences in the direction of turbulent heat transport between forwards and backwards dispersion. A spectral analysis of the auto-correlation coefficient for both forwards and backwards dispersion shows a universal behavior with slope of -1 at intermediate frequencies.

  17. Multiphase flow in porous media

    NASA Technical Reports Server (NTRS)

    Adler, Pierre M.; Brenner, Howard

    1988-01-01

    A development history and current status evaluation are presented for the theory of permeability and percolation. The microscale phenomena treated in this field have proven difficult to analyze due both to their tortuous geometry and the influence of capilarity. Capilary effects may be not only important but predominant, and are differentiated into those at the fluid-fluid interface, and those involving the existence of a contact line between the solid substrate and this interface. Percolation theory has been borrowed from physics and adapted to the two-phase engineering context.

  18. Turbulent flow and sand transport over a cobble bed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The turbulence structure of flow over rough beds and its interaction with fine sediments in the bed are important for efforts to predict sediment transport downstream of dams. The advanced age and impending decommissioning of many dams have brought increased attention to the fate of sediments stored...

  19. Effects of Collisional Zonal Flow Damping on Turbulent Transport

    SciTech Connect

    P.H. Diamond; T.S. Hahm; W.M. Tang; W.W. Lee; Z. Lin

    1999-10-01

    Results from 3D global gyrokinetic particle simulations of ion temperature gradient driven microturbulence in a toroidal plasma show that the ion thermal transport level in the interior region exhibits significant dependence on the ion-ion collision frequency even in regimes where the instabilities are collisionless. This is identified as arising from the Coulomb collisional damping of turbulence-generated zonal flows.

  20. Scaling of flow and transport behavior in heterogeneous groundwater systems

    NASA Astrophysics Data System (ADS)

    Scheibe, Timothy; Yabusaki, Steven

    1998-11-01

    Three-dimensional numerical simulations using a detailed synthetic hydraulic conductivity field developed from geological considerations provide insight into the scaling of subsurface flow and transport processes. Flow and advective transport in the highly resolved heterogeneous field were modeled using massively parallel computers, providing a realistic baseline for evaluation of the impacts of parameter scaling. Upscaling of hydraulic conductivity was performed at a variety of scales using a flexible power law averaging technique. A series of tests were performed to determine the effects of varying the scaling exponent on a number of metrics of flow and transport behavior. Flow and transport simulation on high-performance computers and three-dimensional scientific visualization combine to form a powerful tool for gaining insight into the behavior of complex heterogeneous systems. Many quantitative groundwater models utilize upscaled hydraulic conductivity parameters, either implicitly or explicitly. These parameters are designed to reproduce the bulk flow characteristics at the grid or field scale while not requiring detailed quantification of local-scale conductivity variations. An example from applied groundwater modeling is the common practice of calibrating grid-scale model hydraulic conductivity or transmissivity parameters so as to approximate observed hydraulic head and boundary flux values. Such parameterizations, perhaps with a bulk dispersivity imposed, are then sometimes used to predict transport of reactive or non-reactive solutes. However, this work demonstrates that those parameters that lead to the best upscaling for hydraulic conductivity and head do not necessarily correspond to the best upscaling for prediction of a variety of transport behaviors. This result reflects the fact that transport is strongly impacted by the existence and connectedness of extreme-valued hydraulic conductivities, in contrast to bulk flow which depends more strongly on

  1. Imaging cross fault multiphase flow using time resolved high pressure-temperature synchrotron fluid tomography: implications for the geological storage of carbon dioxide within sandstone saline aquifers

    NASA Astrophysics Data System (ADS)

    Seers, Thomas; Andrew, Matthew; Bijeljic, Branko; Blunt, Martin; Dobson, Kate; Hodgetts, David; Lee, Peter; Menke, Hannah; Singh, Kamaljit; Parsons, Aaron

    2015-04-01

    Applied shear stresses within high porosity granular rocks result in characteristic deformation responses (rigid grain reorganisation, dilation, isovolumetric strain, grain fracturing and/or crushing) emanating from elevated stress concentrations at grain contacts. The strain localisation features produced by these processes are generically termed as microfaults (also shear bands), which occur as narrow tabular regions of disaggregated, rotated and/or crushed grains. Because the textural priors that favour microfault formation make their host rocks (esp. porous sandstones) conducive to the storage of geo-fluids, such structures are often abundant features within hydrocarbon reservoirs, aquifers and potential sites of CO2 storage (i.e. sandstone saline aquifers). The porosity collapse which accompanies microfault formation typically results in localised permeability reduction, often encompassing several orders of magnitude. Given that permeability is the key physical parameter that governs fluid circulation in the upper crust, this petrophysical degradation implicates microfaults as being flow impeding structures which may act as major baffles and/or barriers to fluid flow within the subsurface. Such features therefore have the potential to negatively impact upon hydrocarbon production or CO2 injection, making their petrophysical characterisation of considerable interest. Despite their significance, little is known about the pore-scale processes involved in fluid trapping and transfer within microfaults, particularly in the presence of multiphase flow analogous to oil accumulation, production and CO2 injection. With respect to the geological storage of CO2 within sandstone saline aquifers it has been proposed that even fault rocks with relatively low phyllosilicate content or minimal quartz cementation may act as major baffles or barriers to migrating CO2 plume. Alternatively, as ubiquitous intra-reservoir heterogeneities, micro-faults also have the potential to

  2. Concentration distribution of contaminant transport in wetland flows

    NASA Astrophysics Data System (ADS)

    Wu, Zi; Fu, Xudong; Wang, Guangqian

    2015-06-01

    Study on contaminant transport in wetland flows is of fundamental importance. Recent investigation on scalar transport in laminar tube flows (Wu and Chen, 2014. J. Fluid Mech., 740: 196-213.) indicates that the vertical concentration difference in wetland flows may be remarkable for a very long time, which cannot be captured by the extensively applied one-dimensional Taylor dispersion model. To understand detailed information for the vertical distribution of contaminant in wetland flows, for the first time, the present paper deduces an analytical solution for the multi-dimensional concentration distribution by the method of mean concentration expansion. The solution is verified by both our analytical and numerical results. Representing the effects of vegetation in wetlands, the unique dimensionless parameter α can cause the longitudinal contraction of the contaminant cloud and the change of the shape of the concentration contours. By these complicated effects, it is shown unexpectedly that the maximum vertical concentration difference remains nearly unaffected, although its longitudinal position may change. Thus the slow-decaying transient effect (Wu and Chen, 2014. J. Hydrol., 519: 1974-1984.) is shown also apply to the process of contaminant transport in wetland flows.

  3. Spatially-Averaged Diffusivities for Pollutant Transport in Vegetated Flows

    NASA Astrophysics Data System (ADS)

    Huang, Jun; Zhang, Xiaofeng; Chua, Vivien P.

    2016-06-01

    Vegetation in wetlands can create complicated flow patterns and may provide many environmental benefits including water purification, flood protection and shoreline stabilization. The interaction between vegetation and flow has significant impacts on the transport of pollutants, nutrients and sediments. In this paper, we investigate pollutant transport in vegetated flows using the Delft3D-FLOW hydrodynamic software. The model simulates the transport of pollutants with the continuous release of a passive tracer at mid-depth and mid-width in the region where the flow is fully developed. The theoretical Gaussian plume profile is fitted to experimental data, and the lateral and vertical diffusivities are computed using the least squares method. In previous tracer studies conducted in the laboratory, the measurements were obtained at a single cross-section as experimental data is typically collected at one location. These diffusivities are then used to represent spatially-averaged values. With the numerical model, sensitivity analysis of lateral and vertical diffusivities along the longitudinal direction was performed at 8 cross-sections. Our results show that the lateral and vertical diffusivities increase with longitudinal distance from the injection point, due to the larger size of the dye cloud further downstream. A new method is proposed to compute diffusivities using a global minimum least squares method, which provides a more reliable estimate than the values obtained using the conventional method.

  4. Bed load transport formulas in dam break flows

    NASA Astrophysics Data System (ADS)

    Nicolás Cantero-Chinchilla, Francisco; Castro-Orgaz, Oscar; Ayuso-Muñoz, Jose Luis

    2015-04-01

    Classic formulas for bed load transport have been widely applied to river and channel dynamics with satisfactory results. Most of these equations were developed under ideal or steady flow conditions, which make them relevant for studying sediment transport processes in natural streams. However, they are not suitable in situations of dam break flows. In these cases, sediment concentration in lower layers of the flow is very high and could be nearly the same as that of bed material [1]. In order to account this phenomenon in the formulation, Wu and Wang [2] introduce the correction factor kt for the transport stage number. This correction factor does not only recover sediment concentration features in lower layers, but also dynamic pressure characteristics of the flow, which are mainly present in the dam break wavefront. By an iterative solution procedure, the kt value was developed for the Taipei and Louvain-la-Neuve tests, and it was used to address the sediment transport process with the Van Rijn formulas [3]. Nevertheless, albeit the results from Wu and Wang were acceptable, there was no research in the type of bed load transport formula applied from those existing in the literature. Although suspended load is of a greater importance, the bed load regulates the bed profiles in sediment transport processes. Bed material profiles also induce changes in the free surface flow. The longitudinal bed gradient infers in velocity changes and even can provoke dynamic pressure. Consequently, choosing a proper bed load formula is essential, since a wrong choice could imply including undesirable secondary effects in the flow. In this regard, for the sake of clarity, a comparison between the classic bed load transport formulas performance is done in this work. As a framework the Taipei and Louvain-la-Neuve test cases are considered. The transport stage number can be rearranged in each of the traditional equations [4,5], so the newfangled correction proposed by Wu and Wang can

  5. Turbulent transport modelling of separating and reattaching shear flows

    NASA Technical Reports Server (NTRS)

    Launder, B. E.

    1982-01-01

    The improvement of capabilities for computer simulation of turbulent recirculating flows was investigated. Attention has been limited to two dimensional flows and principally to statistically stationary motion. Improvement of turbulence modeling explored the treatment of the near wall sublayer and of the exterior fully turbulent region, working within the framework of turbulence closures requiring the solution of transport equations for the turbulence energy and its dissipation rate. The work on the numerical procedure, based on the Gosman-Pun program TEACH, addressed the problems of incorporating the turbulence model as well as the extension to time dependent flows, the incorporation of a third order approximation of convective transport, and the treatment of non-orthogonal boundaries.

  6. Modeling field scale unsaturated flow and transport processes

    SciTech Connect

    Gelhar, L.W.; Celia, M.A.; McLaughlin, D.

    1994-08-01

    The scales of concern in subsurface transport of contaminants from low-level radioactive waste disposal facilities are in the range of 1 to 1,000 m. Natural geologic materials generally show very substantial spatial variability in hydraulic properties over this range of scales. Such heterogeneity can significantly influence the migration of contaminants. It is also envisioned that complex earth structures will be constructed to isolate the waste and minimize infiltration of water into the facility. The flow of water and gases through such facilities must also be a concern. A stochastic theory describing unsaturated flow and contamination transport in naturally heterogeneous soils has been enhanced by adopting a more realistic characterization of soil variability. The enhanced theory is used to predict field-scale effective properties and variances of tension and moisture content. Applications illustrate the important effects of small-scale heterogeneity on large-scale anisotropy and hysteresis and demonstrate the feasibility of simulating two-dimensional flow systems at time and space scales of interest in radioactive waste disposal investigations. Numerical algorithms for predicting field scale unsaturated flow and contaminant transport have been improved by requiring them to respect fundamental physical principles such as mass conservation. These algorithms are able to provide realistic simulations of systems with very dry initial conditions and high degrees of heterogeneity. Numerical simulation of the movement of water and air in unsaturated soils has demonstrated the importance of air pathways for contaminant transport. The stochastic flow and transport theory has been used to develop a systematic approach to performance assessment and site characterization. Hypothesis-testing techniques have been used to determine whether model predictions are consistent with observed data.

  7. Small scale laboratory studies of flow and transport phenomena in pores and fractures: Phase II. Progress report, 3rd year continuation proposal, and work plan

    SciTech Connect

    Wilson, J.L.

    1994-05-01

    Small scale laboratory experiments, equipped with an ability to actually observe behavior on the pore level using microscopy, provide an economical and easily understood scientific tool to help us validate concepts and assumptions about the transport of contaminants, and offers the propensity to discover heretofore unrecognized phenomena or behavior. The main technique employs etched glass micromodels, composed of two etched glass plates, sintered together, to form a two dimensional network of three dimensional pores. Flow and transport behavior is observed on a pore or pore network level, and recorder on film and video tape. This technique is coupled with related column studies. These techniques have been used to study multiphase flow, colloid transport and most recently bacteria transport. The project has recently moved to the Bacteria Transport Subprogram, and efforts have been redirected to support that Subprogram and its collaborative field experiment. We proposed to study bacteria transport factors of relevance to the field experiment, using micromodels and other laboratory techniques. Factors that may be addressed include bacteria characteristics (eg, hydrophobicity), pore size and shape, permeability heterogeneity, surface chemistry (eg, iron oxide coatings), surface chemistry heterogeneity, active versus resting cell bacteria, and mixed bacteria populations. In other work we will continue to examine the effects of fluid-fluid interfaces on bacteria transport, and develop a new assay for bacteria hydrophobicity. Finally we will collaborate on characterization of the field site, and the design, operation, and interpretation of the field experiment.

  8. The challenge of realistic testing of multiphase flowmeters

    SciTech Connect

    Sten-Halvorsen, V.

    1995-12-31

    Multiphase flowmeters is new technology for the oil industry, and needs to be tested under realistic conditions to prove their performance. The complex nature of multiphase flow, means that test conditions in a laboratory may not necessarily represent the real flow conditions at a field installation. As a consequence, severe field testing is also required to gain experience with the meters and qualify them for field applications.

  9. Transport in vertical mixed convection flows and natural convection flows in cold water

    NASA Astrophysics Data System (ADS)

    Carey, V. P.

    Computed similarity solutions are presented for thermally-driven natural convection flow adjacent to a vertical isothermal surface in cold pure or saline water. These calculations specifically explore the flow behavior at temperature conditions for which the buoyancy force reverses across the thermal transport region due to the presence of a density extremum within the region. Computed similarity solutions are given for the laminar natural convection flow adjacent to a vertical ice surface melting in saline water. The most recent transport property data and a very accurate equation of state for saline water are used to analyze the transport of momentum, salt and thermal energy in such flows. Interface motion effects are included and the interface conditions are determined from the transport. Time exposure photographs of the flow adjacent to a vertical ice surface melting in 10% saline water are presented for ambient water temperatures between 1 C and 15 C. A perturbation analysis is presented of mixed convection flow over a vertical semi infinite surface with uniform heat flux.

  10. Flow Transport in Microtubes Inspired by Insect Respiratory Systems

    NASA Astrophysics Data System (ADS)

    Aboelkaasem, Yasser; Staples, Anne

    2010-11-01

    The mechanics of insect respiration and tracheal ventilation generally follow either highly discontinuous, or cyclic gas exchange patterns. In the former, gases are exchanged by diffusion, while in the latter, recent imaging of internal respiratory flow dynamics in insects performed at the x-ray synchrotron imaging facility at Argonne indicates that convective gas exchange is accomplished by changes in internal pressure due to rhythmic compressions of the tracheal tubes that comprise the respiratory network. These localized tracheal compressions are induced by global body movements and are used to enhance the oxygen transport to the tissue. Inspired by the dynamics of insect respiratory networks in the cyclic gas exchange regime, we study fluid transport in a mixed rigid/elastic microtube that undergoes localized single and multiple periodic collapses. The latter induces a streaming of flows and therefore enhances convection and flow transport in the tube downstream of the collapse site. The shape of the microtube, the material properties, and the compression and reinflation spatial and temporal profiles are selected to mimic those observed in insect tracheal tubes. A low Reynolds number assumption and lubrication theory are used to develop a mathematical model for the system. The effects of tube shape, collapse amplitude, collapse-to-collapse distance, and collapse phase lags on the net flow rate, pressure gradient, wall shear stress, velocity are investigated.

  11. Solute transport along preferential flow paths in unsaturated fractures

    USGS Publications Warehouse

    Su, G.W.; Geller, J.T.; Pruess, K.; Hunt, J.R.

    2001-01-01

    Laboratory experiments were conducted to study solute transport along preferential flow paths in unsaturated, inclined fractures. Qualitative aspects of solute transport were identified in a miscible dye tracer experiment conducted in a transparent replica of a natural granite fracture. Additional experiments were conducted to measure the breakthrough curves of a conservative tracer introduced into an established preferential flow path in two different fracture replicas and a rock-replica combination. The influence of gravity was investigated by varying fracture inclination. The relationship between the travel times of the solute and the relative influence of gravity was substantially affected by two modes of intermittent flow that occurred: the snapping rivulet and the pulsating blob modes. The measured travel times of the solute were evaluated with three transfer function models: the axial dispersion, the reactors-in-series, and the lognormal models. The three models described the solute travel times nearly equally well. A mechanistic model was also formulated to describe transport when the pulsating blob mode occurred which assumed blobs of water containing solute mixed with residual pools of water along the flow path.

  12. Physical-Based Inversion for Subsurface Flow and Transport Modeling

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Jiao, J.; Wang, D.; Irsa, J.

    2014-12-01

    A new and computationally efficient fluid flow and transport inverse theory has been developed for characterizing, calibrating, and modeling aquifers. The theory is capable of simultaneous estimation of model boundary conditions (for simple transient problems, also the initial conditions) and fluid flow and transport parameters, i.e., spatially distributed permeabilities, source/sink rates, storativity, and dispersivity. The theory is robust to measurement errors and strong parameter variability. Effective parameters can be estimated to represent unresolved heterogeneity, e.g., sub-grid features and spatially variable recharge. The theory has been extended to new problems including parameter structure identification, unsaturated and variably saturated flows (e.g., directly estimating the soil retention functions), joint flow and transport inversion (e.g., containment source identification), uncertainty analysis (e.g., integrating subsurface static and dynamic data via geostatistical inversion), and high performance computing (e.g., solving large inversion systems with parallel computing). This presentation will summarize the body of the inversion research and discuss new directions for future work.

  13. Vortical ciliary flows actively enhance mass transport in reef corals.

    PubMed

    Shapiro, Orr H; Fernandez, Vicente I; Garren, Melissa; Guasto, Jeffrey S; Debaillon-Vesque, François P; Kramarsky-Winter, Esti; Vardi, Assaf; Stocker, Roman

    2014-09-16

    The exchange of nutrients and dissolved gasses between corals and their environment is a critical determinant of the growth of coral colonies and the productivity of coral reefs. To date, this exchange has been assumed to be limited by molecular diffusion through an unstirred boundary layer extending 1-2 mm from the coral surface, with corals relying solely on external flow to overcome this limitation. Here, we present direct microscopic evidence that, instead, corals can actively enhance mass transport through strong vortical flows driven by motile epidermal cilia covering their entire surface. Ciliary beating produces quasi-steady arrays of counterrotating vortices that vigorously stir a layer of water extending up to 2 mm from the coral surface. We show that, under low ambient flow velocities, these vortices, rather than molecular diffusion, control the exchange of nutrients and oxygen between the coral and its environment, enhancing mass transfer rates by up to 400%. This ability of corals to stir their boundary layer changes the way that we perceive the microenvironment of coral surfaces, revealing an active mechanism complementing the passive enhancement of transport by ambient flow. These findings extend our understanding of mass transport processes in reef corals and may shed new light on the evolutionary success of corals and coral reefs.

  14. Vortical ciliary flows actively enhance mass transport in reef corals

    PubMed Central

    Shapiro, Orr H.; Fernandez, Vicente I.; Garren, Melissa; Guasto, Jeffrey S.; Debaillon-Vesque, François P.; Kramarsky-Winter, Esti; Vardi, Assaf; Stocker, Roman

    2014-01-01

    The exchange of nutrients and dissolved gasses between corals and their environment is a critical determinant of the growth of coral colonies and the productivity of coral reefs. To date, this exchange has been assumed to be limited by molecular diffusion through an unstirred boundary layer extending 1–2 mm from the coral surface, with corals relying solely on external flow to overcome this limitation. Here, we present direct microscopic evidence that, instead, corals can actively enhance mass transport through strong vortical flows driven by motile epidermal cilia covering their entire surface. Ciliary beating produces quasi-steady arrays of counterrotating vortices that vigorously stir a layer of water extending up to 2 mm from the coral surface. We show that, under low ambient flow velocities, these vortices, rather than molecular diffusion, control the exchange of nutrients and oxygen between the coral and its environment, enhancing mass transfer rates by up to 400%. This ability of corals to stir their boundary layer changes the way that we perceive the microenvironment of coral surfaces, revealing an active mechanism complementing the passive enhancement of transport by ambient flow. These findings extend our understanding of mass transport processes in reef corals and may shed new light on the evolutionary success of corals and coral reefs. PMID:25192936

  15. Importance of considering intraborehole flow in solute transport modeling under highly dynamic flow conditions.

    PubMed

    Ma, Rui; Zheng, Chunmiao; Tonkin, Matt; Zachara, John M

    2011-04-01

    Correct interpretation of tracer test data is critical for understanding transport processes in the subsurface. This task can be greatly complicated by the presence of intraborehole flows in a highly dynamic flow environment. At a new tracer test site (Hanford IFRC) a dynamic flow field created by changes in the stage of the adjacent Columbia River, coupled with a heterogeneous hydraulic conductivity distribution, leads to considerable variations in vertical hydraulic gradients. These variations, in turn, create intraborehole flows in fully-screened (6.5m) observation wells with frequently alternating upward and downward movement. This phenomenon, in conjunction with a highly permeable aquifer formation and small horizontal hydraulic gradients, makes modeling analysis and model calibration a formidable challenge. Groundwater head data alone were insufficient to define the flow model boundary conditions, and the movement of the tracer was highly sensitive to the dynamics of the flow field. This study shows that model calibration can be significantly improved by explicitly considering (a) dynamic flow model boundary conditions and (b) intraborehole flow. The findings from this study underscore the difficulties in interpreting tracer tests and understanding solute transport under highly dynamic flow conditions. PMID:21216023

  16. Importance of considering intraborehole flow in solute transport modeling under highly dynamic flow conditions

    SciTech Connect

    Ma, Rui; Zheng, Chunmiao; Tonkin, Matthew J.; Zachara, John M.

    2011-04-01

    Correct interpretation of tracer test data is critical for understanding transport processes in the subsurface. This task can be greatly complicated by the presence of intraborehole flows in a highly dynamic flow environment. At a new tracer test site (Hanford IFRC) a dynamic flow field created by changes in the stage of the adjacent Columbia River, coupled with a heterogeneous hydraulic conductivity distribution, leads to considerable variations in vertical hydraulic gradients. These variations, in turn, create intraborehole flows in fully-screened (6.5 m) observation wells with frequently alternating upward and downward movement. This phenomenon, in conjunction with a highly permeable aquifer formation and small horizontal hydraulic gradients, makes modeling analysis and model calibration a formidable challenge. Groundwater head data alone were insufficient to define the flow model boundary conditions, and the movement of the tracer was highly sensitive to the dynamics of the flow field. This study shows that model calibration can be significantly improved by explicitly considering (a) dynamic flow model boundary conditions and (b) intraborehole flow. The findings from this study underscore the difficulties in interpreting tracer tests and understanding solute transport under highly dynamic flow conditions.

  17. Lattice gas automata for flow and transport in geochemical systems

    SciTech Connect

    Janecky, D.R.; Chen, S.; Dawson, S.; Eggert, K.C.; Travis, B.J.

    1992-05-01

    Lattice gas automata models are described, which couple solute transport with chemical reactions at mineral surfaces within pore networks. Diffusion in a box calculations are illustrated, which compare directly with Fickian diffusion. Chemical reactions at solid surfaces, including precipitation/dissolution, sorption, and catalytic reaction, can be examined with the model because hydrodynamic transport, solute diffusion and mineral surface processes are all treated explicitly. The simplicity and flexibility of the approach provides the ability to study the interrelationship between fluid flow and chemical reactions in porous materials, at a level of complexity that has not previously been computationally possible.

  18. Lattice gas automata for flow and transport in geochemical systems

    SciTech Connect

    Janecky, D.R.; Chen, S.; Dawson, S.; Eggert, K.C.; Travis, B.J.

    1992-01-01

    Lattice gas automata models are described, which couple solute transport with chemical reactions at mineral surfaces within pore networks. Diffusion in a box calculations are illustrated, which compare directly with Fickian diffusion. Chemical reactions at solid surfaces, including precipitation/dissolution, sorption, and catalytic reaction, can be examined with the model because hydrodynamic transport, solute diffusion and mineral surface processes are all treated explicitly. The simplicity and flexibility of the approach provides the ability to study the interrelationship between fluid flow and chemical reactions in porous materials, at a level of complexity that has not previously been computationally possible.

  19. Significance of flow clustering and sequencing on sediment transport: 1D sediment transport modelling

    NASA Astrophysics Data System (ADS)

    Hassan, Kazi; Allen, Deonie; Haynes, Heather

    2016-04-01

    This paper considers 1D hydraulic model data on the effect of high flow clusters and sequencing on sediment transport. Using observed flow gauge data from the River Caldew, England, a novel stochastic modelling approach was developed in order to create alternative 50 year flow sequences. Whilst the observed probability density of gauge data was preserved in all sequences, the order in which those flows occurred was varied using the output from a Hidden Markov Model (HMM) with generalised Pareto distribution (GP). In total, one hundred 50 year synthetic flow series were generated and used as the inflow boundary conditions for individual flow series model runs using the 1D sediment transport model HEC-RAS. The model routed graded sediment through the case study river reach to define the long-term morphological changes. Comparison of individual simulations provided a detailed understanding of the sensitivity of channel capacity to flow sequence. Specifically, each 50 year synthetic flow sequence was analysed using a 3-month, 6-month or 12-month rolling window approach and classified for clusters in peak discharge. As a cluster is described as a temporal grouping of flow events above a specified threshold, the threshold condition used herein is considered as a morphologically active channel forming discharge event. Thus, clusters were identified for peak discharges in excess of 10%, 20%, 50%, 100% and 150% of the 1 year Return Period (RP) event. The window of above-peak flows also required cluster definition and was tested for timeframes 1, 2, 10 and 30 days. Subsequently, clusters could be described in terms of the number of events, maximum peak flow discharge, cumulative flow discharge and skewness (i.e. a description of the flow sequence). The model output for each cluster was analysed for the cumulative flow volume and cumulative sediment transport (mass). This was then compared to the total sediment transport of a single flow event of equivalent flow volume

  20. Modeling of Flow Transition Using an Intermittency Transport Equation

    NASA Technical Reports Server (NTRS)

    Suzen, Y. B.; Huang, P. G.

    1999-01-01

    A new transport equation for intermittency factor is proposed to model transitional flows. The intermittent behavior of the transitional flows is incorporated into the computations by modifying the eddy viscosity, mu(sub t), obtainable from a turbulence model, with the intermittency factor, gamma: mu(sub t, sup *) = gamma.mu(sub t). In this paper, Menter's SST model (Menter, 1994) is employed to compute mu(sub t) and other turbulent quantities. The proposed intermittency transport equation can be considered as a blending of two models - Steelant and Dick (1996) and Cho and Chung (1992). The former was proposed for near-wall flows and was designed to reproduce the streamwise variation of the intermittency factor in the transition zone following Dhawan and Narasimha correlation (Dhawan and Narasimha, 1958) and the latter was proposed for free shear flows and was used to provide a realistic cross-stream variation of the intermittency profile. The new model was used to predict the T3 series experiments assembled by Savill (1993a, 1993b) including flows with different freestream turbulence intensities and two pressure-gradient cases. For all test cases good agreements between the computed results and the experimental data are observed.

  1. Code System to Calculate Tornado-Induced Flow Material Transport.

    SciTech Connect

    ANDRAE, R. W.

    1999-11-18

    Version: 00 TORAC models tornado-induced flows, pressures, and material transport within structures. Its use is directed toward nuclear fuel cycle facilities and their primary release pathway, the ventilation system. However, it is applicable to other structures and can model other airflow pathways within a facility. In a nuclear facility, this network system could include process cells, canyons, laboratory offices, corridors, and offgas systems. TORAC predicts flow through a network system that also includes ventilation system components such as filters, dampers, ducts, and blowers. These ventilation system components are connected to the rooms and corridors of the facility to form a complete network for moving air through the structure and, perhaps, maintaining pressure levels in certain areas. The material transport capability in TORAC is very basic and includes convection, depletion, entrainment,