Energy expenditure estimation during daily military routine with body-fixed sensors.
Wyss, Thomas; Mäder, Urs
2011-05-01
The purpose of this study was to develop and validate an algorithm for estimating energy expenditure during the daily military routine on the basis of data collected using body-fixed sensors. First, 8 volunteers completed isolated physical activities according to an established protocol, and the resulting data were used to develop activity-class-specific multiple linear regressions for physical activity energy expenditure on the basis of hip acceleration, heart rate, and body mass as independent variables. Second, the validity of these linear regressions was tested during the daily military routine using indirect calorimetry (n = 12). Volunteers' mean estimated energy expenditure did not significantly differ from the energy expenditure measured with indirect calorimetry (p = 0.898, 95% confidence interval = -1.97 to 1.75 kJ/min). We conclude that the developed activity-class-specific multiple linear regressions applied to the acceleration and heart rate data allow estimation of energy expenditure in 1-minute intervals during daily military routine, with accuracy equal to indirect calorimetry.
Tan, Xiao-Fei; Liu, Shao-Bo; Liu, Yun-Guo; Gu, Yan-Ling; Zeng, Guang-Ming; Hu, Xin-Jiang; Wang, Xin; Liu, Shao-Heng; Jiang, Lu-Hua
2017-03-01
There is a growing interest of the scientific community on production of activated carbon using biochar as potential sustainable precursors pyrolyzed from biomass wastes. Physical activation and chemical activation are the main methods applied in the activation process. These methods could have significantly beneficial effects on biochar chemical/physical properties, which make it suitable for multiple applications including water pollution treatment, CO 2 capture, and energy storage. The feedstock with different compositions, pyrolysis conditions and activation parameters of biochar have significant influences on the properties of resultant activated carbon. Compared with traditional activated carbon, activated biochar appears to be a new potential cost-effective and environmentally-friendly carbon materials with great application prospect in many fields. This review not only summarizes information from the current analysis of activated biochar and their multiple applications for further optimization and understanding, but also offers new directions for development of activated biochar. Copyright © 2016 Elsevier Ltd. All rights reserved.
Semi-active control of a cable-stayed bridge under multiple-support excitations.
Dai, Ze-Bing; Huang, Jin-Zhi; Wang, Hong-Xia
2004-03-01
This paper presents a semi-active strategy for seismic protection of a benchmark cable-stayed bridge with consideration of multiple-support excitations. In this control strategy, Magnetorheological (MR) dampers are proposed as control devices, a LQG-clipped-optimal control algorithm is employed. An active control strategy, shown in previous researches to perform well at controlling the benchmark bridge when uniform earthquake motion was assumed, is also used in this study to control this benchmark bridge with consideration of multiple-support excitations. The performance of active control system is compared to that of the presented semi-active control strategy. Because the MR fluid damper is a controllable energy- dissipation device that cannot add mechanical energy to the structural system, the proposed control strategy is fail-safe in that bounded-input, bounded-output stability of the controlled structure is guaranteed. The numerical results demonstrated that the performance of the presented control design is nearly the same as that of the active control system; and that the MR dampers can effectively be used to control seismically excited cable-stayed bridges with multiple-support excitations.
The Impact of Exercise Training on Living Quality in Multiple Sclerosis Individuals
2017-08-27
Multiple Sclerosis; Fatigue; Mental Status Change; Physical Disability; Physical Activity; Mental Impairment; Quality of Life; Disabilities Psychological; Disability Physical; Pain; Energy Supply; Deficiency; Motivation
Lin, Yan; Chen, Zhihao; Dai, Minquan; Fang, Shiwen; Liao, Yanfen; Yu, Zhaosheng; Ma, Xiaoqian
2018-07-01
In this study, the kinetic models of bagasse, sewage sludge and their mixture were established by the multiple normal distributed activation energy model. Blending with sewage sludge, the initial temperature declined from 437 K to 418 K. The pyrolytic species could be divided into five categories, including analogous hemicelluloses I, hemicelluloses II, cellulose, lignin and bio-char. In these species, the average activation energies and the deviations situated at reasonable ranges of 166.4673-323.7261 kJ/mol and 0.1063-35.2973 kJ/mol, respectively, which were conformed to the references. The kinetic models were well matched to experimental data, and the R 2 were greater than 99.999%y. In the local sensitivity analysis, the distributed average activation energy had stronger effect on the robustness than other kinetic parameters. And the content of pyrolytic species determined which series of kinetic parameters were more important. Copyright © 2018 Elsevier Ltd. All rights reserved.
Collaborative Procurement Initiative
GPP's Clean Energy Collaborative Procurement Initiative provides a platform for deploying clean energy technologies across multiple government and educational organizations for maximum impact on installed solar system capacity and local economic activity.
AMPK at the Nexus of Energetics and Aging
Burkewitz, Kristopher; Zhang, Yue; Mair, William B.
2014-01-01
When energy supply is low, organisms respond by slowing aging and increasing resistance to diverse age-related pathologies. Targeting the mechanisms underpinning this response may therefore treat multiple disorders through a single intervention. Here we discuss AMP-activated protein kinase (AMPK) as an integrator and mediator of several pathways and processes linking energetics to longevity. Activated by low energy, AMPK is both pro-longevity and druggable, but its role in some pathologies may not be beneficial. As such, activating AMPK may modulate multiple longevity pathways to promote healthy aging, but unlocking its full potential may require selective targeting towards substrates involved in longevity-assurance. PMID:24726383
Room Temperature, Hybrid Sodium-Based Flow Batteries with Multi-Electron Transfer Redox Reactions
Shamie, Jack S.; Liu, Caihong; Shaw, Leon L.; Sprenkle, Vincent L.
2015-01-01
We introduce a new concept of hybrid Na-based flow batteries (HNFBs) with a molten Na alloy anode in conjunction with a flowing catholyte separated by a solid Na-ion exchange membrane for grid-scale energy storage. Such HNFBs can operate at ambient temperature, allow catholytes to have multiple electron transfer redox reactions per active ion, offer wide selection of catholyte chemistries with multiple active ions to couple with the highly negative Na alloy anode, and enable the use of both aqueous and non-aqueous catholytes. Further, the molten Na alloy anode permits the decoupled design of power and energy since a large volume of the molten Na alloy can be used with a limited ion-exchange membrane size. In this proof-of-concept study, the feasibility of multi-electron transfer redox reactions per active ion and multiple active ions for catholytes has been demonstrated. The critical barriers to mature this new HNFBs have also been explored. PMID:26063629
Room temperature, hybrid sodium-based flow batteries with multi-electron transfer redox reactions
Shamie, Jack S.; Liu, Caihong; Shaw, Leon L.; ...
2015-06-11
We introduce a new concept of hybrid Na-based flow batteries (HNFBs) with a molten Na alloy anode in conjunction with a flowing catholyte separated by a solid Na-ion exchange membrane for grid-scale energy storage. Such HNFBs can operate at ambient temperature, allow catholytes to have multiple electron transfer redox reactions per active ion, offer wide selection of catholyte chemistries with multiple active ions to couple with the highly negative Na alloy anode, and enable the use of both aqueous and non-aqueous catholytes. Further, the molten Na alloy anode permits the decoupled design of power and energy since a large volumemore » of the molten Na alloy can be used with a limited ion-exchange membrane size. In this proof-of-concept study, the feasibility of multielectron transfer redox reactions per active ion and multiple active ions for catholytes has been demonstrated. Furthermore, the critical barriers to mature this new HNFBs have also been explored.« less
USDA-ARS?s Scientific Manuscript database
The energy transport in a vegetated (corn) surface layer is examined by solving the vector radiative transfer equation using a numerical iterative approach. This approach allows a higher order that includes the multiple scattering effects. Multiple scattering effects are important when the optical t...
A time to search: finding the meaning of variable activation energy.
Vyazovkin, Sergey
2016-07-28
This review deals with the phenomenon of variable activation energy frequently observed when studying the kinetics in the liquid or solid phase. This phenomenon commonly manifests itself through nonlinear Arrhenius plots or dependencies of the activation energy on conversion computed by isoconversional methods. Variable activation energy signifies a multi-step process and has a meaning of a collective parameter linked to the activation energies of individual steps. It is demonstrated that by using appropriate models of the processes, the link can be established in algebraic form. This allows one to analyze experimentally observed dependencies of the activation energy in a quantitative fashion and, as a result, to obtain activation energies of individual steps, to evaluate and predict other important parameters of the process, and generally to gain deeper kinetic and mechanistic insights. This review provides multiple examples of such analysis as applied to the processes of crosslinking polymerization, crystallization and melting of polymers, gelation, and solid-solid morphological and glass transitions. The use of appropriate computational techniques is discussed as well.
Activity recognition using dynamic multiple sensor fusion in body sensor networks.
Gao, Lei; Bourke, Alan K; Nelson, John
2012-01-01
Multiple sensor fusion is a main research direction for activity recognition. However, there are two challenges in those systems: the energy consumption due to the wireless transmission and the classifier design because of the dynamic feature vector. This paper proposes a multi-sensor fusion framework, which consists of the sensor selection module and the hierarchical classifier. The sensor selection module adopts the convex optimization to select the sensor subset in real time. The hierarchical classifier combines the Decision Tree classifier with the Naïve Bayes classifier. The dataset collected from 8 subjects, who performed 8 scenario activities, was used to evaluate the proposed system. The results show that the proposed system can obviously reduce the energy consumption while guaranteeing the recognition accuracy.
Metabolic pathways as possible therapeutic targets for progressive multiple sclerosis.
Heidker, Rebecca M; Emerson, Mitchell R; LeVine, Steven M
2017-08-01
Unlike relapsing remitting multiple sclerosis, there are very few therapeutic options for patients with progressive forms of multiple sclerosis. While immune mechanisms are key participants in the pathogenesis of relapsing remitting multiple sclerosis, the mechanisms underlying the development of progressive multiple sclerosis are less well understood. Putative mechanisms behind progressive multiple sclerosis have been put forth: insufficient energy production via mitochondrial dysfunction, activated microglia, iron accumulation, oxidative stress, activated astrocytes, Wallerian degeneration, apoptosis, etc . Furthermore, repair processes such as remyelination are incomplete. Experimental therapies that strive to improve metabolism within neurons and glia, e.g. , oligodendrocytes, could act to counter inadequate energy supplies and/or support remyelination. Most experimental approaches have been examined as standalone interventions; however, it is apparent that the biochemical steps being targeted are part of larger pathways, which are further intertwined with other metabolic pathways. Thus, the potential benefits of a tested intervention, or of an established therapy, e.g. , ocrelizumab, could be undermined by constraints on upstream and/or downstream steps. If correct, then this argues for a more comprehensive, multifaceted approach to therapy. Here we review experimental approaches to support neuronal and glial metabolism, and/or promote remyelination, which may have potential to lessen or delay progressive multiple sclerosis.
Inflammation, Iron, Energy Failure, and Oxidative Stress in the Pathogenesis of Multiple Sclerosis
Haider, Lukas
2015-01-01
Multiple sclerosis is a chronic inflammatory demyelinating disease of the central nervous system. Different trigger pathologies have been suggested by the primary cytodegenerative “inside-out” and primary inflammation-driven “outside-in” hypotheses. Recent data indicate that mitochondrial injury and subsequent energy failure are key factors in the induction of demyelination and neurodegeneration. The brain weighs only a few percent of the body mass but accounts for approximately 20% of the total basal oxygen consumption of mitochondria. Oxidative stress induces mitochondrial injury in patients with multiple sclerosis and energy failure in the central nervous system of susceptible individuals. The interconnected mechanisms responsible for free radical production in patients with multiple sclerosis are as follows: (i) inflammation-induced production of free radicals by activated immune cells, (ii) liberation of iron from the myelin sheets during demyelination, and (iii) mitochondrial injury and thus energy failure-related free radical production. In the present review, the different sources of oxidative stress and their relationships to patients with multiple sclerosis considering tissue injury mechanisms and clinical aspects have been discussed. PMID:26106458
Passive band-gap reconfiguration born from bifurcation asymmetry.
Bernard, Brian P; Mann, Brian P
2013-11-01
Current periodic structures are constrained to have fixed energy transmission behavior unless active control or component replacement is used to alter their wave propagation characteristics. The introduction of nonlinearity to generate multiple stable equilibria is an alternative strategy for realizing distinct energy propagation behaviors. We investigate the creation of a reconfigurable band-gap system by implementing passive switching between multiple stable states of equilibrium, to alter the level of energy attenuation in response to environmental stimuli. The ability to avoid potentially catastrophic loads is demonstrated by tailoring the bandpass and band-gap regions to coalesce for two stable equilibria and varying an external load parameter to trigger a bifurcation. The proposed phenomenon could be utilized in remote or autonomous applications where component modifications and active control are impractical.
Characteristics, location and origin of flare activity in a complex active region
NASA Technical Reports Server (NTRS)
Machado, M. E.; Gary, G. A.; Hagyard, M. J.; Hernandez, A. M.; Rovira, M. G.
1986-01-01
The observational characteristics of series of multiple-loop flares from a complex active region are summarized. The location of the highest observed photospheric magnetic shear is found to be the commonly observed site of flare onset, but not, in many cases, the magnetic region where the largest time-integrated energy release is observed. The observations thus reveal a consistent pattern of energy-release processes related to the magnetic-field topology.
Alcoa North American Extrusions Implements Energy Use Assessments at Multiple Facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2001-08-01
This case study is the latest in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. The case studies document the activities, savings, and lessons learned on these projects.
Active Learning and Just-in-Time Teaching in a Material and Energy Balances Course
ERIC Educational Resources Information Center
Liberatore, Matthew W.
2013-01-01
The delivery of a material and energy balances course is enhanced through a series of in-class and out-of-class exercises. An active learning classroom is achieved, even at class sizes over 150 students, using multiple instructors in a single classroom, problem solving in teams, problems based on YouTube videos, and just-in-time teaching. To avoid…
Effect of Spin Multiplicity in O2 Adsorption and Dissociation on Small Bimetallic AuAg Clusters.
García-Cruz, Raúl; Poulain, Enrique; Hernández-Pérez, Isaías; Reyes-Nava, Juan A; González-Torres, Julio C; Rubio-Ponce, A; Olvera-Neria, Oscar
2017-08-17
To dispose of atomic oxygen, it is necessary the O 2 activation; however, an energy barrier must be overcome to break the O-O bond. This work presents theoretical calculations of the O 2 adsorption and dissociation on small pure Au n and Ag m and bimetallic Au n Ag m (n + m ≤ 6) clusters using the density functional theory (DFT) and the zeroth-order regular approximation (ZORA) to explicitly include scalar relativistic effects. The most stable Au n Ag m clusters contain a higher concentration of Au with Ag atoms located in the center of the cluster. The O 2 adsorption energy on pure and bimetallic clusters and the ensuing geometries depend on the spin multiplicity of the system. For a doublet multiplicity, O 2 is adsorbed in a bridge configuration, whereas for a triplet only one O-metal bond is formed. The charge transfer from metal toward O 2 occupies the σ* O-O antibonding natural bond orbital, which weakens the oxygen bond. The Au 3 ( 2 A) cluster presents the lowest activation energy to dissociate O 2 , whereas the opposite applies to the AuAg ( 3 A) system. In the O 2 activation, bimetallic clusters are not as active as pure Au n clusters due to the charge donated by Ag atoms being shared between O 2 and Au atoms.
Total energy expenditure in adults with cerebral palsy as assessed by doubly labeled water.
Johnson, R K; Hildreth, H G; Contompasis, S H; Goran, M I
1997-09-01
To characterize total energy expenditure (TEE) in free-living adults with cerebral palsy (CP) using the doubly labeled water technique, and to determine those physiologic variables and characteristics of CP that were markers of TEE in adults with CP. TEE was measured using the doubly labeled water technique in 30 free-living adults with CP (12 women, 18 men). To determine the best markers of TEE, the following factors were examined: CP status, resting metabolic rate (RMR), anthropometric characteristics and body composition by means of dual-energy x-ray absorptiometry (DXA) and skinfold thickness measurements, energy cost of leisure-time activities, and oral-motor impairment. Means +/- standard deviations, t tests, Pearson product-moment correlation coefficients, Spearman rank correlation coefficients, chi 2, stepwise multiple-correlation regression analysis, and analysis of covariance were used to examine the relationships among variables of interest. TEE was highly variable in the sample (mean = 2,455 +/- 622 kcal/day for men and 1,986 +/- 363 kcal/day for women). Stepwise regression analysis showed that TEE was best predicted in the sample by RMR, percentage body fat determined by DXA, ambulation status, and sex (multiple R = .68, P = .003). When practical, easily measured variables were used, TEE was best predicted by height, ambulation status, percentage body fat by skinfold thickness measurements, and sex (multiple R = .61, P. = 018). The contribution of energy expended in physical activity to TEE was significantly higher in the ambulatory subjects than the nonambulatory subjects (25% vs 16%, respectively; P = .009). The high degree of variability in TEE, largely attributable to high interindividual variation in energy expended in physical activity, makes it difficult to provide general guidelines for energy requirements for adults with CP. Because ambulation status was an important predictor of TEE, it must be accounted for in estimating energy requirements in this population.
Emotionally Intense Science Activities
ERIC Educational Resources Information Center
King, Donna; Ritchie, Stephen; Sandhu, Maryam; Henderson, Senka
2015-01-01
Science activities that evoke positive emotional responses make a difference to students' emotional experience of science. In this study, we explored 8th Grade students' discrete emotions expressed during science activities in a unit on Energy. Multiple data sources including classroom videos, interviews and emotion diaries completed at the end of…
NASA Astrophysics Data System (ADS)
Guan, Lin; Fang, Yuwen; Li, Kongzhai; Zeng, Chunhua; Yang, Fengzao
2018-09-01
In this paper, we investigate the role of correlated multiplicative (κ1) and additive (κ2) noises in a modified energy conversion depot model, at which it is added a linear term in the conversion of internal energy of active Brownian particles (ABPs). The linear term (a1 ≠ 0 . 0) in energy conversion model breaks the symmetry of the potential to generate motion of the ABPs with a net transport velocity. Adopt a nonlinear Langevin approach, the transport properties of the ABPs have been discussed, and our results show that: (i) the transport velocity <υ1 > of the ABPs are always positive whether the correlation intensity λ = 0 . 0 or not; (ii) for a small value of the multiplicative noise intensity κ1, the variation of <υ1 > with λ shows a minimum, there exists an optimal value of the correlation intensity λ at which the <υ1 > of the ABPs is minimized. But for a large value of κ1, the <υ1 > monotonically decreases; (iii) the transport velocity <υ1 > increases with the increase of the κ1 or κ2, i.e., the multiplicative or additive noise can facilitate the transport of the ABPs; and (iv) the effective diffusion increases with the increase of a1, namely, the linear term in modified energy conversion model of the ABPs can enhance the diffusion of the ABPs.
Khatri, Natasha; Man, Heng-Ye
2013-01-01
Powered by glucose metabolism, the brain is the most energy-demanding organ in our body. Adequate ATP production and regulation of the metabolic processes are essential for the maintenance of synaptic transmission and neuronal function. Glutamatergic synaptic activity utilizes the largest portion of bioenergy for synaptic events including neurotransmitter synthesis, vesicle recycling, and most importantly, the postsynaptic activities leading to channel activation and rebalancing of ionic gradients. Bioenergy homeostasis is coupled with synaptic function via activities of the sodium pumps, glutamate transporters, glucose transport, and mitochondria translocation. Energy insufficiency is sensed by the AMP-activated protein kinase (AMPK), a master metabolic regulator that stimulates the catalytic process to enhance energy production. A decline in energy supply and a disruption in bioenergy homeostasis play a critical role in multiple neuropathological conditions including ischemia, stroke, and neurodegenerative diseases including Alzheimer’s disease and traumatic brain injuries. PMID:24376435
Sit less and move more: perspectives of adults with multiple sclerosis.
Aminian, Saeideh; Ezeugwu, Victor E; Motl, Robert W; Manns, Patricia J
2017-12-20
Multiple sclerosis is a chronic neurological disease with the highest prevalence in Canada. Replacing sedentary behavior with light activities may be a feasible approach to manage multiple sclerosis symptoms. This study explored the perspectives of adults with multiple sclerosis about sedentary behavior, physical activity and ways to change behavior. Fifteen adults with multiple sclerosis (age 43 ± 13 years; mean ± standard deviation), recruited through the multiple sclerosis Clinic at the University of Alberta, Edmonton, Canada, participated in semi-structured interviews. Interview audios were transcribed verbatim and coded. NVivo software was used to facilitate the inductive process of thematic analysis. Balancing competing priorities between sitting and moving was the primary theme. Participants were aware of the benefits of physical activity to their overall health, and in the management of fatigue and muscle stiffness. Due to fatigue, they often chose sitting to get their energy back. Further, some barriers included perceived fear of losing balance or embarrassment while walking. Activity monitoring, accountability, educational and individualized programs were suggested strategies to motivate more movement. Adults with multiple sclerosis were open to the idea of replacing sitting with light activities. Motivational and educational programs are required to help them to change sedentary behavior to moving more. IMPLICATIONS FOR REHABILITATION One of the most challenging and common difficulties of multiple sclerosis is walking impairment that worsens because of multiple sclerosis progression, and is a common goal in the rehabilitation of people with multiple sclerosis. The deterioration in walking abilities is related to lower levels of physical activity and more sedentary behavior, such that adults with multiple sclerosis spend 8 to 10.5 h per day sitting. Replacing prolonged sedentary behavior with light physical activities, and incorporating education, encouragement, and self-monitoring strategies are feasible approaches to manage the symptoms of multiple sclerosis.
Energy Balance Education in Schools: The Role of Student Knowledge
ERIC Educational Resources Information Center
Chen, Senlin; Nam, Yoon Ho
2017-01-01
Obesity prevention and control have been identified as top public health priorities in modern societies. Sport and exercise science researchers from multiple perspectives (e.g. behavioral, pedagogical, psychological, and physiological) have been active contributors addressing this topic. This paper examines the importance of energy balance (EB)…
Li, Zhiyuan; Ji, Xinmiao; Wang, Dongmei; Liu, Juanjuan; Zhang, Xin
2016-01-01
Mitosis is a fast process that involves dramatic cellular remodeling and has a high energy demand. Whether autophagy is active or inactive during the early stages of mitosis in a naturally dividing cell is still debated. Here we aimed to use multiple assays to resolve this apparent discrepancy. Although the LC3 puncta number was reduced in mitosis, the four different cell lines we tested all have active autophagic flux in both interphase and mitosis. In addition, the autophagic flux was highly active in nocodazole-induced, double-thymidine synchronization released as well as naturally occurring mitosis in HeLa cells. Multiple autophagy proteins are upregulated in mitosis and the increased Beclin-1 level likely contributes to the active autophagic flux in early mitosis. It is interesting that although the autophagic flux is active throughout the cell cycle, early mitosis and S phase have relatively higher autophagic flux than G1 and late G2 phases, which might be helpful to degrade the damaged organelles and provide energy during S phase and mitosis. PMID:27213594
Li, Zhiyuan; Ji, Xinmiao; Wang, Dongmei; Liu, Juanjuan; Zhang, Xin
2016-06-28
Mitosis is a fast process that involves dramatic cellular remodeling and has a high energy demand. Whether autophagy is active or inactive during the early stages of mitosis in a naturally dividing cell is still debated. Here we aimed to use multiple assays to resolve this apparent discrepancy. Although the LC3 puncta number was reduced in mitosis, the four different cell lines we tested all have active autophagic flux in both interphase and mitosis. In addition, the autophagic flux was highly active in nocodazole-induced, double-thymidine synchronization released as well as naturally occurring mitosis in HeLa cells. Multiple autophagy proteins are upregulated in mitosis and the increased Beclin-1 level likely contributes to the active autophagic flux in early mitosis. It is interesting that although the autophagic flux is active throughout the cell cycle, early mitosis and S phase have relatively higher autophagic flux than G1 and late G2 phases, which might be helpful to degrade the damaged organelles and provide energy during S phase and mitosis.
Pulse shape discrimination for background rejection in germanium gamma-ray detectors
NASA Technical Reports Server (NTRS)
Feffer, P. T.; Smith, D. M.; Campbell, R. D.; Primbsch, J. H.; Lin, R. P.
1989-01-01
A pulse-shape discrimination (PSD) technique is developed to reject the beta-decay background resulting from activation of Ge gamma-ray detectors by cosmic-ray secondaries. These beta decays are a major source of background at 0.2-2 MeV energies in well shielded Ge detector systems. The technique exploits the difference between the detected current pulse shapes of single- and multiple-site energy depositions within the detector: beta decays are primarily single-site events, while photons at these energies typically Compton scatter before being photoelectrically absorbed to produce multiple-site events. Depending upon the amount of background due to sources other than beta decay, PSD can more than double the detector sensitivity.
Brain nuclear receptors and body weight regulation
O’Malley, Bert W.; Elmquist, Joel K.
2017-01-01
Neural pathways, especially those in the hypothalamus, integrate multiple nutritional, hormonal, and neural signals, resulting in the coordinated control of body weight balance and glucose homeostasis. Nuclear receptors (NRs) sense changing levels of nutrients and hormones, and therefore play essential roles in the regulation of energy homeostasis. Understanding the role and the underlying mechanisms of NRs in the context of energy balance control may facilitate the identification of novel targets to treat obesity. Notably, NRs are abundantly expressed in the brain, and emerging evidence indicates that a number of these brain NRs regulate multiple aspects of energy balance, including feeding, energy expenditure and physical activity. In this Review we summarize some of the recent literature regarding effects of brain NRs on body weight regulation and discuss mechanisms underlying these effects. PMID:28218618
A Neutron Multiplicity Meter for Deep Underground Muon-Induced High Energy Neutron Measurements
NASA Astrophysics Data System (ADS)
Hennings-Yeomans, Raul; Akerib, Daniel
2007-04-01
The nature of dark matter is one of the most important outstanding issues in particle physics, cosmology and astrophysics. A leading hypothesis is that Weakly Interacting Massive Particles, or WIMPs, were produced in the early universe and make up the dark matter. WIMP searches must be performed underground to shield from cosmic rays, which produce secondary particles that could fake a WIMP signal. Nuclear recoils from fast neutrons in underground laboratories are one of the most challenging backgrounds to WIMP detection. We present, for the first time, the design of an instrument capable of measuring the high energy (>60,eV) muon-induced neutron flux deep underground. The instrument is based on applying the Gd-loaded liquid-scintillator technique to measure the rate of multiple low energy neutron events produced in a Pb target and from this measurement to infer the rate of high energy neutron events. This unique signature allows both for efficient tagging of neutron multiplicity events as well as rejection of random gamma backgrounds so effectively that typical low-background techniques are not required. We will also discuss the benefits of using a neutron multiplicity meter as a component of active shielding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy
2001-08-05
This case study is the latest in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. The case studies document the activities, savings, and lessons learned on these projects.
Determining Energy Expenditure during Some Household and Garden Tasks.
ERIC Educational Resources Information Center
Gunn, Simon M.; Brooks, Anthony G.; Withers, Robert T.; Gore, Christopher J.; Owen, Neville; Booth, Michael L.; Bauman, Adrian E.
2002-01-01
Calculated the reproducibility and precision for VO2 during moderate paced walking and four housework and gardening activities, examining which rated at least 3.0 when calculating exercise intensity in METs and multiples of measured resting metabolic rate (MRM). VO2 was measured with reproducibility and precision. Expressing energy expenditure in…
Hsu, Wen-Yang; Schmid, Alexandre
2017-08-01
Safety and energy efficiency are two major concerns for implantable neural stimulators. This paper presents a novel high-frequency, switched capacitor (HFSC) stimulation and active charge balancing scheme, which achieves high energy efficiency and well-controlled stimulation charge in the presence of large electrode impedance variations. Furthermore, the HFSC can be implemented in a compact size without any external component to simultaneously enable multichannel stimulation by deploying multiple stimulators. The theoretical analysis shows significant benefits over the constant-current and voltage-mode stimulation methods. The proposed solution was fabricated using a 0.18 μm high-voltage technology, and occupies only 0.035 mm 2 for a single stimulator. The measurement result shows 50% peak energy efficiency and confirms the effectiveness of active charge balancing to prevent the electrode dissolution.
Concentrated energy addition for active drag reduction in hypersonic flow regime
NASA Astrophysics Data System (ADS)
Ashwin Ganesh, M.; John, Bibin
2018-01-01
Numerical optimization of hypersonic drag reduction technique based on concentrated energy addition is presented in this study. A reduction in wave drag is realized through concentrated energy addition in the hypersonic flowfield upstream of the blunt body. For the exhaustive optimization presented in this study, an in-house high precision inviscid flow solver has been developed. Studies focused on the identification of "optimum energy addition location" have revealed the existence of multiple minimum drag points. The wave drag coefficient is observed to drop from 0.85 to 0.45 when 50 Watts of energy is added to an energy bubble of 1 mm radius located at 74.7 mm upstream of the stagnation point. A direct proportionality has been identified between energy bubble size and wave drag coefficient. Dependence of drag coefficient on the upstream added energy magnitude is also revealed. Of the observed multiple minimum drag points, the energy deposition point (EDP) that offers minimum wave drag just after a sharp drop in drag is proposed as the most optimum energy addition location.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmonds, M. J.; Yu, J. H.; Wang, Y. Q.
Simulating the implantation and thermal desorption evolution in a reaction-diffusion model requires solving a set of coupled differential equations that describe the trapping and release of atomic species in Plasma Facing Materials (PFMs). These fundamental equations are well outlined by the Tritium Migration Analysis Program (TMAP) which can model systems with no more than three active traps per atomic species. To overcome this limitation, we have developed a Pseudo Trap and Temperature Partition (PTTP) scheme allowing us to lump multiple inactive traps into one pseudo trap, simplifying the system of equations to be solved. For all temperatures, we show themore » trapping of atoms from solute is exactly accounted for when using a pseudo trap. However, a single effective pseudo trap energy can not well replicate the release from multiple traps, each with its own detrapping energy. However, atoms held in a high energy trap will remain trapped at relatively low temperatures, and thus there is a temperature range in which release from high energy traps is effectively inactive. By partitioning the temperature range into segments, a pseudo trap can be defined for each segment to account for multiple high energy traps that are actively trapping but are effectively not releasing atoms. With increasing temperature, as in controlled thermal desorption, the lowest energy trap is nearly emptied and can be removed from the set of coupled equations, while the next higher energy trap becomes an actively releasing trap. Each segment is thus calculated sequentially, with the last time step of a given segment solution being used as an initial input for the next segment as only the pseudo and actively releasing traps are modeled. This PTTP scheme is then applied to experimental thermal desorption data for tungsten (W) samples damaged with heavy ions, which display six distinct release peaks during thermal desorption. Without modifying the TMAP7 source code the PTTP scheme is shown to successfully model the D retention in all six traps. In conclusion, we demonstrate the full reconstruction from the plasma implantation phase through the controlled thermal desorption phase with detrapping energies near 0.9, 1.1, 1.4, 1.7, 1.9 and 2.1 eV for a W sample damaged at room temperature.« less
Simmonds, M. J.; Yu, J. H.; Wang, Y. Q.; ...
2018-06-04
Simulating the implantation and thermal desorption evolution in a reaction-diffusion model requires solving a set of coupled differential equations that describe the trapping and release of atomic species in Plasma Facing Materials (PFMs). These fundamental equations are well outlined by the Tritium Migration Analysis Program (TMAP) which can model systems with no more than three active traps per atomic species. To overcome this limitation, we have developed a Pseudo Trap and Temperature Partition (PTTP) scheme allowing us to lump multiple inactive traps into one pseudo trap, simplifying the system of equations to be solved. For all temperatures, we show themore » trapping of atoms from solute is exactly accounted for when using a pseudo trap. However, a single effective pseudo trap energy can not well replicate the release from multiple traps, each with its own detrapping energy. However, atoms held in a high energy trap will remain trapped at relatively low temperatures, and thus there is a temperature range in which release from high energy traps is effectively inactive. By partitioning the temperature range into segments, a pseudo trap can be defined for each segment to account for multiple high energy traps that are actively trapping but are effectively not releasing atoms. With increasing temperature, as in controlled thermal desorption, the lowest energy trap is nearly emptied and can be removed from the set of coupled equations, while the next higher energy trap becomes an actively releasing trap. Each segment is thus calculated sequentially, with the last time step of a given segment solution being used as an initial input for the next segment as only the pseudo and actively releasing traps are modeled. This PTTP scheme is then applied to experimental thermal desorption data for tungsten (W) samples damaged with heavy ions, which display six distinct release peaks during thermal desorption. Without modifying the TMAP7 source code the PTTP scheme is shown to successfully model the D retention in all six traps. In conclusion, we demonstrate the full reconstruction from the plasma implantation phase through the controlled thermal desorption phase with detrapping energies near 0.9, 1.1, 1.4, 1.7, 1.9 and 2.1 eV for a W sample damaged at room temperature.« less
MS Is a Family Affair. Revised Edition.
ERIC Educational Resources Information Center
Braunel, Laura M.; And Others
The booklet offers practical suggestions to teach the person with multiple sclerosis to conserve energy and maintain a balance between rest and activity. The discussion centers around personal hygiene, homemaking activities, family relationships, and hobbies. Another section gives tips for getting around in the community, with considerations for…
Wen, Yue; Zheng, Wanlin; Yang, Yundi; Cao, Asheng; Zhou, Qi
2015-05-15
In this study, the flocculation and sedimentation performance of activated sludge (AS) with single and multiple dosing of trivalent aluminum (Al(3+)) were studied. The AS samples were cultivated in sequencing batch reactors at 22 °C. The dosages of Al(3+) were 0.00, 0.125, 0.5, 1.0, and 1.5 meq/L for single dosing, and 0.1 meq/L for multiple dosing. Under single dosing conditions, as Al(3+) dosage increased, the zeta potential, total interaction energy, and effluent turbidity decreased, whereas the sludge volume index (SVI) increased, indicating that single Al(3+) dosing could enhance sludge flocculation, but deteriorate sedimentation. By comparison, adding an equal amount of Al(3+) through multiple dosing achieved a similar reduction in turbidity, but the zeta potential was higher, while the loosely bound extracellular polymeric substances (LB-EPS) content and SVI remarkably declined. Although the difference in the flocculation performances between the two dosing patterns was not significant, the underlying mechanisms were quite distinct: the interaction energy played a more important role under single dosing conditions, whereas multiple dosing was more effective in reducing the EPS content. Multiple dosing, which allows sufficient time for sludge restructuring and floc aggregation, could simultaneously optimize sludge flocculation and sedimentation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Rankin, D; Ellis, S M; Macintyre, U E; Hanekom, S M; Wright, H H
2011-08-01
The objective of this study is to determine the relative validity of reported energy intake (EI) derived from multiple 24-h recalls against estimated energy expenditure (EE(est)). Basal metabolic rate (BMR) equations and physical activity factors were incorporated to calculate EE(est). This analysis was nested in the multidisciplinary PhysicaL Activity in the Young study with a prospective study design. Peri-urban black South African adolescents were investigated in a subsample of 131 learners (87 girls and 44 boys) from the parent study sample of 369 (211 girls and 158 boys) who had all measurements taken. Pearson correlation coefficients and Bland-Altman plots were calculated to identify the most accurate published equations to estimate BMR (P<0.05 statistically significant). EE(est) was estimated using BMR equations and estimated physical activity factors derived from Previous Day Physical Activity Recall questionnaires. After calculation of EE(est), the relative validity of reported energy intake (EI(rep)) derived from multiple 24-h recalls was tested for three data subsets using Pearson correlation coefficients. Goldberg's formula identified cut points (CPs) for under and over reporting of EI. Pearson correlation coefficients between calculated BMRs ranged from 0.97 to 0.99. Bland-Altman analyses showed acceptable agreement (two equations for each gender). One equation for each gender was used to calculate EE(est). Pearson correlation coefficients between EI(rep) and EE(est) for three data sets were weak, indicating poor agreement. CPs for physical activity groups showed under reporting in 87% boys and 95% girls. The 24-h recalls measured at five measurements over 2 years offered poor validity between EI(rep) and EE(est).
International Atomic Energy Agency Safeguards: Challenge and response
NASA Astrophysics Data System (ADS)
Spector, Leonard S.
2017-11-01
This article provides a critical review of the nuclear accounting and inspection system of the International Atomic Energy Agency (IAEA), known as "IAEA safeguards." The article focuses on the multiple challenges the Agency confronts in verifying that all nuclear activities in the countries under its safeguards system are being pursued for exclusively peaceful purposes. The principal challenges noted are those posed by: undeclared facilities, the development of enrichment and reprocessing capabilities, illicit procurement activities, denial of inspector access, difficulties in verifying absence of weaponization activities, and difficulties in establishing that all nuclear-relevant activities in a state are peaceful. The article is in the form of annotated PowerPoint briefing slides.
Challa, Chandrasekhar; Varughese, Sunil; Suresh, Cherumuttathu H; Lankalapalli, Ravi S
2017-08-18
A transformation of the unstrained phenol substituted 3,3'-diindolylmethanes (DIPMs) to 2,3'-diindolylketones (DIKs) by double C-C single bond cleavage with associated rearrangements, triggered by phenyliodine(III) diacetate (PIDA), is reported. Density functional theory studies reveal a mechanism involving multiple "charge-switching" steps by synergistic involvement of the two indole units with overall low activation energy. The indole 'charge-switching' mechanism in DIPMs was further extended toward synthesis of a natural product motif cyclohepta[b]indole from biaryl appended DIBM.
Redox flow batteries having multiple electroactive elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wei; Li, Liyu; Yang, Zhenguo
Introducing multiple redox reactions with a suitable voltage range can improve the energy density of redox flow battery (RFB) systems. One example includes RFB systems utilizing multiple redox pairs in the positive half cell, the negative half cell, or in both. Such RFB systems can have a negative electrolyte, a positive electrolyte, and a membrane between the negative electrolyte and the positive electrolyte, in which at least two electrochemically active elements exist in the negative electrolyte, the positive electrolyte, or both.
Langdon, Blake B.; Kastantin, Mark; Schwartz, Daniel K.
2012-01-01
With the use of single-molecule total internal reflection fluorescence microscopy (TIRFM), the dynamics of bovine serum albumin (BSA) and human fibrinogen (Fg) at low concentrations were observed at the solid-aqueous interface as a function of temperature on hydrophobic trimethylsilane (TMS) and hydrophilic fused silica (FS) surfaces. Multiple dynamic modes and populations were observed and characterized by their surface residence times and squared-displacement distributions (surface diffusion). Characteristic desorption and diffusion rates for each population/mode were generally found to increase with temperature, and apparent activation energies were determined from Arrhenius analyses. The apparent activation energies of desorption and diffusion were typically higher on FS than on TMS surfaces, suggesting that protein desorption and mobility were hindered on hydrophilic surfaces due to favorable protein-surface and solvent-surface interactions. The diffusion of BSA on TMS appeared to be activationless for several populations, whereas diffusion on FS always exhibited an apparent activation energy. All activation energies were small in absolute terms (generally only a few kBT), suggesting that most adsorbed protein molecules are weakly bound and move and desorb readily under ambient conditions. PMID:22713578
Emissions from oil and gas operations in the United States and their air quality implications.
Allen, David T
2016-06-01
The energy supply infrastructure in the United States has been changing dramatically over the past decade. Increased production of oil and natural gas, particularly from shale resources using horizontal drilling and hydraulic fracturing, made the United States the world's largest producer of oil and natural gas in 2014. This review examines air quality impacts, specifically, changes in greenhouse gas, criteria air pollutant, and air toxics emissions from oil and gas production activities that are a result of these changes in energy supplies and use. National emission inventories indicate that volatile organic compound (VOC) and nitrogen oxide (NOx) emissions from oil and gas supply chains in the United States have been increasing significantly, whereas emission inventories for greenhouse gases have seen slight declines over the past decade. These emission inventories are based on counts of equipment and operational activities (activity factors), multiplied by average emission factors, and therefore are subject to uncertainties in these factors. Although uncertainties associated with activity data and missing emission source types can be significant, multiple recent measurement studies indicate that the greatest uncertainties are associated with emission factors. In many source categories, small groups of devices or sites, referred to as super-emitters, contribute a large fraction of emissions. When super-emitters are accounted for, multiple measurement approaches, at multiple scales, produce similar results for estimated emissions. Challenges moving forward include identifying super-emitters and reducing their emission magnitudes. Work done to date suggests that both equipment malfunction and operational practices can be important. Finally, although most of this review focuses on emissions from energy supply infrastructures, the regional air quality implications of some coupled energy production and use scenarios are examined. These case studies suggest that both energy production and use should be considered in assessing air quality implications of changes in energy infrastructures, and that impacts are likely to vary among regions. The energy supply infrastructure in the United States has been changing dramatically over the past decade, leading to changes in emissions from oil and natural gas supply chain sources. In many source categories along these supply chains, small groups of devices or sites, referred to as super-emitters, contribute a large fraction of emissions. Effective emission reductions will require technologies for both identifying super-emitters and reducing their emission magnitudes.
Older women's experiences with multiple health conditions: daily challenges and care practices.
Roberto, Karen A; Gigliotti, Christina M; Husser, Erica K
2005-09-01
Guided by life-course theory and a trajectory model of chronic illness, we examined the health care practices and management strategies used by 17 older women with multiple chronic conditions. Qualitative analyses revealed that the women played an active role in shaping the course of their illness within their everyday lives. Pain and a decline in energy frequently interfered with completion of daily activities. To compensate, many women reduced and slowed down the pace of activities they performed while emphasizing the importance of maintaining independence and autonomy. Appreciative of support from family members, at times the women received more help and advice than they preferred.
Schotten, Sebastiaan; Meijer, Marieke; Walter, Alexander Matthias; Huson, Vincent; Mamer, Lauren; Kalogreades, Lawrence; ter Veer, Mirelle; Ruiter, Marvin; Brose, Nils; Rosenmund, Christian; Sørensen, Jakob Balslev; Verhage, Matthijs; Cornelisse, Lennart Niels
2015-04-14
The energy required to fuse synaptic vesicles with the plasma membrane ('activation energy') is considered a major determinant in synaptic efficacy. From reaction rate theory, we predict that a class of modulations exists, which utilize linear modulation of the energy barrier for fusion to achieve supralinear effects on the fusion rate. To test this prediction experimentally, we developed a method to assess the number of releasable vesicles, rate constants for vesicle priming, unpriming, and fusion, and the activation energy for fusion by fitting a vesicle state model to synaptic responses induced by hypertonic solutions. We show that complexinI/II deficiency or phorbol ester stimulation indeed affects responses to hypertonic solution in a supralinear manner. An additive vs multiplicative relationship between activation energy and fusion rate provides a novel explanation for previously observed non-linear effects of genetic/pharmacological perturbations on synaptic transmission and a novel interpretation of the cooperative nature of Ca(2+)-dependent release.
Energetic cost of standard activities in Gurkha and British soldiers.
Strickland, S S; Ulijaszek, S J
1990-01-01
Measurements of basal metabolic rate and energy expenditure at lying, sitting, standing, and performing a step test at four levels of exercise, were made on Gurkha soldiers stationed in Britain and on British controls matched by body weight and occupational background. There was no significant difference in basal metabolic rate (BMR), nor in the energy cost of lying, sitting and standing between the two groups. Gurhas showed significantly lower gross and net energy expenditure, and so significantly greater net mechanical efficiency, at the lower levels of step exercise. The ratio of gross energy expenditure to BMR was lower in Gurkhas at the lowest rates of stepping compared with the British controls. These results suggest that the energy cost of some physical activities expressed as multiples of BMR may not be constant across populations.
Compression and neutron and ion beams emission mechanisms within a plasma focus device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yousefi, H. R.; Mohanty, S. R.; Nakada, Y.
This paper reports some results of investigations of the neutron emission from middle energy Mather-type plasma focus. Multiple compressions were observed, and it seems that multiple compression regimes can occur at low pressure, while single compression appeared at higher pressure, which is favorable for neutron production. The multiple compression mechanism can be attributed to the (m=0 type) instability. The m=0 type instability is a necessary condition for fusion activity and x-ray production, but is not sufficient by itself. Accompanying the multiple compressions, multiple deuteron and neutron pulses were detected, which implies that there are different kinds of acceleration mechanisms.
Prompt neutron emission and energy balance in 235U(n,f)
NASA Astrophysics Data System (ADS)
Göök, Alf; Hambsch, Franz-Josef; Oberstedt, Stephan
2017-09-01
Investigations of prompt fission neutron (PFN) emission are of importance in understanding the fission process in general and the sharing of excitation energy among the fission fragments in particular. Experimental activities at JRC-Geel on PFN emission in response to OECD/NEA nuclear data requests is presented in this contribution. The focus lies on on-going investigations of PFN emission from the reaction 235U(n,f) in the region of the resolved resonances taking place at the GELINA facility. For this reaction strong fluctuations of fission fragment mass distributions and mean total kinetic energy have been observed as a function of incident neutron energy in the resonance region. In addition, fluctuations of prompt neutron multiplicities have also been observed. The goal of the present study is to verify the current knowledge of PFN multiplicity fluctuations and to study correlations with fission fragment properties. The experiment employs a scintillation detector array for neutron detection, while fission fragment properties are determined via the double kinetic energy technique using a position sensitive twin ionization chamber. Results on PFN multiplicity correlations with fission fragment properties from the present study show significant differences compared to earlier studies on this reaction, induced by thermal neutrons. Specifically, the total kinetic energy dependence of the neutron multiplicity per fission shows an inverse slope FX1TKE/FX2ν approximately 35% weaker than observed in earlier studies of thermal neutron induced fission on 235U. The inverse slope is related to the energy carried away per emitted neutron and is, thereby, closely connected to the energy balance of the fission reaction. The present result should have strong impact on the modeling of both prompt neutron and prompt γ-ray emission in fission of the 236U compound nucleus.
Feedback on fat: p62-mTORC1-autophagy connections
Moscat, Jorge; Diaz-Meco, Maria T.
2011-01-01
Metabolic homeostasis requires integration of multiple signals and cellular activities. Without this integration, conditions of obesity and diabetes often develop. Recent in vivo studies explore the molecular basis for metabolic homestasis, showing that p62 links autophagy and mTORC1 activation to regulate adipogenesis and energy control. PMID:22078874
Optical Power Transfer System for Powering a Remote Mobility System for Multiple Missions
NASA Technical Reports Server (NTRS)
Hogan, Bartholomew P. (Inventor); Stone, William C. (Inventor)
2016-01-01
An optical power transfer system for powering a remote mobility system for multiple missions comprising a high power source and a chilling station connected to a laser source. The laser source transmits a high optical energy to a beam switch assembly via an optical fiber. The beam switch assembly is optically connected to actively cooled fiber spoolers. Docking stations are adapted for securing the fiber spoolers until alternatively ready for use by a remote mobility system. The remote mobility system is optically connected to the fiber spoolers and has a receiving port adapted for securing the fiber spoolers thereon. The fiber spooler transmits the optical energy to a power conversion system which converts the optical energy received to another usable form of energy. More than one power source may be used where the remote mobility system transfers from one source to another while maintaining an operational radius to each source.
Physical Activity Energy Expenditure and Sarcopenia in Black South African Urban Women.
Kruger, Herculina S; Havemann-Nel, Lize; Ravyse, Chrisna; Moss, Sarah J; Tieland, Michael
2016-03-01
Black women are believed to be genetically less predisposed to age-related sarcopenia. The objective of this study was to investigate lifestyle factors associated with sarcopenia in black South African (SA) urban women. In a cross-sectional study, 247 women (mean age 57 y) were randomly selected. Anthropometric and sociodemographic variables, dietary intakes, and physical activity were measured. Activity was also measured by combined accelerometery/heart rate monitoring (ActiHeart), and HIV status was tested. Dual energy x-ray absorptiometry was used to measure appendicular skeletal mass (ASM). Sarcopenia was defined according to a recently derived SA cutpoint of ASM index (ASM/height squared) < 4.94 kg/m(2). In total, 8.9% of the women were sarcopenic, decreasing to 8.1% after exclusion of participants who were HIV positive. In multiple regressions with ASM index, grip strength, and gait speed, respectively, as dependent variables, only activity energy expenditure (β = .27) was significantly associated with ASM index. Age (β = -.50) and activity energy expenditure (β = .17) were significantly associated with gait speed. Age (β = -.11) and lean mass (β = .21) were significantly associated with handgrip strength. Sarcopenia was prevalent among these SA women and was associated with low physical activity energy expenditure.
Centrality dependence of particle production in p - Pb collisions at s NN = 5.02 TeV
Adam, J.; Adamová, D.; Aggarwal, M. M.; ...
2015-06-08
Here, we report measurements of the primary charged-particle pseudorapidity density and transverse momentum distributions in p–Pb collisions at √s NN = 5.02TeV and investigate their correlation with experimental observables sensitive to the centrality of the collision. Centrality classes are defined by using different event-activity estimators, i.e., charged-particle multiplicities measured in three different pseudorapidity regions as well as the energy measured at beam rapidity (zero degree). The procedures to determine the centrality, quantified by the number of participants (N part) or the number of nucleon-nucleon binary collisions (N coll) are described. We show that, in contrast to Pb-Pb collisions, in p–Pbmore » collisions large multiplicity fluctuations together with the small range of participants available generate a dynamical bias in centrality classes based on particle multiplicity. We propose to use the zero-degree energy, which we expect not to introduce a dynamical bias, as an alternative event-centrality estimator. Based on zero-degree energy-centrality classes, the N part dependence of particle production is studied. Under the assumption that the multiplicity measured in the Pb-going rapidity region scales with the number of Pb participants, an approximate independence of the multiplicity per participating nucleon measured at mid-rapidity of the number of participating nucleons is observed. Furthermore, at high-p T the p–Pb spectra are found to be consistent with the pp spectra scaled by N coll for all centrality classes. Our results represent valuable input for the study of the event-activity dependence of hard probes in p–Pb collisions and, hence, help to establish baselines for the interpretation of the Pb-Pb data.« less
MEMS electromagnetic energy harvesters with multiple resonances
NASA Astrophysics Data System (ADS)
Nelatury, Sudarshan R.; Gray, Robert
2014-06-01
There is going on a flurry of research activity in the development of effcient energy harvesters from all branches of energy conversion. The need for developing self-powered wireless sensors and actuators to be employed in unmanned combat vehicles also seems to grow steadily. These vehicles are inducted into perilous war zones for silent watch missions. Energy management is sometimes carried out using misson-aware energy expenditure strategies. Also, when there is a requirement for constant monitoring of events, the sensors and the subsystems of combat vehicles require energy harvesters that can operate over a discrete set of spot frequencies. This paper attempts to review some of the recent techniques and the energy harvesting devices based on electromagnetic and electromechanical principles. In particular, we shall discuss the design and performance of a MEMS-harvester that exhibits multiple resonances. Frequency response of a simulated electromagnetic harvester is plotted. It has three dominant peaks at three different resonant frequencies. Variation in the load power in the normalized units as a function of load is found, which determines the matched load resistance.
NASA Astrophysics Data System (ADS)
Kurniawan, A.; Rustaman, N. Y.; Kaniawati, I.; Hasanah, L.
2017-09-01
The purpose of this study is to obtain a profile picture of cognitive ability and multiple intelligence of students on physics learning activities in relation to the discourse of conservation of electrical energy. Research activities are conducted in the even semester of the 2015/2016 school year. The subjects of the study were the students of class XI (36 students) in one of the state vocational schools in Bandung consisting of one class chosen at random (cluster random sampling). Research data in the form of cognitive ability test results and multiple intelligences are analyzed descriptively and qualitatively. Research data is then analyzed and compared with predetermined success indicators. The results showed that the cognitive abilities profile of students in vocational schools in Bandung is still low. This can be seen from the average score of cognitive ability of students in remember (C1) of 57.75, understanding (C2) of 53.50, applying (C3) of 43.75, and analyzing (C4) of 37.75. The multiple intelligence profiles indicate frequency of linguistic intelligence number 9 students, musical intelligence 3 students, logical mathematical intelligence 13 students, spatial intelligence 7 students, kinesthetic intelligence 5 students, intrapersonal intelligence 7 students, interpersonal intelligence 6 students, and naturalistic intelligence 5 students.
Rong, Xing; Du, Yong; Frey, Eric C
2012-06-21
Quantitative Yttrium-90 ((90)Y) bremsstrahlung single photon emission computed tomography (SPECT) imaging has shown great potential to provide reliable estimates of (90)Y activity distribution for targeted radionuclide therapy dosimetry applications. One factor that potentially affects the reliability of the activity estimates is the choice of the acquisition energy window. In contrast to imaging conventional gamma photon emitters where the acquisition energy windows are usually placed around photopeaks, there has been great variation in the choice of the acquisition energy window for (90)Y imaging due to the continuous and broad energy distribution of the bremsstrahlung photons. In quantitative imaging of conventional gamma photon emitters, previous methods for optimizing the acquisition energy window assumed unbiased estimators and used the variance in the estimates as a figure of merit (FOM). However, for situations, such as (90)Y imaging, where there are errors in the modeling of the image formation process used in the reconstruction there will be bias in the activity estimates. In (90)Y bremsstrahlung imaging this will be especially important due to the high levels of scatter, multiple scatter, and collimator septal penetration and scatter. Thus variance will not be a complete measure of reliability of the estimates and thus is not a complete FOM. To address this, we first aimed to develop a new method to optimize the energy window that accounts for both the bias due to model-mismatch and the variance of the activity estimates. We applied this method to optimize the acquisition energy window for quantitative (90)Y bremsstrahlung SPECT imaging in microsphere brachytherapy. Since absorbed dose is defined as the absorbed energy from the radiation per unit mass of tissues in this new method we proposed a mass-weighted root mean squared error of the volume of interest (VOI) activity estimates as the FOM. To calculate this FOM, two analytical expressions were derived for calculating the bias due to model-mismatch and the variance of the VOI activity estimates, respectively. To obtain the optimal acquisition energy window for general situations of interest in clinical (90)Y microsphere imaging, we generated phantoms with multiple tumors of various sizes and various tumor-to-normal activity concentration ratios using a digital phantom that realistically simulates human anatomy, simulated (90)Y microsphere imaging with a clinical SPECT system and typical imaging parameters using a previously validated Monte Carlo simulation code, and used a previously proposed method for modeling the image degrading effects in quantitative SPECT reconstruction. The obtained optimal acquisition energy window was 100-160 keV. The values of the proposed FOM were much larger than the FOM taking into account only the variance of the activity estimates, thus demonstrating in our experiment that the bias of the activity estimates due to model-mismatch was a more important factor than the variance in terms of limiting the reliability of activity estimates.
Resolving Shifting Patterns of Muscle Energy Use in Swimming Fish
Gerry, Shannon P.; Ellerby, David J.
2014-01-01
Muscle metabolism dominates the energy costs of locomotion. Although in vivo measures of muscle strain, activity and force can indicate mechanical function, similar muscle-level measures of energy use are challenging to obtain. Without this information locomotor systems are essentially a black box in terms of the distribution of metabolic energy. Although in situ measurements of muscle metabolism are not practical in multiple muscles, the rate of blood flow to skeletal muscle tissue can be used as a proxy for aerobic metabolism, allowing the cost of particular muscle functions to be estimated. Axial, undulatory swimming is one of the most common modes of vertebrate locomotion. In fish, segmented myotomal muscles are the primary power source, driving undulations of the body axis that transfer momentum to the water. Multiple fins and the associated fin muscles also contribute to thrust production, and stabilization and control of the swimming trajectory. We have used blood flow tracers in swimming rainbow trout (Oncorhynchus mykiss) to estimate the regional distribution of energy use across the myotomal and fin muscle groups to reveal the functional distribution of metabolic energy use within a swimming animal for the first time. Energy use by the myotomal muscle increased with speed to meet thrust requirements, particularly in posterior myotomes where muscle power outputs are greatest. At low speeds, there was high fin muscle energy use, consistent with active stability control. As speed increased, and fins were adducted, overall fin muscle energy use declined, except in the caudal fin muscles where active fin stiffening is required to maintain power transfer to the wake. The present data were obtained under steady-state conditions which rarely apply in natural, physical environments. This approach also has potential to reveal the mechanical factors that underlie changes in locomotor cost associated with movement through unsteady flow regimes. PMID:25165858
Feedback on fat: p62-mTORC1-autophagy connections.
Moscat, Jorge; Diaz-Meco, Maria T
2011-11-11
Metabolic homeostasis requires integration of multiple signals and cellular activities. Without this integration, conditions of obesity and diabetes often develop. Recent in vivo studies explore the molecular basis for metabolic homestasis, showing that p62 links autophagy and mTORC1 activation to regulate adipogenesis and energy control. Copyright © 2011 Elsevier Inc. All rights reserved.
Activation Energies of Fragmentations of Disaccharides by Tandem Mass Spectrometry
NASA Astrophysics Data System (ADS)
Kuki, Ákos; Nagy, Lajos; Szabó, Katalin E.; Antal, Borbála; Zsuga, Miklós; Kéki, Sándor
2014-03-01
A simple multiple collision model for collision induced dissociation (CID) in quadrupole was applied for the estimation of the activation energy (Eo) of the fragmentation processes for lithiated and trifluoroacetated disaccharides, such as maltose, cellobiose, isomaltose, gentiobiose, and trehalose. The internal energy-dependent rate constants k(Eint) were calculated using the Rice-Ramsperger-Kassel-Marcus (RRKM) or the Rice-Ramsperger-Kassel (RRK) theory. The Eo values were estimated by fitting the calculated survival yield (SY) curves to the experimental ones. The calculated Eo values of the fragmentation processes for lithiated disaccharides were in the range of 1.4-1.7 eV, and were found to increase in the order trehalose < maltose < isomaltose < cellobiose < gentiobiose.
Heydenreich, Juliane; Melzer, Katarina; Flury, Céline
2017-01-01
Micronutrient requirements do not scale linearly with physical activity-related energy expenditure (AEE). Inactive persons may have insufficient micronutrient intake because of low energy intake (EI). We extracted data from NHANES 2003–2006 on 4015 adults (53 ± 18 years (mean ± SD), 29 ± 6 kg/m2, 48% women) with valid physical activity (accelerometry) and food intake (2 × 24 h-dietary recall) measures. Total energy expenditure (TEE) was estimated by summing the basal metabolic rate (BMR, Harris-Benedict), AEE, and 10% of TEE for the thermic effect of food, to calculate the physical activity levels (PAL = TEE/BMR). Energy intake (EI) was scaled to match TEE assuming energy balance. Adjusted food intake was then analyzed for energy and micronutrient content and compared to estimated average requirements. The NHANES population was physically insufficiently active. There were 2440 inactive (PAL < 1.4), 1469 lightly to moderately active (PAL1.4 < 1.7), 94 sufficiently active (PAL1.7 < 2.0), and 12 very active participants (PAL ≥ 2.0). The inactive vs. active had significantly lower intake for all micronutrients apart from vitamin A, B12, C, K, and copper (p < 0.05). The inactive participants had insufficient intake for 6/19 micronutrients, while the active participants had insufficient intake for 5/19 (p < 0.05) micronutrients. Multiple linear regression indicated a lower risk for insufficient micronutrient intake for participants with higher PAL and BMI (p < 0.001). Symmetrical up-scaling of PAL and EI to recommended physical activity levels reduced the frequency of micronutrient insufficiencies. It follows that prevalence of insufficient micronutrient intake from food in NHANES might be partly determined by low energy turnover from insufficient PAL. PMID:28708118
7 CFR 613.2 - Policy and objectives.
Code of Federal Regulations, 2014 CFR
2014-01-01
... requiring vegetative multiplication in ways appropriate for particular States and particular species by...; (10) Improving wildlife food and cover, including threatened and endangered and pollinator species... other energy-related activities; and (15) Evaluating plants and techniques to combat invasive plant...
7 CFR 613.2 - Policy and objectives.
Code of Federal Regulations, 2013 CFR
2013-01-01
... requiring vegetative multiplication in ways appropriate for particular States and particular species by...; (10) Improving wildlife food and cover, including threatened and endangered and pollinator species... other energy-related activities; and (15) Evaluating plants and techniques to combat invasive plant...
7 CFR 613.2 - Policy and objectives.
Code of Federal Regulations, 2012 CFR
2012-01-01
... requiring vegetative multiplication in ways appropriate for particular States and particular species by...; (10) Improving wildlife food and cover, including threatened and endangered and pollinator species... other energy-related activities; and (15) Evaluating plants and techniques to combat invasive plant...
Use of active video games to increase physical activity in children: a (virtual) reality?
Foley, Louise; Maddison, Ralph
2010-02-01
There has been increased research interest in the use of active video games (in which players physically interact with images onscreen) as a means to promote physical activity in children. The aim of this review was to assess active video games as a means of increasing energy expenditure and physical activity behavior in children. Studies were obtained from computerized searches of multiple electronic bibliographic databases. The last search was conducted in December 2008. Eleven studies focused on the quantification of the energy cost associated with playing active video games, and eight studies focused on the utility of active video games as an intervention to increase physical activity in children. Compared with traditional nonactive video games, active video games elicited greater energy expenditure, which was similar in intensity to mild to moderate intensity physical activity. The intervention studies indicate that active video games may have the potential to increase free-living physical activity and improve body composition in children; however, methodological limitations prevent definitive conclusions. Future research should focus on larger, methodologically sound intervention trials to provide definitive answers as to whether this technology is effective in promoting long-term physical activity in children.
Roux, Emmanuel; Ramalli, Alessandro; Tortoli, Piero; Cachard, Christian; Robini, Marc C; Liebgott, Herve
2016-12-01
Full matrix arrays are excellent tools for 3-D ultrasound imaging, but the required number of active elements is too high to be individually controlled by an equal number of scanner channels. The number of active elements is significantly reduced by the sparse array techniques, but the position of the remaining elements must be carefully optimized. This issue is faced here by introducing novel energy functions in the simulated annealing (SA) algorithm. At each iteration step of the optimization process, one element is freely translated and the associated radiated pattern is simulated. To control the pressure field behavior at multiple depths, three energy functions inspired by the pressure field radiated by a Blackman-tapered spiral array are introduced. Such energy functions aim at limiting the main lobe width while lowering the side lobe and grating lobe levels at multiple depths. Numerical optimization results illustrate the influence of the number of iterations, pressure measurement points, and depths, as well as the influence of the energy function definition on the optimized layout. It is also shown that performance close to or even better than the one provided by a spiral array, here assumed as reference, may be obtained. The finite-time convergence properties of SA allow the duration of the optimization process to be set in advance.
Electromagnetic energy coupling mechanism with matrix architecture control
NASA Technical Reports Server (NTRS)
Hughes, Eli (Inventor); Knowles, Gareth (Inventor)
2006-01-01
The present invention relates generally to reconfigurable, solid-state matrix arrays comprising multiple rows and columns of reconfigurable secondary mechanisms that are independently tuned. Specifically, the invention relates to reconfigurable devices comprising multiple, solid-state mechanisms characterized by at least one voltage-varied parameter disposed within a flexible, multi-laminate film, which are suitable for use as magnetic conductors, ground surfaces, antennas, varactors, ferrotunable substrates, or other active or passive electronic mechanisms.
Assessing the Multiple Benefits of Clean Energy: A Resource for States
Clean energy provides multiple benefits. The Multiple Benefits Guide provides an overview of the environmental, energy system and economic benefits of clean energy, specifically energy efficiency, renewable energy and clean distributed generation, and why it is important to thin...
[Energy requirements in adolescents playing basketball in Russian Olympic reserve team].
Martinchik, A N; Baturin, A K; Petukhov, A B; Baeva, V S; Zemlianskaia, T A; Sokolov, A I; Peskova, E V; Tysiachnaia, E M
2003-01-01
The energy expenditure and requirements and dietary intake were studied in basketball players aged 14-16 years during 3 week-training period. The subjects of study were 14 boys and 18 girls as of the members of reserve of Russian Olympic basketball team. The dietary intake was estimated by dietary record of all food consumed within 24 hours last 7 days of training period. The energy expenditure was estimated by registration of time on different physical activity of team and multiplication on physical activity coefficient. The decrease of body mass and body mass index were observed in boys with height 195 cm and more to the end of training period. These tall boys did not consume enough food to satisfy the estimated energy requirement. It is estimated that energy need of tall basketball players is no less then 5000 kcal for boys and 3100 kcal for girls.
Black, A E
1996-06-01
Studies using doubly labeled water have identified underreporting of food intake as a problem of dietary surveys. However, reported energy intakes may be evaluated by comparison with energy requirements expressed as multiples of the basal metabolic rate, and a formula for calculating the value below which reported intake cannot be either a valid measure of habitual intake or a true low intake obtained by chance is presented. The energy requirements of different age-sex groups needed for the comparison with energy intakes have been obtained from a meta-analysis of doubly labeled water data.
NASA Astrophysics Data System (ADS)
Zou, Xueli
In the past three decades, physics education research has primarily focused on student conceptual understanding; little work has been conducted to investigate student difficulties in problem solving. In cognitive science and psychology, however, extensive studies have explored the differences in problem solving between experts and naive students. A major finding indicates that experts often apply qualitative representations in problem solving, but that novices use an equation-centered method. This dissertation describes investigations into the use of multiple representations and visualizations in student understanding and problem solving with the concepts of work and energy. A multiple-representation strategy was developed to help students acquire expertise in solving work-energy problems. In this approach, a typical work-energy problem is considered as a physical process. The process is first described in words-the verbal representation of the process. Next, a sketch or a picture, called a pictorial representation, is used to represent the process. This is followed by work-energy bar charts-a physical representation of the same processes. Finally, this process is represented mathematically by using a generalized work-energy equation. In terms of the multiple representations, the goal of solving a work- energy problem is to represent the physical process the more intuitive pictorial and diagrammatic physical representations. Ongoing assessment of student learning indicates that this multiple-representation technique is more effective than standard instruction methods in student problem solving. visualize this difficult-to-understand concept, a guided- inquiry learning activity using a pair of model carts and an experiment problem using a sandbag were developed. Assessment results have shown that these research-based materials are effective in helping students visualize this concept and give a pictorial idea of ``where the kinetic energy goes'' during inelastic collisions. The research and curriculum development was conducted in the context of the introductory calculus-based physics course. Investigations were carried out using common physics education research tools, including open-ended surveys, written test questions, and individual student interviews.
Wang, Rui; Chang, Yong-sheng; Fang, Fu-de
2009-12-01
Peroxisome proliferator-activated receptor gamma coactivator 1 (PGC1) family is highly expressed in tissues with high energy metabolism. They coactivate transcription factors in regulating genes engaged in processes such as gluconeogenesis, adipose beta-oxydation, lipoprotein synthesis and secretion, mitochondrial biogenesis, and oxidative metabolism. Protein conformation studies demonstrated that they lack DNA binding domains and act as coactivators through physical interaction with transcription factors. PGC1 activity is regulated at transcription level or by multiple covalent chemical modifications such as phosphorylation, methylation and acetylation/deacetylation. Abnormal expression of PGC1 coactivators usually is closely correlated with diseases such as diabetes, obesity, hyperglycemia, hyperlipemia, and arterial and brain neuron necrosis diseases.
Possibility of cellulose-based electro-active paper energy scavenging transducer.
Abas, Zafar; Kim, Heung Soo; Zhai, Lindong; Kim, Jaehwan; Kim, Joo Hyung
2014-10-01
In this paper, a cellulose-based Electro-Active Paper (EAPap) energy scavenging transducer is presented. Cellulose is proven as a smart material, and exhibits piezoelectric effect. Specimens were prepared by coating gold electrodes on both sides of cellulose film. The fabricated specimens were tested by a base excited aluminum cantilever beam at resonant frequency. Different tests were performed with single and multiple parallel connected electrodes coated on the cellulose film. A maximum of 131 mV output voltage was measured, when three electrodes were connected in parallel. It was observed that voltage output increases significantly with the area of electrodes. From these results, it can be concluded that the piezoelectricity of cellulose-based EAPap can be used in energy transduction application.
Sheahan, Helen; Canning, Kimberley; Refausse, Nishka; Kinnear, Ewan M; Jorgensen, Greg; Walsh, James R; Lazzarini, Peter A
2017-12-01
The aims of our study were to investigate multiple daily activity outcomes in patients with diabetic foot ulcers (DFU) compared to diabetic peripheral neuropathy (DPN) and diabetes (DM) controls in their free-living environments. We examined daily activity outcomes of 30 patients with DFU, 23 DPN and 20 DM. All patients wore a validated multi-sensor device for > 5 days (>22 hours per day) to measure their daily activity outcomes: steps, energy expenditure (kJ), average metabolic equivalent tasks (METs), physical activity (>3·0 METs) duration and energy expenditure, lying duration, sleep duration and sleep quality. We found that DFU patients recorded fewer median (interquartile ranges, IQR) daily steps [2154 (1621-4324)] than DPN [3660 (2742-7705)] and DM [5102 (4011-7408)] controls (P < 0·05). In contrast, DFU patients recorded more mean ± SD daily energy expenditure (kJ) (13 006 ± 3559) than DPN (11 085 ± 1876) and DM (11 491 ± 1559) controls (P < 0·05). We found no other differences in daily activity outcomes (P > 0·1). We conclude that DFU patients typically take fewer steps but expend more energy during their normal daily activity than DPN and DM controls. We hypothesise that the increased energy expenditure for DFU patients may be due to wound healing or an inefficient gait strategy. Further investigations into this energy imbalance in DFU patients may improve healing in future. © 2017 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
Mitochondria are key regulators of cellular energy homeostasis and may play a key role in the mechanisms of neurodegenerative disorders and chemical induced neurotoxicity. However, mitochondrial bioenergetic parameters have not been systematically evaluated within multiple brain ...
Solar energy converters based on multi-junction photoemission solar cells.
Tereshchenko, O E; Golyashov, V A; Rodionov, A A; Chistokhin, I B; Kislykh, N V; Mironov, A V; Aksenov, V V
2017-11-23
Multi-junction solar cells with multiple p-n junctions made of different semiconductor materials have multiple bandgaps that allow reducing the relaxation energy loss and substantially increase the power-conversion efficiency. The choice of materials for each sub-cell is very limited due to the difficulties in extracting the current between the layers caused by the requirements for lattice- and current-matching. We propose a new vacuum multi-junction solar cell with multiple p-n junctions separated by vacuum gaps that allow using different semiconductor materials as cathode and anode, both activated to the state of effective negative electron affinity (NEA). In this work, the compact proximity focused vacuum tube with the GaAs(Cs,O) photocathode and AlGaAs/GaAs-(Cs,O) anode with GaAs quantum wells (QWs) is used as a prototype of a vacuum single-junction solar cell. The photodiode with the p-AlGaAs/GaAs anode showed the spectral power-conversion efficiency of about 1% at V bias = 0 in transmission and reflection modes, while, at V bias = 0.5 V, the efficiency increased up to 10%. In terms of energy conservation, we found the condition at which the energy cathode-to-anode transition was close to 1. Considering only the energy conservation part, the NEA-cell power-conversion efficiency can rich a quantum yield value which is measured up to more than 50%.
Liu, Lihong; Liu, Jian; Martinez, Todd J.
2015-12-17
Here, we investigate the photoisomerization of a model retinal protonated Schiff base (trans-PSB3) using ab initio multiple spawning (AIMS) based on multi-state second order perturbation theory (MSPT2). Discrepancies between the photodynamical mechanism computed with three-root state-averaged complete active space self-consistent field (SA-3-CASSCF, which does not include dynamic electron correlation effects) and MSPT2 show that dynamic correlation is critical in this photoisomerization reaction. Furthermore, we show that the photodynamics of trans-PSB3 is not well described by predictions based on minimum energy conical intersections (MECIs) or minimum energy conical intersection (CI) seam paths. Instead, most of the CIs involved in the photoisomerizationmore » are far from MECIs and minimum energy CI seam paths. Thus, both dynamical nuclear effects and dynamic electron correlation are critical to understanding the photochemical mechanism.« less
Craven, Galen T; Nitzan, Abraham
2018-01-28
Statistical properties of Brownian motion that arise by analyzing, separately, trajectories over which the system energy increases (upside) or decreases (downside) with respect to a threshold energy level are derived. This selective analysis is applied to examine transport properties of a nonequilibrium Brownian process that is coupled to multiple thermal sources characterized by different temperatures. Distributions, moments, and correlation functions of a free particle that occur during upside and downside events are investigated for energy activation and energy relaxation processes and also for positive and negative energy fluctuations from the average energy. The presented results are sufficiently general and can be applied without modification to the standard Brownian motion. This article focuses on the mathematical basis of this selective analysis. In subsequent articles in this series, we apply this general formalism to processes in which heat transfer between thermal reservoirs is mediated by activated rate processes that take place in a system bridging them.
NASA Astrophysics Data System (ADS)
Craven, Galen T.; Nitzan, Abraham
2018-01-01
Statistical properties of Brownian motion that arise by analyzing, separately, trajectories over which the system energy increases (upside) or decreases (downside) with respect to a threshold energy level are derived. This selective analysis is applied to examine transport properties of a nonequilibrium Brownian process that is coupled to multiple thermal sources characterized by different temperatures. Distributions, moments, and correlation functions of a free particle that occur during upside and downside events are investigated for energy activation and energy relaxation processes and also for positive and negative energy fluctuations from the average energy. The presented results are sufficiently general and can be applied without modification to the standard Brownian motion. This article focuses on the mathematical basis of this selective analysis. In subsequent articles in this series, we apply this general formalism to processes in which heat transfer between thermal reservoirs is mediated by activated rate processes that take place in a system bridging them.
Schotten, Sebastiaan; Meijer, Marieke; Walter, Alexander Matthias; Huson, Vincent; Mamer, Lauren; Kalogreades, Lawrence; ter Veer, Mirelle; Ruiter, Marvin; Brose, Nils; Rosenmund, Christian
2015-01-01
The energy required to fuse synaptic vesicles with the plasma membrane (‘activation energy’) is considered a major determinant in synaptic efficacy. From reaction rate theory, we predict that a class of modulations exists, which utilize linear modulation of the energy barrier for fusion to achieve supralinear effects on the fusion rate. To test this prediction experimentally, we developed a method to assess the number of releasable vesicles, rate constants for vesicle priming, unpriming, and fusion, and the activation energy for fusion by fitting a vesicle state model to synaptic responses induced by hypertonic solutions. We show that complexinI/II deficiency or phorbol ester stimulation indeed affects responses to hypertonic solution in a supralinear manner. An additive vs multiplicative relationship between activation energy and fusion rate provides a novel explanation for previously observed non-linear effects of genetic/pharmacological perturbations on synaptic transmission and a novel interpretation of the cooperative nature of Ca2+-dependent release. DOI: http://dx.doi.org/10.7554/eLife.05531.001 PMID:25871846
CENTAURUS A: THE EXTRAGALACTIC SOURCE OF COSMIC RAYS WITH ENERGIES ABOVE THE KNEE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biermann, Peter L.; De Souza, Vitor, E-mail: plbiermann@mpifr-bonn.mpg.de, E-mail: vitor@ifsc.usp.br
2012-02-10
The origin of cosmic rays at all energies is still uncertain. In this paper, we present and explore an astrophysical scenario to produce cosmic rays with energy ranging from below 10{sup 15} to 3 Multiplication-Sign 10{sup 20} eV. We show here that just our Galaxy and the radio galaxy Cen A, each with their own galactic cosmic-ray particles but with those from the radio galaxy pushed up in energy by a relativistic shock in the jet emanating from the active black hole, are sufficient to describe the most recent data in the PeV to near ZeV energy range. Data aremore » available over this entire energy range from the KASCADE, KASCADE-Grande, and Pierre Auger Observatory experiments. The energy spectrum calculated here correctly reproduces the measured spectrum beyond the knee and, contrary to widely held expectations, no other extragalactic source population is required to explain the data even at energies far below the general cutoff expected at 6 Multiplication-Sign 10{sup 19} eV, the Greisen-Zatsepin-Kuz'min turnoff due to interaction with the cosmological microwave background. We present several predictions for the source population, the cosmic-ray composition, and the propagation to Earth which can be tested in the near future.« less
AMP-activated protein kinase and metabolic control
Viollet, Benoit; Andreelli, Fabrizio
2011-01-01
AMP-activated protein kinase (AMPK), a phylogenetically conserved serine/threonine protein kinase, is a major regulator of cellular and whole-body energy homeostasis that coordinates metabolic pathways in order to balance nutrient supply with energy demand. It is now recognized that pharmacological activation of AMPK improves blood glucose homeostasis, lipid profile and blood pressure in insulin-resistant rodents. Indeed, AMPK activation mimics the beneficial effects of physical activity or those of calorie restriction by acting on multiple cellular targets. In addition it is now demonstrated that AMPK is one of the probable (albeit indirect) targets of major antidiabetic drugs including, the biguanides (metformin) and thiazolidinediones, as well as of insulin sensitizing adipokines (e.g., adiponectin). Taken together, such findings highlight the logic underlying the concept of targeting the AMPK pathway for the treatment of metabolic syndrome and type 2 diabetes. PMID:21484577
Single cell multiplexed assay for proteolytic activity using droplet microfluidics.
Ng, Ee Xien; Miller, Miles A; Jing, Tengyang; Chen, Chia-Hung
2016-07-15
Cellular enzymes interact in a post-translationally regulated fashion to govern individual cell behaviors, yet current platform technologies are limited in their ability to measure multiple enzyme activities simultaneously in single cells. Here, we developed multi-color Förster resonance energy transfer (FRET)-based enzymatic substrates and use them in a microfluidics platform to simultaneously measure multiple specific protease activities from water-in-oil droplets that contain single cells. By integrating the microfluidic platform with a computational analytical method, Proteolytic Activity Matrix Analysis (PrAMA), we are able to infer six different protease activity signals from individual cells in a high throughput manner (~100 cells/experimental run). We characterized protease activity profiles at single cell resolution for several cancer cell lines including breast cancer cell line MDA-MB-231, lung cancer cell line PC-9, and leukemia cell line K-562 using both live-cell and in-situ cell lysis assay formats, with special focus on metalloproteinases important in metastasis. The ability to measure multiple proteases secreted from or expressed in individual cells allows us to characterize cell heterogeneity and has potential applications including systems biology, pharmacology, cancer diagnosis and stem cell biology. Copyright © 2016 Elsevier B.V. All rights reserved.
Morphology, Structural and Dielectric Properties of Vacuum Evaporated V2O5 Thin Films
NASA Astrophysics Data System (ADS)
Sengodan, R.; Shekar, B. Chandar; Sathish, S.
Vanadium pentoxide (V2O5) thin films were deposited on well cleaned glass substrate using evaporation technique under the pressure of 10-5 Torr. The thickness of the films was measured by the multiple beam interferometry technique and cross checked by using capacitance method. Metal-Insulator-Metal (MIM) structure was fabricated by using suitable masks to study dielectric properties. The dielectric properties were studied by employing LCR meter in the frequency range 12 Hz to 100 kHz for various temperatures. The temperature co- efficient of permittivity (TCP), temperature co-efficient of capacitance (TCC) and dielectric constant (ɛ) were calculated. The activation energy was calculated and found to be very low. The activation energy was found to be increasing with increase in frequency. The obtained low value of activation energy suggested that the hopping conduction may be due to electrons rather than ions.
Forward modeling transient brightenings and microflares around an active region observed with Hi-C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobelski, Adam R.; McKenzie, David E., E-mail: kobelski@solar.physics.montana.edu
Small-scale flare-like brightenings around active regions are among the smallest and most fundamental of energetic transient events in the corona, providing a testbed for models of heating and active region dynamics. In a previous study, we modeled a large collection of these microflares observed with Hinode/X-Ray Telescope (XRT) using EBTEL and found that they required multiple heating events, but could not distinguish between multiple heating events on a single strand, or multiple strands each experiencing a single heating event. We present here a similar study, but with extreme-ultraviolet data of Active Region 11520 from the High Resolution Coronal Imager (Hi-C)more » sounding rocket. Hi-C provides an order of magnitude improvement to the spatial resolution of XRT, and a cooler temperature sensitivity, which combine to provide significant improvements to our ability to detect and model microflare activity around active regions. We have found that at the spatial resolution of Hi-C (≈0.''3), the events occur much more frequently than expected (57 events detected, only 1 or 2 expected), and are most likely made from strands of the order of 100 km wide, each of which is impulsively heated with multiple heating events. These findings tend to support bursty reconnection as the cause of the energy release responsible for the brightenings.« less
Mu, Bingnan; Xu, Helan; Yang, Yiqi
2015-11-01
In this work, kinetics of substitution accelerated cellulose hydrolysis with multiple reaction stages was investigated to lay foundation for mechanism study and molecular design of substituting compounds. High-efficiency hydrolysis of cellulose is critical for cellulose-based bioethanol production. It is known that, substitution could substantially decrease activation energy and increase reaction rate of acidic hydrolysis of glycosidic bonds in cellulose. However, reaction kinetics and mechanism of the accelerated hydrolysis were not fully revealed. In this research, it was proved that substitution therefore accelerated hydrolysis only occurred in amorphous regions of cellulose fibers, and was a process with multiple reaction stages. With molar ratio of substitution less than 1%, the overall hydrolysis rate could be increased for around 10 times. We also quantified the relationship between the hydrolysis rate of individual reaction stage and its major influences, including molar ratio of substitution, activation energy of acidic hydrolysis, pH and temperature. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hoan, Tran-Nhut-Khai; Hiep, Vu-Van; Koo, In-Soo
2016-03-31
This paper considers cognitive radio networks (CRNs) utilizing multiple time-slotted primary channels in which cognitive users (CUs) are powered by energy harvesters. The CUs are under the consideration that hardware constraints on radio devices only allow them to sense and transmit on one channel at a time. For a scenario where the arrival of harvested energy packets and the battery capacity are finite, we propose a scheme to optimize (i) the channel-sensing schedule (consisting of finding the optimal action (silent or active) and sensing order of channels) and (ii) the optimal transmission energy set corresponding to the channels in the sensing order for the operation of the CU in order to maximize the expected throughput of the CRN over multiple time slots. Frequency-switching delay, energy-switching cost, correlation in spectrum occupancy across time and frequency and errors in spectrum sensing are also considered in this work. The performance of the proposed scheme is evaluated via simulation. The simulation results show that the throughput of the proposed scheme is greatly improved, in comparison to related schemes in the literature. The collision ratio on the primary channels is also investigated.
Hypoxia and Mucosal Inflammation
Colgan, Sean P.; Campbell, Eric L.; Kominsky, Douglas J.
2016-01-01
Sites of inflammation are defined by significant changes in metabolic activity. Recent studies have suggested that O2 metabolism and hypoxia play a prominent role in inflammation so-called “inflammatory hypoxia,” which results from a combination of recruited inflammatory cells (e.g., neutrophils and monocytes), the local proliferation of multiple cell types, and the activation of multiple O2-consuming enzymes during inflammation. These shifts in energy supply and demand result in localized regions of hypoxia and have revealed the important function off the transcription factor HIF (hypoxia-inducible factor) in the regulation of key target genes that promote inflammatory resolution. Analysis of these pathways has provided multiple opportunities for understanding basic mechanisms of inflammation and has defined new targets for intervention. Here, we review recent work addressing tissue hypoxia and metabolic control of inflammation and immunity. PMID:27193451
Raji, Cyrus A.; Merrill, David A.; Eyre, Harris; Mallam, Sravya; Torosyan, Nare; Erickson, Kirk I.; Lopez, Oscar L.; Becker, James T.; Carmichael, Owen T.; Gach, H. Michael; Thompson, Paul M.; Longstreth, W.T.; Kuller, Lewis H.
2016-01-01
Background: Physical activity (PA) can be neuroprotective and reduce the risk for Alzheimer’s disease (AD). In assessing physical activity, caloric expenditure is a proxy marker reflecting the sum total of multiple physical activity types conducted by an individual. Objective:To assess caloric expenditure, as a proxy marker of PA, as a predictive measure of gray matter (GM) volumes in the normal and cognitively impaired elderly persons. Methods: All subjects in this study were recruited from the Institutional Review Board approved Cardiovascular Health Study (CHS), a multisite population-based longitudinal study in persons aged 65 and older. We analyzed a sub-sample of CHS participants 876 subjects (mean age 78.3, 57.5% F, 42.5% M) who had i) energy output assessed as kilocalories (kcal) per week using the standardized Minnesota Leisure-Time Activities questionnaire, ii) cognitive assessments for clinical classification of normal cognition, mild cognitive impairment (MCI), and AD, and iii) volumetric MR imaging of the brain. Voxel-based morphometry modeled the relationship between kcal/week and GM volumes while accounting for standard covariates including head size, age, sex, white matter hyperintensity lesions, MCI or AD status, and site. Multiple comparisons were controlled using a False Discovery Rate of 5 percent. Results: Higher energy output, from a variety of physical activity types, was associated with larger GM volumes in frontal, temporal, and parietal lobes, as well as hippocampus, thalamus, and basal ganglia. High levels of caloric expenditure moderated neurodegeneration-associated volume loss in the precuneus, posterior cingulate, and cerebellar vermis. Conclusion:Increasing energy output from a variety of physical activities is related to larger gray matter volumes in the elderly, regardless of cognitive status. PMID:26967227
Quantum random bit generation using energy fluctuations in stimulated Raman scattering.
Bustard, Philip J; England, Duncan G; Nunn, Josh; Moffatt, Doug; Spanner, Michael; Lausten, Rune; Sussman, Benjamin J
2013-12-02
Random number sequences are a critical resource in modern information processing systems, with applications in cryptography, numerical simulation, and data sampling. We introduce a quantum random number generator based on the measurement of pulse energy quantum fluctuations in Stokes light generated by spontaneously-initiated stimulated Raman scattering. Bright Stokes pulse energy fluctuations up to five times the mean energy are measured with fast photodiodes and converted to unbiased random binary strings. Since the pulse energy is a continuous variable, multiple bits can be extracted from a single measurement. Our approach can be generalized to a wide range of Raman active materials; here we demonstrate a prototype using the optical phonon line in bulk diamond.
Demonstration of Single Axis Combined Attitude Control and Energy Storage Using Two Flywheels
NASA Technical Reports Server (NTRS)
Kenny, Barbara H.; Jansen, Ralph; Kascak, Peter; Dever, Timothy; Santiago, Walter
2004-01-01
The energy storage and attitude control subsystems of the typical satellite are presently distinct and separate. Energy storage is conventionally provided by batteries, either NiCd or NiH, and active attitude control is accomplished with control moment gyros (CMGs) or reaction wheels. An overall system mass savings can be realized if these two subsystems are combined using multiple flywheels for simultaneous kinetic energy storage and momentum transfer. Several authors have studied the control of the flywheels to accomplish this and have published simulation results showing the feasibility and performance. This paper presents the first experimental results showing combined energy storage and momentum control about a single axis using two flywheels.
Polge, Cécile; Ramirez, Sacnicte; Michelland, Sylvie; Sève, Michel; Vertommen, Didier; Rider, Mark; Lentze, Nicolas; Auerbach, Daniel; Schlattner, Uwe
2013-01-01
AMP-activated protein kinase (AMPK) is a cellular and whole body energy sensor with manifold functions in regulating energy homeostasis, cell morphology and proliferation in health and disease. Here we apply multiple, complementary in vitro and in vivo interaction assays to identify several isoforms of glutathione S-transferase (GST) as direct AMPK binding partners: Pi-family member rat GSTP1 and Mu-family members rat GSTM1, as well as Schistosoma japonicum GST. GST/AMPK interaction is direct and involves the N-terminal domain of the AMPK β-subunit. Complex formation of the mammalian GSTP1 and -M1 with AMPK leads to their enzymatic activation and in turn facilitates glutathionylation and activation of AMPK in vitro. GST-facilitated S-glutathionylation of AMPK may be involved in rapid, full activation of the kinase under mildly oxidative physiological conditions. PMID:23741294
NASA Astrophysics Data System (ADS)
Schilk, A. J.; Abel, K. H.; Brown, D. P.; Thompson, R. C.; Knopf, M. A.; Hubbard, C. W.
1994-04-01
A novel scintillating-fiber sensor for detecting high-energy beta particles has been designed and built at the Pacific Northwest Laboratory to characterize U-238 and Sr-90 in surface soils. High-energy betas generate unique signals as they pass through multiple layers of scintillating fibers that make up the active region of the detector. Lower-energy beta particles, gamma rays, and cosmic-ray-generated particles comprise the majority of the background interferences. The resulting signals produced by these latter phenomena are effectively discriminated against due to the combination of the sensor's multilayer configuration and its interlayer coincidence/anticoincidence circuitry.
Multi-Site λ-dynamics for simulated Structure-Activity Relationship studies
Knight, Jennifer L.; Brooks, Charles L.
2011-01-01
Multi-Site λ-dynamics (MSλD) is a new free energy simulation method that is based on λ-dynamics. It has been developed to enable multiple substituents at multiple sites on a common ligand core to be modeled simultaneously and their free energies assessed. The efficacy of MSλD for estimating relative hydration free energies and relative binding affinties is demonstrated using three test systems. Model compounds representing multiple identical benzene, dihydroxybenzene and dimethoxybenzene molecules show total combined MSλD trajectory lengths of ~1.5 ns are sufficient to reliably achieve relative hydration free energy estimates within 0.2 kcal/mol and are less sensitive to the number of trajectories that are used to generate these estimates for hybrid ligands that contain up to ten substituents modeled at a single site or five substituents modeled at each of two sites. Relative hydration free energies among six benzene derivatives calculated from MSλD simulations are in very good agreement with those from alchemical free energy simulations (with average unsigned differences of 0.23 kcal/mol and R2=0.991) and experiment (with average unsigned errors of 1.8 kcal/mol and R2=0.959). Estimates of the relative binding affinities among 14 inhibitors of HIV-1 reverse transcriptase obtained from MSλD simulations are in reasonable agreement with those from traditional free energy simulations and experiment (average unsigned errors of 0.9 kcal/mol and R2=0.402). For the same level of accuracy and precision MSλD simulations are achieved ~20–50 times faster than traditional free energy simulations and thus with reliable force field parameters can be used effectively to screen tens to hundreds of compounds in structure-based drug design applications. PMID:22125476
An active drop counting device using condenser microphone for superheated emulsion detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Mala; Marick, C.; Kanjilal, D.
2008-11-15
An active device for superheated emulsion detector is described. A capacitive diaphragm sensor or condenser microphone is used to convert the acoustic pulse of drop nucleation to electrical signal. An active peak detector is included in the circuit to avoid multiple triggering of the counter. The counts are finally recorded by a microprocessor based data acquisition system. Genuine triggers, missed by the sensor, were studied using a simulated clock pulse. The neutron energy spectrum of {sup 252}Cf fission neutron source was measured using the device with R114 as the sensitive liquid and compared with the calculated fission neutron energy spectrummore » of {sup 252}Cf. Frequency analysis of the detected signals was also carried out.« less
An active drop counting device using condenser microphone for superheated emulsion detector
NASA Astrophysics Data System (ADS)
Das, Mala; Arya, A. S.; Marick, C.; Kanjilal, D.; Saha, S.
2008-11-01
An active device for superheated emulsion detector is described. A capacitive diaphragm sensor or condenser microphone is used to convert the acoustic pulse of drop nucleation to electrical signal. An active peak detector is included in the circuit to avoid multiple triggering of the counter. The counts are finally recorded by a microprocessor based data acquisition system. Genuine triggers, missed by the sensor, were studied using a simulated clock pulse. The neutron energy spectrum of C252f fission neutron source was measured using the device with R114 as the sensitive liquid and compared with the calculated fission neutron energy spectrum of C252f. Frequency analysis of the detected signals was also carried out.
SIRTUIN 1 AND SIRTUIN 3: PHYSIOLOGICAL MODULATORS OF METABOLISM
Nogueiras, Ruben; Habegger, Kirk M.; Chaudhary, Nilika; Finan, Brian; Banks, Alexander S.; Dietrich, Marcelo O.; Horvath, Tamas L.; Sinclair, David A.; Pfluger, Paul T.; Tschöop, Matthias H.
2013-01-01
The sirtuins are a family of highly conserved NAD+-dependent deacetylases that act as cellular sensors to detect energy availability and modulate metabolic processes. Two sirtuins that are central to the control of metabolic processes are mammalian sirtuin 1 (SIRT1) and sirtuin 3 (SIRT3), which are localized to the nucleus and mitochondria, respectively. Both are activated by high NAD+ levels, a condition caused by low cellular energy status. By deacetylating a variety of proteins that induce catabolic processes while inhibiting anabolic processes, SIRT1 and SIRT3 coordinately increase cellular energy stores and ultimately maintain cellular energy homeostasis. Defects in the pathways controlled by SIRT1 and SIRT3 are known to result in various metabolic disorders. Consequently, activation of sirtuins by genetic or pharmacological means can elicit multiple metabolic benefits that protect mice from diet-induced obesity, type 2 diabetes, and nonalcoholic fatty liver disease. PMID:22811431
Geng, Yong; Liu, Xiao-qing; Zhang, Pan; Liu, Ye
2010-10-01
Based on the theory of multiple-scale integrated assessment of societal and ecosystem metabolism (MuSIASEM), a comprehensive evaluation was made on the human activity time, exosomatic energy input, and added value of Dalian Economic and Technological Development Zone in 2000-2007. During the study period, the life quality of local citizens increased year after year, while the agricultural industry dwindled. Manufacturing industry was still the main pillar industry, but its energy consumption was greater. Service industry was at its early stage, falling behind manufacturing industry. The exosomatic metabolic level of the whole zone and its various industries had an obvious increase, and the energy intensity decreased continuously. With the fact that both the human activity time and the exosomatic energy input had a ceaseless decrease, the economic added value increased steadily, and the zone was under its way towards sustainable development.
Multiplicities of charged hadrons in 280 GeV/c muon-proton scattering
NASA Astrophysics Data System (ADS)
Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badelek, B.; Beaufays, J.; Becks, K. H.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I.; Blum, D.; Böhm, E.; De Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Calen, H.; Callebaut, D.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Düren, M.; Eckardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Giubellino, P.; Grafström, P.; Grard, F.; Hass, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Hoppe, C.; Jaffré, M.; Jacholkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Kesteman, J.; Korbel, V.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Manz, A.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Pönsgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Scheer, M.; Schlagböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Schröder, T.; Schouten, M.; Schultze, K.; Sholz, M.; Sloan, T.; Stier, H. E.; Stockhausen, W.; Studt, M.; Taylor, G. N.; Thénard, J. M.; Thompson, J. C.; De La Torre, A.; Toth, J.; Urban, L.; Urban, L.; Wahlen, H.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.; European Muon Collaboration
Properties of the hadron multiplicity distributions in 280 GeV/ c μ +p interactions have been investigated. The c.m. energy dependence in the range from 4 to 20 GeV of the total charged multiplicities are presented. No variation faster than logarithmic is seen in the energy range of this experiment. Comparison with νp and overlineνp data at lower energy has been made and shows good agreement between μ +p and overlineνp total charged multiplicities. It has been found that the average forward multiplicity (charged hadrons with xF > 0) exceeds the average backward multiplicity (charged hadrons with xF < 0) in the whole energy range and presents a different energy variation. The average forward multiplicity has been compared to e +e - data and shows a similar dependence on energy. Little correlation was observed between the forward and backward multiplicities indicating that the current and target regions fragment almost independently.
The human body as an energetic hybrid? New perspectives for chronic disease treatment?
Gajewski, Michał; Rzodkiewicz, Przemysław; Maśliński, Sławomir
2017-01-01
Inflammatory response is accompanied by changes in cellular energy metabolism. Proinflammatory mediators like plasma C-reactive protein, IL-6, plasminogen activator inhibitor-1, TNF-α or monocyte chemoattractant protein-1 released in the site of inflammation activates immune cells and increase energy consumption. Increased demand for energy creates local hypoxia and lead in consequence to mitochondrial dysfunction. Metabolism of cells is switched to anaerobic glycolysis. Mitochondria continuously generate free radicals that what result in imbalance that causes oxidative stress, which results in oxidative damage. Chronic energy imbalance promotes oxidative stress, aging, and neurodegeneration and is associated with numerous disorders like Alzheimer's disease, multiple sclerosis, Parkinson's disease or Huntington's disease. It is also believed that oxidative stress and the formation of free radicals play an important role in the pathogenesis of rheumatoid diseases including especially rheumatoid arthritis. Pharmacological control of energy metabolism disturbances may be valuable therapeutic strategy of treatment of this disorders. In recent review we sum up knowledge related to energy disturbances and discuss phenomena such as zombies or hibernation which may indicate the potential targets for regulation of energy metabolism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avakyants, L. P.; Aslanyan, A. E.; Bokov, P. Yu., E-mail: pavel-bokov@physics.msu.ru
A line at E = 2.77 eV (with a width of Γ = 88 meV) related to interband transitions in the region of multiple quantum wells in the active region is detected in the electroreflectance spectra of the GaN/InGaN/AlGaN heterostructure. As the modulation bias is reduced from 2.9 to 0.4 V, the above line is split into two lines with energies of E{sub 1} = 2.55 eV and E{sub 2} = 2.75 eV and widths of Γ{sub 1} = 66 meV and Γ{sub 2} = 74 meV, respectively. The smaller widths of separate lines indicate that these lines are causedmore » by interband transitions in particular quantum wells within the active region. The difference between the interband transition energies E{sub 1} and E{sub 2} in identical quantum wells in the active region is related to the fact that the quantum wells are in an inhomogeneous electric field of the p–n junction. The magnitudes of the electric-field strengths in particular quantum wells in the active region of the heterostructure are estimated to be 1.6 and 2.2 MV/cm.« less
NASA Astrophysics Data System (ADS)
Close, Hunter G.; Scherr, Rachel E.
2015-04-01
We demonstrate that a particular blended learning space is especially productive in developing understanding of energy transfers and transformations. In this blended space, naturally occurring learner interactions like body movement, gesture, and metaphorical speech are blended with a conceptual metaphor of energy as a substance in a class of activities called Energy Theater. We illustrate several mechanisms by which the blended aspect of the learning environment promotes productive intellectual engagement with key conceptual issues in the learning of energy, including distinguishing among energy processes, disambiguating matter and energy, identifying energy transfer, and representing energy as a conserved quantity. Conceptual advancement appears to be promoted especially by the symbolic material and social structure of the Energy Theater environment, in which energy is represented by participants and objects are represented by areas demarcated by loops of rope, and by Energy Theater's embodied action, including body locomotion, gesture, and coordination of speech with symbolic spaces in the Energy Theater arena. Our conclusions are (1) that specific conceptual metaphors can be leveraged to benefit science instruction via the blending of an abstract space of ideas with multiple modes of concrete human action, and (2) that participants' structured improvisation plays an important role in leveraging the blend for their intellectual development.
Breakfast intake among adults with type 2 diabetes: is bigger better?
Jarvandi, Soghra; Schootman, Mario; Racette, Susan B.
2015-01-01
Objective To assess the association between breakfast energy and total daily energy intake among individuals with type 2 diabetes. Design Cross-sectional study. Daily energy intake was computed from a 24-h dietary recall. Multiple regression models were used to estimate the association between daily energy intake (dependent variable) and quartiles of energy intake at breakfast (independent variable) expressed as either absolute or relative (% of total daily energy intake) terms. Orthogonal polynomial contrasts were used to test for linear and quadratic trends. Models were controlled for sex, age, race/ethnicity, body mass index, physical activity and smoking. In addition, we used separate multiple regression models to test the effect of quartiles of absolute and relative breakfast energy on intake at lunch, dinner, and snacks. Setting The 1999–2004 National Health and Nutrition Examination Survey (NHANES). Subjects Participants aged ≥ 30 years with self-reported history of diabetes (N = 1,146). Results Daily energy intake increased as absolute breakfast energy intake increased (linear trend, P < 0.0001; quadratic trend, P = 0.02), but decreased as relative breakfast energy intake increased (linear trend, P < 0.0001). In addition, while higher quartiles of absolute breakfast intake had no associations with energy intake at subsequent meals, higher quartiles of relative breakfast intake were associated with lower energy intake during all subsequent meals and snacks (P < 0.05). Conclusions Consuming a breakfast that provided less energy or comprised a greater proportion of daily energy intake was associated with lower total daily energy intake in adults with type 2 diabetes. PMID:25529061
Neuronal Rap1 regulates energy balance, glucose homeostasis, and leptin actions
USDA-ARS?s Scientific Manuscript database
The Central Nervous System (CNS) contributes to obesity and metabolic disease; however, the underlying neurobiological pathways remain to be fully established. Here, we show that the small GTPase Rap1 is expressed in multiple hypothalamic nuclei that control whole-body metabolism and is activated in...
Development of a lithium fluoride zinc sulfide based neutron multiplicity counter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cowles, Christian; Behling, Spencer; Baldez, Phoenix
Past 3He shortages led to investigations into replacement options for neutron detectors in systems that previously used 3He-based technologies. The goal of this research was to investigate the feasibility of a full-scale lithium fluoride with silver activated zinc sulfide (LiF/ZnS) based neutron multiplicity counter. The LiF/ZnS based neutron multiplicity counter (LiNMC) was developed based on an iterative process between modeling and experimental measurements. Each active region of the LiNMC contains five sheets of LiF/ZnS sandwiched between six sheets of wavelength shifting plastic to form neutron detection stacks. The wavelength shifted scintillation light was collected by photomultiplier tubes located on eachmore » end of the stacks. Twelve such detector stacks were placed around a sample chamber in a square arrangement with lithiated high density polyethylene blocks in the corners to reflect high energy neutrons and capture low energy neutrons. Preliminary calibration with a 252Cf neutron source showed that the LiNMC was able to achieve 36% neutron detection efficiency (ε) and an 11.7 μs neutron die-away time (τ) for a doubles Figure-of-merit (ε2/ τ) of 109. This is the highest doubles Figure-of-merit performance measured to-date for a 3He-free neutron multiplicity counter system. By the end of this project, the LiNMC’s basic components were integrated into a single laboratory scale system capable of proof-of-concept measurements.« less
Chatrchyan, Serguei
2014-04-15
The production of Y(1S), Y(2S), and Y(3S) is investigated in pPb and pp collisions at centre-of-mass energies per nucleon pair of 5.02 TeV and 2.76 TeV, respectively. The datasets correspond to integrated luminosities of about 31 nb –1 (pPb) and 5.4 pb –1 (pp), collected in 2013 by the CMS experiment at the LHC. Upsilons that decay into muons are reconstructed within the rapidity interval (y CM) < 1.93 in the nucleon-nucleon centre-of-mass frame. Their production is studied as a function of two measures of event activity, namely the charged-particle multiplicity measured in the pseudorapidity interval |η| < 2.4, andmore » the sum of transverse energy deposited at forward pseudorapidity, 4.0 < |η|< 5.2. The Y cross sections normalized by their event activity integrated values, Y(nS)/, are found to rise with both measures of the event activity in pp and pPb. In both collision systems, the ratios of the excited to the ground state cross sections, Y(nS)/Y(1S), are found to decrease with the charged-particle multiplicity, while as a function of the transverse energy the variation is less pronounced. Lastly, the event activity integrated double ratios, [Y(nS)/Y(1S)] pPb / [Y(nS)/Y(1S)] pp, are also measured and found to be 0.83 +/- 0.05 (stat.) +/- 0.05 (syst.) and 0.71 +/- 0.08 (stat.) +/- 0.09 (syst.) for Y(2S) and Y(3S), respectively.« less
Goh, Tenghooi; Huang, Jing -Shun; Yager, Kevin G.; ...
2016-08-11
The incorporation of multiple donors into the bulk-heterojunction layer of organic polymer solar cells (PSCs) has been demonstrated as a practical and elegant strategy to improve photovoltaics performance. However, it is challenging to successfully design and blend multiple donors, while minimizing unfavorable interactions (e.g., morphological traps, recombination centers, etc.). Here, a new Förster resonance energy transfer-based design is shown utilizing the synergistic nature of three light active donors (two small molecules and a high-performance donor–acceptor polymer) with a fullerene acceptor to create highly efficient quaternary PSCs with power conversion efficiencies (PCEs) of up to 10.7%. Within this quaternary architecture, itmore » is revealed that the addition of small molecules in low concentrations broadens the absorption bandwidth, induces cocrystalline molecular conformations, and promotes rapid (picosecond) energy transfer processes. Finally, these results provide guidance for the design of multiple-donor systems using simple processing techniques to realize single-junction PSC designs with unprecedented PCEs.« less
Ozyurt, A Sinem; Selby, Thomas L
2008-07-01
This study describes a method to computationally assess the function of homologous enzymes through small molecule binding interaction energy. Three experimentally determined X-ray structures and four enzyme models from ornithine cyclo-deaminase, alanine dehydrogenase, and mu-crystallin were used in combination with nine small molecules to derive a function score (FS) for each enzyme-model combination. While energy values varied for a single molecule-enzyme combination due to differences in the active sites, we observe that the binding energies for the entire pathway were proportional for each set of small molecules investigated. This proportionality of energies for a reaction pathway appears to be dependent on the amino acids in the active site and their direct interactions with the small molecules, which allows a function score (FS) to be calculated to assess the specificity of each enzyme. Potential of mean force (PMF) calculations were used to obtain the energies, and the resulting FS values demonstrate that a measurement of function may be obtained using differences between these PMF values. Additionally, limitations of this method are discussed based on: (a) larger substrates with significant conformational flexibility; (b) low homology enzymes; and (c) open active sites. This method should be useful in accurately predicting specificity for single enzymes that have multiple steps in their reactions and in high throughput computational methods to accurately annotate uncharacterized proteins based on active site interaction analysis. 2008 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, Matthias J.; Bedford, Nicholas M.; Jiang, Naisheng
The ability to generate new electrochemically active materials for energy generation and storage with improved properties will likely be derived from an understanding of atomic-scale structure/function relationships during electrochemical events. Here, the design and implementation of a new capillary electrochemical cell designed specifically forin situhigh-energy X-ray diffraction measurements is described. By increasing the amount of electrochemically active material in the X-ray path while implementing low-Zcell materials with anisotropic scattering profiles, an order of magnitude enhancement in diffracted X-ray signal over traditional cell geometries for multiple electrochemically active materials is demonstrated. This signal improvement is crucial for high-energy X-ray diffraction measurementsmore » and subsequent Fourier transformation into atomic pair distribution functions for atomic-scale structural analysis. As an example, clear structural changes in LiCoO 2under reductive and oxidative conditions using the capillary cell are demonstrated, which agree with prior studies. Accurate modeling of the LiCoO 2diffraction data using reverse Monte Carlo simulations further verifies accurate background subtraction and strong signal from the electrochemically active material, enabled by the capillary working electrode geometry.« less
46 CFR 111.10-5 - Multiple energy sources.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Multiple energy sources. 111.10-5 Section 111.10-5...-GENERAL REQUIREMENTS Power Supply § 111.10-5 Multiple energy sources. Failure of any single generating set energy source such as a boiler, diesel, gas turbine, or steam turbine must not cause all generating sets...
46 CFR 111.10-5 - Multiple energy sources.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Multiple energy sources. 111.10-5 Section 111.10-5...-GENERAL REQUIREMENTS Power Supply § 111.10-5 Multiple energy sources. Failure of any single generating set energy source such as a boiler, diesel, gas turbine, or steam turbine must not cause all generating sets...
46 CFR 111.10-5 - Multiple energy sources.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Multiple energy sources. 111.10-5 Section 111.10-5...-GENERAL REQUIREMENTS Power Supply § 111.10-5 Multiple energy sources. Failure of any single generating set energy source such as a boiler, diesel, gas turbine, or steam turbine must not cause all generating sets...
46 CFR 111.10-5 - Multiple energy sources.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Multiple energy sources. 111.10-5 Section 111.10-5...-GENERAL REQUIREMENTS Power Supply § 111.10-5 Multiple energy sources. Failure of any single generating set energy source such as a boiler, diesel, gas turbine, or steam turbine must not cause all generating sets...
46 CFR 111.10-5 - Multiple energy sources.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Multiple energy sources. 111.10-5 Section 111.10-5...-GENERAL REQUIREMENTS Power Supply § 111.10-5 Multiple energy sources. Failure of any single generating set energy source such as a boiler, diesel, gas turbine, or steam turbine must not cause all generating sets...
Reconfiguration of a smart surface using heteroclinic connections
McInnes, Colin R.; Xu, Ming
2017-01-01
A reconfigurable smart surface with multiple equilibria is presented, modelled using discrete point masses and linear springs with geometric nonlinearity. An energy-efficient reconfiguration scheme is then investigated to connect equal-energy unstable (but actively controlled) equilibria. In principle, zero net energy input is required to transition the surface between these unstable states, compared to transitions between stable equilibria across a potential barrier. These transitions between equal-energy unstable states, therefore, form heteroclinic connections in the phase space of the problem. Moreover, the smart surface model developed can be considered as a unit module for a range of applications, including modules which can aggregate together to form larger distributed smart surface systems. PMID:28265191
Resveratrol stimulates AMP kinase activity in neurons.
Dasgupta, Biplab; Milbrandt, Jeffrey
2007-04-24
Resveratrol is a polyphenol produced by plants that has multiple beneficial activities similar to those associated with caloric restriction (CR), such as increased life span and delay in the onset of diseases associated with aging. CR improves neuronal health, and the global beneficial effects of CR have been postulated to be mediated by the nervous system. One key enzyme thought to be activated during CR is the AMP-activated kinase (AMPK), a sensor of cellular energy levels. AMPK is activated by increases in the cellular AMP:ATP ratio, whereupon it functions to help preserve cellular energy. In this regard, the regulation of dietary food intake by hypothalamic neurons is mediated by AMPK. The suppression of nonessential energy expenditure by activated AMPK along with the CR mimetic and neuroprotective properties of resveratrol led us to hypothesize that neuronal activation of AMPK could be an important component of resveratrol activity. Here, we show that resveratrol activated AMPK in Neuro2a cells and primary neurons in vitro as well as in the brain. Resveratrol and the AMPK-activating compound 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) promoted robust neurite outgrowth in Neuro2a cells, which was blocked by genetic and pharmacologic inhibition of AMPK. Resveratrol also stimulated mitochondrial biogenesis in an AMPK-dependent manner. Resveratrol-stimulated AMPK activity in neurons depended on LKB1 activity but did not require the NAD-dependent protein deacetylase SIRT1 during this time frame. These findings suggest that neuronal activation of AMPK by resveratrol could affect neuronal energy homeostasis and contribute to the neuroprotective effects of resveratrol.
Loss of pericyte smoothened activity in mice with genetic deficiency of leptin.
Xie, Guanhua; Swiderska-Syn, Marzena; Jewell, Mark L; Machado, Mariana Verdelho; Michelotti, Gregory A; Premont, Richard T; Diehl, Anna Mae
2017-04-20
Obesity is associated with multiple diseases, but it is unclear how obesity promotes progressive tissue damage. Recovery from injury requires repair, an energy-expensive process that is coupled to energy availability at the cellular level. The satiety factor, leptin, is a key component of the sensor that matches cellular energy utilization to available energy supplies. Leptin deficiency signals energy depletion, whereas activating the Hedgehog pathway drives energy-consuming activities. Tissue repair is impaired in mice that are obese due to genetic leptin deficiency. Tissue repair is also blocked and obesity enhanced by inhibiting Hedgehog activity. We evaluated the hypothesis that loss of leptin silences Hedgehog signaling in pericytes, multipotent leptin-target cells that regulate a variety of responses that are often defective in obesity, including tissue repair and adipocyte differentiation. We found that pericytes from liver and white adipose tissue require leptin to maintain expression of the Hedgehog co-receptor, Smoothened, which controls the activities of Hedgehog-regulated Gli transcription factors that orchestrate gene expression programs that dictate pericyte fate. Smoothened suppression prevents liver pericytes from being reprogrammed into myofibroblasts, but stimulates adipose-derived pericytes to become white adipocytes. Progressive Hedgehog pathway decay promotes senescence in leptin-deficient liver pericytes, which, in turn, generate paracrine signals that cause neighboring hepatocytes to become fatty and less proliferative, enhancing vulnerability to liver damage. Leptin-responsive pericytes evaluate energy availability to inform tissue construction by modulating Hedgehog pathway activity and thus, are at the root of progressive obesity-related tissue pathology. Leptin deficiency inhibits Hedgehog signaling in pericytes to trigger a pericytopathy that promotes both adiposity and obesity-related tissue damage.
Dos Anjos, Luiz Antonio; Ferreira, Bianca Catarina Miranda; de Vasconcellos, Mauricio Teixeira Leite; Wahrlich, Vivian
2008-01-01
The accurate assessment of energy expenditure (EE) and of the physical activity level (PAL) is important for establishing the energy requirements (ER) of populations. Little is known about these variables in the Brazilian population. The purpose of the present study was to assess EE and PAL in the adult population (> 20 years) of Niterói, RJ. An adapted version of the MOSPA time-budget questionnaire was used to assess the duration of the daily activities of the subjects. The energy cost of the activities was obtained from the table published by FAO in 2004, expressed as multiples of the basal metabolic rate (BMR) measured by indirect calorimetry. Total daily EE (TDEE) was calculated as the sum of EE of all activities of a typical daily routine. TDEE was higher in males than in females (2382.0 + 38.0 and 1987.1 + 22.9 kcal.day-1 respectively) but women showed higher PAL values (1.70 + 0.02 and 1.75 + 0.01 respectively). ER estimated using a PAL of 1.40 was the best predictor of EE of the population in all nutritional status categories, particularly for males. In conclusion, it seems prudent to use lower PAL values when estimating the ER of the adult population of Niterói. It is also evident that more data on the energy cost of activities must be generated for establishing the ER of the Brazilian population.
Lecarpentier, Yves; Guillevin, Rémy; Vallée, Jean-Noël
2018-01-01
Demyelination in multiple sclerosis (MS) cells is the site of several energy metabolic abnormalities driven by dysregulation between the opposed interplay of peroxisome proliferator-activated receptor γ (PPARγ) and WNT/β-catenin pathways. We focus our review on the opposing interactions observed in demyelinating processes in MS between the canonical WNT/β-catenin pathway and PPARγ and their reprogramming energy metabolism implications. Demyelination in MS is associated with chronic inflammation, which is itself associated with the release of cytokines by CD4+ Th17 cells, and downregulation of PPARγ expression leading to the upregulation of the WNT/β-catenin pathway. Upregulation of WNT/β-catenin signaling induces activation of glycolytic enzymes that modify their energy metabolic behavior. Then, in MS cells, a large portion of cytosolic pyruvate is converted into lactate. This phenomenon is called the Warburg effect, despite the availability of oxygen. The Warburg effect is the shift of an energy transfer production from mitochondrial oxidative phosphorylation to aerobic glycolysis. Lactate production is correlated with increased WNT/β-catenin signaling and demyelinating processes by inducing dysfunction of CD4+ T cells leading to axonal and neuronal damage. In MS, downregulation of PPARγ decreases insulin sensitivity and increases neuroinflammation. PPARγ agonists inhibit Th17 differentiation in CD4+ T cells and then diminish release of cytokines. In MS, abnormalities in the regulation of circadian rhythms stimulate the WNT pathway to initiate the demyelination process. Moreover, PPARγ contributes to the regulation of some key circadian genes. Thus, PPARγ agonists interfere with reprogramming energy metabolism by directly inhibiting the WNT/β-catenin pathway and circadian rhythms and could appear as promising treatments in MS due to these interactions. PMID:29659554
Vallée, Alexandre; Lecarpentier, Yves; Guillevin, Rémy; Vallée, Jean-Noël
2018-04-16
Demyelination in multiple sclerosis (MS) cells is the site of several energy metabolic abnormalities driven by dysregulation between the opposed interplay of peroxisome proliferator-activated receptor γ (PPARγ) and WNT/β-catenin pathways. We focus our review on the opposing interactions observed in demyelinating processes in MS between the canonical WNT/β-catenin pathway and PPARγ and their reprogramming energy metabolism implications. Demyelination in MS is associated with chronic inflammation, which is itself associated with the release of cytokines by CD4⁺ Th17 cells, and downregulation of PPARγ expression leading to the upregulation of the WNT/β-catenin pathway. Upregulation of WNT/β-catenin signaling induces activation of glycolytic enzymes that modify their energy metabolic behavior. Then, in MS cells, a large portion of cytosolic pyruvate is converted into lactate. This phenomenon is called the Warburg effect, despite the availability of oxygen. The Warburg effect is the shift of an energy transfer production from mitochondrial oxidative phosphorylation to aerobic glycolysis. Lactate production is correlated with increased WNT/β-catenin signaling and demyelinating processes by inducing dysfunction of CD4⁺ T cells leading to axonal and neuronal damage. In MS, downregulation of PPARγ decreases insulin sensitivity and increases neuroinflammation. PPARγ agonists inhibit Th17 differentiation in CD4⁺ T cells and then diminish release of cytokines. In MS, abnormalities in the regulation of circadian rhythms stimulate the WNT pathway to initiate the demyelination process. Moreover, PPARγ contributes to the regulation of some key circadian genes. Thus, PPARγ agonists interfere with reprogramming energy metabolism by directly inhibiting the WNT/β-catenin pathway and circadian rhythms and could appear as promising treatments in MS due to these interactions.
Computational study of a calcium release-activated calcium channel
NASA Astrophysics Data System (ADS)
Talukdar, Keka; Shantappa, Anil
2016-05-01
The naturally occurring proteins that form hole in membrane are commonly known as ion channels. They play multiple roles in many important biological processes. Deletion or alteration of these channels often leads to serious problems in the physiological processes as it controls the flow of ions through it. The proper maintenance of the flow of ions, in turn, is required for normal health. Here we have investigated the behavior of a calcium release-activated calcium ion channel with pdb entry 4HKR in Drosophila Melanogaster. The equilibrium energy as well as molecular dynamics simulation is performed first. The protein is subjected to molecular dynamics simulation to find their energy minimized value. Simulation of the protein in the environment of water and ions has given us important results too. The solvation energy is also found using Charmm potential.
Free energy landscape of G-protein coupled receptors, explored by accelerated molecular dynamics.
Miao, Yinglong; Nichols, Sara E; McCammon, J Andrew
2014-04-14
G-protein coupled receptors (GPCRs) mediate cellular responses to various hormones and neurotransmitters and are important targets for treating a wide spectrum of diseases. They are known to adopt multiple conformational states (e.g., inactive, intermediate and active) during their modulation of various cell signaling pathways. Here, the free energy landscape of GPCRs is explored using accelerated molecular dynamics (aMD) simulations as demonstrated on the M2 muscarinic receptor, a key GPCR that regulates human heart rate and contractile forces of cardiomyocytes. Free energy profiles of important structural motifs that undergo conformational transitions upon GPCR activation and allosteric signaling are analyzed in detail, including the Arg(3.50)-Glu(6.30) ionic lock, the Trp(6.48) toggle switch and the hydrogen interactions between Tyr(5.58)-Tyr(7.53).
Assessing physical activity using wearable monitors: measures of physical activity.
Butte, Nancy F; Ekelund, Ulf; Westerterp, Klaas R
2012-01-01
Physical activity may be defined broadly as "all bodily actions produced by the contraction of skeletal muscle that increase energy expenditure above basal level." Physical activity is a complex construct that can be classified into major categories qualitatively, quantitatively, or contextually. The quantitative assessment of physical activity using wearable monitors is grounded in the measurement of energy expenditure. Six main categories of wearable monitors are currently available to investigators: pedometers, load transducers/foot-contact monitors, accelerometers, HR monitors, combined accelerometer and HR monitors, and multiple sensor systems. Currently available monitors are capable of measuring total physical activity as well as components of physical activity that play important roles in human health. The selection of wearable monitors for measuring physical activity will depend on the physical activity component of interest, study objectives, characteristics of the target population, and study feasibility in terms of cost and logistics. Future development of sensors and analytical techniques for assessing physical activity should focus on the dynamic ranges of sensors, comparability for sensor output across manufacturers, and the application of advanced modeling techniques to predict energy expenditure and classify physical activities. New approaches for qualitatively classifying physical activity should be validated using direct observation or recording. New sensors and methods for quantitatively assessing physical activity should be validated in laboratory and free-living populations using criterion methods of calorimetry or doubly labeled water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun Xudong; Hoeksema, J. Todd; Liu, Yang
We report the evolution of the magnetic field and its energy in NOAA active region 11158 over five days based on a vector magnetogram series from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamic Observatory (SDO). Fast flux emergence and strong shearing motion led to a quadrupolar sunspot complex that produced several major eruptions, including the first X-class flare of Solar Cycle 24. Extrapolated nonlinear force-free coronal fields show substantial electric current and free energy increase during early flux emergence near a low-lying sigmoidal filament with a sheared kilogauss field in the filament channel. The computed magneticmore » free energy reaches a maximum of {approx}2.6 Multiplication-Sign 10{sup 32} erg, about 50% of which is stored below 6 Mm. It decreases by {approx}0.3 Multiplication-Sign 10{sup 32} erg within 1 hr of the X-class flare, which is likely an underestimation of the actual energy loss. During the flare, the photospheric field changed rapidly: the horizontal field was enhanced by 28% in the core region, becoming more inclined and more parallel to the polarity inversion line. Such change is consistent with the conjectured coronal field 'implosion' and is supported by the coronal loop retraction observed by the Atmospheric Imaging Assembly (AIA). The extrapolated field becomes more 'compact' after the flare, with shorter loops in the core region, probably because of reconnection. The coronal field becomes slightly more sheared in the lowest layer, relaxes faster with height, and is overall less energetic.« less
Investigating Prompt Fission Neutron Emission from 235U(n,f) in the Resolved Resonance Region
NASA Astrophysics Data System (ADS)
Göök, Alf; Hambsch, Franz-Josef; Oberstedt, Stephan
2016-03-01
Investigations of prompt emission in fission is of importance in understanding the fission process in general and the sharing of excitation energy among the fission fragments in particular. Experimental activities at IRMM on prompt neutron emission from fission in response to OECD/NEA nuclear data requests is presented in this contribution. Main focus lies on currently on-going investigations of prompt neutron emission from the reaction 235U(n,f) in the region of the resolved resonances. For this reaction strong fluctuations of fission fragment mass distributions and mean total kinetic energy have been observed [Nucl. Phys. A 491, 56 (1989)] as a function of incident neutron energy in the resonance region. In addition fluctuations of prompt neutron multiplicities were also observed [Phys. Rev. C 13, 195 (1976)]. The goal of the present study is to verify the current knowledge of prompt neutron multiplicity fluctuations and to study correlations with fission fragment properties.
Carrero, Juan Jesús; Stenvinkel, Peter; Cuppari, Lilian; Ikizler, T Alp; Kalantar-Zadeh, Kamyar; Kaysen, George; Mitch, William E; Price, S Russ; Wanner, Christoph; Wang, Angela Y M; ter Wee, Pieter; Franch, Harold A
2013-03-01
Protein-energy wasting (PEW), a term proposed by the International Society of Renal Nutrition and Metabolism (ISRNM), refers to the multiple nutritional and catabolic alterations that occur in chronic kidney disease (CKD) and associate with morbidity and mortality. To increase awareness, identify research needs, and provide the basis for future work to understand therapies and consequences of PEW, ISRNM provides this consensus statement of current knowledge on the etiology of PEW syndrome in CKD. Although insufficient food intake (true undernutrition) due to poor appetite and dietary restrictions contribute, other highly prevalent factors are required for the full syndrome to develop. These include uremia-induced alterations such as increased energy expenditure, persistent inflammation, acidosis, and multiple endocrine disorders that render a state of hypermetabolism leading to excess catabolism of muscle and fat. In addition, comorbid conditions associated with CKD, poor physical activity, frailty, and the dialysis procedure per se further contribute to PEW. Published by Elsevier Inc.
Method and apparatus using an active ionic liquid for algae biofuel harvest and extraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.
The invention relates to use of an active ionic liquid to dissolve algae cell walls. The ionic liquid is used to, in an energy efficient manner, dissolve and/or lyse an algae cell walls, which releases algae constituents used in the creation of energy, fuel, and/or cosmetic components. The ionic liquids include ionic salts having multiple charge centers, low, very low, and ultra low melting point ionic liquids, and combinations of ionic liquids. An algae treatment system is described, which processes wet algae in a lysing reactor, separates out algae constituent products, and optionally recovers the ionic liquid in an energymore » efficient manner.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yusef-Zadeh, F.; Roberts, D. A.; Royster, M.
2013-01-01
The high-energy activity in the inner few degrees of the Galactic center is traced by diffuse radio, X-ray, and {gamma}-ray emission. The physical relationship between different components of diffuse gas emitting at multiple wavelengths is a focus of this work. We first present radio continuum observations using the Green Bank Telescope and model the nonthermal spectrum in terms of a broken power-law distribution of {approx}GeV electrons emitting synchrotron radiation. We show that the emission detected by Fermi is primarily due to nonthermal bremsstrahlung produced by the population of synchrotron emitting electrons in the GeV energy range interacting with neutral gas.more » The extrapolation of the electron population measured from radio data to low and high energies can also explain the origin of Fe I 6.4 keV line and diffuse TeV emission, as observed with Suzaku, XMM-Newton, Chandra, and the H.E.S.S. observatories. The inferred physical quantities from modeling multiwavelength emission in the context of bremsstrahlung emission from the inner {approx}300 Multiplication-Sign 120 pc of the Galactic center are constrained to have the cosmic-ray ionization rate {approx}1-10 Multiplication-Sign 10{sup -15} s{sup -1}, molecular gas heating rate elevating the gas temperature to 75-200 K, fractional ionization of molecular gas 10{sup -6}-10{sup -5}, large-scale magnetic field 10-20 {mu}G, the density of diffuse and dense molecular gas {approx}100 and {approx}10{sup 3} cm{sup -3} over 300 pc and 50 pc path lengths, and the variability of Fe I K{alpha} 6.4 keV line emission on yearly timescales. Important implications of our study are that GeV electrons emitting in radio can explain the GeV {gamma}-rays detected by Fermi and that the cosmic-ray irradiation model, like the model of the X-ray irradiation triggered by past activity of Sgr A*, can also explain the origin of the variable 6.4 keV emission from Galactic center molecular clouds.« less
Marteinson, Sarah C; Marcogliese, David J; Verreault, Jonathan
2017-10-01
Daily energy expenditure (DEE) in animals is influenced by many factors although the impact of stressors remains largely unknown. The objective of this study was to determine how multiple physiological stressors (parasite infection and contaminant exposure) and natural challenges (energy-demanding activities and weather conditions) may affect DEE in nesting ring-billed gulls (Larus delawarensis) exposed to high concentrations of persistent organic contaminants (POPs). Physical activity, temperature, gastrointestinal parasitic worm abundance, relative spleen mass, plasma thyroid hormone levels and liver concentrations of POPs were determined; field metabolic rate (FMR) was used as a measure of DEE. For females, FMR was best explained by the percent of time spent in nest-site attendance and exposure to temperatures below their lower critical limit (65% of variation); 32% was also explained by relative spleen mass. In males, FMR was best explained by the number of hours spent in nest site attendance and either relative spleen mass or liver concentrations of tetra-brominated diphenyl ethers (tetra-BDEs) (55% of variation). Relative spleen mass, as an important factor relating to FMR, was best explained by models with a combination of parasite abundance (Diplostomum for females and Eucoleus for males) in a negative relationship, and liver POP concentrations (p,p'-DDE for females and tetra-BDEs for males) in a positive relationship (34%, 55% of variation for females and males, respectively). This study demonstrates that immune activity may be an important factor affecting energy expenditure in ring-billed gulls, and that contaminants and parasite abundance may have both a direct and/or indirect influence on FMR. Copyright © 2017 Elsevier Inc. All rights reserved.
Minimizing energy dissipation of matrix multiplication kernel on Virtex-II
NASA Astrophysics Data System (ADS)
Choi, Seonil; Prasanna, Viktor K.; Jang, Ju-wook
2002-07-01
In this paper, we develop energy-efficient designs for matrix multiplication on FPGAs. To analyze the energy dissipation, we develop a high-level model using domain-specific modeling techniques. In this model, we identify architecture parameters that significantly affect the total energy (system-wide energy) dissipation. Then, we explore design trade-offs by varying these parameters to minimize the system-wide energy. For matrix multiplication, we consider a uniprocessor architecture and a linear array architecture to develop energy-efficient designs. For the uniprocessor architecture, the cache size is a parameter that affects the I/O complexity and the system-wide energy. For the linear array architecture, the amount of storage per processing element is a parameter affecting the system-wide energy. By using maximum amount of storage per processing element and minimum number of multipliers, we obtain a design that minimizes the system-wide energy. We develop several energy-efficient designs for matrix multiplication. For example, for 6×6 matrix multiplication, energy savings of upto 52% for the uniprocessor architecture and 36% for the linear arrary architecture is achieved over an optimized library for Virtex-II FPGA from Xilinx.
Yu, T; Yang, G; Hou, Y; Tang, X; Wu, C; Wu, X-A; Guo, L; Zhu, Q; Luo, H; Du, Y-E; Wen, S; Xu, L; Yin, J; Tu, G; Liu, M
2017-04-01
Multiple drug resistance is a challenging issue in the clinic. There is growing evidence that the G-protein-coupled estrogen receptor (GPER) is a novel mediator in the development of multidrug resistance in both estrogen receptor (ER)-positive and -negative breast cancers, and that cancer-associated fibroblasts (CAFs) in the tumor microenvironment may be a new agent that promotes drug resistance in tumor cells. However, the role of cytoplasmic GPER of CAFs on tumor therapy remains unclear. Here we first show that the breast tumor cell-activated PI3K/AKT (phosphoinositide 3-kinase/AKT) signaling pathway induces the cytoplasmic GPER translocation of CAFs in a CRM1-dependent pattern, and leads to the activation of a novel estrogen/GPER/cAMP/PKA/CREB signaling axis that triggers the aerobic glycolysis switch in CAFs. The glycolytic CAFs feed the extra pyruvate and lactate to tumor cells for augmentation of mitochondrial activity, and this energy metabolically coupled in a 'host-parasite relationship' between catabolic CAFs and anabolic cancer cells confers the tumor cells with multiple drug resistance to several conventional clinical treatments including endocrine therapy (tamoxifen), Her-2-targeted therapy (herceptin) and chemotherapy (epirubicin). Moreover, the clinical data from 18 F-fluorodeoxyglucose positron emission tomography/computed tomography further present a strong association between the GPER/cAMP/PKA/CREB pathway of stromal fibroblasts with tumor metabolic activity and clinical treatment, suggesting that targeting cytoplasmic GPER in CAFs may rescue the drug sensitivity in patients with breast cancer. Thus, our data define novel insights into the stromal GPER-mediated multiple drug resistance from the point of reprogramming of tumor energy metabolism and provide the rationale for CAFs as a promising target for clinical therapy.
Concannon, Caoimhín G.; Tuffy, Liam P.; Weisová, Petronela; Bonner, Helena P.; Dávila, David; Bonner, Caroline; Devocelle, Marc C.; Strasser, Andreas; Ward, Manus W.
2010-01-01
Excitotoxicity after glutamate receptor overactivation induces disturbances in cellular ion gradients, resulting in necrosis or apoptosis. Excitotoxic necrosis is triggered by rapid, irreversible ATP depletion, whereas the ability to recover cellular bioenergetics is suggested to be necessary for the activation of excitotoxic apoptosis. In this study, we demonstrate that even a transient decrease in cellular bioenergetics and an associated activation of adenosine monophosphate–activated protein kinase (AMPK) is necessary for the activation of excitotoxic apoptosis. We show that the Bcl-2 homology domain 3 (BH3)–only protein Bim, a proapoptotic Bcl-2 family member, is activated in multiple excitotoxicity paradigms, mediates excitotoxic apoptosis, and inhibits delayed Ca2+ deregulation, mitochondrial depolarization, and apoptosis-inducing factor translocation. We demonstrate that bim activation required the activation of AMPK and that prolonged AMPK activation is sufficient to induce bim gene expression and to trigger a bim-dependent cell death. Collectively, our data demonstrate that AMPK activation and the BH3-only protein Bim couple transient energy depletion to stress-induced neuronal apoptosis. PMID:20351066
Free energy landscape of activation in a signaling protein at atomic resolution
Pontiggia, F.; Pachov, D.V.; Clarkson, M.W.; Villali, J.; Hagan, M.F.; Pande, V.S.; Kern, D.
2015-01-01
The interconversion between inactive and active protein states, traditionally described by two static structures, is at the heart of signaling. However, how folded states interconvert is largely unknown due to the inability to experimentally observe transition pathways. Here we explore the free energy landscape of the bacterial response regulator NtrC by combining computation and NMR, and discover unexpected features underlying efficient signaling. We find that functional states are defined purely in kinetic and not structural terms. The need of a well-defined conformer, crucial to the active state, is absent in the inactive state, which comprises a heterogeneous collection of conformers. The transition between active and inactive states occurs through multiple pathways, facilitated by a number of nonnative transient hydrogen bonds, thus lowering the transition barrier through both entropic and enthalpic contributions. These findings may represent general features for functional conformational transitions within the folded state. PMID:26073309
Nutrition activation and dietary intake disparities among US adults.
Langellier, Brent A; Massey, Philip M
2016-12-01
To introduce the concept 'nutrition activation' (the use of health and nutrition information when making food and diet decisions) and to assess the extent to which nutrition activation varies across racial/ethnic groups and explains dietary disparities. Cross-sectional sample representative of adults in the USA. Primary outcome measures include daily energy intake and consumption of sugar-sweetened beverages (SSB), fast foods and sit-down restaurant foods as determined by two 24 h dietary recalls. We use bivariate statistics and multiple logistic and linear regression analyses to assess racial/ethnic disparities in nutrition activation and food behaviour outcomes. USA. Adult participants (n 7825) in the 2007-2010 National Health and Nutrition Examination Survey. Nutrition activation varies across racial/ethnic groups and is a statistically significant predictor of SSB, fast-food and restaurant-food consumption and daily energy intake. Based on the sample distribution, an increase from the 25th to 75th percentile in nutrition activation is associated with a decline of about 377 kJ (90 kcal)/d. Increased nutrition activation is associated with a larger decline in SSB consumption among whites than among blacks and foreign-born Latinos. Fast-food consumption is associated with a larger 'spike' in daily energy intake among blacks (+1582 kJ (+378 kcal)/d) than among whites (+678 kJ (+162 kcal)/d). Nutrition activation is an important but understudied determinant of energy intake and should be explicitly incorporated into obesity prevention interventions, particularly among racial/ethnic minorities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trumpy, T.
1995-12-01
More efficient use of energy resources can be promoted by various regulatory means, i.e., taxation, subsidies, and pricing. Various incentives can be provided by income and revenue tax breaks-deductible energy audit fees, energy saving investment credits, breaks for energy saving entrepreneurs, and energy savings accounts run through utility accounts. Value added and excise taxes can also be adjusted to reward energy saving investments and energy saving entrepreneurial activity. Incentives can be provided in the form of cash refunds, including trade-in-and-scrap programs and reimbursements or subsidies on audit costs and liability insurance. Pricing incentives include lower rates for less energy use,more » prepayment of deposit related to peak load use, electronically dispatched multiple tariffs, savings credits based on prior peak use, and subsidized {open_quotes}leasing{close_quotes} of more efficient appliances and lights. Credits, with an emphasis on pooling small loans, and 5-year energy savings contracts are also discussed.« less
Materials @ LANL: Solutions for National Security Challenges
NASA Astrophysics Data System (ADS)
Teter, David
2012-10-01
Materials science activities impact many programmatic missions at LANL including nuclear weapons, nuclear energy, renewable energy, global security and nonproliferation. An overview of the LANL materials science strategy and examples of materials science programs will be presented. Major materials leadership areas are in materials dynamics, actinides and correlated electron materials, materials in radiation extremes, energetic materials, integrated nanomaterials and complex functional materials. Los Alamos is also planning a large-scale, signature science facility called MaRIE (Matter Radiation Interactions in Extremes) to address in-situ characterization of materials in dynamic and radiation environments using multiple high energy probes. An overview of this facility will also be presented.
Hofmann, Jonathan N.; Moore, Steven C.; Lim, Unhee; Park, Yikyung; Baris, Dalsu; Hollenbeck, Albert R.; Matthews, Charles E.; Gibson, Todd M.; Hartge, Patricia; Purdue, Mark P.
2013-01-01
Several studies have reported an increased risk of multiple myeloma associated with excess body weight. We investigated the risk of multiple myeloma in relation to separate measures of adiposity and energy balance at different ages in the National Institutes of Health-AARP Diet and Health Study, a large prospective cohort study in the United States. Participants completed a baseline questionnaire (1995–1996; n = 485,049), and a subset of participants completed a second questionnaire (1996–1997; n = 305,618) in which we solicited more detailed exposure information. Hazard ratios and 95% confidence intervals were estimated for the risk of multiple myeloma (overall, n = 813; subset, n = 489) in relation to several measures of obesity and leisure time physical activity. Multiple myeloma risk was associated with increasing body mass index (BMI) at cohort entry (per 5-kg/m2 increase, hazard ratio (HR) = 1.10, 95% confidence interval (CI): 1.00, 1.22); similar associations were observed for BMI at age 50 years (HR = 1.14, 95% CI: 1.02, 1.28), age 35 years (HR = 1.20, 95% CI: 1.05, 1.36), and age 18 years (HR = 1.13, 95% CI: 0.98, 1.32) without adjustment for baseline BMI. Risk of multiple myeloma was not associated with physical activity level at any age. These findings support the hypothesis that excess body weight, both in early adulthood and later in life, is a risk factor for multiple myeloma and suggest that maintaining a healthy body weight throughout life may reduce multiple myeloma risk. PMID:23543160
Johar, Kaid; Priya, Anusha; Wong-Riley, Margaret T T
2012-11-23
NRF-1 regulates mediators of neuronal activity and energy generation. NRF-1 transcriptionally regulates Na(+)/K(+)-ATPase subunits α1 and β1. NRF-1 functionally regulates mediators of energy consumption in neurons. NRF-1 mediates the tight coupling of neuronal activity, energy generation, and energy consumption at the molecular level. Energy generation and energy consumption are tightly coupled to neuronal activity at the cellular level. Na(+)/K(+)-ATPase, a major energy-consuming enzyme, is well expressed in neurons rich in cytochrome c oxidase, an important enzyme of the energy-generating machinery, and glutamatergic receptors that are mediators of neuronal activity. The present study sought to test our hypothesis that the coupling extends to the molecular level, whereby Na(+)/K(+)-ATPase subunits are regulated by the same transcription factor, nuclear respiratory factor 1 (NRF-1), found recently by our laboratory to regulate all cytochrome c oxidase subunit genes and some NMDA and AMPA receptor subunit genes. By means of multiple approaches, including in silico analysis, electrophoretic mobility shift and supershift assays, in vivo chromatin immunoprecipitation, promoter mutational analysis, and real-time quantitative PCR, NRF-1 was found to functionally bind to the promoters of Atp1a1 and Atp1b1 genes but not of the Atp1a3 gene in neurons. The transcripts of Atp1a1 and Atp1b1 subunit genes were up-regulated by KCl and down-regulated by tetrodotoxin. Atp1b1 is positively regulated by NRF-1, and silencing of NRF-1 with small interference RNA blocked the up-regulation of Atp1b1 induced by KCl, whereas overexpression of NRF-1 rescued these transcripts from being suppressed by tetrodotoxin. On the other hand, Atp1a1 is negatively regulated by NRF-1. The binding sites of NRF-1 on Atp1a1 and Atp1b1 are conserved among mice, rats, and humans. Thus, NRF-1 regulates key Na(+)/K(+)-ATPase subunits and plays an important role in mediating the tight coupling between energy consumption, energy generation, and neuronal activity at the molecular level.
Woods, Thomas N; Snow, Martin; Harder, Jerald; Chapman, Gary; Cookson, Angela
A different approach to studying solar spectral irradiance (SSI) variations, without the need for long-term (multi-year) instrument degradation corrections, is examining the total energy of the irradiance variation during 6-month periods. This duration is selected because a solar active region typically appears suddenly and then takes 5 to 7 months to decay and disperse back into the quiet-Sun network. The solar outburst energy, which is defined as the irradiance integrated over the 6-month period and thus includes the energy from all phases of active region evolution, could be considered the primary cause for the irradiance variations. Because solar cycle variation is the consequence of multiple active region outbursts, understanding the energy spectral variation may provide a reasonable estimate of the variations for the 11-year solar activity cycle. The moderate-term (6-month) variations from the Solar Radiation and Climate Experiment (SORCE) instruments can be decomposed into positive (in-phase with solar cycle) and negative (out-of-phase) contributions by modeling the variations using the San Fernando Observatory (SFO) facular excess and sunspot deficit proxies, respectively. These excess and deficit variations are fit over 6-month intervals every 2 months over the mission, and these fitted variations are then integrated over time for the 6-month energy. The dominant component indicates which wavelengths are in-phase and which are out-of-phase with solar activity. The results from this study indicate out-of-phase variations for the 1400 - 1600 nm range, with all other wavelengths having in-phase variations.
NASA Astrophysics Data System (ADS)
Li, Long-Biao; Zhang, Zhi-Bin; Rice, Jared
2015-09-01
The rebrightening phenomenon is an interesting feature in some X-ray, optical, and radio afterglows of gamma-ray bursts (GRBs). Here, we propose a possible energy-supply assumption to explain the rebrightenings of radio afterglows, in which the central engine with multiple active phases can supply at least two GRB pulses in a typical GRB duration time. Considering the case of double pulses supplied by the central engine, the double pulses have separate physical parameters, except for the number density of the surrounding interstellar medium (ISM). Their independent radio afterglows are integrated by the ground detectors to form the rebrightening phenomenon. In this Letter, we firstly simulate diverse rebrightening light curves under consideration of different and independent physical parameters. Using this assumption, we also give our best fit to the radio afterglow of GRB 970508 at three frequencies of 1.43, 4.86, and 8.46 GHz. We suggest that the central engine may be active continuously at a timescale longer than that of a typical GRB duration time as many authors have suggested (e.g., Zhang et al., Astrophys. J. 787:66, 2014; Gao and Mészáros, Astrophys. J. 802:90, 2015), and that it may supply enough energy to cause the long-lasting rebrightenings observed in some GRB afterglows.
A Method for Modeling Household Occupant Behavior to Simulate Residential Energy Consumption
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Brandon J; Starke, Michael R; Abdelaziz, Omar
2014-01-01
This paper presents a statistical method for modeling the behavior of household occupants to estimate residential energy consumption. Using data gathered by the U.S. Census Bureau in the American Time Use Survey (ATUS), actions carried out by survey respondents are categorized into ten distinct activities. These activities are defined to correspond to the major energy consuming loads commonly found within the residential sector. Next, time varying minute resolution Markov chain based statistical models of different occupant types are developed. Using these behavioral models, individual occupants are simulated to show how an occupant interacts with the major residential energy consuming loadsmore » throughout the day. From these simulations, the minimum number of occupants, and consequently the minimum number of multiple occupant households, needing to be simulated to produce a statistically accurate representation of aggregate residential behavior can be determined. Finally, future work will involve the use of these occupant models along side residential load models to produce a high-resolution energy consumption profile and estimate the potential for demand response from residential loads.« less
Quality of life and patient preferences: identification of subgroups of multiple sclerosis patients.
Rosato, Rosalba; Testa, Silvia; Oggero, Alessandra; Molinengo, Giorgia; Bertolotto, Antonio
2015-09-01
The aim of this study was to estimate preferences related to quality of life attributes in people with multiple sclerosis, by keeping heterogeneity of patient preference in mind, using the latent class approach. A discrete choice experiment survey was developed using the following attributes: activities of daily living, instrumental activities of daily living, pain/fatigue, anxiety/depression and attention/concentration. Choice sets were presented as pairs of hypothetical health status, based upon a fractional factorial design. The latent class logit model estimated on 152 patients identified three subpopulations, which, respectively, attached more importance to: (1) the physical dimension; (2) pain/fatigue and anxiety/depression; and (3) instrumental activities of daily living impairments, anxiety/depression and attention/concentration. A posterior analysis suggests that the latent class membership may be related to an individual's age to some extent, or to diagnosis and treatment, while apart from energy dimension, no significant difference exists between latent groups, with regard to Multiple Sclerosis Quality of Life-54 scales. A quality of life preference-based utility measure for people with multiple sclerosis was developed. These utility values allow identification of a hierarchic priority among different aspects of quality of life and may allow physicians to develop a care programme tailored to patient needs.
A mixed methods study of multiple health behaviors among individuals with stroke.
Plow, Matthew; Moore, Shirley M; Sajatovic, Martha; Katzan, Irene
2017-01-01
Individuals with stroke often have multiple cardiovascular risk factors that necessitate promoting engagement in multiple health behaviors. However, observational studies of individuals with stroke have typically focused on promoting a single health behavior. Thus, there is a poor understanding of linkages between healthy behaviors and the circumstances in which factors, such as stroke impairments, may influence a single or multiple health behaviors. We conducted a mixed methods convergent parallel study of 25 individuals with stroke to examine the relationships between stroke impairments and physical activity, sleep, and nutrition. Our goal was to gain further insight into possible strategies to promote multiple health behaviors among individuals with stroke. This study focused on physical activity, sleep, and nutrition because of their importance in achieving energy balance, maintaining a healthy weight, and reducing cardiovascular risks. Qualitative and quantitative data were collected concurrently, with the former being prioritized over the latter. Qualitative data was prioritized in order to develop a conceptual model of engagement in multiple health behaviors among individuals with stroke. Qualitative and quantitative data were analyzed independently and then were integrated during the inference stage to develop meta-inferences. The 25 individuals with stroke completed closed-ended questionnaires on healthy behaviors and physical function. They also participated in face-to-face focus groups and one-to-one phone interviews. We found statistically significant and moderate correlations between hand function and healthy eating habits ( r = 0.45), sleep disturbances and limitations in activities of daily living ( r = - 0.55), BMI and limitations in activities of daily living ( r = - 0.49), physical activity and limitations in activities of daily living ( r = 0.41), mobility impairments and BMI ( r = - 0.41), sleep disturbances and physical activity ( r = - 0.48), sleep disturbances and BMI ( r = 0.48), and physical activity and BMI ( r = - 0.45). We identified five qualitative themes: (1) Impairments: reduced autonomy, (2) Environmental forces: caregivers and information, (3) Re-evaluation: priorities and attributions, (4) Resiliency: finding motivation and solutions, and (5) Negative affectivity: stress and self-consciousness. Three meta-inferences and a conceptual model described circumstances in which factors could influence single or multiple health behaviors. This is the first mixed methods study of individuals with stroke to elaborate on relationships between multiple health behaviors, BMI, and physical function. A conceptual model illustrates addressing sleep disturbances, activity limitations, self-image, and emotions to promote multiple health behaviors. We discuss the relevance of the meta-inferences in designing multiple behavior change interventions for individuals with stroke.
Identifying productive resources in secondary school students' discourse about energy
NASA Astrophysics Data System (ADS)
Harrer, Benedikt
A growing program of research in science education acknowledges the beginnings of disciplinary reasoning in students' ideas and seeks to inform instruction that responds productively to these disciplinary progenitors in the moment to foster their development into sophisticated scientific practice. This dissertation examines secondary school students' ideas about energy for progenitors of disciplinary knowledge and practice. Previously, researchers argued that students' ideas about energy were constrained by stable and coherent conceptual structures that conflicted with an assumed unified scientific conception and therefore needed to be replaced. These researchers did not attend to the productive elements in students' ideas about energy. To analyze the disciplinary substance in students' ideas, a theoretical perspective was developed that extends Hammer and colleagues' resources framework. This elaboration allows for the identification of disciplinary productive resources---i.e., appropriately activated declarative and procedural pieces of knowledge---in individual students' utterances as well as in the interactions of multiple learners engaged in group learning activities. Using this framework, original interview transcripts from one of the most influential studies of students' ideas about energy (Watts, 1983. Some alternative views of energy. Physics Education, 18/5, 213-217) were analyzed. Disciplinary productive resources regarding the ontology of energy, indicators for energy, and mechanistic reasoning about energy were found to be activated by interviewed students. These valuable aspects were not recognized by the original author. An interpretive analysis of video recorded student-centered discourse in rural Maine middle schools was carried out to find cases of resource activation in classroom discussions. Several cases of disciplinary productive resources regarding the nature of energy and its forms as well as the construction of a mechanistic energy story were identified and richly described. Like energy, resources are manifested in various ways. The results of this study imply the necessity of appropriate disciplinary training for teachers that enables them to recognize and productively respond to disciplinary progenitors of the energy concept in students' ideas.
Calibration and validation of wearable monitors.
Bassett, David R; Rowlands, Alex; Trost, Stewart G
2012-01-01
Wearable monitors are increasingly being used to objectively monitor physical activity in research studies within the field of exercise science. Calibration and validation of these devices are vital to obtaining accurate data. This article is aimed primarily at the physical activity measurement specialist, although the end user who is conducting studies with these devices also may benefit from knowing about this topic. Initially, wearable physical activity monitors should undergo unit calibration to ensure interinstrument reliability. The next step is to simultaneously collect both raw signal data (e.g., acceleration) from the wearable monitors and rates of energy expenditure, so that algorithms can be developed to convert the direct signals into energy expenditure. This process should use multiple wearable monitors and a large and diverse subject group and should include a wide range of physical activities commonly performed in daily life (from sedentary to vigorous). New methods of calibration now use "pattern recognition" approaches to train the algorithms on various activities, and they provide estimates of energy expenditure that are much better than those previously available with the single-regression approach. Once a method of predicting energy expenditure has been established, the next step is to examine its predictive accuracy by cross-validating it in other populations. In this article, we attempt to summarize the best practices for calibration and validation of wearable physical activity monitors. Finally, we conclude with some ideas for future research ideas that will move the field of physical activity measurement forward.
Woon, Fui Chee; Chin, Yit Siew; Mohd Nasir, Mohd Taib
2015-01-01
This paper investigates the association between behavioural factors and BMI-for-age among early adolescents (10-11 years old) in Hulu Langat district, Selangor. This cross-sectional study was conducted among 333 primary school students. Body weight and height of the students were measured and their BMI-for-age was calculated. Eating behaviours, energy intake, energy expenditure, physical activity, and screen time were assessed using the Eating Behaviours Questionnaire and a 2-day dietary and physical activity recall, respectively. Data were analysed using multiple linear regression analysis. The prevalence of overweight and obesity (28.2%) was about twice the prevalence of thinness (11.1%). The mean energy intake and energy expenditure of the students was 1772±441kcal/day and 1705±331kcal/day, respectively. Three in five of the students (60.1%) skipped at least one meal and 98.2% snacked between meals daily. A majority of them (55.3%) were sedentary. Low energy intake (p<0.05) and low energy expenditure (p<0.05) were associated with high BMI-for-age. Energy expenditure (β=-0.033) and energy intake (β=-0.090) significantly explained 65.1% of the variances in BMI-for-age (F=119.170, p<0.05). These findings suggested that promoting healthy eating and active lifestyle should be targeted in the prevention and management of obesity among early adolescents. Copyright © 2014 Asian Oceanian Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.
Multiple resonant railgun power supply
Honig, E.M.; Nunnally, W.C.
1985-06-19
A multiple repetitive resonant railgun power supply provides energy for repetitively propelling projectiles from a pair of parallel rails. A plurality of serially connected paired parallel rails are powered by similar power supplies. Each supply comprises an energy storage capacitor, a storage inductor to form a resonant circuit with the energy storage capacitor and a magnetic switch to transfer energy between the resonant circuit and the pair of parallel rails for the propelling of projectiles. The multiple serial operation permits relatively small energy components to deliver overall relatively large amounts of energy to the projectiles being propelled.
Multiple resonant railgun power supply
Honig, Emanuel M.; Nunnally, William C.
1988-01-01
A multiple repetitive resonant railgun power supply provides energy for repetitively propelling projectiles from a pair of parallel rails. A plurality of serially connected paired parallel rails are powered by similar power supplies. Each supply comprises an energy storage capacitor, a storage inductor to form a resonant circuit with the energy storage capacitor and a magnetic switch to transfer energy between the resonant circuit and the pair of parallel rails for the propelling of projectiles. The multiple serial operation permits relatively small energy components to deliver overall relatively large amounts of energy to the projectiles being propelled.
Resonances of nanoparticles with poor plasmonic metal tips
NASA Astrophysics Data System (ADS)
Ringe, Emilie; Desantis, Christopher J.; Collins, Sean M.; Duchamp, Martial; Dunin-Borkowski, Rafal E.; Skrabalak, Sara E.; Midgley, Paul A.
2015-11-01
The catalytic and optical properties of metal nanoparticles can be combined to create platforms for light-driven chemical energy storage and enhanced in-situ reaction monitoring. However, the heavily damped plasmon resonances of many catalytically active metals (e.g. Pt, Pd) prevent this dual functionality in pure nanostructures. The addition of catalytic metals at the surface of efficient plasmonic particles thus presents a unique opportunity if the resonances can be conserved after coating. Here, nanometer resolution electron-based techniques (electron energy loss, cathodoluminescence, and energy dispersive X-ray spectroscopy) are used to show that Au particles incorporating a catalytically active but heavily damped metal, Pd, sustain multiple size-dependent localized surface plasmon resonances (LSPRs) that are narrow and strongly localized at the Pd-rich tips. The resonances also couple with a dielectric substrate and other nanoparticles, establishing that the full range of plasmonic behavior is observed in these multifunctional nanostructures despite the presence of Pd.
Swoboda, Christine M; Miller, Carla K; Wills, Celia E
2016-08-01
The purpose of this study was to evaluate a 4-month telephone-based goal-setting and decision support intervention among adults with type 2 diabetes mellitus (T2DM) and multiple risk factors for cardiovascular disease (CVD). A randomized pretest-posttest control group design was employed. Overweight or obese adults aged 40 to 75 years with T2DM and ≥1 additional CVD risk factor were provided with individualized CVD risk information. At baseline and each biweekly telephone call, the multiple-goal group self-selected both diet- and physical activity-related goals, the single goal group set a single goal, and the control group received information about community health resources. Dietary intake was assessed via a food frequency questionnaire, physical activity via questionnaire, and A1C and blood lipids via fasting fingerstick sample. Between-group differences for clinical (ie, A1C, blood pressure, and blood lipids), physical activity, and dietary variables were evaluated using Kruskal-Wallis, Mann-Whitney U, analysis of variance, and t tests. From pre- to postintervention, the single-goal group demonstrated significant improvement in systolic blood pressure and intake of servings of fruits, vegetables, and refined grains (all P < .05). The multiple-goal group reported significant reduction in percent energy from total, saturated, monounsaturated, and trans fat intake and significant increase in leisure time walking (all P < .05). A multiple-goal approach over 4 months can improve dietary and physical activity outcomes, while a single-goal approach may facilitate improvement in one behavioral domain. Additional research is needed to evaluate maintenance of the achieved changes. © 2016 The Author(s).
Yadav, Dharmendra Kumar; Kalani, Komal; Singh, Abhishek K; Khan, Feroz; Srivastava, Santosh K; Pant, Aditya B
2014-01-01
In the present work, QSAR model was derived by multiple linear regression method for the prediction of anticancer activity of 18β-glycyrrhetinic acid derivatives against the human breast cancer cell line MCF-7. The QSAR model for anti-proliferative activity against MCF-7 showed high correlation (r(2)=0.90 and rCV(2)=0.83) and indicated that chemical descriptors namely, dipole moment (debye), steric energy (kcal/mole), heat of formation (kcal/mole), ionization potential (eV), LogP, LUMO energy (eV) and shape index (basic kappa, order 3) correlate well with activity. The QSAR virtually predicted that active derivatives were first semi-synthesized and characterized on the basis of their (1)H and (13)C NMR spectroscopic data and then were in-vitro tested against MCF-7 cancer cell line. In particular, octylamide derivative of glycyrrhetinic acid GA-12 has marked cytotoxic activity against MCF-7 similar to that of standard anticancer drug paclitaxel. The biological assays of active derivative selected by virtual screening showed significant experimental activity.
Energy to the Edge (E2E) U.S. Army Rapid Equipping Force
2014-03-21
generators, parallel multiple sources, prioritize loads, and balance loads. Smart grids are based on complex algorithms and controls. 3. Reduce...stations are not able to be s rviced by prim power because of their location in the middle of a very active airfield and fueling a syst m that c ist
Kumari, Sudesh; Roudjane, Mourad; Hewage, Dilrukshi; Liu, Yang; Yang, Dong-Sheng
2013-04-28
Cerium, praseodymium, and neodymium complexes of 1,3,5,7-cyclooctatetraene (COT) complexes were produced in a laser-vaporization metal cluster source and studied by pulsed-field ionization zero electron kinetic energy spectroscopy and quantum chemical calculations. The computations included the second-order Møller-Plesset perturbation theory, the coupled cluster method with single, double, and perturbative triple excitations, and the state-average complete active space self-consistent field method. The spectrum of each complex exhibits multiple band systems and is assigned to ionization of several low-energy electronic states of the neutral complex. This observation is different from previous studies of M(COT) (M = Sc, Y, La, and Gd), for which a single band system was observed. The presence of the multiple low-energy electronic states is caused by the splitting of the partially filled lanthanide 4f orbitals in the ligand field, and the number of the low-energy states increases rapidly with increasing number of the metal 4f electrons. On the other hand, the 4f electrons have a small effect on the geometries and vibrational frequencies of these lanthanide complexes.
A wireless power transmission system for an active capsule endoscope for colon inspection.
Jia, Zhiwei; Yan, Guozheng; Shi, Yu; Zhu, Bingquan
2012-07-01
Multipurpose active capsule endoscopes (ACE) have drawn considerable attention in recent years, but these devices continue to suffer from energy limitations. In order to deliver stable and sufficient energy safely, a wireless power transmission system based on inductive coupling is presented. The system consists of a double-layer solenoid pair primary coil outside and a multiple secondary coils inside the body. At least 500 mW usable power can be transmitted under the worst geometrical conditions and the safety restraints in a volume of Φ13 × 13 mm. The wireless power transmission system is integrated to an ACE and applied in animal experiments. The designed wireless power transmission is proved to be feasible and potentially safe in a future application.
Estimating small amplitude tremor sources
NASA Astrophysics Data System (ADS)
Katakami, S.; Ito, Y.; Ohta, K.
2017-12-01
Various types of slow earthquakes have been recently observed at both the updip and downdip edges of the coseismic slip areas [Obara and Kato, 2016]. Frequent occurrence of slow earthquakes may help us to reveal the physics underlying megathrust events as useful analogs. Maeda and Obara [2009] estimated spatiotemporal distribution of seismic energy radiation from low-frequency tremors. They applied their method to only the tremors, whose hypocenters had been decided with multiple station method. However, recently Katakami et al. (2016) identified a lot of continuous tremors with small amplitude that were not recorded multiple stations. These small events should be important to reveal the whole slow earthquake activity and to understand strain condition around a plate boundary in subduction zones. First, we apply the modified frequency scanning method (mFSM) at a single station to NIED Hi-net data in the southwestern Japan to understand whole tremor activity which were included weak signal tremors. Second, we developed a method to identify the tremor source area by using the difference of apparent tremor energy at each station by mFSM. We estimated the apparent source tremor energy after correcting both site amplification factor and geometrical spreading. Finally we calculate a tremor source area if the difference of apparent tremor energy between each pair of sites is the smallest. We checked a validity of this analysis by using only tremors which were already detected by envelope correlation method [Idehara et al., 2014]. We calculated the average amplitude as apparent tremor energy in 5 minutes window after occurring tremor at each station. Our results almost consistent to hypocenters which were determined the envelope correlation method. We successfully determined apparent tremor source areas of weak continuous tremors after estimating possible tremor occurrence time windows by using mFSM.
Multiconfiguration Pair-Density Functional Theory: A New Way To Treat Strongly Correlated Systems.
Gagliardi, Laura; Truhlar, Donald G; Li Manni, Giovanni; Carlson, Rebecca K; Hoyer, Chad E; Bao, Junwei Lucas
2017-01-17
The electronic energy of a system provides the Born-Oppenheimer potential energy for internuclear motion and thus determines molecular structure and spectra, bond energies, conformational energies, reaction barrier heights, and vibrational frequencies. The development of more efficient and more accurate ways to calculate the electronic energy of systems with inherently multiconfigurational electronic structure is essential for many applications, including transition metal and actinide chemistry, systems with partially broken bonds, many transition states, and most electronically excited states. Inherently multiconfigurational systems are called strongly correlated systems or multireference systems, where the latter name refers to the need for using more than one ("multiple") configuration state function to provide a good zero-order reference wave function. This Account describes multiconfiguration pair-density functional theory (MC-PDFT), which was developed as a way to combine the advantages of wave function theory (WFT) and density functional theory (DFT) to provide a better treatment of strongly correlated systems. First we review background material: the widely used Kohn-Sham DFT (which uses only a single Slater determinant as reference wave function), multiconfiguration WFT methods that treat inherently multiconfigurational systems based on an active space, and previous attempts to combine multiconfiguration WFT with DFT. Then we review the formulation of MC-PDFT. It is a generalization of Kohn-Sham DFT in that the electron kinetic energy and classical electrostatic energy are calculated from a reference wave function, while the rest of the energy is obtained from a density functional. However, there are two main differences with respent to Kohn-Sham DFT: (i) The reference wave function is multiconfigurational rather than being a single Slater determinant. (ii) The density functional is a function of the total density and the on-top pair density rather than being a function of the spin-up and spin-down densities. In work carried out so far, the multiconfigurational wave function is a multiconfiguration self-consistent-field wave function. The new formulation has the advantage that the reference wave function has the correct spatial and spin symmetry and can describe bond dissociation (of both single and multiple bonds) and electronic excitations in a formally and physically correct way. We then review the formulation of density functionals in terms of the on-top pair density. Finally we review successful applications of the theory to bond energies and bond dissociation potential energy curves of main-group and transition metal bonds, to barrier heights (including pericyclic reactions), to proton affinities, to the hydrogen bond energy of water dimer, to ground- and excited-state charge transfer, to valence and Rydberg excitations of molecules, and to singlet-triplet splittings of radicals. We find that that MC-PDFT can give accurate results not only with complete-active-space multiconfiguration wave functions but also with generalized-active-space multiconfiguration wave functions, which are practical for larger numbers of active electrons and active orbitals than are complete-active-space wave functions. The separated-pair approximation, which is a special case of generalized active space self-consistent-field theory, is especially promising. MC-PDFT, because it requires much less computer time and storage than pure WFT methods, has the potential to open larger and more complex strongly correlated systems to accurate simulation.
Loftin, Mark; Waddell, Dwight E; Robinson, James H; Owens, Scott G
2010-10-01
We compared the energy expenditure to walk or run a mile in adult normal weight walkers (NWW), overweight walkers (OW), and marathon runners (MR). The sample consisted of 19 NWW, 11 OW, and 20 MR adults. Energy expenditure was measured at preferred walking speed (NWW and OW) and running speed of a recently completed marathon. Body composition was assessed via dual-energy x-ray absorptiometry. Analysis of variance was used to compare groups with the Scheffe's procedure used for post hoc analysis. Multiple regression analysis was used to predict energy expenditure. Results that indicated OW exhibited significantly higher (p < 0.05) mass and fat weight than NWW or MR. Similar values were found between NWW and MR. Absolute energy expenditure to walk or run a mile was similar between groups (NWW 93.9 ± 15.0, OW 98.4 ± 29.9, MR 99.3 ± 10.8 kcal); however, significant differences were noted when energy expenditure was expressed relative to mass (MR > NWW > OW). When energy expenditure was expressed per kilogram of fat-free mass, similar values were found across groups. Multiple regression analysis yielded mass and gender as significant predictors of energy expenditure (R = 0.795, SEE = 10.9 kcal). We suggest that walking is an excellent physical activity for energy expenditure in overweight individuals that are capable of walking without predisposed conditions such as osteoarthritis or cardiovascular risk factors. Moreover, from a practical perspective, our regression equation (kcal = mass (kg) × 0.789 - gender (men = 1, women = 2) × 7.634 + 51.109) allows for the prediction of energy expenditure for a given distance (mile) rather than predicting energy expenditure for a given time (minutes).
1981-10-02
to the point of energy imbalance and declining reproductive rates. Increased human population would also increase poaching of pronghorn in areas...reduced. Such effects, however, could be mitigated as discussed below and in ETR-38. Increased human activity, including poaching , harassment, habitat...when intense activity would be widespread in their habitat. Mortality resulting from habitat loss and poaching would decrease herd size during 4-205 4
Thermally Activated Motion of Sodium Cations in Insulating Parent Low-Silica X Zeolite
NASA Astrophysics Data System (ADS)
Igarashi, Mutsuo; Jeglič, Peter; Mežnaršič, Tadej; Nakano, Takehito; Nozue, Yasuo; Watanabe, Naohiro; Arčon, Denis
2017-07-01
We report a 23Na spin-lattice relaxation rate, T1 - 1, in low-silica X zeolite. T1 - 1 follows multiple BPP-type behavior as a result of thermal motion of sodium cations in insulating material. The estimated lowest activation energy of 15 meV is much lower than 100 meV observed previously for sodium motion in heavily Na-loaded samples and is most likely attributed to short-distance jumps of sodium cations between sites within the same supercage.
Training response inhibition to food is associated with weight loss and reduced energy intake
Lawrence, Natalia S.; O'Sullivan, Jamie; Parslow, David; Javaid, Mahmood; Adams, Rachel C.; Chambers, Christopher D.; Kos, Katarina; Verbruggen, Frederick
2015-01-01
The majority of adults in the UK and US are overweight or obese due to multiple factors including excess energy intake. Training people to inhibit simple motor responses (key presses) to high-energy density food pictures reduces intake in laboratory studies. We examined whether online response inhibition training reduced real-world food consumption and weight in a community sample of adults who were predominantly overweight or obese (N = 83). Participants were allocated in a randomised, double-blind design to receive four 10-min sessions of either active or control go/no-go training in which either high-energy density snack foods (active) or non-food stimuli (control) were associated with no-go signals. Participants' weight, energy intake (calculated from 24-h food diaries), daily snacking frequency and subjective food evaluations were measured for one week pre- and post-intervention. Participants also provided self-reported weight and monthly snacking frequency at pre-intervention screening, and one month and six months after completing the study. Participants in the active relative to control condition showed significant weight loss, reductions in daily energy intake and a reduction in rated liking of high-energy density (no-go) foods from the pre-to post-intervention week. There were no changes in self-reported daily snacking frequency. At longer-term follow-up, the active group showed significant reductions in self-reported weight at six months, whilst both groups reported significantly less snacking at one- and six-months. Excellent rates of adherence (97%) and positive feedback about the training suggest that this intervention is acceptable and has the potential to improve public health by reducing energy intake and overweight. PMID:26122756
Leptin and energy restriction induced adaptation in energy expenditure.
Camps, Stefan G J A; Verhoef, Sanne P M; Westerterp, Klaas R
2015-10-01
Diet-induced weight loss is accompanied by adaptive thermogenesis, i.e. a disproportional reduction of resting energy expenditure (REE) a decrease in physical activity and increased movement economy. To determine if energy restriction induced adaptive thermogenesis and adaptations in physical activity are related to changes in leptin concentrations. Eighty-two healthy subjects (23 men, 59 women), mean ± SD age 41 ± 8 years and BMI 31.9 ± 3.0 kg/m(2), followed a very low energy diet for 8 weeks with measurements before and after the diet. Leptin concentrations were determined from fasting blood plasma. Body composition was assessed with a three-compartment model based on body weight, total body water (deuterium dilution) and body volume (BodPod). REE was measured (REEm) with a ventilated hood and predicted (REEp) from measured body composition. Adaptive thermogenesis was calculated as REEm/REEp. Parameters for the amount of physical activity were total energy expenditure expressed as a multiple of REEm (PAL), activity-induced energy expenditure divided by body weight (AEE/kg) and activity counts measured by a tri-axial accelerometer. Movement economy was calculated as AEE/kg (MJ/kg/d) divided by activity counts (Mcounts/d). Subjects lost on average 10.7 ± 4.1% body weight (P<0.001). Leptin decreased from 26.9 ± 14.3 before to 13.9 ± 11.3 μg/l after the diet (P<0.001). REEm/REEp after the diet (0.963 ± 0.08) was related to changes in leptin levels (R(2)=0.06; P<0.05). There was no significant correlation between changes in leptin concentrations and changes in amount of physical activity. Movement economy changed from 0.036 ± 0.011 J/kg/count to 0.028 ± 0.010 J/kg/count and was correlated to the changes in leptin concentrations (R(2)=0.07; P<0.05). During energy restriction, the decrease in leptin explains part of the variation in adaptive thermogenesis. Changes in leptin are not related to the amount of physical activity but could partly explain the increased movement economy. Copyright © 2015 Elsevier Inc. All rights reserved.
Study of a wireless power transmission system for an active capsule endoscope.
Xin, Wenhui; Yan, Guozheng; Wang, Wenxin
2010-03-01
An active capsule endoscope (ACE) will consume much more energy than can be power by batteries. Its orientation and position are always undetermined when it continues the natural way down the gastrointestinal track. In order to deliver stable and sufficient energy to ACE safely, a wireless power transmission system based on inductive coupling is presented. The system consists of a Helmholtz primary coil outside and a multiple secondary coils inside the body. The Helmholtz primary coil is driven to generate a uniform alternating magnetic field covering the whole of the alimentary tract, and the multiple secondary coils receive energy regardless of the ACE's position and orientation relative to the generated magnetic field. The human tissue safety of the electromagnetic field generated by transmitting coil was evaluated, based on a high-resolution realistic human model. At least 310 mW usable power can be transmitted under the worst geometrical conditions. Outer dimensions of the power receiver, 10 mm diameter x 12 mm; transmitting power, 25 W; resonant frequency, 400 kHz. The maximum specific absorption rate (SAR) and current density of human tissues are 0.329 W/kg and 3.82 A/m(2), respectively, under the basic restrictions of the International Commission on Non-ionizing Radiation Protection (ICNIRP). The designed wireless power transmission is shown to be feasible and potentially safe in a future application. (c) 2010 John Wiley & Sons, Ltd.
High multiplicity α-particle breakup measurements to study α-condensate states
NASA Astrophysics Data System (ADS)
Bishop, J.; Kokalova, Tz; Freer, M.; Assie, M.; Acosta, L.; Bailey, S.; Cardella, G.; Curtis, N.; De Filippo, E.; Dell'Aquila, D.; De Luca, S.; Francalanza, L.; Gnoffo, B.; Lanzalone, G.; Lombardo, I.; Martorana, N.; Norella, S.; Pagano, A.; Pagano, E. V.; Papa, M.; Pirrone, S.; Politi, G.; Rizzo, F.; Russotto, P.; Quattrocchi, L.; Smith, R.; Stefan, I.; Trifirò, A.; Trimarchì, M.; Verde, G.; Vigilante, M.; Wheldon, C.
2017-06-01
An experiment was performed to investigate α-condensate states via high α-particle multiplicity breakup. The nucleus of interest was 28Si therefore to measure multiplicity 7 particle breakup events, a highly granular detector with a high solid angle coverage was required. For this purpose, the CHIMERA and FARCOS detectors at INFN LNS were employed. Particle identification was achieved through ΔE-E energy loss. The α-particle multiplicity was measured at three beam energies to investigate different excitation regimes in 28Si. At a beam energy where the energy is sufficient to provide the 7 α-particles with enough energy to be identified using the ΔE-E method, multiplicity 7 events can be seen. Given these high multiplicity events, the particles can be reconstructed to investigate the breakup of α-condensate states. Analysing the decay paths of these states can elucidate whether the state of interest corresponds to a non-cluster, clustered or condensed state.
NASA Astrophysics Data System (ADS)
Zhao, Jijun; Zhang, Nawa; Ren, Danping; Hu, Jinhua
2017-12-01
The recently proposed flexible optical network can provide more efficient accommodation of multiple data rates than the current wavelength-routed optical networks. Meanwhile, the energy efficiency has also been a hot topic because of the serious energy consumption problem. In this paper, the energy efficiency problem of flexible optical networks with physical-layer impairments constraint is studied. We propose a combined impairment-aware and energy-efficient routing and spectrum assignment (RSA) algorithm based on the link availability, in which the impact of power consumption minimization on signal quality is considered. By applying the proposed algorithm, the connection requests are established on a subset of network topology, reducing the number of transitions from sleep to active state. The simulation results demonstrate that our proposed algorithm can improve the energy efficiency and spectrum resources utilization with the acceptable blocking probability and average delay.
Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking Dgat.
Smith, S J; Cases, S; Jensen, D R; Chen, H C; Sande, E; Tow, B; Sanan, D A; Raber, J; Eckel, R H; Farese, R V
2000-05-01
Triglycerides (or triacylglycerols) represent the major form of stored energy in eukaryotes. Triglyceride synthesis has been assumed to occur primarily through acyl CoA:diacylglycerol transferase (Dgat), a microsomal enzyme that catalyses the final and only committed step in the glycerol phosphate pathway. Therefore, Dgat has been considered necessary for adipose tissue formation and essential for survival. Here we show that Dgat-deficient (Dgat-/-) mice are viable and can still synthesize triglycerides. Moreover, these mice are lean and resistant to diet-induced obesity. The obesity resistance involves increased energy expenditure and increased activity. Dgat deficiency also alters triglyceride metabolism in other tissues, including the mammary gland, where lactation is defective in Dgat-/- females. Our findings indicate that multiple mechanisms exist for triglyceride synthesis and suggest that the selective inhibition of Dgat-mediated triglyceride synthesis may be useful for treating obesity.
Non-contact fiber-optical trapping of motile bacteria: dynamics observation and energy estimation
Xin, Hongbao; Liu, Qingyuan; Li, Baojun
2014-01-01
The dynamics and energy conversion of bacteria are strongly associated with bacterial activities, such as survival, spreading of bacterial diseases and their pathogenesis. Although different discoveries have been reported on trapped bacteria (i.e. immobilized bacteria), the investigation on the dynamics and energy conversion of motile bacteria in the process of trapping is highly desirable. Here, we report a non-contact optical trapping of motile bacteria using a modified tapered optical fiber. Using Escherichia coli as an example, both single and multiple motile bacteria have been trapped and manipulated in a non-contact manner. Bacterial dynamics has been observed and bacterial energy has been estimated in the trapping process. This non-contact optical trapping provides a new opportunity for better understanding the bacterial dynamics and energy conversion at the single cell level. PMID:25300713
An Energy Efficient Cooperative Hierarchical MIMO Clustering Scheme for Wireless Sensor Networks
Nasim, Mehwish; Qaisar, Saad; Lee, Sungyoung
2012-01-01
In this work, we present an energy efficient hierarchical cooperative clustering scheme for wireless sensor networks. Communication cost is a crucial factor in depleting the energy of sensor nodes. In the proposed scheme, nodes cooperate to form clusters at each level of network hierarchy ensuring maximal coverage and minimal energy expenditure with relatively uniform distribution of load within the network. Performance is enhanced by cooperative multiple-input multiple-output (MIMO) communication ensuring energy efficiency for WSN deployments over large geographical areas. We test our scheme using TOSSIM and compare the proposed scheme with cooperative multiple-input multiple-output (CMIMO) clustering scheme and traditional multihop Single-Input-Single-Output (SISO) routing approach. Performance is evaluated on the basis of number of clusters, number of hops, energy consumption and network lifetime. Experimental results show significant energy conservation and increase in network lifetime as compared to existing schemes. PMID:22368459
Energy homeostasis and running wheel activity during pregnancy in the mouse.
Ladyman, S R; Carter, K M; Grattan, D R
2018-05-05
Pregnancy and lactation are metabolically challenging states, where the mother must supply all the energy requirements for the developing fetus and growing pups respectively. The aim of the current study was to characterize many aspects of energy homeostasis before and during pregnancy in the mouse, and to examine the role of voluntary activity on changes in energy expenditure during pregnancy. In a secondary aim, we evaluate measures of energy homeostasis during pregnancy in mice that successfully reared their litter or in mice that went on to abandon their litter, to determine if an impairment in pregnancy-induced adaptation of energy homeostasis might underlie the abandonment of pups soon after birth. During pregnancy, food intake was increased, characterized by increased meal size and duration but not number of meals per day. The duration of time spent inactive, predicted to indicate sleep behaviour, was increased both early and late in pregnancy compared to pre-pregnancy levels. Increased x + y beam breaks, as a measure of activity increased during pregnancy and this reflected an increase in ambulatory behaviour in mid pregnancy and an increase in non-ambulatory movement in late pregnancy. Energy expenditure, as measured by indirect calorimetry, increased across pregnancy, likely due to the growth and development of fetal tissue. There was also a dramatic reduction in voluntary wheel running as soon as the mice became pregnant. Compared with successful pregnancies and lactations, pregnancies where pups were abandoned soon after birth were associated with reduced body weight gain and an increase in running wheel activity at the end of pregnancy, but no difference in food intake or energy expenditure. Overall, during pregnancy there are multiple adaptations to change energy homeostasis, resulting in partitioning of provisions of energy to the developing fetus and storing energy for future metabolic demands. Copyright © 2018 Elsevier Inc. All rights reserved.
Hypercoagulability after energy drink consumption.
Pommerening, Matthew J; Cardenas, Jessica C; Radwan, Zayde A; Wade, Charles E; Holcomb, John B; Cotton, Bryan A
2015-12-01
Energy drink consumption in the United States has more than doubled over the last decade and has been implicated in cardiac arrhythmias, myocardial infarction, and even sudden cardiac death. We hypothesized that energy drink consumption may increase the risk of adverse cardiovascular events by increasing platelet aggregation, thereby resulting in a relatively hypercoagulable state and increased risk of thrombosis. Thirty-two healthy volunteers aged 18-40 y were given 16 oz of bottled water or a standardized, sugar-free energy drink on two separate occasions, 1-wk apart. Beverages were consumed after an overnight fast over a 30-min period. Coagulation parameters and platelet function were measured before and 60 min after consumption using thrombelastography and impedance aggregometry. No statistically significant differences in coagulation were detected using kaolin or rapid thrombelastography. In addition, no differences in platelet aggregation were detected using ristocetin, collagen, thrombin receptor-activating peptide, or adenosine diphosphate-induced multiple impedance aggregometry. However, compared to water controls, energy drink consumption resulted in a significant increase in platelet aggregation via arachidonic acid-induced activation (area under the aggregation curve, 72.4 U versus 66.3 U; P = 0.018). Energy drinks are associated with increased platelet activity via arachidonic acid-induced platelet aggregation within 1 h of consumption. Although larger clinical studies are needed to further address the safety and health concerns of these drinks, the increased platelet response may provide a mechanism by which energy drinks increase the risk of adverse cardiovascular events. Copyright © 2015 Elsevier Inc. All rights reserved.
Analysis and Application of Microgrids
NASA Astrophysics Data System (ADS)
Yue, Lu
New trends of generating electricity locally and utilizing non-conventional or renewable energy sources have attracted increasing interests due to the gradual depletion of conventional fossil fuel energy sources. The new type of power generation is called Distributed Generation (DG) and the energy sources utilized by Distributed Generation are termed Distributed Energy Sources (DERs). With DGs embedded in the distribution networks, they evolve from passive distribution networks to active distribution networks enabling bidirectional power flows in the networks. Further incorporating flexible and intelligent controllers and employing future technologies, active distribution networks will turn to a Microgrid. A Microgrid is a small-scale, low voltage Combined with Heat and Power (CHP) supply network designed to supply electrical and heat loads for a small community. To further implement Microgrids, a sophisticated Microgrid Management System must be integrated. However, due to the fact that a Microgrid has multiple DERs integrated and is likely to be deregulated, the ability to perform real-time OPF and economic dispatch with fast speed advanced communication network is necessary. In this thesis, first, problems such as, power system modelling, power flow solving and power system optimization, are studied. Then, Distributed Generation and Microgrid are studied and reviewed, including a comprehensive review over current distributed generation technologies and Microgrid Management Systems, etc. Finally, a computer-based AC optimization method which minimizes the total transmission loss and generation cost of a Microgrid is proposed and a wireless communication scheme based on synchronized Code Division Multiple Access (sCDMA) is proposed. The algorithm is tested with a 6-bus power system and a 9-bus power system.
Power Hardware-in-the-Loop Testing of a Smart Distribution System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendoza Carrillo, Ismael; Breaden, Craig; Medley, Paige
This paper presents the results of the third and final phase of the National Renewable Energy Lab (NREL) INTEGRATE demonstration: Smart Distribution. For this demonstration, high penetrations of solar PV and wind energy systems were simulated in a power hardware-in-the-loop set-up using a smart distribution test feeder. Simulated and real DERs were controlled by a real-time control platform, which manages grid constraints under high clean energy deployment levels. The power HIL testing, conducted at NREL's ESIF smart power lab, demonstrated how dynamically managing DER increases the grid's hosting capacity by leveraging active network management's (ANM) safe and reliable control framework.more » Results are presented for how ANM's real-time monitoring, automation, and control can be used to manage multiple DERs and multiple constraints associated with high penetrations of DER on a distribution grid. The project also successfully demonstrated the importance of escalating control actions given how ANM enables operation of grid equipment closer to their actual physical limit in the presence of very high levels of intermittent DER.« less
Assessing the Multiple Benefits of Clean Energy Chapter 1: Introduction
Chapter 1 of “Assessing the Multiple Benefits of Clean Energy” provides an introduction to the document. /meta name=DC.title content=Assessing the Multiple Benefits of Clean Energy Chapter 1: Introduction
Mitochondrial DNA as an inflammatory mediator in cardiovascular diseases.
Nakayama, Hiroyuki; Otsu, Kinya
2018-03-06
Mitochondria play a central role in multiple cellular functions, including energy production, calcium homeostasis, and cell death. Currently, growing evidence indicates the vital roles of mitochondria in triggering and maintaining inflammation. Chronic inflammation without microbial infection - termed sterile inflammation - is strongly involved in the development of heart failure. Sterile inflammation is triggered by the activation of pattern recognition receptors (PRRs) that sense endogenous ligands called damage-associated molecular patterns (DAMPs). Mitochondria release multiple DAMPs including mitochondrial DNA, peptides, and lipids, which induce inflammation via the stimulation of multiple PRRs. Among the mitochondrial DAMPs, mitochondrial DNA (mtDNA) is currently highlighted as the DAMP that mediates the activation of multiple PRRs, including Toll-like receptor 9, Nod-like receptors, and cyclic GMP-AMP synthetase/stimulator of interferon gene pathways. These PRR signalling pathways, in turn, lead to the activation of nuclear factor-κB and interferon regulatory factor, which enhances the transcriptional activity of inflammatory cytokines and interferons, and induces the recruitment of inflammatory cells. As the heart is an organ comprising abundant mitochondria for its ATP consumption (needed to maintain constant cyclic contraction and relaxation), the generation of massive amounts of mitochondrial radical oxygen species and mitochondrial DAMPs are predicted to occur and promote cardiac inflammation. Here, we will focus on the role of mtDNA in cardiac inflammation and review the mechanism and pathological significance of mtDNA-induced inflammatory responses in cardiac diseases. © 2018 The Author(s).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sirunyan, Albert M; et al.
This paper presents a measurement of the underlying event activity in proton-proton collisions at a center-of-mass energy of 13 TeV, performed using inclusive Z boson production events collected with the CMS experiment at the LHC. The analyzed data correspond to an integrated luminosity of 2.1 fbmore » $$^{-1}$$. The underlying event activity is quantified in terms of the charged particle multiplicity, as well as of the scalar sum of the charged particles' transverse momenta in different topological regions defined with respect to the Z boson direction. The distributions are unfolded to the stable particle level and compared with predictions from various Monte Carlo event generators, as well as with similar CDF and CMS measurements at center-of-mass energies of 1.96 and 7 TeV respectively.« less
Lee, Jung Eun; Stodden, David F; Gao, Zan
2016-09-01
Few studies have examined young children's leisure- and school-based energy expenditure (EE) and moderateto-vigorous physical activity (MVPA). The purpose of this study was to explore children's estimated EE rates and time spent in MVPA in 3 time segments: at-school, after-school, and weekends. A total of 187 second and third grade children from 2 elementary schools participated in the study. Accelerometers were used to assess children's 5-day EE and MVPA. Multiple 2 (Grade) × 2 (Gender) ANOVAs with repeated measures (Time) were conducted to examine the differences in the outcome variables. Significant time effects on EE and MVPA were revealed. Children's EE rate and minutes in MVPA per day were higher during after school and weekends than at school. Although children were more active outside of school, their MVPA during weekdays and weekends still fell far short of the recommended level of 60 minutes/day.
Shim, Jihyun; Mackerell, Alexander D
2011-05-01
A significant number of drug discovery efforts are based on natural products or high throughput screens from which compounds showing potential therapeutic effects are identified without knowledge of the target molecule or its 3D structure. In such cases computational ligand-based drug design (LBDD) can accelerate the drug discovery processes. LBDD is a general approach to elucidate the relationship of a compound's structure and physicochemical attributes to its biological activity. The resulting structure-activity relationship (SAR) may then act as the basis for the prediction of compounds with improved biological attributes. LBDD methods range from pharmacophore models identifying essential features of ligands responsible for their activity, quantitative structure-activity relationships (QSAR) yielding quantitative estimates of activities based on physiochemical properties, and to similarity searching, which explores compounds with similar properties as well as various combinations of the above. A number of recent LBDD approaches involve the use of multiple conformations of the ligands being studied. One of the basic components to generate multiple conformations in LBDD is molecular mechanics (MM), which apply an empirical energy function to relate conformation to energies and forces. The collection of conformations for ligands is then combined with functional data using methods ranging from regression analysis to neural networks, from which the SAR is determined. Accordingly, for effective application of LBDD for SAR determinations it is important that the compounds be accurately modelled such that the appropriate range of conformations accessible to the ligands is identified. Such accurate modelling is largely based on use of the appropriate empirical force field for the molecules being investigated and the approaches used to generate the conformations. The present chapter includes a brief overview of currently used SAR methods in LBDD followed by a more detailed presentation of issues and limitations associated with empirical energy functions and conformational sampling methods.
Energy metabolism, fuel selection and body weight regulation
Galgani, J; Ravussin, E
2010-01-01
Energy homeostasis is critical for the survival of species. Therefore, multiple and complex mechanisms have evolved to regulate energy intake and expenditure to maintain body weight. For weight maintenance, not only does energy intake have to match energy expenditure, but also macronutrient intake must balance macronutrient oxidation. However, this equilibrium seems to be particularly difficult to achieve in individuals with low fat oxidation, low energy expenditure, low sympathetic activity or low levels of spontaneous physical activity, as in addition to excess energy intake, all of these factors explain the tendency of some people to gain weight. Additionally, large variability in weight change is observed when energy surplus is imposed experimentally or spontaneously. Clearly, the data suggest a strong genetic influence on body weight regulation implying a normal physiology in an ‘obesogenic’ environment. In this study, we also review evidence that carbohydrate balance may represent the potential signal that regulates energy homeostasis by impacting energy intake and body weight. Because of the small storage capacity for carbohydrate and its importance for metabolism in many tissues and organs, carbohydrate balance must be maintained at a given level. This drive for balance may in turn cause increased energy intake when consuming a diet high in fat and low in carbohydrate. If sustained over time, such an increase in energy intake cannot be detected by available methods, but may cause meaningful increases in body weight. The concept of metabolic flexibility and its impact on body weight regulation is also presented. PMID:19136979
System and method for optimal load and source scheduling in context aware homes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shetty, Pradeep; Foslien Graber, Wendy; Mangsuli, Purnaprajna R.
A controller for controlling energy consumption in a home includes a constraints engine to define variables for multiple appliances in the home corresponding to various home modes and persona of an occupant of the home. A modeling engine models multiple paths of energy utilization of the multiple appliances to place the home into a desired state from a current context. An optimal scheduler receives the multiple paths of energy utilization and generates a schedule as a function of the multiple paths and a selected persona to place the home in a desired state.
Meshach Paul, D; Chadah, Tania; Senthilkumar, B; Sethumadhavan, Rao; Rajasekaran, R
2017-11-03
The major candidate for multiple sulfatase deficiency is a defective formylglycine-generating enzyme (FGE). Though adequately produced, mutations in FGE stall the activation of sulfatases and prevent their activity. Missense mutations, viz. E130D, S155P, A177P, W179S, C218Y, R224W, N259I, P266L, A279V, C336R, R345C, A348P, R349Q and R349W associated with multiple sulfatase deficiency are yet to be computationally studied. Aforementioned mutants were initially screened through ws-SNPs&GO 3D program. Mutant R345C acquired the highest score, and hence was studied in detail. Discrete molecular dynamics explored structural distortions due to amino acid substitution. Therein, comparative analyses of wild type and mutant were carried out. Changes in structural contours were observed between wild type and mutant. Mutant had low conformational fluctuation, high atomic mobility and more compactness than wild type. Moreover, free energy landscape showed mutant to vary in terms of its conformational space as compared to wild type. Subsequently, wild type and mutant were subjected to single-model analyses. Mutant had lesser intra molecular interactions than wild type suggesting variations pertaining to its secondary structure. Furthermore, simulated thermal denaturation showed dissimilar pattern of hydrogen bond dilution. Effects of these variations were observed as changes in elements of secondary structure. Docking studies of mutant revealed less favourable binding energy towards its substrate as compared to wild type. Therefore, theoretical explanations for structural distortions of mutant R345C leading to multiple sulfatase deficiency were revealed. The protocol of the study could be useful to examine the effectiveness of pharmacological chaperones prior to experimental studies.
Albuquerque, Fabiana Cristina Alves; Bueno, Nassib Bezerra; Clemente, Ana Paula Grotti; Ferriolli, Eduardo; Florêncio, Telma Maria Menezes Toledo; Hoffman, Daniel; Sawaya, Ana Lydia
2015-01-01
Perinatal undernutrition may lead to important metabolic adaptations in adult life, short stature being the most visible. The present study aimed to evaluate the association between stature and total energy expenditure of low-income women. Women aged 19-45 years from low-income communities in Maceió-AL were recruited. A sample of 67 volunteers was selected and divided into either short stature (≤ 152.4 cm; n = 34) or non-short stature (≥ 158.7 cm; n = 33) group. Data on socioeconomic status, anthropometric variables, and hormonal profiles was collected. Total energy expenditure and body composition were assessed by the doubly labeled water technique with multiple points over 14 days. In addition, physical activity levels were measured with triaxial accelerometers and dietary intake data were collected using three 24-hour food records. The mean subject age was 30.94 years. Women of short stature had lower body weight and lean body mass compared to non-short women, but there were no differences in thyroid hormone concentrations or daily energy intake between the two groups. Short-stature women showed lower total energy expenditure (P = 0.01) and a significantly higher physical activity level (P = 0.01) compared to non-short women. However, the difference in total energy expenditure was no longer significant after statistical adjustment for age, lean body mass, and triiodothyronine concentrations. Women with short stature present the same energy intake, but lower total energy expenditure than non-short women, even with a higher physical activity level, which suggests that they are more prone to weight gain.
Murphy, J; Holmes, J; Brooks, C
2017-01-01
To estimate daily total energy expenditure (TEE) using a physical activity monitor, combined with dietary assessment of energy intake to assess the relationship between daily energy expenditure and patterns of activity with energy intake in people with dementia living in care homes. A cross-sectional study in care homes in the UK. Twenty residents with confirmed dementia diagnosis were recruited from two care homes that specialised in dementia care. A physical activity monitor (SensewearTM Armband, Body Media, Pittsburgh, PA) was employed to objectively determine total energy expenditure, sleep duration and physical activity. The armband was placed around the left upper triceps for up to 7 days. Energy intake was determined by weighing all food and drink items over 4 days (3 weekdays and 1 weekend day) including measurements of food wastage. The mean age was 78.7 (SD ± 11.8) years, Body Mass Index (BMI) 23.0 (SD ± 4.2) kg/m2; 50% were women. Energy intake (mean 7.4; SD ± 2.6) MJ/d) was correlated with TEE (mean 7.6; SD ± 1.8 MJ/d; r=0.49, p<0.05). Duration of sleeping ranged from 0.4-12.5 (mean 6.1) hrs/d and time spent lying down was 1.3-16.0 (8.3) hrs/d. On average residents spent 17.9 (6.3-23.4) hrs/d undertaking sedentary activity. TEE was correlated with BMI (r=0.52, p<0.05) and body weight (r=0.81, p<0.001) but inversely related to sleep duration (r=-0.59, p<0.01) and time lying down (r=-0.62, p<0.01). Multiple linear regression analysis revealed that after taking BMI, sleep duration and time spent lying down into account, TEE was no longer correlated with energy intake. The results show the extent to which body mass, variable activity and sleep patterns may be contributing to TEE and together with reduced energy intake, energy requirements were not satisfied. Thus wearable technology has the potential to offer real-time monitoring to provide appropriate nutrition management that is more person-centred to prevent weight loss in dementia.
NASA Astrophysics Data System (ADS)
Wu, Hong; Li, Yu; Teng, Min; Yang, Yu
2017-11-01
The activity of coal gangue by thermal activation and composite activation technologies was investigated. The crystal composition, framework structure and morphology change were analyzed by XRD, FT-IR and SEM, respectively. The cementitious property of coal gangue was measured by strength test. The results showed that thermal activation decomposed kaolinite in coal gangue, and formed the metastable structure with a porous state, multiple internal broken bonds and large specific surface areas. Based on thermal activation, the added lime provided the alkaline environment, then this reduced the bond energy of reactant particles and the degree of crystallinity of quartz in coal gangue. The two activation methods could effectively improve the cementitious property of coal gangue based unburned bricks, and that the composite activation technology was superior performance.
Kinetic concepts of thermally stimulated reactions in solids
NASA Astrophysics Data System (ADS)
Vyazovkin, Sergey
Historical analysis suggests that the basic kinetic concepts of reactions in solids were inherited from homogeneous kinetics. These concepts rest upon the assumption of a single-step reaction that disagrees with the multiple-step nature of solid-state processes. The inadequate concepts inspire such unjustified anticipations of kinetic analysis as evaluating constant activation energy and/or deriving a single-step reaction mechanism for the overall process. A more adequate concept is that of the effective activation energy, which may vary with temperature and extent of conversion. The adequacy of this concept is illustrated by literature data as well as by experimental data on the thermal dehydration of calcium oxalate monohydrate and thermal decomposition of calcium carbonate, ammonium nitrate and 1,3,5,7- tetranitro-1,3,5,7-tetrazocine.
Domestication of the Cardiac Mitochondrion for Energy Conversion
Balaban, Robert S.
2009-01-01
The control of mitochondria energy conversion by cytosolic processes is reviewed. The nature of the cytosolic and mitochondrial potential energy homeostasis over wide ranges of energy utilization is reviewed and the consequences of this homeostasis in the control network are discussed. An analysis of the major candidate cytosolic signaling molecules ADP, Pi and Ca2+ are reviewed based on the magnitude and source of the cytosolic concentration changes as well as the potential targets of action within the mitochondrial energy conversion system. Based on this analysis, Ca2+ is the best candidate as a cytosolic signaling molecule for this process based on its ability to act as both a feed-forward and feed-back indicator of ATP hydrolysis and numerous targets within the matrix to provide a balanced activation of ATP production. These targets include numerous dehydrogenases and the F1-F0-ATPase. Pi is also a good candidate since it is an early signal of a mismatch between cytosolic ATP production and ATP synthesis in the presence of creatine kinase and has multiple targets within oxidative phosphorylation including NADH generation, electron flux in the cytochrome chain and a substrate for the F1-F0-ATPase. The mechanism of the coordinated activation of oxidative phosphorylation by these signaling molecules in discussed in light of the recent discoveries of extensive protein phosphorylation sites and other post-translational modifications. From this review it is clear that the control network associated with the maintenance of the cytosolic potential energy homeostasis is extremely complex with multiple pathways orchestrated to balance the sinks and sources in this system. New tools are needed to image and monitor metabolites within subcellular compartments to resolve many of these issues as well as the functional characterization of the numerous matrix post-translational events being discovered along with the enzymatic processes generating and removing these protein modifications. PMID:19265699
Experimental studies of systematic multiple-energy operation at HIMAC synchrotron
NASA Astrophysics Data System (ADS)
Mizushima, K.; Katagiri, K.; Iwata, Y.; Furukawa, T.; Fujimoto, T.; Sato, S.; Hara, Y.; Shirai, T.; Noda, K.
2014-07-01
Multiple-energy synchrotron operation providing carbon-ion beams with various energies has been used for scanned particle therapy at NIRS. An energy range from 430 to 56 MeV/u and about 200 steps within this range are required to vary the Bragg peak position for effective treatment. The treatment also demands the slow extraction of beam with highly reliable properties, such as spill, position and size, for all energies. We propose an approach to generating multiple-energy operation meeting these requirements within a short time. In this approach, the device settings at most energy steps are determined without manual adjustments by using systematic parameter tuning depending on the beam energy. Experimental verification was carried out at the HIMAC synchrotron, and its results proved that this approach can greatly reduce the adjustment period.
Menon, Binuraj R K; Hardman, Samantha J O; Scrutton, Nigel S; Heyes, Derren J
2016-08-01
Protochlorophyllide oxidoreductase (POR) catalyzes the light-driven reduction of protochlorophyllide (Pchlide), an essential, regulatory step in chlorophyll biosynthesis. The unique requirement of the enzyme for light has provided the opportunity to investigate how light energy can be harnessed to power biological catalysis and enzyme dynamics. Excited state interactions between the Pchlide molecule and the protein are known to drive the subsequent reaction chemistry. However, the structural features of POR and active site residues that are important for photochemistry and catalysis are currently unknown, because there is no crystal structure for POR. Here, we have used static and time-resolved spectroscopic measurements of a number of active site variants to study the role of a number of residues, which are located in the proposed NADPH/Pchlide binding site based on previous homology models, in the reaction mechanism of POR. Our findings, which are interpreted in the context of a new improved structural model, have identified several residues that are predicted to interact with the coenzyme or substrate. Several of the POR variants have a profound effect on the photochemistry, suggesting that multiple residues are important in stabilizing the excited state required for catalysis. Our work offers insight into how the POR active site geometry is finely tuned by multiple active site residues to support enzyme-mediated photochemistry and reduction of Pchlide, both of which are crucial to the existence of life on Earth. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Isomer ratios for products of photonuclear reactions on 121Sb
NASA Astrophysics Data System (ADS)
Bezshyyko, Oleg; Dovbnya, Anatoliy; Golinka-Bezshyyko, Larisa; Kadenko, Igor; Vodin, Oleksandr; Olejnik, Stanislav; Tuller, Gleb; Kushnir, Volodymyr; Mitrochenko, Viktor
2017-09-01
Over the past several years various preequilibrium model approaches for nuclear reactions were developed. Diversified detailed experimental data in the medium excitation energy region for nucleus are needed for reasonable selection among these theoretical models. Lack of experimental data in this energy region does essentially limit the possibilities for analysis and comparison of different preequilibrium theoretical models. For photonuclear reactions this energy region extends between bremsstrahlung energies nearly 30-100 MeV. Experimental measurements and estimations of isomer ratios for products of photonuclear reactions with multiple particle escape on antimony have been performed using bremsstrahlung with end-point energies 38, 43 and 53 MeV. Method of induced activity measurement was applied. For acquisition of gamma spectra we used HPGe spectrometer with 20% efficiency and energy resolution 1.9 keV for 1332 keV gamma line of 60Co. Linear accelerator of electrons LU-40 was a source of bremsstrahlung. Energy resolution of electron beam was about 1% and mean current was within (3.8-5.3) μA.
Vibration Measurement on Reticular Lamina and Basilar Membrane at Multiple Longitudinal Locations
NASA Astrophysics Data System (ADS)
Chen, Fangyi; Zha, Dingjun; Choudhury, Niloy; Fridberger, Anders; Nuttall, Alfred L.
2011-11-01
The longitudinal distribution of the organ of Corti vibration is important for both understanding the energy delivery and the timing of the cochlear amplification. Recent development on low coherence interferomtry technique allows measuring vibration inside the cochlea. The reticular lamina (RL) vibration spectrum demonstrates that RL vibration leads the basilar membrane (BM). This phase lead is consistent with the idea that the active process may lead the BM vibration. In this study, measurements on multiple longitudinal locations demonstrated similar phase lead. Results on this study suggests that there may be another longitudinal coupling mechanism inside the cochlea other than the traveling wave on BM.
Disconnections kinks and competing modes in shear-coupled grain boundary migration
NASA Astrophysics Data System (ADS)
Combe, N.; Mompiou, F.; Legros, M.
2016-01-01
The response of small-grained metals to mechanical stress is investigated by a theoretical study of the elementary mechanisms occurring during the shear-coupled migration of grain boundaries (GB). Investigating a model Σ 17 (410 ) GB in a copper bicrystal, both <110 > and <100 > GB migration modes are studied focusing on both the structural and energetic characteristics. The minimum energy paths of these shear-coupled GB migrations are computed using the nudge elastic band method. For both modes, the GB migration occurs through the nucleation and motion of disconnections. However, the atomic mechanisms of both modes qualitatively differ: While the <110 > mode presents no metastable state, the <100 > mode shows multiple metastable states, some of them evidencing some kinks along the disconnection lines. Disconnection kinks nucleation and motion activation energies are evaluated. Besides, the activation energies of the <100 > mode are smaller than those of the <110 > one except for very high stresses. These results significantly improve our knowledge of the GB migration mechanisms and the conditions under which they occur.
Tantama, Mathew; Martínez-François, Juan Ramón; Mongeon, Rebecca; Yellen, Gary
2013-01-01
The ATP:ADP ratio is a critical parameter of cellular energy status that regulates many metabolic activities. Here we report an optimized genetically-encoded fluorescent biosensor, PercevalHR, that senses the ATP:ADP ratio. PercevalHR is tuned to the range of intracellular ATP:ADP expected in mammalian cells, and it can be used with one- or two-photon microscopy in live samples. We use PercevalHR to visualize activity-dependent changes in ATP:ADP when neurons are exposed to multiple stimuli, demonstrating that it is a sensitive reporter of physiological changes in energy consumption and production. We also use PercevalHR to visualize intracellular ATP:ADP while simultaneously recording currents from ATP-sensitive potassium (KATP) channels in single cells, showing that PercevalHR enables the study of coordinated variation in ATP:ADP and KATP channel open probability in intact cells. With its ability to monitor changes in cellular energetics within seconds, PercevalHR should be a versatile tool for metabolic research. PMID:24096541
A multiple-scale turbulence model for incompressible flow
NASA Technical Reports Server (NTRS)
Duncan, B. S.; Liou, W. W.; Shih, T. H.
1993-01-01
A multiple-scale eddy viscosity model is described. This model splits the energy spectrum into a high wave number regime and a low wave number regime. Dividing the energy spectrum into multiple regimes simplistically emulates the cascade of energy through the turbulence spectrum. The constraints on the model coefficients are determined by examining decaying turbulence and homogeneous turbulence. A direct link between the partitioned energies and the energy transfer process is established through the coefficients. This new model was calibrated and tested for boundary-free turbulent shear flows. Calculations of mean and turbulent properties show good agreement with experimental data for two mixing layers, a plane jet and a round jet.
Neutron transfer in the C 13 + Au 197 reaction from gold isotope residuals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daub, B. H.; Bleuel, D. L.; Wiedeking, M.
Residual gold nuclei were produced in this paper via neutron transfer at multiple energies using a 130-MeV 13C beam incident on a stacked-foil target consisting of alternating layers of 197Au and 27Al. Production cross sections, over an energy range of 56 to 129 MeV, for seven gold isotopes and two gold isomers were determined through activation analysis. By using the Wilczynski binary transfer model with a modified version of the recoil formula and a standard evaporation model, we were able to reproduce the isotopic production cross sections at high beam energy, with some disagreement at lower beam energies. Finally, thismore » limiting angular momentum model does not predict the transfer of sufficient angular momentum to reproduce the observed isomeric populations.« less
Neutron transfer in the C 13 + Au 197 reaction from gold isotope residuals
Daub, B. H.; Bleuel, D. L.; Wiedeking, M.; ...
2017-08-01
Residual gold nuclei were produced in this paper via neutron transfer at multiple energies using a 130-MeV 13C beam incident on a stacked-foil target consisting of alternating layers of 197Au and 27Al. Production cross sections, over an energy range of 56 to 129 MeV, for seven gold isotopes and two gold isomers were determined through activation analysis. By using the Wilczynski binary transfer model with a modified version of the recoil formula and a standard evaporation model, we were able to reproduce the isotopic production cross sections at high beam energy, with some disagreement at lower beam energies. Finally, thismore » limiting angular momentum model does not predict the transfer of sufficient angular momentum to reproduce the observed isomeric populations.« less
NASA Technical Reports Server (NTRS)
Montgomery, Leslie D.; Ku, Yu-Tsuan E.; Luna, Bernadette; Montgomery, Richard W.; Kliss, Mark (Technical Monitor)
1997-01-01
Recent neuropsychological studies demonstrate that cognitive dysfunction is a common symptom in patients with multiple sclerosis. In many cases the presence of cognitive impairment affects the patient's daily activities to a greater extent than would be found due to their physical disability alone. Cognitive dysfunction can have a significant impact on the quality of life of both the patient and that of their primary caregiver. Two cognitively impaired male MS patients were given a visual discrimination task before and after a one hour cooling period. The subjects were presented a series of either red or blue circles or triangles. One of these combinations, or one fourth of the stimuli, was designated as the "target" presentation. EEG was recorded from 20 scalp electrodes using a Tracor Northern 7500 EEG/ERP system. Oral and ear temperatures were obtained and recorded manually every five minutes during the one hour cooling period. The EEG ERP signatures from each series of stimuli were analyzed in the energy density domain to determine the locus of neural activity at each EEG sampling time. The first subject's ear temperature did not decrease during the cooling period. It was actually elevated approximately 0.05C by the end of the cooling period compared to his mean of control period value. In turn, Subject One's discrimination performance and cortical energy remained essentially the same after body cooling. In contrast, Subject Two's ear temperature decreased approx. 0.8C during his cooling period. Subject Two's ERROR score decreased from 12 during the precooling control period to 2 after cooling. His ENERGY value increased approximately 300%, from a precooling value of approximately 200 to a postcooling value of nearly 600.
Forward-Backward Emission of Target Evaporated Fragments at High Energy Nucleus-Nucleus Collisions
NASA Astrophysics Data System (ADS)
Zhang, Zhi; Ma, Tian-Li; Zhang, Dong-Hai
The multiplicity distribution, multiplicity moments, scaled variance and entropy of target evaporated fragment emitted in forward and backward hemispheres in relativistic heavy ions induced emulsion heavy targets (AgBr) interactions are investigated. It is found that the multiplicity distribution can be fitted by the Gaussian distribution, and the fitting parameters are different between two hemispheres for all the interactions. The multiplicity moment increases with the order of the moment q, and second-order multiplicity moment is energy independent over the entire energy for all the interactions. The scaled variance is close to one for all the interactions. The entropy in forward hemisphere is greater than that in backward hemisphere for all the interactions.
Multi Dimensional Honey Bee Foraging Algorithm Based on Optimal Energy Consumption
NASA Astrophysics Data System (ADS)
Saritha, R.; Vinod Chandra, S. S.
2017-10-01
In this paper a new nature inspired algorithm is proposed based on natural foraging behavior of multi-dimensional honey bee colonies. This method handles issues that arise when food is shared from multiple sources by multiple swarms at multiple destinations. The self organizing nature of natural honey bee swarms in multiple colonies is based on the principle of energy consumption. Swarms of multiple colonies select a food source to optimally fulfill the requirements of its colonies. This is based on the energy requirement for transporting food between a source and destination. Minimum use of energy leads to maximizing profit in each colony. The mathematical model proposed here is based on this principle. This has been successfully evaluated by applying it on multi-objective transportation problem for optimizing cost and time. The algorithm optimizes the needs at each destination in linear time.
Wu, Lingyan; Zhang, Lina; Li, Bohan; Jiang, Haowen; Duan, Yanan; Xie, Zhifu; Shuai, Lin; Li, Jia; Li, Jingya
2018-01-01
Obesity occurs when excess energy accumulates in white adipose tissue (WAT), whereas brown adipose tissue (BAT), which is specialized in dissipating energy through thermogenesis, potently counteracts obesity. White adipocytes can be converted to thermogenic “brown-like” cells (beige cells; WAT browning) under various stimuli, such as cold exposure. AMP-activated protein kinase (AMPK) is a crucial energy sensor that regulates energy metabolism in multiple tissues. However, the role of AMPK in adipose tissue function, especially in the WAT browning process, is not fully understood. To illuminate the effect of adipocyte AMPK on energy metabolism, we generated Adiponectin-Cre-driven adipose tissue-specific AMPK α1/α2 KO mice (AKO). These AKO mice were cold intolerant and their inguinal WAT displayed impaired mitochondrial integrity and biogenesis, and reduced expression of thermogenic markers upon cold exposure. High-fat-diet (HFD)-fed AKO mice exhibited increased adiposity and exacerbated hepatic steatosis and fibrosis and impaired glucose tolerance and insulin sensitivity. Meanwhile, energy expenditure and oxygen consumption were markedly decreased in the AKO mice both in basal conditions and after stimulation with a β3-adrenergic receptor agonist, CL 316,243. In contrast, we found that in HFD-fed obese mouse model, chronic AMPK activation by A-769662 protected against obesity and related metabolic dysfunction. A-769662 alleviated HFD-induced glucose intolerance and reduced body weight gain and WAT expansion. Notably, A-769662 increased energy expenditure and cold tolerance in HFD-fed mice. A-769662 treatment also induced the browning process in the inguinal fat depot of HFD-fed mice. Likewise, A-769662 enhanced thermogenesis in differentiated inguinal stromal vascular fraction (SVF) cells via AMPK signaling pathway. In summary, a lack of adipocyte AMPKα induced thermogenic impairment and obesity in response to cold and nutrient-overload, respectively, whereas chronic AMPK activation by A-769662 promoted WAT browning in inguinal WAT and protected against HFD-induced obesity and related metabolic dysfunction. These findings reveal a vital role for adipocyte AMPK in regulating the browning process in inguinal WAT and in maintaining energy homeostasis, which suggests that the targeted activation of adipocyte AMPK may be a promising strategy for anti-obesity therapy. PMID:29515462
NASA Astrophysics Data System (ADS)
Samanta, Anirban; Walper, Scott A.; Susumu, Kimihiro; Dwyer, Chris L.; Medintz, Igor L.
2015-04-01
The ability to control light energy within de novo nanoscale structures and devices will greatly benefit their continuing development and ultimate application. Ideally, this control should extend from generating the light itself to its spatial propagation within the device along with providing defined emission wavelength(s), all in a stand-alone modality. Here we design and characterize macromolecular nanoassemblies consisting of semiconductor quantum dots (QDs), several differentially dye-labeled peptides and the enzyme luciferase which cumulatively demonstrate many of these capabilities by engaging in multiple-sequential energy transfer steps. To create these structures, recombinantly-expressed luciferase and the dye-labeled peptides were appended with a terminal polyhistidine sequence allowing for controlled ratiometric self-assembly around the QDs via metal-affinity coordination. The QDs serve to provide multiple roles in these structures including as central assembly platforms or nanoscaffolds along with acting as a potent energy harvesting and transfer relay. The devices are activated by addition of coelenterazine H substrate which is oxidized by luciferase producing light energy which sensitizes the central 625 nm emitting QD acceptor by bioluminescence resonance energy transfer (BRET). The sensitized QD, in turn, acts as a relay and transfers the energy to a first peptide-labeled Alexa Fluor 647 acceptor dye displayed on its surface. This dye then transfers energy to a second red-shifted peptide-labeled dye acceptor on the QD surface through a second concentric Förster resonance energy transfer (FRET) process. Alexa Fluor 700 and Cy5.5 are both tested in the role of this terminal FRET acceptor. Photophysical analysis of spectral profiles from the resulting sequential BRET-FRET-FRET processes allow us to estimate the efficiency of each of the transfer steps. Importantly, the efficiency of each step within this energy transfer cascade can be controlled to some extent by the number of enzymes/peptides displayed on the QD. Further optimization of the energy transfer process(es) along with potential applications of such devices are finally discussed.The ability to control light energy within de novo nanoscale structures and devices will greatly benefit their continuing development and ultimate application. Ideally, this control should extend from generating the light itself to its spatial propagation within the device along with providing defined emission wavelength(s), all in a stand-alone modality. Here we design and characterize macromolecular nanoassemblies consisting of semiconductor quantum dots (QDs), several differentially dye-labeled peptides and the enzyme luciferase which cumulatively demonstrate many of these capabilities by engaging in multiple-sequential energy transfer steps. To create these structures, recombinantly-expressed luciferase and the dye-labeled peptides were appended with a terminal polyhistidine sequence allowing for controlled ratiometric self-assembly around the QDs via metal-affinity coordination. The QDs serve to provide multiple roles in these structures including as central assembly platforms or nanoscaffolds along with acting as a potent energy harvesting and transfer relay. The devices are activated by addition of coelenterazine H substrate which is oxidized by luciferase producing light energy which sensitizes the central 625 nm emitting QD acceptor by bioluminescence resonance energy transfer (BRET). The sensitized QD, in turn, acts as a relay and transfers the energy to a first peptide-labeled Alexa Fluor 647 acceptor dye displayed on its surface. This dye then transfers energy to a second red-shifted peptide-labeled dye acceptor on the QD surface through a second concentric Förster resonance energy transfer (FRET) process. Alexa Fluor 700 and Cy5.5 are both tested in the role of this terminal FRET acceptor. Photophysical analysis of spectral profiles from the resulting sequential BRET-FRET-FRET processes allow us to estimate the efficiency of each of the transfer steps. Importantly, the efficiency of each step within this energy transfer cascade can be controlled to some extent by the number of enzymes/peptides displayed on the QD. Further optimization of the energy transfer process(es) along with potential applications of such devices are finally discussed. Electronic supplementary information (ESI) available: This material includes control experimental data and select deconvoluted spectra. See DOI: 10.1039/c5nr00828j
Electronic transport in smectic liquid crystals
NASA Astrophysics Data System (ADS)
Shiyanovskaya, I.; Singer, K. D.; Twieg, R. J.; Sukhomlinova, L.; Gettwert, V.
2002-04-01
Time-of-flight measurements of transient photoconductivity have revealed bipolar electronic transport in phenylnaphthalene and biphenyl liquid crystals (LC), which exhibit several smectic mesophases. In the phenylnaphthalene LC, the hole mobility is significantly higher than the electron mobility and exhibits different temperature and phase behavior. Electron mobility in the range ~10-5 cm2/V s is temperature activated and remains continuous at the phase transitions. However, hole mobility is nearly temperature independent within the smectic phases, but is very sensitive to smectic order, 10-3 cm2/V s in the smectic-B (Sm-B) and 10-4 cm2/V s in the smectic-A (Sm-A) mesophases. The different behavior for holes and electron transport is due to differing transport mechanisms. The electron mobility is apparently controlled by rate-limiting multiple shallow trapping by impurities, but hole mobility is not. To explain the lack of temperature dependence for hole mobility within the smectic phases we consider two possible polaron transport mechanisms. The first mechanism is based on the hopping of Holstein small polarons in the nonadiabatic limit. The polaron binding energy and transfer integral values, obtained from the model fit, turned out to be sensitive to the molecular order in smectic mesophases. A second possible scenario for temperature-independent hole mobility involves the competion between two different polaron mechanisms involving so-called nearly small molecular polarons and small lattice polarons. Although the extracted transfer integrals and binding energies are reasonable and consistent with the model assumptions, the limited temperature range of the various phases makes it difficult to distinguish between any of the models. In the biphenyl LCs both electron and hole mobilities exhibit temperature activated behavior in the range of 10-5 cm2/V s without sensitivity to the molecular order. The dominating transport mechanism is considered as multiple trapping in the impurity sites. Temperature-activated mobility was treated within the disorder formalism, and activation energy and width of density of states have been calculated.
Avalanche multiplication and impact ionization in amorphous selenium photoconductive target
NASA Astrophysics Data System (ADS)
Park, Wug-Dong; Tanioka, Kenkichi
2014-03-01
The avalanche multiplication factor and the hole ionization coefficient in the amorphous selenium (a-Se) high-gain avalanche rushing amorphous photoconductor (HARP) target depend on the electric field. The phenomenon of avalanche multiplication and impact ionization in the 0.4-µm-thick a-Se HARP target is investigated. The hot carrier energy in the 0.4-µm-thick a-Se HARP target increases linearly as the target voltage increases. The energy relaxation length of hot carriers in the a-Se photoconductor of the 0.4-µm-thick HARP target saturates as the electric field increases. The average energy Eav of a hot carrier and the energy relaxation length λE in the a-Se photoconductor of the 0.4-µm-thick HARP target at 1 × 108 V/m were 0.25 eV and 2.5 nm, respectively. In addition, the hole ionization coefficient β and the avalanche multiplication factor M are derived as a function of the electric field, the average energy of a hot carrier, and the impact ionization energy. The experimental hole ionization coefficient β and the avalanche multiplication factor M in the 0.4-µm-thick a-Se HARP target agree with the theoretical results.
Jacobson, Isabel G; Horton, Jaime L; Smith, Besa; Wells, Timothy S; Boyko, Edward J; Lieberman, Harris R; Ryan, Margaret A K; Smith, Tyler C
2012-05-01
The characteristics of U.S. military personnel who use dietary supplements have not been well described. This study aimed to determine whether deployment experience and physical activity were associated with the use of bodybuilding, energy, or weight-loss supplement among U.S. military personnel. Self-reported data from active-duty, Reserve, and National Guard participants of the Millennium Cohort Study collected from 2007-2008 (n = 106,698) on supplement use, physical activity, and other behavioral data were linked with deployment and demographic data. We used multivariable logistic regression sex-stratified models to compare the adjusted odds of each type of supplement use among those with deployment experience in support of operations in Iraq or Afghanistan and those engaged in aerobic or strength-training activities. Overall, 46.7% of participants reported using at least one type of supplement, and 22.0% reported using multiple supplements. Male deployers were more likely to use bodybuilding supplements, whereas female deployers were more likely to use weight-loss supplements. Physically active and younger subjects reported all types of supplement use. Men and women reporting 5 or less hours of sleep per night were more likely to use energy supplements. The high prevalence of supplement use and important characteristics found to be associated with their use, including deployment, physical activity, and suboptimal sleep, suggest focus areas for future research and adverse event monitoring. Copyright © 2012 Elsevier Inc. All rights reserved.
Active Thermal Control System Development for Exploration
NASA Technical Reports Server (NTRS)
Westheimer, David
2007-01-01
All space vehicles or habitats require thermal management to maintain a safe and operational environment for both crew and hardware. Active Thermal Control Systems (ATCS) perform the functions of acquiring heat from both crew and hardware within a vehicle, transporting that heat throughout the vehicle, and finally rejecting that energy into space. Almost all of the energy used in a space vehicle eventually turns into heat, which must be rejected in order to maintain an energy balance and temperature control of the vehicle. For crewed vehicles, Active Thermal Control Systems are pumped fluid loops that are made up of components designed to perform these functions. NASA has been actively developing technologies that will enable future missions or will provide significant improvements over the state of the art technologies. These technologies have are targeted for application on the Crew Exploration Vehicle (CEV), or Orion, and a Lunar Surface Access Module (LSAM). The technologies that have been selected and are currently under development include: fluids that enable single loop ATCS architectures, a gravity insensitive vapor compression cycle heat pump, a sublimator with reduced sensitivity to feedwater contamination, an evaporative heat sink that can operate in multiple ambient pressure environments, a compact spray evaporator, and lightweight radiators that take advantage of carbon composites and advanced optical coatings.
Optimal Time-Resource Allocation for Energy-Efficient Physical Activity Detection
Thatte, Gautam; Li, Ming; Lee, Sangwon; Emken, B. Adar; Annavaram, Murali; Narayanan, Shrikanth; Spruijt-Metz, Donna; Mitra, Urbashi
2011-01-01
The optimal allocation of samples for physical activity detection in a wireless body area network for health-monitoring is considered. The number of biometric samples collected at the mobile device fusion center, from both device-internal and external Bluetooth heterogeneous sensors, is optimized to minimize the transmission power for a fixed number of samples, and to meet a performance requirement defined using the probability of misclassification between multiple hypotheses. A filter-based feature selection method determines an optimal feature set for classification, and a correlated Gaussian model is considered. Using experimental data from overweight adolescent subjects, it is found that allocating a greater proportion of samples to sensors which better discriminate between certain activity levels can result in either a lower probability of error or energy-savings ranging from 18% to 22%, in comparison to equal allocation of samples. The current activity of the subjects and the performance requirements do not significantly affect the optimal allocation, but employing personalized models results in improved energy-efficiency. As the number of samples is an integer, an exhaustive search to determine the optimal allocation is typical, but computationally expensive. To this end, an alternate, continuous-valued vector optimization is derived which yields approximately optimal allocations and can be implemented on the mobile fusion center due to its significantly lower complexity. PMID:21796237
Muto, Shunsuke; Tatsumi, Kazuyoshi
2017-02-08
Advancements in the field of renewable energy resources have led to a growing demand for the analysis of light elements at the nanometer scale. Detection of lithium is one of the key issues to be resolved for providing guiding principles for the synthesis of cathode active materials, and degradation analysis after repeated use of those materials. We have reviewed the different techniques currently used for the characterization of light elements such as high-resolution transmission electron microscopy, scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS). In the present study, we have introduced a methodology to detect lithium in solid materials, particularly for cathode active materials used in lithium-ion battery. The chemical states of lithium were isolated and analyzed from the overlapping multiple spectral profiles, using a suite of STEM, EELS and hyperspectral image analysis. The method was successfully applied in the chemical state analyses of hetero-phases near the surface and grain boundary regions of the active material particles formed by chemical reactions between the electrolyte and the active materials. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Detection of Mitochondrial Caspase Activity in Real Time In Situ in Live Cells
NASA Astrophysics Data System (ADS)
Zhang, Yingpei; Haskins, Catherine; Lopez-Cruzan, Marisa; Zhang, Jianhua; Centonze, Victoria E.; Herman, Brian
2004-08-01
Apoptosis plays an important role in many physiological and pathological processes. The initiation and execution of the cell death program requires activation of multiple caspases in a stringently temporal order. Here we describe a method that allows real-time observation of caspase activation in situ in live cells based on fluorescent resonance energy transfer (FRET) measurement using the prism and reflector imaging spectroscopy system (PARISS). When a fusion protein consisting of CFP connected to YFP via an intervening caspase substrate that has been targeted to a specific subcellular location is excited with a light source whose wavelength matches the cyan fluorescent protein (CFP) excitation peak, the energy absorbed by the CFP fluorophore is not emitted as fluorescence. Instead, the excitation energy is absorbed by the nearby yellow fluorescent protein (YFP) fluorophore that is covalently linked to CFP through a short peptide containing the caspase substrate. Cleavage of the linker peptide by caspases results in loss of FRET due to the separation of CFP and YFP fluorophores. Using a mitochondrially targeted CFP caspase 3 substrate YFP construct (mC3Y), we demonstrate for the first time that there is caspase-3-like activity in the mitochondrial matrix of some cells at very late stage of apoptosis.
Differential expression of glucose-metabolizing enzymes in multiple sclerosis lesions.
Nijland, Philip G; Molenaar, Remco J; van der Pol, Susanne M A; van der Valk, Paul; van Noorden, Cornelis J F; de Vries, Helga E; van Horssen, Jack
2015-12-04
Demyelinated axons in multiple sclerosis (MS) lesions have an increased energy demand in order to maintain conduction. However, oxidative stress-induced mitochondrial dysfunction likely alters glucose metabolism and consequently impairs neuronal function in MS. Imaging and pathological studies indicate that glucose metabolism is altered in MS, although the underlying mechanisms and its role in neurodegeneration remain elusive. We investigated expression patterns of key enzymes involved in glycolysis, tricarboxylic acid (TCA) cycle and lactate metabolism in well-characterized MS tissue to establish which regulators of glucose metabolism are involved in MS and to identify underlying mechanisms. Expression levels of glycolytic enzymes were increased in active and inactive MS lesions, whereas expression levels of enzymes involved in the TCA cycle were upregulated in active MS lesions, but not in inactive MS lesions. We observed reduced expression and production capacity of mitochondrial α-ketoglutarate dehydrogenase (αKGDH) in demyelinated axons, which correlated with signs of axonal dysfunction. In inactive lesions, increased expression of lactate-producing enzymes was observed in astrocytes, whereas lactate-catabolising enzymes were mainly detected in axons. Our results demonstrate that the expression of various enzymes involved in glucose metabolism is increased in both astrocytes and axons in active MS lesions. In inactive MS lesions, we provide evidence that astrocytes undergo a glycolytic shift resulting in enhanced astrocyte-axon lactate shuttling, which may be pivotal for the survival of demyelinated axons. In conclusion, we show that key enzymes involved in energy metabolism are differentially expressed in active and inactive MS lesions. Our findings imply that, in addition to reduced oxidative phosphorylation activity, other bioenergetic pathways are affected as well, which may contribute to ongoing axonal degeneration in MS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohanpurkar, Manish; Luo, Yusheng; Hovsapian, Rob
Electricity generated by Hydropower Plants (HPPs) contributes a considerable portion of bulk electricity generation and delivers it with a low carbon footprint. In fact, HPP electricity generation provides the largest share from renewable energy resources, which includes solar and wind energy. The increasing penetration of wind and solar penetration leads to a lowered inertia in the grid and hence poses stability challenges. In recent years, breakthrough in energy storage technologies have demonstrated the economic and technical feasibility of extensive deployments in power grids. Multiple ROR HPPs if integrated with scalable, multi time-step energy storage so that the total output canmore » be controlled. Although, the size of a single energy storage is far smaller than that of a typical reservoir, cohesively managing multiple sets of energy storage distributed in different locations is proposed. The ratings of storages and multiple ROR HPPs approximately equals the rating of a large, conventional HPP. The challenges associated with the system architecture and operation are described. Energy storage technologies such as supercapacitors, flywheels, batteries etc. can function as a dispatchable synthetic reservoir with a scalable size of energy storage will be integrated. Supercapacitors, flywheels, and battery are chosen to provide fast, medium, and slow responses to support grid requirements. Various dynamic and transient power grid conditions are simulated and performances of integrated ROR HPPs with energy storage is provided. The end goal of this research is to investigate the inertial equivalence of a large, conventional HPP with a unique set of multiple ROR HPPs and optimally rated energy storage systems.« less
A multiple-scale turbulence model for incompressible flow
NASA Technical Reports Server (NTRS)
Duncan, B. S.; Liou, W. W.; Shih, T. H.
1993-01-01
A multiple-scale eddy viscosity model is described in this paper. This model splits the energy spectrum into a high wave number regime and a low wave number regime. Dividing the energy spectrum into multiple regimes simplistically emulates the cascade of energy through the turbulence spectrum. The constraints on the model coefficients are determined by examining decaying turbulence and homogeneous turbulence. A direct link between the partitioned energies and the energy transfer process is established through the coefficients. This new model has been calibrated and tested for boundary-free turbulent shear flows. Calculations of mean and turbulent properties show good agreement with experimental data for two mixing layers, a plane jet and a round jet.
Chowdhury, Enhad A; Western, Max J; Nightingale, Thomas E; Peacock, Oliver J; Thompson, Dylan
2017-01-01
Wearable physical activity monitors are growing in popularity and provide the opportunity for large numbers of the public to self-monitor physical activity behaviours. The latest generation of these devices feature multiple sensors, ostensibly similar or even superior to advanced research instruments. However, little is known about the accuracy of their energy expenditure estimates. Here, we assessed their performance against criterion measurements in both controlled laboratory conditions (simulated activities of daily living and structured exercise) and over a 24 hour period in free-living conditions. Thirty men (n = 15) and women (n = 15) wore three multi-sensor consumer monitors (Microsoft Band, Apple Watch and Fitbit Charge HR), an accelerometry-only device as a comparison (Jawbone UP24) and validated research-grade multi-sensor devices (BodyMedia Core and individually calibrated Actiheart™). During discrete laboratory activities when compared against indirect calorimetry, the Apple Watch performed similarly to criterion measures. The Fitbit Charge HR was less consistent at measurement of discrete activities, but produced similar free-living estimates to the Apple Watch. Both these devices underestimated free-living energy expenditure (-394 kcal/d and -405 kcal/d, respectively; P<0.01). The multi-sensor Microsoft Band and accelerometry-only Jawbone UP24 devices underestimated most laboratory activities and substantially underestimated free-living expenditure (-1128 kcal/d and -998 kcal/d, respectively; P<0.01). None of the consumer devices were deemed equivalent to the reference method for daily energy expenditure. For all devices, there was a tendency for negative bias with greater daily energy expenditure. No consumer monitors performed as well as the research-grade devices although in some (but not all) cases, estimates were close to criterion measurements. Thus, whilst industry-led innovation has improved the accuracy of consumer monitors, these devices are not yet equivalent to the best research-grade devices or indeed equivalent to each other. We propose independent quality standards and/or accuracy ratings for consumer devices are required.
Chowdhury, Enhad A.; Western, Max J.; Nightingale, Thomas E.; Peacock, Oliver J.; Thompson, Dylan
2017-01-01
Wearable physical activity monitors are growing in popularity and provide the opportunity for large numbers of the public to self-monitor physical activity behaviours. The latest generation of these devices feature multiple sensors, ostensibly similar or even superior to advanced research instruments. However, little is known about the accuracy of their energy expenditure estimates. Here, we assessed their performance against criterion measurements in both controlled laboratory conditions (simulated activities of daily living and structured exercise) and over a 24 hour period in free-living conditions. Thirty men (n = 15) and women (n = 15) wore three multi-sensor consumer monitors (Microsoft Band, Apple Watch and Fitbit Charge HR), an accelerometry-only device as a comparison (Jawbone UP24) and validated research-grade multi-sensor devices (BodyMedia Core and individually calibrated Actiheart™). During discrete laboratory activities when compared against indirect calorimetry, the Apple Watch performed similarly to criterion measures. The Fitbit Charge HR was less consistent at measurement of discrete activities, but produced similar free-living estimates to the Apple Watch. Both these devices underestimated free-living energy expenditure (-394 kcal/d and -405 kcal/d, respectively; P<0.01). The multi-sensor Microsoft Band and accelerometry-only Jawbone UP24 devices underestimated most laboratory activities and substantially underestimated free-living expenditure (-1128 kcal/d and -998 kcal/d, respectively; P<0.01). None of the consumer devices were deemed equivalent to the reference method for daily energy expenditure. For all devices, there was a tendency for negative bias with greater daily energy expenditure. No consumer monitors performed as well as the research-grade devices although in some (but not all) cases, estimates were close to criterion measurements. Thus, whilst industry-led innovation has improved the accuracy of consumer monitors, these devices are not yet equivalent to the best research-grade devices or indeed equivalent to each other. We propose independent quality standards and/or accuracy ratings for consumer devices are required. PMID:28234979
Zhang, Dongdong; Song, Xiaozeng; Cai, Minghan; Duan, Lian
2018-02-01
Organic light-emitting diodes (OLEDs) based on thermally activated delayed fluorescence-sensitized fluorescence (TSF) offer the possibility of attaining an ultimate high efficiency with low roll-off utilizing noble-metal free, easy-to-synthesize, pure organic fluorescent emitters. However, the performances of TSF-OLEDs are still unsatisfactory. Here, TSF-OLEDs with breakthrough efficiencies even at high brightnesses by suppressing the competitive deactivation processes, including direct charge recombination on conventional fluorescent dopants (CFDs) and Dexter energy transfer from the host to the CFDs, are demonstrated. On the one hand, electronically inert terminal-substituents are introduced to protect the electronically active core of the CFDs; on the other hand, delicate device structures are designed to provide multiple energy-funneling paths. As a result, unprecedentedly high maximum external quantum efficiency/power efficiency of 24%/71.4 lm W -1 in a green TSF-OLED are demonstrated, which remain at 22.6%/52.3 lm W -1 even at a high luminance of 5000 cd m -2 . The work unlocks the potential of TSF-OLEDs, paving the way toward practical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fission prompt gamma-ray multiplicity distribution measurements and simulations at DANCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chyzh, A; Wu, C Y; Ullmann, J
2010-08-24
The nearly energy independence of the DANCE efficiency and multiplicity response to {gamma} rays makes it possible to measure the prompt {gamma}-ray multiplicity distribution in fission. We demonstrate this unique capability of DANCE through the comparison of {gamma}-ray energy and multiplicity distribution between the measurement and numerical simulation for three radioactive sources {sup 22}Na, {sup 60}Co, and {sup 88}Y. The prospect for measuring the {gamma}-ray multiplicity distribution for both spontaneous and neutron-induced fission is discussed.
Mechanisms of regulation of SNF1/AMPK/SnRK1 protein kinases.
Crozet, Pierre; Margalha, Leonor; Confraria, Ana; Rodrigues, Américo; Martinho, Cláudia; Adamo, Mattia; Elias, Carlos A; Baena-González, Elena
2014-01-01
The SNF1 (sucrose non-fermenting 1)-related protein kinases 1 (SnRKs1) are the plant orthologs of the budding yeast SNF1 and mammalian AMPK (AMP-activated protein kinase). These evolutionarily conserved kinases are metabolic sensors that undergo activation in response to declining energy levels. Upon activation, SNF1/AMPK/SnRK1 kinases trigger a vast transcriptional and metabolic reprograming that restores energy homeostasis and promotes tolerance to adverse conditions, partly through an induction of catabolic processes and a general repression of anabolism. These kinases typically function as a heterotrimeric complex composed of two regulatory subunits, β and γ, and an α-catalytic subunit, which requires phosphorylation of a conserved activation loop residue for activity. Additionally, SNF1/AMPK/SnRK1 kinases are controlled by multiple mechanisms that have an impact on kinase activity, stability, and/or subcellular localization. Here we will review current knowledge on the regulation of SNF1/AMPK/SnRK1 by upstream components, post-translational modifications, various metabolites, hormones, and others, in an attempt to highlight both the commonalities of these essential eukaryotic kinases and the divergences that have evolved to cope with the particularities of each one of these systems.
Mechanisms of regulation of SNF1/AMPK/SnRK1 protein kinases
Crozet, Pierre; Margalha, Leonor; Confraria, Ana; Rodrigues, Américo; Martinho, Cláudia; Adamo, Mattia; Elias, Carlos A.; Baena-González, Elena
2014-01-01
The SNF1 (sucrose non-fermenting 1)-related protein kinases 1 (SnRKs1) are the plant orthologs of the budding yeast SNF1 and mammalian AMPK (AMP-activated protein kinase). These evolutionarily conserved kinases are metabolic sensors that undergo activation in response to declining energy levels. Upon activation, SNF1/AMPK/SnRK1 kinases trigger a vast transcriptional and metabolic reprograming that restores energy homeostasis and promotes tolerance to adverse conditions, partly through an induction of catabolic processes and a general repression of anabolism. These kinases typically function as a heterotrimeric complex composed of two regulatory subunits, β and γ, and an α-catalytic subunit, which requires phosphorylation of a conserved activation loop residue for activity. Additionally, SNF1/AMPK/SnRK1 kinases are controlled by multiple mechanisms that have an impact on kinase activity, stability, and/or subcellular localization. Here we will review current knowledge on the regulation of SNF1/AMPK/SnRK1 by upstream components, post-translational modifications, various metabolites, hormones, and others, in an attempt to highlight both the commonalities of these essential eukaryotic kinases and the divergences that have evolved to cope with the particularities of each one of these systems. PMID:24904600
Principles of Toxicological Interactions Associated with Multiple Chemical Exposures.
1980-12-01
chemicals from sites of activation or deactivation , the agent possessing the higher binding affinity would also be expected to antagonize or act...kcal/mol. Because of their high binding energy, covalent bonds are essentially irreversible at ordinary body temperature unless a catalytic agent such...determining the toxicity of chemicals is the route or routes by which such agents gain entry into the body. The inhalation and dermal routes of absorption
Nanocomposite Gate Dielectrics With Nanoparticles for Organic Thin Film Transistors
2006-09-15
gives rise to the larger transport activation energy and trap distribution width in pentacene TFTs, leading to a decrease of carrier mobility. On the...voltage, carrier mobility of pentacene TFTs increase. These phenomena can be explained by multiple trapping and release model. Therefore, a possible...the low charge carrier mobility of organic semiconductors. Hence, for the applications that require high current output, such as switching of organic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berg, Jonathan Charles; Halse, Chris; Crowther, Ashley
2010-06-01
Prior work on active aerodynamic load control (AALC) of wind turbine blades has demonstrated that appropriate use of this technology has the potential to yield significant reductions in blade loads, leading to a decrease in wind cost of energy. While the general concept of AALC is usually discussed in the context of multiple sensors and active control devices (such as flaps) distributed over the length of the blade, most work to date has been limited to consideration of a single control device per blade with very basic Proportional Derivative controllers, due to limitations in the aeroservoelastic codes used to performmore » turbine simulations. This work utilizes a new aeroservoelastic code developed at Delft University of Technology to model the NREL/Upwind 5 MW wind turbine to investigate the relative advantage of utilizing multiple-device AALC. System identification techniques are used to identify the frequencies and shapes of turbine vibration modes, and these are used with modern control techniques to develop both Single-Input Single-Output (SISO) and Multiple-Input Multiple-Output (MIMO) LQR flap controllers. Comparison of simulation results with these controllers shows that the MIMO controller does yield some improvement over the SISO controller in fatigue load reduction, but additional improvement is possible with further refinement. In addition, a preliminary investigation shows that AALC has the potential to reduce off-axis gearbox loads, leading to reduced gearbox bearing fatigue damage and improved lifetimes.« less
NASA Astrophysics Data System (ADS)
Lapshev, Stepan; Hasan, S. M. Rezaul
2017-04-01
This paper presents the approach of using complex multiplier-accumulators (CMACs) with multiple accumulators to reduce the total number of memory operations in an input-buffered architecture for the X part of an FX correlator. A processing unit of this architecture uses an array of CMACs that are reused for different groups of baselines. The disadvantage of processing correlations in this way is that each input data sample has to be read multiple times from the memory because each input signal is used in many of these baseline groups. While a one-accumulator CMAC cannot switch to a different baseline until it is finished integrating the current one, a multiple-accumulator CMAC can. Thus, the array of multiple-accumulator CMACs can switch between processing different baselines that share some input signals at any moment to reuse the current data in the processing buffers. In this way significant reductions in the number of memory read operations are achieved with only a few accumulators per CMAC. For example, for a large number of input signals three-accumulator CMACs reduce the total number of memory operations by more than a third. Simulated energy measurements of four VLSI designs in a high-performance 28 nm CMOS technology are presented in this paper to demonstrate that using multiple accumulators can also lead to reduced power dissipation of the processing array. Using three accumulators as opposed to one has been found to reduce the overall energy of 8-bit CMACs by 1.4% through the reduction of the switching activity within their circuits, which is in addition to a more than 30% reduction in the memory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livingston, Roderick
1999-07-01
This project was designed to help develop the US Initiative on Joint Implementation activities in Eastern Africa. It has been communicated in meetings with representatives from the Ministry of Environment of Tanzania and the consultant group that developed Tanzania's National Climate Change Action Plan, the Centre for Energy, Environment, Science and Technology, that this project fits very well with the developmental and environmental goals of the Government of Tanzania. The goal of the Activities Implemented Jointly ruminant livestock project is to reduce ruminant methane emissions in Eastern Africa. The project plans a sustainable cattle multiplication unit (CMU) at Mabuki Ranchmore » in the Mwanza Region of Tanzania. This CMU will focus on raising genetically improved animals to be purchased by farmers, developmental organizations, and other CMUs in Tanzania. Through the purchase of these animals farmers will raise their income generation potential and reduce ruminant methane emissions.« less
Experiment in multiple-criteria energy policy analysis
NASA Astrophysics Data System (ADS)
Ho, J. K.
1980-07-01
An international panel of energy analysts participated in an experiment to use HOPE (holistic preference evaluation): an interactive parametric linear programming method for multiple criteria optimization. The criteria of cost, environmental effect, crude oil, and nuclear fuel were considered, according to BESOM: an energy model for the US in the year 2000.
2016-01-01
The epidermal growth factor receptor (EGFR) is a dimeric membrane protein that regulates key aspects of cellular function. Activation of the EGFR is linked to changes in the conformation of the transmembrane (TM) domain, brought about by changes in interactions of the TM helices of the membrane lipid bilayer. Using an advanced computational approach that combines Coarse-Grained molecular dynamics and well-tempered MetaDynamics (CG-MetaD), we characterize the large-scale motions of the TM helices, simulating multiple association and dissociation events between the helices in membrane, thus leading to a free energy landscape of the dimerization process. The lowest energy state of the TM domain is a right-handed dimer structure in which the TM helices interact through the N-terminal small-X3-small sequence motif. In addition to this state, which is thought to correspond to the active form of the receptor, we have identified further low-energy states that allow us to integrate with a high level of detail a range of previous experimental observations. These conformations may lead to the active state via two possible activation pathways, which involve pivoting and rotational motions of the helices, respectively. Molecular dynamics also reveals correlation between the conformational changes of the TM domains and of the intracellular juxtamembrane domains, paving the way for a comprehensive understanding of EGFR signaling at the cell membrane. PMID:27459426
Lelimousin, Mickaël; Limongelli, Vittorio; Sansom, Mark S P
2016-08-24
The epidermal growth factor receptor (EGFR) is a dimeric membrane protein that regulates key aspects of cellular function. Activation of the EGFR is linked to changes in the conformation of the transmembrane (TM) domain, brought about by changes in interactions of the TM helices of the membrane lipid bilayer. Using an advanced computational approach that combines Coarse-Grained molecular dynamics and well-tempered MetaDynamics (CG-MetaD), we characterize the large-scale motions of the TM helices, simulating multiple association and dissociation events between the helices in membrane, thus leading to a free energy landscape of the dimerization process. The lowest energy state of the TM domain is a right-handed dimer structure in which the TM helices interact through the N-terminal small-X3-small sequence motif. In addition to this state, which is thought to correspond to the active form of the receptor, we have identified further low-energy states that allow us to integrate with a high level of detail a range of previous experimental observations. These conformations may lead to the active state via two possible activation pathways, which involve pivoting and rotational motions of the helices, respectively. Molecular dynamics also reveals correlation between the conformational changes of the TM domains and of the intracellular juxtamembrane domains, paving the way for a comprehensive understanding of EGFR signaling at the cell membrane.
Glanville, Elsa J; Seebacher, Frank
2010-03-01
Small mammals that remain active throughout the year at a constant body temperature have a much greater energy and food requirement in winter. Lower body temperatures in winter may offset the increased energetic cost of remaining active in the cold, if cellular metabolism is not constrained by a negative thermodynamic effect. We aimed to determine whether variable body temperatures can be advantageous for small endotherms by testing the hypothesis that body temperature fluctuates seasonally in a wild rat (Rattus fuscipes); conferring an energy saving and reducing food requirements during resource restricted winter. Additionally we tested whether changes in body temperature affected tissue specific metabolic capacity. Winter acclimatized rats had significantly lower body temperatures and thicker fur than summer acclimatized rats. Mitochondrial oxygen consumption and the activity of enzymes that control oxidative (citrate synthase, cytochrome c-oxidase) and anaerobic (lactate dehydrogenase) metabolism were elevated in winter and were not negatively affected by the lower body temperature. Energy transfer modeling showed that lower body temperatures in winter combined with increased fur thickness to confer a 25 kJ day(-1) energy saving, with up to 50% owing to reduced body temperature alone. We show that phenotypic plasticity at multiple levels of organization is an important component of the response of a small endotherm to winter. Mitochondrial function compensates for lower winter body temperatures, buffering metabolic heat production capacity. Copyright 2009 Elsevier Inc. All rights reserved.
Pedersen, Scott J; Cooley, Paul D; Mainsbridge, Casey
2014-01-01
Desk-based employees face multiple workplace health hazards such as insufficient physical activity and prolonged sitting. The objective of this study was to increase workday energy expenditure by interrupting prolonged occupational sitting time and introducing short-bursts of physical activity to employees' daily work habits. Over a 13-week period participants (n=17) in the intervention group were regularly exposed to a passive prompt delivered through their desktop computer that required them to stand up and engage in a short-burst of physical activity, while the control group (n=17) was not exposed to this intervention. Instead, the control group continued with their normal work routine. All participants completed a pre- and post- intervention survey to estimate workplace daily energy expenditure (calories). There was a significant 2 (Group) × 2 (Test) interaction, F (1, 32)=9.26, p < 0.05. The intervention group increased the calories expended during the workday from pre-test (M=866.29 ± 151.40) to post-test (M=1054.10 ± 393.24), whereas the control group decreased calories expended during the workday from pre-test (M=982.55 ± 315.66) to post-test (M=892.21 ± 255.36). An e-health intervention using a passive prompt was an effective mechanism for increasing employee work-related energy expenditure. Engaging employees in regular short-bursts of physical activity during the workday resulted in reduced sitting time, which may have long-term effects on the improvement of employee health.
NASA Astrophysics Data System (ADS)
Albaaj, Azhar; Makki, S. Vahab A.; Alabkhat, Qassem; Zahedi, Abdulhamid
2017-07-01
Wireless networks suffer from battery discharging specially in cooperative communications when multiple relays have an important role but they are energy constrained. To overcome this problem, energy harvesting from radio frequency signals is applied to charge the node battery. These intermediate nodes have the ability to harvest energy from the source signal and use the energy harvested to transmit information to the destination. In fact, the node tries to harvest energy and then transmit the data to destination. Division of energy harvesting and data transmission can be done in two algorithms: time-switching-based relaying protocol and power-splitting-based relaying protocol. These two algorithms also can be applied in delay-limited and delay-tolerant transmission systems. The previous works have assumed a single relay for energy harvesting, but in this article, the proposed method is concentrated on improving the outage probability and throughput by using multiple antennas in each relay node instead of using single antenna. According to our simulation results, when using multi-antenna relays, ability of energy harvesting is increased and thus system performance will be improved to great extent. Maximum ratio combining scheme has been used when the destination chooses the best signal of relays and antennas satisfying the required signal-to-noise ratio.
Kumahara, H; Tanaka, H; Schutz, Y
2004-09-01
The movement of the upper limbs (eg fidgeting-like activities) is a meaningful component of nonexercise activity thermogenesis (NEAT). This study examined the relationship between upper limb movements and whole body trunk movements, by simultaneously measuring energy expenditure during the course of the day. A cross-sectional study consisting of 88 subjects with a wide range in body mass index (17.3-32.5 kg/m(2)). The energy expenditure over a 24-h period was measured in a large respiratory chamber. The body movements were assessed by two uniaxial-accelerometers during daytime, one on the waist and the other on the dominant arm. The accelerometry scores from level 0 (=immobile) up to level 9 (=maximal intensity) were recorded. The activities of subjects were classified into eight categories: walking at two speeds on a horizontal treadmill (A & B), ambling (C), self-care tasks (D), desk work (E), meals (F), reading (G), watching TV (H). There was a significant relationship between the accelerometry scores from the waist (ACwaist) and that from the wrist (ACwrist) over the daytime period (R(2)=0.64; P<0.001). The ACwrist was systematically higher than the ACwaist during sedentary activities, whereas it was the reverse for walking activities. ACwrist to ACwaist ratio of activities E-H were above 1.0 and for walking activities (A-C) were below 1.0. A multiple regression analysis for predicting daytime energy expenditure revealed that the explained variance improved by 2% only when the ACwrist was added as a second predictor in addition to the ACwaist. This indicates that the effect of the ACwrist for predicting energy expenditure was of limited importance in our conditions of measurement. The acceleration of the upper limbs which includes fidgeting is more elevated than that of the whole body for sitting/lying down activities. However, their contribution to energy expenditure is lower than whole body trunk movements, thus indicating that the weight-bearing locomotion activities may be a key component of NEAT. However, its contribution may depend on the total duration of the upper limb movements during the course of the day.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Liancheng, E-mail: wanglc@semi.ac.cn, E-mail: lzq@semi.ac.cn, E-mail: zh.zhang@hebut.edu.cn; Semiconductor Lighting Technology Research and Development Center, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083; Mind Star
The effects of graphene on the optical properties of active system, e.g., the InGaN/GaN multiple quantum wells, are thoroughly investigated and clarified. Here, we have investigated the mechanisms accounting for the photoluminescence reduction for the graphene covered GaN/InGaN multiple quantum wells hybrid structure. Compared to the bare multiple quantum wells, the photoluminescence intensity of graphene covered multiple quantum wells showed a 39% decrease after excluding the graphene absorption losses. The responsible mechanisms have been identified with the following factors: (1) the graphene two dimensional hole gas intensifies the polarization field in multiple quantum wells, thus steepening the quantum well bandmore » profile and causing hole-electron pairs to further separate; (2) a lower affinity of graphene compared to air leading to a weaker capability to confine the excited hot electrons in multiple quantum wells; and (3) exciton transfer through non-radiative energy transfer process. These factors are theoretically analysed based on advanced physical models of semiconductor devices calculations and experimentally verified by varying structural parameters, such as the indium fraction in multiple quantum wells and the thickness of the last GaN quantum barrier spacer layer.« less
Evolution of ep fragmentation and multiplicity distributions in the Breit frame
NASA Astrophysics Data System (ADS)
Adloff, C.; Aid, S.; Anderson, M.; Andreev, V.; Andrieu, B.; Arkadov, V.; Arndt, C.; Ayyaz, I.; Babaev, A.; Bähr, J.; Bán, J.; Ban, Y.; Baranov, P.; Barrelet, E.; Barschke, R.; Bartel, W.; Bassler, U.; Beck, H. P.; Beck, M.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bernardi, G.; Bertrand-Coremans, G.; Beyer, R.; Biddulph, P.; Bispham, P.; Bizot, J. C.; Borras, K.; Botterweck, F.; Boudry, V.; Bourov, S.; Braemer, A.; Braunschweig, W.; Brisson, V.; Brückner, W.; Bruel, P.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Burton, M. J.; Buschhorn, G.; Calvet, D.; Campbell, A. J.; Carli, T.; Charlet, M.; Clarke, D.; Clerbaux, B.; Cocks, S.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Courau, A.; Cousinou, M.-C.; Cox, B. E.; Cozzika, G.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Dau, W. D.; Daum, K.; David, M.; Davis, C. L.; de Roeck, A.; de Wolf, E. A.; Delcourt, B.; Dirkmann, M.; Dixon, P.; Dlugosz, W.; Dollfus, C.; Donovan, K. T.; Dowell, J. D.; Dreis, H. B.; Droutskoi, A.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Elsen, E.; Erdmann, M.; Fahr, A. B.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Formánek, J.; Foster, J. M.; Franke, G.; Gabathuler, E.; Gabathuler, K.; Gaede, F.; Garvey, J.; Gayler, J.; Gebauer, M.; Gerhards, R.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Golec-Biernat, K.; Gonzalez-Pineiro, B.; Gorelov, I.; Grab, C.; Grässler, H.; Greenshaw, T.; Griffiths, R. K.; Grindhammer, G.; Gruber, A.; Gruber, C.; Hadig, T.; Haidt, D.; Hajduk, L.; Haller, T.; Hampel, M.; Haynes, W. J.; Heinemann, B.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herynek, I.; Hess, M. F.; Hewitt, K.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Höppner, M.; Hoffmann, D.; Holtom, T.; Horisberger, R.; Hudgson, V. L.; Hütte, M.; Ibbotson, M.; İşsever, Ç.; Itterbeck, H.; Jacholkowska, A.; Jacobsson, C.; Jacquet, M.; Jaffre, M.; Janoth, J.; Jansen, D. M.; Jönsson, L.; Johnson, D. P.; Jung, H.; Kalmus, P. I. P.; Kander, M.; Kant, D.; Kathage, U.; Katzy, J.; Kaufmann, H. H.; Kaufmann, O.; Kausch, M.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Köhler, T.; Köhne, J. H.; Kolanoski, H.; Kolya, S. D.; Korbel, V.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Küpper, A.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Laforge, B.; Landon, M. P. J.; Lange, W.; Langenegger, U.; Lebedev, A.; Lehner, F.; Lemaitre, V.; Levonian, S.; Lindstroem, M.; Linsel, F.; Lipinski, J.; List, B.; Lobo, G.; Lomas, J. W.; Lopez, G. C.; Lubimov, V.; Lüke, D.; Lytkin, L.; Magnussen, N.; Mahlke-Krüger, H.; Malinovski, E.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, G.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Merkel, P.; Metlica, F.; Meyer, A.; Meyer, A.; Meyer, H.; Meyer, J.; Meyer, P.-O.; Migliori, A.; Mikocki, S.; Milstead, D.; Moeck, J.; Moreau, F.; Morris, J. V.; Mroczko, E.; Müller, D.; Walter, T.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Négri, I.; Newman, P. R.; Newton, D.; Nguyen, H. K.; Nicholls, T. C.; Niebergall, F.; Niebuhr, C.; Niedzballa, Ch.; Niggli, H.; Nowak, G.; Nunnemann, T.; Nyberg-Werther, M.; Oberlack, H.; Olsson, J. E.; Ozerov, D.; Palmen, P.; Panaro, E.; Panitch, A.; Pascaud, C.; Passaggio, S.; Patel, G. D.; Pawletta, H.; Peppel, E.; Perez, E.; Phillips, J. P.; Pieuchot, A.; Pitzl, D.; Pöschl, R.; Pope, G.; Povh, B.; Prell, S.; Rabbertz, K.; Reimer, P.; Rick, H.; Riess, S.; Rizvi, E.; Robmann, P.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Sankey, D. P. C.; Schacht, P.; Schiek, S.; Schleif, S.; Schleper, P.; von Schlippe, W.; Schmidt, D.; Schmidt, G.; Schoeffel, L.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Sefkow, F.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Sloan, T.; Smirnov, P.; Smith, M.; Solochenko, V.; Soloviev, Y.; Specka, A.; Spiekermann, J.; Spielman, S.; Spitzer, H.; Squinabol, F.; Steffen, P.; Steinberg, R.; Steinhart, J.; Stella, B.; Stellberger, A.; Stier, J.; Stiewe, J.; Stößlein, U.; Stolze, K.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Taševský, M.; Tchernyshov, V.; Tchetchelnitski, S.; Theissen, J.; Thompson, G.; Thompson, P. D.; Tobien, N.; Todenhagen, R.; Truöl, P.; Tsipolitis, G.; Turnau, J.; Tzamariudaki, E.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; van Esch, P.; van Mechelen, P.; Vandenplas, D.; Vazdik, Y.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Wallny, R.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wengler, T.; Werner, M.; West, L. R.; Wiesand, S.; Wilksen, T.; Willard, S.; Winde, M.; Winter, G.-G.; Wittek, C.; Wobisch, M.; Wollatz, H.; Wünsch, E.; ŽáČek, J.; Zarbock, D.; Zhang, Z.; Zhokin, A.; Zini, P.; Zomer, F.; Zsembery, J.; Zurnedden, M.
1997-02-01
Low x deep-inelastic ep scattering data, taken in 1994 at the H1 detector at HERA, are analysed in the Breit frame of reference. The evolution of the peak and width of the current hemisphere fragmentation function is presented as a function of Q and compared with e+e- results at equivalent centre of mass energies. Differences between the average charged multiplicity and the multiplicity of e+e- annihilations at low energies are analysed. Invariant energy spectra are compared with MLLA predictions. Distributions of multiplicity are presented as functions of Bjorken- x and Q2, and KNO scaling is discussed.
Unfolding the fission prompt gamma-ray energy and multiplicity distribution measured by DANCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chyzh, A; Wu, C Y; Bredeweg, T
2010-10-16
The nearly energy independence of the {gamma}-ray efficiency and multiplicity response for the DANCE array, the unusual characteristic elucidated in our early technical report (LLNL-TR-452298), gives one a unique opportunity to derive the true prompt {gamma}-ray energy and multiplicity distribution in fission from the measurement. This unfolding procedure for the experimental data will be described in details and examples will be given to demonstrate the feasibility of reconstruction of the true distribution.
Kolasa-Wiecek, Alicja
2015-04-01
The energy sector in Poland is the source of 81% of greenhouse gas (GHG) emissions. Poland, among other European Union countries, occupies a leading position with regard to coal consumption. Polish energy sector actively participates in efforts to reduce GHG emissions to the atmosphere, through a gradual decrease of the share of coal in the fuel mix and development of renewable energy sources. All evidence which completes the knowledge about issues related to GHG emissions is a valuable source of information. The article presents the results of modeling of GHG emissions which are generated by the energy sector in Poland. For a better understanding of the quantitative relationship between total consumption of primary energy and greenhouse gas emission, multiple stepwise regression model was applied. The modeling results of CO2 emissions demonstrate a high relationship (0.97) with the hard coal consumption variable. Adjustment coefficient of the model to actual data is high and equal to 95%. The backward step regression model, in the case of CH4 emission, indicated the presence of hard coal (0.66), peat and fuel wood (0.34), solid waste fuels, as well as other sources (-0.64) as the most important variables. The adjusted coefficient is suitable and equals R2=0.90. For N2O emission modeling the obtained coefficient of determination is low and equal to 43%. A significant variable influencing the amount of N2O emission is the peat and wood fuel consumption. Copyright © 2015. Published by Elsevier B.V.
Breast cancer and fatigue: issues for the workplace.
Mock, V
1998-09-01
1. Women with breast cancer are at high risk for fatigue as a side effect of treatment with surgery, radiation, and chemotherapy. The risk is compounded by the multiple roles of women who return to work during treatment. 2. The fatigue experience includes a physical component of decreased functional status, an affective component of emotional distress, and a cognitive component of difficulty concentrating. These characteristics of fatigue may present significant challenges for employees. 3. The Family Medical Leave Act provides 12 weeks of unpaid leave to receive medical treatment and/or recover from treatment for breast cancer. 4. The nurse in the workplace can assess and monitor the effects of fatigue and teach employees to manage fatigue through energy conservation, effective use of energy, and health promotion activities to restore energy levels.
Park, Jungan; Kim, Soyeon; Choi, Eunseok; Auh, Chung-Kyun; Park, Jong-Bum; Kim, Dong-Giun; Chung, Young-Jae; Lee, Taek-Kyun; Lee, Sukchan
2013-09-01
Arabidopsis thaliana infected with Beet severe curly top virus (BSCTV) exhibits systemic symptoms such as stunting of plant growth, callus induction on shoot tips, and curling of leaves and shoot tips. The regulation of sucrose metabolism is essential for obtaining the energy required for viral replication and the development of symptoms in BSCTV-infected A. thaliana. We evaluated the changed transcript level and enzyme activity of invertases in the inflorescence stems of BSCTV-infected A. thaliana. These results were consistent with the increased pattern of ribulose-1,5-bisphosphate carboxylase/oxygenase activity and photosynthetic pigment concentration in virus-infected plants to supply more energy for BSCTV multiplication. The altered gene expression of invertases during symptom development was functionally correlated with the differential expression patterns of D-type cyclins, E2F isoforms, and invertase-related genes. Taken together, our results indicate that sucrose sensing by BSCTV infection may regulate the expression of sucrose metabolism and result in the subsequent development of viral symptoms in relation with activation of cell cycle regulation.
Li, Yan; Li, Xiang; Ma, Weiya; Dong, Zigang
2014-08-12
The epidermal growth factor receptor (EGFR) is aberrantly activated in various cancer cells and an important target for cancer treatment. Deep understanding of EGFR conformational changes between the active and inactive states is of pharmaceutical interest. Here we present a strategy combining multiply targeted molecular dynamics simulations, unbiased molecular dynamics simulations, and Bayesian clustering to investigate transition pathways during the activation/inactivation process of EGFR kinase domain. Two distinct pathways between the active and inactive forms are designed, explored, and compared. Based on Bayesian clustering and rough two-dimensional free energy surfaces, the energy-favorable pathway is recognized, though DFG-flip happens in both pathways. In addition, another pathway with different intermediate states appears in our simulations. Comparison of distinct pathways also indicates that disruption of the Lys745-Glu762 interaction is critically important in DFG-flip while movement of the A-loop significantly facilitates the conformational change. Our simulations yield new insights into EGFR conformational transitions. Moreover, our results verify that this approach is valid and efficient in sampling of protein conformational changes and comparison of distinct pathways.
Energy storage management system with distributed wireless sensors
Farmer, Joseph C.; Bandhauer, Todd M.
2015-12-08
An energy storage system having a multiple different types of energy storage and conversion devices. Each device is equipped with one or more sensors and RFID tags to communicate sensor information wirelessly to a central electronic management system, which is used to control the operation of each device. Each device can have multiple RFID tags and sensor types. Several energy storage and conversion devices can be combined.
Ringus, Daina L.; Gaballa, Ahmed; Helmann, John D.; Wiedmann, Martin
2013-01-01
Sigma B (σB) is an alternative sigma factor that regulates the general stress response in Bacillus subtilis and in many other Gram-positive organisms. σB activity in B. subtilis is tightly regulated via at least three distinct pathways within a complex signal transduction cascade in response to a variety of stresses, including environmental stress, energy stress, and growth at high or low temperatures. We probed the ability of fluoro-phenyl-styrene-sulfonamide (FPSS), a small-molecule inhibitor of σB activity in Listeria monocytogenes, to inhibit σB activity in B. subtilis through perturbation of signal transduction cascades under various stress conditions. FPSS inhibited the activation of σB in response to multiple categories of stress known to induce σB activity in B. subtilis. Specifically, FPSS prevented the induction of σB activity in response to energy stress, including entry into stationary phase, phosphate limitation, and azide stress. FPSS also inhibited chill induction of σB activity in a ΔrsbV strain, suggesting that FPSS does not exclusively target the RsbU and RsbP phosphatases or the anti–anti-sigma factor RsbV, all of which contribute to posttranslational regulation of σB activity. Genetic and biochemical experiments, including artificial induction of σB, analysis of the phosphorylation state of the anti–anti-sigma factor RsbV, and in vitro transcription assays, indicate that while FPSS does not bind directly to σB to inhibit activity, it appears to prevent the release of B. subtilis σB from its anti-sigma factor RsbW. PMID:23524614
Nutrient-sensing nuclear receptors PPARα and FXR control liver energy balance.
Preidis, Geoffrey A; Kim, Kang Ho; Moore, David D
2017-04-03
The nuclear receptors PPARα (encoded by NR1C1) and farnesoid X receptor (FXR, encoded by NR1H4) are activated in the liver in the fasted and fed state, respectively. PPARα activation induces fatty acid oxidation, while FXR controls bile acid homeostasis, but both nuclear receptors also regulate numerous other metabolic pathways relevant to liver energy balance. Here we review evidence that they function coordinately to control key nutrient pathways, including fatty acid oxidation and gluconeogenesis in the fasted state and lipogenesis and glycolysis in the fed state. We have also recently reported that these receptors have mutually antagonistic impacts on autophagy, which is induced by PPARα but suppressed by FXR. Secretion of multiple blood proteins is a major drain on liver energy and nutrient resources, and we present preliminary evidence that the liver secretome may be directly suppressed by PPARα, but induced by FXR. Finally, previous studies demonstrated a striking deficiency in bile acid levels in malnourished mice that is consistent with results in malnourished children. We present evidence that hepatic targets of PPARα and FXR are dysregulated in chronic undernutrition. We conclude that PPARα and FXR function coordinately to integrate liver energy balance.
Renewable Energy Feasibility Study Leading to Development of the Native Spirit Solar Energy Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carolyn Stewart; Tracey LeBeau
2008-01-31
DOE-funded renewable energy feasibility study conducted by Red Mountain Tribal Energy on behalf of the Southwest Tribal Energy Consortium (SWTEC). During the course of the study, SWTEC members considered multiple options for the organization structure, selected a proposed organization structure, and drafted a Memorandum of Understanding for the SWTEC organization. High-level resource assessments for SWTEC members were completed; surveys were developed and completed to determine each member’s interest in multiple participation options, including on-reservation projects. With the survey inputs in mind, multiple energy project options were identified and evaluated on a high-level basis. That process led to a narrowing ofmore » the field of technology options to solar generation, specifically, utility-scale Concentrating Solar-Powered Generation projects, with a specific, tentative project location identified at the Fort Mojave Indian Reservation -- the Native Spirit Solar Energy Facility.« less
Pleiotropic Roles of Bile Acids in Metabolism
de Aguiar Vallim, Thomas Q.; Tarling, Elizabeth J.; Edwards, Peter A.
2013-01-01
Summary Enzymatic oxidation of cholesterol generates numerous distinct bile acids that function both as detergents that facilitate digestion and absorption of dietary lipids, and as hormones that activate four distinct receptors. Activation of these receptors alters gene expression in multiple tissues leading to changes not only in bile acid metabolism, but also in glucose homeostasis, lipid and lipoprotein metabolism, energy expenditure, intestinal motility and bacterial growth, inflammation, liver regeneration and hepato-carcinogenesis. This review covers the roles of specific bile acids, synthetic agonists and their cognate receptors in controlling these diverse functions, as well as their current use in treating human diseases. PMID:23602448
Updated estimation of energy efficiencies of U.S. petroleum refineries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palou-Rivera, I.; Wang, M. Q.
2010-12-08
Evaluation of life-cycle (or well-to-wheels, WTW) energy and emission impacts of vehicle/fuel systems requires energy use (or energy efficiencies) of energy processing or conversion activities. In most such studies, petroleum fuels are included. Thus, determination of energy efficiencies of petroleum refineries becomes a necessary step for life-cycle analyses of vehicle/fuel systems. Petroleum refinery energy efficiencies can then be used to determine the total amount of process energy use for refinery operation. Furthermore, since refineries produce multiple products, allocation of energy use and emissions associated with petroleum refineries to various petroleum products is needed for WTW analysis of individual fuels suchmore » as gasoline and diesel. In particular, GREET, the life-cycle model developed at Argonne National Laboratory with DOE sponsorship, compares energy use and emissions of various transportation fuels including gasoline and diesel. Energy use in petroleum refineries is key components of well-to-pump (WTP) energy use and emissions of gasoline and diesel. In GREET, petroleum refinery overall energy efficiencies are used to determine petroleum product specific energy efficiencies. Argonne has developed petroleum refining efficiencies from LP simulations of petroleum refineries and EIA survey data of petroleum refineries up to 2006 (see Wang, 2008). This memo documents Argonne's most recent update of petroleum refining efficiencies.« less
Charged particle multiplicities in pp interactions at sqrt {s} = 0.9 , 2.36, and 7 TeV
NASA Astrophysics Data System (ADS)
Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Hammer, V. M.; Hammer, J.; Hänsel, S.; Hartl, C.; Hoch, M.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kasieczka, G.; Kiesenhofer, W.; Krammer, M.; Liko, D.; Mikulec, I.; Pernicka, M.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Teischinger, F.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Benucci, L.; Ceard, L.; Cerny, K.; De Wolf, E. A.; Janssen, X.; Maes, T.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Adler, V.; Beauceron, S.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Devroede, O.; Kalogeropoulos, A.; Maes, J.; Maes, M.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Charaf, O.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hammad, G. H.; Hreus, T.; Marage, P. E.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wickens, J.; Costantini, S.; Grunewald, M.; Klein, B.; Marinov, A.; Ryckbosch, D.; Thyssen, F.; Tytgat, M.; Vanelderen, L.; Verwilligen, P.; Walsh, S.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Caudron, J.; De Favereau De Jeneret, J.; Delaere, C.; Demin, P.; Favart, D.; Giammanco, A.; Grégoire, G.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Ovyn, S.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Quertenmont, L.; Schul, N.; Beliy, N.; Caebergs, T.; Daubie, E.; Alves, G. A.; De Jesus Damiao, D.; Pol, M. E.; Souza, M. H. G.; Carvalho, W.; Da Costa, E. M.; De Oliveira Martins, C.; De Souza, S. Fonseca; Mundim, L.; Nogima, H.; Oguri, V.; Da Silva, W. L. Prado; Santoro, A.; Silva Do Amaral, S. M.; Sznajder, A.; Torres Da Silva De Araujo, F.; Dias, F. A.; Dias, M. A. F.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Marinho, F.; Novaes, S. F.; Padula, S. S.; Darmenov, N.; Dimitrov, L.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vankov, I.; Dyulendarova, M.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Marinova, E.; Mateev, M.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Wang, J.; Wang, J.; Wang, X.; Wang, Z.; Yang, M.; Zang, J.; Zhang, Z.; Ban, Y.; Guo, S.; Li, W.; Mao, Y.; Qian, S. J.; Teng, H.; Zhu, B.; Cabrera, A.; Gomez Moreno, B.; Ocampo Rios, A. A.; Osorio Oliveros, A. F.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Lelas, K.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Dzelalija, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Morovic, S.; Attikis, A.; Fereos, R.; Galanti, M.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Assran, Y.; Mahmoud, M. A.; Hektor, A.; Kadastik, M.; Kannike, K.; Müntel, M.; Raidal, M.; Rebane, L.; Azzolini, V.; Eerola, P.; Czellar, S.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Klem, J.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Banzuzi, K.; Korpela, A.; Tuuva, T.; Sillou, D.; Besancon, M.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Gentit, F. X.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Marionneau, M.; Millischer, L.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.; Verrecchia, P.; Baffioni, S.; Beaudette, F.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Dobrzynski, L.; de Cassagnac, R. Granier; Haguenauer, M.; Miné, P.; Mironov, C.; Ochando, C.; Paganini, P.; Sabes, S. Porteboeuf, D.; Salerno, R.; Sirois, Y.; Thiebaux, C.; Wyslouch, B.; Zabi, A.; Agram, J.-L.; Andrea, J.; Besson, A.; Bloch, D.; Bodin, D.; Brom, J.-M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Greder, S.; Juillot, P.; Karim, M.; Le Bihan, A.-C.; Mikami, Y.; Van Hove, P.; Fassi, F.; Mercier, D.; Baty, C.; Beaupere, N.; Bedjidian, M.; Bondu, O.; Boudoul, G.; Boumediene, D.; Brun, H.; Chanon, N.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Falkiewicz, A.; Fay, J.; Gascon, S.; Ille, B.; Kurca, T.; Le Grand, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tosi, S.; Tschudi, Y.; Verdier, P.; Xiao, H.; Roinishvili, V.; Anagnostou, G.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Mohr, N.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Weber, M.; Wittmer, B.; Ata, M.; Bender, W.; Erdmann, M.; Frangenheim, J.; Hebbeker, T.; Hinzmann, A.; Hoepfner, K.; Hof, C.; Klimkovich, T.; Klingebiel, D.; Kreuzer, P.; Lanske, D.; Magass, C.; Masetti, G.; Merschmeyer, M.; Meyer, A.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Bontenackels, M.; Davids, M.; Duda, M.; Flügge, G.; Geenen, H.; Giffels, M.; Haj Ahmad, W.; Heydhausen, D.; Kress, T.; Kuessel, Y.; Linn, A.; Nowack, A.; Perchalla, L.; Pooth, O.; Rennefeld, J.; Sauerland, P.; Stahl, A.; Thomas, M.; Tornier, D.; Zoeller, M. H.; Aldaya Martin, M.; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Borras, K.; Cakir, A.; Campbell, A.; Castro, E.; Dammann, D.; Eckerlin, G.; Eckstein, D.; Flossdorf, A.; Flucke, G.; Geiser, A.; Glushkov, I.; Hauk, J.; Jung, H.; Kasemann, M.; Katkov, I.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Krücker, D.; Kuznetsova, E.; Lange, W.; Lohmann, W.; Mankel, R.; Marienfeld, M.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Olzem, J.; Parenti, A.; Raspereza, A.; Raval, A.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Stein, M.; Tomaszewska, J.; Volyanskyy, D.; Walsh, R.; Wissing, C.; Autermann, C.; Bobrovskyi, S.; Draeger, J.; Enderle, H.; Gebbert, U.; Kaschube, K.; Kaussen, G.; Klanner, R.; Mura, B.; Naumann-Emme, S.; Nowak, F.; Pietsch, N.; Sander, C.; Schettler, H.; Schleper, P.; Schröder, M.; Schum, T.; Schwandt, J.; Srivastava, A. K.; Stadie, H.; Steinbrück, G.; Thomsen, J.; Wolf, R.; Bauer, J.; Buege, V.; Chwalek, T.; De Boer, W.; Dierlamm, A.; Dirkes, G.; Feindt, M.; Gruschke, J.; Hackstein, C.; Hartmann, F.; Heindl, S. M.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Honc, S.; Kuhr, T.; Martschei, D.; Mueller, S.; Müller, Th.; Niegel, M.; Oberst, O.; Oehler, A.; Ott, J.; Peiffer, T.; Piparo, D.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Renz, M.; Saout, C.; Scheurer, A.; Schieferdecker, P.; Schilling, F.-P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Wagner-Kuhr, J.; Zeise, M.; Zhukov, V.; Ziebarth, E. B.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Mavrommatis, C.; Petrakou, E.; Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.; Triantis, F. A.; Aranyi, A.; Bencze, G.; Boldizsar, L.; Debreczeni, G.; Hajdu, C.; Horvath, D.; Kapusi, A.; Krajczar, K.; Laszlo, A.; Sikler, F.; Vesztergombi, G.; Beni, N.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Veszpremi, V.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Jindal, M.; Kaur, M.; Kohli, J. M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, A. P.; Singh, J. B.; Singh, S. P.; Ahuja, S.; Bhattacharya, S.; Choudhary, B. C.; Gupta, P.; Jain, S.; Jain, S.; Kumar, A.; Shivpuri, R. K.; Choudhury, R. K.; Dutta, D.; Kailas, S.; Kataria, S. K.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Suggisetti, P.; Aziz, T.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, D.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Saha, A.; Sudhakar, K.; Wickramage, N.; Banerjee, S.; Dugad, S.; Mondal, N. K.; Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hashemi, M.; Jafari, A.; Khakzad, M.; Mohammadi, A.; Mohammadi Najafabadi, M.; Paktinat Mehdiabadi, S.; Safarzadeh, B.; Zeinali, M.; Abbrescia, M.; Barbone, L.; Calabria, C.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Dimitrov, A.; Fedele, F.; Fiore, L.; Iaselli, G.; Lusito, L.; Maggi, G.; Maggi, M.; Manna, N.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pierro, G. A.; Pompili, A.; Pugliese, G.; Romano, F.; Roselli, G.; Selvaggi, G.; Silvestris, L.; Trentadue, R.; Tupputi, S.; Zito, G.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Giunta, M.; Grandi, C.; Marcellini, S.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Genta, C.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Colafranceschi, S.; Fabbri, F.; Piccolo, D.; Fabbricatore, P.; Musenich, R.; Benaglia, A.; Cerati, G. B.; De Guio, F.; Di Matteo, L.; Ghezzi, A.; Malberti, M.; Malvezzi, S.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; de Fatis, T. Tabarelli; Tancini, V.; Buontempo, S.; Carrillo Montoya, C. A.; Cimmino, A.; De Cosa, A.; De Gruttola, M.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Merola, M.; Noli, P.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bellan, P.; Biasotto, M.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Conti, E.; De Mattia, M.; Dorigo, T.; Fanzago, F.; Gasparini, F.; Giubilato, P.; Gresele, A.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Nespolo, M.; Perrozzi, L.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Ventura, S.; Zotto, P.; Zumerle, G.; Baesso, P.; Berzano, U.; Riccardi, C.; Torre, P.; Vitulo, P.; Viviani, C.; Biasini, M.; Bilei, G. M.; Caponeri, B.; Fanò, L.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Menichelli, M.; Nappi, A.; Santocchia, A.; Servoli, L.; Taroni, S.; Valdata, M.; Volpe, R.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foà, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Palmonari, F.; Sarkar, S.; Segneri, G.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Del Re, D.; Di Marco, E.; Diemoz, M.; Franci, D.; Grassi, M.; Longo, E.; Organtini, G.; Palma, A.; Pandolfi, F.; Paramatti, R.; Rahatlou, S.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Botta, C.; Cartiglia, N.; Castello, R.; Costa, M.; Demaria, N.; Graziano, A.; Mariotti, C.; Marone, M.; Maselli, S.; Migliore, E.; Mila, G.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Romero, A.; Ruspa, M.; Sacchi, R.; Sola, V.; Solano, A.; Staiano, A.; Trocino, D.; Vilela Pereira, A.; Ambroglini, F.; Belforte, S.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Montanino, D.; Penzo, A.; Heo, S. G.; Chang, S.; Chung, J.; Kim, D. H.; Kim, G. N.; Kim, J. E.; Kong, D. J.; Park, H.; Son, D.; Son, D. C.; Kim, Zero; Kim, J. Y.; Song, S.; Choi, S.; Hong, B.; Jo, M.; Kim, H.; Kim, J. H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Rhee, H. B.; Seo, E.; Shin, S.; Sim, K. S.; Choi, M.; Kang, S.; Kim, H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.; Choi, Y.; Choi, Y. K.; Goh, J.; Lee, J.; Lee, S.; Seo, H.; Yu, I.; Bilinskas, M. J.; Grigelionis, I.; Janulis, M.; Martisiute, D.; Petrov, P.; Sabonis, T.; Castilla Valdez, H.; De La Cruz Burelo, E.; Lopez-Fernandez, R.; Sánchez Hernández, A.; Villasenor-Cendejas, L. M.; Carrillo Moreno, S.; Vazquez Valencia, F.; Salazar Ibarguen, H. A.; Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.; Allfrey, P.; Krofcheck, D.; Tam, J.; Butler, P. H.; Doesburg, R.; Silverwood, H.; Ahmad, M.; Ahmed, I.; Asghar, M. I.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Qazi, S.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Frueboes, T.; Gokieli, R.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.; Almeida, N.; David, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Martins, P.; Musella, P.; Nayak, A.; Ribeiro, P. Q.; Seixas, J.; Silva, P.; Varela, J.; Wöhri, H. K.; Belotelov, I.; Bunin, P.; Finger, M.; Finger, M.; Golutvin, I.; Kamenev, A.; Karjavin, V.; Kozlov, G.; Lanev, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.; Bondar, N.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Toropin, A.; Troitsky, S.; Epshteyn, V.; Gavrilov, V.; Kaftanov, V.; Kossov, M.; Krokhotin, A.; Lychkovskaya, N.; Safronov, G.; Semenov, S.; Stolin, V.; Vlasov, E.; Zhokin, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Kodolova, O.; Lokhtin, I.; Obraztsov, S.; Petrushanko, S.; Sarycheva, L.; Savrin, V.; Snigirev, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Rusakov, S. V.; Vinogradov, A.; Azhgirey, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Korablev, A.; Krychkine, V.; Petrov, V.; Ryutin, R.; Slabospitsky, S.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Djordjevic, M.; Krpic, D.; Milosevic, J.; Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cepeda, M.; Cerrada, M.; Colino, N.; De La Cruz, B.; Diez Pardos, C.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Redondo, I.; Romero, L.; Santaolalla, J.; Willmott, C.; Albajar, C.; Codispoti, G.; de Trocóniz, J. F.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Vizan Garcia, J. M.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chamizo Llatas, M.; Chuang, S. H.; Duarte Campderros, J.; Felcini, M.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Gonzalez Suarez, R.; Jorda, C.; Lobelle Pardo, P.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Ruiz Jimeno, A.; Scodellaro, L.; Sobron Sanudo, M.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Baillon, P.; Ball, A. H.; Barney, D.; Bell, A. J.; Benedetti, D.; Bernet, C.; Bialas, W.; Bloch, P.; Bocci, A.; Bolognesi, S.; Breuker, H.; Brona, G.; Bunkowski, K.; Camporesi, T.; Cano, E.; Cerminara, G.; Christiansen, T.; Coarasa Perez, J. A.; Covarelli, R.; Curé, B.; D'Enterria, D.; Dahms, T.; De Roeck, A.; Duarte Ramos, F.; Elliott-Peisert, A.; Funk, W.; Gaddi, A.; Gennai, S.; Georgiou, G.; Gerwig, H.; Gigi, D.; Gill, K.; Giordano, D.; Glege, F.; Gomez-Reino Garrido, R.; Gouzevitch, M.; Govoni, P.; Gowdy, S.; Guiducci, L.; Hansen, M.; Harvey, J.; Hegeman, J.; Hegner, B.; Henderson, C.; Hoffmann, H. F.; Honma, A.; Innocente, V.; Janot, P.; Karavakis, E.; Lecoq, P.; Leonidopoulos, C.; Lourenço, C.; Macpherson, A.; Mäki, T.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mozer, M. U.; Mulders, M.; Nesvold, E.; Nguyen, M.; Orimoto, T.; Orsini, L.; Perez, E.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiä, M.; Polese, G.; Racz, A.; Rolandi, G.; Rommerskirchen, T.; Rovelli, C.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Segoni, I.; Sharma, A.; Siegrist, P.; Simon, M.; Sphicas, P.; Spiga, D.; Spiropulu, M.; Stöckli, F.; Stoye, M.; Tropea, P.; Tsirou, A.; Tsyganov, A.; Veres, G. I.; Vichoudis, P.; Voutilainen, M.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; König, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Sibille, J.; Starodumov, A.; Bortignon, P.; Caminada, L.; Chen, Z.; Cittolin, S.; Dissertori, G.; Dittmar, M.; Eugster, J.; Freudenreich, K.; Grab, C.; Hervé, A.; Hintz, W.; Lecomte, P.; Lustermann, W.; Marchica, C.; del Arbol, P. Martinez Ruiz; Meridiani, P.; Milenovic, P.; Moortgat, F.; Nef, P.; Nessi-Tedaldi, F.; Pape, L.; Pauss, F.; Punz, T.; Rizzi, A.; Ronga, F. J.; Sala, L.; Sanchez, A. K.; Sawley, M. C.; Stieger, B.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, M.; Wehrli, L.; Weng, J.; Aguiló, E.; Amsler, C.; Chiochia, V.; De Visscher, S.; Favaro, C.; Ivova Rikova, M.; Millan Mejias, B.; Regenfus, C.; Robmann, P.; Schmidt, A.; Snoek, H.; Wilke, L.; Chang, Y. H.; Chen, K. H.; Chen, W. T.; Dutta, S.; Go, A.; Kuo, C. M.; Li, S. W.; Lin, W.; Liu, M. H.; Liu, Z. K.; Lu, Y. J.; Wu, J. H.; Yu, S. S.; Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Hou, W.-S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R.-S.; Shiu, J. G.; Tzeng, Y. M.; Wang, M.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gökbulut, G.; Güler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Karaman, T.; Kayis Topaksu, A.; Nart, A.; Önengüt, G.; Ozdemir, K.; Ozturk, S.; Polatöz, A.; Sogut, K.; Tali, B.; Topakli, H.; Uzun, D.; Vergili, L. N.; Vergili, M.; Zorbilmez, C.; Akin, I. V.; Aliev, T.; Bimis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yildirim, E.; Zeyrek, M.; Deliomeroglu, M.; Demir, D.; Gülmez, E.; Halu, A.; Isildak, B.; Kaya, M.; Kaya, O.; Özbek, M.; Ozkorucuklu, S.; Sonmez, N.; Levchuk, L.; Bell, P.; Bostock, F.; Brooke, J. J.; Cheng, T. L.; Clement, E.; Cussans, D.; Frazier, R.; Goldstein, J.; Grimes, M.; Hansen, M.; Hartley, D.; Heath, G. P.; Heath, H. F.; Huckvale, B.; Jackson, J.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Ward, S.; Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Camanzi, B.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.; Bainbridge, R.; Ball, G.; Ballin, J.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Davies, G.; Della Negra, M.; Fulcher, J.; Futyan, D.; Guneratne Bryer, A.; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Karapostoli, G.; Lyons, L.; Magnan, A.-M.; Marrouche, J.; Nandi, R.; Nash, J.; Nikitenko, A.; Papageorgiou, A.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rompotis, N.; Rose, A.; Ryan, M. J.; Seez, C.; Sharp, P.; Sparrow, A.; Tapper, A.; Tourneur, S.; Vazquez Acosta, M.; Virdee, T.; Wakefield, S.; Wardrope, D.; Whyntie, T.; Barrett, M.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Martin, W.; Reid, I. D.; Teodorescu, L.; Hatakeyama, K.; Bose, T.; Carrera Jarrin, E.; Clough, A.; Fantasia, C.; Heister, A.; John, J. St.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; Sulak, L.; Avetisyan, A.; Bhattacharya, S.; Chou, J. P.; Cutts, D.; Esen, S.; Ferapontov, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Landsberg, G.; Narain, M.; Nguyen, D.; Segala, M.; Speer, T.; Tsang, K. V.; Borgia, M. A.; Breedon, R.; De La Barca Sanchez, M. Calderon; Cebra, D.; Chauhan, S.; Chertok, M.; Conway, J.; Cox, P. T.; Dolen, J.; Erbacher, R.; Friis, E.; Ko, W.; Kopecky, A.; Lander, R.; Liu, H.; Maruyama, S.; Miceli, T.; Nikolic, M.; Pellett, D.; Robles, J.; Schwarz, T.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Vasquez Sierra, R.; Veelken, C.; Andreev, V.; Arisaka, K.; Cline, D.; Cousins, R.; Deisher, A.; Duris, J.; Erhan, S.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Plager, C.; Rakness, G.; Schlein, P.; Tucker, J.; Valuev, V.; Babb, J.; Clare, R.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Jeng, G. Y.; Kao, S. C.; Liu, F.; Liu, H.; Luthra, A.; Nguyen, H.; Pasztor, G.; Satpathy, A.; Shen, B. C.; Stringer, R.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.; Andrews, W.; Branson, J. G.; Dusinberre, E.; Evans, D.; Golf, F.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Mangano, B.; Muelmenstaedt, J.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pi, H.; Pieri, M.; Ranieri, R.; Sani, M.; Sharma, V.; Simon, S.; Tu, Y.; Vartak, A.; Würthwein, F.; Yagil, A.; Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Geffert, P.; Incandela, J.; Justus, C.; Kalavase, P.; Koay, S. A.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Mccoll, N.; Pavlunin, V.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; Vlimant, J. R.; Bornheim, A.; Bunn, J.; Chen, Y.; Gataullin, M.; Kcira, D.; Litvine, V.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Timciuc, V.; Traczyk, P.; Veverka, J.; Wilkinson, R.; Yang, Y.; Zhu, R. Y.; Akgun, B.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Jun, S. Y.; Liu, Y. F.; Paulini, M.; Russ, J.; Terentyev, N.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Dinardo, M. E.; Drell, B. R.; Edelmaier, C. J.; Ford, W. T.; Heyburn, B.; Luiggi Lopez, E.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Zang, S. L.; Agostino, L.; Alexander, J.; Chatterjee, A.; Das, S.; Eggert, N.; Fields, L. J.; Gibbons, L. K.; Heltsley, B.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Kuznetsov, V.; Nicolas Kaufman, G.; Patterson, J. R.; Puigh, D.; Riley, D.; Ryd, A.; Shi, X.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Vaughan, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Biselli, A.; Cirino, G.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Atac, M.; Bakken, J. A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bloch, I.; Borcherding, F.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Demarteau, M.; Eartly, D. P.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Green, D.; Gunthoti, K.; Gutsche, O.; Hahn, A.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; James, E.; Jensen, H.; Johnson, M.; Joshi, U.; Khatiwada, R.; Kilminster, B.; Klima, B.; Kousouris, K.; Kunori, S.; Kwan, S.; Limon, P.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Mason, D.; McBride, P.; McCauley, T.; Miao, T.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Popescu, S.; Pordes, R.; Prokofyev, O.; Saoulidou, N.; Sexton-Kennedy, E.; Sharma, S.; Soha, A.; Spalding, W. J.; Spiegel, L.; Tan, P.; Taylor, L.; Tkaczyk, S.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yumiceva, F.; Yun, J. C.; Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Goldberg, S.; Kim, B.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Matchev, K.; Mitselmakher, G.; Muniz, L.; Pakhotin, Y.; Prescott, C.; Remington, R.; Schmitt, M.; Scurlock, B.; Sellers, P.; Skhirtladze, N.; Wang, D.; Yelton, J.; Zakaria, M.; Ceron, C.; Gaultney, V.; Kramer, L.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bandurin, D.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Sekmen, S.; Veeraraghavan, V.; Baarmand, M. M.; Dorney, B.; Guragain, S.; Hohlmann, M.; Kaakhety, H.; Ralich, R.; Vodopiyanov, I.; Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Callner, J.; Cavanaugh, R.; Dragoiu, C.; Garcia-Solis, E. J.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Lacroix, F.; O'Brien, C.; Silvestre, C.; Smoron, A.; Strom, D.; Varelas, N.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Cankocak, K.; Clarida, W.; Duru, F.; Lae, C. K.; McCliment, E.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Olson, J.; Onel, Y.; Ozok, F.; Sen, S.; Wetzel, J.; Yetkin, T.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bonato, A.; Eskew, C.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Rappoccio, S.; Swartz, M.; Tran, N. V.; Whitbeck, A.; Baringer, P.; Bean, A.; Benelli, G.; Grachov, O.; Murray, M.; Noonan, D.; Radicci, V.; Sanders, S.; Wood, J. S.; Zhukova, V.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.; Wan, Z.; Gronberg, J.; Lange, D.; Wright, D.; Baden, A.; Boutemeur, M.; Eno, S. C.; Ferencek, D.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Lu, Y.; Mignerey, A. C.; Rossato, K.; Rumerio, P.; Santanastasio, F.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Twedt, E.; Alver, B.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Everaerts, P.; Gomez Ceballos, G.; Goncharov, M.; Hahn, K. A.; Harris, P.; Kim, Y.; Klute, M.; Lee, Y.-J.; Li, W.; Loizides, C.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Sumorok, K.; Sung, K.; Wenger, E. A.; Xie, S.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.; Cole, P.; Cooper, S. I.; Cushman, P.; Dahmes, B.; De Benedetti, A.; Dudero, P. R.; Franzoni, G.; Haupt, J.; Klapoetke, K.; Kubota, Y.; Mans, J.; Rekovic, V.; Rusack, R.; Sasseville, M.; Singovsky, A.; Cremaldi, L. M.; Godang, R.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Summers, D.; Bloom, K.; Bose, S.; Butt, J.; Claes, D. R.; Dominguez, A.; Eads, M.; Keller, J.; Kelly, T.; Kravchenko, I.; Lazo-Flores, J.; Lundstedt, C.; Malbouisson, H.; Malik, S.; Snow, G. R.; Baur, U.; Godshalk, A.; Iashvili, I.; Kharchilava, A.; Kumar, A.; Smith, K.; Alverson, G.; Barberis, E.; Baumgartel, D.; Boeriu, O.; Chasco, M.; Kaadze, K.; Reucroft, S.; Swain, J.; Wood, D.; Zhang, J.; Anastassov, A.; Kubik, A.; Odell, N.; Ofierzynski, R. A.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.; Antonelli, L.; Berry, D.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Kolberg, T.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Warchol, J.; Wayne, M.; Ziegler, J.; Bylsma, B.; Durkin, L. S.; Gu, J.; Hill, C.; Killewald, P.; Kotov, K.; Ling, T. Y.; Rodenburg, M.; Williams, G.; Adam, N.; Berry, E.; Elmer, P.; Gerbaudo, D.; Halyo, V.; Hebda, P.; Hunt, A.; Jones, J.; Laird, E.; Lopes Pegna, D.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Acosta, J. G.; Huang, X. T.; Lopez, A.; Mendez, H.; Oliveros, S.; Ramirez Vargas, J. E.; Zatserklyaniy, A.; Alagoz, E.; Barnes, V. E.; Bolla, G.; Borrello, L.; Bortoletto, D.; Everett, A.; Garfinkel, A. F.; Gecse, Z.; Gutay, L.; Jones, M.; Koybasi, O.; Laasanen, A. T.; Leonardo, N.; Liu, C.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Potamianos, K.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Yoo, H. D.; Zablocki, J.; Zheng, Y.; Jindal, P.; Parashar, N.; Boulahouache, C.; Cuplov, V.; Ecklund, K. M.; Geurts, F. J. M.; Liu, J. H.; Morales, J.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Chung, Y. S.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Flacher, H.; Garcia-Bellido, A.; Goldenzweig, P.; Gotra, Y.; Han, J.; Harel, A.; Miner, D. C.; Orbaker, D.; Petrillo, G.; Vishnevskiy, D.; Zielinski, M.; Bhatti, A.; Demortier, L.; Goulianos, K.; Lungu, G.; Mesropian, C.; Yan, M.; Atramentov, O.; Barker, A.; Duggan, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hits, D.; Lath, A.; Panwalkar, S.; Patel, R.; Richards, A.; Rose, K.; Schnetzer, S.; Somalwar, S.; Stone, R.; Thomas, S.; Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.; Asaadi, J.; Eusebi, R.; Gilmore, J.; Gurrola, A.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Nguyen, C. N.; Pivarski, J.; Safonov, A.; Sengupta, S.; Tatarinov, A.; Toback, D.; Weinberger, M.; Akchurin, N.; Bardak, C.; Damgov, J.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Mane, P.; Roh, Y.; Sill, A.; Volobouev, I.; Wigmans, R.; Yazgan, E.; Appelt, E.; Brownson, E.; Engh, D.; Florez, C.; Gabella, W.; Johns, W.; Kurt, P.; Maguire, C.; Mel, A.; Sheldon, P.; Velkovska, J.; Arenton, M. W.; Balazs, M.; Boutle, S.; Buehler, M.; Conetti, S.; Cox, B.; Francis, B.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Yohay, R.; Gollapinni, S.; Harr, R.; Karchin, P. E.; Mattson, M.; Milstène, C.; Sakharov, A.; Anderson, M.; Bachtis, M.; Bellinger, J. N.; Carlsmith, D.; Dasu, S.; Efron, J.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Leonard, J.; Lomidze, D.; Loveless, R.; Mohapatra, A.; Parker, W.; Reeder, D.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.; Weinberg, M.
2011-01-01
Measurements of primary charged hadron multiplicity distributions are presented for non-single-diffractive events in proton-proton collisions at centre-of-mass energies of sqrt {s} = 0.9 , 2.36, and 7 TeV, in five pseudorapidity ranges from | η| < 0 .5 to | η| < 2 .4. The data were collected with the minimum-bias trigger of the CMS experiment during the LHC commissioning runs in 2009 and the 7 TeV run in 2010. The multiplicity distribution at sqrt {s} = 0.9{text{TeV}} is in agreement with previous measurements. At higher energies the increase of the mean multiplicity with sqrt {s} is underestimated by most event generators. The average transverse momentum as a function of the multiplicity is also presented. The measurement of higher-order moments of the multiplicity distribution confirms the violation of Koba-Nielsen-Olesen scaling that has been observed at lower energies.
Superlattice photoelectrodes for photoelectrochemical cells
Nozik, Arthur J.
1987-01-01
A superlattice or multiple-quantum-well semiconductor is used as a photoelectrode in a photoelectrochemical process for converting solar energy into useful fuels or chemicals. The quantum minibands of the superlattice or multiple-quantum-well semiconductor effectively capture hot-charge carriers at or near their discrete quantum energies and deliver them to drive a chemical reaction in an electrolyte. The hot-charge carries can be injected into the electrolyte at or near the various discrete multiple energy levels quantum minibands, or they can be equilibrated among themselves to a hot-carrier pool and then injected into the electrolyte at one average energy that is higher than the lowest quantum band gap in the semiconductor.
Down-regulation of adenosine monophosphate-activated protein kinase activity: A driver of cancer.
He, Xiaoling; Li, Cong; Ke, Rong; Luo, Lingyu; Huang, Deqiang
2017-04-01
Adenosine monophosphate-activated protein kinase (AMPK), a serine/threonine protein kinase, is known as "intracellular energy sensor and regulator." AMPK regulates multiple cellular processes including protein and lipid synthesis, cell proliferation, invasion, migration, and apoptosis. Moreover, AMPK plays a key role in the regulation of "Warburg effect" in cancer cells. AMPK activity is down-regulated in most tumor tissues compared with the corresponding adjacent paracancerous or normal tissues, indicating that the decline in AMPK activity is closely associated with the development and progression of cancer. Therefore, understanding the mechanism of AMPK deactivation during cancer progression is of pivotal importance as it may identify AMPK as a valid therapeutic target for cancer treatment. Here, we review the mechanisms by which AMPK is down-regulated in cancer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohanpurkar, Manish; Luo, Yusheng; Hovsapian, Rob
Hydropower plant (HPP) generation comprises a considerable portion of bulk electricity generation and is delivered with a low-carbon footprint. In fact, HPP electricity generation provides the largest share from renewable energy resources, which include wind and solar. Increasing penetration levels of wind and solar lead to a lower inertia on the electric grid, which poses stability challenges. In recent years, breakthroughs in energy storage technologies have demonstrated the economic and technical feasibility of extensive deployments of renewable energy resources on electric grids. If integrated with scalable, multi-time-step energy storage so that the total output can be controlled, multiple run-of-the-river (ROR)more » HPPs can be deployed. Although the size of a single energy storage system is much smaller than that of a typical reservoir, the ratings of storages and multiple ROR HPPs approximately equal the rating of a large, conventional HPP. This paper proposes cohesively managing multiple sets of energy storage systems distributed in different locations. This paper also describes the challenges associated with ROR HPP system architecture and operation.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-18
... Basic Impulse Level 4. Dual/Multiple-Voltage Primary Windings 5. Dual/Multiple-Voltage Secondary Windings 6. Loading B. Technological Feasibility 1. General 2. Maximum Technologically Feasible Levels C...
Heavy quark energy loss in high multiplicity proton-proton collisions at the LHC.
Vogel, Sascha; Gossiaux, Pol Bernard; Werner, Klaus; Aichelin, Jörg
2011-07-15
One of the most promising probes to study deconfined matter created in high energy nuclear collisions is the energy loss of (heavy) quarks. It has been shown in experiments at the Relativistic Heavy Ion Collider that even charm and bottom quarks, despite their high mass, experience a remarkable medium suppression in the quark gluon plasma. In this exploratory investigation we study the energy loss of heavy quarks in high multiplicity proton-proton collisions at LHC energies. Although the colliding systems are smaller than compared to those at the Relativistic Heavy Ion Collider (p+p vs Au+Au), the higher energy might lead to multiplicities comparable to Cu+Cu collisions at the Relativistic Heavy Ion Collider. The interaction of charm quarks with this environment gives rise to a non-negligible suppression of high momentum heavy quarks in elementary collisions.
Kist, David; Burns, A Jay; Sanner, Roth; Counters, Jeff; Zelickson, Brian
2006-02-01
The radio-frequency (RF) device is a system capable of volumetric heating of the mid to deep dermis and selective heating of the fibrous septa strands and fascia layer. Clinically, these effects promote dermal collagen production, and tightening of these deep subcutaneous structures. A new technique of using multiple low energy passes has been described which results in lower patient discomfort and fewer side effects. This technique has also been anecdotally described as giving more reproducible and reliable clinical results of tissue tightening and contouring. This study will compare ultrastructural changes in collagen between a single pass high energy versus up to five passes of a multiple pass lower energy treatment. Three subjects were consented and treated in the preauricular region with the RF device using single or multiple passes (three or five) in the same 1.5 cm(2) treatment area with a slight delay between passes to allow tissue cooling. Biopsies from each treatment region and a control biopsy were taken immediately, 24 hours or 6 months post treatment for electron microscopic examination of the 0-1 mm and 1-2 mm levels. Sections of tissue 1 mm x 1 mm x 80 nm were examined with an RCA EMU-4 Transmission Electron Microscope. Twenty sections from 6 blocks from each 1 mm depth were examined by 2 blinded observers. The morphology and degree of collagen change in relation to area examined was compared to the control tissue, and estimated using a quantitative scale. Ultrastructural examination of tissue showed that an increased amount of collagen fibril changes with increasing passes at energies of 97 J (three passes) and 122 J (five passes), respectively. The changes seen after five multiple passes were similar to those detected after much more painful single pass high-energy treatments. This ultrastructural study shows changes in collagen fibril morphology with an increased effect demonstrated at greater depths of the skin with multiple low-fluence passes and at lesser depths with single pass higher fluence settings. Findings suggest that similar collagen fibril alteration can occur with multiple pass low-energy treatments and single pulse high-energy treatments. The lower fluence multiple pass approach is associated with less patient discomfort, less side effects, and more consistent clinical results. Copyright 2005 Wiley-Liss, Inc.
Activities of the Jet Propulsion Laboratory, 1 January - 31 December 1983
NASA Technical Reports Server (NTRS)
1984-01-01
There are many facets to the Jet Propulsion Laboratory, for JPL is an organization of multiple responsibilities and broad scope, of diverse talents and great enterprise. The Laboratory's philosophy, mission, and goals have been shaped by its ties to the California Institute of Technology (JPL's parent organization) and the National Aeronautics and Space Administration (JPL's principal sponsor). JPL's activities for NASA in planetary, Earth, and space sciences currently account for almost 75 percent of the Laboratory's overall effort. JPL Research activities in the following areas are discussed: (1) deep space exploration; (2) telecommunications systems; (3) Earth observations; (4) advanced technology; (5) defense programs; and (6) energy and technology applications.
Manzi, Aurora; Tong, Yu; Feucht, Julius; Yao, En-Ping; Polavarapu, Lakshminarayana; Urban, Alexander S; Feldmann, Jochen
2018-04-17
Multi-photon absorption and multiple exciton generation represent two separate strategies for enhancing the conversion efficiency of light into usable electric power. Targeting below-band-gap and above-band-gap energies, respectively, to date these processes have only been demonstrated independently. Here we report the combined interaction of both nonlinear processes in CsPbBr 3 perovskite nanocrystals. We demonstrate nonlinear absorption over a wide range of below-band-gap excitation energies (0.5-0.8 E g ). Interestingly, we discover high-order absorption processes, deviating from the typical two-photon absorption, at specific energetic positions. These energies are associated with a strong enhancement of the photoluminescence intensity by up to 10 5 . The analysis of the corresponding energy levels reveals that the observed phenomena can be ascribed to the resonant creation of multiple excitons via the absorption of multiple below-band-gap photons. This effect may open new pathways for the efficient conversion of optical energy, potentially also in other semiconducting materials.
Theory of activated transport in bilayer quantum Hall systems.
Roostaei, B; Mullen, K J; Fertig, H A; Simon, S H
2008-07-25
We analyze the transport properties of bilayer quantum Hall systems at total filling factor nu=1 in drag geometries as a function of interlayer bias, in the limit where the disorder is sufficiently strong to unbind meron-antimeron pairs, the charged topological defects of the system. We compute the typical energy barrier for these objects to cross incompressible regions within the disordered system using a Hartree-Fock approach, and show how this leads to multiple activation energies when the system is biased. We then demonstrate using a bosonic Chern-Simons theory that in drag geometries current in a single layer directly leads to forces on only two of the four types of merons, inducing dissipation only in the drive layer. Dissipation in the drag layer results from interactions among the merons, resulting in very different temperature dependences for the drag and drive layers, in qualitative agreement with experiment.
Protocol, Engineering Research Center, University of California, Santa Barbara
2005-12-01
minimizing the energy consumption in idle periods. We have designed an asynchronous wakeup schedule based on the theory of block designs. The idea is...performance of ad hoc networks through innovative packet scheduling (Baker). "* Developed a number of novel schemes to ensure loop freedom in on demand routing...network nodes to schedule their transmissions to avoid collisions (Garcia-Luna-Aceves). "* Designed and analyzed the Hybrid Activation Multiple Access (HAMA
NASA Astrophysics Data System (ADS)
Mulholland, Troy; CMS Collaboration
2016-03-01
We present a search for supersymmetry (SUSY) with data collected from the Compact Muon Solenoid (CMS) detector. The sample corresponds to 2 . 3fb-1 of proton-proton collisions with √{ s} = 13 TeV delivered by the Large Hadron Collider (LHC). The search looks at events with large hadronic activity, missing transverse energy, and without any identified leptons. The data are analyzed in bins of jet multiplicity, bottom-quark tagged jet (b-jet) multiplicity, scalar sum of jet transverse momentum, and vector sum of jet transverse momentum. A standard model (SM) background to this search includes the SM production of multiple jets and a Z boson that decays to two undetectable neutrinos. This talk focuses on the measurement of this particular background and its context in the wider search. Observations are consistent with SM backgrounds and limits are set on gluino mediated simplified SUSY models.
Hand, Gregory A; Shook, Robin P; Paluch, Amanda E; Baruth, Meghan; Crowley, E Patrick; Jaggers, Jason R; Prasad, Vivek K; Hurley, Thomas G; Hebert, James R; O'Connor, Daniel P; Archer, Edward; Burgess, Stephanie; Blair, Steven N
2013-09-01
The Energy Balance Study (EBS) was a comprehensive study designed to determine over a period of 12 months the associations of caloric intake and energy expenditure on changes in body weight and composition in a population of healthy men and women. EBS recruited men and women aged 21 to 35 years with a body mass index between 20 and 35 kg/m2. Measurements of energy intake and multiple objective measures of energy expenditure, as well as other physiological, anthropomorphic and psychosocial measurements, were made quarterly. Resting metabolic rate and blood chemistry were measured at baseline, 6 and 12 months. Four hundred and thirty (218 women and 212 men) completed all baseline measurements. There were statistically significant differences by sex uncovered for most anthropomorphic, physiological and behavioral variables. Only percent of kcals from fat and alcohol intake, as well as energy expenditure in light activity and very vigorous activity were not different. Self-reported weight change (mean +/- SD) over the previous year were 0.92 +/- 5.24 kg for women and--1.32 +/- 6.1 kg for men. Resting metabolic rate averages by sex were 2.88 +/- 0.35 ml/kg/min for women and 3.05 +/- 0.33 ml/kg/min for men. Results from EBS will inform our understanding of the impact of energy balance components as they relate to changes in body weight and composition. Initial findings suggest a satisfactory distribution of weight change to allow for robust statistical analyses. Resting metabolic rates well below the standard estimate suggest that the evaluation of the components of total energy expenditure will be impactful for our understanding of the roles of energy intake and expenditure on changes in energy utilization and storage.
Cardiorespiratory costs of growth in low birth weight infants.
Schulze, K; Kashyap, S; Ramakrishnan, R
1993-02-01
The energy cost of growth includes two components: the energy stored in new tissues and the energy expended in all energy requiring steps associated with nutrient intake and net tissue accretion. Most of the energy expended in growth is accounted for by the energy cost of tissue anabolism: peptide bonds, lipogenesis, substrate transport, etc. However, to the extent that additional work is required of the heart and lungs for growth-related increases in O2 and CO2 transport, increased energy is also expended in cardiorespiratory work. Indirect estimates of these costs can be gained by examining the effects of diet and weight gain on heart rate and respiratory frequency. We studied 66 healthy low birth weight infants, mean study weight = 2010 g, fed constant intakes of protein (2.25-3.9 g/kg per day) and energy (100-150 kcal/kg per day). These diets led to rates of weight gain ranging from 13.9 to 21.7 g/kg per day, among the diet groups. Bi-weekly 6-h assessments of energy expenditure, heart rate, respiratory frequency and state of sleep were made after full enteral intake was achieved. After adjustment of heart rate for the effect of postnatal age, heart rate during active sleep was related to weight gain (y = 0.97 x + 144, r2 = 0.15), nitrogen-energy ratio of the diet (y = 5.9 x + 139,2 r2 = 0.22), and energy expenditure (y = 0.53 x + 129, r2 = 0.13). Multiple regression analysis revealed that age-adjusted heart rate during active and quiet sleep was significantly related to a combination of the same three variables (r2 = 0.31).(ABSTRACT TRUNCATED AT 250 WORDS)
Active Flash: Performance-Energy Tradeoffs for Out-of-Core Processing on Non-Volatile Memory Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boboila, Simona; Kim, Youngjae; Vazhkudai, Sudharshan S
2012-01-01
In this abstract, we study the performance and energy tradeoffs involved in migrating data analysis into the flash device, a process we refer to as Active Flash. The Active Flash paradigm is similar to 'active disks', which has received considerable attention. Active Flash allows us to move processing closer to data, thereby minimizing data movement costs and reducing power consumption. It enables true out-of-core computation. The conventional definition of out-of-core solvers refers to an approach to process data that is too large to fit in the main memory and, consequently, requires access to disk. However, in Active Flash, processing outsidemore » the host CPU literally frees the core and achieves real 'out-of-core' analysis. Moving analysis to data has long been desirable, not just at this level, but at all levels of the system hierarchy. However, this requires a detailed study on the tradeoffs involved in achieving analysis turnaround under an acceptable energy envelope. To this end, we first need to evaluate if there is enough computing power on the flash device to warrant such an exploration. Flash processors require decent computing power to run the internal logic pertaining to the Flash Translation Layer (FTL), which is responsible for operations such as address translation, garbage collection (GC) and wear-leveling. Modern SSDs are composed of multiple packages and several flash chips within a package. The packages are connected using multiple I/O channels to offer high I/O bandwidth. SSD computing power is also expected to be high enough to exploit such inherent internal parallelism within the drive to increase the bandwidth and to handle fast I/O requests. More recently, SSD devices are being equipped with powerful processing units and are even embedded with multicore CPUs (e.g. ARM Cortex-A9 embedded processor is advertised to reach 2GHz frequency and deliver 5000 DMIPS; OCZ RevoDrive X2 SSD has 4 SandForce controllers, each with 780MHz max frequency Tensilica core). Efforts that take advantage of the available computing cycles on the processors on SSDs to run auxiliary tasks other than actual I/O requests are beginning to emerge. Kim et al. investigate database scan operations in the context of processing on the SSDs, and propose dedicated hardware logic to speed up scans. Also, cluster architectures have been explored, which consist of low-power embedded CPUs coupled with small local flash to achieve fast, parallel access to data. Processor utilization on SSD is highly dependent on workloads and, therefore, they can be idle during periods with no I/O accesses. We propose to use the available processing capability on the SSD to run tasks that can be offloaded from the host. This paper makes the following contributions: (1) We have investigated Active Flash and its potential to optimize the total energy cost, including power consumption on the host and the flash device; (2) We have developed analytical models to analyze the performance-energy tradeoffs for Active Flash, by treating the SSD as a blackbox, this is particularly valuable due to the proprietary nature of the SSD internal hardware; and (3) We have enhanced a well-known SSD simulator (from MSR) to implement 'on-the-fly' data compression using Active Flash. Our results provide a window into striking a balance between energy consumption and application performance.« less
Wang, Jueqiong; Zhao, Congying; Kong, Peng; Sun, Huanhuan; Sun, Zhe; Bian, Guanyun; Sun, Yafei; Guo, Li
2016-10-01
Nicotinamide adenine dinucleotide (NAD(+)) plays vital roles in mitochondrial functions, cellular energy metabolism and calcium homeostasis. In this study, we investigated the effect of NAD(+) administration for the treatment of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. EAE, a classical animal model of multiple sclerosis (MS), was induced by subcutaneous injection of myelin oligodendrocyteglycoprotein (MOG). The mice were treated with 250mg/kg (body weight) NAD(+) in PBS administered intraperitoneally once daily. We observed that NAD(+) treatment could lessen the severity of EAE. Additionally, NAD(+) treatment attenuated pathological injuries of EAE mice. We also found that the AMP-activated protein kinase (AMPK)/silent mating-type information regulation 2 homolog 1(SIRT1) pathway was activated in the NAD(+)-treated mice and NAD(+) treatment suppressed pro-inflammatory T cell responses. Our findings demonstrated that NAD(+) could be an effective and promising agent to treat multiple sclerosis and its effects on other autoimmune diseases should be explored. Copyright © 2016 Elsevier B.V. All rights reserved.
A New Active Space Radiation Instruments for the International Space Station, A-DREAMS
NASA Astrophysics Data System (ADS)
Uchihori, Yukio; Kodaira, Satoshi; Kitamura, Hisashi; Kobayashi, Shingo
For future space experiments in the International Space Station (ISS) or other satellites, radiation detectors, A-DREAMS (Active Dosimeter for Radiation Environment and Astronautic Monitoring in Space), using single or multiple silicon semi-conductor detectors have been developed. The first version of the detectors were produced and calibrated with particle accelerators. National Institute of Radiological Sciences has a medical heavy ion accelerator (HIMAC) for cancer therapy and a cyclotron accelerator. The detector was irradiated with high energy heavy ions and protons in HIMAC and the cyclotron and calibrated the energy resolution and linearity for deposited energies of these particles. We are planned to be going to use the new instrument in an international project, the new MATROSHKA experiment which is directed by members in the Institute of Bio-Medical Problem (IBMP) in Russia and German Space Center (DLR) in Germany. In the project, the dose distribution in human torso phantom will be investigated for several months in the ISS. For the project, a new type of the instruments is under development in NIRS and the current situation will be reported in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Messenger, Mike; Bharvirkar, Ranjit; Golemboski, Bill
Public and private funding for end-use energy efficiency actions is expected to increase significantly in the United States over the next decade. For example, Barbose et al (2009) estimate that spending on ratepayer-funded energy efficiency programs in the U.S. could increase frommore » $3.1 billion in 2008 to $$7.5 and 12.4 billion by 2020 under their medium and high scenarios. This increase in spending could yield annual electric energy savings ranging from 0.58% - 0.93% of total U.S. retail sales in 2020, up from 0.34% of retail sales in 2008. Interest in and support for energy efficiency has broadened among national and state policymakers. Prominent examples include {approx}$$18 billion in new funding for energy efficiency programs (e.g., State Energy Program, Weatherization, and Energy Efficiency and Conservation Block Grants) in the 2009 American Recovery and Reinvestment Act (ARRA). Increased funding for energy efficiency should result in more benefits as well as more scrutiny of these results. As energy efficiency becomes a more prominent component of the U.S. national energy strategy and policies, assessing the effectiveness and energy saving impacts of energy efficiency programs is likely to become increasingly important for policymakers and private and public funders of efficiency actions. Thus, it is critical that evaluation, measurement, and verification (EM&V) is carried out effectively and efficiently, which implies that: (1) Effective program evaluation, measurement, and verification (EM&V) methodologies and tools are available to key stakeholders (e.g., regulatory agencies, program administrators, consumers, and evaluation consultants); and (2) Capacity (people and infrastructure resources) is available to conduct EM&V activities and report results in ways that support program improvement and provide data that reliably compares achieved results against goals and similar programs in other jurisdictions (benchmarking). The National Action Plan for Energy Efficiency (2007) presented commonly used definitions for EM&V in the context of energy efficiency programs: (1) Evaluation (E) - The performance of studies and activities aimed at determining the effects and effectiveness of EE programs; (2) Measurement and Verification (M&V) - Data collection, monitoring, and analysis associated with the calculation of gross energy and demand savings from individual measures, sites or projects. M&V can be a subset of program evaluation; and (3) Evaluation, Measurement, and Verification (EM&V) - This term is frequently seen in evaluation literature. EM&V is a catchall acronym for determining both the effectiveness of program designs and estimates of load impacts at the portfolio, program and project level. This report is a scoping study that assesses current practices and methods in the evaluation, measurement and verification (EM&V) of ratepayer-funded energy efficiency programs, with a focus on methods and practices currently used for determining whether projected (ex-ante) energy and demand savings have been achieved (ex-post). M&V practices for privately-funded energy efficiency projects (e.g., ESCO projects) or programs where the primary focus is greenhouse gas reductions were not part of the scope of this study. We identify and discuss key purposes and uses of current evaluations of end-use energy efficiency programs, methods used to evaluate these programs, processes used to determine those methods; and key issues that need to be addressed now and in the future, based on discussions with regulatory agencies, policymakers, program administrators, and evaluation practitioners in 14 states and national experts in the evaluation field. We also explore how EM&V may evolve in a future in which efficiency funding increases significantly, innovative mechanisms for rewarding program performance are adopted, the role of efficiency in greenhouse gas mitigation is more closely linked, and programs are increasingly funded from multiple sources often with multiple program administrators and intended to meet multiple purposes.« less
Developing Energy Literacy in US Middle-Level Students Using the Geospatial Curriculum Approach
NASA Astrophysics Data System (ADS)
Bodzin, Alec M.; Fu, Qiong; Peffer, Tamara E.; Kulo, Violet
2013-06-01
This quantitative study examined the effectiveness of a geospatial curriculum approach to promote energy literacy in an urban school district and examined factors that may account for energy content knowledge achievement. An energy literacy measure was administered to 1,044 eighth-grade students (ages 13-15) in an urban school district in Pennsylvania, USA. One group of students received instruction with a geospatial curriculum approach (geospatial technologies (GT)) and another group of students received 'business as usual' (BAU) curriculum instruction. For the GT students, findings revealed statistically significant gains from pretest to posttest (p < 0.001) on knowledge of energy resource acquisition, energy generation, storage and transport, and energy consumption and conservation. The GT students had year-end energy content knowledge scores significantly higher than those who learned with the BAU curriculum (p < 0.001; effect size being large). A multiple regression found that prior energy content knowledge was the only significant predictor to the year-end energy content knowledge achievement for the GT students (p < 0.001). The findings support that the implementation of a geospatial curriculum approach that employs learning activities that focus on the spatial nature of energy resources can improve the energy literacy of urban middle-level education students.
Quasi-elastic nuclear scattering at high energies
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Townsend, Lawrence W.; Wilson, John W.
1992-01-01
The quasi-elastic scattering of two nuclei is considered in the high-energy optical model. Energy loss and momentum transfer spectra for projectile ions are evaluated in terms of an inelastic multiple-scattering series corresponding to multiple knockout of target nucleons. The leading-order correction to the coherent projectile approximation is evaluated. Calculations are compared with experiments.
NASA Astrophysics Data System (ADS)
Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; Nieuwenhuizen, G. J. Van; Verdier, R.; Veres, G. I.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.
2006-08-01
The PHOBOS experiment at the BNL Relativistic Heavy Ion Collider has measured the total multiplicity of primary charged particles as a function of collision centrality in Au+Au collisions at sNN= 19.6, 130, and 200 GeV. An approximate independence of
Abelev, B.; Adam, J.; Adamová, D.; ...
2015-04-09
The multiplicity and pseudorapidity distributions of inclusive photons have been measured at forward rapidities (2.3 < η < 3.9) in proton–proton collisions at three center-of-mass energies, √s = 0.9, 2.76 and 7 TeV using the ALICE detector. It is observed that the increase in the average photon multiplicity as a function of beam energy is compatible with both a logarithmic and a power-law dependence. The relative increase in average photon multiplicity produced in inelastic pp collisions at 2.76 and 7 TeV center-of-mass energies with respect to 0.9 TeV are 37.2 ± 0.3 % (stat) ± 8.8 % (sys) and 61.2more » ± 0.3 % (stat) ± 7.6 % (sys), respectively. The photon multiplicity distributions for all center-of-mass energies are well described by negative binomial distributions. The multiplicity distributions are also presented in terms of KNO variables. The results are compared to model predictions, which are found in general to underestimate the data at large photon multiplicities, in particular at the highest center-of-mass energy. As a result, limiting fragmentation behavior of photons has been explored with the data, but is not observed in the measured pseudorapidity range.« less
Measurement of the energy and multiplicity distributions of neutrons from the photofission of U 235
Clarke, S. D.; Wieger, B. M.; Enqvist, A.; ...
2017-06-20
For the first time, the complete neutron multiplicity distribution has been measured in this study from the photofission of 235U induced by high-energy spallation γ rays arriving ahead of the neutron beam at the Los Alamos Neutron Science Center. The resulting average neutron multiplicity 3.80 ± 0.08 (stat.) neutrons per photofission is in general agreement with previous measurements. In addition, unique measurements of the prompt fission energy spectrum of the neutrons from photofission and the angular correlation of two-neutron energies emitted in photofission also were made. Finally, the results are compared to calculations with the complete event fission model FREYA.
Perthold, Jan Walther; Oostenbrink, Chris
2018-05-17
Enveloping distribution sampling (EDS) is an efficient approach to calculate multiple free-energy differences from a single molecular dynamics (MD) simulation. However, the construction of an appropriate reference-state Hamiltonian that samples all states efficiently is not straightforward. We propose a novel approach for the construction of the EDS reference-state Hamiltonian, related to a previously described procedure to smoothen energy landscapes. In contrast to previously suggested EDS approaches, our reference-state Hamiltonian preserves local energy minima of the combined end-states. Moreover, we propose an intuitive, robust and efficient parameter optimization scheme to tune EDS Hamiltonian parameters. We demonstrate the proposed method with established and novel test systems and conclude that our approach allows for the automated calculation of multiple free-energy differences from a single simulation. Accelerated EDS promises to be a robust and user-friendly method to compute free-energy differences based on solid statistical mechanics.
Hawkes, Anna L; Chambers, Suzanne K; Pakenham, Kenneth I; Patrao, Tania A; Baade, Peter D; Lynch, Brigid M; Aitken, Joanne F; Meng, Xingqiong; Courneya, Kerry S
2013-06-20
Colorectal cancer survivors are at risk for poor health outcomes because of unhealthy lifestyles, but few studies have developed translatable health behavior change interventions. This study aimed to determine the effects of a telephone-delivered multiple health behavior change intervention (CanChange) on health and behavioral outcomes among colorectal cancer survivors. In this two-group randomized controlled trial, 410 colorectal cancer survivors were randomly assigned to the health coaching intervention (11 theory-based telephone-delivered health coaching sessions delivered over 6 months focusing on physical activity, weight management, dietary habits, alcohol, and smoking) or usual care. Assessment of primary (ie, physical activity [Godin Leisure Time Index], health-related quality of life [HRQoL; Short Form-36], and cancer-related fatigue [Functional Assessment of Chronic Illness Therapy Fatigue Scale]) and secondary outcomes (ie, body mass index [kg/m(2)], diet and alcohol intake [Food Frequency Questionnaire], and smoking) were conducted at baseline and 6 and 12 months. At 12 months, significant intervention effects were observed for moderate physical activity (28.5 minutes; P = .003), body mass index (-0.9 kg/m(2); P = .001), energy from total fat (-7.0%; P = .006), and energy from saturated fat (-2.8%; P = .016). A significant intervention effect was reported for vegetable intake (0.4 servings per day; P = .001) at 6 months. No significant group differences were found at 6 or 12 months for HRQoL, cancer-related fatigue, fruit, fiber, or alcohol intake, or smoking. The CanChange intervention was effective for improving physical activity, dietary habits, and body mass index in colorectal cancer survivors. The intervention is translatable through existing telephone cancer support and information services in Australia and other countries.
NASA Technical Reports Server (NTRS)
Montgomery, Leslie D.; Ku, Yu-Tsuan E.; Montgomery, Richard W.; Kliss, Mark (Technical Monitor)
1997-01-01
Recent neuropsychological studies demonstrate that cognitive dysfunction is a common symptom in patients with multiple sclerosis. In many cases the presence of cognitive impairment affects the patient's daily activities to a greater extent than would be found due to their physical disability alone. Cognitive dysfunction can have a significant impact on the quality of life of both the patient and that of their primary caregiver. Two cognitively impaired male MS patients were given a visual discrimination task before and after a one hour cooling period. The subjects were presented a series of either red or blue circles or triangles. One of these combinations, or one fourth of the stimuli, was designated as the "target" presentation. EEG was recorded from 20 scalp electrodes using a Tracor Northern 7500 EEG/ERP system. Oral and ear temperatures were obtained and recorded manually every five minutes during the one hour cooling period. The EEG ERP signatures from each series of stimuli were analyzed in the energy density domain to determine the locus of neural activity at each EEG sampling time. The first subject's ear temperature did not decrease during the cooling period. It was actually elevated approximately 0.05 C by the end of the cooling period compared to his mean of control period value. In turn, Subject One's discrimination performance and cortical energy remained essentially the same after body cooling. In contrast, Subject Two's ear temperature decreased approx. 0.8 C during his cooling period. Subject Two's ERROR score decreased from 12 during the precooling control period to 2 after cooling. His ENERGY value increased approximately 300%, from a precooling value of approximately 200 to a postcooling value of nearly 600. These findings might be interpreted by the following three-part hypothesis: (1) the general cognitive impairment of MS patients may be a result of low or unfocused metabolic energy conversion in the cortex; (2) such differences show up most strongly in reduced energy in the occipital region during the initial processing of the precooling period visual stimulus which may indicate impaired early visual processing; and (3) increased postcooling activation in the le ft angular gyrus may result in enhanced higher-level reasoning related to processing visual task information. By this hypothesis the superior performance of Subject Two following body cooling may be a result of increased neural activation in his early visual recognition and processing centers.
Background Studies in CZT Detectors at Balloon Altitudes
NASA Astrophysics Data System (ADS)
Slavis, K. R.; Dowkontt, P. F.; Epstein, J. W.; Hink, P. L.; Matteson, J. L.; Duttweiler, F.; Huszar, G. L.; Leblanc, P. C.; Skelton, R. T.; Stephan, E. A.
1998-12-01
Cadmium Zinc Telluride (CZT) is a room temperature semiconductor detector well suited for high energy X-ray astronomy. We have developed a CZT detector with crossed strip readout, 500 micron resolution, and an advanced electrode design that greatly improves energy resolution. The latter varies from 3 keV to 6 keV FWHM over the range from 14-184 keV. We have conducted two balloon flights using this cross-strip detector and a standard planar detector sensitive in the energy range of 20-350 keV. These flights utilized a total of seven shielding schemes: 3 passive (7, 2, and 0 mm thick Pb/Sn/Cu), 2 active (NaI-CsI with 2 opening angles) and 2 hybrid passive-active. In the active shielding modes, the shield pulse heights were telemetered for each CZT event, allowing us to study the effect of shield energy-loss threshold on the background. The flights were launched from Fort Sumner, NM in October 1997 and May 1998, and had float altitudes of 109,000 and 105,000 feet respectively. Periodic energy calibrations showed the detector performance to be identical to that in the laboratory. The long duration of the May flight, 22 hours, enables us to study activation effects in the background. We present results on the effectiveness of each of the shielding schemes, activation effects and two new background reduction techniques for the strip detector. These reduction techniques employ the depth of interaction, as indicated by the ratio of cathode to anode pulse height, and multiple-site signatures to reject events that are unlikely to be X-rays incident on the detector's face. The depth of interaction technique reduces the background by a factor of 4 in the 20-40 keV energy range with passive shielding. Our preliminary results indicate a background level of 8.6x10(-3) cts/cm(2) -s-keV using passive shielding and 6x10(-4) cts/cm(2) -s-keV using active shielding in the 20-40 keV range.
Detection of High Energy Cosmic Rays with Advanced Thin Ionization Calorimeter, ATIC
NASA Technical Reports Server (NTRS)
Adams, J. H.; Ahn, E. J.; Ahn, H. S.; Bashindzhagyan, G.; Case, G.; Chang, J.; Christl, M.; Ellison, S.; Fazely, A. R.; Ganel, O.
2002-01-01
The author presents preliminary results of the first flight of the Advanced Thin Ionization Calorimeter (ATIC). ATIC is a multiple, long duration balloon flight, investigation for the study of cosmic ray spectra from below 50 GeV to near 100 TeV total energy, using a fully active Bismuth Germanate (BGO) calorimeter. It is equipped with the first large area mosaic of small fully depleted silicon detector pads capable of charge identification of cosmic rays from H to Fe. As a redundancy check for the charge identification and a coarse particle tracking system, three projective layers of x-y scintillator hodoscopes were employed, above, in the center and below a Carbon interaction 'target'.
Fischer, A; Delagarde, R; Faverdin, P
2018-05-01
Residual feed intake, which is usually used to estimate individual variation of feed efficiency, requires frequent and accurate measurements of individual feed intake to be carried out. Developing a breeding scheme based on residual feed intake in dairy cows is therefore complicated, especially because feed intake is not measurable for a large population. Another solution could be to focus on biological determinants of feed efficiency, which could potentially be directly and broadband measurable on farm. Several phenotypes have been identified in literature as being associated with differences in feed efficiency. The present study therefore aims to identify which biological mechanisms are associated with residual energy intake (REI) differences among dairy cows. Several candidate phenotypes were recorded frequently and simultaneously throughout the first 238 d in milk for 60 Holstein cows fed on a constant diet based on maize silage. A multiple linear regression of the 238 d in milk average of net energy intake was fitted on the 238 d in milk averages for milk energy output, metabolic body weight, the sum over the 238 d in milk of both, body condition score loss and gain, and the residuals were defined as REI. A partial least square regression was fitted over all biological traits to explain REI variability. Linear multiple regression explained 93.6% of net energy intake phenotypic variation, with 65.5% associated with lactation requirement, 23.2% with maintenance, and 4.9% with body reserves change; the 6.4% residuals represented REI. Overall, measured biological traits contributed to 58.9% of REI phenotypic variability, which were mainly explained by activity (26.5%) and feeding behavior (21.3%). However, apparent confounding was observed between behavior, activity, digestibility, and rumen-temperature variables. Drawing a conclusion on biological traits that explain feed efficiency differences among dairy cows was not possible due to this apparent confounding between the measured variables. Further investigation is needed to validate these results and to characterize the causal relationship of feed efficiency with feeding behavior, digestibility, body reserves change, activity, and rumen temperature. The Authors. Published by FASS Inc. and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Energy yields in the prebiotic synthesis of hydrogen cyanide and formaldehyde
NASA Technical Reports Server (NTRS)
Stribling, R.; Miller, S. L.
1986-01-01
Prebiotic experiments are usually reported in terms of carbon yields, i.e., the yield of product based on the total carbon in the system. These experiments usually involve a large input of energy and are designed to maximize the yields of product. However, large inputs of energy result in multiple activation of the reactants and products. A more realistic prebiotic experiment is to remove the products of the activation step so they are not exposed a second time to the energy source. This is equivalent to transporting the products synthesized in the primitive atmosphere to the ocean, and thereby protecting them from destruction by atmospheric energy sources. Experiments of this type, using lower inputs of energy, give energy yields (moles of products/joule) which can be used to estimate the relative importance of the different energy sources on the primitive earth. Simulated prebiotic atmospheres containing either CH4, CO or CO2 with N2, H2O and variable amounts of H2 were subjected to a high frequency Tesla coil. Samples of the aqueous phase were taken at various time intervals from 1 hr to 7 days, and the energy yields were obtained by extrapolation to zero time. The samples were analyzed for HCN with the cyanide electrode and for H2CO by chromotropic acid. The spark energy was estimated by calorimetry. The temperature rise in an insulated discharge flask was compared with the temperature rise from a resistance heater in the same flask. These results will be compared with calculated production rates of HCN and H2CO from lightning and a number of photochemical processes on the primitive Earth.
Nutritional supplements for people being treated for active tuberculosis.
Abba, Katharine; Sudarsanam, Thambu D; Grobler, Liesl; Volmink, Jimmy
2008-10-08
Tuberculosis is a serious infection affecting mainly the lungs. It may contribute to nutritional deficiencies which in turn may delay recovery by depressing immune functions. Nutritional supplements might therefore promote recovery in people being treated for tuberculosis. To assess the provision of oral nutritional supplements to promote the recovery of people being treated with antituberculous drug therapy for active tuberculosis. We searched the Cochrane Infectious Disease Group Specialized Register (June 2008), CENTRAL (The Cochrane Library 2008, Issue 2), MEDLINE (June 2008), EMBASE (June 2008), LILACS (June 2008), mRCT (June 2008), the Indian Journal of Tuberculosis (1983 to June 2008), and checked the reference lists of all included studies. Randomized controlled trials comparing any oral nutritional supplement given for at least four weeks with no nutritional intervention, placebo, or dietary advice only for people being treated for active tuberculosis. Two authors independently selected trials, extracted data, and assessed risk of bias. We calculated risk ratios (RR) for dichotomous variables and mean differences (MD) for continuous variables, with 95% confidence intervals (CI). We pooled data from trials with similar interventions and outcomes. Twelve trials (3393 participants) were included. Five trials had adequate allocation concealment. Interventions included a high energy supplement, high cholesterol diet, vitamin D, vitamin A, zinc, arginine, multiple micronutrient supplements, combined multiple micronutrient supplements and zinc, combined vitamin A and zinc, and combined vitamin A and selenium. The following supplements were associated with increased body weight at follow up: high energy supplements (MD 1.73 kg, 95% CI 0.81 to 2.65; 34 participants, 1 trial); multiple micronutrients plus additional zinc (MD 2.37 kg, 95% CI 2.21 to 2.53; 192 participants, 1 trial); and vitamin A plus zinc (MD 3.10 kg, 95% CI 0.74 to 5.46; 80 participants, 1 trial). There was no evidence that any supplement affected the number of deaths or number of participants with sputum test positive results at the end of treatment. There is limited evidence that high energy supplements and some combinations of zinc with other micronutrients may help people with tuberculosis to gain weight. There is not enough evidence to assess the effect of other combinations of nutrients. A number of relevant trials are in progress, and, where appropriate, the results will be incorporated into future updates of this review.
Multiple coupled landscapes and non-adiabatic dynamics with applications to self-activating genes.
Chen, Cong; Zhang, Kun; Feng, Haidong; Sasai, Masaki; Wang, Jin
2015-11-21
Many physical, chemical and biochemical systems (e.g. electronic dynamics and gene regulatory networks) are governed by continuous stochastic processes (e.g. electron dynamics on a particular electronic energy surface and protein (gene product) synthesis) coupled with discrete processes (e.g. hopping among different electronic energy surfaces and on and off switching of genes). One can also think of the underlying dynamics as the continuous motion on a particular landscape and discrete hoppings among different landscapes. The main difference of such systems from the intra-landscape dynamics alone is the emergence of the timescale involved in transitions among different landscapes in addition to the timescale involved in a particular landscape. The adiabatic limit when inter-landscape hoppings are fast compared to continuous intra-landscape dynamics has been studied both analytically and numerically, but the analytical treatment of the non-adiabatic regime where the inter-landscape hoppings are slow or comparable to continuous intra-landscape dynamics remains challenging. In this study, we show that there exists mathematical mapping of the dynamics on 2(N) discretely coupled N continuous dimensional landscapes onto one single landscape in 2N dimensional extended continuous space. On this 2N dimensional landscape, eddy current emerges as a sign of non-equilibrium non-adiabatic dynamics and plays an important role in system evolution. Many interesting physical effects such as the enhancement of fluctuations, irreversibility, dissipation and optimal kinetics emerge due to non-adiabaticity manifested by the eddy current illustrated for an N = 1 self-activator. We further generalize our theory to the N-gene network with multiple binding sites and multiple synthesis rates for discretely coupled non-equilibrium stochastic physical and biological systems.
Luo, Wen-Bin; Pham, Thien Viet; Guo, Hai-Peng; Liu, Hua-Kun; Dou, Shi-Xue
2017-02-28
The nonaqueous lithium-oxygen battery is a promising candidate as a next-generation energy storage system because of its potentially high energy density (up to 2-3 kW kg -1 ), exceeding that of any other existing energy storage system for storing sustainable and clean energy to reduce greenhouse gas emissions and the consumption of nonrenewable fossil fuels. To achieve high round-trip efficiency and satisfactory cycling stability, the air electrode structure and the electrocatalysts play important roles. Here, a 3D array composed of one-dimensional TiN@Pt 3 Cu nanowires was synthesized and employed as a whole porous air electrode in a lithium-oxygen battery. The TiN nanowire was primarily used as an air electrode frame and catalyst support to provide a high electronic conductivity network because of the high-orientation one-dimensional crystalline structure. Meanwhile, deposited icosahedral Pt 3 Cu nanocrystals exhibit highly efficient catalytic activity owing to the abundant {111} active lattice facets and multiple twin boundaries. This porous air electrode comprises a one-dimensional TiN@Pt 3 Cu nanowire array that demonstrates excellent energy conversion efficiency and rate performance in full discharge and charge modes. The discharge capacity is up to 4600 mAh g -1 along with an 84% conversion efficiency at a current density of 0.2 mA cm -2 , and when the current density increased to 0.8 mA cm -2 , the discharge capacity is still greater than 3500 mAh g -1 together with a nearly 70% efficiency. This designed array is a promising bifunctional porous air electrode for lithium-oxygen batteries, forming a continuous conductive and high catalytic activity network to facilitate rapid gas and electrolyte diffusion and catalytic reaction throughout the whole energy conversion process.
A Multiple Period Problem in Distributed Energy Management Systems Considering CO2 Emissions
NASA Astrophysics Data System (ADS)
Muroda, Yuki; Miyamoto, Toshiyuki; Mori, Kazuyuki; Kitamura, Shoichi; Yamamoto, Takaya
Consider a special district (group) which is composed of multiple companies (agents), and where each agent responds to an energy demand and has a CO2 emission allowance imposed. A distributed energy management system (DEMS) optimizes energy consumption of a group through energy trading in the group. In this paper, we extended the energy distribution decision and optimal planning problem in DEMSs from a single period problem to a multiple periods one. The extension enabled us to consider more realistic constraints such as demand patterns, the start-up cost, and minimum running/outage times of equipment. At first, we extended the market-oriented programming (MOP) method for deciding energy distribution to the multiple periods problem. The bidding strategy of each agent is formulated by a 0-1 mixed non-linear programming problem. Secondly, we proposed decomposing the problem into a set of single period problems in order to solve it faster. In order to decompose the problem, we proposed a CO2 emission allowance distribution method, called an EP method. We confirmed that the proposed method was able to produce solutions whose group costs were close to lower-bound group costs by computational experiments. In addition, we verified that reduction in computational time was achieved without losing the quality of solutions by using the EP method.
High-energy multiple muons and heavy primary cosmic-rays
NASA Technical Reports Server (NTRS)
Mizutani, K.; Sato, T.; Takahashi, T.; Higashi, S.
1985-01-01
Three-dimensional simulations were carried out on high-energy multiple muons. On the lateral spread, the comparison with the deep underground observations indicates that the primary cosmic rays include heavy nuclei of high content. A method to determine the average mass number of primary particles in the energy around 10 to the 15th power eV is suggested.
Robust energy-absorbing compensators for the ACTEX II test article
NASA Astrophysics Data System (ADS)
Blaurock, Carl A.; Miller, David W.; Nye, Ted
1995-05-01
The paper addresses the problem of satellite solar panel vibration. A multi-layer vibration control scheme is investigated using a flight test article. Key issues in the active control portion are presented in the paper. The paper discusses the primary control design drivers, which are the time variations in modal frequencies due to configuration and thermal changes. A local control design approach is investigated, but found to be unworkable due to sensor/actuator non-collocation. An alternate design process uses linear robust control techniques, by describing the modal shifts as uncertainties. Multiple modal design, alpha- shifted multiple model, and a feedthrough compensation scheme are examined. Ground and simulation tests demonstrate that the resulting controllers provide significant vibration reduction in the presence of expected system variations.
Ma, Tao; Chen, Yiran; Vingtdeux, Valerie; Zhao, Haitian; Viollet, Benoit; Marambaud, Philippe
2014-01-01
The AMP-activated protein kinase (AMPK) is a Ser/Thr kinase that is activated in response to low-energy states to coordinate multiple signaling pathways to maintain cellular energy homeostasis. Dysregulation of AMPK signaling has been observed in Alzheimer's disease (AD), which is associated with abnormal neuronal energy metabolism. In the current study we tested the hypothesis that aberrant AMPK signaling underlies AD-associated synaptic plasticity impairments by using pharmacological and genetic approaches. We found that amyloid β (Aβ)-induced inhibition of long-term potentiation (LTP) and enhancement of long-term depression were corrected by the AMPK inhibitor compound C (CC). Similarly, LTP impairments in APP/PS1 transgenic mice that model AD were improved by CC treatment. In addition, Aβ-induced LTP failure was prevented in mice with genetic deletion of the AMPK α2-subunit, the predominant AMPK catalytic subunit in the brain. Furthermore, we found that eukaryotic elongation factor 2 (eEF2) and its kinase eEF2K are key downstream effectors that mediate the detrimental effects of hyperactive AMPK in AD pathophysiology. Our findings describe a previously unrecognized role of aberrant AMPK signaling in AD-related synaptic pathophysiology and reveal a potential therapeutic target for AD. PMID:25186765
Rodrigues, Américo; Adamo, Mattia; Crozet, Pierre; Margalha, Leonor; Confraria, Ana; Martinho, Cláudia; Elias, Alexandre; Rabissi, Agnese; Lumbreras, Victoria; González-Guzmán, Miguel; Antoni, Regina; Rodriguez, Pedro L.; Baena-González, Elena
2013-01-01
Plant survival under environmental stress requires the integration of multiple signaling pathways into a coordinated response, but the molecular mechanisms underlying this integration are poorly understood. Stress-derived energy deprivation activates the Snf1-related protein kinases1 (SnRK1s), triggering a vast transcriptional and metabolic reprogramming that restores homeostasis and promotes tolerance to adverse conditions. Here, we show that two clade A type 2C protein phosphatases (PP2Cs), established repressors of the abscisic acid (ABA) hormonal pathway, interact with the SnRK1 catalytic subunit causing its dephosphorylation and inactivation. Accordingly, SnRK1 repression is abrogated in double and quadruple pp2c knockout mutants, provoking, similarly to SnRK1 overexpression, sugar hypersensitivity during early seedling development. Reporter gene assays and SnRK1 target gene expression analyses further demonstrate that PP2C inhibition by ABA results in SnRK1 activation, promoting SnRK1 signaling during stress and once the energy deficit subsides. Consistent with this, SnRK1 and ABA induce largely overlapping transcriptional responses. Hence, the PP2C hub allows the coordinated activation of ABA and energy signaling, strengthening the stress response through the cooperation of two key and complementary pathways. PMID:24179127
Mitochondrial Bioenergetics and Dysfunction in Failing Heart.
Sheeran, Freya L; Pepe, Salvatore
2017-01-01
Energy insufficiency has been recognized as a key feature of systolic heart failure. Although mitochondria have long been known to sustain myocardial work energy supply, the capacity to therapeutically target mitochondrial bioenergetics dysfunction is hampered by a complex interplay of multiple perturbations that progressively compound causing myocardial failure and collapse. Compared to non-failing human donor hearts, activity rates of complexes I and IV, nicotinamide nucleotide transhydrogenase (NADPH-transhydrogenase, Nnt) and the Krebs cycle enzymes isocitrate dehydrogenase, malate dehydrogenase and aconitase are markedly decreased in end-stage heart failure. Diminished REDOX capacity with lower total glutathione and coenzyme Q 10 levels are also a feature of chronic left ventricular failure. Decreased enzyme activities in part relate to abundant and highly specific oxidative, nitrosylative, and hyperacetylation modifications. In this brief review we highlight that energy deficiency in end-stage failing human left ventricle predominantly involves concomitantly impaired activities of key electron transport chain and Krebs cycle enzymes rather than altered expression of respective genes or proteins. Augmented oxidative modification of these enzyme subunit structures, and the formation of highly reactive secondary metabolites, implicates dysfunction due to diminished capacity for management of mitochondrial reactive oxygen species, which contribute further to progressive decreases in bioenergetic capacity and contractile function in human heart failure.
Microbial catabolic activities are naturally selected by metabolic energy harvest rate.
González-Cabaleiro, Rebeca; Ofiţeru, Irina D; Lema, Juan M; Rodríguez, Jorge
2015-12-01
The fundamental trade-off between yield and rate of energy harvest per unit of substrate has been largely discussed as a main characteristic for microbial established cooperation or competition. In this study, this point is addressed by developing a generalized model that simulates competition between existing and not experimentally reported microbial catabolic activities defined only based on well-known biochemical pathways. No specific microbial physiological adaptations are considered, growth yield is calculated coupled to catabolism energetics and a common maximum biomass-specific catabolism rate (expressed as electron transfer rate) is assumed for all microbial groups. Under this approach, successful microbial metabolisms are predicted in line with experimental observations under the hypothesis of maximum energy harvest rate. Two microbial ecosystems, typically found in wastewater treatment plants, are simulated, namely: (i) the anaerobic fermentation of glucose and (ii) the oxidation and reduction of nitrogen under aerobic autotrophic (nitrification) and anoxic heterotrophic and autotrophic (denitrification) conditions. The experimentally observed cross feeding in glucose fermentation, through multiple intermediate fermentation pathways, towards ultimately methane and carbon dioxide is predicted. Analogously, two-stage nitrification (by ammonium and nitrite oxidizers) is predicted as prevailing over nitrification in one stage. Conversely, denitrification is predicted in one stage (by denitrifiers) as well as anammox (anaerobic ammonium oxidation). The model results suggest that these observations are a direct consequence of the different energy yields per electron transferred at the different steps of the pathways. Overall, our results theoretically support the hypothesis that successful microbial catabolic activities are selected by an overall maximum energy harvest rate.
Free-energy relationships in ion channels activated by voltage and ligand
Chowdhury, Sandipan
2013-01-01
Many ion channels are modulated by multiple stimuli, which allow them to integrate a variety of cellular signals and precisely respond to physiological needs. Understanding how these different signaling pathways interact has been a challenge in part because of the complexity of underlying models. In this study, we analyzed the energetic relationships in polymodal ion channels using linkage principles. We first show that in proteins dually modulated by voltage and ligand, the net free-energy change can be obtained by measuring the charge-voltage (Q-V) relationship in zero ligand condition and the ligand binding curve at highly depolarizing membrane voltages. Next, we show that the voltage-dependent changes in ligand occupancy of the protein can be directly obtained by measuring the Q-V curves at multiple ligand concentrations. When a single reference ligand binding curve is available, this relationship allows us to reconstruct ligand binding curves at different voltages. More significantly, we establish that the shift of the Q-V curve between zero and saturating ligand concentration is a direct estimate of the interaction energy between the ligand- and voltage-dependent pathway. These free-energy relationships were tested by numerical simulations of a detailed gating model of the BK channel. Furthermore, as a proof of principle, we estimate the interaction energy between the ligand binding and voltage-dependent pathways for HCN2 channels whose ligand binding curves at various voltages are available. These emerging principles will be useful for high-throughput mutagenesis studies aimed at identifying interaction pathways between various regulatory domains in a polymodal ion channel. PMID:23250866
NASA Astrophysics Data System (ADS)
Lin, Heng-Xiao; Chen, Wei-Lin; Liu, Yuan-Hao; Sheu, Rong-Jiun
2016-03-01
A set of spherical-type activation detectors was developed aiming to provide better determination of the neutron spectrum at the Tsing Hua Open-pool Reactor (THOR) BNCT facility. An activation foil embedded in a specially designed spherical holder exhibits three advantages: (1) minimizing the effect of neutron angular dependence, (2) creating response functions with broadened coverage of neutron energies by introducing additional moderators or absorbers to the central activation foil, and (3) reducing irradiation time because of improved detection efficiencies to epithermal neutron beam. This paper presents the design concept and the calculated response functions of new detectors. Theoretical and experimental demonstrations of the performance of the detectors are provided through comparisons of the unfolded neutron spectra determined using this method and conventional multiple-foil activation techniques.
Summary Article: IEA HPP Annex 36: Quality Installation / Quality Maintenance Sensitivity Studies
Hourahan, Glenn; Domanski, Piotr; Baxter, Van D.
2015-01-30
The outcome from this Annex activity clearly identifies that poorly designed, installed, and/or maintained heat pumps operate inefficiently and waste considerable energy compared to their as-designed potential. Additionally, it is clear that small faults for a given field-observed practice are significant, that some attribute deviations (in various equipment applications and geographical locations) have a larger impact than others, and that multiple faults or deviations have a cumulative impact on heat pump performance.
Increased mitochondrial content in remyelinated axons: implications for multiple sclerosis
Zambonin, Jessica L.; Zhao, Chao; Ohno, Nobuhiko; Campbell, Graham R.; Engeham, Sarah; Ziabreva, Iryna; Schwarz, Nadine; Lee, Sok Ee; Frischer, Josa M.; Turnbull, Doug M.; Trapp, Bruce D.; Lassmann, Hans; Franklin, Robin J. M.
2011-01-01
Mitochondrial content within axons increases following demyelination in the central nervous system, presumably as a response to the changes in energy needs of axons imposed by redistribution of sodium channels. Myelin sheaths can be restored in demyelinated axons and remyelination in some multiple sclerosis lesions is extensive, while in others it is incomplete or absent. The effects of remyelination on axonal mitochondrial content in multiple sclerosis, particularly whether remyelination completely reverses the mitochondrial changes that follow demyelination, are currently unknown. In this study, we analysed axonal mitochondria within demyelinated, remyelinated and myelinated axons in post-mortem tissue from patients with multiple sclerosis and controls, as well as in experimental models of demyelination and remyelination, in vivo and in vitro. Immunofluorescent labelling of mitochondria (porin, a voltage-dependent anion channel expressed on all mitochondria) and axons (neurofilament), and ultrastructural imaging showed that in both multiple sclerosis and experimental demyelination, mitochondrial content within remyelinated axons was significantly less than in acutely and chronically demyelinated axons but more numerous than in myelinated axons. The greater mitochondrial content within remyelinated, compared with myelinated, axons was due to an increase in density of porin elements whereas increase in size accounted for the change observed in demyelinated axons. The increase in mitochondrial content in remyelinated axons was associated with an increase in mitochondrial respiratory chain complex IV activity. In vitro studies showed a significant increase in the number of stationary mitochondria in remyelinated compared with myelinated and demyelinated axons. The number of mobile mitochondria in remyelinated axons did not significantly differ from myelinated axons, although significantly greater than in demyelinated axons. Our neuropathological data and findings in experimental demyelination and remyelination in vivo and in vitro are consistent with a partial amelioration of the supposed increase in energy demand of demyelinated axons by remyelination. PMID:21705418
Increased mitochondrial content in remyelinated axons: implications for multiple sclerosis.
Zambonin, Jessica L; Zhao, Chao; Ohno, Nobuhiko; Campbell, Graham R; Engeham, Sarah; Ziabreva, Iryna; Schwarz, Nadine; Lee, Sok Ee; Frischer, Josa M; Turnbull, Doug M; Trapp, Bruce D; Lassmann, Hans; Franklin, Robin J M; Mahad, Don J
2011-07-01
Mitochondrial content within axons increases following demyelination in the central nervous system, presumably as a response to the changes in energy needs of axons imposed by redistribution of sodium channels. Myelin sheaths can be restored in demyelinated axons and remyelination in some multiple sclerosis lesions is extensive, while in others it is incomplete or absent. The effects of remyelination on axonal mitochondrial content in multiple sclerosis, particularly whether remyelination completely reverses the mitochondrial changes that follow demyelination, are currently unknown. In this study, we analysed axonal mitochondria within demyelinated, remyelinated and myelinated axons in post-mortem tissue from patients with multiple sclerosis and controls, as well as in experimental models of demyelination and remyelination, in vivo and in vitro. Immunofluorescent labelling of mitochondria (porin, a voltage-dependent anion channel expressed on all mitochondria) and axons (neurofilament), and ultrastructural imaging showed that in both multiple sclerosis and experimental demyelination, mitochondrial content within remyelinated axons was significantly less than in acutely and chronically demyelinated axons but more numerous than in myelinated axons. The greater mitochondrial content within remyelinated, compared with myelinated, axons was due to an increase in density of porin elements whereas increase in size accounted for the change observed in demyelinated axons. The increase in mitochondrial content in remyelinated axons was associated with an increase in mitochondrial respiratory chain complex IV activity. In vitro studies showed a significant increase in the number of stationary mitochondria in remyelinated compared with myelinated and demyelinated axons. The number of mobile mitochondria in remyelinated axons did not significantly differ from myelinated axons, although significantly greater than in demyelinated axons. Our neuropathological data and findings in experimental demyelination and remyelination in vivo and in vitro are consistent with a partial amelioration of the supposed increase in energy demand of demyelinated axons by remyelination.
Quantum molecular dynamics and multistep-direct analyses of multiple preequilibrium emission
NASA Astrophysics Data System (ADS)
Chadwick, M. B.; Chiba, S.; Niita, K.; Maruyama, T.; Iwamoto, A.
1995-11-01
We study multiple preequilibrium emission in nucleon induced reactions at intermediate energies, and compare quantum molecular dynamics (QMD) calculations with multistep-direct Feshbach-Kerman-Koonin results [M. B. Chadwick, P. G. Young, D. C. George, and Y. Watanabe, Phys. Rev. C 50, 996 (1994)]. When the theoretical expressions of this reference are reformulated so that the definitions of primary and multiple emission correspond to those used in QMD, the two theories yield similar results for primary and multiple preequilibrium emission. We use QMD as a tool to determine the multiplicities of fast preequilibrium nucleons as a function of incident energy. For fast particle cross sections to exceed 5% of the inclusive preequilibrium emission cross sections we find that two particles should be included in reactions above 50 MeV, three above about 180 MeV, and four are only needed when the incident energy exceeds about 400 MeV.
NASA Astrophysics Data System (ADS)
Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Chetluru, V.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kotuła, J.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wadsworth, B.; Walters, P.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.
2011-02-01
Pseudorapidity distributions of charged particles emitted in Au+Au, Cu+Cu, d+Au, and p+p collisions over a wide energy range have been measured using the PHOBOS detector at the BNL Relativistic Heavy-Ion Collider (RHIC). The centrality dependence of both the charged particle distributions and the multiplicity at midrapidity were measured. Pseudorapidity distributions of charged particles emitted with |η|<5.4, which account for between 95% and 99% of the total charged-particle emission associated with collision participants, are presented for different collision centralities. Both the midrapidity density dNch/dη and the total charged-particle multiplicity Nch are found to factorize into a product of independent functions of collision energy, sNN, and centrality given in terms of the number of nucleons participating in the collision, Npart. The total charged particle multiplicity, observed in these experiments and those at lower energies, assumes a linear dependence of (lnsNN)2 over the full range of collision energy of sNN=2.7-200 GeV.
Taghipoor, Masoomeh; van Milgen, Jaap; Gondret, Florence
2016-09-07
Variations in energy storage and expenditure are key elements for animals adaptation to rapidly changing environments. Because of the multiplicity of metabolic pathways, metabolic crossroads and interactions between anabolic and catabolic processes within and between different cells, the flexibility of energy stores in animal cells is difficult to describe by simple verbal, textual or graphic terms. We propose a mathematical model to study the influence of internal and external challenges on the dynamic behavior of energy stores and its consequence on cell energy status. The role of the flexibility of energy stores on the energy equilibrium at the cellular level is illustrated through three case studies: variation in eating frequency (i.e., glucose input), level of physical activity (i.e., ATP requirement), and changes in cell characteristics (i.e., maximum capacity of glycogen storage). Sensitivity analysis has been performed to highlight the most relevant parameters of the model; model simulations have then been performed to illustrate how variation in these key parameters affects cellular energy balance. According to this analysis, glycogen maximum accumulation capacity and homeostatic energy demand are among the most important parameters regulating muscle cell metabolism to ensure its energy equilibrium. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, Gary; Pendyala, Venkat Ramana Rao; Martinelli, Michela
XANES K-edge spectra of potassium promoter in precipitated Fe catalysts were acquired following activation by carburization in CO and as a function of time on-stream during the course of a Fischer–Tropsch synthesis run for a 100Fe:2K catalyst by withdrawing catalysts, sealed in wax product, for analysis. CO-activated and end-of-run spectra of the catalyst were also obtained for a 100Fe:5K catalyst. Peaks representing electronic transitions and multiple scattering were observed and resembled reference spectra for potassium carbonate or potassium formate. The shift in the multiple scattering peak to higher energy was consistent with sintering of potassium promoter during the course ofmore » the reaction test. The catalyst, however, retained its carbidic state, as demonstrated by XANES and EXAFS spectra at the iron K-edge, suggesting that sintering of potassium did not adversely affect the carburization rate, which is important for preventing iron carbides from oxidizing. This method serves as a starting point for developing better understanding of the chemical state and changes in structure occurring with alkali promoter.« less
Strained layer InP/InGaAs quantum well laser
NASA Technical Reports Server (NTRS)
Forouhar, Siamak (Inventor); Larsson, Anders G. (Inventor); Ksendzov, Alexander (Inventor); Lang, Robert J. (Inventor)
1993-01-01
Strained layer single or multiple quantum well lasers include an InP substrate, a pair of lattice-matched InGaAsP quarternary layers epitaxially grown on the substrate surrounding a pair of lattice matched In.sub.0.53 Ga.sub.0.47 As ternary layers surrounding one or more strained active layers of epitaxially grown, lattice-mismatched In.sub.0.75 Ga.sub.0.25 As. The level of strain is selected to control the bandgap energy to produce laser output having a wavelength in the range of 1.6 to 2.5 .mu.m. The multiple quantum well structure uses between each active layer. Diethyl zinc is used for p-type dopant in an InP cladding layer at a concentration level in the range of about 5.times.10.sup.17 /cm.sup.3 to about 2.times.10.sup.18 /cm.sup.3. Hydrogen sulfide is used for n-type dopant in the substrate.
Harnessing wake vortices for efficient collective swimming via deep reinfrcement learning
NASA Astrophysics Data System (ADS)
Verma, Siddartha; Novati, Guido; Koumoutsakos, Petros; ChairComputing Science Team
2017-11-01
Collective motion may bestow evolutionary advantages to a number of animal species. Soaring flocks of birds, teeming swarms of insects, and swirling masses of schooling fish, all to some extent enjoy anti-predator benefits, increased foraging success, and enhanced problem-solving abilities. Coordinated activity may also provide energetic benefits, as in the case of large groups of fish where swimmers exploit unsteady flow-patterns generated in the wake. Both experimental and computational investigations of such scenarios are hampered by difficulties associated with studying multiple swimmers. Consequentially, the precise energy-saving mechanisms at play remain largely unknown. We combine high-fidelity numerical simulations of multiple, self propelled swimmers with novel deep reinforcement learning algorithms to discover optimal ways for swimmers to interact with unsteady wakes, in a fully unsupervised manner. We identify optimal flow-interaction strategies devised by the resulting autonomous swimmers, and use it to formulate an effective control-logic. We demonstrate, via 3D simulations of controlled groups that swimmers exploiting the learned strategy exhibit a significant reduction in energy-expenditure. ERC Advanced Investigator Award 341117.
A study of electrically active traps in AlGaN/GaN high electron mobility transistor
NASA Astrophysics Data System (ADS)
Yang, Jie; Cui, Sharon; Ma, T. P.; Hung, Ting-Hsiang; Nath, Digbijoy; Krishnamoorthy, Sriram; Rajan, Siddharth
2013-10-01
We have studied electron conduction mechanisms and the associated roles of the electrically active traps in the AlGaN layer of an AlGaN/GaN high electron mobility transistor structure. By fitting the temperature dependent I-V (Current-Voltage) curves to the Frenkel-Poole theory, we have identified two discrete trap energy levels. Multiple traces of I-V measurements and constant-current injection experiment all confirm that the main role of the traps in the AlGaN layer is to enhance the current flowing through the AlGaN barrier by trap-assisted electron conduction without causing electron trapping.
NASA Astrophysics Data System (ADS)
Paul, Andre; Spikings, Richard; Ulyanov, Alexey; Chew, David
2016-04-01
Application of high temperature (>350oC) thermochronology is limited to the U-Pb system of accessory minerals, such as apatite, under the assumption that radiogenic lead is lost to thermally activated volume diffusion into an infinite reservoir. Cochrane et al. (2015) have demonstrated a working example from the northern Andes of South America. Predictions from volume diffusion theory were compared with measured single grain U-Pb date correlated to shortest diffusion radius and in-situ profiles measured by LA-ICP-MS. Results from both techniques were found to be in agreement with predictions from thermally activated, volume diffusion. However, outliers from the ID-TIMS data suggested some complexity, as grains were found to be too young relative to their diffusion radius. Interaction of multiple processes can be responsible for the alteration of apatite U-Pb dates such as: (1) metamorphic (over)growth, (2) fluid aided alteration/recrystallization and (3) metamictization and fracturing of the grain. Further, predictions from volume diffusion rely on the input parameters: (a) diffusivity, (b) activation energy and (c) shortest diffusion radius. Diffusivity and activation energy are potentially influenced by the chemical composition and subsequent changes in crystal structure. Currently there is one value for diffusion parameter and activation energy established for (Durango) apatite (Cherniak et al., 1991). Correlation between diffusivity/activation energy and composition has not been established. We investigate if correlations exist between diffusivity/activation energy and composition by obtaining single grain apatite U-Pb date and chemical compostion and correlating these to their diffusion radius. We test the consistency of apatite closure temperature, by comparing the apatite U-Pb dates with lower temperature thermochronometers such as white mica and K-feldspar Ar/Ar and by petrographic observations. We test if chemical information can be a proxy to identify metamorphic (over)growth and fluid aided alteration/recrystallization. We seek to evaluate if apatite U-Pb thermochronology can be applied to a broad range of rock types and geological environments or if limitations must be drawn.
Traffic off-balancing algorithm for energy efficient networks
NASA Astrophysics Data System (ADS)
Kim, Junhyuk; Lee, Chankyun; Rhee, June-Koo Kevin
2011-12-01
Physical layer of high-end network system uses multiple interface arrays. Under the load-balancing perspective, light load can be distributed to multiple interfaces. However, it can cause energy inefficiency in terms of the number of poor utilization interfaces. To tackle this energy inefficiency, traffic off-balancing algorithm for traffic adaptive interface sleep/awake is investigated. As a reference model, 40G/100G Ethernet is investigated. We report that suggested algorithm can achieve energy efficiency while satisfying traffic transmission requirement.
Energy-loss cross sections for inclusive charge-exchange reactions at intermediate energies
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Townsend, Lawrence W.; Dubey, Rajendra R.
1993-01-01
Charge-exchange reactions for scattering to the continuum are considered in a high-energy multiple scattering model. Calculations for (p,n) and (He-3,H-3) reactions are made and compared with experimental results for C-12, O-16, and Al-27 targets. Coherent effects are shown to lead to an important role for inelastic multiple scattering terms when light projectiles are considered.
Energy Metabolism and Inflammation in Brain Aging and Alzheimer’s Disease
Yin, Fei; Sancheti, Harsh; Patil, Ishan; Cadenas, Enrique
2016-01-01
The high energy demand of the brain renders it sensitive to changes in energy fuel supply and mitochondrial function. Deficits in glucose availability and mitochondrial function are well-known hallmarks of brain aging and are particularly accentuated in neurodegenerative disorders such as Alzheimer’s disease. As important cellular sources of H2O2, mitochondrial dysfunction is usually associated with altered redox status. Bioenergetic deficits and chronic oxidative stress are both major contributors to cognitive decline associated with brain aging and Alzheimer’s disease. Neuroinflammatory changes, including microglial activation and production of inflammatory cytokines, are observed in neurodegenerative diseases and normal aging. The bioenergetic hypothesis advocates for sequential events from metabolic deficits to propagation of neuronal dysfunction, to aging, and to neurodegeneration, while the inflammatory hypothesis supports microglia activation as the driving force for neuroinflammation. Nevertheless, growing evidence suggests that these diverse mechanisms have redox dysregulation as a common denominator and connector. An independent view of the mechanisms underlying brain aging and neurodegeneration is being replaced by one that entails multiple mechanisms coordinating and interacting with each other. This review focuses on the alterations in energy metabolism and inflammatory responses and their connection via redox regulation in normal brain aging and Alzheimer’s disease. Interactions of these systems is reviewed based on basic research and clinical studies. PMID:27154981
International collaboration on used fuel disposition crystalline rocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yifeng; Gardner, Payton; Kim, Geon-Young
Active participation in international R&D is crucial for achieving the UFD long-term goals of conducting “experiments to fill data needs and confirm advanced modeling approaches” (by 2015) and of having a “robust modeling and experimental basis for evaluation of multiple disposal system options” (by 2020). DOE’s Office of Nuclear Energy (NE) and its Office of Used Fuel Disposition Research and Development (UFD) have developed a strategic plan to advance cooperation with international partners. The international collaboration on the evaluation of crystalline disposal media at Sandia National Laboratories (SNL) in FY16 focused on the following four activities: (1) thermal-hydrologic-mechanical-chemical modeling singlemore » fracture evolution; (2) simulations of flow and transport in Bedrichov Tunnel, Czech Republic, (3) completion of streaming potential testing at Korean Atomic Energy Research Institute (KAERI), and (4) technical data exchange with KAERI on thermal-hydrologic-mechanical (THM) properties and specifications of bentonite buffer materials. The first two activities are part of the Development of Coupled Models and their Validation against Experiments (DECOVALEX-2015) project.« less
Schlamadinger, B; Obersteiner, M; Michaelowa, A; Grubb, M; Azar, C; Yamagata, Y; Goldberg, D; Read, P; Kirschbaum, M U; Fearnside, P M; Sugiyama, T; Rametsteiner, E; Böswald, K
2001-07-14
There is the concern among some countries that compliance costs with commitments under the Kyoto Protocol may be unacceptably high. There is also the concern that technical difficulties with the inclusion of land use, land-use change, and forestry activities in non-Annex I countries might lead to an effective exclusion of such activities from consideration under the Protocol. This paper is proposing a mechanism that addresses both these concerns. In essence, it is suggested that parties should be able to purchase fixed-price offset certificates if they feel they cannot achieve compliance through other means alone, such as by improved energy efficiency, increased use of renewable energy, or use of the flexible mechanisms in the Kyoto Protocol. These offset certificates would act as a price cap for the cost of compliance for any party to the Protocol. Revenues from purchase of the offset certificates would be directed to forest-based activities in non-Annex I countries such as forest protection that may carry multiple benefits including enhancing net carbon sequestration.
Using high-resolution HiRISE digital elevation models to study early activity in polar regions
NASA Astrophysics Data System (ADS)
Portyankina, G.; Pommerol, A.; Aye, K.; Thomas, N.; Mattson, S.; Hansen, C. J.
2013-12-01
Martian polar areas are known for their very dynamic seasonal activity. It is believed that many observed seasonal phenomena here (cold CO2 jets, seasonal ice cracks, fan deposits, blotches) are produced by spring sublimation of CO2 slab ice. The Mars Reconnaissance Orbiter (MRO) High Resolution Imaging Science Experiment (HiRISE) has exceptional capabilities to image polar areas at times when surface processes there are most active, i.e. in early local spring. HiRISE data can be also used to create digital elevation models (DEMs) of the martian surface if two images with similar lighting but different observation geometry are available. Polar areas pose some specific problems in this because of the oblique illumination conditions and seasonally changing ice cover. Nevertheless, HiRISE DEMs with spatial resolution up to 1 meter were produced for a few polar locations with active spring sublimation. These DEMs improve our ability to directly compare observations from different local times, sols, seasons and martian years. These observations may now be orthorectified by projecting them onto the well-defined topography thus eliminating the ambiguities of different observational geometries. In addition, the DEM can serve as a link between the observations and models of seasonal activity. Observations of martian polar areas in springs of multiple martian years have led to the hypothesis that meter-scale topography is triggering the activity in early spring. Solar energy input is critical for the timing of spring activity. In this context, variations of surface inclination are important especially in early spring, when orientation towards the sun is one of critical parameters determining the level of solar energy input, the amount of CO2 sublimation, and hence the level of any activity connected to it. In the present study existing DEMs of two polar locations serve as model terrains to test the previously proposed hypothesis of early initialization of CO2 activity by solar illumination. We use the NAIF SPICE system to calculate precise energy input to each surface facet accounting for their slope and aspect orientation and shadowing by neighbor terrains. We show that the energy distribution over the surface is highly heterogeneous and maximized on the sides of the channels and other small topographical features. Our study supports the hypothesis that solar energy input in polar areas in spring is directly related to the activity observed.
Ahmed, Lamiaa A
2012-11-05
Metabolic derangements and bioenergetic failure are major contributors to sepsis-induced multiple organ dysfunctions. Due to the well known role of magnesium (Mg) as a cofactor in many enzymatic reactions that involve energy creation and utilization, the present investigation was directed to estimate the cardioprotective effect of Mg supplementation in lipopolysaccharide (LPS)-induced metabolic energy changes in mice. Oral doses of Mg aspartate (20 or 40 mg/kg) were administered once daily for 7 day. Mice were then subjected to a single intraperitoneal injection of LPS (2 mg/kg). Plasma was separated 3 h after LPS injection for determination of creatine kinase-MB activity. Animals were then sacrificed and the hearts were separated for estimation of tissue thiobarbituric acid reactive substances, reduced glutathione, lactate, pyruvate, adenine nucleotides, creatine phosphate and cardiac Na(+),K(+)-ATPase activity. Finally, electron microscopic examination was performed to visualize the protective effects of Mg pretreatment on mitochondrial ultrastructure. In general, the higher dose of Mg was more effective than the lower dose in ameliorating creatine kinase-MB elevation and the state of oxidative stress, lactate accumulation, pyruvate reduction as well as preserving creatine phosphate, adenine nucleotides and Na(+),K(+)-ATPase activity. Moreover, the higher dose of Mg provided a significant cardioprotection against the mitochondrial ultrastructural changes. Mg therapy can afford a significant protection against metabolic energy derangements and mitochondrial ultrastructural changes induced by LPS cardiotoxicity in mice. Copyright © 2012 Elsevier B.V. All rights reserved.
Multiplicity of Charged Particles in Pion - Nucleus Interactions in an Emulsion at 200-GeV/c
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anzon, Z.V.; Gaitinov, A.Sh.; Eremenko, L.E.
1977-01-01
The experimental data on multiplicities of charged secondaries produced in pion-nucleus interactions in an emulsion at 200 Gev/c and correlations bet6ween them are presented and discussed. Parameters of multiplicity distributions are compared with the relevant ones at lower energies and with data from pA-interactions at 200 Gev/c. The multiplicity of heavily ionizing particles in {Pi}{sup -}A-interactions weakly depend on the incident energy. The KNO scaling is observed being the same for incident protons and pions.
Design of a transportable high efficiency fast neutron spectrometer
Roecker, C.; Bernstein, A.; Bowden, N. S.; ...
2016-04-12
A transportable fast neutron detection system has been designed and constructed for measuring neutron energy spectra and flux ranging from tens to hundreds of MeV. The transportability of the spectrometer reduces the detector-related systematic bias between different neutron spectra and flux measurements, which allows for the comparison of measurements above or below ground. The spectrometer will measure neutron fluxes that are of prohibitively low intensity compared to the site-specific background rates targeted by other transportable fast neutron detection systems. To measure low intensity high-energy neutron fluxes, a conventional capture-gating technique is used for measuring neutron energies above 20 MeV andmore » a novel multiplicity technique is used for measuring neutron energies above 100 MeV. The spectrometer is composed of two Gd containing plastic scintillator detectors arranged around a lead spallation target. To calibrate and characterize the position dependent response of the spectrometer, a Monte Carlo model was developed and used in conjunction with experimental data from gamma ray sources. Multiplicity event identification algorithms were developed and used with a Cf-252 neutron multiplicity source to validate the Monte Carlo model Gd concentration and secondary neutron capture efficiency. The validated Monte Carlo model was used to predict an effective area for the multiplicity and capture gating analyses. For incident neutron energies between 100 MeV and 1000 MeV with an isotropic angular distribution, the multiplicity analysis predicted an effective area of 500 cm 2 rising to 5000 cm 2. For neutron energies above 20 MeV, the capture-gating analysis predicted an effective area between 1800 cm 2 and 2500 cm 2. As a result, the multiplicity mode was found to be sensitive to the incident neutron angular distribution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roecker, C.; Bernstein, A.; Bowden, N. S.
A transportable fast neutron detection system has been designed and constructed for measuring neutron energy spectra and flux ranging from tens to hundreds of MeV. The transportability of the spectrometer reduces the detector-related systematic bias between different neutron spectra and flux measurements, which allows for the comparison of measurements above or below ground. The spectrometer will measure neutron fluxes that are of prohibitively low intensity compared to the site-specific background rates targeted by other transportable fast neutron detection systems. To measure low intensity high-energy neutron fluxes, a conventional capture-gating technique is used for measuring neutron energies above 20 MeV andmore » a novel multiplicity technique is used for measuring neutron energies above 100 MeV. The spectrometer is composed of two Gd containing plastic scintillator detectors arranged around a lead spallation target. To calibrate and characterize the position dependent response of the spectrometer, a Monte Carlo model was developed and used in conjunction with experimental data from gamma ray sources. Multiplicity event identification algorithms were developed and used with a Cf-252 neutron multiplicity source to validate the Monte Carlo model Gd concentration and secondary neutron capture efficiency. The validated Monte Carlo model was used to predict an effective area for the multiplicity and capture gating analyses. For incident neutron energies between 100 MeV and 1000 MeV with an isotropic angular distribution, the multiplicity analysis predicted an effective area of 500 cm 2 rising to 5000 cm 2. For neutron energies above 20 MeV, the capture-gating analysis predicted an effective area between 1800 cm 2 and 2500 cm 2. As a result, the multiplicity mode was found to be sensitive to the incident neutron angular distribution.« less
Real-Time Performance of a Self-Powered Environmental IoT Sensor Network System.
Wu, Fan; Rüdiger, Christoph; Yuce, Mehmet Rasit
2017-02-01
Wireless sensor networks (WSNs) play an increasingly important role in monitoring applications in many areas. With the emergence of the Internet-of-Things (IoT), many more lowpower sensors will need to be deployed in various environments to collect and monitor data about environmental factors in real time. Providing power supply to these sensor nodes becomes a critical challenge for realizations of IoT applications as sensor nodes are normally battery-powered and have a limited lifetime. This paper proposes a wireless sensor network that is powered by solar energy harvesting. The sensor network monitors the environmental data with low-power sensor electronics and forms a network using multiple XBee wireless modules. A detailed performance analysis of the network system under solar energy harvesting has been presented. The sensor network system and the proposed energy-harvesting techniques are configured to achieve a continuous energy source for the sensor network. The proposed energy-harvesting system has been successfully designed to enable an energy solution in order to keep sensor nodes active and reliable for a whole day. The paper also outlines some of our experiences in real-time implementation of a sensor network system with energy harvesting.
Real-Time Performance of a Self-Powered Environmental IoT Sensor Network System
Wu, Fan; Rüdiger, Christoph; Yuce, Mehmet Rasit
2017-01-01
Wireless sensor networks (WSNs) play an increasingly important role in monitoring applications in many areas. With the emergence of the Internet-of-Things (IoT), many more low-power sensors will need to be deployed in various environments to collect and monitor data about environmental factors in real time. Providing power supply to these sensor nodes becomes a critical challenge for realizations of IoT applications as sensor nodes are normally battery-powered and have a limited lifetime. This paper proposes a wireless sensor network that is powered by solar energy harvesting. The sensor network monitors the environmental data with low-power sensor electronics and forms a network using multiple XBee wireless modules. A detailed performance analysis of the network system under solar energy harvesting has been presented. The sensor network system and the proposed energy-harvesting techniques are configured to achieve a continuous energy source for the sensor network. The proposed energy-harvesting system has been successfully designed to enable an energy solution in order to keep sensor nodes active and reliable for a whole day. The paper also outlines some of our experiences in real-time implementation of a sensor network system with energy harvesting. PMID:28157148
Paniccia, Alessandro; Rozner, Marc; Jones, Edward L; Townsend, Nicole T; Varosy, Paul D; Dunning, James E; Girard, Guillaume; Weyer, Christopher; Stiegmann, Gregory V; Robinson, Thomas N
2014-12-01
Surgical energy-based devices emit energy, which can interfere with other electronic devices (eg, implanted cardiac pacemakers and/or defibrillators). The purpose of this study was to quantify the amount of unintentional energy (electromagnetic interference [EMI]) transferred to an implanted cardiac defibrillator by common surgical energy-based devices. A transvenous cardiac defibrillator was implanted in an anesthetized pig. The primary outcome measure was the average maximum EMI occurring on the implanted cardiac device during activations of multiple different surgical energy-based devices. The EMI transferred to the implanted cardiac device is as follows: traditional bipolar 30 W .01 ± .004 mV, advanced bipolar .004 ± .003 mV, ultrasonic shears .01 ± .004 mV, monopolar Bovie 30 W coagulation .50 ± .20 mV, monopolar Bovie 30 W blend .92 ± .63 mV, monopolar instrument without dispersive electrode .21 ± .07 mV, plasma energy 3.48 ± .78 mV, and argon beam coagulator 2.58 ± .34 mV. Surgeons can minimize EMI on implanted cardiac defibrillators by preferentially utilizing bipolar and ultrasonic devices. Copyright © 2014 Elsevier Inc. All rights reserved.
Multiple-energy Techniques in Industrial Computerized Tomography
DOE R&D Accomplishments Database
Schneberk, D.; Martz, H.; Azevedo, S.
1990-08-01
Considerable effort is being applied to develop multiple-energy industrial CT techniques for materials characterization. Multiple-energy CT can provide reliable estimates of effective Z (Z{sub eff}), weight fraction, and rigorous calculations of absolute density, all at the spatial resolution of the scanner. Currently, a wide variety of techniques exist for CT scanners, but each has certain problems and limitations. Ultimately, the best multi-energy CT technique would combine the qualities of accuracy, reliability, and wide range of application, and would require the smallest number of additional measurements. We have developed techniques for calculating material properties of industrial objects that differ somewhat from currently used methods. In this paper, we present our methods for calculating Z{sub eff}, weight fraction, and density. We begin with the simplest case -- methods for multiple-energy CT using isotopic sources -- and proceed to multiple-energy work with x-ray machine sources. The methods discussed here are illustrated on CT scans of PBX-9502 high explosives, a lexan-aluminum phantom, and a cylinder of glass beads used in a preliminary study to determine if CT can resolve three phases: air, water, and a high-Z oil. In the CT project at LLNL, we have constructed several CT scanners of varying scanning geometries using {gamma}- and x-ray sources. In our research, we employed two of these scanners: pencil-beam CAT for CT data using isotopic sources and video-CAT equipped with an IRT micro-focal x-ray machine source.
Zhen, Xiaofei; Li, Jinping; Abdalla Osman, Yassir Idris; Feng, Rong; Zhang, Xuemin; Kang, Jian
2018-01-01
In order to utilize solar energy to meet the heating demands of a rural residential building during the winter in the northwestern region of China, a hybrid heating system combining solar energy and coal was built. Multiple experiments to monitor its performance were conducted during the winter in 2014 and 2015. In this paper, we analyze the efficiency of the energy utilization of the system and describe a prototype model to determine the thermal efficiency of the coal stove in use. Multiple linear regression was adopted to present the dual function of multiple factors on the daily heat-collecting capacity of the solar water heater; the heat-loss coefficient of the storage tank was detected as well. The prototype model shows that the average thermal efficiency of the stove is 38%, which means that the energy input for the building is divided between the coal and solar energy, 39.5% and 60.5% energy, respectively. Additionally, the allocation of the radiation of solar energy projecting into the collecting area of the solar water heater was obtained which showed 49% loss with optics and 23% with the dissipation of heat, with only 28% being utilized effectively.
Phunchongharn, Phond; Hossain, Ekram; Camorlinga, Sergio
2011-11-01
We study the multiple access problem for e-Health applications (referred to as secondary users) coexisting with medical devices (referred to as primary or protected users) in a hospital environment. In particular, we focus on transmission scheduling and power control of secondary users in multiple spatial reuse time-division multiple access (STDMA) networks. The objective is to maximize the spectrum utilization of secondary users and minimize their power consumption subject to the electromagnetic interference (EMI) constraints for active and passive medical devices and minimum throughput guarantee for secondary users. The multiple access problem is formulated as a dual objective optimization problem which is shown to be NP-complete. We propose a joint scheduling and power control algorithm based on a greedy approach to solve the problem with much lower computational complexity. To this end, an enhanced greedy algorithm is proposed to improve the performance of the greedy algorithm by finding the optimal sequence of secondary users for scheduling. Using extensive simulations, the tradeoff in performance in terms of spectrum utilization, energy consumption, and computational complexity is evaluated for both the algorithms.
Wetting-induced formation of controllable monodisperse multiple emulsions in microfluidics.
Deng, Nan-Nan; Wang, Wei; Ju, Xiao-Jie; Xie, Rui; Weitz, David A; Chu, Liang-Yin
2013-10-21
Multiple emulsions, which are widely applied in a myriad of fields because of their unique ability to encapsulate and protect active ingredients, are typically produced by sequential drop-formations and drop-encapsulations using shear-induced emulsification. Here we report a qualitatively novel method of creating highly controlled multiple emulsions from lower-order emulsions. By carefully controlling the interfacial energies, we adjust the spreading coefficients between different phases to cause drops of one fluid to completely engulf other drops of immiscible fluids; as a result multiple emulsions are directly formed by simply putting preformed lower-order emulsion drops together. Our approach has highly controllable flexibility. We demonstrate this in preparation of both double and triple emulsions with a controlled number of inner drops and precisely adjusted shell thicknesses including ultra-thin shells. Moreover, this controllable drop-engulfing-drop approach has a high potential in further investigations and applications of microfluidics. Importantly, this innovative approach opens a window to exploit new phenomena occurring in fluids at the microscale level, which is of great significance for developing novel microfluidics.
Gamma-ray Output Spectra from 239 Pu Fission
Ullmann, John
2015-05-25
The gamma-ray multiplicities, individual gamma-ray energy spectra, and total gamma energy spectra following neutron-induced fission of 239Pu were measured using the DANCE detector at Los Alamos. Corrections for detector response were made using a forward-modeling technique based on propagating sets of gamma rays generated from a paramaterized model through a GEANT model of the DANCE array and adjusting the parameters for best fit to the measured spectra. The results for the gamma-ray spectrum and multiplicity are in general agreement with previous results, but the measured total gamma-ray energy is about 10% higher. We found that a dependence of the gamma-raymore » spectrum on the gamma-ray multplicity was also observed. Finally, global model calculations of the multiplicity and gamma energy distributions are in good agreement with the data, but predict a slightly softer total-energy distribution.« less
Pavel, Nicolaie; Tsunekane, Masaki; Taira, Takunori
2011-05-09
A passively Q-switched Nd:YAG/Cr(4+):YAG micro-laser with three-beam output was realized. A single active laser source made of a composite, all-ceramics Nd:YAG/Cr(4+):YAG monolithic cavity was pumped by three independent lines. At 5 Hz repetition rate, each line delivered laser pulses with ~2.4 mJ energy and 2.8-MW peak power. The M(2) factor of a laser beam was 3.7, and stable air breakdowns were realized. The increase of pump repetition rate up to 100 Hz improved the laser pulse energy by 6% and required ~6% increase of the pump pulse energy. Pulse timing of the laser-array beams can by adjusted by less than 5% tuning of an individual line pump energy, and therefore simultaneous multi-point ignition is possible. This kind of laser can be used for multi-point ignition of an automobile engine. © 2011 Optical Society of America
Optimization of blade motion of vertical axis turbine
NASA Astrophysics Data System (ADS)
Ma, Yong; Zhang, Liang; Zhang, Zhi-yang; Han, Duan-feng
2016-04-01
In this paper, a method is proposed to improve the energy efficiency of the vertical axis turbine. First of all, a single disk multiple stream-tube model is used to calculate individual fitness. Genetic algorithm is adopted to optimize blade pitch motion of vertical axis turbine with the maximum energy efficiency being selected as the optimization objective. Then, a particular data processing method is proposed, fitting the result data into a cosine-like curve. After that, a general formula calculating the blade motion is developed. Finally, CFD simulation is used to validate the blade pitch motion formula. The results show that the turbine's energy efficiency becomes higher after the optimization of blade pitch motion; compared with the fixed pitch turbine, the efficiency of variable-pitch turbine is significantly improved by the active blade pitch control; the energy efficiency declines gradually with the growth of speed ratio; besides, compactness has lager effect on the blade motion while the number of blades has little effect on it.
Human Salivary Protein Histatin 5 Has Potent Bactericidal Activity against ESKAPE Pathogens
Du, Han; Puri, Sumant; McCall, Andrew; Norris, Hannah L.; Russo, Thomas; Edgerton, Mira
2017-01-01
ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanni, Pseudomonas aeruginosa, and Enterobacter species) pathogens have characteristic multiple-drug resistance and cause an increasing number of nosocomial infections worldwide. Peptide-based therapeutics to treat ESKAPE infections might be an alternative to conventional antibiotics. Histatin 5 (Hst 5) is a salivary cationic histidine-rich peptide produced only in humans and higher primates. It has high antifungal activity against Candida albicans through an energy-dependent, non-lytic process; but its bactericidal effects are less known. We found Hst 5 has bactericidal activity against S. aureus (60–70% killing) and A. baumannii (85–90% killing) in 10 and 100 mM sodium phosphate buffer (NaPB), while killing of >99% of P. aeruginosa, 60–80% E. cloacae and 20–60% of E. faecium was found in 10 mM NaPB. Hst 5 killed 60% of biofilm cells of P. aeruginosa, but had reduced activity against biofilms of S. aureus and A. baumannii. Hst 5 killed 20% of K. pneumonia biofilm cells but not planktonic cells. Binding and uptake studies using FITC-labeled Hst 5 showed E. faecium and E. cloacae killing required Hst 5 internalization and was energy dependent, while bactericidal activity was rapid against P. aeruginosa and A. baumannii suggesting membrane disruption. Hst 5-mediated killing of S. aureus was both non-lytic and energy independent. Additionally, we found that spermidine conjugated Hst 5 (Hst5-Spd) had improved killing activity against E. faecium, E. cloacae, and A. baumannii. Hst 5 or its derivative has antibacterial activity against five out of six ESKAPE pathogens and may be an alternative treatment for these infections. PMID:28261570
Human Salivary Protein Histatin 5 Has Potent Bactericidal Activity against ESKAPE Pathogens.
Du, Han; Puri, Sumant; McCall, Andrew; Norris, Hannah L; Russo, Thomas; Edgerton, Mira
2017-01-01
ESKAPE ( Enterococcus faecium , Staphylococcus aureus , Klebsiella pneumoniae , Acinetobacter baumanni , Pseudomonas aeruginosa , and Enterobacter species) pathogens have characteristic multiple-drug resistance and cause an increasing number of nosocomial infections worldwide. Peptide-based therapeutics to treat ESKAPE infections might be an alternative to conventional antibiotics. Histatin 5 (Hst 5) is a salivary cationic histidine-rich peptide produced only in humans and higher primates. It has high antifungal activity against Candida albicans through an energy-dependent, non-lytic process; but its bactericidal effects are less known. We found Hst 5 has bactericidal activity against S. aureus (60-70% killing) and A. baumannii (85-90% killing) in 10 and 100 mM sodium phosphate buffer (NaPB), while killing of >99% of P. aeruginosa , 60-80% E. cloacae and 20-60% of E. faecium was found in 10 mM NaPB. Hst 5 killed 60% of biofilm cells of P. aeruginosa , but had reduced activity against biofilms of S. aureus and A. baumannii . Hst 5 killed 20% of K. pneumonia biofilm cells but not planktonic cells. Binding and uptake studies using FITC-labeled Hst 5 showed E. faecium and E. cloacae killing required Hst 5 internalization and was energy dependent, while bactericidal activity was rapid against P. aeruginosa and A. baumannii suggesting membrane disruption. Hst 5-mediated killing of S. aureus was both non-lytic and energy independent. Additionally, we found that spermidine conjugated Hst 5 (Hst5-Spd) had improved killing activity against E. faecium, E. cloacae , and A. baumannii . Hst 5 or its derivative has antibacterial activity against five out of six ESKAPE pathogens and may be an alternative treatment for these infections.
Long-term shifts in life-cycle energy efficiency and carbon intensity.
Yeh, Sonia; Mishra, Gouri Shankar; Morrison, Geoff; Teter, Jacob; Quiceno, Raul; Gillingham, Kenneth; Riera-Palou, Xavier
2013-03-19
The quantity of primary energy needed to support global human activity is in large part determined by how efficiently that energy is converted to a useful form. We estimate the system-level life-cycle energy efficiency (EF) and carbon intensity (CI) across primary resources for 2005-2100. Our results underscore that although technological improvements at each energy conversion process will improve technology efficiency and lead to important reductions in primary energy use, market mediated effects and structural shifts toward less efficient pathways and pathways with multiple stages of conversion will dampen these efficiency gains. System-level life-cycle efficiency may decrease as mitigation efforts intensify, since low-efficiency renewable systems with high output have much lower GHG emissions than some high-efficiency fossil fuel systems. Climate policies accelerate both improvements in EF and the adoption of renewable technologies, resulting in considerably lower primary energy demand and GHG emissions. Life-cycle EF and CI of useful energy provide a useful metric for understanding dynamics of implementing climate policies. The approaches developed here reiterate the necessity of a combination of policies that target efficiency and decarbonized energy technologies. We also examine life-cycle exergy efficiency (ExF) and find that nearly all of the qualitative results hold regardless of whether we use ExF or EF.
SEARCH FOR GAMMA-RAY EMISSION FROM X-RAY-SELECTED SEYFERT GALAXIES WITH FERMI-LAT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackermann, M.; Ajello, M.; Allafort, A.
We report on a systematic investigation of the {gamma}-ray properties of 120 hard X-ray-selected Seyfert galaxies classified as 'radio-quiet' objects, utilizing the three-year accumulation of Fermi Large Area Telescope (LAT) data. Our sample of Seyfert galaxies is selected using the Swift Burst Alert Telescope 58 month catalog, restricting the analysis to the bright sources with average hard X-ray fluxes F{sub 14-195keV} {>=} 2.5 Multiplication-Sign 10{sup -11} erg cm{sup -2} s{sup -1} at high Galactic latitudes (|b| > 10 Degree-Sign ). In order to remove 'radio-loud' objects from the sample, we use the 'hard X-ray radio loudness parameter', R{sub rX}, definedmore » as the ratio of the total 1.4 GHz radio to 14-195 keV hard X-ray energy fluxes. Among 120 X-ray bright Seyfert galaxies with R{sub rX} <10{sup -4}, we did not find a statistically significant {gamma}-ray excess (TS > 25) positionally coincident with any target Seyferts, with possible exceptions of ESO 323-G077 and NGC 6814. The mean value of the 95% confidence level {gamma}-ray upper limit for the integrated photon flux above 100 MeV from the analyzed Seyferts is {approx_equal} 4 Multiplication-Sign 10{sup -9} photons cm{sup -2} s{sup -1} , and the upper limits derived for several objects reach {approx_equal} 1 Multiplication-Sign 10{sup -9} photons cm{sup -2} s{sup -1} . Our results indicate that no prominent {gamma}-ray emission component related to active galactic nucleus activity is present in the spectra of Seyferts around GeV energies. The Fermi-LAT upper limits derived for our sample probe the ratio of {gamma}-ray to X-ray luminosities L{sub {gamma}}/L{sub X} < 0.1, and even <0.01 in some cases. The obtained results impose novel constraints on the models for high-energy radiation of 'radio-quiet' Seyfert galaxies.« less
Elman, Monica; Harth, Yoram
2011-01-01
The basic properties of lasers and pulsed light sources limit their ability to deliver high energy to the dermis and subcutaneous tissues without excessive damage to the epidermis. Radiofrequency was shown to penetrate deeper than optical light sources independent of skin color. The early RF-based devices used single source bipolar RF, which is safe but limited in use due to the superficial flow of energy between the two bipolar electrodes. Another type of single source RF employs a single electrode (monopolar) in which the RF energy flows from one electrode on the surface of the skin through the entire body to a plate under the body. Although more effective than bipolar, this devices require intense active cooling of the skin and may be associated with considerable pain and other systemic and local safety concerns. Latest generation of RF technology developed by EndyMed Medical Ltd. (Caesarea, Israel) utilizes simultaneously six or more phase controlled RF generators (3DEEP technology). The multiple electrical fields created by the multiple sources "repel" or "attract" each other, leading to the precise 3 dimensional delivery of RF energy to the dermal and sub-dermal targets minimizing the energy flow through the epidermis without the need for active cooling. Confocal microscopy of the skin has shown that 6 treatment sessions of Multisource RF technology improve skin structure features. The skin after treatment had longer and narrower dermal papilla and denser and finer collagen fiber typical to younger skin as compared to pre treatment skin. Ultrasound of the skin showed after 6 treatment sessions reduction of 10 percent in the thickness of the subcutaneous fat layer. Non ablative facial clinical studies showed a significant reduction of wrinkles after treatment further reduced at 3 months follow-up. Body treatment studies showed a circumference reduction of 2.9 cm immediately after 6 treatments, and 2 cm at 12 months after the end of treatment, proving long term collagen remodeling effect. Clinical studies of the multisource fractional RF application have shown significant effects on wrinkles reduction and deep atrophic acne scars after 1-3 treatment sessions.
Elman, Monica; Harth, Yoram
2011-01-01
The basic properties of lasers and pulsed light sources limit their ability to deliver high energy to the dermis and subcutaneous tissues without excessive damage to the epidermis. Radiofrequency was shown to penetrate deeper than optical light sources independent of skin color. The early RF-based devices used single source bipolar RF, which is safe but limited in use due to the superficial flow of energy between the two bipolar electrodes. Another type of single source RF employs a single electrode (monopolar) in which the RF energy flows from one electrode on the surface of the skin through the entire body to a plate under the body. Although more effective than bipolar, this devices require intense active cooling of the skin and may be associated with considerable pain and other systemic and local safety concerns. Latest generation of RF technology developed by EndyMed Medical Ltd. (Caesarea, Israel) utilizes simultaneously six or more phase controlled RF generators (3DEEP technology). The multiple electrical fields created by the multiple sources “repel” or “attract” each other, leading to the precise 3 dimensional delivery of RF energy to the dermal and sub-dermal targets minimizing the energy flow through the epidermis without the need for active cooling. Confocal microscopy of the skin has shown that 6 treatment sessions of Multisource RF technology improve skin structure features. The skin after treatment had longer and narrower dermal papilla and denser and finer collagen fiber typical to younger skin as compared to pre treatment skin. Ultrasound of the skin showed after 6 treatment sessions reduction of 10 percent in the thickness of the subcutaneous fat layer. Non ablative facial clinical studies showed a significant reduction of wrinkles after treatment further reduced at 3 months follow-up. Body treatment studies showed a circumference reduction of 2.9 cm immediately after 6 treatments, and 2 cm at 12 months after the end of treatment, proving long term collagen remodeling effect. Clinical studies of the multisource fractional RF application have shown significant effects on wrinkles reduction and deep atrophic acne scars after 1–3 treatment sessions. PMID:24155523
Giner, Xavier C; Cotnoir-White, David; Mader, Sylvie; Lévesque, Daniel
2017-01-01
Retinoid X receptors (RXR) play a role as master regulators due to their capacity to form heterodimers with other nuclear receptors. Accordingly, retinoid signaling is involved in multiple biological processes, including development, cell differentiation, metabolism and cell death. However, the role and functions of RXR in different heterodimer complexes remain unsolved, mainly because most RXR drugs (called rexinoids) are not selective to specific heterodimer complexes. This also strongly limits the use of rexinoids for specific therapeutic approaches. In order to better characterize rexinoids at specific nuclear receptor complexes, we have developed and optimized luciferase protein complementation-based Bioluminescence Resonance Energy Transfer (BRET) assays, which can directly measure recruitment of a co-activator motif fused to yellow fluorescent protein (YFP) by specific nuclear receptor dimers. To validate the assays, we compared rexinoid modulation of co-activator recruitment by RXR homodimer, and heterodimers Nur77/RXR and Nurr1/RXR. Results reveal that some rexinoids display selective co-activator recruitment activities with homo- or hetero-dimer complexes. In particular, SR11237 (BMS649) has increased potency for recruitment of co-activator motif and transcriptional activity with the Nur77/RXR heterodimer compared to other complexes. This technology should prove useful to identify new compounds with specificity for individual dimeric species formed by nuclear receptors. PMID:26148973
Hagen, Live H.; Frank, Jeremy A.; Zamanzadeh, Mirzaman; Eijsink, Vincent G. H.; Pope, Phillip B.; Arntzen, Magnus Ø.
2016-01-01
ABSTRACT In this study, we used multiple meta-omic approaches to characterize the microbial community and the active metabolic pathways of a stable industrial biogas reactor with food waste as the dominant feedstock, operating at thermophilic temperatures (60°C) and elevated levels of free ammonia (367 mg/liter NH3-N). The microbial community was strongly dominated (76% of all 16S rRNA amplicon sequences) by populations closely related to the proteolytic bacterium Coprothermobacter proteolyticus. Multiple Coprothermobacter-affiliated strains were detected, introducing an additional level of complexity seldom explored in biogas studies. Genome reconstructions provided metabolic insight into the microbes that performed biomass deconstruction and fermentation, including the deeply branching phyla Dictyoglomi and Planctomycetes and the candidate phylum “Atribacteria.” These biomass degraders were complemented by a synergistic network of microorganisms that convert key fermentation intermediates (fatty acids) via syntrophic interactions with hydrogenotrophic methanogens to ultimately produce methane. Interpretation of the proteomics data also suggested activity of a Methanosaeta phylotype acclimatized to high ammonia levels. In particular, we report multiple novel phylotypes proposed as syntrophic acetate oxidizers, which also exert expression of enzymes needed for both the Wood-Ljungdahl pathway and β-oxidation of fatty acids to acetyl coenzyme A. Such an arrangement differs from known syntrophic oxidizing bacteria and presents an interesting hypothesis for future studies. Collectively, these findings provide increased insight into active metabolic roles of uncultured phylotypes and presents new synergistic relationships, both of which may contribute to the stability of the biogas reactor. IMPORTANCE Biogas production through anaerobic digestion of organic waste provides an attractive source of renewable energy and a sustainable waste management strategy. A comprehensive understanding of the microbial community that drives anaerobic digesters is essential to ensure stable and efficient energy production. Here, we characterize the intricate microbial networks and metabolic pathways in a thermophilic biogas reactor. We discuss the impact of frequently encountered microbial populations as well as the metabolism of newly discovered novel phylotypes that seem to play distinct roles within key microbial stages of anaerobic digestion in this stable high-temperature system. In particular, we draft a metabolic scenario whereby multiple uncultured syntrophic acetate-oxidizing bacteria are capable of syntrophically oxidizing acetate as well as longer-chain fatty acids (via the β-oxidation and Wood-Ljundahl pathways) to hydrogen and carbon dioxide, which methanogens subsequently convert to methane. PMID:27815274
NASA Astrophysics Data System (ADS)
Barati, Fatemeh; Grossnickle, Max; Su, Shanshan; Lake, Roger; Aji, Vivek; Gabor, Nathaniel
Two-dimensional heterostructures composed of atomically thin transition metal dichalcogenides provide the opportunity to design novel devices for the study of electron-hole pair multiplication. We report on highly efficient multiplication of interlayer electron-hole pairs at the interface of a tungsten diselenide / molybdenum diselenide heterostructure. Electronic transport measurements of the interlayer current-voltage characteristics indicate that layer-indirect electron-hole pairs are generated by hot electron impact excitation. Our findings, which demonstrate an efficient energy relaxation pathway that competes with electron thermalization losses, make 2D semiconductor heterostructures viable for a new class of hot-carrier energy harvesting devices that exploit layer-indirect electron-hole excitations. SHINES, an Energy Frontier Research Center funded by the U.S. Department of Energy, Air Force Office of Scientific Research.
Reliability assessment of multiple quantum well avalanche photodiodes
NASA Technical Reports Server (NTRS)
Yun, Ilgu; Menkara, Hicham M.; Wang, Yang; Oguzman, Isamil H.; Kolnik, Jan; Brennan, Kevin F.; May, Gray S.; Wagner, Brent K.; Summers, Christopher J.
1995-01-01
The reliability of doped-barrier AlGaAs/GsAs multi-quantum well avalanche photodiodes fabricated by molecular beam epitaxy is investigated via accelerated life tests. Dark current and breakdown voltage were the parameters monitored. The activation energy of the degradation mechanism and median device lifetime were determined. Device failure probability as a function of time was computed using the lognormal model. Analysis using the electron beam induced current method revealed the degradation to be caused by ionic impurities or contamination in the passivation layer.
A perspective of laminar-flow control. [aircraft energy efficiency program
NASA Technical Reports Server (NTRS)
Braslow, A. L.; Muraca, R. J.
1978-01-01
A historical review of the development of laminar flow control technology is presented with reference to active laminar boundary-layer control through suction, the use of multiple suction slots, wind-tunnel tests, continuous suction, and spanwise contamination. The ACEE laminar flow control program is outlined noting the development of three-dimensional boundary-layer codes, cruise-noise prediction techniques, airfoil development, and leading-edge region cleaning. Attention is given to glove flight tests and the fabrication and testing of wing box designs.
Calcium intercalation into layered fluorinated sodium iron phosphate
Lipson, Albert L.; Kim, Soojeong; Pan, Baofei; ...
2017-10-09
Here, the energy density and cost of battery systems could be improved by moving to alternative battery chemistries such as Ca-ion. However, in order to switch chemistries many problems need to be solved including the identification of cathode materials with high energy density, and electrolytes that can plate and strip calcium metal. Herein, the feasibility and cycling performance of Ca 2+ intercalation into a desodiated layered Na 2FePO 4F host is described. This is the first demonstration of Ca 2+ intercalation into a polyanionic framework, which implies that other polyanionic framework materials may be active for Ca 2+ intercalation. Althoughmore » substantial effort is still needed to identify a high energy density cathode material, this study and others demonstrate the feasibility of Ca 2+ intercalation into multiple materials making it more probable that such a cathode material can be found.« less
The Complexity of Folding Self-Folding Origami
NASA Astrophysics Data System (ADS)
Stern, Menachem; Pinson, Matthew B.; Murugan, Arvind
2017-10-01
Why is it difficult to refold a previously folded sheet of paper? We show that even crease patterns with only one designed folding motion inevitably contain an exponential number of "distractor" folding branches accessible from a bifurcation at the flat state. Consequently, refolding a sheet requires finding the ground state in a glassy energy landscape with an exponential number of other attractors of higher energy, much like in models of protein folding (Levinthal's paradox) and other NP-hard satisfiability (SAT) problems. As in these problems, we find that refolding a sheet requires actuation at multiple carefully chosen creases. We show that seeding successful folding in this way can be understood in terms of subpatterns that fold when cut out ("folding islands"). Besides providing guidelines for the placement of active hinges in origami applications, our results point to fundamental limits on the programmability of energy landscapes in sheets.
Calcium intercalation into layered fluorinated sodium iron phosphate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipson, Albert L.; Kim, Soojeong; Pan, Baofei
Here, the energy density and cost of battery systems could be improved by moving to alternative battery chemistries such as Ca-ion. However, in order to switch chemistries many problems need to be solved including the identification of cathode materials with high energy density, and electrolytes that can plate and strip calcium metal. Herein, the feasibility and cycling performance of Ca 2+ intercalation into a desodiated layered Na 2FePO 4F host is described. This is the first demonstration of Ca 2+ intercalation into a polyanionic framework, which implies that other polyanionic framework materials may be active for Ca 2+ intercalation. Althoughmore » substantial effort is still needed to identify a high energy density cathode material, this study and others demonstrate the feasibility of Ca 2+ intercalation into multiple materials making it more probable that such a cathode material can be found.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hampson, Steve
The evaluation of biological degradation processes addressed by this report are part of a broad trichloroethene (TCE) Fate and Transport Investigation that includes four (4) topics of phased investigation (Table ES1) relative to degradation and/or attenuation of TCE in the Regional Gravel Aquifer (RGA) underlying the United States Department of Energy Paducah Gaseous Diffusion Plant (PGDP). In order of implementation the project phases are: (1) derivation of a TCE first-order rate constant by normalization of TCE values against technetium-99 ( 99Tc) and chloride. 2) identification of the presence of microbes capable of aerobic co-metabolic TCE biodegradation using enzyme activity probesmore » (this report); 3) Compound-specific isotope analysis (CSIA) to support prevalence of biotic and/or abiotic degradation processes; and 4) evaluation of potential abiotic RGA-TCE attenuation mechanisms including sorption. This report summarizes the Phase II activities related to the identification and evaluation of biological degradation processes that may be actively influencing TCE fate and transport in the RGA contaminant plumes at the United States Department of Energy (DOE) PGDP and its environs (Figure ES1). The goals of these activities were to identify active biological degradation mechanisms in the RGA through multiple lines of evidence and to provide DOE with recommendations for future TCE biological degradation investigations.« less
High precision measurements on fission-fragment de-excitation
NASA Astrophysics Data System (ADS)
Oberstedt, Stephan; Gatera, Angélique; Geerts, Wouter; Göök, Alf; Hambsch, Franz-Josef; Vidali, Marzio; Oberstedt, Andreas
2017-11-01
In recent years nuclear fission has gained renewed interest both from the nuclear energy community and in basic science. The first, represented by the OECD Nuclear Energy Agency, expressed the need for more accurate fission cross-section and fragment yield data for safety assessments of Generation IV reactor systems. In basic science modelling made much progress in describing the de-excitation mechanism of neutron-rich isotopes, e.g. produced in nuclear fission. Benchmarking the different models require a precise experimental data on prompt fission neutron and γ-ray emission, e.g. multiplicity, average energy per particle and total dissipated energy per fission, preferably as function of fission-fragment mass and total kinetic energy. A collaboration of scientists from JRC Geel (formerly known as JRC IRMM) and other institutes took the lead in establishing a dedicated measurement programme on prompt fission neutron and γ-ray characteristics, which has triggered even more measurement activities around the world. This contribution presents new advanced instrumentation and methodology we use to generate high-precision spectral data and will give a flavour of future data needs and opportunities.
Energy levels distribution in supersaturated silicon with titanium for photovoltaic applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pérez, E., E-mail: eduper@ele.uva.es; Castán, H.; García, H.
2015-01-12
In the attempt to form an intermediate band in the bandgap of silicon substrates to give it the capability to absorb infrared radiation, we studied the deep levels in supersaturated silicon with titanium. The technique used to characterize the energy levels was the thermal admittance spectroscopy. Our experimental results showed that in samples with titanium concentration just under Mott limit there was a relationship among the activation energy value and the capture cross section value. This relationship obeys to the well known Meyer-Neldel rule, which typically appears in processes involving multiple excitations, like carrier capture/emission in deep levels, and itmore » is generally observed in disordered systems. The obtained characteristic Meyer-Neldel parameters were Tmn = 176 K and kTmn = 15 meV. The energy value could be associated to the typical energy of the phonons in the substrate. The almost perfect adjust of all experimental data to the same straight line provides further evidence of the validity of the Meyer Neldel rule, and may contribute to obtain a deeper insight on the ultimate meaning of this phenomenon.« less
NASA Astrophysics Data System (ADS)
Zhang, Dong-Hai; Chen, Yan-Ling; Wang, Guo-Rong; Li, Wang-Dong; Wang, Qing; Yao, Ji-Jie; Zhou, Jian-Guo; Li, Rong; Li, Jun-Sheng; Li, Hui-Ling
2015-01-01
The forward-backward multiplicity and correlations of a target evaporated fragment (black track particle) and target recoiled proton (grey track particle) emitted from 150 A MeV 4He, 290 A MeV 12C, 400 A MeV 12C, 400 A MeV 20Ne and 500 A MeV 56Fe induced different types of nuclear emulsion target interactions are investigated. It is found that the forward and backward averaged multiplicity of a grey, black and heavily ionized track particle increases with the increase of the target size. The averaged multiplicity of a forward black track particle, backward black track particle, and backward grey track particle do not depend on the projectile size and energy, but the averaged multiplicity of a forward grey track particle increases with an increase of projectile size and energy. The backward grey track particle multiplicity distribution follows an exponential decay law and the decay constant decreases with an increase of target size. The backward-forward multiplicity correlations follow linear law which is independent of the projectile size and energy, and the saturation effect is observed in some heavy target data sets.
Laudenslager, Mark S; Lofgren, Steven T; Holt, Daniel T
2004-06-01
At a single installation, a cross section of 307 active duty Air Force members completed questionnaires to assess whether the theory of planned behavior was useful in explaining the service members' intentions to participate in three environmentally protective behaviors-recycling, carpooling, and energy conservation. While the individual tenets of the theory of planned behavior, i.e., attitude toward the behavior, subjective norms, and perceived control, accounted for differing amounts of variance in intentions, the results indicated that the intentions of these Air Force members to recycle, conserve energy, and carpool were moderately explained by the tenets of the theory of planned behavior collectively when the results of a multiple regression were analyzed.
Role of multiparton interactions on J /ψ production in p +p collisions at LHC energies
NASA Astrophysics Data System (ADS)
Thakur, Dhananjaya; De, Sudipan; Sahoo, Raghunath; Dansana, Soumya
2018-05-01
The production mechanism of quarkonia states in hadronic collisions is still to be understood by the scientific community. In high-multiplicity p +p collisions, underlying event observables are of major interest. The multiparton interactions (MPIs) are underlying event observables, in which several interactions occur at the partonic level in a single p +p event. This leads to dependence of particle production on event multiplicity. If the MPI occurs in a harder scale, there will be a correlation between the yield of quarkonia and total charged-particle multiplicity. The ALICE experiment at the LHC in p +p collisions at √{s }=7 and 13 TeV has observed an approximate linear increase of relative J /ψ yield, (d/NJ /ψ/d y ⟨d NJ /ψ/d y ⟩ ), with relative charged-particle multiplicity density, (d/Nch/d y ⟨d Nch/d y ⟩ ). In our present work, we have performed a comprehensive study of the production of charmonia as a function of charged-particle multiplicity in p +p collisions at LHC energies using the perturbative QCD-inspired multiparton interaction model, pythia8 tune 4C, with and without the color reconnection scheme. A detailed multiplicity and energy-dependent study is performed to understand the effects of MPI on J /ψ production. The ratio of ψ (2 S ) to J /ψ is also studied as a function of charged-particle multiplicity at LHC energies.
NASA Astrophysics Data System (ADS)
Sergeeva, Tatiana F.; Moshkova, Albina N.; Erlykina, Elena I.; Khvatova, Elena M.
2016-04-01
Creatine kinase is a key enzyme of energy metabolism in the brain. There are known cytoplasmic and mitochondrial creatine kinase isoenzymes. Mitochondrial creatine kinase exists as a mixture of two oligomeric forms - dimer and octamer. The aim of investigation was to study catalytic properties of cytoplasmic and mitochondrial creatine kinase and using of the method of empirical dependences for the possible prediction of the activity of these enzymes in cerebral ischemia. Ischemia was revealed to be accompanied with the changes of the activity of creatine kinase isoenzymes and oligomeric state of mitochondrial isoform. There were made the models of multiple regression that permit to study the activity of creatine kinase system in cerebral ischemia using a calculating method. Therefore, the mathematical method of empirical dependences can be applied for estimation and prediction of the functional state of the brain by the activity of creatine kinase isoenzymes in cerebral ischemia.
Hou, T J; Wang, J M; Liao, N; Xu, X J
1999-01-01
Quantitative structure-activity relationships (QSARs) for 35 cinnamamides were studied. By using a genetic algorithm (GA), a group of multiple regression models with high fitness scores was generated. From the statistical analyses of the descriptors used in the evolution procedure, the principal features affecting the anticonvulsant activity were found. The significant descriptors include the partition coefficient, the molar refraction, the Hammet sigma constant of the substituents on the benzene ring, and the formation energy of the molecules. It could be found that the steric complementarity and the hydrophobic interaction between the inhibitors and the receptor were very important to the biological activity, while the contribution of the electronic effect was not so obvious. Moreover, by construction of the spline models for these four principal descriptors, the effective range for each descriptor was identified.
Wu, Min; Dumalska, Iryna; Morozova, Elena; van den Pol, Anthony; Alreja, Meenakshi
2009-10-06
A link between energy balance and reproduction is critical for the survival of all species. Energy-consuming reproductive processes need to be aborted in the face of a negative energy balance, yet knowledge of the pathways mediating this link remains limited. Fasting and food restriction that inhibit fertility also upregulate the hypothalamic melanin-concentrating hormone (MCH) system that promotes feeding and decreases energy expenditure; MCH knockout mice are lean and have a higher metabolism but remain fertile. MCH also modulates sleep, drug abuse behavior, and mood, and MCH receptor antagonists are currently being developed as antiobesity and antidepressant drugs. Despite the clinical implications of MCH, the direct postsynaptic effects of MCH have never been reported in CNS neurons. Using patch-clamp recordings in brain slices from multiple lines of transgenic GFP mice, we demonstrate a strong inhibitory effect of MCH on an exclusive population of septal vGluT2-GnRH neurons that is activated by the puberty-triggering and preovulatory luteinizing hormone surge-mediating peptide, kisspeptin. MCH has no effect on kisspeptin-insensitive GnRH, vGluT2, cholinergic, or GABAergic neurons located within the same nucleus. The inhibitory effects of MCH are reproducible and nondesensitizing and are mediated via a direct postsynaptic Ba(2+)-sensitive K(+) channel mechanism involving the MCHR1 receptor. MCH immunoreactive fibers are in close proximity to vGluT2-GFP and GnRH-GFP neurons. Importantly, MCH blocks the excitatory effect of kisspeptin on vGluT2-GnRH neurons. Considering the role of MCH in regulating energy balance and of GnRH and kisspeptin in triggering puberty and maintaining fertility, MCH may provide a critical link between energy balance and reproduction directly at the level of the kisspeptin-activated vGluT2-GnRH neuron.
McClain, Arianna D; Hsu, Ya-Wen; Belcher, Britni R; Nguyen-Rodriguez, Selena; Weigensberg, Marc; Spruijt-Metz, Donna
2011-01-01
Minority girls are disproportionately affected by overweight and obesity. The independent effects of physical activity (PA), sedentary behavior (SB), and diet are not well understood. This study examined the individual influences of PA, SB and diet on fat mass in Latina and African American (AA) girls, aged 8-11. Baseline data from a longitudinal cohort study in minority girls is presented. Multiple linear regression analysis assessed the effects of PA, SB, and energy intake on fat mass, adjusting for lean mass, age, Tanner stage and ethnicity. Participants were 53 Latina and AA girls (77% Latina; M age=9.8 +/- .9; M(BMI%)=80.8 +/- 23.1). Moderate-to-vigorous physical activity (MVPA) by accelerometry (beta= -.13, P<.01) and lean mass (beta=.69, P<.001) were associated with fat mass (Model R2=.63; P<.0001). MVPA by 3-day-physical-activity-recall (beta=-.04, P=.01) and lean mass (beta=.75, P<.001) were associated with fat mass (Model R2=.61; P<.0001). SB and energy intake were not associated with fat mass in any model. Using both objective and subjective measures of PA, MVPA, but not SB or diet, was associated with higher fat mass in Latina and AA girls, independent of lean mass, age, Tanner stage, and ethnicity. Prospective studies are needed to clarify the differential impact of diet and activity levels on adiposity in this population.
Context-aware tunable office lighting application and user response
NASA Astrophysics Data System (ADS)
Chen, Nancy H.; Nawyn, Jason; Thompson, Maria; Gibbs, Julie; Larson, Kent
2013-09-01
LED light sources having multiple independently controllable color channels allow tuning of both the intensity and color output. Consequently, highly tailored lighting can be applied according to instantaneous user needs and preferences. Besides improving lighting performance, energy use can also be reduced since the brightest illumination is applied only when necessary. In an example application, low activity or vacant areas of a multi-zone office are lit by low power illumination, including colored light options, which can reduce energy consumption to 20-45% of typical full-time, fullbrightness, office-wide illumination. The availability of color also allows communication functions and additional aesthetic design possibilities. To reduce user burden in frequent switching between various illumination settings, an activity recognition sensor network is used to identify selected office activities. The illumination is then adjusted automatically to satisfy the needs of the occupants. A handheld mobile device provides an interactive interface for gathering user feedback regarding impressions and illumination preferences. The activity-triggered queries collect contemporaneous feedback that reduces reliance on memory; immediate previews of illumination options are also provided. Through mobile queries and post-experience interviews, user feedback was gathered regarding automation, colored lighting, and illumination preferences. Overall reaction was indicated by a range of response words such as fun, stimulating, very cool, very pleasant, enjoyed, good, comfortable, satisfactory, fine, energy saving, interesting, curious, dim, cave, isolated, distracting, and unfamiliar. Positive reaction from a meaningful, though not universal, fraction of users indicates reasonable application potential, particularly as personal preferences and control are accommodated.
Interaction of pulsating and spinning waves in condensed phase combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Booty, M.R.; Margolis, S.B.; Matkowsky, B.J.
1986-10-01
The authors employ a nonlinear stability analysis in the neighborhood of a multiple bifurcation point to describe the interaction of pulsating and spinning modes of condensed phase combustion. Such phenomena occur in the synthesis of refractory materials. In particular, they consider the propagation of combustion waves in a long thermally insulated cylindrical sample and show that steady, planar combustion is stable for a modified activation energy/melting parameter less than a critical value. Above this critical value primary bifurcation states, corresponding to time-periodic pulsating and spinning modes of combustion, emanate from the steadily propagating solution. By varying the sample radius, themore » authors split a multiple bifurcation point to obtain bifurcation diagrams which exhibit secondary, tertiary, and quarternary branching to various types of quasi-periodic combustion waves.« less
Evolution of accelerometer methods for physical activity research.
Troiano, Richard P; McClain, James J; Brychta, Robert J; Chen, Kong Y
2014-07-01
The technology and application of current accelerometer-based devices in physical activity (PA) research allow the capture and storage or transmission of large volumes of raw acceleration signal data. These rich data not only provide opportunities to improve PA characterisation, but also bring logistical and analytic challenges. We discuss how researchers and developers from multiple disciplines are responding to the analytic challenges and how advances in data storage, transmission and big data computing will minimise logistical challenges. These new approaches also bring the need for several paradigm shifts for PA researchers, including a shift from count-based approaches and regression calibrations for PA energy expenditure (PAEE) estimation to activity characterisation and EE estimation based on features extracted from raw acceleration signals. Furthermore, a collaborative approach towards analytic methods is proposed to facilitate PA research, which requires a shift away from multiple independent calibration studies. Finally, we make the case for a distinction between PA represented by accelerometer-based devices and PA assessed by self-report. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Ding, Dewu; Sun, Xiao
2018-01-16
Shewanella oneidensis MR-1 can transfer electrons from the intracellular environment to the extracellular space of the cells to reduce the extracellular insoluble electron acceptors (Extracellular Electron Transfer, EET). Benefiting from this EET capability, Shewanella has been widely used in different areas, such as energy production, wastewater treatment, and bioremediation. Genome-wide proteomics data was used to determine the active proteins involved in activating the EET process. We identified 1012 proteins with decreased expression and 811 proteins with increased expression when the EET process changed from inactivation to activation. We then networked these proteins to construct the active protein networks, and identified the top 20 key active proteins by network centralization analysis, including metabolism- and energy-related proteins, signal and transcriptional regulatory proteins, translation-related proteins, and the EET-related proteins. We also constructed the integrated protein interaction and transcriptional regulatory networks for the active proteins, then found three exclusive active network motifs involved in activating the EET process-Bi-feedforward Loop, Regulatory Cascade with a Feedback, and Feedback with a Protein-Protein Interaction (PPI)-and identified the active proteins involved in these motifs. Both enrichment analysis and comparative analysis to the whole-genome data implicated the multiheme c -type cytochromes and multiple signal processing proteins involved in the process. Furthermore, the interactions of these motif-guided active proteins and the involved functional modules were discussed. Collectively, by using network-based methods, this work reported a proteome-wide search for the key active proteins that potentially activate the EET process.
Miyatake, Aya; Nishio, Teiji; Ogino, Takashi
2011-10-01
The purpose of this study is to develop a new calculation algorithm that is satisfactory in terms of the requirements for both accuracy and calculation time for a simulation of imaging of the proton-irradiated volume in a patient body in clinical proton therapy. The activity pencil beam algorithm (APB algorithm), which is a new technique to apply the pencil beam algorithm generally used for proton dose calculations in proton therapy to the calculation of activity distributions, was developed as a calculation algorithm of the activity distributions formed by positron emitter nuclei generated from target nuclear fragment reactions. In the APB algorithm, activity distributions are calculated using an activity pencil beam kernel. In addition, the activity pencil beam kernel is constructed using measured activity distributions in the depth direction and calculations in the lateral direction. (12)C, (16)O, and (40)Ca nuclei were determined as the major target nuclei that constitute a human body that are of relevance for calculation of activity distributions. In this study, "virtual positron emitter nuclei" was defined as the integral yield of various positron emitter nuclei generated from each target nucleus by target nuclear fragment reactions with irradiated proton beam. Compounds, namely, polyethylene, water (including some gelatin) and calcium oxide, which contain plenty of the target nuclei, were irradiated using a proton beam. In addition, depth activity distributions of virtual positron emitter nuclei generated in each compound from target nuclear fragment reactions were measured using a beam ON-LINE PET system mounted a rotating gantry port (BOLPs-RGp). The measured activity distributions depend on depth or, in other words, energy. The irradiated proton beam energies were 138, 179, and 223 MeV, and measurement time was about 5 h until the measured activity reached the background level. Furthermore, the activity pencil beam data were made using the activity pencil beam kernel, which was composed of the measured depth data and the lateral data including multiple Coulomb scattering approximated by the Gaussian function, and were used for calculating activity distributions. The data of measured depth activity distributions for every target nucleus by proton beam energy were obtained using BOLPs-RGp. The form of the depth activity distribution was verified, and the data were made in consideration of the time-dependent change of the form. Time dependence of an activity distribution form could be represented by two half-lives. Gaussian form of the lateral distribution of the activity pencil beam kernel was decided by the effect of multiple Coulomb scattering. Thus, the data of activity pencil beam involving time dependence could be obtained in this study. The simulation of imaging of the proton-irradiated volume in a patient body using target nuclear fragment reactions was feasible with the developed APB algorithm taking time dependence into account. With the use of the APB algorithm, it was suggested that a system of simulation of activity distributions that has levels of both accuracy and calculation time appropriate for clinical use can be constructed.
Potentially Habitable Ancient Environments in Gusev Crater, Mars
NASA Technical Reports Server (NTRS)
DesMarais, David J.
2010-01-01
Habitable environments must sustain liquid water at least intermittently and also provide both chemical building blocks and useful sources of energy for life. Observations by Spirit rover indicate that conditions have probably been too dry to sustain life, at least since the emplacement of the extensive basalts that underlie the plains around the Columbia Memorial Station landing site. Local evidence of relatively minor aqueous alteration [1] probably occurred under conditions where the activity of water was too low to sustain biological processes as we know them. In contrast, multiple bedrock units in West Spur and Husband Hill in the Columbia Hills have been extensively altered. Patterns of elemental abundances are consistent with aqueous processes involving migrating fluids [2]. Fe in several of these units has been extensively oxidized [3]. Conceivably any microbiota present during the aqueous alteration of these rocks might have obtained energy from Fe oxidation. Spirit discovered olivine-rich ultramafic rocks during her descent from Husband Hill southward into Inner Basin. Alteration of similar ultramafic rocks on Earth can yield H2 that can provide both energy and reducing power for microorganisms. Spirit's discovery of deposits rich in ferric sulfate is consistent with the aqueous dissolution and/or alteration of olivine under acidic conditions [2] such as those associated with hydrothermal activity. The oxidation of iron and sulfur that can accompany such activity can be an energy source for life. Hydrothermal systems on Earth that sustain either acidic [4] or neutral to alkaline fluids [5] have been shown to provide this energy. Collectively the observations by Spirit rover are consistent with the possibility that habitable environments existed in Gusev crater at least intermittently in the distant geologic past.
NASA Astrophysics Data System (ADS)
Goddard, Braden
The ability of inspection agencies and facility operators to measure powders containing several actinides is increasingly necessary as new reprocessing techniques and fuel forms are being developed. These powders are difficult to measure with nondestructive assay (NDA) techniques because neutrons emitted from induced and spontaneous fission of different nuclides are very similar. A neutron multiplicity technique based on first principle methods was developed to measure these powders by exploiting isotope-specific nuclear properties, such as the energy-dependent fission cross sections and the neutron induced fission neutron multiplicity. This technique was tested through extensive simulations using the Monte Carlo N-Particle eXtended (MCNPX) code and by one measurement campaign using the Active Well Coincidence Counter (AWCC) and two measurement campaigns using the Epithermal Neutron Multiplicity Counter (ENMC) with various (alpha,n) sources and actinide materials. Four potential applications of this first principle technique have been identified: (1) quantitative measurement of uranium, neptunium, plutonium, and americium materials; (2) quantitative measurement of mixed oxide (MOX) materials; (3) quantitative measurement of uranium materials; and (4) weapons verification in arms control agreements. This technique still has several challenges which need to be overcome, the largest of these being the challenge of having high-precision active and passive measurements to produce results with acceptably small uncertainties.
Lin, William; Wadlington, Natasha L; Chen, Linan; Zhuang, Xiaoxi; Brorson, James R; Kang, Un Jung
2014-02-19
Parkinson's disease (PD) has multiple proposed etiologies with implication of abnormalities in cellular homeostasis ranging from proteostasis to mitochondrial dynamics to energy metabolism. PINK1 mutations are associated with familial PD and here we discover a novel PINK1 mechanism in cellular stress response. Using hypoxia as a physiological trigger of oxidative stress and disruption in energy metabolism, we demonstrate that PINK1(-/-) mouse cells exhibited significantly reduced induction of HIF-1α protein, HIF-1α transcriptional activity, and hypoxia-responsive gene upregulation. Loss of PINK1 impairs both hypoxia-induced 4E-BP1 dephosphorylation and increase in the ratio of internal ribosomal entry site (IRES)-dependent to cap-dependent translation. These data suggest that PINK1 mediates adaptive responses by activating IRES-dependent translation, and the impairments in translation and the HIF-1α pathway may contribute to PINK1-associated PD pathogenesis that manifests under cellular stress.
NASA Astrophysics Data System (ADS)
Lin, Yow-Jon; Hung, Cheng-Chun
2018-02-01
The effect of the modification of a gate SiO2 dielectric using an H2O2 solution on the temperature-dependent behavior of carrier transport for pentacene-based organic thin-film transistors (OTFTs) is studied. H2O2 treatment leads to the formation of Si(-OH) x (i.e., the formation of a hydroxylated layer) on the SiO2 surface that serves to reduce the SiO2 capacitance and weaken the pentacene-SiO2 interaction, thus increasing the field-effect carrier mobility ( µ) in OTFTs. The temperature-dependent behavior of carrier transport is dominated by the multiple trapping model. Note that H2O2 treatment leads to a reduction in the activation energy. The increased value of µ is also attributed to the weakening of the interactions of the charge carriers with the SiO2 dielectric that serves to reduce the activation energy.
Multiple piezo-patch energy harvesters on a thin plate with respective AC-DC conversion
NASA Astrophysics Data System (ADS)
Aghakhani, Amirreza; Basdogan, Ipek
2018-03-01
Piezoelectric patch energy harvesters can be directly integrated to plate-like structures which are widely used in automotive, marine and aerospace applications, to convert vibrational energy to electrical energy. This paper presents two different AC-DC conversion techniques for multiple patch harvesters, namely single rectifier and respective rectifiers. The first case considers all the piezo-patches are connected in parallel to a single rectifier, whereas in the second case, each harvester is respectively rectified and then connected in parallel to a smoothing capacitor and a resistive load. The latter configuration of AC-DC conversion helps to avoid the electrical charge cancellation which is a problem with the multiple harvesters attached to different locations of the host plate surface. Equivalent circuit model of the multiple piezo-patch harvesters is developed in the SPICE software to simulate the electrical response. The system parameters are obtained from the modal analysis solution of the plate. Simulations of the voltage frequency response functions (FRFs) for the standard AC input - AC output case are conducted and validated by experimental data. Finally, for the AC input - DC output case, numerical simulation and experimental results of the power outputs of multiple piezo-patch harvesters with multiple AC-DC converters are obtained for a wide range of resistive loads and compared with the same array of harvesters connected to a single AC-DC converter.
Stewart, John T; Padilha, Lazaro A; Qazilbash, M Mumtaz; Pietryga, Jeffrey M; Midgett, Aaron G; Luther, Joseph M; Beard, Matthew C; Nozik, Arthur J; Klimov, Victor I
2012-02-08
Infrared band gap semiconductor nanocrystals are promising materials for exploring generation III photovoltaic concepts that rely on carrier multiplication or multiple exciton generation, the process in which a single high-energy photon generates more than one electron-hole pair. In this work, we present measurements of carrier multiplication yields and biexciton lifetimes for a large selection of PbS nanocrystals and compare these results to the well-studied PbSe nanocrystals. The similar bulk properties of PbS and PbSe make this an important comparison for discerning the pertinent properties that determine efficient carrier multiplication. We observe that PbS and PbSe have very similar biexciton lifetimes as a function of confinement energy. Together with the similar bulk properties, this suggests that the rates of multiexciton generation, which is the inverse of Auger recombination, are also similar. The carrier multiplication yields in PbS nanocrystals, however, are strikingly lower than those observed for PbSe nanocrystals. We suggest that this implies the rate of competing processes, such as phonon emission, is higher in PbS nanocrystals than in PbSe nanocrystals. Indeed, our estimations for phonon emission mediated by the polar Fröhlich-type interaction indicate that the corresponding energy-loss rate is approximately twice as large in PbS than in PbSe. © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Jimenez, Edward S.; Goodman, Eric L.; Park, Ryeojin; Orr, Laurel J.; Thompson, Kyle R.
2014-09-01
This paper will investigate energy-efficiency for various real-world industrial computed-tomography reconstruction algorithms, both CPU- and GPU-based implementations. This work shows that the energy required for a given reconstruction is based on performance and problem size. There are many ways to describe performance and energy efficiency, thus this work will investigate multiple metrics including performance-per-watt, energy-delay product, and energy consumption. This work found that irregular GPU-based approaches1 realized tremendous savings in energy consumption when compared to CPU implementations while also significantly improving the performance-per- watt and energy-delay product metrics. Additional energy savings and other metric improvement was realized on the GPU-based reconstructions by improving storage I/O by implementing a parallel MIMD-like modularization of the compute and I/O tasks.
Enhancement of Seebeck coefficient in graphene superlattices by electron filtering technique
NASA Astrophysics Data System (ADS)
Mishra, Shakti Kumar; Kumar, Amar; Kaushik, Chetan Prakash; Dikshit, Biswaranjan
2018-01-01
We show theoretically that the Seebeck coefficient and the thermoelectric figure of merit can be increased by using electron filtering technique in graphene superlattice based thermoelectric devices. The average Seebeck coefficient for graphene-based thermoelectric devices is proportional to the integral of the distribution of Seebeck coefficient versus energy of electrons. The low energy electrons in the distribution curve are found to reduce the average Seebeck coefficient as their contribution is negative. We show that, with electron energy filtering technique using multiple graphene superlattice heterostructures, the low energy electrons can be filtered out and the Seebeck coefficient can be increased. The multiple graphene superlattice heterostructures can be formed by graphene superlattices with different periodic electric potentials applied above the superlattice. The overall electronic band gap of the multiple heterostructures is dependent upon the individual band gap of the graphene superlattices and can be tuned by varying the periodic electric potentials. The overall electronic band gap of the multiple heterostructures has to be properly chosen such that, the low energy electrons which cause negative Seebeck distribution in single graphene superlattice thermoelectric devices fall within the overall band gap formed by the multiple heterostructures. Although the electrical conductance is decreased in this technique reducing the thermoelectric figure of merit, the overall figure of merit is increased due to huge increase in Seebeck coefficient and its square dependency upon the Seebeck coefficient. This is an easy technique to make graphene superlattice based thermoelectric devices more efficient and has the potential to significantly improve the technology of energy harvesting and sensors.
The initial rise method extended to multiple trapping levels in thermoluminescent materials.
Furetta, C; Guzmán, S; Ruiz, B; Cruz-Zaragoza, E
2011-02-01
The well known Initial Rise Method (IR) is commonly used to determine the activation energy when only one glow peak is presented and analysed in the phosphor materials. However, when the glow peak is more complex, a wide peak and some holders appear in the structure. The application of the Initial Rise Method is not valid because multiple trapping levels are considered and then the thermoluminescent analysis becomes difficult to perform. This paper shows the case of a complex glow curve structure as an example and shows that the calculation is also possible using the IR method. The aim of the paper is to extend the well known Initial Rise Method (IR) to the case of multiple trapping levels. The IR method is applied to minerals extracted from Nopal cactus and Oregano spices because the thermoluminescent glow curve's shape suggests a trap distribution instead of a single trapping level. Copyright © 2010 Elsevier Ltd. All rights reserved.
Multiple protocol fluorometer and method
Kolber, Zbigniew S.; Falkowski, Paul G.
2000-09-19
A multiple protocol fluorometer measures photosynthetic parameters of phytoplankton and higher plants using actively stimulated fluorescence protocols. The measured parameters include spectrally-resolved functional and optical absorption cross sections of PSII, extent of energy transfer between reaction centers of PSII, F.sub.0 (minimal), F.sub.m (maximal) and F.sub.v (variable) components of PSII fluorescence, photochemical and non-photochemical quenching, size of the plastoquinone (PQ) pool, and the kinetics of electron transport between Q.sub.a and PQ pool and between PQ pool and PSI. The multiple protocol fluorometer, in one embodiment, is equipped with an excitation source having a controlled spectral output range between 420 nm and 555 nm and capable of generating flashlets having a duration of 0.125-32 .mu.s, an interval between 0.5 .mu.s and 2 seconds, and peak optical power of up to 2 W/cm.sup.2. The excitation source is also capable of generating, simultaneous with the flashlets, a controlled continuous, background illumination.
Yates, Katherine L; Schoeman, David S; Klein, Carissa J
2015-04-01
Oceans, particularly coastal areas, are getting busier and within this increasingly human-dominated seascape, marine biodiversity continues to decline. Attempts to maintain and restore marine biodiversity are becoming more spatial, principally through the designation of marine protected areas (MPAs). MPAs compete for space with other uses, and the emergence of new industries, such as marine renewable energy generation, will increase competition for space. Decision makers require guidance on how to zone the ocean to conserve biodiversity, mitigate conflict and accommodate multiple uses. Here we used empirical data and freely available planning software to identified priority areas for multiple ocean zones, which incorporate goals for biodiversity conservation, two types of renewable energy, and three types of fishing. We developed an approached to evaluate trade-offs between industries and we investigated the impacts of co-locating some fishing activities within renewable energy sites. We observed non-linear trade-offs between industries. We also found that different subsectors within those industries experienced very different trade-off curves. Incorporating co-location resulted in significant reductions in cost to the fishing industry, including fisheries that were not co-located. Co-location also altered the optimal location of renewable energy zones with planning solutions. Our findings have broad implications for ocean zoning and marine spatial planning. In particular, they highlight the need to include industry subsectors when assessing trade-offs and they stress the importance of considering co-location opportunities from the outset. Our research reinforces the need for multi-industry ocean-zoning and demonstrates how it can be undertaken within the framework of strategic conservation planning. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhen, Xiaofei; Abdalla Osman, Yassir Idris; Feng, Rong; Zhang, Xuemin
2018-01-01
In order to utilize solar energy to meet the heating demands of a rural residential building during the winter in the northwestern region of China, a hybrid heating system combining solar energy and coal was built. Multiple experiments to monitor its performance were conducted during the winter in 2014 and 2015. In this paper, we analyze the efficiency of the energy utilization of the system and describe a prototype model to determine the thermal efficiency of the coal stove in use. Multiple linear regression was adopted to present the dual function of multiple factors on the daily heat-collecting capacity of the solar water heater; the heat-loss coefficient of the storage tank was detected as well. The prototype model shows that the average thermal efficiency of the stove is 38%, which means that the energy input for the building is divided between the coal and solar energy, 39.5% and 60.5% energy, respectively. Additionally, the allocation of the radiation of solar energy projecting into the collecting area of the solar water heater was obtained which showed 49% loss with optics and 23% with the dissipation of heat, with only 28% being utilized effectively. PMID:29651424
Xie, Bing; Nguyen, Trung Hai; Minh, David D. L.
2017-01-01
We demonstrate the feasibility of estimating protein-ligand binding free energies using multiple rigid receptor configurations. Based on T4 lysozyme snapshots extracted from six alchemical binding free energy calculations with a flexible receptor, binding free energies were estimated for a total of 141 ligands. For 24 ligands, the calculations reproduced flexible-receptor estimates with a correlation coefficient of 0.90 and a root mean square error of 1.59 kcal/mol. The accuracy of calculations based on Poisson-Boltzmann/Surface Area implicit solvent was comparable to previously reported free energy calculations. PMID:28430432
Coherent combining pulse bursts in time domain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galvanauskas, Almantas
A beam combining and pulse stacking technique is provided that enhances laser pulse energy by coherent stacking pulse bursts (i.e. non-periodic pulsed signals) in time domain. This energy enhancement is achieved by using various configurations of Fabry-Perot, Gires-Tournois and other types of resonant cavities, so that a multiple-pulse burst incident at either a single input or multiple inputs of the system produces an output with a solitary pulse, which contains the summed energy of the incident multiple pulses from all beams. This disclosure provides a substantial improvement over conventional coherent-combining methods in that it achieves very high pulse energies usingmore » a relatively small number of combined laser systems, thus providing with orders of magnitude reduction in system size, complexity, and cost compared to current combining approaches.« less
Resveratrol-Activated AMPK/SIRT1/Autophagy in Cellular Models of Parkinson's Disease
Wu, Yuncheng; Li, Xinqun; Zhu, Julie Xiaohong; Xie, Wenjie; Le, Weidong; Fan, Zhen; Jankovic, Joseph; Pan, Tianhong
2011-01-01
Excessive misfolded proteins and/or dysfunctional mitochondria, which may cause energy deficiency, have been implicated in the etiopathogenesis of Parkinson's disease (PD). Enhanced clearance of misfolded proteins or injured mitochondria via autophagy has been reported to have neuroprotective roles in PD models. The fact that resveratrol is a known compound with multiple beneficial effects similar to those associated with energy metabolism led us to explore whether neuroprotective effects of resveratrol are related to its role in autophagy regulation. We tested whether modulation of mammalian silent information regulator 2 (SIRT1) and/or metabolic energy sensor AMP-activated protein kinase (AMPK) are involved in autophagy induction by resveratrol, leading to neuronal survival. Our results showed that resveratrol protected against rotenone-induced apoptosis in SH-SY5Y cells and enhanced degradation of α-synucleins in α-synuclein-expressing PC12 cell lines via autophagy induction. We found that suppression of AMPK and/or SIRT1 caused decrease of protein level of LC3-II, indicating that AMPK and/or SIRT1 are required in resveratrol-mediated autophagy induction. Moreover, suppression of AMPK caused inhibition of SIRT1 activity and attenuated protective effects of resveratrol on rotenone-induced apoptosis, further suggesting that AMPK-SIRT1-autophagy pathway plays an important role in the neuroprotection by resveratrol on PD cellular models. PMID:21778691
High probability neurotransmitter release sites represent an energy efficient design
Lu, Zhongmin; Chouhan, Amit K.; Borycz, Jolanta A.; Lu, Zhiyuan; Rossano, Adam J; Brain, Keith L.; Zhou, You; Meinertzhagen, Ian A.; Macleod, Gregory T.
2016-01-01
Nerve terminals contain multiple sites specialized for the release of neurotransmitters. Release usually occurs with low probability, a design thought to confer many advantages. High probability release sites are not uncommon but their advantages are not well understood. Here we test the hypothesis that high probability release sites represent an energy efficient design. We examined release site probabilities and energy efficiency at the terminals of two glutamatergic motor neurons synapsing on the same muscle fiber in Drosophila larvae. Through electrophysiological and ultrastructural measurements we calculated release site probabilities to differ considerably between terminals (0.33 vs. 0.11). We estimated the energy required to release and recycle glutamate from the same measurements. The energy required to remove calcium and sodium ions subsequent to nerve excitation was estimated through microfluorimetric and morphological measurements. We calculated energy efficiency as the number of glutamate molecules released per ATP molecule hydrolyzed, and high probability release site terminals were found to be more efficient (0.13 vs. 0.06). Our analytical model indicates that energy efficiency is optimal (~0.15) at high release site probabilities (~0.76). As limitations in energy supply constrain neural function, high probability release sites might ameliorate such constraints by demanding less energy. Energy efficiency can be viewed as one aspect of nerve terminal function, in balance with others, because high efficiency terminals depress significantly during episodic bursts of activity. PMID:27593375
Aerosolized 3-bromopyruvate inhibits lung tumorigenesis without causing liver toxicity.
Zhang, Qi; Pan, Jing; North, Paula E; Yang, Shoua; Lubet, Ronald A; Wang, Yian; You, Ming
2012-05-01
3-Bromopyruvate, an alkylating agent and a well-known inhibitor of energy metabolism, has been proposed as a specific anticancer agent. However, the chemopreventive effect of 3-bromopyruvate in lung tumorigenesis has not been tested. In this study, we investigated the chemopreventive activity of 3-bromopyruvate in a mouse lung tumor model. Benzo(a)pyrene was used to induce lung tumors, and 3-bromopyruvate was administered by oral gavage to female A/J mice. We found that 3-bromopyruvate significantly decreased tumor multiplicity and tumor load by 58% and 83%, respectively, at a dose of 20 mg/kg body weight by gavage. Due to the known liver toxicity of 3-bromopyruvate in animal models given large doses of 3-bromopyruvate, confirmed in this study, we decided to test the chemopreventive activity of aerosolized 3-bromopyruvate in the same lung tumor model. As expected, aerosolized 3-bromopyruvate similarly significantly decreased tumor multiplicity and tumor load by 49% and 80%, respectively, at a dose of 10 mg/mL by inhalation. Interestingly, the efficacy of aerosolized 3-bromopyruvate did not accompany any liver toxicity indicating that it is a safer route of administering this compound. Treatment with 3-bromopyruvate increased immunohistochemical staining for cleaved caspase-3, suggesting that the lung tumor inhibitory effects of 3-bromopyruvate were through induction of apoptosis. 3-Bromopyruvate also dissociated hexokinase II from mitochondria, reduced hexokinase activity, and blocked energy metabolism in cancer cells, finally triggered cancer cell death and induced apoptosis through caspase-3, and PARP in human lung cancer cell line. The ability of 3-bromopyruvate to inhibit mouse lung tumorigenesis, in part through induction of apoptosis, merits further investigation of this compound as a chemopreventive agent for human lung cancer.
Stretching of Active Muscle Elicits Chronic Changes in Multiple Strain Risk Factors.
Kay, Anthony David; Richmond, Dominic; Talbot, Chris; Mina, Minas; Baross, Anthony William; Blazevich, Anthony John
2016-07-01
The muscle stretch intensity imposed during "flexibility" training influences the magnitude of joint range of motion (ROM) adaptation. Thus, stretching while the muscle is voluntarily activated was hypothesized to provide a greater stimulus than passive stretching. The effect of a 6-wk program of stretch imposed on an isometrically contracting muscle (i.e., qualitatively similar to isokinetic eccentric training) on muscle-tendon mechanics was therefore studied in 13 healthy human volunteers. Before and after the training program, dorsiflexion ROM, passive joint moment, and maximal isometric plantarflexor moment were recorded on an isokinetic dynamometer. Simultaneous real-time motion analysis and ultrasound imaging recorded gastrocnemius medialis muscle and Achilles tendon elongation. Training was performed twice weekly and consisted of five sets of 12 maximal isokinetic eccentric contractions at 10°·s. Significant increases (P < 0.01) in ROM (92.7% [14.7°]), peak passive moment (i.e., stretch tolerance; 136.2%), area under the passive moment curve (i.e., energy storage; 302.6%), and maximal isometric plantarflexor moment (51.3%) were observed after training. Although no change in the slope of the passive moment curve (muscle-tendon stiffness) was detected (-1.5%, P > 0.05), a significant increase in tendon stiffness (31.2%, P < 0.01) and a decrease in passive muscle stiffness (-14.6%, P < 0.05) were observed. The substantial positive adaptation in multiple functional and physiological variables that are cited within the primary etiology of muscle strain injury, including strength, ROM, muscle stiffness, and maximal energy storage, indicate that the stretching of active muscle might influence injury risk in addition to muscle function. The lack of change in muscle-tendon stiffness simultaneous with significant increases in tendon stiffness and decreases in passive muscle stiffness indicates that tissue-specific effects were elicited.
Semonin, Octavi Escala; Luther, Joseph M; Beard, Matthew C; Chen, Hsiang-Yu
2014-04-01
A method of forming an optoelectronic device. The method includes providing a deposition surface and contacting the deposition surface with a ligand exchange chemical and contacting the deposition surface with a quantum dot (QD) colloid. This initial process is repeated over one or more cycles to form an initial QD film on the deposition surface. The method further includes subsequently contacting the QD film with a secondary treatment chemical and optionally contacting the surface with additional QDs to form an enhanced QD layer exhibiting multiple exciton generation (MEG) upon absorption of high energy photons by the QD active layer. Devices having an enhanced QD active layer as described above are also disclosed.
Peng, Yuyang; Choi, Jaeho
2014-01-01
Improving the energy efficiency in wireless sensor networks (WSN) has attracted considerable attention nowadays. The multiple-input multiple-output (MIMO) technique has been proved as a good candidate for improving the energy efficiency, but it may not be feasible in WSN which is due to the size limitation of the sensor node. As a solution, the cooperative multiple-input multiple-output (CMIMO) technique overcomes this constraint and shows a dramatically good performance. In this paper, a new CMIMO scheme based on the spatial modulation (SM) technique named CMIMO-SM is proposed for energy-efficiency improvement. We first establish the system model of CMIMO-SM. Based on this model, the transmission approach is introduced graphically. In order to evaluate the performance of the proposed scheme, a detailed analysis in terms of energy consumption per bit of the proposed scheme compared with the conventional CMIMO is presented. Later, under the guide of this new scheme we extend our proposed CMIMO-SM to a multihop clustered WSN for further achieving energy efficiency by finding an optimal hop-length. Equidistant hop as the traditional scheme will be compared in this paper. Results from the simulations and numerical experiments indicate that by the use of the proposed scheme, significant savings in terms of total energy consumption can be achieved. Combining the proposed scheme with monitoring sensor node will provide a good performance in arbitrary deployed WSN such as forest fire detection system.
Element-specific spectral imaging of multiple contrast agents: a phantom study
NASA Astrophysics Data System (ADS)
Panta, R. K.; Bell, S. T.; Healy, J. L.; Aamir, R.; Bateman, C. J.; Moghiseh, M.; Butler, A. P. H.; Anderson, N. G.
2018-02-01
This work demonstrates the feasibility of simultaneous discrimination of multiple contrast agents based on their element-specific and energy-dependent X-ray attenuation properties using a pre-clinical photon-counting spectral CT. We used a photon-counting based pre-clinical spectral CT scanner with four energy thresholds to measure the X-ray attenuation properties of various concentrations of iodine (9, 18 and 36 mg/ml), gadolinium (2, 4 and 8 mg/ml) and gold (2, 4 and 8 mg/ml) based contrast agents, calcium chloride (140 and 280 mg/ml) and water. We evaluated the spectral imaging performances of different energy threshold schemes between 25 to 82 keV at 118 kVp, based on K-factor and signal-to-noise ratio and ranked them. K-factor was defined as the X-ray attenuation in the K-edge containing energy range divided by the X-ray attenuation in the preceding energy range, expressed as a percentage. We evaluated the effectiveness of the optimised energy selection to discriminate all three contrast agents in a phantom of 33 mm diameter. A photon-counting spectral CT using four energy thresholds of 27, 33, 49 and 81 keV at 118 kVp simultaneously discriminated three contrast agents based on iodine, gadolinium and gold at various concentrations using their K-edge and energy-dependent X-ray attenuation features in a single scan. A ranking method to evaluate spectral imaging performance enabled energy thresholds to be optimised to discriminate iodine, gadolinium and gold contrast agents in a single spectral CT scan. Simultaneous discrimination of multiple contrast agents in a single scan is likely to open up new possibilities of improving the accuracy of disease diagnosis by simultaneously imaging multiple bio-markers each labelled with a nano-contrast agent.
Franceschini, Marco; Rampello, Anais; Agosti, Maurizio; Massucci, Maurizio; Bovolenta, Federica; Sale, Patrizio
2013-01-01
Walking ability, though important for quality of life and participation in social and economic activities, can be adversely affected by neurological disorders, such as Spinal Cord Injury, Stroke, Multiple Sclerosis or Traumatic Brain Injury. The aim of this study is to evaluate if the energy cost of walking (CW), in a mixed group of chronic patients with neurological diseases almost 6 months after discharge from rehabilitation wards, can predict the walking performance and any walking restriction on community activities, as indicated by Walking Handicap Scale categories (WHS). One hundred and seven subjects were included in the study, 31 suffering from Stroke, 26 from Spinal Cord Injury and 50 from Multiple Sclerosis. The multivariable binary logistical regression analysis has produced a statistical model with good characteristics of fit and good predictability. This model generated a cut-off value of.40, which enabled us to classify correctly the cases with a percentage of 85.0%. Our research reveal that, in our subjects, CW is the only predictor of the walking performance of in the community, to be compared with the score of WHS. We have been also identifying a cut-off value of CW cost, which makes a distinction between those who can walk in the community and those who cannot do it. In particular, these values could be used to predict the ability to walk in the community when discharged from the rehabilitation units, and to adjust the rehabilitative treatment to improve the performance. PMID:23468871
Lee, Du-Hwa; Park, Seung Jun; Ahn, Chang Sook
2017-01-01
Dynamic control of protein translation in response to the environment is essential for the survival of plant cells. Target of rapamycin (TOR) coordinates protein synthesis with cellular energy/nutrient availability through transcriptional modulation and phosphorylation of the translation machinery. However, mechanisms of TOR-mediated translation control are poorly understood in plants. Here, we report that Arabidopsis thaliana MRF (MA3 DOMAIN-CONTAINING TRANSLATION REGULATORY FACTOR) family genes encode translation regulatory factors under TOR control, and their functions are particularly important in energy-deficient conditions. Four MRF family genes (MRF1-MRF4) are transcriptionally induced by dark and starvation (DS). Silencing of multiple MRFs increases susceptibility to DS and treatment with a TOR inhibitor, while MRF1 overexpression decreases susceptibility. MRF proteins interact with eIF4A and cofractionate with ribosomes. MRF silencing decreases translation activity, while MRF1 overexpression increases it, accompanied by altered ribosome patterns, particularly in DS. Furthermore, MRF deficiency in DS causes altered distribution of mRNAs in sucrose gradient fractions and accelerates rRNA degradation. MRF1 is phosphorylated in vivo and phosphorylated by S6 kinases in vitro. MRF expression and MRF1 ribosome association and phosphorylation are modulated by cellular energy status and TOR activity. We discuss possible mechanisms of the function of MRF family proteins under normal and energy-deficient conditions and their functional link with the TOR pathway. PMID:29084871
NASA Astrophysics Data System (ADS)
Zhao, Nian; Yang, Jin; Yu, Qiangmo; Zhao, Jiangxin; Liu, Jun; Wen, Yumei; Li, Ping
2016-01-01
This work has demonstrated a novel piezoelectric energy harvester without a complex structure and appended component that is capable of scavenging vibration energy from arbitrary directions with multiple resonant frequencies. In this harvester, a spiral-shaped elastic thin beam instead of a traditional thin cantilever beam was adopted to absorb external vibration with arbitrary direction in three-dimensional (3D) spaces owing to its ability to bend flexibly and stretch along arbitrary direction. Furthermore, multiple modes in the elastic thin beam contribute to a possibility to widen the working bandwidth with multiple resonant frequencies. The experimental results show that the harvester was capable of scavenging the vibration energy in 3D arbitrary directions; they also exhibited triple power peaks at about 16 Hz, 21 Hz, and 28 Hz with the powers of 330 μW, 313 μW, and 6 μW, respectively. In addition, human walking and water wave energies were successfully converted into electricity, proving that our harvester was practical to scavenge the time-variant or multi-directional vibration energies in our daily life.
Beyond Group: Multiple Person Tracking via Minimal Topology-Energy-Variation.
Gao, Shan; Ye, Qixiang; Xing, Junliang; Kuijper, Arjan; Han, Zhenjun; Jiao, Jianbin; Ji, Xiangyang
2017-12-01
Tracking multiple persons is a challenging task when persons move in groups and occlude each other. Existing group-based methods have extensively investigated how to make group division more accurately in a tracking-by-detection framework; however, few of them quantify the group dynamics from the perspective of targets' spatial topology or consider the group in a dynamic view. Inspired by the sociological properties of pedestrians, we propose a novel socio-topology model with a topology-energy function to factor the group dynamics of moving persons and groups. In this model, minimizing the topology-energy-variance in a two-level energy form is expected to produce smooth topology transitions, stable group tracking, and accurate target association. To search for the strong minimum in energy variation, we design the discrete group-tracklet jump moves embedded in the gradient descent method, which ensures that the moves reduce the energy variation of group and trajectory alternately in the varying topology dimension. Experimental results on both RGB and RGB-D data sets show the superiority of our proposed model for multiple person tracking in crowd scenes.
Zhao, Nian; Yang, Jin; Yu, Qiangmo; Zhao, Jiangxin; Liu, Jun; Wen, Yumei; Li, Ping
2016-01-01
This work has demonstrated a novel piezoelectric energy harvester without a complex structure and appended component that is capable of scavenging vibration energy from arbitrary directions with multiple resonant frequencies. In this harvester, a spiral-shaped elastic thin beam instead of a traditional thin cantilever beam was adopted to absorb external vibration with arbitrary direction in three-dimensional (3D) spaces owing to its ability to bend flexibly and stretch along arbitrary direction. Furthermore, multiple modes in the elastic thin beam contribute to a possibility to widen the working bandwidth with multiple resonant frequencies. The experimental results show that the harvester was capable of scavenging the vibration energy in 3D arbitrary directions; they also exhibited triple power peaks at about 16 Hz, 21 Hz, and 28 Hz with the powers of 330 μW, 313 μW, and 6 μW, respectively. In addition, human walking and water wave energies were successfully converted into electricity, proving that our harvester was practical to scavenge the time-variant or multi-directional vibration energies in our daily life.
High-order above-threshold dissociation of molecules
NASA Astrophysics Data System (ADS)
Lu, Peifen; Wang, Junping; Li, Hui; Lin, Kang; Gong, Xiaochun; Song, Qiying; Ji, Qinying; Zhang, Wenbin; Ma, Junyang; Li, Hanxiao; Zeng, Heping; He, Feng; Wu, Jian
2018-03-01
Electrons bound to atoms or molecules can simultaneously absorb multiple photons via the above-threshold ionization featured with discrete peaks in the photoelectron spectrum on account of the quantized nature of the light energy. Analogously, the above-threshold dissociation of molecules has been proposed to address the multiple-photon energy deposition in the nuclei of molecules. In this case, nuclear energy spectra consisting of photon-energy spaced peaks exceeding the binding energy of the molecular bond are predicted. Although the observation of such phenomena is difficult, this scenario is nevertheless logical and is based on the fundamental laws. Here, we report conclusive experimental observation of high-order above-threshold dissociation of H2 in strong laser fields where the tunneling-ionized electron transfers the absorbed multiphoton energy, which is above the ionization threshold to the nuclei via the field-driven inelastic rescattering. Our results provide an unambiguous evidence that the electron and nuclei of a molecule as a whole absorb multiple photons, and thus above-threshold ionization and above-threshold dissociation must appear simultaneously, which is the cornerstone of the nowadays strong-field molecular physics.
Charged-particle multiplicity at LHC energies
Grosse-Oetringhaus, Jan Fiete
2018-05-24
The talk presents the measurement of the pseudorapidity density and the multiplicity distribution with ALICE at the achieved LHC energies of 0.9 and 2.36 TeV.An overview about multiplicity measurements prior to LHC is given and the related theoretical concepts are briefly discussed.The analysis procedure is presented and the systematic uncertainties are detailed. The applied acceptance corrections and the treatment of diffraction are discussed.The results are compared with model predictions. The validity of KNO scaling in restricted phase space regions is revisited.Â
Transition model for ricin-aptamer interactions with multiple pathways and energy barriers
NASA Astrophysics Data System (ADS)
Wang, Bin; Xu, Bingqian
2014-02-01
We develop a transition model to interpret single-molecule ricin-aptamer interactions with multiple unbinding pathways and energy barriers measured by atomic force microscopy dynamic force spectroscopy. Molecular simulations establish the relationship between binding conformations and the corresponding unbinding pathways. Each unbinding pathway follows a Bell-Evans multiple-barrier model. Markov-type transition matrices are developed to analyze the redistribution of unbinding events among the pathways under different loading rates. Our study provides detailed information about complex behaviors in ricin-aptamer unbinding events.
Protein structure modeling for CASP10 by multiple layers of global optimization.
Joo, Keehyoung; Lee, Juyong; Sim, Sangjin; Lee, Sun Young; Lee, Kiho; Heo, Seungryong; Lee, In-Ho; Lee, Sung Jong; Lee, Jooyoung
2014-02-01
In the template-based modeling (TBM) category of CASP10 experiment, we introduced a new protocol called protein modeling system (PMS) to generate accurate protein structures in terms of side-chains as well as backbone trace. In the new protocol, a global optimization algorithm, called conformational space annealing (CSA), is applied to the three layers of TBM procedure: multiple sequence-structure alignment, 3D chain building, and side-chain re-modeling. For 3D chain building, we developed a new energy function which includes new distance restraint terms of Lorentzian type (derived from multiple templates), and new energy terms that combine (physical) energy terms such as dynamic fragment assembly (DFA) energy, DFIRE statistical potential energy, hydrogen bonding term, etc. These physical energy terms are expected to guide the structure modeling especially for loop regions where no template structures are available. In addition, we developed a new quality assessment method based on random forest machine learning algorithm to screen templates, multiple alignments, and final models. For TBM targets of CASP10, we find that, due to the combination of three stages of CSA global optimizations and quality assessment, the modeling accuracy of PMS improves at each additional stage of the protocol. It is especially noteworthy that the side-chains of the final PMS models are far more accurate than the models in the intermediate steps. Copyright © 2013 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Nielsen, Brita Fladvad; Rodrigues Santos, Ana Laura
2013-01-01
A "humanitarian market" for off-grid renewable energy technologies for displaced populations in remote areas has emerged. Within this market, there are multiple stakeholder agendas. End-user needs and sustainable development goals are currently not considered through the customer-enterprise relationship and the applied product and…
Multiplicity moments at low and high energy in hadron--hadron scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antich, P.; Calligarich, E.; Cecchet, G.
1974-01-19
A phenomenological investigation is made of the relation obtained by Weingarten for the multiplicity moments in hadron -hadron interactions. The predictions are compared with moments computed from the experimental data, over a wide energy range, of the reactions pp, pp, pi /sup approximately /p, and K/sup approximately /p. (LBS)
Stennett, Andrea; De Souza, Lorraine; Norris, Meriel
2018-07-01
Exercise and physical activity have been found to be beneficial in managing disabilities caused by multiple sclerosis. Despite the known benefits, many people with multiple sclerosis are inactive. This study aimed to identify the prioritised exercise and physical activity practices of people with multiple sclerosis living in the community and the reasons why they are engaged in these activities. A four Round Delphi questionnaire scoped and determined consensus of priorities for the top 10 exercise and physical activities and the reasons why people with multiple sclerosis (n = 101) are engaged in these activities. Data were analysed using content analysis, descriptive statistics, and non-parametric tests. The top 10 exercise and physical activity practices and the top 10 reasons why people with multiple sclerosis (n = 70) engaged in these activities were identified and prioritised. Consensus was achieved for the exercise and physical activities (W = 0.744, p < .0001) and for the reasons they engaged in exercise and physical activity (W = 0.723, p < .0001). The exercise and physical activity practices and the reasons people with multiple sclerosis engaged in exercise and physical activity were diverse. These self-selected activities and reasons highlighted that people with multiple sclerosis might conceptualise exercise and physical activity in ways that may not be fully appreciated or understood by health professionals. Considerations of the views of people with multiple sclerosis may be essential if the goal of increasing physical activity in this population is to be achieved. Implications for Rehabilitation Health professionals should work collaboratively with people with multiple sclerosis to understand how they prioritise activities, the underlying reasons for their prioritisations and embed these into rehabilitation programmes. Health professionals should utilise activities prioritised by people with multiple sclerosis in the community as a way to support, promote, and sustain exercise and physical activity in this population. Rehabilitation interventions should include both the activities people with multiple sclerosis prioritise and the reasons why they engage in exercise and physical activity as another option for increasing physical activity levels and reducing sedentary behaviours.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Nian; Yang, Jin, E-mail: yangjin@cqu.edu.cn; Yu, Qiangmo
This work has demonstrated a novel piezoelectric energy harvester without a complex structure and appended component that is capable of scavenging vibration energy from arbitrary directions with multiple resonant frequencies. In this harvester, a spiral-shaped elastic thin beam instead of a traditional thin cantilever beam was adopted to absorb external vibration with arbitrary direction in three-dimensional (3D) spaces owing to its ability to bend flexibly and stretch along arbitrary direction. Furthermore, multiple modes in the elastic thin beam contribute to a possibility to widen the working bandwidth with multiple resonant frequencies. The experimental results show that the harvester was capablemore » of scavenging the vibration energy in 3D arbitrary directions; they also exhibited triple power peaks at about 16 Hz, 21 Hz, and 28 Hz with the powers of 330 μW, 313 μW, and 6 μW, respectively. In addition, human walking and water wave energies were successfully converted into electricity, proving that our harvester was practical to scavenge the time-variant or multi-directional vibration energies in our daily life.« less
Assessing the Multiple Benefits of Clean Energy Full Report
Guidance for state energy, environmental, and economic policy makers to identify and quantify the many benefits of clean energy to support the development and implementation of cost-effective clean energy initiatives.
NASA Astrophysics Data System (ADS)
Jeong, Seungwon; Lee, Ye-Ryoung; Choi, Wonjun; Kang, Sungsam; Hong, Jin Hee; Park, Jin-Sung; Lim, Yong-Sik; Park, Hong-Gyu; Choi, Wonshik
2018-05-01
The efficient delivery of light energy is a prerequisite for the non-invasive imaging and stimulating of target objects embedded deep within a scattering medium. However, the injected waves experience random diffusion by multiple light scattering, and only a small fraction reaches the target object. Here, we present a method to counteract wave diffusion and to focus multiple-scattered waves at the deeply embedded target. To realize this, we experimentally inject light into the reflection eigenchannels of a specific flight time to preferably enhance the intensity of those multiple-scattered waves that have interacted with the target object. For targets that are too deep to be visible by optical imaging, we demonstrate a more than tenfold enhancement in light energy delivery in comparison with ordinary wave diffusion cases. This work will lay a foundation to enhance the working depth of imaging, sensing and light stimulation.
Muon energy estimate through multiple scattering with the MACRO detector
NASA Astrophysics Data System (ADS)
Ambrosio, M.; Antolini, R.; Auriemma, G.; Bakari, D.; Baldini, A.; Barbarino, G. C.; Barish, B. C.; Battistoni, G.; Becherini, Y.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bloise, C.; Bower, C.; Brigida, M.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Candela, A.; Carboni, M.; Caruso, R.; Cassese, F.; Cecchini, S.; Cei, F.; Chiarella, V.; Choudhary, B. C.; Coutu, S.; Cozzi, M.; de Cataldo, G.; de Deo, M.; Dekhissi, H.; de Marzo, C.; de Mitri, I.; Derkaoui, J.; de Vincenzi, M.; di Credico, A.; Dincecco, M.; Erriquez, O.; Favuzzi, C.; Forti, C.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Giorgini, M.; Grassi, M.; Gray, L.; Grillo, A.; Guarino, F.; Gustavino, C.; Habig, A.; Hanson, K.; Heinz, R.; Iarocci, E.; Katsavounidis, E.; Katsavounidis, I.; Kearns, E.; Kim, H.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Levin, D. S.; Lindozzi, M.; Lipari, P.; Longley, N. P.; Longo, M. J.; Loparco, F.; Maaroufi, F.; Mancarella, G.; Mandrioli, G.; Margiotta, A.; Marini, A.; Martello, D.; Marzari-Chiesa, A.; Mazziotta, M. N.; Michael, D. G.; Monacelli, P.; Montaruli, T.; Monteno, M.; Mufson, S.; Musser, J.; Nicolo, D.; Nolty, R.; Orth, C.; Osteria, G.; Palamara, O.; Patera, V.; Patrizii, L.; Pazzi, R.; Peck, C. W.; Perrone, L.; Petrera, S.; Pistilli, P.; Popa, V.; Raino, A.; Reynoldson, J.; Ronga, F.; Rrhioua, A.; Satriano, C.; Scapparone, E.; Scholberg, K.; Sciubba, A.; Serra, P.; Sioli, M.; Sirri, G.; Sitta, M.; Spinelli, P.; Spinetti, M.; Spurio, M.; Steinberg, R.; Stone, J. L.; Sulak, L. R.; Surdo, A.; Tarle, G.; Tatananni, E.; Togo, V.; Vakili, M.; Walter, C. W.; Webb, R.; MACRO Collaboration
2002-10-01
Muon energy measurement represents an important issue for any experiment addressing neutrino-induced up-going muon studies. Since the neutrino oscillation probability depends on the neutrino energy, a measurement of the muon energy adds an important piece of information concerning the neutrino system. We show in this paper how the MACRO limited streamer tube system can be operated in drift mode by using the TDCs included in the QTPs, an electronics designed for magnetic monopole search. An improvement of the space resolution is obtained, through an analysis of the multiple scattering of muon tracks as they pass through our detector. This information can be used further to obtain an estimate of the energy of muons crossing the detector. Here we present the results of two dedicated tests, performed at CERN PS-T9 and SPS-X7 beam lines, to provide a full check of the electronics and to exploit the feasibility of such a multiple scattering analysis. We show that by using a neural network approach, we are able to reconstruct the muon energy for E μ<40 GeV. The test beam data provide an absolute energy calibration, which allows us to apply this method to MACRO data.
Case Study of Ion Beams Observed By Cluster At Perigee
NASA Astrophysics Data System (ADS)
Sergeev, V.; Sauvaud, J.-A.; Perigee Beam Team
During substorms the short beams of ions in the keV-to-tens keV energy range are injected into the auroral flux tubes from the magnetotail (sometimes extending up to >100 keV energy) carrying the information on the source distance, scale-size and temporal history of plasma acceleration. We present observations with the CLUSTER crossing inward the auroral zone flux tubes at ~4Re distance near its perigee during the substorm activity on February 14, 2001. The ion beams cover the same region (poleward half) of the auroral oval where the low-energy ions are extracted from the ionosphere, and where the small-scale transient transverse Alfven waves are observed which carry predominantly the downward parallel Poynting flux into the ionosphere. The multiple beams were basically confirmed to be the transient effects, although some effects including the (spatial) velocity filter and the parallel electric fields (im- posed by quasineutrality requirement) may complicate the interpretation. The gener- ation region of ion beams is not limited to most poleward, newly-reconnected flux tubes; the beam generation region could extend across magnetic field inward by as much as >100km (if mapped to the ionosphere). Surprising variety of injection dis- tances observed nearly simultaneously (ranging between >60 Re and ~10 Re) have been inferred when using the full available energy and time resolution, with shorter injection distances be possibly associated with the flow braking process. The beam multiplicity often displays the apparent ~3 min quasiperiodicity inherent to the basic dissipation process, it was not yet explained by any substorm theory.
NASA Astrophysics Data System (ADS)
Kurai, Satoshi; Imura, Nobuto; Jin, Li; Miyake, Hideto; Hiramatsu, Kazumasa; Yamada, Yoichi
2018-06-01
We investigated the spatial distribution of luminescence near threading dislocations in AlGaN/AlGaN multiple quantum wells (MQWs) by cathodoluminescence mapping. Emission at the higher-energy side of the AlGaN MQW peak was locally observed near the threading dislocations, which were not accompanied by any surface V-pits. Such higher-energy emission was not observed in the AlGaN epilayers. The energy difference between the AlGaN MQW peak and the higher-energy emission peak increased with increasing barrier-layer Al composition. These results suggest that the origin of the higher-energy emission is likely local thickness fluctuation around dislocations in very thin AlGaN MQWs.
Geodesic active fields--a geometric framework for image registration.
Zosso, Dominique; Bresson, Xavier; Thiran, Jean-Philippe
2011-05-01
In this paper we present a novel geometric framework called geodesic active fields for general image registration. In image registration, one looks for the underlying deformation field that best maps one image onto another. This is a classic ill-posed inverse problem, which is usually solved by adding a regularization term. Here, we propose a multiplicative coupling between the registration term and the regularization term, which turns out to be equivalent to embed the deformation field in a weighted minimal surface problem. Then, the deformation field is driven by a minimization flow toward a harmonic map corresponding to the solution of the registration problem. This proposed approach for registration shares close similarities with the well-known geodesic active contours model in image segmentation, where the segmentation term (the edge detector function) is coupled with the regularization term (the length functional) via multiplication as well. As a matter of fact, our proposed geometric model is actually the exact mathematical generalization to vector fields of the weighted length problem for curves and surfaces introduced by Caselles-Kimmel-Sapiro. The energy of the deformation field is measured with the Polyakov energy weighted by a suitable image distance, borrowed from standard registration models. We investigate three different weighting functions, the squared error and the approximated absolute error for monomodal images, and the local joint entropy for multimodal images. As compared to specialized state-of-the-art methods tailored for specific applications, our geometric framework involves important contributions. Firstly, our general formulation for registration works on any parametrizable, smooth and differentiable surface, including nonflat and multiscale images. In the latter case, multiscale images are registered at all scales simultaneously, and the relations between space and scale are intrinsically being accounted for. Second, this method is, to the best of our knowledge, the first reparametrization invariant registration method introduced in the literature. Thirdly, the multiplicative coupling between the registration term, i.e. local image discrepancy, and the regularization term naturally results in a data-dependent tuning of the regularization strength. Finally, by choosing the metric on the deformation field one can freely interpolate between classic Gaussian and more interesting anisotropic, TV-like regularization.
Label-free density difference amplification-based cell sorting.
Song, Jihwan; Song, Minsun; Kang, Taewook; Kim, Dongchoul; Lee, Luke P
2014-11-01
The selective cell separation is a critical step in fundamental life sciences, translational medicine, biotechnology, and energy harvesting. Conventional cell separation methods are fluorescent activated cell sorting and magnetic-activated cell sorting based on fluorescent probes and magnetic particles on cell surfaces. Label-free cell separation methods such as Raman-activated cell sorting, electro-physiologically activated cell sorting, dielectric-activated cell sorting, or inertial microfluidic cell sorting are, however, limited when separating cells of the same kind or cells with similar sizes and dielectric properties, as well as similar electrophysiological phenotypes. Here we report a label-free density difference amplification-based cell sorting (dDACS) without using any external optical, magnetic, electrical forces, or fluidic activations. The conceptual microfluidic design consists of an inlet, hydraulic jump cavity, and multiple outlets. Incoming particles experience gravity, buoyancy, and drag forces in the separation chamber. The height and distance that each particle can reach in the chamber are different and depend on its density, thus allowing for the separation of particles into multiple outlets. The separation behavior of the particles, based on the ratio of the channel heights of the inlet and chamber and Reynolds number has been systematically studied. Numerical simulation reveals that the difference between the heights of only lighter particles with densities close to that of water increases with increasing the ratio of the channel heights, while decreasing Reynolds number can amplify the difference in the heights between the particles considered irrespective of their densities.
Psychosocial predictors of energy underreporting in a large doubly labeled water study.
Tooze, Janet A; Subar, Amy F; Thompson, Frances E; Troiano, Richard; Schatzkin, Arthur; Kipnis, Victor
2004-05-01
Underreporting of energy intake is associated with self-reported diet measures and appears to be selective according to personal characteristics. Doubly labeled water is an unbiased reference biomarker for energy intake that may be used to assess underreporting. Our objective was to determine which factors are associated with underreporting of energy intake on food-frequency questionnaires (FFQs) and 24-h dietary recalls (24HRs). The study participants were 484 men and women aged 40-69 y who resided in Montgomery County, MD. Using the doubly labeled water method to measure total energy expenditure, we considered numerous psychosocial, lifestyle, and sociodemographic factors in multiple logistic regression models for prediction of the probability of underreporting on the FFQ and 24HR. In the FFQ models, fear of negative evaluation, weight-loss history, and percentage of energy from fat were the best predictors of underreporting in women (R(2) = 0.09); body mass index, comparison of activity level with that of others of the same sex and age, and eating frequency were the best predictors in men (R(2) = 0.10). In the 24HR models, social desirability, fear of negative evaluation, body mass index, percentage of energy from fat, usual activity, and variability in number of meals per day were the best predictors of underreporting in women (R(2) = 0.22); social desirability, dietary restraint, body mass index, eating frequency, dieting history, and education were the best predictors in men (R(2) = 0.25). Although the final models were significantly related to underreporting on both the FFQ and the 24HR, the amount of variation explained by these models was relatively low, especially for the FFQ.
Yaseen, Mohammad A.; Srinivasan, Vivek J.; Gorczynska, Iwona; Fujimoto, James G.; Boas, David A.; Sakadžić, Sava
2015-01-01
Improving our understanding of brain function requires novel tools to observe multiple physiological parameters with high resolution in vivo. We have developed a multimodal imaging system for investigating multiple facets of cerebral blood flow and metabolism in small animals. The system was custom designed and features multiple optical imaging capabilities, including 2-photon and confocal lifetime microscopy, optical coherence tomography, laser speckle imaging, and optical intrinsic signal imaging. Here, we provide details of the system’s design and present in vivo observations of multiple metrics of cerebral oxygen delivery and energy metabolism, including oxygen partial pressure, microvascular blood flow, and NADH autofluorescence. PMID:26713212
Experiences in autotuning matrix multiplication for energy minimization on GPUs
Anzt, Hartwig; Haugen, Blake; Kurzak, Jakub; ...
2015-05-20
In this study, we report extensive results and analysis of autotuning the computationally intensive graphics processing units kernel for dense matrix–matrix multiplication in double precision. In contrast to traditional autotuning and/or optimization for runtime performance only, we also take the energy efficiency into account. For kernels achieving equal performance, we show significant differences in their energy balance. We also identify the memory throughput as the most influential metric that trades off performance and energy efficiency. Finally, as a result, the performance optimal case ends up not being the most efficient kernel in overall resource use.
Ding, Jun; Arigong, Bayaner; Ren, Han; Zhou, Mi; Shao, Jin; Lu, Meng; Chai, Yang; Lin, Yuankun; Zhang, Hualiang
2014-01-01
Novel graphene-based tunable plasmonic metamaterials featuring single and multiple transparency windows are numerically studied in this paper. The designed structures consist of a graphene layer perforated with quadrupole slot structures and dolmen-like slot structures printed on a substrate. Specifically, the graphene-based quadrupole slot structure can realize a single transparency window, which is achieved without breaking the structure symmetry. Further investigations have shown that the single transparency window in the proposed quadrupole slot structure is more likely originated from the quantum effect of Autler-Townes splitting. Then, by introducing a dipole slot to the quadrupole slot structure to form the dolmen-like slot structure, an additional transmission dip could occur in the transmission spectrum, thus, a multiple-transparency-window system can be achieved (for the first time for graphene-based devices). More importantly, the transparency windows for both the quadrupole slot and the dolmen-like slot structures can be dynamically controlled over a broad frequency range by varying the Fermi energy levels of the graphene layer (through electrostatic gating). The proposed slot metamaterial structures with tunable single and multiple transparency windows could find potential applications in many areas such as multiple-wavelength slow-light devices, active plasmonic switching, and optical sensing. PMID:25146672
Ding, Jun; Arigong, Bayaner; Ren, Han; Zhou, Mi; Shao, Jin; Lu, Meng; Chai, Yang; Lin, Yuankun; Zhang, Hualiang
2014-08-22
Novel graphene-based tunable plasmonic metamaterials featuring single and multiple transparency windows are numerically studied in this paper. The designed structures consist of a graphene layer perforated with quadrupole slot structures and dolmen-like slot structures printed on a substrate. Specifically, the graphene-based quadrupole slot structure can realize a single transparency window, which is achieved without breaking the structure symmetry. Further investigations have shown that the single transparency window in the proposed quadrupole slot structure is more likely originated from the quantum effect of Autler-Townes splitting. Then, by introducing a dipole slot to the quadrupole slot structure to form the dolmen-like slot structure, an additional transmission dip could occur in the transmission spectrum, thus, a multiple-transparency-window system can be achieved (for the first time for graphene-based devices). More importantly, the transparency windows for both the quadrupole slot and the dolmen-like slot structures can be dynamically controlled over a broad frequency range by varying the Fermi energy levels of the graphene layer (through electrostatic gating). The proposed slot metamaterial structures with tunable single and multiple transparency windows could find potential applications in many areas such as multiple-wavelength slow-light devices, active plasmonic switching, and optical sensing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Eleanor S.; Fernandes, Luis L.; Goudey, Chad Howdy
Chromogenic glazing materials are emerging technologies that tint reversibly from a clear to dark tinted state either passively in response to environmental conditions or actively in response to a command from a switch or building automation system. Switchable coatings on glass manage solar radiation and visible light while enabling unobstructed views to the outdoors. Building energy simulations estimate that actively controlled, near-term chromogenic glazings can reduce perimeter zone heating, ventilation, and airconditioning (HVAC) and lighting energy use by 10-20% and reduce peak electricity demand by 20-30%, achieving energy use levels that are lower than an opaque, insulated wall. This projectmore » demonstrates the use of two types of chromogenic windows: thermochromic and electrochromic windows. By 2013, these windows will begin production in the U.S. by multiple vendors at high-volume manufacturing plants, enabling lower cost and larger area window products to be specified. Both technologies are in the late R&D stage of development, where cost reductions and performance improvements are underway. Electrochromic windows have been installed in numerous buildings over the past four years, but monitored energy-efficiency performance has been independently evaluated in very limited applications. Thermochromic windows have been installed in one other building with an independent evaluation, but results have not yet been made public.« less
Ji, Jing; Liu, Yang; Yang, Xue-Yuan; Xu, Juan; Li, Xiu-Yan
2018-07-15
The removal of high-concentration rhodamine B (RhB) wastewater was investigated in a three-dimensional electrochemical reactor (3DER) packed with granular activated carbon (GAC) particle electrodes. Response surface methodology (RSM) coupled with grey relational analysis (GRA) was used to evaluate the effects of voltage, initial pH, aeration rate and NaCl dosage on RhB removal and energy consumption of the 3DER. The optimal conditions were determined as voltage 7.25 V, pH 5.99, aeration rate 151.13 mL/min, and NaCl concentration 0.11 mol/L. After 30 min electrolysis, COD removal rate could arrive at 60.13% with an extremely low energy consumption of 6.22 kWh/kg COD. The voltage and NaCl were demonstrated to be the most significant factors affecting the COD removal and energy consumption of 3DER. The intermediates generated during the treatment process were identified and the possible degradation pathway of RhB was proposed. It is worth noting that 3DER also showed an excellent performance in total nitrogen (TN) removal under the optimal condition. The activated chlorine generated from chloride had great contributions to eliminate carbon and nitrogen of RhB wastewater. The treatment effluent had a good biodegradability, which was suitable for subsequent biological treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Energy metabolism and inflammation in brain aging and Alzheimer's disease.
Yin, Fei; Sancheti, Harsh; Patil, Ishan; Cadenas, Enrique
2016-11-01
The high energy demand of the brain renders it sensitive to changes in energy fuel supply and mitochondrial function. Deficits in glucose availability and mitochondrial function are well-known hallmarks of brain aging and are particularly accentuated in neurodegenerative disorders such as Alzheimer's disease. As important cellular sources of H 2 O 2 , mitochondrial dysfunction is usually associated with altered redox status. Bioenergetic deficits and chronic oxidative stress are both major contributors to cognitive decline associated with brain aging and Alzheimer's disease. Neuroinflammatory changes, including microglial activation and production of inflammatory cytokines, are observed in neurodegenerative diseases and normal aging. The bioenergetic hypothesis advocates for sequential events from metabolic deficits to propagation of neuronal dysfunction, to aging, and to neurodegeneration, while the inflammatory hypothesis supports microglia activation as the driving force for neuroinflammation. Nevertheless, growing evidence suggests that these diverse mechanisms have redox dysregulation as a common denominator and connector. An independent view of the mechanisms underlying brain aging and neurodegeneration is being replaced by one that entails multiple mechanisms coordinating and interacting with each other. This review focuses on the alterations in energy metabolism and inflammatory responses and their connection via redox regulation in normal brain aging and Alzheimer's disease. Interaction of these systems is reviewed based on basic research and clinical studies. Copyright © 2016 Elsevier Inc. All rights reserved.
A Robust Hybrid Zn-Battery with Ultralong Cycle Life.
Li, Bing; Quan, Junye; Loh, Adeline; Chai, Jianwei; Chen, Ye; Tan, Chaoliang; Ge, Xiaoming; Hor, T S Andy; Liu, Zhaolin; Zhang, Hua; Zong, Yun
2017-01-11
Advanced batteries with long cycle life and capable of harnessing more energies from multiple electrochemical reactions are both fundamentally interesting and practically attractive. Herein, we report a robust hybrid zinc-battery that makes use of transition-metal-based redox reaction (M-O-OH → M-O, M = Ni and Co) and oxygen reduction reaction (ORR) to deliver more electrochemical energies of comparably higher voltage with much longer cycle life. The hybrid battery was constructed using an integrated electrode of NiCo 2 O 4 nanowire arrays grown on carbon-coated nickel foam, coupled with a zinc plate anode in alkaline electrolyte. Benefitted from the M-O/M-O-OH redox reactions and rich ORR active sites in NiCo 2 O 4 , the battery has concurrently exhibited high working voltage (by M-O-OH → M-O) and high energy density (by ORR). The good oxygen evolution reaction (OER) activity of the electrode and the reversible M-O ↔ M-O-OH reactions also enabled smooth recharging of the batteries, leading to excellent cycling stabilities. Impressively, the hybrid batteries maintained highly stable charge-discharge voltage profile under various testing conditions, for example, almost no change was observed over 5000 cycles at a current density of 5 mA cm -2 after some initial stabilization. With merits of higher working voltage, high energy density, and ultralong cycle life, such hybrid batteries promise high potential for practical applications.
Chapter 2: Assessing the Potential Energy Impacts of Clean Energy Initiatives
Chapter 2 of Assessing the Multiple Benefits of Clean Energy helps state energy, environmental, and economic policy makers identify and quantify the many benefits of clean energy to support the development and implementation of cost-effective clean energ
Zhang, Baofeng; D'Erasmo, Michael P; Murelli, Ryan P; Gallicchio, Emilio
2016-09-30
We report the results of a binding free energy-based virtual screening campaign of a library of 77 α-hydroxytropolone derivatives against the challenging RNase H active site of the reverse transcriptase (RT) enzyme of human immunodeficiency virus-1. Multiple protonation states, rotamer states, and binding modalities of each compound were individually evaluated. The work involved more than 300 individual absolute alchemical binding free energy parallel molecular dynamics calculations and over 1 million CPU hours on national computing clusters and a local campus computational grid. The thermodynamic and structural measures obtained in this work rationalize a series of characteristics of this system useful for guiding future synthetic and biochemical efforts. The free energy model identified key ligand-dependent entropic and conformational reorganization processes difficult to capture using standard docking and scoring approaches. Binding free energy-based optimization of the lead compounds emerging from the virtual screen has yielded four compounds with very favorable binding properties, which will be the subject of further experimental investigations. This work is one of the few reported applications of advanced-binding free energy models to large-scale virtual screening and optimization projects. It further demonstrates that, with suitable algorithms and automation, advanced-binding free energy models can have a useful role in early-stage drug-discovery programs.
Integrated thermal management of a hybrid electric vehicle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Traci, R.M.; Acebal, R.; Mohler, T.
1999-01-01
A thermal management methodology, based on the Vehicle Integrated Thermal Management Analysis Code (VITMAC), has been developed for a notional vehicle employing the All-Electric Combat Vehicle (AECV) concept. AECV uses a prime power source, such as a diesel, to provide mechanical energy which is converted to electrical energy and stored in a central energy storage system consisting of flywheels, batteries and/or capacitors. The combination of prime power and stored energy powers the vehicle drive system and also advanced weapons subsystems such as an ETC or EM gun, electrically driven lasers, an EM armor system and an active suspension. Every majormore » system is electrically driven with energy reclamation when possible from braking and gun recoil. Thermal management of such a complicated energy transfer and utilization system is a major design consideration due to the substantial heat rejection requirements. In the present paper, an overall integrated thermal management system (TMS) is described which accounts for energy losses from each subsystem component, accepts the heat using multiple coolant loops and expels the heat from the vehicle. VITMAC simulations are used to design the TMS and to demonstrate that a conventional TMS approach is capable of successfully handling vehicle heat rejection requirements under stressing operational conditions.« less
Tackling Energy Loss for High-Efficiency Organic Solar Cells with Integrated Multiple Strategies.
Zuo, Lijian; Shi, Xueliang; Jo, Sae Byeok; Liu, Yun; Lin, Fracis; Jen, Alex K-Y
2018-04-01
Limited by the various inherent energy losses from multiple channels, organic solar cells show inferior device performance compared to traditional inorganic photovoltaic techniques, such as silicon and CuInGaSe. To alleviate these fundamental limitations, an integrated multiple strategy is implemented including molecular design, interfacial engineering, optical manipulation, and tandem device construction into one cell. Considering the close correlation among these loss channels, a sophisticated quantification of energy-loss reduction is tracked along with each strategy in a perspective to reach rational overall optimum. A novel nonfullerene acceptor, 6TBA, is synthesized to resolve the thermalization and V OC loss, and another small bandgap nonfullerene acceptor, 4TIC, is used in the back sub-cell to alleviate transmission loss. Tandem architecture design significantly reduces the light absorption loss, and compensates carrier dynamics and thermalization loss. Interfacial engineering further reduces energy loss from carrier dynamics in the tandem architecture. As a result of this concerted effort, a very high power conversion efficiency (13.20%) is obtained. A detailed quantitative analysis on the energy losses confirms that the improved device performance stems from these multiple strategies. The results provide a rational way to explore the ultimate device performance through molecular design and device engineering. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Low-energy Auger electron diffraction: influence of multiple scattering and angular momentum
NASA Astrophysics Data System (ADS)
Chassé, A.; Niebergall, L.; Kucherenko, Yu.
2002-04-01
The angular dependence of Auger electrons excited from single-crystal surfaces is treated theoretically within a multiple-scattering cluster model taking into account the full Auger transition matrix elements. In particular the model has been used to discuss the influence of multiple scattering and angular momentum of the Auger electron wave on Auger electron diffraction (AED) patterns in the region of low kinetic energies. Theoretical results of AED patterns are shown and discussed in detail for Cu(0 0 1) and Ni(0 0 1) surfaces, respectively. Even though Cu and Ni are very similar in their electronic and scattering properties recently strong differences have been found in AED patterns measured in the low-energy region. It is shown that the differences may be caused to superposition of different electron diffraction effects in an energy-integrated experiment. A good agreement between available experimental and theoretical results has been achieved.
Evidence of a multiple boson emission in Sm1-xThxOFeAs
NASA Astrophysics Data System (ADS)
Kuzmichev, S. A.; Kuzmicheva, T. E.; Zhigadlo, N. D.
2017-07-01
We studied a reproducible fine structure observed in dynamic conductance spectra of Andreev arrays in Sm1-x Th x OFeAs superconductors with various thorium concentrations {(x = 0.08\\text{--}0.3)} and critical temperatures Tc = 26\\text{--}50 \\text{K} . This structure is unambiguously caused by a multiple boson emission (of the same energy) during the process of multiple Andreev reflections. The directly determined energy of the bosonic mode reaches \\varepsilon0 = 14.8 +/- 2.2 \\text{meV} for optimal compounds. Within the studied range of T c , this energy as well as the large ΔL and the small ΔS superconducting gaps, nearly scale with critical temperature with the characteristic ratio \\varepsilon_0/k_BTc ≈ 3.2 (and 2Δ_L/k_BTc ≈ 5.3 , respectively) resembling the expected energy ΔL + ΔS of spin resonance and spectral density enhancement in s+/- and s++ states, respectively.
How main-chains of proteins explore the free-energy landscape in native states.
Senet, Patrick; Maisuradze, Gia G; Foulie, Colette; Delarue, Patrice; Scheraga, Harold A
2008-12-16
Understanding how a single native protein diffuses on its free-energy landscape is essential to understand protein kinetics and function. The dynamics of a protein is complex, with multiple relaxation times reflecting a hierarchical free-energy landscape. Using all-atom molecular dynamics simulations of an alpha/beta protein (crambin) and a beta-sheet polypeptide (BS2) in their "native" states, we demonstrate that the mean-square displacement of dihedral angles, defined by 4 successive C(alpha) atoms, increases as a power law of time, t(alpha), with an exponent alpha between 0.08 and 0.39 (alpha = 1 corresponds to Brownian diffusion), at 300 K. Residues with low exponents are located mainly in well-defined secondary elements and adopt 1 conformational substate. Residues with high exponents are found in loops/turns and chain ends and exist in multiple conformational substates, i.e., they move on multiple-minima free-energy profiles.
How main-chains of proteins explore the free-energy landscape in native states
Senet, Patrick; Maisuradze, Gia G.; Foulie, Colette; Delarue, Patrice; Scheraga, Harold A.
2008-01-01
Understanding how a single native protein diffuses on its free-energy landscape is essential to understand protein kinetics and function. The dynamics of a protein is complex, with multiple relaxation times reflecting a hierarchical free-energy landscape. Using all-atom molecular dynamics simulations of an α/β protein (crambin) and a β-sheet polypeptide (BS2) in their “native” states, we demonstrate that the mean-square displacement of dihedral angles, defined by 4 successive Cα atoms, increases as a power law of time, tα, with an exponent α between 0.08 and 0.39 (α = 1 corresponds to Brownian diffusion), at 300 K. Residues with low exponents are located mainly in well-defined secondary elements and adopt 1 conformational substate. Residues with high exponents are found in loops/turns and chain ends and exist in multiple conformational substates, i.e., they move on multiple-minima free-energy profiles. PMID:19073932
Food portion size and energy density evoke different patterns of brain activation in children12
Fearnbach, S Nicole; Wilson, Stephen J; Fisher, Jennifer O; Savage, Jennifer S; Rolls, Barbara J; Keller, Kathleen L
2017-01-01
Background: Large portions of food promote intake, but the mechanisms that drive this effect are unclear. Previous neuroimaging studies have identified the brain-reward and decision-making systems that are involved in the response to the energy density (ED) (kilocalories per gram) of foods, but few studies have examined the brain response to the food portion size (PS). Objective: We used functional MRI (fMRI) to determine the brain response to food images that differed in PSs (large and small) and ED (high and low). Design: Block-design fMRI was used to assess the blood oxygen level–dependent (BOLD) response to images in 36 children (7–10 y old; girls: 50%), which was tested after a 2-h fast. Pre-fMRI fullness and liking were rated on visual analog scales. A whole-brain cluster-corrected analysis was used to compare BOLD activation for main effects of the PS, ED, and their interaction. Secondary analyses were used to associate BOLD contrast values with appetitive traits and laboratory intake from meals for which the portions of all foods were increased. Results: Compared with small-PS cues, large-PS cues were associated with decreased activation in the inferior frontal gyrus (P < 0.01). Compared with low-ED cues, high-ED cues were associated with increased activation in multiple regions (e.g., in the caudate, cingulate, and precentral gyrus) and decreased activation in the insula and superior temporal gyrus (P < 0.01 for all). A PS × ED interaction was shown in the superior temporal gyrus (P < 0.01). BOLD contrast values for high-ED cues compared with low-ED cues in the insula, declive, and precentral gyrus were negatively related to appetitive traits (P < 0.05). There were no associations between the brain response to the PS and either appetitive traits or intake. Conclusions: Cues regarding food PS may be processed in the lateral prefrontal cortex, which is a region that is implicated in cognitive control, whereas ED activates multiple areas involved in sensory and reward processing. Possible implications include the development of interventions that target decision-making and reward systems differently to moderate overeating. PMID:27881393
Lungu, Bwalya; Saldivar, Joshua C; Story, Robert; Ricke, Steven C; Johnson, Michael G
2010-05-01
The goal of this study was to characterize the starvation survival response (SSR) of a wild-type Listeria monocytogenes 10403S and an isogenic DeltasigB mutant strain during multiple-nutrient starvation conditions over 28 days. This study examined the effects of inhibitors of protein synthesis, the proton motive force, substrate level phosphorylation, and oxidative phosphorylation on the SSR of L. monocytogenes 10403S and a DeltasigB mutant during multiple-nutrient starvation. The effects of starvation buffer changes on viability were also examined. During multiple-nutrient starvation, both strains expressed a strong SSR, suggesting that L. monocytogenes possesses SigB-independent mechanism(s) for survival during multiple-nutrient starvation. Neither strain was able to express an SSR following starvation buffer changes, indicating that the nutrients/factors present in the starvation buffer could be a source of energy for cell maintenance and survival. Neither the wild-type nor the DeltasigB mutant strain was able to elicit an SSR when exposed to the protein synthesis inhibitor chloramphenicol within the first 4 h of starvation. However, both strains expressed an SSR when exposed to chloramphenicol after 6 h or more of starvation, suggesting that the majority of proteins required to elicit an effective SSR in L. monocytogenes are likely produced somewhere between 4 and 6 h of starvation. The varying SSRs of both strains to the different metabolic inhibitors under aerobic or anaerobic conditions suggested that (1) energy derived from the proton motive force is important for an effective SSR, (2) L. monocytogenes utilizes an anaerobic electron transport during multiple-nutrient starvation conditions, and (3) the glycolytic pathway is an important energy source during multiple-nutrient starvation when oxygen is available, and less important under anaerobic conditions. Collectively, the data suggest that the combination of energy-dependent internal adaptation mechanisms of cells and external nutrients/factors enables L. monocytogenes to express a strong SSR.
NASA Astrophysics Data System (ADS)
Abdelsalam, A.; Kamel, S.; Hafiz, M. E.
2015-10-01
The behavior and the properties of medium-energy protons with kinetic energies in the range 26 - 400 MeV is derived from measurements of the particle yields and spectra in the final state of relativistic heavy-ion collisions (16O-AgBr interactions at 60 A and 200 A GeV and 32S-AgBr interactions at 3.7 A and 200 A GeV) and their interpretation in terms of the higher order moments. The multiplicity distributions have been fitted well with the Gaussian distribution function. The data are also compared with the predictions of the modified FRITIOF model, showing that the FRITIOF model does not reproduce the trend and the magnitude of the data. Measurements of the ratio of the variance to the mean show that the production of target fragments at high energies cannot be considered as a statistically independent process. However, the deviation of each multiplicity distribution from a Poisson law provides evidence for correlations. The KNO scaling behavior of two types of scaling (Koba-Nielsen-Olesen (KNO) scaling and Hegyi scaling) functions in terms of the multiplicity distribution is investigated. A simplified universal function has been used in each scaling to display the experimental data. An examination of the relationship between the entropy, the average multiplicity, and the KNO function is performed. Entropy production and subsequent scaling in nucleus-nucleus collisions are carried out by analyzing the experimental data over a wide energy range (Dubna and SPS). Interestingly, the data points corresponding to various energies overlap and fall on a single curve, indicating the presence of a kind of entropy scaling.
Mapping habitat for multiple species in the Desert Southwest
Inman, Richard D.; Nussear, Kenneth E.; Esque, Todd C.; Vandergast, Amy G.; Hathaway, Stacie A.; Wood, Dustin A.; Barr, Kelly R.; Fisher, Robert N.
2014-01-01
Many utility scale renewable energy projects are currently proposed across the Mojave Ecoregion. Agencies that manage biological resources throughout this region need to understand the potential impacts of these renewable energy projects and their associated infrastructure (for example, transmission corridors, substations, access roads, etc.) on species movement, genetic exchange among populations, and species’ abilities to adapt to changing environmental conditions. Understanding these factors will help managers’ select appropriate project sites and possibly mitigate for anticipated effects of management activities. We used species distribution models to map habitat for 15 species across the Mojave Ecoregion to aid regional land-use management planning. Models were developed using a common 1 × 1 kilometer resolution with maximum entropy and generalized additive models. Occurrence data were compiled from multiple sources, including VertNet (http://vertnet.org/), HerpNET (http://www.herpnet.org), and MaNIS (http://manisnet.org), as well as from internal U.S. Geological Survey databases and other biologists. Background data included 20 environmental covariates representing terrain, vegetation, and climate covariates. This report summarizes these environmental covariates and species distribution models used to predict habitat for the 15 species across the Mojave Ecoregion.
[Effect of social desirability on dietary intake estimated from a food questionnaire].
Barros, Renata; Moreira, Pedro; Oliveira, Bruno
2005-01-01
Self-report of dietary intake could be biased by social thus affecting risk estimates in epidemiological studies. The objective of study was to assess the effect of social desirability on dietary intake from a food frequency questionnaire (FFQ). A convenience sample of 483 Portuguese university students was recruited. Subjects were invited to complete a two-part self-administered questionnaire: the first part included the Marlowe-Crowne Social Desirability Scale (M-CSDS), a physical activity questionnaire and self-reported height and weight; the second part, included a semi-quantitative FFQ validated for Portuguese adults, that should be returned after fulfillment. All subjects completed the first part of the questionnaire and 40.4% returned the FFQ fairly completed. In multiple regression analysis, after adjustment for energy and confounders, social desirability produced a significant positive effect in the estimates of dietary fibre, vitamin C, vitamin E, magnesium and potassium, in both genders. In multiple regression, after adjustment for energy and confounders, social desirability had a significant positive effect in the estimates of vegetable consumption, for both genders, and a negative effect in white bread and beer, for women. Social desirability affected nutritional and food intake estimated from a food frequency questionnaire.
A facility for investigation of multiple hadrons at cosmic-ray energies
NASA Technical Reports Server (NTRS)
Valtonen, E.; Torsti, J. J.; Arvela, H.; Lumme, M.; Nieminen, M.; Peltonen, J.; Vainikka, E.
1985-01-01
An experimental arrangement for studying multiple hadrons produced in high-energy hadron-nucleus interactions is under construction at the university of Turku. The method of investigation is based on the detection of hadrons arriving simultaneously at sea level over an area of a few square meters. The apparatus consists of a hadron spectrometer with position-sensitive detectors in connection with a small air shower array. The position resolution using streamer tube detectors will be about 10 mm. Energy spectra of hadrons or groups of simultaneous hadrons produced at primary energies below 10 to the 16th power eV can be measured in the energy range 1 to 2000 GeV.
NASA Astrophysics Data System (ADS)
Moreno, Angel; Kuzmiak-Glancy, Sarah; Jaimes, Rafael; Kay, Matthew W.
2017-03-01
Reduction of NAD+ by dehydrogenase enzymes to form NADH is a key component of cellular metabolism. In cellular preparations and isolated mitochondria suspensions, enzyme-dependent fluorescence recovery after photobleaching (ED-FRAP) of NADH has been shown to be an effective approach for measuring the rate of NADH production to assess dehydrogenase enzyme activity. Our objective was to demonstrate how dehydrogenase activity could be assessed within the myocardium of perfused hearts using NADH ED-FRAP. This was accomplished using a combination of high intensity UV pulses to photobleach epicardial NADH. Replenishment of epicardial NADH fluorescence was then imaged using low intensity UV illumination. NADH ED-FRAP parameters were optimized to deliver 23.8 mJ of photobleaching light energy at a pulse width of 6 msec and a duty cycle of 50%. These parameters provided repeatable measurements of NADH production rate during multiple metabolic perturbations, including changes in perfusate temperature, electromechanical uncoupling, and acute ischemia/reperfusion injury. NADH production rate was significantly higher in every perturbation where the energy demand was either higher or uncompromised. We also found that NADH production rate remained significantly impaired after 10 min of reperfusion after global ischemia. Overall, our results indicate that myocardial NADH ED-FRAP is a useful optical non-destructive approach for assessing dehydrogenase activity.
Kessler, Terrance J; Bunkenburg, Joachim; Huang, Hu; Kozlov, Alexei; Meyerhofer, David D
2004-03-15
Petawatt solid-state lasers require meter-sized gratings to reach multiple-kilojoule energy levels without laser-induced damage. As an alternative to large single gratings, we demonstrate that smaller, coherently added (tiled) gratings can be used for subpicosecond-pulse compression. A Fourier-transform-limited, 650-fs chirped-pulse-amplified laser pulse is maintained by replacing a single compression grating with a tiled-grating assembly. Grating tiling provides a means to scale the energy and irradiance of short-pulse lasers.
Multiple collision effects on the antiproton production by high energy proton (100 GeV - 1000 GeV)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Hiroshi; Powell, J.
Antiproton production rates which take into account multiple collision are calculated using a simple model. Methods to reduce capture of the produced antiprotons by the target are discussed, including geometry of target and the use of a high intensity laser. Antiproton production increases substantially above 150 GeV proton incident energy. The yield increases almost linearly with incident energy, alleviating space charge problems in the high current accelerator that produces large amounts of antiprotons.
Emission wavelength of AlGaAs-GaAs multiple quantum well lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blood, P.; Fletcher, E.D.; Hulyer, P.J.
1986-04-28
We have recorded spontaneous emission spectra from multiple quantum well lasers grown by molecular beam epitaxy with 25-A-wide GaAs wells by opening a window in the top contact stripe. These spectra have a low-energy tail and consequently the gain spectra derived from them show that laser emission occurs at a lower photon energy than the lowest energy confined particle transition. The observed laser wavelength and threshold current are consistent with the position of the peak in the gain spectrum.
Dual energy scanning beam laminographic x-radiography
Majewski, Stanislaw; Wojcik, Randolph F.
1998-01-01
A multiple x-ray energy level imaging system includes a scanning x-ray beam and two detector design having a first low x-ray energy sensitive detector and a second high x-ray energy sensitive detector. The low x-ray energy detector is placed next to or in front of the high x-ray energy detector. The low energy sensitive detector has small stopping power for x-rays. The lower energy x-rays are absorbed and converted into electrical signals while the majority of the higher energy x-rays pass through undetected. The high energy sensitive detector has a large stopping power for x-rays as well as it having a filter placed between it and the object to absorb the lower energy x-rays. In a second embodiment; a single energy sensitive detector is provided which provides an output signal proportional to the amount of energy in each individual x-ray it absorbed. It can then have an electronic threshold or thresholds set to select two or more energy ranges for the images. By having multiple detectors located at different positions, a dual energy laminography system is possible.
Dual energy scanning beam laminographic x-radiography
Majewski, S.; Wojcik, R.F.
1998-04-21
A multiple x-ray energy level imaging system includes a scanning x-ray beam and two detector design having a first low x-ray energy sensitive detector and a second high x-ray energy sensitive detector. The low x-ray energy detector is placed next to or in front of the high x-ray energy detector. The low energy sensitive detector has small stopping power for x-rays. The lower energy x-rays are absorbed and converted into electrical signals while the majority of the higher energy x-rays pass through undetected. The high energy sensitive detector has a large stopping power for x-rays as well as it having a filter placed between it and the object to absorb the lower energy x-rays. In a second embodiment; a single energy sensitive detector is provided which provides an output signal proportional to the amount of energy in each individual x-ray it absorbed. It can then have an electronic threshold or thresholds set to select two or more energy ranges for the images. By having multiple detectors located at different positions, a dual energy laminography system is possible. 6 figs.
NASA Astrophysics Data System (ADS)
Dodson, J. B.; Taylor, P. C.
2016-12-01
The diurnal cycle of convection (CDC) greatly influences the water, radiative, and energy budgets in convectively active regions. For example, previous research of the Amazonian CDC has identified significant monthly covariability between the satellite-observed radiative and precipitation diurnal and multiple reanalysis-derived atmospheric state variables (ASVs) representing convective instability. However, disagreements between retrospective analysis products (reanalyses) over monthly ASV anomalies create significant uncertainty in the resulting covariability. Satellite observations of convective clouds can be used to characterize monthly anomalies in convective activity. CloudSat observes multiple properties of both deep convective cores and the associated anvils, and so is useful as an alternative to the use of reanalyses. CloudSat cannot observe the full diurnal cycle, but it can detect differences between daytime and nighttime convection. Initial efforts to use CloudSat data to characterize convective activity showed that the results are highly dependent on the choice of variable used to characterize the cloud. This is caused by a series of inverse relationships between convective frequency, cloud top height, radar reflectivity vertical profile, and other variables. A single, multi-variable index for convective activity based on CloudSat data may be useful to clarify the results. Principal component analysis (PCA) provides a method to create a multivariable index, where the first principal component (PC1) corresponds with convective instability. The time series of PC1 can then be used as a proxy for monthly variability in convective activity. The primary challenge presented involves determining the utility of PCA for creating a robust index for convective activity that accounts for the complex relationships of multiple convective cloud variables, and yields information about the interactions between convection, the convective environment, and radiation beyond the previous single-variable approaches. The choice of variables used to calculate PC1 may influence any results based on PC1, so it is necessary to test the sensitivity of the results to different variable combinations.
Sedentary behaviour in people with multiple sclerosis: Is it time to stand up against MS?
Veldhuijzen van Zanten, Jet Jcs; Pilutti, Lara A; Duda, Joan L; Motl, Robert W
2016-09-01
Historically, people with multiple sclerosis (MS) have been considered sedentary, although the actual scientific study of sedentary behaviour in MS did not originate until 2011. Sedentary behaviour, which is conceptually distinct from physical inactivity, is defined as any waking activity characterised by an energy expenditure ⩽ 1.5 metabolic equivalents and in a sitting or reclining posture. In the general population, the volume of sitting time is associated with increased risks of morbidity and mortality, independent of physical activity, and has been suggested to carry a greater risk of mortality than smoking behaviour. There are many symptoms of MS (e.g. mobility disability and fatigue) that could increase the prevalence of sedentary behaviour, and sedentary behaviour may have considerable implications for the development of comorbid conditions prevalent in MS. This review provides a summary of the rates, correlates, consequences and interventions attempting to reduce sedentary behaviour in MS. We provide a research agenda that guides future research on sedentary behaviour in MS. This paper provides a clarion call that it is time to 'stand up against MS'. © The Author(s), 2016.
The Role of Mitophagy in Innate Immunity
Gkikas, Ilias; Palikaras, Konstantinos; Tavernarakis, Nektarios
2018-01-01
Mitochondria are cellular organelles essential for multiple biological processes, including energy production, metabolites biosynthesis, cell death, and immunological responses among others. Recent advances in the field of immunology research reveal the pivotal role of energy metabolism in innate immune cells fate and function. Therefore, the maintenance of mitochondrial network integrity and activity is a prerequisite for immune system homeostasis. Mitochondrial selective autophagy, known as mitophagy, surveils mitochondrial population eliminating superfluous and/or impaired organelles and mediating cellular survival and viability in response to injury/trauma and infection. Defective removal of damaged mitochondria leads to hyperactivation of inflammatory signaling pathways and subsequently to chronic systemic inflammation and development of inflammatory diseases. Here, we review the molecular mechanisms of mitophagy and highlight its critical role in the innate immune system homeostasis.
Electrical properties of a liquid crystal dispersed in an electrospun cellulose acetate network
Danila, Octavian; Ganea, Constantin Paul
2018-01-01
Electro-optical devices that work in a similar fashion as PDLCs (polymer-dispersed liquid crystals), produced from cellulose acetate (CA) electrospun fibers deposited onto indium tin oxide coated glass and a nematic liquid crystal (E7), were studied. CA and the CA/liquid crystal composite were characterized by multiple investigation techniques, such as polarized optical microscopy, dielectric spectroscopy and impedance measurements. Dielectric constant and electric energy loss were studied as a function of frequency and temperature. The activation energy was evaluated and the relaxation time was obtained by fitting the spectra of the dielectric loss with the Havriliak–Negami functions. To determine the electrical characteristics of the studied samples, impedance measurements results were treated using the Cole–Cole diagram and the three-element equivalent model. PMID:29441261
Electrical properties of a liquid crystal dispersed in an electrospun cellulose acetate network.
Maximean, Doina Manaila; Danila, Octavian; Almeida, Pedro L; Ganea, Constantin Paul
2018-01-01
Electro-optical devices that work in a similar fashion as PDLCs (polymer-dispersed liquid crystals), produced from cellulose acetate (CA) electrospun fibers deposited onto indium tin oxide coated glass and a nematic liquid crystal (E7), were studied. CA and the CA/liquid crystal composite were characterized by multiple investigation techniques, such as polarized optical microscopy, dielectric spectroscopy and impedance measurements. Dielectric constant and electric energy loss were studied as a function of frequency and temperature. The activation energy was evaluated and the relaxation time was obtained by fitting the spectra of the dielectric loss with the Havriliak-Negami functions. To determine the electrical characteristics of the studied samples, impedance measurements results were treated using the Cole-Cole diagram and the three-element equivalent model.
Tao, Jiayou; Liu, Nishuang; Li, Luying; Su, Jun; Gao, Yihua
2014-03-07
A solid-state high performance flexible asymmetric supercapacitor (ASC) was fabricated. Its anode is based on organic-inorganic materials, where polypyrrole (PPy) is uniformly wrapped on MnO2 nanoflowers grown on carbon cloth (CC), and its cathode is made of activated carbon (AC) on CC. The ASC has an areal capacitance of 1.41 F cm(-2) and an energy density of 0.63 mW h cm(-2) at a power density of 0.9 mW cm(-2). An energy storage unit fabricated using multiple ASCs can drive a light-emitting diode (LED) segment display, a mini motor and even a toy car after full charging. The high-performance ASCs have significant potential applications in flexible electronics and electrical vehicles.
Background in X-ray astronomy proportional counters
NASA Technical Reports Server (NTRS)
Bower, C. R.; Dietz, K. L.; Ramsey, B. D.; Weisskopf, M. C.
1991-01-01
The authors report the results of an investigation into the nature of background events in proportional counters sensitive to X-ray photons having energy of less than 150 keV. Even with the use of thick shields composed of high-atomic-number material, a significant flux background in the detector's energy region can result from multiple Compton scattering in the mass surrounding the active region of the detector. The importance of the selection of detector components in the reduction of the background by more than an order of magnitude is emphasized. Experimental results are shown to agree qualitatively with Monte Carlo simulations. It is concluded that escape gating is a powerful means of determining the nature of background in flight detectors: the single/pair ratios reveal whether the detected events are charged particles or photons.
Bertocci, Michele A; Bebko, Genna; Dwojak, Amanda; Iyengar, Satish; Ladouceur, Cecile D; Fournier, Jay C; Versace, Amelia; Perlman, Susan B; Almeida, Jorge R C; Travis, Michael J; Gill, Mary Kay; Bonar, Lisa; Schirda, Claudiu; Diwadkar, Vaibhav A; Sunshine, Jeffrey L; Holland, Scott K; Kowatch, Robert A; Birmaher, Boris; Axelson, David; Horwitz, Sarah M; Frazier, Thomas; Arnold, L Eugene; Fristad, Mary A; Youngstrom, Eric A; Findling, Robert L; Phillips, Mary L
2017-05-01
Changes in neural circuitry function may be associated with longitudinal changes in psychiatric symptom severity. Identification of these relationships may aid in elucidating the neural basis of psychiatric symptom evolution over time. We aimed to distinguish these relationships using data from the Longitudinal Assessment of Manic Symptoms (LAMS) cohort. Forty-one youth completed two study visits (mean=21.3 months). Elastic-net regression (Multiple response Gaussian family) identified emotional regulation neural circuitry that changed in association with changes in depression, mania, anxiety, affect lability, and positive mood and energy dysregulation, accounting for clinical and demographic variables. Non-zero coefficients between change in the above symptom measures and change in activity over the inter-scan interval were identified in right amygdala and left ventrolateral prefrontal cortex. Differing patterns of neural activity change were associated with changes in each of the above symptoms over time. Specifically, from Scan1 to Scan2, worsening affective lability and depression severity were associated with increased right amygdala and left ventrolateral prefrontal cortical activity. Worsening anxiety and positive mood and energy dysregulation were associated with decreased right amygdala and increased left ventrolateral prefrontal cortical activity. Worsening mania was associated with increased right amygdala and decreased left ventrolateral prefrontal cortical activity. These changes in neural activity between scans accounted for 13.6% of the variance; that is 25% of the total explained variance (39.6%) in these measures. Distinct neural mechanisms underlie changes in different mood and anxiety symptoms overtime.
Johar, Kaid; Priya, Anusha; Wong-Riley, Margaret T T
2014-02-01
A major source of energy demand in neurons is the Na(+)/K(+)-ATPase pump that restores the ionic gradient across the plasma membrane subsequent to depolarizing neuronal activity. The energy comes primarily from mitochondrial oxidative metabolism, of which cytochrome c oxidase (COX) is a key enzyme. Recently, we found that all 13 subunits of COX are regulated by specificity (Sp) factors, and that the neuron-specific Sp4, but not Sp1 or Sp3, regulates the expression of key glutamatergic receptor subunits as well. The present study sought to test our hypothesis that Sp4 also regulates Na(+)/K(+)-ATPase subunit genes in neurons. By means of multiple approaches, including in silico analysis, electrophoretic mobility shift and supershift assays, chromatin immunoprecipitation, promoter mutational analysis, over-expression, and RNA interference studies, we found that Sp4, with minor contributions from Sp1 and Sp3, functionally regulate the Atp1a1, Atp1a3, and Atp1b1 subunit genes of Na(+)/K(+)-ATPase in neurons. Transcripts of all three genes were up-regulated by depolarizing KCl stimulation and down-regulated by the impulse blocker tetrodotoxin (TTX), indicating that their expression was activity-dependent. Silencing of Sp4 blocked the up-regulation of these genes induced by KCl, whereas over-expression of Sp4 rescued them from TTX-induced suppression. The effect of silencing or over-expressing Sp4 on primary neurons was much greater than those of Sp1 or Sp3. The binding sites of Sp factors on these genes are conserved among mice, rats and humans. Thus, Sp4 plays an important role in the transcriptional coupling of energy generation and energy consumption in neurons. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Fernández-Alvira, Juan M; te Velde, Saskia J; De Bourdeaudhuij, Ilse; Bere, Elling; Manios, Yannis; Kovacs, Eva; Jan, Natasa; Brug, Johannes; Moreno, Luis A
2013-06-21
It is well known that the prevalence of overweight and obesity is considerably higher among youth from lower socio-economic families, but there is little information about the role of some energy balance-related behaviors in the association between socio-economic status and childhood overweight and obesity. The objective of this paper was to assess the possible mediation role of energy balance-related behaviors in the association between parental education and children's body composition. Data were obtained from the cross sectional study of the "EuropeaN Energy balance Research to prevent excessive weight Gain among Youth" (ENERGY) project. 2121 boys and 2516 girls aged 10 to 12 from Belgium, Greece, Hungary, the Netherlands, Norway, Slovenia and Spain were included in the analyses. Data were obtained via questionnaires assessing obesity related dietary, physical activity and sedentary behaviors and basic anthropometric objectively measured indicators (weight, height, waist circumference). The possible mediating effect of sugared drinks intake, breakfast consumption, active transportation to school, sports participation, TV viewing, computer use and sleep duration in the association between parental education and children's body composition was explored via MacKinnon's product-of-coefficients test in single and multiple mediation models. Two different body composition indicators were included in the models, namely Body Mass Index and waist circumference. The association between parental education and children's body composition was partially mediated by breakfast consumption, sports participation, TV viewing and computer use. Additionally, a suppression effect was found for sugared drinks intake. No mediation effect was found for active transportation and sleep duration. The significant mediators explained a higher proportion of the association between parental education and waist circumference compared to the association between parental education and BMI. Tailored overweight and obesity prevention strategies in low SES preadolescent populations should incorporate specific messages focusing on the importance of encouraging daily breakfast consumption, increasing sports participation and decreasing TV viewing and computer use. However, longitudinal research to support these findings is needed.
Hernández-Vázquez, A; Wolf, B; Pindolia, K; Ortega-Cuellar, D; Hernández-González, R; Heredia-Antúnez, A; Ibarra-González, I; Velázquez-Arellano, A
2013-11-01
Biotin is the prosthetic group of carboxylases that have important roles in the metabolism of glucose, fatty acids and amino acids. Biotinidase has a key role in the reutilization of the biotin, catalyzing the hydrolysis of biocytin (ε-N-biotinyl-l-lysine) and biocytin-containing peptides derived from carboxylase turnover, thus contributing substantially to the bioavailability of this vitamin. Deficient activity of biotinidase causes late-onset multiple carboxylase in humans, whose pathogenic mechanisms are poorly understood. Here we show that a knock-out biotinidase-deficient mouse from a C57BL/6 background that was fed a low biotin diet develops severe ATP deficit with activation of the energy sensor adenosine monophosphate (AMP)-activated protein kinase (AMPK), inhibition of the signaling protein mTOR, driver of protein synthesis and growth, and affecting the expression of central-carbon metabolism genes. In addition, sensitivity to insulin is augmented. These changes are similar to those observed in nutritionally biotin-starved rats. These findings further our understanding of the pathogenesis of human biotinidase deficiency. © 2013 Elsevier Inc. All rights reserved.
Detection of Metallic and Electronic Radar Targets by Acoustic Modulation of Electromagnetic Waves
2017-07-01
reradiated wave is captured by the radar’s receive antenna. The presence of measurable EM energy at any discrete multiple of the audio frequency away...the radar receiver (Rx). The presence of measurable EM energy at any discrete multiple of faudio away from the original RF carrier fRF (i.e., at any n
Multiple pass laser amplifier system
Brueckner, Keith A.; Jorna, Siebe; Moncur, N. Kent
1977-01-01
A laser amplification method for increasing the energy extraction efficiency from laser amplifiers while reducing the energy flux that passes through a flux limited system which includes apparatus for decomposing a linearly polarized light beam into multiple components, passing the components through an amplifier in delayed time sequence and recombining the amplified components into an in phase linearly polarized beam.
NASA Astrophysics Data System (ADS)
Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Brun, H.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Mccartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Schöfbeck, R.; Sigamani, M.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; De Visscher, S.; Delaere, C.; Delcourt, M.; Forthomme, L.; Francois, B.; Giammanco, A.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Nuttens, C.; Piotrzkowski, K.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; De Souza Santos, A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Leggat, D.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M., Jr.; Carrera Jarrin, E.; Assran, Y.; Elkafrawy, T.; Ellithi Kamel, A.; Mahrous, A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Peltola, T.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Dobrzynski, L.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Ruiz Alvarez, J. D.; Sabes, D.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schomakers, C.; Schulte, J. F.; Schulz, J.; Verlage, T.; Weber, H.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Beernaert, K.; Behnke, O.; Behrens, U.; Borras, K.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Gunnellini, P.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Lelek, A.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Seitz, C.; Spannagel, S.; Stefaniuk, N.; Trippkewitz, K. D.; Van Onsem, G. P.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Dreyer, T.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Sander, C.; Scharf, C.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schumann, S.; Schwandt, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; Colombo, F.; De Boer, W.; Descroix, A.; Dierlamm, A.; Fink, S.; Frensch, F.; Friese, R.; Giffels, M.; Gilbert, A.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Schröder, M.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Filipovic, N.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.; Bartók, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, R.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Jain, Sa.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sur, N.; Sutar, B.; Wickramage, N.; Chauhan, S.; Dube, S.; Kapoor, A.; Kothekar, K.; Rane, A.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Cappello, G.; Chiorboli, M.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Bellato, M.; Benato, L.; Boletti, A.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Fanzago, F.; Gonella, F.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Maron, G.; Meneguzzo, A. T.; Montecassiano, F.; Passaseo, M.; Pazzini, J.; Pegoraro, M.; Pozzobon, N.; Ronchese, P.; Sgaravatto, M.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Ventura, S.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; La Licata, C.; Schizzi, A.; Zanetti, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sakharov, A.; Son, D. C.; Yang, Y. C.; Brochero Cifuentes, J. A.; Kim, H.; Kim, T. J.; Song, S.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Jo, Y.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, H.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Casimiro Linares, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Chadeeva, M.; Markin, O.; Popova, E.; Rusinov, V.; Tarkovskii, E.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Baskakov, A.; Belyaev, A.; Boos, E.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Korotkikh, V.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Vardanyan, I.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras De Saa, J. R.; Curras, E.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Benhabib, L.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Guio, F.; De Roeck, A.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; du Pree, T.; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Fartoukh, S.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Knünz, V.; Kortelainen, M. J.; Kousouris, K.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Magini, N.; Malgeri, L.; Mannelli, M.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Piparo, D.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Sauvan, J. B.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Steggemann, J.; Stoye, M.; Takahashi, Y.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lecomte, P.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Yang, Y.; Chen, K. H.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Tsai, J. f.; Tzeng, Y. M.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Polatoz, A.; Tali, B.; Topakli, H.; Zorbilmez, C.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Vardarlı, F. I.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Senkin, S.; Smith, D.; Smith, V. J.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Futyan, D.; Haddad, Y.; Hall, G.; Iles, G.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Nash, J.; Nikitenko, A.; Pela, J.; Penning, B.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Alimena, J.; Benelli, G.; Berry, E.; Cutts, D.; Ferapontov, A.; Garabedian, A.; Hakala, J.; Heintz, U.; Jesus, O.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Syarif, R.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Florent, A.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Malberti, M.; Olmedo Negrete, M.; Paneva, M. I.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Derdzinski, M.; Gerosa, R.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; Mccoll, N.; Mullin, S. D.; Richman, J.; Stuart, D.; Suarez, I.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bendavid, J.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.; Abdullin, S.; Albrow, M.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cremonesi, M.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Lewis, J.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Rossin, R.; Shchutska, L.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bein, S.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Santra, A.; Weinberg, M.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Kalakhety, H.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Osherson, M.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Baringer, P.; Bean, A.; Bruner, C.; Castle, J.; Kenny, R. P., III; Kropivnitskaya, A.; Majumder, D.; Malek, M.; Mcbrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Wang, Q.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Krajczar, K.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Tatar, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Benvenuti, A. C.; Dahmes, B.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bartek, R.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Knowlton, D.; Kravchenko, I.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.; Stieger, B.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Bhattacharya, S.; Hahn, K. A.; Kubik, A.; Low, J. F.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Rupprecht, N.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Zuranski, A.; Malik, S.; Barker, A.; Barnes, V. E.; Benedetti, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Jung, K.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Chou, J. P.; Contreras-Campana, E.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Nash, K.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Krutelyov, V.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Sarangi, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Verwilligen, P.; Woods, N.; CMS Collaboration
2017-05-01
Measurements of strange hadron (KS0, Λ + Λ ‾, and Ξ- +Ξ‾+) transverse momentum spectra in pp, pPb, and PbPb collisions are presented over a wide range of rapidity and event charged-particle multiplicity. The data were collected with the CMS detector at the CERN LHC in pp collisions at √{ s} = 7TeV, pPb collisions at √{sNN} = 5.02TeV, and PbPb collisions at √{sNN} = 2.76TeV. The average transverse kinetic energy is found to increase with multiplicity, at a faster rate for heavier strange particle species in all systems. At similar multiplicities, the difference in average transverse kinetic energy between different particle species is observed to be larger for pp and pPb events than for PbPb events. In pPb collisions, the average transverse kinetic energy is found to be slightly larger in the Pb-going direction than in the p-going direction for events with large multiplicity. The spectra are compared to models motivated by hydrodynamics.
Batis, Carolina; Rodríguez-Ramírez, Sonia; Ariza, Ana Carolina; Rivera, Juan A
2016-09-01
The prevalence of obesity and the intake of discretionary foods [high saturated fat and/or added sugar (HSFAS) products and sugar-sweetened beverages (SSBs)] are high in Mexico. It is important to understand whether the intakes of HSFAS products and SSBs are associated with the context in which they are consumed. Our aim was to estimate the associations between total energy and discretionary food (HSFAS products and SSBs) intakes and the context of eating (mealtime, activity, and place). We used data from 10,087 participants aged ≥1 y from the Mexican National Health and Nutrition Survey 2012. Dietary intake was estimated through a 24-h dietary recall that included questions on mealtime, activity, and place in which each food item was consumed. The associations between energy and discretionary food intakes and the context of eating were estimated by using multiple linear regression stratified by age group and adjusted for sociodemographic variables. Compared with breakfast, the percentage of energy that HSFAS products contributed was 16-29 (range in all age groups) percentage points higher during midafternoon snacks and 16-23 percentage points lower at lunch and almuerzo (Mexican brunch); the percentage of energy from SSBs was 3.4-7.6 percentage points higher during midmorning snacks (P < 0.05). In many age groups and mealtimes, we found that compared with eating only while seated, the percentage of energy as HSFAS was 5.3-14 percentage points higher when watching television (P < 0.05). Compared with eating at home, the percentage of energy from HSFAS was 12-26 percentage points higher on the street and the percentage of energy from SSBs was 3.4-6.0 percentage points higher at school and 2.9-15 percentage points higher at work (P < 0.05). These results highlight the need to promote healthier food selection among the Mexican population when snacking and watching television and healthier food environments at work, school, and on the street. © 2016 American Society for Nutrition.
NASA Astrophysics Data System (ADS)
Hu, Shan
This research explores the application of carbon nanotube (CNT) films for active noise cancellation, solar energy harvesting and energy storage in building windows. The CNT-based components developed herein can be integrated into a solar-powered active noise control system for a building window. First, the use of a transparent acoustic transducer as both an invisible speaker for auxiliary audio playback and for active noise cancellation is accomplished in this work. Several challenges related to active noise cancellation in the window are addressed. These include secondary path estimation and directional cancellation of noise so as to preserve auxiliary audio and internal sounds while preventing transmission of external noise into the building. Solar energy can be harvested at a low rate of power over long durations while acoustic sound cancellation requires short durations of high power. A supercapacitor based energy storage system is therefore considered for the window. Using CNTs as electrode materials, two generations of flexible, thin, and fully solid-state supercapacitors are developed that can be integrated into the window frame. Both generations consist of carbon nanotube films coated on supporting substrates as electrodes and a solid-state polymer gel layer for the electrolyte. The first generation is a single-cell parallel-plate supercapacitor with a working voltage of 3 Volts. Its energy density is competitive with commercially available supercapacitors (which use liquid electrolyte). For many applications that will require higher working voltage, the second-generation multi-cell supercapacitor is developed. A six-cell device with a working voltage as high as 12 Volts is demonstrated here. Unlike the first generation's 3D structure, the second generation has a novel planar (2D) architecture, which makes it easy to integrate multiple cells into a thin and flexible supercapacitor. The multi-cell planar supercapacitor has energy density exceeding that of other planar supercapacitors in literature by more than one order of magnitude. All-solution fabrication processes were developed for both generations to achieve economical and scalable production. In addition to carbon nanotubes, nickel/nickel oxide core-shell nanowires were also studied as electrode materials for supercapacitors, for which high specific capacitance but low working voltage were obtained. Semi-transparent solar cells with carbon nanotube counter electrodes are developed to power the active noise cancellation system. They can be directly mounted on the glass panes and become part of the home window. The 2.67% efficiency achieved is higher than the 1.8% efficiency required for harvesting adequate energy to cancel noise of 70dB Day-Night-Level, which impacts on a north-facing window. In summary, this project develops several fundamental technologies that together can contribute to a solar-powered active noise cancellation system for a building window. At the same time, since the component technologies being developed are fundamental, it is also likely that they will have wider applications in other domains beyond building windows.
Basta, David W; Bergkessel, Megan; Newman, Dianne K
2017-11-28
Microbial growth arrest can be triggered by diverse factors, one of which is energy limitation due to scarcity of electron donors or acceptors. Genes that govern fitness during energy-limited growth arrest and the extent to which they overlap between different types of energy limitation are poorly defined. In this study, we exploited the fact that Pseudomonas aeruginosa can remain viable over several weeks when limited for organic carbon (pyruvate) as an electron donor or oxygen as an electron acceptor. ATP values were reduced under both types of limitation, yet more severely in the absence of oxygen. Using transposon-insertion sequencing (Tn-seq), we identified fitness determinants in these two energy-limited states. Multiple genes encoding general functions like transcriptional regulation and energy generation were required for fitness during carbon or oxygen limitation, yet many specific genes, and thus specific activities, differed in their relevance between these states. For instance, the global regulator RpoS was required during both types of energy limitation, while other global regulators such as DksA and LasR were required only during carbon or oxygen limitation, respectively. Similarly, certain ribosomal and tRNA modifications were specifically required during oxygen limitation. We validated fitness defects during energy limitation using independently generated mutants of genes detected in our screen. Mutants in distinct functional categories exhibited different fitness dynamics: regulatory genes generally manifested a phenotype early, whereas genes involved in cell wall metabolism were required later. Together, these results provide a new window into how P. aeruginosa survives growth arrest. IMPORTANCE Growth-arrested bacteria are ubiquitous in nature and disease yet understudied at the molecular level. For example, growth-arrested cells constitute a major subpopulation of mature biofilms, serving as an antibiotic-tolerant reservoir in chronic infections. Identification of the genes required for survival of growth arrest (encompassing entry, maintenance, and exit) is an important first step toward understanding the physiology of bacteria in this state. Using Tn-seq, we identified and validated genes required for fitness of Pseudomonas aeruginosa when energy limited for organic carbon or oxygen, which represent two common causes of growth arrest for P. aeruginosa in diverse habitats. This unbiased, genome-wide survey is the first to reveal essential activities for a pathogen experiencing different types of energy limitation, finding both shared and divergent activities that are relevant at different survival stages. Future efforts can now be directed toward understanding how the biomolecules responsible for these activities contribute to fitness under these conditions. Copyright © 2017 Basta et al.
Multi-angle VECSEL cavities for dispersion control and multi-color operation
NASA Astrophysics Data System (ADS)
Baker, Caleb; Scheller, Maik; Laurain, Alexandre; Yang, Hwang-Jye; Ruiz Perez, Antje; Stolz, Wolfgang; Addamane, Sadhvikas J.; Balakrishnan, Ganesh; Jones, R. Jason; Moloney, Jerome V.
2017-02-01
We present a novel Vertical External Cavity Surface Emitting Laser (VECSEL) cavity design which makes use of multiple interactions with the gain region under different angles of incidence in a single round trip. This design allows for optimization of the net, round-trip Group Delay Dispersion (GDD) by shifting the GDD of the gain via cavity fold angle while still maintaining the high gain of resonant structures. The effectiveness of this scheme is demonstrated with femtosecond-regime pulses from a resonant structure and record pulse energies for the VECSEL gain medium. In addition, we show that the interference pattern of the intracavity mode within the active region, resulting from the double-angle multifold, is advantageous for operating the laser in CW on multiple wavelengths simultaneously. Power, noise, and mode competition characterization is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, M. C., E-mail: mthompson@trialphaenergy.com; Gota, H.; Putvinski, S.
The C-2U experiment at Tri Alpha Energy studies the evolution of field-reversed configuration (FRC) plasmas sustained by neutral beam injection. Data on the FRC plasma performance are provided by a comprehensive suite of diagnostics that includes magnetic sensors, interferometry, Thomson scattering, spectroscopy, bolometry, reflectometry, neutral particle analyzers, and fusion product detectors. While many of these diagnostic systems were inherited from the preceding experiment C-2, C-2U has a variety of new and upgraded diagnostic systems: multi-chord far-infrared polarimetry, multiple fast imaging cameras with selectable atomic line filters, proton detector arrays, and 100 channel bolometer units capable of observing multiple regions ofmore » the spectrum simultaneously. In addition, extensive ongoing work focuses on advanced methods of measuring separatrix shape and plasma current profile that will facilitate equilibrium reconstruction and active control of the FRC plasma.« less
Investigating Urban Eighth-Grade Students' Knowledge of Energy Resources
ERIC Educational Resources Information Center
Bodzin, Alec
2012-01-01
This study investigated urban eighth-grade students' knowledge of energy resources and associated issues including energy acquisition, energy generation, storage and transport, and energy consumption and conservation. A 39 multiple-choice-item energy resources knowledge assessment was completed by 1043 eighth-grade students in urban schools in two…
Morishita, Tetsuya; Yonezawa, Yasushige; Ito, Atsushi M
2017-07-11
Efficient and reliable estimation of the mean force (MF), the derivatives of the free energy with respect to a set of collective variables (CVs), has been a challenging problem because free energy differences are often computed by integrating the MF. Among various methods for computing free energy differences, logarithmic mean-force dynamics (LogMFD) [ Morishita et al., Phys. Rev. E 2012 , 85 , 066702 ] invokes the conservation law in classical mechanics to integrate the MF, which allows us to estimate the free energy profile along the CVs on-the-fly. Here, we present a method called parallel dynamics, which improves the estimation of the MF by employing multiple replicas of the system and is straightforwardly incorporated in LogMFD or a related method. In the parallel dynamics, the MF is evaluated by a nonequilibrium path-ensemble using the multiple replicas based on the Crooks-Jarzynski nonequilibrium work relation. Thanks to the Crooks relation, realizing full-equilibrium states is no longer mandatory for estimating the MF. Additionally, sampling in the hidden subspace orthogonal to the CV space is highly improved with appropriate weights for each metastable state (if any), which is hardly achievable by typical free energy computational methods. We illustrate how to implement parallel dynamics by combining it with LogMFD, which we call logarithmic parallel dynamics (LogPD). Biosystems of alanine dipeptide and adenylate kinase in explicit water are employed as benchmark systems to which LogPD is applied to demonstrate the effect of multiple replicas on the accuracy and efficiency in estimating the free energy profiles using parallel dynamics.
NASA Astrophysics Data System (ADS)
Garcia, C. G.; Canals, M.; Irizarry, A. A.
2016-02-01
Nowadays a significant amount of wave energy assessments have taken place due to the development of the ocean energy markets worldwide. Energy contained in surface gravity waves is scattered along frequency components that can be described using wave spectra. Correspondingly, characterization and quantification of harvestable wave energy is inherently dictated by the nature of the two-dimensional wave spectrum. The present study uses spectral wave data from the operational SWAN-based CariCOOS Nearshore Wave Model to evaluate the capture efficiency of multiple wave energy converters (WEC). This study revolves around accurately estimating available wave energy as a function of varying spectral distributions, effectively providing a detailed insight concerning local wave conditions for PR and USVI and the resulting available-energy to generated-power ratio. Results in particular, provide a comprehensive characterization of three years' worth of SWAN-based datasets by outlining where higher concentrations of wave energy are localized in the spectrum. Subsequently, the aforementioned datasets were processed to quantify the amount of energy incident on two proposed sites located in PR and USVI. Results were largely influenced by local trade wind activity, which drive predominant sea states, and the amount of North-Atlantic swells that propagate towards the region. Each wave event was numerically analyzed in the frequency domain to evaluate the capacity of a WEC to perform under different spectral distribution scenarios, allowing for a correlation between electrical power output and spectral energy distribution to be established.
Kaus, Joseph W; Harder, Edward; Lin, Teng; Abel, Robert; McCammon, J Andrew; Wang, Lingle
2015-06-09
Recent advances in improved force fields and sampling methods have made it possible for the accurate calculation of protein–ligand binding free energies. Alchemical free energy perturbation (FEP) using an explicit solvent model is one of the most rigorous methods to calculate relative binding free energies. However, for cases where there are high energy barriers separating the relevant conformations that are important for ligand binding, the calculated free energy may depend on the initial conformation used in the simulation due to the lack of complete sampling of all the important regions in phase space. This is particularly true for ligands with multiple possible binding modes separated by high energy barriers, making it difficult to sample all relevant binding modes even with modern enhanced sampling methods. In this paper, we apply a previously developed method that provides a corrected binding free energy for ligands with multiple binding modes by combining the free energy results from multiple alchemical FEP calculations starting from all enumerated poses, and the results are compared with Glide docking and MM-GBSA calculations. From these calculations, the dominant ligand binding mode can also be predicted. We apply this method to a series of ligands that bind to c-Jun N-terminal kinase-1 (JNK1) and obtain improved free energy results. The dominant ligand binding modes predicted by this method agree with the available crystallography, while both Glide docking and MM-GBSA calculations incorrectly predict the binding modes for some ligands. The method also helps separate the force field error from the ligand sampling error, such that deviations in the predicted binding free energy from the experimental values likely indicate possible inaccuracies in the force field. An error in the force field for a subset of the ligands studied was identified using this method, and improved free energy results were obtained by correcting the partial charges assigned to the ligands. This improved the root-mean-square error (RMSE) for the predicted binding free energy from 1.9 kcal/mol with the original partial charges to 1.3 kcal/mol with the corrected partial charges.
2016-01-01
Recent advances in improved force fields and sampling methods have made it possible for the accurate calculation of protein–ligand binding free energies. Alchemical free energy perturbation (FEP) using an explicit solvent model is one of the most rigorous methods to calculate relative binding free energies. However, for cases where there are high energy barriers separating the relevant conformations that are important for ligand binding, the calculated free energy may depend on the initial conformation used in the simulation due to the lack of complete sampling of all the important regions in phase space. This is particularly true for ligands with multiple possible binding modes separated by high energy barriers, making it difficult to sample all relevant binding modes even with modern enhanced sampling methods. In this paper, we apply a previously developed method that provides a corrected binding free energy for ligands with multiple binding modes by combining the free energy results from multiple alchemical FEP calculations starting from all enumerated poses, and the results are compared with Glide docking and MM-GBSA calculations. From these calculations, the dominant ligand binding mode can also be predicted. We apply this method to a series of ligands that bind to c-Jun N-terminal kinase-1 (JNK1) and obtain improved free energy results. The dominant ligand binding modes predicted by this method agree with the available crystallography, while both Glide docking and MM-GBSA calculations incorrectly predict the binding modes for some ligands. The method also helps separate the force field error from the ligand sampling error, such that deviations in the predicted binding free energy from the experimental values likely indicate possible inaccuracies in the force field. An error in the force field for a subset of the ligands studied was identified using this method, and improved free energy results were obtained by correcting the partial charges assigned to the ligands. This improved the root-mean-square error (RMSE) for the predicted binding free energy from 1.9 kcal/mol with the original partial charges to 1.3 kcal/mol with the corrected partial charges. PMID:26085821
The GSFC NASTRAN thermal analyzer new capabilities
NASA Technical Reports Server (NTRS)
Lee, H. P.; Harder, R. L.
1976-01-01
An overview of four analysis capabilities, which developed and integrated into the NASTRAN Thermal Analyzer, is given. To broaden the scope of applications, these additions provide the NTA users with the following capabilities: (1) simulating a thermal louver as a means of the passive thermal control, (2) simulating a fluid loop for transporting energy as a means of the active thermal control, (3) condensing a large sized finite element model for an efficient transient thermal analysis, and (4) entering multiple boundary condition sets in a single submission for execution in steady state thermal analyses.
Characterization of some selected vulcanized and raw silicon rubber materials
NASA Astrophysics Data System (ADS)
Sasikala, A.; Kala, A.
2017-06-01
Silicone Rubber is a high need of importance of Medical devices, Implants, Aviation and Aerospace wiring applications. Silicone rubbers are widely used in industry, and there are in multiple formulations. A raw and vulcanized silicone rubber Chemical and Physical structures of particles was confirmed and mechanical strength has been analyzed by FTIR spectroscopy. Thermal properties studied from Thermo Gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) analysis. Activation energy of the rubber materials were calculated using Broido method, Piloyon-Novikova relation and coats-Red fern methods.
NASA Astrophysics Data System (ADS)
Potter, Andrea; McCune, Matthew A.; de, Ruma; Madjet, Mohamed E.; Chakraborty, Himadri S.
2010-09-01
Considering the photoionization of the Xe@C60 endohedral compound, we study in detail the ionization cross sections of various levels of the system at energies higher than the plasmon resonance region. Five classes of single-electron levels are identified depending on their spectral character. Each class engenders distinct oscillations in the cross section, emerging from the interference between active ionization modes specific to that class. Analysis of the cross sections based on their Fourier transforms unravels oscillation frequencies that carry unique fingerprints of the emitting level.
Myostatin regulates energy homeostasis in the heart and prevents heart failure.
Biesemann, Nadine; Mendler, Luca; Wietelmann, Astrid; Hermann, Sven; Schäfers, Michael; Krüger, Marcus; Boettger, Thomas; Borchardt, Thilo; Braun, Thomas
2014-07-07
Myostatin is a major negative regulator of skeletal muscle mass and initiates multiple metabolic changes, including enhanced insulin sensitivity. However, the function of myostatin in the heart is barely understood, although it is upregulated in the myocardium under several pathological conditions. Here, we aimed to decipher the role of myostatin and myostatin-dependent signaling pathways for cardiac function and cardiac metabolism in adult mice. To avoid potential counterregulatory mechanisms occurring in constitutive and germ-line-based myostatin mutants, we generated a mouse model that allows myostatin inactivation in adult cardiomyocytes. Cardiac MRI revealed that genetic inactivation of myostatin signaling in the adult murine heart caused cardiac hypertrophy and heart failure, partially recapitulating effects of the age-dependent decline of the myostatin paralog growth and differentiation factor 11. We found that myostatin represses AMP-activated kinase activation in the heart via transforming growth factor-β-activated kinase 1, thereby preventing a metabolic switch toward glycolysis and glycogen accumulation. Furthermore, myostatin stimulated expression of regulator of G-protein signaling 2, a GTPase-activating protein that restricts Gaq and Gas signaling and thereby protects against cardiac failure. Inhibition of AMP-activated kinase in vivo rescued cardiac hypertrophy and prevented enhanced glycolytic flow and glycogen accumulation after inactivation of myostatin in cardiomyocytes. Our results uncover an important role of myostatin in the heart for maintaining cardiac energy homeostasis and preventing cardiac hypertrophy. © 2014 American Heart Association, Inc.
Photochemical Water Oxidation Using {PMo12O40@Mo72Fe30}n Based Soft Oxometalate
NASA Astrophysics Data System (ADS)
Das, Santu; Roy, Soumyajit
Finding an alternative energy resource which can produce clean energy at a low cost is one of the major concerns of our times. The conversion of light energy into chemical energy is one key step forward in the direction. With that end in view photochemical water oxidation to produce oxygen plays a crucial role. In the present paper we have synthesized a soft oxometalate {PMo12O40@Mo72Fe30}n(1) from its well-known precursor polyoxometalate constituent [Muller et al., Chem. Commun. 1, 657 (2001)]. It is known that in the matter of catalysis, high surface area, possibility of heterogenization, recoverability makes soft oxometalates (SOMs) attractive as catalytic materials. Here we exploit such advantages of SOMs. The SOM based material acts as an active catalyst for photochemical water oxidation reaction with a maximum turnover number of 20256 and turnover frequency of 24.11min-1. The catalyst material is stable under photochemical reaction conditions and therefore can be reused for multiple photo catalytic water oxidation reaction cycles.
Hu, Youfan; Yang, Jin; Jing, Qingshen; Niu, Simiao; Wu, Wenzhuo; Wang, Zhong Lin
2013-11-26
An unstable mechanical structure that can self-balance when perturbed is a superior choice for vibration energy harvesting and vibration detection. In this work, a suspended 3D spiral structure is integrated with a triboelectric nanogenerator (TENG) for energy harvesting and sensor applications. The newly designed vertical contact-separation mode TENG has a wide working bandwidth of 30 Hz in low-frequency range with a maximum output power density of 2.76 W/m(2) on a load of 6 MΩ. The position of an in-plane vibration source was identified by placing TENGs at multiple positions as multichannel, self-powered active sensors, and the location of the vibration source was determined with an error less than 6%. The magnitude of the vibration is also measured by the output voltage and current signal of the TENG. By integrating the TENG inside a buoy ball, wave energy harvesting at water surface has been demonstrated and used for lighting illumination light, which shows great potential applications in marine science and environmental/infrastructure monitoring.
Prevalence of carpal fracture in Singapore.
Hey, Hwee Weng Dennis; Dennis, Hey Hwee Weng; Chong, Alphonsus Khin Sze; Sze, Alphonsus Chong Khin; Murphy, Diarmuid
2011-02-01
To determine the prevalence of carpal fracture in Singapore, to compare demographic differences between isolated scaphoid and other carpal fractures, and to identify parameters associated with multiple carpal fractures. A total of 149 patients with 162 carpal fractures seen at the National University Hospital in 2009 were enrolled into the study. We retrospectively reviewed their case records and radiographic studies. Pertinent demographic data including patient age, gender, occupation, injured wrist, dominant hand, mechanism of injury, and type of carpal fracture were then recorded and statistically analyzed. We also performed a separate analysis of isolated scaphoid versus other carpal fractures and single versus multiple carpal fractures. Patients with carpal fracture were predominantly male (132), below 40 years of age (116), and usually right hand dominant (136). The more common occupations were students (30), full-time military national servicemen (24), and construction workers (14). Most presented after a fall on an outstretched hand from standing height (81). The scaphoid was the most common single carpal fracture (99). This was followed by triquetrum (27), hamate (5), pisiform (4), lunate (2), capitate (1), and trapezium (1). No fracture of the trapezoid was encountered. Ten patients had multiple carpal fractures, of which 4 were perilunate fracture dislocations. The mean age and male/female ratio for isolated scaphoid and other carpal fractures was 26 years versus 41 years (p<.001) and 13:1 versus 4:1 (p=.036), respectively. A high-energy mechanism of injury was the only parameter associated with multiple carpal fractures (p=.009). The prevalence of carpal fracture in our population was consistent with studies performed in other countries. Military conscription was identified as an at-risk activity predisposing to carpal fracture. Isolated scaphoid and other carpal fractures exhibit different demographics in terms of age and gender, which may be related to differences in the mechanism of injury. A high-energy mechanism of injury was associated with multiple carpal fractures. Copyright © 2011 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Jurak, Gregor; Sorić, Maroje; Starc, Gregor; Kovač, Marjeta; Mišigoj-Duraković, Marjeta; Borer, Katarina; Strel, Janko
2015-01-01
This multi-center study was conducted to objectively evaluate energy expenditure and physical activity (PA) patterns on school days and weekends in urban 11-year-olds. The sample consisted of 241 children from three cities: Zagreb, Ljubljana (both in Central Europe) and Ann Arbor (United States). Energy expenditure and PA were assessed during two school days and two weekend days using a multiple-sensor body monitor. Differences between the cities were observed for all PA variables. The highest level of moderate to vigorous PA (MVPA) was noted in Ljubljana boys [284 (98) min/day] and the lowest in Zagreb girls [179 (95) min/day]. In Zagreb and Ljubljana, boys were more physically active than girls, while in Ann Arbor the opposite was observed. In contrast, no gender difference in sedentary behavior was observed in any of the cities. A decline in PA from school days to weekends was noted in all city groups in both genders. However, the magnitude of the reduction in daily energy expenditure differed between the cities, with the largest differences being observed in Ljubljana and the smallest in Ann Arbor. In all three city groups, the great majority of boys and girls achieved current recommendations of 60 min of MVPA either during school days or weekends. Weekends seem to be an appropriate target when promoting PA in 11-year-olds in all the cities included in the study. Increasing vigorous activity on weekends seems to be of particular importance in Zagreb and Ljubljana. © 2014 Wiley Periodicals, Inc.
Physical Activity and Its Correlates in Youth with Multiple Sclerosis.
Grover, Stephanie A; Sawicki, Carolyn P; Kinnett-Hopkins, Dominique; Finlayson, Marcia; Schneiderman, Jane E; Banwell, Brenda; Till, Christine; Motl, Robert W; Yeh, E Ann
2016-12-01
To investigate physical activity levels in youth with multiple sclerosis and monophasic acquired demyelinating syndromes ([mono-ADS], ie, children without relapsing disease) compared with healthy controls and to determine factors that contribute to engagement in physical activity. We hypothesized that greater physical activity goal setting and physical activity self-efficacy would be associated with greater levels of vigorous physical activity in youth with multiple sclerosis. A total of 68 consecutive patients (27 multiple sclerosis, 41 mono-ADS) and 37 healthy controls completed fatigue, depression, Physical Activity Self-Efficacy Scale, perceived disability, Exercise Goal-Setting scale, and physical activity questionnaires, and wore an accelerometer for 7 days. All patients had no ambulatory limitations (Expanded Disability Status Scale, scores all <4). Youth with multiple sclerosis engaged in fewer minutes per day of vigorous (P = .009) and moderate and vigorous physical activity (P = .048) than did patients with mono-ADS and healthy controls. A lower proportion of the group with multiple sclerosis (63%) reported participating in any strenuous physical activity than the mono-ADS (85%) and healthy control (89%) groups (P = .020). When we adjusted for age and sex, the Physical Activity Self-Efficacy Scale and Exercise Goal-Setting scale were associated positively with vigorous physical activity in the group with multiple sclerosis. Fatigue and depression did not predict physical activity or accelerometry metrics. Youth with multiple sclerosis participate in less physical activity than their counterparts with mono-ADS and healthy controls. Physical activity self-efficacy and exercise goal setting serve as potentially modifiable correlates of physical activity, and are measures suited to future interventions aimed to increase physical activity in youth with multiple sclerosis. Copyright © 2016 Elsevier Inc. All rights reserved.
Energy Density is Not a Consistent Correlate of Adiposity in Women During the Menopausal Transition.
Lafrenière, Jacynthe; Prud'homme, Denis; Brochu, Martin; Rabasa-Lhoret, Rémi; Lavoie, Jean-Marc; Doucet, Éric
2017-03-01
The association between the energy density (ED) of foods and adiposity has been reported previously. However, whether the contribution of ED to adiposity remains significant when controlled for energy intake (EI) and physical activity energy expenditure (PAEE) remains to be clearly established. We aimed to investigate the independent contribution of ED to variations in body composition in women during the menopausal transition. Sixty-seven women from the MONET cohort study were analyzed. Seven-day food records were used to assess EI and ED. Body composition (body fat mass (FM) and trunk-fat mass (TFM)) was measured with dual-energy X-ray absorptiometry; PAEE was assessed with accelerometers. This secondary analysis of data included measurements obtained at years 1 and 5 of the study. Mean ED was correlated with FM (r = 0.22; P = 0.04) and TFM (r = 0.22; P = 0.04) at year 1, but not at year 5. The multiple regression analysis showed that EI and ED contributed to 14% of the variance in FM and TFM at year 1. These results suggest that ED is a modest but inconsistent determinant of adiposity in healthy women at the time of the menopause transition.
Kanno, Nanako; Matsuura, Katsumi; Haruta, Shin
2018-03-29
Purple photosynthetic bacteria utilize light energy for growth. We previously demonstrated that light energy contributed to prolonging the survival of multiple purple bacteria under carbon-starved conditions. In order to clarify the effects of illumination on metabolic states under carbon-starved, non-growing conditions, we herein compared the metabolic profiles of starved cells in the light and dark using the purple bacterium, Rhodopseudomonas palustris. The metabolic profiles of starved cells in the light were markedly different from those in the dark. After starvation for 5 d in the light, cells showed increases in the amount of ATP and the NAD + /NADH ratio. Decreases in the amounts of most metabolites related to glycolysis and the TCA cycle in energy-rich starved cells suggest the active utilization of these metabolites for the modification of cellular components. Starvation in the dark induced the consumption of cellular compounds such as amino acids, indicating that the degradation of these cellular components produced ATP in order to maintain viability under energy-poor conditions. The present results suggest that intracellular energy levels alter survival strategies under carbon-starved conditions through metabolism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robichaud, R.; Fields, J.; Roberts, J. O.
The U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage development of renewable energy (RE) on potentially contaminated land and mine sites. EPA is collaborating with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to evaluate RE options at Naval Station (NAVSTA) Newport in Newport, Rhode Island where multiple contaminated areas pose a threat to human health and the environment. Designated a superfund site on the National Priorities List in 1989, the base is committed to working toward reducing the its dependency on fossil fuels, decreasing its carbon footprint, and implementing RE projectsmore » where feasible. The Naval Facilities Engineering Service Center (NFESC) partnered with NREL in February 2009 to investigate the potential for wind energy generation at a number of Naval and Marine bases on the East Coast. NAVSTA Newport was one of several bases chosen for a detailed, site-specific wind resource investigation. NAVSTA Newport, in conjunction with NREL and NFESC, has been actively engaged in assessing the wind resource through several ongoing efforts. This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and a survey of potential wind turbine options based upon the site-specific wind resource.« less
Lam, Raymond W; Wajsbrot, Dalia B; Meier, Ellen; Pappadopulos, Elizabeth; Mackell, Joan A; Boucher, Matthieu
2017-09-01
Nine randomized, double-blind, placebo-controlled studies of major depressive disorder were pooled to evaluate the effects of desvenlafaxine 50- and 100-mg/d on energy and lassitude in adults with major depressive disorder ( n=4279). Changes from baseline to endpoint in 17-item Hamilton Rating Scale for Depression (HAM-D 17 ) Work and Activities, Retardation, and Somatic Symptoms General items, HAM-D 17 psychomotor retardation factor, and Montgomery-Åsberg Depression Rating Scale Lassitude item were analyzed with a mixed model for repeated measures analysis of variance. Associations between residual energy measures and functional impairment, based on the Sheehan Disability Scale, were modeled using stepwise multiple linear regression. Improvement from baseline was significantly greater for both desvenlafaxine doses versus placebo on all energy symptom outcomes at week 8 (all p⩽0.005). Both early improvement in HAM-D 17 psychomotor retardation at week 2 and residual energy symptoms at week 8 were associated with Sheehan Disability Scale total score at week 8 (all p⩽0.001). Among Sheehan Disability Scale remitters and responders, the HAM-D 17 psychomotor retardation score at week 8 was significantly lower with desvenlafaxine (both doses) than placebo. Desvenlafaxine 50 and 100 mg/d significantly improved energy and lassitude symptoms in patients with major depressive disorder. Both early improvement in energy and fewer residual energy symptoms were associated with functional improvement.
Statistical hadronization with exclusive channels in e +e - annihilation
Ferroni, L.; Becattini, F.
2012-01-01
We present a systematic analysis of exclusive hadronic channels in e +e - collisions at centre-of-mass energies between 2.1 and 2.6 GeV within the statistical hadronization model. Because of the low multiplicities involved, calculations have been carried out in the full microcanonical ensemble, including conservation of energy-momentum, angular momentum, parity, isospin, and all relevant charges. We show that the data is in an overall good agreement with the model for an energy density of about 0.5 GeV/fm 3 and an extra strangeness suppression parameter γ S 0:7, essentially the same values found with fits to inclusive multiplicities at higher energy.
Exciton multiplication from first principles.
Jaeger, Heather M; Hyeon-Deuk, Kim; Prezhdo, Oleg V
2013-06-18
Third-generation photovolatics require demanding cost and power conversion efficiency standards, which may be achieved through efficient exciton multiplication. Therefore, generating more than one electron-hole pair from the absorption of a single photon has vast ramifications on solar power conversion technology. Unlike their bulk counterparts, irradiated semiconductor quantum dots exhibit efficient exciton multiplication, due to confinement-enhanced Coulomb interactions and slower nonradiative losses. The exact characterization of the complicated photoexcited processes within quantum-dot photovoltaics is a work in progress. In this Account, we focus on the photophysics of nanocrystals and investigate three constituent processes of exciton multiplication, including photoexcitation, phonon-induced dephasing, and impact ionization. We quantify the role of each process in exciton multiplication through ab initio computation and analysis of many-electron wave functions. The probability of observing a multiple exciton in a photoexcited state is proportional to the magnitude of electron correlation, where correlated electrons can be simultaneously promoted across the band gap. Energies of multiple excitons are determined directly from the excited state wave functions, defining the threshold for multiple exciton generation. This threshold is strongly perturbed in the presence of surface defects, dopants, and ionization. Within a few femtoseconds following photoexcitation, the quantum state loses coherence through interactions with the vibrating atomic lattice. The phase relationship between single excitons and multiple excitons dissipates first, followed by multiple exciton fission. Single excitons are coupled to multiple excitons through Coulomb and electron-phonon interactions, and as a consequence, single excitons convert to multiple excitons and vice versa. Here, exciton multiplication depends on the initial energy and coupling magnitude and competes with electron-phonon energy relaxation. Multiple excitons are generated through impact ionization within picoseconds. The basis of exciton multiplication in quantum dots is the collective result of photoexcitation, dephasing, and nonadiabatic evolution. Each process is characterized by a distinct time-scale, and the overall multiple exciton generation dynamics is complete by about 10 ps. Without relying on semiempirical parameters, we computed quantum mechanical probabilities of multiple excitons for small model systems. Because exciton correlations and coherences are microscopic, quantum properties, results for small model systems can be extrapolated to larger, realistic quantum dots.
High-order above-threshold dissociation of molecules.
Lu, Peifen; Wang, Junping; Li, Hui; Lin, Kang; Gong, Xiaochun; Song, Qiying; Ji, Qinying; Zhang, Wenbin; Ma, Junyang; Li, Hanxiao; Zeng, Heping; He, Feng; Wu, Jian
2018-02-27
Electrons bound to atoms or molecules can simultaneously absorb multiple photons via the above-threshold ionization featured with discrete peaks in the photoelectron spectrum on account of the quantized nature of the light energy. Analogously, the above-threshold dissociation of molecules has been proposed to address the multiple-photon energy deposition in the nuclei of molecules. In this case, nuclear energy spectra consisting of photon-energy spaced peaks exceeding the binding energy of the molecular bond are predicted. Although the observation of such phenomena is difficult, this scenario is nevertheless logical and is based on the fundamental laws. Here, we report conclusive experimental observation of high-order above-threshold dissociation of H 2 in strong laser fields where the tunneling-ionized electron transfers the absorbed multiphoton energy, which is above the ionization threshold to the nuclei via the field-driven inelastic rescattering. Our results provide an unambiguous evidence that the electron and nuclei of a molecule as a whole absorb multiple photons, and thus above-threshold ionization and above-threshold dissociation must appear simultaneously, which is the cornerstone of the nowadays strong-field molecular physics. Copyright © 2018 the Author(s). Published by PNAS.
Proceedings of a Coastal and Marine Spatial Planning Workshop for the Western United States
Thorsteinson, Lyman; Hirsch, Derrick; Helweg, David; Dhanju, Amardeep; Barmenski, Joan; Ferrero, Richard
2011-01-01
Recent scientific and ocean policy assessments demonstrate that a fundamental change in our current management system is required to achieve the long-term health of our ocean, coasts, and Great Lakes in order to sustain the services and benefits they provide to society. The present (2011) species- and sector-centric way we manage these ecosystems cannot account properly for cumulative effects, sustaining multiple ecosystem services, and holistically and explicitly evaluating the tradeoffs associated with proposed alternative and multiple human uses. A transition to an ecosystem-based approach to management and conservation of coastal and marine resources is needed. Competing uses and activities such as commerce, recreation, cultural practices, energy development, conservation, and national security are increasing pressure for new and expanded resource usage in coastal marine ecosystems. Current management efforts use a sector-by-sector approach that mostly focuses on a limited range of tools and outcomes [for example, oil and gas leases, fishery management plans, and Marine Protected Areas (MPAs)]. A comprehensive, ecosystem-based, and proactive approach to planning and managing these uses and activities is needed. Further, scientific understanding and information are essential to achieve an integrated decision-making process that includes knowledge of ecosystem services, existing and possible future conditions, and potential consequences of natural and anthropogenic events. Because no single government agency has executive authority for coastal or ocean resources, conflicting objectives around competing uses abound. In recent years, regional- and state-level initiatives in Coastal and Marine Spatial Planning (CMSP) have emerged to coordinate management activities. In some respects, the components and steps of the overall CMSP process are similar to how existing ocean resources are regulated and managed. For example, the Bureau of Ocean Energy Management Regulation and Enforcement (BOEMRE) uses spatial planning exercises in State Renewable Energy Task Force meetings to identify competing and conflicting ocean uses, and to delineate areas suitable for renewable energy development. Similarly terrestrial areas such as in national parks and national wildlife refuges managed by the Department of the Interior (DOI) prepare management plans for preservation and restoration of species and habitats of concern, some of which are protected by law. The analogy to CMSP is clear - multiple users and multiple expectations, resulting in the requirement to establish spatial plans for management of different resources and different ecosystem services. A two-day workshop on December 1-2, 2010, was convened for DOI representatives and several key non-DOI participants with roles in CMSP as a step toward clarifying national perspectives and consequences of the National Ocean Policy for the West (appendix 1). Discussions helped to develop an understanding of CMSP from the federal perspective and to identify regional priorities. An overarching theme was to promote a better understanding of current and future science needs. The workshop format included briefings by key Federal agencies on their understanding of the national focus followed by discussion of regional issues, including the needs for scientific information and coordination. The workshop also explored potential science contributions by Federal agencies and others; utilizing current capabilities, data, and information systems; and provided a foundation for possible future regional workshops focusing in turn on the West Coast Region (California, Oregon, and Washington), Pacific Islands (sometimes referred to as Oceania) and Alaska. Participants were asked to share information in the following areas, recognizing that the purpose would be to learn more about the national perspective (see appendixes 2-4): Explore how the Western U.S. (Alaska, Pacific Islands, and West Coast Region) migh
NASA Astrophysics Data System (ADS)
Raghav, Anil N.; Kule, Ankita
2018-05-01
The large-scale magnetic cloud such as coronal mass ejections (CMEs) is the fundamental driver of the space weather. The interaction of the multiple-CMEs in interplanetary space affects their dynamic evolution and geo-effectiveness. The complex and merged multiple magnetic clouds appear as the in situ signature of the interacting CMEs. The Alfvén waves are speculated to be one of the major possible energy exchange/dissipation mechanism during the interaction. However, no such observational evidence has been found in the literature. The case studies of CME-CME collision events suggest that the magnetic and thermal energy of the CME is converted into the kinetic energy. Moreover, magnetic reconnection process is justified to be responsible for merging of multiple magnetic clouds. Here, we present unambiguous evidence of sunward torsional Alfvén waves in the interacting region after the super-elastic collision of multiple CMEs. The Walén relation is used to confirm the presence of Alfvén waves in the interacting region of multiple CMEs/magnetic clouds. We conclude that Alfvén waves and magnetic reconnection are the possible energy exchange/dissipation mechanisms during large-scale magnetic clouds collisions. This study has significant implications not only in CME-magnetosphere interactions but also in the interstellar medium where interactions of large-scale magnetic clouds are possible.
Wang, Jin; Li, Bin; Xia, Feng; Kim, Chang-Seob; Kim, Jeong-Uk
2014-08-18
Traffic patterns in wireless sensor networks (WSNs) usually follow a many-to-one model. Sensor nodes close to static sinks will deplete their limited energy more rapidly than other sensors, since they will have more data to forward during multihop transmission. This will cause network partition, isolated nodes and much shortened network lifetime. Thus, how to balance energy consumption for sensor nodes is an important research issue. In recent years, exploiting sink mobility technology in WSNs has attracted much research attention because it can not only improve energy efficiency, but prolong network lifetime. In this paper, we propose an energy efficient distance-aware routing algorithm with multiple mobile sink for WSNs, where sink nodes will move with a certain speed along the network boundary to collect monitored data. We study the influence of multiple mobile sink nodes on energy consumption and network lifetime, and we mainly focus on the selection of mobile sink node number and the selection of parking positions, as well as their impact on performance metrics above. We can see that both mobile sink node number and the selection of parking position have important influence on network performance. Simulation results show that our proposed routing algorithm has better performance than traditional routing ones in terms of energy consumption.
Wang, Jin; Li, Bin; Xia, Feng; Kim, Chang-Seob; Kim, Jeong-Uk
2014-01-01
Traffic patterns in wireless sensor networks (WSNs) usually follow a many-to-one model. Sensor nodes close to static sinks will deplete their limited energy more rapidly than other sensors, since they will have more data to forward during multihop transmission. This will cause network partition, isolated nodes and much shortened network lifetime. Thus, how to balance energy consumption for sensor nodes is an important research issue. In recent years, exploiting sink mobility technology in WSNs has attracted much research attention because it can not only improve energy efficiency, but prolong network lifetime. In this paper, we propose an energy efficient distance-aware routing algorithm with multiple mobile sink for WSNs, where sink nodes will move with a certain speed along the network boundary to collect monitored data. We study the influence of multiple mobile sink nodes on energy consumption and network lifetime, and we mainly focus on the selection of mobile sink node number and the selection of parking positions, as well as their impact on performance metrics above. We can see that both mobile sink node number and the selection of parking position have important influence on network performance. Simulation results show that our proposed routing algorithm has better performance than traditional routing ones in terms of energy consumption. PMID:25196015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Di; Jin, Chunlian; Balducci, Patrick J.
2013-12-01
This volume presents the battery storage evaluation tool developed at Pacific Northwest National Laboratory (PNNL), which is used to evaluate benefits of battery storage for multiple grid applications, including energy arbitrage, balancing service, capacity value, distribution system equipment deferral, and outage mitigation. This tool is based on the optimal control strategies to capture multiple services from a single energy storage device. In this control strategy, at each hour, a look-ahead optimization is first formulated and solved to determine battery base operating point. The minute by minute simulation is then performed to simulate the actual battery operation. This volume provide backgroundmore » and manual for this evaluation tool.« less
Energy Efficiency in Public Buildings through Context-Aware Social Computing.
García, Óscar; Alonso, Ricardo S; Prieto, Javier; Corchado, Juan M
2017-04-11
The challenge of promoting behavioral changes in users that leads to energy savings in public buildings has become a complex task requiring the involvement of multiple technologies. Wireless sensor networks have a great potential for the development of tools, such as serious games, that encourage acquiring good energy and healthy habits among users in the workplace. This paper presents the development of a serious game using CAFCLA, a framework that allows for integrating multiple technologies, which provide both context-awareness and social computing. Game development has shown that the data provided by sensor networks encourage users to reduce energy consumption in their workplace and that social interactions and competitiveness allow for accelerating the achievement of good results and behavioral changes that favor energy savings.
Signaling pathways targeted by curcumin in acute and chronic injury: burns and photo-damaged skin.
Heng, Madalene C Y
2013-05-01
Phosphorylase kinase (PhK) is a unique enzyme in which the spatial arrangements of the specificity determinants can be manipulated to allow the enzyme to recognize substrates of different specificities. In this way, PhK is capable of transferring high energy phosphate bonds from ATP to serine/threonine and tyrosine moieties in serine/threonine kinases and tyrosine kinases, thus playing a key role in the activation of multiple signaling pathways. Phosphorylase kinase is released within five minutes following injury and is responsible for activating inflammatory pathways in injury-activated scarring following burns. In photo-damaged skin, PhK plays an important role in promoting photocarcinogenesis through activation of NF-kB-dependent signaling pathways with inhibition of apoptosis of photo-damaged cells, thus promoting the survival of precancerous cells and allowing for subsequent tumor transformation. Curcumin, the active ingredient in the spice, turmeric, is a selective and non-competitive PhK inhibitor. By inhibition of PhK, curcumin targets multiple PhK-dependent pathways, with salutary effects on a number of skin diseases induced by injury. In this paper, we show that curcumin gel produces rapid healing of burns, with little or no residual scarring. Curcumin gel is also beneficial in the repair of photo-damaged skin, including pigmentary changes, solar elastosis, thinning of the skin with telangiectasia (actinic poikiloderma), and premalignant lesions such as actinic keratoses, dysplastic nevi, and advanced solar lentigines, but the repair process takes many months. © 2012 The International Society of Dermatology.
Ji, Yun; Zhang, Zi-Hui; Tan, Swee Tiam; Ju, Zhen Gang; Kyaw, Zabu; Hasanov, Namig; Liu, Wei; Sun, Xiao Wei; Demir, Hilmi Volkan
2013-01-15
We study hole transport behavior of InGaN/GaN light-emitting diodes with the dual wavelength emission method. It is found that at low injection levels, light emission is mainly from quantum wells near p-GaN, indicating that hole transport depth is limited in the active region. Emission from deeper wells only occurs under high current injection. However, with Mg-doped quantum barriers, holes penetrate deeper within the active region even under low injection, increasing the radiative recombination. Moreover, the improved hole transport leads to reduced forward voltage and enhanced light generation. This is also verified by numerical analysis of hole distribution and energy band structure.
NASA Astrophysics Data System (ADS)
Tong, Kangkang; Fang, Andrew; Yu, Huajun; Li, Yang; Shi, Lei; Wang, Yangjun; Wang, Shuxiao; Ramaswami, Anu
2017-12-01
Utilizing low-grade waste heat from industries to heat and cool homes and businesses through fourth generation district energy systems (DES) is a novel strategy to reduce energy use. This paper develops a generalizable methodology to estimate the energy saving potential for heating/cooling in 20 cities in two Chinese provinces, representing cold winter and hot summer regions respectively. We also conduct a life-cycle analysis of the new infrastructure required for energy exchange in DES. Results show that heating and cooling energy use reduction from this waste heat exchange strategy varies widely based on the mix of industrial, residential and commercial activities, and climate conditions in cities. Low-grade heat is found to be the dominant component of waste heat released by industries, which can be reused for both district heating and cooling in fourth generation DES, yielding energy use reductions from 12%-91% (average of 58%) for heating and 24%-100% (average of 73%) for cooling energy use in the different cities based on annual exchange potential. Incorporating seasonality and multiple energy exchange pathways resulted in energy savings reductions from 0%-87%. The life-cycle impact of added infrastructure was small (<3% for heating) and 1.9% ~ 6.5% (cooling) of the carbon emissions from fuel use in current heating or cooling systems, indicating net carbon savings. This generalizable approach to delineate waste heat potential can help determine suitable cities for the widespread application of industrial waste heat re-utilization.
Goddard, Braden; Croft, Stephen; Lousteau, Angela; ...
2016-05-25
Safeguarding nuclear material is an important and challenging task for the international community. One particular safeguards technique commonly used for uranium assay is active neutron correlation counting. This technique involves irradiating unused uranium with ( α,n) neutrons from an Am-Li source and recording the resultant neutron pulse signal which includes induced fission neutrons. Although this non-destructive technique is widely employed in safeguards applications, the neutron energy spectra from an Am-Li sources is not well known. Several measurements over the past few decades have been made to characterize this spectrum; however, little work has been done comparing the measured spectra ofmore » various Am-Li sources to each other. This paper examines fourteen different Am-Li spectra, focusing on how these spectra affect simulated neutron multiplicity results using the code Monte Carlo N-Particle eXtended (MCNPX). Two measurement and simulation campaigns were completed using Active Well Coincidence Counter (AWCC) detectors and uranium standards of varying enrichment. The results of this work indicate that for standard AWCC measurements, the fourteen Am-Li spectra produce similar doubles and triples count rates. Finally, the singles count rates varied by as much as 20% between the different spectra, although they are usually not used in quantitative analysis.« less
Chapter 3: Assessing the Electric System Benefits of Clean Energy
Chapter 3 of Assessing the Multiple Benefits of Clean Energy presents detailed information about the energy system, specifically electricity benefits of clean energy, to help policy makers understand how to identify and assess these benefits based upon t
Forward-backward emission of target evaporated fragments in high energy nucleus-nucleus collisions
NASA Astrophysics Data System (ADS)
Zhang, Zhi; Ma, Tian-Li; Zhang, Dong-Hai
2015-10-01
The multiplicity distribution, multiplicity moment, scaled variance, entropy and reduced entropy of target evaporated fragments emitted in forward and backward hemispheres in 12 A GeV 4He, 3.7 A GeV 16O, 60 A GeV 16O, 1.7 A GeV 84Kr and 10.7 A GeV 197Au -induced emulsion heavy target (AgBr) interactions are investigated. It is found that the multiplicity distribution of target evaporated fragments emitted in both forward and backward hemispheres can be fitted by a Gaussian distribution. The multiplicity moments of target evaporated particles emitted in the forward and backward hemispheres increase with the order of the moment q, and the second-order multiplicity moment is energy independent over the entire energy range for all the interactions in the forward and backward hemisphere. The scaled variance, a direct measure of multiplicity fluctuations, is close to one for all the interactions, which indicate a correlation among the produced particles. The entropy of target evaporated fragments emitted in both forward and backward hemispheres are the same within experimental errors. Supported by National Science Foundation of China (11075100), Natural Science Foundation of Shanxi Province (2011011001-2) and the Shanxi Provincial Foundation for Returned Overseas Chinese Scholars, (2011-058)
Hagen, Live H; Frank, Jeremy A; Zamanzadeh, Mirzaman; Eijsink, Vincent G H; Pope, Phillip B; Horn, Svein J; Arntzen, Magnus Ø
2017-01-15
In this study, we used multiple meta-omic approaches to characterize the microbial community and the active metabolic pathways of a stable industrial biogas reactor with food waste as the dominant feedstock, operating at thermophilic temperatures (60°C) and elevated levels of free ammonia (367 mg/liter NH 3 -N). The microbial community was strongly dominated (76% of all 16S rRNA amplicon sequences) by populations closely related to the proteolytic bacterium Coprothermobacter proteolyticus. Multiple Coprothermobacter-affiliated strains were detected, introducing an additional level of complexity seldom explored in biogas studies. Genome reconstructions provided metabolic insight into the microbes that performed biomass deconstruction and fermentation, including the deeply branching phyla Dictyoglomi and Planctomycetes and the candidate phylum "Atribacteria" These biomass degraders were complemented by a synergistic network of microorganisms that convert key fermentation intermediates (fatty acids) via syntrophic interactions with hydrogenotrophic methanogens to ultimately produce methane. Interpretation of the proteomics data also suggested activity of a Methanosaeta phylotype acclimatized to high ammonia levels. In particular, we report multiple novel phylotypes proposed as syntrophic acetate oxidizers, which also exert expression of enzymes needed for both the Wood-Ljungdahl pathway and β-oxidation of fatty acids to acetyl coenzyme A. Such an arrangement differs from known syntrophic oxidizing bacteria and presents an interesting hypothesis for future studies. Collectively, these findings provide increased insight into active metabolic roles of uncultured phylotypes and presents new synergistic relationships, both of which may contribute to the stability of the biogas reactor. Biogas production through anaerobic digestion of organic waste provides an attractive source of renewable energy and a sustainable waste management strategy. A comprehensive understanding of the microbial community that drives anaerobic digesters is essential to ensure stable and efficient energy production. Here, we characterize the intricate microbial networks and metabolic pathways in a thermophilic biogas reactor. We discuss the impact of frequently encountered microbial populations as well as the metabolism of newly discovered novel phylotypes that seem to play distinct roles within key microbial stages of anaerobic digestion in this stable high-temperature system. In particular, we draft a metabolic scenario whereby multiple uncultured syntrophic acetate-oxidizing bacteria are capable of syntrophically oxidizing acetate as well as longer-chain fatty acids (via the β-oxidation and Wood-Ljundahl pathways) to hydrogen and carbon dioxide, which methanogens subsequently convert to methane. Copyright © 2016 American Society for Microbiology.
NASA Technical Reports Server (NTRS)
Anderson, Molly; Westheimer, David
2006-01-01
All space vehicles or habitats require thermal management to maintain a safe and operational environment for both crew and hardware. Active Thermal Control Systems (ATCS) perform the functions of acquiring heat from both crew and hardware within a vehicle, transporting that heat throughout the vehicle, and finally rejecting that energy into space. Almost all of the energy used in a space vehicle eventually turns into heat, which must be rejected in order to maintain an energy balance and temperature control of the vehicle. For crewed vehicles, Active Thermal Control Systems are pumped fluid loops that are made up of components designed to perform these functions. NASA has recently evaluated all of the agency s technology development work and identified key areas that must be addressed to aid in the successful development of a Crew Exploration Vehicle (CEV) and a Lunar Surface Access Module (LSAM). The technologies that have been selected and are currently under development include: fluids that enable single loop ATCS architectures, a gravity insensitive vapor compression cycle heat pump, a sublimator with reduced sensitivity to feedwater contamination, an evaporative heat sink that can operate in multiple ambient pressure environments, a compact spray evaporator, and lightweight radiators that take advantage of carbon composites and advanced optical coatings.
Anion-π interactions in active centers of superoxide dismutases.
Ribić, Vesna R; Stojanović, Srđan Đ; Zlatović, Mario V
2018-01-01
We investigated 1060 possible anion-π interactions in a data set of 41 superoxide dismutase active centers. Our observations indicate that majority of the aromatic residues are capable to form anion-π interactions, mainly by long-range contacts, and that there is preference of Trp over other aromatic residues in these interactions. Furthermore, 68% of total predicted interactions in the dataset are multiple anion-π interactions. Anion-π interactions are distance and orientation dependent. We analyzed the energy contribution resulting from anion-π interactions using ab initio calculations. The results showed that, while most of their interaction energies lay in the range from -0 to -4kcalmol -1 , those energies can be up to -9kcalmol -1 and about 34% of interactions were found to be repulsive. Majority of the suggested anion-π interacting residues in ternary complexes are metal-assisted. Stabilization centers for these proteins showed that all the six residues found in predicted anion-π interactions are important in locating one or more of such centers. The anion-π interacting residues in these proteins were found to be highly conserved. We hope that these studies might contribute useful information regarding structural stability and its interaction in future designs of novel metalloproteins. Copyright © 2017 Elsevier B.V. All rights reserved.
Jungwirth, Nicholas R; Calderon, Brian; Ji, Yanxin; Spencer, Michael G; Flatté, Michael E; Fuchs, Gregory D
2016-10-12
We investigate the distribution and temperature-dependent optical properties of sharp, zero-phonon emission from defect-based single photon sources in multilayer hexagonal boron nitride (h-BN) flakes. We observe sharp emission lines from optically active defects distributed across an energy range that exceeds 500 meV. Spectrally resolved photon-correlation measurements verify single photon emission, even when multiple emission lines are simultaneously excited within the same h-BN flake. We also present a detailed study of the temperature-dependent line width, spectral energy shift, and intensity for two different zero-phonon lines centered at 575 and 682 nm, which reveals a nearly identical temperature dependence despite a large difference in transition energy. Our temperature-dependent results are well described by a lattice vibration model that considers piezoelectric coupling to in-plane phonons. Finally, polarization spectroscopy measurements suggest that whereas the 575 nm emission line is directly excited by 532 nm excitation, the 682 nm line is excited indirectly.
Physiological mechanisms of sustained fumagillin-induced weight loss.
An, Jie; Wang, Liping; Patnode, Michael L; Ridaura, Vanessa K; Haldeman, Jonathan M; Stevens, Robert D; Ilkayeva, Olga; Bain, James R; Muehlbauer, Michael J; Glynn, Erin L; Thomas, Steven; Muoio, Deborah; Summers, Scott A; Vath, James E; Hughes, Thomas E; Gordon, Jeffrey I; Newgard, Christopher B
2018-03-08
Current obesity interventions suffer from lack of durable effects and undesirable complications. Fumagillin, an inhibitor of methionine aminopeptidase-2, causes weight loss by reducing food intake, but with effects on weight that are superior to pair-feeding. Here, we show that feeding of rats on a high-fat diet supplemented with fumagillin (HF/FG) suppresses the aggressive feeding observed in pair-fed controls (HF/PF) and alters expression of circadian genes relative to the HF/PF group. Multiple indices of reduced energy expenditure are observed in HF/FG but not HF/PF rats. HF/FG rats also exhibit changes in gut hormones linked to food intake, increased energy harvest by gut microbiota, and caloric spilling in the urine. Studies in gnotobiotic mice reveal that effects of fumagillin on energy expenditure but not feeding behavior may be mediated by the gut microbiota. In sum, fumagillin engages weight loss-inducing behavioral and physiologic circuits distinct from those activated by simple caloric restriction.
Physiological mechanisms of sustained fumagillin-induced weight loss
An, Jie; Patnode, Michael L.; Haldeman, Jonathan M.; Stevens, Robert D.; Ilkayeva, Olga; Bain, James R.; Muehlbauer, Michael J.; Glynn, Erin L.; Thomas, Steven; Muoio, Deborah; Summers, Scott A.; Vath, James E.; Hughes, Thomas E.; Gordon, Jeffrey I.; Newgard, Christopher B.
2018-01-01
Current obesity interventions suffer from lack of durable effects and undesirable complications. Fumagillin, an inhibitor of methionine aminopeptidase-2, causes weight loss by reducing food intake, but with effects on weight that are superior to pair-feeding. Here, we show that feeding of rats on a high-fat diet supplemented with fumagillin (HF/FG) suppresses the aggressive feeding observed in pair-fed controls (HF/PF) and alters expression of circadian genes relative to the HF/PF group. Multiple indices of reduced energy expenditure are observed in HF/FG but not HF/PF rats. HF/FG rats also exhibit changes in gut hormones linked to food intake, increased energy harvest by gut microbiota, and caloric spilling in the urine. Studies in gnotobiotic mice reveal that effects of fumagillin on energy expenditure but not feeding behavior may be mediated by the gut microbiota. In sum, fumagillin engages weight loss–inducing behavioral and physiologic circuits distinct from those activated by simple caloric restriction. PMID:29515039
Calcium intercalation into layered fluorinated sodium iron phosphate
NASA Astrophysics Data System (ADS)
Lipson, Albert L.; Kim, Soojeong; Pan, Baofei; Liao, Chen; Fister, Timothy T.; Ingram, Brian J.
2017-11-01
The energy density and cost of battery systems, relative to the current state-of-the art, can be improved by developing alternative chemistries utilizing multivalent working ions such as calcium. Many challenges must be overcome, such as the identification of cathode materials with high energy density and an electrolyte with a wide electrochemical stability window that can plate and strip calcium metal, before market implementation. Herein, the feasibility and cycling performance of Ca2+ intercalation into a desodiated layered Na2FePO4F host is described. This is the first demonstration of Ca2+ intercalation into a polyanionic framework, which implies that other polyanionic framework materials may be active for Ca2+ intercalation. Although substantial effort is expected in order to develop a high energy density cathode material, this study demonstrates the feasibility of Ca2+ intercalation into multiple host structures types, thereby extending opportunities for development of Ca insertion host structures, suggesting such a cathode material can be identified and developed.
NASA Astrophysics Data System (ADS)
Kheymits, M. D.; Leonov, A. A.; Zverev, V. G.; Galper, A. M.; Arkhangelskaya, I. V.; Arkhangelskiy, A. I.; Suchkov, S. I.; Topchiev, N. P.; Yurkin, Yu T.; Bakaldin, A. V.; Dalkarov, O. D.
2016-02-01
The GAMMA-400 gamma-ray space-based telescope has as its main goals to measure cosmic γ-ray fluxes and the electron-positron cosmic-ray component produced, theoretically, in dark-matter-particles decay or annihilation processes, to search for discrete γ-ray sources and study them in detail, to examine the energy spectra of diffuse γ-rays — both galactic and extragalactic — and to study gamma-ray bursts (GRBs) and γ-rays from the active Sun. Scientific goals of GAMMA-400 telescope require fine angular resolution. The telescope is of a pair-production type. In the converter-tracker, the incident gamma-ray photon converts into electron-positron pair in the tungsten layer and then the tracks are detected by silicon- strip position-sensitive detectors. Multiple scattering processes become a significant obstacle in the incident-gamma direction reconstruction for energies below several gigaelectronvolts. The method of utilising this process to improve the resolution is proposed in the presented work.
Energy dependence of strangeness production and event-byevent fluctuations
NASA Astrophysics Data System (ADS)
Rustamov, Anar
2018-02-01
We review the energy dependence of strangeness production in nucleus-nucleus collisions and contrast it with the experimental observations in pp and p-A collisions at LHC energies as a function of the charged particle multiplicities. For the high multiplicity final states the results from pp and p-Pb reactions systematically approach the values obtained from Pb-Pb collisions. In statistical models this implies an approach to the thermodynamic limit, where differences of mean multiplicities between various formalisms, such as Canonical and Grand Canonical Ensembles, vanish. Furthermore, we report on event-by-event net-proton fluctuations as measured by STAR at RHIC/BNL and by ALICE at LHC/CERN and discuss various non-dynamical contributions to these measurements, which should be properly subtracted before comparison to theoretical calculations on dynamical net-baryon fluctuations.
Energy dependence of the ridge in high multiplicity proton-proton collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dusling, Kevin; Tribedy, Prithwish; Venugopalan, Raju
2016-01-27
In this study, we demonstrate that the recent measurement of azimuthally collimated, long-range rapidity (“ridge”) correlations in √s=13 TeV proton-proton (p+p) collisions by the ATLAS Collaboration at the LHC are in agreement with expectations from the color glass condensate effective theory of high-energy QCD. The observation that the integrated near-side yield as a function of multiplicity is independent of collision energy is a natural consequence of the fact that multiparticle production is driven by a single semihard saturation scale in the color glass condensate framework. We argue further that the azimuthal structure of these recent ATLAS ridge measurements strongly constrainsmore » hydrodynamic interpretations of such correlations in high-multiplicity p+p collisions.« less
Emotionally Intense Science Activities
NASA Astrophysics Data System (ADS)
King, Donna; Ritchie, Stephen; Sandhu, Maryam; Henderson, Senka
2015-08-01
Science activities that evoke positive emotional responses make a difference to students' emotional experience of science. In this study, we explored 8th Grade students' discrete emotions expressed during science activities in a unit on Energy. Multiple data sources including classroom videos, interviews and emotion diaries completed at the end of each lesson were analysed to identify individual student's emotions. Results from two representative students are presented as case studies. Using a theoretical perspective drawn from theories of emotions founded in sociology, two assertions emerged. First, during the demonstration activity, students experienced the emotions of wonder and surprise; second, during a laboratory activity, students experienced the intense positive emotions of happiness/joy. Characteristics of these activities that contributed to students' positive experiences are highlighted. The study found that choosing activities that evoked strong positive emotional experiences, focused students' attention on the phenomenon they were learning, and the activities were recalled positively. Furthermore, such positive experiences may contribute to students' interest and engagement in science and longer term memorability. Finally, implications for science teachers and pre-service teacher education are suggested.
Cooperative MIMO communication at wireless sensor network: an error correcting code approach.
Islam, Mohammad Rakibul; Han, Young Shin
2011-01-01
Cooperative communication in wireless sensor network (WSN) explores the energy efficient wireless communication schemes between multiple sensors and data gathering node (DGN) by exploiting multiple input multiple output (MIMO) and multiple input single output (MISO) configurations. In this paper, an energy efficient cooperative MIMO (C-MIMO) technique is proposed where low density parity check (LDPC) code is used as an error correcting code. The rate of LDPC code is varied by varying the length of message and parity bits. Simulation results show that the cooperative communication scheme outperforms SISO scheme in the presence of LDPC code. LDPC codes with different code rates are compared using bit error rate (BER) analysis. BER is also analyzed under different Nakagami fading scenario. Energy efficiencies are compared for different targeted probability of bit error p(b). It is observed that C-MIMO performs more efficiently when the targeted p(b) is smaller. Also the lower encoding rate for LDPC code offers better error characteristics.
Cooperative MIMO Communication at Wireless Sensor Network: An Error Correcting Code Approach
Islam, Mohammad Rakibul; Han, Young Shin
2011-01-01
Cooperative communication in wireless sensor network (WSN) explores the energy efficient wireless communication schemes between multiple sensors and data gathering node (DGN) by exploiting multiple input multiple output (MIMO) and multiple input single output (MISO) configurations. In this paper, an energy efficient cooperative MIMO (C-MIMO) technique is proposed where low density parity check (LDPC) code is used as an error correcting code. The rate of LDPC code is varied by varying the length of message and parity bits. Simulation results show that the cooperative communication scheme outperforms SISO scheme in the presence of LDPC code. LDPC codes with different code rates are compared using bit error rate (BER) analysis. BER is also analyzed under different Nakagami fading scenario. Energy efficiencies are compared for different targeted probability of bit error pb. It is observed that C-MIMO performs more efficiently when the targeted pb is smaller. Also the lower encoding rate for LDPC code offers better error characteristics. PMID:22163732
Akhter, Nasrin; Shehu, Amarda
2018-01-19
Due to the essential role that the three-dimensional conformation of a protein plays in regulating interactions with molecular partners, wet and dry laboratories seek biologically-active conformations of a protein to decode its function. Computational approaches are gaining prominence due to the labor and cost demands of wet laboratory investigations. Template-free methods can now compute thousands of conformations known as decoys, but selecting native conformations from the generated decoys remains challenging. Repeatedly, research has shown that the protein energy functions whose minima are sought in the generation of decoys are unreliable indicators of nativeness. The prevalent approach ignores energy altogether and clusters decoys by conformational similarity. Complementary recent efforts design protein-specific scoring functions or train machine learning models on labeled decoys. In this paper, we show that an informative consideration of energy can be carried out under the energy landscape view. Specifically, we leverage local structures known as basins in the energy landscape probed by a template-free method. We propose and compare various strategies of basin-based decoy selection that we demonstrate are superior to clustering-based strategies. The presented results point to further directions of research for improving decoy selection, including the ability to properly consider the multiplicity of native conformations of proteins.
Factors associated with bat mortality at wind energy facilities in the United States
Thompson, Maureen; Beston, Julie A.; Etterson, Matthew A.; Diffendorfer, James E.; Loss, Scott R.
2017-01-01
Hundreds of thousands of bats are killed annually by colliding with wind turbines in the U.S., yet little is known about factors causing variation in mortality across wind energy facilities. We conducted a quantitative synthesis of bat collision mortality with wind turbines by reviewing 218 North American studies representing 100 wind energy facilities. This data set, the largest compiled for bats to date, provides further evidence that collision mortality is greatest for migratory tree-roosting species (Hoary Bat [Lasiurus cinereus], Eastern Red Bat [Lasiurus borealis], Silver-haired Bat [Lasionycteris noctivagans]) and from July to October. Based on 40 U.S. studies meeting inclusion criteria and analyzed under a common statistical framework to account for methodological variation, we found support for an inverse relationship between bat mortality and percent grassland cover surrounding wind energy facilities. At a national scale, grassland cover may best reflect openness of the landscape, a factor generally associated with reduced activity and abundance of tree-roosting species that may also reduce turbine collisions. Further representative sampling of wind energy facilities is required to validate this pattern. Ecologically informed placement of wind energy facilities involves multiple considerations, including not only factors associated with bat mortality, but also factors associated with bird collision mortality, indirect habitat-related impacts to all species, and overall ecosystem impacts.
Pechurkin, N S; Shuvaev, A N
2015-01-01
The paper presents the idea of transparent evolution through the long-term reaction of the planet Earth on the external flow of radiant energy from the Sun. Due to limitations of matter on Earth, as well as on any other planet, the continuous pumping flow of radiant energy was shown to lead to cyclization and transport of substance on emerging gradients. The evolution of energy-matter interaction follows the path of capturing and transferring more energy by the fewer matter, i.e., the path of growth of the amount of energy used by each unit mass. For this indicator, the least effective mass transfer is a simple mass transfer as vortices of gases, in the gradients of temperature and pressure, which occurred on the primary surface of the planet. A long-term natural selection related to the accumulation of water on the planet has played a special role in developing the interaction of energy and matter. Phase transformations (ice, water, vapor) and mechanical transfers are the most common energy-matter processes. Based on water cycles, cyclic transports and transformations, chemical transformation of substances became possible developing over time into a biological transformation. This kind of the interaction of energy and matter is most efficient. In particular, during photosynthesis the energy of our star "is captured and utilized" in the most active part of the spectrum of its radiation. In the process of biological evolution of heterotrophs, a rise (by a factor of hundreds) in the coefficient that characterizes the intensity of energy exchange from protozoa to mammals is most illustratory. The development and the current dominance of humans as the most energy-using active species in capturing the energy and meaningful organization of its new flows especially on the basis of organic debris of former biospheres is admirable, but quite natural from the energy positions. In the course of technological evolution of humankind, the measure of the intensity of energy for homoeothermic (warm-blooded) animals has increased 20 times, based on the process energy used by the "average" inhabitant of the world. Thus, the victory of our species in planetary evolution is easy to fit into the mainstream of evolution through energy-matter interactions: multiple growth of star energy was used to transform the matter on the surface of the irradiated planet.
Allen Brain Atlas-Driven Visualizations: a web-based gene expression energy visualization tool.
Zaldivar, Andrew; Krichmar, Jeffrey L
2014-01-01
The Allen Brain Atlas-Driven Visualizations (ABADV) is a publicly accessible web-based tool created to retrieve and visualize expression energy data from the Allen Brain Atlas (ABA) across multiple genes and brain structures. Though the ABA offers their own search engine and software for researchers to view their growing collection of online public data sets, including extensive gene expression and neuroanatomical data from human and mouse brain, many of their tools limit the amount of genes and brain structures researchers can view at once. To complement their work, ABADV generates multiple pie charts, bar charts and heat maps of expression energy values for any given set of genes and brain structures. Such a suite of free and easy-to-understand visualizations allows for easy comparison of gene expression across multiple brain areas. In addition, each visualization links back to the ABA so researchers may view a summary of the experimental detail. ABADV is currently supported on modern web browsers and is compatible with expression energy data from the Allen Mouse Brain Atlas in situ hybridization data. By creating this web application, researchers can immediately obtain and survey numerous amounts of expression energy data from the ABA, which they can then use to supplement their work or perform meta-analysis. In the future, we hope to enable ABADV across multiple data resources.
Chen, Xiaoming; Lu, Yanhua; Hu, Hao; Tong, Lixin; Zhang, Lei; Yu, Yi; Wang, Juntao; Ren, Huaijin; Xu, Liu
2018-03-05
We present investigations into a narrow-linewidth, quasi-continuous-wave pulsed all-solid-state amplified spontaneous emission (ASE) source by use of a novel multiple-pass zigzag slab amplifier. The SE fluorescence emitted from a Nd:YAG slab active medium acts as the seed and is amplified back and forth 8 times through the same slab. Thanks to the angular multiplexing nature of the zigzag slab, high-intensity 1064-nm ASE output can be produced without unwanted self-lasing in this configuration. Experimentally, the output energy, optical conversion efficiency, pulse dynamics, spectral property, and beam quality of the ASE source are studied when the Nd:YAG slab end-pumped by two high-brightness laser diode arrays. The maximum single pulse energy of 347 mJ is generated with an optical efficiency of ~5.9% and a beam quality of 3.5/17 in the thickness/width direction of the slab. As expected, smooth pulses without relaxing spikes and continuous spectra are achieved. Moreover, the spectral width of the ASE source narrows versus the pump energy, getting a 3-dB linewidth of as narrow as 20 pm (i.e. 5.3 GHz). Via the sum frequency generation, high-intensity, smooth-pulse, and narrow-linewidth ASE sources are preferred for solving the major problem of saturation of the mesospheric sodium atoms and can create a much brighter sodium guide star to meet the needs of adaptive imaging applications in astronomy.
Multidrug resistance: prospects for clinical management.
Mansouri, A; Henle, K J; Nagle, W A
1992-01-01
Clinical success in the treatment of tumors with chemotherapy has significantly improved over the past several years. However, treatment failures due to drug resistance of cancer cells has remained a major problem. The classical form of multiple drug resistance is perhaps also the most common type of drug resistance, and represents the overexpression of a transmembrane glycoprotein pump (P-170) that mediates the efflux of a spectrum of structurally and functionally unrelated drugs. Here, we discuss recent evidence that support the concept that the total phenomenon of multiple drug resistance (MDR) involves several other mechanisms in addition to that underlying "classical" MDR. These include the action of other energy-dependent membrane efflux pumps, elevated levels of GSH for drug conjugation and detoxification to facilitate export, enhanced DNA repair facility, gene amplification and oncogene activation. The combination of mechanisms used by any particular cell line is variable and suggests that many of these mechanisms are independent. Successful reversal of drug resistance appears to require the identification of relevant operative resistance mechanisms. An example is the competitive inhibition of P-170 with verapamil, quinine and tamoxifen. A broadly successful strategy for killing drug-resistant cancer cells, however, could be based on either selective energy depletion of cancer cells or the permeabilization of tumor cells with an effective bypass of efflux pumps, since many mechanisms of drug resistance entail the energy-dependent export of toxins. The latter approach may be achieved via membrane lipid modifications or the introduction of membrane pores by biological or physical (electroporation) means.
SteamTables: An approach of multiple variable sets
NASA Astrophysics Data System (ADS)
Verma, Mahendra P.
2009-10-01
Using the IAPWS-95 formulation, an ActiveX component SteamTablesIIE in Visual Basic 6.0 is developed to calculate thermodynamic properties of pure water as a function of two independent intensive variables: (1) temperature ( T) or pressure ( P) and (2) T, P, volume ( V), internal energy ( U), enthalpy ( H), entropy ( S) or Gibbs free energy ( G). The second variable cannot be the same as variable 1. Additionally, it calculates the properties along the separation boundaries (i.e., sublimation, saturation, critical isochor, ice I melting, ice III to ice IIV melting and minimum volume curves) considering the input parameter as T or P for the variable 1. SteamTablesIIE is an extension of the ActiveX component SteamTables implemented earlier considering T (190 to 2000 K) and P (3.23×10 -8 to 10000 MPa) as independent variables. It takes into account the following 27 intensive properties: temperature ( T), pressure ( P), fraction, state, volume ( V), density ( Den), compressibility factor ( Z0), internal energy ( U), enthalpy ( H), Gibbs free energy ( G), Helmholtz free energy ( A), entropy ( S), heat capacity at constant pressure ( C p), heat capacity at constant volume ( C v), coefficient of thermal expansion ( CTE), isothermal compressibility ( Z iso), speed of sound ( VelS), partial derivative of P with T at constant V ( dPdT), partial derivative of T with V at constant P ( dTdV), partial derivative of V with P at constant T ( dVdP), Joule-Thomson coefficient ( JTC), isothermal throttling coefficient ( IJTC), viscosity ( Vis), thermal conductivity ( ThrmCond), surface tension ( SurfTen), Prandtl number ( PrdNum) and dielectric constant ( DielCons).
Liu, Wen; Hu, Enyuan; Jiang, Hong; ...
2016-02-19
Rational design and controlled synthesis of hybrid structures comprising multiple components with distinctive functionalities are an intriguing and challenging approach to materials development for important energy applications like electrocatalytic hydrogen production, where there is a great need for cost effective, active and durable catalyst materials to replace the precious platinum. Here we report a structure design and sequential synthesis of a highly active and stable hydrogen evolution electrocatalyst material based on pyrite-structured cobalt phosphosulfide nanoparticles grown on carbon nanotubes. The three synthetic steps in turn render electrical conductivity, catalytic activity and stability to the material. The hybrid material exhibits superiormore » activity for hydrogen evolution, achieving current densities of 10 mA cm –2 and 100 mA cm –2 at overpotentials of 48 mV and 109 mV, respectively. Lastly, phosphorus substitution is crucial for the chemical stability and catalytic durability of the material, the molecular origins of which are uncovered by X-ray absorption spectroscopy and computational simulation.« less
NASA Astrophysics Data System (ADS)
Fradi, Aniss
The ability to allocate the active power (MW) loading on transmission lines and transformers, is the basis of the "flow based" transmission allocation system developed by the North American Electric Reliability Council. In such a system, the active power flows must be allocated to each line or transformer in proportion to the active power being transmitted by each transaction imposed on the system. Currently, this is accomplished through the use of the linear Power Transfer Distribution Factors (PTDFs). Unfortunately, no linear allocation models exist for other energy transmission quantities, such as MW and MVAR losses, MVAR and MVA flows, etc. Early allocation schemes were developed to allocate MW losses due to transactions to branches in a transmission system, however they exhibited diminished accuracy, since most of them are based on linear power flow modeling of the transmission system. This thesis presents a new methodology to calculate Energy Transaction Allocation factors (ETA factors, or eta factors), using the well-known process of integration of a first derivative function, as well as consistent and well-established mathematical and AC power flow models. The factors give a highly accurate allocation of any non-linear system quantity to transactions placed on the transmission system. The thesis also extends the new ETA factors calculation procedure to restructure a new economic dispatch scheme where multiple sets of generators are economically dispatched to meet their corresponding load and their share of the losses.
Microwave annealing of Mg-implanted and in situ Be-doped GaN
NASA Astrophysics Data System (ADS)
Aluri, Geetha S.; Gowda, Madhu; Mahadik, Nadeemullah A.; Sundaresan, Siddarth G.; Rao, Mulpuri V.; Schreifels, John A.; Freitas, J. A.; Qadri, S. B.; Tian, Y.-L.
2010-10-01
An ultrafast microwave annealing method, different from conventional thermal annealing, is used to activate Mg-implants in GaN layer. The x-ray diffraction measurements indicated complete disappearance of the defect sublattice peak, introduced by the implantation process for single-energy Mg-implantation, when the annealing was performed at ≥1400 °C for 15 s. An increase in the intensity of Mg-acceptor related luminescence peak (at 3.26 eV) in the photoluminescence spectra confirms the Mg-acceptor activation in single-energy Mg-implanted GaN. In case of multiple-energy implantation, the implant generated defects persisted even after 1500 °C/15 s annealing, resulting in no net Mg-acceptor activation of the Mg-implant. The Mg-implant is relatively thermally stable and the sample surface roughness is 6 nm after 1500 °C/15 s annealing, using a 600 nm thick AlN cap. In situ Be-doped GaN films, after 1300 °C/5 s annealing have shown Be out-diffusion into the AlN layer and also in-diffusion toward the GaN/SiC interface. The in-diffusion and out-diffusion of the Be increased with increasing annealing temperature. In fact, after 1500 °C/5 s annealing, only a small fraction of in situ doped Be remained in the GaN layer, revealing the inadequateness of using Be-implantation for forming p-type doped layers in the GaN.
Wu, Zhaofei; Martinez, M. Elena; St. Germain, Donald L.
2017-01-01
The role of thyroid hormones (THs) in the central regulation of energy balance is increasingly appreciated. Mice lacking the type 3 deiodinase (DIO3), which inactivates TH, have decreased circulating TH levels relative to control mice as a result of defects in the hypothalamic-pituitary-thyroid axis. However, we have shown that the TH status of the adult Dio3−/− brain is opposite that of the serum, exhibiting enhanced levels of TH action. Because the brain, particularly the hypothalamus, harbors important circuitries that regulate metabolism, we aimed to examine the energy balance phenotype of Dio3−/− mice and determine whether it is associated with hypothalamic abnormalities. Here we show that Dio3−/− mice of both sexes exhibit decreased adiposity, reduced brown and white adipocyte size, and enhanced fat loss in response to triiodothyronine (T3) treatment. They also exhibit increased TH action in the hypothalamus, with abnormal expression and T3 sensitivity of genes integral to the leptin-melanocortin system, including Agrp, Npy, Pomc, and Mc4r. The normal to elevated serum levels of leptin, and elevated and repressed expression of Agrp and Pomc, respectively, suggest a profile of leptin resistance. Interestingly, Dio3−/− mice also display elevated locomotor activity and increased energy expenditure. This occurs in association with expanded nighttime activity periods, suggesting a disrupted circadian rhythm. We conclude that DIO3-mediated regulation of TH action in the central nervous system influences multiple critical determinants of energy balance. Those influences may partially compensate each other, with the result likely contributing to the decreased adiposity observed in Dio3−/− mice. PMID:27911598
Wu, Zhaofei; Martinez, M Elena; St Germain, Donald L; Hernandez, Arturo
2017-02-01
The role of thyroid hormones (THs) in the central regulation of energy balance is increasingly appreciated. Mice lacking the type 3 deiodinase (DIO3), which inactivates TH, have decreased circulating TH levels relative to control mice as a result of defects in the hypothalamic-pituitary-thyroid axis. However, we have shown that the TH status of the adult Dio3-/- brain is opposite that of the serum, exhibiting enhanced levels of TH action. Because the brain, particularly the hypothalamus, harbors important circuitries that regulate metabolism, we aimed to examine the energy balance phenotype of Dio3-/- mice and determine whether it is associated with hypothalamic abnormalities. Here we show that Dio3-/- mice of both sexes exhibit decreased adiposity, reduced brown and white adipocyte size, and enhanced fat loss in response to triiodothyronine (T3) treatment. They also exhibit increased TH action in the hypothalamus, with abnormal expression and T3 sensitivity of genes integral to the leptin-melanocortin system, including Agrp, Npy, Pomc, and Mc4r. The normal to elevated serum levels of leptin, and elevated and repressed expression of Agrp and Pomc, respectively, suggest a profile of leptin resistance. Interestingly, Dio3-/- mice also display elevated locomotor activity and increased energy expenditure. This occurs in association with expanded nighttime activity periods, suggesting a disrupted circadian rhythm. We conclude that DIO3-mediated regulation of TH action in the central nervous system influences multiple critical determinants of energy balance. Those influences may partially compensate each other, with the result likely contributing to the decreased adiposity observed in Dio3-/- mice. Copyright © 2017 by the Endocrine Society.
Learmonth, Y C; Kinnett-Hopkins, D; Rice, I M; Dysterheft, J L; Motl, R W
2016-02-01
This is an experimental design. This study examined the association between rates of energy expenditure (that is, oxygen consumption (VO2)) and accelerometer counts (that is, vector magnitude (VM)) across a range of speeds during manual wheelchair propulsion on a motor-driven treadmill. Such an association allows for the generation of cutoff points for quantifying the time spent in moderate-to-vigorous physical activity (MVPA) during manual wheelchair propulsion. The study was conducted in the University Laboratory. Twenty-four manual wheelchair users completed a 6-min period of seated rest and three 6-min periods of manual wheelchair propulsion on a motor-driven wheelchair treadmill. The 6-min periods of wheelchair propulsion corresponded with three treadmill speeds (1.5, 3.0 and 4.5 mph) that elicited a range of physical activity intensities. Participants wore a portable metabolic unit and accelerometers on both wrists. Primary outcome measures included steady-state VO2 and VM, and the strength of association between VO2 and VM was based on the multiple correlation and squared multiple correlation coefficients from linear regression analyses. Strong linear associations were established between VO2 and VM for the left (R=0.93±0.44; R2=0.87±0.19), right (R=0.95±0.37; R2=0.90±0.14) and combined (R=0.94±0.38; R2=0.88±0.15) accelerometers. The linear relationship between VO2 and VM for the left, right and combined wrists yielded cutoff points for MVPA of 3659 ±1302, 3630±1403 and 3644±1339 counts min(-1), respectively. We provide cutoff points based on the linear association between energy expenditure and accelerometer counts for estimating time spent in MVPA during manual wheelchair propulsion using wrist-worn accelerometry. The similarity across wrist location permits flexibility in selecting a location for wrist accelerometry placement.
Plasma effect on fast-electron-impact-ionization from 2p state of hydrogen-like ions
NASA Astrophysics Data System (ADS)
Qi, Y. Y.; Ning, L. N.; Wang, J. G.; Qu, Y. Z.
2013-12-01
Plasma effects on the high-energy electron-impact ionization process from 2p orbital of Hydrogen-like ions embedded in weakly coupled plasmas are investigated in the first Born approximation. The plasma screening of the Coulomb interaction between charged particles is represented by the Debye Hückel model. The screening of Coulomb interactions decreases the ionization energies and varies the wave functions for not only the bound orbital but also the continuum; the number of the summation for the angular-momentum states in the generalized oscillator strength densities is reduced with the plasma screening stronger when the ratio of ɛ /I2p (I2p is the ionization energy of 2p state and ɛ is the energy of the continuum electron) is kept, and then the contribution from the lower-angular-momentum states dominates the generalized oscillator strength densities, so the threshold phenomenon in the generalized oscillator strength densities and the double differential cross sections are remarkable: The accessional minima, the outstanding enhancement, and the resonance peaks emerge a certain energy region, whose energy position and width are related to the vicinity between δ and the critical value δnlc, corresponding to the special plasma condition when the bound state |nl⟩ just enters the continuum; the multiple virtual-state enhancement and the multiple shape resonances in a certain energy domain also appear in the single differential cross section whenever the plasma screening parameter passes through a critical value δnlc, which is similar to the photo-ionization process but different from it, where the dipole transition only happens, but multi-pole transition will occur in the electron-impact ionization process, so its multiple virtual-state enhancements and the multiple shape resonances appear more frequently than the photo-ionization process.
The Free Energy Landscape of Small Molecule Unbinding
Huang, Danzhi; Caflisch, Amedeo
2011-01-01
The spontaneous dissociation of six small ligands from the active site of FKBP (the FK506 binding protein) is investigated by explicit water molecular dynamics simulations and network analysis. The ligands have between four (dimethylsulphoxide) and eleven (5-diethylamino-2-pentanone) non-hydrogen atoms, and an affinity for FKBP ranging from 20 to 0.2 mM. The conformations of the FKBP/ligand complex saved along multiple trajectories (50 runs at 310 K for each ligand) are grouped according to a set of intermolecular distances into nodes of a network, and the direct transitions between them are the links. The network analysis reveals that the bound state consists of several subbasins, i.e., binding modes characterized by distinct intermolecular hydrogen bonds and hydrophobic contacts. The dissociation kinetics show a simple (i.e., single-exponential) time dependence because the unbinding barrier is much higher than the barriers between subbasins in the bound state. The unbinding transition state is made up of heterogeneous positions and orientations of the ligand in the FKBP active site, which correspond to multiple pathways of dissociation. For the six small ligands of FKBP, the weaker the binding affinity the closer to the bound state (along the intermolecular distance) are the transition state structures, which is a new manifestation of Hammond behavior. Experimental approaches to the study of fragment binding to proteins have limitations in temporal and spatial resolution. Our network analysis of the unbinding simulations of small inhibitors from an enzyme paints a clear picture of the free energy landscape (both thermodynamics and kinetics) of ligand unbinding. PMID:21390201
The free energy landscape of small molecule unbinding.
Huang, Danzhi; Caflisch, Amedeo
2011-02-01
The spontaneous dissociation of six small ligands from the active site of FKBP (the FK506 binding protein) is investigated by explicit water molecular dynamics simulations and network analysis. The ligands have between four (dimethylsulphoxide) and eleven (5-diethylamino-2-pentanone) non-hydrogen atoms, and an affinity for FKBP ranging from 20 to 0.2 mM. The conformations of the FKBP/ligand complex saved along multiple trajectories (50 runs at 310 K for each ligand) are grouped according to a set of intermolecular distances into nodes of a network, and the direct transitions between them are the links. The network analysis reveals that the bound state consists of several subbasins, i.e., binding modes characterized by distinct intermolecular hydrogen bonds and hydrophobic contacts. The dissociation kinetics show a simple (i.e., single-exponential) time dependence because the unbinding barrier is much higher than the barriers between subbasins in the bound state. The unbinding transition state is made up of heterogeneous positions and orientations of the ligand in the FKBP active site, which correspond to multiple pathways of dissociation. For the six small ligands of FKBP, the weaker the binding affinity the closer to the bound state (along the intermolecular distance) are the transition state structures, which is a new manifestation of Hammond behavior. Experimental approaches to the study of fragment binding to proteins have limitations in temporal and spatial resolution. Our network analysis of the unbinding simulations of small inhibitors from an enzyme paints a clear picture of the free energy landscape (both thermodynamics and kinetics) of ligand unbinding.
The multiple roles of histidine in protein interactions
2013-01-01
Background Among the 20 natural amino acids histidine is the most active and versatile member that plays the multiple roles in protein interactions, often the key residue in enzyme catalytic reactions. A theoretical and comprehensive study on the structural features and interaction properties of histidine is certainly helpful. Results Four interaction types of histidine are quantitatively calculated, including: (1) Cation-π interactions, in which the histidine acts as the aromatic π-motif in neutral form (His), or plays the cation role in protonated form (His+); (2) π-π stacking interactions between histidine and other aromatic amino acids; (3) Hydrogen-π interactions between histidine and other aromatic amino acids; (4) Coordinate interactions between histidine and metallic cations. The energies of π-π stacking interactions and hydrogen-π interactions are calculated using CCSD/6-31+G(d,p). The energies of cation-π interactions and coordinate interactions are calculated using B3LYP/6-31+G(d,p) method and adjusted by empirical method for dispersion energy. Conclusions The coordinate interactions between histidine and metallic cations are the strongest one acting in broad range, followed by the cation-π, hydrogen-π, and π-π stacking interactions. When the histidine is in neutral form, the cation-π interactions are attractive; when it is protonated (His+), the interactions turn to repulsive. The two protonation forms (and pKa values) of histidine are reversibly switched by the attractive and repulsive cation-π interactions. In proteins the π-π stacking interaction between neutral histidine and aromatic amino acids (Phe, Tyr, Trp) are in the range from -3.0 to -4.0 kcal/mol, significantly larger than the van der Waals energies. PMID:23452343
Sikes, Elizabeth Morghen; Richardson, Emma V; Cederberg, Katie J; Sasaki, Jeffer E; Sandroff, Brian M; Motl, Robert W
2018-01-17
The Godin Leisure-Time Exercise Questionnaire has been a commonly applied measure of physical activity in research among persons with multiple sclerosis over the past decade. This paper provides a comprehensive description of its application and inclusion in research on physical activity in multiple sclerosis. This comprehensive, narrative review included papers that were published between 1985 and 2017, written in English, involved participants with multiple sclerosis as a primary population, measured physical activity, and cited one of the two original Godin papers. There is a broad scope of research that has included the Godin Leisure-Time Exercise Questionnaire in persons with multiple sclerosis. Overall, 8 papers evaluated its psychometric properties, 21 evaluated patterns of physical activity, 24 evaluated correlates or determinants of physical activity, 28 evaluated outcomes or consequences of physical activity, and 15 evaluated physical activity interventions. The Godin Leisure-Time Exercise Questionnaire is a valid self-report measure of physical activity in persons with multiple sclerosis, and further is an appropriate, simple, and effective tool for describing patterns of physical activity, examining correlates and outcomes of physical activity, and provides a sensitive outcome for measuring change in physical activity after an intervention. Implications for rehabilitation There is increasing interest in physical activity and its benefits in multiple sclerosis. The study of physical activity requires appropriate and standardized measures. The Godin Leisure-Time Exercise Questionnaire is a common self-report measure of physical activity for persons with multiple sclerosis. Godin Leisure-Time Exercise Questionnaire scores are reliable measures of physical activity in persons with multiple sclerosis. The Godin Leisure-Time Exercise Questionnaire further is an appropriate, simple, and effective tool for describing patterns of physical activity, examining correlates and outcomes of physical activity participation, and is an advantageous primary outcome for measuring change in physical activity in response to an intervention.
NASA Astrophysics Data System (ADS)
Chen, Hsiang-Yun; Ardo, Shane
2018-01-01
Natural photosynthesis uses the energy in sunlight to oxidize or reduce reaction centres multiple times, therefore preparing each reaction centre for a multiple-electron-transfer reaction that will ultimately generate stable reaction products. This process relies on multiple chromophores per reaction centre to quickly generate the active state of the reaction centre and to outcompete deleterious charge recombination. Using a similar design principle, we report spectroscopic evidence for the generation of a twice-oxidized TiO2-bound molecular proxy catalyst after low-intensity visible-light excitation of co-anchored molecular Ru(II)-polypyridyl dyes. Electron transfer from an excited dye to TiO2 generated a Ru(III) state that subsequently and repeatedly reacted with neighbouring Ru(II) dyes via self-exchange electron transfer to ultimately oxidize a distant co-anchored proxy catalyst before charge recombination. The largest yield for twice-oxidized proxy catalysts occurred when they were present at low coverage, suggesting that large dye/electrocatalyst ratios are also desired in dye-sensitized photoelectrochemical cells.
NASA Astrophysics Data System (ADS)
Corfdir, P.; Levrat, J.; Rossbach, G.; Butté, R.; Feltin, E.; Carlin, J.-F.; Christmann, G.; Lefebvre, P.; Ganière, J.-D.; Grandjean, N.; Deveaud-Plédran, B.
2012-06-01
We report on the direct observation of biexcitons in a III-nitride based multiple quantum well microcavity operating in the strong light-matter coupling regime by means of nonresonant continuous wave and time-resolved photoluminescence at low temperature. First, the biexciton dynamics is investigated for the bare active medium (multiple quantum wells alone) evidencing localization on potential fluctuations due to alloy disorder and thermalization between both localized and free excitonic and biexcitonic populations. Then, the role of biexcitons is considered for the full microcavity: in particular, we observe that for specific detunings the bottom of the lower polariton branch is directly fed by the radiative dissociation of either cavity biexcitons or excitons mediated by one LO-phonon. Accordingly, minimum polariton lasing thresholds are observed, when the bottom of the lower polariton branch corresponds in energy to the exciton or cavity biexciton first LO-phonon replica. This singular observation highlights the role of excitonic molecules in the polariton condensate formation process as being a more efficient relaxation channel when compared to the usually assumed acoustical phonon emission one.
Avalanche atomic switching in strain engineered Sb2Te3-GeTe interfacial phase-change memory cells
NASA Astrophysics Data System (ADS)
Zhou, Xilin; Behera, Jitendra K.; Lv, Shilong; Wu, Liangcai; Song, Zhitang; Simpson, Robert E.
2017-09-01
By confining phase transitions to the nanoscale interface between two different crystals, interfacial phase change memory heterostructures represent the state of the art for energy efficient data storage. We present the effect of strain engineering on the electrical switching performance of the {{Sb}}2{{Te}}3-GeTe superlattice van der Waals devices. Multiple Ge atoms switching through a two-dimensional Te layer reduces the activation barrier for further atoms to switch; an effect that can be enhanced by biaxial strain. The out-of-plane phonon mode of the GeTe crystal remains active in the superlattice heterostructures. The large in-plane biaxial strain imposed by the {{Sb}}2{{Te}}3 layers on the GeTe layers substantially improves the switching speed, reset energy, and cyclability of the superlattice memory devices. Moreover, carefully controlling residual stress in the layers of {{Sb}}2{{Te}}3-GeTe interfacial phase change memories provides a new degree of freedom to design the properties of functional superlattice structures for memory and photonics applications.
The era of micro and nano systems in the biomedical area: bridging the research and innovation gap.
Lymberis, A
2011-01-01
The area of Micro and Nano systems (MNS) focuses on heterogeneous integration of technologies (e.g. electronics, mechanics and biotechnology) and implementation of multiple functionalities (e.g. sensing, processing, communication, energy and actuation) into small systems. A significant amount of MNS activities targets development and testing of systems enabling biomedicine and personal health solutions. Convergence of micro-nano-bio and Information & communication technologies is being leading to enabling innovative solutions e.g. for in-vitro testing and in vivo interaction with the human body for early diagnosis and minimally invasive therapy. Of particular interest are smart wearable systems such as smart textiles aiming at the full integration of sensors/actuators, energy sources, processing and communication within the clothes to enable non-invasive personal health, lifestyle, safety and emergency applications. The paper presents on going major R&D activities on micro-nano-bio systems (MNBS) and wearable systems for pHealth under the European Union R&D Programs, Information and Communication Technologies (ICT) priority; it also identifies gaps and discusses key challenges for the future.
NASA Astrophysics Data System (ADS)
Zhang, Wei; Gan, Jie; Li, Qian; Gao, Kun; Sun, Jian; Xu, Ning; Ying, Zhifeng; Wu, Jiada
2011-06-01
The self-diffusion dynamics of Cu adatoms on Cu(1 0 0) surface has been studied based on the calculation of the energy barriers for various hopping events using lattice-gas based approach and a modified model. To simplify the description of the interactions and the calculation of the energy barrier, a three-tier hierarchy of description of atomic configurations was conceived in which the active adatom and its nearest atoms were chosen to constitute basic configuration and taken as a whole to study many-body interactions of the atoms in various atomic configurations, whereas the impacts of the next nearest atoms on the diffusion of the active adatom were considered as multi-site interactions. Besides the simple hopping of single adatoms, the movements of dimers and trimers as the results of multiple hopping events have also been examined. Taking into account the hopping events of all adatoms, the stability of atomic configurations has been examined and the evolution of atomic configurations has also been analyzed.
Liu, Yan; Shen, Yali; Zheng, Shasha; Liao, Jiayu
2015-12-01
SUMOylation (the process of adding the SUMO [small ubiquitin-like modifier] to substrates) is an important post-translational modification of critical proteins in multiple processes. Sentrin/SUMO-specific proteases (SENPs) act as endopeptidases to process the pre-SUMO or as isopeptidases to deconjugate the SUMO from its substrate. Determining the kinetics of SENPs is important for understanding their activities. Förster resonance energy transfer (FRET) technology has been widely used in biomedical research and is a powerful tool for elucidating protein interactions. In this paper we report a novel quantitative FRET-based protease assay for SENP2 endopeptidase activity that accounts for the self-fluorescent emissions of the donor (CyPet) and the acceptor (YPet). The kinetic parameters, k(cat), K(M), and catalytic efficiency (k(cat)/K(M)) of catalytic domain SENP2 toward pre-SUMO1/2/3, were obtained by this novel design. Although we use SENP2 to demonstrate our method, the general principles of this quantitative FRET-based protease kinetic determination can be readily applied to other proteases.
Biney, Paul O; Gyamerah, Michael; Shen, Jiacheng; Menezes, Bruna
2015-03-01
A new multi-stage kinetic model has been developed for TGA pyrolysis of arundo, corn stover, sawdust and switch grass that accounts for the initial biomass weight (W0). The biomass were decomposed in a nitrogen atmosphere from 23°C to 900°C in a TGA at a single 20°C/min ramp rate in contrast with the isoconversion technique. The decomposition was divided into multiple stages based on the absolute local minimum values of conversion derivative, (dx/dT), obtained from DTG curves. This resulted in three decomposition stages for arundo, corn stover and sawdust and four stages for switch grass. A linearized multi-stage model was applied to the TGA data for each stage to determine the pre-exponential factor, activation energy, and reaction order. The activation energies ranged from 54.7 to 60.9 kJ/mol, 62.9 to 108.7 kJ/mol, and 18.4 to 257.9 kJ/mol for the first, second and the third decomposition stages respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.