TOUGH2: A general-purpose numerical simulator for multiphase nonisothermal flows
Pruess, K.
1991-06-01
Numerical simulators for multiphase fluid and heat flows in permeable media have been under development at Lawrence Berkeley Laboratory for more than 10 yr. Real geofluids contain noncondensible gases and dissolved solids in addition to water, and the desire to model such `compositional` systems led to the development of a flexible multicomponent, multiphase simulation architecture known as MULKOM. The design of MULKOM was based on the recognition that the mass-and energy-balance equations for multiphase fluid and heat flows in multicomponent systems have the same mathematical form, regardless of the number and nature of fluid components and phases present. Application of MULKOM to different fluid mixtures, such as water and air, or water, oil, and gas, is possible by means of appropriate `equation-of-state` (EOS) modules, which provide all thermophysical and transport parameters of the fluid mixture and the permeable medium as a function of a suitable set of primary thermodynamic variables. Investigations of thermal and hydrologic effects from emplacement of heat-generating nuclear wastes into partially water-saturated formations prompted the development and release of a specialized version of MULKOM for nonisothermal flow of water and air, named TOUGH. TOUGH is an acronym for `transport of unsaturated groundwater and heat` and is also an allusion to the tuff formations at Yucca Mountain, Nevada. The TOUGH2 code is intended to supersede TOUGH. It offers all the capabilities of TOUGH and includes a considerably more general subset of MULKOM modules with added capabilities. The paper briefly describes the simulation methodology and user features.
Formulation and numerical analysis of nonisothermal multiphase flow in porous media
Martinez, M.J.
1995-06-01
A mathematical formulation is presented for describing the transport of air, water and energy through porous media. The development follows a continuum mechanics approach. The theory assumes the existence of various average macroscopic variables which describe the state of the system. Balance equations for mass and energy are formulated in terms of these macroscopic variables. The system is supplemented with constitutive equations relating fluxes to the state variables, and with transport property specifications. Specification of various mixing rules and thermodynamic relations completes the system of equations. A numerical simulation scheme, employing the method of lines, is described for one-dimensional flow. The numerical method is demonstrated on sample problems involving nonisothermal flow of air and water. The implementation is verified by comparison with existing numerical solutions.
Xu, T.; Spycher, N.; Sonnenthal, E.; Zhang, G.; Zheng, L.; Pruess, K.
2010-08-01
TOUGHREACT is a numerical simulation program for chemically reactive non-isothermal flows of multiphase fluids in porous and fractured media, and was developed by introducing reactive chemistry into the multiphase fluid and heat flow simulator TOUGH2 V2. The first version of TOUGHREACT was released to the public through the U.S. Department of Energy's Energy Science and Technology Software Center (ESTSC) in August 2004. It is among the most frequently requested of ESTSC's codes. The code has been widely used for studies in CO{sub 2} geological sequestration, nuclear waste isolation, geothermal energy development, environmental remediation, and increasingly for petroleum applications. Over the past several years, many new capabilities have been developed, which were incorporated into Version 2 of TOUGHREACT. Major additions and improvements in Version 2 are discussed here, and two application examples are presented: (1) long-term fate of injected CO{sub 2} in a storage reservoir and (2) biogeochemical cycling of metals in mining-impacted lake sediments.
DH Bacon; MD White; BP McGrail
2000-03-07
The Hanford Site, in southeastern Washington State, has been used extensively to produce nuclear materials for the US strategic defense arsenal by the Department of Energy (DOE) and its predecessors, the US Atomic Energy Commission and the US Energy Research and Development Administration. A large inventory of radioactive and mixed waste has accumulated in 177 buried single- and double shell tanks. Liquid waste recovered from the tanks will be pretreated to separate the low-activity fraction from the high-level and transuranic wastes. Vitrification is the leading option for immobilization of these wastes, expected to produce approximately 550,000 metric tons of Low Activity Waste (LAW) glass. This total tonnage, based on nominal Na{sub 2}O oxide loading of 20% by weight, is destined for disposal in a near-surface facility. Before disposal of the immobilized waste can proceed, the DOE must approve a performance assessment, a document that described the impacts, if any, of the disposal facility on public health and environmental resources. Studies have shown that release rates of radionuclides from the glass waste form by reaction with water determine the impacts of the disposal action more than any other independent parameter. This report describes the latest accomplishments in the development of a computational tool, Subsurface Transport Over Reactive Multiphases (STORM), Version 2, a general, coupled non-isothermal multiphase flow and reactive transport simulator. The underlying mathematics in STORM describe the rate of change of the solute concentrations of pore water in a variably saturated, non-isothermal porous medium, and the alteration of waste forms, packaging materials, backfill, and host rocks.
Simulation of Nonisothermal Multiphase Flows of Binary Mixtures in a Porous Media
NASA Astrophysics Data System (ADS)
Afanasyev, A. A.
2010-12-01
Hydrodynamic simulation of processes in a geothermal system is complicated due to a wide ranges of pressure and temperature in the flows. In deep regions of a system pressure and temperature can be above critical point of water while near the surface normal conditions take place. The transition from a supercritical fluid to a subcritical water and vapor in the flows strongly complicates hydrodynamic simulations. In the case when a geothermal system is saturated with a binary mixture the simulation is much more complex because instead of a single critical point there exist critical lines in a space of thermodynamic parameters of the mixture. Moreover in general case the mixture can split not only in two phases of liquid and gaseous types but also in two dense phases of liquid type and even in three phases. A new approach is proposed for effective simulation of hydrodynamic processes in sub- and supercritical conditions. As opposed to classical thermodynamic phase equilibrium of the mixture is determined via pressure, enthalpy and composition. These variables help to avoid mathematical singularities at critical conditions and allow to determine three phase states. In classical methods a cubic equation of state is used to calculate properties of a mixture for hydrodynamic simulations. In the proposed approach this equation is used prior to hydrodynamic to calculate thermodynamic potential of the mixture in pressure, enthalpy and composition variables. This allows to perform once all complex calculations of the properties prior to hydrodynamic simulations and results in sufficient acceleration of calculations. The potential is used in a problem of conditional extremum for mixture multiphase equilibrium determination in hydrodynamic simulations. This problem of conditional extremum closes transport equations. The approach is applied to simulations of high-temperature water-carbon dioxide mixture flows in a porous media. The mixture phase diagram is analyzed and zones of
Martinez, M.J.; Hopkins, P.L.; Shadid, J.N.
1997-07-01
This document reports on the accomplishments of a laboratory-directed research and development (LDRD) project whose objective was to initiate a research program for developing a fundamental understanding of multiphase multicomponent subsurface transport in heterogeneous porous media and to develop parallel processing computational tools for numerical simulation of such problems. The main achievement of this project was the successful development of a general-purpose, unstructured grid, multiphase thermal simulator for subsurface transport in heterogeneous porous media implemented for use on massively parallel (MP) computers via message-passing and domain decomposition techniques. The numerical platform provides an excellent base for new and continuing project development in areas of current interest to SNL and the DOE complex including, subsurface nuclear waste disposal and cleanup, groundwater availability and contamination studies, fuel-spill transport for accident analysis, and DNAPL transport and remediation.
Multiphase flow calculation software
Fincke, James R.
2003-04-15
Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.
S. Dartevelle
2005-09-05
The objective of this manuscript is to fully derive a geophysical multiphase model able to ''accommodate'' different multiphase turbulence approaches; viz., the Reynolds Averaged Navier-Stokes (RANS), the Large Eddy Simulation (LES), or hybrid RANSLES. This manuscript is the first part of a larger geophysical multiphase project--lead by LANL--that aims to develop comprehensive modeling tools for large-scale, atmospheric, transient-buoyancy dusty jets and plume (e.g., plinian clouds, nuclear ''mushrooms'', ''supercell'' forest fire plumes) and for boundary-dominated geophysical multiphase gravity currents (e.g., dusty surges, diluted pyroclastic flows, dusty gravity currents in street canyons). LES is a partially deterministic approach constructed on either a spatial- or a temporal-separation between the large and small scales of the flow, whereas RANS is an entirely probabilistic approach constructed on a statistical separation between an ensemble-averaged mean and higher-order statistical moments (the so-called ''fluctuating parts''). Within this specific multiphase context, both turbulence approaches are built up upon the same phasic binary-valued ''function of presence''. This function of presence formally describes the occurrence--or not--of any phase at a given position and time and, therefore, allows to derive the same basic multiphase Navier-Stokes model for either the RANS or the LES frameworks. The only differences between these turbulence frameworks are the closures for the various ''turbulence'' terms involving the unknown variables from the fluctuating (RANS) or from the subgrid (LES) parts. Even though the hydrodynamic and thermodynamic models for RANS and LES have the same set of Partial Differential Equations, the physical interpretations of these PDEs cannot be the same, i.e., RANS models an averaged field, while LES simulates a filtered field. In this manuscript, we also demonstrate that this multiphase model fully fulfills the second law of
Modeling non-isothermal multiphase multi-species reactive chemical transport in geologic media
Tianfu Xu; Gerard, F.; Pruess, K.; Brimhall, G.
1997-07-01
The assessment of mineral deposits, the analysis of hydrothermal convection systems, the performance of radioactive, urban and industrial waste disposal, the study of groundwater pollution, and the understanding of natural groundwater quality patterns all require modeling tools that can consider both the transport of dissolved species as well as their interactions with solid (or other) phases in geologic media and engineered barriers. Here, a general multi-species reactive transport formulation has been developed, which is applicable to homogeneous and/or heterogeneous reactions that can proceed either subject to local equilibrium conditions or kinetic rates under non-isothermal multiphase flow conditions. Two numerical solution methods, the direct substitution approach (DSA) and sequential iteration approach (SIA) for solving the coupled complex subsurface thermo-physical-chemical processes, are described. An efficient sequential iteration approach, which solves transport of solutes and chemical reactions sequentially and iteratively, is proposed for the current reactive chemical transport computer code development. The coupled flow (water, vapor, air and heat) and solute transport equations are also solved sequentially. The existing multiphase flow code TOUGH2 and geochemical code EQ3/6 are used to implement this SIA. The flow chart of the coupled code TOUGH2-EQ3/6, required modifications of the existing codes and additional subroutines needed are presented.
Nonisothermal Two-Phase Porous Flow
1992-02-21
NORIA is a finite element program that simultaneously solves four nonlinear parabolic, partial differential equations that describe the transport of water, water vapor, air, and energy through partially saturated porous media. NORIA is designed for the analysis of two-dimensional, non-isothermal, unsaturated porous flow problems. Nearly all material properties, such as permeability, can either be set to constant values or defined as functions of the dependent and independent variables by user-supplied subroutines. The gas phase is taken to be ideal. NORIA is intended to solve nonisothermal problems in which large gradients are expected in the gas pressure.
NASA Astrophysics Data System (ADS)
Lei, Hongwu; Li, Jun; Li, Xiaochun; Jiang, Zhenjiao
2016-09-01
Understanding the non-isothermal multiphase and multicomponent flow in a CO2-H2S-CH4-brine system is of critical importance in projects such as CO2 storage in deep saline aquifers, natural gas extraction using CO2 as the displacement fluid, and heat extraction from hot dry rocks using CO2 as the working fluid. Numerical simulation is a necessary tool to evaluate the chemical evolution in these systems. However, an accurate thermodynamic model for CO2-H2S-CH4-brine systems appropriate for high pressure, temperature, and salinity is still lacking. This study establishes the mutual solubility model for CO2-H2S-CH4-brine systems based on the fugacity-activity method for phase equilibrium. The model can predict mutual solubilities for pressure up to 1000 bar for CO2 and CH4, and 200 bar for H2S, for temperature up to 200 °C, and for salinity up to 6 mol/kg water. We incorporated the new model into TOUGH2/EOS7C, forming a new improved module we call EOS7Cm. Compared to the original EOS7C, EOS7Cm considers the effects of H2S and covers a larger range of temperature and salinity. EOS7Cm is employed in five examples, including CO2 injection with and without impurities (CH4 and/or H2S) into deep aquifers, CH4 extraction from aquifers by CO2 injection, and heat extraction from hot dry rock. The results are compared to those from TOUGH2/ECO2N, EOS7C and CMG, agreement among which serves to verify EOS7Cm.
NASA Astrophysics Data System (ADS)
Zarghami, Ahad; Looije, Niels; Van den Akker, Harry
2015-08-01
The pseudopotential lattice Boltzmann model (PP-LBM) is a very popular model for simulating multiphase systems. In this model, phase separation occurs via a short-range attraction between different phases when the interaction potential term is properly chosen. Therefore, the potential term is expected to play a significant role in the model and to affect the accuracy and the stability of the computations. The original PP-LBM suffers from some drawbacks such as being capable of dealing with low density ratios only, thermodynamic inconsistency, and spurious velocities. In this paper, we aim to analyze the PP-LBM with the view to simulate single-component (non-)isothermal multiphase systems at large density ratios and in spite of the presence of spurious velocities. For this purpose, the performance of two popular potential terms and of various implementation schemes for these potential terms is examined. Furthermore, the effects of different parameters (i.e., equation of state, viscosity, etc.) on the simulations are evaluated, and, finally, recommendations for a proper simulation of (non-)isothermal multiphase systems are presented.
Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten
2004-12-07
TOUGHREACT is a numerical simulation program for chemically reactive non-isothermal flows of multiphase fluids in porous and fractured media. The program was written in Fortran 77 and developed by introducing reactive geochemistry into the multiphase fluid and heat flow simulator TOUGH2. A variety of subsurface thermo-physical-chemical processes are considered under a wide range of conditions of pressure, temperature, water saturation, ionic strength, and pH and Eh. Interactions between mineral assemblages and fluids can occur under local equilibrium or kinetic rates. The gas phase can be chemically active. Precipitation and dissolution reactions can change formation porosity and permeability. The program can be applied to many geologic systems and environmental problems, including geothermal systems, diagenetic and weathering processes, subsurface waste disposal, acid mine drainage remediation, contaminant transport, and groundwater quality. Here we present two examples to illustrate applicability of the program: (1) injectivity effects of mineral scaling in a fractured geothermal reservoir and (2) CO2 disposal in a deep saline aquifer.
Pan, L.; Oldenburg, C.M.; Wu, Y.-S.; Pruess, K.
2011-02-14
At its most basic level, the injection of CO{sub 2} into geologic CO{sub 2} storage sites involves a system comprising the wellbore and the target reservoir. The wellbore is the only conduit available to emplace CO{sub 2} into reservoirs for long-term storage. At the same time, wellbores in general have been identified as the most likely conduit for CO{sub 2} and brine leakage from geologic carbon sequestration (GCS) sites, especially those in sedimentary basins with historical hydrocarbon production. We have developed a coupled wellbore and reservoir model for simulating the dynamics of CO{sub 2} injection and leakage through wellbores. The model describes the following processes: (1) upward or downward wellbore flow of CO{sub 2} and variable salinity water with transition from supercritical to gaseous CO{sub 2} including Joule-Thomson cooling, (2) exsolution of CO{sub 2} from the aqueous phase as pressure drops, and (3) cross flow into or interaction with layers of surrounding rock (reservoirs). We use the Drift-Flux Model and related conservation equations for describing transient two-phase non-isothermal wellbore flow of CO{sub 2}-water mixtures under different flow regimes and interacting with surrounding rock. The mass and thermal energy balance equations are solved numerically by a finite difference scheme with wellbore heat transmission to the surrounding rock handled either semi-analytically or numerically. The momentum balance equation for the flow in the wellbore is solved numerically with a semi-explicit scheme. This manual provides instructions for compilation and use of the new model, and presents some example problems to demonstrate its use.
Turbulent Mixing of Multiphase Flow
2003-12-01
field modeling approach to investigate capillary induced effects on mixing. Phase- field modeling has been applied to simulation of multi-phase flow... effect of surface tension on stirring flows. The phase-field function C denotes the phase of the fluid: C = ±1 corresponds to fluid phase 1 and 2...force is non-zero only at the interface: F, = (unti + Osa•)6(¢), where au is the Marangoni force, with s the axclength and 9 the unit vectors along the
Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten
2004-05-24
Coupled modeling of subsurface multiphase fluid and heat flow, solute transport and chemical reactions can be used for the assessment of mineral alteration in hydrothermal systems, waste disposal sites, acid mine drainage remediation, contaminant transport, and groundwater quality. A comprehensive non-isothermal multi-component reactive fluid flow and geochemical transport simulator, TOUGHREACT, has been developed. A wide range of subsurface thermo-physical-chemical processes is considered under various thermohydrological and geochemical conditions of pressure, temperature, water saturation, and ionic strength. The program can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity. The model can accommodate any number of chemical species present in liquid, gas and solid phases. A variety of equilibrium chemical reactions are considered, such as aqueous complexation, gas dissolution/exsolution, and cation exchange. Mineral dissolution/precipitation can proceed either subject to local equilibrium or kinetic conditions. Changes in porosity and permeability due to mineral dissolution and precipitation can be considered. Linear adsorption and decay can be included. For the purpose of future extensions, surface complexation by double layer model is coded in the program. Xu and Pruess (1998) developed a first version of a non-isothermal reactive geochemical transport model, TOUGHREACT, by introducing reactive geochemistry into the framework of the existing multi-phase fluid and heat flow code TOUGH2 (Pruess, 1991). Xu, Pruess, and their colleagues have applied the program to a variety of problems such as: (1) supergene copper enrichment (Xu et al, 2001), (2) caprock mineral alteration in a hydrothermal system (Xu and Pruess, 2001a), and (3) mineral trapping for CO{sub 2} disposal in deep saline aquifers (Xu et al, 2003b and 2004a). For modeling the coupled thermal, hydrological, and chemical processes during
Juncosa Rivera, Ricardo; Xu, Tianfu; Pruess, Karsten
2001-01-01
FADES-CORE and TOUGHREACT are codes used to model the non-isothermal multiphase flow with multicomponent reactive transport in porous media. Different flow and reactive transport problems were used to compare the FADES-CORE and TOUGHREACT codes. These problems take into account the different cases of multiphase flow with and without heat transport, conservative transport, and reactive transport. Consistent results were obtained from both codes, which use different numerical methods to solve the differential equations resulting from the various physicochemical processes. Here we present the results obtained from both codes for various cases. Some results are slightly different with minor discrepancies, which have been remedied, so that both codes would be able to reproduce the same processes using the same parameters. One of the discrepancies found is related to the different calculation for thermal conductivity in heat transport, which affects the calculation of the temperatures, as well as the pH of the reaction of calcite dissolution problem modeled. Therefore it is possible to affirm that the pH is highly sensitive to temperature. Generally speaking, the comparison was concluded to be highly satisfactory, leading to the complete verification of the FADES-CORE code. However, we must keep in mind that, as there are no analytical solutions available with which to verify the codes, the TOUGHREACT code has been thoroughly corroborated, given that the only possible way to prove that the code simulation is correct, is by comparing the results obtained with both codes for the identical problems, or to validate the simulation results with actual measured data.
Report on Multiphase Flow Panel
NASA Technical Reports Server (NTRS)
2003-01-01
This paper presents viewgraphs on a multiphase flow panel. The topics include: 1) Discussion of Priorities; 2) Critical Issues Reduced Gravity Instabilities; 3) Severely Limiting Phase Separation; 4) Severely-Limiting Phase Change; 5) Enhancements; 6) Awareness Instabilities; 7) Awareness; 8) Methods of Resolution; 9) 2008 Space Flight; 10) 2003-2008 Ground-Based Microgravity Facilities; 11) 2003-2008 Other; 12) 2009-2015 Space Flight; 13) 2009-2015 Ground-Based Microgravity Facilities; 14) 2009-2015 Other; and 15) 2016.
Non-isothermal two-phase flow in low-permeable porous media
NASA Astrophysics Data System (ADS)
Kolditz, O.; De Jonge, J.
In this paper, we consider non-isothermal two-phase flow of two components (air and water) in gaseous and liquid phases in extremely low-permeable porous media through the use of the finite element method (FEM). Interphase mass transfer of the components between any of the phases is evaluated by assuming local thermodynamic equilibrium between the phases. Heat transfer occurs by conduction and multiphase advection. General equations of state for phase changes (Clausius-Clapeyron and Henry law) as well as multiphase properties for the low-permeable bentonites are implemented in the code. Additionally we consider the impact of swelling/shrinking processes on porosity and permeability changes. The numerical model is implemented in the context of the simulator RockFlow/RockMech (RF/RM), which is based on object-oriented programming techniques. The finite element formulations are written in terms of dimensionless quantities. This has proved to be advantageous for preconditioning composite system matrices of coupled multi-field problems. Three application examples are presented. The first one examines differences between the Richards' approximation and the multicomponent/multiphase approach, and between two numerical coupling schemes. The second example serves as partial verification against experimental results and to demonstrate coherence between different element types. The last example shows simultaneous desaturation and resaturation in one system.
Multiphase Flow Analysis in Hydra-TH
Christon, Mark A.; Bakosi, Jozsef; Francois, Marianne M.; Lowrie, Robert B.; Nourgaliev, Robert
2012-06-20
This talk presents an overview of the multiphase flow efforts with Hydra-TH. The presentation begins with a definition of the requirements and design principles for multiphase flow relevant to CASL-centric problems. A brief survey of existing codes and their solution algorithms is presented before turning the model formulation selected for Hydra-TH. The issues of hyperbolicity and wellposedness are outlined, and a three candidate solution algorithms are discussed. The development status of Hydra-TH for multiphase flow is then presented with a brief summary and discussion of future directions for this work.
Reactive multiphase flow simulation workshop summary
VanderHeyden, W.B.
1995-09-01
A workshop on computer simulation of reactive multiphase flow was held on May 18 and 19, 1995 in the Computational Testbed for Industry at Los Alamos National Laboratory (LANL), Los Alamos, New Mexico. Approximately 35 to 40 people attended the workshop. This included 21 participants from 12 companies representing the petroleum, chemical, environmental and consumer products industries, two representatives from the DOE Office of Industrial Technologies and several from Los Alamos. The dialog at the meeting suggested that reactive multiphase flow simulation represents an excellent candidate for government/industry/academia collaborative research. A white paper on a potential consortium for reactive multiphase flow with input from workshop participants will be issued separately.
Considerations for developing models of multiphase flow in deformable porous media.
Martinez, Mario J.; Stone, Charles Michael
2008-09-01
This document summarizes research and planning for the development of a numerical simulation capability for nonisothermal multiphase, multicomponent transport in heterogeneous deformable porous materials. Particular attention is given to describing a mathematical formulation for flow in deformable media and for numerical techniques for dealing with phase transitions. A development plan is formulated to provide a computational capability motivated by current and future needs in geosystems management for energy security.
9th International Conference on Multiphase Flow (ICMF 2016)
2016-08-12
investigations of multiphase flows , measurement methods for multiphase flows . ...International Conference on Multiphase Flows Event Dates: May 22-27, 2016 Event City and Country: Florence, Italy Grantee (Name and Contact...Conference on Multiphase Flow (ICMF-2016), which was hosted by the University of Udine and held at the Firenze Fiera Conference Center, Firenze (Italy
Finite element modeling of nonisothermal polymer flows
NASA Technical Reports Server (NTRS)
Roylance, D.
1981-01-01
A finite element formulation designed to simulate polymer melt flows in which both conductive and convective heat transfer are important is described, and the numerical model is illustrated by means of computer experiments using extruder drag flow and entry flow as trial problems. Fluid incompressibility is enforced by a penalty treatment of the element pressures, and the thermal convective transport is modeled by conventional Galerkin and optimal upwind treatments.
Measurement in multiphase reacting flows
NASA Technical Reports Server (NTRS)
Chigier, N. A.
1979-01-01
A survey is presented of diagnostic techniques and measurements made in multiphase reacting flows. The special problems encountered by the presence of liquid droplets, soot and solid particles in high temperature chemically reacting turbulent environments are outlined. The principal measurement techniques that have been tested in spray flames are spark photography, laser anemometry, thermocouples and suction probes. Spark photography provides measurement of drop size, drop size distribution, drop velocity, and angle of flight. Photographs are analysed automatically by image analysers. Photographic techniques are reliable, inexpensive and proved. Laser anemometers have been developed for simultaneous measurement of velocity and size of individual particles in sprays under conditions of vaporization and combustion. Particle/gas velocity differentials, particle Reynolds numbers, local drag coefficients and direct measurement of vaporization rates can be made by laser anemometry. Gas temperature in sprays is determined by direct in situ measurement of time constants immediately prior to measurement with compensation and signal analysis by micro-processors. Gas concentration is measured by suction probes and gas phase chromatography. Measurements of particle size, particle velocity, gas temperature, and gas concentration made in airblast and pressure atomised liquid spray flames are presented.
Multiscale simulation of non-isothermal microchannel gas flows
NASA Astrophysics Data System (ADS)
Patronis, Alexander; Lockerby, Duncan A.
2014-08-01
This paper describes the development and application of an efficient hybrid continuum-molecular approach for simulating non-isothermal, low-speed, internal rarefied gas flows, and its application to flows in Knudsen compressors. The method is an extension of the hybrid continuum-molecular approach presented by Patronis et al. (2013) [4], which is based on the framework originally proposed by Borg et al. (2013) [3] for the simulation of micro/nano flows of high aspect ratio. The extensions are: 1) the ability to simulate non-isothermal flows; 2) the ability to simulate low-speed flows by implementing a molecular description of the gas provided by the low-variance deviational simulation Monte Carlo (LVDSMC) method; and 3) the application to three-dimensional geometries. For the purposes of validation, the multiscale method is applied to rarefied gas flow through a periodic converging-diverging channel (driven by an external acceleration). For this flow problem it is computationally feasible to obtain a solution by the direct simulation Monte Carlo (DSMC) method for comparison: very close agreement is observed. The efficiency of the multiscale method, allows the investigation of alternative Knudsen-compressor channel configurations to be undertaken. We characterise the effectiveness of the single-stage Knudsen-compressor channel by the pressure drop that can be achieved between two connected reservoirs, for a given temperature difference. Our multiscale simulations indicate that the efficiency is surprisingly robust to modifications in streamwise variations of both temperature and cross-sectional geometry.
Cavitation and multiphase flow forum - 1987
Furuya, O
1987-01-01
These proceedings collect papers on cavitation phenomena. Topics include: multiphase flow, the two-phase water hammer in a nuclear power plant, phase separation of dispersed annular flow, liquid films, shock waves propagating through two-phase magnetic fluid, venturimeters, gas-particle flows, particle-wall interactions, and the evaluation of wear in centrifugal slurry pumps.
Ultrasonic rate measurement of multiphase flow
Dannert, D.A.; Horne, R.N.
1993-01-01
On of the most important tools in production logging and well testing is the downhole flowmeter. Unfortunately, existing tools are inaccurate outside of an idealized single phase flow, regime. Spinner tools are inaccurate at extremely high or low, flow rates and when the flow rate is variable. Radioactive tracer tools have similar inaccuracies and are extremely sensitive to the flow regime. Both tools completely fail in the presence of multiphase flow, whether gas/ oil, gas/water or fluid/solid. Downhole flowmetering is important for locating producing zones and thief zones and monitoring production and injection rates. The effects of stimulation can also be determined. This goal of this project is the investigation of accurate downhole flowmetering techniques for all single phase flow regimes and multiphase flows. The measurement method investigated in this report is the use of ultrasound. There are two ways to use ultrasound for fluid velocity measurement. The first method, examined in Chapter 2, is the contrapropagation, or transit-time, method which compares travel times with and against fluid flow. Chapter 3 details the second method which measures the Doppler frequency shift of a reflected sound wave in the moving fluid. Both of these technologies need to be incorporated in order to build a true multiphase flowmeter. Chapter 4 describes the proposed downhole multiphase flowmeter. It has many advantages besides the ones previously mentioned and is in full in that chapter.
EDITORIAL: Measurement techniques for multiphase flows Measurement techniques for multiphase flows
NASA Astrophysics Data System (ADS)
Okamoto, Koji; Murai, Yuichi
2009-11-01
Research on multiphase flows is very important for industrial applications, including power stations, vehicles, engines, food processing and so on. Multiphase flows originally have nonlinear features because of multiphase systems. The interaction between the phases plays a very interesting role in the flows. The nonlinear interaction causes the multiphase flows to be very complicated. Therefore techniques for measuring multiphase flows are very useful in helping to understand the nonlinear phenomena. The state-of-the-art measurement techniques were presented and discussed at the sixth International Symposium on Measurement Techniques for Multiphase Flows (ISMTMF2008) held in Okinawa, Japan, on 15-17 December 2008. This special feature of Measurement Science and Technology includes selected papers from ISMTMF2008. Okinawa has a long history as the Ryukyus Kingdom. China, Japan and many western Pacific countries have had cultural and economic exchanges through Okinawa for over 1000 years. Much technical and scientific information was exchanged at the symposium in Okinawa. The proceedings of ISMTMF2008 apart from these special featured papers were published in Journal of Physics: Conference Series vol. 147 (2009). We would like to express special thanks to all the contributors to the symposium and this special feature. This special feature will be a milestone in measurement techniques for multiphase flows.
Turbulent Mixing of Multiphase Flow
NASA Technical Reports Server (NTRS)
Young, Y.-N.; Ferziger, J.; Ham, F. E.; Herrmann, M.
2003-01-01
Thus we conduct numerical simulations of multiphase fluids stirred by two-dimensional turbulence to assess the possibility of self-similar drop size distribution in turbulence. In our turbulence simulations, we also explore the non-diffusive limit, where molecular mobility for the interface is vanishing. Special care is needed to transport the non-diffusive interface. Numerically, we use the particle level set method to evolve the interface. Instead of using the usual methods to calculate the surface tension force from the level set function, we reconstruct the interface based on phase- field modeling, and calculate the continuum surface tension forcing from the reconstructed interface.
Multiphase flow and transport in porous media
NASA Astrophysics Data System (ADS)
Parker, J. C.
1989-08-01
Multiphase flow and transport of compositionally complex fluids in geologic media is of importance in a number of applied problems which have major social and economic effects. In petroleum reservoir engineering, efficient recovery of energy reserves is the principal goal. Unfortunately, some of these hydrocarbons and other organic chemicals often find their way unwanted into the soils and groundwater supplies. Removal in the latter case is predicated on ensuring the public health and safety. In this paper, principles of modeling fluid flow in systems containing up to three fluid phases (namely, water, air, and organic liquid) are described. Solution of the governing equations for multiphase flow requires knowledge of functional relationships between fluid pressures, saturations, and permeabilities which may be formulated on the basis of conceptual models of fluid-porous media interactions. Mechanisms of transport in multicomponent multiphase systems in which species may partition between phases are also described, and the governing equations are presented for the case in which local phase equilibrium may be assumed. A number of hypothetical numerical problems are presented to illustrate the physical behavior of systems in which multiphase flow and transport arise.
Numerical modeling of isothermal and nonisothermal flow in unsaturated fractured rock: A review
NASA Astrophysics Data System (ADS)
Pruess, K.; Wang, J. S. Y.
In recent years, considerable efforts have been made to study the feasibility of geologic disposal of high-level nuclear wastes in deep unsaturated zones in desert environments. The tuff formations at and near the Nevada Test Site, which are under consideration for this purpose, are comprised of fractured-porous material, with hydrologic properties quite different from those encountered in most previous unsaturated flow studies dealing with soils. Another difference from "conventional" unsaturated flow is that in the vicinity of the waste packages, flow is driven by high temperatures (exceeding 100°C) and large temperature gradients. The approximations developed in soil science for weakly nonisothermal flow are not applicable to this situation, and a multiphase description of flow is required, similar to approaches used in modeling of geothermal reservoirs and thermally enhanced oil recovery. The conventional approach to unsaturated flow is applicable, however, to a variety of problems relating to natural (undisturbed) and far-field flow conditions. This paper reviews recent work on numerical modeling of unsaturated flow undertaken in the context of nuclear waste isolation studies. Concepts and applications of broader interest are summarized, including the role of fractures in partially saturated flow, the response of a fractured medium to infiltration events, and a simplified description of flow based on an effective continuum approximation. It is pointed out that the heat released from the waste packages gives rise to multi-phase flow with heat pipe effects, which may have a dramatic impact on thermal and hydrologic conditions. A number of important issues are identified which have not been adequately explored. These include the possibility that liquid water may flow along the rough walls of fractures, the bulk of which is drained. Pre-existing or induced fracture coatings may have significant hydrologic effects. Large-scale moisture movement may be important to
Modeling studies for multiphase fluid and heat flow processes in nuclear waste isolation
Pruess, K.
1988-07-01
Multiphase fluid and heat flow plays an important role in many problems relating to the disposal of nuclear wastes in geologic media. Examples include boiling and condensation processes near heat-generating wastes, flow of water and formation gas in partially saturated formations, evolution of a free gas phase from waste package corrosion in initially water-saturated environments, and redistribution (dissolution, transport, and precipitation) of rock minerals in non-isothermal flow fields. Such processes may strongly impact upon waste package and repository design considerations and performance. This paper summarizes important physical phenomena occurring in multiphase and nonisothermal flows, as well as techniques for their mathematical modeling and numerical simulation. Illustrative applications are given for a number of specific fluid and heat flow problems, including: thermohydrologic conditions near heat-generating waste packages in the unsaturated zone; repository-wide convection effects in the unsaturated zone; effects of quartz dissolution and precipitation for disposal in the saturated zone; and gas pressurization and flow corrosion of low-level waste packages. 34 refs; 7 figs; 2 tabs.
Modeling variability in porescale multiphase flow experiments
NASA Astrophysics Data System (ADS)
Ling, Bowen; Bao, Jie; Oostrom, Mart; Battiato, Ilenia; Tartakovsky, Alexandre M.
2017-07-01
Microfluidic devices and porescale numerical models are commonly used to study multiphase flow in biological, geological, and engineered porous materials. In this work, we perform a set of drainage and imbibition experiments in six identical microfluidic cells to study the reproducibility of multiphase flow experiments. We observe significant variations in the experimental results, which are smaller during the drainage stage and larger during the imbibition stage. We demonstrate that these variations are due to sub-porescale geometry differences in microcells (because of manufacturing defects) and variations in the boundary condition (i.e., fluctuations in the injection rate inherent to syringe pumps). Computational simulations are conducted using commercial software STAR-CCM+, both with constant and randomly varying injection rates. Stochastic simulations are able to capture variability in the experiments associated with the varying pump injection rate.
NMR studies of multiphase flows II
Altobelli, S.A.; Caprihan, A.; Fukushima, E.
1995-12-31
NMR techniques for measurements of spatial distribution of material phase, velocity and velocity fluctuation are being developed and refined. Versions of these techniques which provide time average liquid fraction and fluid phase velocity have been applied to several concentrated suspension systems which will not be discussed extensively here. Technical developments required to further extend the use of NMR to the multi-phase flow arena and to provide measurements of previously unobtainable parameters are the focus of this report.
NASA Astrophysics Data System (ADS)
Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten
2006-03-01
TOUGHREACT is a numerical simulation program for chemically reactive non-isothermal flows of multiphase fluids in porous and fractured media. The program was written in Fortran 77 and developed by introducing reactive geochemistry into the multiphase fluid and heat flow simulator TOUGH2. A variety of subsurface thermo-physical-chemical processes are considered under a wide range of conditions of pressure, temperature, water saturation, ionic strength, and pH and Eh. Interactions between mineral assemblages and fluids can occur under local equilibrium or kinetic rates. The gas phase can be chemically active. Precipitation and dissolution reactions can change formation porosity and permeability. The program can be applied to many geologic systems and environmental problems, including geothermal systems, diagenetic, and weathering processes, subsurface waste disposal, acid mine drainage remediation, contaminant transport, and groundwater quality. Here we present two examples to illustrate applicability of the program. The first example deals with injectivity effects of mineral scaling in a fractured geothermal reservoir. A major concern in the development of hot dry rock and hot fractured rock reservoirs is achieving and maintaining adequate injectivity, while avoiding the development of preferential short-circuiting flow paths. Rock-fluid interactions and associated mineral dissolution and precipitation effects could have a major impact on the long-term performance of these reservoirs. We used recent European studies as a starting point to explore chemically induced effects of fluid circulation in the geothermal systems. We examine ways in which the chemical composition of reinjected waters can be modified to improve reservoir performance by maintaining or even enhancing injectivity. The second TOUGHREACT application example is related to CO 2 geologic sequestration in a saline aquifer. We performed numerical simulations for a commonly encountered Gulf Coast sediment
Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten
2008-09-29
Coupled modeling of subsurface multiphase fluid and heat flow, solute transport, and chemical reactions can be applied to many geologic systems and environmental problems, including geothermal systems, diagenetic and weathering processes, subsurface waste disposal, acid mine drainage remediation, contaminant transport, and groundwater quality. TOUGHREACT has been developed as a comprehensive non-isothermal multi-component reactive fluid flow and geochemical transport simulator to investigate these and other problems. A number of subsurface thermo-physical-chemical processes are considered under various thermohydrological and geochemical conditions of pressure, temperature, water saturation, and ionic strength. TOUGHREACT can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity. The code can accommodate any number of chemical species present in liquid, gas and solid phases. A variety of equilibrium chemical reactions are considered, such as aqueous complexation, gas dissolution/exsolution, and cation exchange. Mineral dissolution/precipitation can take place subject to either local equilibrium or kinetic controls, with coupling to changes in porosity and permeability and capillary pressure in unsaturated systems. Chemical components can also be treated by linear adsorption and radioactive decay. The first version of the non-isothermal reactive geochemical transport code TOUGHREACT was developed (Xu and Pruess, 1998) by introducing reactive geochemistry into the framework of the existing multi-phase fluid and heat flow code TOUGH2 (Pruess, 1991). TOUGHREACT was further enhanced with the addition of (1) treatment of mineral-water-gas reactive-transport under boiling conditions, (2) an improved HKF activity model for aqueous species, (3) gas species diffusion coefficients calculated as a function of pressure, temperature, and molecular properties, (4) mineral reactive surface area formulations for fractured
Modeling multiphase flow using fluctuating hydrodynamics.
Chaudhri, Anuj; Bell, John B; Garcia, Alejandro L; Donev, Aleksandar
2014-09-01
Fluctuating hydrodynamics provides a model for fluids at mesoscopic scales where thermal fluctuations can have a significant impact on the behavior of the system. Here we investigate a model for fluctuating hydrodynamics of a single-component, multiphase flow in the neighborhood of the critical point. The system is modeled using a compressible flow formulation with a van der Waals equation of state, incorporating a Korteweg stress term to treat interfacial tension. We present a numerical algorithm for modeling this system based on an extension of algorithms developed for fluctuating hydrodynamics for ideal fluids. The scheme is validated by comparison of measured structure factors and capillary wave spectra with equilibrium theory. We also present several nonequilibrium examples to illustrate the capability of the algorithm to model multiphase fluid phenomena in a neighborhood of the critical point. These examples include a study of the impact of fluctuations on the spinodal decomposition following a rapid quench, as well as the piston effect in a cavity with supercooled walls. The conclusion in both cases is that thermal fluctuations affect the size and growth of the domains in off-critical quenches.
Quantitative tomographic measurements of opaque multiphase flows
GEORGE,DARIN L.; TORCZYNSKI,JOHN R.; SHOLLENBERGER,KIM ANN; O'HERN,TIMOTHY J.; CECCIO,STEVEN L.
2000-03-01
An electrical-impedance tomography (EIT) system has been developed for quantitative measurements of radial phase distribution profiles in two-phase and three-phase vertical column flows. The EIT system is described along with the computer algorithm used for reconstructing phase volume fraction profiles. EIT measurements were validated by comparison with a gamma-densitometry tomography (GDT) system. The EIT system was used to accurately measure average solid volume fractions up to 0.05 in solid-liquid flows, and radial gas volume fraction profiles in gas-liquid flows with gas volume fractions up to 0.15. In both flows, average phase volume fractions and radial volume fraction profiles from GDT and EIT were in good agreement. A minor modification to the formula used to relate conductivity data to phase volume fractions was found to improve agreement between the methods. GDT and EIT were then applied together to simultaneously measure the solid, liquid, and gas radial distributions within several vertical three-phase flows. For average solid volume fractions up to 0.30, the gas distribution for each gas flow rate was approximately independent of the amount of solids in the column. Measurements made with this EIT system demonstrate that EIT may be used successfully for noninvasive, quantitative measurements of dispersed multiphase flows.
Nonisothermal flow of a polymeric liquid under a pulsating pressure gradient
Shul'man, Z.P.; Khusid, B.M.; Shabunina, Z.A.
1987-03-01
Increasing flow rates is a major problem in transporting petroleum as well as polymer solutions and melts. Industrial methods are often directed to reducing the effective viscosity: heating and pulsation. The latter is related to the nonlinearity in the properties. This paper studies the effects of pressure-gradient pulsations on the nonisothermal flow of a nonlinear liquid with memory in an annular channel.
Oscillatory multiphase flow strategy for chemistry and biology.
Abolhasani, Milad; Jensen, Klavs F
2016-07-19
Continuous multiphase flow strategies are commonly employed for high-throughput parameter screening of physical, chemical, and biological processes as well as continuous preparation of a wide range of fine chemicals and micro/nano particles with processing times up to 10 min. The inter-dependency of mixing and residence times, and their direct correlation with reactor length have limited the adaptation of multiphase flow strategies for studies of processes with relatively long processing times (0.5-24 h). In this frontier article, we describe an oscillatory multiphase flow strategy to decouple mixing and residence times and enable investigation of longer timescale experiments than typically feasible with conventional continuous multiphase flow approaches. We review current oscillatory multiphase flow technologies, provide an overview of the advancements of this relatively new strategy in chemistry and biology, and close with a perspective on future opportunities.
Modeling isothermal and non-isothermal flows in porous media
NASA Astrophysics Data System (ADS)
Mohseni Languri, Ehsan
2011-12-01
solutions obtained after applying the stress-continuity and stress-jump boundary conditions are found to work well at low porosities, which is in contradiction with the results achieved earlier by other researchers. The traditional approach of using averaged equations in the regions of sharp gradients in porous media to describe flow and transport is theoretically untenable and perhaps inaccurate. A novel ensemble averaging method is being proposed to test the accuracy of the volume averaged or smoothed description of flows in porous media in the regions of sharp gradients. In the new method, the flow in a certain arrangement of particles (called a realization) is averaged using a small unit cell, much smaller than the REV. Then such an averaged flow variable is further averaged over a whole gamut of randomly-generated particle realizations. First the accuracy of the ensemble averaging method was tested by comparing the permeability of an artificially generated porous medium obtained by the proposed method against the permeability predicted by some established theoretical models of permeability. The proposed method was found to be quite accurate. Later the ensemble average method was applied to the open-channel porous-medium interface region characterized by a sharp gradient in the flow velocities. It was discovered that the volume averaged description of such flows, characterized by the use of the Brinkman equation along with the stress-continuity and stress-jump conditions, is quite accurate for a range of Reynolds numbers. The non-isothermal transport during flow in porous media is examined next. The main focus in this area of research is the thermal dispersion term found in the heat transfer equation for single- and dual-scale porous media. Most of the previous efforts on modeling the heat transfer phenomena in porous media were devoted to isotropic porous media. However, for the anisotropic porous media widely in many industrial applications, not much research on the
Multiphase groundwater flow near cooling plutons
Hayba, D.O.; Ingebritsen, S.E.
1997-01-01
We investigate groundwater flow near cooling plutons with a computer program that can model multiphase flow, temperatures up to 1200??C, thermal pressurization, and temperature-dependent rock properties. A series of experiments examines the effects of host-rock permeability, size and depth of pluton emplacement, single versus multiple intrusions, the influence of a caprock, and the impact of topographically driven groundwater flow. We also reproduce and evaluate some of the pioneering numerical experiments on flow around plutons. Host-rock permeability is the principal factor influencing fluid circulation and heat transfer in hydrothermal systems. The hottest and most steam-rich systems develop where permeability is of the order of 10-15 m2. Temperatures and life spans of systems decrease with increasing permeability. Conduction-dominated systems, in which permeabilities are ???10-16m2, persist longer but exhibit relatively modest increases in near-surface temperatures relative to ambient conditions. Pluton size, emplacement depth, and initial thermal conditions have less influence on hydrothermal circulation patterns but affect the extent of boiling and duration of hydrothermal systems. Topographically driven groundwater flow can significantly alter hydrothermal circulation; however, a low-permeability caprock effectively decouples the topographically and density-driven systems and stabilizes the mixing interface between them thereby defining a likely ore-forming environment.
Large Interface Simulation in Multiphase Flow Phenomena
Henriques, Aparicio; Coste, Pierre; Pigny, Sylvain; Magnaudet, Jacques
2006-07-01
An attempt to represent multiphase multi-scale flow, filling the gap between Direct Numerical Simulation (DNS) and averaged approaches, is the purpose of this paper. We present a kind of Large Interface (LI) simulation formalism obtained after a filtering process on local instantaneous conservation equations of the two-fluid model which distinguishes between small scales and large scales contributions. LI surface tension force is also taken into account. Small scale dynamics call for modelization and large scale for simulation. Joined to this formalism, a criterion to recognize LI's is developed. It is used in an interface recognition algorithm which is qualified on a sloshing case and a bubble oscillation under zero-gravity. This method is applied to a rising bubble in a pool that collapses at a free surface and to a square-base basin experiment where splashing and sloshing at the free surface are the main break-up phenomena. (authors)
Multiphase flows in confinement with complex geometries
NASA Astrophysics Data System (ADS)
Aymard, Benjamin; Pradas, Marc; Vaes, Urbain; Kalliadasis, Serafim
2016-11-01
Understanding the dynamics of immiscible fluids in confinement is crucial in numerous applications such as oil recovery, fuel cells and the rapidly growing field of microfluidics. Complexities such as microstructures, chemical-topographical heterogeneities or porous membranes, can often induce non-trivial effects such as critical phenomena and phase transitions . The dynamics of confined multiphase flows may be efficiently described using diffuse-interface theory, leading to the Cahn-Hilliard-Navier-Stokes(CHNS) equations with Cahn wetting boundary conditions. Here we outline an efficient numerical method to solve the CHNS equations using advanced geometry-capturing mesh techniques both in two and three dimensional scenarios. The methodology is applied to two different systems: a droplet on a spatially chemical-topographical heterogeneous substrateand a microfluidic separator.
Scaling of multiphase pipeline flow behavior at high gas density
Crowley, C.J.
1988-01-01
This report contains data that demonstrates the scaling of flow regime, pressure drop, and holdup multiphase flow with pipe diameter. In addition, entrance length effects, the onset of liquid entrainment, and interfacial shear modeling at high gas density are studied for purposes of validating multiphase flow design methods. Stratified, slug and annular flow regimes have been observed. Air, freon, and water have been used to represent pipeline fluids.
Multiphase flows with digital and traditional microfluidics
NASA Astrophysics Data System (ADS)
Nilsson, Michael A.
Multi-phase fluid systems are an important concept in fluid mechanics, seen every day in how fluids interact with solids, gases, and other fluids in many industrial, medical, agricultural, and other regimes. In this thesis, the development of a two-dimensional digital microfluidic device is presented, followed by the development of a two-phase microfluidic diagnostic tool designed to simulate sandstone geometries in oil reservoirs. In both instances, it is possible to take advantage of the physics involved in multiphase flows to affect positive outcomes in both. In order to make an effective droplet-based digital microfluidic device, one must be able to precisely control a number of key processes including droplet positioning, motion, coalescence, mixing, and sorting. For planar or open microfluidic devices, many of these processes have yet to be demonstrated. A suitable platform for an open system is a superhydrophobic surface, as suface characteristics are critical. Great efforts have been spent over the last decade developing hydrophobic surfaces exhibiting very large contact angles with water, and which allow for high droplet mobility. We demonstrate that sanding Teflon can produce superhydrophobic surfaces with advancing contact angles of up to 151° and contact angle hysteresis of less than 4°. We use these surfaces to characterize droplet coalescence, mixing, motion, deflection, positioning, and sorting. This research culminates with the presentation of two digital microfluidic devices: a droplet reactor/analyzer and a droplet sorter. As global energy usage increases, maximizing oil recovery from known reserves becomes a crucial multiphase challenge in order to meet the rising demand. This thesis presents the development of a microfluidic sandstone platform capable of quickly and inexpensively testing the performance of fluids with different rheological properties on the recovery of oil. Specifically, these microfluidic devices are utilized to examine how
Workshop on Scientific Issues in Multiphase Flow
Hanratty, Thomas J.
2003-01-02
This report outlines scientific issues whose resolution will help advance and define the field of multiphase flow. It presents the findings of four study groups and of a workshop sponsored by the Program on Engineering Physics of the Department of Energy. The reason why multiphase flows are much more difficult to analyze than single phase flows is that the phases assume a large number of complicated configurations. Therefore, it should not be surprising that the understanding of why the phases configure in a certain way is the principal scientific issue. Research is needed which identifies the microphysics controlling the organization of the phases, which develops physical models for the resultant multi-scale interactions and which tests their validity in integrative experiments/theories that look at the behavior of a system. New experimental techniques and recently developed direct numerical simulations will play important roles in this endeavor. In gas-liquid flows a top priority is to develop an understanding of why the liquid phase in quasi fully-developed pipe flow changes from one configuration to another. Mixing flows offer a more complicated situation in which several patterns can exist at the same time. They introduce new physical challenges. A second priority is to provide a quantitative description of the phase distribution for selected fully-developed flows and for simple mixing flows (that could include heat transfer and phase change). Microphysical problems of interest are identified – including the coupling of molecular and macroscopic behavior that can be observed in many situations and the formation/destruction of interfaces in the coalescence/breakup of drops and bubbles. Solid-fluid flows offer a simpler system in that interfaces are not changing. However, a variety of patterns exist, that depend on the properties of the particles, their concentration and the Reynolds number characterizing the relative velocity. A top priority is the
Process tomography applied to multi-phase flow measurement
NASA Astrophysics Data System (ADS)
Dyakowski, T.
1996-03-01
This paper presents the state of the art in measuring multi-phase flows by using tomographic techniques. The results presented show a wide range of industrial applications of process tomography from the nuclear and chemical to the food industry. This is illustrated by examples of the application of various tomographic sensors to the measurement of geometric or kinematic parameters of multi-phase flows. An application of process tomography for the validation of computational fluid dynamic models and the possibility of constructing a flowmeter for multi-phase flow are addressed.
Multiphase magmatic flows at Yucca Mountain, Nevada
NASA Astrophysics Data System (ADS)
Dartevelle, S.; Valentine, G. A.
2008-12-01
The proposed Yucca Mountain radioactive waste repository is sited in southern Nevada in a region that has experienced sporadic basaltic volcanism since the late Miocene. Volcanic risk assessment for the proposed repository requires estimating the consequences of a new monogenetic volcano intersecting the underground facility during its 104-106 year performance period. We report numerical studies aimed at understanding the range of processes and dynamic parameter values that could accompany intersection of an open repository drift by a volatile-rich trachybasaltic magma as it ascends in a dike. We focus on one end-member type of magmatic behavior, namely, a fragmented magmatic mixture under pressure interacting with an underground cavity. Initial and boundary conditions are based upon field data and previous modeling studies of the interaction between vertically propagating dikes and a repository opening. The calculations are two-dimensional and time-dependent and are conducted with the multiphase hydrodynamics code GMFIX. Calculations indicate that gas-particle mixtures, as they rise from below and interact with horizontal openings, form complex flow patterns involving varying degrees of recirculation and deposition of pyroclasts. Dynamic pressures are up to 106 Pa but are more typically on the order of 103 to 104 Pa. The geometry and number of outlets play a key role in determining the types of flow patterns, as do volatile contents and the degree of fragmentation. The detailed numerical simulations provide information that will be used to confirm the adequacy of simplified probabilistic consequence models used in risk assessments.
Multiphase pumps and flow meters avoid platform construction
Elde, J.
1999-02-01
One of the newest wrinkles in efficiency in BP`s Eastern Trough Area Project (ETAP) is the system for moving multiphase oil, water and gas fluids from the Machar satellite field to the Marnock Central Processing Facility (CPF). Using water-turbine-driven multiphase pumps and multiphase flow meters, the system moves fluid with no need for a production platform. In addition, BP has designed the installation so it reduces and controls water coning, thereby increasing recoverable reserves. Both subsea multiphase booster stations (SMUBS) and meters grew out of extensive development work and experience at Framo Engineering AS (Framo) in multiphase meters and multiphase pump systems for subsea installation. Multiphase meter development began in 1990 and the first subsea multiphase meters were installed in the East Spar Project in Australia in 1996. By September 1998, the meters had been operating successfully for more than 1 year. A single multiphase meter installed in Marathon`s West Brae Project has also successfully operated for more than 1 year. Subsea meters for ETAP were installed and began operating in July 1998.
Benchmark initiative on coupled multiphase flow and geomechanical processes during CO2 injection
NASA Astrophysics Data System (ADS)
Benisch, K.; Annewandter, R.; Olden, P.; Mackay, E.; Bauer, S.; Geiger, S.
2012-12-01
CO2 injection into deep saline aquifers involves multiple strongly interacting processes such as multiphase flow and geomechanical deformation, which threat to the seal integrity of CO2 repositories. Coupled simulation codes are required to establish realistic prognoses of the coupled process during CO2 injection operations. International benchmark initiatives help to evaluate, to compare and to validate coupled simulation results. However, there is no published code comparison study so far focusing on the impact of coupled multiphase flow and geomechanics on the long-term integrity of repositories, which is required to obtain confidence in the predictive capabilities of reservoir simulators. We address this gap by proposing a benchmark study. A wide participation from academic and industrial institutions is sought, as the aim of building confidence in coupled simulators become more plausible with many participants. Most published benchmark studies on coupled multiphase flow and geomechanical processes have been performed within the field of nuclear waste disposal (e.g. the DECOVALEX project), using single-phase formulation only. As regards CO2 injection scenarios, international benchmark studies have been published comparing isothermal and non-isothermal multiphase flow processes such as the code intercomparison by LBNL, the Stuttgart Benchmark study, the CLEAN benchmark approach and other initiatives. Recently, several codes have been developed or extended to simulate the coupling of hydraulic and geomechanical processes (OpenGeoSys, ELIPSE-Visage, GEM, DuMuX and others), which now enables a comprehensive code comparison. We propose four benchmark tests of increasing complexity, addressing the coupling between multiphase flow and geomechanical processes during CO2 injection. In the first case, a horizontal non-faulted 2D model consisting of one reservoir and one cap rock is considered, focusing on stress and strain regime changes in the storage formation and the
Development of predictive simulation capability for reactive multiphase flow
VanderHeyden, W.B.; Kendrick, B.K.
1998-12-31
This is the final report of a Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of the project was to develop a self-sustained research program for advanced computer simulation of industrial reactive multiphase flows. The prototype research problem was a three-phase alumina precipitator used in the Bayer process, a key step in aluminum refining. Accomplishments included the development of an improved reaction mechanism of the alumina precipitation growth process, the development of an efficient methods for handling particle size distribution in multiphase flow simulation codes, the incorporation of precipitation growth and agglomeration kinetics in LANL's CFDLIB multiphase flow code library and the evaluation of multiphase turbulence closure models for bubbly flow simulations.
Laser velocimeter measurements of solids in multiphase flow
NASA Astrophysics Data System (ADS)
Kadambi, J. R.
Preliminary experiments were conducted to obtain pressure drop data for the slurry containing silica gel. Based on this data, a Refractive Index Multiphase Flow Test Loop (RIMMTL) was designed. The details are provided.
TOUGH2: A general-purpose numerical simulator for multiphase fluid and heat flow
Pruess, K.
1991-05-01
TOUGH2 is a numerical simulation program for nonisothermal flows of multicomponent, multiphase fluids in porous and fractured media. The chief applications for which TOUGH2 is designed are in geothermal reservoir engineering, nuclear waste disposal, and unsaturated zone hydrology. A successor to the TOUGH program, TOUGH2 offers added capabilities and user features, including the flexibility to handle different fluid mixtures, facilities for processing of geometric data (computational grids), and an internal version control system to ensure referenceability of code applications. This report includes a detailed description of governing equations, program architecture, and user features. Enhancements in data inputs relative to TOUGH are described, and a number of sample problems are given to illustrate code applications. 46 refs., 29 figs., 12 tabs.
FOREWORD: International Symposium of Cavitation and Multiphase Flow (ISCM 2014)
NASA Astrophysics Data System (ADS)
Wu, Yulin
2015-01-01
The International Symposium on Cavitation and Multiphase Flow (ISCM 2014) was held in Beijing, China during 18th-21st October, 2014, which was jointly organized by Tsinghua University, Beijing, China and Jiangsu University, Zhenjiang, China. The co-organizer was the State Key Laboratory of Hydroscience and Engineering, Beijing, China. Cavitation and multiphase flow is one of paramount topics of fluid mechanics with many engineering applications covering a broad range of topics, e.g. hydraulic machinery, biomedical engineering, chemical and process industry. In order to improve the performances of engineering facilities (e.g. hydraulic turbines) and to accelerate the development of techniques for medical treatment of serious diseases (e.g. tumors), it is essential to improve our understanding of cavitation and Multiphase Flow. For example, the present development towards the advanced hydrodynamic systems (e.g. space engine, propeller, hydraulic machinery system) often requires that the systems run under cavitating conditions and the risk of cavitation erosion needs to be controlled. The purpose of the ISCM 2014 was to discuss the state-of-the-art cavitation and multiphase flow research and their up-to-date applications, and to foster discussion and exchange of knowledge, and to provide an opportunity for the researchers, engineers and graduate students to report their latest outputs in these fields. Furthermore, the participants were also encouraged to present their work in progress with short lead time and discuss the encountered problems. ISCM 2014 covers all aspects of cavitation and Multiphase Flow, e.g. both fundamental and applied research with a focus on physical insights, numerical modelling and applications in engineering. Some specific topics are: Cavitating and Multiphase Flow in hydroturbines, pumps, propellers etc. Numerical simulation techniques Cavitation and multiphase flow erosion and anti-erosion techniques Measurement techniques for cavitation and
A model for multiphase flows through poroelastic media
Ahmadi, Goodarz; Mazaheri, Ali Reza; Smith, D.H
2003-01-01
A continuum model for multiphase fluid mixture flows through poroelastic media is presented. The basic conservation laws developed via a volume averaging technique are considered. Effects of phasic equilibrated forces are included in the model. Based on the thermodynamics of the multiphase mixture flows, appropriate constitutive equations are formulated. The entropy inequality is exploited, and the method of Lagrangian multiplier is used along with the phasic conservation laws to derive the constitutive equations for the phasic stress tensors, equilibrated stress vectors, and the interactions terms. The special cases of wave propagation in poroelastic media saturated with multiphase fluids, and multiphase flows through porous media, are studied. It is shown that the present theory leads to the extended Darcy’s law and contains, as a special case, Biot’s theory of saturated poroelastic media.
NASA Astrophysics Data System (ADS)
Shao, H.; Huang, Y.; Kolditz, O.
2015-12-01
Multiphase flow problems are numerically difficult to solve, as it often contains nonlinear Phase transition phenomena A conventional technique is to introduce the complementarity constraints where fluid properties such as liquid saturations are confined within a physically reasonable range. Based on such constraints, the mathematical model can be reformulated into a system of nonlinear partial differential equations coupled with variational inequalities. They can be then numerically handled by optimization algorithms. In this work, two different approaches utilizing the complementarity constraints based on persistent primary variables formulation[4] are implemented and investigated. The first approach proposed by Marchand et.al[1] is using "local complementary constraints", i.e. coupling the constraints with the local constitutive equations. The second approach[2],[3] , namely the "global complementary constrains", applies the constraints globally with the mass conservation equation. We will discuss how these two approaches are applied to solve non-isothermal componential multiphase flow problem with the phase change phenomenon. Several benchmarks will be presented for investigating the overall numerical performance of different approaches. The advantages and disadvantages of different models will also be concluded. References[1] E.Marchand, T.Mueller and P.Knabner. Fully coupled generalized hybrid-mixed finite element approximation of two-phase two-component flow in porous media. Part I: formulation and properties of the mathematical model, Computational Geosciences 17(2): 431-442, (2013). [2] A. Lauser, C. Hager, R. Helmig, B. Wohlmuth. A new approach for phase transitions in miscible multi-phase flow in porous media. Water Resour., 34,(2011), 957-966. [3] J. Jaffré, and A. Sboui. Henry's Law and Gas Phase Disappearance. Transp. Porous Media. 82, (2010), 521-526. [4] A. Bourgeat, M. Jurak and F. Smaï. Two-phase partially miscible flow and transport modeling in
Development of Next Generation Multiphase Pipe Flow Prediction Tools
Cem Sarica; Holden Zhang
2006-05-31
The developments of oil and gas fields in deep waters (5000 ft and more) will become more common in the future. It is inevitable that production systems will operate under multiphase flow conditions (simultaneous flow of gas, oil and water possibly along with sand, hydrates, and waxes). Multiphase flow prediction tools are essential for every phase of hydrocarbon recovery from design to operation. Recovery from deep-waters poses special challenges and requires accurate multiphase flow predictive tools for several applications, including the design and diagnostics of the production systems, separation of phases in horizontal wells, and multiphase separation (topside, seabed or bottom-hole). It is crucial for any multiphase separation technique, either at topside, seabed or bottom-hole, to know inlet conditions such as flow rates, flow patterns, and volume fractions of gas, oil and water coming into the separation devices. Therefore, the development of a new generation of multiphase flow predictive tools is needed. The overall objective of the proposed study is to develop a unified model for gas-oil-water three-phase flow in wells, flow lines, and pipelines to predict flow characteristics such as flow patterns, phase distributions, and pressure gradient encountered during petroleum production at different flow conditions (pipe diameter and inclination, fluid properties and flow rates). In the current multiphase modeling approach, flow pattern and flow behavior (pressure gradient and phase fractions) prediction modeling are separated. Thus, different models based on different physics are employed, causing inaccuracies and discontinuities. Moreover, oil and water are treated as a pseudo single phase, ignoring the distinct characteristics of both oil and water, and often resulting in inaccurate design that leads to operational problems. In this study, a new model is being developed through a theoretical and experimental study employing a revolutionary approach. The
Viscous and gravitational fingering in multiphase compositional and compressible flow
NASA Astrophysics Data System (ADS)
Moortgat, Joachim
2016-03-01
Viscous and gravitational fingering refer to flow instabilities in porous media that are triggered by adverse mobility or density ratios, respectively. These instabilities have been studied extensively in the past for (1) single-phase flow (e.g., contaminant transport in groundwater, first-contact-miscible displacement of oil by gas in hydrocarbon production), and (2) multi-phase immiscible and incompressible flow (e.g., water-alternating-gas (WAG) injection in oil reservoirs). Fingering in multiphase compositional and compressible flow has received much less attention, perhaps due to its high computational complexity. However, many important subsurface processes involve multiple phases that exchange species. Examples are carbon sequestration in saline aquifers and enhanced oil recovery (EOR) by gas or WAG injection below the minimum miscibility pressure. In multiphase flow, relative permeabilities affect the mobility contrast for a given viscosity ratio. Phase behavior can also change local fluid properties, which can either enhance or mitigate viscous and gravitational instabilities. This work presents a detailed study of fingering behavior in compositional multiphase flow in two and three dimensions and considers the effects of (1) Fickian diffusion, (2) mechanical dispersion, (3) flow rates, (4) domain size and geometry, (5) formation heterogeneities, (6) gravity, and (7) relative permeabilities. Results show that fingering in compositional multiphase flow is profoundly different from miscible conditions and upscaling techniques used for the latter case are unlikely to be generalizable to the former.
Numerical modeling of non-isothermal gas flow and NAPL vapor transport in soil
NASA Astrophysics Data System (ADS)
Pártl, Ondřej; Beneš, Michal; Frolkovič, Peter; Illangasekare, Tissa; Smits, Kathleen
2016-05-01
We introduce a mathematical model for the description of non-isothermal compressible flow of gas mixtures in heterogeneous porous media and we derive an efficient semi-implicit time-stepping numerical scheme for the solution of the governing equations. We experimentally estimate the order of convergence of the scheme in spatial variables and we present several computational studies that demonstrate the ability of the numerical scheme.
System for measuring multiphase flow using multiple pressure differentials
Fincke, James R.
2003-01-01
An improved method and system for measuring a multi-phase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multi-phase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The system for determining the mass flow of the high void fraction fluid flow and the gas flow includes taking into account a pressure drop experienced by the gas phase due to work performed by the gas phase in accelerating the liquid phase.
NASA Astrophysics Data System (ADS)
Xing, F.; Masson, R.; Lopez, S.
2017-09-01
This paper introduces a new discrete fracture model accounting for non-isothermal compositional multiphase Darcy flows and complex networks of fractures with intersecting, immersed and non-immersed fractures. The so called hybrid-dimensional model using a 2D model in the fractures coupled with a 3D model in the matrix is first derived rigorously starting from the equi-dimensional matrix fracture model. Then, it is discretized using a fully implicit time integration combined with the Vertex Approximate Gradient (VAG) finite volume scheme which is adapted to polyhedral meshes and anisotropic heterogeneous media. The fully coupled systems are assembled and solved in parallel using the Single Program Multiple Data (SPMD) paradigm with one layer of ghost cells. This strategy allows for a local assembly of the discrete systems. An efficient preconditioner is implemented to solve the linear systems at each time step and each Newton type iteration of the simulation. The numerical efficiency of our approach is assessed on different meshes, fracture networks, and physical settings in terms of parallel scalability, nonlinear convergence and linear convergence.
Multiphase Flow Measurements by Full Stream Batch Sampling
NASA Astrophysics Data System (ADS)
Wang, Dong; Liang, Fa-Chun; Zhang, Xiu-Gang; Lin, Zong-Hu
2007-06-01
A new method of multiphase flow measurements that based on the "extracting and separating method" was proposed in this paper. An extraction flow (or sample) is diverted in a manner of time sharing or full stream batch sampling, then the sample is separated into single phase flows and metered with conventional flow meters, the total flow rates of each phase are determined according to the metered values and the extraction ratios. Because the full stream is conducted to the extraction loop during sampling, no matter what the flow regime of multiphase flow is, the extracted stream (or sample) is always the representative of the total stream and the extraction ratio can keep stable. Experiments were conducted in an air-water-oil flow test loop, the inside pipe diameter of the test loop was 50 mm, and the superficial gas velocity varied from 4.5 m/s ˜22m/s, the liquid superficial velocity was in the range of 0.02˜0.3m/s, the oil concentration was in the range of 0.0%˜60% by volume. The flow pattern occurring during the experiments included stratified flow, wave flow and annular flow. The experimental results shown that the full stream batch sample method is feasible to measure the multiphase flow rate, and the average error of flow rates measurements for each phase was less than 3.82%.
Development of predictive simulation capability for reactive multiphase flow
VanderHeyden, W.B.; Kendrick, B.K.
1998-12-31
This is the final report of a proposed three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project was terminated after the first year due to changes in funding priorities. The objective of the project was to develop a self-sustained research program for advanced computer simulation of industrial reactive multiphase flows. The prototype research problem was a three-phase alumina precipitator used in the Bayer process, a key step in aluminum refining. Accomplishments in the first year included the development of an improved reaction mechanism of the alumina precipitation growth process, the development of an efficient method for handling particle size distribution in multiphase flow simulation codes and finally the incorporation of precipitation growth and agglomeration kinetics in LANL`s CFDLIB multiphase flow code library.
Modelling of multiphase flow in evaporation tests in concrete columns
NASA Astrophysics Data System (ADS)
Chaparro, M. Carme; Saaltink, Maarten W.; Villar, M. Victoria
2013-04-01
In order to characterize better the thermo-hydraulic properties and processes in concrete from a Radioactive Waste Disposal Facility at El Cabril (Spain), evaporation tests in columns have been analysed by means of numerical models. The tests consisted of letting water evaporate from the top of the column while monitoring water loss by weighing the column, and monitoring temperature and relative humidity by means of sensors placed within the column. Both non-isothermal (by heating the column with a lamp) and isothermal tests (without heating) were performed. The conceptual model considers unsaturated liquid flow and transport of vapour and heat. Some models also take into account the salinity in order to study its effect on vapour pressure and evaporation. A retention curve has been obtained from relative humidity and gravimetric water content measured after dismantling the columns. The models have been calibrated by fitting permeability and a tortuosity factor for vapour diffusion to the measured water loss, relative humidity and (in the case of the non-isothermal test) temperature. Results show that vapour diffusion is dominant above an evaporation front, and liquid advection is the dominant water transport process underneath this front. The salinity slightly reduces the evaporation with a factor of at most 5%. The tortuosity factor estimated from the isothermal test is lower than that of the non-isothermal test. This can be explained by the evaporation and condensation together with the heat transport that take place at pore scale under non-isothermal conditions, which are not taken into account by the model.
Evaluation of Two Lattice Boltzmann Models for Multiphase Flows
NASA Astrophysics Data System (ADS)
Hou, Shuling; Shan, Xiaowen; Zou, Qisu; Doolen, Gary D.; Soll, Wendy E.
1997-12-01
Two lattice Boltzmann models for multiphase flows, the immiscible fluid model proposed by Rothman and Keller (R-K) and the multicomponent nonideal gas lattice Boltzmann model by Shan and Chen (S-C), are studied numerically to compare their abilities to simulate the physics of multiphase flows. The test problem is the simulation of a static bubble. Isotropy, strength of surface tension, thickness of the interface, spurious currents, Laplace's law, and steadiness of the bubble are examined. The results show that the S-C model is a major improvement over the R-K model.
Non-isothermal buoyancy-driven exchange flows in inclined pipes
NASA Astrophysics Data System (ADS)
Eslami, B.; Shariatnia, S.; Ghasemi, H.; Alba, K.
2017-06-01
We study non-isothermal buoyancy-driven exchange flow of two miscible Newtonian fluids in an inclined pipe experimentally. The heavy cold fluid is released into the light hot one in an adiabatic small-aspect-ratio pipe under the Boussinesq limit (small Atwood number). At a fixed temperature, the two fluids involved have the same viscosity. Excellent qualitative and quantitative agreement is first found against rather recent studies in literature on isothermal flows where the driving force of the flow comes from salinity as opposed to temperature difference. The degree of flow instability and mixing enhances as the pipe is progressively inclined towards vertical. Similar to the isothermal limit, maximal rate of the fluids interpenetration in the non-isothermal case occurs at an intermediate angle, β . The interpenetration rate increases with the temperature difference. The degree of fluids mixing and diffusivity is found to increase in the non-isothermal case compared to the isothermal one. There has also been observed a novel asymmetric behavior in the flow, never reported before in the isothermal limit. The cold finger appears to advance faster than the hot one. Backed by meticulously designed supplementary experiments, this asymmetric behavior is hypothetically associated with the wall contact and the formation of a warm less-viscous film of the fluid lubricating the cold more-viscous finger along the pipe. On the other side of the pipe, a cool more-viscous film forms decelerating the hot less-viscous finger. Double diffusive effects associated with the diffusion of heat and mass (salinity) are further investigated. In this case and for the same range of inclination angles and density differences, the level of flow asymmetry is found to decrease. The asymmetric behaviour of the flow is quantified over the full range of experiments. Similar to the study of Salort et al. ["Turbulent velocity profiles in a tilted heat pipe," Phys. Fluids 25(10), 105110
Numerical Methods and Simulations of Complex Multiphase Flows
NASA Astrophysics Data System (ADS)
Brady, Peter
Multiphase flows are an important part of many natural and technological phenomena such as ocean-air coupling (which is important for climate modeling) and the atomization of liquid fuel jets in combustion engines. The unique challenges of multiphase flow often make analytical solutions to the governing equations impossible and experimental investigations very difficult. Thus, high-fidelity numerical simulations can play a pivotal role in understanding these systems. This dissertation describes numerical methods developed for complex multiphase flows and the simulations performed using these methods. First, the issue of multiphase code verification is addressed. Code verification answers the question "Is this code solving the equations correctly?" The method of manufactured solutions (MMS) is a procedure for generating exact benchmark solutions which can test the most general capabilities of a code. The chief obstacle to applying MMS to multiphase flow lies in the discontinuous nature of the material properties at the interface. An extension of the MMS procedure to multiphase flow is presented, using an adaptive marching tetrahedron style algorithm to compute the source terms near the interface. Guidelines for the use of the MMS to help locate coding mistakes are also detailed. Three multiphase systems are then investigated: (1) the thermocapillary motion of three-dimensional and axisymmetric drops in a confined apparatus, (2) the flow of two immiscible fluids completely filling an enclosed cylinder and driven by the rotation of the bottom endwall, and (3) the atomization of a single drop subjected to a high shear turbulent flow. The systems are simulated numerically by solving the full multiphase Navier-Stokes equations coupled to the various equations of state and a level set interface tracking scheme based on the refined level set grid method. The codes have been parallelized using MPI in order to take advantage of today's very large parallel computational
Modeling the multiphase flow in a dense medium cyclone
Wang, B.; Chu, K.W.; Yu, A.B.; Vince, A.
2009-04-15
A mathematical model is proposed to describe the multiphase flow in a dense-medium cyclone (DMC). In this model, the volume of fluid multiphase model is first used to determine the shape and position of the air core, and then the mixture multiphase model is employed to describe the flow of the dense medium (comprising finely ground magnetite in water) and the air core, where the turbulence is described by the Reynolds stress model. The results of fluid flow are finally used in the simulation of coal particle flow described by the stochastic Lagrangian particle tracking model. The validity of the proposed approach is verified by the reasonably good agreement between the measured and predicted results under different conditions. The flow features in a DMC are then examined in terms of factors such as flow field, pressure drop, particle trajectories, and separation efficiency. The results are used to explain the key characteristics of flow in DMCs, such as the origin of a short-circuit flow, the flow pattern, and the motion of coal particles. Moreover, the so-called surging phenomenon is examined in relation to the instability of fluid flow. The model offers a convenient method to investigate the effects of variables related to geometrical and operational conditions on the performance of DMCs.
Forces on the solid constituent in a multiphase flow
Passman, S.L.
1986-10-01
I use a representation theorem of continuum mechanics, along with a systematic approximation, to establish an exact correspondence between the momentum interaction on the solid constituent in a multiphase flow, and the Stokes drag, the Faxen force, the Saffman lift, and the Ho and Leal lift on a particle in a viscous fluid.
Simulation of turbulent non-isothermal polydisperse bubbly flow behind a sudden tube expansion
NASA Astrophysics Data System (ADS)
Pakhomov, M. A.; Terekhov, V. I.
2016-09-01
The results of numerical simulation of the structure of non-isothermal polydisperse bubbly turbulent flow and heat transfer behind a sudden tube expansion are presented. The study was carried out at a change in the initial diameter of the air bubbles within d m1 = 1-5 mm and their volumetric void fraction β = 0-10 %. Small bubbles are available in almost the entire cross section of the tube, while the large bubbles pass mainly through the flow core. An increase in the size of dispersed phase causes the growth of turbulence in the liquid phase due to flow turbulization, when there is a separated flow of liquid past the large bubbles. Adding the air bubbles causes a significant reduction in the length of the separation zone and heat transfer enhancement, and these effects increase with increasing bubble size and their gas volumetric flow rate ratio.
Wettability control on multiphase flow in patterned microfluidics
NASA Astrophysics Data System (ADS)
Juanes, R.; Zhao, B.; MacMinn, C. W.
2016-12-01
Multiphase flow in porous media is important in many natural and industrial processes, including geologic CO2 sequestration, enhanced oil recovery, and water infiltration into soil. Although it is well known that the wetting properties of porous media can vary drastically depending on the type of media and pore fluids, the effect of wettability on multiphase flow continues to challenge our microscopic and macroscopic descriptions. Here, we study the impact of wettability on viscously unfavorable fluid-fluid displacement in disordered media by means of high-resolution imaging in microfluidic flow cells patterned with vertical posts. By systematically varying the wettability of the flow cell over a wide range of contact angles, we find that increasing the substrate's affinity to the injected fluid results in more efficient displacement of the defending fluid up to a critical wetting transition, beyond which the trend is reversed. We identify the pore-scale mechanisms—cooperative pore filling (increasing displacement efficiency) and corner flow (decreasing displacement efficiency)—responsible for this macroscale behavior, and show that they rely on the inherent 3D nature of interfacial flows, even in quasi-2D media. Our results demonstrate the powerful control of wettability on multiphase flow in porous media, and show that the markedly different invasion protocols that emerge—from pore-filling to post-bridging—are determined by physical mechanisms that are missing from current pore-scale and continuum-scale descriptions.
Wettability control on multiphase flow in patterned microfluidics
Zhao, Benzhong; Juanes, Ruben
2016-01-01
Multiphase flow in porous media is important in many natural and industrial processes, including geologic CO2 sequestration, enhanced oil recovery, and water infiltration into soil. Although it is well known that the wetting properties of porous media can vary drastically depending on the type of media and pore fluids, the effect of wettability on multiphase flow continues to challenge our microscopic and macroscopic descriptions. Here, we study the impact of wettability on viscously unfavorable fluid–fluid displacement in disordered media by means of high-resolution imaging in microfluidic flow cells patterned with vertical posts. By systematically varying the wettability of the flow cell over a wide range of contact angles, we find that increasing the substrate’s affinity to the invading fluid results in more efficient displacement of the defending fluid up to a critical wetting transition, beyond which the trend is reversed. We identify the pore-scale mechanisms—cooperative pore filling (increasing displacement efficiency) and corner flow (decreasing displacement efficiency)—responsible for this macroscale behavior, and show that they rely on the inherent 3D nature of interfacial flows, even in quasi-2D media. Our results demonstrate the powerful control of wettability on multiphase flow in porous media, and show that the markedly different invasion protocols that emerge—from pore filling to postbridging—are determined by physical mechanisms that are missing from current pore-scale and continuum-scale descriptions. PMID:27559089
Wettability control on multiphase flow in patterned microfluidics
NASA Astrophysics Data System (ADS)
Juanes, Ruben; Zhao, Benzhong; MacMinn, Christopher
2016-11-01
Multiphase flow in porous media is important in many natural and industrial processes, including geologic CO2 sequestration, enhanced oil recovery, and water infiltration into soil. Although it is well known that the wetting properties of porous media can vary drastically depending on the type of media and pore fluids, the effect of wettability on multiphase flow continues to challenge our microscopic and macroscopic descriptions. Here, we study the impact of wettability on viscously unfavorable fluid-fluid displacement in disordered media by means of high-resolution imaging in microfluidic flow cells patterned with vertical posts. By systematically varying the wettability of the flow cell over a wide range of contact angles, we find that increasing the substrate's affinity to the injected fluid results in more efficient displacement of the defending fluid up to a critical wetting transition, beyond which the trend is reversed. We identify the pore-scale mechanisms-cooperative pore filling (increasing displacement efficiency) and corner flow (decreasing displacement efficiency)-responsible for this macroscale behavior, and show that they rely on the inherent 3D nature of interfacial flows, even in quasi-2D media. Our results demonstrate the powerful control of wettability on multiphase flow in porous media, and show that the markedly different invasion protocols that emerge-from pore-filling to post-bridging-are determined by physical mechanisms that are missing from current pore-scale and continuum-scale descriptions.
On fluid flow in a heterogeneous medium under nonisothermal conditions
D.W., Vasco
2010-11-01
An asymptotic technique, valid in the presence of smoothly-varying heterogeneity, provides explicit expressions for the velocity of a propagating pressure and temperature disturbance. The governing equations contain nonlinear terms due to the presence of temperature-dependent coefficients and due to the advection of fluids with differing temperatures. Two cases give well-defined expressions in terms of the parameters of the porous medium: the uncoupled propagation of a pressure disturbance and the propagation of a fully coupled temperature and pressure disturbance. The velocity of the coupled disturbance or front, depends upon the medium parameters and upon the change in temperature and pressure across the front. For uncoupled flow, the semi-analytic expression for the front velocity reduces to that associated with a linear diffusion equation. A comparison of the asymptotic travel time estimates with calculations from a numerical simulator indicates reasonably good agreement for both uncoupled and coupled disturbances.
Multiphase Modeling of Flow, Transport, and Biodegradation in a Mesoscale Landfill Bioreactor
Oldenburg, Curtis M.; Borglin, Sharon E.; Hazen, Terry C.
2002-02-01
The need to control gas and leachate production and minimize refuse volume in municipal solid waste landfills has motivated the development of landfill simulation models to predict and design optimal treatment processes. We have developed a multiphase and multicomponent nonisothermal module called T2LBM for the three-dimensional TOUGH2 flow and transport simulator. T2LBM can be used to simulate aerobic or anaerobic biodegradation of municipal solid waste and the associated flow and transport of gas and liquid through the refuse mass. Acetic acid is used as a proxy for all biodegradable substrates in the refuse. T2LBM incorporates a Monod kinetic rate law for the biodegradation of acetic acid by either aerobic or anaerobic microbes as controlled by the local oxygen concentration. We have verified the model against published data, and applied it to our own mesoscale laboratory aerobic landfill bioreactor experiments. We observe spatial variability of flow and biodegradation consistent with permeability heterogeneity and the geometry of the radial grid. The model is capable of matching results of a shut-in test where the respiration of the system is measured over time.
The study of multiphase flow control during odor reproduction
NASA Astrophysics Data System (ADS)
Luo, Dehan; Yu, Hao; Fan, Danjun; He, Meiqiu
2014-04-01
Odor reproduction, is the use of the chemical composition of the basic components of odor recipe, according to a certain proportion, to control the flow of the various components, which make them sufficiently blended to achieve reproduction. In this paper, reproducing method is to find the corresponding liquid flavor, and then based on chemical flavor recipes, using flowmeters to control the chemical composition of the liquid flavor ratio. In the proportional control, the liquid chemical composition is very likely to be volatile, so that the proportional control is multiphase flow control. Measurement of the flow control will directly affect the odor reproducible results. Using electronic nose to obtain reproducible odor data, and then use pattern recognition algorithm to determine reproducible results. The experimental results can be achieved on the process of odor components multiphase flow proportional control parameter adjustment.
Shock driven multiphase flow with particle evaporation
NASA Astrophysics Data System (ADS)
Dahal, Jeevan; McFarland, Jacob
2016-11-01
The computational study of the shock driven instability of a multiphase system with particle evaporation is presented. The particle evaporation modifies the evolution of the interface due to the addition of the vapor phase to the gas. The effects can be quantitatively measured by studying various gas parameters like density, temperature, vorticity and particle properties like diameter and temperature. In addition, the size distribution of particles also modifies the development of instability as the larger size particles damp the evolution of interface in comparison to the smaller size particles. The simulation results are presented to study these effects using FLASH developed at the FLASH Center at the University of Chicago. The capabilities of FLASH for particle modeling were extended using the Particle in Cell (PIC) technique for coupling of mass, momentum, and energy between the particle and carrier gas. A seeded cylinder of gas with particles having either a single radius or a distribution of radii was studied. The enstrophy production and destruction mechanisms were explored to understand the reason for change in vorticity with particle size.
Applying uncertainty quantification to multiphase flow computational fluid dynamics
Gel, A; Garg, R; Tong, C; Shahnam, M; Guenther, C
2013-07-01
Multiphase computational fluid dynamics plays a major role in design and optimization of fossil fuel based reactors. There is a growing interest in accounting for the influence of uncertainties associated with physical systems to increase the reliability of computational simulation based engineering analysis. The U.S. Department of Energy's National Energy Technology Laboratory (NETL) has recently undertaken an initiative to characterize uncertainties associated with computer simulation of reacting multiphase flows encountered in energy producing systems such as a coal gasifier. The current work presents the preliminary results in applying non-intrusive parametric uncertainty quantification and propagation techniques with NETL's open-source multiphase computational fluid dynamics software MFIX. For this purpose an open-source uncertainty quantification toolkit, PSUADE developed at the Lawrence Livermore National Laboratory (LLNL) has been interfaced with MFIX software. In this study, the sources of uncertainty associated with numerical approximation and model form have been neglected, and only the model input parametric uncertainty with forward propagation has been investigated by constructing a surrogate model based on data-fitted response surface for a multiphase flow demonstration problem. Monte Carlo simulation was employed for forward propagation of the aleatory type input uncertainties. Several insights gained based on the outcome of these simulations are presented such as how inadequate characterization of uncertainties can affect the reliability of the prediction results. Also a global sensitivity study using Sobol' indices was performed to better understand the contribution of input parameters to the variability observed in response variable.
Development of Next Generation Multiphase Pipe Flow Prediction Tools
Tulsa Fluid Flow
2008-08-31
The developments of fields in deep waters (5000 ft and more) is a common occurrence. It is inevitable that production systems will operate under multiphase flow conditions (simultaneous flow of gas-oil-and water possibly along with sand, hydrates, and waxes). Multiphase flow prediction tools are essential for every phase of the hydrocarbon recovery from design to operation. The recovery from deep-waters poses special challenges and requires accurate multiphase flow predictive tools for several applications including the design and diagnostics of the production systems, separation of phases in horizontal wells, and multiphase separation (topside, seabed or bottom-hole). It is very crucial to any multiphase separation technique that is employed either at topside, seabed or bottom-hole to know inlet conditions such as the flow rates, flow patterns, and volume fractions of gas, oil and water coming into the separation devices. The overall objective was to develop a unified model for gas-oil-water three-phase flow in wells, flow lines, and pipelines to predict the flow characteristics such as flow patterns, phase distributions, and pressure gradient encountered during petroleum production at different flow conditions (pipe diameter and inclination, fluid properties and flow rates). The project was conducted in two periods. In Period 1 (four years), gas-oil-water flow in pipes were investigated to understand the fundamental physical mechanisms describing the interaction between the gas-oil-water phases under flowing conditions, and a unified model was developed utilizing a novel modeling approach. A gas-oil-water pipe flow database including field and laboratory data was formed in Period 2 (one year). The database was utilized in model performance demonstration. Period 1 primarily consisted of the development of a unified model and software to predict the gas-oil-water flow, and experimental studies of the gas-oil-water project, including flow behavior description and
Measurement Of Multiphase Flow Water Fraction And Water-cut
NASA Astrophysics Data System (ADS)
Xie, Cheng-gang
2007-06-01
This paper describes a microwave transmission multiphase flow water-cut meter that measures the amplitude attenuation and phase shift across a pipe diameter at multiple frequencies using cavity-backed antennas. The multiphase flow mixture permittivity and conductivity are derived from a unified microwave transmission model for both water- and oil-continuous flows over a wide water-conductivity range; this is far beyond the capability of microwave-resonance-based sensors currently on the market. The water fraction and water cut are derived from a three-component gas-oil-water mixing model using the mixture permittivity or the mixture conductivity and an independently measured mixture density. Water salinity variations caused, for example, by changing formation water or formation/injection water breakthrough can be detected and corrected using an online water-conductivity tracking technique based on the interpretation of the mixture permittivity and conductivity, simultaneously measured by a single-modality microwave sensor.
Direct Numerical Simulation of Disperse Multiphase High-Speed Flows
Nourgaliev, R R; Dinh, T N; Theofanous, T G; Koning, J M; Greenman, R M; Nakafuji, G T
2004-02-17
A recently introduced Level-Set-based Cartesian Grid (LSCG) Characteristics-Based Matching (CBM) method is applied for direct numerical simulation of shock-induced dispersal of solid material. The method incorporates the latest advancements in the level set technology and characteristics-based numerical methods for solution of hyperbolic conservation laws and boundary treatment. The LSCG/CBM provides unique capabilities to simulate complex fluid-solid (particulate) multiphase flows under high-speed flow conditions and taking into account particle-particle elastic and viscoelastic collisions. The particular emphasis of the present study is placed on importance of appropriate modeling of particle-particle collisions, which are demonstrated to crucially influence the global behavior of high-speed multiphase particulate flows. The results of computations reveal the richness and complexity of flow structures in compressible disperse systems, due to dynamic formation of shocks and contact discontinuities, which provide an additional long-range interaction mechanism in dispersed high-speed multiphase flows.
Multiphase flow in geometrically simple fracture intersections
Basagaoglu, H.; Meakin, P.; Green, C.T.; Mathew, M.; ,
2006-01-01
A two-dimensional lattice Boltzmann (LB) model with fluid-fluid and solid-fluid interaction potentials was used to study gravity-driven flow in geometrically simple fracture intersections. Simulated scenarios included fluid dripping from a fracture aperture, two-phase flow through intersecting fractures and thin-film flow on smooth and undulating solid surfaces. Qualitative comparisons with recently published experimental findings indicate that for these scenarios the LB model captured the underlying physics reasonably well.
Multiphase Flow: The Gravity of the Situation
NASA Technical Reports Server (NTRS)
Hewitt, Geoffrey F.
1996-01-01
A brief survey is presented of flow patterns in two-phase, gas-liquid flows at normal and microgravity, the differences between them being explored. It seems that the flow patterns in zero gravity are in general much simpler than those in normal gravity with only three main regimes (namely bubbly, slug and annular flows) being observed. Each of these three regimes is then reviewed, with particular reference to identification of areas of study where investigation of flows at microgravity might not only be interesting in themselves, but also throw light on mechanisms at normal earth gravity. In bubbly flow, the main area of interest seems to be that of bubble coalescence. In slug flow, the extension of simple displacement experiments to the zero gravity case would appear to be a useful option, supplemented by computational fluid dynamics (CFD) studies. For annular flow, the most interesting area appears to be the study of the mechanisms of disturbance waves; it should be possible to extend the region of investigation of the onset and behavior of these waves to much low gas velocities where measurements are clearly much easier.
Mixing and reactions in multiphase flow through porous media
NASA Astrophysics Data System (ADS)
Jimenez-Martinez, J.; Le Borgne, T.; Meheust, Y.; Porter, M. L.; De Anna, P.; Hyman, J.; Tabuteau, H.; Turuban, R.; Carey, J. W.; Viswanathan, H. S.
2016-12-01
The understanding and quantification of flow and transport processes in multiphase systems remains a grand scientific and engineering challenge in natural and industrial systems (e.g., soils and vadose zone, CO2 sequestration, unconventional oil and gas extraction, enhanced oil recovery). Beyond the kinetic of the chemical reactions, mixing processes in porous media play a key role in controlling both fluid-fluid and fluid-solid reactions. However, conventional continuum-scale models and theories oversimplify and/or ignore many important pore-scale processes. Multiphase flows, with the creation of highly heterogeneous fluid velocity fields (i.e., low velocities regions or stagnation zones, and high velocity regions or preferential paths), makes conservative and reactive transport more complex. We present recent multi-scale experimental developments and theoretical approaches to quantify transport, mixing, and reaction and their coupling with multiphase flows. We discuss our main findings: i) the sustained concentration gradients and enhanced reactivity in a two-phase system for a continuous injection, and the comparison with a pulse line injection; ii) the enhanced mixing by a third mobile-immiscible phase; and iii) the role that capillary forces play in the localization of the fluid-solid reactions. These experimental results are for highly-idealized geometries, however, the proposed models are related to basic porous media and unsaturated flow properties, and could be tested on more complex systems.
A Virtual Reality Technique for Multi-phase Flows
NASA Astrophysics Data System (ADS)
Loth, Eric; Sherman, William; Auman, Aric; Navarro, Christopher
2004-04-01
A virtual reality (VR) technique has been developed to allow user immersion (stereo-graphic rendering, user tracking and object interactivity) in generic unsteady three-dimensional multi-phase flow data sets. This article describes the structure and logic used to design and construct a VR technique that employs a multi-phase flow-field computed a priori as an input (i.e. simulations are conducted beforehand with a researcher's multi-phase CFD code). The input field for this flow visualization is divided into two parts: the Eulerian three-dimensional grid nodes and velocities for the continuous fluid properties (specified using conventional TECLOT data format) and the Lagrangian time-history trajectory files for the dispersed fluid. While tracking the dispersed phase trajectories as animated spheres of adjustable size and number, the continuous-phase flow can be simultaneously rendered with velocity vectors, iso-contour surfaces and planar flood-contour maps of different variables. The geometric and notional view of the combined visualization of both phases is interactively controlled throughout a user session. The resulting technique is demonstrated with a 3-D unsteady data set of Lagrangian particles dispersing in a Eulerian description of a turbulent boundary layer, stemming from a direct numerical simulation of the Navier-Stokes equations.
Multiphase Flow Modeling of Biofuel Production Processes
D. Gaston; D. P. Guillen; J. Tester
2011-06-01
As part of the Idaho National Laboratory's (INL's) Secure Energy Initiative, the INL is performing research in areas that are vital to ensuring clean, secure energy supplies for the future. The INL Hybrid Energy Systems Testing (HYTEST) Laboratory is being established to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. HYTEST involves producing liquid fuels in a Hybrid Energy System (HES) by integrating carbon-based (i.e., bio-mass, oil-shale, etc.) with non-carbon based energy sources (i.e., wind energy, hydro, geothermal, nuclear, etc.). Advances in process development, control and modeling are the unifying vision for HES. This paper describes new modeling tools and methodologies to simulate advanced energy processes. Needs are emerging that require advanced computational modeling of multiphase reacting systems in the energy arena, driven by the 2007 Energy Independence and Security Act, which requires production of 36 billion gal/yr of biofuels by 2022, with 21 billion gal of this as advanced biofuels. Advanced biofuels derived from microalgal biomass have the potential to help achieve the 21 billion gal mandate, as well as reduce greenhouse gas emissions. Production of biofuels from microalgae is receiving considerable interest due to their potentially high oil yields (around 600 gal/acre). Microalgae have a high lipid content (up to 50%) and grow 10 to 100 times faster than terrestrial plants. The use of environmentally friendly alternatives to solvents and reagents commonly employed in reaction and phase separation processes is being explored. This is accomplished through the use of hydrothermal technologies, which are chemical and physical transformations in high-temperature (200-600 C), high-pressure (5-40 MPa) liquid or supercritical water. Figure 1 shows a simplified diagram of the production of biofuels from algae. Hydrothermal processing has significant
Multiphase Flow and Cavern Abandonment in Salt
Ehgartner, Brian; Tidwell, Vince
2001-02-13
This report will explore the hypothesis that an underground cavity in gassy salt will eventually be gas filled as is observed on a small scale in some naturally occurring salt inclusions. First, a summary is presented on what is known about gas occurrences, flow mechanisms, and cavern behavior after abandonment. Then, background information is synthesized into theory on how gas can fill a cavern and simultaneously displace cavern fluids into the surrounding salt. Lastly, two-phase (gas and brine) flow visualization experiments are presented that demonstrate some of the associated flow mechanisms and support the theory and hypothesis that a cavity in salt can become gas filled after plugging and abandonment
Rarefied gas flow in a rectangular enclosure induced by non-isothermal walls
Vargas, Manuel; Tatsios, Giorgos; Valougeorgis, Dimitris; Stefanov, Stefan
2014-05-15
The flow of a rarefied gas in a rectangular enclosure due to the non-isothermal walls with no synergetic contributions from external force fields is investigated. The top and bottom walls are maintained at constant but different temperatures and along the lateral walls a linear temperature profile is assumed. Modeling is based on the direct numerical solution of the Shakhov kinetic equation and the Direct Simulation Monte Carlo (DSMC) method. Solving the problem both deterministically and stochastically allows a systematic comparison and verification of the results as well as the exploitation of the numerical advantages of each approach in the investigation of the involved flow and heat transfer phenomena. The thermally induced flow is simulated in terms of three dimensionless parameters characterizing the problem, namely, the reference Knudsen number, the temperature ratio of the bottom over the top plates, and the enclosure aspect ratio. Their effect on the flow configuration and bulk quantities is thoroughly examined. Along the side walls, the gas flows at small Knudsen numbers from cold-to-hot, while as the Knudsen number is increased the gas flows from hot-to-cold and the thermally induced flow configuration becomes more complex. These flow patterns with the hot-to-cold flow to be extended to the whole length of the non-isothermal side walls may exist even at small temperature differences and then, they are enhanced as the temperature difference between the top and bottom plates is increased. The cavity aspect ratio also influences this flow configuration and the hot-to-cold flow is becoming more dominant as the depth compared to the width of the cavity is increased. To further analyze the flow patterns a novel solution decomposition into ballistic and collision parts is introduced. This is achieved by accordingly modifying the indexing process of the typical DSMC algorithm. The contribution of each part of the solution is separately examined and a physical
Multiphase flow in fractured porous media
Firoozabadi, A.
1995-02-01
The major goal of this research project was to improve the understanding of the gas-oil two-phase flow in fractured porous media. In addition, miscible displacement was studied to evaluate its promise for enhanced recovery.
Experimental and numerical investigation of multiphase flow in disordered media
NASA Astrophysics Data System (ADS)
Riaz, Amir; Tchelepi, Hamdi; Cinar, Yildiray
2008-11-01
We present laboratory scale experiments and network simulations to investigate the influence of capillary, gravitational and viscous forces on multiphase flow in disordered microscopic media. Two-dimensional experiments, which are performed in a vertical glass bead pack to understand microscopic behavior, demonstrate the existence of small scale instability that is analyzed with the theory of invasion percolation. Numerical simulations based on pore networks are carried out to help investigate the possibility of developing effective conservation laws at the macroscopic scale.
Numerical modeling of multiphase flow in rough and propped fractures
NASA Astrophysics Data System (ADS)
Dabrowski, Marcin; Dzikowski, Michał; Jasinski, Lukasz; Olkiewicz, Piotr
2017-04-01
crystalline rocks. The detailed pattern of flow paths and effective fracture conductivity are largely dependent on the level of confining stresses and fracture wall roughness, which both determine the shape and distribution of fracture apertures and contact areas. The distribution of proppant grains, which are used to maintain apertures of hydraulic fractures, is a key factor governing fracture flow in industrial applications. The flow of multiphase fluids in narrow apertures of rock fractures may substantially differ from the flow of a single-phase fluid. For example, multiphase flow effects play an important role during all stages of unconventional reservoir life cycle. Multiphase flow conditions are also expected to prevail in high temperature geothermal fields and during the transport of non aqueous phase liquid contaminants in groundwaters. We use direct numerical simulations to study single- and multiphase flow in rough and propped fractures. We compute the fluid flow using either the finite element or the lattice Boltzmann method. Body-fitting, unstructured computational meshes are used to improve the numerical accuracy. The fluid-fluid and fluid-solid interfaces are directly resolved and an implicit approach to surface tension is used to alleviate restrictions due to capillary CFL condition. In FEM simulations, the Beltrami-Laplace operator is integrated by parts to avoid interface curvature computation during evaluation of the surface tension term. We derive and validate an upscaled approach to Stokes flow in propped and rough fractures. Our upscaled 2.5D fracture flow model features a Brinkman term and is capable of treating no-slip boundary conditions on the rims of proppant grains and fracture wall contact areas. The Stokes-Brinkman fracture flow model provides an improvement over the Reynolds model, both in terms of the effective fracture permeability and the local flow pattern. We present numerical and analytical models for the propped fracture
Advanced material distribution measurement in multiphase flows: A case study
George, D.L.; Ceccio, S.L.; O`Hern, T.J.; Shollenberger, K.A.; Torczynski, J.R.
1998-08-01
A variety of tomographic techniques that have been applied to multiphase flows are described. The methods discussed include electrical impedance tomography (EIT), magnetic resonance imaging (MRI), positron emission tomography (PET), gamma-densitometry tomography (GDT), radiative particle tracking (RDT), X-ray imaging, and acoustic tomography. Also presented is a case study in which measurements were made with EIT and GDT in two-phase flows. Both solid-liquid and gas-liquid flows were examined. EIT and GDT were applied independently to predict mean and spatially resolved phase volume fractions. The results from the two systems compared well.
Multiphase flow modeling in centrifugal partition chromatography.
Adelmann, S; Schwienheer, C; Schembecker, G
2011-09-09
The separation efficiency in Centrifugal Partition Chromatography (CPC) depends on selection of a suitable biphasic solvent system (distribution ratio, selectivity factor, sample solubility) and is influenced by hydrodynamics in the chambers. Especially the stationary phase retention, the interfacial area for mass transfer and the flow pattern (backmixing) are important parameters. Their relationship with physical properties, operating parameters and chamber geometry is not completely understood and predictions are hardly possible. Experimental flow visualization is expensive and two-dimensional only. Therefore we simulated the flow pattern using a volume-of-fluid (VOF) method, which was implemented in OpenFOAM®. For the three-dimensional simulation of a rotating FCPC®-chamber, gravitational centrifugal and Coriolis forces were added to the conservation equation. For experimental validation the flow pattern of different solvent systems was visualized with an optical measurement system. The amount of mobile phase in a chamber was calculated from gray scale values of videos recorded by an image processing routine in ImageJ®. To visualize the flow of the stationary phase polyethylene particles were used to perform a qualitative particle image velocimetry (PIV) analysis. We found a good agreement between flow patterns and velocity profiles of experiments and simulations. By using the model we found that increasing the chamber depth leads to higher specific interfacial area. Additionally a circular flow in the stationary phase was identified that lowers the interfacial area because it pushes the jet of mobile phase to the chamber wall. The Coriolis force alone gives the impulse for this behavior. As a result the model is easier to handle than experiments and allows 3D prediction of hydrodynamics in the chamber. Additionally it can be used for optimizing geometry and operating parameters for given physical properties of solvent systems. Copyright © 2011 Elsevier B
A 3-D nonisothermal flow simulation and pulling force model for injection pultrusion processes
NASA Astrophysics Data System (ADS)
Mustafa, Ibrahim
1998-12-01
Injected Pultrusion (IP) is an efficient way of producing high quality, low cost, high volume and constant cross-section polymeric composites. This process has been developed recently, and the efforts to optimize it are still underway. This work is related to the development of a 3-D non-isothermal flow model for the IP processes. The governing equations for transport of mass, momentum and, energy are formulated by using a local volume averaging approach, and the Finite Element/Control Volume method is used to solve the system of equations numerically. The chemical species balance equation is solved in the Lagrangian frame of reference whereas the energy equation is solved using Galerkin, SU (Streamline Upwind), and SUPG (Streamline Upwind Petrov Galerkin) approaches. By varying degrees of freedom and the flow rates of the resin, it is shown that at high Peclet numbers the SUPG formulation performs better than the SU and the Galerkin methods in all cases. The 3-D model predictions for degree of cure and temperature are compared with a one dimensional analytical solution and the results are found satisfactory. Moreover, by varying the Brinkman Number, it is shown that the effect of viscous dissipation is insignificant. The 3-D flow simulations have been carried out for both thin and thick parts and the results are compared with the 2-D model. It is shown that for thick parts 2-D simulations render erroneous results. The effect of changing permeability on the flow fronts is also addressed. The effect of increasing taper angle on the model prediction is also investigated. A parametric study is conducted to isolate optimum conditions for both isothermal and non-isothermal cases using a straight rectangular die and a die with a tapered inlet. Finally, a simple pulling force model is developed and the pulling force required to pull the carbon-epoxy fiber resin system is estimated for dies of varying tapered inlet.
APPROXIMATE MULTIPHASE FLOW MODELING BY CHARACTERISTIC METHODS
The flow of petroleum hydrocarbons, organic solvents and other liquids that are immiscible with water presents the nation with some of the most difficult subsurface remediation problems. One aspect of contaminant transport associated releases of such liquids is the transport as a...
Vorticity generation in compressible multiphase flows
NASA Astrophysics Data System (ADS)
Ballil, A.; Nowakowski, A. F.; Jolgam, S.; Nicolleau, F. C. G. A.
2014-08-01
The simulations of flows in inhomogeneous media of various physical regimes leading to shock-bubble interactions were performed using a developed numerical code based on a multi-component flow model. The numerical method which considers interfaces represented by contact discontinuities as numerically diffused zones, has been applied to simulate compressible two-phase flows. The approach takes advantage of the inherent numerical diffusion present in solutions. The mathematical formulation of the presented method is obtained after an averaging process of the single phase Navier-Stokes equations and contains the non-conservative equations and non-conservative terms that exist in the model to fulfill the interface condition. The finite volume Godunov-type computational technique, equipped with an approximate Riemann solver for calculating fluxes, is applied to simulate flows in two space dimensions. The approach accounts for pressure non-equilibrium. It resolves interfaces separating compressible fluids and captures the baroclinic source of vorticity generation. A numerically challenging shock bubble interaction problem is investigated to evaluate the effect of the Atwood number and shock wave intensity (various Mach numbers) on the interface evolution and vorticity generation.
APPROXIMATE MULTIPHASE FLOW MODELING BY CHARACTERISTIC METHODS
The flow of petroleum hydrocarbons, organic solvents and other liquids that are immiscible with water presents the nation with some of the most difficult subsurface remediation problems. One aspect of contaminant transport associated releases of such liquids is the transport as a...
Impact of normal stress on multiphase flow through rough fractures
NASA Astrophysics Data System (ADS)
Alves da Silva Junior, J.; Kang, P. K.; Yang, Z.; Cueto-Felgueroso, L.; Juanes, R.
2015-12-01
Fluid flow and transport through geologic fractures plays a key role in several areas such as groundwater hydrology, geothermal energy, oil and gas production, CO2 sequestration and nuclear waste disposal. High-permeability zones associated with fracture corridors often serve as fast fluid conduits for both single and multiphase flow in otherwise low-permeability media. When multiphase flow occurs, the presence of one phase interferes with the flow of the other phase, resulting in complex displacement patterns through the fracture, and macroscopic descriptors (such as fracture-scale capillary pressure and relative permeability) that depend on the phase concentration of both phases. Here, we investigate the impact of normal stress on single and multiphase flow through rough-walled fractures: (1) we generate synthetic aperture fields that honor the fractal roughness structure observed in real fractures; (2) we model the effect of normal stress on the fracture aperture geometry by solving the contact problem between fracture walls; and (3) we use invasion percolation with trapping to model immiscible fluid displacement and then compute relative permeability numerically for each stress scenario. Our results indicate that normal stress increases the amount of contact area in the fracture wall, which results in an increase of the tortuosity of the available path for fluid displacement. Increasing normal stress results in low relative permeability for the wetting phase due to a decrease of the available path for fluid flow, and therefore a small amount of non-wetting fluid has a large impact on the flow of the wetting fluid. We find that the relative permeability of the non-wetting fluid shows less variation with stress than the wetting fluid, and that both fluids exhibit strong phase interference at intermediate saturations. Finally, we show early results from our experimental work currently underway to validate the modeling results.
Multiphase Flow with Interphase eXchanges
Syamlal, Madhava; Rogers, William; O'Brien, Thomas J.
1995-03-01
MFIX is a general-purpose hydrodynamic model that describes chemical reactions and heat transfer in dense or dilute fluid-solids flows, flows typically occurring in energy conversion and chemical processing reactors. With such information, the engineer can visualize the conditions in the reactor, conduct parametric studies and what-if experiments, and, thereby, assist in the design process. MFIX has the following modeling capabilities: mass and momentum balance equations for gas and multiple solids phases; a gas phase and two solids phase energy equation; an arbitrary number of species balance equations for each of the phases; granular stress equations based on kinetic theory and frictional flow theory; a user-defined chemistry subroutine; three-dimensional Cartesin or cylindrical coordinate systems; nonuniform mesh size; impermeable and semi-permeable internal surfaces; user-friendly input data file; multiple, single-precision, binary direct-access output files that minimize disk storage and accelerate data retrieval; extensive error reporting; post-processors for creating animations and for extracting and manipulating output data.
Infrared Measurements of Multiphase Flow Phenomena
NASA Astrophysics Data System (ADS)
Kim, Jungho; Kim, Tae Hoon; Kommer, Eric; Dessiatoun, Serguei
2011-11-01
Understanding of phase change heat transfer mechanisms remains elusive due its sensitivity to many variables, but also due to the lack of reliable local information that can enable models to be tested. Although point measurements of variables such as local film thickness and heat transfer have been made, techniques whereby these quantities can be measured over the large areas have been lacking. IR thermometry is an established technology that can be used where optical access to the surface is available in the wavelength of interest. The use of IR measurements is demonstrated in this work to measure the inner and outer wall temperatures of an electrically heated silicon tube during flow boiling of FC-72. The electrical conductivity of silicon can be varied over a broad range by controlling the dopant concentration. Since silicon is largely transparent to IR radiation, the temperature of the inner and outer walls can be measured by coating selected areas with IR opaque thin films. FC-72 is also partially transparent to IR radiation over a broad range of wavelengths, allowing the flow to be visualized. Details of the proposed technique, test apparatus, data reduction, and model development are presented. This work was sponsored by NASA HQ Grant NNX09AK39A.
Laser velocimeter measurements of solids in multiphase flow
NASA Astrophysics Data System (ADS)
Kadambi, J. R.
Preliminary tests were conducted using water as the fluid in the refractive index matched multiphase flow loop. A Laser Doppler Velocimeter was used for measuring the fluid velocity along a horizontal diameter located 17 feet downstream of the pump. The tests were conducted in the Reynolds number range of 1000 to 3000. In addition to LDV velocity measurements, pressure drops as well as flow rates were also measured. Representative velocity profiles and pressure drop data are presented. The test loop was then filled with the refractive index matched fluid, 55 percent (by weight) sodium iodide solution in water. The velocity profile for a representative data point and pressure drop data is shown.
Numerical Simulation of Multiphase Flow in Solid Rocket Motors
NASA Astrophysics Data System (ADS)
Attili, A.; Favini, B.; Di Giacinto, M.; Serraglia, F.
2009-01-01
In the paper a general mathematical description of the flow in the internal chamber of solid rocket motors is presented. The formulation adopted take into account the multi-species and multiphase, reactive, multidimensional characteristics of the flow. The grain combustion is described by a pressure dependent law; aluminum droplet are modelled by a Lagrangian approach, coupled with the Eulerian formulation adopted for the gas phase. The mathematical model has been implemented in a simulation code and several simulations have been performed; in particular in the paper the re- sults for two geometries are described: a simple cylindrical port-area rocket and the Zefiro 9 SRM.
Preconditioning methods for ideal and multiphase fluid flows
NASA Astrophysics Data System (ADS)
Gupta, Ashish
The objective of this study is to develop a preconditioning method for ideal and multiphase multispecies compressible fluid flow solver using homogeneous equilibrium mixture model. The mathematical model for fluid flow going through phase change uses density and temperature in the formulation, where the density represents the multiphase mixture density. The change of phase of the fluid is then explicitly determined using the equation of state of the fluid, which only requires temperature and mixture density. The method developed is based on a finite-volume framework in which the numerical fluxes are computed using Roe's approximate Riemann solver and the modified Harten, Lax and Van-leer scheme (HLLC). All speed Roe and HLLC flux based schemes have been developed either by using preconditioning or by directly modifying dissipation to reduce the effect of acoustic speed in its numerical dissipation when Mach number decreases. Preconditioning proposed by Briley, Taylor and Whitfield, Eriksson and Turkel are studied in this research, where as low dissipation schemes proposed by Rieper and Thornber, Mosedale, Drikakis, Youngs and Williams are also considered. Various preconditioners are evaluated in terms of development, performance, accuracy and limitations in simulations at various Mach numbers. A generalized preconditioner is derived which possesses well conditioned eigensystem for multiphase multispecies flow simulations. Validation and verification of the solution procedure are carried out on several small model problems with comparison to experimental, theoretical, and other numerical results. Preconditioning methods are evaluated using three basic geometries; 1) bump in a channel 2) flow over a NACA0012 airfoil and 3) flow over a cylinder, which are then compared with theoretical and numerical results. Multiphase capabilities of the solver are evaluated in cryogenic and non-cryogenic conditions. For cryogenic conditions the solver is evaluated by predicting
MHD forced convection flow adjacent to a non-isothermal wedge
Yih, K.A.
1999-08-01
The problem of magnetohydrodynamic (MHD) incompressible viscous flow has many important engineering applications in devices such as MHD power generator and the cooling of reactors. In this analysis, the effects of viscous dissipation and stress work on the MHD forced convection adjacent to a non-isothermal wedge is numerically analyzed. These partial differential equations are transformed into the nonsimilar boundary layer equations and solved by the Keller box method. Numerical results for the local friction coefficient and the local Nusselt number are presented for the pressure gradient parameter m, the magnetic parameter {xi}, the Prandtl number Pr, and the Eckert number Ec. In general, increasing the pressure gradient parameter m or the magnetic parameter {xi} or the Prandtl number Pr or decreasing the Eckert number EC increases the local Nusselt number.
Efficient difference schemes for the three-phase non-isothermal flow problem
NASA Astrophysics Data System (ADS)
Zhumagulov, Bakytzhan; Temirbekov, Nurlan; Baigereyev, Dossan
2017-09-01
The paper focuses on constructing and investigation of cost-effective difference schemes for the numerical solution of the two-dimensional three-phase non-isothermal flow problem without capillary and gravitational forces. In this paper, the finite difference method is used to solve the problem numerically. The method of energy inequalities is applied to examine the stability of the finite difference scheme with respect to the initial data and the right-hand sides of the equations. Three cost-effective difference schemes are constructed on the base of the studied scheme. The efficiency of the proposed algorithms is analyzed on the basis of comparing the average time spent on the numerical implementation of one time layer.
Numerical solution of non-isothermal non-adiabatic flow of real gases in pipelines
NASA Astrophysics Data System (ADS)
Bermúdez, Alfredo; López, Xián; Vázquez-Cendón, M. Elena
2016-10-01
A finite volume scheme for the numerical solution of a mathematical model for non-isothermal non-adiabatic compressible flow of a real gas in a pipeline is introduced. In order to make an upwind discretization of the flux, the Q-scheme of van Leer is used. Unlike standard Euler equations, the model takes into account wall friction, variable height and heat transfer between the pipe and the environment. Since all these terms are sources, in order to get a well-balanced scheme they are discretized by making a similar upwinding to the one in the flux term. The performance of the overall method has been shown for some usual numerical tests. The final goal, which is beyond the scope of this paper, is to consider a network including several pipelines connected at junctions, as those employed for natural gas transport.
Investigation on Online Multiphase Flow Meter in oilfield Based on Open Channel Flow
NASA Astrophysics Data System (ADS)
Meng, L. Y.; Wang, W. C.; Li, Y. X.; Zhang, J.; Dong, S. P.
2010-03-01
Flow metering of multiphase pipeline is an urgently problem needed to be solved in oilfield producing in China. Based on the principle of multiphase oil and gas flow in the open channel, four liquid metering models(Falling Model I, Falling Model II, Open Channel Model and Element Resistance Model) and one gas model were obtained to calculate the gas and liquid flow rate, in which the water cut was measured by the differential pressure. And then a new type of multiphase meter system was developed based on these models and neural networks were developed to improve the estimating results of gas and liquid flow rate with the new metering system. At last a lot of experiments of multiphase metering were finished in lab and field. According to the experiments, the results of the metering system show that the liquid flow rate error was no more than 10%, and gas flow rate error was no more than 15%, which can meet the demand of the field flow rate measurement. Furthermore the relationship between liquid and gas flow rate and characteristic signals was found out through the experiments so as to deepening the study on multiphase flow metering technology.
Interface effects on multiphase flows in porous media
Zhang, Duan Z
2008-01-01
Most models for multiphase flows in a porous medium are based on the straightforward extension of Darcy's law, in which each fluid phase is driven by its own pressure gradient. The pressure difference between the phases is thought to be an effect of surface tension and is called capillary pressure. Independent of Darcy's law, for liquid imbibition processes in a porous material, diffusion models are sometime used. In this paper, an ensemble phase averaging technique for continuous multi phase flows is applied to derive averaged equations and to examine the validity of the commonly used models. The closure for the averaged equations is quite complicated for general multiphase flows in a porous material. For flows with a small ratio of the characteristic length of the phase interfaces to the macroscopic length, the closure relations can be simplified significantly by an approximation with a second order error in the length ratio. The approximation reveals the information of the length scale separation obscured during the ensemble averaging process, and leads to an equation system similar to Darcy's law, but with additional terms. Based on interactions on phase interfaces, relations among closure quantities are studied.
Intrusive Method for Uncertainty Quantification in a Multiphase Flow Solver
NASA Astrophysics Data System (ADS)
Turnquist, Brian; Owkes, Mark
2016-11-01
Uncertainty quantification (UQ) is a necessary, interesting, and often neglected aspect of fluid flow simulations. To determine the significance of uncertain initial and boundary conditions, a multiphase flow solver is being created which extends a single phase, intrusive, polynomial chaos scheme into multiphase flows. Reliably estimating the impact of input uncertainty on design criteria can help identify and minimize unwanted variability in critical areas, and has the potential to help advance knowledge in atomizing jets, jet engines, pharmaceuticals, and food processing. Use of an intrusive polynomial chaos method has been shown to significantly reduce computational cost over non-intrusive collocation methods such as Monte-Carlo. This method requires transforming the model equations into a weak form through substitution of stochastic (random) variables. Ultimately, the model deploys a stochastic Navier Stokes equation, a stochastic conservative level set approach including reinitialization, as well as stochastic normals and curvature. By implementing these approaches together in one framework, basic problems may be investigated which shed light on model expansion, uncertainty theory, and fluid flow in general. NSF Grant Number 1511325.
Experimental research of multiphase flow with cavitation in the nozzle
NASA Astrophysics Data System (ADS)
Kozubkova, Milada; Bojko, Marian; Jablonska, Jana; Homa, Dorota; Tůma, Jiří
2016-03-01
The paper deals with the problems of cavitation in water flow in the nozzle. The area of research is divided into two directions (experimental and numerical research). During the experimental research the equipment with the nozzle is under the measurement and basic physical quantities such as pressure and volume flow rate are recorded. In the following phase measuring of noise which is generated during flow through the nozzle in the area of cavitation is measured at various operating conditions of the pump. In the second part the appropriate multiphase mathematical model including the consideration of cavitation is defined. Boundary conditions for numerical simulation are defined on the basis of experimental measurements. Undissolved air in the flow is taken into account to obtain pressure distribution in accordance to measured one. Results of the numerical simulation are presented by means of basic current quantities such as pressure, velocity and volume fractions of each phase. The conclusions obtained from experimental research of cavitation were applied to modify the multiphase mathematical model.
Edited by Guenther, Chris; Garg, Rahul
2013-08-19
The Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) sponsored a workshop on non-Newtonian multiphase slurry at NETL’s Morgantown campus August 19 and 20, 2013. The objective of this special two-day meeting of 20-30 invited experts from industry, National Labs and academia was to identify and address technical issues associated with handling non-Newtonian multiphase slurries across various facilities managed by DOE. Particular emphasis during this workshop was placed on applications managed by the Office of Environmental Management (EM). The workshop was preceded by two webinars wherein personnel from ORP and NETL provided background information on the Hanford WTP project and discussed the critical design challenges facing this project. In non-Newtonian fluids, viscosity is not constant and exhibits a complex dependence on applied shear stress or deformation. Many applications under EM’s tank farm mission involve non-Newtonian slurries that are multiphase in nature; tank farm storage and handling, slurry transport, and mixing all involve multiphase flow dynamics, which require an improved understanding of the mechanisms responsible for rheological changes in non-Newtonian multiphase slurries (NNMS). To discuss the issues in predicting the behavior of NNMS, the workshop focused on two topic areas: (1) State-of-the-art in non-Newtonian Multiphase Slurry Flow, and (2) Scaling up with Confidence and Ensuring Safe and Reliable Long-Term Operation.
Application of microwave reflectometry to disordered petroleum multiphase flow study
NASA Astrophysics Data System (ADS)
Jannier, B.; Dubrunfaut, O.; Ossart, F.
2013-02-01
Microwave reflectometry is applied to multiphase flow metering in the context of oil extraction. Our sensor consists of two open-ended coaxial probes operating at complementary frequencies (at 600 MHz and around 36 GHz) and was designed to resist harsh field conditions. This paper presents and comments on results obtained in realistic dynamic conditions, on a triphasic flow loop (water-oil-gas). The main conclusions are the following: Bruggeman-Hanai's mixing rule applies to natural emulsions and can be used to determine the composition of the water-oil liquid phase; results obtained for annular flows are very sensitive to small perturbations such as bubbles or waves at the liquid-gas interface; in the case of triphasic slug flows, the composition of the liquid phase can be estimated by proper filtering of the data.
Direct Numerical Simulation of Multiphase Flows with Unstable Interfaces
NASA Astrophysics Data System (ADS)
Schillaci, Eugenio; Lehmkuhl, Oriol; Antepara, Oscar; Oliva, Assensi
2016-09-01
This paper presents a numerical model that intends to simulate efficiently the surface instability that arise in multiphase flows, typically liquid-gas, both for laminar or turbulent regimes. The model is developed on the in-house computing platform TermoFluids, and operates the finite-volume, direct numerical simulation (DNS) of multiphase flows by means of a conservative level-set method for the interface-capturing. The mesh size is optimized by means of an adaptive mesh refinement (AMR) strategy, that allows the dynamic re-concentration of the mesh in the vicinity of the interfaces between fluids, in order to correctly represent the diverse structures (as ligaments and droplets) that may rise from unstable phenomena. In addition, special attention is given to the discretization of the various terms of the momentum equations, to ensure stability of the flow and correct representation of turbulent vortices. As shown, the method is capable of truthfully simulate the interface phenomena as the Kelvin-Helmholtz instability and the Plateau-Rayleigh instability, both in the case of 2-D and 3-D configurations. Therefore it is suitable for the simulation of complex phenomena such as simulation of air-blast atomization, with several important application in the field of automotive and aerospace engines. A prove is given by our preliminary study of the 3-D coaxial liquid-gas jet.
Equations and simulations for multiphase compressible gas-dust flows
NASA Astrophysics Data System (ADS)
Oran, Elaine; Houim, Ryan
2014-11-01
Dust-gas multiphase flows are important in physical scenarios such as dust explosions in coal mines, asteroid impact disturbing lunar regolith, and soft aircraft landings dispersing desert or beach sand. In these cases, the gas flow regime can range from highly subsonic and nearly incompressible to supersonic and shock-laden flow, the grain packing can range from fully packed to completely dispersed, and both the gas and the dust can range from chemically inert to highly exothermic. To cover the necessary parameter range in a single model, we solve coupled sets of Navier-Stokes equations describing the background gas and the dust. As an example, a reactive-dust explosion that results in a type of shock-flame complex is described and discussed. Sponsored by the University of Maryland through Minta Martin Endowment Funds in the Department of Aerospace Engineering, and through the Glenn L. Martin Institute Chaired Professorship at the A. James Clark School of Engineering.
Non-isothermal electro-osmotic flow in a microchannel with charge-modulated surfaces
NASA Astrophysics Data System (ADS)
Bautista, Oscar; Sanchez, Salvador; Mendez, Federico
2015-11-01
In this work, we present an theoretical analysis of a nonisothermal electro-osmotic flow of a Newtonian fluid over charge-modulated surfaces in a microchannel. Here, the heating in the microchannel is due to the Joule effect caused by the imposition of an external electric field. The study is conducted through the use of perturbation techniques and is validated by means of numerical simulations. We consider that both, viscosity and electrical conductivity of the fluid are temperature-dependent; therefore, in order to determine the heat transfer process and the corresponding effects on the flow field, the governing equations of continuity, momentum, energy and electric potential have to be solved in a coupled manner. The principal obtained results evidence that the flow patterns are perturbed in a noticeable manner in comparison with the isothernal case. Our results may be used for increasing microfluidics mixing by conjugating thermal effects with the use of charge-modulated surfaces. This work has been supported by the research grants no. 220900 of Consejo Nacional de Ciencia y Tecnología (CONACYT) and 20150919 of SIP-IPN at Mexico. F. Méndez acknowledges also the economical support of PAPIIT-UNAM under contract number IN112215.
Multiphase flow modeling and simulation of explosive volcanic eruptions
NASA Astrophysics Data System (ADS)
Neri, Augusto
Recent worldwide volcanic activity, such as eruptions at Mt. St. Helens, Washington, in 1980, Mt. Pinatubo, Philippines, in 1991, as well as the ongoing eruption at Montserrat, West Indies, highlighted again the complex nature of explosive volcanic eruptions as well as the tremendous risk associated to them. In the year 2000, about 500 million people are expected to live under the shadow of an active volcano. The understanding of pyroclastic dispersion processes produced by explosive eruptions is, therefore, of primary interest, not only from the scientific point of view, but also for the huge worldwide risk associated with them. The thesis deals with an interdisciplinary research aimed at the modeling and simulation of explosive volcanic eruptions by using multiphase thermo-fluid-dynamic models. The first part of the work was dedicated to the understanding and validation of recently developed kinetic theory of two-phase flow. The hydrodynamics of fluid catalytic cracking particles in the IIT riser were simulated and compared with lab experiments. Simulation results confirm the validity of the kinetic theory approach. Transport of solids in the riser is due to dense clusters. On a time-average basis the bottom of the riser and the walls are dense, in agreement with IIT experimental data. The low frequency of oscillation (about 0.2 Hz) is also in agreement with data. The second part of the work was devoted to the development of transient two-dimensional multiphase and multicomponent flow models of pyroclastic dispersion processes. In particular, the dynamics of ground-hugging high-speed and high-temperature pyroclastic flows generated by the collapse of volcanic columns or by impulsive discrete explosions, was investigated. The model accounts for the mechanical and thermal non-equilibrium between a multicomponent gas phase and N different solid phases representative of pyroclastic particles of different sizes. Pyroclastic dispersion dynamics describes the formation
NASA Technical Reports Server (NTRS)
Johnson, E. J.; Hyer, P. V.; Culotta, P. W.; Clark, I. O.
1991-01-01
Experimental techniques which can be potentially utilized to measure the gas velocity fields in nonisothermal CVD systems both in ground-based and space-based investigations are considered. The advantages and disadvantages of a three-component laser velocimetry (LV) system that was adapted specifically for quantitative determination of the mixed convective flows in a chamber for crystal growth and film formation by CVD are discussed. Data from a horizontal research CVD reactor indicate that current models for the effects of thermophoretic force are not adequate to predict the thermophoretic bias in arbitrary flow configurations. It is concluded that LV techniques are capable of characterizing the fluid dynamics of a CVD reactor at typical growth temperatures. Thermal effects are shown to dominate and stabilize the fluid dynamics of the reactor. Heating of the susceptor increases the gas velocities parallel to the face of a slanted susceptor by up to a factor of five.
Impact Detection for Characterization of Complex Multiphase Flows
NASA Astrophysics Data System (ADS)
Chan, Wai Hong Ronald; Urzay, Javier; Mani, Ali; Moin, Parviz
2016-11-01
Multiphase flows often involve a wide range of impact events, such as liquid droplets impinging on a liquid pool or gas bubbles coalescing in a liquid medium. These events contribute to a myriad of large-scale phenomena, including breaking waves on ocean surfaces. As impacts between surfaces necessarily occur at isolated points, numerical simulations of impact events will require the resolution of molecular scales near the impact points for accurate modeling. This can be prohibitively expensive unless subgrid impact and breakup models are formulated to capture the effects of the interactions. The first step in a large-eddy simulation (LES) based computational methodology for complex multiphase flows like air-sea interactions requires effective detection of these impact events. The starting point of this work is a collision detection algorithm for structured grids on a coupled level set / volume of fluid (CLSVOF) solver adapted from an earlier algorithm for cloth animations that triangulates the interface with the marching cubes method. We explore the extension of collision detection to a geometric VOF solver and to unstructured grids. Supported by ONR/A*STAR. Agency of Science, Technology and Research, Singapore; Office of Naval Research, USA.
Modeling oceanic multiphase flow by using Lagrangian particle tracking
NASA Astrophysics Data System (ADS)
Matsumura, Y.
2014-12-01
While the density of seawater is basically determined by its temperature, salinity and pressure, the effective density becomes higher when the water mass contains suspended sediment. On the other hands, effective density declines when water mass contains fine scale materials of lower density such as bubbles and ice crystals. Such density anomaly induced by small scale materials suspended in water masses sometimes plays important roles in the sub-mesoscale ocean physics. To simulate these small scale oceanic multiphase flow, a new modeling framework using an online Lagrangian particle tracking method is developed. A Lagrangian particle tracking method has substantial advantages such as an explicit treatment of buoyancy force acting on each individual particle, no numerical diffusion and dissipation, high dynamic range and an ability to track the history and each individual particle. However, its numerical cost causes difficulty when we try to simulate a large number of particles. In the present study we implement a numerically efficient particle tracking scheme using linked-list data structure, which is coupled with a nonhydrostatic dynamical core. This newly developed model successfully reproduces characteristics of some interesting small scale multiphase processes, for example hyperpycnal flow (a sediment-rich river water plume trapped at ocean floor) and grease ice cover (a slurry mixture of frazil ice crystals and seawater).
Direct numerical simulation of incompressible multiphase flow with phase change
NASA Astrophysics Data System (ADS)
Lee, Moon Soo; Riaz, Amir; Aute, Vikrant
2017-09-01
Simulation of multiphase flow with phase change is challenging because of the potential for unphysical pressure oscillations, spurious velocity fields and mass flux errors across the interface. The resulting numerical errors may become critical when large density contrasts are present. To address these issues, we present a new approach for multiphase flow with phase change that features, (i) a smooth distribution of sharp velocity jumps and mass flux within a narrow region surrounding the interface, (ii) improved mass flux projection from the implicit interface onto the uniform Cartesian grid and (iii) post-advection velocity correction step to ensure accurate velocity divergence in interfacial cells. These new features are implemented in combination with a sharp treatment of the jumps in pressure and temperature gradient. A series of 1-D, 2-D, axisymmetric and 3-D problems are solved to verify the improvements afforded by the new approach. Axisymmetric film boiling results are also presented, which show good qualitative agreement with heat transfer correlations as well as experimental observations of bubble shapes.
Advanced tomographic flow diagnostics for opaque multiphase fluids
Torczynski, J.R.; O`Hern, T.J.; Adkins, D.R.; Jackson, N.B.; Shollenberger, K.A.
1997-05-01
This report documents the work performed for the ``Advanced Tomographic Flow Diagnostics for Opaque Multiphase Fluids`` LDRD (Laboratory-Directed Research and Development) project and is presented as the fulfillment of the LDRD reporting requirement. Dispersed multiphase flows, particularly gas-liquid flows, are industrially important to the chemical and applied-energy industries, where bubble-column reactors are employed for chemical synthesis and waste treatment. Due to the large range of length scales (10{sup {minus}6}-10{sup 1}m) inherent in real systems, direct numerical simulation is not possible at present, so computational simulations are forced to use models of subgrid-scale processes, the accuracy of which strongly impacts simulation fidelity. The development and validation of such subgrid-scale models requires data sets at representative conditions. The ideal measurement techniques would provide spatially and temporally resolved full-field measurements of the distributions of all phases, their velocity fields, and additional associated quantities such as pressure and temperature. No technique or set of techniques is known that satisfies this requirement. In this study, efforts are focused on characterizing the spatial distribution of the phases in two-phase gas-liquid flow and in three-phase gas-liquid-solid flow. Due to its industrial importance, the bubble-column geometry is selected for diagnostics development and assessment. Two bubble-column testbeds are utilized: one at laboratory scale and one close to industrial scale. Several techniques for measuring the phase distributions at conditions of industrial interest are examined: level-rise measurements, differential-pressure measurements, bulk electrical impedance measurements, electrical bubble probes, x-ray tomography, gamma-densitometry tomography, and electrical impedance tomography.
Surface tension and buoyancy-driven flow in a non-isothermal liquid bridge
NASA Technical Reports Server (NTRS)
Zhang, Yiqiang; Alexander, J. I. D.
1992-01-01
The Navier-Stokes-Boussinesq equations governing the transport of momentum, mass and heat in a nonisothermal liquid bridge with a temperature-dependent surface tension are solved using a vorticity-stream-function formulation together with a nonorthogonal coordinate transformation. The equations are discretized using a pseudo-unsteady semi-implicit finite difference scheme and are solved by the ADI method. A Picard-type iteration is adopted which consists of inner and outer iterative processes. The outer iteration is used to update the shape of the free surface. Two schemes have been used for the outer iteration; both use the force balance normal to the free surface as the distinguished boundary condition. The first scheme involves successive approximation by the direct solution of the distinguished boundary condition. The second scheme uses the artificial force imbalance between the fluid pressure, viscous and capillary forces at the free surface which arises when the boundary condition for force balance normal to the surface is not satisfied. This artificial imbalance is then used to change the surface shape until the distinguished boundary condition is satisfied. These schemes have been used to examine a variety of model liquid bridge situations including purely thermocapillary-driven flow situations and mixed thermocapillary- and bouyancy-driven flow.
Surface tension and buoyancy-driven flow in a non-isothermal liquid bridge
NASA Technical Reports Server (NTRS)
Zhang, Yiqiang; Alexander, J. I. D.
1992-01-01
The Navier-Stokes-Boussinesq equations governing the transport of momentum, mass and heat in a nonisothermal liquid bridge with a temperature-dependent surface tension are solved using a vorticity-stream-function formulation together with a nonorthogonal coordinate transformation. The equations are discretized using a pseudo-unsteady semi-implicit finite difference scheme and are solved by the ADI method. A Picard-type iteration is adopted which consists of inner and outer iterative processes. The outer iteration is used to update the shape of the free surface. Two schemes have been used for the outer iteration; both use the force balance normal to the free surface as the distinguished boundary condition. The first scheme involves successive approximation by the direct solution of the distinguished boundary condition. The second scheme uses the artificial force imbalance between the fluid pressure, viscous and capillary forces at the free surface which arises when the boundary condition for force balance normal to the surface is not satisfied. This artificial imbalance is then used to change the surface shape until the distinguished boundary condition is satisfied. These schemes have been used to examine a variety of model liquid bridge situations including purely thermocapillary-driven flow situations and mixed thermocapillary- and bouyancy-driven flow.
Multiple light scattering methods for multiphase flow diagnostics
NASA Astrophysics Data System (ADS)
Estevadeordal, Jordi
2015-11-01
Multiphase flows of gases and liquids containing droplets, bubbles, or particulates present light scattering imaging challenges due to the interference from each phase, such as secondary reflections, extinctions, absorptions, and refractions. These factors often prevent the unambiguous detection of each phase and also produce undesired beam steering. The effects can be especially complex in presence of dense phases, multispecies flows, and high pressure environments. This investigation reports new methods for overcoming these effects for quantitative measurements of velocity, density, and temperature fields. The methods are based on light scattering techniques combining Mie and filtered Rayleigh scattering and light extinction analyses and measurements. The optical layout is designed to perform multiple property measurements with improved signal from each phase via laser spectral and polarization characterization, etalon decontamination, and use of multiple wavelengths and imaging detectors.
Mixing and Demixing Processes in Multiphase Flows With Application to Propulsion Systems
NASA Technical Reports Server (NTRS)
Decker, Rand (Editor); Schafer, Charles F. (Editor)
1988-01-01
A workshop on transport processes in multiphase flow was held at the Marshall Space Flight Center on February 25 and 26, 1988. The program, abstracts and text of the presentations at this workshop are presented. The objective of the workshop was to enhance our understanding of mass, momentum, and energy transport processes in laminar and turbulent multiphase shear flows in combustion and propulsion environments.
Online recognition of the multiphase flow regime and study of slug flow in pipeline
NASA Astrophysics Data System (ADS)
Liejin, Guo; Bofeng, Bai; Liang, Zhao; Xin, Wang; Hanyang, Gu
2009-02-01
Multiphase flow is the phenomenon existing widely in nature, daily life, as well as petroleum and chemical engineering industrial fields. The interface structure among multiphase and their movement are complicated, which distribute random and heterogeneously in the spatial and temporal scales and have multivalue of the flow structure and state[1]. Flow regime is defined as the macro feature about the multiphase interface structure and its distribution, which is an important feature to describe multiphase flow. The energy and mass transport mechanism differ much for each flow regimes. It is necessary to solve the flow regime recognition to get a clear understanding of the physical phenomena and their mechanism of multiphase flow. And the flow regime is one of the main factors affecting the online measurement accuracy of phase fraction, flow rate and other phase parameters. Therefore, it is of great scientific and technological importance to develop new principles and methods of multiphase flow regime online recognition, and of great industrial background. In this paper, the key reasons that the present method cannot be used to solve the industrial multiphase flow pattern recognition are clarified firstly. Then the prerequisite to realize the online recognition of multiphase flow regime is analyzed, and the recognition rules for partial flow pattern are obtained based on the massive experimental data. The standard templates for every flow regime feature are calculated with self-organization cluster algorithm. The multi-sensor data fusion method is proposed to realize the online recognition of multiphase flow regime with the pressure and differential pressure signals, which overcomes the severe influence of fluid flow velocity and the oil fraction on the recognition. The online recognition method is tested in the practice, which has less than 10 percent measurement error. The method takes advantages of high confidence, good fault tolerance and less requirement of
Weakly nonlinear stability analysis of non-isothermal Poiseuille flow in a vertical channel
NASA Astrophysics Data System (ADS)
Khandelwal, Manish K.; Bera, P.
2015-06-01
A weakly nonlinear stability theory in terms of Landau equation is developed to analyze the nonlinear saturation of stably stratified non-isothermal Poiseuille flow in a vertical channel. The results are presented with respect to fluids: mercury, gases, liquids, and heavy oils. The weakly nonlinear stability results predict only the supercritical instability, in agreement with the published result [Y. C. Chen and J. N. Chung, "A direct numerical simulation of K and H-type flow transition in heated vertical channel," Comput. Fluids 32, 795-822 (2003)] based on direct numerical simulation. Apart from this, the influence of nonlinear interaction among different superimposed waves on the heat transfer rate, real part of wavespeed, and friction coefficient on the wall is also investigated. A substantial enhancement (reduction) in heat transfer rate (friction coefficient) is found for liquids and heavy oils from the basic state beyond the critical Rayleigh number. The amplitude analysis indicates that the equilibrium amplitude decreases on increasing the value of Reynolds number. However, in the case of mercury, influence of nonlinear interaction on the variation of equilibrium amplitude, heat transfer rate, wavespeed, as well as friction coefficient is complex and subtle. The analysis of the nonlinear energy spectra for the disturbance also supports the supercritical instability at and beyond the critical point. Finally, the effect of superimposed waves on the pattern of secondary flow, based on linear stability theory, is also studied. It has been found that the impact of nonlinear interaction of waves on the pattern of secondary flow for mercury is weak compared to gases, which is the consequence of negligible modification in the buoyant production of disturbance kinetic energy of the mercury.
NASA Astrophysics Data System (ADS)
Tsai, C.; Yeh, G.
2011-12-01
In this investigation, newly proposed constitutive retentions are implemented to a fractional-flow based compressible multiphase-phase flow model. With the new model, a compressible three-phase (water, non-aqueous phase liquid (NAPL) and air) flow problem is simulated. In fractional-flow approaches, the three mass balance equations written in terms of three phase pressures are transformed to those in terms of the total pressure, saturation of water, and saturation of total liquid. These three governing equations are discretized with the Galerkin finite element method (FEM). The resulted matrix equation is solved with Bi-CGSTAB. Several numerical experiments are presented to examine the accuracy and robustness of the proposed model. The results show the presented fractional-flow based multiphase flow model is feasible and yields physically realistic solutions for compressible three-phase flow problems in porous media.
Hot-wire calibration in a nonisothermal incompressible pressure variant flow
NASA Astrophysics Data System (ADS)
Hugo, Ronald J.; Nowlin, Scott R.; Eaton, Frank D.; Bishop, Kenneth P.; McCrae, Kimberley A.
1999-08-01
The calibration procedure for a hot-wire anemometer system operating in a non-isothermal pressure-variant flow field is presented. Sensing of atmospheric velocity and temperature fluctuations from an altitude-variant platform using hot- wire anemometry equipment operating in both constant- temperature and constant-current modes requires calibration for velocity, temperature, and atmospheric pressure variations. Calibration tests to provide the range of velocity, temperature and pressure variations anticipated during Air Force Research Lab, Directed Energy Directorate- sponsored kite/tethered-balloon experiments were conducted and the result of these tests presented. The calibration tests were performed by placing the kite/tethered-balloon sensor package on a vehicle and driving from Kirtland AFB, NM to the top of Sandia Crest, a 10678 ft mountain range to the east of Albuquerque, NM. By varying the velocity of the van and conducting the test at different times of the day, variations in velocity, temperature and pressure within the range of those encountered during the kite/tethered-balloon experiments were obtained. The method of collapsing the calibration data is presented. Problems associated with collecting hot-wire anemometry data in a non-laboratory environment are discussed. Example data sets of temperature and velocity collected during the kite/tethered-balloon experiments are presented.
Multicomponent, multiphase flow in porous media with temperature variation
Wingard, J.S.; Orr, F.M. Jr.
1990-10-01
Recovery of hydrocarbons from porous media is an ongoing concern. Advanced techniques augment conventional recovery methods by injecting fluids that favorably interact with the oil. These fluids interact with the oil by energy transfer, in the case of steam injection, or by mass transfer, as in a miscible gas flood. Often both thermal and compositional considerations are important. An understanding of these injection methods requires knowledge of how temperature variations, phase equilibrium and multiphase flow in porous media interact. The material balance for each component and energy balance are cast as a system of non-strictly hyperbolic partial differential equations. This system of equations is solved using the method of characteristics. The model takes into account the phase behavior by using the Peng-Robinson equation of state to partition the individual components into different phases. Temperature effects are accounted for by the energy balance. Flow effects are modelled by using fractional flow curves and a Stone's three phase relative permeability model. Three problems are discussed. The first problem eliminates the phase behavior aspect of the problem by studying the flow of a single component as it undergoes an isothermal phase change. The second couples the effects of temperature and flow behavior by including a second component that is immiscible with the original component. Phase behavior is added by using a set of three partially miscible components that partition into two or three separate phases. 66 refs., 54 figs., 14 tabs.
Inhibition of slug front corrosion in multiphase flow conditions
Chen, H.J.; Jepson, W.P.
1998-12-31
Corrosion at the slug front at the bottom of a pipeline is identified as one of the worst cases of corrosion occurring in the pipeline which carries unprocessed multiphase production with a high level of CO{sub 2} gas. One objective of the study in recommending a subsea completion to shore was to determine if commercial corrosion inhibitors can control this type of corrosion using carbon steel pipeline. Thus, inhibitors which showed excellent performance in the lab using the Rotating Cylinder Electrode system (RCE) were further evaluated to confirm their performance in a flow loop simulating the test conditions predicted from the flow modeling for the proposed pipeline. The performance profile of two commercial inhibitors were determined in a 4 in. flow loop at 7O C, 100 psig CO{sub 2} partial pressure in corrosive brines with or without ethylene glycol and/or light hydrocarbon. Results showed that the carbon steel pipeline could be adequately protected at low temperature using a commercial corrosion inhibitor to meet the designed life of the pipeline. Ethylene glycol, which is used in the pipeline to prevent hydrate formation, reduces the corrosivity of the brine and gives no effect on inhibitor performance under the slug flow conditions. A good agreement in inhibitor performance was observed between the flow loop and the RCE testing. The uninhibited corrosion rate of the test brine in this study is in good agreement with the predicted value using deWaard and Williams correlation for CO{sub 2} corrosion.
Wang, W.; Rutqvist, J.; Gorke, U.-J.; Birkholzer, J.T.; Kolditz, O.
2010-03-15
The present work compares the performance of two alternative flow models for the simulation of thermal-hydraulic coupled processes in low permeable porous media: non-isothermal Richards and two-phase flow concepts. Both models take vaporization processes into account: however, the Richards model neglects dynamic pressure variations and bulk flow of the gaseous phase. For the comparison of the two approaches first published data from a laboratory experiment is studied involving thermally driven moisture flow in a partially saturated bentonite sample. Then a benchmark test of longer-term thermal-hydraulic behavior in the engineered barrier system of a geological nuclear waste repository is analyzed (DECOVALEX project). It was found that both models can be used to reproduce the vaporization process if the intrinsic permeability is relative high. However, when a thermal-hydraulic coupled problem has the same low intrinsic permeability for both the liquid and the gas phase, only the two-phase flow approach provides reasonable results.
Multiphase Flow Technology Impacts on Thermal Control Systems for Exploration
NASA Technical Reports Server (NTRS)
McQuillen, John; Sankovic, John; Lekan, Jack
2006-01-01
The Two-Phase Flow Facility (TPHIFFy) Project focused on bridging the critical knowledge gap by developing and demonstrating critical multiphase fluid products for advanced life support, thermal management and power conversion systems that are required to enable the Vision for Space Exploration. Safety and reliability of future systems will be enhanced by addressing critical microgravity fluid physics issues associated with flow boiling, condensation, phase separation, and system stability. The project included concept development, normal gravity testing, and reduced gravity aircraft flight campaigns, in preparation for the development of a space flight experiment implementation. Data will be utilized to develop predictive models that could be used for system design and operation. A single fluid, two-phase closed thermodynamic loop test bed was designed, assembled and tested. The major components in this test bed include: a boiler, a condenser, a phase separator and a circulating pump. The test loop was instrumented with flow meters, thermocouples, pressure transducers and both high speed and normal speed video cameras. A low boiling point surrogate fluid, FC-72, was selected based on scaling analyses using preliminary designs for operational systems. Preliminary results are presented which include flow regime transitions and some observations regarding system stability.
Migration of a surfactant-laden droplet in non-isothermal Poiseuille flow
NASA Astrophysics Data System (ADS)
Das, Sayan; Mandal, Shubhadeep; Som, S. K.; Chakraborty, Suman
2017-01-01
The motion of a surfactant-laden viscous droplet in the presence of non-isothermal Poiseuille flow is studied analytically and numerically. Specifically, the focus of the present study is on the role of interfacial Marangoni stress generated due to imposed temperature gradient and non-uniform distribution of bulk-insoluble surfactants towards dictating the velocity and direction of motion of the droplet when the background flow is Poiseuille. Assuming the thermal convection and fluid inertia to be negligible, we obtain the explicit expression for steady velocity of a non-deformable spherical droplet when the droplet is located at the centerline of the imposed unbounded Poiseuille flow and encountering a linearly varying temperature field. Under these assumptions, the interfacial transport of surfactants is governed by the surface Péclet number which represents the relative strength of the advective transport of surfactant molecules over the diffusive transport. We obtain analytical solution for small and large values of the surface Péclet number. Analytical solution is also obtained for the case in which the surface Péclet number is of order unity by considering small surfactant Marangoni number which represents the relative strength of the surfactant-induced Marangoni stress over the viscous stress. For an arbitrary surface Péclet number, a numerical solution of the surfactant transport equation is performed using an iterative method which compares well with the analytical solutions. Depending on the direction of temperature gradient with respect to the imposed Poiseuille flow, the surfactant-induced Marangoni stress affects the droplet velocity significantly. When the imposed temperature increases in the direction of imposed Poiseuille flow, surfactants retard the droplet motion as compared with a surfactant-free droplet. However, when the imposed temperature decreases in the direction of imposed Poiseuille flow, the presence of surfactants may increase or
Upscaling Multiphase Fluid Flow in Naturally Fractured Reservoirs
NASA Astrophysics Data System (ADS)
Matthai, S.; Maghami-Nick, H.; Belayneh, M.; Geiger, S.
2009-04-01
Hydrocarbon recovery from fractured porous reservoirs is difficult to predict as it depends on the focusing of the flow and the local balance of viscous, gravitational, and capillary forces. Hecto-metre scale sub-volumes of fractured oil reservoirs contain thousands of fractures with highly variable flow properties, dimensions and orientations. This complexity precludes direct geometric incorporation into field scale multiphase flow models. Macroscopic laws of their integral effects on multiphase flow are required. These can be investigated by DFM (discrete fracture and matrix) numerical simulations based on discrete fracture models representing fractured reservoir analogues. Here we present DFM results indicating that hecto-metre-scale relative permeability, the time to water breakthrough, and the subsequent water cut primarily depend on the fracture-to-rock matrix flux ratio, qf/qm, quantifying the proportion of the cross-sectional flux that occurs through the fractures. Relative permeability during imbibition runs is best approximated by a rate-dependent new model taking into account capillary fracture-matrix transfer. The up-scaled fractional flow function fo(sw) derived from this new kri formulation is convex with a near-infinity slope at the residual water saturation. This implies that the hector-metre scale spatially averaged Buckley-Leverett equation for fractured porous media does not contain a shock, but a long leading edge in the averaged profile of the invading phase. This dispersive behaviour marks the progressively widening saturation front and an early water breakthrough observed in the discrete fracture reservoir analogues. Since fracture porosity φf is usually only a fraction of a percent, a cross-over from krw < kro to krw/kro ≈ qf/qm occurs after the first few percent of recovery, and because qf/qm ranges between 10-1,000, sweep efficiency ignoring the positive influence of counter-current imbibition is extremely low. The accuracy of reservoir
NASA Astrophysics Data System (ADS)
Huang, Y.; Shao, H.; Thullner, M.; Kolditz, O.
2014-12-01
In applications of Deep Geothermal reservoirs, thermal recovery processes, and contaminated groundwater sites, the multiphase multicomponent flow and transport processes are often considered the most important underlying physical process. In particular, the behavior of phase appearance and disappearance is the critical to the performance of many geo-reservoirs, and great interests exit in the scientific community to simulate this coupled process. This work is devoted to the modeling and simulation of two-phase, two components flow and transport in the porous medium, whereas the phase change behavior in non-isothermal conditions is considered. In this work, we have implemented the algorithm developed by Marchand, et al., into the open source scientific software OpenGeoSys. The governing equation is formulated in terms of molar fraction of the light component and mean pressure as the persistent primary variables, which leads to a fully coupled nonlinear PDE system. One of the important advantages of this approach is avoiding the primary variables switching between single phase and two phase zones, so that this uniform system can be applied to describe the behavior of phase change. On the other hand, due to the number of unkown variables closure relationships are also formulated to close the whole equation system by using the approach of complementarity constrains. For the numerical technical scheme: The standard Galerkin Finite element method is applied for space discretization, while a fully implicit scheme for the time discretization, and Newton-Raphson method is utilized for the global linearization, as well as the closure relationship. This model is verified based on one test case developed to simulate the heat pipe problem. This benchmark involves two-phase two-component flow in saturated/unsaturated porous media under non-isothermal condition, including phase change and mineral-water geochemical reactive transport processes. The simulation results will be
NASA Astrophysics Data System (ADS)
Alexandrov, D. V.; Galenko, P. K.; Herlach, D. M.
2010-07-01
A free dendrite growth during solidification into external forced flow is analyzed using a sharp interface model. A criterion for selection of the stable growth mode is derived for the axisymmetric dendrite growing into non-isothermal binary system under convective flow. The criterion obtained rallies analytic results for dendrite growth under forced convection in a pure system [Ph. Bouissou, P. Pelce, Phys. Rev. A 40 (1989) 6673] and dendrite growth in a stagnant binary system [M. Ben Amar, P. Pelce, Phys. Rev. A 39 (1989) 4263].
Multiphase ferrofluid flows for micro-particle focusing and separation
Zhou, Ran
2016-01-01
Ferrofluids have demonstrated great potential for a variety of manipulations of diamagnetic (or non-magnetic) micro-particles/cells in microfluidics, including sorting, focusing, and enriching. By utilizing size dependent magnetophoresis velocity, most of the existing techniques employ single phase ferrofluids to push the particles towards the channel walls. In this work, we demonstrate a novel strategy for focusing and separating diamagnetic micro-particles by using the laminar fluid interface of two co-flowing fluids—a ferrofluid and a non-magnetic fluid. Next to the microfluidic channel, microscale magnets are fabricated to generate strong localized magnetic field gradients and forces. Due to the magnetic force, diamagnetic particles suspended in the ferrofluid phase migrate across the ferrofluid stream at the size-dependent velocities. Because of the low Reynolds number and high Péclet number associated with the flow, the fluid interface is sharp and stable. When the micro-particles migrate to the interface, they are accumulated near the interface, resulting in effective focusing and separation of particles. We investigated several factors that affect the focusing and separation efficiency, including susceptibility of the ferrofluid, distance between the microfluidic channel and microscale magnet, and width of the microfluidic channel. This concept can be extended to multiple fluid interfaces. For example, a complete separation of micro-particles was demonstrated by using a three-stream multiphase flow configuration. PMID:27190567
Towards a Modern Theory of Multiphase Filtration Flow
NASA Technical Reports Server (NTRS)
Buyevich, Yu A.; Webbon, Bruce W. (Technical Monitor)
1994-01-01
An alternative theoretical model of joint filtration flow of immiscible incompressible fluids is presented. The model takes into account relaxation processes due to the interchange of the fluids between pores of difference sizes which is driven by capillary forces. The fluids occupy connected regions in a four-dimensional space formed by three coordinates and the pore length scale. When the fluid exchange between pores of given sizes is effected by way of successive flow through pores of all the intermediate sizes, the pressure within each region is governed by a hyperbolic equation, the role of time being played by the pore linear scale. Pressure jumps across hypersurfaces separating the regions equal corresponding values of the capillary pressure. A supplementary condition at any such hypersurface requires the speed of its displacement in the four-dimensional space to coincide with the normal velocity components of both the adjoining fluids. As a result, a principally new statement of multiphase filtration flow problems is gained with allowance for capillary relaxation in the porous space.
Multiphase ferrofluid flows for micro-particle focusing and separation.
Zhou, Ran; Wang, Cheng
2016-05-01
Ferrofluids have demonstrated great potential for a variety of manipulations of diamagnetic (or non-magnetic) micro-particles/cells in microfluidics, including sorting, focusing, and enriching. By utilizing size dependent magnetophoresis velocity, most of the existing techniques employ single phase ferrofluids to push the particles towards the channel walls. In this work, we demonstrate a novel strategy for focusing and separating diamagnetic micro-particles by using the laminar fluid interface of two co-flowing fluids-a ferrofluid and a non-magnetic fluid. Next to the microfluidic channel, microscale magnets are fabricated to generate strong localized magnetic field gradients and forces. Due to the magnetic force, diamagnetic particles suspended in the ferrofluid phase migrate across the ferrofluid stream at the size-dependent velocities. Because of the low Reynolds number and high Péclet number associated with the flow, the fluid interface is sharp and stable. When the micro-particles migrate to the interface, they are accumulated near the interface, resulting in effective focusing and separation of particles. We investigated several factors that affect the focusing and separation efficiency, including susceptibility of the ferrofluid, distance between the microfluidic channel and microscale magnet, and width of the microfluidic channel. This concept can be extended to multiple fluid interfaces. For example, a complete separation of micro-particles was demonstrated by using a three-stream multiphase flow configuration.
Rheological flow laws for multiphase magmas: An empirical approach
NASA Astrophysics Data System (ADS)
Pistone, Mattia; Cordonnier, Benoît; Ulmer, Peter; Caricchi, Luca
2016-07-01
The physical properties of magmas play a fundamental role in controlling the eruptive dynamics of volcanoes. Magmas are multiphase mixtures of crystals and gas bubbles suspended in a silicate melt and, to date, no flow laws describe their rheological behaviour. In this study we present a set of equations quantifying the flow of high-viscosity (> 105 Pa·s) silica-rich multiphase magmas, containing both crystals (24-65 vol.%) and gas bubbles (9-12 vol.%). Flow laws were obtained using deformation experiments performed at high temperature (673-1023 K) and pressure (200-250 MPa) over a range of strain-rates (5 · 10- 6 s- 1 to 4 · 10- 3 s- 1), conditions that are relevant for volcanic conduit processes of silica-rich systems ranging from crystal-rich lava domes to crystal-poor obsidian flows. We propose flow laws in which stress exponent, activation energy, and pre-exponential factor depend on a parameter that includes the volume fraction of weak phases (i.e. melt and gas bubbles) present in the magma. The bubble volume fraction has opposing effects depending on the relative crystal volume fraction: at low crystallinity bubble deformation generates gas connectivity and permeability pathways, whereas at high crystallinity bubbles do not connect and act as ;lubricant; objects during strain localisation within shear bands. We show that such difference in the evolution of texture is mainly controlled by the strain-rate (i.e. the local stress within shear bands) at which the experiments are performed, and affect the empirical parameters used for the flow laws. At low crystallinity (< 44 vol.%) we observe an increase of viscosity with increasing strain-rate, while at high crystallinity (> 44 vol.%) the viscosity decreases with increasing strain-rate. Because these behaviours are also associated with modifications of sample textures during the experiment and, thus, are not purely the result of different deformation rates, we refer to ;apparent shear-thickening; and
Multiphase flow and transport in fractured clay/sand sequences.
Reynolds, D A; Kueper, B H
2001-09-01
A numerical model (Queen's University Multi-Phase Flow Simulator, QUMPFS) was used to assess the rate of trichloroethylene (TCE) dense, non-aqueous phase liquid (DNAPL) migration through fractured clay, with special attention focused on the influence of interbedded sand lenses. The presence of these sand lenses was found to increase the time required for the non-wetting phase to migrate through the full 30 m vertical extent of the clay sequence from a few days to several years. Applied vertical hydraulic gradients were found to be moderately influential in systems consisting solely of fractured clays, yet one of the dominant factors controlling speed of vertical migration when sand lenses were present. Larger displacement pressure of the sands relative to that of the fractures leads to slower DNAPL migration rates, due to the delays that occur during build-up of capillary pressures. Dissolution of DNAPL and subsequent matrix diffusion of the aqueous phase has little effect on the rate of DNAPL migration through systems consisting of fractured clay only, yet slows the rate of migration in systems containing sand lenses. In all cases examined, the rate of DNAPL loading to the lower aquifer far exceeded the rate of aqueous phase mass loading. It was also found that DNAPL reaches the lower aquifer at approximately the same time as the aqueous phase plumes even for systems experiencing downward groundwater flow due to the attenuation of the aqueous phase through matrix diffusion.
Hybrid Explicit Residual Distribution Scheme for Compressible Multiphase Flows
NASA Astrophysics Data System (ADS)
Bacigaluppi, Paola; Abgrall, Rémi; Kaman, Tulin
2017-03-01
The aim of this work is the development of a fully explicit scheme in the framework of time dependent hyperbolic problems with strong interacting discontinuities to retain high order accuracy in the context of compressible multiphase flows. A new methodology is presented to compute compressible two-fluid problems applied to the five equation reduced model given in Kapila et al. (Physics of Fluids 2001). With respect to other contributions in that area, we investigate a method that provides mesh convergence to the exact solutions, where the studied non-conservative system is associated to consistent jump relations. The adopted scheme consists of a coupled predictor-corrector scheme, which follows the concept of residual distributions in Ricchiuto and Abgrall (J. Comp. Physics 2010), with a classical Glimm’s scheme (J. Sci. Stat. Comp. 1982) applied to the area where a shock is occurring. This numerical methodology can be easily extended to unstructured meshes. Test cases on a perfect gas for a two phase compressible flow on a Riemann problem have verified that the approximation converges to its exact solution. The results have been compared with the pure Glimm’s scheme and the expected exact solution, finding a good overlap.
Laser velocimeter measurements of multiphase flow of solids
NASA Astrophysics Data System (ADS)
Kadambi, J. R.; Chen, R. C.; Bhunia, S.
A unique refractive index matched facility for studying solid-liquid multiphase flow has been developed. The refractive index matching of the solid and the liquid allows the use of non-intrusive Laser Doppler Velocimetry (LDV) to measure the solid and the liquid velocities. These measurements will be useful in developing a better understanding of solid-liquid flows, especially solid-liquid and solid-solid interactions. Silica gel and 50 percent sodium iodide solution in water (refractive index approx. 1.443) are used as the refractive index matched solid and liquid respectively. A two color back scatter mode LDV is used for making velocity measurements. Tests were conducted in solid-liquid slurries with volumetric solid concentration levels of 5 percent and 15 percent in the Reynolds number (Re) range of 400 to 9200. Silica gel particles of mean diameter 40 microns were used. Measurements included mapping of the solid and liquid velocities and obtaining the pressure drop data. Signal processing technique utilizing histogram of velocity measurements made at a point and signal amplitude discrimination was successfully used for differentiating between solid and liquid velocities.
Finite-Element Analysis of Multiphase Immiscible Flow Through Soils
NASA Astrophysics Data System (ADS)
Kuppusamy, T.; Sheng, J.; Parker, J. C.; Lenhard, R. J.
1987-04-01
A finite-element model is developed for multiphase flow through soil involving three immiscible fluids: namely, air, water, and a nonaqueous phase liquid (NAPL). A variational method is employed for the finite-element formulation corresponding to the coupled differential equations governing flow in a three-fluid phase porous medium system with constant air phase pressure. Constitutive relationships for fluid conductivities and saturations as functions of fluid pressures, which are derived in a companion paper by J. C. Parker et al. (this issue) and which may be calibrated from two-phase laboratory measurements, are employed in the finite-element program. The solution procedure uses backward time integration with iteration by a modified Picard method to handle the nonlinear properties. Laboratory experiments involving water displacement from soil columns by p cymene (a benzene-derivative hydrocarbon) under constant pressure were simulated by the finite-element program to validate the numerical model and formulation for constitutive properties. Transient water outflow predicted using independently measured saturation-capillary head data agreed with observed outflow data within the limits of precision of the predictions as estimated by a first-order Taylor series approximation considering parameter uncertainty due to experimental reproducability and constitutive model accuracy. Two-dimensional simulations are presented for a hypothetical field case involving introduction of NAPL near the soil surface due to leakage from an underground storage tank. Subsequent transport of NAPL in the variably saturated vadose and groundwater zones is analyzed.
Laser velocimeter measurements of multiphase flow of solids
Kadambi, J.R.; Chen, R.C.; Bhunia, S.
1989-01-01
A unique refractive index matched facility for studying solid-liquid multiphase flow has been developed. The refractive index matching of the solid and the liquid allows the use of non-intrusive Laser Doppler Velocimetry (LDV) to measure the solid and the liquid velocities. These measurements will be useful in developing a better understanding of solid-liquid flows, especially solid-liquid and solid-solid interactions. Silica gel and 50% sodium iodide solution in water (refractive index {approx}1.443) are used as the refractive index matched solid and liquid respectively. A two color back scatter mode LDV is used for making velocity measurements. Tests were conducted in solid-liquid slurries with volumetric solid concentration levels of 5% and 15% in the Reynolds number (Re) range of 400 to 9200. Silica gel particles of mean diameter 40 microns were used. Measurements included mapping of the solid and liquid velocities and obtaining the pressure drop data. Signal processing technique utilizing histogram of velocity measurements made at a point and signal amplitude discrimination was successfully used for differentiating between solid and liquid velocities. 34 refs., 61 figs., 5 tabs.
TOUGH+CO 2: A multiphase fluid-flow simulator for CO 2 geologic sequestration in saline aquifers
NASA Astrophysics Data System (ADS)
Zhang, Keni; Moridis, George; Pruess, Karsten
2011-06-01
TOUGH+CO 2 is a new simulator for modeling of CO 2 geologic sequestration in saline aquifers. It is a member of TOUGH+, the successor to the TOUGH2 family of codes for multicomponent, multiphase fluid and heat flow simulation. The code accounts for heat and up to 3 mass components, which are partitioned into three possible phases. In the code, the thermodynamics and thermophysical properties of H 2O-NaCl-CO 2 mixtures are determined based on system status and subdivided into six different phase combinations. By solving coupled mass and heat balance equations, TOUGH+CO 2 can model non-isothermal or isothermal CO 2 injection, phase behavior and flow of fluids and heat under typical conditions of temperature, pressure and salinity in CO 2 geologic storage projects. The code takes into account effects of salt precipitation on porosity and permeability changes, and the wettability phenomena. The new simulator inherits all capabilities of TOUGH2 in handling fractured media and using unstructured meshes for complex simulation domains. The code adds additional relative permeability and capillary pressure functions. The FORTRAN 95 OOP architecture and other new language features have been extensively used to enhance memory use and computing efficiency. In addition, a domain decomposition approach has been implemented for parallel simulation. All these features lead to increased computational efficiency, and allow applicability of the code to multi-core/processor parallel computing platforms with excellent scalability.
NASA Astrophysics Data System (ADS)
Ionescu, Tudor Constantin
Frictional or viscous heating phenomena are found in virtually every industrial operation dealing with processing of polymeric materials. This work is aimed at addressing some of the existing shortcomings in modeling non-isothermal polymer flowing processes. Specifically, existing theories suggest that when a polymer melt is subjected to deformation, its internal energy changes very little compared to its conformational entropy. This statement forms the definition of the Theory of Purely Entropic Elasticity (PEE) applied to polymer melts. Under the auspices of this theory, the temperature evolution equation for modeling the polymer melt under an applied deformation is greatly simplified. In this study, using a combination of experimental measurements, continuum-based computer modeling and molecular simulation techniques, the validity of this theory is tested for a wide range of processing conditions. First, we present experimental evidence that this theory is only valid for low deformation regimes. Furthermore, using molecular theory, a direct correlation is found between the relaxation characteristics of the polymer and the flow regime where this theory stops being valid. We present a new and improved form of the temperature equation containing an extra term previously neglected under the PEE assumption, followed by a recipe for evaluating the extra term. The corrected temperature equation is found to give more accurate predictions for the temperature profiles in the high flow rate regimes, in excellent agreement with our experimental measurements. Next, in order to gain a molecular-level understanding of our experimental findings, a series of polydisperse linear alkane systems with average chain lengths between 24 and 78 carbon atoms are modeled with an applied "orienting field" using a highly efficient non-equilibrium Monte Carlo scheme. Our simulation results appear to substantiate our experimental findings. The internal energy change of the oriented
Smoothed particle hydrodynamics method for evaporating multiphase flows
NASA Astrophysics Data System (ADS)
Yang, Xiufeng; Kong, Song-Charng
2017-09-01
The smoothed particle hydrodynamics (SPH) method has been increasingly used for simulating fluid flows; however, its ability to simulate evaporating flow requires significant improvements. This paper proposes an SPH method for evaporating multiphase flows. The present SPH method can simulate the heat and mass transfers across the liquid-gas interfaces. The conservation equations of mass, momentum, and energy were reformulated based on SPH, then were used to govern the fluid flow and heat transfer in both the liquid and gas phases. The continuity equation of the vapor species was employed to simulate the vapor mass fraction in the gas phase. The vapor mass fraction at the interface was predicted by the Clausius-Clapeyron correlation. An evaporation rate was derived to predict the mass transfer from the liquid phase to the gas phase at the interface. Because of the mass transfer across the liquid-gas interface, the mass of an SPH particle was allowed to change. Alternative particle splitting and merging techniques were developed to avoid large mass difference between SPH particles of the same phase. The proposed method was tested by simulating three problems, including the Stefan problem, evaporation of a static drop, and evaporation of a drop impacting a hot surface. For the Stefan problem, the SPH results of the evaporation rate at the interface agreed well with the analytical solution. For drop evaporation, the SPH result was compared with the result predicted by a level-set method from the literature. In the case of drop impact on a hot surface, the evolution of the shape of the drop, temperature, and vapor mass fraction were predicted.
Carle, S F; Zavarin, M; Shumaker, D E; Tompson, A B; Maxwell, R M; Pawloski, G A
2006-03-06
Temperature can significantly affect radionuclide transport behavior. In simulation of radionuclide transport originating from an underground nuclear test, temperature effects from residual test heat include non-isothermal groundwater flow behavior (e.g. convection cells), increased dissolution rates of melt glass containing refractory radionuclides, changes in water chemistry, and, in turn, changes in radionuclide sorption behavior. The low-yield (0.75 kiloton) Cambric underground nuclear test situated in alluvium below the water table offers unique perspectives on radionuclide transport in groundwater. The Cambric test was followed by extensive post-test characterization of the radionuclide source term and a 16-year pumping-induced radionuclide migration experiment that captured more mobile radionuclides in groundwater. Discharge of pumped groundwater caused inadvertent recirculation of radionuclides through a 220-m thick vadose zone to the water table and below, including partial re-capture in the pumping well. Non-isothermal flow simulations indicate test-related heat persists at Cambric for about 10 years and induces limited thermal convection of groundwater. The test heat has relatively little impact on mobilizing radionuclides compared to subsequent pumping effects. However, our reactive transport models indicate test-related heat can raise melt glass dissolution rates up to 10{sup 4} faster than at ambient temperatures depending on pH and species activities. Non-isothermal flow simulations indicate that these elevated glass dissolution rates largely decrease within 1 year. Thermally-induced increases in fluid velocity may also significantly increase rates of melt glass dissolution by changing the fluid chemistry in contact with the dissolving glass.
Rheology and Multiphase Flow in Congested Ammonia-Water-Ice Slurries
NASA Astrophysics Data System (ADS)
Petford, N.
2005-03-01
Cryomagmas are natural examples of complex multiphase fluids. Some preliminary statements are made about the rheology of densely packed suspensions that have important bearing on their flow rates and eruptive style.
Azo Dyes and Their Interfacial Activity: Implications for Multiphase Flow Experiments
Tuck, D.M.
1999-04-21
Interfacial effects play an important role in governing multiphase fluid behavior in porous media (Neustadter 1984; Tuck et al. 1988). For instance, several dimensionless numbers have been developed to express important force ratios applicable to multiphase flow in porous media (Morrow and Songkran 1981; Chatzis and Morrow 1984; Wardlaw 1988; Pennell et al. 1996; Dawson and Roberts 1997). These force ratios emphasize the importance of interfacial properties. Our objectives are to provide chemical information regarding the dyes commonly used in multiphase flow visualization studies and to show the surface chemistry effects of the most commonly used dye, Sudan IV, in the tetrachloroethylene (PCE)-water-glass system
Investigation of hydrate formation and transportability in multiphase flow systems
NASA Astrophysics Data System (ADS)
Grasso, Giovanny A.
The oil and gas industry is moving towards offshore developments in more challenging environments, where evaluating hydrate plugging risks to avoid operational/safety hazards becomes more difficult (Sloan, 2005). Even though mechanistic models for hydrate plug formation have been developed, components for a full comprehensive model are still missing. Prior to this work, research efforts were focused on flowing hydrate particles with relatively little research on hydrate accumulation, leaving hydrate deposition in multiphase flow an unexplored subject. The focus of this thesis was to better understand hydrate deposition as a form of accumu- lation in pipelines. To incorporate the multiphase flow effect, hydrate formation experiments were carried out at varying water cut (WC) from 15 to 100 vol.%, liquid loading (LL) from 50 to 85 vol.%, mixture velocity (vmix) from 0.75 to 3 m/s, for three fluids systems (100 % WC, water in Conroe crude oil emulsions and King Ranch condensate + water) on the ExxonMobil flowloop (4 in. nominal size and 314 ft. long) at Friendswood, TX. For the 100 % WC flowloop tests, hydrate particle distribution transitions beyond a critical hydrate volume concentration, observed values were between 8.2 to 29.4 vol.%, causing a sudden increase in pressure drop (DP). A revised correlation of the transition as a function of Reynolds number and liquid loading was developed. For Conroe emulsions, DP starts increasing at higher hydrate concentrations than King Ranch condensate, many times at 10 vol.%. Experiments with King Ranch show higher relative DP (10 to 25) than Conroe (2 to 10) performed at the same vmix and LL. Cohesive force measurements between cyclopentane hydrate particles were reduced from a value of 3.32 mN/m to 1.26 mN/m when 6 wt.% Conroe was used and to 0.41 mN/m when 5 wt.% Caratinga crude oil was used; similar values were obtained when extracted asphaltenes were used. King Ranch condensate (11 wt.%) did not significantly change the
Computational modeling of multiphase flow and transport with Python
NASA Astrophysics Data System (ADS)
Kees, C. E.; Farthing, M. W.; Hines, A. M.; Howington, S. E.
2008-12-01
Computational flow and transport models play an important role in many hydrological investigations. Unfortunately, developing simulators that are efficient, widely applicable, and robust is a challenge. This is particularly true if the target applications include complications like multiple fluid phases with multiple components and material heterogeneity. To be specific, these problems often involve physical phenomena at multiple spatial and temporal scales. The appropriate formulation may evolve, and the systems of partial differential equations (PDEs) that arise from traditional formulations can be hard to solve efficiently at the desired resolution. Here, we discuss the development of a Python-based modeling framework for finite element approximation of systems of nonlinear PDEs with an emphasis on multiphase, multicomponent systems relevant for surface and subsurface hydrology. In addition to the overall approach and application, we consider the role of Python in managing code complexity, providing user interfaces, developing solution algorithms, and implementing numerical methods for execution on serial and parallel platforms. We evaluate trade-offs and design choices that follow from our use of Python versus other languages like C++ or Fortran and consider the impact on performance measured in terms of metrics like memory usage, execution time, and developer time.
Reduced Order Modeling Of Multiphase Flow In Fractured Formation
NASA Astrophysics Data System (ADS)
Pau, G. S. H.; Finsterle, S.; Zhang, Y.
2015-12-01
The success of a thermal water flood for enhanced oil recovery (EOR) depends on (1) accurate modeling of the nonlinear multiphase flow processes, and (2) detailed representation of the geometrical and hydraulic details of the fracture network. The resulting high-resolution numerical model is typically computationally demanding. Here, we compare two methods for approximating high-resolution solutions: the Proper Orthogonal Decomposition (POD) Mapping method, and the POD-Gaussian Process Regression (GPR) method. The POD Mapping method utilizes an efficient low-resolution model for prediction after training a reduced order model (ROM) using high- and low-resolution solutions. On the other hand, the POD-GPR method constructs a statistical ROM that directly maps the input parameters to the high-resolution solutions. The approximation error can be quantified either through an error estimator (POD Mapping method) or a variance estimate (POD-GPR method). Initial results indicate that the POD Mapping method is more accurate than the POD-GPR method when the same set of training data is used. This work was supported, in part, by the U.S. Dept. of Energy under Contract No. DE-AC02-05CH11231.
Multiphase flow modeling based on the hyperbolic thermodynamically compatible systems theory
Romenski, E.
2015-03-10
An application of the theory of thermodynamically compatible hyperbolic systems to design a multiphase compressible flow models is discussed. With the use of such approach the governing equations are derived from the first principles, formulated in a divergent form and can be transformed to a symmetric hyperbolic system in the sense of Friedrichs. A usage of the proposed approach is described for the development of multiphase compressible fluid models, including two-phase flow models.
Constitutive Relationships and Models in Continuum Theories of Multiphase Flows. [conferences
NASA Technical Reports Server (NTRS)
Decker, Rand (Editor)
1989-01-01
In April, 1989, a workshop on constitutive relationships and models in continuum theories of multiphase flows was held at NASA's Marshall Space Flight Center. Topics of constitutive relationships for the partial or per phase stresses, including the concept of solid phase pressure are discussed. Models used for the exchange of mass, momentum, and energy between the phases in a multiphase flow are also discussed. The program, abstracts, and texts of the presentations from the workshop are included.
Multiphase Flow Modeling - Validation and Application CRADA MC94-019, Final Report
Madhava Syamlal; Philip A. Nicoletti
1995-08-31
For the development and validation of multiphase flow modeling capability, a cooperative research and development agreement (CRADA) is in effect between Morgantown Energy Technology Center (METC) and Fluent Inc. To validate the Fluent multiphase model, several simulations were conducted at METC and the results were compared with the results of MFIX, a multiphase flow code developed at METC, and with experimental data. The results of these validation studies will be presented. In addition, the application of multiphase flow modeling will be illustrated by presenting the results of simulations of a filter back- flushing and a fluidized bed coal gasifier. These simulations were conducted only with MFIX, since certain features needed in these simulations will be available only in the next release of Fluent.
Motevalli, V. ); Marks, C.H. ); McCaffrey, B.J. )
1992-05-01
A technique utilizing thermocouple pairs as sensors to measure velocity and temperature profiles in low-speed, turbulent, nonisothermal flows is described here. In this technique, Cross-Correlation Velocimetry (CCV), the temperature-time records from a pair of thermocouples, one downstream of the other, are cross-correlated to determine the flow's preferred mean velocity while temperature is measured directly. The velocity measurements have undergone extensive verification using hotwire, pitot tube, and Laser-Doppler Velocimetry to determine the degree of confidence in this technique. This work demonstrates that the CCV technique is quite reliable and can measure the mean preferred component of the convective velocity with better than {plus minus}5 percent certainty. Application of this technique to the measurement of velocities in a ceiling jet induced by a fire plume is briefly presented here.
PREFACE: The 6th International Symposium on Measurement Techniques for Multiphase Flows
NASA Astrophysics Data System (ADS)
Okamoto, Koji; Murai, Yuichi
2009-02-01
Research on multi-phase flows is very important for industrial applications, including power stations, vehicles, engines, food processing, and so on. Also, from the environmental viewpoint, multi-phase flows need to be investigated to overcome global warming. Multi-phase flows originally have non-linear features because they are multi-phased. The interaction between the phases plays a very interesting role in the flows. The non-linear interaction causes the multi-phase flows to be very difficult to understand phenomena. The International Symposium on Measurement Techniques for Multi-phase Flows (ISMTMF) is a unique symposium. The target of the symposium is to exchange the state-of-the-art knowledge on the measurement techniques for non-linear multi-phase flows. Measurement technique is the key technology to understanding non-linear phenomena. The ISMTMF began in 1995 in Nanjing, China. The symposium has continuously been held every two or three years. The ISMTMF-2008 was held in Okinawa, Japan as the 6th symposium of ISMTMF on 15-17 December 2008. Okinawa has a long history as the Ryukyus Kingdom. China and Japan have had cultural and economic exchanges through Okinawa for more than 1000 years. Please enjoy Okinawa and experience its history to enhance our international communication. The present symposium was attended by 124 participants, the program included 107 contributions with 5 plenary lectures, 2 keynote lectures, and 100 oral regular paper presentations. The topics include, besides the ordinary measurement techniques for multiphase flows, acoustic and electric sensors, bubbles and microbubbles, computed tomography, gas-liquid interface, laser-imaging and PIV, oil/coal/drop and spray, solid and powder, spectral and multi-physics. This volume includes the presented papers at ISMTMF-2008. In addition to this volume, ten selected papers will be published in a special issue of Measurement Science and Technology. We would like to express special thanks to all
1982-10-01
both the fuel characteristics (gaseous fuels, boron-laden gaseous fuels, liquid fuels, and slurry fuels) and the flow field (axisymmetric-coaxial...D-A133 802 TURBULENT M IXING AND COMBUSTION OF MULTI-PHASE REACTING i/1 FLOWS I N RAMJET*RA U) NAVAL WEAPONS CENTER CHINA LAKE CA M J LEE ET AL. OCT...AFOSR MIPR 82-00010 .w~ TURBULENT MIXING AND COMBUSTION OF MULTI-PHASE REACTING FLOWS IN RAMJET AND DUCTED ROCKET ENVIRONMENT M. J. Lee K.C. Schadow
Multiphase flow modeling: A tool to aid in scale up of processes
NASA Astrophysics Data System (ADS)
Nandakumar, Krishnaswamy
2010-10-01
Multiphase flows are ubiquitous in chemical processing industries. Traditional approach has been to ignore fluid dynamical effects by invoking simplifying assumptions of homogeneity, but pay the price during scale-up of processes. The question that I address is ``Can Multiphase flow modeling come to our rescue in minimizing the need for pilot scale experiments?'' On the fundamental side, we have developed algorithms for direct numerical simulation of multiphase flows. For dispersed rigid particles as in suspension flows, sedimentation etc, we couple the Navier-Stokes equations with the rigid body dynamics in a rigorous fashion to track the particle motion in a fluid. For deformable bubbles/droplets dispersed in another fluid, we also track their motion in an Eulerian grid. The two classes of algorithms show great promise in attempting direct simulation of multiphase flows, from which we can extract statistically meaningful average behavior of suspensions or bubbly flows. On the other hand, there is an immediate need to study flow of complex fluids of industrial importance. Such cases include polymer blending processes, erosion in pipelines and process vessels and mass transfer in packed beds. In such studies we use volume averaged equations as the basis of flow models coupled with experimental validation of such predictions in an effort to develop scale invariant closure models that are needed as part of the volume averaged flow models.
Gel, Aytekin; Pannala, Sreekanth; Syamlal, M; O'Brien, T. J.; Gel, Esma
2007-01-01
Computational Fluid Dynamics (CFD) simulations have emerged as a powerful tool for understanding multiphase flows that occur in a wide range of engineering applications and natural processes. A multiphase CFD code called MFIX has been under development at the National Energy Technology Laboratory (NETL) since the 1980s for modeling multiphase flows that occur in fossil fuel reactors. CFD codes such as MFIX are equipped with a number of numerical algorithms to solve a large set of coupled partial differential equations over three-dimensional grids consisting of hundreds of thousands of cells on parallel computers. Currently, the next generation version of MFIX is under development with the goal of building a multiphase problem solving environment (PSE) that would facilitate the simple reuse of modern software components by application scientists. Several open-source frameworks were evaluated to identify the best-suited framework for the multiphase PSE. There are many requirements for the multiphase PSE, and each of these open-source frameworks offers functionalities that satisfy the requirements to varying extents. Therefore, matching the requirements and the functionalities is not a simple task and requires a systematic and quantitative decision making procedure. We present a multi-criteria decision making approach to determining a major system design decision, and demonstrate its application on the framework selection problem.
Numerical Simulation of the Multiphase Flow in the Rheinsahl-Heraeus (RH) System
NASA Astrophysics Data System (ADS)
Geng, Dian-Qiao; Lei, Hong; He, Ji-Cheng
2010-02-01
Knowledge of gas-liquid multiphase flow behavior in the Rheinsahl-Heraeus (RH) system is of great significance to clarify the circulation flow rate, decarburization, and inclusion removal with a reliable description. Thus, based on the separate model of injecting gas behavior, a novel mathematical model of multiphase flow has been developed to give the distribution of gas holdup in the RH system. The numerical results show that the predicted circulation flow rates, the predicted flow velocities, and the predicted mixing times agree with the measured results in a water model and that the predicted tracer concentration curve agrees with the results obtained in an actual RH system. With a lower lifting gas flow rate, the rising gas bubbles are concentrated near the wall; with a higher lifting gas flow rate, gas bubbles can reach the center of the up-snorkel. A critical lifting gas flow rate is used to obtain the maximum circulation flow rate.
NASA Astrophysics Data System (ADS)
Ullah, Saif; Ullah, Arshad; Iqbal, Mohsan
2015-12-01
This investigation deals with analytical solutions of thin film flow for withdrawal and drainage of an incompressible generalized Oldroyd-B fluid on a vertical cylinder under the influence of non-isothermal effects. The derived solutions are presented under series form for velocity profile, temperature distribution, volume flux, average film velocity and shear stress in both cases. These solutions satisfy both the governing equations and all imposed initial and boundary conditions. The corresponding exact solutions for Newtonian fluid are also obtained as a special case of our derived solutions. Moreover, solutions for generalized Maxwell fluid and Power Law model, performing the same motion, can be obtained as limiting cases of our general solutions. The influence of pertinent parameters on the fluid motion is also underlined by graphical illustration.
Impact of thermal radiation on MHD slip flow of a ferrofluid over a non-isothermal wedge
NASA Astrophysics Data System (ADS)
Rashad, A. M.
2017-01-01
This article is concerned with the problem of magnetohydrodynamic (MHD) mixed convection flow of Cobalt-kerosene ferrofluid adjacent a non-isothermal wedge under the influence of thermal radiation and partial slip. Such type of problems are posed by electric generators and biomedical enforcement. The governing equations are solved using the Thomas algorithm with finite-difference type and solutions for a wide range of magnet parameter are presented. It is found that local Nusselt number manifests a considerable diminishing for magnetic parameter and magnifies intensively in case of slip factor, thermal radiation and surface temperature parameters. Further, the skin friction coefficient visualizes a sufficient enhancement for the parameters thermal radiation, surface temperature and magnetic field, but a huge reduction is recorded by promoting the slip factor.
Paradigm for Subgrid Scale Closure Modeling in Multiphase Geophysical Flows
NASA Astrophysics Data System (ADS)
Calantoni, J.; Simeonov, J.; Penko, A. M.; Bateman, S. P.; Palmsten, M. L.; Holland, K.
2012-12-01
We present a new paradigm for modeling multiphase geophysical flows to produce highly accurate and highly efficient forecasting of the complexity of the natural environment across the full range of relevant length and time scales. The assumption that computing technology will never allow us to perform direct numerical simulations (DNS) of the natural environment often limits our ambition in forward thinking model development and produces only incremental improvements in the state-of-the-art technology. Regional and global forecasting models for earth, ocean, and atmospheric processes based on averaged equations (e.g. RANS) must advance beyond simple closures relations obtained for single-phase fluid turbulence (e.g., k-epsilon, k-omega, and Mellor-Yamada). We propose using a hierarchy of computationally intensive, high fidelity simulations to resolve subgrid processes across a range of cascading length and time scales in the model domain to generate numerical interpolations for the unresolved physical processes. Further, we believe that it is possible to use the cumulative results of these subgrid scale simulations to develop a Bayesian network, for example, which may eventually replace the computationally intensive simulations with a highly efficient probabilistic closure model for the unresolved physical processes. The success of our approach will be greatly enhanced through rigorous validation of our subgrid scale models using three-dimensional laboratory and field measurements of fluid-particle turbulence at the scales of interest. Recent advances in optical imaging techniques have made it possible to make highly resolved three-dimensional measurements of fluid-particle turbulent interactions in the laboratory with spatial and temporal resolutions at or near the Kolmogorov scales. Additional work must be done to transition these technologies for use in the field. As a pilot test case we introduce our new paradigm using a hierarchy of models we have developed
Modeling hyperelasticity in non-equilibrium multiphase flows
NASA Astrophysics Data System (ADS)
Hank, Sarah; Favrie, Nicolas; Massoni, Jacques
2017-02-01
The aim of this article is the construction of a multiphase hyperelastic model. The Eulerian formulation of the hyperelasticity represents a system of 14 conservative partial differential equations submitted to stationary differential constraints. This model is constructed with an elegant approach where the specific energy is given in separable form. The system admits 14 eigenvalues with 7 characteristic eigenfields. The associated Riemann problem is not easy to solve because of the presence of 7 waves. The shear waves are very diffusive when dealing with the full system. In this paper, we use a splitting approach to solve the whole system using 3 sub-systems. This method reduces the diffusion of the shear waves while allowing to use a classical approximate Riemann solver. The multiphase model is obtained by adapting the discrete equations method. This approach involves an additional equation governing the evolution of a phase function relative to the presence of a phase in a cell. The system is integrated over a multiphase volume control. Finally, each phase admits its own equations system composed of three sub-systems. One and three dimensional test cases are presented.
NASA Astrophysics Data System (ADS)
Juanes, R.; Jha, B.
2014-12-01
The coupling between subsurface flow and geomechanical deformation is critical in the assessment of the environmental impacts of groundwater use, underground liquid waste disposal, geologic storage of carbon dioxide, and exploitation of shale gas reserves. In particular, seismicity induced by fluid injection and withdrawal has emerged as a central element of the scientific discussion around subsurface technologies that tap into water and energy resources. Here we present a new computational approach to model coupled multiphase flow and geomechanics of faulted reservoirs. We represent faults as surfaces embedded in a three-dimensional medium by using zero-thickness interface elements to accurately model fault slip under dynamically evolving fluid pressure and fault strength. We incorporate the effect of fluid pressures from multiphase flow in the mechanical stability of faults and employ a rigorous formulation of nonlinear multiphase geomechanics that is capable of handling strong capillary effects. We develop a numerical simulation tool by coupling a multiphase flow simulator with a mechanics simulator, using the unconditionally stable fixed-stress scheme for the sequential solution of two-way coupling between flow and geomechanics. We validate our modeling approach using several synthetic, but realistic, test cases that illustrate the onset and evolution of earthquakes from fluid injection and withdrawal. We also present the application of the coupled flow-geomechanics simulation technology to the post mortem analysis of the Mw=5.1, May 2011 Lorca earthquake in south-east Spain, and assess the potential that the earthquake was induced by groundwater extraction.
Experimental and Computational Study of Multiphase Flow Hydrodynamics in 2D Trickle Bed Reactors
NASA Astrophysics Data System (ADS)
Nadeem, H.; Ben Salem, I.; Kurnia, J. C.; Rabbani, S.; Shamim, T.; Sassi, M.
2014-12-01
Trickle bed reactors are largely used in the refining processes. Co-current heavy oil and hydrogen gas flow downward on catalytic particle bed. Fine particles in the heavy oil and/or soot formed by the exothermic catalytic reactions deposit on the bed and clog the flow channels. This work is funded by the refining company of Abu Dhabi and aims at mitigating pressure buildup due to fine deposition in the TBR. In this work, we focus on meso-scale experimental and computational investigations of the interplay between flow regimes and the various parameters that affect them. A 2D experimental apparatus has been built to investigate the flow regimes with an average pore diameter close to the values encountered in trickle beds. A parametric study is done for the development of flow regimes and the transition between them when the geometry and arrangement of the particles within the porous medium are varied. Liquid and gas flow velocities have also been varied to capture the different flow regimes. Real time images of the multiphase flow are captured using a high speed camera, which were then used to characterize the transition between the different flow regimes. A diffused light source was used behind the 2D Trickle Bed Reactor to enhance visualizations. Experimental data shows very good agreement with the published literature. The computational study focuses on the hydrodynamics of multiphase flow and to identify the flow regime developed inside TBRs using the ANSYS Fluent Software package. Multiphase flow inside TBRs is investigated using the "discrete particle" approach together with Volume of Fluid (VoF) multiphase flow modeling. The effect of the bed particle diameter, spacing, and arrangement are presented that may be used to provide guidelines for designing trickle bed reactors.
R. A. Berry; R. Saurel; F. Petitpas; E. Daniel; O. Le Metayer; S. Gavrilyuk; N. Dovetta
2008-10-01
In nuclear reactor safety and optimization there are key issues that rely on in-depth understanding of basic two-phase flow phenomena with heat and mass transfer. Within the context of multiphase flows, two bubble-dynamic phenomena – boiling (heterogeneous) and flashing or cavitation (homogeneous boiling), with bubble collapse, are technologically very important to nuclear reactor systems. The main difference between boiling and flashing is that bubble growth (and collapse) in boiling is inhibited by limitations on the heat transfer at the interface, whereas bubble growth (and collapse) in flashing is limited primarily by inertial effects in the surrounding liquid. The flashing process tends to be far more explosive (and implosive), and is more violent and damaging (at least in the near term) than the bubble dynamics of boiling. However, other problematic phenomena, such as crud deposition, appear to be intimately connecting with the boiling process. In reality, these two processes share many details.
Horizontal multiphase flow correlations for large diameter pipes and high flow rates
Al-Ne`aim, S.A.; Aggour, M.A.; Al-Yousef, H.Y.
1995-10-01
The most widely used horizontal multiphase flow correlations have been tested against field measurements in order to determine the best correlation(s) for Saudi Arabian field conditions. A total of 450 field data points covering pipe sizes from 6 in. to 10 in., oil flow rates form 2200 to 25600 STB/D, water cut up to 60% and GOR up to 984 SCF/STB were used in this study. The standard Beggs and Brill correlation provided the best prediction considering all data combined. However, Dukler Case II correlation provided better prediction for the 6 in. pipes; and Beggs and Brill correlation was the best for the 8 in. and 10 in. pipes.
An experimental investigation of the multiphase flows in a photobioreactor for algae cultivation
NASA Astrophysics Data System (ADS)
Yang, Zifeng; Hu, Hui; Del Ninno, Matteo; Wen, Zhiyou
2011-11-01
Algal biomass is a promising feedstock for biofuels production, with photobioreactors being one of the major cultivation systems for algal cells. Light absorption, fluid dynamics, and algal metabolism are three key factors in determining the overall performance of a photobioreactor. The behavior of the multiphase flow (i.e., liquid phase - water, gas phase - CO2 and O2, and solid phase - algal cells) and turbulent mixing inside the reactor are the core connecting the three factors together. One of the major challenges in the optimal design of photobioreactors for algae cultivation is the lack of in-depth understanding of the characteristics of the multiphase flows and turbulent mixing. In this study, we present a comprehensive experimental study to investigate the effects of turbulent mixing in photobioreactors on the performance of a photobioreactor for algae cultivation. A high-resolution particle image velocity (PIV) system is used to achieve time-resolved, in-situ flow field measurements to quantify the turbulent mixing of the multiphase flows inside the bioreactor, while algal cultures are also grown in the same reactor with the same experimental settings. The mixing characteristics of the multiphase flow are correlated with the algal growth performance in the bioreactors to elucidate the underlying physics to explore/optimize design paradigms for the optimization of photobioreactor designs for algae cultivation.
Evans, R.D.; Civan, F.
1992-12-31
The objectives of this research are: Develop a proper theoretical model for characterizing non-Darcy multi-phase flow in petroleum bearing formations. Develop an experimental technique for measuring non-Darcy flow coefficients under multiphase flow at insitu reservoir conditions. Develop dimensional consistent correlations to express the non-Darcy flow coefficient as a function of rock and fluid properties for consolidated and unconsolidated porous media. The research accomplished during the period May 1991--May 1992 focused upon theoretical and experimental studies of multiphase non-Darcy flow in porous media.
NASA Astrophysics Data System (ADS)
De'Michieli Vitturi, M.; Neri, A.; La Spina, G.; Clarke, A. B.
2013-12-01
The study of deposits produced by explosive eruptions of Campi Flegrei and Vesuvio suggests that important phases of these events have been characterized by a significant interaction of magma with external water. Despite that, the influence of external water on eruption dynamics and its potential hazard have not been studied in depth. In this work we adopted a 1D non-isothermal multi-phase flow model describing the dynamics of magma ascent inside a volcanic conduit. The new model is based on the theory of thermodynamically compatible systems that allows formulation of the governing transport equations as a hyperbolic system of partial differential equations in conservative form. The model represents a significant advance with respect to previous simplified descriptions of the magma ascent dynamics in that it: 1) is capable of treating both dilute and dense flow regimes; 2) describes flow above and below the fragmentation level in a coupled and consistent way; 3) quantifies the interaction between the two phases forming the magmatic mixture (both in the bubbly-flow and gas-particle regimes) with two distinct pressures and velocities; 4) accounts for disequilibrium crystallization and degassing; 5) treats the dissolved water as a separate phase with its own equation of state and; 6) allows for instantaneous or delayed vaporization of the external water from an aquifer. Here we investigate, through a sensitivity analysis, the role of different system parameters, in particular those related to the inflow of non-magmatic volatiles, in controlling vent conditions and eruptive style for conditions representative of Plinian (e.g. Agnano Monte Spina) eruptions at Campi Flegrei. Model results show that mass flux at the vent is primarily controlled by the quantity of engulfed external water, when this inflow occurs below the fragmentation level, whereas small changes in mass flux are produced when the interaction occurs above the fragmentation level. In particular it is worth
NASA Astrophysics Data System (ADS)
Montessori, A.; Prestininzi, P.; La Rocca, M.; Succi, S.
2017-09-01
We present an entropic version of the lattice Boltzmann pseudo-potential approach for the simulation of multiphase flows. The method is shown to correctly simulate the dynamics of impinging droplets on hydrophobic surfaces and head-on and grazing collisions between droplets, at Weber and Reynolds number regimes not accessible to previous pseudo-potential methods at comparable resolution.
NASA Astrophysics Data System (ADS)
Moortgat, J.; Amooie, M. A.; Soltanian, M. R.
2016-12-01
Problems in hydrogeology and hydrocarbon reservoirs generally involve the transport of solutes in a single solvent phase (e.g., contaminants or dissolved injection gas), or the flow of multiple phases that may or may not exchange mass (e.g., brine, NAPL, oil, gas). Often, flow is viscously and gravitationally unstable due to mobility and density contrasts within a phase or between phases. Such instabilities have been studied in detail for single-phase incompressible fluids and for two-phase immiscible flow, but to a lesser extent for multiphase multicomponent compressible flow. The latter is the subject of this presentation. Robust phase stability analyses and phase split calculations, based on equations of state, determine the mass exchange between phases and the resulting phase behavior, i.e., phase densities, viscosities, and volumes. Higher-order finite element methods and fine grids are used to capture the small-scale onset of flow instabilities. A full matrix of composition dependent coefficients is considered for each Fickian diffusive phase flux. Formation heterogeneity can have a profound impact and is represented by realistic geostatistical models. Qualitatively, fingering in multiphase compositional flow is different from single-phase problems because 1) phase mobilities depend on rock wettability through relative permeabilities, and 2) the initial density and viscosity ratios between phases may change due to species transfer. To quantify mixing rates in different flow regimes and for varying degrees of miscibility and medium heterogeneities, we define the spatial variance, scalar dissipation rate, dilution index, skewness, and kurtosis of the molar density of introduced species. Molar densities, unlike compositions, include compressibility effects. The temporal evolution of these measures shows that, while transport at the small-scale (cm) is described by the classical advection-diffusion-dispersion relations, scaling at the macro-scale (> 10 m) shows
NASA Technical Reports Server (NTRS)
Singh, Bhim S.
2003-01-01
NASA is preparing to undertake science-driven exploration missions. The NASA Exploration Team's vision is a cascade of stepping stones. The stepping-stone will build the technical capabilities needed for each step with multi-use technologies and capabilities. An Agency-wide technology investment and development program is necessary to implement the vision. The NASA Exploration Team has identified a number of areas where significant advances are needed to overcome all engineering and medical barriers to the expansion of human space exploration beyond low-Earth orbit. Closed-loop life support systems and advanced propulsion and power technologies are among the areas requiring significant advances from the current state-of-the-art. Studies conducted by the National Academy of Science's National Research Council and Workshops organized by NASA have shown that multiphase flow and phase change play a crucial role in many of these advanced technology concepts. Lack of understanding of multiphase flow, phase change, and interfacial phenomena in the microgravity environment has been a major hurdle. An understanding of multiphase flow and phase change in microgravity is, therefore, critical to advancing many technologies needed. Recognizing this, the Office of Biological and Physical Research (OBPR) has initiated a strategic research thrust to augment the ongoing fundamental research in fluid physics and transport phenomena discipline with research especially aimed at understanding key multiphase flow related issues in propulsion, power, thermal control, and closed-loop advanced life support systems. A plan for integrated theoretical and experimental research that has the highest probability of providing data, predictive tools, and models needed by the systems developers to incorporate highly promising multiphase-based technologies is currently in preparation. This plan is being developed with inputs from scientific community, NASA mission planners and industry personnel
Some Specific CASL Requirements for Advanced Multiphase Flow Simulation of Light Water Reactors
R. A. Berry
2010-11-01
Because of the diversity of physical phenomena occuring in boiling, flashing, and bubble collapse, and of the length and time scales of LWR systems, it is imperative that the models have the following features: • Both vapor and liquid phases (and noncondensible phases, if present) must be treated as compressible. • Models must be mathematically and numerically well-posed. • The models methodology must be multi-scale. A fundamental derivation of the multiphase governing equation system, that should be used as a basis for advanced multiphase modeling in LWR coolant systems, is given in the Appendix using the ensemble averaging method. The remainder of this work focuses specifically on the compressible, well-posed, and multi-scale requirements of advanced simulation methods for these LWR coolant systems, because without these are the most fundamental aspects, without which widespread advancement cannot be claimed. Because of the expense of developing multiple special-purpose codes and the inherent inability to couple information from the multiple, separate length- and time-scales, efforts within CASL should be focused toward development of a multi-scale approaches to solve those multiphase flow problems relevant to LWR design and safety analysis. Efforts should be aimed at developing well-designed unified physical/mathematical and high-resolution numerical models for compressible, all-speed multiphase flows spanning: (1) Well-posed general mixture level (true multiphase) models for fast transient situations and safety analysis, (2) DNS (Direct Numerical Simulation)-like models to resolve interface level phenmena like flashing and boiling flows, and critical heat flux determination (necessarily including conjugate heat transfer), and (3) Multi-scale methods to resolve both (1) and (2) automatically, depending upon specified mesh resolution, and to couple different flow models (single-phase, multiphase with several velocities and pressures, multiphase with single
Modelling of fluid-structure interaction with multiphase viscous flows using an immersed-body method
NASA Astrophysics Data System (ADS)
Yang, P.; Xiang, J.; Fang, F.; Pavlidis, D.; Latham, J.-P.; Pain, C. C.
2016-09-01
An immersed-body method is developed here to model fluid-structure interaction for multiphase viscous flows. It does this by coupling a finite element multiphase fluid model and a combined finite-discrete element solid model. A coupling term containing the fluid stresses is introduced within a thin shell mesh surrounding the solid surface. The thin shell mesh acts as a numerical delta function in order to help apply the solid-fluid boundary conditions. When used with an advanced interface capturing method, the immersed-body method has the capability to solve problems with fluid-solid interfaces in the presence of multiphase fluid-fluid interfaces. Importantly, the solid-fluid coupling terms are treated implicitly to enable larger time steps to be used. This two-way coupling method has been validated by three numerical test cases: a free falling cylinder in a fluid at rest, elastic membrane and a collapsing column of water moving an initially stationary solid square. A fourth simulation example is of a water-air interface with a floating solid square being moved around by complex hydrodynamic flows including wave breaking. The results show that the immersed-body method is an effective approach for two-way solid-fluid coupling in multiphase viscous flows.
NASA Astrophysics Data System (ADS)
Forster, Christopher J.; Glezer, Ari; Smith, Marc K.
2012-11-01
Accurate 3D boiling simulations often use excessive computational resources - in many cases taking several weeks or months to solve. To alleviate this problem, a parallelized, multiphase fluid solver using a particle level-set (PLS) method was implemented. The PLS method offers increased accuracy in interface location tracking, the ability to capture sharp interfacial features with minimal numerical diffusion, and significantly improved mass conservation. The independent nature of the particles is amenable to parallelization using graphics processing unit (GPU) and multi-CPU implementations, since each particle can be updated simultaneously. The present work will explore the speedup provided by GPU and multi-CPU implementations and determine the effectiveness of PLS for accurately capturing sharp interfacial features. The numerical model will be validated by comparison to experimental data for vibration-induced droplet atomization. Further development will add the physics of boiling in the presence of acoustic fields. It is hoped that the resultant boiling simulations will be sufficiently improved to allow for optimization studies of various boiling configurations to be performed in a timely manner. Supported by ONR.
Experimental and computational analysis of pressure response in a multiphase flow loop
NASA Astrophysics Data System (ADS)
Morshed, Munzarin; Amin, Al; Rahman, Mohammad Azizur; Imtiaz, Syed
2016-07-01
The characteristics of multiphase fluid flow in pipes are useful to understand fluid mechanics encountered in the oil and gas industries. In the present day oil and gas exploration is successively inducing subsea operation in the deep sea and arctic condition. During the transport of petroleum products, understanding the fluid dynamics inside the pipe network is important for flow assurance. In this case the information regarding static and dynamic pressure response, pressure loss, optimum flow rate, pipe diameter etc. are the important parameter for flow assurance. The principal aim of this research is to represents computational analysis and experimental analysis of multi-phase (L/G) in a pipe network. This computational study considers a two-phase fluid flow through a horizontal flow loop with at different Reynolds number in order to determine the pressure distribution, frictional pressure loss profiles by volume of fluid (VOF) method. However, numerical simulations are validated with the experimental data. The experiment is conducted in 76.20 mm ID transparent circular pipe using water and air in the flow loop. Static pressure transducers are used to measure local pressure response in multiphase pipeline.
NASA Astrophysics Data System (ADS)
Cueto-Felgueroso, L.; Fu, X.; Juanes, R.
2016-12-01
The description of multicomponent flows with complex phase behavior remains an open challenge in pore-scale modeling. Darcy-scale general purpose simulators assume local thermodynamic equilibrium, and perform equation-of-state-based calculations to make phase equilibrium predictions; that is, to determine the phase volume fractions and their compositions from overall component mole fractions. What remains unclear is whether the thermodynamic equilibrium assumption is valid given the flow conditions, complex structure of the pore space and characteristic time scales for flow. Diffuse-interface theories of multiphase flow have recently emerged as promising tools to understand and simulate complex processes involving the simultaneous flow of two or more immiscible fluid phases. The common goal in these approaches is to formulate thermodynamically consistent stress tensors and mesoscale balance laws, including the impact of surface tension on the momentum balance, as well as properly tracking interfacial dynamics and mass transfer. We propose a phase-field model of multiphase, multicomponent flow, which we use to address the following research questions: What is the impact of the wetting conditions at the pore scale on upscaled descriptions of multiphase flow? What is the impact of the displacement dynamics, pore space structure and wetting conditions on the phase behavior of multicomponent mixtures? We finally investigate upscaling procedures to incorporate non-equilibrium phase behavior at the continuum scale.
O`Hern, T.J.; Torczynski, J.R.; Shagam, R.N.; Blanchat, T.K.; Chu, T.Y.; Tassin-Leger, A.L.; Henderson, J.A.
1997-01-01
This report summarizes the work performed under the Sandia Laboratory Directed Research and Development (LDRD) project ``Optical Diagnostics for Turbulent and Multiphase Flows.`` Advanced optical diagnostics have been investigated and developed for flow field measurements, including capabilities for measurement in turbulent, multiphase, and heated flows. Particle Image Velocimetry (PIV) includes several techniques for measurement of instantaneous flow field velocities and associated turbulence quantities. Nonlinear photorefractive optical materials have been investigated for the possibility of measuring turbulence quantities (turbulent spectrum) more directly. The two-dimensional PIV techniques developed under this LDRD were shown to work well, and were compared with more traditional laser Doppler velocimetry (LDV). Three-dimensional PIV techniques were developed and tested, but due to several experimental difficulties were not as successful. The photorefractive techniques were tested, and both potential capabilities and possible problem areas were elucidated.
Preface: Recent Advances in Modeling Multiphase Flow and Transportwith the TOUGH Family of Codes
Liu, Hui-Hai; Illangasekare, Tissa H.
2007-11-15
A symposium on research carried out using the TOUGH family of numerical codes was held from May 15 to 17, 2006, at the Lawrence Berkeley National Laboratory. This special issue of the 'Vadose Zone Journal' contains revised and expanded versions of a selected set of papers presented at this symposium (TOUGH Symposium 2006; http://esd.lbl.gov/TOUGHsymposium), all of which focus on multiphase flow, including flow in the vadose zone.
Proper Orthogonal Decomposition on Experimental Multi-phase Flow in a Pipe
NASA Astrophysics Data System (ADS)
Viggiano, Bianca; Tutkun, Murat; Cal, Raúl Bayoán
2016-11-01
Multi-phase flow in a 10 cm diameter pipe is analyzed using proper orthogonal decomposition. The data were obtained using X-ray computed tomography in the Well Flow Loop at the Institute for Energy Technology in Kjeller, Norway. The system consists of two sources and two detectors; one camera records the vertical beams and one camera records the horizontal beams. The X-ray system allows measurement of phase holdup, cross-sectional phase distributions and gas-liquid interface characteristics within the pipe. The mathematical framework in the context of multi-phase flows is developed. Phase fractions of a two-phase (gas-liquid) flow are analyzed and a reduced order description of the flow is generated. Experimental data deepens the complexity of the analysis with limited known quantities for reconstruction. Comparison between the reconstructed fields and the full data set allows observation of the important features. The mathematical description obtained from the decomposition will deepen the understanding of multi-phase flow characteristics and is applicable to fluidized beds, hydroelectric power and nuclear processes to name a few.
NASA Astrophysics Data System (ADS)
Meng, Yiqing; Lucas, Gary P.
2017-05-01
This paper presents the design and implementation of an inductive flow tomography (IFT) system, employing a multi-electrode electromagnetic flow meter (EMFM) and novel reconstruction techniques, for measuring the local water velocity distribution in water continuous single and multiphase flows. A series of experiments were carried out in vertical-upward and upward-inclined single phase water flows and ‘water continuous’ gas-water and oil-gas-water flows in which the velocity profiles ranged from axisymmetric (single phase and vertical-upward multiphase flows) to highly asymmetric (upward-inclined multiphase flows). Using potential difference measurements obtained from the electrode array of the EMFM, local axial velocity distributions of the continuous water phase were reconstructed using two different IFT reconstruction algorithms denoted RT#1, which assumes that the overall water velocity profile comprises the sum of a series of polynomial velocity components, and RT#2, which is similar to RT#1 but which assumes that the zero’th order velocity component may be replaced by an axisymmetric ‘power law’ velocity distribution. During each experiment, measurement of the local water volume fraction distribution was also made using the well-established technique of electrical resistance tomography (ERT). By integrating the product of the local axial water velocity and the local water volume fraction in the cross section an estimate of the water volumetric flow rate was made which was compared with a reference measurement of the water volumetric flow rate. In vertical upward flows RT#2 was found to give rise to water velocity profiles which are consistent with the previous literature although the profiles obtained in the multiphase flows had relatively higher central velocity peaks than was observed for the single phase profiles. This observation was almost certainly a result of the transfer of axial momentum from the less dense dispersed phases to the water
Tang, Hu; Chen, Jing-Bin; Wang, Yan; Xu, Jia-Zhuang; Hsiao, Benjamin S; Zhong, Gan-Ji; Li, Zhong-Ming
2012-11-12
The effect of shear flow and carbon nanotubes (CNTs), separately and together, on nonisothermal crystallization of poly(lactic acid) (PLA) at a relatively large cooling rate was investigated by time-resolved synchrotron wide-angle X-ray diffraction (WAXD) and polarized optical microscope (POM). Unlike flexible-chain polymers such as polyethylene, and so on, whose crystallization kinetics are significantly accelerated by shear flow, neat PLA only exhibits an increase in onset crystallization temperature after experiencing a shear rate of 30 s(-1), whereas both the nucleation density and ultimate crystallinity are not changed too much because PLA chains are intrinsically semirigid and have relatively short length. The breaking down of shear-induced nuclei into point-like precursors (or random coil) probably becomes increasingly active after shear stops. Very interestingly, a marked synergistic effect of shear flow and CNTs exists in enhancing crystallization of PLA, leading to a remarkable increase of nucleation density in PLA/CNT nanocomposite. This synergistic effect is ascribed to extra nuclei, which are formed by the anchoring effect of CNTs' surfaces on the shear-induced nuclei and suppressing effect of CNTs on the relaxation of the shear-induced nuclei. Further, this interesting finding was deliberately applied to injection molding, aiming to improve the crystallinity of PLA products. As expected, a remarkable high crystallinity in the injection-molded PLA part has been achieved successfully by the combination of shear flow and CNTs, which offers a new method to fabricate PLA products with high crystallinity for specific applications.
Development of multiphase CFD flow solver in OpenFOAM
NASA Astrophysics Data System (ADS)
Rollins, Chad; Luo, Hong; Dinh, Nam
2016-11-01
We are developing a pressure-based multiphase (Eulerian) CFD solver using OpenFOAM with Reynolds-averaged turbulence stress modeling. Our goal is the evaluation and improvement of the current OpenFOAM two-fluid (Eulerian) solver in boiling channels with a motivation to produce a more consistent modeling and numerics treatment. The difficulty lies in the prescense of the many forces and models that are tightly non-linearly coupled in the solver. Therefore, the solver platform will allow not only the modeling, but the tracking as well, of the effects of the individual components (various interfacial forces/heat transfer models) and their interactions. This is essential for the development of a robust and efficient solution method. There has be a lot of work already performed in related areas that generally indicates a lack of robustness of the solution methods. The objective here is therefore to identify and develop remedies for numerical/modeling issues through a systematic approach to verification and validation, taking advantage of the open source nature of OpenFOAM. The presentation will discuss major findings, and suggest strategies for robust and consistent modeling (probably, a more consistent treatment of heat transfer models with two-fluid models in the near-wall cells).
An SPH model for multiphase flows with complex interfaces and large density differences
NASA Astrophysics Data System (ADS)
Chen, Z.; Zong, Z.; Liu, M. B.; Zou, L.; Li, H. T.; Shu, C.
2015-02-01
In this paper, an improved SPH model for multiphase flows with complex interfaces and large density differences is developed. The multiphase SPH model is based on the assumption of pressure continuity over the interfaces and avoids directly using the information of neighboring particles' densities or masses in solving governing equations. In order to improve computational accuracy and to obtain smooth pressure fields, a corrected density re-initialization is applied. A coupled dynamic solid boundary treatment (SBT) is implemented both to reduce numerical oscillations and to prevent unphysical particle penetration in the boundary area. The density correction and coupled dynamics SBT algorithms are modified to adapt to the density discontinuity on fluid interfaces in multiphase simulation. A cut-off value of the particle density is set to avoid negative pressure, which can lead to severe numerical difficulties and may even terminate the simulations. Three representative numerical examples, including a Rayleigh-Taylor instability test, a non-Boussinesq problem and a dam breaking simulation, are presented and compared with analytical results or experimental data. It is demonstrated that the present SPH model is capable of modeling complex multiphase flows with large interfacial deformations and density ratios.
Nonequilibrium Physics and Phase-Field Modeling of Multiphase Flow in Porous Media
Juanes, Ruben
2016-09-01
The overarching goal of this project was to develop a new continuum theory of multiphase flow in porous media. The theory follows a phase-field modeling approach, and therefore has a sound thermodynamical basis. It is a phenomenological theory in the sense that its formulation is driven by macroscopic phenomena, such as viscous instabilities during multifluid displacement. The research agenda was organized around a set of hypothesis on hitherto unexplained behavior of multiphase flow. All these hypothesis are nontrivial, and testable. Indeed, a central aspect of the project was testing each hypothesis by means of carefully-designed laboratory experiments, therefore probing the validity of the proposed theory. The proposed research places an emphasis on the fundamentals of flow physics, but is motivated by important energy-driven applications in earth sciences, as well as microfluidic technology.
Modeling and simulation challenges in Eulerian-Lagrangian computations of multiphase flows
NASA Astrophysics Data System (ADS)
Diggs, Angela; Balachandar, S.
2017-01-01
The present work addresses the numerical methods required for particle-gas and particle-particle interactions in Eulerian-Lagrangian simulations of multiphase flow. Local volume fraction as seen by each particle is the quantity of foremost importance in modeling and evaluating such interactions. We consider a general multiphase flow with a distribution of particles inside a fluid flow discretized on an Eulerian grid. Particle volume fraction is needed both as a Lagrangian quantity associated with each particle and also as an Eulerian quantity associated with the flow. In Grid-Based (GB) methods, the volume fraction is first obtained within each cell as an Eulerian quantity and then interpolated to each particle. In Particle-Based (PB) methods, the particle volume fraction is obtained at each particle and then projected onto the Eulerian grid. Traditionally, GB methods are used in multiphase flow, but sub-grid resolution can be obtained through use of PB methods. By evaluating the total error and its components we compare the performance of GB and PB methods. The standard von Neumann error analysis technique has been adapted for rigorous evaluation of rate of convergence. The methods presented can be extended to obtain accurate field representations of other Lagrangian quantities.
NASA Astrophysics Data System (ADS)
Hao, Y.; Settgast, R. R.; Fu, P.; Tompson, A. F. B.; Morris, J.; Ryerson, F. J.
2016-12-01
It has long been recognized that multiphase flow and transport in fractured porous media is very important for various subsurface applications. Hydrocarbon fluid flow and production from hydraulically fractured shale reservoirs is an important and complicated example of multiphase flow in fractured formations. The combination of horizontal drilling and hydraulic fracturing is able to create extensive fracture networks in low permeability shale rocks, leading to increased formation permeability and enhanced hydrocarbon production. However, unconventional wells experience a much faster production decline than conventional hydrocarbon recovery. Maintaining sustainable and economically viable shale gas/oil production requires additional wells and re-fracturing. Excessive fracturing fluid loss during hydraulic fracturing operations may also drive up operation costs and raise potential environmental concerns. Understanding and modeling processes that contribute to decreasing productivity and fracturing fluid loss represent a critical component for unconventional hydrocarbon recovery analysis. Towards this effort we develop a discrete fracture model (DFM) in GEOS (LLNL multi-physics computational code) to simulate multiphase flow and transfer in hydraulically fractured reservoirs. The DFM model is able to explicitly account for both individual fractures and their surrounding rocks, therefore allowing for an accurate prediction of impacts of fracture-matrix interactions on hydrocarbon production. We apply the DFM model to simulate three-phase (water, oil, and gas) flow behaviors in fractured shale rocks as a result of different hydraulic stimulation scenarios. Numerical results show that multiphase flow behaviors at the fracture-matrix interface play a major role in controlling both hydrocarbon production and fracturing fluid recovery rates. The DFM model developed in this study will be coupled with the existing hydro-fracture model to provide a fully integrated
The application of single particle hydrodynamics in continuum models of multiphase flow
NASA Technical Reports Server (NTRS)
Decker, Rand
1988-01-01
A review of the application of single particle hydrodynamics in models for the exchange of interphase momentum in continuum models of multiphase flow is presented. Considered are the equations of motion for a laminar, mechanical two phase flow. Inherent to this theory is a model for the interphase exchange of momentum due to drag between the dispersed particulate and continuous fluid phases. In addition, applications of two phase flow theory to de-mixing flows require the modeling of interphase momentum exchange due to lift forces. The applications of single particle analysis in deriving models for drag and lift are examined.
Multiphase flow and transport through fractured heterogeneous porous media.
Reynolds, David A; Kueper, Bernard H
2004-07-01
The migration of Dense, Non-Aqueous Phase Liquid (DNAPL) and dissolved phase contamination through a fractured heterogeneous porous medium has been investigated through the use of a multiphase compositional model. The sensitivity of the timescales of migration and the distribution of contaminant in the subsurface to the mean permeability, the variance of the permeability, and the degree of fracturing of the domain were examined. It was found that increasing the mean permeability of the domain allowed the DNAPL to penetrate deeper into the subsurface, while decreasing the mean permeability caused the DNAPL to pool at shallower depths. The presence of fractures within the system was found to control the infiltration only in the most fractured domain. Moment analysis of the nonwetting phase showed that large-scale movement had ceased after approximately 9 years (maximum duration of the source-on condition was approximately 4.5 years). This tended to be due to a redistribution of the DNAPL towards a residual configuration, as was evidenced by the gradual trending of average nonwetting phase saturations within the domain to a static value. The dissolved phase plume was found to migrate at essentially the same rate as the nonwetting phase, due to the reduced relative permeability of lenses containing DNAPL, and due to diffusive losses of mass to the matrix of fractured clay and silty-clay lenses. Some exceptions to this were found when the DNAPL could not overcome the displacement pressure of a lens, and could not by-pass the lens due to the lack of available driving force after the source had been shut off. Copyright 2003 Elsevier B.V.
Advanced Multi-Phase Flow CFD Model Development for Solid Rocket Motor Flowfield Analysis
NASA Technical Reports Server (NTRS)
Liaw, Paul; Chen, Y. S.; Shang, H. M.; Doran, Denise
1993-01-01
It is known that the simulations of solid rocket motor internal flow field with AL-based propellants require complex multi-phase turbulent flow model. The objective of this study is to develop an advanced particulate multi-phase flow model which includes the effects of particle dynamics, chemical reaction and hot gas flow turbulence. The inclusion of particle agglomeration, particle/gas reaction and mass transfer, particle collision, coalescence and breakup mechanisms in modeling the particle dynamics will allow the proposed model to realistically simulate the flowfield inside a solid rocket motor. The Finite Difference Navier-Stokes numerical code FDNS is used to simulate the steady-state multi-phase particulate flow field for a 3-zone 2-D axisymmetric ASRM model and a 6-zone 3-D ASRM model at launch conditions. The 2-D model includes aft-end cavity and submerged nozzle. The 3-D model represents the whole ASRM geometry, including additional grain port area in the gas cavity and two inhibitors. FDNS is a pressure based finite difference Navier-Stokes flow solver with time-accurate adaptive second-order upwind schemes, standard and extended k-epsilon models with compressibility corrections, multi zone body-fitted formulations, and turbulence particle interaction model. Eulerian/Lagrangian multi-phase solution method is applied for multi-zone mesh. To simulate the chemical reaction, penalty function corrected efficient finite-rate chemistry integration method is used in FDNS. For the AL particle combustion rate, the Hermsen correlation is employed. To simulate the turbulent dispersion of particles, the Gaussian probability distribution with standard deviation equal to (2k/3)(exp 1/2) is used for the random turbulent velocity components. The computational results reveal that the flow field near the juncture of aft-end cavity and the submerged nozzle is very complex. The effects of the turbulent particles affect the flow field significantly and provide better
Noninvasive characterization of a flowing multiphase fluid using ultrasonic interferometry
Sinha, Dipen N.
2003-11-11
An apparatus for noninvasively monitoring the flow and/or the composition of a flowing liquid using ultrasound is described. The position of the resonance peaks for a fluid excited by a swept-frequency ultrasonic signal have been found to change frequency both in response to a change in composition and in response to a change in the flow velocity thereof. Additionally, the distance between successive resonance peaks does not change as a function of flow, but rather in response to a change in composition. Thus, a measurement of both parameters (resonance position and resonance spacing), once calibrated, permits the simultaneous determination of flow rate and composition using the apparatus and method of the present invention.
Noninvasive Characterization Of A Flowing Multiphase Fluid Using Ultrasonic Interferometry
Sinha, Dipen N.
2005-05-10
An apparatus for noninvasively monitoring the flow and/or the composition of a flowing liquid using ultrasound is described. The position of the resonance peaks for a fluid excited by a swept-frequency ultrasonic signal have been found to change frequency both in response to a change in composition and in response to a change in the flow velocity thereof. Additionally, the distance between successive resonance peaks does not change as a function of flow, but rather in response to a change in composition. Thus, a measurement of both parameters (resonance position and resonance spacing), once calibrated, permits the simultaneous determination of flow rate and composition using the apparatus and method of the present invention.
Noninvasive characterization of a flowing multiphase fluid using ultrasonic interferometry
Sinha, Dipen N.
2007-06-12
An apparatus for noninvasively monitoring the flow and/or the composition of a flowing liquid using ultrasound is described. The position of the resonance peaks for a fluid excited by a swept-frequency ultrasonic signal have been found to change frequency both in response to a change in composition and in response to a change in the flow velocity thereof. Additionally, the distance between successive resonance peaks does not change as a function of flow, but rather in response to a change in composition. Thus, a measurement of both parameters (resonance position and resonance spacing), once calibrated, permits the simultaneous determination of flow rate and composition using the apparatus and method of the present invention.
Multiphase flow modeling of landslide induced impulse wave by VOF method
NASA Astrophysics Data System (ADS)
Paik, J.; Shin, C.
2015-12-01
Numerical simulations of impulse waves induced by landslides are carried out using a multiphase modeling approach. The three-dimensional filtered Navier-Stokes equations are used for reproduces the propagation and interaction of Newtonian water wave and non-Newtonian debris flow along the bottom. A multiphase volume of fluid (VOF) method is employed for tracking of fluid interfaces. The governing equations are solved by a second-order-accurate in space and time, finite volume methods and the no-slip conditions are applied for all solid wall. The turbulent shear stress is calculated the Smagorinsky model and the non-Newtonian behavior of debris flow is computed by the Hershel-Bulkley fluid model. The multiphase flow model is applied to reproduce the laboratory measurements of Fritz (Pure Appl. Geophys., 166, 153, 2009) who experimentally investigated the propagation of impulse wave induced by the 1958 Lituya Bay Landslide. The numerical results shows that the proper treatment of the non-Newtonian behavior of debris flow is essential to reproduce its head speed and shape which control the deformation and propagation of the resulting impulse wave.
Multiple-relaxation-time lattice-Boltzmann model for multiphase flow.
McCracken, Michael E; Abraham, John
2005-03-01
The lattice-Boltzmann method has shown promise in simulating multiphase flows. However, when using the Bhatnagar-Gross-Krook (BGK) collision operator and polynomial equilibria, numerical stability problems have been shown to occur as the relaxation time is decreased. Some authors have suggested the use of multiple-relaxation-time (MRT) models in lieu of the BGK collision operator, which employs a single relaxation time, to enhance numerical stability. In this paper, a MRT lattice-Boltzmann model for multiphase flow is developed and evaluated for accuracy in several test problems including oscillating liquid cylinders and capillary waves. It is shown that the MRT model is able to achieve numerically stable results at lower viscosities relative to the corresponding BGK model.
Experimental and Numerical Study of Pore-Scale Multi-Phase Flow Dynamics
NASA Astrophysics Data System (ADS)
Tartakovsky, A. M.; Ling, B.; Oostrom, M.; Bao, J.; Kim, K.; Trask, N.; Battiato, I.
2015-12-01
Understanding multiphase fluid flow is critical for many applications, including CO2 sequestration, bioremediation, and oil recovery. Micro-fluidic experiments and pore-scale simulations become important tools in studying multiphase flow in porous media. At the same time, many pore-scale numerical models lack rigorous validation and verification, and micro-fluidic experiments are hard to reproduce due to physical instabilities and challenges in precisely controlling the experiments. We performed a set of microcell experiments and determined conditions necessary to obtain reproducible pore-scale evolution of the fluid-fluid interfaces during both infiltration and drainage phases. Next, we modeled the experiments using Finite Volume and Smoothed Particle Hydrodynamics codes. The point-by-point comparison of the experimental results and numerical simulations revealed advantages and disadvantages of these two methods in capturing the overall behavior and pore-scale phenomena, including residual saturations, formation of thin films, fluid bridges and various fluid trapping mechanisms.
Laboratory setup and results of experiments on two-dimensional multiphase flow in porous media
McBride, J.F. ); Graham, D.N.; Schiegg, H.O. )
1990-10-01
In the event of an accidental release into earth's subsurface of an immiscible organic liquid, such as a petroleum hydrocarbon or chlorinated organic solvent, the spatial and temporal distribution of the organic liquid is of great interest when considering efforts to prevent groundwater contamination or restore contaminated groundwater. An accurate prediction of immiscible organic liquid migration requires the incorporation of relevant physical principles in models of multiphase flow in porous media; these physical principles must be determined from physical experiments. This report presents a series of such experiments performed during the 1970s at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland. The experiments were designed to study the transient, two-dimensional displacement of three immiscible fluids in a porous medium. This experimental study appears to be the most detailed published to date. The data obtained from these experiments are suitable for the validation and test calibration of multiphase flow codes. 73 refs., 140 figs.
Modelling of multiphase flow in ironmaking blast furnace
Dong, X.F.; Yu, A.B.; Burgess, J.M.; Pinson, D.; Chew, S.; Zulli, P.
2009-01-15
A mathematical model for the four-phase (gas, powder, liquid, and solids) flow in a two-dimensional ironmaking blast furnace is presented by extending the existing two-fluid flow models. The model describes the motion of gas, solid, and powder phases, based on the continuum approach, and implements the so-called force balance model for the flow of liquids, such as metal and slag in a blast furnace. The model results demonstrate a solid stagnant zone and dense powder hold-up region, as well as a dense liquid flow region that exists in the lower part of a blast furnace, which are consistent with the experimental observations reported in the literature. The simulation is extended to investigate the effects of packing properties and operational conditions on the flow and the volume fraction distribution of each phase in a blast furnace. It is found that solid movement has a significant effect on powder holdup distribution. Small solid particles and low porosity distribution are predicted to affect the fluid flow considerably, and this can cause deterioration in bed permeability. The dynamic powder holdup in a furnace increases significantly with the increase of powder diameter. The findings should be useful to better understand and control blast furnace operations.
Monitoring of multiphase flows for superconducting accelerators and others applications
NASA Astrophysics Data System (ADS)
Filippov, Yu. P.; Kakorin, I. D.; Kovrizhnykh, A. M.; Miklayev, V. M.
2017-07-01
This paper is a review on implementation of measuring systems for two-phase helium, hydrogen, liquefied natural gas (LNG), and oil-formation/salty water flows. Two types of such systems are presented. The first type is based on two-phase flow-meters combining void fraction radio-frequency (RF) sensors and narrowing devices. They can be applied for superconducting accelerators cooled with two-phase helium, refueling hydrogen system for space ships and some applications in oil production industry. The second one is based on combination of a gamma-densitometer and a narrowing device. These systems can be used to monitor large two-phase LNG and oil-formation water flows. An electronics system based on a modular industrial computer is described as well. The metrological characteristics for different flow-meters are presented and the obtained results are discussed. It is also shown that the experience gained allows separationless flow-meter for three-phase oil-gas-formation water flows to be produced.
Tartakovsky, Alexandre M.; Trask, Nathaniel; Pan, K.; Jones, Bruce D.; Pan, Wenxiao; Williams, John R.
2016-03-11
Smoothed Particle Hydrodynamics (SPH) is a Lagrangian method based on a meshless discretization of partial differential equations. In this review, we present SPH discretization of the Navier-Stokes and Advection-Diffusion-Reaction equations, implementation of various boundary conditions, and time integration of the SPH equations, and we discuss applications of the SPH method for modeling pore-scale multiphase flows and reactive transport in porous and fractured media.
NASA Astrophysics Data System (ADS)
Konyukhov, A. V.; Zavialov, I. N.
2016-11-01
Self-oscillating mode of reaction front propagation in multiphase flow in the porous medium with chemically active skeleton is investigated numerically. The considered flow represents an immiscible displacement process, such that the displacing fluid and the skeleton of the porous medium have chemically active components which react with production of gaseous phase. The calculations have demonstrated strong influence of the reaction kinetics on stability of the reactive flow. The presence of a time delay between the change of concentration of the reactants and the change of the reaction rate is shown to stimulate transition of the reaction front propagation to the oscillatory mode.
NASA Astrophysics Data System (ADS)
Balakin, B. V.; Adamsen, T. C. H.; Chang, Y.-F.; Kosinski, P.; Hoffmann, A. C.
2017-01-01
Positron emission particle tracking (PEPT) is a novel experimental technique for non-invasive inspection of industrial fluid/particle flows. The method is based on the dynamic positioning of a positron-emitting, flowing object (particle) performed through the sensing of annihilation events and subsequent numerical treatment to determine the particle position. The present paper shows an integrated overview of PEPT studies which were carried out using a new PET scanner in the Bergen University Hospital to study multiphase flows in different geometric configurations.
Sampling device for withdrawing a representative sample from single and multi-phase flows
Apley, Walter J.; Cliff, William C.; Creer, James M.
1984-01-01
A fluid stream sampling device has been developed for the purpose of obtaining a representative sample from a single or multi-phase fluid flow. This objective is carried out by means of a probe which may be inserted into the fluid stream. Individual samples are withdrawn from the fluid flow by sampling ports with particular spacings, and the sampling parts are coupled to various analytical systems for characterization of the physical, thermal, and chemical properties of the fluid flow as a whole and also individually.
Method and system for measuring multiphase flow using multiple pressure differentials
Fincke, James R.
2001-01-01
An improved method and system for measuring a multiphase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multiphase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The method for determining the mass flow of the high void fraction fluid flow and the gas flow includes certain steps. The first step is calculating a gas density for the gas flow. The next two steps are finding a normalized gas mass flow rate through the venturi and computing a gas mass flow rate. The following step is estimating the gas velocity in the venturi tube throat. The next step is calculating the pressure drop experienced by the gas-phase due to work performed by the gas phase in accelerating the liquid phase between the upstream pressure measuring point and the pressure measuring point in the venturi throat. Another step is estimating the liquid velocity in the venturi throat using the calculated pressure drop experienced by the gas-phase due to work performed by the gas phase. Then the friction is computed between the liquid phase and a wall in the venturi tube. Finally, the total mass flow rate based on measured pressure in the venturi throat is calculated, and the mass flow rate of the liquid phase is calculated from the difference of the total mass flow rate and the gas mass flow rate.
NASA Astrophysics Data System (ADS)
Meric, Ilker; Johansen, Geir A.; Mattingly, J.; Gardner, R. P.
2014-02-01
Prompt gamma-ray neutron activation analysis (PGNAA) in conjunction with the so-called Monte Carlo library least-square (MCLLS) approach for the quantitative analysis is currently considered for rapid, non-intrusive and online measurements of multiphase oil/gas/seawater flow. The results of this work indicate that the current method would be feasible for measurements of multiphase flow provided that the ill-conditioning in the MCLLS approach could be treated appropriately.
A lattice Boltzmann model for multiphase flows interacting with deformable bodies
NASA Astrophysics Data System (ADS)
De Rosis, Alessandro
2014-11-01
In this paper, a numerical model to simulate a multiphase flow interacting with deformable solid bodies is proposed. The fluid domain is modeled through the lattice Boltzmann method and the Shan-Chen model is adopted to handle the multiphase feature. The interaction of the flow with immersed solid bodies is accounted for by using the Immersed Boundary method. Corotational beam finite elements are used to model the deformable bodies and non-linear structure dynamics is predicted through the Time Discontinuous Galerkin method. A numerical campaign is carried out in order to assess the effectiveness and accuracy of the proposed modeling by involving different scenarios. In particular, the model is validated by performing the bubble test and by comparing present results with the ones from a numerical commercial software. Moreover, the properties in terms of convergence are discussed. In addition, the effectiveness of the proposed methodology is evaluated by computing the error in terms of the energy that is artificially introduced in the system at the fluid-solid interface. Present findings show that the proposed approach is robust, accurate and suitable of being applied to a lot of practical applications involving the interaction between multiphase flows and deformable solid bodies.
Moving Particle Level-Set (MPLS) method for incompressible multiphase flow computation
NASA Astrophysics Data System (ADS)
Ng, K. C.; Hwang, Y. H.; Sheu, T. W. H.; Yu, C. H.
2015-11-01
An implementation of a multiphase model in a recently developed Moving Particle Pressure Mesh (MPPM) particle-based solver is reported in the current work. By enforcing the divergence-free condition on the background mesh (pressure mesh), the moving particles are merely treated as observation points without intrinsic mass property, which has surmounted several computational deficiencies in the existing Moving Particle Semi-implicit (MPS) method. In the current work, in order to enhance the smoothness of the fluid interface and simulate interfacial flow with large density ratio without rigorous tuning of calibration parameters as required in most of the existing particle methods, a density interpolation scheme is put forward in the current work by using the conservative level-set method to ensure mass conservation. Several multiphase flow cases are simulated and compared with the existing numerical/theoretical solutions. It is encouraging to observe that the present solutions are more accurate than the numerical solutions based on the existing MPS methods. The proposal of the current Moving Particle Level-Set (MPLS) method thus provides a simple yet effective approach in computing incompressible multiphase flow within the numerical framework of particle method.
Impact of eliminating fracture intersection nodes in multiphase compositional flow simulation
NASA Astrophysics Data System (ADS)
Walton, Kenneth M.; Unger, Andre J. A.; Ioannidis, Marios A.; Parker, Beth L.
2017-04-01
Algebraic elimination of nodes at discrete fracture intersections via the star-delta technique has proven to be a valuable tool for making multiphase numerical simulations more tractable and efficient. This study examines the assumptions of the star-delta technique and exposes its effects in a 3-D, multiphase context for advective and dispersive/diffusive fluxes. Key issues of relative permeability-saturation-capillary pressure (kr-S-Pc) and capillary barriers at fracture-fracture intersections are discussed. This study uses a multiphase compositional, finite difference numerical model in discrete fracture network (DFN) and discrete fracture-matrix (DFM) modes. It verifies that the numerical model replicates analytical solutions and performs adequately in convergence exercises (conservative and decaying tracer, one and two-phase flow, DFM and DFN domains). The study culminates in simulations of a two-phase laboratory experiment in which a fluid invades a simple fracture intersection. The experiment and simulations evoke different invading fluid flow paths by varying fracture apertures as oil invades water-filled fractures and as water invades air-filled fractures. Results indicate that the node elimination technique as implemented in numerical model correctly reproduces the long-term flow path of the invading fluid, but that short-term temporal effects of the capillary traps and barriers arising from the intersection node are lost.
Development of an Efficient Meso- scale Multi-phase Flow Solver in Nuclear Applications
Lee, Taehun
2015-10-20
The proposed research aims at formulating a predictive high-order Lattice Boltzmann Equation for multi-phase flows relevant to nuclear energy related application - namely, saturated and sub-cooled boiling in reactors, and liquid- liquid mixing and extraction for fuel cycle separation. An efficient flow solver will be developed based on the Finite Element based Lattice Boltzmann Method (FE- LBM), accounting for phase-change heat transfer and capable of treating multiple phases over length scales from the submicron to the meter. A thermal LBM will be developed in order to handle adjustable Prandtl number, arbitrary specific heat ratio, a wide range of temperature variations, better numerical stability during liquid-vapor phase change, and full thermo-hydrodynamic consistency. Two-phase FE-LBM will be extended to liquid–liquid–gas multi-phase flows for application to high-fidelity simulations building up from the meso-scale up to the equipment sub-component scale. While several relevant applications exist, the initial applications for demonstration of the efficient methods to be developed as part of this project include numerical investigations of Critical Heat Flux (CHF) phenomena in nuclear reactor fuel bundles, and liquid-liquid mixing and interfacial area generation for liquid-liquid separations. In addition, targeted experiments will be conducted for validation of this advanced multi-phase model.
The magnitude of basset forces in unsteady multiphase flow computations
Li, L.; Michaelides, E.E. . Dept. of Mechanical Engineering)
1992-09-01
This paper reports on the equation of motion of a small spherical particle moving in a fluid which is solved numerically with the radius of the sphere and the ratio of fluid to particle densities being parameters. The Basset force term is computed and compared to the total force on the particle for the case of turbulent flow in a duct. It is found that the Basset force may be neglected in the equation of motion of the particle only when the fluid to particle density ratio is very high and the particle diameter is greater than 1[mu]m. A dimensional analysis is also performed for the case when the particle size and the characteristic flow dimension are of the same order of magnitude. In the latter case, it is deduced that the Basset force is significant whenever the flow Reynolds number is greater than one.
Multiphase Flow Measurement by Dual Gamma Ray Tomography
NASA Astrophysics Data System (ADS)
Wu, Yingxiang; Cui, Bin; Li, Donghui; Schlaberg, H. Inaki; Zheng, Zhichu; Zhong, Xingfu
2007-06-01
This paper describes some of our research in three phase flow-rate measurement of oil/gas/water by processing tomography of dual gamma ray, including the instrumental designs on the technique of photons pulse counter, signals of sensor, preamplifier, filter and shaping amplifier, DC base shift correcting circuit, narrow windows of energy spectroscopy, programmable pulse count acquisition system; the FPGA (Field programmable gate array) based data acquisition and processing system for gamma ray tomography; and the oil-water-gas three phase volumetric fraction distributions from experiments on a test flow loop.
Simulation of Inviscid Compressible Multi-Phase Flow with Condensation
NASA Technical Reports Server (NTRS)
Kelleners, Philip
2003-01-01
Condensation of vapours in rapid expansions of compressible gases is investigated. In the case of high temperature gradients the condensation will start at conditions well away from thermodynamic equilibrium of the fluid. In those cases homogeneous condensation is dominant over heterogeneous condensation. The present work is concerned with development of a simulation tool for computation of high speed compressible flows with homogeneous condensation. The resulting ow solver should preferably be accurate and robust to be used for simulation of industrial flows in general geometries.
Kadomtsev−Petviashvili equation for a flow of highly nonisothermal collisionless plasma
Movsesyants, Yu. B.; Rukhadze, A. A.; Tyuryukanov, P. M.
2016-01-15
It is shown that the equations of two-fluid electrodynamics for a cold ions flow and Boltzmann electrons in the vicinity of the ion-sound point can be reduced to the Kadomtsev−Petviashvili equation. Examples of two-dimensional equilibria with pole singularities obtained by exactly solving the equations are presented. An exact self-similar solution describing a two-dimensional transonic flow and having no pole singularities is found.
NASA Astrophysics Data System (ADS)
Wang, Runkun; Wang, Hongxing; Chen, Songying; Qu, Yanpeng; Wang, Chao
There exits multiphase flow of oxygenized air, lime slurry and limestone particles in power plant flue gas desulfurization (FGD) system. A rotary jet stirring device (RJSD) is installed in the slurry pond at the bottom center of absorption tank to get an appropriate mixing flow field so far as possible to get off sulfur dioxide. By employing the standard k-ε turbulence model and the Eulerian multiphase model, numerical investigations for liquid-solid and liquid-solid-gas flow field are presented to discuss the distribution of flow hydrodynamic parameters under a certain operational condition, respectively. In liquid-solid flow, limestone particle concentration shows a decreasing trend with the increase of the rotation angular velocity. The core jet length of the rotary mixer tend to be much longer with the increase of jet velocity under the surrounding pressure, but the dispersed slurry velocity tends to reduce after an initial increasing during the starting period due to the inadequate mixing process. This phenomenon shows that the stirring down-stream is more important than the advection stream in liquid-solid condition. Compared to the liquid-solid condition, the distribution of the air volume of fraction in gas-liquid-solid flow is getting uniform because of the participation of the solid phase, and the down-stream plays an important role in air lateral distribution. The concentration of the limestone particle in liquid-solid condition is higher than in the multiphase flow field. The reason is that the particle distributing velocity near the tank wall is lower and the vertical velocity is higher than in the liquid-solid condition when the jet down-stream velocity is equal. The numerical results could be a useful exploration for an attempt usage of rotary jet device in FGD system.
An immersed boundary method for fluid-structure interaction with compressible multiphase flows
NASA Astrophysics Data System (ADS)
Wang, Li; Currao, Gaetano M. D.; Han, Feng; Neely, Andrew J.; Young, John; Tian, Fang-Bao
2017-10-01
This paper presents a two-dimensional immersed boundary method for fluid-structure interaction with compressible multiphase flows involving large structure deformations. This method involves three important parts: flow solver, structure solver and fluid-structure interaction coupling. In the flow solver, the compressible multiphase Navier-Stokes equations for ideal gases are solved by a finite difference method based on a staggered Cartesian mesh, where a fifth-order accuracy Weighted Essentially Non-Oscillation (WENO) scheme is used to handle spatial discretization of the convective term, a fourth-order central difference scheme is employed to discretize the viscous term, the third-order TVD Runge-Kutta scheme is used to discretize the temporal term, and the level-set method is adopted to capture the multi-material interface. In this work, the structure considered is a geometrically non-linear beam which is solved by using a finite element method based on the absolute nodal coordinate formulation (ANCF). The fluid dynamics and the structure motion are coupled in a partitioned iterative manner with a feedback penalty immersed boundary method where the flow dynamics is defined on a fixed Lagrangian grid and the structure dynamics is described on a global coordinate. We perform several validation cases (including fluid over a cylinder, structure dynamics, flow induced vibration of a flexible plate, deformation of a flexible panel induced by shock waves in a shock tube, an inclined flexible plate in a hypersonic flow, and shock-induced collapse of a cylindrical helium cavity in the air), and compare the results with experimental and other numerical data. The present results agree well with the published data and the current experiment. Finally, we further demonstrate the versatility of the present method by applying it to a flexible plate interacting with multiphase flows.
Multiphase flowmeter measures three-phase flow at high gas volume fractions
1997-04-01
A multiphase flowmeter (MPFM) installed offshore Egypt accurately measured three-phase flow in extremely gassy flow conditions. The meter is completely nonintrusive with no moving parts, requires no flow mixing before measurement and no bypass loop to remove gas before multiphase measurement. Flow regimes observed during the field test of this meter ranged from severe slugging to annular flow. Average gas volume fraction ranged from 93 to 98% during tests conducted on 7 wells. The meter was installed in the October field in the Gulf of Suez on a well-protector platform and was placed in series with a test separator located on a nearby production platform. Production was routed through both the MPFM and the test separator simultaneously. Flow conditions ranged from 1,300 to 4,700 B/D fluid, with 2.4 to 3.9 MMscf/D and water cuts from 1 to 52%. The MPFM measured gas and liquid rates to within {+-} 10% of test separator reference measurement flow rates at gas volume fractions from 93 to 96%. Accuracy deteriorated at higher gas volume fractions, but the meters provided repeatable results.
Study on electrodynamic sensor of multi-modality system for multiphase flow measurement
NASA Astrophysics Data System (ADS)
Deng, Xiang; Chen, Dixiang; Yang, Wuqiang
2011-12-01
Accurate measurement of multiphase flows, including gas/solids, gas/liquid, and liquid/liquid flows, is still challenging. In principle, electrical capacitance tomography (ECT) can be used to measure the concentration of solids in a gas/solids flow and the liquid (e.g., oil) fraction in a gas/liquid flow, if the liquid is non-conductive. Electrical resistance tomography (ERT) can be used to measure a gas/liquid flow, if the liquid is conductive. It has been attempted to use a dual-modality ECT/ERT system to measure both the concentration profile and the velocity profile by pixel-based cross correlation. However, this approach is not realistic because of the dynamic characteristics and the complexity of multiphase flows and the difficulties in determining the velocities by cross correlation. In this paper, the issues with dual modality ECT/ERT and the difficulties with pixel-based cross correlation will be discussed. A new adaptive multi-modality (ECT, ERT and electro-dynamic) sensor, which can be used to measure a gas/solids or gas/liquid flow, will be described. Especially, some details of the electrodynamic sensor of multi-modality system such as sensing electrodes optimum design, electrostatic charge amplifier, and signal processing will be discussed. Initial experimental results will be given.
Study on electrodynamic sensor of multi-modality system for multiphase flow measurement.
Deng, Xiang; Chen, Dixiang; Yang, Wuqiang
2011-12-01
Accurate measurement of multiphase flows, including gas/solids, gas/liquid, and liquid/liquid flows, is still challenging. In principle, electrical capacitance tomography (ECT) can be used to measure the concentration of solids in a gas/solids flow and the liquid (e.g., oil) fraction in a gas/liquid flow, if the liquid is non-conductive. Electrical resistance tomography (ERT) can be used to measure a gas/liquid flow, if the liquid is conductive. It has been attempted to use a dual-modality ECT/ERT system to measure both the concentration profile and the velocity profile by pixel-based cross correlation. However, this approach is not realistic because of the dynamic characteristics and the complexity of multiphase flows and the difficulties in determining the velocities by cross correlation. In this paper, the issues with dual modality ECT/ERT and the difficulties with pixel-based cross correlation will be discussed. A new adaptive multi-modality (ECT, ERT and electro-dynamic) sensor, which can be used to measure a gas/solids or gas/liquid flow, will be described. Especially, some details of the electrodynamic sensor of multi-modality system such as sensing electrodes optimum design, electrostatic charge amplifier, and signal processing will be discussed. Initial experimental results will be given.
Modification of Fracture Apertures by Reactive Multiphase Flow
NASA Astrophysics Data System (ADS)
Xu, Z.; Sheets, J.; Li, Q.; Kneafsey, T. J.; Cole, D. R.; Jun, Y. S.; Pyrak-Nolte, L. J.
2015-12-01
Geochemical interactions during the withdrawal/injection of fluids into the subsurface can modify fracture apertures through dissolution and/or precipitation of minerals. Modification of fracture apertures during reactive flow is strongly affected by non-reactive, non-wetting fluids that limit the fracture surface area and void volume that can be affected by reactive phases. We present results on the effect of a non-reactive, non-wetting phase during reactive flow on the distribution of precipitates and channelization caused by dissolution in fractures. Transparent acrylic casts of a fracture in Austin chalk were used to image mineral precipitation during reactive flow. Initially, the fracture was saturated with a solution of 0.6mol/L NaHCO3 and 0.00085mol/L NaCl. Then, both the aqueous NaHCO3 - NaCl and a solution containing 3mol/L CaCl2 were pumped into the sample (0.5 ml/min) for 2 hrs. When the two solutions mix inside the fracture, CaCO3 precipitates form and CO2 bubbles are generated. CO2 bubbles affect the amount of precipitation. X-ray CT data show that precipitate thickness varies within the fracture, occurs on both fracture surfaces and also bridges the surfaces. In the test, where a CO2 bubble filled a void, precipitation did not occur. If the CO2 bubble was smaller than the pore, thin films of precipitates occurred on the fracture surfaces above and below the bubble. While fracture apertures controlled the mixing of the fluids, CO2 bubbles affected the thickness and distribution of the precipitates. From our numerical study, channelization in a fracture is affected by the presence of a non-wetting non-reactive phase (e.g. gas) during dissolution. A modified Navier-Stokes approach was used to calculate fluxes through spatially correlated aperture distributions as a function of gas saturation. Dissolution was taken to be proportional to flux. For gas saturations < 15%, channelization occurred along the dominant flow path. However, for gas saturations >25
Multiphase ferrofluid flows for micro-particle sorting
NASA Astrophysics Data System (ADS)
Zhou, Ran; Wang, Cheng
2015-11-01
Utilizing negative magnetophoresis, ferrofluids have demonstrated great potential for sorting nonmagnetic micro-particles by size. Most of the existing techniques use single phase ferrofluids by pushing micro-particles to channel walls; the sorting speed is thus hindered. We demonstrate a novel sorting strategy by co-flowing a ferrofluid and a non-magnetic fluid in microchannels. Due to the magnetic force, the particles migrate across the ferrofluid stream at size-dependent velocities as they travel downstream. The laminar interface between the two fluids functions as a virtual boundary to accumulate particles, resulting in effective separation of particles. A stable and sharp interface is important to the success of this sorting technique. We investigate several factors that affect sorting efficiency, including magnetic field, susceptibility difference of the fluids, flow velocity, and channel geometry.
Optimal Spatial Scale for Curvature Calculations in Multiphase Flows
NASA Astrophysics Data System (ADS)
Senecal, Jacob; Owkes, Mark
2016-11-01
In gas-liquid flows, the surface tension force often controls the dynamics of the flow and an accurate calculation of this force is necessary for predictive simulations. The surface tension force is directly proportional to the curvature of the gas-liquid interface, making accurate curvature calculations an essential consideration. Multiple methods have been developed to calculate the curvature of volume of fluid (VoF) interface capturing schemes, such as the height function method. These methods have been extensively tested. However, the impact of the scale or size of computational stencil on which the curvature is computed, has not been correlated with the rate at which interface perturbations relax under the surface tension force. In this work, the effect of varying the scale on which the curvature is computed has been tested and quantified. An optimal curvature scale is identified that leads to accurate and converging curvatures, and accurate timescales for surface tension induced, interface dynamics.
A computer simulation study of multiphase squeezing flows
NASA Astrophysics Data System (ADS)
Lee, Jonghoon; Ladd, Anthony J. C.
2002-05-01
The rheology of dense colloidal suspensions is sensitive to modifications in the surface properties of the particles. We are using lattice Boltzmann simulations to investigate the effects of polymer coatings on the squeezing flow between parallel plates. In this study, we used random arrays of stationary and mobile particles as the simplest models of the polymer coat. We have calculated the flow field in the gap and the force between the plates, and have compared the simulation results with analytic solutions based on the Stokes and Brinkman equations. Our models span the limiting characteristics of a polymer coated layer; namely a viscous suspension and a porous medium. We find good agreement between simulations and analytic solutions, even when the coat thickness is only a few Brinkman screening lengths.
Frictional Fluid Dynamics and Plug Formation in Multiphase Millifluidic Flow
NASA Astrophysics Data System (ADS)
Dumazer, Guillaume; Sandnes, Bjørnar; Ayaz, Monem; Mâløy, Knut Jørgen; Flekkøy, Eirik Grude
2016-07-01
We study experimentally the flow and patterning of a granular suspension displaced by air inside a narrow tube. The invading air-liquid interface accumulates a plug of granular material that clogs the tube due to friction with the confining walls. The gas percolates through the static plug once the gas pressure exceeds the pore capillary entry pressure of the packed grains, and a moving accumulation front is reestablished at the far side of the plug. The process repeats, such that the advancing interface leaves a trail of plugs in its wake. Further, we show that the system undergoes a fluidization transition—and complete evacuation of the granular suspension—when the liquid withdrawal rate increases beyond a critical value. An analytical model of the stability condition for the granular accumulation predicts the flow regime.
Are upwind techniques in multi-phase flow models necessary?
Park, C.-H.; Boettcher, N.; Wang, W.; Kolditz, O.
2011-09-10
Two alternatives of primary variables are compared for two-phase flow in heterogeneous media by solving fully established benchmarks. The first combination utilizes pressure of the wetting fluid and saturation of the non-wetting fluid as primary variables, while the second employs capillary pressure of the wetting fluid and pressure of the non-wetting fluid. While the standard Galerkin finite element method (SGFEM) is known to fail in the physical reproduction of two-phase flow in heterogeneous media (unless employing a fully upwind correction), the second scheme with capillary pressure as a primary variable without applying an upwind technique produces correct physical fluid behaviour in heterogeneous media, as observed from experiments.
Stochastic Rotation Dynamics simulations of wetting multi-phase flows
NASA Astrophysics Data System (ADS)
Hiller, Thomas; Sanchez de La Lama, Marta; Brinkmann, Martin
2016-06-01
Multi-color Stochastic Rotation Dynamics (SRDmc) has been introduced by Inoue et al. [1,2] as a particle based simulation method to study the flow of emulsion droplets in non-wetting microchannels. In this work, we extend the multi-color method to also account for different wetting conditions. This is achieved by assigning the color information not only to fluid particles but also to virtual wall particles that are required to enforce proper no-slip boundary conditions. To extend the scope of the original SRDmc algorithm to e.g. immiscible two-phase flow with viscosity contrast we implement an angular momentum conserving scheme (SRD+mc). We perform extensive benchmark simulations to show that a mono-phase SRDmc fluid exhibits bulk properties identical to a standard SRD fluid and that SRDmc fluids are applicable to a wide range of immiscible two-phase flows. To quantify the adhesion of a SRD+mc fluid in contact to the walls we measure the apparent contact angle from sessile droplets in mechanical equilibrium. For a further verification of our wettability implementation we compare the dewetting of a liquid film from a wetting stripe to experimental and numerical studies of interfacial morphologies on chemically structured surfaces.
A cell-centered ICE method for multiphase flow simulations
Kashiwa, B.A.; Padial, N.T.; Rauenzahn, R.M.; VanderHeyden, W.B.
1993-12-01
The Implicit Continuous-fluid Eulerian (ICE) method is a finite-volume scheme that is stable for any value of the Courant number based on the sound speed. In the incompressible limit, the ICE method becomes essentially identical to the Marker and Cell (MAC) method, so the two schemes are closely related. In this article, the classical ICE method is extended to multiple interpenetrating phases, and employed with a single control volume (nonstaggered) mesh framework. The incompressible limit is preserved, so that problems involving equations of state, or those exhibiting constant material densities, can be addressed with the same computer code. The scheme reduces properly to a single-fluid method, enabling benchmarking using well-known test cases. Thus, the numerical issues focus only on those aspects unique to problems having multiple density, velocity and temperature fields. The discussion begins with a derivation of the exact, ensemble-averaged equations. Examples of the most basic closures axe given, and the well-posedness of the equations is demonstrated. The numerical method is described in operator notation, and the discretization is sketched. The flow patterns in a bubble column are computed as an incompressible flow example. For a compressible flow example, the expansion and compression of a bubble formed by high-explosive gases under water is shown. In each case, comparison to experimental data is made.
Response of Multiphase Flow to Microtopography of Rock Fractures
NASA Astrophysics Data System (ADS)
Becker, M. W.; Burke, C. F.
2010-12-01
Migration of non-aqueous phase liquids (NAPL) through fractures is of interest for environmental remediation, enhanced oil recovery, and geologic sequestration of supercritical carbon dioxide. Experimental observations of percolation through porous media have been ongoing for over 40 years but similar observations in fractured media are relatively rare. In addition, the few available images of NAPL flow through fractures provide an incomplete description of flow because the pressures have not been directly measured. We present results from a series of experiments in which dodecane was injected into a fractured dolomite core. Fluid advancement was imaged continuously using magnetic resonance imaging while backpressure was simultaneously measured using a differential pressure transducer. The resulting data show that aperture constriction and topography both affect resistance to flow as a result of entry pressure and buoyancy forces, respectively. Fluid resistance is observed on the scale of millimeters, even in this relatively smooth-walled rock fracture. These results imply that both the orientation and magnitude of fracture surface roughness should be considered when modeling NAPL migration through rock fractures.
An adaptive solution domain algorithm for solving multiphase flow equations
NASA Astrophysics Data System (ADS)
Katyal, A. K.; Parker, J. C.
1992-01-01
An adaptive solution domain (ASD) finite-element model for simulating hydrocarbon spills has been developed that is computationally more efficient than conventional numerical methods. Coupled flow of water and oil with an air phase at constant pressure is considered. In the ASD formulation, the solution domain for water- and oil-flow equations is restricted by eliminating elements from the global matrix assembly which are not experiencing significant changes in fluid saturations or pressures. When any nodes of an element exhibit changes in fluid pressures more than a stipulated tolerance τ, or changes in fluid saturations greater than tolerance τ 2 during the current time step, it is labeled active and included in the computations for the next iteration. This formulation achieves computational efficiency by solving the flow equations for only the part of the domain where changes in fluid pressure or the saturations take place above stipulated tolerances. Examples involving infiltration and redistribution of oil in 1- and 2-D spatial domains are described to illustrate the application of the ASD method and the savings in the processor time achieved by this formulation. Savings in the computational effort up to 84% during infiltration and 63% during redistribution were achieved for the 2-D example problem.
Multiphase flow models of biogels from crawling cells to bacterial biofilms
Cogan, N. G.; Guy, Robert D.
2010-01-01
This article reviews multiphase descriptions of the fluid mechanics of cytoplasm in crawling cells and growing bacterial biofilms. These two systems involve gels, which are mixtures composed of a polymer network permeated by water. The fluid mechanics of these systems is essential to their biological function and structure. Their mathematical descriptions must account for the mechanics of the polymer, the water, and the interaction between these two phases. This review focuses on multiphase flow models because this framework is natural for including the relative motion between the phases, the exchange of material between phases, and the additional stresses within the network that arise from nonspecific chemical interactions and the action of molecular motors. These models have been successful in accounting for how different forces are generated and transmitted to achieve cell motion and biofilm growth and they have demonstrated how emergent structures develop though the interactions of the two phases. A short description of multiphase flow models of tumor growth is included to highlight the flexibility of the model in describing diverse biological applications. PMID:20676304
Grayscale lattice Boltzmann model for multiphase heterogeneous flow through porous media
NASA Astrophysics Data System (ADS)
Pereira, Gerald G.
2016-06-01
The grayscale lattice Boltzmann (LB) model has been recently developed to model single-phase fluid flow through heterogeneous porous media. Flow is allowed in each voxel but the degree of flow depends on that voxel's resistivity to fluid motion. Here we extend the grayscale LB model to multiphase, immiscible flow. The new model is outlined and then applied to a number of test cases, which show good agreement with theory. This method is subsequently used to model the important case where each voxel may have a different resistance to each particular fluid that is passing through it. Finally, the method is applied to model fluid flow through real porous media to demonstrate its capability. Both the capillary and viscous flow regimes are recovered in these simulations.
Grayscale lattice Boltzmann model for multiphase heterogeneous flow through porous media.
Pereira, Gerald G
2016-06-01
The grayscale lattice Boltzmann (LB) model has been recently developed to model single-phase fluid flow through heterogeneous porous media. Flow is allowed in each voxel but the degree of flow depends on that voxel's resistivity to fluid motion. Here we extend the grayscale LB model to multiphase, immiscible flow. The new model is outlined and then applied to a number of test cases, which show good agreement with theory. This method is subsequently used to model the important case where each voxel may have a different resistance to each particular fluid that is passing through it. Finally, the method is applied to model fluid flow through real porous media to demonstrate its capability. Both the capillary and viscous flow regimes are recovered in these simulations.
Lei, Huan; Baker, Nathan A.; Wu, Lei; Schenter, Gregory K.; Mundy, Christopher J.; Tartakovsky, Alexandre M.
2016-08-05
Thermal fluctuations cause perturbations of fluid-fluid interfaces and highly nonlinear hydrodynamics in multiphase flows. In this work, we develop a novel multiphase smoothed dissipative particle dynamics model. This model accounts for both bulk hydrodynamics and interfacial fluctuations. Interfacial surface tension is modeled by imposing a pairwise force between SDPD particles. We show that the relationship between the model parameters and surface tension, previously derived under the assumption of zero thermal fluctuation, is accurate for fluid systems at low temperature but overestimates the surface tension for intermediate and large thermal fluctuations. To analyze the effect of thermal fluctuations on surface tension, we construct a coarse-grained Euler lattice model based on the mean field theory and derive a semi-analytical formula to directly relate the surface tension to model parameters for a wide range of temperatures and model resolutions. We demonstrate that the present method correctly models the dynamic processes, such as bubble coalescence and capillary spectra across the interface.
Consistent and conservative framework for incompressible multiphase flow simulations
NASA Astrophysics Data System (ADS)
Owkes, Mark; Desjardins, Olivier
2015-11-01
We present a computational methodology for convection that handles discontinuities with second order accuracy and maintains conservation to machine precision. We use this method in the context of an incompressible gas-liquid flow to transport the phase interface, momentum, and scalars. Using the same methodology for all the variables ensures discretely consistent transport, which is necessary for robust and accurate simulations of turbulent atomizing flows with high-density ratios. The method achieves conservative transport by computing consistent fluxes on a refined mesh, which ensures all conserved quantities are fluxed with the same discretization. Additionally, the method seamlessly couples semi-Lagrangian fluxes used near the interface with finite difference fluxes used away from the interface. The semi-Lagrangian fluxes are three-dimensional, un-split, and conservatively handle discontinuities. Careful construction of the fluxes ensures they are divergence-free and no gaps or overlaps form between neighbors. We have tested and used the scheme for many cases and demonstrate a simulation of an atomizing liquid jet.
Massively parallel simulations of multiphase flows using Lattice Boltzmann methods
NASA Astrophysics Data System (ADS)
Ahrenholz, Benjamin
2010-03-01
In the last two decades the lattice Boltzmann method (LBM) has matured as an alternative and efficient numerical scheme for the simulation of fluid flows and transport problems. Unlike conventional numerical schemes based on discretizations of macroscopic continuum equations, the LBM is based on microscopic models and mesoscopic kinetic equations. The fundamental idea of the LBM is to construct simplified kinetic models that incorporate the essential physics of microscopic or mesoscopic processes so that the macroscopic averaged properties obey the desired macroscopic equations. Especially applications involving interfacial dynamics, complex and/or changing boundaries and complicated constitutive relationships which can be derived from a microscopic picture are suitable for the LBM. In this talk a modified and optimized version of a Gunstensen color model is presented to describe the dynamics of the fluid/fluid interface where the flow field is based on a multi-relaxation-time model. Based on that modeling approach validation studies of contact line motion are shown. Due to the fact that the LB method generally needs only nearest neighbor information, the algorithm is an ideal candidate for parallelization. Hence, it is possible to perform efficient simulations in complex geometries at a large scale by massively parallel computations. Here, the results of drainage and imbibition (Degree of Freedom > 2E11) in natural porous media gained from microtomography methods are presented. Those fully resolved pore scale simulations are essential for a better understanding of the physical processes in porous media and therefore important for the determination of constitutive relationships.
Physical mechanisms for multiphase flow associated with hydrate formation
NASA Astrophysics Data System (ADS)
Behseresht, Javad; Bryant, Steven L.
2017-05-01
Many Arctic hydrate reservoirs such as those of the Prudhoe Bay and Kuparuk River area on the Alaska North Slope (ANS) are believed originally to be natural gas accumulations converted to hydrate accumulations after being placed in the gas hydrate stability zone (GHSZ) in response to ancient climate cooling. In this work, the implications of a previously described mechanistic model for the transport of gaseous and aqueous phases are studied using a transient 1-D transport model during the conversion of a gas reservoir to a hydrate reservoir. The mechanistic model predicts/explains the vertical profile of hydrate saturation in "converted free gas" hydrate reservoirs. The initial gas phase saturation with depth is estimated from the profile of capillary entry pressure, which is estimated from grain size distributions measured in cores. The gas accumulation is assumed to be disconnected from its original source so that methane transport occurs only within it. As the base of the GHSZ descends through the sediment, hydrate forms within the GHSZ. The net volume reduction associated with hydrate formation creates a "sink" which drives flow of gaseous and aqueous phases to the hydrate formation zone. Mechanisms by which this fluid movement could have occurred are analyzed. Flow driven by saturation gradients plays a key role in creating reservoirs of large hydrate saturations, as observed in Mount Elbert stratigraphic test well in the Milne Point Unit of Alaska North Slope (ANS). Viscous-dominated pressure-driven flow of gaseous and aqueous phases cannot explain large hydrate saturations originated from large-saturation gas accumulations. The mode of hydrate formation for a wide range of rate of hydrate formation, the rate of descent of the base of GHSZ, and host sediment characteristics are analyzed and characterized based on dimensionless groups. The proposed transport model is also consistent with field data from hydrate-bearing sand units in Mount Elbert well. Results
Dissolution of carbon dioxide bubbles and microfluidic multiphase flows.
Sun, Ruopeng; Cubaud, Thomas
2011-09-07
We experimentally study the dissolution of carbon dioxide bubbles into common liquids (water, ethanol, and methanol) using microfluidic devices. Elongated bubbles are individually produced using a hydrodynamic focusing section into a compact microchannel. The initial bubble size is determined based on the fluid volumetric flow rates of injection and the channel geometry. By contrast, the bubble dissolution rate is found to depend on the inlet gas pressure and the fluid pair composition. For short periods of time after the fluids initial contact, the bubble length decreases linearly with time. We show that the initial rate of bubble shrinkage is proportional to the ratio of the diffusion coefficient and the Henry's law constant associated with each fluid pair. Our study shows the possibility to rapidly impregnate liquids with CO(2) over short distances using microfluidic technology.
Coherent Structures and Extreme Events in Rotating Multiphase Turbulent Flows
NASA Astrophysics Data System (ADS)
Biferale, L.; Bonaccorso, F.; Mazzitelli, I. M.; van Hinsberg, M. A. T.; Lanotte, A. S.; Musacchio, S.; Perlekar, P.; Toschi, F.
2016-10-01
By using direct numerical simulations (DNS) at unprecedented resolution, we study turbulence under rotation in the presence of simultaneous direct and inverse cascades. The accumulation of energy at large scale leads to the formation of vertical coherent regions with high vorticity oriented along the rotation axis. By seeding the flow with millions of inertial particles, we quantify—for the first time—the effects of those coherent vertical structures on the preferential concentration of light and heavy particles. Furthermore, we quantitatively show that extreme fluctuations, leading to deviations from a normal-distributed statistics, result from the entangled interaction of the vertical structures with the turbulent background. Finally, we present the first-ever measurement of the relative importance between Stokes drag, Coriolis force, and centripetal force along the trajectories of inertial particles. We discover that vortical coherent structures lead to unexpected diffusion properties for heavy and light particles in the directions parallel and perpendicular to the rotation axis.
Model coupling for multiphase flow in porous media
NASA Astrophysics Data System (ADS)
Helmig, Rainer; Flemisch, Bernd; Wolff, Markus; Ebigbo, Anozie; Class, Holger
2013-01-01
Numerical models for flow and transport in porous media are valid for a particular set of processes, scales, levels of simplification and abstraction, grids etc. The coupling of two or more specialised models is a method of increasing the overall range of validity while keeping the computational costs relatively low. Several coupling concepts are reviewed in this article with a focus on the authors’ work in this field. The concepts are divided into temporal and spatial coupling concepts, of which the latter is subdivided into multi-process, multi-scale, multi-dimensional, and multi-compartment coupling strategies. Examples of applications for which these concepts can be relevant include groundwater protection and remediation, carbon dioxide storage, nuclear-waste disposal, soil dry-out and evaporation processes as well as fuel cells and technical filters.
Chen, Li; He, YaLing; Tao, Wen -Quan; ...
2017-07-21
The electrode of a vanadium redox flow battery generally is a carbon fibre-based porous medium, in which important physicochemical processes occur. In this work, pore-scale simulations are performed to study complex multiphase flow and reactive transport in the electrode by using the lattice Boltzmann method (LBM). Four hundred fibrous electrodes with different fibre diameters and porosities are reconstructed. Both the permeability and diffusivity of the reconstructed electrodes are predicted and compared with empirical relationships in the literature. Reactive surface area of the electrodes is also evaluated and it is found that existing empirical relationship overestimates the reactive surface under lowermore » porosities. Further, a pore-scale electrochemical reaction model is developed to study the effects of fibre diameter and porosity on electrolyte flow, VII/VIII transport, and electrochemical reaction at the electrolyte-fibre surface. Finally, evolution of bubble cluster generated by the side reaction is studied by adopting a LB multiphase flow model. Effects of porosity, fibre diameter, gas saturation and solid surface wettability on average bubble diameter and reduction of reactive surface area due to coverage of bubbles on solid surface are investigated in detail. It is found that gas coverage ratio is always lower than that adopted in the continuum model in the literature. Furthermore, the current pore-scale studies successfully reveal the complex multiphase flow and reactive transport processes in the electrode, and the simulation results can be further upscaled to improve the accuracy of the current continuum-scale models.« less
Viscosity and surface tension effects during multiphase flow in propped fractures
NASA Astrophysics Data System (ADS)
Dzikowski, Michał; Dąbrowski, Marcin
2017-04-01
Geological sequestration of CO2 was proposed as an important mechanism to reduce its emission into atmosphere. CO2 exhibits a higher affinity to organic matter than methane molecules and, potentially, it could be pumped and stored in shale reservoirs while enhancing late stage shale gas production. A successful analysis of CO2 sequestration in low matrix permeability rocks such as shales requires a thorough understanding of multiphase flow in stimulated rock fractures, which provide most significant pathways for fluids in such systems. Multiphase fracture flows are also of great relevance to brine, oil and gas migration in petroleum systems, water and stream circulation in geothermal reservoirs, and chemical transport of non-aqueous phase liquids in shallow hydrogeological systems, particularly in partially saturated zones. There are various physical models that describe phenomena taking place during multiphase flow through porous media. One of key aspects that need to be considered are pore-scale effects related to capillarity. Unfortunately, detailed models that describe motion and evolution of phase or component boundary require direct numerical simulations and spatial resolutions that are hard to reach when considering industrial relevant systems. Main aim of the presented work was the development of reduced 2.5D models based on Brinkman approximation of thin domain flow that would be able to capture local scale phenomena without expensive 3D simulations. Presented approach was designed specifically to tackle incompressible and immiscible systems and is based on Continuous Surface Force approach presented by Brackbill et al., implemented using Lattice Boltzmann Method. Presented approach where firstly validated against standard test cases with known classical solution and known experimental data. In the second part, we present and discuss two component, immiscible permeability data for rough and propped fracture obtained with our code for a rage of proppants
NASA Astrophysics Data System (ADS)
Diggs, Angela; Balachandar, Sivaramakrishnan
2015-06-01
The present work addresses the numerical methods required for particle-gas and particle-particle interactions in Eulerian-Lagrangian simulations of multiphase flow. Local volume fraction as seen by each particle is the quantity of foremost importance in modeling and evaluating such interactions. We consider a general multiphase flow with a distribution of particles inside a fluid flow discretized on an Eulerian grid. Particle volume fraction is needed both as a Lagrangian quantity associated with each particle and also as an Eulerian quantity associated with the flow. In Eulerian Projection (EP) methods, the volume fraction is first obtained within each cell as an Eulerian quantity and then interpolated to each particle. In Lagrangian Projection (LP) methods, the particle volume fraction is obtained at each particle and then projected onto the Eulerian grid. Traditionally, EP methods are used in multiphase flow, but sub-grid resolution can be obtained through use of LP methods. By evaluating the total error and its components we compare the performance of EP and LP methods. The standard von Neumann error analysis technique has been adapted for rigorous evaluation of rate of convergence. The methods presented can be extended to obtain accurate field representations of other Lagrangian quantities. Most importantly, we will show that such careful attention to numerical methodologies is needed in order to capture complex shock interaction with a bed of particles. Supported by U.S. Department of Defense SMART Program and the U.S. Department of Energy PSAAP-II program under Contract No. DE-NA0002378.
Numerical Simulation of Compressible Multi-phase flows using HLLC extension of AUSM +-up Scheme
NASA Astrophysics Data System (ADS)
Dhir, Gaurav; Bodi, Kowsik
2016-11-01
Solving Multi-fluid equations has always required an onerous effort from researchers with regards to implementing an appropriate numerical scheme which could capture the various facets of such type of flows along with the interaction between the various phases present. Additionally, multi-phase flows bring with them peculiar mathematical properties such as non-hyperbolicity and non-conservativeness which further increases the complexity involved. Our presentation shall present an insight into the advantages and limitations of several numerical schemes proposed in the past and propose to use the HLLC extension of AUSM +-up approach to model such type of flows. We use the single pressure based stratified flow concept and by presenting several test cases, we prove that our method robustly computes multi-phase flow involving discontinuities, such as shock waves and fluid interfaces. Additionally, we present a formulation to incorporate phase transition within multi-fluid equations and establish the validity of this method by presenting several two dimensional test cases such as the Shock-Water Column Interaction problem, the Water-Shock/Air Bubble Interaction problem and the 2D Underwater Explosion problem. Industrial Research and Consultancy Centre, IIT Bombay.
A lattice Boltzmann model for multiphase flows with large density ratio
NASA Astrophysics Data System (ADS)
Zheng, H. W.; Shu, C.; Chew, Y. T.
2006-10-01
A lattice Boltzmann model for simulating multiphase flows with large density ratios is described in this paper. The method is easily implemented. It does not require solving the Poisson equation and does not involve the complex treatments of derivative terms. The interface capturing equation is recovered without any additional terms as compared to other methods [M.R. Swift, W.R. Osborn, J.M. Yeomans, Lattice Boltzmann simulation of liquid-gas and binary fluid systems, Phys. Rev. E 54 (1996) 5041-5052; T. Inamuro, T. Ogata, S. Tajima, N. Konishi, A lattice Boltzmann method for incompressible two-phase flows with large density differences, J. Comput. Phys. 198 (2004) 628-644; T. Lee, C.-L. Lin, A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio, J. Comput. Phys. 206 (2005) 16-47]. Besides, it requires less discrete velocities. As a result, its efficiency could be greatly improved, especially in 3D applications. It is validated by several cases: a bubble in a stationary flow and the capillary wave. The numerical surface tension obtained from the Laplace law and the interface profile agrees very well with the respective analytical solution. The method is further verified by its application to capillary wave and the bubble rising under buoyancy with comparison to other methods. All the numerical experiments show that the present approach can be used to model multiphase flows with large density ratios.
Trials of a gamma-ray multiphase flow meter on oil production pipelines at Thevenard Island
Roach, G.J.; Watt, J.S.; Zastawny, H.W.; Hartley, P.E.; Ellis, W.K.
1994-12-31
CSIRO has developed a gamma-ray multiphase flow meter (MFM) for the on-line determination of the flow rates of oil, water and gas in oil production pipelines. It is based on two gamma-ray transmission gauges mounted on a pipe carrying the full flow of the multiphase fluid. In trials, two of these MFMs were mounted on a test pipeline linking the test manifold to the test separator at the oil processing facilities on Thevenard Island. One MFM was always mounted on the vertical upflow section of the pipe. The other was in turn mounted on the vertical downflow section, and on two horizontal sections with different upstream conditions. The MFM mounted on the vertical (upflow) pipeline determined the flow rates to 4.0% relative for liquids, 7.5% for oil, 4.5% for water and 7.9% for gas. Water cut was determined to 3.6% relative. The MFM mounted on the vertical downflow pipeline determined flow rates to 3.3% relative for liquids, 6.1% for oil, 4.5% for water, and 7.7% for gas. Water cut was determined to 3.7%.
Dynamic fluid connectivity during steady-state multiphase flow in a sandstone
NASA Astrophysics Data System (ADS)
Reynolds, Catriona A.; Menke, Hannah; Andrew, Matthew; Blunt, Martin J.; Krevor, Samuel
2017-08-01
The current conceptual picture of steady-state multiphase Darcy flow in porous media is that the fluid phases organize into separate flow pathways with stable interfaces. Here we demonstrate a previously unobserved type of steady-state flow behavior, which we term “dynamic connectivity,” using fast pore-scale X-ray imaging. We image the flow of N2 and brine through a permeable sandstone at subsurface reservoir conditions, and low capillary numbers, and at constant fluid saturation. At any instant, the network of pores filled with the nonwetting phase is not necessarily connected. Flow occurs along pathways that periodically reconnect, like cars controlled by traffic lights. This behavior is consistent with an energy balance, where some of the energy of the injected fluids is sporadically converted to create new interfaces.
Dynamic fluid connectivity during steady-state multiphase flow in a sandstone.
Reynolds, Catriona A; Menke, Hannah; Andrew, Matthew; Blunt, Martin J; Krevor, Samuel
2017-08-01
The current conceptual picture of steady-state multiphase Darcy flow in porous media is that the fluid phases organize into separate flow pathways with stable interfaces. Here we demonstrate a previously unobserved type of steady-state flow behavior, which we term "dynamic connectivity," using fast pore-scale X-ray imaging. We image the flow of N2 and brine through a permeable sandstone at subsurface reservoir conditions, and low capillary numbers, and at constant fluid saturation. At any instant, the network of pores filled with the nonwetting phase is not necessarily connected. Flow occurs along pathways that periodically reconnect, like cars controlled by traffic lights. This behavior is consistent with an energy balance, where some of the energy of the injected fluids is sporadically converted to create new interfaces.
A material interface transition algorithm for multiphase flow
Francois, Marianne M; Lowrie, Robert B; Dendy, Edward D
2008-01-01
Volume tracking method, also referred to as the volume-of-fluid (VOF) method introduces 'numerical surface tension' that breaks a filament into a series of droplets whenever the filament is under-resolved. Adaptive mesh refinement can help avoid under-resolution, but a fully-developed flow will still generate filaments that cannot be resolved without enormous computational cost. We propose a complementary new approach that consists of transitioning to a continuous interface representation (i.e. without interface reconstruction) in regions of under-resolved interfacial curvature where volume tracking has become erroneous. The price of the continuous interface treatment is a small amount of numerica'l mass diffusion, even if the physical interface is immiscible. However, we have found that for certain measures, the overall accuracy is greatly improved by using our transitioning algorithm. The algorithm is developed in the context of the single fluid formulation of the incompressible Navier-Stokes equations. Numerical standard vortices advection test cases and Rayleigh-Taylor instability computations are presented to illustrate the transition algorithm potential.
NASA Astrophysics Data System (ADS)
Zhang, S.; Liu, H. H.; van Dijke, M. I.; Geiger, S.; Agar, S. M.
2016-12-01
The relationship between flow properties and chemical reactions is key to modeling subsurface reactive transport. This study develops closed-form equations to describe the effects of mineral precipitation and dissolution on multiphase flow properties (capillary pressure and relative permeabilities) of porous media. The model accounts for the fact that precipitation/dissolution only takes place in the water-filled part of pore space. The capillary tube concept was used to connect pore-scale changes to macroscopic hydraulic properties. Precipitation/dissolution induces changes in the pore radii of water-filled pores and consequently in the pore-size distribution. The updated pore-size distribution is converted back to a new capillary pressure-water saturation relation from which the new relative permeabilities are calculated. Pore network modeling is conducted on a Berea sandstone to validate the new continuum-scale relations. The pore network modeling results are satisfactorily predicted by the new closed-form equations. Currently the effects of chemical reactions on flow properties are represented as a relation between permeability and porosity in reactive transport modeling. Porosity is updated after chemical calculations from the change of mineral volumes, then permeability change is calculated from the porosity change using an empirical permeability-porosity relation, most commonly the Carman-Kozeny relation, or the Verma-Pruess relation. To the best of our knowledge, there are no closed-form relations available yet for the effects of chemical reactions on multi-phase flow properties, and thus currently these effects cannot be accounted for in reactive transport modeling. This work presents new constitutive relations to represent how chemical reactions affect multi-phase flow properties on the continuum scale based on the conceptual model of parallel capillary tubes. The parameters in our new relations are either pre-existing input in a multi-phase flow
Nourgaliev R.; Knoll D.; Mousseau V.; Berry R.
2007-04-01
The state-of-the-art for Direct Numerical Simulation (DNS) of boiling multiphase flows is reviewed, focussing on potential of available computational techniques, the level of current success for their applications to model several basic flow regimes (film, pool-nucleate and wall-nucleate boiling -- FB, PNB and WNB, respectively). Then, we discuss multiphysics and multiscale nature of practical boiling flows in LWR reactors, requiring high-fidelity treatment of interfacial dynamics, phase-change, hydrodynamics, compressibility, heat transfer, and non-equilibrium thermodynamics and chemistry of liquid/vapor and fluid/solid-wall interfaces. Finally, we outline the framework for the {\\sf Fervent} code, being developed at INL for DNS of reactor-relevant boiling multiphase flows, with the purpose of gaining insight into the physics of multiphase flow regimes, and generating a basis for effective-field modeling in terms of its formulation and closure laws.
NASA Astrophysics Data System (ADS)
Pendota, Premchand
Many physical phenomena and industrial applications involve multiphase fluid flows and hence it is of high importance to be able to simulate various aspects of these flows accurately. The Dynamic Contact Angles (DCA) and the contact lines at the wall boundaries are a couple of such important aspects. In the past few decades, many mathematical models were developed for predicting the contact angles of the inter-face with the wall boundary under various flow conditions. These models are used to incorporate the physics of DCA and contact line motion in numerical simulations using various interface capturing/tracking techniques. In the current thesis, a simple approach to incorporate the static and dynamic contact angle boundary conditions using the level set method is developed and implemented in multiphase CFD codes, LIT (Level set Interface Tracking) (Herrmann (2008)) and NGA (flow solver) (Desjardins et al (2008)). Various DCA models and associated boundary conditions are reviewed. In addition, numerical aspects such as the occurrence of a stress singularity at the contact lines and grid convergence of macroscopic interface shape are dealt with in the context of the level set approach.
NASA Astrophysics Data System (ADS)
Wu, Yu-Shu; Forsyth, Peter A.
2001-04-01
Selecting the proper primary variables is a critical step in efficiently modeling the highly nonlinear problem of multiphase subsurface flow in a heterogeneous porous-fractured media. Current simulation and ground modeling techniques consist of (1) spatial discretization of mass and/or heat conservation equations using finite difference or finite element methods; (2) fully implicit time discretization; (3) solving the nonlinear, discrete algebraic equations using a Newton iterative scheme. Previous modeling efforts indicate that the choice of primary variables for a Newton iteration not only impacts computational performance of a numerical code, but may also determine the feasibility of a numerical modeling study in many field applications. This paper presents an analysis and general recommendations for selecting primary variables in simulating multiphase, subsurface flow for one-active phase (Richards' equation), two-phase (gas and liquid) and three-phase (gas, water and nonaqueous phase liquid or NAPL) conditions. In many cases, a dynamic variable switching or variable substitution scheme may have to be used in order to achieve optimal numerical performance and robustness. The selection of primary variables depends in general on the sensitivity of the system of equations to the variables selected at given phase and flow conditions. We will present a series of numerical tests and large-scale field simulation examples, including modeling one (active)-phase, two-phase and three-phase flow problems in multi-dimensional, porous-fractured subsurface systems.
Wu, Y S; Forsyth, P A
2001-04-01
Selecting the proper primary variables is a critical step in efficiently modeling the highly nonlinear problem of multiphase subsurface flow in a heterogeneous porous-fractured media. Current simulation and ground modeling techniques consist of (1) spatial discretization of mass and/or heat conservation equations using finite difference or finite element methods; (2) fully implicit time discretization; (3) solving the nonlinear, discrete algebraic equations using a Newton iterative scheme. Previous modeling efforts indicate that the choice of primary variables for a Newton iteration not only impacts computational performance of a numerical code, but may also determine the feasibility of a numerical modeling study in many field applications. This paper presents an analysis and general recommendations for selecting primary variables in simulating multiphase, subsurface flow for one-active phase (Richards' equation), two-phase (gas and liquid) and three-phase (gas, water and nonaqueous phase liquid or NAPL) conditions. In many cases, a dynamic variable switching or variable substitution scheme may have to be used in order to achieve optimal numerical performance and robustness. The selection of primary variables depends in general on the sensitivity of the system of equations to the variables selected at given phase and flow conditions. We will present a series of numerical tests and large-scale field simulation examples, including modeling one (active)-phase, two-phase and three-phase flow problems in multi-dimensional, porous-fractured subsurface systems.
Simulation of three-component fluid flows using the multiphase lattice Boltzmann flux solver
NASA Astrophysics Data System (ADS)
Shi, Y.; Tang, G. H.; Wang, Y.
2016-06-01
In this work, we extend the multiphase lattice Boltzmann flux solver, which was proposed in [1] for simulating incompressible flows of binary fluids based on two-component Cahn-Hilliard model, to three-component fluid flows. In the present method, the multiphase lattice Boltzmann flux solver is applied to solve for the flow field and the three-component Cahn-Hilliard model is used to predict the evolution of the interfaces. The proposed method is first validated through the classical problem of simulation of partial spreading of a liquid lens between the other two components. Numerical results of interface shapes and contact angles agree well with theoretical solutions. After that, to further demonstrate the capability of the present method, several numerical examples of three-component fluid flows are presented, including a bubble rising across a fluid-fluid interface, single droplet falling through a fluid-fluid interface, the collision-coalescence of two droplets, and the non-contact collision of two droplets. It is shown that the present method can successfully handle complex interactions among three components.
The Impact of Mineral Dissolution on Multiphase Flow in Permeable Carbonates
NASA Astrophysics Data System (ADS)
Krevor, S. C.; Niu, B.
2015-12-01
Carbon dioxide injection into deep saline aquifers is governed by a number of physicochemical processes at a broad range of spatial scales including mineral dissolution and precipitation, fluid flow, and capillary trapping. Past efforts have mostly focused on measuring the multiphase flow properties, capillarity, relative permeability, and residual trapping. However, the impact of fluid-rock interaction on these properties is less well understood. In this work we have made a series of measurements characterizing the impact of rock mineral dissolution on multiphase flow in three carbonate rocks. We used core flooding techniques to mimic reactive conditions representative of the near the well bore and far field regions of a carbonate reservoir CO2 injection project. Tests sequentially induced mineral dissolution and characterized the impacts on multiphase flow properties. Temperature retarded acid was used to uniformly dissolve calcite in Ketton, Estaillades, and Edward Brown rock cores. A single dissolution stages removed approximately 0.5% of the mass of the rocks and measurements of relative permeability and residual trapping were made after each stage along with mercury injection capillary pressure (MICP) to quantify the variation of in the pore size distribution. Three Stages were performed on each of carbonates rocks. Imaging with x-ray micro-CT and medical CT were used to quantify the porosity variation and observe the changes in pore structure and multiphase flow properties at scales from the um to the cm. The pore size distribution of the rocks was observed to both increase and become less uniform with progressive dissolution, as shown in Figure 1. For Ketton, the micro-pores, with size range from 0.01 um to 0.1um, have less been involved in the reaction than the macro-pores (10 um to 100 um). A larger spread in capillary trapping was seen around a characteristic initial-residual curve. Relative permeability changes with progressive dissolution was not well
Yortsos, Yanis C.
2001-08-07
This project is an investigation of various multi-phase and multiscale transport and reaction processes associated with heavy oil recovery. The thrust areas of the project include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.
Density and Cavitating Flow Results from a Full-Scale Optical Multiphase Cryogenic Flowmeter
NASA Technical Reports Server (NTRS)
Korman, Valentin
2007-01-01
Liquid propulsion systems are hampered by poor flow measurements. The measurement of flow directly impacts safe motor operations, performance parameters as well as providing feedback from ground testing and developmental work. NASA Marshall Space Flight Center, in an effort to improve propulsion sensor technology, has developed an all optical flow meter that directly measures the density of the fluid. The full-scale sensor was tested in a transient, multiphase liquid nitrogen fluid environment. Comparison with traditional density models shows excellent agreement with fluid density with an error of approximately 0.8%. Further evaluation shows the sensor is able to detect cavitation or bubbles in the flow stream and separate out their resulting effects in fluid density.
Yortsos, Y.C.
2001-05-29
This report is an investigation of various multi-phase and multiscale transport and reaction processes associated with heavy oil recovery. The thrust areas of the project include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.
NASA Astrophysics Data System (ADS)
Revil, A.; Linde, N.
2006-12-01
We determine the macroscopic transport properties of isotropic microporous media by volume-averaging the local Nernst-Planck and Navier-Stokes equations in non-isothermal conditions incorporating streaming, diffusional, and thermal effects. In porous media, the excess of charge, that counterbalance the charge deficiency of the surface of the minerals, is partitioned between the Gouy-Chapman and the Stern layer. Rather than using Poisson-Boltzmann distributions to describe the ionic concentrations in the pore space of the medium, we rely on Donnan distributions obtained by equating the chemical potentials of the water molecules and ions between a reservoir of ions and the pore space of the medium. The macroscopic Maxwell equations and the macroscopic linear constitutive transport equations are derived in the vicinity of equilibrium assuming that the porous material is deformable. In the vicinity of thermodynamic equilibrium, the cross- coupling phenomena of the macroscopic constitutive equations of transport follow Onsager reciprocity. In addition, all the material properties entering the constitutive equations only depend on two textural properties, the permeability and the electrical formation factor. Extension of this model is then performed incorporating three distinct additional effects (a) extension of the electrokinetic equations at high Reynolds numbers, in the inertial laminar flow regime ; (b) extension of the model to multi-phase flow conditions (under the assumptions that the two fluid phases are continuous), and (3) introduction of electro-redox theory and the development of a fundamental model of bio-battery with application to contaminant plumes. Applications will be discussed shortly regarding (1) fracturing, (2) ground water flow, (c) leakage in embankment dams, and (d) contaminant plumes rich in organic matter (http://www.andre-revil.com).
Lattice-gas models of phase separation: interfaces, phase transitions, and multiphase flow
Rothman, D.H. ); Zaleski, S. )
1994-10-01
Momentum-conserving lattice gases are simple, discrete, microscopic models of fluids. This review describes their hydrodynamics, with particular attention given to the derivation of macroscopic constitutive equations from microscopic dynamics. Lattice-gas models of phase separation receive special emphasis. The current understanding of phase transitions in these momentum-conserving models is reviewed; included in this discussion is a summary of the dynamical properties of interfaces. Because the phase-separation models are microscopically time irreversible, interesting questions are raised about their relationship to real fluid mixtures. Simulation of certain complex-fluid problems, such as multiphase flow through porous media and the interaction of phase transitions with hydrodynamics, is illustrated.
A second order Lagrangian Eulerian momentum bounded method for multiphase flows
NASA Astrophysics Data System (ADS)
Le Chenadec, Vincent; Pitsch, Heinz
2011-11-01
A Lagrangian Eulerian framework relying on both Level Set and Volume of Fluid methods is presented in the context of multiphase flow computations. The resulting interface capturing scheme is shown to preserve planarity, and to conserve mass exactly for solenoidal and linear velocity fields. A novel fractional step approach for the incompressible Navier Stokes equation is also presented. The proposed scheme relies on a consistent transport of volume fraction and momentum fields, which also preserves velocity boundedness. A sharp interface projection step is derived accordingly. The algorithm is shown to conserve momentum exactly for solenoidal linear velocity, and to lead to robust computations. Supported by NASA under Subsonic Fixed Wing project.
Large Eddy Simulation of a Cavitating Multiphase Flow for Liquid Injection
NASA Astrophysics Data System (ADS)
Cailloux, M.; Helie, J.; Reveillon, J.; Demoulin, F. X.
2015-12-01
This paper presents a numerical method for modelling a compressible multiphase flow that involves phase transition between liquid and vapour in the context of gasoline injection. A discontinuous compressible two fluid mixture based on the Volume of Fluid (VOF) implementation is employed to represent the phases of liquid, vapour and air. The mass transfer between phases is modelled by standard models such as Kunz or Schnerr-Sauer but including the presence of air in the gas phase. Turbulence is modelled using a Large Eddy Simulation (LES) approach to catch instationnarities and coherent structures. Eventually the modelling approach matches favourably experimental data concerning the effect of cavitation on atomisation process.
NASA Astrophysics Data System (ADS)
Mohnke, O.; Ahrenholz, B.
2011-12-01
Nuclear Magnetic Resonance (NMR) is a useful tool for analyzing gas (methane) and fluids (water, oil) in rock formations in order to derive transport and storage properties such as pore-size distributions or relative permeability. Even though there is considerable NMR data available about hydraulic properties of rock formations, this information is only empirical. Thus, the aim of this paper is to present joint NMR and multi-phase flow simulations in micro-scale pore systems derived from micro-CT images to quantify relationships between NMR parameters and transport and storage properties of partially saturated rocks. Hereby, the NMR differential equations were implemented using an advection/diffusion lattice-Boltzmann method (LBM) where the flow field is computed by a coupled LBM CFD solver. The results of numerical imbibition and drainage experiments quantitatively agree with laboratory experiments with regard to frequently found peak shifts and bimodal NMR decay time distributions related to residual water in films and corners as well as to fluids/gases trapped in large pores. This numerical framework enables one to quantitatively describe NMR surface and bulk relaxation processes, diffusive coupling along with the multi-phase flow properties of partially saturated porous systems. Furthermore, it is a viable alternative to the more time-consuming and less controllable laboratory experiments. Such virtual experimental setups can considerably help to benchmark and validate statistical network models to better understand hydraulic properties of partially saturated rocks by using experimentally obtained NMR data.
Hutnak, M.; Hurwitz, S.; Ingebritsen, S.E.; Hsieh, P.A.
2009-01-01
Ground surface displacement (GSD) in large calderas is often interpreted as resulting from magma intrusion at depth. Recent advances in geodetic measurements of GSD, notably interferometric synthetic aperture radar, reveal complex and multifaceted deformation patterns that often require complex source models to explain the observed GSD. Although hydrothermal fluids have been discussed as a possible deformation agent, very few quantitative studies addressing the effects of multiphase flow on crustal mechanics have been attempted. Recent increases in the power and availability of computing resources allow robust quantitative assessment of the complex time-variant thermal interplay between aqueous fluid flow and crustal deformation. We carry out numerical simulations of multiphase (liquid-gas), multicomponent (H 2O-CO2) hydrothermal fluid flow and poroelastic deformation using a range of realistic physical parameters and processes. Hydrothermal fluid injection, circulation, and gas formation can generate complex, temporally and spatially varying patterns of GSD, with deformation rates, magnitudes, and geometries (including subsidence) similar to those observed in several large calderas. The potential for both rapid and gradual deformation resulting from magma-derived fluids suggests that hydrothermal fluid circulation may help explain deformation episodes at calderas that have not culminated in magmatic eruption.
A Numerical Study of Mesh Adaptivity in Multiphase Flows with Non-Newtonian Fluids
NASA Astrophysics Data System (ADS)
Percival, James; Pavlidis, Dimitrios; Xie, Zhihua; Alberini, Federico; Simmons, Mark; Pain, Christopher; Matar, Omar
2014-11-01
We present an investigation into the computational efficiency benefits of dynamic mesh adaptivity in the numerical simulation of transient multiphase fluid flow problems involving Non-Newtonian fluids. Such fluids appear in a range of industrial applications, from printing inks to toothpastes and introduce new challenges for mesh adaptivity due to the additional ``memory'' of viscoelastic fluids. Nevertheless, the multiscale nature of these flows implies huge potential benefits for a successful implementation. The study is performed using the open source package Fluidity, which couples an unstructured mesh control volume finite element solver for the multiphase Navier-Stokes equations to a dynamic anisotropic mesh adaptivity algorithm, based on estimated solution interpolation error criteria, and conservative mesh-to-mesh interpolation routine. The code is applied to problems involving rheologies ranging from simple Newtonian to shear-thinning to viscoelastic materials and verified against experimental data for various industrial and microfluidic flows. This work was undertaken as part of the EPSRC MEMPHIS programme grant EP/K003976/1.
LITER, SCOTT G.; TORCZYNSKI, JOHN R.; SHOLLENBERGER, KIM A.; CECCIO, STEVEN L.
2002-10-01
A novel electrical-impedance tomography (EIT) diagnostic system, including hardware and software, has been developed and used to quantitatively measure material distributions in multiphase flows within electrically-conducting (i.e., industrially relevant or metal) vessels. The EIT system consists of energizing and measuring electronics and seven ring electrodes, which are equally spaced on a thin nonconducting rod that is inserted into the vessel. The vessel wall is grounded and serves as the ground electrode. Voltage-distribution measurements are used to numerically reconstruct the time-averaged impedance distribution within the vessel, from which the material distributions are inferred. Initial proof-of-concept and calibration was completed using a stationary solid-liquid mixture in a steel bench-top standpipe. The EIT system was then deployed in Sandia's pilot-scale slurry bubble-column reactor (SBCR) to measure material distributions of gas-liquid two-phase flows over a range of column pressures and superficial gas flow rates. These two-phase quantitative measurements were validated against an established gamma-densitometry tomography (GDT) diagnostic system, demonstrating agreement to within 0.05 volume fraction for most cases, with a maximum difference of 0.15 volume fraction. Next, the EIT system was combined with the GDT system to measure material distributions of gas-liquid-solid three-phase flows in Sandia's SBCR for two different solids loadings. Accuracy for the three-phase flow measurements is estimated to be within 0.15 volume fraction. The stability of the energizing electronics, the effect of the rod on the surrounding flow field, and the unsteadiness of the liquid temperature all degrade measurement accuracy and need to be explored further. This work demonstrates that EIT may be used to perform quantitative measurements of material distributions in multiphase flows in metal vessels.
An inviscid regularization technique for the simulation of compressible multiphase flow
NASA Astrophysics Data System (ADS)
Aboulhasanzadeh, Bahman; Mohseni, Kamran
2016-11-01
A common feature of flow problems involving shocks, turbulence, and/or two-phase flows is the k-infinity irregularity. We present an inviscid regularization technique, dubbed observable regularization, for the simulation of compressible multiphase flows. In this technique, we use the observable divergence theorem to derive the conservation equations considering the observability limit in any computational or physical system. To avoid contamination of the result with numerical diffusion a pseudo-spectral technique is used to discretize the conservation equations. This methodology has been tested successfully for regularizing single-phase problems with shocks and/or turbulence. Using observable Euler equations, shock-bubble and shock-drop interactions are simulated and the results are compared with available experimental data from literature, showing good agreement. Observable equations are capable of simultaneously regularizing problems with shocks, turbulence, and/or sharp interfaces without the need for treating each aspect separately.
Using statistical learning to close two-fluid multiphase flow equations for a simple bubbly system
NASA Astrophysics Data System (ADS)
Ma, Ming; Lu, Jiacai; Tryggvason, Gretar
2015-09-01
Direct numerical simulations of bubbly multiphase flows are used to find closure terms for a simple model of the average flow, using Neural Networks (NNs). The flow considered consists of several nearly spherical bubbles rising in a periodic domain where the initial vertical velocity and the average bubble density are homogeneous in two directions but non-uniform in one of the horizontal directions. After an initial transient motion the average void fraction and vertical velocity become approximately uniform. The NN is trained on a dataset from one simulation and then used to simulate the evolution of other initial conditions. Overall, the resulting model predicts the evolution of the various initial conditions reasonably well.
NASA Astrophysics Data System (ADS)
Cusini, Matteo; van Kruijsdijk, Cor; Hajibeygi, Hadi
2016-06-01
This paper presents the development of an algebraic dynamic multilevel method (ADM) for fully implicit simulations of multiphase flow in homogeneous and heterogeneous porous media. Built on the fine-scale fully implicit (FIM) discrete system, ADM constructs a multilevel FIM system describing the coupled process on a dynamically defined grid of hierarchical nested topology. The multilevel adaptive resolution is determined at each time step on the basis of an error criterion. Once the grid resolution is established, ADM employs sequences of restriction and prolongation operators in order to map the FIM system across the considered resolutions. Several choices can be considered for prolongation (interpolation) operators, e.g., constant, bilinear and multiscale basis functions, all of which form partition of unity. The adaptive multilevel restriction operators, on the other hand, are constructed using a finite-volume scheme. This ensures mass conservation of the ADM solutions, and as such, the stability and accuracy of the simulations with multiphase transport. For several homogeneous and heterogeneous test cases, it is shown that ADM applies only a small fraction of the full FIM fine-scale grid cells in order to provide accurate solutions. The sensitivity of the solutions with respect to the employed fraction of grid cells (determined automatically based on the threshold value of the error criterion) is investigated for all test cases. ADM is a significant step forward in the application of dynamic local grid refinement methods, in the sense that it is algebraic, allows for systematic mapping across different scales, and applicable to heterogeneous test cases without any upscaling of fine-scale high resolution quantities. It also develops a novel multilevel multiscale method for FIM multiphase flow simulations in natural subsurface formations.
DENSE MULTIPHASE FLOW SIMULATION: CONTINUUM MODEL FOR POLY-DISPERSED SYSTEMS USING KINETIC THEORY
Moses Bogere
2011-08-31
The overall objective of the project was to verify the applicability of the FCMOM approach to the kinetic equations describing the particle flow dynamics. For monodispersed systems the fundamental equation governing the particle flow dynamics is the Boltzmann equation. During the project, the FCMOM was successfully applied to several homogeneous and in-homogeneous problems in different flow regimes, demonstrating that the FCMOM has the potential to be used to solve efficiently the Boltzmann equation. However, some relevant issues still need to be resolved, i.e. the homogeneous cooling problem (inelastic particles cases) and the transition between different regimes. In this report, the results obtained in homogeneous conditions are discussed first. Then a discussion of the validation results for in-homogeneous conditions is provided. And finally, a discussion will be provided about the transition between different regimes. Alongside the work on development of FCMOM approach studies were undertaken in order to provide insights into anisotropy or particles kinetics in riser hydrodynamics. This report includes results of studies of multiphase flow with unequal granular temperatures and analysis of momentum re-distribution in risers due to particle-particle and fluid-particle interactions. The study of multiphase flow with unequal granular temperatures entailed both simulation and experimental studies of two particles sizes in a riser and, a brief discussion of what was accomplished will be provided. And finally, a discussion of the analysis done on momentum re-distribution of gas-particles flow in risers will be provided. In particular a discussion of the remaining work needed in order to improve accuracy and predictability of riser hydrodynamics based on two-fluid models and how they can be used to model segregation in risers.
Fundamentals of multiphase, gas-solid and gas-liquid flows in porous media
NASA Astrophysics Data System (ADS)
Mazaheri, Ali Reza
This thesis is concerned with fundamentals and applications of multiphase and particulate flows. The study contains three parts covering gas-liquid flows through porous media, gas-solid flows and Chemical-Mechanical Polishing (CMP). A continuum model for multiphase fluid flows through poro-elastic media is developed. It is shown that the present theory leads to the extended Darcy's law and contains, as its special case, Biot's theory of saturated poro-elastic media. The capillary pressure formulation derived from the new model is used and the equation governing the evolution of the saturation and its temporal variation in porous media is derived. The resulting nonlinear diffusion equation is then solved numerically. The results show that the capillary hysteresis occurs when the temporal variation of saturation is included. Application of the developed model to CO2 sequestration is discussed. Computer simulations of dilute Gas-Solid flows in complex geometry regions are studied. A procedure for handling particle trajectory analysis in unstructured grid is developed. Examples of particle transport and removal in human lung and hot-gas cleaning systems are presented. The simulation results for the human lung show that the capture efficiency is affected by the turbulence in the upper three bifurcation airways. Computer simulations of gas-solid flows in hot-gas cleaning for a demonstration scale filtration system is studied in details. Alternative designs of the filter vessel are proposed. The corresponding vessel performance are numerically simulated. Chemical mechanical polishing (CMP) has become critical to the fabrication of advanced multilevel integrated circuit in microelectronic industry. The effect of course surface roughness of abrasive particles on the polishing rate in CMP is studied. The effects of slurry pH and double layer attraction and repulsion on chemical-mechanical polishing are also studied. It is shown that the slurry pH and colloidal forces
Application of partially-coupled hydro-mechanical schemes to multiphase flow problems
NASA Astrophysics Data System (ADS)
Tillner, Elena; Kempka, Thomas
2016-04-01
Utilization of subsurface reservoirs by fluid storage or production generally triggers pore pressure changes and volumetric strains in reservoirs and cap rocks. The assessment of hydro-mechanical effects can be undertaken using different process coupling strategies. The fully-coupled geomechanics and flow simulation, constituting a monolithic system of equations, is rarely applied for simulations involving multiphase fluid flow due to the high computational efforts required. Pseudo-coupled simulations are driven by static tabular data on porosity and permeability changes as function of pore pressure or mean stress, resulting in a rather limited flexibility when encountering complex subsurface utilization schedules and realistic geological settings. Partially-coupled hydro-mechanical simulations can be distinguished into one-way and iterative two-way coupled schemes, whereby the latter one is based on calculations of flow and geomechanics, taking into account the iterative exchange of coupling parameters between the two respective numerical simulators until convergence is achieved. In contrast, the one-way coupling scheme is determined by the provision of pore pressure changes calculated by the flow simulator to the geomechanical simulator neglecting any feedback. In the present study, partially-coupled two-way schemes are discussed in view of fully-coupled single-phase flow and geomechanics, and their applicability to multiphase flow simulations. For that purpose, we introduce a comparison study between the different coupling schemes, using selected benchmarks to identify the main requirements for the partially-coupled approach to converge with the numerical solution of the fully-coupled one.
NASA Astrophysics Data System (ADS)
Wei, Xiaohui; Li, Weishan; Tian, Hailong; Li, Hongliang; Xu, Haixiao; Xu, Tianfu
2015-07-01
The numerical simulation of multiphase flow and reactive transport in the porous media on complex subsurface problem is a computationally intensive application. To meet the increasingly computational requirements, this paper presents a parallel computing method and architecture. Derived from TOUGHREACT that is a well-established code for simulating subsurface multi-phase flow and reactive transport problems, we developed a high performance computing THC-MP based on massive parallel computer, which extends greatly on the computational capability for the original code. The domain decomposition method was applied to the coupled numerical computing procedure in the THC-MP. We designed the distributed data structure, implemented the data initialization and exchange between the computing nodes and the core solving module using the hybrid parallel iterative and direct solver. Numerical accuracy of the THC-MP was verified through a CO2 injection-induced reactive transport problem by comparing the results obtained from the parallel computing and sequential computing (original code). Execution efficiency and code scalability were examined through field scale carbon sequestration applications on the multicore cluster. The results demonstrate successfully the enhanced performance using the THC-MP on parallel computing facilities.
Monte Carlo simulations of multiphase flow incorporating spatial variability of hydraulic properties
Essaid, Hedeff I.; Hess, Kathryn M.
1993-01-01
To study the effect of spatial variability of sediment hydraulic properties on multiphase flow, oil infiltration into a hypothetical glacial outwash aquifer, followed by oil extraction, was simulated using a cross-sectional multiphase flow model. The analysis was simplified by neglecting capillary hysteresis. The first simulation used a uniform mean permeability and mean retention curve. This was followed by 50 Monte Carlo simulations conducted using 50 spatially variable permeability realizations and corresponding spatially variable retention curves. For the type of correlation structure considered in this study, which is similar to that of glacial outwash deposits, use of mean hydraulic properties reproduces the ensemble average oil saturation distribution obtained from the Monte Carlo simulations. However, spatial variability causes the oil saturation distribution in an individual oil lens to differ significantly from that of the mean lens. Oil saturations at a given location may be considerably higher than would be predicted using uniform mean properties. During cleanup by oil extraction from a well, considerably more oil may remain behind in the heterogeneous case than in the spatially uniform case.
Modeling compressible multiphase flows with dispersed particles in both dense and dilute regimes
NASA Astrophysics Data System (ADS)
McGrath, T.; St. Clair, J.; Balachandar, S.
2017-06-01
Many important explosives and energetics applications involve multiphase formulations employing dispersed particles. While considerable progress has been made toward developing mathematical models and computational methodologies for these flows, significant challenges remain. In this work, we apply a mathematical model for compressible multiphase flows with dispersed particles to existing shock and explosive dispersal problems from the literature. The model is cast in an Eulerian framework, treats all phases as compressible, is hyperbolic, and satisfies the second law of thermodynamics. It directly applies the continuous-phase pressure gradient as a forcing function for particle acceleration and thereby retains relaxed characteristics for the dispersed particle phase that remove the constituent material sound velocity from the eigenvalues. This is consistent with the expected characteristics of dispersed particle phases and can significantly improve the stable time-step size for explicit methods. The model is applied to test cases involving the shock and explosive dispersal of solid particles and compared to data from the literature. Computed results compare well with experimental measurements, providing confidence in the model and computational methods applied.
Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery.
Zhao, Chun-Xia
2013-11-01
Considerable effort has been directed towards developing novel drug delivery systems. Microfluidics, capable of generating monodisperse single and multiple emulsion droplets, executing precise control and operations on these droplets, is a powerful tool for fabricating complex systems (microparticles, microcapsules, microgels) with uniform size, narrow size distribution and desired properties, which have great potential in drug delivery applications. This review presents an overview of the state-of-the-art multiphase flow microfluidics for the production of single emulsions or multiple emulsions for drug delivery. The review starts with a brief introduction of the approaches for making single and multiple emulsions, followed by presentation of some potential drug delivery systems (microparticles, microcapsules and microgels) fabricated in microfluidic devices using single or multiple emulsions as templates. The design principles, manufacturing processes and properties of these drug delivery systems are also discussed and compared. Furthermore, drug encapsulation and drug release (including passive and active controlled release) are provided and compared highlighting some key findings and insights. Finally, site-targeting delivery using multiphase flow microfluidics is also briefly introduced.
Energetics of the multi-phase fluid flow in a narrow kerf in laser cutting conditions
NASA Astrophysics Data System (ADS)
Golyshev, A. A.; Orishich, A. M.; Shulyatyev, V. B.
2016-10-01
The energy balance of the multi-phase medium flow is studied experimentally under the laser cutting. Experimental data are generalized due to the condition of minimal roughness of the created surface used as a quality criterion of the melt flow, and also due to the application of dimensionless parameters: Peclet number and dimensionless absorbed laser power. For the first time ever it is found that, regardless the assistant gas (oxygen or nitrogen), laser type (the fiber one with the wavelength of 1.07 µm or CO2-laser with the wavelength of 10.6 µm), the minimal roughness is provided at a certain energy input in a melt unit, about 26 J/mm3. With oxygen, 50% of this input is provided by the radiation, the other 50% - by the exothermic reaction of iron oxidation.
Dripping and jetting in microfluidic multiphase flows applied to particle and fiber synthesis
Nunes, J K; Tsai, S S H; Wan, J; Stone, H A
2013-01-01
Dripping and jetting regimes in microfluidic multiphase flows have been investigated extensively, and this review summarizes the main observations and physical understandings in this field to date for three common device geometries: coaxial, flow-focusing and T-junction. The format of the presentation allows for simple and direct comparison of the different conditions for drop and jet formation, as well as the relative ease and utility of forming either drops or jets among the three geometries. The emphasis is on the use of drops and jets as templates for microparticle and microfiber syntheses, and a description is given of the more common methods of solidification and strategies for achieving complex multicomponent microparticles and microfibers. PMID:23626378
Fast high-resolution prediction of multi-phase flow in fractured formations
NASA Astrophysics Data System (ADS)
Pau, George Shu Heng; Finsterle, Stefan; Zhang, Yingqi
2016-02-01
The success of a thermal water flood for enhanced oil recovery (EOR) depends on a detailed representation of the geometrical and hydraulic properties of the fracture network, which induces discrete, channelized flow behavior. The resulting high-resolution model is typically computationally very demanding. Here, we use the Proper Orthogonal Decomposition Mapping Method to reconstruct high-resolution solutions based on efficient low-resolution solutions. The method requires training a reduced order model (ROM) using high- and low-resolution solutions determined for a relatively short simulation time. For a cyclic EOR operation, the oil production rate and the heterogeneous structure of the oil saturation are accurately reproduced even after 105 cycles, reducing the computational cost by at least 85%. The method described is general and can be potentially utilized with any multiphase flow model.
NASA Astrophysics Data System (ADS)
Yang, Chen; He, Hangxing
2015-10-01
An improved lattice Boltzmann (LB) model with a new scheme for the interparticle interaction force term is proposed in this paper. Based on the improved LB model, the equation-free method is implemented for simulating liquid-vapour phase change and multiphase flows. The details of phase separation are presented by numerical simulation results in terms of coexistence curves and spurious currents. Compared with existing models, the proposed model can give more accurate results in a wider temperature range with the spurious currents reduced and less time consumed. Characteristics of phase separation can be quickly and accurately reflected by the proposed method. Then, the contact angle of the solid surface is numerically investigated based on the proposed model. The proposed model is valid for steady flow with near zero velocity; unsteady cases will be investigated in further studies. This work will be helpful for our long-term aim of multi-scale modelling of convective boiling.
Hornung, R.D.
1996-12-31
An adaptive local mesh refinement (AMR) algorithm originally developed for unsteady gas dynamics is extended to multi-phase flow in porous media. Within the AMR framework, we combine specialized numerical methods to treat the different aspects of the partial differential equations. Multi-level iteration and domain decomposition techniques are incorporated to accommodate elliptic/parabolic behavior. High-resolution shock capturing schemes are used in the time integration of the hyperbolic mass conservation equations. When combined with AMR, these numerical schemes provide high resolution locally in a more efficient manner than if they were applied on a uniformly fine computational mesh. We will discuss the interplay of physical, mathematical, and numerical concerns in the application of adaptive mesh refinement to flow in porous media problems of practical interest.
The Effect of Surface Treated Nanoparticles on Single and Multi-Phase Flow in Porous Media
NASA Astrophysics Data System (ADS)
DiCarlo, D. A.; Aminzadeh, B.; Chung, D.; Zhang, X.; Wung, R.; Huh, C.; Bryant, S. L.
2013-12-01
Surface treated nanoparticles have been suggested to be an additive to CO2 storage scenarios. This is because 1) the nanoparticles have been shown to freely transport through permeable media, and 2) the nanoparticles can stabilize a CO2 in water foam by adhering to the surface of CO2 bubbles/droplets preventing their coalescence. In terms of storage, The formation of CO2 foam will limit the CO2 mobility which can potentially help limit the CO2 leakage. Here, we will show how nanoparticles in porous media can have many interesting properties in single and multi-phase flow. For multi-phase CO2, we have performed experiments where high pressure liquid CO2 displaces brine and vice versa with and without nanoparticles in the brine. We measure the displacement pattern and in-situ CO2 saturation using CT scanning and measure the pressure drop using pressure transducers. We find that the flow is less preferential and the pressure drop is greater than when nanoparticles are present. This suggest the formation of in-situ foam/emulsion. We also show that on a brine chase, the residual saturation of CO2 is greater in the presence of nanoparticles. In terms of nanoparticle transport, it is observed that nanoparticles accumulate at the front of a brine/octane displacement. We hypothesize that this occurs due to the nanoparticles being size excluded from portions of the pore-space. To determine if this occurs in single phase flow, we have also performed experiments single-phase flow with the nanoparticles and tracer. We find that the nanoparticles arrive roughly 5% faster than the tracer. This also has implications for the positioning of nanoparticles in the pore space and how this can change the effective viscosity of the nanoparticle suspension.
Methane hydrate induced permeability modification for multiphase flow in unsaturated porous media
NASA Astrophysics Data System (ADS)
Seol, Yongkoo; Kneafsey, Timothy J.
2011-08-01
An experimental study was performed using X-ray computed tomography (CT) scanning to capture three-dimensional (3-D) methane hydrate distributions and potential discrete flow pathways in a sand pack sample. A numerical study was also performed to develop and analyze empirical relations that describe the impacts of hydrate accumulation habits within pore space (e.g., pore filling or grain cementing) on multiphase fluid migration. In the experimental study, water was injected into a hydrate-bearing sand sample that was monitored using an X-ray CT scanner. The CT images were converted into numerical grid elements, providing intrinsic sample data including porosity and phase saturations. The impacts of hydrate accumulation were examined by adapting empirical relations into the flow simulations as additional relations governing the evolution of absolute permeability of hydrate bearing sediment with hydrate deposition. The impacts of pore space hydrate accumulation habits on fluid migration were examined by comparing numerical predictions with experimentally measured water saturation distributions and breakthrough curves. A model case with 3-D heterogeneous initial conditions (hydrate saturation, porosity, and water saturation) and pore body-preferred hydrate accumulations best captured water migration behavior through the hydrate-bearing sample observed in the experiment. In the best matching model, absolute permeability in the hydrate bearing sample does not decrease significantly with increasing hydrate saturation until hydrate saturation reaches about 40%, after which it drops rapidly, and complete blockage of flow through the sample can occur as hydrate accumulations approach 70%. The result highlights the importance of permeability modification due to hydrate accumulation habits when predicting multiphase flow through high-saturation, reservoir quality hydrate-bearing sediments.
Glenn E. McCreery; Robert D. Stedtfeld; Alan T. Stadler; Daphne L. Stoner; Paul Meakin
2005-09-01
A geotechnical centrifuge was used to investigate unsaturated multiphase fluid flow in synthetic fracture apertures under a variety of flow conditions. The geocentrifuge subjected the fluids to centrifugal forces allowing the Bond number to be systematically changed without adjusting the fracture aperture of the fluids. The fracture models were based on the concept that surfaces generated by the fracture of brittle geomaterials have a self-affine fractal geometry. The synthetic fracture surfaces were fabricated from a transparent epoxy photopolymer using sterolithography, and fluid flow through the transparent fracture models was monitored by an optical image acquisition system. Aperture widths were chosen to be representative of the wide range of geological fractures in the vesicular basalt that lies beneath the Idaho Nation Laboratory (INL). Transitions between different flow regimes were observed as the acceleration was changed under constant flow conditions. The experiments showed the transition between straight and meandering rivulets in smooth walled apertures (aperture width = 0.508 mm), the dependence of the rivulet width on acceleration in rough walled fracture apertures (average aperture width = 0.25 mm), unstable meandering flow in rough walled apertures at high acceleration (20g) and the narrowing of the wetted region with increasing acceleration during the penetration of water into an aperture filled with wetted particles (0.875 mm diameter glass spheres).
Multiphase flow modelling of explosive volcanic eruptions using adaptive unstructured meshes
NASA Astrophysics Data System (ADS)
Jacobs, Christian T.; Collins, Gareth S.; Piggott, Matthew D.; Kramer, Stephan C.
2014-05-01
Explosive volcanic eruptions generate highly energetic plumes of hot gas and ash particles that produce diagnostic deposits and pose an extreme environmental hazard. The formation, dispersion and collapse of these volcanic plumes are complex multiscale processes that are extremely challenging to simulate numerically. Accurate description of particle and droplet aggregation, movement and settling requires a model capable of capturing the dynamics on a range of scales (from cm to km) and a model that can correctly describe the important multiphase interactions that take place. However, even the most advanced models of eruption dynamics to date are restricted by the fixed mesh-based approaches that they employ. The research presented herein describes the development of a compressible multiphase flow model within Fluidity, a combined finite element / control volume computational fluid dynamics (CFD) code, for the study of explosive volcanic eruptions. Fluidity adopts a state-of-the-art adaptive unstructured mesh-based approach to discretise the domain and focus numerical resolution only in areas important to the dynamics, while decreasing resolution where it is not needed as a simulation progresses. This allows the accurate but economical representation of the flow dynamics throughout time, and potentially allows large multi-scale problems to become tractable in complex 3D domains. The multiphase flow model is verified with the method of manufactured solutions, and validated by simulating published gas-solid shock tube experiments and comparing the numerical results against pressure gauge data. The application of the model considers an idealised 7 km by 7 km domain in which the violent eruption of hot gas and volcanic ash high into the atmosphere is simulated. Although the simulations do not correspond to a particular eruption case study, the key flow features observed in a typical explosive eruption event are successfully captured. These include a shock wave resulting
Coupled multiphase flow and geomechanics analysis of the 2011 Lorca earthquake
NASA Astrophysics Data System (ADS)
Jha, B.; Hager, B. H.; Juanes, R.; Bechor, N.
2013-12-01
We present a new approach for modeling coupled multiphase flow and geomechanics of faulted reservoirs. We couple a flow simulator with a mechanics simulator using the unconditionally stable fixed-stress sequential solution scheme [Kim et al, 2011]. We model faults as surfaces of discontinuity using interface elements [Aagaard et al, 2008]. This allows us to model stick-slip behavior on the fault surface for dynamically evolving fault strength. We employ a rigorous formulation of nonlinear multiphase geomechanics [Coussy, 1995], which is based on the increment in mass of fluid phases instead of the traditional, and less accurate, scheme based on the change in porosity. Our nonlinear formulation is capable of handling strong capillarity and large changes in saturation in the reservoir. To account for the effect of surface stresses along fluid-fluid interfaces, we use the equivalent pore pressure in the definition of the multiphase effective stress [Coussy et al, 1998; Kim et al, 2013]. We use our simulation tool to study the 2011 Lorca earthquake [Gonzalez et al, 2012], which has received much attention because of its potential anthropogenic triggering (long-term groundwater withdrawal leading to slip along the regional Alhama de Murcia fault). Our coupled fluid flow and geomechanics approach to model fault slip allowed us to take a fresh look at this seismic event, which to date has only been analyzed using simple elastic dislocation models and point source solutions. Using a three-dimensional model of the Lorca region, we simulate the groundwater withdrawal and subsequent unloading of the basin over the period of interest (1960-2010). We find that groundwater withdrawal leads to unloading of the crust and changes in the stress across the impermeable fault plane. Our analysis suggests that the combination of these two factors played a critical role in inducing the fault slip that ultimately led to the Lorca earthquake. Aagaard, B. T., M. G. Knepley, and C. A
NASA Astrophysics Data System (ADS)
Ostrowski, Z.; Melka, B.; Adamczyk, W.; Rojczyk, M.; Golda, A.; Nowak, A. J.
2016-09-01
In the research a numerical Computational Fluid Dynamics (CFD) model of the pulsatile blood flow was created and analyzed. A real geometry of aorta and its thoracic branches of 8-year old patient diagnosed with a congenital heart defect - coarctation of aorta was used. The inlet boundary condition were implemented as the User Define Function according to measured values of volumetric blood flow. The blood flow was treated as multiphase: plasma, set as the primary fluid phase, was dominant with volume fraction of 0.585 and morphological elements of blood were treated in Euler-Euler approach as dispersed phases (with 90% Red Blood Cells and White Blood Cells as remaining solid volume fraction).
Optimizing multiphase aquifer remediation using ITOUGH2
Finsterle, S.; Pruess, K.
1994-06-01
The T2VOC computer model for simulating the transport of organic chemical contaminants in non-isothermal multiphase systems has been coupled to the ITOUGH2 code which solves parameter optimization problems. This allows one to use nonlinear programming and simulated annealing techniques to solve groundwater management problems, i.e. the optimization of multiphase aquifer remediation. This report contains three illustrative examples to demonstrate the optimization of remediation operations by means of simulation-minimization techniques. The code iteratively determines an optimal remediation strategy (e.g. pumping schedule) which minimizes, for instance, pumping and energy costs, the time for cleanup, and residual contamination. While minimizing the objective function is straightforward, the relative weighting of different performance measures--e.g. pumping costs versus cleanup time versus residual contaminant content--is subject to a management decision process. The intended audience of this report is someone who is familiar with numerical modeling of multiphase flow of contaminants, and who might actually use T2VOC in conjunction with ITOUGH2 to optimize the design of aquifer remediation operations.
Theoretical analysis of multiphase flow during oil-well drilling by a conservative model
NASA Astrophysics Data System (ADS)
Nicolas-Lopez, Ruben
2005-11-01
In order to decrease cost and improve drilling operations is necessary a better understood of the flow mechanisms. Therefore, it was carried out a multiphase conservative model that includes three mass equations and a momentum equation. Also, the measured geothermal gradient is utilized by state equations for estimating physical properties of the phases flowing. The mathematical model is solved by numerical conservative schemes. It is used to analyze the interaction among solid-liquid-gas phases. The circulating system consists as follow, the circulating fluid is pumped downward into the drilling pipe until the bottom of the open hole then it flows through the drill bit, and at this point formation cuttings are incorporated to the circulating fluid and carried upward to the surface. The mixture returns up to the surface by an annular flow area. The real operational conditions are fed to conservative model and the results are matched up to field measurements in several oil wells. Mainly, flow rates, drilling rate, well and tool geometries are data to estimate the profiles of pressure, mixture density, equivalent circulating density, gas fraction and solid carrying capacity. Even though the problem is very complex, the model describes, properly, the hydrodynamics of drilling techniques applied at oil fields. *Authors want to thank to Instituto Mexicano del Petroleo and Petroleos Mexicanos for supporting this research.
NASA Astrophysics Data System (ADS)
Xiao, Kai; Liu, Feng; Wang, Fu-Qiang
2017-09-01
Sources of event-by-event elliptic flow fluctuations in relativistic heavy-ion collisions are investigated in a multiphase parton transport model (AMPT). Besides the well-known initial eccentricity fluctuations, several other sources of elliptic flow dynamical fluctuations are identified. One is fluctuations in initial parton configurations at a given eccentricity. Configuration fluctuations are found to be as important as eccentricity fluctuations in elliptic flow development. A second is quantum fluctuations in parton-parton interactions during system evolution. A third is fluctuations caused by hadronization and final-state hadronic scatterings. The magnitudes of these fluctuations are investigated relative to the eccentricity fluctuations and the average elliptic flow magnitude. The fluctuations from the latter two sources are found to be negative. The results may have important implications for the interpretation of elliptic flow data. Supported by MOST, China, under 973 Grant 2015CB856901, National Natural Science Foundation of China (11521064, 11547143, 11228513), U.S. Department of Energy (DE-FG02-88ER40412), Fundamental Research Funds for the Central Universities, South-Central University for Nationalities (CZQ15001) and Excellent Doctorial Dissertation Cultivation Grant from Central China Normal University (2013YBZD18)
Gray, W.G.
2001-01-25
This project has contributed to the improved understanding and precise physical description of multiphase subsurface flow by combining theoretical derivation of equations, lattice Boltzmann modeling of hydrodynamics to identify characteristics and parameters, and simplification of field-scale equations to assess the advantages and disadvantages of the complete theory.
NASA Astrophysics Data System (ADS)
Pawar, R.; Dash, Z.; Sakaki, T.; Plampin, M. R.; Lassen, R. N.; Illangasekare, T. H.; Zyvoloski, G.
2011-12-01
One of the concerns related to geologic CO2 sequestration is potential leakage of CO2 and its subsequent migration to shallow groundwater resources leading to geochemical impacts. Developing approaches to monitor CO2 migration in shallow aquifer and mitigate leakage impacts will require improving our understanding of gas phase formation and multi-phase flow subsequent to CO2 leakage in shallow aquifers. We are utilizing an integrated approach combining laboratory experiments and numerical simulations to characterize the multi-phase flow of CO2 in shallow aquifers. The laboratory experiments involve a series of highly controlled experiments in which CO2 dissolved water is injected in homogeneous and heterogeneous soil columns and tanks. The experimental results are used to study the effects of soil properties, temperature, pressure gradients and heterogeneities on gas formation and migration. We utilize the Finite Element Heat and Mass (FEHM) simulator (Zyvoloski et al, 2010) to numerically model the experimental results. The numerical models capture the physics of CO2 exsolution, multi-phase fluid flow as well as sand heterogeneity. Experimental observations of pressure, temperature and gas saturations are used to develop and constrain conceptual models for CO2 gas-phase formation and multi-phase CO2 flow in porous media. This talk will provide details of development of conceptual models based on experimental observation, development of numerical models for laboratory experiments and modelling results.
Compact high-resolution gamma-ray computed tomography system for multiphase flow studies
Bieberle, A.; Nehring, H.; Berger, R.; Arlit, M.; Haerting, H.-U.; Schubert, M.; Hampel, U.
2013-03-15
In this paper, a compact high-resolution gamma-ray Computed Tomography (CompaCT) measurement system for multiphase flow studies and tomographic imaging of technical objects is presented. Its compact and robust design makes it particularly suitable for studies on industrial facilities and outdoor applications. Special care has been given to thermal ruggedness, shock resistance, and radiation protection. Main components of the system are a collimated {sup 137}Cs isotopic source, a thermally stabilised modular high-resolution gamma-ray detector arc with 112 scintillation detector elements, and a transportable rotary unit. The CompaCT allows full CT scans of objects with a diameter of up to 130 mm and can be operated with any tilting angle from 0 Degree-Sign (horizontal) to 90 Degree-Sign (vertical).
A minimally diffusive interface function steepening approach for compressible multiphase flows
NASA Astrophysics Data System (ADS)
Regele, Jonathan
2015-11-01
Interface capturing methods for contacts and shocks are commonly used in compressible multiphase flows. Artificial diffusion is inherently necessary to stabilize jump discontinuities across shocks and contacts. Contacts suffer from diffusion more severely than shock waves because their characteristics are not convergent like shocks. Interface steepening procedures are commonly used to counteract numerical diffusion necessary to maintain a sharp interface function. In this work, a modification to the sharpening approach used in Shukla, Pantano, and Freund [J. Comp. Phys, 229, 2010] is developed that minimizes the artificial diffusion across the interface while maintaining a monotonic interface function. The method requires fewer iterations for convergence and provides a steeper interface function. Examples in one and two dimensions demonstrate the method's performance.
Compact high-resolution gamma-ray computed tomography system for multiphase flow studies.
Bieberle, A; Nehring, H; Berger, R; Arlit, M; Härting, H-U; Schubert, M; Hampel, U
2013-03-01
In this paper, a compact high-resolution gamma-ray Computed Tomography (CompaCT) measurement system for multiphase flow studies and tomographic imaging of technical objects is presented. Its compact and robust design makes it particularly suitable for studies on industrial facilities and outdoor applications. Special care has been given to thermal ruggedness, shock resistance, and radiation protection. Main components of the system are a collimated (137)Cs isotopic source, a thermally stabilised modular high-resolution gamma-ray detector arc with 112 scintillation detector elements, and a transportable rotary unit. The CompaCT allows full CT scans of objects with a diameter of up to 130 mm and can be operated with any tilting angle from 0° (horizontal) to 90° (vertical).
NASA Astrophysics Data System (ADS)
Jin, G.
2012-12-01
Multiphase flow modeling is an important numerical tool for a better understanding of transport processes in the fields including, but not limited to, petroleum reservoir engineering, remedy of ground water contamination, and risk evaluation of greenhouse gases such as CO2 injected into deep saline reservoirs. However, accurate numerical modeling for multiphase flow remains many challenges that arise from the inherent tight coupling and strong non-linear nature of the governing equations and the highly heterogeneous media. The existence of counter current flow which is caused by the effect of adverse relative mobility contrast and gravitational and capillary forces will introduce additional numerical instability. Recently multipoint flux approximation (MPFA) has become a subject of extensive research and has been demonstrated with great success in reducing considerable grid orientation effects compared to the conventional single point upstream (SPU) weighting scheme, especially in higher dimensions. However, the present available MPFA schemes are mathematically targeted to certain types of grids in two dimensions, a more general form of MPFA scheme is needed for both 2-D and 3-D problems. In this work a new upstream weighting scheme based on multipoint directional incoming fluxes is proposed which incorporates full permeability tensor to account for the heterogeneity of the porous media. First, the multiphase governing equations are decoupled into an elliptic pressure equation and a hyperbolic or parabolic saturation depends on whether the gravitational and capillary pressures are presented or not. Next, a dual secondary grid (called finite volume grid) is formulated from a primary grid (called finite element grid) to create interaction regions for each grid cell over the entire simulation domain. Such a discretization must ensure the conservation of mass and maintain the continuity of the Darcy velocity across the boundaries between neighboring interaction regions
The impact of interfacial tension on multiphase flow in the CO2-brine-sandstone system
NASA Astrophysics Data System (ADS)
Reynolds, C. A.; Blunt, M. J.; Krevor, S. C.
2013-12-01
Two dominant controls on continuum scale multiphase flow properties are interfacial tension (IFT) and wetting. In hydrocarbon-brine systems, relative permeability is known to increase with decreasing IFT, while residual trapping is controlled by the wetting properties of a permeable rock and the hysteresis between drainage and imbibtion (Amaefule & Handy, 1982; Bardon & Longeron, 1980; Juanes et al., 2006). Fluid properties of the CO2-brine system, such as viscosity, density and interfacial tension, are well characterised and have known dependencies on temperature, pressure and brine salinity. Interest in this particular fluid system is motivated by CO2 storage and enhanced oil recovery. Despite increased interest in CO2 storage, the response of the CO2-brine relative permeability to varying IFT has yet to be comprehensively evaluated. Additionally the wide range of thermophysical properties (density, viscosity etc.) that exist across a relatively small range of pressures and temperatures makes it an ideal system with which to investigate the physics of multiphase flow in general. This is the first systematic study to investigate the impact of IFT on drainage and imbibition relative permeability for the CO2-brine-sandstone system. The experimental design has been adapted from a traditional steady state core flood in two ways. First, while conditions may be easily selected to obtain a range of interfacial tensions, isolating the independent impact of interfacial tension on relative permeability is less simple. Thus experimental conditions are selected so as to vary interfacial tension, while minimising the variation in viscosity ratio between CO2 and brine. Second, in order to attribute the impacts of changing conditions, it is necessary to have precise results such that small shifts in observations can be identified. Multiphase flow theory is used to both design the conditions of the test and interpret the observations, leading to a much higher precision in
NASA Astrophysics Data System (ADS)
Percival, James; Xie, Zhihua; Pavlidis, Dimitrios; Gomes, Jefferson; Pain, Christopher; Matar, Omar
2013-11-01
We present results from a new formulation of a numerical model for direct simulation of bed fluidization and multiphase granular flow. The model is based on a consistent application of continuous-discontinuous mixed control volume finite element methods applied to fully unstructured meshes. The unstructured mesh framework allows for both a mesh adaptive capability, modifying the computational geometry in order to bound the error in the numerical solution while maximizing computational efficiency, and a simple scripting interface embedded in the model which allows fast prototyping of correlation models and parameterizations in intercomparison experiments. The model is applied to standard test problems for fluidized beds. EPSRC Programme Grant EP/K003976/1.
Particle methods for simulation of subsurface multiphase fluid flow and biogeological processes
Paul Meakin; Alexandre Tartakovsky; Tim Scheibe; Daniel Tartakovsky; Georgr Redden; Philip E. Long; Scott C. Brooks; Zhijie Xu
2007-06-01
A number of particle models that are suitable for simulating multiphase fluid flow and biogeological processes have been developed during the last few decades. Here we discuss three of them: a microscopic model - molecular dynamics; a mesoscopic model - dissipative particle dynamics; and a macroscopic model - smoothed particle hydrodynamics. Particle methods are robust and versatile, and it is relatively easy to add additional physical, chemical and biological processes into particle codes. However, the computational efficiency of particle methods is low relative to continuum methods. Multiscale particle methods and hybrid (particle–particle and particle–continuum) methods are needed to improve computational efficiency and make effective use of emerging computational capabilities. These new methods are under development.
Particle methods for simulation of subsurface multiphase fluid flow and biogeological processes
Meakin, Paul; Tartakovsky, Alexandre M.; Scheibe, Timothy D.; Tartakovsky, Daniel M.; Redden, George; Long, Philip E.; Brooks, Scott C.; Xu, Zhijie
2007-08-01
A number of particle models that are suitable for simulating multiphase fluid flow and biogeological processes have been developed during the last few decades. Here we discuss three of them: a microscopic model - molecular dynamics; a mesoscopic model - dissipative particle dynamics; and a macroscopic model - smoothed particle hydrodynamics. Particle methods are robust and versatile, and it is relatively easy to add additional physical, chemical and biological processes into particle codes. However, the computational efficiency of particle methods is low relative to continuum methods. Multiscale particle methods and hybrid (particle–particle and particle–continuum) methods are needed to improve computational efficiency and make effective use of emerging computational capabilities. These new methods are under development.
NASA Astrophysics Data System (ADS)
Stranne, C.; O'Regan, M.; Jakobsson, M.
2016-08-01
Continental margins host large quantities of methane stored partly as hydrates in sediments. Release of methane through hydrate dissociation is implicated as a possible feedback mechanism to climate change. Large-scale estimates of future warming-induced methane release are commonly based on a hydrate stability approach that omits dynamic processes. Here we use the multiphase flow model TOUGH + hydrate (T + H) to quantitatively investigate how dynamic processes affect dissociation rates and methane release. The simulations involve shallow, 20-100 m thick hydrate deposits, forced by a bottom water temperature increase of 0.03°C yr-1 over 100 years. We show that on a centennial time scale, the hydrate stability approach can overestimate gas escape quantities by orders of magnitude. Our results indicate a time lag of > 40 years between the onset of warming and gas escape, meaning that recent climate warming may soon be manifested as widespread gas seepages along the world's continental margins.
Lattice Boltzmann Simulations for High Density Ratio Flows of Multiphase Fluids
NASA Astrophysics Data System (ADS)
Wei, Yikun; Qian, Yuehong
2010-11-01
In the present communication, we will show that the compression effect of the Redlich-Kwong equation of state(EOS) is lower than that of the van der Waals (vdW) EOS. The Redlich-Kwong equation of state has a better agreement with experimental data for the coexistence curve than the van derWaals (vdW) EOS. We implement the Redlich-Kwong EOS in the lattice Boltzmann simulations via a pseudo-potential. As a result, multi-phase flows with large density ratios may be simulated, thus many real applications in engineering problems can be applied. Acknowledgement: This research is supported in part by Ministry of Education in China via project IRT0844 and NSFC project 10625210 and Shanghai Sci and Tech. Com. Project 08ZZ43
Multiphase flow simulations of a moving fluidized bed regenerator in a carbon capture unit
Sarkar, Avik; Pan, Wenxiao; Suh, Dong-Myung; Huckaby, E. D.; Sun, Xin
2014-10-01
To accelerate the commercialization and deployment of carbon capture technologies, computational fluid dynamics (CFD)-based tools may be used to model and analyze the performance of carbon capture devices. This work presents multiphase CFD-based flow simulations for the regeneration device responsible for extracting CO_{2} from CO_{2}-loaded sorbent particles before the particles are recycled. The use of solid particle sorbents in this design is a departure from previously reported systems, where aqueous sorbents are employed. Another new feature is the inclusion of a series of perforated plates along the regenerator height. The influence of these plates on sorbent distribution is examined for varying sorbent holdup, fluidizing gas velocity, and particle size. The residence time distribution of sorbents is also measured to classify the low regime as plug flow or well-mixed flow. The purpose of this work is to better understand the sorbent flow characteristics before reaction kinetics of CO_{2} desorption can be implemented.
Application of two-fluid model in the unsteady flow simulation for a multiphase rotodynamic pump
NASA Astrophysics Data System (ADS)
Y Yu, Z.; Zhu, B. S.; Cao, S. L.; Y Wang, G.
2013-12-01
Based on the assumption of tiny bubbly flow, the gas-liquid two-phase unsteady flow in a multiphase rotodynamic pump was numerically simulated with two-fluid model. The two-phase transport process and the evolution characteristic of the pump head were analyzed. In the working conditions, the liquid flow rate was constant, and the IGVF (inlet gas volume fraction) was 0.05, 0.15 and 0.25, respectively. The k ω- based SST model was used for turbulence; the drag force and the added mass force were accounted for in the interfacial momentum transfer terms. Because the wrap angle of the blade was large, the hybrid mesh was adopted to guarantee high mesh quality. The simulation results demonstrate that two-fluid model can more reasonably capture the transport process than the homogeneous model; and the drag law should be corrected based on the mixture viscosity in high gas volume fraction conditions. If the liquid flow rate is constant, the increase of IGVF can raise the pressure in the inlet extended region, while the pressure in the outlet extended region will not be affected much, thus the pump head will go down. In addition, due to the fluctuation of gas volume fraction field, the pump head will also fluctuate around a stable value in the transport process.
Yu, G.S.; Ni, J.J.; Liang, Q.F.; Guo, Q.H.; Zhou, Z.J.
2009-11-15
A comprehensive model has been developed to analyze the multiphase flow and heat transfer in the radiant syngas cooler (RSC) of an industrial-scale entrained-flow coal gasification. The three-dimensional multiphase flow field and temperature field were reconstructed. The realizable {kappa}-{epsilon} turbulence model is applied to calculate the gas flow field, while the discrete random walk model is applied to trace the particles, and the interaction between the gas and the particle is considered using a two-way coupling model. The radiative properties of syngas mixture are calculated by weighted-sum-of-gray-gases model (WSGGM). The Ranz-Marshall correlation for the Nusselt number is used to account for convection heat transfer between the gas phase and the particles. The discrete ordinate model is applied to model the radiative heat transfer, and the effect of ash/slag particles on radiative heat transfer is considered. The model was successfully validated by comparison with the industrial plant measurement data, which demonstrated the ability of the model to optimize the design. The results show that a torch shape inlet jet was formed in the RSC, and its length increased with the diameter of the central channel. The recirculation zones appeared around the inlet jet, top, and bottom of the RSC. The overall temperature decreased with the heat-transfer surface area of the fins. The concentration distribution, velocity distribution, residence time distribution, and temperature distribution of particles with different diameters have been discussed. Finally, the slag/ash particles size distribution and temperature profile at the bottom of the RSC have been presented.
Radiotracer method for residence time distribution study in multiphase flow system.
Sugiharto, S; Su'ud, Z; Kurniadi, R; Wibisono, W; Abidin, Z
2009-01-01
[(131)I] isotope in different chemical compounds have been injected into 24in hydrocarbon transmission pipeline containing approximately 95% water, 3% crude oil, 2% gas and negligible solid material, respectively. The system is operated at the temperature around 70 degrees C enabling fluids flow is easier in the pipeline. The segment of measurement was chosen far from the junction point of the pipeline, therefore, it was reasonably to assume that the fluids in such multiphase system were separated distinctively. Expandable tubing of injector was used to ensure that the isotopes were injected at the proper place in the sense that [(131)I]Na isotope was injected into water layer and iodo-benzene, ([131])IC(6)H(5,) was injected into crude oil regime. The radiotracer selection was based on the compatibility of radiotracer with each of fluids under investigation. [(131)I]Na was used for measuring flow of water while iodo-benzene, ([131])IC(6)H(5,) was used for measuring flow of crude oil. Two scintillation detectors were used and they are put at the distances 80 and 100m, respectively, from injection point. The residence time distribution data were utilized for calculation water and crude oil flows. Several injections were conducted in the experiments. Although the crude oil density is lighter than the density of water, the result of measurement shows that the water flow is faster than the crude oil flow. As the system is water-dominated, water may act as carrier and the movement of crude oil is slowed due to friction between crude oil with water and crude oil with gas at top layer. Above of all, this result was able to give answer on the question why crude oil always arrives behind water as it is checked at gathering station. In addition, the flow patterns of the water in the pipeline calculated by Reynolds number and predicted by simple tank-in-series model is turbulence in character.
Exact regularized point particle method for multiphase flows in the two-way coupling regime
NASA Astrophysics Data System (ADS)
Gualtieri, P.; Picano, F.; Sardina, G.; Casciola, C. M.
2015-06-01
Particulate flows have been largely studied under the simplifying assumptions of one-way coupling regime where the disperse phase do not react-back on the carrier fluid. In the context of turbulent flows, many non trivial phenomena such as small scales particles clustering or preferential spatial accumulation have been explained and understood. A more complete view of multiphase flows can be gained calling into play two-way coupling effects, i.e. by accounting for the inter-phase momentum exchange between the carrier and the suspended phase, certainly relevant at increasing mass loading. In such regime, partially investigated in the past by the so-called Particle In Cell (PIC) method, much is still to be learned about the dynamics of the disperse phase and the ensuing alteration of the carrier flow. In this paper we present a new methodology rigorously designed to capture the inter-phase momentum exchange for particles smaller than the smallest hydrodynamical scale, e.g. the Kolmogorov scale in a turbulent flow. In fact, the momentum coupling mechanism exploits the unsteady Stokes flow around a small rigid sphere where the transient disturbance produced by each particle is evaluated in a closed form. The particles are described as lumped, point masses which would lead to the appearance of singularities. A rigorous regularization procedure is conceived to extract the physically relevant interactions between particles and fluid which avoids any "ah hoc" assumption. The approach is suited for high efficiency implementation on massively parallel machines since the transient disturbance produced by the particles is strongly localized in space around the actual particle position. As will be shown, hundred thousands particles can therefore be handled at an affordable computational cost as demonstrated by a preliminary application to a particle laden turbulent shear flow.
Numerical analysis for the multi-phase flow of pulverized coal injection inside blast furnace tuyere
Chen, C.W.
2005-09-01
The pulverized coal injection (PCI) system was modified from single lance injection into double lance injection at No. 3 Blast Furnace of CSC. It is beneficial to reduce the cost of coke. However, the injected coal was found very close to the inner wall of the tuyere during the operation, such as to cause the possibility of erosion for the tuyere. In this study a three-dimensional mathematical model has been developed based on a computational fluid dynamics software PHOENICS to simulate the fluid flow phenomena inside blast furnace tuyere. The model was capable of handling steady-state, three-dimensional multi-phase flow of pulverized coal injection. The model was applied to simulate the flow patterns of the injection coal inside the tuyere with two kinds of lance design for the PCI system. The distribution of injection coal was simulated such as to estimate the possibility of erosion for the tuyere. The calculated results agreed with the operating experience of CSC plant and the optimum design of double lance was suggested. The model was also applied to simulate the oxygen concentration distribution with these different oxygen enrichments for the coal/oxygen lance system. The calculated results agreed with the experimental measurement. These test results demonstrate that the model is both reasonably reliable and efficient.
NASA Technical Reports Server (NTRS)
Bellan, J.; Lathouwers, D.
2000-01-01
A novel multiphase flow model is presented for describing the pyrolysis of biomass in a 'bubbling' fluidized bed reactor. The mixture of biomass and sand in a gaseous flow is conceptualized as a particulate phase composed of two classes interacting with the carrier gaseous flow. The solid biomass is composed of three initial species: cellulose, hemicellulose and lignin. From each of these initial species, two new solid species originate during pyrolysis: an 'active' species and a char, thus totaling seven solid-biomass species. The gas phase is composed of the original carrier gas (steam), tar and gas; the last two species originate from the volumetric pyrolysis reaction. The conservation equations are derived from the Boltzmann equations through ensemble averaging. Stresses in the gaseous phase are the sum of the Newtonian and Reynolds (turbulent) contributions. The particulate phase stresses are the sum of collisional and Reynolds contributions. Heat transfer between phases, and heat transfer between classes in the particulate phase is modeled, the last resulting from collisions between sand and biomass. Closure of the equations must be performed by modeling the Reynolds stresses for both phases. The results of a simplified version (first step) of the model are presented.
NASA Astrophysics Data System (ADS)
Amooie, Mohammad Amin; Soltanian, Mohammad Reza; Moortgat, Joachim
2016-11-01
Fluid mixing and its interplay with viscous fingering as well as flow channeling through heterogeneous media have been traditionally studied for fully (im)miscible conditions in which a (two-) single-phase system is represented by two components, e.g. a solvent and a solute, with (zero) infinite mutual solubility. However, many subsurface problems, e.g. gas injection/migration in hydrocarbon reservoirs, involve multiple species transfer. Multicomponent fluid properties behave non-linearly, through an equation of state, as a function of temperature, pressure, and compositions. Depending on the minimum miscibility pressure, a two-phase region with finite, non-zero mutual solubility may develop, e.g. in a partially-miscible system. Here we study mixing of fluids with partial mutual solubility, induced by viscous flow fingering, channeling, and species transport within and between phases. We uncover non-linear mixing dynamics of a finite-size slug of a less viscous fluid attenuated by a carrier fluid during rectilinear displacement. We perform accurate numerical simulations that are thermodynamically-consistent to capture fingering patterns and complex phase behavior of mixtures. The results provide a broad perspective into how multiphase flow can alter fluid mixing in porous media.
NASA Astrophysics Data System (ADS)
Shahraeeni, E.; Firoozabadi, A.
2012-12-01
We present a 3D model for fully compositional multi-phase multi-component flow in porous media with species transfer between the phases. Phase properties are modeled with the Peng-Robinson equation of state. Because phase properties may exhibit strong discontinuities, we approximate the mass transport update by the means of discontinuous Galerkin method. Pressure and velocity fields are continuous across the whole domain of solution, which is guaranteed by using the mixed hybrid finite element method. Complexity of the flow necessitates the use of either very fine mesh or higher-order schemes. The use of higher-order finite element methods significantly reduces numerical dispersion and grid orientation effects that plague traditional finite difference methods. We have shown that in 3D the convergence rate of our scheme is twice as first order method and the CPU time may improve up to three orders of magnitude for the same level of accuracy. Our numerical model facilitates accurate simulation of delicate feature of compositional flow like fingering and CO2 injection in complex reservoirs for a broad range of applications, including CO2 sequestration in finite aquifer and water flooded reservoirs with transfer of all species between the phases.
Zheng, L.; Samper, J.; Montenegro, L.; Major, J.C.
2008-10-15
During the construction and operational phases of a high-level radioactive waste (HLW) repository constructed in a clay formation, ventilation of underground drifts will cause desaturation and oxidation of the rock. The Ventilation Experiment (VE) was performed in a 1.3 m diameter unlined horizontal microtunnel on Opalinus clay at Mont Terri underground research laboratory in Switzerland to evaluate the impact of desaturation on rock properties. A multiphase flow and reactive transport model of VE is presented here. The model accounts for liquid, vapor and air flow, evaporation/condensation and multicomponent reactive solute transport with kinetic dissolution of pyrite and siderite and local-equilibrium dissolution/precipitation of calcite, ferrihydrite, dolomite, gypsum and quartz. Model results reproduce measured vapor flow, liquid pressure and hydrochemical data and capture the trends of measured relative humidities, although such data are slightly overestimated near the rock interface due to uncertainties in the turbulence factor. Rock desaturation allows oxygen to diffuse into the rock and triggers pyrite oxidation, dissolution of calcite and siderite, precipitation of ferrihydrite, dolomite and gypsum and cation exchange. pH in the unsaturated rock varies from 7.8 to 8 and is buffered by calcite. Computed changes in the porosity and the permeability of Opalinus clay in the unsaturated zone caused by oxidation and mineral dissolution/precipitation are smaller than 5%. Therefore, rock properties are not expected to be affected significantly by ventilation of underground drifts during construction and operational phases of a HLW repository in clay.
Visualization and Measurement of Multiphase Flow in Porous Media using Electromagnetic Radiation
NASA Astrophysics Data System (ADS)
Darnault, C. J.; DiCarlo, D. A.; Bauters, T. W.; Throop, J.; Steenhuis, T. S.; Parlange, J.; Montemagno, C.
2001-05-01
Most of the models incorporating multiphase flow and transport in the unsaturated and saturated zones of the subsurface environment lack rigorous validation because very few methods exist that can visualize fluid flow and measure transient fluid contents on the order of seconds of whole flow fields. The objective of this study is to develop a method by which fluid content can be measured rapidly in three-phase flow systems. The method uses the hue and intensity of light transmitted through a slab chamber, to measure fluid contents. The water is colored blue with CuSO4. The light transmitted by high frequency light bulbs is recorded with a color video camera in RGB (red, green and blue) and then converted to HSI (hue, saturation and intensity). Calibration of hue and intensity with water, oil and air is made using cells filled with different combinations of the three fluids. The results show that hue and water content are uniquely related over a large range of fluid contents. Total liquid content is a function of both hue and light intensity. The air content is obtained by subtracting the liquid content from the porosity. The method was tested with static and transient experiments. Measurements made with the light transmission method (LTM) and the synchrotron x-rays of the static experiment agreed well. In the transient experiments, unstable fingered flow was formed by dripping water on the surface in a two-dimensional slab chamber with partially oil-saturated sand. The LTM is able to capture the spatial resolution of the fluid contents and can provide new insights in rapidly changing, three-phase flow systems.
Shankar Subramaniam
2009-04-01
This final project report summarizes progress made towards the objectives described in the proposal entitled “Developing New Mathematical Models for Multiphase Flows Based on a Fundamental Probability Density Function Approach”. Substantial progress has been made in theory, modeling and numerical simulation of turbulent multiphase flows. The consistent mathematical framework based on probability density functions is described. New models are proposed for turbulent particle-laden flows and sprays.
Subsecond pore-scale displacement processes and relaxation dynamics in multiphase flow
Armstrong, Ryan T; Ott, Holger; Georgiadis, Apostolos; Rücker, Maja; Schwing, Alex; Berg, Steffen
2014-01-01
With recent advances at X-ray microcomputed tomography (μCT) synchrotron beam lines, it is now possible to study pore-scale flow in porous rock under dynamic flow conditions. The collection of four-dimensional data allows for the direct 3-D visualization of fluid-fluid displacement in porous rock as a function of time. However, even state-of-the-art fast-μCT scans require between one and a few seconds to complete and the much faster fluid movement occurring during that time interval is manifested as imaging artifacts in the reconstructed 3-D volume. We present an approach to analyze the 2-D radiograph data collected during fast-μCT to study the pore-scale displacement dynamics on the time scale of 40 ms which is near the intrinsic time scale of individual Haines jumps. We present a methodology to identify the time intervals at which pore-scale displacement events in the observed field of view occur and hence, how reconstruction intervals can be chosen to avoid fluid-movement-induced reconstruction artifacts. We further quantify the size, order, frequency, and location of fluid-fluid displacement at the millisecond time scale. We observe that after a displacement event, the pore-scale fluid distribution relaxes to (quasi-) equilibrium in cascades of pore-scale fluid rearrangements with an average relaxation time for the whole cascade between 0.5 and 2.0 s. These findings help to identify the flow regimes and intrinsic time and length scales relevant to fractional flow. While the focus of the work is in the context of multiphase flow, the approach could be applied to many different μCT applications where morphological changes occur at a time scale less than that required for collecting a μCT scan. PMID:25745271
A multi-parametric particle-pairing algorithm for particle tracking in single and multiphase flows
NASA Astrophysics Data System (ADS)
Cardwell, Nicholas D.; Vlachos, Pavlos P.; Thole, Karen A.
2011-10-01
Multiphase flows (MPFs) offer a rich area of fundamental study with many practical applications. Examples of such flows range from the ingestion of foreign particulates in gas turbines to transport of particles within the human body. Experimental investigation of MPFs, however, is challenging, and requires techniques that simultaneously resolve both the carrier and discrete phases present in the flowfield. This paper presents a new multi-parametric particle-pairing algorithm for particle tracking velocimetry (MP3-PTV) in MPFs. MP3-PTV improves upon previous particle tracking algorithms by employing a novel variable pair-matching algorithm which utilizes displacement preconditioning in combination with estimated particle size and intensity to more effectively and accurately match particle pairs between successive images. To improve the method's efficiency, a new particle identification and segmentation routine was also developed. Validation of the new method was initially performed on two artificial data sets: a traditional single-phase flow published by the Visualization Society of Japan (VSJ) and an in-house generated MPF data set having a bi-modal distribution of particles diameters. Metrics of the measurement yield, reliability and overall tracking efficiency were used for method comparison. On the VSJ data set, the newly presented segmentation routine delivered a twofold improvement in identifying particles when compared to other published methods. For the simulated MPF data set, measurement efficiency of the carrier phases improved from 9% to 41% for MP3-PTV as compared to a traditional hybrid PTV. When employed on experimental data of a gas-solid flow, the MP3-PTV effectively identified the two particle populations and reported a vector efficiency and velocity measurement error comparable to measurements for the single-phase flow images. Simultaneous measurement of the dispersed particle and the carrier flowfield velocities allowed for the calculation of
Multiphase integral reacting flow computer code (ICOMFLO): User`s guide
Chang, S.L.; Lottes, S.A.; Petrick, M.
1997-11-01
A copyrighted computational fluid dynamics computer code, ICOMFLO, has been developed for the simulation of multiphase reacting flows. The code solves conservation equations for gaseous species and droplets (or solid particles) of various sizes. General conservation laws, expressed by elliptic type partial differential equations, are used in conjunction with rate equations governing the mass, momentum, enthalpy, species, turbulent kinetic energy, and turbulent dissipation. Associated phenomenological submodels of the code include integral combustion, two parameter turbulence, particle evaporation, and interfacial submodels. A newly developed integral combustion submodel replacing an Arrhenius type differential reaction submodel has been implemented to improve numerical convergence and enhance numerical stability. A two parameter turbulence submodel is modified for both gas and solid phases. An evaporation submodel treats not only droplet evaporation but size dispersion. Interfacial submodels use correlations to model interfacial momentum and energy transfer. The ICOMFLO code solves the governing equations in three steps. First, a staggered grid system is constructed in the flow domain. The staggered grid system defines gas velocity components on the surfaces of a control volume, while the other flow properties are defined at the volume center. A blocked cell technique is used to handle complex geometry. Then, the partial differential equations are integrated over each control volume and transformed into discrete difference equations. Finally, the difference equations are solved iteratively by using a modified SIMPLER algorithm. The results of the solution include gas flow properties (pressure, temperature, density, species concentration, velocity, and turbulence parameters) and particle flow properties (number density, temperature, velocity, and void fraction). The code has been used in many engineering applications, such as coal-fired combustors, air
Modeling of multiphase flow with solidification and chemical reaction in materials processing
NASA Astrophysics Data System (ADS)
Wei, Jiuan
Understanding of multiphase flow and related heat transfer and chemical reactions are the keys to increase the productivity and efficiency in industrial processes. The objective of this thesis is to utilize the computational approaches to investigate the multiphase flow and its application in the materials processes, especially in the following two areas: directional solidification, and pyrolysis and synthesis. In this thesis, numerical simulations will be performed for crystal growth of several III-V and II-VI compounds. The effects of Prandtl and Grashof numbers on the axial temperature profile, the solidification interface shape, and melt flow are investigated. For the material with high Prandtl and Grashof numbers, temperature field and growth interface will be significantly influenced by melt flow, resulting in the complicated temperature distribution and curved interface shape, so it will encounter tremendous difficulty using a traditional Bridgman growth system. A new design is proposed to reduce the melt convection. The geometric configuration of top cold and bottom hot in the melt will dramatically reduce the melt convection. The new design has been employed to simulate the melt flow and heat transfer in crystal growth with large Prandtl and Grashof numbers and the design parameters have been adjusted. Over 90% of commercial solar cells are made from silicon and directional solidification system is the one of the most important method to produce multi-crystalline silicon ingots due to its tolerance to feedstock impurities and lower manufacturing cost. A numerical model is developed to simulate the silicon ingot directional solidification process. Temperature distribution and solidification interface location are presented. Heat transfer and solidification analysis are performed to determine the energy efficiency of the silicon production furnace. Possible improvements are identified. The silicon growth process is controlled by adjusting heating power and
An incompressible two-dimensional multiphase particle-in-cell model for dense particle flows
Snider, D.M.; O`Rourke, P.J.; Andrews, M.J.
1997-06-01
A two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method is presented for dense particle flows. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Difficulties associated with calculating interparticle interactions for dense particle flows with volume fractions above 5% have been eliminated by mapping particle properties to a Eulerian grid and then mapping back computed stress tensors to particle positions. This approach utilizes the best of Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. The solution scheme allows for distributions of types, sizes, and density of particles, with no numerical diffusion from the Lagrangian particle calculations. The computational method is implicit with respect to pressure, velocity, and volume fraction in the continuum solution thus avoiding courant limits on computational time advancement. MP-PIC simulations are compared with one-dimensional problems that have analytical solutions and with two-dimensional problems for which there are experimental data.
Large Eddy Simulation of Reacting Multiphase Flows in Complex Combustor Geometries
NASA Astrophysics Data System (ADS)
Apte, S.; Mahesh, K.; Iaccarino, G.; Constantinescu, G.; Ham, F.; Moin, P.
2003-11-01
We have developed a massively parallel computational tool (CDP) for large-eddy simulation (LES) of reacting multiphase flows in complex combustor geometries. A co-located, finite-volume scheme on unstructured grids is used to solve the low-Mach number equations for gaseous phase. The liquid phase is modeled by tracking a large number of computational particles in a Lagrangian framework with models for inter-phase mass, momentum, and energy transport. Complex physical phenomena of liquid atomization, droplet deformation, drag, and evaporation are captured using advanced subgrid models. A flamelet/progress variable appraoch by Pierce & Moin (2001) is used to compute non-premixed turbulent combustion. A series of validation studies in coaxial and realistic gas-turbine combustor geometries are performed to test the predictive capability of the solver. Specifically, simulations of non-premixed combustion, particle-laden swirling flows, droplet vaporization in coaxial-jet combustors and spray breakup in realistic injectors are performed and good agreement with avialable experimental data is obtained. This tool is now being used to perform simulations of turbulent spray flames in a realistic Pratt & Whitney gas-turbine combustion chamber using Department of Energy's computational resources under the Accelerated Strategic Computing Initiative (ASCI) project.
Thickness-based adaptive mesh refinement methods for multi-phase flow simulations with thin regions
Chen, Xiaodong; Yang, Vigor
2014-07-15
In numerical simulations of multi-scale, multi-phase flows, grid refinement is required to resolve regions with small scales. A notable example is liquid-jet atomization and subsequent droplet dynamics. It is essential to characterize the detailed flow physics with variable length scales with high fidelity, in order to elucidate the underlying mechanisms. In this paper, two thickness-based mesh refinement schemes are developed based on distance- and topology-oriented criteria for thin regions with confining wall/plane of symmetry and in any situation, respectively. Both techniques are implemented in a general framework with a volume-of-fluid formulation and an adaptive-mesh-refinement capability. The distance-oriented technique compares against a critical value, the ratio of an interfacial cell size to the distance between the mass center of the cell and a reference plane. The topology-oriented technique is developed from digital topology theories to handle more general conditions. The requirement for interfacial mesh refinement can be detected swiftly, without the need of thickness information, equation solving, variable averaging or mesh repairing. The mesh refinement level increases smoothly on demand in thin regions. The schemes have been verified and validated against several benchmark cases to demonstrate their effectiveness and robustness. These include the dynamics of colliding droplets, droplet motions in a microchannel, and atomization of liquid impinging jets. Overall, the thickness-based refinement technique provides highly adaptive meshes for problems with thin regions in an efficient and fully automatic manner.
Mukhopadhyay, S.; Tsang, Y.; Finsterle, S.
2009-01-15
A simple conceptual model has been recently developed for analyzing pressure and temperature data from flowing fluid temperature logging (FFTL) in unsaturated fractured rock. Using this conceptual model, we developed an analytical solution for FFTL pressure response, and a semianalytical solution for FFTL temperature response. We also proposed a method for estimating fracture permeability from FFTL temperature data. The conceptual model was based on some simplifying assumptions, particularly that a single-phase airflow model was used. In this paper, we develop a more comprehensive numerical model of multiphase flow and heat transfer associated with FFTL. Using this numerical model, we perform a number of forward simulations to determine the parameters that have the strongest influence on the pressure and temperature response from FFTL. We then use the iTOUGH2 optimization code to estimate these most sensitive parameters through inverse modeling and to quantify the uncertainties associated with these estimated parameters. We conclude that FFTL can be utilized to determine permeability, porosity, and thermal conductivity of the fracture rock. Two other parameters, which are not properties of the fractured rock, have strong influence on FFTL response. These are pressure and temperature in the borehole that were at equilibrium with the fractured rock formation at the beginning of FFTL. We illustrate how these parameters can also be estimated from FFTL data.
Investigation of multiphase multicomponent aerosol flow dictating pMDI-spacer interactions.
Sarkar, Saurabh; Peri, S Prasad; Chaudhuri, Bodhisattwa
2017-08-30
The use of Pressurized metered dose inhalers (pMDIs) for the treatment of asthma and other chronic obstructive pulmonary diseases is frequently associated with breath-actuation synchronization problems and poor pulmonary delivery, particularly amongst the pediatric and geriatric population groups. Spacers, or Valved Holding Chambers (VHCs), are frequently used to address these problems. However, the performance of spacers with different pMDIs is also highly variable and needs to be investigated. The purpose of the current study is to develop a computational fluid dynamics (CFD) model which can characterize multiphase multicomponent aerosol flow issuing from a commercial suspension-based pMDI into a spacer. The CFD model was initially calibrated against published experimental measurements in order to appropriately model the spray characteristics. This model was subsequently used to examine several combinations of inhaler, spacer and USP Throat geometries under different discharge rates of coflow air. The CFD model predictions compared favorably with experimental measurements. In particular, the predictions show, in accordance with experimental determinations, a decrease of drug retained by the spacers with increasing coflow air. The recirculation observed near the obstructions in axial path of the spray within either spacer is considered to be central for increasing spray retention and drug deposition behavior. Fluid flow patterns within the spacers were correlated with drug deposition behavior through a dimensionless variable, the Recirculation index (RCI). Bigger particles were found to be selectively retained within the spacer. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kootiani, Reza Cheraghi; Chehrehgosha, Soroush; Mirali, Sasan; Samsuri, Ariffin Bin
2014-10-01
The analytical model for predicting the pressure at any point in a flow string is essential in determining optimum production string dimension and in the design of gas-lift installations. This information is also invaluable in predicting bottom-hole pressure in flowing wells. A variety of model on bottom-hole pressure in flowing wells have been reported in the literatures. Most of the early models on pressure drop in the flowing wells were based on single phase flowing wells, even the recent investigators treated the multiphase (liquid and gas phase) as a homogenous single phase flow without accounting for dissolved gas in oil. This paper present a modification of previous models for single phase flowing gas wells and the model was adapted to predict the pressure drop in multiphase flowing wells. In this paper, we can solve numerically to obtain the pressure upstream of the nozzle in two phase flow. The key operational and fluid/ pipe parameters which influence the degree of pressure drop in flowing wells are identified through the modification.
Multiphase flow of carbon dioxide and brine in dual porosity carbonates
NASA Astrophysics Data System (ADS)
Pentland, Christopher; Oedai, Sjaam; Ott, Holger
2014-05-01
The storage of carbon dioxide in subsurface formations presents a challenge in terms of multiphase flow characterisation. Project planning requires an understanding of multiphase flow characteristics such as the relationship between relative permeability and saturation. At present there are only a limited number of relative permeability relations for carbon dioxide-brine fluid systems, most of which are measured on sandstone rocks. In this study coreflood experiments are performed to investigate the relative permeability of carbon dioxide and brine in two dual porosity carbonate systems. Carbon dioxide is injected into the brine saturated rocks in a primary drainage process. The rock fluid system is pre-equilibrated to avoid chemical reactions and physical mass transfer between phases. The pressure drop across the samples, the amount of brine displaced and the saturation distribution within the rocks are measured. The experiments are repeated on the same rocks for the decane-brine fluid system. The experimental data is interpreted by simulating the experiments with a continuum scale Darcy solver. Selected functional representations of relative permeability are investigated, the parameters of which are chosen such that a least squares objective function is minimised (i.e. the difference between experimental observations and simulated response). The match between simulation and measurement is dependent upon the form of the functional representations. The best agreement is achieved with the Corey [Brooks and Corey, 1964] or modified Corey [Masalmeh et al., 2007] functions which best represent the relative permeability of brine at low brine saturations. The relative permeability of carbon dioxide is shown to be lower than the relative permeability of decane over the saturation ranges investigated. The relative permeability of the brine phase is comparable for the two fluid systems. These observations are consistent with the rocks being water-wet. During the experiment
NASA Astrophysics Data System (ADS)
Liao, Qinzhuo; Zhang, Dongxiao; Tchelepi, Hamdi
2017-02-01
A new computational method is proposed for efficient uncertainty quantification of multiphase flow in porous media with stochastic permeability. For pressure estimation, it combines the dimension-adaptive stochastic collocation method on Smolyak sparse grids and the Kronrod-Patterson-Hermite nested quadrature formulas. For saturation estimation, an additional stage is developed, in which the pressure and velocity samples are first generated by the sparse grid interpolation and then substituted into the transport equation to solve for the saturation samples, to address the low regularity problem of the saturation. Numerical examples are presented for multiphase flow with stochastic permeability fields to demonstrate accuracy and efficiency of the proposed two-stage adaptive stochastic collocation method on nested sparse grids.
Holford, D.J.
1994-01-01
This document is a user`s manual for the Rn3D finite element code. Rn3D was developed to simulate gas flow and radon transport in variably saturated, nonisothermal porous media. The Rn3D model is applicable to a wide range of problems involving radon transport in soil because it can simulate either steady-state or transient flow and transport in one-, two- or three-dimensions (including radially symmetric two-dimensional problems). The porous materials may be heterogeneous and anisotropic. This manual describes all pertinent mathematics related to the governing, boundary, and constitutive equations of the model, as well as the development of the finite element equations used in the code. Instructions are given for constructing Rn3D input files and executing the code, as well as a description of all output files generated by the code. Five verification problems are given that test various aspects of code operation, complete with example input files, FORTRAN programs for the respective analytical solutions, and plots of model results. An example simulation is presented to illustrate the type of problem Rn3D is designed to solve. Finally, instructions are given on how to convert Rn3D to simulate systems other than radon, air, and water.
Nonisothermal hydrologic transport experimental plan
Rasmussen, T.C.; Evans, D.D.
1992-09-01
A field heater experimental plan is presented for investigating hydrologic transport processes in unsaturated fractured rock related to the disposal of high-level radioactive waste (HLW) in an underground repository. The experimental plan provides a methodology for obtaining data required for evaluating conceptual and computer models related to HLW isolation in an environment where significant heat energy is produced. Coupled-process models are currently limited by the lack of validation data appropriate for field scales that incorporate relevant transport processes. Presented in this document is a discussion of previous nonisothermal experiments. Processes expected to dominate heat-driven liquid, vapor, gas, and solute flow during the experiment are explained, and the conceptual model for nonisothermal flow and transport in unsaturated, fractured rock is described. Of particular concern is the ability to confirm the hypothesized conceptual model specifically, the establishment of higher water saturation zones within the host rock around the heat source, and the establishment of countercurrent flow conditions within the host rock near the heat source. Field experimental plans are presented using the Apache Leap Tuff Site to illustrate the implementation of the proposed methodology. Both small-scale preliminary experiments and a long-term experiment are described.
NASA Astrophysics Data System (ADS)
Chen, Gujun; He, Shengping; Li, Yugang; Guo, Yintao; Wang, Qian
2016-08-01
In the present work, a mathematical model was developed to understand the multiphase flow behavior in a Rheinsahl-Heraeus (RH) reactor by using the Euler-Euler approach, and the effects of initial bubble diameter, nonequilibrium expansion of bubble caused by sudden thermal effect and sharp pressure drop, and various interphase forces were considered and clarified. The simulation results of mixing time, liquid circulation rate, and local liquid velocity in RH agree well with the measured results. The result indicates that the initial bubble diameter has a weak impact on the multiphase flow but that the bubble expansion has a tremendous impact on it for an actual RH. Meanwhile, the drag force and turbulent dispersion force strongly influence the multiphase flow, whereas the lift force and virtual mass force only have negligible influence on it. Furthermore, the turbulent dispersion force should be responsible for reasonable prediction of multiphase flow behavior in the RH reactor.
Kadambi, J.R.
1987-01-01
Preliminary experiments were conducted to obtain pressure drop data for the slurry containing silica gel. Based upon this data, a Refractive Index Multiphase Flow Test Loop (RIMMTL) was designed. The details are provided. 5 figs.
NASA Astrophysics Data System (ADS)
Jacobs, C. T.; Collins, G. S.; Piggott, M. D.; Kramer, S. C.; Wilson, C. R. G.
2013-02-01
Small-scale experiments of volcanic ash particle settling in water have demonstrated that ash particles can either settle slowly and individually, or rapidly and collectively as a gravitationally unstable ash-laden plume. This has important implications for the emplacement of tephra deposits on the seabed. Numerical modelling has the potential to extend the results of laboratory experiments to larger scales and explore the conditions under which plumes may form and persist, but many existing models are computationally restricted by the fixed mesh approaches that they employ. In contrast, this paper presents a new multiphase flow model that uses an adaptive unstructured mesh approach. As a simulation progresses, the mesh is optimized to focus numerical resolution in areas important to the dynamics and decrease it where it is not needed, thereby potentially reducing computational requirements. Model verification is performed using the method of manufactured solutions, which shows the correct solution convergence rates. Model validation and application considers 2-D simulations of plume formation in a water tank which replicate published laboratory experiments. The numerically predicted settling velocities for both individual particles and plumes, as well as instability behaviour, agree well with experimental data and observations. Plume settling is clearly hindered by the presence of a salinity gradient, and its influence must therefore be taken into account when considering particles in bodies of saline water. Furthermore, individual particles settle in the laminar flow regime while plume settling is shown (by plume Reynolds numbers greater than unity) to be in the turbulent flow regime, which has a significant impact on entrainment and settling rates. Mesh adaptivity maintains solution accuracy while providing a substantial reduction in computational requirements when compared to the same simulation performed using a fixed mesh, highlighting the benefits of an
NASA Astrophysics Data System (ADS)
Cheng, C.; Perfect, E.; Cropper, C.
2011-12-01
Numerical models are an important tool in petroleum engineering, geoscience, and environmental applications, e.g. feasibility evaluation and prediction for enhanced oil recovery, enhanced geothermal systems, geological carbon storage, and remediation of contaminated sites. Knowledge of capillary pressure-saturation functions is essential in such applications for simulating multiphase fluid flow and chemical transport in variably-saturated rocks and soils in the subsurface. Parameters from average capillary pressure-saturation functions are sometimes employed due to their relative ease of measurement in the laboratory. However, the use of average capillary pressure-saturation function parameters instead of point capillary pressure-saturation function parameters for numerical simulations of flow and transport can result in significant errors, especially in the case of coarse-grained sediments and fractured rocks. Such erroneous predications can impose great risks and challenges to decision-making. In this paper we present a comparison of simulation results based on average and point estimates of van Genuchten model parameters (Sr, α, and n) for Berea sandstone, packed glass beads, and Hanford sediments. The capillary pressure-saturation functions were measured using steady-state centrifugation. Average and point parameters were estimated for each sample using the averaging and integral methods, respectively. Results indicated that the Sr and α parameters estimated using averaging and integral methods were close to a 1-to-1 correspondence, with R-squared values of 0.958 and 0.994, respectively. The n parameter, however, showed a major curvilinear deviation from the 1-to-1 line for the two estimation methods. This trend indicates that the averaging method systematically underestimates the n parameter relative to the point-based estimates of the integral method leading to an over predication of the breadth of the pore size distribution. Forward numerical simulations
Gable, C.; Travis, B.J.; O`Connell, R.J.; Stone, H.A.
1995-06-01
Flow in the mantle of terrestrial planets produces stresses and topography on the planet`s surface which may allow us to infer the dynamics and evolution of the planet`s -interior. This project is directed towards understanding the relationship between dynamical processes related to buoyancy-driven flow and the observable expression (e.g. earthquakes, surface topography) of the flow. Problems considered include the ascent of mantle plumes and their interaction with compositional discontinuities, the deformation of subducted slabs, and effects of lateral viscosity variations on post-glacial rebound. We find that plumes rising from the lower mantle into a lower-viscosity upper mantle become extended vertically. As the plume spreads beneath the planet`s surface, the dynamic topography changes from a bell-shape to a plateau shape. The topography and surface stresses associated . with surface features called arachnoids, novae and coronae on Venus are consistent with the surface expression of a rising and spreading buoyant volume of fluid. Short wavelength viscosity variations, or sharp variations of lithosphere thickness, have a large effect on surface stresses. This study also considers the interaction and deformation of buoyancy-driven drops and bubbles in low Reynolds number multiphase systems. Applications include bubbles in magmas, the coalescence of liquid iron drops during core formation, and a wide range of industrial applications. Our methodology involves a combination of numerical boundary integral calculations, experiments and analytical work. For example, we find that for deformable drops the effects of deformation result in the vertical alignment of initially horizontally offset drops, thus enhancing the rate of coalescence.
Modest, Michael
2013-11-15
The effects of radiation in particle-laden flows were the object of the present research. The presence of particles increases optical thickness substantially, making the use of the “optically thin” approximation in most cases a very poor assumption. However, since radiation fluxes peak at intermediate optical thicknesses, overall radiative effects may not necessarily be stronger than in gas combustion. Also, the spectral behavior of particle radiation properties is much more benign, making spectral models simpler (and making the assumption of a gray radiator halfway acceptable, at least for fluidized beds when gas radiation is not large). On the other hand, particles scatter radiation, making the radiative transfer equation (RTE) much more di fficult to solve. The research carried out in this project encompassed three general areas: (i) assessment of relevant radiation properties of particle clouds encountered in fluidized bed and pulverized coal combustors, (ii) development of proper spectral models for gas–particulate mixtures for various types of two-phase combustion flows, and (iii) development of a Radiative Transfer Equation (RTE) solution module for such applications. The resulting models were validated against artificial cases since open literature experimental data were not available. The final models are in modular form tailored toward maximum portability, and were incorporated into two research codes: (i) the open-source CFD code OpenFOAM, which we have extensively used in our previous work, and (ii) the open-source multi-phase flow code MFIX, which is maintained by NETL.
NASA Astrophysics Data System (ADS)
Melka, Bartlomiej; Gracka, Maria; Adamczyk, Wojciech; Rojczyk, Marek; Golda, Adam; Nowak, Andrzej J.; Białecki, Ryszard A.; Ostrowski, Ziemowit
2017-08-01
In the research, a numerical Computational Fluid Dynamics (CFD) model of the pulsatile blood flow was created and analysed. A real geometry of aorta and its thoracic branches of an 8-year old patient diagnosed with a congenital heart defect - coarctation of the aorta was used. The inlet boundary condition was implemented as the User Define Function according to measured values of volumetric blood flow. The blood flow was treated as multiphase using Euler-Euler approach. Plasma was set as the primary and dominant fluid phase, with the volume fraction of 0.585. The morphological elements (RBC and WBC) were set as dispersed phases being the remaining volume fraction.
Entropic lattice Boltzmann method for multiphase flows: Fluid-solid interfaces
NASA Astrophysics Data System (ADS)
Mazloomi M., Ali; Chikatamarla, Shyam S.; Karlin, Iliya V.
2015-08-01
The recently introduced entropic lattice Boltzmann model (ELBM) for multiphase flows [A. Mazloomi M., S. S. Chikatamarla, and I. V. Karlin, Phys. Rev. Lett. 114, 174502 (2015), 10.1103/PhysRevLett.114.174502] is extended to the simulation of dynamic fluid-solid interface problems. The thermodynamically consistent, nonlinearly stable ELBM together with a polynomial representation of the equation of state enables us to investigate the dynamics of the contact line in a wide range of applications, from capillary filling to liquid drop impact onto a flat surfaces with different wettability. The static interface behavior is tested by means of the liquid column in a channel to verify the Young-Laplace law. The numerical results of a capillary filling problem in a channel with wettability gradient show an excellent match with the existing analytical solution. Simulations of drop impact onto both wettable and nonwettable surfaces show that the ELBM reproduces the experimentally observed drop behavior in a quantitative manner. Results reported herein demonstrate that the present model is a promising alternative for studying the vapor-liquid-solid interface dynamics.
NASA Astrophysics Data System (ADS)
Zhao, Hong-Liang; Liu, Yan; Zhang, Ting-An; Gu, Songqing; Zhang, Chao
2014-07-01
The large-scale mechanically agitated tank has been widely used in the decomposition process of sodium aluminate solution in the alumina industry. The mixing process in three types of seed precipitation tanks (Robin, Ekato, and improved Ekato) stirred with multiple impellers was compared by using computational fluid dynamics, respectively. The flow field, solid distribution, mixing time, and power consumption were numerically simulated by adopting a Eulerian granular multiphase model and a standard k- ɛ turbulence model. A steady multiple reference frame approach was used to represent impeller rotation. Compared with the Robin tank, the Ekato tank can generate an axial circulation loop, which is better for fluid mixing and solid suspension; meanwhile about half of the power can be saved. With future improvements in the Ekato tank, the fluid mixing and exchanging can be enhanced under the interaction of a lengthened Intermig impeller coupled with sloped baffles. With a little increase in power consumption, the maximum of the relative solid concentration difference in the whole tank can be maintained within 3%, which meets the design requirement.
Unstructured LES of Reacting Multiphase Flows in Realistic Gas Turbine Combustors
NASA Technical Reports Server (NTRS)
Ham, Frank; Apte, Sourabh; Iaccarino, Gianluca; Wu, Xiao-Hua; Herrmann, Marcus; Constantinescu, George; Mahesh, Krishnan; Moin, Parviz
2003-01-01
As part of the Accelerated Strategic Computing Initiative (ASCI) program, an accurate and robust simulation tool is being developed to perform high-fidelity LES studies of multiphase, multiscale turbulent reacting flows in aircraft gas turbine combustor configurations using hybrid unstructured grids. In the combustor, pressurized gas from the upstream compressor is reacted with atomized liquid fuel to produce the combustion products that drive the downstream turbine. The Large Eddy Simulation (LES) approach is used to simulate the combustor because of its demonstrated superiority over RANS in predicting turbulent mixing, which is central to combustion. This paper summarizes the accomplishments of the combustor group over the past year, concentrating mainly on the two major milestones achieved this year: 1) Large scale simulation: A major rewrite and redesign of the flagship unstructured LES code has allowed the group to perform large eddy simulations of the complete combustor geometry (all 18 injectors) with over 100 million control volumes; 2) Multi-physics simulation in complex geometry: The first multi-physics simulations including fuel spray breakup, coalescence, evaporation, and combustion are now being performed in a single periodic sector (1/18th) of an actual Pratt & Whitney combustor geometry.
Liang, H; Shi, B C; Guo, Z L; Chai, Z H
2014-05-01
In this paper, a phase-field-based multiple-relaxation-time lattice Boltzmann (LB) model is proposed for incompressible multiphase flow systems. In this model, one distribution function is used to solve the Chan-Hilliard equation and the other is adopted to solve the Navier-Stokes equations. Unlike previous phase-field-based LB models, a proper source term is incorporated in the interfacial evolution equation such that the Chan-Hilliard equation can be derived exactly and also a pressure distribution is designed to recover the correct hydrodynamic equations. Furthermore, the pressure and velocity fields can be calculated explicitly. A series of numerical tests, including Zalesak's disk rotation, a single vortex, a deformation field, and a static droplet, have been performed to test the accuracy and stability of the present model. The results show that, compared with the previous models, the present model is more stable and achieves an overall improvement in the accuracy of the capturing interface. In addition, compared to the single-relaxation-time LB model, the present model can effectively reduce the spurious velocity and fluctuation of the kinetic energy. Finally, as an application, the Rayleigh-Taylor instability at high Reynolds numbers is investigated.
A Multiphase Flow in the Antroduodenal Portion of the Gastrointestinal Tract: A Mathematical Model.
Trusov, P V; Zaitseva, N V; Kamaltdinov, M R
2016-01-01
A group of authors has developed a multilevel mathematical model that focuses on functional disorders in a human body associated with various chemical, physical, social, and other factors. At this point, the researchers have come up with structure, basic definitions and concepts of a mathematical model at the "macrolevel" that allow describing processes in a human body as a whole. Currently we are working at the "mesolevel" of organs and systems. Due to complexity of the tasks, this paper deals with only one meso-fragment of a digestive system model. It describes some aspects related to modeling multiphase flow in the antroduodenal portion of the gastrointestinal tract. Biochemical reactions, dissolution of food particles, and motor, secretory, and absorbing functions of the tract are taken into consideration. The paper outlines some results concerning influence of secretory function disorders on food dissolution rate and tract contents acidity. The effect which food density has on inflow of food masses from a stomach to a bowel is analyzed. We assume that the future development of the model will include digestive enzymes and related reactions of lipolysis, proteolysis, and carbohydrates breakdown.
NASA Astrophysics Data System (ADS)
Mo, S.; Lu, D.; Shi, X.; Zhang, G.; Ye, M.; Wu, J.
2016-12-01
Surrogate models have shown remarkable computational efficiency in hydrological simulations involving design space exploration, sensitivity analysis, uncertainty quantification, etc. The central task of constructing a global surrogate models is to achieve a prescribed approximation accuracy with as few original model executions as possible, which requires a good design strategy to optimize the distribution of data points in the parameter domains and an effective stopping criterion to automatically terminate the design process when desired approximation accuracy is achieved. This study proposes a novel adaptive sampling strategy, which starts from a small number of initial samples and adaptively selects additional samples by balancing the collection in unexplored regions and refinement in interesting areas. We define an efficient and effective evaluation metric basing on Taylor expansion to select the most promising potential samples from candidate points, and propose a robust stopping criterion basing on the approximation accuracy at new points to guarantee the achievement of desired accuracy. The numerical results of several benchmark analytical functions indicate that the proposed approach is more computationally efficient and robust than the widely used maximin distance design and two other well-known adaptive sampling strategies. The application to two complicated multiphase flow problems further demonstrates the efficiency and effectiveness of our method in constructing global surrogate models for high-dimensional and highly nonlinear problems. Acknowledgements: This work was financially supported by the National Nature Science Foundation of China grants No. 41030746 and 41172206.
KIVA-hpFE. Predictive turbulent reactive and multiphase flow in engines - An Overview
Carrington, David Bradley
2016-05-23
Research and development of KIVA-hpFE for turbulent reactive and multiphase flow particularly as related to engine modeling program has relevance to National energy security and climate change. Climate change is a source problem, and energy national security is consumption of petroleum products problem. Accurately predicting engine processes leads to, lower greenhouse gas (GHG) emission, where engines in the transportation sector currently account for 26% of the U.S. GHG emissions. Less dependence on petroleum products leads to greater energy security. By Environmental Protection Agency standards, some vehicles are now reaching 42 to the 50 mpg mark. These are conventional gasoline engines. Continued investment and research into new technical innovations, the potential exists to save more than 4 million barrels of oil per day or approximately $200 to $400 million per day. This would be a significant decrease in emission and use of petroleum and a very large economic stimulus too! It is estimated with further advancements in combustion, the current emissions can be reduced up to 40%. Enabling better understanding of fuel injection and fuel-air mixing, thermodynamic combustion losses, and combustion/emission formation processes enhances our ability to help solve both problems. To provide adequate capability for accurately simulating these processes, minimize time and labor for development of engine technology, are the goals of our KIVA development program.
A Multiphase Flow in the Antroduodenal Portion of the Gastrointestinal Tract: A Mathematical Model
Trusov, P. V.
2016-01-01
A group of authors has developed a multilevel mathematical model that focuses on functional disorders in a human body associated with various chemical, physical, social, and other factors. At this point, the researchers have come up with structure, basic definitions and concepts of a mathematical model at the “macrolevel” that allow describing processes in a human body as a whole. Currently we are working at the “mesolevel” of organs and systems. Due to complexity of the tasks, this paper deals with only one meso-fragment of a digestive system model. It describes some aspects related to modeling multiphase flow in the antroduodenal portion of the gastrointestinal tract. Biochemical reactions, dissolution of food particles, and motor, secretory, and absorbing functions of the tract are taken into consideration. The paper outlines some results concerning influence of secretory function disorders on food dissolution rate and tract contents acidity. The effect which food density has on inflow of food masses from a stomach to a bowel is analyzed. We assume that the future development of the model will include digestive enzymes and related reactions of lipolysis, proteolysis, and carbohydrates breakdown. PMID:27413393
Sub-grid drag models for horizontal cylinder arrays immersed in gas-particle multiphase flows
Sarkar, Avik; Sun, Xin; Sundaresan, Sankaran
2013-09-08
Immersed cylindrical tube arrays often are used as heat exchangers in gas-particle fluidized beds. In multiphase computational fluid dynamics (CFD) simulations of large fluidized beds, explicit resolution of small cylinders is computationally infeasible. Instead, the cylinder array may be viewed as an effective porous medium in coarse-grid simulations. The cylinders' influence on the suspension as a whole, manifested as an effective drag force, and on the relative motion between gas and particles, manifested as a correction to the gas-particle drag, must be modeled via suitable sub-grid constitutive relationships. In this work, highly resolved unit-cell simulations of flow around an array of horizontal cylinders, arranged in a staggered configuration, are filtered to construct sub-grid, or `filtered', drag models, which can be implemented in coarse-grid simulations. The force on the suspension exerted by the cylinders is comprised of, as expected, a buoyancy contribution, and a kinetic component analogous to fluid drag on a single cylinder. Furthermore, the introduction of tubes also is found to enhance segregation at the scale of the cylinder size, which, in turn, leads to a reduction in the filtered gas-particle drag.
NASA Astrophysics Data System (ADS)
Hammond, Glenn; Lichtner, Peter; Lu, Chuan
2007-07-01
Numerical modeling is a critical tool to the U.S. Department of Energy for evaluating the environmental impact of remediation strategies for subsurface legacy waste sites. Unfortunately, the physical and chemical complexity of many sites overwhelms the capabilities of even most state of the art groundwater models. Of particular concern is the representation of highly-heterogeneous stratified rock/soil layers in the subsurface and the biological and geochemical interactions of chemical species within multiple fluid phases. There is clearly a need for higher-resolution modeling (i.e. increased spatial and temporal resolution) and increasingly mechanistic descriptions of subsurface physicochemical processes (i.e. increased chemical degrees of freedom). We present SciDAC-funded research being performed in furthering the development of PFLOTRAN, a parallel multiphase flow and multicomponent reactive transport model. Written in Fortran90, PFLOTRAN is founded upon PETSc data structures and solvers. We are employing PFLOTRAN to simulate uranium transport at the Hanford 300 Area, a contaminated site of major concern to the Department of Energy, the State of Washington, and other government agencies. By leveraging the billions of degrees of freedom available through high-performance computation using tens of thousands of processors, we can better characterize the release of uranium into groundwater and its subsequent transport to the Columbia River, and thereby better understand and evaluate the effectiveness of various proposed remediation strategies.
NASA Astrophysics Data System (ADS)
Li, Donghui; Wu, Yingxiang; Wang, Keren; Zhong, Xingfu
2007-06-01
The problems of how to measuring the volumetric fractions of oil-water-gas multiphase flow are still a problem remaining to be solved in oil industry. With the technological development of nuclear radioactive inspection, dual-energy γ-ray techniques make it possible to investigate the concentration of the different components on the cross-section of oil-water-gas multiphase pipe-flow. The dual-energy Gamma-ray technique is based on the materials attenuation coefficients measurement. It is comprised of two radioactive isotopes of 241Am and 137Cs with emission energies of 59.5keV and 662keV. In order to measuring the material's attenuation dose rate, some nuclear instruments and data acquisition system were designed; a number of static and dynamic tests were carried out in the Multiphase Laboratory, Institute of Mechanics, Chinese Academy of Sciences. The oil-water-gas three phases of medium have been investigated to simulate different media volumetric fraction distributions on the experimental flow loop. The measurement results of attenuation intensities were obtained; the linear attenuation coefficients and the volumetric fractions were studied and measurement error was discussed in this paper as well.
Yang, Dali; Zhang, Duan; Currier, Robert
2008-01-01
A bundle-of-tubes construct is used as a model system to study ensemble averaged equations for multiphase flow in a porous material. Momentum equations for the fluid phases obtained from the method are similar to Darcy's law, but with additional terms. We study properties of the additional terms, and the conditions under which the averaged equations can be approximated by the diffusion model or the extended Darcy's law as often used in models for multiphase flows in porous media. Although the bundle-of-tubes model is perhaps the simplest model for a porous material, the ensemble averaged equation technique developed in this paper assumes the very same form in more general treatments described in Part 2 of the present work (Zhang 2009). Any model equation system intended for the more general cases must be understood and tested first using simple models. The concept of ensemble phase averaging is dissected here in physical terms, without involved mathematics through its application to the idealized bundle-of-tubes model for multiphase flow in porous media.
NASA Astrophysics Data System (ADS)
De Lucia, Marco; Kempka, Thomas; Afanasyev, Andrey; Melnik, Oleg; Kühn, Michael
2016-04-01
Coupled reactive transport simulations, especially in heterogeneous settings considering multiphase flow, are extremely time consuming and suffer from significant numerical issues compared to purely hydrodynamic simulations. This represents a major hurdle in the assessment of geological subsurface utilization, since it constrains the practical application of reactive transport modelling to coarse spatial discretization or oversimplified geological settings. In order to overcome such limitations, De Lucia et al. [1] developed and validated a one-way coupling approach between geochemistry and hydrodynamics, which is particularly well suited for CO2 storage simulations, while being of general validity. In the present study, the models used for the validation of the one-way coupling approach introduced by De Lucia et al. (2015), and originally performed with the TOUGHREACT simulator, are transferred to and benchmarked against the multiphase reservoir simulator MUFITS [2]. The geological model is loosely inspired by an existing CO2 storage site. Its grid comprises 2,950 elements enclosed in a single layer, but reflecting a realistic three-dimensional anticline geometry. For the purpose of this comparison, homogeneous and heterogeneous scenarios in terms of porosity and permeability were investigated. In both cases, the results of the MUFITS simulator are in excellent agreement with those produced with the fully-coupled TOUGHREACT simulator, while profiting from significantly higher computational performance. This study demonstrates how a computationally efficient simulator such as MUFITS can be successfully included in a coupled process simulation framework, and also suggests ameliorations and specific strategies for the coupling of chemical processes with hydrodynamics and heat transport, aiming at tackling geoscientific problems beyond the storage of CO2. References [1] De Lucia, M., Kempka, T., and Kühn, M. A coupling alternative to reactive transport simulations
Leggett, R.B.; Borling, D.C.; Powers, B.S.; Shehata, K.; Halvorsen, M.
1998-02-01
A multiphase flowmeter (MPFM) installed in offshore Egypt has accurately measured three-phase flow in extremely gassy flow conditions. The meter is completely nonintrusive, with no moving parts, requires no flow mixing before measurement, and has no bypass loop to remove gas before multiphase measurement. Flow regimes observed during the field test of this meter ranged from severe slugging to annular flow caused by the dynamics of gas-lift gas in the production stream. Average gas-volume fraction ranged from 93 to 98% during tests conducted on seven wells. The meter was installed in the Gulf of Suez on a well protector platform in the Gulf of Suez Petroleum Co. (Gupco) October field, and was placed in series with a test separator located on a nearby production platform. Wells were individually tested with flow conditions ranging from 1,300 to 4,700 B/D fluid, 2.4 to 3.9 MMscf/D of gas, and water cuts from 1 to 52%. The meter is capable of measuring water cuts up to 100%. Production was routed through both the MPFM and the test separator simultaneously as wells flowed with the assistance of gas-lift gas. The MPFM measured gas and liquid rates to within {+-} 10% of test-separator reference measurement flow rates, and accomplished this at gas-volume fractions from 93 to 96%. At higher gas-volume fractions up to 98%, accuracy deteriorated but the meter continued to provide repeatable results.
Multiphase contrast-saline mixture injection with dual-flow in 64-row MDCT coronary CTA.
Cao, Lizhen; Du, Xiangying; Li, Pengyu; Liu, Yaou; Li, Kuncheng
2009-03-01
To explore the feasibility of multiphase contrast-saline mixture with dual-flow injection technique for visualization of right ventricular (RV) cavity and interventricular septum (IVS) in 64-row multidetector computed tomography (MDCT) coronary angiography. Twenty-four patients underwent coronary CT angiography (CTA) imaging with 64-row MDCT. In twelve patients (group A), 60 ml contrast medium (CM) bolus was followed by 40 ml saline, and in the other twelve patients (group B), 50 ml CM bolus was followed by 50 ml contrast-saline mixture at 60:40 ratio. The CM, saline and contrast-saline mixture flow rate were all 5.0 ml/s. Two experienced radiologists measured the CT values of ascending aorta, descending aorta, pulmonary artery and RV, rated the uniformity of RV cavity, the visualization of coronary arteries and IVS independently. By Kappa test, agreement between the two radiologists was 0.93 and 0.86 concerning the CT value measurements and the grades of the three indexes, respectively. By t-test, the mean CT values of ascending aorta and descending aorta of the two groups had no statistical difference (t=1.459, P>0.05; t=1.619, P>0.05); while the mean CT values of pulmonary artery and RV cavity had statistical differences (t=8.316, P<0.05; t=10.372, P<0.05). By two-related rank sum test, according to the visualization of coronary arteries and the uniformity of RV cavity, there were no statistical differences (U=66.00, P>0.05; U=54.00, P>0.05); while according to the visualization of IVS, group B was better than group A (U=8.00, P<0.05). In coronary CTA, a contrast-saline mixture after CM bolus can provide clear visualization of RV and IVS and LV without impairing coronary CTA image.
Inter-phase heat transfer and energy coupling in turbulent dispersed multiphase flows
NASA Astrophysics Data System (ADS)
Ling, Y.; Balachandar, S.; Parmar, M.
2016-03-01
The present paper addresses important fundamental issues of inter-phase heat transfer and energy coupling in turbulent dispersed multiphase flows through scaling analysis. In typical point-particle or two-fluid approaches, the fluid motion and convective heat transfer at the particle scale are not resolved and the momentum and energy coupling between fluid and particles are provided by proper closure models. By examining the kinetic energy transfer due to the coupling forces from the macroscale to microscale fluid motion, closure models are obtained for the contributions of the coupling forces to the energy coupling. Due to the inviscid origin of the added-mass force, its contribution to the microscale kinetic energy does not contribute to dissipative transfer to fluid internal energy as was done by the quasi-steady force. Time scale analysis shows that when the particle is larger than a critical diameter, the diffusive-unsteady kernel decays at a time scale that is smaller than the Kolmogorov time scale. As a result, the computationally costly Basset-like integral form of diffusive-unsteady heat transfer can be simplified to a non-integral form. Conventionally, the fluid-to-particle volumetric heat capacity ratio is used to evaluate the relative importance of the unsteady heat transfer to the energy balance of the particles. Therefore, for gas-particle flows, where the fluid-to-particle volumetric heat capacity ratio is small, unsteady heat transfer is usually ignored. However, the present scaling analysis shows that for small fluid-to-particle volumetric heat capacity ratio, the importance of the unsteady heat transfer actually depends on the ratio between the particle size and the Kolmogorov scale. Furthermore, the particle mass loading multiplied by the heat capacity ratio is usually used to estimate the importance of the thermal two-way coupling effect. Through scaling argument, improved estimates are established for the energy coupling parameters of each
CFD of mixing of multi-phase flow in a bioreactor using population balance model.
Sarkar, Jayati; Shekhawat, Lalita Kanwar; Loomba, Varun; Rathore, Anurag S
2016-05-01
Mixing in bioreactors is known to be crucial for achieving efficient mass and heat transfer, both of which thereby impact not only growth of cells but also product quality. In a typical bioreactor, the rate of transport of oxygen from air is the limiting factor. While higher impeller speeds can enhance mixing, they can also cause severe cell damage. Hence, it is crucial to understand the hydrodynamics in a bioreactor to achieve optimal performance. This article presents a novel approach involving use of computational fluid dynamics (CFD) to model the hydrodynamics of an aerated stirred bioreactor for production of a monoclonal antibody therapeutic via mammalian cell culture. This is achieved by estimating the volume averaged mass transfer coefficient (kL a) under varying conditions of the process parameters. The process parameters that have been examined include the impeller rotational speed and the flow rate of the incoming gas through the sparger inlet. To undermine the two-phase flow and turbulence, an Eulerian-Eulerian multiphase model and k-ε turbulence model have been used, respectively. These have further been coupled with population balance model to incorporate the various interphase interactions that lead to coalescence and breakage of bubbles. We have successfully demonstrated the utility of CFD as a tool to predict size distribution of bubbles as a function of process parameters and an efficient approach for obtaining optimized mixing conditions in the reactor. The proposed approach is significantly time and resource efficient when compared to the hit and trial, all experimental approach that is presently used. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:613-628, 2016. © 2016 American Institute of Chemical Engineers.
NASA Astrophysics Data System (ADS)
Alahyari Beig, Shahaboddin; Johnsen, Eric
2015-12-01
An accurate treatment of material interfaces in compressible multiphase flows poses important challenges for high-resolution numerical methods. Although high-order interface-capturing schemes have been used to accurately simulate gas/liquid interfaces with the Euler equations, these methods can result in temperature spikes at material discontinuities. While this phenomenon is not problematic for Euler simulations, it gives rise to numerical errors when heat conduction is included. In this work, we identify the source of these errors and propose a methodology to prevent their occurrence for various models used to represent gas/liquid interfaces in compressible flows based on a ;single-fluid; formulation, in which interfaces are represented by discontinuities in the material properties. Our focus lies in materials (gases and liquids primarily, but also solids) that can be described by a stiffened equation of state, though our approach is generalizable to other equations. We show that numerical approaches that prevent pressure oscillations at interfaces may generate temperature errors, which affect the energy (and pressure) through the heat conduction term. We demonstrate that the material properties entering the equation of state must be computed according to suitable transport equations in conservative or non-conservative forms; the pressure and temperature must be calculated based on the appropriate properties. To verify the analysis and compute problems with gas/liquid interfaces of relevance, we develop a three-dimensional, high-order accurate, solution-adaptive finite difference framework. In particular, we show that temperatures and pressures may be significantly overestimated in calculations of shock-induced bubble collapse in water if temperature errors are not prevented.
Robust second-order scheme for multi-phase flow computations
NASA Astrophysics Data System (ADS)
Shahbazi, Khosro
2017-06-01
A robust high-order scheme for the multi-phase flow computations featuring jumps and discontinuities due to shock waves and phase interfaces is presented. The scheme is based on high-order weighted-essentially non-oscillatory (WENO) finite volume schemes and high-order limiters to ensure the maximum principle or positivity of the various field variables including the density, pressure, and order parameters identifying each phase. The two-phase flow model considered besides the Euler equations of gas dynamics consists of advection of two parameters of the stiffened-gas equation of states, characterizing each phase. The design of the high-order limiter is guided by the findings of Zhang and Shu (2011) [36], and is based on limiting the quadrature values of the density, pressure and order parameters reconstructed using a high-order WENO scheme. The proof of positivity-preserving and accuracy is given, and the convergence and the robustness of the scheme are illustrated using the smooth isentropic vortex problem with very small density and pressure. The effectiveness and robustness of the scheme in computing the challenging problem of shock wave interaction with a cluster of tightly packed air or helium bubbles placed in a body of liquid water is also demonstrated. The superior performance of the high-order schemes over the first-order Lax-Friedrichs scheme for computations of shock-bubble interaction is also shown. The scheme is implemented in two-dimensional space on parallel computers using message passing interface (MPI). The proposed scheme with limiter features approximately 50% higher number of inter-processor message communications compared to the corresponding scheme without limiter, but with only 10% higher total CPU time. The scheme is provably second-order accurate in regions requiring positivity enforcement and higher order in the rest of domain.
Hammond, Glenn E.; Lichtner, Peter C.; Lu, Chuan
2007-08-01
Numerical modeling has become a critical tool to the Department of Energy for evaluating the environmental impact of alternative energy sources and remediation strategies for legacy waste sites. Unfortunately, the physical and chemical complexity of many sites overwhelms the capabilities of even most “state of the art” groundwater models. Of particular concern are the representation of highly-heterogeneous stratified rock/soil layers in the subsurface and the biological and geochemical interactions of chemical species within multiple fluid phases. Clearly, there is a need for higher-resolution modeling (i.e. more spatial, temporal, and chemical degrees of freedom) and increasingly mechanistic descriptions of subsurface physicochemical processes. We present research being performed in the development of PFLOTRAN, a parallel multiphase flow and multicomponent reactive transport model. Written in Fortran90, PFLOTRAN is founded upon PETSc data structures and solvers and has exhibited impressive strong scalability on up to 4000 processors on the ORNL Cray XT3. We are employing PFLOTRAN in the simulation of uranium transport at the Hanford 300 Area, a contaminated site of major concern to the Department of Energy, the State of Washington, and other government agencies where overly-simplistic historical modeling erroneously predicted decade removal times for uranium by ambient groundwater flow. By leveraging the billions of degrees of freedom available through high-performance computation using tens of thousands of processors, we can better characterize the release of uranium into groundwater and its subsequent transport to the Columbia River, and thereby better understand and evaluate the effectiveness of various proposed remediation strategies.
Multiphase flow modeling of a crude-oil spill site with a bimodal permeability distribution
Dillard, L.A.; Essaid, H.I.; Herkelrath, W.N.
1997-01-01
Fluid saturation, particle-size distribution, and porosity measurements were obtained from 269 core samples collected from six boreholes along a 90-m transect at a subregion of a crude-oil spill site, the north pool, near Bemidji, Minnesota. The oil saturation data, collected 11 years after the spill, showed an irregularly shaped oil body that appeared to be affected by sediment spatial variability. The particle-size distribution data were used to estimate the permeability (k) and retention curves for each sample. An additional 344 k estimates were obtained from samples previously collected at the north pool. The 613 k estimates were distributed bimodal log normally with the two population distributions corresponding to the two predominant lithologies: a coarse glacial outwash deposit and fine-grained interbedded lenses. A two-step geostatistical approach was used to generate a conditioned realization of k representing the bimodal heterogeneity. A cross-sectional multiphase flow model was used to simulate the flow of oil and water in the presence of air along the north pool transect for an 11-year period. The inclusion of a representation of the bimodal aquifer heterogeneity was crucial for reproduction of general features of the observed oil body. If the bimodal heterogeneity was characterized, hysteresis did not have to be incorporated into the model because a hysteretic effect was produced by the sediment spatial variability. By revising the relative permeability functional relation, an improved reproduction of the observed oil saturation distribution was achieved. The inclusion of water table fluctuations in the model did not significantly affect the simulated oil saturation distribution.
Effect of wettability on scale-up of multiphase flow from core-scale to reservoir fine-grid-scale
Chang, Y.C.; Mani, V.; Mohanty, K.K.
1997-08-01
Typical field simulation grid-blocks are internally heterogeneous. The objective of this work is to study how the wettability of the rock affects its scale-up of multiphase flow properties from core-scale to fine-grid reservoir simulation scale ({approximately} 10{prime} x 10{prime} x 5{prime}). Reservoir models need another level of upscaling to coarse-grid simulation scale, which is not addressed here. Heterogeneity is modeled here as a correlated random field parameterized in terms of its variance and two-point variogram. Variogram models of both finite (spherical) and infinite (fractal) correlation length are included as special cases. Local core-scale porosity, permeability, capillary pressure function, relative permeability functions, and initial water saturation are assumed to be correlated. Water injection is simulated and effective flow properties and flow equations are calculated. For strongly water-wet media, capillarity has a stabilizing/homogenizing effect on multiphase flow. For small variance in permeability, and for small correlation length, effective relative permeability can be described by capillary equilibrium models. At higher variance and moderate correlation length, the average flow can be described by a dynamic relative permeability. As the oil wettability increases, the capillary stabilizing effect decreases and the deviation from this average flow increases. For fractal fields with large variance in permeability, effective relative permeability is not adequate in describing the flow.
NASA Astrophysics Data System (ADS)
McPherson, Brian J. O. L.; Han, Weon Shik; Cole, Barret S.
2008-05-01
The purpose of the study presented in this manuscript is to describe and make available two equation-of-state (EOS) algorithms assembled for multiphase flow and transport of carbon dioxide (CO2). The algorithms presented here calculate solubility, compressibility factor, density, viscosity, fugacity, and enthalpy of CO2 in gaseous and supercritical phases, and mixtures or solutions of CO2 in water, as functions of pressure and temperature. Several features distinguish the two algorithms, but the primary distinction concerns treatment of supercritical/gas-phase CO2: one EOS we assembled is based on Redlich and Kwong's original algorithm developed in 1949, and the other is based on an algorithm developed by Span and Wagner in 1996. Both were modified for application to sedimentary basin studies of multiphase CO2 flow processes, including carbon sequestration applications. We present a brief comparison of these two EOS algorithms. Source codes for both algorithms are provided, including "stand-alone" Matlab © scripts for the interactive calculation of fluid properties at specified P-T conditions and FORTRAN subroutines for inclusion in existing FORTRAN multiphase fluid simulation packages. These routines are intended for fundamental analyses of CO2 sequestration and the like; more advanced studies, such as brine processes and reactive transport, require more advanced EOS algorithms.
NASA Astrophysics Data System (ADS)
Li, Y.; Kazemifar, F.; Blois, G.; Christensen, K. T.
2015-12-01
Multiphase flow of water and supercritical carbon dioxide (CO2) in porous media is central to geological sequestration of CO2 into saline aquifers. However, our fundamental understanding of the coupled flow dynamics of CO2 and water in complex geologic media still remains limited, especially at the pore scale. Recently, studies have been carried out in 2D homogeneous models with the micro-PIV technique, yielding very interesting observations of pore-scale flow transport. The primary aim of this work is to leverage this experimental protocol to quantify the pore-scale flow of water and liquid/supercritical CO2 in 2D heterogeneous porous micromodels under reservoir-relevant conditions. The goal is to capture the dynamics of this multi-phase flow in a porous matrix that mimics the heterogeneity of natural rock. Fluorescent microscopy and the micro-PIV technique are employed to simultaneously measure the spatially-resolved instantaneous velocity field in the water and quantify the instantaneous spatial configuration of both phases. The results for heterogeneous micromodels will be presented and compared with those for homogeneous micromodels, yielding valuable insight into flow processes at the pore scale in natural rock.
NASA Astrophysics Data System (ADS)
El-Alej, M.; Mba, D.; Yeung, H.
2014-04-01
The monitoring of multiphase flow is an established process that has spanned several decades. This paper demonstrates the use of acoustic emission (AE) technology to investigate sand transport characteristic in three-phase (air-water-sand) flow in a horizontal pipe where the superficial gas velocity (VSG) had a range of between 0.2 ms-1 to 2.0 ms-1 and superficial liquid velocity (VSL) had a range of between 0.2 ms-1 to 1.0 ms-1. The experimental findings clearly show a correlation exists between AE energy levels, sand concentration, superficial gas velocity (VSG) and superficial liquid velocity (VSL).
Micro-Ct Imaging of Multi-Phase Flow in Carbonates and Sandstones
NASA Astrophysics Data System (ADS)
Andrew, M. G.; Bijeljic, B.; Blunt, M. J.
2013-12-01
One of the most important mechanisms that limits the escape of CO2 when injected into the subsurface for the purposes of carbon storage is capillary trapping, where CO2 is stranded as pore-scale droplets (ganglia). Prospective storage sites are aquifers or reservoirs that tend to be at conditions where CO2 will reside as a super-critical phase. In order to fully describe physical mechanisms characterising multi-phase flow during and post CO2 injection, experiments need to be conducted at these elevated aquifer/reservoir conditions - this poses a considerable experimental challenge. A novel experimental apparatus has been developed which uses μCT scanning for the non-invasive imaging of the distribution of CO2 in the pore space of rock with resolutions of 7μm at temperatures and pressures representative of the conditions present in prospective saline aquifer CO2 storage sites. The fluids are kept in chemical equilibrium with one-another and with the rock into which they are injected. This is done to prevent the dissolution of the CO2 in the brine to form carbonic acid, which can then react with the rock, particularly carbonates. By eliminating reaction we study the fundamental mechanisms of capillary trapping for an unchanging pore structure. In this study we present a suite of results from three carbonate and two sandstone rock types, showing that, for both cases the CO2 acts as the non-wetting phase and significant quantities of CO2 is trapped. The carbonate examined represent a wide variety of pore topologies with one rock with a very well connected, high porosity pore space (Mt Gambier), one with a lower porosity, poorly connected pore space (Estaillades) and one with a cemented bead pack type pore space (Ketton). Both sandstones (Doddington and Bentheimer) were high permeability granular quartzites. CO2 was injected into each rock, followed by brine injection. After brine injection the entire length of the rock core was scanned, processed and segmented into
Hybrid dynamic radioactive particle tracking (RPT) calibration technique for multiphase flow systems
NASA Astrophysics Data System (ADS)
Khane, Vaibhav; Al-Dahhan, Muthanna H.
2017-04-01
The radioactive particle tracking (RPT) technique has been utilized to measure three-dimensional hydrodynamic parameters for multiphase flow systems. An analytical solution to the inverse problem of the RPT technique, i.e. finding the instantaneous tracer positions based upon instantaneous counts received in the detectors, is not possible. Therefore, a calibration to obtain a counts-distance map is needed. There are major shortcomings in the conventional RPT calibration method due to which it has limited applicability in practical applications. In this work, the design and development of a novel dynamic RPT calibration technique are carried out to overcome the shortcomings of the conventional RPT calibration method. The dynamic RPT calibration technique has been implemented around a test reactor with 1foot in diameter and 1 foot in height using Cobalt-60 as an isotopes tracer particle. Two sets of experiments have been carried out to test the capability of novel dynamic RPT calibration. In the first set of experiments, a manual calibration apparatus has been used to hold a tracer particle at known static locations. In the second set of experiments, the tracer particle was moved vertically downwards along a straight line path in a controlled manner. The obtained reconstruction results about the tracer particle position were compared with the actual known position and the reconstruction errors were estimated. The obtained results revealed that the dynamic RPT calibration technique is capable of identifying tracer particle positions with a reconstruction error between 1 to 5.9 mm for the conditions studied which could be improved depending on various factors outlined here.
NASA Astrophysics Data System (ADS)
Lim, Ho-Joon; Chang, Kuang-An; Su, Chin B.; Chen, Chi-Yueh
2008-12-01
A fiber optic reflectometer (FOR) technique featuring a single fiber probe is investigated for its feasibility of measuring the bubble velocity, diameter, and void fraction in a multiphase flow. The method is based on the interference of the scattered signal from the bubble surface with the Fresnel reflection signal from the tip of the optical fiber. Void fraction is obtained with a high accuracy if an appropriate correction is applied to compensate the underestimated measurement value. Velocity information is accurately obtained from the reflected signals before the fiber tip touches the bubble surface so that several factors affecting the traditional dual-tip probes such as blinding, crawling, and drifting effects due to the interaction between the probe and bubbles can be prevented. The coherent signals reflected from both the front and rear ends of a bubble can provide velocity information. Deceleration of rising bubbles and particles due to the presence of the fiber probe is observed when they are very close to the fiber tip. With the residence time obtained, the bubble chord length can be determined by analyzing the coherent signal for velocity determination before the deceleration starts. The bubble diameters are directly obtained from analyzing the signals of the bubbles that contain velocity information. The chord lengths of these bubbles measured by FOR represent the bubble diameters when the bubble shape is spherical or represent the minor axes when the bubble shape is ellipsoidal. The velocity and size of bubbles obtained from the FOR measurements are compared with those obtained simultaneously using a high speed camera.
A numerical method for shock driven multiphase flow with evaporating particles
NASA Astrophysics Data System (ADS)
Dahal, Jeevan; McFarland, Jacob A.
2017-09-01
A numerical method for predicting the interaction of active, phase changing particles in a shock driven flow is presented in this paper. The Particle-in-Cell (PIC) technique was used to couple particles in a Lagrangian coordinate system with a fluid in an Eulerian coordinate system. The Piecewise Parabolic Method (PPM) hydrodynamics solver was used for solving the conservation equations and was modified with mass, momentum, and energy source terms from the particle phase. The method was implemented in the open source hydrodynamics software FLASH, developed at the University of Chicago. A simple validation of the methods is accomplished by comparing velocity and temperature histories from a single particle simulation with the analytical solution. Furthermore, simple single particle parcel simulations were run at two different sizes to study the effect of particle size on vorticity deposition in a shock-driven multiphase instability. Large particles were found to have lower enstrophy production at early times and higher enstrophy dissipation at late times due to the advection of the particle vorticity source term through the carrier gas. A 2D shock-driven instability of a circular perturbation is studied in simulations and compared to previous experimental data as further validation of the numerical methods. The effect of the particle size distribution and particle evaporation is examined further for this case. The results show that larger particles reduce the vorticity deposition, while particle evaporation increases it. It is also shown that for a distribution of particles sizes the vorticity deposition is decreased compared to single particle size case at the mean diameter.
Third-order analysis of pseudopotential lattice Boltzmann model for multiphase flow
NASA Astrophysics Data System (ADS)
Huang, Rongzong; Wu, Huiying
2016-12-01
In this work, a third-order Chapman-Enskog analysis of the multiple-relaxation-time (MRT) pseudopotential lattice Boltzmann (LB) model for multiphase flow is performed for the first time. The leading terms on the interaction force, consisting of an anisotropic and an isotropic term, are successfully identified in the third-order macroscopic equation recovered by the lattice Boltzmann equation (LBE), and then new mathematical insights into the pseudopotential LB model are provided. For the third-order anisotropic term, numerical tests show that it can cause the stationary droplet to become out-of-round, which suggests the isotropic property of the LBE needs to be seriously considered in the pseudopotential LB model. By adopting the classical equilibrium moment or setting the so-called "magic" parameter to 1/12, the anisotropic term can be eliminated, which is found from the present third-order analysis and also validated numerically. As for the third-order isotropic term, when and only when it is considered, accurate continuum form pressure tensor can be definitely obtained, by which the predicted coexistence densities always agree well with the numerical results. Compared with this continuum form pressure tensor, the classical discrete form pressure tensor is accurate only when the isotropic term is a specific one. At last, in the framework of the present third-order analysis, a consistent scheme for third-order additional term is proposed, which can be used to independently adjust the coexistence densities and surface tension. Numerical tests are subsequently carried out to validate the present scheme.
Pore-scale Simulation and Imaging of Multi-phase Flow and Transport in Porous Media (Invited)
NASA Astrophysics Data System (ADS)
Crawshaw, J.; Welch, N.; Daher, I.; Yang, J.; Shah, S.; Grey, F.; Boek, E.
2013-12-01
We combine multi-scale imaging and computer simulation of multi-phase flow and reactive transport in rock samples to enhance our fundamental understanding of long term CO2 storage in rock formations. The imaging techniques include Confocal Laser Scanning Microscopy (CLSM), micro-CT and medical CT scanning, with spatial resolutions ranging from sub-micron to mm respectively. First, we report a new sample preparation technique to study micro-porosity in carbonates using CLSM in 3 dimensions. Second, we use micro-CT scanning to generate high resolution 3D pore space images of carbonate and cap rock samples. In addition, we employ micro-CT to image the processes of evaporation in fractures and cap rock degradation due to exposure to CO2 flow. Third, we use medical CT scanning to image spontaneous imbibition in carbonate rock samples. Our imaging studies are complemented by computer simulations of multi-phase flow and transport, using the 3D pore space images obtained from the scanning experiments. We have developed a massively parallel lattice-Boltzmann (LB) code to calculate the single phase flow field in these pore space images. The resulting flow fields are then used to calculate hydrodynamic dispersion using a novel scheme to predict probability distributions for molecular displacements using the LB method and a streamline algorithm, modified for optimal solid boundary conditions. We calculate solute transport on pore-space images of rock cores with increasing degree of heterogeneity: a bead pack, Bentheimer sandstone and Portland carbonate. We observe that for homogeneous rock samples, such as bead packs, the displacement distribution remains Gaussian with time increasing. In the more heterogeneous rocks, on the other hand, the displacement distribution develops a stagnant part. We observe that the fraction of trapped solute increases from the beadpack (0 %) to Bentheimer sandstone (1.5 %) to Portland carbonate (8.1 %), in excellent agreement with PFG
NASA Technical Reports Server (NTRS)
Rothe, Paul H.; Martin, Christine; Downing, Julie
1994-01-01
Adiabatic two-phase flow is of interest to the design of multiphase fluid and thermal management systems for spacecraft. This paper presents original data and unifies existing data for capillary tubes as a step toward assessing existing multiphase flow analysis and engineering software. Comparisons of theory with these data once again confirm the broad accuracy of the theory. Due to the simplicity and low cost of the capillary tube experiments, which were performed on earth, we were able to closely examine for the first time a flow situation that had not previously been examined appreciably by aircraft tests. This is the situation of a slug flow at high quality, near transition to annular flow. Our comparison of software calculations with these data revealed overprediction of pipeline pressure drop by up to a factor of three. In turn, this finding motivated a reexamination of the existing theory, and then development of a new analytical and is in far better agreement with the data. This sequence of discovery illustrates the role of inexpensive miniscale modeling on earth to anticipate microgravity behavior in space and to complete and help define needs for aircraft tests.
NASA Astrophysics Data System (ADS)
Shoaib Anwar, Muhammad; Rasheed, Amer
2017-07-01
Heat transfer through a Forchheimer medium in an unsteady magnetohydrodynamic (MHD) developed differential-type fluid flow is analyzed numerically in this study. The boundary layer flow is modeled with the help of the fractional calculus approach. The fluid is confined between infinite parallel plates and flows by motion of the plates in their own plane. Both the plates have variable surface temperature. Governing partial differential equations with appropriate initial and boundary conditions are solved by employing a finite-difference scheme to discretize the fractional time derivative and finite-element discretization for spatial variables. Coefficients of skin friction and local Nusselt numbers are computed for the fractional model. The flow behavior is presented for various values of the involved parameters. The influence of different dimensionless numbers on skin friction and Nusselt number is discussed by tabular results. Forchheimer medium flows that involve catalytic converters and gas turbines can be modeled in a similar manner.
NASA Astrophysics Data System (ADS)
Qin, C.; Hassanizadeh, S.
2013-12-01
Multiphase flow and species transport though thin porous layers are encountered in a number of industrial applications, such as fuel cells, filters, and hygiene products. Based on some macroscale models like the Darcy's law, to date, the modeling of flow and transport through such thin layers has been mostly performed in 3D discretized domains with many computational cells. But, there are a number of problems with this approach. First, a proper representative elementary volume (REV) is not defined. Second, one needs to discretize a thin porous medium into computational cells whose size may be comparable to the pore sizes. This suggests that the traditional models are not applicable to such thin domains. Third, the interfacial conditions between neighboring layers are usually not well defined. Last, 3D modeling of a number of interacting thin porous layers often requires heavy computational efforts. So, to eliminate the drawbacks mentioned above, we propose a new approach to modeling multilayers of thin porous media as 2D interacting continua (see Fig. 1). Macroscale 2D governing equations are formulated in terms of thickness-averaged material properties. Also, the exchange of thermodynamic properties between neighboring layers is described by thickness-averaged quantities. In Comparison to previous macroscale models, our model has the distinctive advantages of: (1) it is rigorous thermodynamics-based model; (2) it is formulated in terms of thickness-averaged material properties which are easily measureable; and (3) it reduces 3D modeling to 2D leading to a very significant reduction of computation efforts. As an application, we employ the new approach in the study of liquid water flooding in the cathode of a polymer electrolyte fuel cell (PEFC). To highlight the advantages of the present model, we compare the results of water distribution with those obtained from the traditional 3D Darcy-based modeling. Finally, it is worth noting that, for specific case studies, a
NASA Astrophysics Data System (ADS)
Afanasyev, A.
2011-12-01
Multiphase flows in porous media with a transition between sub- and supercritical thermodynamic conditions occur in many natural and technological processes (e.g. in deep regions of geothermal reservoirs where temperature reaches critical point of water or in gas-condensate fields where subject to critical conditions retrograde condensation occurs and even in underground carbon dioxide sequestration processes at high formation pressure). Simulation of these processes is complicated due to degeneration of conservation laws under critical conditions and requires non-classical mathematical models and methods. A new mathematical model is proposed for efficient simulation of binary mixture flows in a wide range of pressures and temperatures that includes critical conditions. The distinctive feature of the model lies in the methodology for mixture properties determination. Transport equations and Darcy law are solved together with calculation of the entropy maximum that is reached in thermodynamic equilibrium and determines mixture composition. To define and solve the problem only one function - mixture thermodynamic potential - is required. Such approach allows determination not only single-phase states and two-phase states of liquid-gas type as in classical models but also two-phase states of liquid-liquid type and three-phase states. The proposed mixture model was implemented in MUFITS (Multiphase Filtration Transport Simulator) code for hydrodynamic simulations. As opposed to classical approaches pressure, enthalpy and composition variables together with fully implicit method and cascade procedure are used. The code is capable of unstructured grids, heterogeneous porous media, relative permeability and capillary pressure dependence on temperature and pressure, multiphase diffusion, optional number of sink and sources, etc. There is an additional module for mixture properties specification. The starting point for the simulation is a cubic equation of state that is
Gokaltun, Seckin; McDaniel, Dwayne; Roelant, David
2012-07-01
Multiphase flows involving gas and liquid phases can be observed in engineering operations at various Department of Energy sites, such as mixing of slurries using pulsed-air mixers and hydrogen gas generation in liquid waste tanks etc. The dynamics of the gas phase in the liquid domain play an important role in the mixing effectiveness of the pulsed-air mixers or in the level of gas pressure build-up in waste tanks. To understand such effects, computational fluid dynamics methods (CFD) can be utilized by developing a three-dimensional computerized multiphase flow model that can predict accurately the behavior of gas motion inside liquid-filled tanks by solving the governing mathematical equations that represent the physics of the phenomena. In this paper, such a CFD method, lattice Boltzmann method (LBM), is presented that can model multiphase flows accurately and efficiently. LBM is favored over traditional Navier-Stokes based computational models since interfacial forces are handled more effectively in LBM. The LBM is easier to program, more efficient to solve on parallel computers, and has the ability to capture the interface between different fluid phases intrinsically. The LBM used in this paper can solve for the incompressible and viscous flow field in three dimensions, while at the same time, solve the Cahn-Hillard equation to track the position of the gas-liquid interface specifically when the density and viscosity ratios between the two fluids are high. This feature is of primary importance since the previous LBM models proposed for multiphase flows become unstable when the density ratio is larger than 10. The ability to provide stable and accurate simulations at large density ratios becomes important when the simulation case involves fluids such as air and water with a density ratio around 1000 that are common to many engineering problems. In order to demonstrate the capability of the 3D LBM method at high density ratios, a static bubble simulation is
Johnson, R.H.; Poeter, E.P.
2007-01-01
Perchloroethylene (PCE) saturations determined from GPR surveys were used as observations for inversion of multiphase flow simulations of a PCE injection experiment (Borden 9??m cell), allowing for the estimation of optimal bulk intrinsic permeability values. The resulting fit statistics and analysis of residuals (observed minus simulated PCE saturations) were used to improve the conceptual model. These improvements included adjustment of the elevation of a permeability contrast, use of the van Genuchten versus Brooks-Corey capillary pressure-saturation curve, and a weighting scheme to account for greater measurement error with larger saturation values. A limitation in determining PCE saturations through one-dimensional GPR modeling is non-uniqueness when multiple GPR parameters are unknown (i.e., permittivity, depth, and gain function). Site knowledge, fixing the gain function, and multiphase flow simulations assisted in evaluating non-unique conceptual models of PCE saturation, where depth and layering were reinterpreted to provide alternate conceptual models. Remaining bias in the residuals is attributed to the violation of assumptions in the one-dimensional GPR interpretation (which assumes flat, infinite, horizontal layering) resulting from multidimensional influences that were not included in the conceptual model. While the limitations and errors in using GPR data as observations for inverse multiphase flow simulations are frustrating and difficult to quantify, simulation results indicate that the error and bias in the PCE saturation values are small enough to still provide reasonable optimal permeability values. The effort to improve model fit and reduce residual bias decreases simulation error even for an inversion based on biased observations and provides insight into alternate GPR data interpretations. Thus, this effort is warranted and provides information on bias in the observation data when this bias is otherwise difficult to assess. ?? 2006 Elsevier B
NASA Astrophysics Data System (ADS)
Li-hui, Zheng; Xiao-qing, He; Li-xia, Fu; Xiang-chun, Wang
2009-02-01
Water-based micro-bubble drilling fluid, which is used to exploit depleted reservoirs, is a complicated multiphase flow system that is composed of gas, water, oil, polymer, surfactants and solids. The gas phase is separate from bulk water by two layers and three membranes. They are "surface tension reducing membrane", "high viscosity layer", "high viscosity fixing membrane", "compatibility enhancing membrane" and "concentration transition layer of liner high polymer (LHP) & surfactants" from every gas phase centre to the bulk water. "Surface tension reducing membrane", "high viscosity layer" and "high viscosity fixing membrane" bond closely to pack air forming "air-bag", "compatibility enhancing membrane" and "concentration transition layer of LHP & surfactants" absorb outside "air-bag" to form "incompact zone". From another point of view, "air-bag" and "incompact zone" compose micro-bubble. Dynamic changes of "incompact zone" enable micro-bubble to exist lonely or aggregate together, and lead the whole fluid, which can wet both hydrophilic and hydrophobic surface, to possess very high viscosity at an extremely low shear rate but to possess good fluidity at a higher shear rate. When the water-based micro-bubble drilling fluid encounters leakage zones, it will automatically regulate the sizes and shapes of the bubbles according to the slot width of fracture, the height of cavern as well as the aperture of openings, or seal them by making use of high viscosity of the system at a very low shear rate. Measurements of the rheological parameters indicate that water-based micro-bubble drilling fluid has very high plastic viscosity, yield point, initial gel, final gel and high ratio of yield point and plastic viscosity. All of these properties make the multiphase flow system meet the requirements of petroleum drilling industry. Research on interface between gas and bulk water of this multiphase flow system can provide us with information of synthesizing effective agents to
Sneddon, Kristen W.; Powers, Michael H.; Johnson, Raymond H.; Poeter, Eileen P.
2002-01-01
Dense nonaqueous phase liquids (DNAPLs) are a pervasive and persistent category of groundwater contamination. In an effort to better understand their unique subsurface behavior, a controlled and carefully monitored injection of PCE (perchloroethylene), a typical DNAPL, was performed in conjunction with the University of Waterloo at Canadian Forces Base Borden in 1991. Of the various geophysical methods used to monitor the migration of injected PCE, the U.S. Geological Survey collected 500-MHz ground penetrating radar (GPR) data. These data are used in determining calibration parameters for a multiphase flow simulation. GPR data were acquired over time on a fixed two-dimensional surficial grid as the DNAPL was injected into the subsurface. Emphasis is on the method of determining DNAPL saturation values from this time-lapse GPR data set. Interactive full-waveform GPR modeling of regularized field traces resolves relative dielectric permittivity versus depth profiles for pre-injection and later-time data. Modeled values are end members in recursive calculations of the Bruggeman-Hanai-Sen (BHS) mixing formula, yielding interpreted pre-injection porosity and post-injection DNAPL saturation values. The resulting interpreted physical properties of porosity and DNAPL saturation of the Borden test cell, defined on a grid spacing of 50 cm with 1-cm depth resolution, are used as observations for calibration of a 3-D multiphase flow simulation. Calculated values of DNAPL saturation in the subsurface at 14 and 22 hours after the start of injection, from both the GPR and the multiphase flow modeling, are interpolated volumetrically and presented for visual comparison.
Johnson, Raymond H; Poeter, Eileen P
2007-01-05
Perchloroethylene (PCE) saturations determined from GPR surveys were used as observations for inversion of multiphase flow simulations of a PCE injection experiment (Borden 9 m cell), allowing for the estimation of optimal bulk intrinsic permeability values. The resulting fit statistics and analysis of residuals (observed minus simulated PCE saturations) were used to improve the conceptual model. These improvements included adjustment of the elevation of a permeability contrast, use of the van Genuchten versus Brooks-Corey capillary pressure-saturation curve, and a weighting scheme to account for greater measurement error with larger saturation values. A limitation in determining PCE saturations through one-dimensional GPR modeling is non-uniqueness when multiple GPR parameters are unknown (i.e., permittivity, depth, and gain function). Site knowledge, fixing the gain function, and multiphase flow simulations assisted in evaluating non-unique conceptual models of PCE saturation, where depth and layering were reinterpreted to provide alternate conceptual models. Remaining bias in the residuals is attributed to the violation of assumptions in the one-dimensional GPR interpretation (which assumes flat, infinite, horizontal layering) resulting from multidimensional influences that were not included in the conceptual model. While the limitations and errors in using GPR data as observations for inverse multiphase flow simulations are frustrating and difficult to quantify, simulation results indicate that the error and bias in the PCE saturation values are small enough to still provide reasonable optimal permeability values. The effort to improve model fit and reduce residual bias decreases simulation error even for an inversion based on biased observations and provides insight into alternate GPR data interpretations. Thus, this effort is warranted and provides information on bias in the observation data when this bias is otherwise difficult to assess.
Rugged Energy Landscapes in Multiphase Porous Media Flow: A Discrete-Domain Description
NASA Astrophysics Data System (ADS)
Cueto-Felgueroso, L.; Juanes, R.
2015-12-01
Immiscible displacements in porous media involve a complex sequence of pore-scale events, from the smooth, reversible displacement of interfaces to abrupt interfacial reconfigurations and rapid pore invasion cascades. Discontinuous changes in pressure or saturation have been referred to as Haines jumps, and they emerge as a key mechanism to understand the origin of hysteresis in porous media flow. Hysteresis persists at the many-pore scale: when multiple cycles of drainage and imbibition of a porous sample are conducted, a dense hysteresis diagram emerges. The interpretation of hysteresis as a consequence of irreversible transitions and multistability is at the heart of early hysteresis models, and in recent experiments, and points to an inherently non-equilibrium behavior. For a given volume fraction of fluids occupying the pore space, many stable configurations are possible, due to the tortuous network of nonuniform pores and throats that compose the porous medium, and to complex wetting and capillary transitions. Multistability indicates that porous media systems exhibit rugged energy landscapes, where the system may remain pinned at local energy minima for long times. We address the question of developing a zero-dimensional model that inherits the path-dependence and `'bursty'' behavior of immiscible displacements, and propose a discrete-domain model that captures the role of metastability and local equilibria in the origin of hysteresis. We describe the porous medium and fluid system as a discrete set of weakly connected, multistable compartments, charaterized by a unique free energy function. This description does not depend explicitly on past saturations, turning points, or drainage/imbibition labels. The system behaves hysteretically, and we rationalize its behavior as sweeping a complex metastability diagram, with dissipation arising from discrete switches among metastable branches. The hysteretic behavior of the pressure-saturation curve is controlled by
NASA Astrophysics Data System (ADS)
Park, J.; Li, X.
The gas diffusion layer of a polymer electrolyte membrane (PEM) fuel cell is a porous medium generally made of carbon cloth or paper. The gas diffusion layer has been modeled conventionally as a homogeneous porous medium with a constant permeability in the literature of PEM fuel cell. However, in fact, the permeability of such fibrous porous medium is strongly affected by the fiber orientation having non-isotropic permeability. In this work, the lattice Boltzmann (LB) method is applied to the multi-phase flow phenomenon in the inhomogeneous gas diffusion layer of a PEM fuel cell. The inhomogeneous porous structure of the carbon cloth and carbon paper has been modeled as void space and porous area using Stokes/Brinkman formulation and void space and impermeable fiber distributions obtained from various microscopic images. The permeability of the porous medium is calculated and compared to the experimental measurements in literature showing a good agreement. Simulation results for various fiber distributions indicate that the permeability of the medium is strongly influenced by the effect of fiber orientation. Present lattice Boltzmann flow models are applied to the multi-phase flow simulations by incorporating multi-component LB model with inter-particle interaction forces. The model successfully simulates the complicated unsteady behaviors of liquid droplet motion in the porous medium providing a useful tool to investigate the mechanism of liquid water accumulation/removal in a gas diffusion layer of a PEM fuel cell.
NASA Astrophysics Data System (ADS)
Archer, Philip J.; Bai, Wei
2015-02-01
A novel non-overlapping concept is augmented to the Hybrid Particle Level Set (HPLS) method to improve its accuracy and suitability for the modelling of multi-phase fluid flows. The concept addresses shortcomings in the reseeding algorithm, which maintains resolution of the surface at runtime. These shortcomings result in the misplacement of newly seeded particles in the opposite signed domain and necessitate a restriction on the distance that a particle can escape without deletion, which reduces the effectiveness of the method. The non-overlapping concept judges the suitability of potential new particles based on information already contained within the particle representation of the surface. By preventing the misplacement of particles it is possible to significantly relax the distance restriction thereby increasing the accuracy of the HPLS method in multi-phase flows. To demonstrate its robustness and efficiency, the concept is examined with a number of challenging test cases, including both level-set-only simulations and two-phase fluid flows.
NASA Astrophysics Data System (ADS)
Krevor, S. C.; Reynolds, C. A.; Al-Menhali, A.; Niu, B.
2015-12-01
Capillary strength and multiphase flow are key for modeling CO2 injection for CO2 storage. Past observations of multiphase flow in this system have raised important questions about the impact of reservoir conditions on flow through effects on wettability, interfacial tension and fluid-fluid mass transfer. In this work we report the results of an investigation aimed at resolving many of these outstanding questions for flow in sandstone rocks. The drainage capillary pressure, drainage and imbibition relative permeability, and residual trapping [1] characteristic curves have been characterized in Bentheimer and Berea sandstone rocks across a pressure range 5 - 20 MPa, temperatures 25 - 90 C and brine salinities 0-5M NaCl. Over 30 reservoir condition core flood tests were performed using techniques including the steady state relative permeability test, the semi-dynamic capillary pressure test, and a new test for the construction of the residual trapping initial-residual curve. Test conditions were designed to isolate effects of interfacial tension, viscosity ratio, density ratio, and salinity. The results of the tests show that, in the absence of rock heterogeneity, reservoir conditions have little impact on flow properties, consistent with continuum scale multiphase flow theory for water wet systems. The invariance of the properties is observed, including transitions of the CO2 from a gas to a liquid to a supercritical fluid, and in comparison with N2-brine systems. Variations in capillary pressure curves are well explained by corresponding changes in IFT although some variation may reflect small changes in wetting properties. The low viscosity of CO2at certain conditions results in sensitivity to rock heterogeneity. We show that (1) heterogeneity is the likely source of uncertainty around past relative permeability observations and (2) that appropriate scaling of the flow potential by a quantification of capillary heterogeneity allows for the selection of core flood
Gray, W.G.; Tompson, A.; Soll, W.E.
1998-06-01
'Improved capabilities for modeling multiphase flow in the subsurface requires that several aspects of the system which impact the flow and transport processes be more properly accounted for. A distinguishing feature of multiphase flow in comparison to single phase flow is the existence of interfaces between fluids. At the microscopic (pore) scale, these interfaces are known to influence system behavior by supporting non-zero stresses such that the pressures in adjacent phases are not equal. In problems of interphase transport at the macroscopic (core) scale, knowledge of the total amount of interfacial area in the system provides a clue to the effectiveness of the communication between phases. Although interfacial processes are central to multiphase flow physics, their treatment in traditional porous-media theories has been implicit rather than explicit; and no attempts have been made to systematically account for the evolution of the interfacial area in dynamic systems or to include the dependence of constitutive functions, such as capillary pressure, on the interfacial area. This project implements a three-pronged approach to assessing the importance of various features of multiphase flow to its description. The research contributes to the improved understanding and precise physical description of multiphase subsurface flow by combining: (1) theoretical derivation of equations, (2) lattice Boltzmann modeling of hydrodynamics to identify characteristics and parameters, and (3) solution of the field-scale equations using a discrete numerical method to assess the advantages and disadvantages of the complete theory. This approach includes both fundamental scientific inquiry and a path for inclusion of the scientific results obtained in a technical tool that will improve assessment capabilities for multiphase flow situations that have arisen due to the introduction of organic materials in the natural environment. This report summarizes work after 1.5 years of a 3
NASA Astrophysics Data System (ADS)
Dutta, Sourav; Daripa, Prabir; Fluids Team
2015-11-01
One of the most important methods of chemical enhanced oil recovery (EOR) involves the use of complex flooding schemes comprising of various layers of fluids mixed with suitable amounts of polymer or surfactant or both. The fluid flow is characterized by the spontaneous formation of complex viscous fingering patterns which is considered detrimental to oil recovery. Here we numerically study the physics of such EOR processes using a modern, hybrid method based on a combination of a discontinuous, multiscale finite element formulation and the method of characteristics. We investigate the effect of different types of heterogeneity on the fingering mechanism of these complex multiphase flows and determine the impact on oil recovery. We also study the effect of surfactants on the dynamics of the flow via reduction of capillary forces and increase in relative permeabilities. Supported by the grant NPRP 08-777-1-141 from the Qatar National Research Fund (a member of The Qatar Foundation).
NASA Astrophysics Data System (ADS)
Redapangu, Prasanna R.; Sahu, Kirti Chandra; Vanka, S. P.
2013-11-01
A three-dimensional multiphase lattice Boltzmann approach is used to study the pressure-driven displacement flow of two immiscible liquids of different densities and viscosities in an inclined square duct. A three-dimensional-fifteen-velocity (D3Q15) lattice model is used. The simulations are performed on a graphics processing unit (GPU) based machine. The effects of channel inclination, viscosity and density contrasts are investigated. The contours of the density and the average viscosity profiles in different planes are plotted and compared with two dimensional simulations. We demonstrate that the flow dynamics in three-dimensional channel is quite different as compared to that of two-dimensional channel. In particular, we found that the flow is relatively more coherent in three-dimensional channel than that in two-dimensional channel. A new screw-type instability is seen in the three-dimensional channel which cannot be observed in two-dimensional simulations.
Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend
Ortiz, Marcos German
1998-01-01
A system for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.
Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend
Ortiz, M.G.
1998-02-10
A system is described for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.
Simulation of Multiphase Water-Carbon Dioxide Mixture Flows in Porous Media
NASA Astrophysics Data System (ADS)
Afanasyev, A. A.
2012-04-01
Two-phase models are widely used for simulation of CO2 storage in saline aquifers. These models support gaseous phase mainly saturated with CO2 and liquid phase mainly saturated with H2O (e.g. TOUGH2 code). For deep aquifers where CO2 injection may result a plume of supercritical CO2 compositional simulation approach must be applied. This approach originated from petrol reservoir simulation studies is based on a cubic equation of state and is also capable only of single-phase states and two-phase states of liquid-gas type. The goal of the present study lies in development of a new mathematical approach for compositional simulation of carbon sequestration processes. The approach is supposed to be capable both of single-phase and two-phase states of liquid-gas type as in classical models and also of two-phase states of liquid-liquid type and three-phase states at high pressure. The liquid-liquid states are formed by two liquids. The first liquid is mainly saturated with water while the second is mainly saturated with CO2. These thermodynamic equilibriums with liquefied CO2 phase can be detected experimentally (Takenouchi et. al., 1964). The three-phase states represent a composition of the two-phase states of liquid-gas and liquid-liquid types. The three phases are water and CO2 in liquid and gaseous states. As liquefied CO2 is negatively buoyant at high pressure the described states can result in non-classical hydrodynamic effects in the aquifer with CO2 sinking and consequently in non-classical structural trapping scenarios. The distinctive feature of the proposed approach lies in the methodology for mixture properties determination. Transport equations and Darcy law are solved together with calculation of the entropy maximum that is reached in thermodynamic equilibrium and determines the mixture composition. To define and solve the problem only one function - mixture thermodynamic potential - is required. The proposed approach was implemented in MUFITS (Multiphase
Meakin, Paul; Tartakovsky, Alexandre M.
2009-01-01
In the subsurface fluids play a critical role by transporting dissolved minerals, colloids and contaminants (sometimes over long distances), by mediating dissolution and precipitation processes and enabling chemical transformations in solution and at mineral surfaces. Although the complex geometries of fracture apertures, fracture networks and pore spaces may make it difficult to accurately predict fluid flow in saturated (single-phase) subsurface systems, well developed methods are available. The simulation of multiphase fluid flow in the subsurface is much more challenging because of the large density and/or viscosity ratios found in important applications (water/air in the vadose zone, water/oil, water/gas, gas/oil and water/oil/gas in oil reservoirs, water/air/non-aqueous phase liquids (NAPL) in contaminated vadose zone systems and gas/molten rock in volcanic systems, for example). In addition, the complex behavior of fluid-fluid-solid contact lines, and its impact on dynamic contact angles, must also be taken into account, and coupled with the fluid flow. Pore network models and simple statistical physics based models such as the invasion percolation and diffusion-limited aggregation models have been used quite extensively. However, these models for multiphase fluid flow are based on simplified models for pore space geometries and simplified physics. Other methods such a lattice Boltzmann and lattice gas models, molecular dynamics, Monte Carlo methods, and particle methods such as dissipative particle dynamics and smoothed particle hydrodynamics are based more firmly on first principles, and they do not require simplified pore and/or fracture geometries. However, they are less (in some cases very much less) computationally efficient that pore network and statistical physics models. Recently a combination of continuum computation fluid dynamics, fluid-fluid interface tracking or capturing and simple models for the dependence of contact angles on fluid velocity
Paul Meakin; Alexandre Tartakovsky
2009-07-01
In the subsurface fluids play a critical role by transporting dissolved minerals, colloids and contaminants (sometimes over long distances), by mediating dissolution and precipitation processes and enabling chemical transformations in solution and at mineral surfaces. Although the complex geometries of fracture apertures, fracture networks and pore spaces may make it difficult to accurately predict fluid flow in saturated (single-phase) subsurface systems, well developed methods are available. The simulation of multiphase fluid flow in the subsurface is much more challenging because of the large density and/or viscosity ratios found in important applications (water/air in the vadose zone, water/oil, water/gas, gas/oil and water/oil/gas in oil reservoirs, water/air/non-aqueous phase liquids (NAPL) in contaminated vadose zone systems and gas/molten rock in volcanic systems, for example). In addition, the complex behavior of fluid-fluid-solid contact lines, and its impact on dynamic contact angles, must also be taken into account, and coupled with the fluid flow. Pore network models and simple statistical physics based models such as the invasion percolation and diffusion-limited aggregation models have been used quite extensively. However, these models for multiphase fluid flow are based on simplified models for pore space geometries and simplified physics. Other methods such a lattice Boltzmann and lattice gas models, molecular dynamics, Monte Carlo methods, and particle methods such as dissipative particle dynamics and smoothed particle hydrodynamics are based more firmly on first principles, and they do not require simplified pore and/or fracture geometries. However, they are less (in some cases very much less) computationally efficient that pore network and statistical physics models. Recently a combination of continuum computation fluid dynamics, fluid-fluid interface tracking or capturing and simple models for the dependence of contact angles on fluid velocity
Katyal, A.K.; Kaluarachchi, J.J.; Parker, J.C.
1991-05-01
The manual describes a two-dimensional finite element model for coupled multiphase flow and multicomponent transport in planar or radially symmetric vertical sections. Flow and transport of three fluid phases, including water, nonaqueous phase liquid (NAPL), and gas are considered by the program. The program can simulate flow only or coupled flow and transport. The flow module can be used to analyze two phases, water and NAPL, with the gas phase held at constant pressure, or explicit three-phase flow of water, NAPL, and gas at various pressures. The transport module can handle up to five components which partition among water, NAPL, gas and solid phases assuming either local equilibrium or first-order mass transfer. Three phase permeability-saturation-capillary pressure relations are defined by an extension of the van Genuchten model. The governing equations are solved using an efficient upstream-weighted finite element scheme. The report describes the required inputs for flow analysis and transport analysis. Time dependent boundary conditions for flow and transport analysis can be handled by the program and are described in the report. Detailed instructions for creating data files needed to run the program and example input and output files are given in appendices.
NASA Astrophysics Data System (ADS)
Ameer Hamza, Mohammad; Tariq Jameel, Ahmad; Asrar, Waqar; Hoda, Asif
2017-03-01
The classical problem of the stability and dynamics of thin liquid films on solid surfaces has been studied extensively. Particularly, thin liquid films subjected to various physico-chemical effects such as thermocapillarity, solutal-Marangoni and evaporative instabilities at the film surface has been the focus of research for more than two decades. Various flow configurations of thin film such as thin film on plane, inclined, and wavy surfaces has been the subject of recent investigations. An inclined film compared to a horizontal film, also experiences the gravity force which may significantly influence the nonlinear dynamics of the film coupled with other forces. In this research, we attempt to study the stability and dynamics of thin liquid films subjected to thermocapillarity and evaporative instabilities at the free surface besides instability owing to ubiquitous van der Waals attraction, using numerical simulations. For a Newtonian liquid, flow in thin liquid film on a planar support and bounded by a passive gas, is represented by Navier-Stokes equation, equation of continuity and appropriate boundary conditions. The external effects are incorporated in the body force term of the Navier-Stokes equation. These governing equations are simplified using the so called long-wave approximation to arrive at a nonlinear partial differential equation, henceforth called equation of evolution (EOE), which describes the time evolution of the interfacial instability in the film caused by internal and/or external effects. Efficient numerical method is required for the solution of the equation of evolution (EOE) in order to comprehend the nonlinear dynamics of the thin film. Here we present the results of our numerical simulation using Crank-Nicholson implicit finite difference scheme applied to the thin film model incorporating instabilities owing to gravity, evaporation and thermo-capillarity. Comparison of our results with those obtained from Spectral method, show
A computer code for multiphase all-speed transient flows in complex geometries. MAST version 1.0
NASA Technical Reports Server (NTRS)
Chen, C. P.; Jiang, Y.; Kim, Y. M.; Shang, H. M.
1991-01-01
The operation of the MAST code, which computes transient solutions to the multiphase flow equations applicable to all-speed flows, is described. Two-phase flows are formulated based on the Eulerian-Lagrange scheme in which the continuous phase is described by the Navier-Stokes equation (or Reynolds equations for turbulent flows). Dispersed phase is formulated by a Lagrangian tracking scheme. The numerical solution algorithms utilized for fluid flows is a newly developed pressure-implicit algorithm based on the operator-splitting technique in generalized nonorthogonal coordinates. This operator split allows separate operation on each of the variable fields to handle pressure-velocity coupling. The obtained pressure correction equation has the hyperbolic nature and is effective for Mach numbers ranging from the incompressible limit to supersonic flow regimes. The present code adopts a nonstaggered grid arrangement; thus, the velocity components and other dependent variables are collocated at the same grid. A sequence of benchmark-quality problems, including incompressible, subsonic, transonic, supersonic, gas-droplet two-phase flows, as well as spray-combustion problems, were performed to demonstrate the robustness and accuracy of the present code.
NASA Astrophysics Data System (ADS)
Katyal, A. K.; Kaluarachchi, J. J.; Parker, J. C.
1991-05-01
The manual describes a two-dimensional finite element model for coupled multiphase flow and multicomponent transport in planar or radially symmetric vertical sections. Flow and transport of three fluid phases, including water, nonaqueous phase liquid (NAPL), and gas are considered by the program. The program can simulate flow only or coupled flow and transport. The flow module can be used to analyze two phases, water and NAPL, with the gas phase held at constant pressure, or explicit three-phase flow of water, NAPL, and gas at various pressures. The transport module can handle up to five components which partition among water, NAPL, gas and solid phases assuming either local equilibrium or first-order mass transfer. Three phase permeability-saturation-capillary pressure relations are defined by an extension of the van Genuchten model. The governing equations are solved using an efficient upstream-weighted finite element scheme. The required inputs for flow and transport analysis are described. Detailed instructions for creating data files needed to run the program and examples of input and output files are given in appendices.
NASA Astrophysics Data System (ADS)
Martin, R. M.; Nicolas, A. N.
2003-04-01
A modeling approach of gas solid flow, taking into account different physical phenomena such as gas turbulence and inter-particle interactions is presented. Moment transport equations are derived for the second order fluctuating velocity tensor which allow to involve practical closures based on single phase turbulence modeling on one hand and kinetic theory of granular media on the other hand. The model is applied to fluid catalytic cracking processes and explosive volcanism. In the industry as well as in the geophysical community, multiphase flows are modeled using a finite volume approach and a multicorrector algorithm in time in order to determine implicitly the pressures, velocities and volume fractions for each phase. Pressures, and velocities are generally determined at mid-half mesh step from each other following the staggered grid approach. This ensures stability and prevents oscillations in pressure. It allows to treat almost all the Reynolds number ranges for all speeds and viscosities. The disadvantages appear when we want to treat more complex geometries or if a generalized curvilinear formulation of the conservation equations is considered. Too many interpolations have to be done and accuracy is then lost. In order to overcome these problems, we use here a similar algorithm in time and a Rhie and Chow interpolation (1983) of the collocated variables and essentially the velocities at the interface. The Rhie and Chow interpolation of the velocities at the finite volume interfaces allows to have no oscillations of the pressure without checkerboard effects and to stabilize all the algorithm. In a first predictor step, fluxes at the interfaces of the finite volumes are then computed using 2nd and 3rd order shock capturing schemes of MUSCL/TVD or Van Leer type, and the orthogonal stress components are treated implicitly while cross viscous/diffusion terms are treated explicitly. Pentadiagonal linear systems are solved in each geometrical direction (the so
El-Alej, M. Mba, D. Yeung, H.
2014-04-11
The monitoring of multiphase flow is an established process that has spanned several decades. This paper demonstrates the use of acoustic emission (AE) technology to investigate sand transport characteristic in three-phase (air-water-sand) flow in a horizontal pipe where the superficial gas velocity (VSG) had a range of between 0.2 ms{sup −1} to 2.0 ms{sup −1} and superficial liquid velocity (VSL) had a range of between 0.2 ms{sup −1} to 1.0 ms{sup −1}. The experimental findings clearly show a correlation exists between AE energy levels, sand concentration, superficial gas velocity (VSG) and superficial liquid velocity (VSL)
Lattice-Boltzmann Simulations of Multiphase Flows in Gas-Diffusion-Layer (GDL) of a PEM Fuel Cell
Mukherjeea, Shiladitya; Cole, J Vernon; Jainb, Kunal; Gidwania, Ashok
2008-11-01
Improved power density and freeze-thaw durability in automotive applications of Proton Exchange Membrane Fuel Cells (PEMFCs) requires effective water management at the membrane. This is controlled by a porous hydrophobic gas-diffusion-layer (GDL) inserted between the membrane catalyst layer and the gas reactant channels. The GDL distributes the incoming gaseous reactants on the catalyst surface and removes excess water by capillary action. There is, however, limited understanding of the multiphase, multi-component transport of liquid water, vapor and gaseous reactants within these porous materials. This is due primarily to the challenges of in-situ diagnostics for such thin (200 - 300 {microns}), optically opaque (graphite) materials. Transport is typically analyzed by fitting Darcy's Law type expressions for permeability, in conjunction with capillary pressure relations based on formulations derived for media such as soils. Therefore, there is significant interest in developing predictive models for transport in GDLs and related porous media. Such models could be applied to analyze and optimize systems based on the interactions between cell design, materials, and operating conditions, and could also be applied to evaluating material design concepts. Recently, the Lattice Boltzmann Method (LBM) has emerged as an effective tool in modeling multiphase flows in general, and flows through porous media in particular. This method is based on the solution of a discrete form of the well-known Boltzmann Transport Equation (BTE) for molecular distribution, tailored to recover the continuum Navier-Stokes flow. The kinetic theory basis of the method allows simple implementation of molecular forces responsible for liquid-gas phase separation and capillary effects. The solution advances by a streaming and collision type algorithm that makes it suitable to implement for domains with complex boundaries. We have developed both single and multiphase LB models and applied them to
NASA Astrophysics Data System (ADS)
Geiger, S.; Driesner, T.; Coumou, D.
2005-12-01
We compare temperature-based and enthalpy-based numerical schemes for compressible non-isothermal subsurface fluid flow. We formulate a diffusion equation for the fluid pressure, a diffusion equation for heat conduction, and an equation for the advective transport of temperature or enthalpy in the fluid. These equations can readily be solved by a combination of finite element and higher-order finite volume methods, which are capable of preserving steep temperature gradients in advection dominated flows and handling complex two- and three-dimensional geologic structures with orders of magnitude variation in permeability. Since the time-scale of pressure diffusion is slower than the time-scale for advective fluid flow, it is possible to decouple the equations and use implicit finite element methods for the parabolic (diffusion) equations and explicit finite volume methods for the hyperbolic (advection) equations. For single-phase flow, we use the thermal wave speed to compute the advection of the temperature field on the finite volumes. Since the thermal front is advected at a slower rate than the actual fluid flow, a significant (i.e., a factor 10 at liquid and a factor 1000 at vapor conditions) computational speedup can be achieved in comparison to the formulation where enthalpy is advected. The results for temperature-based and enthalpy-based formulations at vapor or liquid conditions, however, are identical and compare extremely well with results obtained from other codes that use fully coupled solution techniques. Our results do not improve if we use Picard iteration to couple the pressure, conduction, and advection equations. For the enthalpy-based transport schemes, we use a Newton iteration to equilibrate the energy in the fluid and rock. This also allows us to use more modern equation of states for complex multi-component systems, that are formulated in terms of pressure p, temperature T, and composition X, and hence cannot use the specific enthalpy h to
NASA Astrophysics Data System (ADS)
Espinet, Antoine J.; Shoemaker, Christine A.
2013-04-01
models are rough and multi-modal. When the number of simulations is limited, surrogate response surfaces algorithms perform best on multi-modal, bumpy objective functions, which we expect to have for most realistic multi-phase flow models such as those for GCS.
NASA Astrophysics Data System (ADS)
Carcano, Susanna; Bonaventura, Luca
2014-05-01
During explosive volcanic eruptions a mixture of gases, magma fragments, crystals and eroded rocks is injected in the atmosphere at high velocity, pressure and temperature. In the proximity of the volcanic vent, the erupted underexpanded multiphase mixture can manifest the features of supersonic flows, while the subsequent column behaviour is controlled by the (subsonic) turbulent mixing and mass and thermal exchange between the gas-particle mixture and the atmosphere. One of the main difficulties of the numerical simulation of explosive volcanic eruptions is therefore the need of modeling a multiphase process where different fluid dynamic regimes coexist and develop on on a wide range of temporal and spatial scales. From a computational point of view, this requires robust numerical techniques able to resolve supersonic regimes and to capture flow discontinuities (shock waves), as well as to reduce, where needed, the so-called numerical diffusion (while increasing the numerical accuracy) in order to simulate gas-particle non-equilibrium phenomena. Several examples of numerical approximation of multiphase gas-particle equations based on finite volume approach have been proposed in the literature, able to simulate the multiphase mixture up to second-order accuracy in space and time. However, achieving higher order of accuracy in the finite volume framework implies an increasing computational cost related to the extension of the computational stencil, in particular when a parallel implementation has to be employed. In this work, a mixture of gas and solid particles is described with a set of coupled partial differential equations for the mass, momentum and energy of each phase. Solid particles and the gas phase are considered as non-equilibrium interpenetrating continua, following an Eulerian-Eulerian approach. Each phase is compressible and inviscid. The gas and particles dynamics are coupled through the drag term in the momentum equations and the heat exchange term
Castell, Oliver K; Allender, Christopher J; Barrow, David A
2009-02-07
Capillary forces on the microscale are exploited to create a continuous flow liquid-liquid phase separator. Segmented flow regimes of immiscible fluids are generated and subsequently separated into their component phases through an array of high aspect ratio, laser machined, separation ducts (36 microm wide, 130 microm deep) in a planar, integrated, polytetrafluoroethylene (PTFE) microdevice. A controlled pressure differential across the phase separator architecture facilitates the selective passage of the wetting, organic, phase through the separator ducts, enabling separation of microfluidic multiphase flow streams. The reported device is demonstrated to separate water and chloroform segmented flow regimes at flow rates up to 0.4 ml min(-1). Separation efficiency is quantified over a range of flow rates and applied pressure differentials, characterising device behaviour and limits of operation. Experimental measurements and observations are supported by theoretical hydrodynamic and capillary pressure modelling. The influence of material properties and geometric design parameters on phase separation is quantified and optimisation strategies proposed. The novel ability of the membrane free device to separate an organic phase containing suspended microparticulates, from an aqueous phase, is also demonstrated.
NASA Astrophysics Data System (ADS)
Jin, G.; Pashin, J. C.
2014-12-01
Ensuring safe and permanent storage of sequestered CO2in naturally fractured geological media is vital for the success of geologic storage projects. Critical needs exist to develop advanced techniques to characterize and model fluid transport in naturally fractured reservoirs and seals. We have developed a scale-independent 3-D stochastic fracture permeability characterization workflow that employs multiple discrete fracture network (DFN) realizations. The workflow deploys a multidirectional flux-based upwind weighting scheme that is capable of modeling multiphase flow in highly heterogeneous fractured media. The techniques employed herein show great promise for increasing the accuracy of capacity determinations and the prediction of pressure footprints associated with injected CO2 plumes. The proposed workflow has been conducted in a simulation study of flow transport and risk assessment of CO2 injection into a deep fractured saline formation using geological parameters from Knox Group carbonate and Red Mountain shale rocks in central Alabama. A 3-D fracture permeability map was generated from multiple realizations of DFN models. A multiphase flow model composed of supercritical CO2 and saline water was applied to simulate CO2 plume evolution during and after injection. Injection simulation reveals significant permeability anisotropy that favors development of northeast-elongate CO2 plumes. The spreading front of the CO2 plume shows strong viscous fingering effects. Post-injection simulation indicates significant lateral spreading of CO2 near the top of the fractured formations because of the buoyancy of injectate in rock matrix and strata-bound vertical fractures. Risk assessment shows that although pressure drops faster in the fractured formations than in those lacking fractures, lateral movement of CO2 along natural fractures necessitates that the injectate be confined by widespread seals with high integrity.
NASA Astrophysics Data System (ADS)
Henry de Frahan, Marc T.; Varadan, Sreenivas; Johnsen, Eric
2015-01-01
Although the Discontinuous Galerkin (DG) method has seen widespread use for compressible flow problems in a single fluid with constant material properties, it has yet to be implemented in a consistent fashion for compressible multiphase flows with shocks and interfaces. Specifically, it is challenging to design a scheme that meets the following requirements: conservation, high-order accuracy in smooth regions and non-oscillatory behavior at discontinuities (in particular, material interfaces). Following the interface-capturing approach of Abgrall [1], we model flows of multiple fluid components or phases using a single equation of state with variable material properties; discontinuities in these properties correspond to interfaces. To represent compressible phenomena in solids, liquids, and gases, we present our analysis for equations of state belonging to the Mie-Grüneisen family. Within the DG framework, we propose a conservative, high-order accurate, and non-oscillatory limiting procedure, verified with simple multifluid and multiphase problems. We show analytically that two key elements are required to prevent spurious pressure oscillations at interfaces and maintain conservation: (i) the transport equation(s) describing the material properties must be solved in a non-conservative weak form, and (ii) the suitable variables must be limited (density, momentum, pressure, and appropriate properties entering the equation of state), coupled with a consistent reconstruction of the energy. Further, we introduce a physics-based discontinuity sensor to apply limiting in a solution-adaptive fashion. We verify this approach with one- and two-dimensional problems with shocks and interfaces, including high pressure and density ratios, for fluids obeying different equations of state to illustrate the robustness and versatility of the method. The algorithm is implemented on parallel graphics processing units (GPU) to achieve high speedup.
NASA Astrophysics Data System (ADS)
Jin, G.
2015-12-01
Subsurface storage of carbon dioxide in geological formations is widely regarded as a promising tool for reducing global atmospheric CO2 emissions. Successful geologic storage for sequestrated carbon dioxides must prove to be safe by means of risk assessments including post-injection analysis of injected CO2 plumes. Because fractured reservoirs exhibit a higher degree of heterogeneity, it is imperative to conduct such simulation studies in order to reliably predict the geometric evolution of plumes and risk assessment of post CO2injection. The research has addressed the pressure footprint of CO2 plumes through the development of new techniques which combine discrete fracture network and stochastic continuum modeling of multiphase flow in fractured geologic formations. A subsequent permeability tensor map in 3-D, derived from our preciously developed method, can accurately describe the heterogeneity of fracture reservoirs. A comprehensive workflow integrating the fracture permeability characterization and multiphase flow modeling has been developed to simulate the CO2plume migration and risk assessments. A simulated fractured reservoir model based on high-priority geological carbon sinks in central Alabama has been employed for preliminary study. Discrete fracture networks were generated with an NE-oriented regional fracture set and orthogonal NW-fractures. Fracture permeability characterization revealed high permeability heterogeneity with an order of magnitude of up to three. A multiphase flow model composed of supercritical CO2 and saline water was then applied to predict CO2 plume volume, geometry, pressure footprint, and containment during and post injection. Injection simulation reveals significant permeability anisotropy that favors development of northeast-elongate CO2 plumes, which are aligned with systematic fractures. The diffusive spreading front of the CO2 plume shows strong viscous fingering effects. Post-injection simulation indicates significant
Pak, Tannaz; Butler, Ian B.; Geiger, Sebastian; van Dijke, Marinus I. J.; Sorbie, Ken S.
2015-01-01
Using X-ray computed microtomography, we have visualized and quantified the in situ structure of a trapped nonwetting phase (oil) in a highly heterogeneous carbonate rock after injecting a wetting phase (brine) at low and high capillary numbers. We imaged the process of capillary desaturation in 3D and demonstrated its impacts on the trapped nonwetting phase cluster size distribution. We have identified a previously unidentified pore-scale event during capillary desaturation. This pore-scale event, described as droplet fragmentation of the nonwetting phase, occurs in larger pores. It increases volumetric production of the nonwetting phase after capillary trapping and enlarges the fluid−fluid interface, which can enhance mass transfer between the phases. Droplet fragmentation therefore has implications for a range of multiphase flow processes in natural and engineered porous media with complex heterogeneous pore spaces. PMID:25646491
NASA Astrophysics Data System (ADS)
Wang, Y.; Shu, C.; Yang, L. M.
2015-12-01
An improved multiphase lattice Boltzmann flux solver (MLBFS) is proposed in this work for effective simulation of three-dimensional (3D) multiphase flows with large density ratio and high Reynolds number. As a finite volume scheme, the MLBFS originally proposed in [27] applies the finite volume method to solve for macroscopic flow variables directly. The fluxes are reconstructed locally at each cell interface by using the standard LBM solutions. Due to the modeling error of the standard LBM, the reconstructed fluxes deviate from those in the Navier-Stokes equations; and to compensate this error, a complex tensor is introduced in the original MLBFS. However, the computation of the tensor introduces additional complexity and usually needs a relatively thicker interface thickness to maintain numerical stability, which makes the solver be complex and inefficient in the 3D case. To remove this drawback, in this work, a theoretical analysis to the formulations obtained from the Chapman-Enskog expansion is conducted. It is shown that the modeling error can be effectively removed by modifying the computation of the equilibrium density distribution function. With this improvement, the proposed 3D MLBFS not only avoids the calculation of the compensation tensor but also is able to maintain numerical stability with very thin interface thickness. Several benchmark cases, including the challenging droplet impacting on a dry surface, head-on collisions of binary droplets and droplet splashing on a thin film with density ratio 1000 and Reynolds number up to 3000, are studied to validate the proposed solver. The obtained results agree well with the published data.
Freeze, G.A.; Larson, K.W.; Davies, P.B.
1995-10-01
Eight alternative methods for approximating salt creep and disposal room closure in a multiphase flow model of the Waste Isolation Pilot Plant (WIPP) were implemented and evaluated: Three fixed-room geometries three porosity functions and two fluid-phase-salt methods. The pressure-time-porosity line interpolation method is the method used in current WIPP Performance Assessment calculations. The room closure approximation methods were calibrated against a series of room closure simulations performed using a creep closure code, SANCHO. The fixed-room geometries did not incorporate a direct coupling between room void volume and room pressure. The two porosity function methods that utilized moles of gas as an independent parameter for closure coupling. The capillary backstress method was unable to accurately simulate conditions of re-closure of the room. Two methods were found to be accurate enough to approximate the effects of room closure; the boundary backstress method and pressure-time-porosity line interpolation. The boundary backstress method is a more reliable indicator of system behavior due to a theoretical basis for modeling salt deformation as a viscous process. It is a complex method and a detailed calibration process is required. The pressure lines method is thought to be less reliable because the results were skewed towards SANCHO results in simulations where the sequence of gas generation was significantly different from the SANCHO gas-generation rate histories used for closure calibration. This limitation in the pressure lines method is most pronounced at higher gas-generation rates and is relatively insignificant at lower gas-generation rates. Due to its relative simplicity, the pressure lines method is easier to implement in multiphase flow codes and simulations have a shorter execution time.
Direct numerical simulation of rigid bodies in multiphase flow within an Eulerian framework
NASA Astrophysics Data System (ADS)
Rauschenberger, P.; Weigand, B.
2015-06-01
A new method is presented to simulate rigid body motion in the Volume-of-Fluid based multiphase code Free Surface 3D. The specific feature of the new method is that it works within an Eulerian framework without the need for a Lagrangian representation of rigid bodies. Several test cases are shown to prove the validity of the numerical scheme. The technique is able to conserve the shape of arbitrarily shaped rigid bodies and predict terminal velocities of rigid spheres. The instability of a falling ellipsoid is captured. Multiple rigid bodies including collisions may be considered using only one Volume-of-Fluid variable which allows to simulate the drafting, kissing and tumbling phenomena of two rigid spheres. The method can easily be extended to rigid bodies undergoing phase change processes.
Atomization modeling in a multiphase flow environment and comparison with experiments
NASA Technical Reports Server (NTRS)
Liang, P. Y.; Schuman, M. D.
1990-01-01
An atomization model based on Reitz's instability wave analysis has been implemented into the ARICC3D multiphase CFD combustion code. Preliminary test runs with cold non-evaporating liquid jet and coaxial gas-liquid atomization cases appeared to have verified basic performance of the model, generating realistic-looking sprays. Furthermore, the extended liquid jet is explicitly resolved, and predicted jet lengths agree well with classical correlations. Fair agreement with test data is obtained for predicted spray tip penetrations and liquid mass flux radial distributions, with obvious room for improvement. Some numerical problems also appear to have resulted with the current implementation when low gas Mach number and high liquid velocities are involved.
NASA Astrophysics Data System (ADS)
Moortgat, Joachim; Firoozabadi, Abbas
2016-06-01
Problems of interest in hydrogeology and hydrocarbon resources involve complex heterogeneous geological formations. Such domains are most accurately represented in reservoir simulations by unstructured computational grids. Finite element methods accurately describe flow on unstructured meshes with complex geometries, and their flexible formulation allows implementation on different grid types. In this work, we consider for the first time the challenging problem of fully compositional three-phase flow in 3D unstructured grids, discretized by any combination of tetrahedra, prisms, and hexahedra. We employ a mass conserving mixed hybrid finite element (MHFE) method to solve for the pressure and flux fields. The transport equations are approximated with a higher-order vertex-based discontinuous Galerkin (DG) discretization. We show that this approach outperforms a face-based implementation of the same polynomial order. These methods are well suited for heterogeneous and fractured reservoirs, because they provide globally continuous pressure and flux fields, while allowing for sharp discontinuities in compositions and saturations. The higher-order accuracy improves the modeling of strongly non-linear flow, such as gravitational and viscous fingering. We review the literature on unstructured reservoir simulation models, and present many examples that consider gravity depletion, water flooding, and gas injection in oil saturated reservoirs. We study convergence rates, mesh sensitivity, and demonstrate the wide applicability of our chosen finite element methods for challenging multiphase flow problems in geometrically complex subsurface media.
Yorstos, Yannis C.
2003-03-19
The report describes progress made in the various thrust areas of the project, which include internal drives for oil recovery, vapor-liquid flows, combustion and reaction processes and the flow of fluids with yield stress.
Numerical Simulation of Liquid Sheet Instability in a Multiphase Flow Domain
NASA Astrophysics Data System (ADS)
Souvick, Chatterjee; Mahapatra, Soumik; Mukhopadhyay, Achintya; Sen, Swarnendu
2013-11-01
Instability of a liquid sheet leading to the formation of droplets is a classical problem finding a wide range of multi-scale applications like gas turbine engines and inkjet printers. Numerical simulation of such a phenomenon is crucial because of its cost and time effective nature. In this work, the hydrodynamics in a custom designed nozzle is analyzed using Volume of Fluid method in Ansys Fluent. This innovative nozzle design includes an annular liquid sheet sandwiched between two air streams such that the inner air channel is recessed to a certain length. Such a recession leads to interaction between the two multiphase streams inside the atomizer resulting to an increased shear layer instability which augments the disintegration process. The numerical technique employed in this work couples Navier Stokes equation with VoF surface tracking technique. A parametric study with the hydrodynamic parameters involved in the problem, as well as the recession length, is performed while monitoring the axial and tangential exit velocities along with the spray cone angle. Comparison between the full 3D model and two different equivalent 2D axisymmetric models have been shown. The two axisymmetric models vary based on conserving different physical parameters between the 2D and 3D cases.
NASA Astrophysics Data System (ADS)
Bai, Bofeng; Guo, Liejin; Zhang, Shaojun; Zhang, Ximin; Gu, Hanyang
2010-03-01
Multiphase flow measurement, desanding, dehumidification and heat furnace are critical techniques for the oil and gas gathering and transportation, which influnce intensively the energy-saving and emission-reduction in the petroleum industry. Some innovative techniques were developed for the first time by the present research team, including an online recognation instrument of multiphase flow regime, a water fraction instrument for multuphase flow, a coiled tube desanding separator with low pressure loss and high efficiency, a supersonic swirling natural gas dehumifier, and a vacuum phase-change boiler. With an integration of the above techniques, a new oil gas gathering and transpotation system was proposed, which reduced the establishment of one metering station and several transfer stations compared with the tranditional system. The oil and gas mixture transpotation in single pipes was realized. The improved techniques were applied in the oilfields in China and promoted the productivity of the oilfields by low energy consumption, low emissions, high efficiency and great security.
Lan, Wenjie; Li, Shaowei; Lu, Yangcheng; Xu, Jianhong; Luo, Guangsheng
2009-11-21
This article describes a simple method for the fabrication of microscale polymer tubes. A double co-axial microchannel device was designed and fabricated. Liquid/liquid/liquid multiphase co-laminar flows were realized in a microchannel by choosing working systems. Three kinds of polymeric solutions were selected as the middle phase while a polyethyleneglycol aqueous solution was used as the inner and outer phases in the microfluidic process. The outer and inner phases acted as extractants of the polymer solvent. A stable double core-annular flow was formed by optimizing the composition of the outer and inner phases, and highly uniform tubes were successfully fabricated by the solvent extraction method. Both the outer diameter of the tubes and the wall thickness could be adjusted from 300 microm to 900 microm and from 40 microm to 150 microm by varying the flux of the fluids and the rolling velocity of the collection roller. In addition, titanium dioxide (TiO2) nanoparticles were successfully encapsulated into the polymer tubes with this technique. This technology has the potential to generate hollow fiber membranes for applications in separation and reaction processes.
Advanced Multi-phase Flow CFD Model Development for Solid Rocket Motor Flowfield Analysis
NASA Technical Reports Server (NTRS)
Liaw, Paul; Chen, Yen-Sen
1995-01-01
A Navier-Stokes code, finite difference Navier-Stokes (FDNS), is used to analyze the complicated internal flowfield of the SRM (solid rocket motor) to explore the impacts due to the effects of chemical reaction, particle dynamics, and slag accumulation on the solid rocket motor (SRM). The particulate multi-phase flowfield with chemical reaction, particle evaporation, combustion, breakup, and agglomeration models are included in present study to obtain a better understanding of the SRM design. Finite rate chemistry model is applied to simulate the chemical reaction effects. Hermsen correlation model is used for the combustion simulation. The evaporation model introduced by Spalding is utilized to include the heat transfer from the particulate phase to the gase phase due to the evaporation of the particles. A correlation of the minimum particle size for breakup expressed in terms of the Al/Al2O3 surface tension and shear force was employed to simulate the breakup of particles. It is assumed that the breakup occurs when the Weber number exceeds 6. A simple L agglomeration model is used to investigate the particle agglomeration. However, due to the large computer memory requirements for the agglomeration model, only 2D cases are tested with the agglomeration model. The VOF (Volume of Fluid) method is employed to simulate the slag buildup in the aft-end cavity of the redesigned solid rocket motor (RSRM). Monte Carlo method is employed to calculate the turbulent dispersion effect of the particles. The flowfield analysis obtained using the FDNS code in the present research with finite rate chemical reaction, particle evaporation, combustion, breakup, agglomeration, and VOG models will provide a design guide for the potential improvement of the SRM including the use of materials and the shape of nozzle geometry such that a better performance of the SRM can be achieved. The simulation of the slag buildup in the aft-end cavity can assist the designer to improve the design of
Yortsos, Yanis C.
2002-10-08
In this report, the thrust areas include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.
Trangenstein, J.A.
1993-03-15
This is the first year in the proposed three-year effort to develop high-resolution numerical methods for multi-phase flow in hierarchical porous media. The issues being addressed in this research are: Computational efficiency: Field-scale simulation of enhanced oil recovery, whether for energy production or aquifer remediation, is typically highly under-resolved. This is because rock transport properties vary on many scales, and because current numerical methods have low resolution. Effective media properties: Since porous media are formed through complex geologic processes, they involve significant uncertainty and scale-dependence. Given this uncertainty, knowledge of ensemble averages of flow in porous media can be preferable to knowledge of flow in specific realizations of the reservoir. However, current models of effective properties do not represent the observed behavior very well. Relative permeability models present a good example of this problem. In practice, these models seldom provide realistic representations of hysteresis, interfacial tension effects or three-phase flow; there are no models that represent well all three effects simultaneously. Wave propagation: It is common in the petroleum industry to assume that the models have the same well-posedness properties as the physical system. An example of this fallacy is given by the three-phase relative permeability models; they were widely assumed by the petroleum community to produce hyperbolic systems for the Buckley-Leverett equations, but later the mathematics community proved that these models inherently produce local elliptic regions. Since numerical methods must use the models for computations, oscillations that develop could erroneously be attributed to numerical error rather than modeling difficulties. During this year, we have made significant progress on several tasks aimed at addressing these issues.
NASA Astrophysics Data System (ADS)
Esposti Ongaro, Tomaso; Cerminara, Matteo
2016-10-01
In the framework of the IAVCEI (International Association of Volcanology and Chemistry of the Earth Interior) initiative on volcanic plume models intercomparison, we discuss three-dimensional numerical simulations performed with the multiphase flow model PDAC (Pyroclastic Dispersal Analysis Code). The model describes the dynamics of volcanic and atmospheric gases (in absence of wind) and two pyroclastic phases by adopting a non-equilibrium Eulerian-Eulerian formulation. Accordingly, gas and particulate phases are treated as interpenetrating fluids, interacting with each other through momentum (drag) and heat exchange. Numerical results describe the time-wise and spatial evolution of weak (mass eruption rate: 1.5 × 106 kg/s) and strong (mass eruption rate: 1.5 × 109 kg/s) plumes. The two tested cases display a remarkably different phenomenology, associated with the different roles of atmospheric stratification, compressibility and mechanism of buoyancy reversal, reflecting in a different structure of the plume, of the turbulent eddies and of the atmospheric circulation. This also brings about different rates of turbulent mixing and atmospheric air entrainment. The adopted multiphase flow model allows to quantify temperature and velocity differences between the gas and particles, including settling, preferential concentration by turbulence and thermal non-equilibrium, as a function of their Stokes number, i.e., the ratio between their kinetic equilibrium time and the characteristic large-eddy turnover time of the turbulent plume. As a result, the spatial and temporal distribution of coarse ash in the atmosphere significantly differs from that of the fine ash, leading to a modification of the plume shape. Finally, three-dimensional numerical results have been averaged in time and across horizontal slices in order to obtain a one-dimensional picture of the plume in a stationary regime. For the weak plume, the results are consistent with one-dimensional models, at
Characterization of non-Darcy multiphase flow in petroleum bearing formation. Final report
Evans, R.D.; Civan, F.
1994-04-01
The productive capacity of oil and gas bearing rocks depends on various parameters characterizing the flow conditions in the reservoir. Among these, the non-Darcy flow coefficient specifically plays an important role for cases involving fluid accelerations or decelerations around the well bore and in the reservoir. However, most reservoir simulators used for reservoir management assume Darcy flow, and yield misleading results causing an incorrect analysis or projection of reservoir performance. A few attempts have been made to incorporate non-Darcy effect in reservoir models but many of these lack a reliable accuracy since they use simplified correlations which ignore the effects of the variation of the fluid and formation conditions. The present study developed an accurate non-Darcy flow model that will lead to more accurate reservoir management decisions. First, a rigorous analysis and derivation of the porous media mass and momentum equations are presented considering the non-Darcy flow behavior. Second, steady-state and unsteady-state methods for simultaneous determination of relative permeability, capillary pressure, and interfacial drag during non-Darcy flow in laboratory cores are derived. This work results in several algebraic, integral, and differential interpretation methods. Third, correlations for the non-Darcy flow coefficient are investigated and improved. The study presented in this report provides new insights and formulations in the description of non-Darcy flow in oil and gas bearing formations.
Modeling Plasma Flow in Solid Propellant Charges Using the NGEN Multiphase CFD Code
2006-04-01
using these equations derived by a formal averaging technique applied to the microscopic flow. These equations require a number of constitutive laws...disk (dimensions shown are from Chang and Howard [32]). acrylic, that allows cinematography of plasma flows and ignition events along the propellant
NASA Astrophysics Data System (ADS)
Dartevelle, S.; Valentine, G. A.
2007-12-01
Experimental and numerical studies have shown that vertical flows of gas-particle mixtures are characterized by transient behavior, with development of waves of high particle concentration separated by regions of relatively clean gas. In contrast, most models of explosive flow in volcanic conduits either treat the multiphase mixture as a single fluid (pseudo-fluid approximation) and/or assume steady flow, thereby eliminating the potential for time- dependent effects related to multiphase dynamics. The 8 September 1977 explosive eruption of basaltic tephra through a geothermal borehole (Namafjall, Iceland) provides a unique test case for multiphase volcanic processes, given that its vertical extent (~1 km) is similar to that of natural volcanic conduits and its geometry is exactly known. We model this eruption by solving separate, time-dependent governing equations for conservation of mass, momentum, and energy of the gas and particle phases, allowing for drag and heat transfer between the phases. Model results are consistent with the development of transient waves of high particle concentration that propagate up the borehole, resulting in complex compressible flow phenomena along with ejection of particles in pulses in a manner that is consistent with observations at Námafjall. These transient processes occur even though the influx of gas and particles at the base of the borehole is treated as constant. Our results indicate that transient multiphase behavior is likely to be common in volcanic conduit flows, and that a key topic of future research is quantifying the types of time-dependent behaviors and their impacts on eruption column dynamics.
NASA Astrophysics Data System (ADS)
Dartevelle, S.; Valentine, G. A.
2007-10-01
Experimental and numerical studies have shown that vertical flows of gas-particle mixtures are characterized by transient behavior, with development of waves of high particle concentration separated by regions of relatively clean gas. In contrast, most models of explosive flow in volcanic conduits either treat the multiphase mixture as a single fluid (pseudo-fluid approximation) and/or assume steady flow, thereby eliminating the potential for time-dependent effects related to multiphase dynamics. The 8 September 1977 explosive eruption of basaltic tephra through a geothermal borehole (Námafjall, Iceland) provides a unique test case for multiphase volcanic processes, given that its vertical extent (˜ 1 km) is similar to that of natural volcanic conduits and its geometry is exactly known. We model this eruption by solving separate, time-dependent governing equations for conservation of mass, momentum, and energy of the gas and particle phases, allowing for drag and heat transfer between the phases. Model results are consistent with the development of transient waves of high particle concentration that propagate up the borehole, resulting in complex compressible flow phenomena along with ejection of particles in pulses in a manner that is consistent with observations at Námafjall. These transient processes occur even though the influx of gas and particles at the base of the borehole is treated as constant. Our results indicate that transient multiphase behavior is likely to be common in volcanic conduit flows, and that a key topic of future research is quantifying the types of time-dependent behaviors and their impacts on eruption column dynamics.
Non-Invasive Characterization Of A Flowing Multi-Phase Fluid Using Ultrasonic Interferometry
Sinha, Dipen N.
2005-11-01
An apparatus for noninvasively monitoring the flow and/or the composition of a flowing liquid using ultrasound is described. The position of the resonance peaks for a fluid excited by a swept-frequency ultrasonic signal have been found to change frequency both in response to a change in composition and in response to a change in the flow velocity thereof. Additionally, the distance between successive resonance peaks does not change as a function of flow, but rather in response to a change in composition. Thus, a measurement of both parameters (resonance position and resonance spacing), once calibrated, permits the simultaneous determination of flow rate and composition using the apparatus and method of the present invention.
Effect of Interphase Forces on Gas-Liquid Multiphase Flow in RH Degasser
NASA Astrophysics Data System (ADS)
Zhu, Bohong; Liu, Qingcai; Kong, Ming; Yang, Jian; Li, Donghui; Chattopadhyay, Kinnor
2017-10-01
A mathematical model was developed to study the gas-liquid flow behavior in the Ruhrstahl-Heraeus (RH) degasser by using the Euler-Euler approach, and the effects of different combinations of interphase forces on the circulation flow rate as well as the distribution of the gas volume fraction were investigated. The results showed that the model predictions correspond with the measured values. As a key factor in avoiding the gas-adhering wall effect, the virtual mass force has a tremendous impact on the circulation flow rate and distribution of the gas volume fraction. The contribution of the turbulent dispersion force on the circulation flow rate is insignificant, but it shows a significant effect on the distribution of the gas volume fraction. Furthermore, the effect of the wall lubrication force and the lift force on gas-liquid flow is negligible when compared with the virtual mass and turbulent dispersion forces.
Effect of Interphase Forces on Gas-Liquid Multiphase Flow in RH Degasser
NASA Astrophysics Data System (ADS)
Zhu, Bohong; Liu, Qingcai; Kong, Ming; Yang, Jian; Li, Donghui; Chattopadhyay, Kinnor
2017-06-01
A mathematical model was developed to study the gas-liquid flow behavior in the Ruhrstahl-Heraeus (RH) degasser by using the Euler-Euler approach, and the effects of different combinations of interphase forces on the circulation flow rate as well as the distribution of the gas volume fraction were investigated. The results showed that the model predictions correspond with the measured values. As a key factor in avoiding the gas-adhering wall effect, the virtual mass force has a tremendous impact on the circulation flow rate and distribution of the gas volume fraction. The contribution of the turbulent dispersion force on the circulation flow rate is insignificant, but it shows a significant effect on the distribution of the gas volume fraction. Furthermore, the effect of the wall lubrication force and the lift force on gas-liquid flow is negligible when compared with the virtual mass and turbulent dispersion forces.
Quantitative 'real-time' imaging of multi-phase flow in ceramic monoliths.
Sederman, A J; Mantle, M D; Gladden, L F
2003-01-01
An extension of the RARE technique has been developed which acquires multiple images from a single radio-frequency excitation. This pulse sequence has been used to image, in real-time, gas flow through stagnant liquid within parallel-channel ceramic monoliths. From these images, gas-phase volume fractions, and distributions of gas bubble length and velocity as a function of gas flow rate (50-300 cm3 min(-1)) and channel size (300 and 400 channels per square inch, cpsi) are obtained directly. Increasing the gas flow rate increased the number of large bubbles and the average bubble velocity. A bimodal distribution in the bubble velocities was observed for flow within the larger channel size (300 cpsi) in contrast to a broad unimodal distribution characterizing two-phase flow within the smaller channel size (400 cpsi).
Investigation of Multiphase Flow in a Packed Bed Reactor Under Microgravity Conditions
NASA Technical Reports Server (NTRS)
Lian, Yongsheng; Motil, Brian; Rame, Enrique
2016-01-01
In this paper we study the two-phase flow phenomena in a packed bed reactor using an integrated experimental and numerical method. The cylindrical bed is filled with uniformly sized spheres. In the experiment water and air are injected into the bed simultaneously. The pressure distribution along the bed will be measured. The numerical simulation is based on a two-phase flow solver which solves the Navier-Stokes equations on Cartesian grids. A novel coupled level set and moment of fluid method is used to construct the interface. A sequential method is used to position spheres in the cylinder. Preliminary experimental results showed that the tested flow rates resulted in pulse flow. The numerical simulation revealed that air bubbles could merge into larger bubbles and also could break up into smaller bubbles to pass through the pores in the bed. Preliminary results showed that flow passed through regions where the porosity is high. Comparison between the experimental and numerical results in terms of pressure distributions at different flow injection rates will be conducted. Comparison of flow phenomena under terrestrial gravity and microgravity will be made.
Multiphase flow of the late Wisconsinan Cordilleran ice sheet in Western Canada
Stumpf, A.J.; Broster, B.E.; Levson, V.M.
2000-01-01
In central British Columbia, ice flow during the late Wisconsinan Fraser glaciation (ca. 25-10 ka) occurred in three phases. The ice expansion phase occurred during an extended period when glaciers flowed westward to the Pacific Ocean and east-southeastward onto the Nechako Plateau from ice centers in the Skeena, Hazelton, Coast, and Omineca Mountains. Initially, glacier flow was confined by topography along major valleys, but eventually piedmont and montane glaciers coalesced to form an integrated glacier system, the Cordilleran ice sheet. In the maximum phase, a Cordilleran ice divide developed over the Nechako Plateau to 300 km inland from the Pacific coast. At this time, the surface of the ice sheet extended well above 2500 m above sea level, and flowed westward over the Skeena, Hazelton, and Coast Mountains onto the continental shelf, and eastward across the Rocky Mountains into Alberta. In the late glacial phase, a rapid rise of the equilibrium line caused ice lobes to stagnate in valleys, and restricted accumulation centers to high mountains. Discordant directions in ice flow are attributed to fluctuations of the ice divide representing changes in the location of accumulation centers and ice thickness. Ice centers probably shifted in response to climate, irregular growth in the ice sheet, rapid calving, ice streaming, and drainage of proglacial and subglacial water bodies. Crosscutting ice-flow indicators and preservation of early (valley parallel) flow features in areas exposed to later (cross-valley) glacier erosion indicate that the ice expansion phase was the most erosive and protracted event.
Multiphase imaging of gas flow in a nanoporous material usingremote detection NMR
Harel, Elad; Granwehr, Josef; Seeley, Juliette A.; Pines, Alex
2005-10-03
Pore structure and connectivity determine how microstructured materials perform in applications such as catalysis, fluid storage and transport, filtering, or as reactors. We report a model study on silica aerogel using a recently introduced time-of-flight (TOF) magnetic resonance imaging technique to characterize the flow field and elucidate the effects of heterogeneities in the pore structure on gas flow and dispersion with Xe-129 as the gas-phase sensor. The observed chemical shift allows the separate visualization of unrestricted xenon and xenon confined in the pores of the aerogel. The asymmetrical nature of the dispersion pattern alludes to the existence of a stationary and a flow regime in the aerogel. An exchange time constant is determined to characterize the gas transfer between them. As a general methodology, this technique provides new insights into the dynamics of flow in porous media where multiple phases or chemical species may be present.
NASA Astrophysics Data System (ADS)
Wang, Y.; Shu, C.; Shao, J. Y.; Wu, J.; Niu, X. D.
2015-06-01
In this work a mass-conserved diffuse interface method is proposed for simulating incompressible flows of binary fluids with large density ratio. In the method, a mass correction term is introduced into the Cahn-Hilliard equation to compensate the mass losses or offset the mass increases caused by the numerical and modeling diffusion. Since the mass losses or increases are through the phase interfaces and at each time step, their values are very small, to keep mass conservation, mass sources or sinks are introduced and uniformly distributed in the volume of diffuse layer. With the uniform distribution, the mass correction term representing mass sources or sinks is derived analytically by applying mass conservation principle. By including the mass correction, the modified Cahn-Hilliard equation is solved by the fifth-order upwind scheme to capture the phase field of the bindery fluids. The flow field is simulated by the newly-developed multiphase lattice Boltzmann flux solver [20]. The proposed approach is validated by simulating the Laplace law, the merging of two bubbles, Rayleigh-Taylor instability and bubble rising under gravity with density ratio of 1000 and viscosity ratio of 100. Numerical results of interface shapes and flow properties agree well with both analytical solutions and benchmark data in the literature. Numerical results also show that the mass is well-conserved in all cases considered. In addition, it is demonstrated that the mass correction term at each time step is in the order of 10-4 ∼10-5, which is a small number compared with the magnitude of order parameter.
On Simulations of High-Density Ratio Flows Using Color-Gradient Multiphase Lattice Boltzmann Models
NASA Astrophysics Data System (ADS)
Huang, Haibo; Huang, Jun-Jie; Lu, Xi-Yun; Sukop, Michael C.
2013-04-01
Originally, the color-gradient model proposed by Rothman and Keller (R-K) was unable to simulate immiscible two-phase flows with different densities. Later, a revised version of the R-K model was proposed by Grunau et al. [D. Grunau, S. Chen and K. Eggert, Phys. Fluids A: Fluid Dyn. 5, 2557 (1993).] and claimed it was able to simulate two-phase flows with high-density contrast. Some studies investigate high-density contrast two-phase flows using this revised R-K model but they are mainly focused on the stationary spherical droplet and bubble cases. Through theoretical analysis of the model, we found that in the recovered Navier-Stokes (N-S) equations which are derived from the R-K model, there are unwanted extra terms. These terms disappear for simulations of two-phase flows with identical densities, so the correct N-S equations are fully recovered. Hence, the R-K model is able to give accurate results for flows with identical densities. However, the unwanted terms may affect the accuracy of simulations significantly when the densities of the two fluids are different. For the simulations of spherical bubbles and droplets immersed in another fluid (where the densities of the two fluids are different), the extra terms may not be important and hence, in terms of surface tension, accurate results can be obtained. However, generally speaking, the unwanted term may be significant in many flows and the R-K model is unable to obtain the correct results due to the effect of the extra terms. Through numerical simulations of parallel two-phase flows in a channel, we confirm that the R-K model is not appropriate for general two-phase flows with different densities. A scheme to eliminate the unwanted terms is also proposed and the scheme works well for cases of density ratios less than 10.
Lawrence Livermore National Laboratory capabilities in multiphase dynamics
McCallen, R.C.; Kang, Sang-Wook
1996-04-09
The computer codes at LLNL with capabilities for numerical analysis for multiphase flow; phenomenology and constitutive theory and modeling; advanced diagnostics, advanced test beds, facilities, and data bases; and multiphase flow applications are listed, with brief descriptions.
Evaluation of inhomogeneous model and the LCS based investigation in multiphase flows
NASA Astrophysics Data System (ADS)
Y Bai, Z.; Y Wang, G.; Wu, Q.; Huang, X.; Huang, B.
2013-12-01
In this paper, an evaluation of inhomogeneous model for computations of gas-liquid two-phase flow is presented, and the mechanism of gas-liquid two-phase flow in a bubble column is studied based on Finite-Time Lyapunov Exponents (FTLE) and Lagrangian Coherent Structures (LCS). The simulation is conducted with the homogeneous and inhomogeneous models respectively, and the numerical results are compared with the experimental data. It is shown that the inhomogeneous model can calculate the force of the gas more accurately and simulates the details of transient flows well due to the consideration of the interaction between the two phases. With inhomogeneous model, the periodic fluctuation of the bubble hose is captured and the velocity distribution coincides exactly with the experimental data. For the gas-liquid two-phase flow in the bubble column, the process of gaseous flow injected into water can be divided into two stages: the gas rising and gas fluctuation. The Lagrangian Coherent Structures (LCS) which consist of the ridges of the FTLE field can capture the boundary of vortex and the interface between the forward and backward flows in the liquid region, and the LCS have unique value for representing the divergence extent of neighboring particles in regions with different dynamics characteristics.
Non-isothermal extrudate swell
NASA Astrophysics Data System (ADS)
Konaganti, Vinod Kumar; Derakhshandeh, Maziar; Ebrahimi, Marzieh; Mitsoulis, Evan; Hatzikiriakos, Savvas G.
2016-12-01
The non-isothermal extrudate swell of a high molecular weight high-density polyethylene (HDPE) in long capillary and slit dies is studied numerically (ANSYS POLYFLOW®) using an integral K-BKZ constitutive model including crystallization kinetics, determined experimentally. The Nakamura model is used for crystallization of the HDPE, where the crystallization rate parameter is evaluated by using the well-known Ziabicki equation. This non-isothermal extrudate swell phenomenon is simulated using the pseudo-time integral K-BKZ model with the Wagner damping function along with the differential form of the Nakamura model to account for the crystallization of the extrudate. The swell measurements were carried out under non-isothermal conditions by extruding the polymer melt at 200 °C through long capillary and slit dies to ambient air at 25 °C, 110 °C, and 200 °C. The numerical results are found to be in excellent agreement with experimental observations.
NASA Astrophysics Data System (ADS)
Stranne, C.; Jakobsson, M.; O'Regan, M.
2016-12-01
Continental margins host large quantities of methane stored partly as hydrates in sediments. Release of methane through hydrate dissociation is implicated as a possible feedback mechanism to climate change. Large-scale estimates of future warming-induced methane release are commonly based on a hydrate stability (HS) approach that omits dynamic processes. Here we use the multiphase flow model TOUGH+hydrate (T+H) to quantitatively investigate how dynamic processes affect dissociation rates and methane release. The simulations involve shallow, 20-100 meter thick hydrate deposits, forced by a bottom water temperature increase of 0.03 °C year-1 over 100 years. On a centennial time scale gas escape quantities for the HS approach can be orders of magnitude larger compared to T+H simulations. Our results indicate a time lag of > 40 years between the onset of warming and gas escape, meaning that recent climate warming may soon be manifested as widespread gas seepages along the World's continental margins.
Dual FIB-SEM 3D imaging and lattice boltzmann modeling of porosimetry and multiphase flow in chalk.
Rinehart, Alex; Petrusak, Robin; Heath, Jason E.; Dewers, Thomas A.; Yoon, Hongkyu
2010-12-01
Mercury intrusion porosimetry (MIP) is an often-applied technique for determining pore throat distributions and seal analysis of fine-grained rocks. Due to closure effects, potential pore collapse, and complex pore network topologies, MIP data interpretation can be ambiguous, and often biased toward smaller pores in the distribution. We apply 3D imaging techniques and lattice-Boltzmann modeling in interpreting MIP data for samples of the Cretaceous Selma Group Chalk. In the Mississippi Interior Salt Basin, the Selma Chalk is the apparent seal for oil and gas fields in the underlying Eutaw Fm., and, where unfractured, the Selma Chalk is one of the regional-scale seals identified by the Southeast Regional Carbon Sequestration Partnership for CO2 injection sites. Dual focused ion - scanning electron beam and laser scanning confocal microscopy methods are used for 3D imaging of nanometer-to-micron scale microcrack and pore distributions in the Selma Chalk. A combination of image analysis software is used to obtain geometric pore body and throat distributions and other topological properties, which are compared to MIP results. 3D data sets of pore-microfracture networks are used in Lattice Boltzmann simulations of drainage (wetting fluid displaced by non-wetting fluid via the Shan-Chen algorithm), which in turn are used to model MIP procedures. Results are used in interpreting MIP results, understanding microfracture-matrix interaction during multiphase flow, and seal analysis for underground CO2 storage.
Braun, Frank; Schwolow, Sebastian; Seltenreich, Julia; Kockmann, Norbert; Röder, Thorsten; Gretz, Norbert; Rädle, Matthias
2016-10-04
In process analytics, the applicability of Raman spectroscopy is restricted by high excitation intensities or the long integration times required. In this work, a novel Raman system was developed to minimize photon flux losses. It allows specific reduction of spectral resolution to enable the use of Raman spectroscopy for real-time analytics when strongly increased sensitivity is required. The performance potential of the optical setup was demonstrated in two exemplary applications: First, a fast exothermic reaction (Michael addition) was monitored with backscattering fiber optics under strongly attenuated laser power (7 mW). Second, high-speed scanning of a segmented multiphase flow (water/toluene) with submicroliter droplets was achieved by aligning the focus of a coaxial Raman probe with long focal length directly into a perfluoroalkoxy (PFA) capillary. With an acquisition rate of 333 Raman spectra per second, chemical information was obtained separately for both of the rapidly alternating phases. The experiment with reduced laser power demonstrates that the technique described in this paper is applicable in chemical production processes, especially in hazardous environments. Further potential uses can be envisioned in medical or biological applications with limited power input. The realization of high-speed measurements shows new possibilities for analysis of heterogeneous phase systems and of fast reactions or processes.
NASA Astrophysics Data System (ADS)
Yuan, H. Z.; Chen, Z.; Shu, C.; Wang, Y.; Niu, X. D.; Shu, S.
2017-09-01
In this paper, a free energy-based surface tension force (FESF) model is presented for accurately resolving the surface tension force in numerical simulation of multiphase flows by the level set method. By using the analytical form of order parameter along the normal direction to the interface in the phase-field method and the free energy principle, FESF model offers an explicit and analytical formulation for the surface tension force. The only variable in this formulation is the normal distance to the interface, which can be substituted by the distance function solved by the level set method. On one hand, as compared to conventional continuum surface force (CSF) model in the level set method, FESF model introduces no regularized delta function, due to which it suffers less from numerical diffusions and performs better in mass conservation. On the other hand, as compared to the phase field surface tension force (PFSF) model, the evaluation of surface tension force in FESF model is based on an analytical approach rather than numerical approximations of spatial derivatives. Therefore, better numerical stability and higher accuracy can be expected. Various numerical examples are tested to validate the robustness of the proposed FESF model. It turns out that FESF model performs better than CSF model and PFSF model in terms of accuracy, stability, convergence speed and mass conservation. It is also shown in numerical tests that FESF model can effectively simulate problems with high density/viscosity ratio, high Reynolds number and severe topological interfacial changes.
NASA Astrophysics Data System (ADS)
Jain, A. K.; Juanes, R.
2009-08-01
We present a discrete element model for simulating, at the grain scale, gas migration in brine-saturated deformable media. We rigorously account for the presence of two fluids in the pore space by incorporating forces on grains due to pore fluid pressures and surface tension between fluids. This model, which couples multiphase fluid flow with sediment mechanics, permits investigation of the upward migration of gas through a brine-filled sediment column. We elucidate the ways in which gas migration may take place: (1) by capillary invasion in a rigid-like medium and (2) by initiation and propagation of a fracture. We find that grain size is the main factor controlling the mode of gas transport in the sediment, and we show that coarse-grain sediments favor capillary invasion, whereas fracturing dominates in fine-grain media. The results have important implications for understanding vent sites and pockmarks in the ocean floor, deep subseabed storage of carbon dioxide, and gas hydrate accumulations in ocean sediments and permafrost regions. Our results predict that in fine sediments, hydrate will likely form in veins following a fracture network pattern, and the hydrate concentration will likely be quite low. In coarse sediments, the buoyant methane gas is likely to invade the pore space more uniformly, in a process akin to invasion percolation, and the overall pore occupancy is likely to be much higher than for a fracture-dominated regime. These implications are consistent with laboratory experiments and field observations of methane hydrates in natural systems.
NASA Astrophysics Data System (ADS)
He, Ping; Ghoniem, Ahmed F.
2017-03-01
Mixing of partially miscible fluids plays an important role in many physical and chemical processes. The modeling complexities lie in the tight coupling of the multiphase flow, heat transfer and multicomponent mass transfer, as well as diffusions across the phase interface. We present a sharp interface method for modeling such process. The non-ideal equation of state is used to compute the fluid properties such as density, fugacity and enthalpy, and to predict phase equilibrium composition. The phase interface location is tracked using the phase propagation velocity. A third-order one-sided finite difference scheme using a variable grid size according to the interface location is utilized to discretize the partial derivatives immediately next to the interface, while a second-order central scheme is used for the bulk of fluids. An optimization method, the Nelder-Mead method, is applied to search for (1) the phase compositions on both sides of the interface, and (2) the phase propagation velocity based on the coupling of the multicomponent phase equilibrium and the species' balance across the interface. The temperature at the interface is determined by the energy balance. Numerical results are used to demonstrate the convergence of our method and show its capability to simulate the mixing of multicomponent partially miscible fluids.
J. Rutqvist; C.F. Tsang; Y. Tsang
2005-05-17
A numerical simulation of coupled multiphase fluid flow, heat transfer, and mechanical deformation was carried out to study coupled thermal-hydrological-mechanical (THM) processes at the Yucca Mountain Drift Scale Test (DST) and for validation of a coupled THM numerical simulator. The ability of the numerical simulator to model relevant coupled THM processes at the DST was evaluated by comparison of numerical results to in situ measurements of temperature, water saturation, displacement, and fracture permeability. Of particular relevance for coupled THM processes are thermally induced rock-mass stress and deformations, with associated changes in fracture aperture and fractured rock permeability. Thermally induced rock-mass deformation and accompanying changes in fracture permeability were reasonably well predicted using a continuum elastic model, although some individual measurements of displacement and permeability indicate inelastic mechanical responses. It is concluded that fracture closure/opening caused by a change in thermally induced normal stress across fractures is an important mechanism for changes in intrinsic fracture permeability at the DST, whereas fracture shear dilation appears to be less significant. Observed and predicted maximum permeability changes at the DST are within one order of magnitude. These data are important for bounding model predictions of potential changes in rock-mass permeability at a future repository in Yucca Mountain.
Modeling and Measurements of Multiphase Flow and Bubble Entrapment in Steel Continuous Casting
NASA Astrophysics Data System (ADS)
Jin, Kai; Thomas, Brian G.; Ruan, Xiaoming
2016-02-01
In steel continuous casting, argon gas is usually injected to prevent clogging, but the bubbles also affect the flow pattern, and may become entrapped to form defects in the final product. To investigate this behavior, plant measurements were conducted, and a computational model was applied to simulate turbulent flow of the molten steel and the transport and capture of argon gas bubbles into the solidifying shell in a continuous slab caster. First, the flow field was solved with an Eulerian k- ɛ model of the steel, which was two-way coupled with a Lagrangian model of the large bubbles using a discrete random walk method to simulate their turbulent dispersion. The flow predicted on the top surface agreed well with nailboard measurements and indicated strong cross flow caused by biased flow of Ar gas due to the slide-gate orientation. Then, the trajectories and capture of over two million bubbles (25 μm to 5 mm diameter range) were simulated using two different capture criteria (simple and advanced). Results with the advanced capture criterion agreed well with measurements of the number, locations, and sizes of captured bubbles, especially for larger bubbles. The relative capture fraction of 0.3 pct was close to the measured 0.4 pct for 1 mm bubbles and occurred mainly near the top surface. About 85 pct of smaller bubbles were captured, mostly deeper down in the caster. Due to the biased flow, more bubbles were captured on the inner radius, especially near the nozzle. On the outer radius, more bubbles were captured near to narrow face. The model presented here is an efficient tool to study the capture of bubbles and inclusion particles in solidification processes.
Segmented flow is controlling growth of catalytic biofilms in continuous multiphase microreactors.
Karande, Rohan; Halan, Babu; Schmid, Andreas; Buehler, Katja
2014-09-01
Biofilm reactors are often mass transfer limited due to excessive biofilm growth, impeding reactor performance. Fluidic conditions play a key role for biofilm structural development and subsequently for overall reactor performance. Continuous interfacial forces generated by aqueous-air segmented flow are controlling biofilm structure and diminish mass transfer limitations in biofilm microreactors. A simple three step method allows the formation of robust biofilms under aqueous-air segmented flow conditions: a first-generation biofilm is developing during single phase flow, followed by the introduction of air segments discarding most of the established biofilm. Finally, a second-generation, mature biofilm is formed in the presence of aqueous-air segments. Confocal laser scanning microscopy experiments revealed that the segmented flow supports the development of a robust biofilm. This mature biofilm is characterized by a three to fourfold increase in growth rate, calculated from an increase in thickness, a faster spatial distribution (95% surface coverage in 24 h), and a significantly more compact structure (roughness coefficient <1), as compared to biofilms grown under single phase flow conditions. The applicability of the concept in a segmented flow biofilm microreactor was demonstrated using the epoxidation of styrene to (S)-styrene oxide (ee > 99.8%) catalyzed by Pseudomonas sp. strain VLB120ΔC cells in the mono-species biofilm. The limiting factor affecting reactor performance was oxygen transfer as the volumetric productivity rose from 11 to 46 g L tube (-1) day(-1) after increasing the air flow rate. In summary, different interfacial forces can be applied for separating cell attachment and adaptation resulting in the development of a robust catalytic biofilm in continuous microreactors. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Jung, B.; Garven, G.; Boles, J. R.
2011-12-01
Major fault systems play a first-order role in controlling fluid migration in the Earth's crust, and also in the genesis/preservation of hydrocarbon reservoirs in young sedimentary basins undergoing deformation, and therefore understanding the geohydrology of faults is essential for the successful exploration of energy resources. For actively deforming systems like the Santa Barbara Basin and Los Angeles Basin, we have found it useful to develop computational geohydrologic models to study the various coupled and nonlinear processes affecting multiphase fluid migration, including relative permeability, anisotropy, heterogeneity, capillarity, pore pressure, and phase saturation that affect hydrocarbon mobility within fault systems and to search the possible hydrogeologic conditions that enable the natural sequestration of prolific hydrocarbon reservoirs in these young basins. Subsurface geology, reservoir data (fluid pressure-temperature-chemistry), structural reconstructions, and seismic profiles provide important constraints for model geometry and parameter testing, and provide critical insight on how large-scale faults and aquifer networks influence the distribution and the hydrodynamics of liquid and gas-phase hydrocarbon migration. For example, pore pressure changes at a methane seepage site on the seafloor have been carefully analyzed to estimate large-scale fault permeability, which helps to constrain basin-scale natural gas migration models for the Santa Barbara Basin. We have developed our own 2-D multiphase finite element/finite IMPES numerical model, and successfully modeled hydrocarbon gas/liquid movement for intensely faulted and heterogeneous basin profiles of the Los Angeles Basin. Our simulations suggest that hydrocarbon reservoirs that are today aligned with the Newport-Inglewood Fault Zone were formed by massive hydrocarbon flows from deeply buried source beds in the central synclinal region during post-Miocene time. Fault permeability, capillarity
Xu, Tianfu; Pruess, Karsten
2000-08-08
Reactive fluid flow and geochemical transport in unsaturated fractured rocks has received increasing attention for studies of contaminant transport, groundwater quality, waste disposal, acid mine drainage remediation, mineral deposits, sedimentary diagenesis, and fluid-rock interactions in hydrothermal systems. This paper presents methods for modeling geochemical systems that emphasize: (1) involvement of the gas phase in addition to liquid and solid phases in fluid flow, mass transport and chemical reactions, (2) treatment of physically and chemically heterogeneous and fractured rocks, (3) the effect of heat on fluid flow and reaction properties and processes, and (4) the kinetics of fluid-rock interaction. The physical and chemical process model is embodied in a system of partial differential equations for flow and transport, coupled to algebraic equations and ordinary differential equations for chemical interactions. For numerical solution, the continuum equations are discretized in space and time. Space discretization is based on a flexible integral finite difference approach that can use irregular gridding to model geologic structure; time is discretized fully implicitly as a first-order finite difference. Heterogeneous and fractured media are treated with a general multiple interacting continua method that includes double-porosity, dual-permeability, and multi-region models as special cases. A sequential iteration approach is used to treat the coupling between fluid flow and mass transport on the one hand, chemical reactions on the other. Applications of the methods developed here to variably saturated geochemical systems are presented in a companion paper (part 2, this issue).
Experimental Characterization of Interchannel Mixing of Multiphase Flow Through a Narrow Gap
NASA Astrophysics Data System (ADS)
Mäkiharju, Simo A.; Gose, James W.; Buchanan, John R., Jr.; Mychkovsky, Alexander G.; Lowe, Kirk T.; Ceccio, Steven L.
2016-11-01
Two-phase mass transfer through a gap connecting two adjacent channels was investigated as a function of gap geometry and flow conditions. An experiment with a simplified geometry was conducted to aid in the physical understanding and to provide data for validation of numerical computations. The flow loop consisted of two (127 mm)2 channels connected by a 1,219 mm (L) x 229 mm (W) gap, the height of which could be adjusted from 0 to 50 mm. The inlet Reynolds number in each channel could be independently varied from 4x104 - 1x105. During previous experiments, the single phase mixing was extensively investigated. The inlet void fraction was varied from 1 to 20%. Gas was injected as nominally monodisperse bubbles with diameter O(5 mm). The mass transfer through the gap was determined from measurements of the flow rates of water and air, and tracer concentration taken at channel inlets/outlets. The void fraction, bubble diameter distribution and gas flux was determined at the inlets based on flow rate measurements prior to gas injection, optical probes and Wire Mesh Sensor (WMS) data. At the outlets the gas fluxes were based on WMS measurements and the liquid phase mixing was determined based on measurement of the tracer concentration and liquid flow rate after separation of gas. Imaging of fluorescent tracer dye was utilized for select conditions to examine the dynamics of the mixing.
Ray A. Berry
2005-07-01
At the INL researchers and engineers routinely encounter multiphase, multi-component, and/or multi-material flows. Some examples include: Reactor coolant flows Molten corium flows Dynamic compaction of metal powders Spray forming and thermal plasma spraying Plasma quench reactor Subsurface flows, particularly in the vadose zone Internal flows within fuel cells Black liquor atomization and combustion Wheat-chaff classification in combine harvesters Generation IV pebble bed, high temperature gas reactor The complexity of these flows dictates that they be examined in an averaged sense. Typically one would begin with known (or at least postulated) microscopic flow relations that hold on the “small” scale. These include continuum level conservation of mass, balance of species mass and momentum, conservation of energy, and a statement of the second law of thermodynamics often in the form of an entropy inequality (such as the Clausius-Duhem inequality). The averaged or macroscopic conservation equations and entropy inequalities are then obtained from the microscopic equations through suitable averaging procedures. At this stage a stronger form of the second law may also be postulated for the mixture of phases or materials. To render the evolutionary material flow balance system unique, constitutive equations and phase or material interaction relations are introduced from experimental observation, or by postulation, through strict enforcement of the constraints or restrictions resulting from the averaged entropy inequalities. These averaged equations form the governing equation system for the dynamic evolution of these mixture flows. Most commonly, the averaging technique utilized is either volume or time averaging or a combination of the two. The flow restrictions required for volume and time averaging to be valid can be severe, and violations of these restrictions are often found. A more general, less restrictive (and far less commonly used) type of averaging known
Pruess, Karsten
2005-03-22
Leakage of CO2 from a hypothetical geologic storage reservoir along an idealized fault zone has been simulated, including transitions between supercritical, liquid, and gaseous CO2. We find strong non-isothermal effects due to boiling and Joule-Thomson cooling of expanding CO2. Leakage fluxes are limited by limitations in conductive heat transfer to the fault zone. The interplay between multiphase flow and heat transfer effects produces non-monotonic leakage behavior.
Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter
Ortiz, M.G.; Boucher, T.J.
1997-06-24
A system is described for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit. 2 figs.
Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter
Ortiz, Marcos G.; Boucher, Timothy J.
1997-01-01
A system for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit.
Miller, J.D.
1994-08-10
During this quarter of the DOE project, ``Characterization of Multiphase Fluid Flow During Air-Sparged Hydrocyclone Flotation``, the x-ray CT measurements were correlated with the results from the flotation experiments reported in the 13th quarterly report. In this regard the axial view of the flow regimes in the ASH during steady state operation were constructed from the radial density profiles as revealed by x-ray CT measurements. Construction of the axial view of the flow regimes was explained in the last quarterly report. By studying the characteristics of the flow regimes from these axial views and relating them with flotation recovery data, a phenomenological description of ASH flotation was possible. The effect of two operating variables, inlet pressure and dimensionless flow rate ratio (A* = air flow rate/slurry flow rate), are reported in this quarterly report.
NASA Astrophysics Data System (ADS)
Cerminara, Matteo; Esposti Ongaro, Tomaso; Carlo Berselli, Luigi
2014-05-01
We have developed a compressible multiphase flow model to simulate the three-dimensional dynamics of turbulent volcanic ash plumes. The model describes the eruptive mixture as a polydisperse fluid, composed of different types of gases and particles, treated as interpenetrating Eulerian phases. Solid phases represent the discrete ash classes into which the total granulometric spectrum is discretized, and can differ by size and density. The model is designed to quickly and accurately resolve important physical phenomena in the dynamics of volcanic ash plumes. In particular, it can simulate turbulent mixing (driving atmospheric entrainment and controlling the heat transfer), thermal expansion (controlling the plume buoyancy), the interaction between solid particles and volcanic gas (including kinetic non-equilibrium effects) and the effects of compressibility (over-pressured eruptions and infrasonic measurements). The model is based on the turbulent dispersed multiphase flow theory for dilute flows (volume concentration <0.001, implying that averaged inter-particle distance is larger than 10 diameters) where particle collisions are neglected. Moreover, in order to speed up the code without losing accuracy, we make the hypothesis of fine particles (Stokes number <0.2 , i.e., volcanic ash particles finer then a millimeter), so that we are able to consider non-equilibrium effects only at the first order. We adopt LES formalism (which is preferable in transient regimes) for compressible flows to model the non-linear coupling between turbulent scales and the effect of sub-grid turbulence on the large-scale dynamics. A three-dimensional numerical code has been developed basing on the OpenFOAM computational framework, a CFD open source parallel software package. Numerical benchmarks demonstrate that the model is able to capture important non-equilibrium phenomena in gas-particle mixtures, such as particle clustering and ejection from large-eddy turbulent structures, as well
Multiphase turbulence in vertical wall-bounded collisional gas-particle flows
NASA Astrophysics Data System (ADS)
Fox, Rodney O.; Capecelatro, Jesse; Desjardins, Olivier
2014-11-01
Wall-bounded particle-laden flows are common in many environmental and industrial applications, and are often turbulent. In vertical flows, strong coupling between the phases leads to the spontaneous generation of dense clusters that fall due to gravity at the walls, while dilute suspensions of particles rise in the central region. Sustained volume fraction and velocity fluctuations caused by the clusters result in the production of fluid-phase turbulent kinetic energy, referred to as cluster-induced turbulence (CIT). To better understand the nature of CIT in wall-bounded flows, Eulerian-Lagrangian simulations of statistically stationary three-dimensional gas-solid flows in vertical pipes are performed. To extract useful information consistent with Eulerian turbulence models, a separation of length scales is introduced to decompose correlated and uncorrelated granular motion. To accomplish this, an adaptive spatial filter is employed on the particle data with an averaging volume that varies with the local particle-phase volume fraction. Radial profiles of turbulence statistics are generated from the Eulerian-Lagrangian results. Details on the nature of the turbulence are described, as well as the challenges they present to turbulence modeling. Marie-Curie Senior Fellow, Ecole Centrale Paris.
A modelling study of the multiphase leakage flow from pressurised CO2 pipeline.
Zhou, Xuejin; Li, Kang; Tu, Ran; Yi, Jianxin; Xie, Qiyuan; Jiang, Xi
2016-04-05
The accidental leakage is one of the main risks during the pipeline transportation of high pressure CO2. The decompression process of high pressure CO2 involves complex phase transition and large variations of the pressure and temperature fields. A mathematical method based on the homogeneous equilibrium mixture assumption is presented for simulating the leakage flow through a nozzle in a pressurised CO2 pipeline. The decompression process is represented by two sub-models: the flow in the pipe is represented by the blowdown model, while the leakage flow through the nozzle is calculated with the capillary tube assumption. In the simulation, two kinds of real gas equations of state were employed in this model instead of the ideal gas equation of state. Moreover, results of the flow through the nozzle and measurement data obtained from laboratory experiments of pressurised CO2 pipeline leakage were compared for the purpose of validation. The thermodynamic processes of the fluid both in the pipeline and the nozzle were described and analysed.
Study of multi-phase flow characteristics in an MHD power train
Chang, S.L.; Lottes, S.A.; Bouillard, J.X.; Petrick, M.
1993-08-01
Computer simulation was used to predict two-phase flow processes in the CDIF MHD power train system. The predictions were used to evaluate the effects of operating and design parameters on the performance of the system and a parametric evaluation provides information to enhance the performance of the system. Major components of the system under investigation are the two-stage combustor, the converging/diverging nozzle, the supersonic MHD channel, and the diffuser. Flow in each component was simulated using a computer code. Integrating the computer codes, the two-phase flow processes in the system was calculated. Recently, the computer codes were used to investigate problems of nozzle erosion and the non-uniform iron oxide coverage on the cathode wall in the channel. A limited parametric study was conducted. The results indicated that (1) among the three nozzle geometries under investigation a {number_sign}5 nozzle has the smoothest flow development in the nozzle and has the lowest droplet deposition on wall and (2) smaller particle size and lower injection velocity tend to disperse the iron oxide particles more uniformly in the nozzle.
2017-01-01
Understanding the complex crystallization behavior of isotactic polypropylene (iPP) in conditions comparable to those found in polymer processing, where the polymer melt experiences a combination of high shear rates and elevated pressures, is key for modeling and therefore predicting the final structure and properties of iPP products. Coupling a unique experimental setup, capable to apply wall shear rates similar to those experienced during processing and carefully control the pressure before and after flow is imposed, with in situ X-ray scattering and diffraction techniques (SAXS and WAXD) at fast acquisition rates (up to 30 Hz), a well-defined series of short-term flow experiments are carried out using 16 different combinations of wall shear rates (ranging from 110 to 440 s–1) and pressures (100–400 bar). A complete overview on the kinetics of structure development during and after flow is presented. Information about shish formation and growth of α-phase parents lamellae from the shish backbones is extracted from SAXS; the overall apparent crystallinity evolution, amounts of different phases (α, β, and γ), and morphologies developing in the shear layer (parent and daughter lamellae both in α and γ phase) are fully quantified from the analysis of WAXD data. Both flow rate and pressure were found to have a significant influence on the nucleation and the growth process of oriented and isotropic structures. Flow affects shish formation and the growth of α-parents; pressure acts on relaxation times, enhancing the effect of flow, and (mainly) on the growth rate of γ-phase. The remarkably high amount of γ-lamellae found in the oriented layer strongly indicates the nucleation of γ directly from the shish backbone. All the observations were conceptually in agreement with the flow-induced crystallization model framework developed in our group and represent a unique and valuable data set that will be used to further validate and implement our numerical
Yannis C. Yortsos
2003-02-01
This is final report for contract DE-AC26-99BC15211. The report describes progress made in the various thrust areas of the project, which include internal drives for oil recovery, vapor-liquid flows, combustion and reaction processes and the flow of fluids with yield stress. The report consists mainly of a compilation of various topical reports, technical papers and research reports published produced during the three-year project, which ended on May 6, 2002 and was no-cost extended to January 5, 2003. Advances in multiple processes and at various scales are described. In the area of internal drives, significant research accomplishments were made in the modeling of gas-phase growth driven by mass transfer, as in solution-gas drive, and by heat transfer, as in internal steam drives. In the area of vapor-liquid flows, we studied various aspects of concurrent and countercurrent flows, including stability analyses of vapor-liquid counterflow, and the development of novel methods for the pore-network modeling of the mobilization of trapped phases and liquid-vapor phase changes. In the area of combustion, we developed new methods for the modeling of these processes at the continuum and pore-network scales. These models allow us to understand a number of important aspects of in-situ combustion, including steady-state front propagation, multiple steady-states, effects of heterogeneity and modes of combustion (forward or reverse). Additional aspects of reactive transport in porous media were also studied. Finally, significant advances were made in the flow and displacement of non-Newtonian fluids with Bingham plastic rheology, which is characteristic of various heavy oil processes. Various accomplishments in generic displacements in porous media and corresponding effects of reservoir heterogeneity are also cited.
NASA Astrophysics Data System (ADS)
Dub, F.; Juanes, R.
2007-12-01
Multiscale phenomena are ubiquitous to flow and transport in porous media. They manifest themselves through at least the following three facets: (1) effective parameters in the governing equations are scale dependent; (2) some features of the flow (especially sharp fronts and boundary layers) cannot be resolved on practical computational grids; and (3) dominant physical processes may be different at different scales. Numerical methods should therefore reflect the multiscale character of the solution. In this paper, we concentrate on the development of simulation techniques that account for the heterogeneity present in realistic reservoirs, and have the ability to capture (on coarse grids) the detailed pattern of unstable flows due to viscous fingering and channeling. We express the governing equations of multiphase flow as a pressure equation and a saturation equation. Both are nonlinear but are only weakly coupled. The pressure equation is elliptic, while the saturation equation is quasi-hyperbolic. Traditionally, the large degree of heterogeneity in the coefficients of the pressure equation has been tackled by upscaling the fine-scale properties to coarse-scale effective coefficients. Here, we avoid upscaling and propose a variational multiscale (VMS) method that splits the original problem is (rigorously) into a coarse-scale problem and a subgrid-scale problem. The framework is very flexible with respect to how each of these problems is approximated. The proposed VMS method employs a low-order mixed finite element method at the coarse scale, and a finite volume method at the subgrid scale. The method is therefore locally conservative at both the coarse and fine scales. We pay special attention to the definition of the local boundary conditions for the subgrid problems. In particular, we develop a well model, which accounts for subgrid heterogeneity and radial flow regime in a consistent fashion, without compromising the local mass conservation property. The
NASA Astrophysics Data System (ADS)
Cianci, J. A.; Hwang, S. I.; Powers, S. E.
2001-05-01
The mechanics of mobilization and dynamics that affect the path and fate of the DNAPL in the subsurface are not fully understood. Dynamics such as fingering may short-circuit and ultimately lead to trapped pockets of DNAPL in the subsurface. These physical flow phenomena can be changed by adjusting chemical conditions of the NAPL/water interface, wettability properties of the subsurface particles, or by the introduction of biosurfactants to the subsurface system. This research focuses on multiphase flow phenomena in glass bead micromodels as effected by surface tension and wettability changes. Two-dimensional glass bead micromodels are constructed with 0.5-mm glass beads with, water wetting and NAPL wetting capillary barriers. Images are captured on a streaming video feed and analyzed using integrated computer capture and analysis software. Under initially water-saturated conditions, transient conditions are characterized by overall model drainage dynamics, fingering dynamics, and pressure-saturation comparisons. Steady state attributes are qualified by spatial distribution of residual saturation, and quantified by size and shape analysis of the capturing pores, and blob analysis of the residual NAPL. Micro scale analysis is being performed to evaluate changes in curvature of liquid/bead interfaces. The micromodels have been performing according to our expectations. Systems with lower interfacial tensions are characterized by lower capillary entry pressures and wider fingers, which are not easily short-circuited to form residual NAPL pockets. Residual blob sizes are smaller than in the system with a higher interfacial tension. It is anticipated by understanding differences in these pore scale processes, we can produce conditions such that the fingering dynamics of the system can be altered and, ultimately, the trapped pockets of residual NAPL can be minimized.
NASA Astrophysics Data System (ADS)
Bin Said, K.; Meribout, M.
2015-09-01
In this paper, submillimeter three dimensional tomography imaging of paramagnetic contaminants flow rate in multiphase flow pipelines is presented. The device, which is based on Magnetic Particle Imaging (MPI), consists of an array of twelve coils and a pair of permanent magnets and is not influenced with the other phases that constitute the crude oil (e.g. oil, water, sand, and gas) and which are mainly diamagnetic materials. The concentration of the paramagnetic particles can be measured in a three dimensional volumetric space with high spatial and temporal sensitivities which are proportional to the strength of the applied magnetic field. This is also influenced by the size and distribution of the particles and the anisotropy of the permanent magnet. To increase the sensitivity and improve the spatioencoding field, a two dimensional Linear Field Scanning (LFS) technique coupled with a two dimensional excitation field is proposed. The results demonstrate that the technique would constitute a breakthrough in the area of solid flow measurements and imaging.
NASA Astrophysics Data System (ADS)
Bagchi, Prosenjit
2016-11-01
In this talk, two problems in multiphase biological flows will be discussed. The first is the direct numerical simulation of whole blood and drug particulates in microvascular networks. Blood in microcirculation behaves as a dense suspension of heterogeneous cells. The erythrocytes are extremely deformable, while inactivated platelets and leukocytes are nearly rigid. A significant progress has been made in recent years in modeling blood as a dense cellular suspension. However, many of these studies considered the blood flow in simple geometry, e.g., straight tubes of uniform cross-section. In contrast, the architecture of a microvascular network is very complex with bifurcating, merging and winding vessels, posing a further challenge to numerical modeling. We have developed an immersed-boundary-based method that can consider blood cell flow in physiologically realistic and complex microvascular network. In addition to addressing many physiological issues related to network hemodynamics, this tool can be used to optimize the transport properties of drug particulates for effective organ-specific delivery. Our second problem is pseudopod-driven motility as often observed in metastatic cancer cells and other amoeboid cells. We have developed a multiscale hydrodynamic model to simulate such motility. We study the effect of cell stiffness on motility as the former has been considered as a biomarker for metastatic potential. Funded by the National Science Foundation.
Tartakovsky, Alexandre M.; Panchenko, Alexander
2016-01-01
We present a novel formulation of the Pairwise Force Smoothed Particle Hydrodynamics Model (PF-SPH) and use it to simulate two- and three-phase flows in bounded domains. In the PF-SPH model, the Navier-Stokes equations are discretized with the Smoothed Particle Hydrodynamics (SPH) method and the Young-Laplace boundary condition at the fluid-fluid interface and the Young boundary condition at the fluid-fluid-solid interface are replaced with pairwise forces added into the Navier-Stokes equations. We derive a relationship between the parameters in the pairwise forces and the surface tension and static contact angle. Next, we demonstrate the accuracy of the model under static and dynamic conditions. Finally, to demonstrate the capabilities and robustness of the model we use it to simulate flow of three fluids in a porous material.
NASA Astrophysics Data System (ADS)
Tartakovsky, Alexandre M.; Panchenko, Alexander
2016-01-01
We present a novel formulation of the Pairwise Force Smoothed Particle Hydrodynamics (PF-SPH) model and use it to simulate two- and three-phase flows in bounded domains. In the PF-SPH model, the Navier-Stokes equations are discretized with the Smoothed Particle Hydrodynamics (SPH) method, and the Young-Laplace boundary condition at the fluid-fluid interface and the Young boundary condition at the fluid-fluid-solid interface are replaced with pairwise forces added into the Navier-Stokes equations. We derive a relationship between the parameters in the pairwise forces and the surface tension and static contact angle. Next, we demonstrate the model's accuracy under static and dynamic conditions. Finally, we use the Pf-SPH model to simulate three phase flow in a porous medium.
Yorstos, Yanis C.
2002-03-11
The emphasis of this work was on investigating the mechanisms and factors that control the recovery of heavy oil with the objective to improve recovery efficiencies. For this purpose the interaction of flow transport and reaction at various scales from the pore network to the field scales were studied. Particular mechanisms to be investigated included the onset of gas flow in foamy oil production and in in-situ steam drive, gravity drainage in steam processes, the development of sustained combustion fronts and the propagation of foams in porous media. Analytical, computational and experimental methods were utilized to advance the state of the art in heavy oil recovery. Successful completion of this research was expected to lead to improvements in the Recovery efficiency of various heavy oil processes.
Yortsos, Yanis C.; Akkutlu, Yucel; Amilik, Pouya; Kechagia, Persefoni; Lu, Chuan; Shariati, Maryam; Tsimpanogiannis, Ioannis; Zhan, Lang
2000-01-19
The emphasis of this work was on investigating the mechanisms and factors that control the recovery of heavy oil, with the objective to improve recovery efficiencies. For this purpose, the interaction of flow, transport and reaction at various scales (from the pore-network to the field scales) were studied. Particular mechanisms investigated included the onset of gas flow in foamy oil production and in in-situ steam drive, gravity drainage in steam process, the development of sustained combustion fronts and the propagation of foams in porous media. Analytical, computational and experimental methods were utilized to advance the state of the art in heavy oil recovery. Successful completion of this research was expected to lead to improvements in the recovery efficiency of various heavy oil processes.
Characterization of multiphase fluid flow during air-sparged hydrocyclone flotation by x-ray CT
Miller, J.D.
1993-03-01
During this quarter a new set of experiments was carried out with and without collector in order to understand the flow patterns inside the ASH unit for both hydrophilic and hydrophobic particles. These tests were designed to study the effects of percent solids in the feed, A* - the nondimensional ratio of overflow opening area to underflow opening area, and the effect of collector addition on the flow characteristics. These experiments were done with 0%, 5% and 15% solids in the feed. The latter two cases were studied for three different A* values and also with and without the addition of collector. The value of Q*, the dimensionless ratio of air f low rate and slurry flow rate was maintained at the same level (Q* 4.55). Quartz particles of size [minus]100 +200 mesh were used for this study rather than coal particles because they did not abrade and were of a higher density. The reagents and their dosages used were 40 ppm (water basis) of frother (MIBC) and 800 g of collector (dodecyl amine) per ton of solids in the suspension. At room temperature, quartz is intrinsically hydrophilic while addition of the amine collector renders the quartz particles hydrophobic. The absence of collector will be referred to as the hydrophilic case and the presence of collector will be referred to as the hydrophobic case.A total of 11 scans was taken over the entire length of the ASH unit. Software has now been developed to analyze the CT images obtained from these tests and is able to account for any offset of the air core from the axis of the ASH. In this way, the image is reconstructed and a radial density profile of the time averaged flow is generated. Some experimental results are presented graphically in Figures 1 through 4 at 0% and 5% solids in the suspension for both hydrophilic and hydrophobic cases.
NASA Astrophysics Data System (ADS)
Annamalai, Subramanian; Balachandar, S.; Sridharan, P.; Jackson, T. L.
2017-02-01
An analytical expression describing the unsteady pressure evolution of the dispersed phase driven by variations in the carrier phase is presented. In this article, the term "dispersed phase" represents rigid particles, droplets, or bubbles. Letting both the dispersed and continuous phases be inhomogeneous, unsteady, and compressible, the developed pressure equation describes the particle response and its eventual equilibration with that of the carrier fluid. The study involves impingement of a plane traveling wave of a given frequency and subsequent volume-averaged particle pressure calculation due to a single wave. The ambient or continuous fluid's pressure and density-weighted normal velocity are identified as the source terms governing the particle pressure. Analogous to the generalized Faxén theorem, which is applicable to the particle equation of motion, the pressure expression is also written in terms of the surface average of time-varying incoming flow properties. The surface average allows the current formulation to be generalized for any complex incident flow, including situations where the particle size is comparable to that of the incoming flow. Further, the particle pressure is also found to depend on the dispersed-to-continuous fluid density ratio and speed of sound ratio in addition to dynamic viscosities of both fluids. The model is applied to predict the unsteady pressure variation inside an aluminum particle subjected to normal shock waves. The results are compared against numerical simulations and found to be in good agreement. Furthermore, it is shown that, although the analysis is conducted in the limit of negligible flow Reynolds and Mach numbers, it can be used to compute the density and volume of the dispersed phase to reasonable accuracy. Finally, analogous to the pressure evolution expression, an equation describing the time-dependent particle radius is deduced and is shown to reduce to the Rayleigh-Plesset equation in the linear limit.