Science.gov

Sample records for multiple antigen binding

  1. Multiple antigen peptide dendrimer elicits antibodies for detecting rat and mouse growth hormone binding proteins

    PubMed Central

    Aguilar, Roberto M.; Talamantes, Frank J.; Bustamante, Juan J.; Muñoz, Jesus; Treviño, Lisa R.; Martinez, Andrew O.; Haro, Luis S.

    2009-01-01

    The membrane-bound rat growth hormone receptor (GH-R) and an alternatively spliced isoform, the soluble rat GH binding protein (GH-BP), are comprised of identical N-terminal GH binding domains, however, their C-terminal sequences differ. Immunological reagents are needed to distinguish between the two isoforms in order to understand their respective roles in mediating the actions of GH. Accordingly, a tetravalent multiple antigen peptide (MAP) dendrimer with four identical branches of a C-terminal peptide sequence of the rat GH-BP (GH-BP263-279) was synthesized and used as an immunogen in rabbits. Solid-phase peptide synthesis of four GH-BP263-279 segments onto a tetravalent Lys2-Lys-β-Ala-OH core peptide was carried out using N-(9-fluorenyl)methoxycarbonyl chemistry. The mass of the RP-HPLC purified synthetic product, 8398 Da, determined by ESI-MS, was identical to expected mass. Three anti-rat GH-BP263-279 MAP antisera, BETO-8039, BETO-8040 and BETO-8041, at dilutions of 10-3, recognized both the rat GH-BP263-279 MAP and recombinant mouse GH-BP with ED50s within a range of 5-10 fmol but did not cross-react with BSA in dot blot analyses. BETO-8041 antisera (10-3 dilution) recognized GH-BPs of rat serum and liver having Mrs ranging from 35-130 kDa but did not recognize full-length rat GH-Rs. The antisera also detected recombinant mouse GH-BPs. In summary, the tetravalent rat GH-BP263-279 MAP dendrimer served as an effective immunogenic antigen in eliciting high titer antisera specific for the C-termini of both rat and mouse GH-BPs. The antisera will facilitate studies aimed at improving our understanding of the biology of GH-BPs. PMID:19089805

  2. Calcium-dependent antigen binding as a novel modality for antibody recycling by endosomal antigen dissociation.

    PubMed

    Hironiwa, N; Ishii, S; Kadono, S; Iwayanagi, Y; Mimoto, F; Habu, K; Igawa, T; Hattori, K

    2016-01-01

    The pH-dependent antigen binding antibody, termed a recycling antibody, has recently been reported as an attractive type of second-generation engineered therapeutic antibody. A recycling antibody can dissociate antigen in the acidic endosome, and thus bind to its antigen multiple times. As a consequence, a recycling antibody can neutralize large amounts of antigen in plasma. Because this approach relies on histidine residues to achieve pH-dependent antigen binding, which could limit the epitopes that can be targeted and affect the rate of antigen dissociation in the endosome, we explored an alternative approach for generating recycling antibodies. Since calcium ion concentration is known to be lower in endosome than in plasma, we hypothesized that an antibody with antigen-binding properties that are calcium-dependent could be used as recycling antibody. Here, we report a novel anti-interleukin-6 receptor (IL-6R) antibody, identified from a phage library that binds to IL-6R only in the presence of a calcium ion. Thermal dynamics and a crystal structure study revealed that the calcium ion binds to the heavy chain CDR3 region (HCDR3), which changes and possibly stabilizes the structure of HCDR3 to make it bind to antigen calcium dependently (PDB 5AZE). In vitro and in vivo studies confirmed that this calcium-dependent antigen-binding antibody can dissociate its antigen in the endosome and accelerate antigen clearance from plasma, making it a novel approach for generating recycling antibody.

  3. Class II HLA antigens in multiple sclerosis.

    PubMed Central

    Miller, D H; Hornabrook, R W; Dagger, J; Fong, R

    1989-01-01

    HLA typing in Wellington revealed a stronger association of multiple sclerosis with DR2 than with DQw1. The association with DQw1 appeared to be due to linkage disequilibrium of this antigen with DR2. These results, when considered in conjunction with other studies, are most easily explained by the hypothesis that susceptibility to multiple sclerosis is influenced by multiple risk factors, with DR2 being an important risk factor in Caucasoid populations. PMID:2732726

  4. Small molecule inhibitor of antigen binding and presentation by HLA-DR2b as a therapeutic strategy for the treatment of multiple sclerosis.

    PubMed

    Ji, Niannian; Somanaboeina, Animesh; Dixit, Aakanksha; Kawamura, Kazuyuki; Hayward, Neil J; Self, Christopher; Olson, Gary L; Forsthuber, Thomas G

    2013-11-15

    The strong association of HLA-DR2b (DRB1*1501) with multiple sclerosis (MS) suggests this molecule as prime target for specific immunotherapy. Inhibition of HLA-DR2b-restricted myelin-specific T cells has the potential to selectively prevent CNS pathology mediated by these MHC molecules without undesired global immunosuppression. In this study, we report development of a highly selective small molecule inhibitor of peptide binding and presentation by HLA-DR2b. PV-267, the candidate molecule used in these studies, inhibited cytokine production and proliferation of myelin-specific HLA-DR2b-restricted T cells. PV-267 had no significant effect on T cell responses mediated by other MHC class II molecules, including HLA-DR1, -DR4, or -DR9. Importantly, PV-267 did not induce nonspecific immune activation of human PBMC. Lastly, PV-267 showed treatment efficacy both in preventing experimental autoimmune encephalomyelitis and in treating established disease. The results suggest that blocking the MS-associated HLA-DR2b allele with small molecule inhibitors may be a promising therapeutic strategy for the treatment of MS.

  5. Antigen clasping by two antigen-binding sites of an exceptionally specific antibody for histone methylation

    PubMed Central

    Hattori, Takamitsu; Lai, Darson; Dementieva, Irina S.; Montaño, Sherwin P.; Kurosawa, Kohei; Zheng, Yupeng; Akin, Louesa R.; Świst-Rosowska, Kalina M.; Grzybowski, Adrian T.; Koide, Akiko; Krajewski, Krzysztof; Strahl, Brian D.; Kelleher, Neil L.; Ruthenburg, Alexander J.; Koide, Shohei

    2016-01-01

    Antibodies have a well-established modular architecture wherein the antigen-binding site residing in the antigen-binding fragment (Fab or Fv) is an autonomous and complete unit for antigen recognition. Here, we describe antibodies departing from this paradigm. We developed recombinant antibodies to trimethylated lysine residues on histone H3, important epigenetic marks and challenging targets for molecular recognition. Quantitative characterization demonstrated their exquisite specificity and high affinity, and they performed well in common epigenetics applications. Surprisingly, crystal structures and biophysical analyses revealed that two antigen-binding sites of these antibodies form a head-to-head dimer and cooperatively recognize the antigen in the dimer interface. This “antigen clasping” produced an expansive interface where trimethylated Lys bound to an unusually extensive aromatic cage in one Fab and the histone N terminus to a pocket in the other, thereby rationalizing the high specificity. A long-neck antibody format with a long linker between the antigen-binding module and the Fc region facilitated antigen clasping and achieved both high specificity and high potency. Antigen clasping substantially expands the paradigm of antibody–antigen recognition and suggests a strategy for developing extremely specific antibodies. PMID:26862167

  6. Antigen clasping by two antigen-binding sites of an exceptionally specific antibody for histone methylation

    DOE PAGES

    Hattori, Takamitsu; Lai, Darson; Dementieva, Irina S.; ...

    2016-02-09

    Antibodies have a well-established modular architecture wherein the antigen-binding site residing in the antigen-binding fragment (Fab or Fv) is an autonomous and complete unit for antigen recognition. Here, we describe antibodies departing from this paradigm. We developed recombinant antibodies to trimethylated lysine residues on histone H3, important epigenetic marks and challenging targets for molecular recognition. Quantitative characterization demonstrated their exquisite specificity and high affinity, and they performed well in common epigenetics applications. Surprisingly, crystal structures and biophysical analyses revealed that two antigen-binding sites of these antibodies form a head-to-head dimer and cooperatively recognize the antigen in the dimer interface. Thismore » “antigen clasping” produced an expansive interface where trimethylated Lys bound to an unusually extensive aromatic cage in one Fab and the histone N terminus to a pocket in the other, thereby rationalizing the high specificity. A long-neck antibody format with a long linker between the antigen-binding module and the Fc region facilitated antigen clasping and achieved both high specificity and high potency. Antigen clasping substantially expands the paradigm of antibody–antigen recognition and suggests a strategy for developing extremely specific antibodies.« less

  7. Antigen clasping by two antigen-binding sites of an exceptionally specific antibody for histone methylation

    SciTech Connect

    Hattori, Takamitsu; Lai, Darson; Dementieva, Irina S.; Montaño, Sherwin P.; Kurosawa, Kohei; Zheng, Yupeng; Akin, Louesa R.; Świst-Rosowska, Kalina M.; Grzybowski, Adrian T.; Koide, Akiko; Krajewski, Krzysztof; Strahl, Brian D.; Kelleher, Neil L.; Ruthenburg, Alexander J.; Koide, Shohei

    2016-02-09

    Antibodies have a well-established modular architecture wherein the antigen-binding site residing in the antigen-binding fragment (Fab or Fv) is an autonomous and complete unit for antigen recognition. Here, we describe antibodies departing from this paradigm. We developed recombinant antibodies to trimethylated lysine residues on histone H3, important epigenetic marks and challenging targets for molecular recognition. Quantitative characterization demonstrated their exquisite specificity and high affinity, and they performed well in common epigenetics applications. Surprisingly, crystal structures and biophysical analyses revealed that two antigen-binding sites of these antibodies form a head-to-head dimer and cooperatively recognize the antigen in the dimer interface. This “antigen clasping” produced an expansive interface where trimethylated Lys bound to an unusually extensive aromatic cage in one Fab and the histone N terminus to a pocket in the other, thereby rationalizing the high specificity. A long-neck antibody format with a long linker between the antigen-binding module and the Fc region facilitated antigen clasping and achieved both high specificity and high potency. Antigen clasping substantially expands the paradigm of antibody–antigen recognition and suggests a strategy for developing extremely specific antibodies.

  8. Specific binding of antigen onto human T lymphocytes

    SciTech Connect

    Durandy, A.; Fischer, A.; Charron, D.; Griscelli, C.

    1986-05-01

    Human T lymphocytes sensitized to Candida albicans (CA) were shown to proliferate in cultures induced with mannan, a ramified polysaccharide extracted from the cell well of CA. We presently describe that, when we used strongly labeled (/sup 3/H)mannan, antigen-specific T blast cells were able to bind the labeled mannan on their membrane. The observations that irrelevant blast cells did not bind (/sup 3/H)mannan, and that mannan-specific blast cells did not bind tritiated pneumococcal polysaccharide SIII, indicate the specificity of mannan binding. Mannan binding was reversible and saturable. Mannan binding on T blast cells was inhibited by preincubation with monoclonal antibodies to T3 but not to other T cell-related molecules. The characteristics of this receptor suggest its identity with the T cell receptor for antigen. The direct binding of mannan could be either due to a cross-linking of the receptor by multivalent mannan or to a recognition of mannan in association with HLA-DQ molecules, as suggested by partial blocking of mannan binding using anti-HLA-DQ monoclonal antibodies.

  9. Binding of streptococcal antigens to muscle tissue in vitro.

    PubMed Central

    Stinson, M W; Nisengard, R J; Bergey, E J

    1980-01-01

    Antigens extracted from cells of Streptococcus pyogenes T6 and Streptococcus mutans strains AHT, BHT, 10449, OMZ175, and K1R adsorbed to the sarcolemmal sheath of cardiac muscle cells in vitro. Similar preparations from S. salivarius, S. sanguis, Staphylococcus aureus, and Lactobacillus casei had weak or negligible tissue-binding activity. Tissue-bound bacterial antigens were detected with homologous rabbit antisera with both indirect immunofluorescence tests and an indirect radioimmunoassay. Serological cross-reactivity was observed between the tissue-binding factors of S. pyogenes and S. mutans cells but not between the bacteria and muscle tissue. In a comparative study of extraction procedures, the greatest yield of tissue-binding factors was obtained from group A streptococci by cell disruption in buffer at 4 degrees C. Hot aqueous phenol and hot water extracts were inactive. Antibodies specific for the tissue-binding factor(s) were readily adsorbed from rabbit anti-S. pyogenes serum by a preparation of isolated cytoplasmic membranes but not by a suspension of cell wall fragments. The heart-binding component of S. pyogenes cell extracts was inactivated by protease digestion and heat treatment and to a lesser extent by periodic acid oxidation. The capacity of heart cell components to adsorb streptococcal antigens was reduced by protease treatment but not by the action of neuraminidase, hyaluronidase, organic solvents, or detergents. Images Fig. 1 Fig. 2 PMID:6991420

  10. Identification of mutant monoclonal antibodies with increased antigen binding.

    PubMed

    Pollock, R R; French, D L; Gefter, M L; Scharff, M D

    1988-04-01

    Sib selection and an ELISA have been used to isolate hybridoma subclones producing mutant antibodies that bind antigen better than the parental monoclonal antibody. Such mutants arise spontaneously in culture at frequencies of 2.5-5 X 10(-5). The sequences of the heavy and light chain variable regions of the mutant antibodies are identical to that of the parent and the Ka values of the mutants and the parent are the same. The increase in binding is associated with abnormalities of the constant region polypeptide and probably reflect changes in avidity of these antibodies.

  11. A complex water network contributes to high-affinity binding in an antibody-antigen interface.

    PubMed

    Marino, S F; Olal, D; Daumke, O

    2016-03-01

    This data article presents an analysis of structural water molecules in the high affinity interaction between a potent tumor growth inhibiting antibody (fragment), J22.9-xi, and the tumor marker antigen CD269 (B cell maturation antigen, BCMA). The 1.89 Å X-ray crystal structure shows exquisite details of the binding interface between the two molecules, which comprises relatively few, mostly hydrophobic, direct contacts but many indirect interactions over solvent waters. These are partly or wholly buried in, and therefore part of, the interface. A partial description of the structure is included in an article on the tumor inhibiting effects of the antibody: "Potent anti-tumor response by targeting B cell maturation antigen (BCMA) in a mouse model of multiple myeloma", Mol. Oncol. 9 (7) (2015) pp. 1348-58.

  12. Multiple Antigen Peptide Vaccines against Plasmodium falciparum Malaria

    DTIC Science & Technology

    2010-01-01

    M. Vanegas, L. M. Salazar , and M. E. Patarroyo. 2000. Serine repeat antigen peptides which bind specifically to red blood cells. l’arasitol. Int...J. Immunol. 154:6022-򓭦. 58. Urquiza, M., 1 .. E. Rodriguez, J. E. Suarez , 1<’. Guzman, M. Ocampo, H. Curtidor, C. Segura, E. Trujillo, and M. E

  13. Crystal structure of the simian virus 40 large T-antigen origin-binding domain.

    PubMed

    Meinke, Gretchen; Bullock, Peter A; Bohm, Andrew

    2006-05-01

    The origins of replication of DNA tumor viruses have a highly conserved feature, namely, multiple binding sites for their respective initiator proteins arranged as inverted repeats. In the 1.45-angstroms crystal structure of the simian virus 40 large T-antigen (T-ag) origin-binding domain (obd) reported herein, T-ag obd monomers form a left-handed spiral with an inner channel of 30 angstroms having six monomers per turn. The inner surface of the spiral is positively charged and includes residues known to bind DNA. Residues implicated in hexamerization of full-length T-ag are located at the interface between adjacent T-ag obd monomers. These data provide a high-resolution model of the hexamer of origin-binding domains observed in electron microscopy studies and allow the obd's to be oriented relative to the hexamer of T-ag helicase domains to which they are connected.

  14. Crystal Structure of the Simian Virus 40 Large T-Antigen Origin-Binding Domain

    SciTech Connect

    Meinke,G.; Bullock, P.; Bohm, A.

    2006-01-01

    The origins of replication of DNA tumor viruses have a highly conserved feature, namely, multiple binding sites for their respective initiator proteins arranged as inverted repeats. In the 1.45- Angstroms crystal structure of the simian virus 40 large T-antigen (T-ag) origin-binding domain (obd) reported herein, T-ag obd monomers form a left-handed spiral with an inner channel of 30 Angstroms having six monomers per turn. The inner surface of the spiral is positively charged and includes residues known to bind DNA. Residues implicated in hexamerization of full-length T-ag are located at the interface between adjacent T-ag obd monomers. These data provide a high-resolution model of the hexamer of origin-binding domains observed in electron microscopy studies and allow the obd's to be oriented relative to the hexamer of T-ag helicase domains to which they are connected.

  15. Effects of Long-Term Immunization with Multiple Antigens.

    DTIC Science & Technology

    1980-01-01

    rheumatoid factor--Does not depend on activation of complement and detects small non- complement-fixing complexes. 4. Antinuclear antibodies (ANA) and other...and antibody may give rise to allergic encephalitis, orchitis, thyroiditis, or other abnormal conditions such as Arthus’ s reaction or a...booster inoculations after multiple antigens had been given over extended periods. They were evaluated periodically for specific antibody titers, delayed

  16. T antigen origin-binding domain of simian virus 40: determinants of specific DNA binding.

    PubMed

    Bradshaw, Elizabeth M; Sanford, David G; Luo, Xuelian; Sudmeier, James L; Gurard-Levin, Zachary A; Bullock, Peter A; Bachovchin, William W

    2004-06-08

    To better understand origin recognition and initiation of DNA replication, we have examined by NMR complexes formed between the origin-binding domain of SV40 T antigen (T-ag-obd), the initiator protein of the SV40 virus, and cognate and noncognate DNA oligomers. The results reveal two structural effects associated with "origin-specific" binding that are absent in nonspecific DNA binding. The first is the formation of a hydrogen bond (H-bond) involving His 203, a residue that genetic studies have previously identified as crucial to both specific and nonspecific DNA binding in full-length T antigen. In free T-ag-obd, the side chain of His 203 has a pK(a) value of approximately 5, titrating to the N(epsilon)(1)H tautomer at neutral pH (Sudmeier, J. L., et al. (1996) J. Magn. Reson., Ser. B 113, 236-247). In complexes with origin DNA, His 203 N(delta)(1) becomes protonated and remains nontitrating as the imidazolium cation at all pH values from 4 to 8. The H-bonded N(delta1)H resonates at 15.9 ppm, an unusually large N-H proton chemical shift, of a magnitude previously observed only in the catalytic triad of serine proteases at low pH. The formation of this H-bond requires the middle G/C base pair of the recognition pentanucleotide, GAGGC. The second structural effect is a selective distortion of the A/T base pair characterized by a large (0.6 ppm) upfield chemical-shift change of its Watson-Crick proton, while nearby H-bonded protons remain relatively unaffected. The results indicate that T antigen, like many other DNA-binding proteins, may employ "catalytic" or "transition-state-like" interactions in binding its cognate DNA (Jen-Jacobson, L. (1997) Biopolymers 44, 153-180), which may be the solution to the well-known paradox between the relatively modest DNA-binding specificity exhibited by initiator proteins and the high specificity of initiation.

  17. A morphological and functional study on antigen binding and endocytosis by immunocytes.

    PubMed Central

    Goud, B; Antoine, J C; Gonatas, N K; Stieber, A; Avrameas, S

    1980-01-01

    Immunoenzymatic techniques were used to study antigen binding and endocytosis by lymph node cells of rats immunized against horseradish peroxidase, hen ovalbumin and rabbit IgG. The number of antigen-binding cells varied and depended on the type of antigen used, the time after immunization, and was higher after a booster injection. In secondary responses (4 days after booster), about 80% of antigen-binding cells were proplasmocytes and plasmocytes; by a double staining procedure it was found that 82% of these cells bore in addition to surface antigen, specific intracytoplasmic antibody as well. About 20% of antigen-binding cells were small and medium lymphocytes which did not contain detectable intracytoplasmic antibody. For ultrastructural studies of the endocytosis, peroxidase was used as the antigen. This antigen was found in cytoplasmic compartments which consisted of vesicles, cisternae and large round bodies (lysosomes?) often located near the Golgi apparatus. However, the cisternae of the Golgi apparatus, involved in the synthesis of specific antibody were not sites of retrieval of endocytosed antigen. The effect of endocytosis of antigen on the secretion and synthesis of antibody was studied by the local haemolysis plaque assay and biosynthetic labelling. No change was detected in antibody secretion and synthesis as a result of antigen endocytosis. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:7007216

  18. Herpesvirus Glycoproteins Undergo Multiple Antigenic Changes before Membrane Fusion

    PubMed Central

    Glauser, Daniel L.; Kratz, Anne-Sophie; Stevenson, Philip G.

    2012-01-01

    Herpesvirus entry is a complicated process involving multiple virion glycoproteins and culminating in membrane fusion. Glycoprotein conformation changes are likely to play key roles. Studies of recombinant glycoproteins have revealed some structural features of the virion fusion machinery. However, how the virion glycoproteins change during infection remains unclear. Here using conformation-specific monoclonal antibodies we show in situ that each component of the Murid Herpesvirus-4 (MuHV-4) entry machinery—gB, gH/gL and gp150—changes in antigenicity before tegument protein release begins. Further changes then occurred upon actual membrane fusion. Thus virions revealed their final fusogenic form only in late endosomes. The substantial antigenic differences between this form and that of extracellular virions suggested that antibodies have only a limited opportunity to block virion membrane fusion. PMID:22253913

  19. Restricted diversity of antigen binding residues of antibodies revealed by computational alanine scanning of 227 antibody-antigen complexes.

    PubMed

    Robin, Gautier; Sato, Yoshiteru; Desplancq, Dominique; Rochel, Natacha; Weiss, Etienne; Martineau, Pierre

    2014-11-11

    Antibody molecules are able to recognize any antigen with high affinity and specificity. To get insight into the molecular diversity at the source of this functional diversity, we compiled and analyzed a non-redundant aligned collection of 227 structures of antibody-antigen complexes. Free energy of binding of all the residue side chains was quantified by computational alanine scanning, allowing the first large-scale quantitative description of antibody paratopes. This demonstrated that as few as 8 residues among 30 key positions are sufficient to explain 80% of the binding free energy in most complexes. At these positions, the residue distribution is not only different from that of other surface residues but also dependent on the role played by the side chain in the interaction, residues participating in the binding energy being mainly aromatic residues, and Gly or Ser otherwise. To question the generality of these binding characteristics, we isolated an antibody fragment by phage display using a biased synthetic repertoire with only two diversified complementarity-determining regions and solved its structure in complex with its antigen. Despite this restricted diversity, the structure demonstrated that all complementarity-determining regions were involved in the interaction with the antigen and that the rules derived from the natural antibody repertoire apply to this synthetic binder, thus demonstrating the robustness and universality of our results.

  20. A Mutant Library Approach to Identify Improved Meningococcal Factor H Binding Protein Vaccine Antigens

    PubMed Central

    Konar, Monica; Rossi, Raffaella; Walter, Helen; Pajon, Rolando; Beernink, Peter T.

    2015-01-01

    Factor H binding protein (FHbp) is a virulence factor used by meningococci to evade the host complement system. FHbp elicits bactericidal antibodies in humans and is part of two recently licensed vaccines. Using human complement Factor H (FH) transgenic mice, we previously showed that binding of FH decreased the protective antibody responses to FHbp vaccination. Therefore, in the present study we devised a library-based method to identify mutant FHbp antigens with very low binding of FH. Using an FHbp sequence variant in one of the two licensed vaccines, we displayed an error-prone PCR mutant FHbp library on the surface of Escherichia coli. We used fluorescence-activated cell sorting to isolate FHbp mutants with very low binding of human FH and preserved binding of control anti-FHbp monoclonal antibodies. We sequenced the gene encoding FHbp from selected clones and introduced the mutations into a soluble FHbp construct. Using this approach, we identified several new mutant FHbp vaccine antigens that had very low binding of FH as measured by ELISA and surface plasmon resonance. The new mutant FHbp antigens elicited protective antibody responses in human FH transgenic mice that were up to 20-fold higher than those elicited by the wild-type FHbp antigen. This approach offers the potential to discover mutant antigens that might not be predictable even with protein structural information and potentially can be applied to other microbial vaccine antigens that bind host proteins. PMID:26057742

  1. Age-dependent B cell Autoimmunity to a Myelin Surface Antigen in Pediatric Multiple Sclerosis

    PubMed Central

    McLaughlin, Katherine A.; Chitnis, Tanuja; Newcombe, Jia; Franz, Bettina; Kennedy, Julia; McArdel, Shannon; Kuhle, Jens; Kappos, Ludwig; Rostasy, Kevin; Pohl, Daniela; Gagne, Donald; Ness, Jayne M.; Tenembaum, Silvia; O'Connor, Kevin C.; Viglietta, Vissia; Wong, Susan J.; Tavakoli, Norma P.; de Seze, Jerome; Khoury, Samia J.; Bar-Or, Amit; Hafler, David A.; Banwell, Brenda; Wucherpfennig, Kai W.

    2009-01-01

    Multiple sclerosis (MS) typically manifests in early to mid adulthood, but there is increasing recognition of pediatric-onset MS, aided by improvements in imaging techniques. The immunological mechanisms of disease are largely unexplored in pediatric-onset MS, in part because studies have historically focused on adult-onset disease. We investigated autoantibodies to myelin surface antigens in a large cohort of pediatric MS cases by flow cytometric labeling of transfectants that expressed different myelin proteins. While antibodies to native myelin oligodendrocyte glycoprotein (MOG) were uncommon among adult-onset patients, a subset of pediatric patients had serum antibodies that brightly labeled the MOG transfectant. Antibodies to two other myelin surface antigens were largely absent. Affinity purification of MOG antibodies as well as competition of binding with soluble MOG documented their binding specificity. The prevalence of such autoantibodies was highest among patients with a very early onset of MS: 38.7% of patients less than 10 years of age at disease onset had MOG antibodies, compared to 14.7% of patients in the 10–18 year age group. B cell autoimmunity to this myelin surface antigen is therefore most common in patients with a very early onset of MS. PMID:19687098

  2. Specificity and kinetics of norovirus binding to magnetic bead- conjugated histo-blood group antigens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Histo-blood group antigens (HBGA) have been identified as candidate receptors for human norovirus (NOR). Type A, type H1, and Lewis histo-blood group antigens (HBGAs) in humans have been identified as major targets for NOR binding. Pig HBGA-conjugated magnetic beads have been utilized as a means ...

  3. The Role of Antigen Presenting Cells in Multiple Sclerosis

    PubMed Central

    Chastain, Emily M. L.; Duncan, D'Anne S.; Rodgers, Jane M.; Miller, Stephen D.

    2010-01-01

    Multiple Sclerosis (MS) is a debilitating T cell-mediated autoimmune disease of the central nervous system (CNS). Animal models of MS, such as experimental autoimmune encephalomyelitis (EAE) and Theiler's murine encephalomyelitis virus-Induced demyelinating disease (TMEV-IDD) have given light to cellular mechanisms involved in the initiation and progression of this organ-specific autoimmune disease. Within the CNS, antigen presenting cells (APC) such as microglia and astrocytes participate as first line defenders against infections or inflammation. However, during chronic inflammation they can participate in perpetuating the self-destructive environment by secretion of inflammatory factors and/or presentation of myelin epitopes to autoreactive T cells. Dendritic cells (DC) are also participants in the presentation of antigen to T cells, even within the CNS. While the APCs alone are not solely responsible for mediating the destruction to the myelin sheath, they are critical players in perpetuating the inflammatory milieu. This review will highlight relevant studies which have provided insight to the roles played by microglia, DCs and astrocytes in the context of CNS autoimmunity. PMID:20637861

  4. Effect of pH on antigen binding by clonotypic antibodies with different isoelectric points

    SciTech Connect

    Endo, Y.; Miyai, K.; Hata, N.; Iijima, Y.

    1987-02-01

    Polyclonal rabbit antibodies to thyroxine, human myoglobin, human growth hormone, human thyrotropin, human alpha-fetoprotein, and human thyroglobulin were fractionated into clonotypic antibodies with different isoelectric points by agarose isoelectric focusing or chromatofocusing. The effect of pH on the binding of these antigens by their respective clonotypic antibodies was assessed by radioimmunoassay. The profiles of the pH effect differed both for different antigens and for different pI's of the antibodies used. The pH optima in the radioimmunoassays for protein antigens were found to be expressed as a function of pI and molecular weight of both antigen and antibody molecules.

  5. [Effect of conditions of monoclonal antibody adsorption on antigen-binding activity].

    PubMed

    Tarakanova, Iu N; Dmitriev, D A; Massino, Iu S; Smirnova, M B; Segal, O L; Fartushnaia, O V; Iakovleva, D A; Koliaskina, G I; Lavrov, V F; Dmitriev, A D

    2012-01-01

    The dependence of the antigen-binding activity of immobilized antibodies on pH of a saturating buffer has been investigated. We analyzed 28 monoclonal antibodies (MCAs) produced by various hybridomas to three virus antigens, i.e., the nuclear p23 protein of hepatitis C virus (C core protein p23), p24 protein of HIV 1, and the surface antigen of hepatitis B virus (HBsAg). Antibodies were adsorbed on the surfaces of immune plates in acidic (pH 2.8), neutral (pH 7.5), and alkaline (pH 9.5) buffers. The binding of labeled antigens, i.e., biotinylated or conjugated with horseradish peroxidase, with immobilized antigens was tested. It was shown that 10 out of 28 analyzed MCAs (36%) considerably better preserved their antigen-binding activity if their passive adsorption was carried out on the surface of polystyrene plates in an acidic buffer (pH 2.8). This approach allowed constructing a highly sensitive sandwich method for HBsAg assay with a minimal reliably determined antigen concentration of 0.013-0.017 ng/ml. The described approach may be recommended for the optimization of sandwich methods and solid-phase competitive methods.

  6. Identification of a peptide binding protein that plays a role in antigen presentation

    SciTech Connect

    Lakey, E.K.; Margoliash, E.; Pierce, S.K.

    1987-03-01

    The helper T-cell response to globular proteins appears, in general, to require intracellular processing of the antigen, such that a peptide fragment containing the T-cell antigenic determinant is released and transported to and held on the surface of an Ia-expressing, antigen-presenting cell. However, the molecular details underlying these phenomena are largely unknown. The means by which antigenic peptides are anchored on the antigen-presenting cell surface was investigated. A cell surface protein is identified that was isolated by it ability to bind to a 24-amino acid peptide fragment of pigeon cytochrome c, residues 81-104, containing the major antigenic determinant for B10.A mouse T cells. This peptide binding protein, purified from (/sup 35/S)methionine-labeled cells, appears as two discrete bands of approx. =72 and 74 kDa after NaDodSO/sub 4//PAGE. The protein can be eluted from the peptide affinity column with equivalent concentrations of either the antigenic pigeon cytochrome c peptide or the corresponding nonantigenic peptide of mouse cytochrome c. However, it does not bind to the native cytochromes c, either of pigeon or mouse, and thus the protein appears to recognize some structure available only in the free peptides. This protein plays a role in antigen presentation. Its expression is not major histocompatibility complex-restricted in that the blocking activity of the antisera can be absorbed on spleen cells from mice of different haplotypes. This peptide binding protein can be isolated from a variety of cell types, including B cells, T cells, and fibroblasts. The anchoring of processed peptides on the cell surface by such a protein may play a role in antigen presentation.

  7. Selection of Human Antibody Fragments which Bind Novel Breast Tumor Antigens

    DTIC Science & Technology

    1996-09-01

    diagnosis of node-negative breast cancer patients, for immunotherapy prior to growth of large tumor mass , and as adjuvant therapy for minimal residual...biosensor based on surface plasmon resonance (35). For this technique, antigen is coupled to a derivatized sensor chip capable of detecting changes in mass ...When antibody is passed over the sensor chip, antibody binds to the antigen resulting in an increase in mass which can be quantitated. Measurement of

  8. The constant region affects antigen binding of antibodies to DNA by altering secondary structure.

    PubMed

    Xia, Yumin; Janda, Alena; Eryilmaz, Ertan; Casadevall, Arturo; Putterman, Chaim

    2013-11-01

    We previously demonstrated an important role of the constant region in the pathogenicity of anti-DNA antibodies. To determine the mechanisms by which the constant region affects autoantibody binding, a panel of isotype-switch variants (IgG1, IgG2a, IgG2b) was generated from the murine PL9-11 IgG3 autoantibody. The affinity of the PL9-11 antibody panel for histone was measured by surface plasmon resonance (SPR). Tryptophan fluorescence was used to determine wavelength shifts of the antibody panel upon binding to DNA and histone. Finally, circular dichroism spectroscopy was used to measure changes in secondary structure. SPR analysis revealed significant differences in histone binding affinity between members of the PL9-11 panel. The wavelength shifts of tryptophan fluorescence emission were found to be dependent on the antibody isotype, while circular dichroism analysis determined that changes in antibody secondary structure content differed between isotypes upon antigen binding. Thus, the antigen binding affinity is dependent on the particular constant region expressed. Moreover, the effects of antibody binding to antigen were also constant region dependent. Alteration of secondary structures influenced by constant regions may explain differences in fine specificity of anti-DNA antibodies between antibodies with similar variable regions, as well as cross-reactivity of anti-DNA antibodies with non-DNA antigens.

  9. Plasmodium vivax GPI-anchored micronemal antigen (PvGAMA) binds human erythrocytes independent of Duffy antigen status

    PubMed Central

    Cheng, Yang; Lu, Feng; Wang, Bo; Li, Jian; Han, Jin-Hee; Ito, Daisuke; Kong, Deok-Hoon; Jiang, Lubin; Wu, Jian; Ha, Kwon-Soo; Takashima, Eizo; Sattabongkot, Jetsumon; Cao, Jun; Nyunt, Myat Htut; Kyaw, Myat Phone; Desai, Sanjay A.; Miller, Louis H.; Tsuboi, Takafumi; Han, Eun-Taek

    2016-01-01

    Plasmodium vivax, a major agent of malaria in both temperate and tropical climates, has been thought to be unable to infect humans lacking the Duffy (Fy) blood group antigen because this receptor is critical for erythrocyte invasion. Recent surveys in various endemic regions, however, have reported P. vivax infections in Duffy-negative individuals, suggesting that the parasite may utilize alternative receptor-ligand pairs to complete the erythrocyte invasion. Here, we identified and characterized a novel parasite ligand, Plasmodium vivax GPI-anchored micronemal antigen (PvGAMA), that bound human erythrocytes regardless of Duffy antigen status. PvGAMA was localized at the microneme in the mature schizont-stage parasites. The antibodies against PvGAMA fragments inhibited PvGAMA binding to erythrocytes in a dose-dependent manner. The erythrocyte-specific binding activities of PvGAMA were significantly reduced by chymotrypsin treatment. Thus, PvGAMA may be an adhesion molecule for the invasion of Duffy-positive and -negative human erythrocytes. PMID:27759110

  10. Increased immunoglobulin G, but not M, binding to endogenous retroviral antigens in HIV-1 infected persons.

    PubMed

    Lawoko, A; Johansson, B; Rabinayaran, D; Pipkorn, R; Blomberg, J

    2000-12-01

    The modes of interaction between products of human endogenous retroviral (HERV) sequences and the immune system are largely unknown. In HIV infected persons, an exogenous retrovirus adds further complexity to the situation. Therefore, 14 synthetic peptides with sequences derived from conserved regions of various endogenous retroviruses (ERVs) and from related exogenous retroviruses were used to search for IgG and IgM antibodies that bind to such antigens in 15 HIV-1 seropositive and 17 seronegative immunosuppressed patients. IgG binding to three peptides, namely, the C-terminal half of murine leukemia virus (MLV) capsid protein, the conserved portion of HERV-H transmembrane protein, and the Pol region of human mouse mammary tumor virus (MMTV)-like (HML3) sequence, was observed in both groups. Binding was, however, more frequent and more firm in HIV-1 positive samples (P<0.0001, Wilcoxon rank sum test). IgM binding to the same peptides showed no significant differentiation between the two groups of patients. Binding to both immunoglobulin isotypes was sometimes variable over time in both groups. No correlation of either IgG or IgM peptide binding with progression to AIDS in HIV-1 infected individuals was observed. Inhibition studies using analogous endogenous and exogenous retroviral peptides, including HIV-1, demonstrated specificity of the IgG antibodies for a narrow range of MLV- and MMTV-like retroviral antigens, and excluded cross-reactivity of antibodies to HIV-1 as a cause of these observations. Thus, unlike IgG, IgM binding to retroviral antigens was ubiquitous. It is suggested that anti-HERV IgM belong to a class of natural antibodies and might serve as primers in the mediation of humoral immune responses to more or less related exogenous retroviruses. Increased IgG binding in HIV-1 infected individuals could result from such priming, or reflect higher HERV antigen expression.

  11. Antigenicity and immunogenicity of multiple antigen peptides (MAP) containing P. vivax CS epitopes in Aotus monkeys.

    PubMed

    Herrera, S; De Plata, C; González, M; Perlaza, B L; Bettens, F; Corradin, G; Arévalo-Herrera, M

    1997-04-01

    Using linear synthetic peptides corresponding to the Plasmodium vivax circumsporozoite (CS) protein of the common type, we have identified several T and B-cell epitopes recognized by human individuals. Three T-cell epitopes studied (p6) from the amino, (p11) from the central and (p25) from the carboxyl regions, were widely recognized by lymphocytes of immune donors. A series of six peptides, in addition to p11, representing the central repeat domain of the CS(p11-p17) protein were used in ELISA assays to map the B-cell epitopes of this region. P11 was the peptide most frequently recognized by sera containing antibodies to the homologous CS protein as determined by IFAT. The sequences corresponding to peptides p6, p11 and P25 as well as that representing a universal T-cell epitope derived from the tetanus toxin were used to assemble eight different Multiple Antigen Peptides (MAP). The immunogenicity of these MAP was analysed in Aotus monkeys. Groups of two animals were immunized with each MAP and both antibody response, T-lymphocyte proliferation and in vitro gamma-IFN production were evaluated. Two MAPs containing the same B-cell epitope and either a promiscuous CS-protein derived T-cell epitope (p25) or the tetanus toxin epitope (p-tt30) proved to be the most immunogenic and induced high levels of anti-peptide antibodies that recognized the native protein. Except for animals immunized with MAP VII, there was no correlation between antibody levels, lymphocyte proliferation or gamma-IFN production in vitro. The broad recognition of these epitopes by individuals which had been exposed to malaria, the capacity of these MAPs to induce antibodies, recognize the cognate protein, and in vitro gamma-IFN production encourages further analyses of the potential of these proteins as malaria vaccine candidates for human use.

  12. Concentration-dependent effect of fibrinogen on IgG-specific antigen binding and phagocytosis.

    PubMed

    Boehm, Tobias Konrad; Sojar, Hakimuddin; Denardin, Ernesto

    2010-01-01

    In this paper, we aim to characterize fibrinogen-IgG interactions, and explore how fibrinogen alters IgG-mediated phagocytosis. Using enzyme-linked binding assays, we found that fibrinogen binding to IgG is optimized for surfaces coated with high levels of IgG. Using a similar method, we have shown that for an antigen unable to specifically bind fibrinogen, fibrinogen enhances binding of antibodies towards that antigen. For binding of IgG antibodies to cells expressing Fc receptors, we found a bimodal binding response, where low levels of fibrinogen enhance binding of antibody to Fc receptors and high levels reduce it. This corresponds to a bimodal effect on phagocytosis of IgG-coated particles, which is inhibited in the presence of excess IgG during coating of the particles with antibodies and fibrinogen. We conclude that fibrinogen can modulate phagocytosis of IgG-coated particles in vitro by changing IgG binding behavior, and that high fibrinogen levels could negatively affect phagocytosis.

  13. Specific Fluorine Labeling of the HyHEL10 Antibody Affects Antigen Binding and Dynamics

    SciTech Connect

    Acchione, Mauro; Lee, Yi-Chien; DeSantis, Morgan E.; Lipschultz, Claudia A.; Wlodawer, Alexander; Li, Mi; Shanmuganathan, Aranganathan; Walter, Richard L.; Smith-Gill, Sandra; Barchi, Jr., Joseph J.

    2012-10-16

    To more fully understand the molecular mechanisms responsible for variations in binding affinity with antibody maturation, we explored the use of site specific fluorine labeling and {sup 19}F nuclear magnetic resonance (NMR). Several single-chain (scFv) antibodies, derived from an affinity-matured series of anti-hen egg white lysozyme (HEL) mouse IgG1, were constructed with either complete or individual replacement of tryptophan residues with 5-fluorotryptophan ({sup 5F}W). An array of biophysical techniques was used to gain insight into the impact of fluorine substitution on the overall protein structure and antigen binding. SPR measurements indicated that {sup 5F}W incorporation lowered binding affinity for the HEL antigen. The degree of analogue impact was residue-dependent, and the greatest decrease in affinity was observed when {sup 5F}W was substituted for residues near the binding interface. In contrast, corresponding crystal structures in complex with HEL were essentially indistinguishable from the unsubstituted antibody. {sup 19}F NMR analysis showed severe overlap of signals in the free fluorinated protein that was resolved upon binding to antigen, suggesting very distinct chemical environments for each {sup 5F}W in the complex. Preliminary relaxation analysis suggested the presence of chemical exchange in the antibody-antigen complex that could not be observed by X-ray crystallography. These data demonstrate that fluorine NMR can be an extremely useful tool for discerning structural changes in scFv antibody-antigen complexes with altered function that may not be discernible by other biophysical techniques.

  14. Characterization of antibody binding to cell surface antigens using a plasma membrane-bound plate assay.

    PubMed

    Vater, C A; Reid, K; Bartle, L M; Goldmacher, V S

    1995-01-01

    A procedure has been developed for measuring antibody binding to cell surface antigens using an immobilized plasma membrane fraction. In this method, isolated plasma membranes are dried onto wells of a 96-well microtiter plate and incubated with antibodies that recognize a cell surface protein. Bound antibody is detected indirectly using an enzyme-linked or fluorescently tagged second antibody. Alternatively, the primary antibody itself can be labeled and its binding can be detected directly. The assay is simple and fast and provides several advantages over whole cell binding assays currently in widespread use.

  15. Evidence for diversifying selection on erythrocyte-binding antigens of Plasmodium falciparum and P. vivax.

    PubMed Central

    Baum, Jake; Thomas, Alan W; Conway, David J

    2003-01-01

    Malaria parasite antigens involved in erythrocyte invasion are primary vaccine candidates. The erythrocyte-binding antigen 175K (EBA-175) of Plasmodium falciparum binds to glycophorin A on the human erythrocyte surface via an N-terminal cysteine-rich region (termed region II) and is a target of antibody responses. A survey of polymorphism in a malaria-endemic population shows that nucleotide alleles in eba-175 region II occur at more intermediate frequencies than expected under neutrality, but polymorphisms in the homologous domains of two closely related genes, eba-140 (encoding a second erythrocyte-binding protein) and psieba-165 (a putative pseudogene), show an opposite trend. McDonald-Kreitman tests employing interspecific comparison with the orthologous genes in P. reichenowi (a closely related parasite of chimpanzees) reveal a significant excess of nonsynonymous polymorphism in P. falciparum eba-175 but not in eba-140. An analysis of the Duffy-binding protein gene, encoding a major erythrocyte-binding antigen in the other common human malaria parasite P. vivax, also reveals a significant excess of nonsynonymous polymorphisms when compared with divergence from its ortholog in P. knowlesi (a closely related parasite of macaques). The results suggest that EBA-175 in P. falciparum and DBP in P. vivax are both under diversifying selection from acquired human immune responses. PMID:12702678

  16. Neisserial Heparin Binding Antigen (NHBA) Contributes to the Adhesion of Neisseria meningitidis to Human Epithelial Cells

    PubMed Central

    Vacca, Irene; Del Tordello, Elena; Gasperini, Gianmarco; Pezzicoli, Alfredo; Di Fede, Martina; Rossi Paccani, Silvia; Marchi, Sara; Mubaiwa, Tsisti D.; Hartley-Tassell, Lauren E.; Jennings, Michael P.; Seib, Kate L.; Masignani, Vega; Pizza, Mariagrazia; Serruto, Davide; Aricò, Beatrice; Delany, Isabel

    2016-01-01

    Neisserial Heparin Binding Antigen (NHBA) is a surface-exposed lipoprotein ubiquitously expressed by Neisseria meningitidis strains and an antigen of the Bexsero® vaccine. NHBA binds heparin through a conserved Arg-rich region that is the target of two proteases, the meningococcal NalP and human lactoferrin (hLf). In this work, in vitro studies showed that recombinant NHBA protein was able to bind epithelial cells and mutations of the Arg-rich tract abrogated this binding. All N-terminal and C-terminal fragments generated by NalP or hLf cleavage, regardless of the presence or absence of the Arg-rich region, did not bind to cells, indicating that a correct positioning of the Arg-rich region within the full length protein is crucial. Moreover, binding was abolished when cells were treated with heparinase III, suggesting that this interaction is mediated by heparan sulfate proteoglycans (HSPGs). N. meningitidis nhba knockout strains showed a significant reduction in adhesion to epithelial cells with respect to isogenic wild-type strains and adhesion of the wild-type strain was inhibited by anti-NHBA antibodies in a dose-dependent manner. Overall, the results demonstrate that NHBA contributes to meningococcal adhesion to epithelial cells through binding to HSPGs and suggest a possible role of anti-Bexsero® antibodies in the prevention of colonization. PMID:27780200

  17. Binding of Streptococcus mutans antigens to heart and kidney basement membranes.

    PubMed Central

    Stinson, M W; Barua, P K; Bergey, E J; Nisengard, R J; Neiders, M E; Albini, B

    1984-01-01

    Using indirect immunofluorescence, alkali-extracted components of Streptococcus mutans were found to bind in vitro to capillary walls and sarcolemmal sheaths of monkey cardiac muscle and to glomerular and tubular basement membranes of monkey kidney. Adsorption of S. mutans components to tissue fragments was also detected by indirect radioimmunoassay and immunoblotting on nitrocellulose paper. Antibodies did not bind to untreated, control tissues in these experiments, proving that antigens shared by S. mutans and tissue components were not involved. Rabbit and monkey heart and kidney components bound S. mutans antigens of 24,000, 35,000, and 65,000 Mr. Monkey heart also bound molecules of 90,000 and 120,000 Mr. Rabbits immunized by intravenous injection of disrupted S. mutans cells developed severe nephritis that was characterized by the deposition of immunoglobulins, complement component C3, and S. mutans antigens in the glomeruli. Immunoglobulin G eluted from nephritic kidneys reacted in immunoblots with the 24,000, 35,000, and 65,000 Mr components of S. mutans extract, indicating that the antigens that bound to tissue in vitro also bound in vivo and reacted with antibodies in situ. Antibodies to other S. mutans antigens were not detected in the kidney eluate, although they were present in the serum of the same rabbit. Images PMID:6384042

  18. Antigen-binding site protection during radiolabeling leads to a higher immunoreactive fraction

    SciTech Connect

    Van den Abbeele, A.D.; Aaronson, R.A.; Daher, S.; Taube, R.A.; Adelstein, S.J.; Kassis, A.I. )

    1991-01-01

    It is generally accepted that the immunointegrity of an antibody (Ab) depends on the preservation of its antigen-binding sites. Our goal was to radiolabel an antibody at several iodine:antibody molar ratios under conditions protecting its combining site and to compare its immunoreactive fraction (IRF) and electrophoretic mobility with those of the same antibody radiolabeled without protection. The data indicate that an antibody radiolabeled while its antigen-binding site is occupied by its antigen had the same IRF, regardless of the number of iodine atoms per antibody molecule. On the other hand, even at an I:Ab ratio of 1:1, the IRF of the same antibody radiolabeled without protection was lower than that of a protected one and decreased with increasing I:Ab ratios. In addition, the iodination of these Ab changes their electrophoretic mobility; however, when the Ab is labeled in the protected state, the degree of change is less. The binding of an antibody to its antigen prior to radiolabeling, therefore, enhances its immuno-integrity and prevents major conformational changes as reflected by electrophoresis.

  19. Quantitative Assessment of the Effects of Oxidants on Antigen-Antibody Binding In Vitro

    PubMed Central

    Han, Shuang; Wang, Guanyu; Xu, Naijin; Liu, Hui

    2016-01-01

    Objective. We quantitatively assessed the influence of oxidants on antigen-antibody-binding activity. Methods. We used several immunological detection methods, including precipitation reactions, agglutination reactions, and enzyme immunoassays, to determine antibody activity. The oxidation-reduction potential was measured in order to determine total serum antioxidant capacity. Results. Certain concentrations of oxidants resulted in significant inhibition of antibody activity but had little influence on total serum antioxidant capacity. Conclusions. Oxidants had a significant influence on interactions between antigen and antibody, but minimal effect on the peptide of the antibody molecule. PMID:27313823

  20. A Computational Analysis of ATP Binding of SV40 Large Tumor Antigen Helicase Motor

    PubMed Central

    Shi, Yemin; Liu, Hanbin; Gai, Dahai; Ma, Jianpeng; Chen, Xiaojiang S.

    2009-01-01

    Simian Virus 40 Large Tumor Antigen (LTag) is an efficient helicase motor that unwinds and translocates DNA. The DNA unwinding and translocation of LTag is powered by ATP binding and hydrolysis at the nucleotide pocket between two adjacent subunits of an LTag hexamer. Based on the set of high-resolution hexameric structures of LTag helicase in different nucleotide binding states, we simulated a conformational transition pathway of the ATP binding process using the targeted molecular dynamics method and calculated the corresponding energy profile using the linear response approximation (LRA) version of the semi-macroscopic Protein Dipoles Langevin Dipoles method (PDLD/S). The simulation results suggest a three-step process for the ATP binding from the initial interaction to the final tight binding at the nucleotide pocket, in which ATP is eventually “locked” by three pairs of charge-charge interactions across the pocket. Such a “cross-locking” ATP binding process is similar to the binding zipper model reported for the F1-ATPase hexameric motor. The simulation also shows a transition mechanism of Mg2+ coordination to form the Mg-ATP complex during ATP binding, which is accompanied by the large conformational changes of LTag. This simulation study of the ATP binding process to an LTag and the accompanying conformational changes in the context of a hexamer leads to a refined cooperative iris model that has been proposed previously. PMID:19779548

  1. Simulation and Theory of Antibody Binding to Crowded Antigen-Covered Surfaces

    PubMed Central

    De Michele, Cristiano; De Los Rios, Paolo; Foffi, Giuseppe; Piazza, Francesco

    2016-01-01

    In this paper we introduce a fully flexible coarse-grained model of immunoglobulin G (IgG) antibodies parametrized directly on cryo-EM data and simulate the binding dynamics of many IgGs to antigens adsorbed on a surface at increasing densities. Moreover, we work out a theoretical model that allows to explain all the features observed in the simulations. Our combined computational and theoretical framework is in excellent agreement with surface-plasmon resonance data and allows us to establish a number of important results. (i) Internal flexibility is key to maximize bivalent binding, flexible IgGs being able to explore the surface with their second arm in search for an available hapten. This is made clear by the strongly reduced ability to bind with both arms displayed by artificial IgGs designed to rigidly keep a prescribed shape. (ii) The large size of IgGs is instrumental to keep neighboring molecules at a certain distance (surface repulsion), which essentially makes antigens within reach of the second Fab always unoccupied on average. (iii) One needs to account independently for the thermodynamic and geometric factors that regulate the binding equilibrium. The key geometrical parameters, besides excluded-volume repulsion, describe the screening of free haptens by neighboring bound antibodies. We prove that the thermodynamic parameters govern the low-antigen-concentration regime, while the surface screening and repulsion only affect the binding at high hapten densities. Importantly, we prove that screening effects are concealed in relative measures, such as the fraction of bivalently bound antibodies. Overall, our model provides a valuable, accurate theoretical paradigm beyond existing frameworks to interpret experimental profiles of antibodies binding to multi-valent surfaces of different sorts in many contexts. PMID:26967624

  2. Voltage-induced inhibition of antigen-antibody binding at conducting optical waveguides.

    PubMed

    Liron, Zvi; Tender, Leonard M; Golden, Joel P; Ligler, Frances S

    2002-06-01

    Optical waveguides coated with electrically conducting indium-tin oxide (ITO) are demonstrated here as a new class of substrate for fluorescent immunosensors. These waveguides combine electrochemical control with evanescent excitation and image-based detection. Presented here are preliminary results utilizing these waveguides that demonstrate influence of waveguide voltage on antigen binding. Specifically, waveguide surfaces were bisected into electrically addressable halves, anti-ovalbumin immobilized in patterns on their surfaces, and a 1.3 V bias applied between waveguide halves in the presence of Cy5-labeled ovalbumin in 10 mM phosphate buffer (pH 7.4) containing 150 mM NaCl and 0.05% Tween-20. Fluorescence imaging indicated that binding of the antigen to positively biased waveguide halves was inhibited nearly 10-fold compared with negatively biased waveguide halves and unbiased controls. Furthermore, it is shown that ovalbumin binding to positively biased waveguide regions is regenerated after removal of applied voltage. These results suggest that electrochemical control of immunosensor substrates can be used as a possible strategy toward minimizing cross-reactive binding and/or nonspecific adsorption, immunosensor regeneration, and controlled binding.

  3. Characterization of anti-anti-idiotypic antibodies that bind antigen and an anti-idiotype

    PubMed Central

    Goldbaum, Fernando A.; Velikovsky, C. Alejandro; Dall’Acqua, William; Fossati, Carlos A.; Fields, Barry A.; Braden, Bradford C.; Poljak, Roberto J.; Mariuzza, Roy A.

    1997-01-01

    Two mouse monoclonal anti-anti-idiotopic antibodies (anti-anti-Id, Ab3), AF14 and AF52, were prepared by immunizing BALB/c mice with rabbit polyclonal anti-idiotypic antibodies (anti-Id, Ab2) raised against antibody D1.3 (Ab1) specific for the antigen hen egg lysozyme. AF14 and AF52 react with an “internal image” monoclonal mouse anti-Id antibody E5.2 (Ab2), previously raised against D1.3, with affinity constants (1.0 × 109 M−1 and 2.4 × 107 M−1, respectively) usually observed in secondary responses against protein antigens. They also react with the antigen but with lower affinity (1.8 × 106 M−1 and 3.8 × 106 M−1). This pattern of affinities for the anti-Id and for the antigen also was displayed by the sera of the immunized mice. The amino acid sequences of AF14 and AF52 are very close to that of D1.3. In particular, the amino acid side chains that contribute to contacts with both antigen and anti-Id are largely conserved in AF14 and AF52 compared with D1.3. Therapeutic immunizations against different pathogenic antigens using anti-Id antibodies have been proposed. Our experiments show that a response to an anti-Id immunogen elicits anti-anti-Id antibodies that are optimized for binding the anti-Id antibodies rather than the antigen. PMID:9238040

  4. Consensus topography in the ATP binding site of the simian virus 40 and polyomavirus large tumor antigens

    SciTech Connect

    Bradley, M.K.; Smith, T.F.; Lathrop, R.H.; Livingston, D.M.; Webster, T.A.

    1987-06-01

    The location and sequence composition of a consensus element of the nucleotide binding site in both simian virus 40 (SV40) and polyomavirus (PyV) large tumor antigens (T antigens) can be predicted with the assistance of a computer-based pattern-matching system, ARIADNE. The latter was used to optimally align elements of T antigen primary sequence and predicted secondary structure with a descriptor for a mononucleotide binding fold. Additional consensus elements of the nucleotide binding site in these two proteins were derived from comparisons of T antigen primary and predicted secondary structures with x-ray structures of the nucleotide binding sites in four otherwise unrelated proteins. Each of these elements was predicted to be encompassed within a 110-residue segment that is highly conserved between the two T antigens residues 418-528 in SV 40 T antigen and residues 565-675 in PyV. Results of biochemical and immunologic experiments on the nucleotide binding behavior of these proteins using (/sup 32/P)-Amp-labeled SV40 T antigen, were found to be consistent with these predictions. Taken together, the latter have resulted in a topological model of the ATP binding site in these two oncogene products.

  5. A fully synthetic glycopeptide antitumor vaccine based on multiple antigen presentation on a hyperbranched polymer.

    PubMed

    Glaffig, Markus; Palitzsch, Björn; Hartmann, Sebastian; Schüll, Christoph; Nuhn, Lutz; Gerlitzki, Bastian; Schmitt, Edgar; Frey, Holger; Kunz, Horst

    2014-04-07

    For antitumor vaccines both the selected tumor-associated antigen, as well as the mode of its presentation, affect the immune response. According to the principle of multiple antigen presentation, a tumor-associated MUC1 glycopeptide combined with the immunostimulating T-cell epitope P2 from tetanus toxoid was coupled to a multi-functionalized hyperbranched polyglycerol by "click chemistry". This globular polymeric carrier has a flexible dendrimer-like structure, which allows optimal antigen presentation to the immune system. The resulting fully synthetic vaccine induced strong immune responses in mice and IgG antibodies recognizing human breast-cancer cells.

  6. Antigen Binding and Site-Directed Labeling of Biosilica-Immobilized Fusion Proteins Expressed in Diatoms

    SciTech Connect

    Ford, Nicole R.; Hecht, Karen A.; Hu, Dehong; Orr, Galya; Xiong, Yijia; Squier, Thomas; Rorrer, Gregory L.; Roesijadi, Guritno

    2016-01-08

    The diatom Thalassiosira pseudonana was genetically modified to express biosilica-targeted fusion proteins incorporating a tetracysteine tag for site-directed labeling with biarsenical affinity probes and either EGFP or single chain antibody to test colocalization of probes with the EGFP-tagged recombinant protein or binding of biosilica-immobilized antibodies to large and small molecule antigens, respectively. Site-directed labeling with the biarsenical probes demonstrated colocalization with EGFP-encoded proteins in nascent and mature biosilica, supporting their use in studying biosilica maturation. Isolated biosilica transformed with a single chain antibody against either the Bacillus anthracis surface layer protein EA1 or small molecule explosive trinitrotoluene (TNT) effectively bound the respective antigens. A marked increase in fluorescence lifetime of the TNT surrogate Alexa Fluor 555-trinitrobenzene reflected the high binding specificity of the transformed isolated biosilica. These results demonstrated the potential use of biosilica-immobilized single chain antibodies as binders for large and small molecule antigens in sensing and therapeutics.

  7. Mycobacterial antigen 85 complex (Ag85) as a target for ficolins and mannose-binding lectin.

    PubMed

    Świerzko, Anna S; Bartłomiejczyk, Marcin A; Brzostek, Anna; Łukasiewicz, Jolanta; Michalski, Mateusz; Dziadek, Jarosław; Cedzyński, Maciej

    2016-06-01

    The pattern recognition molecules (PRMs) able to activate complement via the lectin pathway are suspected to be involved in the interaction between pathogenic Mycobacteria and the host immune response. Recently, we have found strong interactions between 25 and 35kDa mycobacterial cell fractions and mannose-binding lectin (MBL) and ficolins. Here we demonstrate that two biologically important mycobacterial structures, mannosylated lipoarabinomannan (ManLAM) and the antigen 85 (Ag85) complex, induce activation of the lectin pathway of complement. The strong interaction of recombinant MBL with purified ManLAM was confirmed, but no binding of recombinant ficolins (ficolin-1, -2, -3) with this structure was observed. Interestingly, all PRMs tested reacted with the mycobacterial antigen 85 (Ag85) complex. Based on the use of specific inhibitors (mannan for MBL, acetylated bovine serum albumin for ficolin-1 and -2, Hafnia alvei PCM 1200 lipopolysaccharide for ficolin-3), we concluded that carbohydrate-recognition (MBL) and fibrinogen-like domains (ficolins) were involved in these interactions. Our results indicate that the mycobacterial antigen 85 complex is a target for ficolins and MBL. Furthermore, those PRMs also bound to fibronectin and therefore might influence the Ag85 complex-dependent interaction of Mycobacterium with the extracellular matrix.

  8. Expression of CD3-associated antigen-binding receptors on suppressor T cells.

    PubMed Central

    Kuchroo, V K; Steele, J K; Billings, P R; Selvaraj, P; Dorf, M E

    1988-01-01

    Three suppressor T (Ts)-cell hybridomas specific for 4-hydroxy-3-nitrophenyl acetyl (NP) hapten were selected for surface expression of cluster determinant 3 (CD3) by using antibody (anti-CD3) or antigen (NP-bovine serum albumin) panning procedures followed by cloning at limiting dilution. The CD3-selected Ts hybridomas showed a 1-2 logarithmic enrichment in suppressor activity when compared to the parent lines; they also specifically bound NP-coupled sheep red blood cells in rosette assays. This antigen-binding ability could be down-modulated by anti-CD3 antibody. Similarly, surface expression of CD3 was specifically down-modulated by preincubation of these hybridomas with antigen. Anti-CD3 monoclonal antibody under reducing conditions coprecipitated a broad band of 38-50 kDa associated with two CD3 (25 and 16 kDa) bands. T-cell receptor, anti-alpha-specific monoclonal antibody also immunoprecipitated a broad band in the 41 to 49-kDa region. The combined results suggest that, like helper and cytotoxic T lymphocytes, Ts cells also bear antigen-specific receptors associated with CD3 molecules. Images PMID:2973609

  9. Human recombinant domain antibodies against multiple sclerosis antigenic peptide CSF114(Glc).

    PubMed

    Niccheri, Francesca; Real-Fernàndez, Feliciana; Ramazzotti, Matteo; Lolli, Francesco; Rossi, Giada; Rovero, Paolo; Degl'Innocenti, Donatella

    2014-10-01

    Multiple sclerosis (MS) is a chronic auto-immune disease characterized by a damage to the myelin component of the central nervous system. Self-antigens created by aberrant glycosylation have been described to be a key component in the formation of auto-antibodies. CSF114(Glc) is a synthetic glucopeptide detecting in vitro MS-specific auto-antibodies, and it is actively used in diagnostics and research to monitor and quantify MS-associated Ig levels. We reasoned that antibodies raised against this probe could have been relevant for MS. We therefore screened a human Domain Antibody library against CSF114(Glc) using magnetic separation as a panning method. We obtained and described several clones, and the one with the highest signals was produced as a 6×His-tagged protein to properly study the binding properties as a soluble antibody. By surface plasmon resonance measurements, we evidenced that our clone recognized CSF114(Glc) with high affinity and specific for the glucosylated peptide. Kinetic parameters of peptide-clone interaction were calculated obtaining a value of KD in the nanomolar range. Harboring a human framework, this antibody should be very well tolerated by human immune system and may represent a valuable tool for MS diagnosis and therapy, paving the way to new research strategies.

  10. Serine repeat antigen peptides which bind specifically to red blood cells.

    PubMed

    Puentes, A; Garcia, J; Vera, R; Lopez, Q R; Urquiza, M; Vanegas, M; Salazar, L M; Patarroyo, M E

    2000-08-01

    It has been reported that serine repeat antigen (SERA) binds directly to human erythrocyte membranes, inside-out vesicles and intact mouse erythrocytes. Similarly, mAbs specific against SERA are effective in blocking red blood cell (RBC) invasion by P. falciparum merozoites. Furthermore, the N-terminal recombinant SERA fragment inhibits the merozoite invasion of erythrocyte. In this study of 49 non-overlapping 20-residue-long peptides encompassing the whole SERA protein FCR3 strain, seven peptides having high RBC binding activity were found. Six of these peptides (three from the SERA N-terminal domain) are located in conserved regions and show affinity constants between 150 and 1100 nM, Hill coefficients between 1.5 and 3.0 and 30000-120000 binding sites per cell. Some of these peptides inhibited in vitro merozoite invasion of erythrocyte and intra-erythrocytic development. Residues which are critical in the binding to erythrocytes (in bold face), i.e. 6725 (YLKETNNAISFESNSGSLEKK), 6733 (YALGSDIPEKCDTLASNCFLS), 6737 (YDNILVKMFKTNENNDKSELI), 6746 (DQGNCDTSWIFASKYHLETI), 6754 (YKKVQNLCGDDTADHAVNIVG) and 6762 (NEVSERVHVYHILKHIKDGK), were determined by means of competition assays with high-binding peptide glycine analogues. The identification of peptides which bind to erythrocyte membrane is important in understanding the process of RBC invasion by P. falciparum merozoites.

  11. Characterization of the DNA-binding properties of the origin-binding domain of simian virus 40 large T antigen by fluorescence anisotropy.

    PubMed

    Titolo, S; Welchner, E; White, P W; Archambault, J

    2003-05-01

    The affinity of the origin-binding domain (OBD) of simian virus 40 large T antigen for its cognate origin was measured at equilibrium using a DNA binding assay based on fluorescence anisotropy. At a near-physiological concentration of salt, the affinities of the OBD for site II and the core origin were 31 and 50 nM, respectively. Binding to any of the four 5'-GAGGC-3' binding sites in site II was only slightly weaker, between 57 and 150 nM. Although the OBD was shown previously to assemble as a dimer on two binding sites spaced by 7 bp, we found that increasing the distance between both binding sites by 1 to 3 bp had little effect on affinity. Similar results were obtained for full-length T antigen in absence of nucleotide. Addition of ADP-Mg, which promotes hexamerization of T antigen, greatly increased the affinity of full-length T antigen for the core origin and for nonspecific DNA. The implications of these findings for the assembly of T antigen at the origin and its transition to a non-specific DNA helicase are discussed.

  12. Seasonal tracking of histo-blood group antigen expression and norovirus binding in oyster gastrointestinal cells.

    PubMed

    Tian, Peng; Engelbrektson, Anna L; Mandrell, Robert E

    2008-08-01

    Noroviruses (NORs) are the most common cause of viral gastroenteritis outbreaks. Outbreaks are often associated with the consumption of contaminated oysters and generally occur between the months of November and March, when oysters produce the highest levels of glycogen. Oyster glycogen has been proposed as playing a role in NOR accumulation. Recent research indicates that histo-blood group antigens (HBGAs) function as viral receptors on human gastrointestinal cells. In this study, oyster glycogen was tested to determine whether it contains HBGA-like molecules and whether it plays a role in NOR binding. The correlation between the amount of HBGA expression and NOR binding also was measured. We also tested whether seasonal changes affected HBGA expression and binding of recombinant NORs. The results indicate that recombinant NOR binding is highly correlated with HBGA expression in Virginica (Crassostrea virginica), Pacific (Crassostrea gigas), and Kumamato (Crassostrea sikamea) oysters, but the association does not have a seasonal pattern. No obvious trend in either HBGA expression or recombinant NOR binding by month was noted. A significant increase in recombinant NOR binding was observed in Virginica and Pacific oysters in a season not generally associated with NOR gastroenteritis outbreaks. A significant increase in HBGA expression also was observed for Pacific and Virginica oysters in the same season. Paradoxically, HBGA expression and NOR binding both were higher in oysters produced in the non-NOR gastroenteritis season (April through October) than in those produced in the NOR gastroenteritis season (November through March), suggesting that seasonal NOR gastroenteritis outbreaks are not associated with high levels of HBGA expression or NOR binding.

  13. Analysis of protective antigen peptide binding motifs using bacterial display technology

    NASA Astrophysics Data System (ADS)

    Sarkes, Deborah A.; Dorsey, Brandi L.; Stratis-Cullum, Dimitra N.

    2015-05-01

    In today's fast-paced world, a new biological threat could emerge at any time, necessitating a prompt, reliable, inexpensive detection reagent in each case. Combined with magnetic-activated cell sorting (MACS), bacterial display technology makes it possible to isolate selective, high affinity peptide reagents in days to weeks. Utilizing the eCPX display scaffold is also a rapid way to screen potential peptide reagents. Peptide affinity reagents for protective antigen (PA) of the biothreat Bacillus anthracis were previously discovered using bacterial display. Bioinformatics analysis resulted in the consensus sequence WXCFTC. Additionally, we have discovered PA binding peptides with a WW motif, one of which, YGLHPWWKNAPIGQR, can pull down PA from 1% human serum. The strength of these two motifs combined, to obtain a WWCFTC consensus, is assessed here using Fluorescence Activated Cell Sorting (FACS). While monitoring binding to PA, overall expression of the display scaffold was assessed using the YPet Mona expression control tag (YPet), and specificity was assessed by binding to Streptavidin R-Phycoerythrin (SAPE). The importance of high YPet binding is highlighted as many of the peptides in one of the three replicate experiments fell below our 80% binding threshold. We demonstrate that it is preferable to discard this experiment, due to questionable expression of the peptide itself, than to try to normalize for relative expression. The peptides containing the WWCFTC consensus were of higher affinity and greater specificity than the peptides containing the WW consensus alone, validating further investigation to optimize known PA binders.

  14. Four major sequence elements of simian virus 40 large T antigen coordinate its specific and nonspecific DNA binding.

    PubMed Central

    Simmons, D T; Loeber, G; Tegtmeyer, P

    1990-01-01

    By mutational analysis, we have identified a motif critical to the proper recognition and binding of simian virus 40 large tumor antigen (T antigen) to virus DNA sequences at the origin of DNA replication. This motif is tripartite and consists of two elements (termed A1 and B2) that are necessary for sequence-specific binding of the origin and a central element (B1) which is required for nonspecific DNA-binding activity. Certain amino acids in elements A1 (residues 152 to 155) and B2 (203 to 207) may make direct contact with the GAGGC pentanucleotide sequences in binding sites I and II on the DNA. Alternatively, these two elements could determine the proper structure of the DNA-binding domain, although for a number of reasons we favor the first possibility. In contrast, element B1 (183 to 187) is most likely important for recognizing a general structural feature of DNA. Elements A1 and B2 are nearly identical in all known papovavirus T antigens, whereas B1 is identical only in the closely related papovaviruses simian virus 40, BK virus, and JC virus. In addition to these three elements, a fourth (B3; residues 215 to 219) is necessary for the binding of T antigen to site II but not to site I. We propose that additional contact sites on T antigen are involved in the interaction with site II to initiate the replication of the viral DNA. PMID:2157865

  15. Contribution of the trifluoroacetyl group in the thermodynamics of antigen-antibody binding.

    PubMed

    Oda, Masayuki; Saito, Minoru; Tsumuraya, Takeshi; Fujii, Ikuo

    2010-01-01

    We analyzed the binding of the 7C8 antibody to the chloramphenicol phosphonate antigens-one containing a trifluoroacetyl group (CP-F) and the other containing an acetyl group (CP-H)-by using isothermal titration calorimetry (ITC). The thermodynamic difference due to the substitution of F by H was evaluated using free energy calculations based on molecular dynamics (MD) simulations. We have previously shown that another antibody, namely, 6D9, binds more weakly to CP-H than to CP-F, mainly due to the different hydration free energies of the dissociated state and not due to the unfavorable hydrophobic interactions with the antibody in the bound state. Unlike in the binding of the trifluoroacetyl group with 6D9, in its binding with 7C8, it is exposed to the solvent, as seen in the crystal structure of the complex of 7C8 with CP-F. The thermodynamic analysis performed in this study showed that the binding affinity of 7C8 for CP-H is similar to that for CP-F, but this binding to CP-H is accompanied with less favorable enthalpy and more favorable entropy changes. The free energy calculations indicated that, upon the substitution of F by H, enthalpy and entropy changes in the associated and dissociated states were decreased, but the magnitude of enthalpy and entropy changes in the dissociated state was larger than that in the associated state. The differences in binding free energy, enthalpy, and entropy changes determined by the free energy calculations for the substitution of F by H are in good agreement with the experimental results.

  16. Quantitative analysis of the binding of simian virus 40 large T antigen to DNA.

    PubMed

    Fradet-Turcotte, Amélie; Vincent, Caroline; Joubert, Simon; Bullock, Peter A; Archambault, Jacques

    2007-09-01

    SV40 large T antigen (T-ag) is a multifunctional protein that successively binds to 5'-GAGGC-3' sequences in the viral origin of replication, melts the origin, unwinds DNA ahead of the replication fork, and interacts with host DNA replication factors to promote replication of the simian virus 40 genome. The transition of T-ag from a sequence-specific binding protein to a nonspecific helicase involves its assembly into a double hexamer whose formation is likely dictated by the propensity of T-ag to oligomerize and its relative affinities for the origin as well as for nonspecific double- and single-stranded DNA. In this study, we used a sensitive assay based on fluorescence anisotropy to measure the affinities of wild-type and mutant forms of the T-ag origin-binding domain (OBD), and of a larger fragment containing the N-terminal domain (N260), for different DNA substrates. We report that the N-terminal domain does not contribute to binding affinity but reduces the propensity of the OBD to self-associate. We found that the OBD binds with different affinities to its four sites in the origin and determined a consensus binding site by systematic mutagenesis of the 5'-GAGGC-3' sequence and of the residue downstream of it, which also contributes to affinity. Interestingly, the OBD also binds to single-stranded DNA with an approximately 10-fold higher affinity than to nonspecific duplex DNA and in a mutually exclusive manner. Finally, we provide evidence that the sequence specificity of full-length T-ag is lower than that of the OBD. These results provide a quantitative basis onto which to anchor our understanding of the interaction of T-ag with the origin and its assembly into a double hexamer.

  17. Acyl-CoA binding proteins: multiplicity and function.

    PubMed

    Gossett, R E; Frolov, A A; Roths, J B; Behnke, W D; Kier, A B; Schroeder, F

    1996-09-01

    The physiological role of long-chain fatty acyl-CoA is thought to be primarily in intermediary metabolism of fatty acids. However, recent data show that nM to microM levels of these lipophilic molecules are potent regulators of cell functions in vitro. Although long-chain fatty acyl-CoA are present at several hundred microM concentration in the cell, very little long-chain fatty acyl-CoA actually exists as free or unbound molecules, but rather is bound with high affinity to membrane lipids and/or proteins. Recently, there is growing awareness that cytosol contains nonenzymatic proteins also capable of binding long-chain fatty acyl-CoA with high affinity. Although the identity of the cytosolic long-chain fatty acyl-CoA binding protein(s) has been the subject of some controversy, there is growing evidence that several diverse nonenzymatic cytosolic proteins will bind long-chain fatty acyl-CoA. Not only does acyl-CoA binding protein specifically bind medium and long-chain fatty acyl-CoA (LCFA-CoA), but ubiquitous proteins with multiple ligand specificities such as the fatty acid binding proteins and sterol carrier protein-2 also bind LCFA-CoA with high affinity. The potential of these acyl-CoA binding proteins to influence the level of free LCFA-CoA and thereby the amount of LCFA-CoA bound to regulatory sites in proteins and enzymes is only now being examined in detail. The purpose of this article is to explore the identity, nature, function, and pathobiology of these fascinating newly discovered long-chain fatty acyl-CoA binding proteins. The relative contributions of these three different protein families to LCFA-CoA utilization and/or regulation of cellular activities are the focus of new directions in this field.

  18. Structural basis of Lewisb antigen binding by the Helicobacter pylori adhesin BabA

    PubMed Central

    Hage, Naim; Howard, Tina; Phillips, Chris; Brassington, Claire; Overman, Ross; Debreczeni, Judit; Gellert, Paul; Stolnik, Snow; Winkler, G. Sebastiaan; Falcone, Franco H.

    2015-01-01

    Helicobacter pylori is a leading cause of peptic ulceration and gastric cancer worldwide. To achieve colonization of the stomach, this Gram-negative bacterium adheres to Lewisb (Leb) antigens in the gastric mucosa using its outer membrane protein BabA. Structural information for BabA has been elusive, and thus, its molecular mechanism for recognizing Leb antigens remains unknown. We present the crystal structure of the extracellular domain of BabA, from H. pylori strain J99, in the absence and presence of Leb at 2.0- and 2.1-Å resolutions, respectively. BabA is a predominantly α-helical molecule with a markedly kinked tertiary structure containing a single, shallow Leb binding site at its tip within a β-strand motif. No conformational change occurs in BabA upon binding of Leb, which is characterized by low affinity under acidic [KD (dissociation constant) of ~227 μM] and neutral (KD of ~252 μM) conditions. Binding is mediated by a network of hydrogen bonds between Leb Fuc1, GlcNAc3, Fuc4, and Gal5 residues and a total of eight BabA amino acids (C189, G191, N194, N206, D233, S234, S244, and T246) through both carbonyl backbone and side-chain interactions. The structural model was validated through the generation of two BabA variants containing N206A and combined D233A/S244A substitutions, which result in a reduction and complete loss of binding affinity to Leb, respectively. Knowledge of the molecular basis of Leb recognition by BabA provides a platform for the development of therapeutics targeted at inhibiting H. pylori adherence to the gastric mucosa. PMID:26601230

  19. Kinetics of antigen binding to arrays of antibodies in different sized spots

    NASA Technical Reports Server (NTRS)

    Sapsford, K. E.; Liron, Z.; Shubin, Y. S.; Ligler, F. S.

    2001-01-01

    A fluorescence-based array biosensor has been developed which can measure the binding kinetics of an antigen to an immobilized antibody in real time. A patterned array of antibodies immobilized on the surface of a planar waveguide was used to capture a Cy5-labeled antigen present in a solution that was continuously flowed over the surface. The CCD image of the waveguide was monitored continuously for 25 min. The resulting exponential rise in fluorescence signal was determined by image analysis software and fitted to a reaction-limited kinetics model, giving a kf of 3.6 x 10(5) M(-1) s(-1). Different spot sizes were then patterned on the surface of the waveguide using either a PDMS flow cell or laser exposure, producing width sizes ranging from 80 to 1145 microm. It was demonstrated that under flow conditions, the reduction of spot size did not alter the association rate of the antigen with immobilized antibody; however, as the spot width decreased to < 200 nm, the signal intensity also decreased.

  20. Specific Detection of Antigen-Binding Cells by Localized Growth of Bacteria

    PubMed Central

    Rotman, Boris; Cox, David R.

    1971-01-01

    A new method for the enumeration of lymphoid cells with specific surface-receptors for antigen is described, based on the use of β-D-galactosidase (EC 3.2.1.23), either directly as an antigen or as a conjugated antigen. Binding of β-D-galactosidase is revealed by its activity in releasing riboflavin from a synthetic substrate, riboflavin-β-D-galactopyranoside. The riboflavin, inactive as a vitamin in the galactosidic form, becomes active when released by the enzyme, and can be detected by bioassay. Hence, lymphoid cells with receptors for β-D-galactosidase on their surface can be detected after they have been exposed to the enzyme, washed, and then plated in agar containing riboflavin-β-D-galactopyranoside, streptomycin, riboflavin-deficient medium, and a streptomycin-resistant strain of Streptococcus faecalis that requires riboflavin. Release of riboflavin is signalled by the growth of characteristic bacterial colonies over the cell that bound β-D-galactosidase. Images PMID:5002817

  1. Isolation of a peptide binding protein and its role in antigen presentation

    SciTech Connect

    Lakey, E.; Pierce, S.K.; Margoliash, E.

    1986-03-05

    A mouse T cell hybrid, TPc9.1, recognizes pigeon cytochrome c (Pc) as processed and presented by histocompatible antigen presenting cells (APC). When paraformaldehyde fixed APC are employed, only a peptide fragment of Pc, Pc 81-104, and not the native Pc, is capable of stimulating TPc9.1 cells. Pc 81-104 appears to associate tightly with the APC surface since paraformaldehyde fixed APC which have been incubated with Pc 81-104 remain stimulatory following extensive washing. When APC are surface labeled with /sup 125/I, solubilized and affinity purified on Pc 81-104-Sepharose 4B columns, two predominant polypeptides of approximately 72 and 74 kd are isolated. Little or no immunoglobulin, Class I or Class II proteins are obtained under these conditions. Antisera from rabbits immunized with the affinity purified material, but not preimmune sera, block the activation of TPc 9.1 cells by Pc as well as Pc 81-104 when presented by live APC. Furthermore, these antisera are even more effective in blocking the activation of TPc9.1 cells by either APC which had been pulsed with Pc and then paraformaldehyde fixed, or by Pc 81-104 when added to paraformaldehyde fixed APC, suggesting that these antisera were not affecting antigen processing. Thus, these peptide binding proteins may play a role in antigen presentation, and they are being further characterized.

  2. Dystrophin contains multiple independent membrane-binding domains.

    PubMed

    Zhao, Junling; Kodippili, Kasun; Yue, Yongping; Hakim, Chady H; Wasala, Lakmini; Pan, Xiufang; Zhang, Keqing; Yang, Nora N; Duan, Dongsheng; Lai, Yi

    2016-09-01

    Dystrophin is a large sub-sarcolemmal protein. Its absence leads to Duchenne muscular dystrophy (DMD). Binding to the sarcolemma is essential for dystrophin to protect muscle from contraction-induced injury. It has long been thought that membrane binding of dystrophin depends on its cysteine-rich (CR) domain. Here, we provide in vivo evidence suggesting that dystrophin contains three additional membrane-binding domains including spectrin-like repeats (R)1-3, R10-12 and C-terminus (CT). To systematically study dystrophin membrane binding, we split full-length dystrophin into ten fragments and examined subcellular localizations of each fragment by adeno-associated virus-mediated gene transfer. In skeletal muscle, R1-3, CR domain and CT were exclusively localized at the sarcolemma. R10-12 showed both cytosolic and sarcolemmal localization. Importantly, the CR-independent membrane binding was conserved in murine and canine muscles. A critical function of the CR-mediated membrane interaction is the assembly of the dystrophin-associated glycoprotein complex (DGC). While R1-3 and R10-12 did not restore the DGC, surprisingly, CT alone was sufficient to establish the DGC at the sarcolemma. Additional studies suggest that R1-3 and CT also bind to the sarcolemma in the heart, though relatively weak. Taken together, our study provides the first conclusive in vivo evidence that dystrophin contains multiple independent membrane-binding domains. These structurally and functionally distinctive membrane-binding domains provide a molecular framework for dystrophin to function as a shock absorber and signaling hub. Our results not only shed critical light on dystrophin biology and DMD pathogenesis, but also provide a foundation for rationally engineering minimized dystrophins for DMD gene therapy.

  3. A binding site for the transcription factor Grainyhead/Nuclear transcription factor-1 contributes to regulation of the Drosophila proliferating cell nuclear antigen gene promoter.

    PubMed

    Hayashi, Y; Yamagishi, M; Nishimoto, Y; Taguchi, O; Matsukage, A; Yamaguchi, M

    1999-12-03

    The Drosophila proliferating cell nuclear antigen promoter contains multiple transcriptional regulatory elements, including upstream regulatory element (URE), DNA replication-related element, E2F recognition sites, and three common regulatory factor for DNA replication and DNA replication-related element-binding factor genes recognition sites. In nuclear extracts of Drosophila embryos, we detected a protein factor, the URE-binding factor (UREF), that recognizes the nucleotide sequence 5'-AAACCAGTTGGCA located within URE. Analyses in Drosophila Kc cells and transgenic flies revealed that the UREF-binding site plays an important role in promoter activity both in cultured cells and in living flies. A yeast one-hybrid screen using URE as a bait allowed isolation of a cDNA encoding a transcription factor, Grainyhead/nuclear transcription factor-1 (GRH/NTF-1). The nucleotide sequence required for binding to GRH was indistinguishable from that for UREF detected in embryo nuclear extracts. Furthermore, a specific antibody to GRH reacted with UREF in embryo nuclear extracts. From these results we conclude that GRH is identical to UREF. Although GRH has been thought to be involved in regulation of differentiation-related genes, this study demonstrates, for the first time, involvement of a GRH-binding site in regulation of the DNA replication-related proliferating cell nuclear antigen gene.

  4. Differential DNA binding of Ku antigen determines its involvement in DNA replication.

    PubMed

    Schild-Poulter, Caroline; Matheos, Diamanto; Novac, Olivia; Cui, Bo; Giffin, Ward; Ruiz, Marcia T; Price, Gerald B; Zannis-Hadjopoulos, Maria; Haché, Robert J G

    2003-02-01

    Ku antigen (Ku70/Ku80) is a regulatory subunit of DNA-dependent protein kinase, which participates in the regulation of DNA replication and gene transcription through specific DNA sequences. In this study, we have compared the mechanism of action of Ku from A3/4, a DNA sequence that appears in mammalian origins of DNA replication, and NRE1, a transcriptional regulatory element in the long terminal repeat of mouse mammary tumor virus through which Ku antigen and its associated kinase, DNA-dependent protein kinase (DNA-PK(cs)), act to repress steroid-induced transcription. Our results indicate that replication from a minimal replication origin of ors8 is independent of DNA-PK(cs) and that Ku interacts with A3/4-like sequences and NRE1 in fundamentally different ways. UV crosslinking experiments revealed differential interactions of the Ku subunits with A3/4, NRE1, and two other proposed Ku transcriptional regulatory elements. In vitro footprinting experiments showed direct contact of Ku on A3/4 and over the region of ors8 homologous to A3/4. In vitro replication assays using ors8 templates bearing mutations in the A3/4-like sequence suggested that Ku binding to this element was necessary for replication. By contrast, in vitro replication experiments revealed that NRE1 was not involved in DNA replication. Our results establish A3/4 as a new class of Ku DNA binding site. Classification of Ku DNA binding into eight categories of interaction based on recognition and DNA crosslinking experiments is discussed.

  5. Proliferating cell nuclear antigen (PCNA)-binding protein C1orf124 is a regulator of translesion synthesis.

    PubMed

    Ghosal, Gargi; Leung, Justin Wai-Chung; Nair, Binoj C; Fong, Ka-Wing; Chen, Junjie

    2012-10-05

    DNA damage-induced proliferating cell nuclear antigen (PCNA) ubiquitination serves as the key event mediating post-replication repair. Post-replication repair involves either translesion synthesis (TLS) or damage avoidance via template switching. In this study, we have identified and characterized C1orf124 as a regulator of TLS. C1orf124 co-localizes and interacts with unmodified and mono-ubiquitinated PCNA at UV light-induced damage sites, which require the PIP box and UBZ domain of C1orf124. C1orf124 also binds to the AAA-ATPase valosin-containing protein via its SHP domain, and cellular resistance to UV radiation mediated by C1orf124 requires its interactions with valosin-containing protein and PCNA. Interestingly, C1orf124 binds to replicative DNA polymerase POLD3 and PDIP1 under normal conditions but preferentially associates with TLS polymerase η (POLH) upon UV damage. Depletion of C1orf124 compromises PCNA monoubiquitination, RAD18 chromatin association, and RAD18 localization to UV damage sites. Thus, C1orf124 acts at multiple steps in TLS, stabilizes RAD18 and ubiquitinated PCNA at damage sites, and facilitates the switch from replicative to TLS polymerase to bypass DNA lesion.

  6. Assay Development and High-Throughput Screening for Inhibitors of Kaposi's Sarcoma-Associated Herpesvirus N-Terminal Latency-Associated Nuclear Antigen Binding to Nucleosomes.

    PubMed

    Beauchemin, Chantal; Moerke, Nathan J; Faloon, Patrick; Kaye, Kenneth M

    2014-07-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) has a causative role in several human malignancies, especially in immunocompromised hosts. KSHV latently infects tumor cells and persists as an extrachromosomal episome (plasmid). KSHV latency-associated nuclear antigen (LANA) mediates KSHV episome persistence. LANA binds specific KSHV sequence to replicate viral DNA. In addition, LANA tethers KSHV genomes to mitotic chromosomes to efficiently segregate episomes to daughter nuclei after mitosis. N-terminal LANA (N-LANA) binds histones H2A and H2B to attach to chromosomes. Currently, there are no specific inhibitors of KSHV latent infection. To enable high-throughput screening (HTS) of inhibitors of N-LANA binding to nucleosomes, here we develop, miniaturize, and validate a fluorescence polarization (FP) assay that detects fluorophore-labeled N-LANA peptide binding to nucleosomes. We also miniaturize a counterscreen to identify DNA intercalators that nonspecifically inhibit N-LANA binding to nucleosomes, and also develop an enzyme-linked immunosorbent assay to assess N-LANA binding to nucleosomes in the absence of fluorescence. HTS of libraries containing more than 350,000 compounds identified multiple compounds that inhibited N-LANA binding to nucleosomes. No compounds survived all counterscreens, however. More complex small-molecule libraries will likely be necessary to identify specific inhibitors of N-LANA binding to histones H2A and H2B; these assays should prove useful for future screens.

  7. Superposition-free comparison and clustering of antibody binding sites: implications for the prediction of the nature of their antigen

    PubMed Central

    Di Rienzo, Lorenzo; Milanetti, Edoardo; Lepore, Rosalba; Olimpieri, Pier Paolo; Tramontano, Anna

    2017-01-01

    We describe here a superposition free method for comparing the surfaces of antibody binding sites based on the Zernike moments and show that they can be used to quickly compare and cluster sets of antibodies. The clusters provide information about the nature of the bound antigen that, when combined with a method for predicting the number of direct antibody antigen contacts, allows the discrimination between protein and non-protein binding antibodies with an accuracy of 76%. This is of relevance in several aspects of antibody science, for example to select the framework to be used for a combinatorial antibody library. PMID:28338016

  8. Superposition-free comparison and clustering of antibody binding sites: implications for the prediction of the nature of their antigen.

    PubMed

    Di Rienzo, Lorenzo; Milanetti, Edoardo; Lepore, Rosalba; Olimpieri, Pier Paolo; Tramontano, Anna

    2017-03-24

    We describe here a superposition free method for comparing the surfaces of antibody binding sites based on the Zernike moments and show that they can be used to quickly compare and cluster sets of antibodies. The clusters provide information about the nature of the bound antigen that, when combined with a method for predicting the number of direct antibody antigen contacts, allows the discrimination between protein and non-protein binding antibodies with an accuracy of 76%. This is of relevance in several aspects of antibody science, for example to select the framework to be used for a combinatorial antibody library.

  9. Antibody covalent immobilization on carbon nanotubes and assessment of antigen binding.

    PubMed

    Venturelli, Enrica; Fabbro, Chiara; Chaloin, Olivier; Ménard-Moyon, Cécilia; Smulski, Cristian R; Da Ros, Tatiana; Kostarelos, Kostas; Prato, Maurizio; Bianco, Alberto

    2011-08-08

    Controlling the covalent bonding of antibodies onto functionalized carbon nanotubes is a key step in the design and preparation of nanotube-based conjugates for targeting cancer cells. For this purpose, an anti-MUC1 antibody (Ab) is linked to both multi-walled (MWCNTs) and double-walled carbon nanotubes (DWCNTs) using different synthetic strategies. The presence of the Ab attached to the nanotubes is confirmed by gel electrophoresis and thermogravimetric analysis. Most importantly, molecular recognition of the antigen by surface plasmon resonance is able to determine similar Ab binding capacities for both Ab-DWCNTs and Ab-MWCNTs. These results are very relevant for the design of future receptor-targeting strategies using chemically functionalized carbon nanotubes.

  10. The Leptospiral Antigen Lp49 is a Two-Domain Protein with Putative Protein Binding Function

    SciTech Connect

    Oliveira Giuseppe,P.; Oliveira Neves, F.; Nascimento, A.; Gomes Guimaraes, B.

    2008-01-01

    Pathogenic Leptospira is the etiological agent of leptospirosis, a life-threatening disease that affects populations worldwide. Currently available vaccines have limited effectiveness and therapeutic interventions are complicated by the difficulty in making an early diagnosis of leptospirosis. The genome of Leptospira interrogans was recently sequenced and comparative genomic analysis contributed to the identification of surface antigens, potential candidates for development of new vaccines and serodiagnosis. Lp49 is a membrane-associated protein recognized by antibodies present in sera from early and convalescent phases of leptospirosis patients. Its crystal structure was determined by single-wavelength anomalous diffraction using selenomethionine-labelled crystals and refined at 2.0 Angstroms resolution. Lp49 is composed of two domains and belongs to the all-beta-proteins class. The N-terminal domain folds in an immunoglobulin-like beta-sandwich structure, whereas the C-terminal domain presents a seven-bladed beta-propeller fold. Structural analysis of Lp49 indicates putative protein-protein binding sites, suggesting a role in Leptospira-host interaction. This is the first crystal structure of a leptospiral antigen described to date.

  11. Enzymatic hydrolysis of heated whey: iron-binding ability of peptides and antigenic protein fractions.

    PubMed

    Kim, S B; Seo, I S; Khan, M A; Ki, K S; Lee, W S; Lee, H J; Shin, H S; Kim, H S

    2007-09-01

    This study evaluated the influence of various enzymes on the hydrolysis of whey protein concentrate (WPC) to reduce its antigenic fractions and to quantify the peptides having iron-binding ability in its hydrolysates. Heated (for 10 min at 100 degrees C) WPC (2% protein solution) was incubated with 2% each of Alcalase, Flavourzyme, papain, and trypsin for 30, 60, 90, 120, 150, 180, and 240 min at 50 degrees C. The highest hydrolysis of WPC was observed after 240 min of incubation with Alcalase (12.4%), followed by Flavourzyme (12.0%), trypsin (10.4%), and papain (8.53%). The nonprotein nitrogen contents of WPC hydrolysate followed the hydrolytic pattern of whey. The major antigenic fractions (beta-lactoglobulin) in WPC were degraded within 60 min of its incubation with Alcalase, Flavourzyme, or papain. Chromatograms of enzymatic hydrolysates of heated WPC also indicated complete degradation of beta-lactoglobulin, alpha-lactalbumin, and BSA. The highest iron solubility was noticed in hydrolysates derived with Alcalase (95%), followed by those produced with trypsin (90%), papain (87%), and Flavourzyme (81%). Eluted fraction 1 (F-1) and fraction 2 (F-2) were the respective peaks for the 0.25 and 0.5 M NaCl chromatographic step gradient for analysis of hydrolysates. Iron-binding ability was noticeably higher in F-1 than in F-2 of all hydrolysates of WPC. The highest iron contents in F-1 were observed in WPC hydrolysates derived with Alcalase (0.2 mg/kg), followed by hydrolysates derived with Flavourzyme (0.14 mg/kg), trypsin (0.14 mg/kg), and papain (0.08 mg/kg). Iron concentrations in the F-2 fraction of all enzymatic hydrolysates of WPC were low and ranged from 0.03 to 0.05 mg/kg. Fraction 1 may describe a new class of iron chelates based on the reaction of FeSO4 x 7 H2O with a mixture of peptides obtained by the enzymatic hydrolysis of WPC. The chromatogram of Alcalase F-1 indicated numerous small peaks of shorter wavelengths, which probably indicated a variety of

  12. Production of serum immunoglobulins and T cell antigen binding molecules specific for cow's milk antigens in adults intolerant to cow's milk.

    PubMed

    Little, C H; Georgiou, G M; Shelton, M J; Cone, R E

    1998-11-01

    The immune response to three cow's milk antigens, beta-lactoglobulin (BLG), alpha-lactalbumin (AL), and casein (CA) was studied in 15 milk-intolerant adult patients and 11 adult controls. IgG, IgE, and IgG subclasses (IgG1, IgG2, IgG3, IgG4) and T cell-derived antigen-binding molecules (TABM) specific for each antigen were measured in both groups. In the patient group, a significant elevation of total IgG and TABM against each of the milk antigens was found as well as raised levels of IgG1 to BLG and CA, IgG4 to BLG, and IgE to CA. TABM specific for BLG were isolated by affinity for BLG and found to be Mr 28,000-46,000 polypeptides functionally and physically associated with TGF-beta1 and TGF-beta2. These results indicate a Th2-type immune response to the milk antigens in milk-intolerant individuals compared with the control group which shows a pattern typical of anergy or deletion.

  13. [Reseach Advances on Cancer-Testis Antigens in Multiple Myeloma -Review].

    PubMed

    Yang, Zhi-Rui; Yu, Li; Zhu, Hai-Yan

    2017-02-01

    Cancer-testis antigens (CTA) are a class of tumor-associated antigens, which are mainly located in X chromosome. CTA restrictively expressed in normal testis, ovary, placenta and so on. Their expression in other normal tissues is much lower, even can not be detected. However, their expressions are aberrantly high in human cancers. Based on CTA encoding immunogenic proteins, they can be regulated by epigentics, CTA provides very attractive targets for cancer immunotherapy. Multiple myeloma (MM) is incurable and has a low cureative rate and a high relapse rate. CTA have been detected in many MM cell lines and primary MM cells, they may be relaled to clinical prognosis. This reviews briefly summarized the research advances of CTA in the immune therapy of multiple myeloma, so as to provide a valuable therapeutic idea for myeloma.

  14. Presentation of antigen in immune complexes is boosted by soluble bacterial immunoglobulin binding proteins.

    PubMed

    Léonetti, M; Galon, J; Thai, R; Sautès-Fridman, C; Moine, G; Ménez, A

    1999-04-19

    Using a snake toxin as a proteic antigen (Ag), two murine toxin-specific monoclonal antibodies (mAbs), splenocytes, and two murine Ag-specific T cell hybridomas, we showed that soluble protein A (SpA) from Staphylococcus aureus and protein G from Streptococcus subspecies, two Ig binding proteins (IBPs), not only abolish the capacity of the mAbs to decrease Ag presentation but also increase Ag presentation 20-100-fold. Five lines of evidence suggest that this phenomenon results from binding of an IBP-Ab-Ag complex to B cells possessing IBP receptors. First, we showed that SpA is likely to boost presentation of a free mAb, suggesting that the IBP-boosted presentation of an Ag in an immune complex results from the binding of IBP to the mAb. Second, FACS analyses showed that an Ag-Ab complex is preferentially targeted by SpA to a subpopulation of splenocytes mainly composed of B cells. Third, SpA-dependent boosted presentation of an Ag-Ab complex is further enhanced when splenocytes are enriched in cells containing SpA receptors. Fourth, the boosting effect largely diminishes when splenocytes are depleted of cells containing SpA receptors. Fifth, the boosting effect occurs only when IBP simultaneously contains a Fab and an Fc binding site. Altogether, our data suggest that soluble IBPs can bridge immune complexes to APCs containing IBP receptors, raising the possibility that during an infection process by bacteria secreting these IBPs, Ag-specific T cells may activate IBP receptor-containing B cells by a mechanism of intermolecular help, thus leading to a nonspecific immune response.

  15. Lipid-Free Antigen B Subunits from Echinococcus granulosus: Oligomerization, Ligand Binding, and Membrane Interaction Properties

    PubMed Central

    Silva-Álvarez, Valeria; Franchini, Gisela R.; Pórfido, Jorge L.; Kennedy, Malcolm W.; Ferreira, Ana M.; Córsico, Betina

    2015-01-01

    Background The hydatid disease parasite Echinococcus granulosus has a restricted lipid metabolism, and needs to harvest essential lipids from the host. Antigen B (EgAgB), an abundant lipoprotein of the larval stage (hydatid cyst), is thought to be important in lipid storage and transport. It contains a wide variety of lipid classes, from highly hydrophobic compounds to phospholipids. Its protein component belongs to the cestode-specific Hydrophobic Ligand Binding Protein family, which includes five 8-kDa isoforms encoded by a multigene family (EgAgB1-EgAgB5). How lipid and protein components are assembled into EgAgB particles remains unknown. EgAgB apolipoproteins self-associate into large oligomers, but the functional contribution of lipids to oligomerization is uncertain. Furthermore, binding of fatty acids to some EgAgB subunits has been reported, but their ability to bind other lipids and transfer them to acceptor membranes has not been studied. Methodology/Principal Findings Lipid-free EgAgB subunits obtained by reverse-phase HPLC were used to analyse their oligomerization, ligand binding and membrane interaction properties. Size exclusion chromatography and cross-linking experiments showed that EgAgB8/2 and EgAgB8/3 can self-associate, suggesting that lipids are not required for oligomerization. Furthermore, using fluorescent probes, both subunits were found to bind fatty acids, but not cholesterol analogues. Analysis of fatty acid transfer to phospholipid vesicles demonstrated that EgAgB8/2 and EgAgB8/3 are potentially capable of transferring fatty acids to membranes, and that the efficiency of transfer is dependent on the surface charge of the vesicles. Conclusions/Significance We show that EgAgB apolipoproteins can oligomerize in the absence of lipids, and can bind and transfer fatty acids to phospholipid membranes. Since imported fatty acids are essential for Echinococcus granulosus, these findings provide a mechanism whereby EgAgB could engage in lipid

  16. γ Sulphate PNA (PNA S): highly selective DNA binding molecule showing promising antigene activity.

    PubMed

    Avitabile, Concetta; Moggio, Loredana; Malgieri, Gaetano; Capasso, Domenica; Di Gaetano, Sonia; Saviano, Michele; Pedone, Carlo; Romanelli, Alessandra

    2012-01-01

    Peptide Nucleic Acids (PNAs), nucleic acid analogues showing high stability to enzyme degradation and strong affinity and specificity of binding toward DNA and RNA are widely investigated as tools to interfere in gene expression. Several studies have been focused on PNA analogues with modifications on the backbone and bases in the attempt to overcome solubility, uptake and aggregation issues. γ PNAs, PNA derivatives having a substituent in the γ position of the backbone show interesting properties in terms of secondary structure and affinity of binding toward complementary nucleic acids. In this paper we illustrate our results obtained on new analogues, bearing a sulphate in the γ position of the backbone, developed to be more DNA-like in terms of polarity and charge. The synthesis of monomers and oligomers is described. NMR studies on the conformational properties of monomers and studies on the secondary structure of single strands and triplexes are reported. Furthermore the hybrid stability and the effect of mismatches on the stability have also been investigated. Finally, the ability of the new analogue to work as antigene, interfering with the transcription of the ErbB2 gene on a human cell line overexpressing ErbB2 (SKBR3), assessed by FACS and qPCR, is described.

  17. Semenogelins I and II bind zinc and regulate the activity of prostate-specific antigen.

    PubMed

    Jonsson, Magnus; Linse, Sara; Frohm, Birgitta; Lundwall, Ake; Malm, Johan

    2005-04-15

    In semen, the gel proteins SgI and SgII (semenogelins I and II) are digested by PSA (prostate-specific antigen), resulting in liquefaction and release of motile spermatozoa. Semen contains a high concentration of Zn2+, which is known to inhibit the protease activity of PSA. We characterized the binding of Zn2+ to SgI and SgII and found evidence that these proteins are involved in regulating the activity of PSA. Intact SgI and SgII and synthetic semenogelin peptides were used in the experiments. Binding of Zn2+ was studied by radioligand blotting, titration with a zinc (II) fluorophore chelator and NMR analysis. A chromogenic substrate was used to measure the enzymatic activity of PSA. SgI and SgII bound Zn2+ with a stoichiometry of at least 10 mol (mol of protein)(-1) and with an average dissociation constant of approx. 5 microM per site. Moreover, Zn2+-inhibited PSA was activated by exposure to SgI or SgII. Since both proteins have high affinity for Zn2+ and are the dominating proteins in semen, they probably represent the major Zn2+ binders in semen, one function of which may be to regulate the activity of PSA. The system is self-regulating, and PSA is maintained in an active state by its substrate.

  18. Multiple antigenic peptides as vaccine platform for the induction of humoral responses against dengue-2 virus.

    PubMed

    Amexis, Georgios; Young, Neal S

    2007-12-01

    Dengue is an important agent of human disease for which no licensed vaccine is available to the public. We used multiple antigenic peptides (MAPs) as an antigen carrier for the development of subunit vaccines against dengue-2 virus (DEN-2). Commercially available software (MacVector 7.0) was used to identify potential antigenic B-cell epitopes of E-glycoprotein. A total of 60 BALB/c mice were immunized with 12 recombinant DEN-2-specific MAPs and the humoral immune response was assessed by anti-DEN-2 ELISA and PRNT50 assays. Anti-DEN-2 ELISA showed high levels of anti-DEN-2 antibodies and post-immune sera reduced viral infectivity and prevented infection of monkey kidney cells (LLC-MK2) with live DEN-2 virus. Seven neutralizing DEN-2 epitopes were identified that generated PRNT50 titers of up to 1:160. Our findings show that the MAP platform can be used as an antigen-presenting platform for dengue vaccine development.

  19. High Resolution Mapping of Bactericidal Monoclonal Antibody Binding Epitopes on Staphylococcus aureus Antigen MntC

    PubMed Central

    Gribenko, Alexey V.; Parris, Kevin; Mosyak, Lidia; Li, Sheng; Handke, Luke; Hawkins, Julio C.; Severina, Elena; Matsuka, Yury V.; Anderson, Annaliesa S.

    2016-01-01

    The Staphylococcus aureus manganese transporter protein MntC is under investigation as a component of a prophylactic S.aureus vaccine. Passive immunization with monoclonal antibodies mAB 305-78-7 and mAB 305-101-8 produced using MntC was shown to significantly reduce S. aureus burden in an infant rat model of infection. Earlier interference mapping suggested that a total of 23 monoclonal antibodies generated against MntC could be subdivided into three interference groups, representing three independent immunogenic regions. In the current work binding epitopes for selected representatives of each of these interference groups (mAB 305-72-5 – group 1, mAB 305-78-7 – group 2, and mAB 305-101-8 – group 3) were mapped using Hydrogen-Deuterium Exchange Mass Spectrometry (DXMS). All of the identified epitopes are discontinuous, with binding surface formed by structural elements that are separated within the primary sequence of the protein but adjacent in the context of the three-dimensional structure. The approach was validated by co-crystallizing the Fab fragment of one of the antibodies (mAB 305-78-7) with MntC and solving the three-dimensional structure of the complex. X-ray results themselves and localization of the mAB 305-78-7 epitope were further validated using antibody binding experiments with MntC variants containing substitutions of key amino acid residues. These results provided insight into the antigenic properties of MntC and how these properties may play a role in protecting the hostagainst S. aureus infection by preventing the capture and transport of Mn2+, a key element that the pathogen uses to evade host immunity. PMID:27689696

  20. Polyomavirus large T antigen binds symmetrical repeats at the viral origin in an asymmetrical manner.

    PubMed

    Harrison, Celia; Jiang, Tao; Banerjee, Pubali; Meinke, Gretchen; D'Abramo, Claudia M; Schaffhausen, Brian; Bohm, Andrew

    2013-12-01

    Polyomaviruses have repeating sequences at their origins of replication that bind the origin-binding domain of virus-encoded large T antigen. In murine polyomavirus, the central region of the origin contains four copies (P1 to P4) of the sequence G(A/G)GGC. They are arranged as a pair of inverted repeats with a 2-bp overlap between the repeats at the center. In contrast to simian virus 40 (SV40), where the repeats are nonoverlapping and all four repeats can be simultaneously occupied, the crystal structure of the four central murine polyomavirus sequence repeats in complex with the polyomavirus origin-binding domain reveals that only three of the four repeats (P1, P2, and P4) are occupied. Isothermal titration calorimetry confirms that the stoichiometry is the same in solution as in the crystal structure. Consistent with these results, mutation of the third repeat has little effect on DNA replication in vivo. Thus, the apparent 2-fold symmetry within the DNA repeats is not carried over to the protein-DNA complex. Flanking sequences, such as the AT-rich region, are known to be important for DNA replication. When the orientation of the central region was reversed with respect to these flanking regions, the origin was still able to replicate and the P3 sequence (now located at the P2 position with respect to the flanking regions) was again dispensable. This highlights the critical importance of the precise sequence of the region containing the pentamers in replication.

  1. Polyomavirus Large T Antigen Binds Symmetrical Repeats at the Viral Origin in an Asymmetrical Manner

    PubMed Central

    Harrison, Celia; Jiang, Tao; Banerjee, Pubali; Meinke, Gretchen; D'Abramo, Claudia M.; Schaffhausen, Brian

    2013-01-01

    Polyomaviruses have repeating sequences at their origins of replication that bind the origin-binding domain of virus-encoded large T antigen. In murine polyomavirus, the central region of the origin contains four copies (P1 to P4) of the sequence G(A/G)GGC. They are arranged as a pair of inverted repeats with a 2-bp overlap between the repeats at the center. In contrast to simian virus 40 (SV40), where the repeats are nonoverlapping and all four repeats can be simultaneously occupied, the crystal structure of the four central murine polyomavirus sequence repeats in complex with the polyomavirus origin-binding domain reveals that only three of the four repeats (P1, P2, and P4) are occupied. Isothermal titration calorimetry confirms that the stoichiometry is the same in solution as in the crystal structure. Consistent with these results, mutation of the third repeat has little effect on DNA replication in vivo. Thus, the apparent 2-fold symmetry within the DNA repeats is not carried over to the protein-DNA complex. Flanking sequences, such as the AT-rich region, are known to be important for DNA replication. When the orientation of the central region was reversed with respect to these flanking regions, the origin was still able to replicate and the P3 sequence (now located at the P2 position with respect to the flanking regions) was again dispensable. This highlights the critical importance of the precise sequence of the region containing the pentamers in replication. PMID:24109229

  2. A modern approach for epitope prediction: identification of foot-and-mouth disease virus peptides binding bovine leukocyte antigen (BoLA) class I molecules

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Major histocompatibility complex (MHC) class I molecules regulate adaptive immune responses through the presentation of antigenic peptides to CD8positive T-cells. Polymorphisms in the peptide binding region of class I molecules determine peptide binding affinity and stability during antigen presenta...

  3. Very Late Antigen-4 (α4β1 Integrin) Targeted PET Imaging of Multiple Myeloma

    PubMed Central

    Soodgupta, Deepti; Hurchla, Michelle A.; Jiang, Majiong; Zheleznyak, Alexander; Weilbaecher, Katherine N.; Anderson, Carolyn J.; Tomasson, Michael H.; Shokeen, Monica

    2013-01-01

    Biomedical imaging techniques such as skeletal survey and 18F-fluorodeoxyglucose (FDG)/Positron Emission Tomography (PET) are frequently used to diagnose and stage multiple myeloma (MM) patients. However, skeletal survey has limited sensitivity as it can detect osteolytic lesions only after 30–50% cortical bone destruction, and FDG is a marker of cell metabolism that has limited sensitivity for intramedullary lesions in MM. Targeted, and non-invasive novel probes are needed to sensitively and selectively image the unique molecular signatures and cellular processes associated with MM. Very late antigen-4 (VLA-4; also called α4β1 integrin) is over-expressed on MM cells, and is one of the key mediators of myeloma cell adhesion to the bone marrow (BM) that promotes MM cell trafficking and drug resistance. Here we describe a proof-of-principle, novel molecular imaging strategy for MM tumors using a VLA-4 targeted PET radiopharmaceutical, 64Cu-CB-TE1A1P-LLP2A. Cell uptake studies in a VLA-4-positive murine MM cell line, 5TGM1, demonstrated receptor specific uptake (P<0.0001, block vs. non-block). Tissue biodistribution at 2 h of 64Cu-CB-TE1A1P-LLP2A in 5TGM1 tumor bearing syngeneic KaLwRij mice demonstrated high radiotracer uptake in the tumor (12±4.5%ID/g), and in the VLA-4 rich organs, spleen (8.8±1.0%ID/g) and marrow (11.6±2.0%ID/g). Small animal PET/CT imaging with 64Cu-CB-TE1A1P-LLP2A demonstrated high uptake in the 5TGM1 tumors (SUV 6.6±1.1). There was a 3-fold reduction in the in vivo tumor uptake in the presence of blocking agent (2.3±0.4). Additionally, 64Cu-CB-TE1A1P-LLP2A demonstrated high binding to the human MM cell line RPMI-8226 that was significantly reduced in the presence of the cold targeting agent. These results provide pre-clinical evidence that VLA-4-targeted imaging using 64Cu-CB-TE1A1P-LLP2A is a novel approach to imaging MM tumors. PMID:23409060

  4. Epitopes of HERV-Wenv induce antigen-specific humoral immunity in multiple sclerosis patients.

    PubMed

    Mameli, Giuseppe; Cossu, Davide; Cocco, Eleonora; Frau, Jessica; Marrosu, Maria Giovanna; Niegowska, Magdalena; Sechi, Leonardo Antonio

    2015-03-15

    To verify the serological response mounted against antigenic peptides from HERV-Wenv protein, we analyzed 80 multiple sclerosis (MS) serum samples, 27 of which were re-analyzed after a 6-month follow-up IFN-β therapy, and 73 healthy controls. Indirect ELISAs were carried out to detect antibodies specific for all the synthetic peptides derived from HERV-Wenv. Two antigenic peptides, HERV-Wenv93-108 (31.25%, p<0.0001) and HERV-Wenv248-262 (15%, p=0.02), were highly recognized by MS patients' antibodies when compared to healthy subjects. Moreover, antibody titer against these two peptides slightly decreased after six months of IFN-β-based therapy.

  5. Fluorine substitutions in an antigenic peptide selectively modulate T-cell receptor binding in a minimally perturbing manner

    SciTech Connect

    Piepenbrink, Kurt H.; Borbulevych, Oleg Y.; Sommese, Ruth F.; Clemens, John; Armstrong, Kathryn M.; Desmond, Clare; Do, Priscilla; Baker, Brian M.

    2010-08-17

    TCR (T-cell receptor) recognition of antigenic peptides bound and presented by MHC (major histocompatibility complex) molecules forms the basis of the cellular immune response to pathogens and cancer. TCRs bind peptide - MHC complexes weakly and with fast kinetics, features which have hindered detailed biophysical studies of these interactions. Modified peptides resulting in enhanced TCR binding could help overcome these challenges. Furthermore, there is considerable interest in using modified peptides with enhanced TCR binding as the basis for clinical vaccines. In the present study, we examined how fluorine substitutions in an antigenic peptide can selectively impact TCR recognition. Using a structure-guided design approach, we found that fluorination of the Tax peptide [HTLV (human T-cell lymphotropic virus)-1 Tax] enhanced binding by the Tax-specific TCR A6, yet weakened binding by the Tax-specific TCR B7. The changes in affinity were consistent with crystallographic structures and fluorine chemistry, and with the A6 TCR independent of other substitutions in the interface. Peptide fluorination thus provides a means to selectively modulate TCR binding affinity without significantly perturbing peptide composition or structure. Lastly, we probed the mechanism of fluorine's effect on TCR binding and we conclude that our results were most consistent with a 'polar hydrophobicity' mechanism, rather than a purely hydrophobic- or electrostatic-based mechanism. This finding should have an impact on other attempts to alter molecular recognition with fluorine.

  6. Intramolecular trimerization, a novel strategy for making multispecific antibodies with controlled orientation of the antigen binding domains

    PubMed Central

    Alvarez-Cienfuegos, Ana; Nuñez-Prado, Natalia; Compte, Marta; Cuesta, Angel M.; Blanco-Toribio, Ana; Harwood, Seandean Lykke; Villate, Maider; Merino, Nekane; Bonet, Jaume; Navarro, Rocio; Muñoz-Briones, Clara; Sørensen, Karen Marie Juul; Mølgaard, Kasper; Oliva, Baldo; Sanz, Laura; Blanco, Francisco J.; Alvarez-Vallina, Luis

    2016-01-01

    Here, we describe a new strategy that allows the rapid and efficient engineering of mono and multispecific trivalent antibodies. By fusing single-domain antibodies from camelid heavy-chain-only immunoglobulins (VHHs) to the N-terminus of a human collagen XVIII trimerization domain (TIEXVIII) we produced monospecific trimerbodies that were efficiently secreted as soluble functional proteins by mammalian cells. The purified VHH-TIEXVIII trimerbodies were trimeric in solution and exhibited excellent antigen binding capacity. Furthermore, by connecting with two additional glycine-serine-based linkers three VHH-TIEXVIII modules on a single polypeptide chain, we present an approach for the rational design of multispecific tandem trimerbodies with defined stoichiometry and controlled orientation. Using this technology we report here the construction and characterization of a tandem VHH-based trimerbody capable of simultaneously binding to three different antigens: carcinoembryonic antigen (CEA), epidermal growth factor receptor (EGFR) and green fluorescence protein (GFP). Multispecific tandem VHH-based trimerbodies were well expressed in mammalian cells, had good biophysical properties and were capable of simultaneously binding their targeted antigens. Importantly, these antibodies were very effective in inhibiting the proliferation of human epidermoid carcinoma A431 cells. Multispecific VHH-based trimerbodies are therefore ideal candidates for future applications in various therapeutic areas. PMID:27345490

  7. Surface plasmon resonance and NMR analyses of anti Tn-antigen MLS128 monoclonal antibody binding to two or three consecutive Tn-antigen clusters.

    PubMed

    Matsumoto-Takasaki, Ayano; Hanashima, Shinya; Aoki, Ami; Yuasa, Noriyuki; Ogawa, Haruhiko; Sato, Reiko; Kawakami, Hiroko; Mizuno, Mamoru; Nakada, Hiroshi; Yamaguchi, Yoshiki; Fujita-Yamaguchi, Yoko

    2012-03-01

    Tn-antigens are tumour-associated carbohydrate antigens that are involved in metastatic processes and are associated with a poor prognosis. MLS128 monoclonal antibody recognizes the structures of two or three consecutive Tn-antigens (Tn2 or Tn3). Since MLS128 treatment inhibits colon and breast cancer cell growth [Morita, N., Yajima, Y., Asanuma, H., Nakada, H., and Fujita-Yamaguchi, Y. (2009) Inhibition of cancer cell growth by anti-Tn monoclonal antibody MLS128. Biosci. Trends 3, 32-37.], understanding the interaction between MLS128 and Tn-clusters may allow us to the development of novel cancer therapeutics. Although MLS128 was previously reported to have specificity for Tn3 rather than Tn2, similar levels of Tn2/Tn3 binding were unexpectedly observed at 37°C. Thus, thermodynamic analyses were performed via surface plasmon resonance (SPR) using synthetic Tn2- and Tn3-peptides at 10, 15, 20, 25 and 30°C. SPR results revealed that MLS128's association constants for both antigens were highly temperature dependent. Below 25°C MLS128's association constant for Tn3-peptide was clearly higher than that for Tn2-peptide. At 30°C, however, the association constant for Tn2-peptide was higher than that for Tn3-peptide. This reversal of affinity is due to the sharp increase in K(d) for Tn3. These results were confirmed by NMR, which directly measured MLS128-Tn binding in solution. This study suggested that thermodynamic control plays a critical role in the interaction between MLS128/Tn2 and MLS128/Tn3.

  8. Effect of the Protein Corona on Antibody-Antigen Binding in Nanoparticle Sandwich Immunoassays.

    PubMed

    de Puig, Helena; Bosch, Irene; Carré-Camps, Marc; Hamad-Schifferli, Kimberly

    2017-01-18

    We investigated the effect of the protein corona on the function of nanoparticle (NP) antibody (Ab) conjugates in dipstick sandwich immunoassays. Ab specific for Zika virus nonstructural protein 1 (NS1) were conjugated to gold NPs, and another anti-NS1 Ab was immobilized onto the nitrocellulose membrane. Sandwich immunoassay formation was influenced by whether the strip was run in corona forming conditions, i.e., in human serum. Strips run in buffer or pure solutions of bovine serum albumin exhibited false positives, but those run in human serum did not. Serum pretreatment of the nitrocellulose also eliminated false positives. Corona formation around the NP-Ab in serum was faster than the immunoassay time scale. Langmuir binding analysis determined how the immobilized Ab affinity for the NP-Ab/NS1 was impacted by corona formation conditions, quantified as an effective dissociation constant, KD(eff). Results show that corona formation mediates the specificity and sensitivity of the antibody-antigen interaction of Zika biomarkers in immunoassays, and plays a critical but beneficial role.

  9. Structure, Receptor Binding, and Antigenicity of Influenza Virus Hemagglutinins from the 1957 H2N2 Pandemic

    SciTech Connect

    Xu, Rui; McBride, Ryan; Paulson, James C.; Basler, Christopher F.; Wilson, Ian A.

    2010-03-04

    The hemagglutinin (HA) envelope protein of influenza viruses mediates essential viral functions, including receptor binding and membrane fusion, and is the major viral antigen for antibody neutralization. The 1957 H2N2 subtype (Asian flu) was one of the three great influenza pandemics of the last century and caused 1 million deaths globally from 1957 to 1968. Three crystal structures of 1957 H2 HAs have been determined at 1.60 to 1.75 {angstrom} resolutions to investigate the structural basis for their antigenicity and evolution from avian to human binding specificity that contributed to its introduction into the human population. These structures, which represent the highest resolutions yet recorded for a complete ectodomain of a glycosylated viral surface antigen, along with the results of glycan microarray binding analysis, suggest that a hydrophobicity switch at residue 226 and elongation of receptor-binding sites were both critical for avian H2 HA to acquire human receptor specificity. H2 influenza viruses continue to circulate in birds and pigs and, therefore, remain a substantial threat for transmission to humans. The H2 HA structure also reveals a highly conserved epitope that could be harnessed in the design of a broader and more universal influenza A virus vaccine.

  10. Targeting proliferating cell nuclear antigen and its protein interactions induces apoptosis in multiple myeloma cells.

    PubMed

    Müller, Rebekka; Misund, Kristine; Holien, Toril; Bachke, Siri; Gilljam, Karin M; Våtsveen, Thea K; Rø, Torstein B; Bellacchio, Emanuele; Sundan, Anders; Otterlei, Marit

    2013-01-01

    Multiple myeloma is a hematological cancer that is considered incurable despite advances in treatment strategy during the last decade. Therapies targeting single pathways are unlikely to succeed due to the heterogeneous nature of the malignancy. Proliferating cell nuclear antigen (PCNA) is a multifunctional protein essential for DNA replication and repair that is often overexpressed in cancer cells. Many proteins involved in the cellular stress response interact with PCNA through the five amino acid sequence AlkB homologue 2 PCNA-interacting motif (APIM). Thus inhibiting PCNA's protein interactions may be a good strategy to target multiple pathways simultaneously. We initially found that overexpression of peptides containing the APIM sequence increases the sensitivity of cancer cells to contemporary therapeutics. Here we have designed a cell-penetrating APIM-containing peptide, ATX-101, that targets PCNA and show that it has anti-myeloma activity. We found that ATX-101 induced apoptosis in multiple myeloma cell lines and primary cancer cells, while bone marrow stromal cells and primary healthy lymphocytes were much less sensitive. ATX-101-induced apoptosis was caspase-dependent and cell cycle phase-independent. ATX-101 also increased multiple myeloma cells' sensitivity against melphalan, a DNA damaging agent commonly used for treatment of multiple myeloma. In a xenograft mouse model, ATX-101 was well tolerated and increased the anti-tumor activity of melphalan. Therefore, targeting PCNA by ATX-101 may be a novel strategy in multiple myeloma treatment.

  11. [Effect of pH of Adsorption Buffers on the Number and Antigen-Binding Activity of Monoclonal Antibodies Immobilized on the Surface of Polystyrene Microplates].

    PubMed

    Tarakanova, Yu N; Dmitriev, A D; Massino, Yu S; Pechelulko, A A; Segal, O L; Skoblov, Yu O; Ulanova, T I; Lavrov, V F; Dmitriev, D A

    2015-01-01

    The change in the concentration and antigen-binding activity of 28 monoclonal antibodies was studied after their adsorption on the surface of polystyrene microplates in buffers with different pH values (1.0, 2.8, 7.5, 9.6, and 11.9). We used 16 clones to the HIV p24 protein and 12 clones to the surface antigen of Hepatitis B Virus. The binding efficiency of adsorbed antibodies to the labeled antigen was evaluated by the slope of the linear region of the binding curve to the concentration axis. It was shown that the antigen-binding activity of six antibodies (21.5%) statistically significantly increased after adsorption at pH 2.8 and 11.9 as compared to pH 7.5 and 9.5. The maximum amount of antibodies was found to be adsorbed on the solid surface at pH 7.5. The analysis of the binding of 125I-HBs-antigen to adsorbed antibodies made it possible to evaluate the concentration of active antibodies on the polystyrene surface. It was shown that the increase in the antigen-binding activity was due to an increase in the proportion of antibodies with retained activity after adsorption at pH 2.8 and 11.9. Under these conditions, about 20% of the antibodies retained their antigen-binding activity, and 6% did so after immobilization at pH 7.5.

  12. Direct binding of a myasthenia gravis related epitope to MHC class II molecules on living murine antigen-presenting cells.

    PubMed Central

    Mozes, E; Dayan, M; Zisman, E; Brocke, S; Licht, A; Pecht, I

    1989-01-01

    MHC gene products present antigenic epitopes to the antigen receptor on T cells. Nevertheless, direct binding of such epitopes to MHC class II proteins on normal living antigen-presenting cells (APCs) has not yet been demonstrated. We have previously shown a significant difference in the ability of T cells of myasthenia gravis (MG) patients to proliferate in response to the synthetic peptide p195-212 of the human acetylcholine receptor (AChR) alpha-subunit in comparison to healthy controls. The observed proliferative responses correlated significantly with HLA-DR5. Moreover, lymph node cells of various mouse strains that were primed with the T cell epitope, p195-212, were found to proliferate to different extents. To investigate these observations further, we designed an assay for direct binding of p195-212 to MHC class II proteins on the surface of freshly prepared splenic adherent cells. Binding of a biotinylated p195-212 was monitored using phycoerythrin-avidin by flow cytometry. Fifteen to sixty per cent of the cells were labeled following incubation with the biotinylated peptide. Binding was observed only to splenic adherent cells derived from mouse strains of which T cells were capable of proliferating in response to p195-212. The binding specificity, in terms of epitope structure and its site of interaction on the cells, was shown by its inhibition with an excess of the unlabeled peptide or with the relevant monoclonal anti-I-A antibodies. These results constitute the first direct evidence for the specific binding of a T cell epitope to live APC. PMID:2480232

  13. Selection of Human Antibody Fragments Which Bind Novel Breast Tumor Antigens

    DTIC Science & Technology

    1998-09-01

    cell type specific scFv for tumor targeting and as tools for identifying novel tumor antigens ... tumor specific antigens ). Subsequently, the cells were washed extensively with PBS to remove unbound phage and then incubated at 37°C for 15 minutes... detection and isolation of a tumor cell surface antigen using antibody phage display. J. Immunol. Meth. 203: 11-24. 46. Watters, J.M., Telleman, P.,

  14. Packaging of hepatitis delta virus RNA via the RNA-binding domain of hepatitis delta antigens: different roles for the small and large delta antigens.

    PubMed Central

    Wang, H W; Chen, P J; Lee, C Z; Wu, H L; Chen, D S

    1994-01-01

    Hepatitis delta virus (HDV) is composed of four specific components. The first component is envelope protein which contains hepatitis B surface antigens. The second and third components are nucleocapsid proteins, referred to as small and large hepatitis delta antigens (HDAgs). The final component is a single-stranded circular RNA molecule known as the viral genome. In order to study the mechanism of HDV RNA packaging, a four-plasmid cotransfection system in which each viral component was provided by a separate plasmid was employed. Virus-like particles released from Huh-7 cells receiving such a cotransfection were found to contain HDV RNA along with three proteins. Therefore, the four-plasmid cotransfection system could lead to successful HDV RNA packaging in vitro. The system was then used to show that the large HDAg alone was able to achieve a low level of HDV RNA packaging. Analysis of a variety of large HDAg mutants revealed that the RNA-binding domain was essential for viral RNA packaging. By increasing the incorporation of small HDAg into virus-like particles, we found a three- to fourfold enhancement of HDV RNA packaging. This effect was probably through a direct binding of HDV RNA, independent from that of large HDAg, with the small HDAg. The subsequent RNA-protein complex was packaged into particles. The results provided insight into the roles and functional domains of small and large HDAgs in HDV RNA packaging. Images PMID:8083975

  15. A "liver" antigen associated with avian erythroblastosis: binding by bentonite and precipitation with sodium dodecyl sulphate.

    PubMed Central

    Darcel, C L

    1982-01-01

    The properties of a complement fixing antigen, EbAg, extracted from erythroblastosis-affected chicken livers are described. The antigen in extracts freed of structural protein is strongly bound by bentonite, but not by barium sulphate. Strongly alkaline solutions of sodium dodecyl sulphate are required to release the antigen from bentonite. Acidification of the detergent solution precipitates the active solution precipitates the active protein. Extraction of heme from the acidified detergent precipitate by methyl-ethyl ketone further purifies the antigen. This acid detergent treatment eliminates the need to use bentonite as a purification step. PMID:6280825

  16. Oriented Immobilization of Fab Fragments by Site-Specific Biotinylation at the Conserved Nucleotide Binding Site for Enhanced Antigen Detection.

    PubMed

    Mustafaoglu, Nur; Alves, Nathan J; Bilgicer, Basar

    2015-09-08

    Oriented immobilization of antibodies and antibody fragments has become increasingly important as a result of the efforts to reduce the size of diagnostic and sensor devices to miniaturized dimensions for improved accessibility to the end-user. Reduced dimensions of sensor devices necessitate the immobilized antibodies to conserve their antigen binding activity for proper operation. Fab fragments are becoming more commonly used in small-scaled diagnostic devices due to their small size and ease of manufacture. In this study, we used the previously described UV-NBS(Biotin) method to functionalize Fab fragments with IBA-EG11-Biotin linker utilizing UV energy to initiate a photo-cross-linking reaction between the nucleotide binding site (NBS) on the Fab fragment and IBA-Biotin molecule. Our results demonstrate that immobilization of biotinylated Fab fragments via UV-NBS(Biotin) method generated the highest level of immobilized Fab on surfaces when compared to other typical immobilization methods while preserving antigen binding activity. UV-NBS(Biotin) method provided 432-fold, 114-fold, and 29-fold improved antigen detection sensitivity than physical adsorption, NHS-Biotin, and ε-NH3(+), methods, respectively. Additionally, the limit of detection (LOD) for PSA utilizing Fab fragments immobilized via UV-NBS(Biotin) method was significantly lower than that of the other immobilization methods, with an LOD of 0.4 pM PSA. In summary, site-specific biotinylation of Fab fragments without structural damage or loss in antigen binding activity provides a wide range of application potential for UV-NBS immobilization technique across numerous diagnostic devices and nanotechnologies.

  17. Host range and cell cycle activation properties of polyomavirus large T-antigen mutants defective in pRB binding

    SciTech Connect

    Freund, R.; Bauer, P.H.; Benjamin, T.L.; Crissman, H.A.; Bradbury, E.M. |

    1994-11-01

    The authors have examined the growth properties of polyomavirus large T-antigen mutants that ar unable to bind pRB, the product of the retinoblastoma tumor suppressor gene. These mutants grow poorly on primary mouse cells yet grow well on NIH 3T3 and other established mouse cell lines. Preinfection of primary baby mouse kidney (BMK) epithelial cells with wild-type simian virus 40 renders these cells permissive to growth of pRB-binding polyomavirus mutants. Conversely, NIH 3T3 cells transfected by and expressing wild-type human pRB become nonpermissive. Primary fibroblasts for mouse embryos that carry a homozygous knockout of the RB gene are permissive, while those from normal littermates are nonpermissive. The host range of polyomavirus pRB-binding mutants is thus determined by expression or lack of expression of functional pRB by the host. These results demonstrate the importance of pRB binding by large T antigen for productive viral infection in primary cells. Failure of pRB-binding mutants to grow well in BMK cells correlates with their failure to induce progression from G{sub 0} or G{sub 1} through the S phase of the cell cycle. Time course studies show delayed synthesis and lower levels of accumulation of large T antigen, viral DNA, and VP1 in mutant compared with wild-type virus-infected BMK cells. These results support a model in which productive infection by polyomavirus in normal mouse cells is tightly coupled to the induction and progression of the cell cycle. 48 refs., 6 figs., 5 tabs.

  18. Identification of the binding site in intercellular adhesion molecule 1 for its receptor, leukocyte function-associated antigen 1.

    PubMed Central

    Fisher, K L; Lu, J; Riddle, L; Kim, K J; Presta, L G; Bodary, S C

    1997-01-01

    Intercellular adhesion molecule 1 (ICAM-1, CD54) is a member of the Ig superfamily and is a counterreceptor for the beta 2 integrins: lymphocyte function-associated antigen 1 (LFA-1, CD11a/CD18), complement receptor 1 (MAC-1, CD11b/CD18), and p150,95 (CD11c/CD18). Binding of ICAM-1 to these receptors mediates leukocyte-adhesive functions in immune and inflammatory responses. In this report, we describe a cell-free assay using purified recombinant extracellular domains of LFA-1 and a dimeric immunoadhesin of ICAM-1. The binding of recombinant secreted LFA-1 to ICAM-1 is divalent cation dependent (Mg2+ and Mn2+ promote binding) and sensitive to inhibition by antibodies that block LFA-1-mediated cell adhesion, indicating that its conformation mimics that of LFA-1 on activated lymphocytes. We describe six novel anti-ICAM-1 monoclonal antibodies, two of which are function blocking. Thirty-five point mutants of the ICAM-1 immunoadhesin were generated and residues important for binding of monoclonal antibodies and purified LFA-1 were identified. Nineteen of these mutants bind recombinant LFA-1 equivalently to wild type. Sixteen mutants show a 66-2500-fold decrease in LFA-1 binding yet, with few exceptions, retain binding to the monoclonal antibodies. These mutants, along with modeling studies, define the LFA-1 binding site on ICAM-1 as residues E34, K39, M64, Y66, N68, and Q73, that are predicted to lie on the CDFG beta-sheet of the Ig fold. The mutant G32A also abrogates binding to LFA-1 while retaining binding to all of the antibodies, possibly indicating a direct interaction of this residue with LFA-1. These data have allowed the generation of a highly refined model of the LFA-1 binding site of ICAM-1. Images PMID:9188101

  19. Human lipoprotein binding to schistosomula of schistosoma mansoni. Displacement by polyanions, parasite antigen masking, and persistence in young larvae.

    PubMed Central

    Chiang, C. P.; Caulfield, J. P.

    1989-01-01

    It was previously shown by the authors that the binding of human low-density lipoprotein (LDL) to the surface of schistosomula inhibits the binding of human anti-schistosomal antibodies and is inhibited by suramin. Here, three questions were considered. 1) Are LDLs bound to schistosomula displaced from the membrane by polyanions? 2) Does bound LDL mask or hide antigens recognized by human anti-schistosomal antibodies? 3) Is LDL, binding capability present when the larvae enter the blood stream? The first question was tested by measuring the percentage of the schistosomular surface membrane covered by LDL after exposure to LDL with or without dextran sulfate or suramin. The bound LDL was visualized with polyclonal goat anti-human apolipoprotein B (anti-apo B) antibodies and peroxidase-conjugated secondary antibodies. After overnight culture in 20 micrograms/300 microliters LDL, 84.0% +/- 0.3% of the parasite surface was covered by LDL reaction product. When the polyanions suramin or dextran sulfate were added to the cultures for 30 minutes, only 59.7% +/- 4.9% of the surface was covered by reaction product, demonstrating that the LDL was partially displaced from the membrane by these compounds. The second question was tested by measuring the binding of human and mouse monoclonal anti-schistosomal antibodies before and after exposure to LDL, with or without partial removal of the bound LDL by suramin. LDL partially inhibited antibody binding in a reversible fashion. The LDL clearly masked parasite antigens, most probably by steric hindrance. However, there may be competitive inhibition of antibody binding by the LDL as well, because human anti-schistosomal antibodies inhibited LDL binding to worms and both human anti-schistosomal antibody and LDL binding to schistosomula were inhibited by suramin. Finally, the third question was tested by quantitative immunofluorescence. The LDL binding capability persisted and nearly doubled by 72 hours after transformation from

  20. Role of Single-Stranded DNA Binding Activity of T Antigen in Simian Virus 40 DNA Replication

    PubMed Central

    Wu, Chunxiao; Roy, Rupa; Simmons, Daniel T.

    2001-01-01

    We have previously mapped the single-stranded DNA binding domain of large T antigen to amino acid residues 259 to 627. By using internal deletion mutants, we show that this domain most likely begins after residue 301 and that the region between residues 501 and 550 is not required. To study the function of this binding activity, a series of single-point substitutions were introduced in this domain, and the mutants were tested for their ability to support simian virus 40 (SV40) replication and to bind to single-stranded DNA. Two replication-defective mutants (429DA and 460EA) were grossly impaired in single-stranded DNA binding. These two mutants were further tested for other biochemical activities needed for viral DNA replication. They bound to origin DNA and formed double hexamers in the presence of ATP. Their ability to unwind origin DNA and a helicase substrate was severely reduced, although they still had ATPase activity. These results suggest that the single-stranded DNA binding activity is involved in DNA unwinding. The two mutants were also very defective in structural distortion of origin DNA, making it likely that single-stranded DNA binding is also required for this process. These data show that single-stranded DNA binding is needed for at least two steps during SV40 DNA replication. PMID:11222709

  1. Binding to histo-blood group antigen-expressing bacteria protects human norovirus from acute heat stress

    PubMed Central

    Li, Dan; Breiman, Adrien; le Pendu, Jacques; Uyttendaele, Mieke

    2015-01-01

    This study aims to investigate if histo-blood group antigen (HBGA) expressing bacteria have any protective role on human norovirus (NoV) from acute heat stress. Eleven bacterial strains were included, belonging to Escherichia coli, Enterobacter cloacae, Enterobacter aerogenes, Clostridium difficile, Bifidobacterium adolescentis, and B. longum. HBGA expression of the bacteria as well as binding of human NoV virus-like particles (VLPs, GI.1, and GII.4 strains) to the bacteria were detected by flow cytometry. NoV VLPs pre-incubated with HBGA expressing or non-HBGA expressing bacteria were heated and detected by both direct ELISA and porcine gastric mucin-binding assay. The NoV-binding abilities of the bacteria correlated well with their HBGA expression profiles. Two HBGA expressing E. coli (LMG8223 and LFMFP861, both GI.1 and GII.4 binders) and one non-HBGA expressing E. coli (ATCC8739, neither GI.1 nor GII.4 binder) were selected for the heat treatment test with NoV VLPs. Compared with the same cell numbers of non-HBGA expressing E. coli, the presence of HBGA-expressing E. coli could always maintain higher antigen integrity, as well as mucin-binding ability of NoV VLPs of both GI.1 and GII.4 after heat-treatment at 90°C for 2 min. These results indicate that HBGA-expressing bacteria may protect NoVs during the food processing treatments, thereby facilitating their transmission. PMID:26191052

  2. Cancer/Testis Antigen MAGE-C1/CT7: New Target for Multiple Myeloma Therapy

    PubMed Central

    de Carvalho, Fabricio; Vettore, André L.; Colleoni, Gisele W. B.

    2012-01-01

    Cancer/Testis Antigens (CTAs) are a promising class of tumor antigens that have a limited expression in somatic tissues (testis, ovary, fetal, and placental cells). Aberrant expression of CTAs in cancer cells may lead to abnormal chromosome segregation and aneuploidy. CTAs are regulated by epigenetic mechanisms (DNA methylation and acetylation of histones) and are attractive targets for immunotherapy in cancer because the gonads are immune privileged organs and anti-CTA immune response can be tumor-specific. Multiple myeloma (MM) is an incurable hematological malignancy, and several CTAs have been detected in many MM cell lines and patients. Among CTAs expressed in MM we must highlight the MAGE-C1/CT7 located on the X chromosome and expressed specificity in the malignant plasma cells. MAGE-C1/CT7 seems to be related to disease progression and functional studies suggests that this CTA might play a role in cell cycle and mainly in survival of malignant plasma cells, protecting myeloma cells against spontaneous as well as drug-induced apoptosis. PMID:22481966

  3. Chimeric Antigen Receptor T Cells against CD19 for Multiple Myeloma

    PubMed Central

    Garfall, Alfred L.; Maus, Marcela V.; Hwang, Wei-Ting; Lacey, Simon F.; Mahnke, Yolanda D.; Melenhorst, J. Joseph; Zheng, Zhaohui; Vogl, Dan T.; Cohen, Adam D.; Weiss, Brendan M.; Dengel, Karen; Kerr, Naseem D.S.; Bagg, Adam; Levine, Bruce L.; June, Carl H.; Stadtmauer, Edward A.

    2015-01-01

    SUMMARY A patient with refractory multiple myeloma received an infusion of CTL019 cells, a cellular therapy consisting of autologous T cells transduced with an anti-CD19 chimeric antigen receptor, after myeloablative chemotherapy (melphalan, 140 mg per square meter of body-surface area) and autologous stem-cell transplantation. Four years earlier, autologous transplantation with a higher melphalan dose (200 mg per square meter) had induced only a partial, transient response. Autologous transplantation followed by treatment with CTL019 cells led to a complete response with no evidence of progression and no measurable serum or urine monoclonal protein at the most recent evaluation, 12 months after treatment. This response was achieved despite the absence of CD19 expression in 99.95% of the patient’s neoplastic plasma cells. (Funded by Novartis and others; ClinicalTrials.gov number, NCT02135406.) PMID:26352815

  4. Identifying Plasmodium falciparum merozoite surface antigen 3 (MSP3) protein peptides that bind specifically to erythrocytes and inhibit merozoite invasion

    PubMed Central

    Rodríguez, Luis E.; Curtidor, Hernando; Ocampo, Marisol; Garcia, Javier; Puentes, Alvaro; Valbuena, John; Vera, Ricardo; López, Ramses; Patarroyo, Manuel E.

    2005-01-01

    Receptor–ligand interactions between synthetic peptides and normal human erythrocytes were studied to determine Plasmodium falciparum merozoite surface protein-3 (MSP-3) FC27 strain regions that specifically bind to membrane surface receptors on human erythrocytes. Three MSP-3 protein high activity binding peptides (HABPs) were identified; their binding to erythrocytes became saturable, had nanomolar affinity constants, and became sensitive on being treated with neuraminidase and trypsin but were resistant to chymotrypsin treatment. All of them specifically recognized 45-, 55-, and 72-kDa erythrocyte membrane proteins. They all presented α-helix structural elements. All HABPs inhibited in vitro P. falciparum merozoite invasion of erythrocytes by ~55%–85%, suggesting that MSP-3 protein’s role in the invasion process probably functions by using mechanisms similar to those described for other MSP family antigens. PMID:15987906

  5. Antigen 85A and mycobacterial DNA-binding protein 1 are targets of immunoglobulin G in individuals with past tuberculosis.

    PubMed

    Osada-Oka, Mayuko; Tateishi, Yoshitaka; Hirayama, Yukio; Ozeki, Yuriko; Niki, Mamiko; Kitada, Seigo; Maekura, Ryoji; Tsujimura, Kunio; Koide, Yukio; Ohara, Naoya; Yamamoto, Taro; Kobayashi, Kazuo; Matsumoto, Sohkichi

    2013-01-01

    Development of accurate methods for predicting progression of tuberculosis (TB) from the latent state is recognized as vitally important in controlling TB, because a majority of cases develop from latent infections. Past TB that has never been treated has a higher risk of progressing than does latent Mycobacterium tuberculosis infection in patients who have previously received treatment. Antibody responses against 23 kinds of M. tuberculosis proteins in individuals with past TB who had not been medicated were evaluated. These individuals had significantly higher concentrations of antibodies against Antigen 85A and mycobacterial DNA-binding protein 1 (MDP1) than did those with active TB and uninfected controls. In addition, immunohistochemistry revealed colocalization of tubercle bacilli, antigen 85 and MDP1 inside tuberculous granuloma lesions in an asymptomatic subject, showing that M. tuberculosis in lesions expresses both antigen 85 and MDP1. Our study suggests the potential usefulness of measuring antibody responses to antigen 85A and MDP1 for assessing the risk of TB progression.

  6. Expression and structural characterization of anti-T-antigen single-chain antibodies (scFvs) and analysis of their binding to T-antigen by surface plasmon resonance and NMR spectroscopy.

    PubMed

    Yuasa, Noriyuki; Koyama, Tsubasa; Subedi, Ganesh P; Yamaguchi, Yoshiki; Matsushita, Misao; Fujita-Yamaguchi, Yoko

    2013-12-01

    T-antigen (Galβ1-3GalNAcα-1-Ser/Thr), also known as Thomsen-Friedenreich antigen (TF antigen), is an oncofetal antigen commonly found in cancerous tissues. Availability of anti-T-antigen human antibodies could lead to the development of cancer diagnostics and therapeutics. Four groups of single-chain variable fragment (scFv) genes were previously isolated from a phage library (Matsumoto-Takasaki et al. (2009) Isolation and characterization of anti-T-antigen single chain antibodies from a phage library. BioSci Trends 3:87-95.). Here, four anti-T-antigen scFv genes belonging to Group 1-4 were expressed and produced in a Drosophila S2 cell expression system. ELISA and surface plasmon resonance (SPR) analyses confirmed the binding activity of 1E8 scFv protein to various T-antigen presenting conjugates. NMR experiments provided evidence of the folded nature of the 1E8 scFv protein. ScFv-ligand contact was identified by STD NMR, indicating that the galactose unit of T-antigen at the non-reducing end was primarily recognized by 1E8 scFv. This thus provides direct evidence of T-antigen specificity.

  7. sNebula, a network-based algorithm to predict binding between human leukocyte antigens and peptides

    PubMed Central

    Luo, Heng; Ye, Hao; Ng, Hui Wen; Sakkiah, Sugunadevi; Mendrick, Donna L.; Hong, Huixiao

    2016-01-01

    Understanding the binding between human leukocyte antigens (HLAs) and peptides is important to understand the functioning of the immune system. Since it is time-consuming and costly to measure the binding between large numbers of HLAs and peptides, computational methods including machine learning models and network approaches have been developed to predict HLA-peptide binding. However, there are several limitations for the existing methods. We developed a network-based algorithm called sNebula to address these limitations. We curated qualitative Class I HLA-peptide binding data and demonstrated the prediction performance of sNebula on this dataset using leave-one-out cross-validation and five-fold cross-validations. This algorithm can predict not only peptides of different lengths and different types of HLAs, but also the peptides or HLAs that have no existing binding data. We believe sNebula is an effective method to predict HLA-peptide binding and thus improve our understanding of the immune system. PMID:27558848

  8. Carcinoma-specific Ulex europaeus agglutinin-I binding glycoproteins of human colorectal carcinoma and its relation to carcinoembryonic antigen.

    PubMed

    Matsushita, Y; Yonezawa, S; Nakamura, T; Shimizu, S; Ozawa, M; Muramatsu, T; Sato, E

    1985-08-01

    Glycoproteins binding to Ulex europaeus agglutinin-I (UEA-I) lectin, which recognizes the terminal alpha-L-fucose residue, were analyzed in 18 cases of human colorectal carcinoma by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by the Western blotting method. In the distal large bowel (descending and sigmoid colon and rectum), high-molecular-weight glycoproteins binding to UEA-I existed in carcinoma tissue but not in normal mucosa. In the proximal large bowel (ascending and transverse colon), high-molecular-weight glycoproteins binding to UEA-I were found both in normal mucosa and in carcinoma tissue, whereas those from the carcinoma tissue had an apparently lower molecular weight as compared to the weight of those from the normal mucosa. Thus there is a biochemical difference in UEA-I binding glycoproteins between the normal mucosa and the carcinoma tissue, although in our previous histochemical study no difference was observed in UEA-I binding glycoproteins of the proximal large bowel between the carcinoma tissue and the normal mucosa. Furthermore, carcinoembryonic antigen from the carcinoma tissue was found to have the same electrophoretical mobility as the UEA-I binding glycoproteins.

  9. Effect of IVIG Formulation on IgG Binding to Self- and Exo- Antigens In Vitro and In Vivo

    PubMed Central

    Cattepoel, Susann; Gaida, Annette; Kropf, Alain; Nolte, Marc W.; Bolli, Reinhard; Miescher, Sylvia M.

    2016-01-01

    In relation to the recent trials of Intravenous Immunoglobulin (IVIG) in Alzheimer’s Disease (AD) it was demonstrated that different IgG preparations contain varying amounts of natural anti-amyloid β (Aβ) antibodies as measured by ELISA. We therefore investigated the relevance of ELISA data for measuring low-affinity antibodies, such as anti-Aβ. We analysed the binding of different commercial Immunoglobulin G (IgG) preparations to Aβ, actin and tetanus toxoid in different binding assays to further investigate the possible cause for observed differences in binding to Aβ and actin between different IgG preparations. We show that the differences of commercial IgG preparations in binding to Aβ and actin in ELISA assays are artefactual and only evident in in vitro binding assays. In functional assays and in vivo animal studies the different IVIG preparations exhibited very similar potency. ELISA data alone are not appropriate to analyse and rank the binding capacity of low-affinity antibodies to Aβ or other endogenous self-antigens contained in IgG preparations. Additional analytical methods should be adopted to complement ELISA data. PMID:27561008

  10. Elevated levels of a glycoprotein antigen (P-80) in gray and white matter of brain from victims of multiple sclerosis.

    PubMed

    Cruz, T F; Quackenbush, E J; Letarte, M; Moscarello, M A

    1986-06-01

    The levels of a glycoprotein reactive with monoclonal antibody (MAb) 44D10 in white and gray matter from brains of victims of several neurological diseases, including Multiple Sclerosis, Alzheimer's, Parkinson's and Huntington's diseases, were compared to that of normal individuals. The concentration of antigen reactive with MAb 44D10 was elevated in both gray and white matter of all MS brains examined, but not in brains with other neurological diseases. The increase in the concentration of antigen varied amongst the MS brains, such that the levels of antigen were only slightly increased in 2 of the 6 MS brains whereas 2 to 4 fold higher levels were found in the other 4 brains. Increased levels of antigen were detected in gray matter of MS brains, whereas this antigen was either not detected or present in very low levels in gray matter homogenates prepared from age-matched normal brains. MAb Leu 1, which reacts with T lymphocytes, was not absorbed by normal and MS brain tissue suggesting the increase in antigen reactive with MAb 44D10 in MS brain homogenates was not associated with non-specific infiltration by T lymphocytes. Comparison of the purified antigen from MS gray matter and normal white matter by gel electrophoresis demonstrated that MAb 44D10 was reacting with a similar protein in both tissues with an apparent molecular weight of 80K. We have named this molecule P-80 glycoprotein.

  11. Differential Detection of Tumor Cells Using a Combination of Cell Rolling, Multivalent Binding, and Multiple Antibodies

    PubMed Central

    2015-01-01

    Effective quantification and in situ identification of circulating tumor cells (CTCs) in blood are still elusive because of the extreme rarity and heterogeneity of the cells. In our previous studies, we developed a novel platform that captures tumor cells at significantly improved efficiency in vitro using a unique biomimetic combination of two physiological processes: E-selectin-induced cell rolling and poly(amidoamine) (PAMAM) dendrimer-mediated strong multivalent binding. Herein, we have engineered a novel multifunctional surface, on the basis of the biomimetic cell capture, through optimized incorporation of multiple antibodies directed to cancer cell-specific surface markers, such as epithelial cell adhesion molecule (EpCAM), human epidermal growth factor receptor-2 (HER-2), and prostate specific antigen (PSA). The surfaces were tested using a series of tumor cells, MDA-PCa-2b, MCF-7, and MDA-MB-361, both in mixture in vitro and after being spiked into human blood. Our multifunctional surface demonstrated highly efficient capture of tumor cells in human blood, achieving up to 82% capture efficiency (∼10-fold enhancement than a surface with the antibodies alone) and up to 90% purity. Furthermore, the multipatterned antibodies allowed differential capturing of the tumor cells. These results support that our multifunctional surface has great potential as an effective platform that accommodates virtually any antibodies, which will likely lead to clinically significant, differential detection of CTCs that are rare and highly heterogeneous. PMID:24892731

  12. Asymmetric assembly of Merkel cell polyomavirus large T-antigen origin binding domains at the viral origin.

    PubMed

    Harrison, Celia J; Meinke, Gretchen; Kwun, Hyun Jin; Rogalin, Henry; Phelan, Paul J; Bullock, Peter A; Chang, Yuan; Moore, Patrick S; Bohm, Andrew

    2011-06-17

    The double-stranded DNA polyomavirus Merkel cell polyomavirus (MCV) causes Merkel cell carcinoma, an aggressive but rare human skin cancer that most often affects immunosuppressed and elderly persons. As in other polyomaviruses, the large T-antigen of MCV recognizes the viral origin of replication by binding repeating G(A/G)GGC pentamers. The spacing, number, orientation, and necessity of repeats for viral replication differ, however, from other family members such as SV40 and murine polyomavirus. We report here the 2.9 Å crystal structure of the MCV large T-antigen origin binding domain (OBD) in complex with a DNA fragment from the MCV origin of replication. Consistent with replication data showing that three of the G(A/G)GGC-like binding sites near the center of the origin are required for replication, the crystal structure contains three copies of the OBD. This stoichiometry was verified using isothermal titration calorimetry. The affinity for G(A/G)GGC-containing double-stranded DNA was found to be ~740 nM, approximately 8-fold weaker than the equivalent domain in SV40 for the analogous region of the SV40 origin. The difference in affinity is partially attributable to DNA-binding residue Lys331 (Arg154 in SV40). In contrast to SV40, a small protein-protein interface is observed between MCV OBDs when bound to the central region of the origin. This protein-protein interface is reminiscent of that seen in bovine papilloma virus E1 protein. Mutational analysis indicates, however, that this interface contributes little to DNA binding energy.

  13. Asymmetric Assembly of Merkel Cell Polyomavirus Large T-Antigen Origin Binding Domains at the Viral Origin

    SciTech Connect

    C Harrison; G Meinke; H Kwun; H Rogalin; P Phelan; P Bullock; Y Chang; P Moore; A Bohm

    2011-12-31

    The double-stranded DNA polyomavirus Merkel cell polyomavirus (MCV) causes Merkel cell carcinoma, an aggressive but rare human skin cancer that most often affects immunosuppressed and elderly persons. As in other polyomaviruses, the large T-antigen of MCV recognizes the viral origin of replication by binding repeating G(A/G)GGC pentamers. The spacing, number, orientation, and necessity of repeats for viral replication differ, however, from other family members such as SV40 and murine polyomavirus. We report here the 2.9 {angstrom} crystal structure of the MCV large T-antigen origin binding domain (OBD) in complex with a DNA fragment from the MCV origin of replication. Consistent with replication data showing that three of the G(A/G)GGC-like binding sites near the center of the origin are required for replication, the crystal structure contains three copies of the OBD. This stoichiometry was verified using isothermal titration calorimetry. The affinity for G(A/G)GGC-containing double-stranded DNA was found to be {approx} 740 nM, approximately 8-fold weaker than the equivalent domain in SV40 for the analogous region of the SV40 origin. The difference in affinity is partially attributable to DNA-binding residue Lys331 (Arg154 in SV40). In contrast to SV40, a small protein-protein interface is observed between MCV OBDs when bound to the central region of the origin. This protein-protein interface is reminiscent of that seen in bovine papilloma virus E1 protein. Mutational analysis indicates, however, that this interface contributes little to DNA binding energy.

  14. Azide and Tween-20 reduce binding to autoantibody epitopes of islet antigen-2; implications for assay performance and reproducibility.

    PubMed

    Williams, Alistair J K; Somerville, Michelle; Rokni, Saba; Bonifacio, Ezio; Yu, Liping; Eisenbarth, George; Akolkar, Beena; Steffes, Michael; Bingley, Polly J

    2009-12-31

    Autoantibodies to islet antigen 2 (IA-2A) are important markers for predicting diabetes in children and young adults. Harmonization of IA-2A assay measurement is essential if results from different laboratories are to be compared. We investigated whether sodium azide, a bacteriostatic agent added to some assays, could affect IA-2A binding and thereby contribute to differences in IA-2A measurement between laboratories. Addition of 0.1% azide to assay buffer was found to reduce median IA-2A binding of 18 selected sera from IA-2A positive patients with type 1 diabetes and their relatives by 41% (range, 78 to -33%, p<0.001). The effect on binding was epitope specific; median IA-2A binding by 14 sera with antibodies to the protein tyrosine phosphatase region of IA-2 was reduced by 48% (range, 11 to 78%, p<0.001), while binding by 4 sera with antibodies specific to only the juxtamembrane region of IA-2 showed no change (median increase 16% (range 6 to 33%, p=0.125). When the Tween-20 concentration was reduced from 1% to 0.15% the median reduction in IA-2A binding with azide by the 18 sera was only 10% (range, -12 to 41%, p<0.001). Tween-20 also exerted an independent effect, since median IA-2A binding increased by 23% (range 3% to 86%, p<0.001) when Tween-20 concentration was reduced from 1% to 0.15% in the absence of azide. We conclude that common assay reagents such as azide and Tween-20 can strongly influence IA-2A binding in an epitope-related manner, and their use may explain some of the differences between laboratories in IA-2A measurement.

  15. Histo-Blood Group Antigen Presentation Is Critical for Binding of Norovirus VLP to Glycosphingolipids in Model Membranes.

    PubMed

    Nasir, Waqas; Frank, Martin; Kunze, Angelika; Bally, Marta; Parra, Francisco; Nyholm, Per-Georg; Höök, Fredrik; Larson, Göran

    2017-03-27

    Virus entry depends on biomolecular recognition at the surface of cell membranes. In the case of glycolipid receptors, these events are expected to be influenced by how the glycan epitope close to the membrane is presented to the virus. This presentation of membrane-associated glycans is more restricted than that of glycans in solution, particularly because of orientational constraints imposed on the glycolipid through its lateral interactions with other membrane lipids and proteins. We have developed and employed a total internal reflection fluorescence microscopy-based binding assay and a scheme for molecular dynamics (MD) membrane simulations to investigate the consequences of various glycan presentation effects. The system studied was histo-blood group antigen (HBGA) epitopes of membrane-bound glycosphingolipids (GSLs) derived from small intestinal epithelium of humans (type 1 chain) and dogs (type 2 chain) interacting with GII.4 norovirus-like particles. Our experimental results showed strong binding to all lipid-linked type 1 chain HBGAs but no or only weak binding to the corresponding type 2 chain HBGAs. This is in contrast to results derived from STD experiments with free HBGAs in solution where binding was observed for Lewis x. The MD data suggest that the strong binding to type 1 chain glycolipids was due to the well-exposed (1,2)-linked α-l-Fucp and (1,4)-linked α-l-Fucp residues, while the weaker binding or lack of binding to type 2 chain HBGAs was due to the very restricted accessibility of the (1,3)-linked α-l-Fucp residue when the glycolipid is embedded in a phospholipid membrane. Our results not only contribute to a general understanding of protein-carbohydrate interactions on model membrane surfaces, particularly in the context of virus binding, but also suggest a possible role of human intestinal GSLs as potential receptors for norovirus uptake.

  16. Effects of humanization and gene shuffling on immunogenicity and antigen binding of anti-TAG-72 single-chain Fvs.

    PubMed

    Pavlinkova, G; Colcher, D; Booth, B J; Goel, A; Wittel, U A; Batra, S K

    2001-12-01

    One major constraint in the clinical application of murine monoclonal antibodies (MAbs) is the development of a human antimurine antibody response. The immunogenicity of MAbs can be minimized by replacing nonhuman regions with corresponding human sequences. The studies reported in our article were undertaken to analyze the immunoreactivity and the immunogenicity of the CC49 single-chain antibody fragments (scFvs): (i) an scFv construct comprised of mouse CC49 VL and VH (m/m scFv), (ii) a light chain shuffled scFv with human VL (Hum4 VL) and mouse CC49 VH (h/m scFv), and (iii) a humanized scFv assembled from Hum4 VL and CC49 VH complementary determining regions (CDRs) grafted onto a VH framework of MAb 21/28' CL (h/CDR scFv). The CC49 scFvs competed for an antigen binding site with CC49 IgG in a similar fashion in a competition radioimmunoassay and were able to inhibit the binding of CC49 IgG to the antigen completely. The immunogenicity of CC49 scFvs was tested using sera with antiidiotypic antibodies to MAb CC49 obtained from patients treated by CC49 IgG in clinical trials. All tested sera exhibited the highest reactivity to the m/m scFv. However, the sera demonstrated differential reactivities to h/CDR scFv and h/m scFv. Replacement of the mouse chain in h/m scFv and h/CDR scFv decreased or completely averted serum reactivity. Our studies compared for the first time the antigen binding and immunogenicity of different scFv constructs containing the mouse, CDR grafted or human variable chains. These results indicate that the humanized CC49 scFv is potentially an important agent for imaging and therapeutic applications with TAG-72-positive tumors.

  17. A panel of autoantibodies against multiple tumor-associated antigens for detecting gastric cancer.

    PubMed

    Hoshino, Isamu; Nagata, Matsuo; Takiguchi, Nobuhiro; Nabeya, Yoshihiro; Ikeda, Atsushi; Yokoi, Sana; Kuwajima, Akiko; Tagawa, Masatoshi; Matsushita, Kazuyuki; Satoshi, Yajima; Hideaki, Shimada

    2017-01-08

    Gastric cancer is the second leading cause of cancer deaths in the world, and effective diagnosis is extremely important for good outcome. We assessed the diagnostic potential of an autoantibody panel that may provide a novel tool for the early detection of gastric cancer. We analyzed data from patients with gastric cancer and normal controls in a test and validation cohorts. Autoantibody levels were measured against a panel of six tumor-associated antigens [TAAs; p53, heat shock protein 70 (HSP70), HCC-22-5, peroxiredoxin VI (Prx VI), KM-HN-1, and p90 TAA (CYP2A)] via ELISA. We assessed serum autoantibodies in 100 participants in the test cohort. The validation cohort comprised 248 participants. Autoantibodies to at least one of the six antigens demonstrated a sensitivity/specificity of 49.0% [95% confidence interval (CI), 39.2-58.8%]/92.4% (95% CI, 87.2-97.6%) and 52.0% (95% CI, 42.2-61.8%)/90.5% (95% CI, 84.8-96.3%) in the test and validation cohorts, respectively. In the validation cohort, no significant differences were seen when patients were subdivided based on age, sex, depth of tumor invasion, lymph node metastasis, distant metastasis, peritoneal dissemination, and TNM stage. Patients who were positive for more than two antibodies in the panel tended to have a worse prognosis than those who were positive for one or no antibody. Measurement of autoantibody response to multiple TAAs in an optimized panel assay to discriminate patients with early stage gastric cancer from normal controls may aid in the early detection of gastric cancer. This article is protected by copyright. All rights reserved.

  18. Prostate specific antigen biosensor based on long range surface plasmon-enhanced fluorescence spectroscopy and dextran hydrogel binding matrix.

    PubMed

    Wang, Yi; Brunsen, Annette; Jonas, Ulrich; Dostálek, Jakub; Knoll, Wolfgang

    2009-12-01

    A new biosensor based on surface plasmon-enhanced fluorescence spectroscopy (SPFS), which employs long-range surface plasmons (LRSP) and a photo-cross-linkable carboxymethyl dextran (PCDM) hydrogel binding matrix, is reported. LRSPs are surface plasmon modes that propagate along a thin metallic film with orders of magnitude lower damping compared to regular surface plasmons. Therefore, their excitation provides strong enhancement of the intensity of the electromagnetic field and a greatly increased fluorescence signal measured upon binding of fluorophore-labeled molecules on the sensor surface. In addition, these modes exhibit highly extended evanescent fields penetrating up to micrometers in distance from the metallic sensor surface. Therefore, a PCDM hydrogel with approximately micrometer thickness was anchored on the sensor surface to serve as the binding matrix. We show that this approach provides large binding capacity and allows for the ultrasensitive detection. In a model experiment, the developed biosensor platform was applied for the detection of free prostate specific antigen (f-PSA) in buffer and human serum by using a sandwich immunoassay. The limit of detection at the low femtomolar range was achieved, which is approximately 4 orders of magnitude lower than that for direct detection of f-PSA based on the monitoring of binding-induced refractive index changes.

  19. How to deal with multiple binding poses in alchemical relative protein-ligand binding free energy calculations.

    PubMed

    Kaus, Joseph W; Harder, Edward; Lin, Teng; Abel, Robert; McCammon, J Andrew; Wang, Lingle

    2015-06-09

    Recent advances in improved force fields and sampling methods have made it possible for the accurate calculation of protein–ligand binding free energies. Alchemical free energy perturbation (FEP) using an explicit solvent model is one of the most rigorous methods to calculate relative binding free energies. However, for cases where there are high energy barriers separating the relevant conformations that are important for ligand binding, the calculated free energy may depend on the initial conformation used in the simulation due to the lack of complete sampling of all the important regions in phase space. This is particularly true for ligands with multiple possible binding modes separated by high energy barriers, making it difficult to sample all relevant binding modes even with modern enhanced sampling methods. In this paper, we apply a previously developed method that provides a corrected binding free energy for ligands with multiple binding modes by combining the free energy results from multiple alchemical FEP calculations starting from all enumerated poses, and the results are compared with Glide docking and MM-GBSA calculations. From these calculations, the dominant ligand binding mode can also be predicted. We apply this method to a series of ligands that bind to c-Jun N-terminal kinase-1 (JNK1) and obtain improved free energy results. The dominant ligand binding modes predicted by this method agree with the available crystallography, while both Glide docking and MM-GBSA calculations incorrectly predict the binding modes for some ligands. The method also helps separate the force field error from the ligand sampling error, such that deviations in the predicted binding free energy from the experimental values likely indicate possible inaccuracies in the force field. An error in the force field for a subset of the ligands studied was identified using this method, and improved free energy results were obtained by correcting the partial charges assigned to the

  20. Identification of a Nonstructural DNA-Binding Protein (DBP) as an Antigen with Diagnostic Potential for Human Adenovirus

    PubMed Central

    Zhou, Hongli; Wu, Chao; Paranhos-Baccalà, Gláucia; Vernet, Guy; Jin, Qi; Wang, Jianwei; Hung, Tao

    2013-01-01

    Background Human adenoviruses (HAdVs) have been implicated as important agents in a wide range of human illnesses. To date, 58 distinct HAdV serotypes have been identified and can be grouped into six species. For the immunological diagnosis of adenoviruses, the hexon protein, a structural protein, has been used. The potential of other HAdV proteins has not been fully addressed. Methodology/Principal Findings In this study, a nonstructural antigenic protein, the DNA binding protein (DBP) of human adenovirus 5 and 35 (Ad5, Ad35) - was identified using immunoproteomic technology. The expression of Ad5 and Ad35 DBP in insect cells could be detected by rhesus monkey serum antibodies and healthy adult human serum positive for Ad5 and Ad35. Recombinant DBPs elicited high titer antibodies in mice. Their conserved domain displayed immunological cross-reactions with heterologous DBP antibodies in Western blot assays. DBP-IgM ELISA showed higher sensitivity adenovirus IgM detection than the commercial Adenovirus IgM Human ELISA Kit. A Western blot method developed based on Ad5 DBP was highly consistent with (χ2 =  44.9, P<0.01) the Western blot assay for the hexon protein in the detection of IgG, but proved even more sensitive. Conclusions/Significance The HAdV nonstructural protein DBP is an antigenic protein that could serve as an alternative common antigen for adenovirus diagnosis. PMID:23516396

  1. Inducing humoral and cellular responses to multiple sporozoite and liver-stage malaria antigens using exogenous plasmid DNA.

    PubMed

    Ferraro, B; Talbott, K T; Balakrishnan, A; Cisper, N; Morrow, M P; Hutnick, N A; Myles, D J; Shedlock, D J; Obeng-Adjei, N; Yan, J; Kayatani, A K K; Richie, N; Cabrera, W; Shiver, R; Khan, A S; Brown, A S; Yang, M; Wille-Reece, U; Birkett, A J; Sardesai, N Y; Weiner, D B

    2013-10-01

    A vaccine candidate that elicits humoral and cellular responses to multiple sporozoite and liver-stage antigens may be able to confer protection against Plasmodium falciparum malaria; however, a technology for formulating and delivering such a vaccine has remained elusive. Here, we report the preclinical assessment of an optimized DNA vaccine approach that targets four P. falciparum antigens: circumsporozoite protein (CSP), liver stage antigen 1 (LSA1), thrombospondin-related anonymous protein (TRAP), and cell-traversal protein for ookinetes and sporozoites (CelTOS). Synthetic DNA sequences were designed for each antigen with modifications to improve expression and were delivered using in vivo electroporation (EP). Immunogenicity was evaluated in mice and nonhuman primates (NHPs) and assessed by enzyme-linked immunosorbent assay (ELISA), gamma interferon (IFN-γ) enzyme-linked immunosorbent spot (ELISpot) assay, and flow cytometry. In mice, DNA with EP delivery induced antigen-specific IFN-γ production, as measured by ELISpot assay and IgG seroconversion against all antigens. Sustained production of IFN-γ, interleukin-2, and tumor necrosis factor alpha was elicited in both the CD4(+) and CD8(+) T cell compartments. Furthermore, hepatic CD8(+) lymphocytes produced LSA1-specific IFN-γ. The immune responses conferred to mice by this approach translated to the NHP model, which showed cellular responses by ELISpot assay and intracellular cytokine staining. Notably, antigen-specific CD8(+) granzyme B(+) T cells were observed in NHPs. Collectively, the data demonstrate that delivery of gene sequences by DNA/EP encoding malaria parasite antigens is immunogenic in animal models and can harness both the humoral and cellular arms of the immune system.

  2. Bivalent kinetic binding model to surface plasmon resonance studies of antigen-antibody displacement reactions.

    PubMed

    Gelinsky-Wersing, Dagmar; Wersing, Wolfram; Pompe, Wolfgang

    2017-02-01

    Molecular and functional analysis of small molecule binding to protein can provoke insights into cellular signaling and regulatory systems as well as facilitate pharmaceutical drug discovery. In label free small molecule detection the displacement assay format can be applied. This is beneficial because displacement of high molecular weight receptors is detected instead of low molecular weight ligand as in classical binding analysis. Thus, detection limit is potentially lowered. Using the influenza haemagglutinin (HA) peptide binding to mono or bivalent anti-haemagglutinin peptide antibody displacement assay formats could be established. The exact time resolved analysis of binding and dissolution of ligand HA and anti-Haemagglutinin peptide antibody was achieved with surface plasmon resonance (SPR) spectroscopy. Mathematical models could be developed from kinetic equations of ligand binding to mono or bivalent antibodies. With this, an accurate simulation of the SPR results was reached. The simulation plot had to be exactly adjusted to the SPR results to determine all kinetic rate constants defining ligand and receptor binding kinetics. Large variations in receptor concentration gave almost identical rate constants in binding. It became obvious that rebinding is in any case not necessary to understand the binding kinetics of our model system HA/anti-HA. Maximum decline of SPR response could be used to determine ligand concentrations in analyte.

  3. A single amino acid substitution (R441A) in the receptor-binding domain of SARS coronavirus spike protein disrupts the antigenic structure and binding activity

    SciTech Connect

    He Yuxian . E-mail: yhe@nybloodcenter.org; Li Jingjing; Jiang Shibo

    2006-05-26

    The spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) has two major functions: interacting with the receptor to mediate virus entry and inducing protective immunity. Coincidently, the receptor-binding domain (RBD, residues 318-510) of SAR-CoV S protein is a major antigenic site to induce neutralizing antibodies. Here, we used RBD-Fc, a fusion protein containing the RBD and human IgG1 Fc, as a model in the studies and found that a single amino acid substitution in the RBD (R441A) could abolish the immunogenicity of RBD to induce neutralizing antibodies in immunized mice and rabbits. With a panel of anti-RBD mAbs as probes, we observed that R441A substitution was able to disrupt the majority of neutralizing epitopes in the RBD, suggesting that this residue is critical for the antigenic structure responsible for inducing protective immune responses. We also demonstrated that the RBD-Fc bearing R441A mutation could not bind to soluble and cell-associated angiotensin-converting enzyme 2 (ACE2), the functional receptor for SARS-CoV and failed to block S protein-mediated pseudovirus entry, indicating that this point mutation also disrupted the receptor-binding motif (RBM) in the RBD. Taken together, these data provide direct evidence to show that a single amino acid residue at key position in the RBD can determine the major function of SARS-CoV S protein and imply for designing SARS vaccines and therapeutics.

  4. Antigen binding of human IgG Fabs mediate ERK-associated proliferation of human breast cancer cells.

    PubMed

    Wen, Yue-Jin; Mancino, Anne; Pashov, Anastas; Whitehead, Tracy; Stanley, Joseph; Kieber-Emmons, Thomas

    2005-02-01

    Serum-circulating antibody can be linked to poor outcomes in some cancer patients. To investigate the role of human antibodies in regulating tumor cell growth, we constructed a recombinant cDNA expression library of human IgG Fab from a patient with breast cancer. Clones were screened from the library with breast tumor cell lysate. Sequence analysis of the clones showed somatic hypermutations when compared to their closest VH/VL germ-line genes. Initial characterizations focused on five clones. All tested clones displayed stronger binding to antigen derived from primary breast cancers and established breast cancer cell lines than to normal breast tissues. In vitro functional studies showed that four out of five tested clones could stimulate the growth of MDA-MB-231 breast cancer cell lines, and one out of five was able to promote MCF-7 cell growth as well. Involvement of ERK2 pathway was observed. By 1H-NMR spectra and Western blot analysis, it was evident that two tested antibody Fabs are capable of interacting with sialic acid. Our study suggests a possible role for human antibody in promoting tumor cell growth by direct binding of IgG Fab to breast tumor antigen. Such studies prompt speculation regarding the role of serum antibodies in mediating tumor growth as well as their contribution to disease progression.

  5. The Multiple Carbohydrate Binding Specificities of Helicobacter pylori

    NASA Astrophysics Data System (ADS)

    Teneberg, Susann

    Persistent colonization of the human stomach by Helicobacter pylori is a risk factor for the development of peptic ulcer disease and gastric cancer. Adhesion of microbes to the target tissue is an important determinant for successful initiation, establishment and maintenance of infection, and a variety of different candidate carbohydrate receptors for H. pylori have been identified. Here the different the binding specifities, and their potential role in adhesion to human gastric epithelium are described. Finally, recent findings on the roles of sialic acid binding SabA adhesin in interactions with human neutrophils and erythrocytes are discussed.

  6. Structure of the origin-binding domain of simian virus 40 large T antigen bound to DNA.

    PubMed

    Bochkareva, Elena; Martynowski, Dariusz; Seitova, Almagoul; Bochkarev, Alexey

    2006-12-13

    The large T antigen (T-ag) protein binds to and activates DNA replication from the origin of DNA replication (ori) in simian virus 40 (SV40). Here, we determined the crystal structures of the T-ag origin-binding domain (OBD) in apo form, and bound to either a 17 bp palindrome (sites 1 and 3) or a 23 bp ori DNA palindrome comprising all four GAGGC binding sites for OBD. The T-ag OBDs were shown to interact with the DNA through a loop comprising Ser147-Thr155 (A1 loop), a combination of a DNA-binding helix and loop (His203-Asn210), and Asn227. The A1 loop traveled back-and-forth along the major groove and accounted for most of the sequence-determining contacts with the DNA. Unexpectedly, in both T-ag-DNA structures, the T-ag OBDs bound DNA independently and did not make direct protein-protein contacts. The T-ag OBD was also captured bound to a non-consensus site ATGGC even in the presence of its canonical site GAGGC. Our observations taken together with the known biochemical and structural features of the T-ag-origin interaction suggest a model for origin unwinding.

  7. A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants

    NASA Technical Reports Server (NTRS)

    Yang, Tianbao; Poovaiah, B. W.

    2002-01-01

    We reported earlier that the tobacco early ethylene-responsive gene NtER1 encodes a calmodulin-binding protein (Yang, T., and Poovaiah, B. W. (2000) J. Biol. Chem. 275, 38467-38473). Here we demonstrate that there is one NtER1 homolog as well as five related genes in Arabidopsis. These six genes are rapidly and differentially induced by environmental signals such as temperature extremes, UVB, salt, and wounding; hormones such as ethylene and abscisic acid; and signal molecules such as methyl jasmonate, H(2)O(2), and salicylic acid. Hence, they were designated as AtSR1-6 (Arabidopsis thaliana signal-responsive genes). Ca(2+)/calmodulin binds to all AtSRs, and their calmodulin-binding regions are located on a conserved basic amphiphilic alpha-helical motif in the C terminus. AtSR1 targets the nucleus and specifically recognizes a novel 6-bp CGCG box (A/C/G)CGCG(G/T/C). The multiple CGCG cis-elements are found in promoters of genes such as those involved in ethylene signaling, abscisic acid signaling, and light signal perception. The DNA-binding domain in AtSR1 is located on the N-terminal 146 bp where all AtSR1-related proteins share high similarity but have no similarity to other known DNA-binding proteins. The calmodulin-binding nuclear proteins isolated from wounded leaves exhibit specific CGCG box DNA binding activities. These results suggest that the AtSR gene family encodes a family of calmodulin-binding/DNA-binding proteins involved in multiple signal transduction pathways in plants.

  8. Comprehensive functional characterization of cancer-testis antigens defines obligate participation in multiple hallmarks of cancer.

    PubMed

    Maxfield, Kimberly E; Taus, Patrick J; Corcoran, Kathleen; Wooten, Joshua; Macion, Jennifer; Zhou, Yunyun; Borromeo, Mark; Kollipara, Rahul K; Yan, Jingsheng; Xie, Yang; Xie, Xian-Jin; Whitehurst, Angelique W

    2015-11-16

    Tumours frequently activate genes whose expression is otherwise biased to the testis, collectively known as cancer-testis antigens (CTAs). The extent to which CTA expression represents epiphenomena or confers tumorigenic traits is unknown. In this study, to address this, we implemented a multidimensional functional genomics approach that incorporates 7 different phenotypic assays in 11 distinct disease settings. We identify 26 CTAs that are essential for tumor cell viability and/or are pathological drivers of HIF, WNT or TGFβ signalling. In particular, we discover that Foetal and Adult Testis Expressed 1 (FATE1) is a key survival factor in multiple oncogenic backgrounds. FATE1 prevents the accumulation of the stress-sensing BH3-only protein, BCL-2-Interacting Killer (BIK), thereby permitting viability in the presence of toxic stimuli. Furthermore, ZNF165 promotes TGFβ signalling by directly suppressing the expression of negative feedback regulatory pathways. This action is essential for the survival of triple negative breast cancer cells in vitro and in vivo. Thus, CTAs make significant direct contributions to tumour biology.

  9. CD24: from a Hematopoietic Differentiation Antigen to a Genetic Risk Factor for Multiple Autoimmune Diseases.

    PubMed

    Tan, Yixin; Zhao, Ming; Xiang, Bo; Chang, Christopher; Lu, Qianjin

    2016-02-01

    The autoantibody is an essential characteristic of inflammatory disorders, including autoimmune diseases. Although the exact pathogenic mechanisms of these diseases remain elusive, accumulated evidence has implicated that genetic factors play important roles in autoimmune inflammation. Among these factors, CD24 was first identified as a heat-stable antigen in 1978 and first successfully cloned in 1990. Thereafter, its functional roles have been intensively investigated in various human diseases, especially autoimmune diseases and cancers. It is currently known that CD24 serves as a costimulatory factor of T cells that regulate their homeostasis and proliferation, while in B cells, CD24 is functionally involved in cell activation and differentiation. CD24 can enhance autoimmune diseases in terms of its protective role in the clonal deletion of autoreactive thymocytes. Furthermore, CD24 deficiency has been linked to mouse experimental autoimmune encephalomyelitis. Finally, CD24 genetic variants, including single-nucleotide polymorphisms and deletions, are etiologically relevant to autoimmune diseases, such as multiple sclerosis and systemic lupus erythematosus. Therefore, CD24 is a promising biomarker and novel therapeutic target for autoimmune diseases.

  10. Comprehensive functional characterization of cancer–testis antigens defines obligate participation in multiple hallmarks of cancer

    PubMed Central

    Maxfield, Kimberly E.; Taus, Patrick J.; Corcoran, Kathleen; Wooten, Joshua; Macion, Jennifer; Zhou, Yunyun; Borromeo, Mark; Kollipara, Rahul K.; Yan, Jingsheng; Xie, Yang; Xie, Xian-Jin; Whitehurst, Angelique W.

    2015-01-01

    Tumours frequently activate genes whose expression is otherwise biased to the testis, collectively known as cancer–testis antigens (CTAs). The extent to which CTA expression represents epiphenomena or confers tumorigenic traits is unknown. In this study, to address this, we implemented a multidimensional functional genomics approach that incorporates 7 different phenotypic assays in 11 distinct disease settings. We identify 26 CTAs that are essential for tumor cell viability and/or are pathological drivers of HIF, WNT or TGFβ signalling. In particular, we discover that Foetal and Adult Testis Expressed 1 (FATE1) is a key survival factor in multiple oncogenic backgrounds. FATE1 prevents the accumulation of the stress-sensing BH3-only protein, BCL-2-Interacting Killer (BIK), thereby permitting viability in the presence of toxic stimuli. Furthermore, ZNF165 promotes TGFβ signalling by directly suppressing the expression of negative feedback regulatory pathways. This action is essential for the survival of triple negative breast cancer cells in vitro and in vivo. Thus, CTAs make significant direct contributions to tumour biology. PMID:26567849

  11. Age-dependent B cell autoimmunity to a myelin surface antigen in pediatric multiple sclerosis.

    PubMed

    McLaughlin, Katherine A; Chitnis, Tanuja; Newcombe, Jia; Franz, Bettina; Kennedy, Julia; McArdel, Shannon; Kuhle, Jens; Kappos, Ludwig; Rostasy, Kevin; Pohl, Daniela; Gagne, Donald; Ness, Jayne M; Tenembaum, Silvia; O'Connor, Kevin C; Viglietta, Vissia; Wong, Susan J; Tavakoli, Norma P; de Seze, Jerome; Idrissova, Zhannat; Khoury, Samia J; Bar-Or, Amit; Hafler, David A; Banwell, Brenda; Wucherpfennig, Kai W

    2009-09-15

    Multiple sclerosis (MS) typically manifests in early to mid adulthood, but there is increasing recognition of pediatric-onset MS, aided by improvements in imaging techniques. The immunological mechanisms of disease are largely unexplored in pediatric-onset MS, in part because studies have historically focused on adult-onset disease. We investigated autoantibodies to myelin surface Ags in a large cohort of pediatric MS cases by flow cytometric labeling of transfectants that expressed different myelin proteins. Although Abs to native myelin oligodendrocyte glycoprotein (MOG) were uncommon among adult-onset patients, a subset of pediatric patients had serum Abs that brightly labeled the MOG transfectant. Abs to two other myelin surface Ags were largely absent. Affinity purification of MOG Abs as well as competition of binding with soluble MOG documented their binding specificity. Such affinity purified Abs labeled myelin and glial cells in human CNS white matter as well as myelinated axons in gray matter. The prevalence of such autoantibodies was highest among patients with a very early onset of MS: 38.7% of patients less than 10 years of age at disease onset had MOG Abs, compared with 14.7% of patients in the 10- to 18-year age group. B cell autoimmunity to this myelin surface Ag is therefore most common in patients with a very early onset of MS.

  12. Characterization of Neisseria meningitidis Isolates That Do Not Express the Virulence Factor and Vaccine Antigen Factor H Binding Protein ▿ †

    PubMed Central

    Lucidarme, Jay; Tan, Lionel; Exley, Rachel M.; Findlow, Jamie; Borrow, Ray; Tang, Christoph M.

    2011-01-01

    Neisseria meningitidis remains a leading cause of bacterial sepsis and meningitis. Complement is a key component of natural immunity against this important human pathogen, which has evolved multiple mechanisms to evade complement-mediated lysis. One approach adopted by the meningococcus is to recruit a human negative regulator of the complement system, factor H (fH), to its surface via a lipoprotein, factor H binding protein (fHbp). Additionally, fHbp is a key antigen in vaccines currently being evaluated in clinical trials. Here we characterize strains of N. meningitidis from several distinct clonal complexes which do not express fHbp; all strains were recovered from patients with disseminated meningococcal disease. We demonstrate that these strains have either a frameshift mutation in the fHbp open reading frame or have entirely lost fHbp and some flanking sequences. No fH binding was detected to other ligands among the fHbp-negative strains. The implications of these findings for meningococcal pathogenesis and prevention are discussed. PMID:21508163

  13. Analysis of the Costructure of the Simian Virus 40 T-Antigen Origin Binding Domain with Site I Reveals a Correlation between GAGGC Spacing and Spiral Assembly

    PubMed Central

    Meinke, Gretchen; Phelan, Paul J.; Harrison, Celia J.

    2013-01-01

    Polyomavirus origins of replication contain multiple occurrences of G(A/G)GGC, the high-affinity binding element for the viral initiator T-antigen (T-ag). The site I regulatory region of simian virus 40, involved in the repression of transcription and the enhancement of DNA replication initiation, contains two GAGGC sequences arranged head to tail and separated by a 7-bp AT-rich sequence. We have solved a 3.2-Å costructure of the SV40 origin-binding domain (OBD) bound to site I. We have also established that T-ag assembly on site I is limited to the formation of a single hexamer. These observations have enabled an analysis of the role(s) of the OBDs bound to the site I pentanucleotides in hexamer formation. Of interest, they reveal a correlation between the OBDs bound to site I and a pair of OBD subunits in the previously described hexameric spiral structure. Based on these findings, we propose that spiral assembly is promoted by pentanucleotide pairs arranged in a head-to-tail manner. Finally, the possibility that spiral assembly by OBD subunits accounts for the heterogeneous distribution of pentanucleotides found in the origins of replication of polyomaviruses is discussed. PMID:23269808

  14. Analysis of the costructure of the simian virus 40 T-antigen origin binding domain with site I reveals a correlation between GAGGC spacing and spiral assembly.

    PubMed

    Meinke, Gretchen; Phelan, Paul J; Harrison, Celia J; Bullock, Peter A

    2013-03-01

    Polyomavirus origins of replication contain multiple occurrences of G(A/G)GGC, the high-affinity binding element for the viral initiator T-antigen (T-ag). The site I regulatory region of simian virus 40, involved in the repression of transcription and the enhancement of DNA replication initiation, contains two GAGGC sequences arranged head to tail and separated by a 7-bp AT-rich sequence. We have solved a 3.2-Å costructure of the SV40 origin-binding domain (OBD) bound to site I. We have also established that T-ag assembly on site I is limited to the formation of a single hexamer. These observations have enabled an analysis of the role(s) of the OBDs bound to the site I pentanucleotides in hexamer formation. Of interest, they reveal a correlation between the OBDs bound to site I and a pair of OBD subunits in the previously described hexameric spiral structure. Based on these findings, we propose that spiral assembly is promoted by pentanucleotide pairs arranged in a head-to-tail manner. Finally, the possibility that spiral assembly by OBD subunits accounts for the heterogeneous distribution of pentanucleotides found in the origins of replication of polyomaviruses is discussed.

  15. Experimental studies with homologous subtype vaccines produced with multiple antigenically different seed strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to the high antigenic variability of avian influenza virus, vaccines need to be continually updated to maintain adequate protection to evolving field strains. One possible approach, to mitigating the effects of antigenic change, is to use vaccines containing more than one isolate of the same su...

  16. Multiple approaches to assess pectin binding to galectin-3.

    PubMed

    Zhang, Tao; Zheng, Yi; Zhao, Dongyang; Yan, Jingmin; Sun, Chongliang; Zhou, Yifa; Tai, Guihua

    2016-10-01

    Although several approaches have been used to evaluate binding of carbohydrates to lectins, results are not always comparable, especially with larger polysaccharides. Here, we quantitatively assessed and compared binding of pectin-derived polysaccharides to galectin-3 (Gal-3) using five methods: surface plasmon resonance (SPR), bio-layer interferometry (BLI), fluorescence polarization (FP), competitive fluorescence-linked immunosorbance (cFLISA), and the well-known cell-based hemagglutination assay (G3H). Our studies revealed that whereas Gal-3-pectin binding parameters determined by SPR and BLI were comparable and correlated with inhibitory potencies from the G3H assay, results using FP and cFLISA assays were highly variable and depended greatly on the probe and mass of the polysaccharide. In the cFLISA assay, for example, pectins showed no inhibition when using the DTAF-labeled asialofetuin probe, but did when using a DTAF-labeled pectin probe. And the FP approach with the DTAF-lactose probe did not work on polysaccharides and large galactan chains, although it did work well with smaller galactans. Nevertheless, even though results derived from all of these methods are in general agreement, derived KD, IC50, and MIC values do differ. Our results reflect the variability using various techniques and therefore will be useful to investigators who are developing pectin-derived Gal-3 antagonists as anti-cancer agents.

  17. Broadly-specific cytotoxic T cells targeting multiple HIV antigens are expanded from HIV+ patients: implications for immunotherapy.

    PubMed

    Lam, Sharon; Sung, Julia; Cruz, Conrad; Castillo-Caro, Paul; Ngo, Minhtran; Garrido, Carolina; Kuruc, Joann; Archin, Nancie; Rooney, Cliona; Margolis, David; Bollard, Catherine

    2015-02-01

    Antiretroviral therapy (ART) is unable to eradicate human immunodeficiency virus type 1 (HIV-1) infection. Therefore, there is an urgent need to develop novel therapies for this disease to augment anti-HIV immunity. T cell therapy is appealing in this regard as T cells have the ability to proliferate, migrate, and their antigen specificity reduces the possibility of off-target effects. However, past human studies in HIV-1 infection that administered T cells with limited specificity failed to provide ART-independent, long-term viral control. In this study, we sought to expand functional, broadly-specific cytotoxic T cells (HXTCs) from HIV-infected patients on suppressive ART as a first step toward developing cellular therapies for implementation in future HIV eradication protocols. Blood samples from seven HIV+ patients on suppressive ART were used to derive HXTCs. Multiantigen specificity was achieved by coculturing T cells with antigen-presenting cells pulsed with peptides representing Gag, Pol, and Nef. All but two lines were multispecific for all three antigens. HXTCs demonstrated efficacy as shown by release of proinflammatory cytokines, specific lysis of antigen-pulsed targets, and the ability to suppress HIV replication in vitro. In conclusion, we are able to generate broadly-specific cytotoxic T cell lines that simultaneously target multiple HIV antigens and show robust antiviral function.

  18. Expression of Ia-like antigens by human vascular endothelial cells is inducible in vitro: demonstration by monoclonal antibody binding and immunoprecipitation.

    PubMed Central

    Pober, J S; Gimbrone, M A

    1982-01-01

    The expression of Ia-like antigens by cultured human endothelial cells has been investigated by means of monoclonal antibody binding to intact cells and by immunoprecipitation of radioiodinated membrane proteins. Primary growing and confluent cultures of human umbilical vein endothelium express little, if any, detectable Ia-like antigens under standard culture conditions. However, treatment of primary cultures with the lectin phytohemagglutinin induces the expression of Ia-like antigens. This action of the lectin uniformly affects all the endothelial cells in a culture, does not depend on cell division, and is associated with a cell shape change. The data presented in this report provide unequivocal serological and biochemical demonstration of Ia-like antigens on human vascular endothelial cells. The fact that the expression of Ia-like antigens by endothelium can be induced may have important implications for organ transplantation and for regulation of the immunological response. Images PMID:6815654

  19. Identifying Patient-Specific Epstein-Barr Nuclear Antigen-1 Genetic Variation and Potential Autoreactive Targets Relevant to Multiple Sclerosis Pathogenesis

    PubMed Central

    Tschochner, Monika; Leary, Shay; Cooper, Don; Strautins, Kaija; Chopra, Abha; Clark, Hayley; Choo, Linda; Dunn, David; James, Ian; Carroll, William M.; Kermode, Allan G.; Nolan, David

    2016-01-01

    Background Epstein-Barr virus (EBV) infection represents a major environmental risk factor for multiple sclerosis (MS), with evidence of selective expansion of Epstein-Barr Nuclear Antigen-1 (EBNA1)-specific CD4+ T cells that cross-recognize MS-associated myelin antigens in MS patients. HLA-DRB1*15-restricted antigen presentation also appears to determine susceptibility given its role as a dominant risk allele. In this study, we have utilised standard and next-generation sequencing techniques to investigate EBNA-1 sequence variation and its relationship to HLA-DR15 binding affinity, as well as examining potential cross-reactive immune targets within the central nervous system proteome. Methods Sanger sequencing was performed on DNA isolated from peripheral blood samples from 73 Western Australian MS cases, without requirement for primary culture, with additional FLX 454 Roche sequencing in 23 samples to identify low-frequency variants. Patient-derived viral sequences were used to predict HLA-DRB1*1501 epitopes (NetMHCII, NetMHCIIpan) and candidates were evaluated for cross recognition with human brain proteins. Results EBNA-1 sequence variation was limited, with no evidence of multiple viral strains and only low levels of variation identified by FLX technology (8.3% nucleotide positions at a 1% cut-off). In silico epitope mapping revealed two known HLA-DRB1*1501-restricted epitopes (‘AEG’: aa 481–496 and ‘MVF’: aa 562–577), and two putative epitopes between positions 502–543. We identified potential cross-reactive targets involving a number of major myelin antigens including experimentally confirmed HLA-DRB1*15-restricted epitopes as well as novel candidate antigens within myelin and paranodal assembly proteins that may be relevant to MS pathogenesis. Conclusions This study demonstrates the feasibility of obtaining autologous EBNA-1 sequences directly from buffy coat samples, and confirms divergence of these sequences from standard laboratory strains

  20. Bacteriophage-mediated Glucosylation Can Modify Lipopolysaccharide O-Antigens Synthesized by an ATP-binding Cassette (ABC) Transporter-dependent Assembly Mechanism.

    PubMed

    Mann, Evan; Ovchinnikova, Olga G; King, Jerry D; Whitfield, Chris

    2015-10-16

    Lysogenic bacteriophages may encode enzymes that modify the structures of lipopolysaccharide O-antigen glycans, altering the structure of the bacteriophage receptor and resulting in serotype conversion. This can enhance virulence and has implications for antigenic diversity and vaccine development. Side chain glucosylation is a common modification strategy found in a number of bacterial species. To date, glucosylation has only been observed in O-antigens synthesized by Wzy-dependent pathways, one of the two most prevalent O-antigen synthesis systems. Here we exploited a heterologous system to study the glucosylation potential of a model O-antigen produced in an ATP-binding cassette (ABC) transporter-dependent system. Although O-antigen production is cryptic in Escherichia coli K-12, because of a mutation in the synthesis genes, it possesses a prophage glucosylation cluster, which modifies the GlcNAc residue in an α-l-Rha-(1→3)-d-GlcNAc motif found in the original O16 antigen. Raoultella terrigena ATCC 33257 produces an O-antigen possessing the same disaccharide motif, but its assembly uses an ABC transporter-dependent system. E. coli harboring the R. terrigena O-antigen biosynthesis genes produced an O-antigen displaying reduced reactivity toward antisera raised against the native R. terrigena repeat structure, indicative of an altered chemical structure. Structural determination using NMR revealed the addition of glucose side chains to the repeat units. O-antigen modification was dependent on a functional ABC transporter, consistent with modification in the periplasm, and was eliminated by deletion of the glucosylation genes from the E. coli chromosome, restoring native level antisera sensitivity and structure. There are therefore no intrinsic mechanistic barriers for bacteriophage-mediated O-antigen glucosylation in ABC transporter-dependent pathways.

  1. Heat stable antigen (mouse CD24) supports myeloid cell binding to endothelial and platelet P-selectin.

    PubMed

    Aigner, S; Ruppert, M; Hubbe, M; Sammar, M; Sthoeger, Z; Butcher, E C; Vestweber, D; Altevogt, P

    1995-10-01

    P-selectin is a Ca(2+)-dependent lectin that participates in leukocyte adhesion to vascular endothelium and platelets. Myeloid cells and a subset of T lymphocytes express carbohydrate ligands at the cell surface. Previously, we suggested that heat stable antigen (HSA/mouse CD24), an extensively glycosylated cell surface molecule on many mouse cells, is a ligand for P-selectin. Here we show that HSA mediates the binding of monocytic cells and neutrophils to P-selectin. The monocytic cell lines ESb-MP and J774, peritoneal exudate cells, and bone marrow neutrophils could bind to lipopolysaccharide-activated bend3 endothelioma cells under rotation-induced shear forces and this binding was inhibited by mAb to P-selectin and HSA. Blocking was weak at room temperature but more efficient at 4 degrees C when integrin-mediated binding was decreased. Also the adhesion of neutrophils to stimulated platelets expressing P-selectin was blocked by HSA- and P-selectin-specific mAb. Latex beads coated with purified HSA from myeloid cells bound to activated endothelioma cells or platelets, and the binding was similarly blocked by mAb to P-selectin and HSA respectively. The HSA-coated beads were stained with P-selectin-IgG, very weakly with L-selectin-IgG but not with E-selectin-IgG. The staining was dependent on divalent cations and treatment with endoglycosidase F or neuraminidase indicated that sialylated N-linked glycans were recognized. The presence of these glycans was confirmed by biosynthetic labeling studies. Our data suggest that HSA, in addition to the recently identified 160 kDa glycoprotein ligand on mouse neutrophils, belongs to a group of monospecific P-selectin ligands on myeloid cells.

  2. Amino Acids in Hemagglutinin Antigenic Site B Determine Antigenic and Receptor Binding Differences between A(H3N2)v and Ancestral Seasonal H3N2 Influenza Viruses.

    PubMed

    Wang, Xiaoquan; Ilyushina, Natalia A; Lugovtsev, Vladimir Y; Bovin, Nicolai V; Couzens, Laura K; Gao, Jin; Donnelly, Raymond P; Eichelberger, Maryna C; Wan, Hongquan

    2017-01-15

    Influenza A H3N2 variant [A(H3N2)v] viruses, which have caused human infections in the United States in recent years, originated from human seasonal H3N2 viruses that were introduced into North American swine in the mid-1990s, but they are antigenically distinct from both the ancestral and current circulating H3N2 strains. A reference A(H3N2)v virus, A/Minnesota/11/2010 (MN/10), and a seasonal H3N2 strain, A/Beijing/32/1992 (BJ/92), were chosen to determine the molecular basis for the antigenic difference between A(H3N2)v and the ancestral viruses. Viruses containing wild-type and mutant MN/10 or BJ/92 hemagglutinins (HAs) were constructed and probed for reactivity with ferret antisera against MN/10 and BJ/92 in hemagglutination inhibition assays. Among the amino acids that differ between the MN/10 and BJ/92 HAs, those in antigenic site A had little impact on the antigenic phenotype. Within antigenic site B, mutations at residues 156, 158, 189, and 193 of MN/10 HA to those in BJ/92 switched the MN/10 antigenic phenotype to that of BJ/92. Mutations at residues 156, 157, 158, 189, and 193 of BJ/92 HA to amino acids present in MN/10 were necessary for BJ/92 to become antigenically similar to MN/10. The HA amino acid substitutions responsible for switching the antigenic phenotype also impacted HA binding to sialyl receptors that are usually present in the human respiratory tract. Our study demonstrates that antigenic site B residues play a critical role in determining both the unique antigenic phenotype and receptor specificity of A(H3N2)v viruses, a finding that may facilitate future surveillance and risk assessment of novel influenza viruses.

  3. Western blot diagnosis of vivax malaria with multiple stage-specific antigens of the parasite

    PubMed Central

    Son, Eui-Sun; Kim, Tong Soo

    2001-01-01

    Western blot analysis was performed to diagnose vivax malaria using stage-specific recombinant antigens. Genomic DNA from the whole blood of a malaria patient was used as templates to amplify the coding regions for the antigenic domains of circumsporozoite protein (CSP-1), merozoite surface protein (MSP-1), apical merozoite antigen (AMA-1), serine repeat antigen (SERA), and exported antigen (EXP-1) of Plasmodium vivax. Each amplified DNA fragment was inserted into a pGEX-4T plasmid to induce the expression of GST fusion protein in Escherichia coli by IPTG. The bacterial cell extracts were separated on 10% SDS-PAGE followed by western blot analysis with patient sera which was confirmed by blood smear examination. When applied with patient sera, 147 (91.9%) out of 160 vivax malaria, 12 (92.3%) out of 13 falciparum malaria, and all 9 vivax/falciparum mixed malaria reacted with at least one antigen, while no reactions occurred with 20 normal uninfected sera. In the case of vivax malaria, CSP-1 reacted with 128 (80.0%) sera, MSP-1 with 102 (63.8%), AMA-1 with 128 (80.0%), SERA with 115 (71.9%), and EXP-1 with 89 (55.6%), respectively. We obtained higher detection rates when using 5 antigens (91.9%) rather than using each antigen solely (55.6-80%), a combination of 2 (76.3-87.5%), 3 (85.6-90.6%), or 4 antigens (89.4-91.3%). This method can be applied to serological diagnosis, mass screening in endemic regions, or safety test in transfusion of prevalent vivax malaria. PMID:11441504

  4. Western blot diagnosis of vivax malaria with multiple stage-specific antigens of the parasite.

    PubMed

    Son, E S; Kim, T S; Nam, H W

    2001-06-01

    Western blot analysis was performed to diagnose vivax malaria using stage-specific recombinant antigens. Genomic DNA from the whole blood of a malaria patient was used as templates to amplify the coding regions for the antigenic domains of circumsporozoite protein (CSP-1), merozoite surface protein (MSP-1), apical merozoite antigen (AMA-1), serine repeat antigen (SERA), and exported antigen (EXP-1) of Plasmodium vivax. Each amplified DNA fragment was inserted into a pGEX-4T plasmid to induce the expression of GST fusion protein in Escherichia coli by IPTG. The bacterial cell extracts were separated on 10% SDS-PAGE followed by western blot analysis with patient sera which was confirmed by blood smear examination. When applied with patient sera, 147 (91.9%) out of 160 vivax malaria, 12 (92.3%) out of 13 falciparum malaria, and all 9 vivax/falciparum mixed malaria reacted with at least one antigen, while no reactions occurred with 20 normal uninfected sera. In the case of vivax malaria, CSP-1 reacted with 128 (80.0%) sera, MSP-1 with 102 (63.8%), AMA-1 with 128 (80.0%), SERA with 115 (71.9%), and EXP-1 with 89 (55.6%), respectively. We obtained higher detection rates when using 5 antigens (91.9%) rather than using each antigen solely (55.6-80%), a combination of 2 (76.3-87.5%), 3 (85.6-90.6%), or 4 antigens (89.4-91.3%). This method can be applied to serological diagnosis, mass screening in endemic regions, or safety test in transfusion of prevalent vivax malaria.

  5. T cells produce an antigen-binding factor with in vivo activity analogous to IgE antibody

    PubMed Central

    1983-01-01

    T cell-dependent activation of resident tissue mast cells is required for the elicitation of delayed-type hypersensitivity skin reactions in mice. A T cell-derived antigen-binding factor that transfers the ability to elicit an immediate hypersensitivity-like skin reaction is described and compared with a hybridoma IgE antibody. Both the T cell factor and IgE mediate reactions with increased vascular permeability and both are mast cell dependent, as they are inactive in two different types of mast cell deficient mice (W/Wv and Sl/Sld). The T cell factor was distinguished from IgE by affinity chromatography using specific anti-IgE and anti-factor antibodies and by a shorter duration of passive sensitization. The T cell factor is a suitable candidate for participation in the mechanism by which T cells activate mast cells in delayed-type hypersensitivity. PMID:6187880

  6. Identification of a Receptor-Binding Region within Domain 4 of the Protective Antigen Component of Anthrax Toxin

    PubMed Central

    Varughese, Mini; Teixeira, Avelino V.; Liu, Shihui; Leppla, Stephen H.

    1999-01-01

    Anthrax toxin from Bacillus anthracis is a three-component toxin consisting of lethal factor (LF), edema factor (EF), and protective antigen (PA). LF and EF are the catalytic components of the toxin, whereas PA is the receptor-binding component. To identify residues of PA that are involved in interaction with the cellular receptor, two solvent-exposed loops of domain 4 of PA (amino acids [aa] 679 to 693 and 704 to 723) were mutagenized, and the altered proteins purified and tested for toxicity in the presence of LF. In addition to the intended substitutions, novel mutations were introduced by errors that occurred during PCR. Substitutions within the large loop (aa 704 to 723) had no effect on PA activity. A mutated protein, LST-35, with three substitutions in the small loop (aa 679 to 693), bound weakly to the receptor and was nontoxic. A mutated protein, LST-8, with changes in three separate regions did not bind to receptor and was nontoxic. Toxicity was greatly decreased by truncation of the C-terminal 3 to 5 aa, but not by their substitution with nonnative residues or the extension of the terminus with nonnative sequences. Comparison of the 28 mutant proteins described here showed that the large loop (aa 704 to 722) is not involved in receptor binding, whereas residues in and near the small loop (aa 679 to 693) play an important role in receptor interaction. Other regions of domain 4, in particular residues at the extreme C terminus, appear to play a role in stabilizing a conformation needed for receptor-binding activity. PMID:10085028

  7. The SV40 large T-antigen origin binding domain directly participates in DNA unwinding.

    PubMed

    Foster, Erin C; Simmons, Daniel T

    2010-03-16

    The origin binding domain (OBD) of SV40 large T-ag serves a critical role during initiation of DNA replication to position T-ag on the origin. After origin recognition, T-ag forms a double hexamer over the origin. Within each hexamer, the OBD adopts a lock washer structure where the origin recognizing A1 and B2 loops face toward the helicase domain and likely become unavailable for binding DNA. In this study, we investigated the role of the central channel of the OBD hexamer in DNA replication by analyzing the effects of mutations of residues lining the channel. All mutants showed binding defects with origin DNA and ssDNA especially at low protein concentrations, but only half were defective at supporting DNA replication in vitro. All mutants were normal in unwinding linear origin DNA fragments. However, replication defective mutants failed to unwind a small origin containing circular DNA whereas replication competent mutants did so normally. The presence of RPA and/or pol/prim restored circular DNA unwinding activity of compromised mutants probably by interacting with the separated DNA strands on the T-ag surface. We interpret these results to indicate a role for the OBD central channel in binding and threading ssDNA during unwinding of circular SV40 DNA. Mixing experiments suggested that only one monomer in an OBD hexamer was necessary for DNA unwinding. We present a model of DNA threading through the T-ag complex illustrating how single-stranded DNA could pass close to a trough generated by key residues in one monomer of the OBD hexamer.

  8. Limited proteolysis of human leukocyte interferon-. cap alpha. 2 and localization of the monoclonal antibody-binding antigenic determinant

    SciTech Connect

    Kostrov, S.V.; Chernovskaya, T.V.; Khodova, O.M.; Borukhov, S.I.; Ryzhavskaya, A.S.; Izotova, L.S.; Strongin, A.Ya.

    1986-05-20

    Large peptide fragments of human leukocyte interferon-..cap alpha..2 (INF-..cap alpha..2) were produced by limited proteolysis with trypsin, pepsin, thermolysin, and Bacillus amyloliquefaciens serine proteinase, and the ability of the fragments to react with murine monoclonal antibodies NK2, directed toward INF-..cap alpha..2, was studied by the immunoblotting technique. The region of the sequence 110-149 is the most sensitive to proteinase attack and evidently is exposed on the surface of the INF-..cap alpha..2 molecule. The INF-..cap alpha..2 fragments 1-139, 1-147, and 1-149 react with antibodies, whereas the fragments 1-109 and 1-112 do not bind NK2 antibodies. A comparison of the primary structure of the families of human leukocyte and murine leukocyte INF in the region of the sequence 110-139 and an analysis of the ability of human INF differing in amino acid sequence to interact with NK2 antibodies suggested that the antigenic determinant that binds monoclonal antibodies NK2 is the sequence Glu/sub 114/-Asp/sub 115/-Ser/sub 116/-He/sub 117/ of the INF-..cap alpha..2 molecule.

  9. Antibody i-Patch prediction of the antibody binding site improves rigid local antibody-antigen docking.

    PubMed

    Krawczyk, Konrad; Baker, Terry; Shi, Jiye; Deane, Charlotte M

    2013-10-01

    Antibodies are a class of proteins indispensable for the vertebrate immune system. The general architecture of all antibodies is very similar, but they contain a hypervariable region which allows millions of antibody variants to exist, each of which can bind to different molecules. This binding malleability means that antibodies are an increasingly important category of biopharmaceuticals and biomarkers. We present Antibody i-Patch, a method that annotates the most likely antibody residues to be in contact with the antigen. We show that our predictions correlate with energetic importance and thus we argue that they may be useful in guiding mutations in the artificial affinity maturation process. Using our predictions as constraints for a rigid-body docking algorithm, we are able to obtain high-quality results in minutes. Our annotation method and re-scoring system for docking achieve their predictive power by using antibody-specific statistics. Antibody i-Patch is available from http://www.stats.ox.ac.uk/research/proteins/resources.

  10. Determining the binding affinities of prostate-specific antigen to lectins: SPR and microarray approaches.

    PubMed

    Damborský, Pavel; Zámorová, Martina; Katrlík, Jaroslav

    2016-12-01

    Prostate cancer (PCa) is one of the most common newly diagnosed cancers among men and we focused on its traditional biomarker, prostate-specific antigen (PSA), using targeted glycomics-based strategies. The aberrant glycosylation pattern of PSA may serve as a valuable tool for improving PCa diagnosis including its early-stage. In this study, we evaluated the usability of two techniques, surface plasmon resonance and protein microarray assay, for the study and characterization of interactions of PSA (both free and complexed) with six lectins (SNA, ConA, RCA, AAL, WGA and MAA II). The information on the character of such interactions is important for the application of lectins as prospective bioreceptors for biomarker glycoprofiling in a follow-up biosensing assays. SPR as well as established bioanalytical techniques allowed determination of KD values of PSA-lectin interactions in a more reliable way than protein microarray. The protein microarray method did not allow accurate quantification of KD values. However, the features of a microarray approach, such as speed and costs, enabled the screening and estimation of the nature of lectin-glycan biomarker interaction in an effective and time-saving way. All of the tested lectins interacted with commercial PSA standard isolated from healthy persons, except MAA II which reacted only very weakly.

  11. Genome Sequence of Enterobacter cloacae Strain SENG-6, a Bacterium Producing Histo-Blood Group Antigen-Like Substances That Can Bind with Human Noroviruses

    PubMed Central

    Amarasiri, Mohan; Hashiba, Satoshi; Yang, Peiyi; Okabe, Satoshi

    2016-01-01

    Enterobacter sp. strain SENG-6, isolated from healthy human feces, produces histo-blood group antigen (HBGA)-like substances that can bind with human noroviruses. Based on the genome sequence analysis, strain SENG-6 belongs to the species Enterobacter cloacae. The genome sequence of this strain should help identify genes associated with the production of HBGA-like substances. PMID:27563051

  12. Genome Sequence of Enterobacter cloacae Strain SENG-6, a Bacterium Producing Histo-Blood Group Antigen-Like Substances That Can Bind with Human Noroviruses.

    PubMed

    Ishii, Satoshi; Amarasiri, Mohan; Hashiba, Satoshi; Yang, Peiyi; Okabe, Satoshi; Sano, Daisuke

    2016-08-25

    Enterobacter sp. strain SENG-6, isolated from healthy human feces, produces histo-blood group antigen (HBGA)-like substances that can bind with human noroviruses. Based on the genome sequence analysis, strain SENG-6 belongs to the species Enterobacter cloacae The genome sequence of this strain should help identify genes associated with the production of HBGA-like substances.

  13. Antigen-binding cells in the peripheral blood of sockeye salmon, Oncorhynchus nerka Walbaum, induced by immersion or intraperitoneal injection of Vibrio languilarum bacterin

    USGS Publications Warehouse

    1981-01-01

    We used an immunocytoadherence assay to monitor the response of antigen-binding cells (ABC) in the peripheral blood of sockeye salmon, Oncorhynchus nerka, after immersion in, or intraperitoneal injection of, Vibrio anguillarum LS 1–74 bacterin. Both methods initiated an elevated ABC response in less than one day; this response persisted one week longer in the injected than in the immersed fish.

  14. Humoral markers of active Epstein-Barr virus infection associate with anti-extractable nuclear antigen autoantibodies and plasma galectin-3 binding protein in systemic lupus erythematosus.

    PubMed

    Rasmussen, N S; Nielsen, C T; Houen, G; Jacobsen, S

    2016-12-01

    We investigated if signs of active Epstein-Barr virus and cytomegalovirus infections associate with certain autoantibodies and a marker of type I interferon activity in patients with systemic lupus erythematosus. IgM and IgG plasma levels against Epstein-Barr virus early antigen diffuse and cytomegalovirus pp52 were applied as humoral markers of ongoing/recently active Epstein-Barr virus and cytomegalovirus infections, respectively. Plasma galectin-3 binding protein served as a surrogate marker of type I interferon activity. The measurements were conducted in 57 systemic lupus erythematosus patients and 29 healthy controls using ELISAs. Regression analyses and univariate comparisons were performed for associative evaluation between virus serology, plasma galectin-3 binding protein and autoantibodies, along with other clinical and demographic parameters. Plasma galectin-3 binding protein concentrations were significantly higher in systemic lupus erythematosus patients (P = 0.009) and associated positively with Epstein-Barr virus early antigen diffuse-directed antibodies and the presence of autoantibodies against extractable nuclear antigens in adjusted linear regressions (B = 2.02 and 2.02, P = 0.02 and P = 0.002, respectively). Furthermore, systemic lupus erythematosus patients with anti-extractable nuclear antigens had significantly higher antibody levels against Epstein-Barr virus early antigen diffuse (P = 0.02). Our study supports a link between active Epstein-Barr virus infections, positivity for anti-extractable nuclear antigens and increased plasma galectin-3 binding protein concentrations/type I interferon activity in systemic lupus erythematosus patients.

  15. Affinity binding of antibodies to supermacroporous cryogel adsorbents with immobilized protein A for removal of anthrax toxin protective antigen.

    PubMed

    Ingavle, Ganesh C; Baillie, Les W J; Zheng, Yishan; Lis, Elzbieta K; Savina, Irina N; Howell, Carol A; Mikhalovsky, Sergey V; Sandeman, Susan R

    2015-05-01

    Polymeric cryogels are efficient carriers for the immobilization of biomolecules because of their unique macroporous structure, permeability, mechanical stability and different surface chemical functionalities. The aim of the study was to demonstrate the potential use of macroporous monolithic cryogels for biotoxin removal using anthrax toxin protective antigen (PA), the central cell-binding component of the anthrax exotoxins, and covalent immobilization of monoclonal antibodies. The affinity ligand (protein A) was chemically coupled to the reactive hydroxyl and epoxy-derivatized monolithic cryogels and the binding efficiencies of protein A, monoclonal antibodies to the cryogel column were determined. Our results show differences in the binding capacity of protein A as well as monoclonal antibodies to the cryogel adsorbents caused by ligand concentrations, physical properties and morphology of surface matrices. The cytotoxicity potential of the cryogels was determined by an in vitro viability assay using V79 lung fibroblast as a model cell and the results reveal that the cryogels are non-cytotoxic. Finally, the adsorptive capacities of PA from phosphate buffered saline (PBS) were evaluated towards a non-glycosylated, plant-derived human monoclonal antibody (PANG) and a glycosylated human monoclonal antibody (Valortim(®)), both of which were covalently attached via protein A immobilization. Optimal binding capacities of 108 and 117 mg/g of antibody to the adsorbent were observed for PANG attached poly(acrylamide-allyl glycidyl ether) [poly(AAm-AGE)] and Valortim(®) attached poly(AAm-AGE) cryogels, respectively, This indicated that glycosylation status of Valortim(®) antibody could significantly increase (8%) its binding capacity relative to the PANG antibody on poly(AAm-AGE)-protien-A column (p < 0.05). The amounts of PA which remained in the solution after passing PA spiked PBS through PANG or Valortim bound poly(AAm-AGE) cryogel were significantly (p < 0

  16. GBP-5 splicing variants: New guanylate-binding proteins with tumor-associated expression and antigenicity.

    PubMed

    Fellenberg, Friederike; Hartmann, Tanja B; Dummer, Reinhard; Usener, Dirk; Schadendorf, Dirk; Eichmüller, Stefan

    2004-06-01

    We have identified a new gene, gbp-5, with high homology to the guanylate binding proteins (GBP) belonging to the GTPase superfamily including the ras gene. gbp-5 is transcribed at least into three splicing variants (gbp-5a, -5b, and -5ta) leading to two different proteins (GBP-5a/b, GBP-5ta). GBP-5ta is C-terminally truncated by 97aa and has therefore lost its isoprenylation site. Although RT-PCR results indicated expression of GBP-5 members in selected normal tissues, western blotting using two newly generated antibodies revealed that expression of both proteins is restricted to peripheral blood monocytes with GBP-5ta at lower levels. In contrast, cutaneous T-cell lymphoma (CTCL) tumor tissues (seven of seven) were positive solely for GBP-5ta, and four of four CTCL cell lines expressed both proteins. Eight of nine melanoma cell lines expressed GBP-5a/b and four of nine additionally low levels of GBP-5ta. SEREX retesting using CTCL sera indicated a higher immunogenicity for GBP-5ta (nine of 16) than for GBP-5a/b (two of 11). Treatment of CTCL cell lines with interferon-gamma did not alter protein expression of GBP-5ta or GBP-5a/b. The restricted expression pattern of both GBP-5ta and GBP-5a/b and the pivotal role of many known members of the GTP-binding proteins in proliferation and differentiation suggest possible cancer-related functions of gbp-5.

  17. Multiple ligand simultaneous docking: orchestrated dancing of ligands in binding sites of protein.

    PubMed

    Li, Huameng; Li, Chenglong

    2010-07-30

    Present docking methodologies simulate only one single ligand at a time during docking process. In reality, the molecular recognition process always involves multiple molecular species. Typical protein-ligand interactions are, for example, substrate and cofactor in catalytic cycle; metal ion coordination together with ligand(s); and ligand binding with water molecules. To simulate the real molecular binding processes, we propose a novel multiple ligand simultaneous docking (MLSD) strategy, which can deal with all the above processes, vastly improving docking sampling and binding free energy scoring. The work also compares two search strategies: Lamarckian genetic algorithm and particle swarm optimization, which have respective advantages depending on the specific systems. The methodology proves robust through systematic testing against several diverse model systems: E. coli purine nucleoside phosphorylase (PNP) complex with two substrates, SHP2NSH2 complex with two peptides and Bcl-xL complex with ABT-737 fragments. In all cases, the final correct docking poses and relative binding free energies were obtained. In PNP case, the simulations also capture the binding intermediates and reveal the binding dynamics during the recognition processes, which are consistent with the proposed enzymatic mechanism. In the other two cases, conventional single-ligand docking fails due to energetic and dynamic coupling among ligands, whereas MLSD results in the correct binding modes. These three cases also represent potential applications in the areas of exploring enzymatic mechanism, interpreting noisy X-ray crystallographic maps, and aiding fragment-based drug design, respectively.

  18. Simian Virus Large T Antigen Interacts with the N-Terminal Domain of the 70 kD Subunit of Replication Protein A in the Same Mode as Multiple DNA Damage Response Factors

    PubMed Central

    Ning, Boting; Feldkamp, Michael D.; Cortez, David; Chazin, Walter J.; Friedman, Katherine L.

    2015-01-01

    Simian virus 40 (SV40) serves as an important model organism for studying eukaryotic DNA replication. Its helicase, Large T-antigen (Tag), is a multi-functional protein that interacts with multiple host proteins, including the ubiquitous ssDNA binding protein Replication Protein A (RPA). Tag recruits RPA, actively loads it onto the unwound DNA, and together they promote priming of the template. Although interactions of Tag with RPA have been mapped, no interaction between Tag and the N-terminal protein interaction domain of the RPA 70kDa subunit (RPA70N) has been reported. Here we provide evidence of direct physical interaction of Tag with RPA70N and map the binding sites using a series of pull-down and mutational experiments. In addition, a monoclonal anti-Tag antibody, the epitope of which overlaps with the binding site, blocks the binding of Tag to RPA70N. We use NMR chemical shift perturbation analysis to show that Tag uses the same basic cleft in RPA70N as multiple of DNA damage response proteins. Mutations in the binding sites of both RPA70N and Tag demonstrate that specific charge reversal substitutions in either binding partner strongly diminish the interaction. These results expand the known repertoire of contacts between Tag and RPA, which mediate the many critical roles of Tag in viral replication. PMID:25706313

  19. Stochastic Analysis of Antibody-antigen Binding in a Microfluidic Device

    NASA Astrophysics Data System (ADS)

    Adams, Shauna; Zhang, Cong; Zambrano, Harvey; Conlisk, A. T.

    2012-11-01

    Over the last decade, microfluidic ``Labs on a Chip'' (LOC) have evolved from a single microchannel to micro-total analysis systems (TAS) capable of integrating thousands of reaction vessels, conduits and valves-the contents of an entire chemical laboratory-on a single chip. These systems have several advantages in biomedical applications, including lower equipment and personnel costs, reduced power requirements, faster separations, and smaller sample and reagent volume requirements. Circulating tumor cells (CTC) are cancer cells found in the blood stream indicating the presence of a tumor in the body. We consider the population of magnetically tagged antibodies to be characterized by a collection of stochastic trajectories; the probability of finding an antibody at a given position is assumed to be defined by the Fokker-Planck equation. The first objective is to determine the probability that one or more magnetically labeled antibodies will assume a trajectory that is within the neighborhood of a given cancer cell. Once this occurs the binding process can be described using a deterministic analysis and the modeling of this process is the second objective of the paper. Supported by the NSF Nanoscale Science and Engineering center (NSEC) for the Affordable Nanoengineering of Polymeric Biomedical Devices EEC-0914790.

  20. A modern approach for epitope prediction: identification of foot-and-mouth disease virus peptides binding bovine leukocyte antigen (BoLA) class I molecules.

    PubMed

    Pandya, Mital; Rasmussen, Michael; Hansen, Andreas; Nielsen, Morten; Buus, Soren; Golde, William; Barlow, John

    2015-11-01

    Major histocompatibility complex (MHC) class Imolecules regulate adaptive immune responses through the presentation of antigenic peptides to CD8+ T cells. Polymorphisms in the peptide binding region of class I molecules determine peptide binding affinity and stability during antigen presentation, and different antigen peptide motifs are associated with specific genetic sequences of class I molecules. Understanding bovine leukocyte antigen (BoLA), peptide-MHC class I binding specificities may facilitate development of vaccines or reagents for quantifying the adaptive immune response to intracellular pathogens, such as foot-and-mouth disease virus (FMDV). Six synthetic BoLA class I (BoLA-I) molecules were produced, and the peptide binding motif was generated for five of the six molecules using a combined approach of positional scanning combinatorial peptide libraries (PSCPLs) and neural network-based predictions (NetMHCpan). The updated NetMHCpan server was used to predict BoLA-I binding peptides within the P1 structural polyprotein sequence of FMDV (strain A24 Cruzeiro) for Bo-LA-1*01901, BoLA-2*00801, BoLA-2*01201, and BoLA-4*02401. Peptide binding affinity and stability were determined for these BoLA-I molecules using the luminescent oxygen channeling immunoassay (LOCI) and scintillation proximity assay (SPA). The functional diversity of known BoLA alleles was predicted using theMHCcluster tool, and functional predictions for peptide motifs were compared to observed data from this and prior studies. The results of these analyses showed that BoLA alleles cluster into three distinct groups with the potential to define BBoLA supertypes.^ This streamlined approach identifies potential T cell epitopes from pathogens, such as FMDV, and provides insight into T cell immunity following infection or vaccination.

  1. Structural Analysis of Histo-Blood Group Antigen Binding Specificity in a Norovirus GII.4 Epidemic Variant: Implications for Epochal Evolution

    SciTech Connect

    Shanker, Sreejesh; Choi, Jae-Mun; Sankaran, Banumathi; Atmar, Robert L.; Estes, Mary K.; Prasad, B.V. Venkataram

    2012-03-23

    Susceptibility to norovirus (NoV), a major pathogen of epidemic gastroenteritis, is associated with histo-blood group antigens (HBGAs), which are also cell attachment factors for this virus. GII.4 NoV strains are predominantly associated with worldwide NoV epidemics with a periodic emergence of new variants. The sequence variations in the surface-exposed P domain of the capsid protein resulting in differential HBGA binding patterns and antigenicity are suggested to drive GII.4 epochal evolution. To understand how temporal sequence variations affect the P domain structure and contribute to epochal evolution, we determined the P domain structure of a 2004 variant with ABH and secretor Lewis HBGAs and compared it with the previously determined structure of a 1996 variant. We show that temporal sequence variations do not affect the binding of monofucosyl ABH HBGAs but that they can modulate the binding strength of difucosyl Lewis HBGAs and thus could contribute to epochal evolution by the potentiated targeting of new variants to Lewis-positive, secretor-positive individuals. The temporal variations also result in significant differences in the electrostatic landscapes, likely reflecting antigenic variations. The proximity of some of these changes to the HBGA binding sites suggests the possibility of a coordinated interplay between antigenicity and HBGA binding in epochal evolution. From the observation that the regions involved in the formation of the HBGA binding sites can be conformationally flexible, we suggest a plausible mechanism for how norovirus disassociates from salivary mucin-linked HBGA before reassociating with HBGAs linked to intestinal epithelial cells during its passage through the gastrointestinal tract.

  2. Bacterial production and structure-functional validation of a recombinant antigen-binding fragment (Fab) of an anti-cancer therapeutic antibody targeting epidermal growth factor receptor.

    PubMed

    Kim, Ji-Hun; Sim, Dae-Won; Park, Dongsun; Jung, Tai-Geun; Lee, Seonghwan; Oh, Taeheun; Ha, Jong-Ryul; Seok, Seung-Hyeon; Seo, Min-Duk; Kang, Ho Chul; Kim, Young Pil; Won, Hyung-Sik

    2016-12-01

    Fragment engineering of monoclonal antibodies (mAbs) has emerged as an excellent paradigm to develop highly efficient therapeutic and/or diagnostic agents. Engineered mAb fragments can be economically produced in bacterial systems using recombinant DNA technologies. In this work, we established recombinant production in Escherichia coli for monovalent antigen-binding fragment (Fab) adopted from a clinically used anticancer mAB drug cetuximab targeting epidermal growth factor receptor (EGFR). Recombinant DNA constructs were designed to express both polypeptide chains comprising Fab in a single vector and to secrete them to bacterial periplasmic space for efficient folding. Particularly, a C-terminal engineering to confer an interchain disulfide bond appeared to be able to enhance its heterodimeric integrity and EGFR-binding activity. Conformational relevance of the purified final product was validated by mass spectrometry and crystal structure at 1.9 Å resolution. Finally, our recombinant cetuximab-Fab was found to have strong binding affinity to EGFR overexpressed in human squamous carcinoma model (A431) cells. Its binding ability was comparable to that of cetuximab. Its EGFR-binding affinity was estimated at approximately 0.7 nM of Kd in vitro, which was quite stronger than the binding affinity of natural ligand EGF. Hence, the results validate that our construction could serve as an efficient platform to produce a recombinant cetuximab-Fab with a retained antigen-binding functionality.

  3. Epstein-Barr Virus Nuclear Antigen 3 (EBNA3) Proteins Regulate EBNA2 Binding to Distinct RBPJ Genomic Sites

    PubMed Central

    Wang, Anqi; Welch, Rene; Zhao, Bo; Ta, Tram; Keleş, Sündüz

    2015-01-01

    ABSTRACT Latent infection of B lymphocytes by Epstein-Barr virus (EBV) in vitro results in their immortalization into lymphoblastoid cell lines (LCLs); this latency program is controlled by the EBNA2 viral transcriptional activator, which targets promoters via RBPJ, a DNA binding protein in the Notch signaling pathway. Three other EBNA3 proteins (EBNA3A, EBNA3B, and EBNA3C) interact with RBPJ to regulate cell gene expression. The mechanism by which EBNAs regulate different genes via RBPJ remains unclear. Our chromatin immunoprecipitation with deep sequencing (ChIP-seq) analysis of the EBNA3 proteins analyzed in concert with prior EBNA2 and RBPJ data demonstrated that EBNA3A, EBNA3B, and EBNA3C bind to distinct, partially overlapping genomic locations. Although RBPJ interaction is critical for EBNA3A and EBNA3C growth effects, only 30 to 40% of EBNA3-bound sites colocalize with RBPJ. Using LCLs conditional for EBNA3A or EBNA3C activity, we demonstrate that EBNA2 binding at sites near EBNA3A- or EBNA3C-regulated genes is specifically regulated by the respective EBNA3. To investigate EBNA3 binding specificity, we identified sequences and transcription factors enriched at EBNA3A-, EBNA3B-, and EBNA3C-bound sites. This confirmed the prior observation that IRF4 is enriched at EBNA3A- and EBNA3C-bound sites and revealed IRF4 enrichment at EBNA3B-bound sites. Using IRF4-negative BJAB cells, we demonstrate that IRF4 is essential for EBNA3C, but not EBNA3A or EBNA3B, binding to specific sites. These results support a model in which EBNA2 and EBNA3s compete for distinct subsets of RBPJ sites to regulate cell genes and where EBNA3 subset specificity is determined by interactions with other cell transcription factors. IMPORTANCE Epstein-Barr virus (EBV) latent gene products cause human cancers and transform B lymphocytes into immortalized lymphoblastoid cell lines in vitro. EBV nuclear antigens (EBNAs) and membrane proteins constitutively activate pathways important for

  4. Phthalocyanine tetrasulfonates bind to multiple sites on natively-folded prion protein.

    PubMed

    Dee, Derek R; Gupta, Amar Nath; Anikovskiy, Max; Sosova, Iveta; Grandi, Elena; Rivera, Laura; Vincent, Abhilash; Brigley, Angela M; Petersen, Nils O; Woodside, Michael T

    2012-06-01

    The phthalocyanine tetrasulfonates (PcTS), a class of cyclic tetrapyrroles, bind to the mammalian prion protein, PrP. Remarkably, they can act as anti-scrapie agents to prevent the formation and spread of infectious, misfolded PrP. While the effects of phthalocyanines on the diseased state have been investigated, the interaction between PcTS and PrP has not yet been extensively characterized. Here we use multiple, complementary assays (surface plasmon resonance, isothermal titration calorimetry, fluorescence correlation spectroscopy, and tryptophan fluorescence quenching) to characterize the binding of PcTS to natively-folded hamster PrP(90-232), in order to determine binding constants, ligand stoichiometry, influence of buffer ionic strength, and the effects of chelated metal ions. We found that binding strength depends strongly on chelated metal ions, with Al(3+)-PcTS binding the weakest and free-base PcTS the strongest of the three types tested (Al(3+), Zn(2+), and free-base). Buffer ionic strength also affected the binding, with K(d) increasing along with salt concentration. The binding isotherms indicated the presence of at least two different binding sites with micromolar affinities and a total stoichiometry of ~4-5 PcTS molecules per PrP molecule.

  5. Identification of binding sites on the regulatory A subunit of protein phosphatase 2A for the catalytic C subunit and for tumor antigens of simian virus 40 and polyomavirus.

    PubMed Central

    Ruediger, R; Roeckel, D; Fait, J; Bergqvist, A; Magnusson, G; Walter, G

    1992-01-01

    Protein phosphatase 2A is composed of three subunits: the catalytic subunit C and two regulatory subunits, A and B. The A subunit consists of 15 nonidentical repeats and has a rodlike shape. It is associated with the B and C subunits as well as with the simian virus 40 small T, polyomavirus small T, and polyomavirus medium T tumor antigens. We determined the binding sites on subunit A for subunit C and tumor antigens by site-directed mutagenesis of A. Twenty-four N- and C-terminal truncations and internal deletions of A were assayed by coimmunoprecipitation for their ability to bind C and tumor antigens. It was found that C binds to repeats 11 to 15 at the C terminus of A, whereas T antigens bind to overlapping but distinct regions of the N terminus. Simian virus 40 small T binds to repeats 3 to 6, and polyomavirus small T and medium T bind to repeats 2 to 8. The data suggest cooperativity between C and T antigens in binding to A. This is most apparent for medium T antigen, which can only bind to those A subunit molecules that provide the entire binding region for the C subunit. We infer from our results that B also binds to N-terminal repeats. A model of the small T/medium T/B-A-C complexes is presented. Images PMID:1328865

  6. Surface co-expression of two different PfEMP1 antigens on single plasmodium falciparum-infected erythrocytes facilitates binding to ICAM1 and PECAM1.

    PubMed

    Joergensen, Louise; Bengtsson, Dominique C; Bengtsson, Anja; Ronander, Elena; Berger, Sanne S; Turner, Louise; Dalgaard, Michael B; Cham, Gerald K K; Victor, Michala E; Lavstsen, Thomas; Theander, Thor G; Arnot, David E; Jensen, Anja T R

    2010-09-02

    The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) antigens play a major role in cytoadhesion of infected erythrocytes (IE), antigenic variation, and immunity to malaria. The current consensus on control of variant surface antigen expression is that only one PfEMP1 encoded by one var gene is expressed per cell at a time. We measured var mRNA transcript levels by real-time Q-PCR, analysed var gene transcripts by single-cell FISH and directly compared these with PfEMP1 antigen surface expression and cytoadhesion in three different antibody-selected P. falciparum 3D7 sub-lines using live confocal microscopy, flow cytometry and in vitro adhesion assays. We found that one selected parasite sub-line simultaneously expressed two different var genes as surface antigens, on single IE. Importantly, and of physiological relevance to adhesion and malaria pathogenesis, this parasite sub-line was found to bind both CD31/PECAM1 and CD54/ICAM1 and to adhere twice as efficiently to human endothelial cells, compared to infected cells having only one PfEMP1 variant on the surface. These new results on PfEMP1 antigen expression indicate that a re-evaluation of the molecular mechanisms involved in P. falciparum adhesion and of the accepted paradigm of absolutely mutually exclusive var gene transcription is required.

  7. Surface Co-Expression of Two Different PfEMP1 Antigens on Single Plasmodium falciparum-Infected Erythrocytes Facilitates Binding to ICAM1 and PECAM1

    PubMed Central

    Joergensen, Louise; Bengtsson, Dominique C.; Bengtsson, Anja; Ronander, Elena; Berger, Sanne S.; Turner, Louise; Dalgaard, Michael B.; Cham, Gerald K. K.; Victor, Michala E.; Lavstsen, Thomas; Theander, Thor G.; Arnot, David E.; Jensen, Anja T. R.

    2010-01-01

    The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) antigens play a major role in cytoadhesion of infected erythrocytes (IE), antigenic variation, and immunity to malaria. The current consensus on control of variant surface antigen expression is that only one PfEMP1 encoded by one var gene is expressed per cell at a time. We measured var mRNA transcript levels by real-time Q-PCR, analysed var gene transcripts by single-cell FISH and directly compared these with PfEMP1 antigen surface expression and cytoadhesion in three different antibody-selected P. falciparum 3D7 sub-lines using live confocal microscopy, flow cytometry and in vitro adhesion assays. We found that one selected parasite sub-line simultaneously expressed two different var genes as surface antigens, on single IE. Importantly, and of physiological relevance to adhesion and malaria pathogenesis, this parasite sub-line was found to bind both CD31/PECAM1 and CD54/ICAM1 and to adhere twice as efficiently to human endothelial cells, compared to infected cells having only one PfEMP1 variant on the surface. These new results on PfEMP1 antigen expression indicate that a re-evaluation of the molecular mechanisms involved in P. falciparum adhesion and of the accepted paradigm of absolutely mutually exclusive var gene transcription is required. PMID:20824088

  8. Promiscuous CTL recognition of viral epitopes on multiple human leukocyte antigens: biological validation of the proposed HLA A24 supertype.

    PubMed

    Burrows, Scott R; Elkington, Rebecca A; Miles, John J; Green, Katherine J; Walker, Susan; Haryana, Sofia M; Moss, Denis J; Dunckley, Heather; Burrows, Jacqueline M; Khanna, Rajiv

    2003-08-01

    Multiple HLA class I alleles can bind peptides with common sequence motifs due to structural similarities in the peptide binding cleft, and these groups of alleles have been classified into supertypes. Nine major HLA supertypes have been proposed, including an A24 supertype that includes A*2301, A*2402, and A*3001. Evidence for this A24 supertype is limited to HLA sequence homology and/or similarity in peptide binding motifs for the alleles. To investigate the immunological relevance of this proposed supertype, we have examined two viral epitopes (from EBV and CMV) initially defined as HLA-A*2301-binding peptides. The data clearly demonstrate that each peptide could be recognized by CTL clones in the context of A*2301 or A*2402; thus validating the inclusion of these three alleles within an A24 supertype. Furthermore, CTL responses to the EBV epitope were detectable in both A*2301(+) and A*2402(+) individuals who had been previously exposed to this virus. These data substantiate the biological relevance of the A24 supertype, and the identification of viral epitopes with the capacity to bind promiscuously across this supertype could aid efforts to develop CTL-based vaccines or immunotherapy. The degeneracy in HLA restriction displayed by some T cells in this study also suggests that the dogma of self-MHC restriction needs some refinement to accommodate foreign peptide recognition in the context of multiple supertype alleles.

  9. MBSTAR: multiple instance learning for predicting specific functional binding sites in microRNA targets

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Sanghamitra; Ghosh, Dip; Mitra, Ramkrishna; Zhao, Zhongming

    2015-01-01

    MicroRNA (miRNA) regulates gene expression by binding to specific sites in the 3'untranslated regions of its target genes. Machine learning based miRNA target prediction algorithms first extract a set of features from potential binding sites (PBSs) in the mRNA and then train a classifier to distinguish targets from non-targets. However, they do not consider whether the PBSs are functional or not, and consequently result in high false positive rates. This substantially affects the follow up functional validation by experiments. We present a novel machine learning based approach, MBSTAR (Multiple instance learning of Binding Sites of miRNA TARgets), for accurate prediction of true or functional miRNA binding sites. Multiple instance learning framework is adopted to handle the lack of information about the actual binding sites in the target mRNAs. Biologically validated 9531 interacting and 973 non-interacting miRNA-mRNA pairs are identified from Tarbase 6.0 and confirmed with PAR-CLIP dataset. It is found that MBSTAR achieves the highest number of binding sites overlapping with PAR-CLIP with maximum F-Score of 0.337. Compared to the other methods, MBSTAR also predicts target mRNAs with highest accuracy. The tool and genome wide predictions are available at http://www.isical.ac.in/~bioinfo_miu/MBStar30.htm.

  10. Effect of polyethylene glycol conjugation on conformational and colloidal stability of a monoclonal antibody antigen-binding fragment (Fab').

    PubMed

    Roque, Cristopher; Sheung, Anthony; Rahman, Nausheen; Ausar, S Fernando

    2015-02-02

    We have investigated the effects of site specific "hinge" polyethylene glycol conjugation (PEGylation) on thermal, pH, and colloidal stability of a monoclonal antibody antigen-binding fragment (Fab') using a variety of biophysical techniques. The results obtained by circular dichroism (CD), ultraviolet (UV) absorbance, and fluorescence spectroscopy suggested that the physical stability of the Fab' is maximized at pH 6-7 with no apparent differences due to PEGylation. Temperature-induced aggregation experiments revealed that PEGylation was able to increase the transition temperature, as well as prevent the formation of visible and subvisible aggregates. Statistical comparison of the three-index empirical phase diagram (EPD) revealed significant differences in thermal and pH stability signatures between Fab' and PEG-Fab'. Upon mechanical stress, micro-flow imaging (MFI) and measurement of the optical density at 360 nm showed that the PEG-Fab' had significantly higher resistance to surface-induced aggregation compared to the Fab'. Analysis of the interaction parameter, kD, indicated repulsive intermolecular forces for PEG-Fab' and attractive forces for Fab'. In conclusion, PEGylation appears to protect Fab' against thermal and mechanical stress-induced aggregation, likely due to a steric hindrance mechanism.

  11. Applications of immunocolloids in light microscopy. III. Demonstration of antigenic and lectin-binding sites in semithin resin sections.

    PubMed

    Lucocq, J M; Roth, J

    1984-10-01

    Previous studies have demonstrated that antigens or lectin-binding sites can be localized in sections from paraffin-embedded tissues with protein A or lectins bound to colloidal gold or colloidal silver (Roth J: J Histochem Cytochem 30:691, 1982 and 31:547, 1983). In the present study the protein A-gold technique and lectin-gold complexes have been applied to semithin sections (0.5-1.5 micron) of Epon- or low temperature Lowicryl K4M-embedded rat pancreas, kidney and submandibular gland. The results show that an increase in resolution and, therefore, in amount of information can be obtained. The optimal mode of imaging was determined on sections without counterstaining. Bright-field illumination gives the maximum information about the staining signal, while phase-contrast and Nomarski differential interference contrast give predominantly structural and, to a lesser extent, staining information. Polarization epi- and transillumination microscopy is inferior in all aspects. The application of a battery of lectin-gold complexes to rat submandibular gland revealed a specific staining pattern for each lectin in acinar and excretory duct cells.

  12. Temporally defined neocortical translation and polysome assembly are determined by the RNA-binding protein Hu antigen R.

    PubMed

    Kraushar, Matthew L; Thompson, Kevin; Wijeratne, H R Sagara; Viljetic, Barbara; Sakers, Kristina; Marson, Justin W; Kontoyiannis, Dimitris L; Buyske, Steven; Hart, Ronald P; Rasin, Mladen-Roko

    2014-09-09

    Precise spatiotemporal control of mRNA translation machinery is essential to the development of highly complex systems like the neocortex. However, spatiotemporal regulation of translation machinery in the developing neocortex remains poorly understood. Here, we show that an RNA-binding protein, Hu antigen R (HuR), regulates both neocorticogenesis and specificity of neocortical translation machinery in a developmental stage-dependent manner in mice. Neocortical absence of HuR alters the phosphorylation states of initiation and elongation factors in the core translation machinery. In addition, HuR regulates the temporally specific positioning of functionally related mRNAs into the active translation sites, the polysomes. HuR also determines the specificity of neocortical polysomes by defining their combinatorial composition of ribosomal proteins and initiation and elongation factors. For some HuR-dependent proteins, the association with polysomes likewise depends on the eukaryotic initiation factor 2 alpha kinase 4, which associates with HuR in prenatal developing neocortices. Finally, we found that deletion of HuR before embryonic day 10 disrupts both neocortical lamination and formation of the main neocortical commissure, the corpus callosum. Our study identifies a crucial role for HuR in neocortical development as a translational gatekeeper for functionally related mRNA subgroups and polysomal protein specificity.

  13. Evidence that transporters associated with antigen processing translocate a major histocompatibility complex class I-binding peptide into the endoplasmic reticulum in an ATP-dependent manner.

    PubMed Central

    Androlewicz, M J; Anderson, K S; Cresswell, P

    1993-01-01

    We have investigated the role of the putative peptide transporters associated with antigen processing (TAP) by using a permeabilized-cell system. The main objective was to determine whether these molecules, which bear homology to the ATP-binding cassette family of transporters, translocate antigenic peptides across the endoplasmic reticulum membrane for assembly with major histocompatibility complex (MHC) class I molecules and beta 2-microglobulin light chain. The pore-forming toxin streptolysin O was used to generate permeabilized cells, and peptide translocation was determined by measuring the amount of added radiolabeled peptide bound to endogenous class I molecules. No radiolabeled peptide was associated with MHC class I glycoproteins from unpermeabilized cells. We found that efficient peptide binding to MHC class I molecules in permeabilized cells is both transporter dependent and ATP dependent. In antigen-processing mutant cells lacking a functional transporter, uptake occurs only through a less-efficient transporter and ATP-independent pathway. In addition, short peptides (8-10 amino acids) known to bind MHC class I molecules compete efficiently with a radiolabeled peptide for TAP-dependent translocation, whereas longer peptides and a peptide derived from an endoplasmic reticulum signal sequence do not compete efficiently. This result indicates that the optimal substrates for TAP possess the characteristics of MHC-binding peptides. Images Fig. 2 Fig. 3 Fig. 4 PMID:8415666

  14. The binding sites of monoclonal antibodies to the non-reducing end of Francisella tularensis O-antigen accommodate mainly the terminal saccharide

    PubMed Central

    Lu, Zhaohua; Rynkiewicz, Michael J; Yang, Chiou-Ying; Madico, Guillermo; Perkins, Hillary M; Wang, Qi; Costello, Catherine E; Zaia, Joseph; Seaton, Barbara A; Sharon, Jacqueline

    2013-01-01

    We have previously described two types of protective B-cell epitopes in the O-antigen (OAg) of the Gram-negative bacterium Francisella tularensis: repeating internal epitopes targeted by the vast majority of anti-OAg monoclonal antibodies (mAbs), and a non-overlapping epitope at the non-reducing end targeted by the previously unique IgG2a mAb FB11. We have now generated and characterized three mAbs specific for the non-reducing end of F. tularensis OAg, partially encoded by the same variable region germline genes, indicating that they target the same epitope. Like FB11, the new mAbs, Ab63 (IgG3), N213 (IgG3) and N62 (IgG2b), had higher antigen-binding bivalent avidity than internally binding anti-OAg mAbs, and an oligosaccharide containing a single OAg repeat was sufficient for optimal inhibition of their antigen-binding. The X-ray crystal structure of N62 Fab showed that the antigen-binding site is lined mainly by aromatic amino acids that form a small cavity, which can accommodate no more than one and a third sugar residues, indicating that N62 binds mainly to the terminal Qui4NFm residue at the nonreducing end of OAg. In efficacy studies with mice infected intranasally with the highly virulent F. tularensis strain SchuS4, N62, N213 and Ab63 prolonged survival and reduced blood bacterial burden. These results yield insights into how antibodies to non-reducing ends of microbial polysaccharides can contribute to immune protection despite the smaller size of their target epitopes compared with antibodies to internal polysaccharide regions. PMID:23844703

  15. Zinc-induced oligomerization of zinc α2 glycoprotein reveals multiple fatty acid-binding sites.

    PubMed

    Zahid, Henna; Miah, Layeque; Lau, Andy M; Brochard, Lea; Hati, Debolina; Bui, Tam T T; Drake, Alex F; Gor, Jayesh; Perkins, Stephen J; McDermott, Lindsay C

    2016-01-01

    Zinc α2 glycoprotein (ZAG) is an adipokine with a class I MHC protein fold and is associated with obesity and diabetes. Although its intrinsic ligand remains unknown, ZAG binds the dansylated C11 fatty acid 11-(dansylamino)undecanoic acid (DAUDA) in the groove between the α1 and α2 domains. The surface of ZAG has approximately 15 weak zinc-binding sites deemed responsible for precipitation from human plasma. In the present study the functional significance of these metal sites was investigated. Analytical ultracentrifugation (AUC) and CD showed that zinc, but not other divalent metals, causes ZAG to oligomerize in solution. Thus ZAG dimers and trimers were observed in the presence of 1 and 2 mM zinc. Molecular modelling of X-ray scattering curves and sedimentation coefficients indicated a progressive stacking of ZAG monomers, suggesting that the ZAG groove may be occluded in these. Using fluorescence-detected sedimentation velocity, these ZAG-zinc oligomers were again observed in the presence of the fluorescent boron dipyrromethene fatty acid C16-BODIPY (4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-hexadecanoic acid). Fluorescence spectroscopy confirmed that ZAG binds C16-BODIPY. ZAG binding to C16-BODIPY, but not to DAUDA, was reduced by increased zinc concentrations. We conclude that the lipid-binding groove in ZAG contains at least two distinct fatty acid-binding sites for DAUDA and C16-BODIPY, similar to the multiple lipid binding seen in the structurally related immune protein CD1c. In addition, because high concentrations of zinc occur in the pancreas, the perturbation of these multiple lipid-binding sites by zinc may be significant in Type 2 diabetes where dysregulation of ZAG and zinc homoeostasis occurs.

  16. Multiple opioid receptor binding in dissociated intact guinea pig brain cells

    SciTech Connect

    Tam, S.W.; James, D.W.

    1986-03-05

    Dissociated intact guinea pig brain cells were prepared by the method of Rogers and El-Fakahany. Over 95% of these cells are viable as demonstrated by their exclusion of the dye trypan blue. Opioid receptor binding assays were performed in a modified Kreb-Ringers physiological buffer. The following radiolabeled ligands and conditions were used to selectively labeled multiple opioid receptors: mu binding, 1 nM (/sup 3/H)naloxone + 20 nM DADLE + 300 nM U50,488H; kappa binding, 4 nM (-)-(/sup 3/H)-EKC + 100 nM DAGO + 500 nM DADLE; delta binding, 2 nM (/sup 3/H)-DADLE + 100 nM DAGO + 300 nM U50,488H; sigma binding, 4 nM (+)-(/sup 3/H)SKF 10,047. The intact brain cells in physiological buffer demonstrated specific binding for mu, kappa, delta, and sigma receptors. The relative binding potency of naloxone for each of the receptor types is arbitrarily set at 1.

  17. Cloning of a cuticular antigen that contains multiple tandem repeats from the filarial parasite Dirofilaria immitis.

    PubMed Central

    Poole, C B; Grandea, A G; Maina, C V; Jenkins, R E; Selkirk, M E; McReynolds, L A

    1992-01-01

    An unusual antigen composed of tandemly repeated protein units was cloned from the filarial parasite Dirofilaria immitis. The antigen was initially identified by screening a lambda gt11 cDNA library with serum from dogs immunized with irradiated D. immitis third-stage larvae. DNA sequence analysis of the cDNA clone, Di5, revealed a continuous open reading frame composed of two 399-base-pair repeats arranged in tandem. Southern blot analysis of genomic D. immitis DNA showed that the gene coding for Di5 is composed of a tandem array of 25-50 copies of this same 399-base-pair repeat. Antiserum raised against recombinant Di5 protein detected a protein "ladder," from about 14 to greater than 200 kDa with steps approximately 15 kDa apart, on immunoblots of D. immitis extract. Metabolic labeling of adult parasites with [35S]methionine showed that Di5 is synthesized as a large precursor that is subsequently cleaved to produce the ladder-like array. These results suggest that the characteristic ladder is created by proteolytic cleavage of the precursor at the same site in each monomer. The Di5 antigen was localized to the cuticle and hypodermis of adult D. immitis by immunoelectron microscopy. Both male and female parasites were found to release Di5 when cultured in vitro. DNA hybridization analysis demonstrated that Di5 is a member of a gene family present in many filarial parasites that infect both animal and human populations. Images PMID:1631084

  18. Multiple antigenic sites on an eicosapeptide. I. Precipitin studies in the goat.

    PubMed Central

    Lieu, T; Chapman, G; Doscher, M S; Mikoryak, C A; Brown, R K; Kong, Y M

    1975-01-01

    Purified peptide 105-124, an antigenic determinant from the carboxy terminus ribonuclease, was found to form an immune precipitate with antibody to that region prepared by affinity chromatography from goat hyperimmune antiserum to reduced carboxymethylated ribonuclease (CM-RNase). Cm-rnase also gave an immune precipitate with the antibody. Purified antibody to another region of similar size (40-61) did not form a precipitate with CM-RNase but did co-precipitate in the presence of antibody to peptide 105-124 and CM-RNase. The precipitin reaction between antibody to peptide 105-124 and CM-RNase was inhibited by two synthetic derivatives, peptides 118-124 and ala114-RNase 114-124. Stoichiometry of the precipitin reactions of antibody to 105-124 with CM-RNase or peptide 105-124 suggested an antigen valency of three or more. Consistent with this both peptides 105-124 and ala114-RNase 114-124 elicited immediate cutaneous reactions but 118-124 did not. These findings suggest that the eicosapeptide 105-124 is multivalent since at least three antibodies can react simultaneously with it. Images FIG. 2 PMID:53198

  19. The crystal structure of avian CD1 reveals a smaller, more primordial antigen-binding pocket compared to mammalian CD1

    PubMed Central

    Zajonc, Dirk M.; Striegl, Harald; Dascher, Christopher C.; Wilson, Ian A.

    2008-01-01

    The molecular details of glycolipid presentation by CD1 antigen-presenting molecules are well studied in mammalian systems. However, little is known about how these non-classical MHC class I (MHCI) molecules diverged from the MHC locus to create a more complex, hydrophobic binding groove that binds lipids rather than peptides. To address this fundamental question, we have determined the crystal structure of an avian CD1 (chCD1–2) that shares common ancestry with mammalian CD1 from ≈310 million years ago. The chCD1–2 antigen-binding site consists of a compact, narrow, central hydrophobic groove or pore rather than the more open, 2-pocket architecture observed in mammalian CD1s. Potential antigens then would be restricted in size to single-chain lipids or glycolipids. An endogenous ligand, possibly palmitic acid, serves to illuminate the mode and mechanism of ligand interaction with chCD1–2. The palmitate alkyl chain is inserted into the relatively shallow hydrophobic pore; its carboxyl group emerges at the receptor surface and is stabilized by electrostatic and hydrogen bond interactions with an arginine residue that is conserved in all known CD1 proteins. In addition, other novel features, such as an A′ loop that interrupts and segments the normally long, continuous α1 helix, are unique to chCD1–2 and contribute to the unusually narrow binding groove, thereby limiting its size. Because birds and mammals share a common ancestor, but the rate of evolution is slower in birds than in mammals, the chCD1–2-binding groove probably represents a more primordial CD1-binding groove. PMID:19004781

  20. Crystal structure of the CD2-binding domain of CD58 (lymphocyte function-associated antigen 3) at 1.8-Å resolution

    PubMed Central

    Ikemizu, Shinji; Sparks, Lisa M.; van der Merwe, P. Anton; Harlos, Karl; Stuart, David I.; Jones, E. Yvonne; Davis, Simon J.

    1999-01-01

    The binding of the cell surface molecule CD58 (formerly lymphocyte function-associated antigen 3) to its ligand, CD2, significantly increases the sensitivity of antigen recognition by T cells. This was the first heterophilic cell adhesion interaction to be discovered and is now an important paradigm for analyzing the structural basis of cell–cell recognition. The crystal structure of a CD2-binding chimeric form of CD58, solved to 1.8-Å resolution, reveals that the ligand binding domain of CD58 has the expected Ig superfamily V-set topology and shares several of the hitherto unique structural features of CD2, consistent with previous speculation that the genes encoding these molecules arose via duplication of a common precursor. Nevertheless, evidence for considerable divergence of CD2 and CD58 is also implicit in the structures. Mutations that disrupt CD2 binding map to the highly acidic surface of the AGFCC′C′′ β-sheet of CD58, which, unexpectedly, lacks marked shape complementarity to the equivalent, rather more basic CD58-binding face of human CD2. The specificity of the very weak interactions of proteins mediating cell–cell recognition may often derive largely from electrostatic complementarity, with shape matching at the protein–protein interface being less exact than for interactions that combine specificity with high affinity, such as those involving antibodies. PMID:10200255

  1. Nanolipoprotein Particles (NLPs) as Versatile Vaccine Platforms for Co-delivery of Multiple Adjuvants with Subunit Antigens from Burkholderia spp. and F. tularensis - Annual Technical Report

    SciTech Connect

    Fischer, N. O.

    2015-04-16

    The goal of this proposal is to demonstrate that co-localization of protein subunit antigens and adjuvants on nanolipoprotein particles (NLPs) can increase the protective efficacy of recombinant subunit antigens from Burkholderia spp. and Francisella tularensis against an aerosol challenge. NLPs are are biocompatible, high-density lipoprotein mimetics that are amenable to the incorporation of multiple, chemically-disparate adjuvant and antigen molecules. We hypothesize that the ability to co-localize optimized adjuvant formulations with subunit antigens within a single particle will enhance the stimulation and activation of key immune effector cells, increasing the protective efficacy of subunit antigen-based vaccines. While Burkholderia spp. and F. tularensis subunit antigens are the focus of this proposal, we anticipate that this approach is applicable to a wide range of DOD-relevant biothreat agents. The F344 rat aerosol challenge model for F. tularensis has been successfully established at Battelle under this contract, and Year 3 efficacy studies performed at Battelle demonstrated that an NLP vaccine formulation was able to enhance survival of female F344 rats relative to naïve animals. In addition, Year 3 focused on the incorporation of multiple Burkholderia antigens (both polysaccharides and proteins) onto adjuvanted NLPs, with immunological analysis poised to begin in the next quarter.

  2. Host proteins that bind to or mimic SV40 large T antigen: using antibodies to look at protein interactions and their significance

    PubMed Central

    Mole, S. E.; Gannon, J. V.; Anton, I. A.; Ford, M. J.; Lane, D. P.

    1989-01-01

    The papovavirus SV40 is able to induce tumours in susceptible hosts and will transform cells in vitro. Its major early protein, large T antigen, is required for viral DNA synthesis, both in vivo and in vitro, and is also responsible for the oncogenic action of the virus. We have made use of an extensive library of anti-T monoclonal antibodies to investigate the cellular effects of T. Large T shares an antigenic determinant with a growth-regulated host protein, p68, which is a member of an expanding super-family of helicases with particular homology to the translation initiation factor elF-4A. We have also studied the binding and interaction of large T with two particular host components: the replicative enzyme DNA polymerase α and the proto-oncogene p53. These two proteins bind to similar regions of T and exert similar effects on its antigenic structure. We found that p53 can block the binding of DNA polymerase α to T as well as co-existing with DNA polymerase α in a trimeric complex with T. This suggests that these interactions may be important in the oncogenic and replicative action of large T.

  3. Single-stranded DNA-binding proteins: multiple domains for multiple functions.

    PubMed

    Dickey, Thayne H; Altschuler, Sarah E; Wuttke, Deborah S

    2013-07-02

    The recognition of single-stranded DNA (ssDNA) is integral to myriad cellular functions. In eukaryotes, ssDNA is present stably at the ends of chromosomes and at some promoter elements. Furthermore, it is formed transiently by several cellular processes including telomere synthesis, transcription, and DNA replication, recombination, and repair. To coordinate these diverse activities, a variety of proteins have evolved to bind ssDNA in a manner specific to their function. Here, we review the recognition of ssDNA through the analysis of high-resolution structures of proteins in complex with ssDNA. This functionally diverse set of proteins arises from a limited set of structural motifs that can be modified and arranged to achieve distinct activities, including a range of ligand specificities. We also investigate the ways in which these domains interact in the context of large multidomain proteins/complexes. These comparisons reveal the structural features that define the range of functions exhibited by these proteins.

  4. A Multiple Antigenic Peptide Mimicking Peptidoglycan Induced T Cell Responses to Protect Mice from Systemic Infection with Staphylococcus aureus

    PubMed Central

    Wang, Xiang-Yu; Huang, Zhao-Xia; Chen, Yi-Guo; Lu, Xiao; Zhu, Ping; Wen, Kun; Fu, Ning; Liu, Bei-Yi

    2015-01-01

    Due to the enormous capacity of Staphylococcus aureus to acquire antibiotic resistance, it becomes imperative to develop vaccines for decreasing the risk of its life-threatening infections. Peptidoglycan (PGN) is a conserved and major component of S. aureus cell wall. However, it has not been used as a vaccine candidate since it is a thymus-independent antigen. In this study, we synthesized a multiple antigenic peptide, named MAP27, which comprised four copies of a peptide that mimics the epitope of PGN. After immunization with MAP27 five times and boosting with heat-inactivated bacterium one time, anti-MAP27 serum bound directly to S. aureus or PGN. Immunization with MAP27 decreased the bacterial burden in organs of BALB/c mice and significantly prolonged their survival time after S. aureus lethal-challenge. The percentage of IFN-γ+CD3+ T cells and IL-17+CD4+ T cells in spleen, as well as the levels of IFN-γ, IL-17A/F and CCL3 in spleen and lung, significantly increased in the MAP27-immunized mice after infection. Moreover, in vitro incubation of heat-inactivated S. aureus with splenocytes isolated from MAP27-immunized mice stimulated the production of IFN-γ and IL-17A/F. Our findings demonstrated that MAP27, as a thymus-dependent antigen, is efficient at eliciting T cell-mediated responses to protect mice from S. aureus infection. This study sheds light on a possible strategy to design vaccines against S. aureus. PMID:26317210

  5. Do antibodies to myelin basic protein isolated from multiple sclerosis cross-react with measles and other common virus antigens?

    PubMed Central

    Bernard, C C; Townsend, E; Randell, V B; Williamson, H G

    1983-01-01

    Immunological activity to various antigens, including brain components, measles and other viruses, has been associated with IgG in multiple sclerosis (MS). One possible explanation for the presence of anti-viral antibodies and antibody to myelin basic protein (MBP) in MS patients is that there are antigenic determinants common to certain viruses and MBP. To assess this possibility, IgG from individual brains and sera from patients with MS, subacute sclerosing panencephalitis (SSPE) and controls was isolated by protein A and MBP-Sepharose affinity chromatography. Antibody to MBP was measured with a solid phase radioimmunoassay and antibody to measles and other viruses by immunofluorescence and/or complement fixation. Anti-MBP activity was detected in brain extracts and sera of all MS patients tested. In contrast to the low levels of antibody to MBP in control brains, high levels of anti-MBP antibodies were found in most of the normal sera. There was no correlation between the presence and levels of serum anti-measles antibodies and the anti-MBP activity. None of the anti-MBP antibodies affinity purified from brain and serum of MS patients reacted with any of the viruses tested, including measles. IgG purified from SSPE patients or from a rabbit hyperimmunized with measles antigen had no reactivity to MBP, despite high levels of anti-measles antibody. It is concluded that there is not direct link between the presence of antibody to MBP and antibody to measles and other viruses in MS patients. PMID:6190599

  6. On the attribution of binding energy in antigen-antibody complexes McPC 603, D1.3, and HyHEL-5.

    PubMed

    Novotny, J; Bruccoleri, R E; Saul, F A

    1989-05-30

    Using X-ray coordinates of antigen-antibody complexes McPC 603, D1.3, and HyHEL-5, we made semiquantitative estimates of Gibbs free energy changes (delta G) accompanying noncovalent complex formation of the McPC 603 Fv fragment with phosphocholine and the D1.3 or HyHEL-5 Fv fragments with hen egg white lysozyme. Our empirical delta G function, which implicitly incorporates solvent effects, has the following components: hydrophobic force, solvent-modified electrostatics, changes in side-chain conformational entropy, translational/overall rotational entropy changes, and the dilutional (cratic) entropy term. The calculated delta G ranges matched the experimentally determined delta G of McPC 603 and D1.3 complexes and overestimated it (i.e., gave a more negative value) in the case of HyHEL-5. Relative delta G contributions of selected antibody residues, calculated for HyHEL-5 complexes, agreed with those determined independently in site-directed mutagenesis experiments. Analysis of delta G attribution in all three complexes indicated that only a small number of amino acids probably contribute actively to binding energetics. These form a subset of the total antigen-antibody contact surface. In the antibodies, the bottom part of the antigen binding cavity dominated the energetics of binding whereas in lysozyme, the energetically most important residues defined small (2.5-3 nm2) "energetic" epitopes. Thus, a concept of protein antigenicity emerges that involves the active, attractive contributions mediated by the energetic antigenic epitopes and the passive surface complementarity contributed by the surrounding contact area. The D1.3 energetic epitope of lysozyme involved Gly 22, Gly 117, and Gln 121; the HyHEL-5 epitope consisted of Arg 45 and Arg 68. These are also the essential antigenic residues determined experimentally. The above positions belong to the most protruding parts of the lysozyme surface, and their backbones are not exceptionally flexible. Least

  7. Myelin Basic Protein and a Multiple Sclerosis-related MBP-peptide Bind to Oligonucleotides

    PubMed Central

    Rozenblum, Guido Tomás; Kaufman, Tomás; Vitullo, Alfredo Daniel

    2014-01-01

    Aptamer ligands for myelin basic protein (MBP) were obtained using the systematic evolution of ligand by exponential enrichment (SELEX) method. Two clones were isolated from a pool of oligonucleotides and tested for MBP targeting. Using purified MBP, we demonstrated the binding activity of the aptamers and we also showed the affinity of MBP for oligonucleotides of specific length. Moreover, one selected aptamer competitively inhibited the binding of an MBP-specific antibody to MBP and the aptamer was found more sensitive than a commercial antibody. In addition, we showed the ability of the aptamer to detect myelin-rich regions in paraffin-embedded mouse brain tissue. Therefore, the MBP-binding activity of the selected oligonucleotide may prove useful as a tool for life science and medical research for myelin detection and might be a good lead for testing it in autoimmune diseases such as multiple sclerosis. PMID:25202925

  8. Structure-based design of a disulfide-linked oligomeric form of the simian virus 40 (SV40) large T antigen DNA-binding domain

    SciTech Connect

    Meinke, Gretchen; Phelan, Paul; Fradet-Turcotte, Amélie; Archambault, Jacques; Bullock, Peter A.

    2011-06-01

    With the aim of forming the ‘lock-washer’ conformation of the origin-binding domain of SV40 large T antigen in solution, using structure-based analysis an intermolecular disulfide bridge was engineered into the origin-binding domain to generate higher order oligomers in solution. The 1.7 Å resolution structure shows that the mutant forms a spiral in the crystal and has the de novo disulfide bond at the protein interface, although structural rearrangements at the interface are observed relative to the wild type. The modular multifunctional protein large T antigen (T-ag) from simian virus 40 orchestrates many of the events needed for replication of the viral double-stranded DNA genome. This protein assembles into single and double hexamers on specific DNA sequences located at the origin of replication. This complicated process begins when the origin-binding domain of large T antigen (T-ag ODB) binds the GAGGC sequences in the central region (site II) of the viral origin of replication. While many of the functions of purified T-ag OBD can be studied in isolation, it is primarily monomeric in solution and cannot assemble into hexamers. To overcome this limitation, the possibility of engineering intermolecular disulfide bonds in the origin-binding domain which could oligomerize in solution was investigated. A recent crystal structure of the wild-type T-ag OBD showed that this domain forms a left-handed spiral in the crystal with six subunits per turn. Therefore, we analyzed the protein interface of this structure and identified two residues that could potentially support an intermolecular disulfide bond if changed to cysteines. SDS–PAGE analysis established that the mutant T-ag OBD formed higher oligomeric products in a redox-dependent manner. In addition, the 1.7 Å resolution crystal structure of the engineered disulfide-linked T-ag OBD is reported, which establishes that oligomerization took place in the expected manner.

  9. Peripheral VH4+ Plasmablasts Demonstrate Autoreactive B Cell Expansion Toward Brain Antigens in Early Multiple Sclerosis Patients

    PubMed Central

    Rivas, Jacqueline R.; Ireland, Sara J.; Chkheidze, Rati; Rounds, William H.; Lim, Joseph; Johnson, Jordan; Ramirez, Denise M.O.; Ligocki, Ann J.; Chen, Ding; Guzman, Alyssa A.; Woodhall, Mark; Wilson, Patrick C.; Meffre, Eric; White, Charles; Greenberg, Benjamin M.; Waters, Patrick; Cowell, Lindsay G.; Stowe, Ann M.

    2017-01-01

    Plasmablasts are a highly differentiated, antibody secreting B cell subset whose prevalence correlates with disease activity in Multiple Sclerosis (MS). For most patients experiencing partial transverse myelitis (PTM), plasmablasts are elevated in the blood at the first clinical presentation of disease (known as clinically isolated syndrome or CIS). In this study we found that many of these peripheral plasmablasts are autoreactive and recognize primarily gray matter targets in brain tissue. These plasmablasts express antibodies that over-utilize immunoglobulin heavy chain V-region subgroup 4 (VH4) genes, and the highly mutated VH4+ plasmablast antibodies recognize intracellular antigens of neurons and astrocytes. Most of the autoreactive, highly mutated VH4+ plasmablast antibodies recognize only a portion of cortical neurons, indicating that the response may be specific to neuronal subgroups or layers. Furthermore, CIS-PTM patients with this plasmablast response also exhibit modest reactivity toward neuroantigens in the plasma IgG antibody pool. Taken together, these data indicate that expanded VH4+ peripheral plasmablasts in early MS patients recognize brain gray matter antigens. Peripheral plasmablasts may be participating in the autoimmune response associated with MS, and provide an interesting avenue for investigating the expansion of autoreactive B cells at the time of the first documented clinical event. PMID:27730299

  10. Generating a transgenic mouse line stably expressing human MHC surface antigen from a HAC carrying multiple genomic BACs.

    PubMed

    Hasegawa, Yoshinori; Ishikura, Tomoyuki; Hasegawa, Takanori; Watanabe, Takashi; Suzuki, Junpei; Nakayama, Manabu; Okamura, Yoshiaki; Okazaki, Tuneko; Koseki, Haruhiko; Ohara, Osamu; Ikeno, Masashi; Masumoto, Hiroshi

    2015-03-01

    The human artificial chromosome (HAC) vector is a promising tool to improve the problematic suppression and position effects of transgene expression frequently seen in transgenic cells and animals produced by conventional plasmid or viral vectors. We generated transgenic mice maintaining a single HAC vector carrying two genomic bacterial artificial chromosomes (BACs) from human HLA-DR loci (DRA and DRB1). Both transgenes on the HAC in transgenic mice exhibited tissue-specific expression in kidney, liver, lung, spleen, lymph node, bone marrow, and thymus cells in RT-PCR analysis. Stable functional expression of a cell surface HLA-DR marker from both transgenes, DRA and DRB1 on the HAC, was detected by flow cytometric analysis of splenocytes and maintained through at least eight filial generations. These results indicate that the de novo HAC system can allow us to manipulate multiple BAC transgenes with coordinated expression as a surface antigen through the generation of transgenic animals.

  11. Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process

    PubMed Central

    Reshetnikov, Roman V.; Sponer, Jiri; Rassokhina, Olga I.; Kopylov, Alexei M.; Tsvetkov, Philipp O.; Makarov, Alexander A.; Golovin, Andrey V.

    2011-01-01

    A combination of explicit solvent molecular dynamics simulation (30 simulations reaching 4 µs in total), hybrid quantum mechanics/molecular mechanics approach and isothermal titration calorimetry was used to investigate the atomistic picture of ion binding to 15-mer thrombin-binding quadruplex DNA (G-DNA) aptamer. Binding of ions to G-DNA is complex multiple pathway process, which is strongly affected by the type of the cation. The individual ion-binding events are substantially modulated by the connecting loops of the aptamer, which play several roles. They stabilize the molecule during time periods when the bound ions are not present, they modulate the route of the ion into the stem and they also stabilize the internal ions by closing the gates through which the ions enter the quadruplex. Using our extensive simulations, we for the first time observed full spontaneous exchange of internal cation between quadruplex molecule and bulk solvent at atomistic resolution. The simulation suggests that expulsion of the internally bound ion is correlated with initial binding of the incoming ion. The incoming ion then readily replaces the bound ion while minimizing any destabilization of the solute molecule during the exchange. PMID:21893589

  12. Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process.

    PubMed

    Reshetnikov, Roman V; Sponer, Jiri; Rassokhina, Olga I; Kopylov, Alexei M; Tsvetkov, Philipp O; Makarov, Alexander A; Golovin, Andrey V

    2011-12-01

    A combination of explicit solvent molecular dynamics simulation (30 simulations reaching 4 µs in total), hybrid quantum mechanics/molecular mechanics approach and isothermal titration calorimetry was used to investigate the atomistic picture of ion binding to 15-mer thrombin-binding quadruplex DNA (G-DNA) aptamer. Binding of ions to G-DNA is complex multiple pathway process, which is strongly affected by the type of the cation. The individual ion-binding events are substantially modulated by the connecting loops of the aptamer, which play several roles. They stabilize the molecule during time periods when the bound ions are not present, they modulate the route of the ion into the stem and they also stabilize the internal ions by closing the gates through which the ions enter the quadruplex. Using our extensive simulations, we for the first time observed full spontaneous exchange of internal cation between quadruplex molecule and bulk solvent at atomistic resolution. The simulation suggests that expulsion of the internally bound ion is correlated with initial binding of the incoming ion. The incoming ion then readily replaces the bound ion while minimizing any destabilization of the solute molecule during the exchange.

  13. Strategic priming with multiple antigens can yield memory cell phenotypes optimized for infection with Mycobacterium tuberculosis: A computational study

    DOE PAGES

    Ziraldo, Cordelia; Gong, Chang; Kirschner, Denise E.; ...

    2016-01-06

    Lack of an effective vaccine results in 9 million new cases of tuberculosis (TB) every year and 1.8 million deaths worldwide. While many infants are vaccinated at birth with BCG (an attenuated M. bovis), this does not prevent infection or development of TB after childhood. Immune responses necessary for prevention of infection or disease are still unknown, making development of effective vaccines against TB challenging. Several new vaccines are ready for human clinical trials, but these trials are difficult and expensive; especially challenging is determining the appropriate cellular response necessary for protection. The magnitude of an immune response is likelymore » key to generating a successful vaccine. Characteristics such as numbers of central memory (CM) and effector memory (EM) T cells responsive to a diverse set of epitopes are also correlated with protection. Promising vaccines against TB contain mycobacterial subunit antigens (Ag) present during both active and latent infection. We hypothesize that protection against different key immunodominant antigens could require a vaccine that produces different levels of EM and CM for each Ag-specific memory population. We created a computational model to explore EM and CM values, and their ratio, within what we term Memory Design Space. Our model captures events involved in T cell priming within lymph nodes and tracks their circulation through blood to peripheral tissues. We used the model to test whether multiple Ag-specific memory cell populations could be generated with distinct locations within Memory Design Space at a specific time point post vaccination. Boosting can further shift memory populations to memory cell ratios unreachable by initial priming events. By strategically varying antigen load, properties of cellular interactions within the LN, and delivery parameters (e.g., number of boosts) of multi-subunit vaccines, we can generate multiple Ag-specific memory populations that cover a wide range of

  14. A malaria invasion receptor, the 175-kilodalton erythrocyte binding antigen of Plasmodium falciparum recognizes the terminal Neu5Ac(alpha 2- 3)Gal- sequences of glycophorin A

    PubMed Central

    1992-01-01

    Plasmodium falciparum malaria parasites invade human erythrocytes by means of a parasite receptor for erythrocytes, the 175-kD erythrocyte binding antigen (EBA-175). Similar to invasion efficiency, binding requires N-acetylneuraminic acid (Neu5Ac) on human erythrocytes, specifically the glycophorins. EBA-175 bound to erythrocytes with receptor-like specificity and was saturable. The specificity of EBA-175 binding was studied to determine if its binding is influenced either by simple electrostatic interaction with the negatively charged Neu5Ac (on the erythrocyte surface); or if Neu5Ac indirectly affected the conformation of an unknown ligand, or if Neu5Ac itself in specific linkage and carbohydrate composition was the primary ligand for EBA-175 as demonstrated for hemagglutinins of influenza viruses. Most Neu5Ac on human erythrocytes is linked to galactose by alpha 2-3 and alpha 2-6 linkages on glycophorin A. Soluble Neu5Ac by itself in solution did not competitively inhibit the binding of EBA-175 to erythrocytes, suggesting that linkage to an underlying sugar is required for binding in contrast to charge alone. Binding was competitively inhibited only by Neu5Ac(alpha 2-3)Gal-containing oligosaccharides. Similar oligosaccharides containing Neu5Ac(alpha 2-6)Gal-linkages had only slight inhibitory effects. Binding inhibition assays with modified sialic acids and other saccharides confirmed that oligosaccharide composition and linkage were primary factors for efficient binding. EBA- 175 bound tightly enough to glycophorin A that the complex could be precipitated with an anti-glycophorin A monoclonal antibody. Selective cleavage of O-linked tetrasaccharides clustered at the NH2 terminus of glycophorin A markedly reduced binding in inhibition studies. We conclude that the Neu5Ac(a2,3)-Gal- determinant on O-linked tetrasaccharides of glycophorin A appear to be the preferential erythrocyte ligand for EBA-175. PMID:1310320

  15. B cell antigen presentation is sufficient to drive neuroinflammation in an animal model of multiple sclerosis.

    PubMed

    Parker Harp, Chelsea R; Archambault, Angela S; Sim, Julia; Ferris, Stephen T; Mikesell, Robert J; Koni, Pandelakis A; Shimoda, Michiko; Linington, Christopher; Russell, John H; Wu, Gregory F

    2015-06-01

    B cells are increasingly regarded as integral to the pathogenesis of multiple sclerosis, in part as a result of the success of B cell-depletion therapy. Multiple B cell-dependent mechanisms contributing to inflammatory demyelination of the CNS have been explored using experimental autoimmune encephalomyelitis (EAE), a CD4 T cell-dependent animal model for multiple sclerosis. Although B cell Ag presentation was suggested to regulate CNS inflammation during EAE, direct evidence that B cells can independently support Ag-specific autoimmune responses by CD4 T cells in EAE is lacking. Using a newly developed murine model of in vivo conditional expression of MHC class II, we reported previously that encephalitogenic CD4 T cells are incapable of inducing EAE when B cells are the sole APC. In this study, we find that B cells cooperate with dendritic cells to enhance EAE severity resulting from myelin oligodendrocyte glycoprotein (MOG) immunization. Further, increasing the precursor frequency of MOG-specific B cells, but not the addition of soluble MOG-specific Ab, is sufficient to drive EAE in mice expressing MHCII by B cells alone. These data support a model in which expansion of Ag-specific B cells during CNS autoimmunity amplifies cognate interactions between B and CD4 T cells and have the capacity to independently drive neuroinflammation at later stages of disease.

  16. Amyloid tracers detect multiple binding sites in Alzheimer's disease brain tissue.

    PubMed

    Ni, Ruiqing; Gillberg, Per-Göran; Bergfors, Assar; Marutle, Amelia; Nordberg, Agneta

    2013-07-01

    -1 (Ki: 0.2 nM, 70 nM), florbetapir (1.8 nM, 53 nM) and florbetaben (1.0 nM, 65 nM). BF-227 displaced 83% of (3)H-Pittsburgh compound B binding, mainly at a low-affinity site (311 nM), whereas FDDNP only partly displaced (40%). We propose a multiple binding site model for the amyloid tracers (binding sites 1, 2 and 3), where AV-45 (florbetapir), AV-1 (florbetaben), and Pittsburgh compound B, all show nanomolar affinity for the high-affinity site (binding site 1), as visualized by positron emission tomography. BF-227 shows mainly binding to site 3 and FDDNP shows only some binding to site 2. Different amyloid tracers may provide new insight into the pathophysiological mechanisms in the progression of Alzheimer's disease.

  17. Binding kinetics of an antibody against HIV p24 core protein measured with real-time biomolecular interaction analysis suggest a slow conformational change in antigen p24.

    PubMed

    Glaser, R W; Hausdorf, G

    1996-01-16

    The interaction between HIV core protein p24 and the murine monoclonal antibody CB-4/1 or its Fab fragment showed unusual kinetics. Recombinant p24 was immobilised in a hydrophilic carboxymethyldextran matrix. At high concentration of CB-4/1 Fab the association of the antigen-antibody complex proceeds in two phases, while dissociation is mono-exponential. The antigen has a 'memory', i.e. shortly after dissociation of Fab-antigen complex the fast association phase is enhanced. Biphasic association was also found in solution. Experiments suggest a reversible change of binding properties in the epitope region with an overall time constant of about 100 s at room temperature. Intermediate steps with faster time constants must be involved. Slow conformational changes of p24 seem to be the most probable explanation. A simple model that provides a quantitative description of this process could not be found. Real-time analysis of antibody binding by surface plasmon resonance is a powerful method for studying such changes in the time domain of a few seconds to a few minutes.

  18. Determining donor-specific antibody C1q-binding ability improves the prediction of antibody-mediated rejection in human leucocyte antigen-incompatible kidney transplantation.

    PubMed

    Malheiro, Jorge; Tafulo, Sandra; Dias, Leonídio; Martins, La Salete; Fonseca, Isabel; Beirão, Idalina; Castro-Henriques, António; Cabrita, António

    2017-04-01

    Detrimental impact of preformed donor-specific antibodies (DSAs) against human leucocyte antigens on outcomes after kidney transplantation are well documented, however, the value of their capacity to bind complement for predicting antibody-mediated rejection (AMR) and graft survival still needs to be confirmed. We aimed to study DSA characteristics (strength and C1q binding) that might distinguish harmful DSA from clinically irrelevant ones. We retrospectively studied 60 kidney-transplanted patients with preformed DSA detected by single antigen bead (SAB) assays (IgG and C1q kits), from a cohort of 517 kidney graft recipients (124 with detectable anti-HLA antibodies). Patients were divided into DSA strength (MFI < vs. ≥ 15 000) and C1q-binding ability. AMR frequency was high (30%) and it increased with DSA strength (P = 0.002) and C1q+ DSA (P < 0.001). The performance of DSA C1q-binding ability as a predictor of AMR was better than DSA strength (diagnostic odds ratio 16.3 vs. 6.4, respectively). Furthermore, a multivariable logistic regression showed that C1q+ DSA was a risk factor for AMR (OR = 16.80, P = 0.001), while high MFI DSAs were not. Graft survival was lower in high MFI C1q+ DSA in comparison with patients with C1q- high or low MFI DSA (at 6 years, 38%, 83% and 80%, respectively; P = 0.001). Both DSA strength and C1q-binding ability assessment seem valuable for improving pretransplant risk assessment. Since DSA C1q-binding ability was a better predictor of AMR and correlated with graft survival, C1q-SAB may be a particularly useful tool.

  19. Kaposi's Sarcoma-Associated Herpesvirus Latency-Associated Nuclear Antigen Inhibits Major Histocompatibility Complex Class II Expression by Disrupting Enhanceosome Assembly through Binding with the Regulatory Factor X Complex

    PubMed Central

    Thakker, Suhani; Purushothaman, Pravinkumar; Gupta, Namrata; Challa, Shanthan; Cai, Qiliang

    2015-01-01

    ABSTRACT Major histocompatibility complex class II (MHC-II) molecules play a central role in adaptive antiviral immunity by presenting viral peptides to CD4+ T cells. Due to their key role in adaptive immunity, many viruses, including Kaposi's sarcoma-associated herpesvirus (KSHV), have evolved multiple strategies to inhibit the MHC-II antigen presentation pathway. The expression of MHC-II, which is controlled mainly at the level of transcription, is strictly dependent upon the binding of the class II transactivator (CIITA) to the highly conserved promoters of all MHC-II genes. The recruitment of CIITA to MHC-II promoters requires its direct interactions with a preassembled MHC-II enhanceosome consisting of cyclic AMP response element-binding protein (CREB) and nuclear factor Y (NF-Y) complex and regulatory factor X (RFX) complex proteins. Here, we show that KSHV-encoded latency-associated nuclear antigen (LANA) disrupts the association of CIITA with the MHC-II enhanceosome by binding to the components of the RFX complex. Our data show that LANA is capable of binding to all three components of the RFX complex, RFX-associated protein (RFXAP), RFX5, and RFX-associated ankyrin-containing protein (RFXANK), in vivo but binds more strongly with the RFXAP component in in vitro binding assays. Levels of MHC-II proteins were significantly reduced in KSHV-infected as well as LANA-expressing B cells. Additionally, the expression of LANA in a luciferase promoter reporter assay showed reduced HLA-DRA promoter activity in a dose-dependent manner. Chromatin immunoprecipitation assays showed that LANA binds to the MHC-II promoter along with RFX proteins and that the overexpression of LANA disrupts the association of CIITA with the MHC-II promoter. These assays led to the conclusion that the interaction of LANA with RFX proteins interferes with the recruitment of CIITA to MHC-II promoters, resulting in an inhibition of MHC-II gene expression. Thus, the data presented here identify

  20. Site-specific immobilization of recombinant antibody fragments through material-binding peptides for the sensitive detection of antigens in enzyme immunoassays.

    PubMed

    Kumada, Yoichi

    2014-11-01

    The immobilization of an antibody is one of the key technologies that are used to enhance the sensitivity and efficiency of the detection of target molecules in immunodiagnosis and immunoseparation. Recombinant antibody fragments such as VHH, scFv and Fabs produced by microorganisms are the next generation of ligand antibodies as an alternative to conventional whole Abs due to a smaller size and the possibility of site-directed immobilization with uniform orientation and higher antigen-binding activity in the adsorptive state. For the achievement of site-directed immobilization, affinity peptides for a certain ligand molecule or solid support must be introduced to the recombinant antibody fragments. In this mini-review, immobilization technologies for the whole antibodies (whole Abs) and recombinant antibody fragments onto the surfaces of plastics are introduced. In particular, the focus here is on immobilization technologies of recombinant antibody fragments utilizing affinity peptide tags, which possesses strong binding affinity towards the ligand molecules. Furthermore, I introduced the material-binding peptides that are capable of direct recognition of the target materials. Preparation and immobilization strategies for recombinant antibody fragments linked to material-binding peptides (polystyrene-binding peptides (PS-tags) and poly (methyl methacrylate)-binding peptide (PMMA-tag)) are the focus here, and are based on the enhancement of sensitivity and a reduction in the production costs of ligand antibodies. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.

  1. Neisseria gonorrhoeae MutS Affects Pilin Antigenic Variation through Mismatch Correction and Not by pilE Guanine Quartet Binding

    PubMed Central

    Rotman, Ella

    2015-01-01

    ABSTRACT Many pathogens use homologous recombination to vary surface antigens to avoid immune surveillance. Neisseria gonorrhoeae achieves this in part by changing the properties of its surface pili in a process called pilin antigenic variation (AV). Pilin AV occurs by high-frequency gene conversion reactions that transfer silent pilS sequences into the expressed pilE locus and requires the formation of an upstream guanine quartet (G4) DNA structure to initiate this process. The MutS and MutL proteins of the mismatch correction (MMC) system act to correct mismatches after replication and prevent homeologous (i.e., partially homologous) recombination, but MutS orthologs can also bind to G4 structures. A previous study showed that mutation of MutS resulted in a 3-fold increase in pilin AV, which could be due to the loss of MutS antirecombination properties or loss of G4 binding. We tested two site-directed separation-of-function MutS mutants that are both predicted to bind to G4s but are not able to perform MMC. Pilus phase variation assays and DNA sequence analysis of pilE variants produced in these mutants showed that all three mutS mutants and a mutL mutant had similar increased frequencies of pilin AV. Moreover, the mutS mutants all showed similar increased levels of pilin AV-dependent synthetic lethality. These results show that antirecombination by MMC is the reason for the effect that MutS has on pilin AV and is not due to pilE G4 binding by MutS. IMPORTANCE Neisseria gonorrhoeae continually changes its outer surface proteins to avoid recognition by the immune system. N. gonorrhoeae alters the antigenicity of the pilus by directed recombination between partially homologous pilin copies in a process that requires a guanine quartet (G4) structure. The MutS protein of the mismatch correction (MMC) system prevents recombination between partially homologous sequences and can also bind to G4s. We confirmed that loss of MMC increases the frequency of pilin antigenic

  2. Three-Dimensional Structures Reveal Multiple ADP/ATP Binding Modes

    SciTech Connect

    C Simmons; C Magee; D Smith; L Lauman; J Chaput; J Allen

    2011-12-31

    The creation of synthetic enzymes with predefined functions represents a major challenge in future synthetic biology applications. Here, we describe six structures of de novo proteins that have been determined using protein crystallography to address how simple enzymes perform catalysis. Three structures are of a protein, DX, selected for its stability and ability to tightly bind ATP. Despite the addition of ATP to the crystallization conditions, the presence of a bound but distorted ATP was found only under excess ATP conditions, with ADP being present under equimolar conditions or when crystallized for a prolonged period of time. A bound ADP cofactor was evident when Asp was substituted for Val at residue 65, but ATP in a linear configuration is present when Phe was substituted for Tyr at residue 43. These new structures complement previously determined structures of DX and the protein with the Phe 43 to Tyr substitution [Simmons, C. R., et al. (2009) ACS Chem. Biol. 4, 649-658] and together demonstrate the multiple ADP/ATP binding modes from which a model emerges in which the DX protein binds ATP in a configuration that represents a transitional state for the catalysis of ATP to ADP through a slow, metal-free reaction capable of multiple turnovers. This unusual observation suggests that design-free methods can be used to generate novel protein scaffolds that are tailor-made for catalysis.

  3. Dynamic binding of identity and location information: a serial model of multiple identity tracking.

    PubMed

    Oksama, Lauri; Hyönä, Jukka

    2008-06-01

    Tracking of multiple moving objects is commonly assumed to be carried out by a fixed-capacity parallel mechanism. The present study proposes a serial model (MOMIT) to explain performance accuracy in the maintenance of multiple moving objects with distinct identities. A serial refresh mechanism is postulated, which makes recourse to continuous attention switching, a capacity-limited episodic buffer for identity-location bindings, indexed location information stored in the visuospatial short-term memory, and an active role of long-term memory. As identity-location bindings are refreshed serially, a location error is inherent for all other targets except the focally attended one. The magnitude of this location error is a key factor in predicting tracking accuracy. MOMIT's predictions were supported by the data of five experiments: performance accuracy decreased as a function of target set-size, speed, and familiarity. A mathematical version of MOMIT fitted nicely to the observed data with plausible parameter estimates for the binding capacity and refresh time.

  4. Post-transcriptional Regulation of Meprin α by the RNA-binding Proteins Hu Antigen R (HuR) and Tristetraprolin (TTP)*

    PubMed Central

    Roff, Alanna N.; Panganiban, Ronaldo P.; Bond, Judith S.; Ishmael, Faoud T.

    2013-01-01

    Meprins are multimeric proteases that are implicated in inflammatory bowel disease by both genetic association studies and functional studies in knock-out mice. Patients with inflammatory bowel disease show decreased colonic expression of meprin α, although regulation of expression, particularly under inflammatory stimuli, has not been studied. The studies herein demonstrate that the human meprin α transcript is bound and stabilized by Hu antigen R at baseline, and that treatment with the inflammatory stimulus phorbol 12-myristate 13-acetate downregulates meprin α expression by inducing tristetraprolin. The enhanced binding of tristetraprolin to the MEP1A 3′-UTR results in destabilization of the transcript and occurs at a discrete site from Hu antigen R. This is the first report to describe a mechanism for post-transcriptional regulation of meprin α and will help clarify the role of meprins in the inflammatory response and disease. PMID:23269677

  5. STARD6 on steroids: solution structure, multiple timescale backbone dynamics and ligand binding mechanism

    NASA Astrophysics Data System (ADS)

    Létourneau, Danny; Bédard, Mikaël; Cabana, Jérôme; Lefebvre, Andrée; Lehoux, Jean-Guy; Lavigne, Pierre

    2016-06-01

    START domain proteins are conserved α/β helix-grip fold that play a role in the non-vesicular and intracellular transport of lipids and sterols. The mechanism and conformational changes permitting the entry of the ligand into their buried binding sites is not well understood. Moreover, their functions and the identification of cognate ligands is still an active area of research. Here, we report the solution structure of STARD6 and the characterization of its backbone dynamics on multiple time-scales through 15N spin-relaxation and amide exchange studies. We reveal for the first time the presence of concerted fluctuations in the Ω1 loop and the C-terminal helix on the microsecond-millisecond time-scale that allows for the opening of the binding site and ligand entry. We also report that STARD6 binds specifically testosterone. Our work represents a milestone for the study of ligand binding mechanism by other START domains and the elucidation of the biological function of STARD6.

  6. Multiple binding sites in the nicotinic acetylcholine receptors: An opportunity for polypharmacolgy.

    PubMed

    Iturriaga-Vásquez, Patricio; Alzate-Morales, Jans; Bermudez, Isabel; Varas, Rodrigo; Reyes-Parada, Miguel

    2015-11-01

    For decades, the development of selective compounds has been the main goal for chemists and biologists involved in drug discovery. However, diverse lines of evidence indicate that polypharmacological agents, i.e. those that act simultaneously at various protein targets, might show better profiles than selective ligands, regarding both efficacy and side effects. On the other hand, the availability of the crystal structure of different receptors allows a detailed analysis of the main interactions between drugs and receptors in a specific binding site. Neuronal nicotinic acetylcholine receptors (nAChRs) constitute a large and diverse family of ligand-gated ion channels (LGICs) that, as a product of its modulation, regulate neurotransmitter release, which in turns produce a global neuromodulation of the central nervous system. nAChRs are pentameric protein complexes in such a way that expression of compatible subunits can lead to various receptor assemblies or subtypes. The agonist binding site, located at the extracellular region, exhibits different properties depending on the subunits that conform the receptor. In the last years, it has been recognized that nAChRs could also contain one or more allosteric sites which could bind non-classical nicotinic ligands including several therapeutically useful drugs. The presence of multiple binding sites in nAChRs offers an interesting possibility for the development of novel polypharmacological agents with a wide spectrum of actions.

  7. STARD6 on steroids: solution structure, multiple timescale backbone dynamics and ligand binding mechanism

    PubMed Central

    Létourneau, Danny; Bédard, Mikaël; Cabana, Jérôme; Lefebvre, Andrée; LeHoux, Jean-Guy; Lavigne, Pierre

    2016-01-01

    START domain proteins are conserved α/β helix-grip fold that play a role in the non-vesicular and intracellular transport of lipids and sterols. The mechanism and conformational changes permitting the entry of the ligand into their buried binding sites is not well understood. Moreover, their functions and the identification of cognate ligands is still an active area of research. Here, we report the solution structure of STARD6 and the characterization of its backbone dynamics on multiple time-scales through 15N spin-relaxation and amide exchange studies. We reveal for the first time the presence of concerted fluctuations in the Ω1 loop and the C-terminal helix on the microsecond-millisecond time-scale that allows for the opening of the binding site and ligand entry. We also report that STARD6 binds specifically testosterone. Our work represents a milestone for the study of ligand binding mechanism by other START domains and the elucidation of the biological function of STARD6. PMID:27340016

  8. Engineering Factor Xa Inhibitor with Multiple Platelet-Binding Sites Facilitates its Platelet Targeting

    NASA Astrophysics Data System (ADS)

    Zhu, Yuanjun; Li, Ruyi; Lin, Yuan; Shui, Mengyang; Liu, Xiaoyan; Chen, Huan; Wang, Yinye

    2016-07-01

    Targeted delivery of antithrombotic drugs centralizes the effects in the thrombosis site and reduces the hemorrhage side effects in uninjured vessels. We have recently reported that the platelet-targeting factor Xa (FXa) inhibitors, constructed by engineering one Arg-Gly-Asp (RGD) motif into Ancylostoma caninum anticoagulant peptide 5 (AcAP5), can reduce the risk of systemic bleeding than non-targeted AcAP5 in mouse arterial injury model. Increasing the number of platelet-binding sites of FXa inhibitors may facilitate their adhesion to activated platelets, and further lower the bleeding risks. For this purpose, we introduced three RGD motifs into AcAP5 to generate a variant NR4 containing three platelet-binding sites. NR4 reserved its inherent anti-FXa activity. Protein-protein docking showed that all three RGD motifs were capable of binding to platelet receptor αIIbβ3. Molecular dynamics simulation demonstrated that NR4 has more opportunities to interact with αIIbβ3 than single-RGD-containing NR3. Flow cytometry analysis and rat arterial thrombosis model further confirmed that NR4 possesses enhanced platelet targeting activity. Moreover, NR4-treated mice showed a trend toward less tail bleeding time than NR3-treated mice in carotid artery endothelium injury model. Therefore, our data suggest that engineering multiple binding sites in one recombinant protein is a useful tool to improve its platelet-targeting efficiency.

  9. Characterization of invasive Neisseria meningitidis from Atlantic Canada, 2009 to 2013: With special reference to the nonpolysaccharide vaccine targets (PorA, factor H binding protein, Neisseria heparin-binding antigen and Neisseria adhesin A)

    PubMed Central

    Tsang, Raymond SW; Law, Dennis KS; Gad, Rita R; Mailman, Tim; German, Gregory; Needle, Robert

    2015-01-01

    BACKGROUND: Serogroup B Neisseria meningitidis (MenB) has always been a major cause of invasive meningococcal disease (IMD) in Canada. With the successful implementation of a meningitis C conjugate vaccine, the majority of IMD in Canada is now caused by MenB. OBJECTIVE: To investigate IMD case isolates in Atlantic Canada from 2009 to 2013. Data were analyzed to determine the potential coverage of the newly licensed MenB vaccine. METHODS: Serogroup, serotype and serosubtype antigens were determined from IMD case isolates. Clonal analysis was performed using multilocus sequence typing. The protein-based vaccine antigen genes were sequenced and the predicted peptides were investigated. RESULTS: The majority of the IMD isolates were MenB (82.5%, 33 of 40) and, in particular, sequence type (ST)-154 B:4:P1.4 was responsible for 47.5% (19 of 40) of all IMD case isolates in Atlantic Canada. Isolates of this clone expressed the PorA antigen P1.4 and possessed the nhba genes encoding for Neisseria heparin-binding antigen peptide 2, which together matched exactly with two of the four components of the new four-component meningococcal B vaccine. Nineteen MenB isolates had two antigenic matches, another five MenB and one meningitis Y isolate had one antigenic match. This provided 75.8% (25 of 33) potential coverage for MenB, or a 62.5% (25 of 40) overall potential coverage for IMD. CONCLUSION: From 2009 to 2013, IMD in Atlantic Canada was mainly caused by MenB and, in particular, the B:4:P1.4 ST-154 clone, which accounted for 47.5% of all IMD case isolates. The new four-component meningococcal B vaccine appeared to offer adequate coverage against MenB in Atlantic Canada. PMID:26744586

  10. Assignment of C1q-binding HLA antibodies as unacceptable HLA antigens avoids positive CDC-crossmatches prior to transplantation of deceased donor organs.

    PubMed

    Juhl, David; Marget, Matthias; Hallensleben, Michael; Görg, Siegfried; Ziemann, Malte

    2017-01-12

    Soon, a virtual crossmatch shall replace the complement-dependent cytotoxicity (CDC) allocation crossmatch in the Eurotransplant region. To prevent positive CDC-crossmatches in the recipient centre, careful definition of unacceptable antigens is necessary. For highly sensitized patients, this is difficult by CDC alone. Assignment of all antibodies detected by sensitive assays, however, could prevent organ allocation. To assess the usefulness of the Luminex C1q-assay to prevent positive CDC-crossmatches, all CDC-crossmatches performed prior to deceased kidney transplantation in a 16-month-period were reviewed. Sera causing positive crossmatches were investigated by the C1q-assay. 31 out of 1432 crossmatches (2.2%) were positive. Sera involved in 26 positive crossmatches were available. C1q-binding donor-specific antibodies were detected in 19 sera (73.1%). The other sera were from recipients without any HLA antibodies detectable by CDC or common solid phase assays. Three patients had known Non-HLA antibodies causing positive CDC-results. Four crossmatches were only weak positive. Therefore, avoidance of donors with HLA antigens against whom C1q-binding antibodies were detected would have prevented all positive crossmatches due to HLA antibodies. Provided that all HLA specificities against which antibodies are detected by the Luminex C1q-assay are considered as unacceptable antigens, CDC-crossmatches prior to transplantation might safely be omitted in many patients. They should be maintained in highly immunized patients, however, for whom assignment of all C1q-positive antibodies as unacceptable antigens could lead to a significant delay or even prevention of transplantation.

  11. Use of thermodynamic coupling between antibody-antigen binding and phospholipid acyl chain phase transition energetics to predict immunoliposome targeting affinity.

    PubMed

    Klegerman, Melvin E; Zou, Yuejiao; Golunski, Eva; Peng, Tao; Huang, Shao-Ling; McPherson, David D

    2014-09-01

    Thermodynamic analysis of ligand-target binding has been a useful tool for dissecting the nature of the binding mechanism and, therefore, potentially can provide valuable information regarding the utility of targeted formulations. Based on a consistent coupling of antibody-antigen binding and gel-liquid crystal transition energetics observed for antibody-phosphatidylethanolamine (Ab-PE) conjugates, we hypothesized that the thermodynamic parameters and the affinity for antigen of the Ab-PE conjugates could be effectively predicted once the corresponding information for the unconjugated antibody is determined. This hypothesis has now been tested in nine different antibody-targeted echogenic liposome (ELIP) preparations, where antibody is conjugated to dipalmitoylphosphatidylethanolamine (DPPE) head groups through a thioether linkage. Predictions were satisfactory (affinity not significantly different from the population of values found) in five cases (55.6%), but the affinity of the unconjugated antibody was not significantly different from the population of values found in six cases (66.7%), indicating that the affinities of the conjugated antibody tended not to deviate appreciably from those of the free antibody. While knowledge of the affinities of free antibodies may be sufficient to judge their suitability as targeting agents, thermodynamic analysis may still provide valuable information regarding their usefulness for specific applications.

  12. Structure-based design of a disulfide-linked oligomeric form of the simian virus 40 (SV40) large T antigen DNA-binding domain.

    PubMed

    Meinke, Gretchen; Phelan, Paul; Fradet-Turcotte, Amélie; Archambault, Jacques; Bullock, Peter A

    2011-06-01

    The modular multifunctional protein large T antigen (T-ag) from simian virus 40 orchestrates many of the events needed for replication of the viral double-stranded DNA genome. This protein assembles into single and double hexamers on specific DNA sequences located at the origin of replication. This complicated process begins when the origin-binding domain of large T antigen (T-ag ODB) binds the GAGGC sequences in the central region (site II) of the viral origin of replication. While many of the functions of purified T-ag OBD can be studied in isolation, it is primarily monomeric in solution and cannot assemble into hexamers. To overcome this limitation, the possibility of engineering intermolecular disulfide bonds in the origin-binding domain which could oligomerize in solution was investigated. A recent crystal structure of the wild-type T-ag OBD showed that this domain forms a left-handed spiral in the crystal with six subunits per turn. Therefore, we analyzed the protein interface of this structure and identified two residues that could potentially support an intermolecular disulfide bond if changed to cysteines. SDS-PAGE analysis established that the mutant T-ag OBD formed higher oligomeric products in a redox-dependent manner. In addition, the 1.7 Å resolution crystal structure of the engineered disulfide-linked T-ag OBD is reported, which establishes that oligomerization took place in the expected manner.

  13. Structure-based Design of a Disulfide-lined Oligomeric Form of the Simian Virus 40 (SV40) Large T Antigen DNA-Binding Domain

    SciTech Connect

    G Meinke; P Phelan; A Fradet-Turcotte; J Archambault; P Bullock

    2011-12-31

    The modular multifunctional protein large T antigen (T-ag) from simian virus 40 orchestrates many of the events needed for replication of the viral double-stranded DNA genome. This protein assembles into single and double hexamers on specific DNA sequences located at the origin of replication. This complicated process begins when the origin-binding domain of large T antigen (T-ag ODB) binds the GAGGC sequences in the central region (site II) of the viral origin of replication. While many of the functions of purified T-ag OBD can be studied in isolation, it is primarily monomeric in solution and cannot assemble into hexamers. To overcome this limitation, the possibility of engineering intermolecular disulfide bonds in the origin-binding domain which could oligomerize in solution was investigated. A recent crystal structure of the wild-type T-ag OBD showed that this domain forms a left-handed spiral in the crystal with six subunits per turn. Therefore, we analyzed the protein interface of this structure and identified two residues that could potentially support an intermolecular disulfide bond if changed to cysteines. SDS-PAGE analysis established that the mutant T-ag OBD formed higher oligomeric products in a redox-dependent manner. In addition, the 1.7 {angstrom} resolution crystal structure of the engineered disulfide-linked T-ag OBD is reported, which establishes that oligomerization took place in the expected manner.

  14. Selection of scFv Antibody Fragments Binding to Human Blood versus Lymphatic Endothelial Surface Antigens by Direct Cell Phage Display

    PubMed Central

    Keller, Thomas; Kalt, Romana; Raab, Ingrid; Schachner, Helga; Mayrhofer, Corina; Kerjaschki, Dontscho; Hantusch, Brigitte

    2015-01-01

    The identification of marker molecules specific for blood and lymphatic endothelium may provide new diagnostic tools and identify new targets for therapy of immune, microvascular and cancerous diseases. Here, we used a phage display library expressing human randomized single-chain Fv (scFv) antibodies for direct panning against live cultures of blood (BECs) and lymphatic (LECs) endothelial cells in solution. After six panning rounds, out of 944 sequenced antibody clones, we retrieved 166 unique/diverse scFv fragments, as indicated by the V-region sequences. Specificities of these phage clone antibodies for respective compartments were individually tested by direct cell ELISA, indicating that mainly pan-endothelial cell (EC) binders had been selected, but also revealing a subset of BEC-specific scFv antibodies. The specific staining pattern was recapitulated by twelve phage-independently expressed scFv antibodies. Binding capacity to BECs and LECs and differential staining of BEC versus LEC by a subset of eight scFv antibodies was confirmed by immunofluorescence staining. As one antigen, CD146 was identified by immunoprecipitation with phage-independent scFv fragment. This antibody, B6-11, specifically bound to recombinant CD146, and to native CD146 expressed by BECs, melanoma cells and blood vessels. Further, binding capacity of B6-11 to CD146 was fully retained after fusion to a mouse Fc portion, which enabled eukaryotic cell expression. Beyond visualization and diagnosis, this antibody might be used as a functional tool. Overall, our approach provided a method to select antibodies specific for endothelial surface determinants in their native configuration. We successfully selected antibodies that bind to antigens expressed on the human endothelial cell surfaces in situ, showing that BECs and LECs share a majority of surface antigens, which is complemented by cell-type specific, unique markers. PMID:25993332

  15. Analysis of the binding loops configuration and surface adaptation of different crystallized single-domain antibodies in response to various antigens.

    PubMed

    Al Qaraghuli, Mohammed M; Ferro, Valerie A

    2017-04-01

    Monoclonal antibodies have revolutionized the biomedical field through their ubiquitous utilization in different diagnostics and therapeutic applications. Despite this widespread use, their large size and structural complexity have limited their versatility in specific applications. The antibody variable region that is responsible for binding antigen is embodied within domains that can be rescued individually as single-domain antibody (sdAb) fragments. Because of the unique characteristics of sdAbs, such as low molecular weight, high physicochemical stability, and the ability to bind antigens inaccessible to conventional antibodies, they represent a viable alternative to full-length antibodies. Consequently, 149 crystal structures of sdAbs, originating from human (VH), camelids (VHH), or sharks (VNAR), were retrieved from the Protein Data Bank, and their structures were compared. The 3 types of sdAbs displayed complementarity determining regions (CDRs) with different lengths and configurations. CDR3 of the VHH and VNAR domains were dominated by pleated and extended orientations, respectively. Although VNAR showed the smallest average molecular weight and molecular surface area compared with VHH and VH antibodies. However, the solvent accessible surface area measurements of the 3 tested sdAbs types were very similar. All the antihapten VHH antibodies showed pleated CDR3, which were sufficient to create a binding pocket to accommodate haptens (methotrexate and azo dyes) in terms of shape and electrostatic potential. The sdAbs that recognized lysozyme showed more diversity in their CDR3 orientation to enable them to recognize various topographies of lysozyme. Subsequently, the three sdAb classes were different in size and surface area and have shown distinguishable ability to optimize their CDR length and orientation to recognize different antigen classes.

  16. Isolation and characterization of the DNA-binding protein (DBP) of the Autographa californica multiple nucleopolyhedrovirus

    SciTech Connect

    Mikhailov, Victor S. Vanarsdall, Adam L.; Rohrmann, George F.

    2008-01-20

    DNA-binding protein (DBP) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) was expressed as an N-terminal His{sub 6}-tag fusion using a recombinant baculovirus and purified to near homogeneity. Purified DBP formed oligomers that were crosslinked by redox reagents resulting in predominantly protein dimers and tetramers. In gel retardation assays, DBP showed a high affinity for single-stranded oligonucleotides and was able to compete with another baculovirus SSB protein, LEF-3, for binding sites. DBP binding protected ssDNA against hydrolysis by a baculovirus alkaline nuclease AN/LEF-3 complex. Partial proteolysis by trypsin revealed a domain structure of DBP that is required for interaction with DNA and that can be disrupted by thermal treatment. Binding to ssDNA, but not to dsDNA, changed the pattern of proteolytic fragments of DBP indicating adjustments in protein structure upon interaction with ssDNA. DBP was capable of unwinding short DNA duplexes and also promoted the renaturation of long complementary strands of ssDNA into duplexes. The unwinding and renaturation activities of DBP, as well as the DNA binding activity, were sensitive to sulfhydryl reagents and were inhibited by oxidation of thiol groups with diamide or by alkylation with N-ethylmaleimide. A high affinity of DBP for ssDNA and its unwinding and renaturation activities confirmed identification of DBP as a member of the SSB/recombinase family. These activities and a tight association with subnuclear structures suggests that DBP is a component of the virogenic stroma that is involved in the processing of replicative intermediates.

  17. Detection of a cell surface antigen found on rat peripheral nervous system neurons and multiple glia: astrocytes, oligodendrocytes, and Schwann cells.

    PubMed

    Akeson, R; Warren, S L

    1984-01-01

    A cell surface component has been identified that is found on cultured rat dorsal root ganglion neurons and Schwann cells and also cultured brain astrocytes and oligodendrocytes. This component was detected with a monoclonal antibody originally generated to the NG108 (N18 mouse neuroblastoma X C6 rat astrocytoma) hybrid cell line. The antibody, designated B2C11, binds to cultured peripheral nervous system cells: intact dorsal root ganglion and trigeminal neurons and cultured dorsal root ganglion and sciatic nerve Schwann cells. The binding of B2C11 to dorsal root ganglion neurons in vivo was confirmed by immunofluorescence analysis of cryostat sections. However, cultured embryonic rat central neurons showed no detectable binding of B2C11. Cultured brain cells containing glial fibrillary acidic protein (astrocytes) and also oligodendrocytes cultured from corpus collosum did bind B2C11 on their surfaces. B2C11 immunoprecipitation of detergent-solubilized membrane proteins from both lactoperoxidase iodinated C6 and PC12 rat pheochromocytoma cells indicated a single band with an apparent molecular weight of 21,000-23,000. Analysis of B2C11 binding to particulate protein preparations from adult rat organs showed highest specific activity in dorsal root ganglia. Other neural tissues had substantial binding. Some nonneural tissues (lung, kidney, and small intestine) expressed significant antigen levels, whereas others (heart, liver, and skeletal muscle) had a B2C11 antigen-specific activity less than 5% of that of dorsal root ganglia. Thus the B2C11 antigen is enriched in neural tissues, where it is found on the surfaces of a unique set of neuronal and glial cells.

  18. The Kaposi Sarcoma Herpesvirus Latency-associated Nuclear Antigen DNA Binding Domain Dorsal Positive Electrostatic Patch Facilitates DNA Replication and Episome Persistence.

    PubMed

    Li, Shijun; Tan, Min; Juillard, Franceline; Ponnusamy, Rajesh; Correia, Bruno; Simas, J Pedro; Carrondo, Maria A; McVey, Colin E; Kaye, Kenneth M

    2015-11-20

    Kaposi sarcoma-associated herpesvirus (KSHV) has a causative role in several human malignancies. KSHV latency-associated nuclear antigen (LANA) mediates persistence of viral episomes in latently infected cells. LANA mediates KSHV DNA replication and segregates episomes to progeny nuclei. The structure of the LANA DNA binding domain was recently solved, revealing a positive electrostatic patch opposite the DNA binding surface, which is the site of BET protein binding. Here we investigate the functional role of the positive patch in LANA-mediated episome persistence. As expected, LANA mutants with alanine or glutamate substitutions in the central, peripheral, or lateral portions of the positive patch maintained the ability to bind DNA by EMSA. However, all of the substitution mutants were deficient for LANA DNA replication and episome maintenance. Mutation of the peripheral region generated the largest deficiencies. Despite these deficiencies, all positive patch mutants concentrated to dots along mitotic chromosomes in cells containing episomes, similar to LANA. The central and peripheral mutants, but not the lateral mutants, were reduced for BET protein interaction as assessed by co-immunoprecipitation. However, defects in BET protein binding were independent of episome maintenance function. Overall, the reductions in episome maintenance closely correlated with DNA replication deficiencies, suggesting that the replication defects account for the reduced episome persistence. Therefore, the electrostatic patch exerts a key role in LANA-mediated DNA replication and episome persistence and may act through a host cell partner(s) other than a BET protein or by inducing specific structures or complexes.

  19. Age-associated changes in binding of human B lymphocytes to a VH3-restricted unconventional bacterial antigen.

    PubMed

    Silverman, G J; Sasano, M; Wormsley, S B

    1993-11-15

    We have recently demonstrated that there is a site on Staphylococcal protein A (SpA) that interacts with B cell Ig receptors in a manner comparable with known T cell superantigens, because this binding specificity is restricted to Fab with VH3 H chains and most VH3 Ig bind SpA. In the present studies, SpA was used as a phenotypic marker for VH3 expression by human lymphoid cells. As expected, this Fab-mediated binding specificity was completely inhibited by certain VH3 antibodies but not by antibodies from other VH families. In multiparameter flow cytometric analyses, this binding activity was demonstrated to be highly prevalent among B cells (14 to 54%), and was more common among IgM-bearing B cells compared with IgG-bearing B cells. In all studies, Fab-mediated binding of SpA was uniformly expressed by a greater proportion of CD5-positive B cells than CD5-negative B cells. The proportion of B lymphocytes with this VH3-restricted binding capacity was found to undergo age-associated changes, because a large proportion of the peripheral B cells of neonates (mean +/- SD, 46.0 +/- 2.9%) bind this site, but two 10-mo-old subjects and older children had significantly lower binding levels (29.0 +/- 3.5%) that were the same as binding levels by adult peripheral B lymphocytes (30.2 +/- 3.3%). In immunohistochemical studies, tonsilar B cells that bind this site on SpA were shown to be common in mantle zones and germinal centers of secondary follicles. We speculate that Fab-mediated SpA binding represents a fundamental and primitive binding capacity that is part of the human preimmune repertoire, and we discuss the implications for the observed age-dependent shift in Fab-mediated binding of SpA by peripheral blood B cells.

  20. Anthrax Toxin Protective Antigen: Inhibition of Channel Function by Chloroquine and Related Compounds and Study of Binding Kinetics Using the Current Noise Analysis

    PubMed Central

    Orlik, Frank; Schiffler, Bettina; Benz, Roland

    2005-01-01

    Protective antigen (PA) of the tripartite anthrax toxin binds to a cell surface receptor and mediates the transport of two enzymatic components, edema factor and lethal factor, into the cytosol of host cells. Here recombinant PA63 from Bacillus anthracis was reconstituted into artificial lipid bilayer membranes and formed ion permeable channels. The heptameric PA63-channel contains a binding site for 4-aminoquinolones, which block ion transport through PA in vitro. This result allowed a detailed investigation of ligand binding and the stability constants for the binding of chloroquine, fluphenazine, and quinacrine to the binding site inside the PA63-channel were determined using titration experiments. Open PA63-channels exhibit 1/f noise in the frequency range between 1 and 100 Hz, whereas the spectral density of the ligand-induced current noise was of Lorentzian type. The analysis of the power density spectra allowed the evaluation of the on- and off-rate constants (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}k_{1}\\end{equation*}\\end{document} and \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}k_{-1}\\end{equation*}\\end{document}) of ligand binding. The on-rate constants of ligand binding were between 106 and 108 M−1 s−1 and were dependent on the ionic strength of the aqueous phase, sidedness of ligand addition, as well as the orientation and intensity of the applied electric field. The off-rates varied between ∼10 s−1 and 2600 s−1 and depended mainly on the structure of the ligand. PMID:15596516

  1. dCaP: detecting differential binding events in multiple conditions and proteins

    PubMed Central

    2014-01-01

    Background Current ChIP-seq studies are interested in comparing multiple epigenetic profiles across several cell types and tissues simultaneously for studying constitutive and differential regulation. Simultaneous analysis of multiple epigenetic features in many samples can gain substantial power and specificity than analyzing individual features and/or samples separately. Yet there are currently few tools can perform joint inference of constitutive and differential regulation in multi-feature-multi-condition contexts with statistical testing. Existing tools either test regulatory variation for one factor in multiple samples at a time, or for multiple factors in one or two samples. Many of them only identify binary rather than quantitative variation, which are sensitive to threshold choices. Results We propose a novel and powerful method called dCaP for simultaneously detecting constitutive and differential regulation of multiple epigenetic factors in multiple samples. Using simulation, we demonstrate the superior power of dCaP compared to existing methods. We then apply dCaP to two datasets from human and mouse ENCODE projects to demonstrate its utility. We show in the human dataset that the cell-type specific regulatory loci detected by dCaP are significantly enriched near genes with cell-type specific functions and disease relevance. We further show in the mouse dataset that dCaP captures genomic regions showing significant signal variations for TAL1 occupancy between two mouse erythroid cell lines. The novel TAL1 occupancy loci detected only by dCaP are highly enriched with GATA1 occupancy and differential gene expression, while those detected only by other methods are not. Conclusions Here, we developed a novel approach to utilize the cooperative property of proteins to detect differential binding given multivariate ChIP-seq samples to provide better power, aiming for complementing existing approaches and providing new insights in the method development in

  2. Effects of simian virus 40 large and small tumor antigens on mammalian target of rapamycin signaling: small tumor antigen mediates hypophosphorylation of eIF4E-binding protein 1 late in infection.

    PubMed

    Yu, Yongjun; Kudchodkar, Sagar B; Alwine, James C

    2005-06-01

    We report that late in a simian virus 40 (SV40) infection in CV-1 cells, there are significant decreases in phosphorylations of two mammalian target of rapamycin (mTOR) signaling effectors, the eIF4E-binding protein (4E-BP1) and p70 S6 kinase (p70S6K). The hypophosphorylation of 4E-BP1 results in 4E-BP1 binding to eIF4E, leading to the inhibition of cap-dependent translation. The dephosphorylation of 4E-BP1 is specifically mediated by SV40 small t antigen and requires the protein phosphatase 2A binding domain but not an active DnaJ domain. Serum-starved primary African green monkey kidney (AGMK) cells also showed decreased phosphorylations of mTOR, 4E-BP1, and p70S6K at late times in infection (48 h postinfection [hpi]). However, at earlier times (12 and 24 hpi), in AGMK cells, phosphorylated p70S6K was moderately increased, correlating with a significant increase in phosphorylation of the p70S6K substrate, ribosomal protein S6. Hyperphosphorylation of 4E-BP1 at early times could not be determined, since hyperphosphorylated 4E-BP1 was present in mock-infected AGMK cells. Elevated levels of phosphorylated eIF4G, a third mTOR effector, were detected in both CV-1 and AGMK cells at all times after infection, indicating that eIF4G phosphorylation was induced throughout the infection and unaffected by small t antigen. The data suggest that during SV40 lytic infection in monkey cells, the phosphorylations of p70S6K, S6, and eIF4G are increased early in the infection (12 and 24 hpi), but late in the infection (48 hpi), the phosphorylations of mTOR, p70S6K, and 4E-BP1 are dramatically decreased by a mechanism mediated, at least in part, by small t antigen.

  3. Effects of Simian Virus 40 Large and Small Tumor Antigens on Mammalian Target of Rapamycin Signaling: Small Tumor Antigen Mediates Hypophosphorylation of eIF4E-Binding Protein 1 Late in Infection

    PubMed Central

    Yu, Yongjun; Kudchodkar, Sagar B.; Alwine, James C.

    2005-01-01

    We report that late in a simian virus 40 (SV40) infection in CV-1 cells, there are significant decreases in phosphorylations of two mammalian target of rapamycin (mTOR) signaling effectors, the eIF4E-binding protein (4E-BP1) and p70 S6 kinase (p70S6K). The hypophosphorylation of 4E-BP1 results in 4E-BP1 binding to eIF4E, leading to the inhibition of cap-dependent translation. The dephosphorylation of 4E-BP1 is specifically mediated by SV40 small t antigen and requires the protein phosphatase 2A binding domain but not an active DnaJ domain. Serum-starved primary African green monkey kidney (AGMK) cells also showed decreased phosphorylations of mTOR, 4E-BP1, and p70S6K at late times in infection (48 h postinfection [hpi]). However, at earlier times (12 and 24 hpi), in AGMK cells, phosphorylated p70S6K was moderately increased, correlating with a significant increase in phosphorylation of the p70S6K substrate, ribosomal protein S6. Hyperphosphorylation of 4E-BP1 at early times could not be determined, since hyperphosphorylated 4E-BP1 was present in mock-infected AGMK cells. Elevated levels of phosphorylated eIF4G, a third mTOR effector, were detected in both CV-1 and AGMK cells at all times after infection, indicating that eIF4G phosphorylation was induced throughout the infection and unaffected by small t antigen. The data suggest that during SV40 lytic infection in monkey cells, the phosphorylations of p70S6K, S6, and eIF4G are increased early in the infection (12 and 24 hpi), but late in the infection (48 hpi), the phosphorylations of mTOR, p70S6K, and 4E-BP1 are dramatically decreased by a mechanism mediated, at least in part, by small t antigen. PMID:15890927

  4. RNA synthesis is associated with multiple TBP-chromatin binding events

    PubMed Central

    Zaidi, Hussain A.; Auble, David T.; Bekiranov, Stefan

    2017-01-01

    Competition ChIP is an experimental method that allows transcription factor (TF) chromatin turnover dynamics to be measured across a genome. We develop and apply a physical model of TF-chromatin competitive binding using chemical reaction rate theory and are able to derive the physical half-life or residence time for TATA-binding protein (TBP) across the yeast genome from competition ChIP data. Using our physical modeling approach where we explicitly include the induction profile of the competitor in the model, we are able to estimate yeast TBP-chromatin residence times as short as 1.3 minutes, demonstrating that competition ChIP is a relatively high temporal-resolution approach. Strikingly, we find a median value of ~5 TBP-chromatin binding events associated with the synthesis of one RNA molecule across Pol II genes, suggesting multiple rounds of pre-initiation complex assembly and disassembly before productive elongation of Pol II is achieved at most genes in the yeast genome. PMID:28051102

  5. ESCRT-0 assembles as a heterotetrameric complex on membranes and binds multiple ubiquitinylated cargoes simultaneously.

    PubMed

    Mayers, Jonathan R; Fyfe, Ian; Schuh, Amber L; Chapman, Edwin R; Edwardson, J Michael; Audhya, Anjon

    2011-03-18

    The ESCRT machinery consists of multiple protein complexes that collectively participate in the biogenesis of multivesicular endosomes (MVEs). The ESCRT-0 complex is composed of two subunits, Hrs and STAM, both of which can engage ubiquitinylated substrates destined for lysosomal degradation. Here, we conduct a comprehensive analysis of ESCRT-0:ubiquitin interactions using isothermal titration calorimetry and define the affinity of each ubiquitin-binding domain (UBD) within the intact ESCRT-0 complex. Our data demonstrate that ubiquitin binding is non-cooperative between the ESCRT-0 UBDs. Additionally, our findings show that the affinity of the Hrs double ubiquitin interacting motif (DUIM) for ubiquitin is more than 2-fold greater than that of UBDs found in STAM, suggesting that Hrs functions as the major ubiquitin-binding protein in ESCRT-0. In vivo, Hrs and STAM localize to endosomal membranes. To study recombinant ESCRT-0 assembly on lipid bilayers, we used atomic force microscopy. Our data show that ESCRT-0 forms mostly heterodimers and heterotetramers of Hrs and STAM when analyzed in the presence of membranes. Consistent with these findings, hydrodynamic analysis of endogenous ESCRT-0 indicates that it exists largely as a heterotetrameric complex of its two subunits. Based on these data, we present a revised model for ESCRT-0 function in cargo recruitment and concentration at the endosome.

  6. Nucleobindin 1 binds to multiple types of pre-fibrillar amyloid and inhibits fibrillization

    PubMed Central

    Bonito-Oliva, Alessandra; Barbash, Shahar; Sakmar, Thomas P.; Graham, W Vallen

    2017-01-01

    During amyloid fibril formation, amyloidogenic polypeptides misfold and self assemble into soluble pre-fibrillar aggregates, i.e., protofibrils, which elongate and mature into insoluble fibrillar aggregates. An emerging class of chaperones, chaperone-like amyloid binding proteins (CLABPs), has been shown to interfere with aggregation of particular misfolded amyloid peptides or proteins. We have discovered that the calcium-binding protein nuclebindin-1 (NUCB1) is a novel CLABP. We show that NUCB1 inhibits aggregation of islet-amyloid polypeptide associated with type 2 diabetes mellitus, a-synuclein associated with Parkinson’s disease, transthyretin V30M mutant associated with familial amyloid polyneuropathy, and Aβ42 associated with Alzheimer’s disease by stabilizing their respective protofibril intermediates. Kinetic studies employing the modeling software AmyloFit show that NUCB1 affects both primary nucleation and secondary nucleation. We hypothesize that NUCB1 binds to the common cross-β-sheet structure of protofibril aggregates to “cap” and stabilize soluble macromolecular complexes. Transmission electron microscopy and atomic force microscopy were employed to characterize the size, shape and volume distribution of multiple sources of NUCB1-capped protofibrils. Interestingly, NUCB1 prevents Aβ42 protofibril toxicity in a cellular assay. NUCB1-stabilized amyloid protofibrils could be used as immunogens to prepare conformation-specific antibodies and as novel tools to develop screens for anti-protofibril diagnostics and therapeutics. PMID:28220836

  7. Neisseria gonorrhoeae RecQ helicase HRDC domains are essential for efficient binding and unwinding of the pilE guanine quartet structure required for pilin antigenic variation.

    PubMed

    Cahoon, Laty A; Manthei, Kelly A; Rotman, Ella; Keck, James L; Seifert, H Steven

    2013-05-01

    The strict human pathogen Neisseria gonorrhoeae utilizes homologous recombination to antigenically vary the pilus, thus evading the host immune response. High-frequency gene conversion reactions between many silent pilin loci and the expressed pilin locus (pilE) allow for numerous pilus variants per strain to be produced from a single strain. For pilin antigenic variation (Av) to occur, a guanine quartet (G4) structure must form upstream of pilE. The RecQ helicase is one of several recombination or repair enzymes required for efficient levels of pilin Av, and RecQ family members have been shown to bind to and unwind G4 structures. Additionally, the vast majority of RecQ helicase family members encode one "helicase and RNase D C-terminal" (HRDC) domain, whereas the N. gonorrhoeae RecQ helicase gene encodes three HRDC domains, which are critical for pilin Av. Here, we confirm that deletion of RecQ HRDC domains 2 and 3 causes a decrease in the frequency of pilin Av comparable to that obtained with a functional knockout. We demonstrate that the N. gonorrhoeae RecQ helicase can bind and unwind the pilE G4 structure. Deletion of the RecQ HRDC domains 2 and 3 resulted in a decrease in G4 structure binding and unwinding. These data suggest that the decrease in pilin Av observed in the RecQ HRDC domain 2 and 3 deletion mutant is a result of the enzyme's inability to efficiently bind and unwind the pilE G4 structure.

  8. Thermodynamic Switch in Binding of Adhesion/Growth Regulatory Human Galectin-3 to Tumor-Associated TF Antigen (CD176) and MUC1 Glycopeptides

    PubMed Central

    2016-01-01

    A shift to short-chain glycans is an observed change in mucin-type O-glycosylation in premalignant and malignant epithelia. Given the evidence that human galectin-3 can interact with mucins and also weakly with free tumor-associated Thomsen-Friedenreich (TF) antigen (CD176), the study of its interaction with MUC1 (glyco)peptides is of biomedical relevance. Glycosylated MUC1 fragments that carry the TF antigen attached through either Thr or Ser side chains were synthesized using standard Fmoc-based automated solid-phase peptide chemistry. The dissociation constants (Kd) for interaction of galectin-3 and the glycosylated MUC1 fragments measured by isothermal titration calorimetry decreased up to 10 times in comparison to that of the free TF disaccharide. No binding was observed for the nonglycosylated control version of the MUC1 peptide. The most notable feature of the binding of MUC1 glycopeptides to galectin-3 was a shift from a favorable enthalpy to an entropy-driven binding process. The comparatively diminished enthalpy contribution to the free energy (ΔG) was compensated by a considerable gain in the entropic term. 1H–15N heteronuclear single-quantum coherence spectroscopy nuclear magnetic resonance data reveal contact at the canonical site mainly by the glycan moiety of the MUC1 glycopeptide. Ligand-dependent differences in binding affinities were also confirmed by a novel assay for screening of low-affinity glycan–lectin interactions based on AlphaScreen technology. Another key finding is that the glycosylated MUC1 peptides exhibited activity in a concentration-dependent manner in cell-based assays revealing selectivity among human galectins. Thus, the presentation of this tumor-associated carbohydrate ligand by the natural peptide scaffold enhances its affinity, highlighting the significance of model studies of human lectins with synthetic glycopeptides. PMID:26129647

  9. Th1 cytokines promote T-cell binding to antigen-presenting cells via enhanced hyaluronan production and accumulation at the immune synapse

    PubMed Central

    Bollyky, Paul L; Evanko, Stephen P; Wu, Rebecca P; Potter-Perigo, Susan; Long, S Alice; Kinsella, Brian; Reijonen, Helena; Guebtner, Kelly; Teng, Brandon; Chan, Christina K; Braun, Kathy R; Gebe, John A; Nepom, Gerald T; Wight, Thomas N

    2010-01-01

    Hyaluronan (HA) production by dendritic cells (DCs) is known to promote antigen presentation and to augment T-cell activation and proliferation. We hypothesized that pericellular HA can function as intercellular ‘glue' directly mediating T cell–DC binding. Using primary human cells, we observed HA-dependent binding between T cells and DCs, which was abrogated upon pre-treatment of the DCs with 4-methylumbelliferone (4-MU), an agent which blocks HA synthesis. Furthermore, T cells regulate HA production by DCs via T cell-derived cytokines in a T helper (Th) subset-specific manner, as demonstrated by the observation that cell-culture supernatants from Th1 but not Th2 clones promote HA production. Similar effects were seen upon the addition of exogenous Th1 cytokines, IL-2, interferon γ (IFN-γ) and tumor necrosis factor α (TNF-α). The critical factors which determined the extent of DC–T cell binding in this system were the nature of the pre-treatment the DCs received and their capacity to synthesize HA, as T-cell clones which were pre-treated with monensin, added to block cytokine secretion, bound equivalently irrespective of their Th subset. These data support the existence of a feedforward loop wherein T-cell cytokines influence DC production of HA, which in turn affects the extent of DC–T cell binding. We also document the presence of focal deposits of HA at the immune synapse between T-cells and APC and on dendritic processes thought to be important in antigen presentation. These data point to a pivotal role for HA in DC–T cell interactions at the IS. PMID:20228832

  10. Th1 cytokines promote T-cell binding to antigen-presenting cells via enhanced hyaluronan production and accumulation at the immune synapse.

    PubMed

    Bollyky, Paul L; Evanko, Stephen P; Wu, Rebecca P; Potter-Perigo, Susan; Long, S Alice; Kinsella, Brian; Reijonen, Helena; Guebtner, Kelly; Teng, Brandon; Chan, Christina K; Braun, Kathy R; Gebe, John A; Nepom, Gerald T; Wight, Thomas N

    2010-05-01

    Hyaluronan (HA) production by dendritic cells (DCs) is known to promote antigen presentation and to augment T-cell activation and proliferation. We hypothesized that pericellular HA can function as intercellular 'glue' directly mediating T cell-DC binding. Using primary human cells, we observed HA-dependent binding between T cells and DCs, which was abrogated upon pre-treatment of the DCs with 4-methylumbelliferone (4-MU), an agent which blocks HA synthesis. Furthermore, T cells regulate HA production by DCs via T cell-derived cytokines in a T helper (Th) subset-specific manner, as demonstrated by the observation that cell-culture supernatants from Th1 but not Th2 clones promote HA production. Similar effects were seen upon the addition of exogenous Th1 cytokines, IL-2, interferon gamma (IFN-gamma) and tumor necrosis factor alpha (TNF-alpha). The critical factors which determined the extent of DC-T cell binding in this system were the nature of the pre-treatment the DCs received and their capacity to synthesize HA, as T-cell clones which were pre-treated with monensin, added to block cytokine secretion, bound equivalently irrespective of their Th subset. These data support the existence of a feedforward loop wherein T-cell cytokines influence DC production of HA, which in turn affects the extent of DC-T cell binding. We also document the presence of focal deposits of HA at the immune synapse between T-cells and APC and on dendritic processes thought to be important in antigen presentation. These data point to a pivotal role for HA in DC-T cell interactions at the IS.

  11. The Association of HLA Class 1 and Class 2 Antigens with Multiple Myeloma in Iranian Patients.

    PubMed

    Sayad, Arezou; Akbari, Mohammad Taghi; Mehdizadeh, Mahshid; Roshandel, Elham; Abedinpour, Soheila; Hajifathali, Abbas

    2014-12-05

    Amaç: Multiple myeloma (MM), malign plazma hürelerinin klonal çoğalması ile karakterize bir B hücre neoplazisidir. Çeşitli çalışmaların sonuçlarına göre, bazı sınıf 1 ve 2 HLA genlerinin hastalığa yatkınlık sağladığına dair görüşler ortaya atılmıştır. Farklı popülasyonlarda yapılan çalışmalarda, farklı HLA sınıf 1 ve 2 allellerinin MM üzerine etkisi olduğu bildirilmiştir. Bu çalışmada, İranlı MM hastalarında HLA sınıf 1 ve sınıf 2 antijenlerinin birlikteliğini değerlendirdik. Gereç ve Yöntemler: HLA-Ready Gene ABDR kitleriyle tekli spesifik primer polimeraz zincir reaksiyonu yönteminin kullanıldığı bu olgu-kontrol genetiplendirme çalışmasında, hasta grubuna Taleghani Hastanesi kemik iliği nakli bölümünden seçilen 105 İranlı MM hastası ve 150 de kontrol olgusu dahil edilmiştir.Bulgular: Çalışma sonucunda, HLA-A*03 hasta grubunda %21 ve kontrol grubunda %12 bulunurken, HLA-B*18 ise hasta grubunda %11 ve kontrol grubunda %3 olarak saptanmıştır. MM hastalarının HLA-A*03 ve HLA-B*18 allele sahip olma oranı kontrol olgularıyla karşılaştırıldığında istatistiki olarak anlamlı olacak şekilde yüksek bulunmuştur (p=0,039, OR=2,057 ve p=0,013, OR=3,567, sırasıyla). Sonuç: Bizim bulgularımız, İran toplumunda HLA-A*03 ve HLA-B*18 allel varlığının istatistiki olarak anlamlı olacak şekilde MM’ye yatkınlık yarattığını ortaya koymaktadır. Bununla birlikte, diğer toplumlara bakıldığında adı geçen allellerin aynı sonucu doğurmadıkları görülmektedir. Farklı etnik gruplar arasındaki bu birlikteliği değerlendiren fazla sayıda çalışma olmadığı için, gelecek dönemlerde MM’li hastalarda HLA genlerinin birlikteliğinin sonuçlarını izah edebilecek daha ayrıntılı çalışmalara gereksinim vardır.

  12. Necrotizing meningoencephalitis of Pug dogs associates with dog leukocyte antigen class II and resembles acute variant forms of multiple sclerosis.

    PubMed

    Greer, K A; Wong, A K; Liu, H; Famula, T R; Pedersen, N C; Ruhe, A; Wallace, M; Neff, M W

    2010-08-01

    Necrotizing meningoencephalitis (NME) is a disorder of Pug Dogs that appears to have an immune etiology and high heritability based on population studies. The present study was undertaken to identify a genetic basis for the disease. A genome-wide association scan with single tandem repeat (STR) markers showed a single strong association near the dog leukocyte antigen (DLA) complex on CFA12. Fine resolution mapping with 27 STR markers on CFA12 further narrowed association to the region containing DLA-DRB1, -DQA1 and, -DQB1 genes. Sequencing confirmed that affected dogs were more likely to be homozygous for specific alleles at each locus and that these alleles were linked, forming a single high risk haplotype. The strong DLA class II association of NME in Pug Dogs resembles that of human multiple sclerosis (MS). Like MS, NME appears to have an autoimmune basis, involves genetic and nongenetic factors, has a relatively low incidence, is more frequent in females than males, and is associated with a vascularly orientated nonsuppurative inflammation. However, NME of Pug Dogs is more aggressive in disease course than classical human MS, appears to be relatively earlier in onset, and involves necrosis rather than demyelination as the central pathobiologic feature. Thus, Pug Dog encephalitis (PDE) shares clinical features with the less common acute variant forms of MS. Accordingly, NME of Pug Dogs may represent a naturally occurring canine model of certain idiopathic inflammatory disorders of the human central nervous system.

  13. Multiple Ca2+ Binding Sites in the Extracellular Domain of Ca2+-Sensing Receptor Corresponding to Cooperative Ca2+ Response†

    PubMed Central

    Huang, Yun; Zhou, Yubin; Castiblanco, Adriana; Yang, Wei; Brown, Edward M.; Yang, Jenny J.

    2009-01-01

    A small change in the extracellular Ca2+ concentration ([Ca2+]o) integrates cell signaling responses in multiple cellular and tissue networks and functions via activation of Ca2+-sensing receptors (CaSR). Mainly through binding of Ca2+ to the large extracellular domain (ECD) of the dimeric CaSR, intracellular Ca2+ responses are highly cooperative with an apparent Hill coefficient ranging from 2 to 4. We have previously reported the identification of two continuous putative Ca2+-binding sites by grafting CaSR-derived, Ca2+-binding peptides to a scaffold protein, CD2, that does not bind Ca2+. In this paper, we predict more potential non-continuous Ca2+-binding sites in the ECD. We dissect the intact CaSR into three globular subdomains, each of which contains 2 to 3 predicted Ca2+-binding sites. This approach enables us to further understand the mechanisms underlying the binding of multiple metal ions to extended polypeptides derived from within the ECD of the CaSR, which would be anticipated to more closely mimic the structure of the native CaSR ECD. Tb3+-luminescence energy transfer, ANS fluorescence, and NMR studies show biphasic metal-binding components and Ca2+-dependent conformational changes in these subdomains. Removing the predicted Ca2+-binding ligands in site 1 and site 3 abolishes the first binding step and second binding step, respectively. Studies on these subdomains suggest the existence of multiple metal-binding sites and metal-induced conformational changes that might be responsible for switching on/off the CaSR by transition between its open inactive form and closed active form. PMID:19102677

  14. Yeast ribonuclease III uses a network of multiple hydrogen bonds for RNA binding and cleavage.

    PubMed

    Lavoie, Mathieu; Abou Elela, Sherif

    2008-08-19

    Members of the bacterial RNase III family recognize a variety of short structured RNAs with few common features. It is not clear how this group of enzymes supports high cleavage fidelity while maintaining a broad base of substrates. Here we show that the yeast orthologue of RNase III (Rnt1p) uses a network of 2'-OH-dependent interactions to recognize substrates with different structures. We designed a series of bipartite substrates permitting the distinction between binding and cleavage defects. Each substrate was engineered to carry a single or multiple 2'- O-methyl or 2'-fluoro ribonucleotide substitutions to prevent the formation of hydrogen bonds with a specific nucleotide or group of nucleotides. Interestingly, introduction of 2'- O-methyl ribonucleotides near the cleavage site increased the rate of catalysis, indicating that 2'-OH are not required for cleavage. Substitution of nucleotides in known Rnt1p binding site with 2'- O-methyl ribonucleotides inhibited cleavage while single 2'-fluoro ribonucleotide substitutions did not. This indicates that while no single 2'-OH is essential for Rnt1p cleavage, small changes in the substrate structure are not tolerated. Strikingly, several nucleotide substitutions greatly increased the substrate dissociation constant with little or no effect on the Michaelis-Menten constant or rate of catalysis. Together, the results indicate that Rnt1p uses a network of nucleotide interactions to identify its substrate and support two distinct modes of binding. One mode is primarily mediated by the dsRNA binding domain and leads to the formation of stable RNA/protein complex, while the other requires the presence of the nuclease and N-terminal domains and leads to RNA cleavage.

  15. Multiple GTP-binding proteins regulate vesicular transport from the ER to Golgi membranes

    PubMed Central

    1992-01-01

    Using indirect immunofluorescence we have examined the effects of reagents which inhibit the function of ras-related rab small GTP- binding proteins and heterotrimeric G alpha beta gamma proteins in ER to Golgi transport. Export from the ER was inhibited by an antibody towards rab1B and an NH2-terminal peptide which inhibits ARF function (Balch, W. E., R. A. Kahn, and R. Schwaninger. 1992. J. Biol. Chem. 267:13053-13061), suggesting that both of these small GTP-binding proteins are essential for the transport vesicle formation. Export from the ER was also potently inhibited by mastoparan, a peptide which mimics G protein binding regions of seven transmembrane spanning receptors activating and uncoupling heterotrimeric G proteins from their cognate receptors. Consistent with this result, purified beta gamma subunits inhibited the export of VSV-G from the ER suggesting an initial event in transport vesicle assembly was regulated by a heterotrimeric G protein. In contrast, incubation in the presence of GTP gamma S or AIF(3-5) resulted in the accumulation of transported protein in different populations of punctate pre-Golgi intermediates distributed throughout the cytoplasm of the cell. Finally, a peptide which is believed to antagonize the interaction of rab proteins with putative downstream effector molecules inhibited transport at a later step preceding delivery to the cis Golgi compartment, similar to the site of accumulation of transported protein in the absence of NSF or calcium (Plutner, H., H. W. Davidson, J. Saraste, and W. E. Balch. 1992. J. Cell Biol. 119:1097-1116). These results are consistent with the hypothesis that multiple GTP-binding proteins including a heterotrimeric G protein(s), ARF and rab1 differentially regulate steps in the transport of protein between early compartments of the secretory pathway. The concept that G protein-coupled receptors gate the export of protein from the ER is discussed. PMID:1447289

  16. Insights into the initiation of JC virus DNA replication derived from the crystal structure of the T-antigen origin binding domain.

    PubMed

    Meinke, Gretchen; Phelan, Paul J; Kalekar, Radha; Shin, Jong; Archambault, Jacques; Bohm, Andrew; Bullock, Peter A

    2014-02-01

    JC virus is a member of the Polyomavirus family of DNA tumor viruses and the causative agent of progressive multifocal leukoencephalopathy (PML). PML is a disease that occurs primarily in people who are immunocompromised and is usually fatal. As with other Polyomavirus family members, the replication of JC virus (JCV) DNA is dependent upon the virally encoded protein T-antigen. To further our understanding of JCV replication, we have determined the crystal structure of the origin-binding domain (OBD) of JCV T-antigen. This structure provides the first molecular understanding of JCV T-ag replication functions; for example, it suggests how the JCV T-ag OBD site-specifically binds to the major groove of GAGGC sequences in the origin. Furthermore, these studies suggest how the JCV OBDs interact during subsequent oligomerization events. We also report that the OBD contains a novel "pocket"; which sequesters the A1 & B2 loops of neighboring molecules. Mutagenesis of a residue in the pocket associated with the JCV T-ag OBD interfered with viral replication. Finally, we report that relative to the SV40 OBD, the surface of the JCV OBD contains one hemisphere that is highly conserved and one that is highly variable.

  17. Insights into the Initiation of JC Virus DNA Replication Derived from the Crystal Structure of the T-Antigen Origin Binding Domain

    PubMed Central

    Meinke, Gretchen; Phelan, Paul J.; Kalekar, Radha; Shin, Jong; Archambault, Jacques; Bohm, Andrew; Bullock, Peter A.

    2014-01-01

    JC virus is a member of the Polyomavirus family of DNA tumor viruses and the causative agent of progressive multifocal leukoencephalopathy (PML). PML is a disease that occurs primarily in people who are immunocompromised and is usually fatal. As with other Polyomavirus family members, the replication of JC virus (JCV) DNA is dependent upon the virally encoded protein T-antigen. To further our understanding of JCV replication, we have determined the crystal structure of the origin-binding domain (OBD) of JCV T-antigen. This structure provides the first molecular understanding of JCV T-ag replication functions; for example, it suggests how the JCV T-ag OBD site-specifically binds to the major groove of GAGGC sequences in the origin. Furthermore, these studies suggest how the JCV OBDs interact during subsequent oligomerization events. We also report that the OBD contains a novel “pocket”; which sequesters the A1 & B2 loops of neighboring molecules. Mutagenesis of a residue in the pocket associated with the JCV T-ag OBD interfered with viral replication. Finally, we report that relative to the SV40 OBD, the surface of the JCV OBD contains one hemisphere that is highly conserved and one that is highly variable. PMID:24586168

  18. A strategy to identify linker-based modules for the allosteric regulation of antibody-antigen binding affinities of different scFvs

    PubMed Central

    Thie, Holger

    2017-01-01

    ABSTRACT Antibody single-chain variable fragments (scFvs) are used in a variety of applications, such as for research, diagnosis and therapy. Essential for these applications is the extraordinary specificity, selectivity and affinity of antibody paratopes, which can also be used for efficient protein purification. However, this use is hampered by the high affinity for the protein to be purified because harsh elution conditions, which may impair folding, integrity or viability of the eluted biomaterials, are typically required. In this study, we developed a strategy to obtain structural elements that provide allosteric modulation of the affinities of different antibody scFvs for their antigen. To identify suitable allosteric modules, a complete set of cyclic permutations of calmodulin variants was generated and tested for modulation of the affinity when substituting the linker between VH and VL. Modulation of affinity induced by addition of different calmodulin-binding peptides at physiologic conditions was demonstrated for 5 of 6 tested scFvs of different specificities and antigens ranging from cell surface proteins to haptens. In addition, a variety of different modulator peptides were tested. Different structural solutions were found in respect of the optimal calmodulin permutation, the optimal peptide and the allosteric effect for scFvs binding to different antigen structures. Significantly, effective linker modules were identified for scFvs with both VH-VL and VL-VH architecture. The results suggest that this approach may offer a rapid, paratope-independent strategy to provide allosteric regulation of affinity for many other antibody scFvs. PMID:28055297

  19. MHC2MIL: a novel multiple instance learning based method for MHC-II peptide binding prediction by considering peptide flanking region and residue positions

    PubMed Central

    2014-01-01

    Background Computational prediction of major histocompatibility complex class II (MHC-II) binding peptides can assist researchers in understanding the mechanism of immune systems and developing peptide based vaccines. Although many computational methods have been proposed, the performance of these methods are far from satisfactory. The difficulty of MHC-II peptide binding prediction comes mainly from the large length variation of binding peptides. Methods We develop a novel multiple instance learning based method called MHC2MIL, in order to predict MHC-II binding peptides. We deem each peptide in MHC2MIL as a bag, and some substrings of the peptide as the instances in the bag. Unlike previous multiple instance learning based methods that consider only instances of fixed length 9 (9 amino acids), MHC2MIL is able to deal with instances of both lengths of 9 and 11 (11 amino acids), simultaneously. As such, MHC2MIL incorporates important information in the peptide flanking region. For measuring the distances between different instances, furthermore, MHC2MIL explicitly highlights the amino acids in some important positions. Results Experimental results on a benchmark dataset have shown that, the performance of MHC2MIL is significantly improved by considering the instances of both 9 and 11 amino acids, as well as by emphasizing amino acids at key positions in the instance. The results are consistent with those reported in the literature on MHC-II peptide binding. In addition to five important positions (1, 4, 6, 7 and 9) for HLA(human leukocyte antigen, the name of MHC in Humans) DR peptide binding, we also find that position 2 may play some roles in the binding process. By using 5-fold cross validation on the benchmark dataset, MHC2MIL outperforms two state-of-the-art methods of MHC2SK and NN-align with being statistically significant, on 12 HLA DP and DQ molecules. In addition, it achieves comparable performance with MHC2SK and NN-align on 14 HLA DR molecules. MHC2MIL

  20. Binding to retinoblastoma pocket domain does not alter the inter-domain flexibility of the J domain of SV40 large T antigen.

    PubMed

    Williams, Christina K; Vaithiyalingam, Sivaraja; Hammel, Michal; Pipas, James; Chazin, Walter J

    2012-02-15

    Simian Virus 40 uses the large T antigen (Tag) to bind and inactivate retinoblastoma tumor suppressor proteins (Rb), which can result in cellular transformation. Tag is a modular protein with four domains connected by flexible linkers. The N-terminal J domain of Tag is necessary for Rb inactivation. Binding of Rb is mediated by an LXCXE consensus motif immediately C-terminal to the J domain. Nuclear magnetic resonance (NMR) and small angle X-ray scattering (SAXS) were used to study the structural dynamics and interaction of Rb with the LXCXE motif, the J domain and a construct (N(260)) extending from the J domain through the origin binding domain (OBD). NMR and SAXS data revealed substantial flexibility between the domains in N(260). Binding of pRb to a construct containing the LXCXE motif and the J domain revealed weak interactions between pRb and the J domain. Analysis of the complex of pRb and N(260) indicated that the OBD is not involved and retains its dynamic independence from the remainder of Tag. These results support a 'chaperone' model in which the J domain of Tag changes its orientation as it acts upon different protein complexes.

  1. Structure-Based Analysis of the Interaction between the Simian Virus 40 T-Antigen Origin Binding Domain and Single-Stranded DNA▿ †

    PubMed Central

    Meinke, Gretchen; Phelan, Paul J.; Fradet-Turcotte, Amélie; Bohm, Andrew; Archambault, Jacques; Bullock, Peter A.

    2011-01-01

    The origin-binding domain (OBD) of simian virus 40 (SV40) large T-antigen (T-Ag) is essential for many of T-Ag's interactions with DNA. Nevertheless, many important issues related to DNA binding, for example, how single-stranded DNA (ssDNA) transits along the T-Ag OBD, have yet to be established. Therefore, X-ray crystallography was used to determine the costructure of the T-Ag OBD bound to DNA substrates such as the single-stranded region of a forked oligonucleotide. A second structure of the T-Ag OBD crystallized in the presence of poly(dT)12 is also reported. To test the conclusions derived from these structures, residues identified as being involved in binding to ssDNA by crystallography or by an earlier nuclear magnetic resonance study were mutated, and their binding to DNA was characterized via fluorescence anisotropy. In addition, these mutations were introduced into full-length T-Ag, and these mutants were tested for their ability to support replication. When considered in terms of additional homology-based sequence alignments, our studies refine our understanding of how the T-Ag OBDs encoded by the polyomavirus family interact with ssDNA, a critical step during the initiation of DNA replication. PMID:20980496

  2. Structure-based analysis of the interaction between the simian virus 40 T-antigen origin binding domain and single-stranded DNA.

    PubMed

    Meinke, Gretchen; Phelan, Paul J; Fradet-Turcotte, Amélie; Bohm, Andrew; Archambault, Jacques; Bullock, Peter A

    2011-01-01

    The origin-binding domain (OBD) of simian virus 40 (SV40) large T-antigen (T-Ag) is essential for many of T-Ag's interactions with DNA. Nevertheless, many important issues related to DNA binding, for example, how single-stranded DNA (ssDNA) transits along the T-Ag OBD, have yet to be established. Therefore, X-ray crystallography was used to determine the costructure of the T-Ag OBD bound to DNA substrates such as the single-stranded region of a forked oligonucleotide. A second structure of the T-Ag OBD crystallized in the presence of poly(dT)(12) is also reported. To test the conclusions derived from these structures, residues identified as being involved in binding to ssDNA by crystallography or by an earlier nuclear magnetic resonance study were mutated, and their binding to DNA was characterized via fluorescence anisotropy. In addition, these mutations were introduced into full-length T-Ag, and these mutants were tested for their ability to support replication. When considered in terms of additional homology-based sequence alignments, our studies refine our understanding of how the T-Ag OBDs encoded by the polyomavirus family interact with ssDNA, a critical step during the initiation of DNA replication.

  3. Structure-Based Analysis of the Interaction between the Simian Virus 40 T-Antigen Origin Binding Domain and Single-Stranded DNA

    SciTech Connect

    G Meinke; P Phelan; A Fradet-Turcotte; A Bohm; J Archambault; P Bullock

    2011-12-31

    The origin-binding domain (OBD) of simian virus 40 (SV40) large T-antigen (T-Ag) is essential for many of T-Ag's interactions with DNA. Nevertheless, many important issues related to DNA binding, for example, how single-stranded DNA (ssDNA) transits along the T-Ag OBD, have yet to be established. Therefore, X-ray crystallography was used to determine the costructure of the T-Ag OBD bound to DNA substrates such as the single-stranded region of a forked oligonucleotide. A second structure of the T-Ag OBD crystallized in the presence of poly(dT){sub 12} is also reported. To test the conclusions derived from these structures, residues identified as being involved in binding to ssDNA by crystallography or by an earlier nuclear magnetic resonance study were mutated, and their binding to DNA was characterized via fluorescence anisotropy. In addition, these mutations were introduced into full-length T-Ag, and these mutants were tested for their ability to support replication. When considered in terms of additional homology-based sequence alignments, our studies refine our understanding of how the T-Ag OBDs encoded by the polyomavirus family interact with ssDNA, a critical step during the initiation of DNA replication.

  4. Coadministration of the Three Antigenic Leishmania infantum Poly (A) Binding Proteins as a DNA Vaccine Induces Protection against Leishmania major Infection in BALB/c Mice

    PubMed Central

    Corvo, Laura; Garde, Esther; Ramírez, Laura; Iniesta, Virginia; Bonay, Pedro; Gómez-Nieto, Carlos; González, Víctor M.; Martín, M. Elena; Alonso, Carlos; Coelho, Eduardo A. F.; Barral, Aldina; Barral-Netto, Manoel

    2015-01-01

    Background Highly conserved intracellular proteins from Leishmania have been described as antigens in natural and experimental infected mammals. The present study aimed to evaluate the antigenicity and prophylactic properties of the Leishmania infantum Poly (A) binding proteins (LiPABPs). Methodology/Principal Findings Three different members of the LiPABP family have been described. Recombinant tools based on these proteins were constructed: recombinant proteins and DNA vaccines. The three recombinant proteins were employed for coating ELISA plates. Sera from human and canine patients of visceral leishmaniasis and human patients of mucosal leishmaniasis recognized the three LiPABPs. In addition, the protective efficacy of a DNA vaccine based on the combination of the three Leishmania PABPs has been tested in a model of progressive murine leishmaniasis: BALB/c mice infected with Leishmania major. The induction of a Th1-like response against the LiPABP family by genetic vaccination was able to down-regulate the IL-10 predominant responses elicited by parasite LiPABPs after infection in this murine model. This modulation resulted in a partial protection against L. major infection. LiPABP vaccinated mice showed a reduction on the pathology that was accompanied by a decrease in parasite burdens, in antibody titers against Leishmania antigens and in the IL-4 and IL-10 parasite-specific mediated responses in comparison to control mice groups immunized with saline or with the non-recombinant plasmid. Conclusion/Significance The results presented here demonstrate for the first time the prophylactic properties of a new family of Leishmania antigenic intracellular proteins, the LiPABPs. The redirection of the immune response elicited against the LiPABP family (from IL-10 towards IFN-γ mediated responses) by genetic vaccination was able to induce a partial protection against the development of the disease in a highly susceptible murine model of leishmaniasis. PMID:25955652

  5. The Myxococcus xanthus rfbABC operon encodes an ATP-binding cassette transporter homolog required for O-antigen biosynthesis and multicellular development.

    PubMed Central

    Guo, D; Bowden, M G; Pershad, R; Kaplan, H B

    1996-01-01

    A wild-type sasA locus is critical for Myxococcus xanthus multicellular development. Mutations in the sasA locus cause defective fruiting body formation, reduce sporulation, and restore developmental expression of the early A-signal-dependent gene 4521 in the absence of A signal. The wild-type sasA locus has been located on a 14-kb cloned fragment of the M. xanthus chromosome. The nucleotide sequence of a 7-kb region containing the complete sasA locus was determined. Three open reading frames encoded by the genes, designated rfbA, B and C were identified. The deduced amino acid sequences of rfbA and rfbB show identity to the integral membrane domains and ATPase domains, respectively, of the ATP-binding cassette (ABC) transporter family. The highest identities are to a set of predicted ABC transporters required for the biosynthesis of lipopolysaccharide O-antigen in certain gram-negative bacteria. The rfbC gene encodes a predicted protein of 1,276 amino acids. This predicted protein contains a region of 358 amino acids that is 33.8% identical to the Yersinia enterocolitica O3 rfbH gene product, which is also required for O-antigen biosynthesis. Immunoblot analysis revealed that the sasA1 mutant, which was found to encode a nonsense codon in the beginning of rfbA, produced less O-antigen than sasA+ strains. These data indicate that the sasA locus is required for the biosynthesis of O-antigen and, when mutated, results in A-signal-independent expression of 4521. PMID:8626291

  6. Alpha-Amylase Starch Binding Domains: Cooperative Effects of Binding to Starch Granules of Multiple Tandemly Arranged Domains▿

    PubMed Central

    Guillén, D.; Santiago, M.; Linares, L.; Pérez, R.; Morlon, J.; Ruiz, B.; Sánchez, S.; Rodríguez-Sanoja, R.

    2007-01-01

    The Lactobacillus amylovorus alpha-amylase starch binding domain (SBD) is a functional domain responsible for binding to insoluble starch. Structurally, this domain is dissimilar from other reported SBDs because it is composed of five identical tandem modules of 91 amino acids each. To understand adsorption phenomena specific to this SBD, the importance of their modular arrangement in relationship to binding ability was investigated. Peptides corresponding to one, two, three, four, or five modules were expressed as His-tagged proteins. Protein binding assays showed an increased capacity of adsorption as a function of the number of modules, suggesting that each unit of the SBD may act in an additive or synergic way to optimize binding to raw starch. PMID:17468268

  7. Alpha-amylase starch binding domains: cooperative effects of binding to starch granules of multiple tandemly arranged domains.

    PubMed

    Guillén, D; Santiago, M; Linares, L; Pérez, R; Morlon, J; Ruiz, B; Sánchez, S; Rodríguez-Sanoja, R

    2007-06-01

    The Lactobacillus amylovorus alpha-amylase starch binding domain (SBD) is a functional domain responsible for binding to insoluble starch. Structurally, this domain is dissimilar from other reported SBDs because it is composed of five identical tandem modules of 91 amino acids each. To understand adsorption phenomena specific to this SBD, the importance of their modular arrangement in relationship to binding ability was investigated. Peptides corresponding to one, two, three, four, or five modules were expressed as His-tagged proteins. Protein binding assays showed an increased capacity of adsorption as a function of the number of modules, suggesting that each unit of the SBD may act in an additive or synergic way to optimize binding to raw starch.

  8. Association of p53 binding and immortalization of primary C57BL/6 mouse embryo fibroblasts by using simian virus 40 T-antigen mutants bearing internal overlapping deletion mutations.

    PubMed Central

    Kierstead, T D; Tevethia, M J

    1993-01-01

    To more precisely map the immortalization and p53 binding domains of T antigen, a large series of overlapping deletion mutations were created between codons 251 to 651 by utilizing a combination of Bal 31 deletion and oligonucleotide-directed mutagenesis. Immortalization assay results indicated that amino acids (aa) 252 to 350, 400, and 451 to 532 could be removed without seriously compromising immortalization, although the appearance of immortal colonies was delayed in some cases. Western immunoblotting experiments indicated that the p53 binding capacities of T antigen produced by mutants missing aa 252 to 300, 301 to 350, 400, or 451 to 532 were only slightly reduced relative to that of wild-type T antigen. Within the limits of this deletion analysis, the immortalization and p53 binding domains appear to be colinear and, in fact, may represent two aspects of the same domain. This deletion analysis eliminates the entire zinc finger domain (aa 302 to 320), a small portion of the leucine-rich region (aa 345 to 350), and a large portion of the ATP binding domain (aa 451 to 528) as participants in p53 binding or in the immortalization process. The results also show that removal of T antigen amino acids within the region 451 to 532 appears to alter the capacity of newly synthesized but not older T antigen and p53 molecules to form complexes. Images PMID:8383212

  9. A direct antigen-binding assay for detection of antibodies against native epitopes using alkaline phosphatase-tagged proteins.

    PubMed

    Baranov, Konstantin; Volkova, Olga; Chikaev, Nikolai; Mechetina, Ludmila; Laktionov, Pavel; Najakshin, Alexander; Taranin, Alexander

    2008-03-20

    We describe a simple and efficient method to detect antibodies against native epitopes following immunization with denatured proteins and peptides. With this method, soluble antigens genetically fused with placental alkaline phosphatase (AP) are used as probes to detect antibodies immobilized on nitrocellulose membranes. The AP-tagged proteins can be produced in sufficient amounts using transient transfection of eukaryotic cells with an appropriate cDNA fragment in a commercial AP-tag vector. The intrinsic thermo-stable phosphatase activity of a tagged protein obviates the need for its purification. To evaluate the method, three recently identified proteins of the FcR family, FCRLA, FCRL1, and FCRL4, were fused with AP and tested in a reaction with various polyclonal and monoclonal antibodies raised by immunization with bacterially produced antigens and peptide conjugates. All the three probes demonstrated high specificity in analysis of immune sera and hybridoma supernatants. Sensitivity of the assay varied depending on antibody tested and, in some cases, was in the subnanogram range. The results obtained show that AP-tagged proteins are useful tools for discrimination of antibodies against native epitopes when production of antigen in its native conformation is laborious and expensive.

  10. On the detection of multiple-binding modes of ligands to proteins, from biological, structural, and modeling data

    NASA Astrophysics Data System (ADS)

    Lewis, Paul J.; de Jonge, Marc; Daeyaert, Frits; Koymans, Luc; Vinkers, Maarten; Heeres, Jan; Janssen, Paul A. J.; Arnold, Eddy; Das, Kalyan; Clark, Art D., Jr.; Hughes, Stephen H.; Boyer, Paul L.; de Béthune, Marie-Pierre; Pauwels, Rudi; Andries, Koen; Kukla, Mike; Ludovici, Donald; De Corte, Bart; Kavash, Robert; Ho, Chih

    2003-02-01

    There are several indications that a given compound or a set of related compounds can bind in different modes to a specific binding site of a protein. This is especially evident from X-ray crystallographic structures of ligand-protein complexes. The availability of multiple binding modes of a ligand in a binding site may present an advantage in drug design when simultaneously optimizing several criteria. In the case of the design of anti-HIV compounds we observed that the more active compounds that are also resilient against mutation of the non-nucleoside binding site of HIV1-reverse transcriptase make use of more binding modes than the less active and resilient compounds.

  11. Characterization of nicotine binding to the rat brain P/sub 2/ preparation: the identification of multiple binding sites which include specific up-regulatory site(s)

    SciTech Connect

    Sloan, J.W.

    1984-01-01

    These studies show that nicotine binds to the rat brain P/sub 2/ preparation by saturable and reversible processes. Multiple binding sites were revealed by the configuration of saturation, kinetic and Scatchard plots. A least squares best fit of Scatchard data using nonlinear curve fitting programs confirmed the presence of a very high affinity site, an up-regulatory site, a high affinity site and one or two low affinity sites. Stereospecificity was demonstrated for the up-regulatory site where (+)-nicotine was more effective and for the high affinity site where (-)-nicotine had a higher affinity. Drugs which selectively up-regulate nicotine binding site(s) have been identified. Further, separate very high and high affinity sites were identified for (-)- and (+)-(/sup 3/H)nicotine, based on evidence that the site density for the (-)-isomer is 10 times greater than that for the (+)-isomer at these sites. Enhanced nicotine binding has been shown to be a statistically significant phenomenon which appears to be a consequence of drugs binding to specific site(s) which up-regulate binding at other site(s). Although Scatchard and Hill plots indicate positive cooperatively, up-regulation more adequately describes the function of these site(s). A separate up-regulatory site is suggested by the following: (1) Drugs vary markedly in their ability to up-regulate binding. (2) Both the affinity and the degree of up-regulation can be altered by structural changes in ligands. (3) Drugs with specificity for up-regulation have been identified. (4) Some drugs enhance binding in a dose-related manner. (5) Competition studies employing cold (-)- and (+)-nicotine against (-)- and (+)-(/sup 3/H)nicotine show that the isomers bind to separate sites which up-regulate binding at the (-)- and (+)-nicotine high affinity sites and in this regard (+)-nicotine is more specific and efficacious than (-)-nicotine.

  12. Multiple Evolutionary Origins of Ubiquitous Cu2+ and Zn2+ Binding in the S100 Protein Family

    PubMed Central

    Wheeler, Lucas C.; Donor, Micah T.; Prell, James S.

    2016-01-01

    The S100 proteins are a large family of signaling proteins that play critical roles in biology and disease. Many S100 proteins bind Zn2+, Cu2+, and/or Mn2+ as part of their biological functions; however, the evolutionary origins of binding remain obscure. One key question is whether divalent transition metal binding is ancestral, or instead arose independently on multiple lineages. To tackle this question, we combined phylogenetics with biophysical characterization of modern S100 proteins. We demonstrate an earlier origin for established S100 subfamilies than previously believed, and reveal that transition metal binding is widely distributed across the tree. Using isothermal titration calorimetry, we found that Cu2+ and Zn2+ binding are common features of the family: the full breadth of human S100 paralogs—as well as two early-branching S100 proteins found in the tunicate Oikopleura dioica—bind these metals with μM affinity and stoichiometries ranging from 1:1 to 3:1 (metal:protein). While binding is consistent across the tree, structural responses to binding are quite variable. Further, mutational analysis and structural modeling revealed that transition metal binding occurs at different sites in different S100 proteins. This is consistent with multiple origins of transition metal binding over the evolution of this protein family. Our work reveals an evolutionary pattern in which the overall phenotype of binding is a constant feature of S100 proteins, even while the site and mechanism of binding is evolutionarily labile. PMID:27764152

  13. Synergistic effects of multiple treatments, and both DNA and RNA direct bindings on, green tea catechins.

    PubMed

    Kuzuhara, Takashi; Tanabe, Akitoshi; Sei, Yoshihisa; Yamaguchi, Kentaro; Suganuma, Masami; Fujiki, Hirota

    2007-08-01

    This article reviews two main topics: (1) the synergistic effects of multiple treatments with green tea catechin and (2) the direct binding of (-)-epigallocatechin gallate (EGCG) to both DNA and RNA molecules. Japanese drink green tea throughout the day, so we studied whether multiple treatments of cells with EGCG would enhance the expression of apoptosis-related genes, such as growth arrest and DNA damage-inducible gene (GADD153) and cyclin-dependent kinase inhibitor gene (p21(waf1)): The results suggest that the synergistic enhancement of both GADD153 and p21(waf1) gene expressions by multiple treatments plays a significant role in human cancer prevention with green tea beverage. Our previous observation-that nucleic acids extracted from catechin-treated cells are colored-allowed us to speculate that catechins directly interact with nucleic acids. Surface plasmon resonance assay (Biacore) indicated that four catechins, EGCG, (-)-epicatechin gallate (ECG), (+)-gallocatechin gallate (GCG), and (+)-catechin gallate (CG), bound to DNA oligomers. Cold spray ionization mass spectrometry (CSI-MS) analysis showed that one to three EGCG molecules bound to single-stranded 18 mers of DNA and RNA. Moreover, one or two molecules of EGCG bound to double-stranded AG:CT oligomers of various nucleotide lengths. Double-stranded DNA (dsDNA) oligomers were detected only as EGCG-bound forms at high temperature, whereas at low temperature both the free and bound forms were detected, suggesting that EGCG protects double-stranded DNA oligomers from double-stranded melting into single-stranded DNA. We assume that catechins accumulate in both double-stranded DNA and RNA molecules through multiple administrations of green tea beverage in in vivo, and that the accumulated green tea catechins play a significant role for human cancer prevention.

  14. Antibody recognition in multiple sclerosis and Rett syndrome using a collection of linear and cyclic N-glucosylated antigenic probes.

    PubMed

    Real Fernández, Feliciana; Di Pisa, Margherita; Rossi, Giada; Auberger, Nicolas; Lequin, Olivier; Larregola, Maud; Benchohra, Amina; Mansuy, Christelle; Chassaing, Gerard; Lolli, Francesco; Hayek, Joussef; Lavielle, Solange; Rovero, Paolo; Mallet, Jean-Maurice; Papini, Anna Maria

    2015-09-01

    Antibody detection in autoimmune disorders, such as multiple sclerosis (MS) and Rett syndrome (RTT) can be achieved more efficiently using synthetic peptides. The previously developed synthetic antigenic probe CSF114(Glc), a type I' β-turn N-glucosylated peptide structure, is able to recognize antibodies in MS and RTT patients' sera as a sign of immune system derangement. We report herein the design, synthesis, conformational analysis, and immunological evaluation of a collection of glycopeptide analogs of CSF114(Glc) to characterize the specific role of secondary structures in MS and RTT antibody recognition. Therefore, we synthesized a series of linear and cyclic short glucosylated sequences, mimicking different β-turn conformations, which were evaluated in inhibition enzyme-linked immunosorbent assays (ELISA). Calculated IC50 ranking analysis allowed the selection of the candidate octapeptide containing two (S)-2-amino-4-pentynoic acid (L-Pra) residues Ac-Pra-RRN(Glc)GHT-Pra-NH2 , with an IC50 in the nanomolar range. This peptide was adequately modified for solid-phase ELISA (SP-ELISA) and surface plasmon resonance (SPR) experiments. Pra-RRN(Glc)GHT-Pra-NH2 peptide was modified with an alkyl chain linked to the N-terminus, favoring immobilization on solid phase in SP-ELISA and differentiating IgG antibody recognition between patients and healthy blood donors with a high specificity. However, this peptide displayed a loss in IgM specificity and sensitivity. Moreover, an analog was obtained after modification of the octapeptide candidate Ac-Pra-RRN(Glc)GHT-Pra-NH2 to favor immobilization on SPR sensor chips. SPR technology allowed us to determine its affinity (KD  = 16.4 nM), 2.3 times lower than the affinity of the original glucopeptide CSF114(Glc) (KD  = 7.1 nM).

  15. Multiple Plasmodium falciparum Merozoite Surface Protein 1 Complexes Mediate Merozoite Binding to Human Erythrocytes.

    PubMed

    Lin, Clara S; Uboldi, Alessandro D; Epp, Christian; Bujard, Hermann; Tsuboi, Takafumi; Czabotar, Peter E; Cowman, Alan F

    2016-04-01

    Successful invasion of human erythrocytes byPlasmodium falciparummerozoites is required for infection of the host and parasite survival. The early stages of invasion are mediated via merozoite surface proteins that interact with human erythrocytes. The nature of these interactions are currently not well understood, but it is known that merozoite surface protein 1 (MSP1) is critical for successful erythrocyte invasion. Here we show that the peripheral merozoite surface proteins MSP3, MSP6, MSPDBL1, MSPDBL2, and MSP7 bind directly to MSP1, but independently of each other, to form multiple forms of the MSP1 complex on the parasite surface. These complexes have overlapping functions that interact directly with human erythrocytes. We also show that targeting the p83 fragment of MSP1 using inhibitory antibodies inhibits all forms of MSP1 complexes and disrupts parasite growthin vitro.

  16. Hedgehog Pathway Modulation by Multiple Lipid Binding Sites on the Smoothened Effector of Signal Response

    PubMed Central

    Myers, Benjamin R.; Sever, Navdar; Chong, Yong Chun; Kim, James; Belani, Jitendra D.; Rychnovsky, Scott; Bazan, J. Fernando; Beachy, Philip A.

    2014-01-01

    Summary Hedgehog (Hh) signaling during development and in postembryonic tissues requires activation of the 7TM oncoprotein Smoothened (Smo), by mechanisms that may involve endogenous lipidic modulators. Exogenous Smo ligands previously identified include the plant sterol cyclopamine (and its therapeutically useful synthetic mimics) and hydroxylated cholesterol derivatives (oxysterols); Smo is also highly sensitive to cellular sterol levels. The relationships between these effects are unclear because the relevant Smo structural determinants are unknown. We identify the conserved extracellular cysteine rich domain (CRD) as the site of action for oxysterols on Smo, involving residues structurally analogous to those contacting the Wnt lipid adduct in the homologous Frizzled CRD; this modulatory effect is distinct from that of cyclopamine mimics, from Hh-mediated regulation, and from the permissive action of cellular sterol pools. These results imply that Hh pathway activity is sensitive to lipid binding at several Smo sites, suggesting mechanisms for tuning by multiple physiological inputs. PMID:23954590

  17. MONKEY: Identifying conserved transcription-factor binding sitesin multiple alignments using a binding site-specific evolutionarymodel

    SciTech Connect

    Moses, Alan M.; Chiang, Derek Y.; Pollard, Daniel A.; Iyer, VenkyN.; Eisen, Michael B.

    2004-10-28

    We introduce a method (MONKEY) to identify conserved transcription-factor binding sites in multispecies alignments. MONKEY employs probabilistic models of factor specificity and binding site evolution, on which basis we compute the likelihood that putative sites are conserved and assign statistical significance to each hit. Using genomes from the genus Saccharomyces, we illustrate how the significance of real sites increases with evolutionary distance and explore the relationship between conservation and function.

  18. Multiple ion binding sites in Ih channels of rod photoreceptors from tiger salamanders.

    PubMed

    Wollmuth, L P

    1995-05-01

    The mechanism of ion permeation in K+/Na(+)-permeable Ih channels of tiger salamander rod photoreceptors was investigated using the whole-cell voltage-clamp technique. Ih channels showed features indicative of pores with multiple ion binding sites: in mixtures of K+ and thallium (T1+), the amplitude of the time-dependent current showed an anomalous mole fraction dependence, and K+ permeation was blocked by other permeant ions (with K0.5 values: T1+, 44 microM; Rb+, 220 microM and NH4+, 1100 microM) as well as by essentially impermeant ions (Cs+, 22 microM Ba2+, 9200 microM) which apparently block Ih by binding in the pore. In contrast, Na+ had little blocking action on K+ permeation. The block by all of these ions was sensitive to external K+ with the block by Cs+ being the least sensitive. Na+ was more effective than K+ in reducing the block by T1+, Rb+ and NH4+, but was less effective for the block by Cs+ and Ba2+. The blocking action of Cs+ and Ba2+ was non-competitive, suggesting that they block Ih channels at independent sites. Based on the efficacy of block by the different ions, the degree to which K+ and Na+ antagonize this block and the noncompetitive blocking action of Cs+ and Ba2+, the permeation pathway of Ih channels appears to contain at least three ion binding sites with at least two sites having a higher affinity for K+ over Na+ and another site with a higher affinity for Na+ over K+.

  19. Transient Protein-Protein Interaction of the SH3-Peptide Complex via Closely Located Multiple Binding Sites

    PubMed Central

    Hahn, Seungsoo; Kim, Dongsup

    2012-01-01

    Protein-protein interactions play an essential role in cellular processes. Certain proteins form stable complexes with their partner proteins, whereas others function by forming transient complexes. The conventional protein-protein interaction model describes an interaction between two proteins under the assumption that a protein binds to its partner protein through a single binding site. In this study, we improved the conventional interaction model by developing a Multiple-Site (MS) model in which a protein binds to its partner protein through closely located multiple binding sites on a surface of the partner protein by transiently docking at each binding site with individual binding free energies. To test this model, we used the protein-protein interaction mediated by Src homology 3 (SH3) domains. SH3 domains recognize their partners via a weak, transient interaction and are therefore promiscuous in nature. Because the MS model requires large amounts of data compared with the conventional interaction model, we used experimental data from the positionally addressable syntheses of peptides on cellulose membranes (SPOT-synthesis) technique. From the analysis of the experimental data, individual binding free energies for each binding site of peptides were extracted. A comparison of the individual binding free energies from the analysis with those from atomistic force fields gave a correlation coefficient of 0.66. Furthermore, application of the MS model to 10 SH3 domains lowers the prediction error by up to 9% compared with the conventional interaction model. This improvement in prediction originates from a more realistic description of complex formation than the conventional interaction model. The results suggested that, in many cases, SH3 domains increased the protein complex population through multiple binding sites of their partner proteins. Our study indicates that the consideration of general complex formation is important for the accurate description of

  20. An intermolecular binding mechanism involving multiple LysM domains mediates carbohydrate recognition by an endopeptidase

    SciTech Connect

    Wong, Jaslyn E. M. M.; Midtgaard, Søren Roi; Gysel, Kira; Thygesen, Mikkel B.; Sørensen, Kasper K.; Jensen, Knud J.; Stougaard, Jens; Thirup, Søren; Blaise, Mickaël

    2015-03-01

    The crystal and solution structures of the T. thermophilus NlpC/P60 d, l-endopeptidase as well as the co-crystal structure of its N-terminal LysM domains bound to chitohexaose allow a proposal to be made regarding how the enzyme recognizes peptidoglycan. LysM domains, which are frequently present as repetitive entities in both bacterial and plant proteins, are known to interact with carbohydrates containing N-acetylglucosamine (GlcNAc) moieties, such as chitin and peptidoglycan. In bacteria, the functional significance of the involvement of multiple LysM domains in substrate binding has so far lacked support from high-resolution structures of ligand-bound complexes. Here, a structural study of the Thermus thermophilus NlpC/P60 endopeptidase containing two LysM domains is presented. The crystal structure and small-angle X-ray scattering solution studies of this endopeptidase revealed the presence of a homodimer. The structure of the two LysM domains co-crystallized with N-acetyl-chitohexaose revealed a new intermolecular binding mode that may explain the differential interaction between LysM domains and short or long chitin oligomers. By combining the structural information with the three-dimensional model of peptidoglycan, a model suggesting how protein dimerization enhances the recognition of peptidoglycan is proposed.

  1. Properties of natural and artificial proteins displaying multiple ubiquitin-binding domains.

    PubMed

    Lopitz-Otsoa, Fernando; Rodríguez, Manuel S; Aillet, Fabienne

    2010-02-01

    Ubiquitylation provides a rapid alternative to control the activity of crucial cellular factors through the remodelling of a target protein. Diverse ubiquitin chains are recognized by domains with affinity for UBDs (ubiquitin-binding domains) present in receptor/effector proteins. Interestingly, some proteins contain more than one UBD and the preservation of this structure in many species suggests an evolutionary advantage for this topology. Here, we review some typical proteins that naturally contain more than one UBD and emphasize how such structures contribute to the mechanism they mediate. Characteristics such as higher affinities for polyubiquitin chains and chain-linkage preferences can be replicated by the TUBEs (tandem ubiquitin-binding entities). Furthermore, TUBEs show two additional properties: protection of ubiquitylated substrates from deubiquitylating enzymes and interference with the action of the proteasome. Consequently, TUBEs behave as 'ubiquitin traps' that efficiently capture endogenous ubiquitylated proteins. Interpretations and hypothetical models proposed by different groups to understand the synchronous action of multiple UBDs are discussed herein.

  2. Protein binding of isofluorophate in vivo after coexposure to multiple chemicals.

    PubMed Central

    Vogel, John S; Keating, Garrett A; Buchholz, Bruce A

    2002-01-01

    Full toxicologic profiles of chemical mixtures, including dose-response extrapolations to realistic exposures, is a prohibitive analytical problem, even for a restricted class of chemicals. We present an approach to probing in vivo interactions of pesticide mixtures at relevant low doses using a monitor compound to report the response of biochemical pathways shared by mixture components. We use accelerator mass spectrometry (AMS) to quantify [14C]-diisopropylfluorophosphate as a tracer at attomole levels with 1-5% precision after coexposures to parathion (PTN), permethrin (PER), and pyridostigmine bromide separately and in conjunction. Pyridostigmine shows an overall protective effect against tracer binding in plasma, red blood cells, muscle, and brain that is not explained as competitive protein binding. PTN and PER induce a significant 25-30% increase in the amount of tracer reaching the brain with or without pyridostigmine. The sensitivity of AMS for isotope-labeled tracer compounds can be used to probe the physiologic responses of specific biochemical pathways to multiple compound exposures. PMID:12634135

  3. Multiple DNA binding activities of the novel site-specific recombinase, Piv, from Moraxella lacunata.

    PubMed

    Tobiason, D M; Lenich, A G; Glasgow, A C

    1999-04-02

    The recombinase, Piv, is essential for site-specific DNA inversion of the type IV pilin DNA segment in Moraxella lacunata and Moraxella bovis. Piv shows significant homology with the transposases of the IS110/IS492 family of insertion elements, but, surprisingly, Piv contains none of the conserved amino acid motifs of the lambda Int or Hin/Res families of site-specific recombinases. Therefore, Piv may mediate site-specific recombination by a novel mechanism. To begin to determine how Piv may assemble a synaptic nucleoprotein structure for DNA cleavage and strand exchange, we have characterized the interaction of Piv with the DNA inversion region of M. lacunata. Gel shift and nuclease/chemical protection assays, competition and dissociation rate analyses, and cooperativity studies indicate that Piv binds two distinct recognition sequences. One recognition sequence, found at multiple sites within and outside of the invertible segment, is bound by Piv protomers with high affinity. The second recognition sequence is located at the recombination cross-over sites at the ends of the invertible element; Piv interacts with this sequence as an oligomer with apparent low affinity. A model is proposed for the role of the different Piv binding sites of the M. lacunata inversion region in the formation of an active synaptosome.

  4. A Compendium of Caenorhabditis elegans RNA Binding Proteins Predicts Extensive Regulation at Multiple Levels

    PubMed Central

    Tamburino, Alex M.; Ryder, Sean P.; Walhout, Albertha J. M.

    2013-01-01

    Gene expression is regulated at multiple levels, including transcription and translation, as well as mRNA and protein stability. Although systems-level functions of transcription factors and microRNAs are rapidly being characterized, few studies have focused on the posttranscriptional gene regulation by RNA binding proteins (RBPs). RBPs are important to many aspects of gene regulation. Thus, it is essential to know which genes encode RBPs, which RBPs regulate which gene(s), and how RBP genes are themselves regulated. Here we provide a comprehensive compendium of RBPs from the nematode Caenorhabditis elegans (wRBP1.0). We predict that as many as 887 (4.4%) of C. elegans genes may encode RBPs ~250 of which likely function in a gene-specific manner. In addition, we find that RBPs, and most notably gene-specific RBPs, are themselves enriched for binding and modification by regulatory proteins, indicating the potential for extensive regulation of RBPs at many different levels. wRBP1.0 will provide a significant contribution toward the comprehensive delineation of posttranscriptional regulatory networks and will provide a resource for further studies regulation by RBPs. PMID:23390605

  5. Activation of the pp60c-src kinase by middle T antigen binding or by dephosphorylation.

    PubMed Central

    Courtneidge, S A

    1985-01-01

    The transforming protein of polyoma virus, middle T antigen, associates with the protein tyrosine kinase pp60c-src, and analysis of mutants of middle T suggests that this complex plays an important role in transformation by polyoma. It has recently been reported that pp60c-src from polyoma virus-transformed cells has enhanced tyrosine kinase activity in vitro. The data presented here confirm these findings and show that the enhanced kinase activity of pp60c-src is due to an increase in the Vmax of the enzyme. Sucrose density gradient analysis demonstrates that only the form of pp60c-src which is bound to middle T antigen is activated. The difference in enzyme activity between pp60c-src from normal and middle T-transformed cells is more marked when the enzyme is prepared from lysates containing the phosphotyrosine protein phosphatase inhibitor, sodium orthovanadate. pp60c-src from middle T transformed cells is unaffected, but pp60c-src from normal cells has reduced kinase activity if dephosphorylation is prevented. The kinase activity of pp60c-src thus appears to be regulated by its degree of phosphorylation at tyrosine, and data are presented which support this hypothesis. pp60c-src is the first example of a protein tyrosine kinase whose activity is inhibited by phosphorylation at tyrosine. Middle T antigen may increase the kinase activity of pp60c-src by preventing phosphorylation at this regulatory site. Images Fig. 4. Fig. 7. Fig. 8. PMID:2411538

  6. Binding Preference of Anti-HEV Antibodies in Sera Collected in Algeria for Antigens Derived From HEV Genotype 1‏

    PubMed Central

    Behloul, Nouredine; Zhang, Min; Meng, Jihong

    2016-01-01

    Background Two hepatitis E virus (HEV) outbreaks occurred in Algeria (1979 - 1980 and 1987 - 1988). However, to date, no study on the prevalence of anti-HEV antibodies has been conducted in Algeria, and the genotype of the circulating strains remains unclear. Objectives This study was conducted to investigate the presence of anti- HEV antibodies among outpatients and blood donors in three different hospitals in Northern Algeria and to determine the genotype of the circulating strains through the characterization of the immunoreactivity of anti-HEV antibodies. Methods A total of 590 blood samples (379 from blood donors and 211 from outpatients) were collected in three health facilities in Northern Algeria and assessed for anti-HEV antibodies using an in-house double-antigen sandwich immunoassay. HEV open reading frame 2 recombinant proteins p166 (aa 452 - 617) generated from the four HEV genotypes were used as antigens. The genotype of the strains circulating in Algeria was predicted by an indirect ELISA by assessing the anti-HEV antibodies in serially diluted positive sera using the different p166 proteins. Results Anti-HEV antibodies were detected in 20.17% of the samples. A significant correlation was found between the age of the subjects and the presence of anti-HEV antibodies (P < 0.001). Among blood donors, 83 (21.9%) were diagnosed positive for anti-HEV antibodies with two cases weakly positive for anti-HEV IgM antibodies. Moreover, 9.9% of the subjects aged less than 25 years old (born after the last HEV outbreak) were positive for anti-HEV antibodies. The indirect ELISA revealed that the anti-HEV antibodies within the positive sera reacted more strongly against the p166 antigens generated from genotype 1. Conclusions The present findings reveal a relatively high presence of anti-HEV IgGs and clearly indicate that HEV infection is still present in Northern Algeria. Further, the prediction of HEV genotype using different antigens generated from the different

  7. An integrated top-down and bottom-up proteomic approach to characterize the antigen binding fragment of antibodies

    SciTech Connect

    Dekker, Leendert J.; Wu, Si; vanDuijn, Martijn M.; Tolic, Nikola; Stingl, Christoph; Zhao, Rui; Luider, Theo N.; Pasa-Tolic, Ljiljana

    2014-05-31

    We have previously shown that different individuals exposed to the same antigen produce antibodies with identical mutations in their complementarity determining regions (CDR), suggesting that CDR tryptic peptides can serve as biomarkers for disease diagnosis and prognosis. Complete Fabs derived from disease specific antibodies have even higher potential; they could potentially be used for disease treatment and are required to identify the antigens towards which the antibodies are directed. However, complete Fab sequence characterization via LC-MS analysis of tryptic peptides (i.e. bottom-up) has proven to be impractical for mixtures of antibodies. To tackle this challenge, we have developed an integrated bottom-up and top-down MS approach, employing 2D chromatography coupled with Fourier transform mass spectrometry (FTMS), and applied this approach for full characterization of the variable parts of two pharmaceutical monoclonal antibodies with sensitivity comparable to the bottom-up standard. These efforts represent an essential step towards the identification of disease specific antibodies in patient samples with potentially significant clinical impact.

  8. Prolonged antigen presentation by immune complex-binding dendritic cells programs the proliferative capacity of memory CD8 T cells.

    PubMed

    León, Beatriz; Ballesteros-Tato, André; Randall, Troy D; Lund, Frances E

    2014-07-28

    The commitment of naive CD8 T cells to effector or memory cell fates can occur after a single day of antigenic stimulation even though virus-derived antigens (Ags) are still presented by DCs long after acute infection is resolved. However, the effects of extended Ag presentation on CD8 T cells are undefined and the mechanisms that regulate prolonged Ag presentation are unknown. We showed that the sustained presentation of two different epitopes from influenza virus by DCs prevented the premature contraction of the primary virus-specific CD8 T cell response. Although prolonged Ag presentation did not alter the number of memory CD8 T cells that developed, it was essential for programming the capacity of these cells to proliferate, produce cytokines, and protect the host after secondary challenge. Importantly, prolonged Ag presentation by DCs was dependent on virus-specific, isotype-switched antibodies (Abs) that facilitated the capture and cross-presentation of viral Ags by FcγR-expressing DCs. Collectively, our results demonstrate that B cells and Abs can regulate the quality and functionality of a subset of antiviral CD8 T cell memory responses and do so by promoting sustained Ag presentation by DCs during the contraction phase of the primary T cell response.

  9. Comprehensive analysis of blood group antigen binding to classical and El Tor cholera toxin B-pentamers by NMR.

    PubMed

    Vasile, Francesca; Reina, José J; Potenza, Donatella; Heggelund, Julie E; Mackenzie, Alasdair; Krengel, Ute; Bernardi, Anna

    2014-08-01

    Cholera is a diarrheal disease responsible for the deaths of thousands, possibly even hundreds of thousands of people every year, and its impact is predicted to further increase with climate change. It has been known for decades that blood group O individuals suffer more severe symptoms of cholera compared with individuals with other blood groups (A, B and AB). The observed blood group dependence is likely to be caused by the major virulence factor of Vibrio cholerae, the cholera toxin (CT). Here, we investigate the binding of ABH blood group determinants to both classical and El Tor CTB-pentamers using saturation transfer difference NMR and show that all three blood group determinants bind to both toxin variants. Although the details of the interactions differ, we see no large differences between the two toxin genotypes and observe very similar binding constants. We also show that the blood group determinants bind to a site distinct from that of the primary receptor, GM1. Transferred NOESY data confirm that the conformations of the blood group determinants in complex with both toxin variants are similar to those of reported X-ray and solution structures. Taken together, this detailed analysis provides a framework for the interpretation of the epidemiological data linking the severity of cholera infection and an individual's blood group, and brings us one step closer to understanding the molecular basis of cholera blood group dependence.

  10. Specific T-cell recognition of the merozoite proteins rhoptry-associated protein 1 and erythrocyte-binding antigen 1 of Plasmodium falciparum.

    PubMed Central

    Jakobsen, P H; Hviid, L; Theander, T G; Afare, E A; Ridley, R G; Heegaard, P M; Stuber, D; Dalsgaard, K; Nkrumah, F K

    1993-01-01

    The merozoite proteins merozoite surface protein 1 (MSP-1) and rhoptry-associated protein 1 (RAP-1) and synthetic peptides containing sequences of MSP-1, RAP-1, and erythrocyte-binding antigen 1, induced in vitro proliferative responses of lymphocytes collected from Ghanaian blood donors living in an area with a high rate of transmission of malaria. Lymphocytes from a large proportion of the Ghanaian blood donors proliferated in response to the RAP-1 peptide, unlike those of Danish control blood donors, indicating that this sequence contains a malaria-specific T-cell epitope broadly recognized by individuals living in an area with a high transmission rate of malaria. Most of the donor plasma samples tested contained immunoglobulin G (IgG) and IgM antibodies recognizing the merozoite proteins, while only a minority showed high IgG reactivity to the synthetic peptides. PMID:8418048

  11. DNA-PK/Ku complex binds to latency-associated nuclear antigen and negatively regulates Kaposi's sarcoma-associated herpesvirus latent replication

    SciTech Connect

    Cha, Seho; Lim, Chunghun; Lee, Jae Young; Song, Yoon-Jae; Park, Junsoo; Choe, Joonho; Seo, Taegun

    2010-04-16

    During latent infection, latency-associated nuclear antigen (LANA) of Kaposi's sarcoma-associated herpesvirus (KSHV) plays important roles in episomal persistence and replication. Several host factors are associated with KSHV latent replication. Here, we show that the catalytic subunit of DNA protein kinase (DNA-PKcs), Ku70, and Ku86 bind the N-terminal region of LANA. LANA was phosphorylated by DNA-PK and overexpression of Ku70, but not Ku86, impaired transient replication. The efficiency of transient replication was significantly increased in the HCT116 (Ku86 +/-) cell line, compared to the HCT116 (Ku86 +/+) cell line, suggesting that the DNA-PK/Ku complex negatively regulates KSHV latent replication.

  12. Multiple ligand simultaneous docking (MLSD): A novel approach to study the effect of inhibitors on substrate binding to PPO.

    PubMed

    Raghavendra, S; Aditya Rao, S J; Kumar, Vadlapudi; Ramesh, C K

    2015-12-01

    Multiple ligand simultaneous docking, a computational approach is used to study the concurrent interactions between substrate and the macromolecule binding together in the presence of an inhibitor. The present investigation deals with the study of the effect of different inhibitors on binding of substrate to the protein Polyphenoloxidase (PPO). The protein was isolated from Mucuna pruriens and confirmed as tyrosinases involved in L-DOPA production. The activity was measured using different inhibitors at different concentrations taking catechol as substrate. A high-throughput binding study was conducted to compare the binding orientations of individual ligands and multiple ligands employing Autodock 4.2. The results of single substrate docking showed a better binding of urea with the binding energy of -3.48 kJ mol(-1) and inter molecular energy of -3.48 kJ mol(-1) while the results of MLSD revealed that ascorbic acid combined with the substrate showed better inhibition with a decreased binding energy of -2.37 kJ mol(-1).

  13. Differences in electrostatic properties at antibody-antigen binding sites: implications for specificity and cross-reactivity.

    PubMed Central

    Sinha, Neeti; Mohan, Srinivasan; Lipschultz, Claudia A; Smith-Gill, Sandra J

    2002-01-01

    Antibodies HyHEL8, HyHEL10, and HyHEL26 (HH8, HH10, and HH26, respectively) recognize highly overlapping epitopes on hen egg-white lysozyme (HEL) with similar affinities, but with different specificities. HH8 binding to HEL is least sensitive toward mutations in the epitope and thus is most cross-reactive, HH26 is most sensitive, whereas the sensitivity of HH10 lies in between HH8 and HH26. Here we have investigated intra- and intermolecular interactions in three antibody-protein complexes: theoretical models of HH8-HEL and HH26-HEL complexes, and the x-ray crystal structure of HH10-HEL complex. Our results show that HH8-HEL has the lowest number and HH26-HEL has the highest number of intra- and intermolecular hydrogen bonds. The number of salt bridges is lowest in HH8-HEL and highest in HH26-HEL. The binding site salt bridges in HH8-HEL are not networked, and are weak, whereas, in HH26-HEL, an intramolecular salt-bridge triad at the binding site is networked to an intermolecular triad to form a pentad. The pentad and each salt bridge of this pentad are exceptionally stabilizing. The number of binding-site salt bridges and their strengths are intermediate in HH10-HEL, with an intramolecular triad. Our further calculations show that the electrostatic component contributes the most to binding energy of HH26-HEL, whereas the hydrophobic component contributes the most in the case of HH8-HEL. A "hot-spot" epitope residue Lys-97 forms an intermolecular salt bridge in HH8-HEL, and participates in the intermolecular pentad in the HH26-HEL complex. Mutant modeling and surface plasmon resonance (SPR) studies show that this hot-spot epitope residue contributes significantly more to the binding than an adjacent epitope residue, Lys-96, which does not form a salt bridge in any of the three HH-HEL complexes. Furthermore, the effect of mutating Lys-97 is most severe in HH26-HEL. Lys-96, being a charged residue, also contributes the most in HH26-HEL among the three complexes. The

  14. [Application of Chimeric Antigen Receptor-Modified CAR-T/NK Cells to Treatment of Multiple Myeloma].

    PubMed

    Wang, Lei; Ou, jian-Feng; Bai, Hai

    2015-04-01

    Chimeric antigen receptor(CAR) is a synthesized transmembrane protein, which redirects the modified cells through specific or associated antigen on tumor cells. CAR-modified T/NK cells, especially CAR-T cells, are a new tool of rapidly developing of adoptive immunotherapy of tumor in recent years, they give T/NK cells the targeting cytotoxic activity and can overcome the tumor immunosuppressive microenvironment and break the state of the host immune tolerance. CAR combines the single-chain antibody to tumor-associated antigen with T/NK cells' activated motifs, giving T/NK cells' tumor targeting activity, so enhancing their cytotoxic activity and lasting the vitality by gene transduction. In this article the CAR development, comparison of CAR-T and CAR-NK cells, surface markers on MM cells and use of CAR in MM, and CAR perspectives are summarized.

  15. Recombinant measles viruses expressing single or multiple antigens of human immunodeficiency virus (HIV-1) induce cellular and humoral immune responses.

    PubMed

    Liniger, Matthias; Zuniga, Armando; Morin, Teldja Neige Azzouz; Combardiere, Behazine; Marty, Rene; Wiegand, Marian; Ilter, Orhan; Knuchel, Marlyse; Naim, Hussein Y

    2009-05-26

    Recombinant measles viruses (rMV) based on the live attenuated measles vaccine strain (MVb) expressing antigens of HIV-1 clade B were generated by reverse genetics. Recombinants expressing single or double antigens of HIV-1 (rMV-HIV) were genetically highly stable on human diploid cells. The production process of these viruses was essentially similar to the parental MV strain, yielding comparative end titers. Immunization of tg-mice by different regimens and formulations showed potent humoral and cellular immune responses against MV and HIV antigens. Recombinant MV-HIV expressing Gag protein conferred protective immunity in tg-mice after a high-dose pseudochallenge with recombinant vaccinia virus. In addition, rMV-HIV boosted anti-HIV antibodies, in the presence of pre-existing anti-vector antibodies.

  16. High-Affinity Rb Binding, p53 Inhibition, Subcellular Localization, and Transformation by Wild-Type or Tumor-Derived Shortened Merkel Cell Polyomavirus Large T Antigens

    PubMed Central

    Borchert, Sophie; Czech-Sioli, Manja; Neumann, Friederike; Schmidt, Claudia; Wimmer, Peter; Dobner, Thomas

    2014-01-01

    ABSTRACT Interference with tumor suppressor pathways by polyomavirus-encoded tumor antigens (T-Ags) can result in transformation. Consequently, it is thought that T-Ags encoded by Merkel cell polyomavirus (MCPyV), a virus integrated in ∼90% of all Merkel cell carcinoma (MCC) cases, are major contributors to tumorigenesis. The MCPyV large T-Ag (LT-Ag) has preserved the key functional domains present in all family members but has also acquired unique regions that flank the LxCxE motif. As these regions may mediate unique functions, or may modulate those shared with T-Ags of other polyomaviruses, functional studies of MCPyV T-Ags are required. Here, we have performed a comparative study of full-length or MCC-derived truncated LT-Ags with regard to their biochemical characteristics, their ability to bind to retinoblastoma (Rb) and p53 proteins, and their transforming potential. We provide evidence that full-length MCPyV LT-Ag may not directly bind to p53 but nevertheless can significantly reduce p53-dependent transcription in reporter assays. Although early region expression constructs harboring either full-length or MCC-derived truncated LT-Ag genes can transform primary baby rat kidney cells, truncated LT-Ags do not bind to p53 or reduce p53-dependent transcription. Interestingly, shortened LT-Ags exhibit a very high binding affinity for Rb, as shown by coimmunoprecipitation and in vitro binding studies. Additionally, we show that truncated MCPyV LT-Ag proteins are expressed at higher levels than those for the wild-type protein and are able to partially relocalize Rb to the cytoplasm, indicating that truncated LT proteins may have gained additional features that distinguish them from the full-length protein. IMPORTANCE MCPyV is one of the 12 known polyomaviruses that naturally infect humans. Among these, it is of particular interest since it is the only human polyomavirus known to be involved in tumorigenesis. MCPyV is thought to be causally linked to MCC, a rare

  17. Crystal structure of the antigen-binding fragment of a monoclonal antibody specific for the multidrug-resistance-linked ABC transporter human P-glycoprotein.

    PubMed

    Esser, Lothar; Shukla, Suneet; Zhou, Fei; Ambudkar, Suresh V; Xia, Di

    2016-08-01

    P-glycoprotein (P-gp) is a polyspecific ATP-dependent transporter linked to multidrug resistance in cancers that plays important roles in the pharmacokinetics of a large number of drugs. The drug-resistance phenotype of P-gp can be modulated by the monoclonal antibody UIC2, which specifically recognizes human P-gp in a conformation-dependent manner. Here, the purification, sequence determination and high-resolution structure of the Fab fragment of UIC2 (UIC2/Fab) are reported. Purified UIC2/Fab binds human P-gp with a 1:1 stoichiometry. Crystals of UIC2/Fab are triclinic (space group P1), with unit-cell parameters a = 40.67, b = 44.91, c = 58.09 Å, α = 97.62, β = 99.10, γ = 94.09°, and diffracted X-rays to 1.6 Å resolution. The structure was determined by molecular replacement and refined to 1.65 Å resolution. The asymmetric unit contains one molecule of UIC2/Fab, which exhibits a positively charged antigen-binding surface, suggesting that it might recognize an oppositely charged extracellular epitope of P-gp.

  18. Tumor-promoting function and prognostic significance of the RNA-binding protein T-cell intracellular antigen-1 in esophageal squamous cell carcinoma.

    PubMed

    Hamada, Junichi; Shoda, Katsutoshi; Masuda, Kiyoshi; Fujita, Yuji; Naruto, Takuya; Kohmoto, Tomohiro; Miyakami, Yuko; Watanabe, Miki; Kudo, Yasusei; Fujiwara, Hitoshi; Ichikawa, Daisuke; Otsuji, Eigo; Imoto, Issei

    2016-03-29

    T-cell intracellular antigen-1 (TIA1) is an RNA-binding protein involved in many regulatory aspects of mRNA metabolism. Here, we report previously unknown tumor-promoting activity of TIA1, which seems to be associated with its isoform-specific molecular distribution and regulation of a set of cancer-related transcripts, in esophageal squamous cell carcinoma (ESCC). Immunohistochemical overexpression of TIA1 ectopically localized in the cytoplasm of tumor cells was an independent prognosticator for worse overall survival in a cohort of 143 ESCC patients. Knockdown of TIA1 inhibited proliferation of ESCC cells. By exogenously introducing each of two major isoforms, TIA1a and TIA1b, only TIA1a, which was localized to both the nucleus and cytoplasm, promoted anchorage-dependent and anchorage-independent ESCC cell proliferation. Ribonucleoprotein immunoprecipitation, followed by microarray analysis or massive-parallel sequencing, identified a set of TIA1-binding mRNAs, including SKP2 and CCNA2. TIA1 increased SKP2 and CCNA2 protein levels through the suppression of mRNA decay and translational induction, respectively. Our findings uncover a novel oncogenic function of TIA1 in esophageal tumorigenesis, and implicate its use as a marker for prognostic evaluation and as a therapeutic target in ESCC.

  19. Thermoregulation of Meningococcal fHbp, an Important Virulence Factor and Vaccine Antigen, Is Mediated by Anti-ribosomal Binding Site Sequences in the Open Reading Frame

    PubMed Central

    Loh, Edmund; Lavender, Hayley; Tan, Felicia; Tracy, Alexander; Tang, Christoph M.

    2016-01-01

    During colonisation of the upper respiratory tract, bacteria are exposed to gradients of temperatures. Neisseria meningitidis is often present in the nasopharynx of healthy individuals, yet can occasionally cause severe disseminated disease. The meningococcus can evade the human complement system using a range of strategies that include recruitment of the negative complement regulator, factor H (CFH) via factor H binding protein (fHbp). We have shown previously that fHbp levels are influenced by the ambient temperature, with more fHbp produced at higher temperatures (i.e. at 37°C compared with 30°C). Here we further characterise the mechanisms underlying thermoregulation of fHbp, which occurs gradually over a physiologically relevant range of temperatures. We show that fHbp thermoregulation is not dependent on the promoters governing transcription of the bi- or mono-cistronic fHbp mRNA, or on meningococcal specific transcription factors. Instead, fHbp thermoregulation requires sequences located in the translated region of the mono-cistronic fHbp mRNA. Site-directed mutagenesis demonstrated that two anti-ribosomal binding sequences within the coding region of the fHbp transcript are involved in fHbp thermoregulation. Our results shed further light on mechanisms underlying the control of the production of this important virulence factor and vaccine antigen. PMID:27560142

  20. Drosophila proliferating cell nuclear antigen (cyclin) gene: structure, expression during development, and specific binding of homeodomain proteins to its 5'-flanking region.

    PubMed Central

    Yamaguchi, M; Nishida, Y; Moriuchi, T; Hirose, F; Hui, C C; Suzuki, Y; Matsukage, A

    1990-01-01

    The genomic and cDNA clones for a Drosophila melanogaster proliferating cell nuclear antigen (PCNA) (cyclin) were isolated and sequenced. The coding sequence for a 260-amino-acid residue polypeptide was interrupted by a single short intron of 60 base pairs (bp), and about 70% of the deduced amino acid sequence of the Drosophila PCNA was identical to the rat and human PCNA polypeptides, with conserved unique repeats of leucine in the C-terminal region. Genomic Southern blot hybridization analysis indicates the presence of a single gene for PCNA per genome. The PCNA mRNA was detected at a high level in adult ovaries, unfertilized eggs, and early embryos and at low levels in the other developmental stages. The major transcription initiation site (cap site) was localized at 89 bp upstream from the ATG codon. Neither a TATA box nor a CAAT box was found within the 600-bp region upstream of the cap site. Clusters of 10 bp of sequence similar to the binding sites for Drosophila proteins containing homeodomains were found in the region from -127 to -413. DNase I footprint analysis revealed that the Drosophila homeodomain proteins coded by even-skipped and zerknüllt genes can specifically bind to these sites. These results suggest that the expression of the PCNA gene is under the control of genes coding for homeodomain proteins. Images PMID:1968224

  1. Isolation of a monoclonal antibody that recognizes the origin binding domain of JCV, but not SV40, large T-antigen.

    PubMed

    Grubman, Shelley A; Shin, Jong; Phelan, Paul J; Gong, Aaron; Can, Hande; Dilworth, Ryan; Kini, Sandeep Kuntadi; Gagnon, David; Archambault, Jacques; Meinke, Gretchen; Bohm, Andrew; Jefferson, Douglas M; Bullock, Peter A

    2016-10-01

    Within immunocompromised populations, the JC polyomavirus is the cause of the often-fatal disease Progressive Multifocal Leukoencephalopathy (PML). JC virus encodes a protein, termed T-antigen (T-ag), which is essential for its replication and pathogenicity. Previous studies of JCV T-ag have, in general, used antibodies raised against SV40 T-ag. Unfortunately, SV40 T-ag is also detected in humans and therefore there have been concerns about cross-reactivity. To address this issue, we have isolated a monoclonal antibody that binds to the JCV, but not the SV40, T-ag origin-binding domain (OBD). Furthermore, the region on the surface of the JCV T-ag OBD that is recognized by the "anti-JCV OBD mAb" has been mapped. We also demonstrate that the "anti-JCV OBD mAb" will be a useful reagent for standard techniques (e.g., Westerns blots and ELISAs). Finally, we note that additional monoclonal Abs that are specific for the T-ags encoded by the other human polyomaviruses could be generated by adopting the approach described herein.

  2. Tumor-promoting function and prognostic significance of the RNA-binding protein T-cell intracellular antigen-1 in esophageal squamous cell carcinoma

    PubMed Central

    Fujita, Yuji; Naruto, Takuya; Kohmoto, Tomohiro; Miyakami, Yuko; Watanabe, Miki; Kudo, Yasusei; Fujiwara, Hitoshi; Ichikawa, Daisuke; Otsuji, Eigo; Imoto, Issei

    2016-01-01

    T-cell intracellular antigen-1 (TIA1) is an RNA-binding protein involved in many regulatory aspects of mRNA metabolism. Here, we report previously unknown tumor-promoting activity of TIA1, which seems to be associated with its isoform-specific molecular distribution and regulation of a set of cancer-related transcripts, in esophageal squamous cell carcinoma (ESCC). Immunohistochemical overexpression of TIA1 ectopically localized in the cytoplasm of tumor cells was an independent prognosticator for worse overall survival in a cohort of 143 ESCC patients. Knockdown of TIA1 inhibited proliferation of ESCC cells. By exogenously introducing each of two major isoforms, TIA1a and TIA1b, only TIA1a, which was localized to both the nucleus and cytoplasm, promoted anchorage-dependent and anchorage-independent ESCC cell proliferation. Ribonucleoprotein immunoprecipitation, followed by microarray analysis or massive-parallel sequencing, identified a set of TIA1-binding mRNAs, including SKP2 and CCNA2. TIA1 increased SKP2 and CCNA2 protein levels through the suppression of mRNA decay and translational induction, respectively. Our findings uncover a novel oncogenic function of TIA1 in esophageal tumorigenesis, and implicate its use as a marker for prognostic evaluation and as a therapeutic target in ESCC. PMID:26958940

  3. Crystal structure of the antigen-binding fragment of a monoclonal antibody specific for the multidrug-resistance-linked ABC transporter human P-glycoprotein

    SciTech Connect

    Esser, Lothar; Shukla, Suneet; Zhou, Fei; Ambudkar, Suresh V.; Xia, Di

    2016-07-27

    P-glycoprotein (P-gp) is a polyspecific ATP-dependent transporter linked to multidrug resistance in cancers that plays important roles in the pharmacokinetics of a large number of drugs. The drug-resistance phenotype of P-gp can be modulated by the monoclonal antibody UIC2, which specifically recognizes human P-gp in a conformation-dependent manner. Here, the purification, sequence determination and high-resolution structure of the Fab fragment of UIC2 (UIC2/Fab) are reported. Purified UIC2/Fab binds human P-gp with a 1:1 stoichiometry. Crystals of UIC2/Fab are triclinic (space groupP1), with unit-cell parametersa= 40.67,b= 44.91,c= 58.09 Å, α = 97.62, β = 99.10, γ = 94.09°, and diffracted X-rays to 1.6 Å resolution. The structure was determined by molecular replacement and refined to 1.65 Å resolution. The asymmetric unit contains one molecule of UIC2/Fab, which exhibits a positively charged antigen-binding surface, suggesting that it might recognize an oppositely charged extracellular epitope of P-gp.

  4. Neisserial outer membrane vesicles bind the coinhibitory receptor carcinoembryonic antigen-related cellular adhesion molecule 1 and suppress CD4+ T lymphocyte function.

    PubMed

    Lee, Hannah S W; Boulton, Ian C; Reddin, Karen; Wong, Henry; Halliwell, Denise; Mandelboim, Ofer; Gorringe, Andrew R; Gray-Owen, Scott D

    2007-09-01

    Pathogenic Neisseria bacteria naturally liberate outer membrane "blebs," which are presumed to contribute to pathology, and the detergent-extracted outer membrane vesicles (OMVs) from Neisseria meningitidis are currently employed as meningococcal vaccines in humans. While the composition of these vesicles reflects the bacteria from which they are derived, the functions of many of their constituent proteins remain unexplored. The neisserial colony opacity-associated Opa proteins function as adhesins, the majority of which mediate bacterial attachment to human carcinoembryonic antigen-related cellular adhesion molecules (CEACAMs). Herein, we demonstrate that the Opa proteins within OMV preparations retain the capacity to bind the immunoreceptor tyrosine-based inhibitory motif-containing coinhibitory receptor CEACAM1. When CD4(+) T lymphocytes were exposed to OMVs from Opa-expressing bacteria, their activation and proliferation in response to a variety of stimuli were effectively halted. This potent immunosuppressive effect suggests that localized infection will generate a "zone of inhibition" resulting from the diffusion of membrane blebs into the surrounding tissues. Moreover, it demonstrates that OMV-based vaccines must be developed from strains that lack CEACAM1-binding Opa variants.

  5. Measurement of T-Cell-Derived Antigen Binding Molecules and Immunoglobulin G Specific to Candida albicans Mannan in Sera of Patients with Recurrent Vulvovaginal Candidiasis

    PubMed Central

    Little, Colin H.; Georgiou, George M.; Marceglia, Alex; Ogedgebe, Henry; Cone, Robert E.; Mazza, Danielle

    2000-01-01

    Immunoglobulin G (IgG) and T-cell-derived antigen binding molecules (TABM) specific to whole Candida extract and to Candida-derived mannans prepared by both the cetryltrimethylammonium bromide (CTAB) and alkaline degradation (PEAT) methods were measured in the sera of women with vulvovaginal candidiasis and controls. In the patients there were significantly higher levels of IgG to both CTAB and PEAT mannans and of TABM to CTAB mannan. TABM specific to CTAB mannan was purified from the serum of a patient with a high titer of this TABM. The purified TABM bound specifically to CTAB mannan and to other yeast and mold extracts. This TABM preparation was associated with transforming growth factor β2 (TGF-β2), and on specific binding to mannan there was a marked increase in the level of detectable TGF-β2. This increase in TGF-β2 level was critically dependent on the relative concentrations of the purified TABM and mannan, being smallest when either was in excess. The TABM specific to CTAB mannan was also shown to inhibit Candida-stimulated gamma interferon production. The results suggest that CTAB mannan-specific TABM may increase susceptibility to vulvovaginal candidiasis in association with a shift in the immune response to the Th2 type. PMID:10858192

  6. A unique secreted adenovirus E3 protein binds to the leukocyte common antigen CD45 and modulates leukocyte functions.

    PubMed

    Windheim, Mark; Southcombe, Jennifer H; Kremmer, Elisabeth; Chaplin, Lucy; Urlaub, Doris; Falk, Christine S; Claus, Maren; Mihm, Janine; Braithwaite, Myles; Dennehy, Kevin; Renz, Harald; Sester, Martina; Watzl, Carsten; Burgert, Hans-Gerhard

    2013-12-10

    The E3 transcription unit of human adenoviruses (Ads) encodes immunomodulatory proteins. Interestingly, the size and composition of the E3 region differs considerably among Ad species, suggesting that distinct sets of immunomodulatory E3 proteins may influence their interaction with the human host and the disease pattern. However, to date, only common immune evasion functions of species C E3 proteins have been described. Here we report on the immunomodulatory activity of a species D-specific E3 protein, E3/49K. Unlike all other E3 proteins that act on infected cells, E3/49K seems to target uninfected cells. Initially synthesized as an 80- to 100-kDa type I transmembrane protein, E3/49K is subsequently cleaved, with the large ectodomain (sec49K) secreted. We found that purified sec49K exhibits specific binding to lymphoid cell lines and all primary leukocytes, but not to fibroblasts or epithelial cells. Consistent with this binding profile and the molecular mass, the sec49K receptor was identified as the cell surface protein tyrosine phosphatase CD45. Antibody-blocking studies suggested that sec49K binds to the membrane proximal domains present in all CD45 isoforms. Functional studies showed that sec49K can suppress the activation and cytotoxicity of natural killer cells as well as the activation, signaling, and cytokine production of T cells. Thus, we have discovered an adenovirus protein that is actively secreted and describe immunomodulatory activities of an E3 protein uniquely expressed by a single Ad species.

  7. The splenic autoimmune response to ADAMTS13 in thrombotic thrombocytopenic purpura contains recurrent antigen-binding CDR3 motifs.

    PubMed

    Schaller, Monica; Vogel, Monique; Kentouche, Karim; Lämmle, Bernhard; Kremer Hovinga, Johanna A

    2014-11-27

    Acquired thrombotic thrombocytopenic purpura (TTP) is the consequence of a severe ADAMTS13 deficiency resulting from autoantibodies inhibiting ADAMTS13 or accelerating its clearance. Despite the success of plasma exchange the risk of relapse is high. From 2 patients (A and B), splenectomized for recurrent episodes of acquired TTP, the splenic B-cell response against ADAMTS13 was characterized through generation of human monoclonal anti-ADAMTS13 autoantibodies (mAbs) by cloning an immunoglobulin G (IgG)4κ- and IgG4λ-Fab library using phage display technology and by Epstein-Barr virus transformation of switched memory B cells (CD19+/CD27+/IgG+). Sequence analysis of the anti-ADAMTS13 IgGs of both patients revealed that the VH gene use was limited in our patients to VH1-3 (55%), VH1-69 (17%), VH3-30 (7%), and VH4-28 (21%) and contained 8 unique and thus far not reported heavy-chain complementarity determining region 3 motifs, of which 4 were shared by the 2 patients. The discovery of several highly similar anti-ADAMTS13 autoantibodies in 2 unrelated TTP patients suggests that the autoimmune response is antigen driven, because the probability that such similar immunoglobulin rearrangements happen by chance is very low (< 10(-9)).

  8. Kidins220/ARMS binds to the B cell antigen receptor and regulates B cell development and activation

    PubMed Central

    Fiala, Gina J.; Janowska, Iga; Prutek, Fabiola; Hobeika, Elias; Satapathy, Annyesha; Sprenger, Adrian; Plum, Thomas; Seidl, Maximilian; Dengjel, Jörn; Reth, Michael; Cesca, Fabrizia; Brummer, Tilman

    2015-01-01

    B cell antigen receptor (BCR) signaling is critical for B cell development and activation. Using mass spectrometry, we identified a protein kinase D–interacting substrate of 220 kD (Kidins220)/ankyrin repeat–rich membrane-spanning protein (ARMS) as a novel interaction partner of resting and stimulated BCR. Upon BCR stimulation, the interaction increases in a Src kinase–independent manner. By knocking down Kidins220 in a B cell line and generating a conditional B cell–specific Kidins220 knockout (B-KO) mouse strain, we show that Kidins220 couples the BCR to PLCγ2, Ca2+, and extracellular signal-regulated kinase (Erk) signaling. Consequently, BCR-mediated B cell activation was reduced in vitro and in vivo upon Kidins220 deletion. Furthermore, B cell development was impaired at stages where pre-BCR or BCR signaling is required. Most strikingly, λ light chain–positive B cells were reduced sixfold in the B-KO mice, genetically placing Kidins220 in the PLCγ2 pathway. Thus, our data indicate that Kidins220 positively regulates pre-BCR and BCR functioning. PMID:26324445

  9. Lipopolysaccharide Binding Protein and Oxidative Stress in a Multiple Sclerosis Model.

    PubMed

    Escribano, Begoña M; Medina-Fernández, Francisco J; Aguilar-Luque, Macarena; Agüera, Eduardo; Feijoo, Montserrat; Garcia-Maceira, Fe I; Lillo, Rafael; Vieyra-Reyes, Patricia; Giraldo, Ana I; Luque, Evelio; Drucker-Colín, René; Túnez, Isaac

    2017-01-01

    Recent findings in experimental autoimmune encephalomyelitis (EAE) suggest that altering certain bacterial populations present in the gut may lead to a proinflammatory condition, that could result in the development of multiple sclerosis (MS). Also, Reactive Oxygen Species seem to be involved in the course of MS. In this study, it has been aimed to relate all these variables starting from an analysis of the lipopolysaccharide (LPS) and LPS-binding protein (LBP) with the determination of parameters related to oxidative stress in the blood, brain and spinal cord. For this purpose, samples obtained from EAE rats and relapsing-remitting (RRMS) MS patients were used. In addition, EAE rats were treated with Natalizumab, N-acetyl-cysteine and dimethyl fumarate. Natalizumab was also employed in RRMS. The results of this study revealed an improvement in the clinical symptoms of the EAE and MS with the treatments, as well as a reduction in the oxidative stress parameters and in LBP. Correlations between the clinical variables of the disease, i.e. oxidative damage and LBP, were established. Although the conclusions of this research are indeed relevant, further investigation would be necessary to establish the intrinsic mechanisms of the MS-oxidative stress-microbiota relationship.

  10. The cross-reactivity of binding antibodies with different interferon beta formulations used as disease-modifying drugs in multiple sclerosis patients.

    PubMed

    Wencel-Warot, Agnieszka; Michalak, Slawomir; Warot, Marcin; Kalinowska-Lyszczarz, Alicja; Kazmierski, Radoslaw

    2016-11-01

    Interferon beta (IFNb) preparations are commonly used as first-line therapy in relapsing-remitting multiple sclerosis (RRMS). They are, however, characterized by limited efficacy, partly due to the formation of anti-IFNb antibodies in patients.In this pilot study, we assessed with the ELISA method the presence of the binding antibodies (BAbs) against interferon beta after 2 years of therapy with subcutaneous interferon beta 1a (Rebif) in 49 RRMS patients. Antibody levels were established again within 1 year after treatment withdrawal. We used 3 interferons that are commercially available for MS therapy, namely Avonex (Biogen Idec Limited), Rebif (Merck Serono), and Betaferon (Bayer Pharma AG), as antigens.BAbs reacting with Rebif were found in 24.4% to 55% of patients, depending on the units of their expression. The levels of anti-Rebif antibodies remained high in 8 patients and in 4 patients they dropped significantly. Strong correlations were obtained in all assays (anti-Rebif-anti-Avonex, anti-Rebif-anti-Betaferon, and anti-Betaferon-anti-Avonex) and the existence of cross-reactivity in the formation of antibodies against all the tested formulations of interferon beta was confirmed. The levels of BAbs remain significant in the clinical context, and their assessment is the first choice screening; however, methods of BAbs evaluation can be crucial for further decisions. More studies are needed to confirm our results; specifically it would be of interest to evaluate methods of neutralizing antibodies identification, as we only assessed the binding antibodies. Nevertheless, our results support the concept that in interferon nonresponders, that are positive for binding antibodies, switching the therapy to alternative disease-modifying agent (for example glatiramer acetate, fingolimod, or natalizumab) is justified, whereas the switch to another interferon formulation will probably be of no benefit.

  11. The cross-reactivity of binding antibodies with different interferon beta formulations used as disease-modifying drugs in multiple sclerosis patients

    PubMed Central

    Wencel-Warot, Agnieszka; Michalak, Slawomir; Warot, Marcin; Kalinowska-Lyszczarz, Alicja; Kazmierski, Radoslaw

    2016-01-01

    Abstract Interferon beta (IFNb) preparations are commonly used as first-line therapy in relapsing-remitting multiple sclerosis (RRMS). They are, however, characterized by limited efficacy, partly due to the formation of anti-IFNb antibodies in patients. In this pilot study, we assessed with the ELISA method the presence of the binding antibodies (BAbs) against interferon beta after 2 years of therapy with subcutaneous interferon beta 1a (Rebif) in 49 RRMS patients. Antibody levels were established again within 1 year after treatment withdrawal. We used 3 interferons that are commercially available for MS therapy, namely Avonex (Biogen Idec Limited), Rebif (Merck Serono), and Betaferon (Bayer Pharma AG), as antigens. BAbs reacting with Rebif were found in 24.4% to 55% of patients, depending on the units of their expression. The levels of anti-Rebif antibodies remained high in 8 patients and in 4 patients they dropped significantly. Strong correlations were obtained in all assays (anti-Rebif-anti-Avonex, anti-Rebif-anti-Betaferon, and anti-Betaferon-anti-Avonex) and the existence of cross-reactivity in the formation of antibodies against all the tested formulations of interferon beta was confirmed. The levels of BAbs remain significant in the clinical context, and their assessment is the first choice screening; however, methods of BAbs evaluation can be crucial for further decisions. More studies are needed to confirm our results; specifically it would be of interest to evaluate methods of neutralizing antibodies identification, as we only assessed the binding antibodies. Nevertheless, our results support the concept that in interferon nonresponders, that are positive for binding antibodies, switching the therapy to alternative disease-modifying agent (for example glatiramer acetate, fingolimod, or natalizumab) is justified, whereas the switch to another interferon formulation will probably be of no benefit. PMID:27828855

  12. Surface-enhanced Raman scattering (SERS) detection of multiple viral antigens using magnetic capture of SERS-active nanoparticles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A highly sensitive immunoassay based on surface-enhanced Raman scattering (SERS) spectroscopy has been developed for multiplex detection of surface envelope and capsid antigens of the viral zoonotic pathogens West Nile virus (WNV) and Rift Valley fever virus (RVFV). Detection was mediated by antibo...

  13. EGCG debilitates the persistence of EBV latency by reducing the DNA binding potency of nuclear antigen 1

    SciTech Connect

    Chen, Ya-Lin; Tsai, Hsing-Lyn; Peng, Chih-Wen

    2012-01-20

    Highlights: Black-Right-Pointing-Pointer Two cell-based reporter platforms were established for screening of EBNA1 inhibitors. Black-Right-Pointing-Pointer EGCG acts as an inhibitor to block EBNA1 binding with the cognate oriP sequence. Black-Right-Pointing-Pointer EGCG debilitates EBNA1-dependent transcription enhancement and episome maintenance. Black-Right-Pointing-Pointer EGCG impairs persistence of EBV latency. Black-Right-Pointing-Pointer EGCG is a potent anti-EBV agent for targeting the latent cascade of EBV. -- Abstract: Because the expression of EBNA1 is prevalent in all EBV-associated tumors, it has become one of the most attractive drug targets for the discovery of anti-EBV compounds. In a cell-based reporter system, EBNA1 consistently upregulated the transcription of an oriP-Luc mini-EBV episome by 6- to 8-fold. The treatment of cells with 50 {mu}M EGCG effectively blocked the binding of EBNA1 to oriP-DNA both in vivo and in vitro, which led to the abrogation of EBNA1-dependent episome maintenance and transcriptional enhancement. Importantly, the anti-EBNA1 effects caused by EGCG ultimately impaired the persistence of EBV latent infection. Our data suggest that the inhibition of EBNA1 activity by EGCG could be a promising starting point for the development of new protocols for anti-EBV therapy.

  14. Saturated fatty acids induce post-transcriptional regulation of HAMP mRNA via AU-rich element-binding protein, human antigen R (HuR).

    PubMed

    Lu, Sizhao; Mott, Justin L; Harrison-Findik, Duygu Dee

    2015-10-02

    Iron is implicated in fatty liver disease pathogenesis. The human hepcidin gene, HAMP, is the master switch of iron metabolism. The aim of this study is to investigate the regulation of HAMP expression by fatty acids in HepG2 cells. For these studies, both saturated fatty acids (palmitic acid (PA) and stearic acid (SA)) and unsaturated fatty acid (oleic acid (OA)) were used. PA and, to a lesser extent, SA, but not OA, up-regulated HAMP mRNA levels, as determined by real-time PCR. To understand whether PA regulates HAMP mRNA at the transcriptional or post-transcriptional level, the transcription inhibitor actinomycin D was employed. PA-mediated induction of HAMP mRNA expression was not blocked by actinomycin D. Furthermore, PA activated HAMP 3'-UTR, but not promoter, activity, as shown by reporter assays. HAMP 3'-UTR harbors a single AU-rich element (ARE). Mutation of this ARE abolished the effect of PA, suggesting the involvement of ARE-binding proteins. The ARE-binding protein human antigen R (HuR) stabilizes mRNA through direct interaction with AREs on 3'-UTR. HuR is regulated by phosphorylation-mediated nucleo-cytoplasmic shuttling. PA activated this process. The binding of HuR to HAMP mRNA was also induced by PA in HepG2 cells. Silencing of HuR by siRNA abolished PA-mediated up-regulation of HAMP mRNA levels. PKC is known to phosphorylate HuR. Staurosporine, a broad-spectrum PKC inhibitor, inhibited both PA-mediated translocation of HuR and induction of HAMP expression. Similarly, rottlerin, a novel class PKC inhibitor, abrogated PA-mediated up-regulation of HAMP expression. In conclusion, lipids mediate post-transcriptional regulation of HAMP throughPKC- and HuR-dependent mechanisms.

  15. Plasmodium simium, a Plasmodium vivax-Related Malaria Parasite: Genetic Variability of Duffy Binding Protein II and the Duffy Antigen/Receptor for Chemokines

    PubMed Central

    Camargos Costa, Daniela; Pereira de Assis, Gabriela Maíra; de Souza Silva, Flávia Alessandra; Araújo, Flávia Carolina; de Souza Junior, Júlio César; Braga Hirano, Zelinda Maria; Satiko Kano, Flora; Nóbrega de Sousa, Taís; Carvalho, Luzia Helena; Ferreira Alves de Brito, Cristiana

    2015-01-01

    Plasmodium simium is a parasite from New World monkeys that is most closely related to the human malaria parasite Plasmodium vivax; it also naturally infects humans. The blood-stage infection of P. vivax depends on Duffy binding protein II (PvDBPII) and its cognate receptor on erythrocytes, the Duffy antigen receptor for chemokines (hDARC), but there is no information on the P. simium erythrocytic invasion pathway. The genes encoding P. simium DBP (PsDBPII) and simian DARC (sDARC) were sequenced from Southern brown howler monkeys (Alouatta guariba clamitans) naturally infected with P. simium because P. simium may also depend on the DBPII/DARC interaction. The sequences of DBP binding domains from P. vivax and P. simium were highly similar. However, the genetic variability of PsDBPII was lower than that of PvDBPII. Phylogenetic analyses demonstrated that these genes were strictly related and clustered in the same clade of the evolutionary tree. DARC from A. clamitans was also sequenced and contained three new non-synonymous substitutions. None of these substitutions were located in the N-terminal domain of DARC, which interacts directly with DBPII. The interaction between sDARC and PvDBPII was evaluated using a cytoadherence assay of COS7 cells expressing PvDBPII on their surfaces. Inhibitory binding assays in vitro demonstrated that antibodies from monkey sera blocked the interaction between COS-7 cells expressing PvDBPII and hDARC-positive erythrocytes. Taken together, phylogenetic analyses reinforced the hypothesis that the host switch from humans to monkeys may have occurred very recently in evolution, which sheds light on the evolutionary history of new world plasmodia. Further invasion studies would confirm whether P. simium depends on DBP/DARC to trigger internalization into red blood cells. PMID:26107662

  16. Plasmodium simium, a Plasmodium vivax-related malaria parasite: genetic variability of Duffy binding protein II and the Duffy antigen/receptor for chemokines.

    PubMed

    Camargos Costa, Daniela; Pereira de Assis, Gabriela Maíra; de Souza Silva, Flávia Alessandra; Araújo, Flávia Carolina; de Souza Junior, Júlio César; Braga Hirano, Zelinda Maria; Satiko Kano, Flora; Nóbrega de Sousa, Taís; Carvalho, Luzia Helena; Ferreira Alves de Brito, Cristiana

    2015-01-01

    Plasmodium simium is a parasite from New World monkeys that is most closely related to the human malaria parasite Plasmodium vivax; it also naturally infects humans. The blood-stage infection of P. vivax depends on Duffy binding protein II (PvDBPII) and its cognate receptor on erythrocytes, the Duffy antigen receptor for chemokines (hDARC), but there is no information on the P. simium erythrocytic invasion pathway. The genes encoding P. simium DBP (PsDBPII) and simian DARC (sDARC) were sequenced from Southern brown howler monkeys (Alouatta guariba clamitans) naturally infected with P. simium because P. simium may also depend on the DBPII/DARC interaction. The sequences of DBP binding domains from P. vivax and P. simium were highly similar. However, the genetic variability of PsDBPII was lower than that of PvDBPII. Phylogenetic analyses demonstrated that these genes were strictly related and clustered in the same clade of the evolutionary tree. DARC from A. clamitans was also sequenced and contained three new non-synonymous substitutions. None of these substitutions were located in the N-terminal domain of DARC, which interacts directly with DBPII. The interaction between sDARC and PvDBPII was evaluated using a cytoadherence assay of COS7 cells expressing PvDBPII on their surfaces. Inhibitory binding assays in vitro demonstrated that antibodies from monkey sera blocked the interaction between COS-7 cells expressing PvDBPII and hDARC-positive erythrocytes. Taken together, phylogenetic analyses reinforced the hypothesis that the host switch from humans to monkeys may have occurred very recently in evolution, which sheds light on the evolutionary history of new world plasmodia. Further invasion studies would confirm whether P. simium depends on DBP/DARC to trigger internalization into red blood cells.

  17. The PD-1/PD-L1 complex resembles the antigen-binding Fv domains of antibodies and T cell receptors

    SciTech Connect

    Lin, David Yin-wei; Tanaka, Yoshimasa; Iwasaki, Masashi; Gittis, Apostolos G.; Su, Hua-Poo; Mikami, Bunzo; Okazaki, Taku; Honjo, Tasuku; Minato, Nagahiro; Garboczi, David N.

    2008-07-29

    Signaling through the programmed death 1 (PD-1) inhibitory receptor upon binding its ligand, PD-L1, suppresses immune responses against autoantigens and tumors and plays an important role in the maintenance of peripheral immune tolerance. Release from PD-1 inhibitory signaling revives 'exhausted' virus-specific T cells in chronic viral infections. Here we present the crystal structure of murine PD-1 in complex with human PD-L1. PD-1 and PD-L1 interact through the conserved front and side of their Ig variable (IgV) domains, as do the IgV domains of antibodies and T cell receptors. This places the loops at the ends of the IgV domains on the same side of the PD-1/PD-L1 complex, forming a surface that is similar to the antigen-binding surface of antibodies and T cell receptors. Mapping conserved residues allowed the identification of residues that are important in forming the PD-1/PD-L1 interface. Based on the structure, we show that some reported loss-of-binding mutations involve the PD-1/PD-L1 interaction but that others compromise protein folding. The PD-1/PD-L1 interaction described here may be blocked by antibodies or by designed small-molecule drugs to lower inhibitory signaling that results in a stronger immune response. The immune receptor-like loops offer a new surface for further study and potentially the design of molecules that would affect PD-1/PD-L1 complex formation and thereby modulate the immune response.

  18. The MF6p/FhHDM-1 Major Antigen Secreted by the Trematode Parasite Fasciola hepatica Is a Heme-binding Protein*

    PubMed Central

    Martínez-Sernández, Victoria; Mezo, Mercedes; González-Warleta, Marta; Perteguer, María J.; Muiño, Laura; Guitián, Esteban; Gárate, Teresa; Ubeira, Florencio M.

    2014-01-01

    Blood-feeding parasites have developed biochemical mechanisms to control heme intake and detoxification. Here we show that a major antigen secreted by Fasciola hepatica, previously reported as MF6p, of unknown function (gb|CCA61804.1), and as FhHDM-1, considered to be a helminth defense molecule belonging to the family of cathelicidin-like proteins (gb|ADZ24001.1), is in fact a heme-binding protein. The heme-binding nature of the MF6p/FhHDM-1 protein was revealed in two independent experiments: (i) immunopurification of the secreted protein·heme complexes with mAb MF6 and subsequent analysis by C8 reversed-phase HPLC and MS/MS spectrometry and (ii) analysis of the binding ability of the synthetic protein to hemin in vitro. By immunohistochemistry analysis, we have observed that MF6p/FhHDM-1 is produced by parenchymal cells and transported to other tissues (e.g. vitellaria and testis). Interestingly, MF6p/FhHDM-1 is absent both in the intestinal cells and in the lumen of cecum, but it can be released through the tegumental surface to the external medium, where it binds to free heme molecules regurgitated by the parasite after hemoglobin digestion. Proteins that are close analogs of the Fasciola MF6p/FhHDM-1 are present in other trematodes, including Clonorchis, Opistorchis, Paragonimus, Schistosoma, and Dicrocoelium. Using UV-visible spectroscopy and immunoprecipitation techniques, we observed that synthetic MF6p/FhHDM-1 binds to hemin with 1:1 stoichiometry and an apparent Kd of 1.14 × 10−6 m−1. We also demonstrated that formation of synthetic MF6p/FhHDM-1·hemin complexes inhibited hemin degradation by hydrogen peroxide and hemin peroxidase-like activity in vitro. Our results suggest that MF6p/FhHDM-1 may be involved in heme homeostasis in trematodes. PMID:24280214

  19. Multiple sup 3 H-oxytocin binding sites in rat myometrial plasma membranes

    SciTech Connect

    Crankshaw, D.; Gaspar, V.; Pliska, V. )

    1990-01-01

    The affinity spectrum method has been used to analyse binding isotherms for {sup 3}H-oxytocin to rat myometrial plasma membranes. Three populations of binding sites with dissociation constants (Kd) of 0.6-1.5 x 10(-9), 0.4-1.0 x 10(-7) and 7 x 10(-6) mol/l were identified and their existence verified by cluster analysis based on similarities between Kd, binding capacity and Hill coefficient. When experimental values were compared to theoretical curves constructed using the estimated binding parameters, good fits were obtained. Binding parameters obtained by this method were not influenced by the presence of GTP gamma S (guanosine-5'-O-3-thiotriphosphate) in the incubation medium. The binding parameters agree reasonably well with those found in uterine cells, they support the existence of a medium affinity site and may allow for an explanation of some of the discrepancies between binding and response in this system.

  20. Image of the Month: Multifocal 68Ga Prostate-Specific Membrane Antigen Ligand Uptake in the Skeleton in a Man With Both Prostate Cancer and Multiple Myeloma.

    PubMed

    Rauscher, Isabel; Maurer, Tobias; Steiger, Katja; Schwaiger, Markus; Eiber, Matthias

    2017-03-31

    Ga prostate-specific membrane antigen (PSMA) HBED-CC PET/CT in a 65-year-old man with first diagnosis of prostate cancer (PC) and a history of multiple myeloma showing multifocal PSMA ligand uptake in the skeleton with corresponding osteolytic lesions in CT. Although osteolytic bone metastases are very rare in PC, PSMA expression in PET raised the suspicion of PC bone metastases. Bone marrow biopsy excluded PC metastases with immunohistochemistry showing endothelial expression of PSMA in small vessels within the myeloma.

  1. Multiple specific binding sites for purified glucocorticoid receptors on mammary tumor virus DNA.

    PubMed

    Payvar, F; Firestone, G L; Ross, S R; Chandler, V L; Wrange, O; Carlstedt-Duke, J; Gustafsson, J A; Yamamoto, K R

    1982-01-01

    Glucocorticoid hormones selectively stimulate the rate of transcription of integrated mammary tumor virus (MTV) sequences in infected rat hepatoma cells. Using two independent assays, we find that purified rat liver glucocorticoid receptor protein binds specifically to at least four widely separated regions on pure MTV proviral DNA. One of these specific binding domains, which itself contains at least two distinct receptor binding sites, resides within a fragment of viral DNA that maps 110-449 bp upstream of the promoter for MTV RNA synthesis. Three other binding domains lie downstream of the promoter and within the MTV primary transcription unit. Restriction fragments bearing separate binding domains have been introduced into cultured cells; transformants have been recovered in which the introduced fragments are expressed under glucocorticoid control. Thus, it appears that this assay will be useful for assessing the biological significance of the receptor binding sites detected in vitro.

  2. Prediction of Altered 3′- UTR miRNA-Binding Sites from RNA-Seq Data: The Swine Leukocyte Antigen Complex (SLA) as a Model Region

    PubMed Central

    Endale Ahanda, Marie-Laure; Fritz, Eric R.; Estellé, Jordi; Hu, Zhi-Liang; Madsen, Ole; Groenen, Martien A. M.; Beraldi, Dario; Kapetanovic, Ronan; Hume, David A.; Rowland, Robert R. R.; Lunney, Joan K.; Rogel-Gaillard, Claire; Reecy, James M.; Giuffra, Elisabetta

    2012-01-01

    The SLA (swine leukocyte antigen, MHC: SLA) genes are the most important determinants of immune, infectious disease and vaccine response in pigs; several genetic associations with immunity and swine production traits have been reported. However, most of the current knowledge on SLA is limited to gene coding regions. MicroRNAs (miRNAs) are small molecules that post-transcriptionally regulate the expression of a large number of protein-coding genes in metazoans, and are suggested to play important roles in fine-tuning immune mechanisms and disease responses. Polymorphisms in either miRNAs or their gene targets may have a significant impact on gene expression by abolishing, weakening or creating miRNA target sites, possibly leading to phenotypic variation. We explored the impact of variants in the 3′-UTR miRNA target sites of genes within the whole SLA region. The combined predictions by TargetScan, PACMIT and TargetSpy, based on different biological parameters, empowered the identification of miRNA target sites and the discovery of polymorphic miRNA target sites (poly-miRTSs). Predictions for three SLA genes characterized by a different range of sequence variation provided proof of principle for the analysis of poly-miRTSs from a total of 144 M RNA-Seq reads collected from different porcine tissues. Twenty-four novel SNPs were predicted to affect miRNA-binding sites in 19 genes of the SLA region. Seven of these genes (SLA-1, SLA-6, SLA-DQA, SLA-DQB1, SLA-DOA, SLA-DOB and TAP1) are linked to antigen processing and presentation functions, which is reminiscent of associations with disease traits reported for altered miRNA binding to MHC genes in humans. An inverse correlation in expression levels was demonstrated between miRNAs and co-expressed SLA targets by exploiting a published dataset (RNA-Seq and small RNA-Seq) of three porcine tissues. Our results support the resource value of RNA-Seq collections to identify SNPs that may lead to altered miRNA regulation

  3. The Escherichia coli Serogroup O1 and O2 Lipopolysaccharides Are Encoded by Multiple O-antigen Gene Clusters.

    PubMed

    Delannoy, Sabine; Beutin, Lothar; Mariani-Kurkdjian, Patricia; Fleiss, Aubin; Bonacorsi, Stéphane; Fach, Patrick

    2017-01-01

    Escherichia coli strains belonging to serogroups O1 and O2 are frequently associated with human infections, especially extra-intestinal infections such as bloodstream infections or urinary tract infections. These strains can be associated with a large array of flagellar antigens. Because of their frequency and clinical importance, a reliable detection of E. coli O1 and O2 strains and also the frequently associated K1 capsule is important for diagnosis and source attribution of E. coli infections in humans and animals. By sequencing the O-antigen clusters of various O1 and O2 strains we showed that the serogroups O1 and O2 are encoded by different sets of O-antigen encoding genes and identified potentially new O-groups. We developed qPCR-assays to detect the various O1 and O2 variants and the K1-encoding gene. These qPCR assays proved to be 100% sensitive and 100% specific and could be valuable tools for the investigations of zoonotic and food-borne infection of humans with O1 and O2 extra-intestinal (ExPEC) or Shiga toxin-producing E. coli (STEC) strains.

  4. The Escherichia coli Serogroup O1 and O2 Lipopolysaccharides Are Encoded by Multiple O-antigen Gene Clusters

    PubMed Central

    Delannoy, Sabine; Beutin, Lothar; Mariani-Kurkdjian, Patricia; Fleiss, Aubin; Bonacorsi, Stéphane; Fach, Patrick

    2017-01-01

    Escherichia coli strains belonging to serogroups O1 and O2 are frequently associated with human infections, especially extra-intestinal infections such as bloodstream infections or urinary tract infections. These strains can be associated with a large array of flagellar antigens. Because of their frequency and clinical importance, a reliable detection of E. coli O1 and O2 strains and also the frequently associated K1 capsule is important for diagnosis and source attribution of E. coli infections in humans and animals. By sequencing the O-antigen clusters of various O1 and O2 strains we showed that the serogroups O1 and O2 are encoded by different sets of O-antigen encoding genes and identified potentially new O-groups. We developed qPCR-assays to detect the various O1 and O2 variants and the K1-encoding gene. These qPCR assays proved to be 100% sensitive and 100% specific and could be valuable tools for the investigations of zoonotic and food-borne infection of humans with O1 and O2 extra-intestinal (ExPEC) or Shiga toxin-producing E. coli (STEC) strains. PMID:28224115

  5. Interleukin 3-dependent and -independent mast cells stimulated with IgE and antigen express multiple cytokines

    PubMed Central

    1989-01-01

    In response to IgE and specific multivalent antigen, mast cell lines (both growth factor-dependent and -independent) induce the transcription and/or secretion of a number of cytokines having a wide spectrum of activities. We have identified IL-1, IL-3, IL-5, IL-6, IFN- gamma, GM-CSF, JE, MIP1 alpha, MIP1 beta, and TCA3 RNA in at least two of four mast cell clones. The production of these products (except JE) is activation-associated and can be induced by IgE plus antigen. In selected instances cytokine expression can also be induced by activation with Con A or phorbol ester plus ionophore, albeit to levels less than those observed with IgE plus antigen. In addition, long-term mast cell clones and primary cultures of bone marrow-derived mast cells specifically release IL-1, IL-4, and/or IL-6 bioactivity after activation. These findings suggest that in addition to their inflammatory effector function mast cells may serve as a source of growth and regulatory factors. The relationship of mast cells to cells of the T lymphocyte lineage is discussed. PMID:2473161

  6. Changes in Structure and Antigenicity of HIV-1 Env Trimers Resulting from Removal of a Conserved CD4 Binding Site-Proximal Glycan

    PubMed Central

    Liang, Yu; Guttman, Miklos; Williams, James A.; Verkerke, Hans; Alvarado, Daniel

    2016-01-01

    ABSTRACT The envelope glycoprotein (Env) is the major target for HIV-1 broadly neutralizing antibodies (bNAbs). One of the mechanisms that HIV has evolved to escape the host's immune response is to mask conserved epitopes on Env with dense glycosylation. Previous studies have shown that the removal of a particular conserved glycan at N197 increases the neutralization sensitivity of the virus to antibodies targeting the CD4 binding site (CD4bs), making it a site of significant interest from the perspective of vaccine design. At present, the structural consequences that result from the removal of the N197 glycan have not been characterized. Using native-like SOSIP trimers, we examine the effects on antigenicity and local structural dynamics resulting from the removal of this glycan. A large increase in the binding of CD4bs and V3-targeting antibodies is observed for the N197Q mutant in trimeric Env, while no changes are observed with monomeric gp120. While the overall structure and thermostability are not altered, a subtle increase in the flexibility of the variable loops at the trimeric interface of adjacent protomers is evident in the N197Q mutant by hydrogen-deuterium exchange mass spectrometry. Structural modeling of the glycan chains suggests that the spatial occupancy of the N197 glycan leads to steric clashes with CD4bs antibodies in the Env trimer but not monomeric gp120. Our results indicate that the removal of the N197 glycan enhances the exposure of relevant bNAb epitopes on Env with a minimal impact on the overall trimeric structure. These findings present a simple modification for enhancing trimeric Env immunogens in vaccines. IMPORTANCE The HIV-1 Env glycoprotein presents a dense patchwork of host cell-derived N-linked glycans. This so-called glycan shield is considered to be a major protective mechanism against immune recognition. While the positions of many N-linked glycans are isolate specific, some are highly conserved and are believed to play key

  7. Y-box-binding protein-1 expression is not correlated with p53 expression but with proliferating cell nuclear antigen expression in non-small cell lung cancer.

    PubMed

    Yoshimatsu, Takashi; Uramoto, Hidetaka; Oyama, Tsunehiro; Yashima, Yasunori; Gu, Chundong; Morita, Masaru; Sugio, Kenji; Kohno, Kimitoshi; Yasumoto, Kosei

    2005-01-01

    Transcription factor Y-box-binding protein 1 (YB-1), which binds to the inverted CCAAT box, is not only involved in the transcription of various genes, but also in cell proliferation and DNA repair. The aim of this study was to detect YB-1 and p53 expression and their relationship to proliferating cell nuclear antigen (PCNA) in non-small cell lung cancer (NSCLC) using immunohistochemical (IHC) staining, and to evaluate the relationship between their expression levels and the prognosis of patients with NSCLC. Positive expressions of YB-1, p53 and PCNA were detected in NSCLC cells in 43 (45.7%), 33 (35.0%) and 45 (47.9%) out of 94 patients, respectively. No significant differences were observed between YB-1 expression and the patients' gender, age at surgery, pathological stage, pathological T status, pathological N status, or pathological M status. The mean PCNA-labelling index (LI) for cells was 40.7+/-2.6. Also, a significant correlation between YB-1 and PCNA-LI was found (p<0.01), but none was found between p53 expression and PCNA. The positive expression of YB-1 was associated with squamous cell carcinoma and large cell carcinoma, compared with adenocarcinomas (p<0.01), and higher levels of PCNA-LI were associated with large cell carcinoma compared with adenocarcinomas and squamous cell carcinoma (p<0.01). These results suggest that YB-1 expression is correlated with PCNA expression in NSCLC. In addition, the DNA repair pathway and tumor proliferation mediated by YB-1 linking to PCNA may be responsible for controlling the growth of NSCLC.

  8. Production of interleukin (IL)-33 in the lungs during multiple antigen challenge-induced airway inflammation in mice, and its modulation by a glucocorticoid.

    PubMed

    Nabe, Takeshi; Wakamori, Hiroki; Yano, Chihiro; Nishiguchi, Ayumi; Yuasa, Rino; Kido, Hitomi; Tomiyama, Yusaku; Tomoda, Ayumi; Kida, Haruka; Takiguchi, Anna; Matsuda, Masaya; Ishihara, Keiichi; Akiba, Satoshi; Ohya, Susumu; Fukui, Hiroyuki; Mizutani, Nobuaki; Yoshino, Shin

    2015-06-15

    Although interleukin (IL)-33 is a candidate aggravator of asthma, the cellular sources of IL-33 in the lungs during the progression of antigen-induced airway inflammation remain unclear. Furthermore, it has not been determined whether the antigen-induced production of IL-33 can be pharmacologically modulated in vivo. In this study, we examined the production of IL-33 in the lungs of sensitized mice during multiple intratracheal challenges with the antigen, ovalbumin. The 1st challenge clearly induced the IL-33 production in the lungs, and it was enhanced by the 2nd-4th challenges. IL-33 mRNA transcription was also induced after these challenges. An immunohistochemical analysis revealed that the cellular sources of IL-33 after the 1st challenge were mainly bronchial epithelial cells, while those after the 3rd challenge were not only the epithelial cells, but also inflammatory cells that infiltrated the lungs. Flow cytometric analyses indicated that approximately 20% and 10% of the IL-33-producing cells in the lungs were M2 macrophages and conventional dendritic cells, respectively. A systemic treatment with dexamethasone before the 1st challenge potently suppressed the IL-33 production. When dexamethasone was administered before the respective challenges, production of the IL-33 protein and the infiltration of IL-33-producing M2 macrophages and dendritic cells into the lungs in the 3rd challenge were also suppressed. In conclusion, the cellular sources of IL-33 in the lungs were dynamically altered during multiple challenges: not only bronchial epithelial cells, but also the M2 macrophages and dendritic cells that infiltrated the lungs produced IL-33. The production of IL-33 was susceptible to the glucocorticoid treatment.

  9. Recombinant Receptor-Binding Domains of Multiple Middle East Respiratory Syndrome Coronaviruses (MERS-CoVs) Induce Cross-Neutralizing Antibodies against Divergent Human and Camel MERS-CoVs and Antibody Escape Mutants.

    PubMed

    Tai, Wanbo; Wang, Yufei; Fett, Craig A; Zhao, Guangyu; Li, Fang; Perlman, Stanley; Jiang, Shibo; Zhou, Yusen; Du, Lanying

    2017-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) binds to cellular receptor dipeptidyl peptidase 4 (DPP4) via the spike (S) protein receptor-binding domain (RBD). The RBD contains critical neutralizing epitopes and serves as an important vaccine target. Since RBD mutations occur in different MERS-CoV isolates and antibody escape mutants, cross-neutralization of divergent MERS-CoV strains by RBD-induced antibodies remains unknown. Here, we constructed four recombinant RBD (rRBD) proteins with single or multiple mutations detected in representative human MERS-CoV strains from the 2012, 2013, 2014, and 2015 outbreaks, respectively, and one rRBD protein with multiple changes derived from camel MERS-CoV strains. Like the RBD of prototype EMC2012 (EMC-RBD), all five RBDs maintained good antigenicity and functionality, the ability to bind RBD-specific neutralizing monoclonal antibodies (MAbs) and the DPP4 receptor, and high immunogenicity, able to elicit S-specific antibodies. They induced potent neutralizing antibodies cross-neutralizing 17 MERS pseudoviruses expressing S proteins of representative human and camel MERS-CoV strains identified during the 2012-2015 outbreaks, 5 MAb escape MERS-CoV mutants, and 2 live human MERS-CoV strains. We then constructed two RBDs mutated in multiple key residues in the receptor-binding motif (RBM) of RBD and demonstrated their strong cross-reactivity with anti-EMC-RBD antibodies. These RBD mutants with diminished DPP4 binding also led to virus attenuation, suggesting that immunoevasion after RBD immunization is accompanied by loss of viral fitness. Therefore, this study demonstrates that MERS-CoV RBD is an important vaccine target able to induce highly potent and broad-spectrum neutralizing antibodies against infection by divergent circulating human and camel MERS-CoV strains.

  10. The regions of the retinoblastoma protein needed for binding to adenovirus E1A or SV40 large T antigen are common sites for mutations.

    PubMed Central

    Hu, Q J; Dyson, N; Harlow, E

    1990-01-01

    The protein product of the retinoblastoma (RB) gene is thought to function in a pathway that restricts cell proliferation. Recently, transforming proteins from three different classes of DNA tumor viruses have been shown to form complexes with the RB protein. Genetic studies suggest that these interactions with the RB protein are important steps in transformation by these viruses. In order to understand better the function of the RB-viral oncoprotein complexes, we have mapped the regions of the RB protein that are necessary for these associations. Two non-contiguous regions of RB were found to be essential for complex formation with adenovirus E1A or SV40 large T antigen. These two regions are found between amino acids 393 and 572 and 646 and 772. Interestingly, these binding sites on RB overlap with the positions of naturally occurring, inactivating mutations of the RB gene. These results strongly suggest that these viral oncoproteins are targeting a protein domain that is an important site in the normal function of the RB protein. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 9. PMID:2138977

  11. Heat shock factor 1 upregulates transcription of Epstein-Barr Virus nuclear antigen 1 by binding to a heat shock element within the BamHI-Q promoter

    SciTech Connect

    Wang, Feng-Wei; Wu, Xian-Rui; Liu, Wen-Ju; Liao, Yi-Ji; Lin, Sheng; Zong, Yong-Sheng; Zeng, Mu-Sheng; Zeng, Yi-Xin; Mai, Shi-Juan; Xie, Dan

    2011-12-20

    Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) is essential for maintenance of the episome and establishment of latency. In this study, we observed that heat treatment effectively induced EBNA1 transcription in EBV-transformed B95-8 and human LCL cell lines. Although Cp is considered as the sole promoter used for the expression of EBNA1 transcripts in the lymphoblastoid cell lines, the RT-PCR results showed that the EBNA1 transcripts induced by heat treatment arise from Qp-initiated transcripts. Using bioinformatics, a high affinity and functional heat shock factor 1 (HSF1)-binding element within the - 17/+4 oligonucleotide of the Qp was found, and was determined by electrophoretic mobility shift assay and chromatin immunoprecipitation assay. Moreover, heat shock and exogenous HSF1 expression induced Qp activity in reporter assays. Further, RNA interference-mediated HSF1 gene silencing attenuated heat-induced EBNA1 expression in B95-8 cells. These results provide evidence that EBNA1 is a new target for the transcription factor HSF1.

  12. DNA polymerases BI and D from the hyperthermophilic archaeon Pyrococcus furiosus both bind to proliferating cell nuclear antigen with their C-terminal PIP-box motifs.

    PubMed

    Tori, Kazuo; Kimizu, Megumi; Ishino, Sonoko; Ishino, Yoshizumi

    2007-08-01

    Proliferating cell nuclear antigen (PCNA) is the sliding clamp that is essential for the high processivity of DNA synthesis during DNA replication. Pyrococcus furiosus, a hyperthermophilic archaeon, has at least two DNA polymerases, polymerase BI (PolBI) and PolD. Both of the two DNA polymerases interact with the archaeal P. furiosus PCNA (PfuPCNA) and perform processive DNA synthesis in vitro. This phenomenon, in addition to the fact that both enzymes display 3'-5' exonuclease activity, suggests that both DNA polymerases work in replication fork progression. We demonstrated here that both PolBI and PolD functionally interact with PfuPCNA at their C-terminal PIP boxes. The mutant PolBI and PolD enzymes lacking the PIP-box sequence do not respond to the PfuPCNA at all in an in vitro primer extension reaction. This is the first experimental evidence that the PIP-box motif, located at the C termini of the archaeal DNA polymerases, is actually critical for PCNA binding to form a processive DNA-synthesizing complex.

  13. Lectin-like domain of thrombomodulin binds to its specific ligand Lewis Y antigen and neutralizes lipopolysaccharide-induced inflammatory response

    PubMed Central

    Shi, Chung-Sheng; Hsiao, Shi-Ming; Kao, Yuan-Chung; Kuo, Kuan-Lin; Ma, Chih-Yuan; Kuo, Cheng-Hsiang; Chang, Bi-Ing; Chang, Chuan-Fa; Lin, Chun-Hung; Wong, Chi-Huey

    2008-01-01

    Thrombomodulin (TM), a widely expressing glycoprotein originally identified in vascular endothelium, is an important cofactor in the protein C anticoagulant system. TM appears to exhibit anti-inflammatory ability through both protein C–dependent and –independent pathways. We presently have demonstrated that recombinant N-terminal lectinlike domain of TM (rTMD1) functions as a protective agent against sepsis caused by Gram-negative bacterial infections. rTMD1 caused agglutination of Escherichia coli and Klebsiella pneumoniae and enhanced the macrophage phagocytosis of these Gram-negative bacteria. Moreover, rTMD1 bound to the Klebsiella pneumoniae and lipopolysaccharide (LPS) by specifically interacting with Lewis Y antigen. rTMD1 inhibited LPS-induced inflammatory mediator production via interference with CD14 and LPS binding. Furthermore, rTMD1 modulated LPS-induced mitogen-activated protein kinase and nuclear factor-κB signaling pathway activations and inducible nitric oxide synthase expression in macrophages. Administration of rTMD1 protected the host by suppressing inflammatory responses induced by LPS and Gram-negative bacteria, and enhanced LPS and bacterial clearance in sepsis. Thus, rTMD1 can be used to defend against bacterial infection and inhibit LPS-induced inflammatory responses, suggesting that rTMD1 may be valuable in the treatment of severe inflammation in sepsis, especially in Gram-negative bacterial infections. PMID:18711002

  14. Multiple binding sites involved in the effect of choline esters on decarbamoylation of monomethylcarbamoyl- or dimethylcarbamoly-acetylcholinesterase.

    PubMed Central

    Sok, D E; Kim, Y B; Choi, S J; Jung, C H; Cha, S H

    1994-01-01

    Multiple binding sites for inhibitory choline esters in spontaneous decarbamoylation of dimethylcarbamoyl-acetylcholinesterase (AChE) were suggested from a wide range of IC50 values, in contrast with a limited range of AC50 values (concentration giving 50% of maximal activation) at a peripheral activatory site. Association of choline esters containing a long acyl chain (C7-C12) with the hydrophobic zone in the active site could be deduced from a linear relationship between the size of the acyl group and the inhibitory potency in either spontaneous decarbamoylation or acetylthiocholine hydrolysis. Direct support for laurylcholine binding to the active site might come from the competitive inhibition (Ki 33 microM) of choline-catalysed decarbamoylation by laurylcholine. Moreover, its inhibitory action was greater for monomethylcarbamoyl-AChE than for dimethylcarbamoyl-AChE, where there is a greater steric hindrance at the active centre. In further support, the inhibition of pentanoylthiocholine-induced decarbamoylation by laurylcholine was suggested to be due to laurylcholine binding to a central site rather than a peripheral site, similar to the inhibition of spontaneous decarbamoylation by laurylcholine. Supportive data for acetylcholine binding to the active site are provided by the results that acetylcholine is a competitive inhibitor (Ki 7.6 mM) of choline-catalysed decarbamoylation, and its inhibitory action was greater for monomethylcarbamoyl-AChE than for dimethylcarbamoyl-AChE. Meanwhile, choline esters with an acyl group of an intermediate size (C4-C6), more subject to steric exclusion at the active centre, and less associable with the hydrophobic zone, appear to bind preferentially to a peripheral activity site. Thus the multiple effects of choline esters may be governed by hydrophobicity and/or a steric effect exerted by the acyl moiety at the binding sites. PMID:8053896

  15. Molecular modeling and docking of novel laccase from multiple serotype of Yersinia enterocolitica suggests differential and multiple substrate binding.

    PubMed

    Singh, Deepti; Sharma, Krishna Kant; Dhar, Mahesh Shanker; Virdi, Jugsharan Singh

    2014-06-20

    Multi-copper oxidases (MCOs) are widely distributed in bacteria, where they are responsible for metal homeostasis, acquisition and oxidation. Using specific primers, yacK coding for MCO was amplified from different serotypes of Yersinia enterocolitica biovar 1A. Homology modeling of the protein followed by docking with five well-known substrates for different MCO's (viz., 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid [ABTS], syringaldazine, L-tyrosine, ammonium ferrous sulfate and guaiacol), lignin monomers (Coniferyl alcohol, p-coumaryl alcohol and sinapyl alcohol) and two inhibitors i.e., kojic acid and N-hydroxyglycine was done. The docking gave maximum GoldScore i.e., 91.93 and 72.64 with ammonium ferrous sulfate and ABTS, respectively. Similarly, docking with ICM gave -82.10 and -83.61 docking score, confirming the protein to be true laccase with ferroxidase activity. Further, validation with ammonium ferrous sulfate as substrate gave laccase activity of 0.36Units/L/min. Guaiacol, L-tyrosine, and lignin monomers showed good binding affinity with protein models with GoldScores of 35.89, 41.82, 40.41, 41.12 and 43.10, respectively. The sequence study of all the cloned Yack genes showed serotype specific clade in dendrogram. There was distinct discrimination in the ligand binding affinity of Y. enterocolitica laccase, among strains of same clonal groups, suggesting it as a tool for phylogenetic studies.

  16. Identification of a binding motif specific to HNF4 by comparative analysis of multiple nuclear receptors

    PubMed Central

    Fang, Bin; Mane-Padros, Daniel; Bolotin, Eugene; Jiang, Tao; Sladek, Frances M.

    2012-01-01

    Nuclear receptors (NRs) regulate gene expression by binding specific DNA sequences consisting of AG[G/T]TCA or AGAACA half site motifs in a variety of configurations. However, those motifs/configurations alone do not adequately explain the diversity of NR function in vivo. Here, a systematic examination of DNA binding specificity by protein-binding microarrays (PBMs) of three closely related human NRs—HNF4α, retinoid X receptor alpha (RXRα) and COUPTF2—reveals an HNF4-specific binding motif (H4-SBM), xxxxCAAAGTCCA, as well as a previously unrecognized polarity in the classical DR1 motif (AGGTCAxAGGTCA) for HNF4α, RXRα and COUPTF2 homodimers. ChIP-seq data indicate that the H4-SBM is uniquely bound by HNF4α but not 10 other NRs in vivo, while NRs PXR, FXRα, Rev-Erbα appear to bind adjacent to H4-SBMs. HNF4-specific DNA recognition and transactivation are mediated by residues Asp69 and Arg76 in the DNA-binding domain; this combination of amino acids is unique to HNF4 among all human NRs. Expression profiling and ChIP data predict ∼100 new human HNF4α target genes with an H4-SBM site, including several Co-enzyme A-related genes and genes with links to disease. These results provide important new insights into NR DNA binding. PMID:22383578

  17. DNA binding and antigene activity of a daunomycin-conjugated triplex-forming oligonucleotide targeting the P2 promoter of the human c-myc gene

    PubMed Central

    Carbone, Giuseppina M.; McGuffie, Eileen; Napoli, Sara; Flanagan, Courtney E.; Dembech, Chiara; Negri, Umberto; Arcamone, Federico; Capobianco, Massimo L.; Catapano, Carlo V.

    2004-01-01

    Triplex-forming oligonucleotides (TFO) that bind DNA in a sequence-specific manner might be used as selective repressors of gene expression and gene-targeted therapeutics. However, many factors, including instability of triple helical complexes in cells, limit the efficacy of this approach. In the present study, we tested whether covalent linkage of a TFO to daunomycin, which is a potent DNA-intercalating agent and anticancer drug, could increase stability of the triple helix and activity of the oligonucleotide in cells. The 11mer daunomycin-conjugated GT (dauno-GT11) TFO targeted a sequence upstream of the P2 promoter, a site known to be critical for transcription of the c-myc gene. Band-shift assays showed that the dauno-GT11 formed triplex DNA with enhanced stability compared to the unmodified TFO. Band shift and footprinting experiments demonstrated that binding of dauno-GT11 was highly sequence-specific with exclusive binding to the 11 bp target site in the c-myc promoter. The daunomycin-conjugated TFO inhibited transcription in vitro and reduced c-myc promoter activity in prostate and breast cancer cells. The daunomycin-conjugated TFO was taken up by cells with a distinctive intracellular distribution compared to free daunomycin. However, cationic lipid-mediated delivery was required for enhanced cellular uptake, nuclear localization and biological activity of the TFO in cells. Dauno-GT11 reduced transcription of the endogenous c-myc gene in cells, but did not affect expression of non-target genes, such as ets-1 and ets-2, which contained very similar target sequences in their promoters. Daunomycin-conjugated control oligonucleotides unable to form triplex DNA with the target sequence did not have any effect in these assays, indicating that daunomycin was not directly responsible for the activity of daunomycin-conjugated TFO. Thus, attachment of daunomycin resulted in increased triplex stability and biological activity of the 11mer GT-rich TFO without

  18. Screening Mixtures of Small Molecules for Binding to Multiple Sites on the Surface Tetanus Toxin C Fragment by Bioaffinity NMR

    SciTech Connect

    Cosman, M; Zeller, L; Lightstone, F C; Krishnan, V V; Balhorn, R

    2002-01-01

    also contains 3-sialyllactose (another predicted site 1 binder) and bisbenzimide 33342 (non-binder). A series of five predicted Site-2 binders were then screened sequentially in the presence of the Site-1 binder doxorubicin. These experiments showed that the compounds lavendustin A and naphthofluorescein-di-({beta}-D-galactopyranoside) binds along with doxorubicin to TetC. Further experiments indicate that doxorubicin and lavendustin are potential candidates to use in preparing a bidendate inhibitor specific for TetC. The simultaneous binding of two different predicted Site-2 ligands to TetC suggests that they may bind multiple sites. Another possibility is that the conformations of the binding sites are dynamic and can bind multiple diverse ligands at a single site depending on the pre-existing conformation of the protein, especially when doxorubicin is already bound.

  19. Characterization of a protein that binds multiple sequences in mammalian type C retrovirus enhancers.

    PubMed Central

    Sun, W; O'Connell, M; Speck, N A

    1993-01-01

    Mammalian type C retrovirus enhancer factor 1 (MCREF-1) is a nuclear protein that binds several directly repeated sequences (CNGGN6CNGG) in the Moloney and Friend murine leukemia virus (MLV) enhancers (N. R. Manley, M. O'Connell, W. Sun, N. A. Speck, and N. Hopkins, J. Virol. 67:1967-1975, 1993). In this paper, we describe the partial purification of MCREF-1 from calf thymus nuclei and further characterize the binding properties of MCREF-1. MCREF-1 binds four sites in the Moloney MLV enhancer and three sites in the Friend MLV enhancer. Ethylation interference analysis suggests that the MCREF-1 binding site spans two adjacent minor grooves of DNA. Images PMID:8445719

  20. Site-directed alkylation of multiple opioid receptors. I. Binding selectivity

    SciTech Connect

    James, I.F.; Goldstein, A.

    1984-05-01

    A method for measuring and expressing the binding selectivity of ligands for mu, delta, and kappa opioid binding sites is reported. Radioligands are used that are partially selective for these sites in combination with membrane preparations enriched in each site. Enrichment was obtained by treatment of membranes with the alkylating agent beta-chlornaltrexamine in the presence of appropriate protecting ligands. After enrichment for mu receptors, (/sup 3/H) dihydromorphine bound to a single type of site as judged by the slope of competition binding curves. After enrichment for delta or kappa receptors, binding sites for (/sup 3/H) (D-Ala2, D-Leu5)enkephalin and (3H)ethylketocyclazocine, respectively, were still not homogeneous. There were residual mu sites in delta-enriched membranes but no evidence for residual mu or delta sites in kappa-enriched membranes were found. This method was used to identify ligands that are highly selective for each of the three types of sites.

  1. Identification of cereblon-binding proteins and relationship with response and survival after IMiDs in multiple myeloma.

    PubMed

    Zhu, Yuan Xiao; Braggio, Esteban; Shi, Chang-Xin; Kortuem, K Martin; Bruins, Laura A; Schmidt, Jessica E; Chang, Xiu-Bao; Langlais, Paul; Luo, Moulun; Jedlowski, Patrick; LaPlant, Betsy; Laumann, Kristina; Fonseca, Rafael; Bergsagel, P Leif; Mikhael, Joseph; Lacy, Martha; Champion, Mia D; Stewart, A Keith

    2014-07-24

    Cereblon (CRBN) mediates immunomodulatory drug (IMiD) action in multiple myeloma (MM). Using 2 different methodologies, we identified 244 CRBN binding proteins and established relevance to MM biology by changes in their abundance after exposure to lenalidomide. Proteins most reproducibly binding CRBN (>fourfold vs controls) included DDB1, CUL4A, IKZF1, KPNA2, LTF, PFKL, PRKAR2A, RANGAP1, and SHMT2. After lenalidomide treatment, the abundance of 46 CRBN binding proteins decreased. We focused attention on 2 of these-IKZF1 and IKZF3. IZKF expression is similar across all MM stages or subtypes; however, IKZF1 is substantially lower in 3 of 5 IMiD-resistant MM cell lines. The cell line (FR4) with the lowest IKZF1 levels also harbors a damaging mutation and a translocation that upregulates IRF4, an IKZF target. Clinical relevance of CRBN-binding proteins was demonstrated in 44 refractory MM patients treated with pomalidomide and dexamethasone therapy in whom low IKZF1 gene expression predicted lack of response (0/11 responses in the lowest expression quartile). CRBN, IKZF1, and KPNA2 levels also correlate with significant differences in overall survival. Our study identifies CRBN-binding proteins and demonstrates that in addition to CRBN, IKZF1, and KPNA2, expression can predict survival outcomes.

  2. Deletion mutation analysis of the adenovirus type 2 E3-gp19K protein: identification of sequences within the endoplasmic reticulum lumenal domain that are required for class I antigen binding and protection from adenovirus-specific cytotoxic T lymphocytes.

    PubMed Central

    Hermiston, T W; Tripp, R A; Sparer, T; Gooding, L R; Wold, W S

    1993-01-01

    Adenovirus E3-gp19K is a transmembrane glycoprotein, localized in the endoplasmic reticulum (ER), which forms a complex with major histocompatibility complex (MHC) class I antigens and retains them in the ER, thereby preventing cytolysis by cytotoxic T lymphocytes (CTL). The ER lumenal domain of gp19K, residues 1 to 107, is known to be sufficient for binding to class I antigens; the transmembrane and cytoplasmic ER retention domains are located at residues ca. 108 to 127 and 128 to 142, respectively. To identify more precisely which gp19K regions are involved in binding to class I antigens, we constructed 13 in-frame virus deletion mutants (4 to 12 amino acids deleted) in the ER lumenal domain of gp19K, and we analyzed the ability of the mutant proteins to form a complex with class I antigens, retain them in the ER, and prevent cytolysis by adenovirus-specific CTL. All mutant proteins except one (residues 102 to 107 deleted) were defective for these properties, indicating that the ability of gp19K to bind to class I antigens is highly sensitive to mutation. All mutant proteins were stable and were retained in the ER. Sequence comparisons among adenovirus serotypes reveal that the ER lumenal domain of gp19K consists of a variable region (residues 1 to 76) and a conserved region (residues 77 to 98). We show, using the mutant proteins, that the gp19K-specific monoclonal antibody Tw1.3 recognizes a noncontiguous epitope in the variable region and that disruption of the variable region by deletion destroys the epitope. The monoclonal antibody and class I antigen binding results, together with the serotype sequence comparisons, are consistent with the idea that the ER lumenal domain of gp19K has three subdomains that we have termed the ER lumenal variable domain (residues 1 to ca. 77 to 83), the ER lumenal conserved domain (residues ca. 84 to 98), and the ER lumenal spacer domain (residues 99 to 107). We suggest that the ER lumenal variable domain of gp19K has a specific

  3. Multiple mechanisms underlie defective recognition of melanoma cells cultured in three-dimensional architectures by antigen-specific cytotoxic T lymphocytes

    PubMed Central

    Feder-Mengus, C; Ghosh, S; Weber, W P; Wyler, S; Zajac, P; Terracciano, L; Oertli, D; Heberer, M; Martin, I; Spagnoli, G C; Reschner, A

    2007-01-01

    Cancer cells' growth in three-dimensional (3D) architectures promotes resistance to drugs, cytokines, or irradiation. We investigated effects of 3D culture as compared to monolayers (2D) on melanoma cells' recognition by tumour-associated antigen (TAA)-specific HLA-A*0201-restricted cytotoxic T-lymphocytes (CTL). Culture of HBL, D10 (both HLA-A*0201+, TAA+) and NA8 (HLA-A*0201+, TAA−) melanoma cells on polyHEMA-coated plates, resulted in generation of 3D multicellular tumour spheroids (MCTS). Interferon-gamma (IFN-γ) production by HLA-A*0201-restricted Melan-A/MART-127–35 or gp100280–288-specific CTL clones served as immunorecognition marker. Co-culture with melanoma MCTS, resulted in defective TAA recognition by CTL as compared to 2D as witnessed by decreased IFN-γ production and decreased Fas Ligand, perforin and granzyme B gene expression. A multiplicity of mechanisms were potentially involved. First, MCTS per se limit CTL capacity of recognising HLA class I restricted antigens by reducing exposed cell surfaces. Second, expression of melanoma differentiation antigens is downregulated in MCTS. Third, expression of HLA class I molecules can be downregulated in melanoma MCTS, possibly due to decreased interferon-regulating factor-1 gene expression. Fourth, lactic acid production is increased in MCTS, as compared to 2D. These data suggest that melanoma cells growing in 3D, even in the absence of immune selection, feature characteristics capable of dramatically inhibiting TAA recognition by specific CTL. PMID:17342088

  4. MTI-101 (cyclized HYD1) binds a CD44 containing complex and induces necrotic cell death in multiple myeloma.

    PubMed

    Gebhard, Anthony W; Jain, Priyesh; Nair, Rajesh R; Emmons, Michael F; Argilagos, Raul F; Koomen, John M; McLaughlin, Mark L; Hazlehurst, Lori A

    2013-11-01

    Our laboratory recently reported that treatment with the d-amino acid containing peptide HYD1 induces necrotic cell death in multiple myeloma cell lines. Because of the intriguing biological activity and promising in vivo activity of HYD1, we pursued strategies for increasing the therapeutic efficacy of the linear peptide. These efforts led to a cyclized peptidomimetic, MTI-101, with increased in vitro activity and robust in vivo activity as a single agent using two myeloma models that consider the bone marrow microenvironment. MTI-101 treatment similar to HYD1 induced reactive oxygen species, depleted ATP levels, and failed to activate caspase-3. Moreover, MTI-101 is cross-resistant in H929 cells selected for acquired resistance to HYD1. Here, we pursued an unbiased chemical biology approach using biotinylated peptide affinity purification and liquid chromatography/tandem mass spectrometry analysis to identify binding partners of MTI-101. Using this approach, CD44 was identified as a predominant binding partner. Reducing the expression of CD44 was sufficient to induce cell death in multiple myeloma cell lines, indicating that multiple myeloma cells require CD44 expression for survival. Ectopic expression of CD44s correlated with increased binding of the FAM-conjugated peptide. However, ectopic expression of CD44s was not sufficient to increase the sensitivity to MTI-101-induced cell death. Mechanistically, we show that MTI-101-induced cell death occurs via a Rip1-, Rip3-, or Drp1-dependent and -independent pathway. Finally, we show that MTI-101 has robust activity as a single agent in the SCID-Hu bone implant and 5TGM1 in vivo model of multiple myeloma.

  5. HPLC-purified 2-(/sup 125/I)iodomelatonin labels multiple binding sites in hamster brain

    SciTech Connect

    Niles, L.P.; Pickering, D.S.; Sayer, B.G.

    1987-09-30

    Binding of 2-(/sup 125/I)iodomelatonin in hamster brain synaptosomal membranes at 0 degrees C is rapid, saturable, reversible and sensitive to heat and trypsin treatment. Computer resolution of curvilinear Scatchard plots yielded high- and low-affinity components as follows: Kd1 = 0.32 +/- 0.14 nM, Bmax1 = 5.6 +/- 1.7 fmol/mg protein and Kd2 = 10.5 +/- 3.2 nM, Bmax2 = 123 +/- 33 fmol/mg protein (n = 3). Competition experiments indicated that 2-iodomelatonin and prazosin are the most potent inhibitors of high-affinity binding. Unlike prazosin, several alpha-adrenergic agents and various neurotransmitters were ineffective. These findings suggest that prazosin may be a potent antagonist at a unique, non-alpha-adrenergic, high-affinity binding site for melatonin.

  6. Stability of multiple antigen receptor gene rearrangements and immunophenotype in Hodgkin's disease-derived cell line L428 and variant subline L428KSA.

    PubMed

    Athan, E S; Paietta, E; Papenhausen, P R; Augenlicht, L; Wiernik, P H; Gallagher, R E

    1989-07-01

    The Hodgkin's disease (HD) derived cell line L428 and a phorbol ester-selected subline L428KSA, which have been independently passaged in tissue culture for several years, were studied for possible antigen receptor gene and immunophenotypic differences. Multiple but identical alterations of these genes were found, including: the deletion of one and rearrangement of the other immunoglobulin (Ig) heavy chain allele; the rearrangement of one kappa and one lambda light chain allele; and the rearrangement of one T cell receptor (TCR) beta allele. Restriction mapping of the Ig heavy chain locus indicated that rearrangement of the retained allele produced a JH-C gamma 4 fusion product by an isotype switch mechanism. The 14q+ chromosome [t(14q32;?)] present in both cell cultures derived either from translocation 5' (telomeric) to the rearranged JH allele or 3' (centromeric) to the deleted Ig heavy chain allele and did not involve detectable rearrangement of the c-myc, bcl 1, or bcl 2 oncogenes. No differences in the immunophenotype were found between the L428 and L428KSA cells: both expressed leukocyte activation antigens and some determinants associated with myelomonocytic cells but no lymphoid markers. It is postulated that these phenotypic characteristics derived from secondary genetic events/differentiative reprogramming which produced extinction of primary lymphoid characters, including terminal deoxynucleotidyl transferase (TdT) essential to generation of the Ig and TCR gene rearrangements, and expression of an incomplete set of myelomonocytic markers.

  7. Schistosoma mansoni soluble egg antigens are internalized by human dendritic cells through multiple C-type lectins and suppress TLR-induced dendritic cell activation.

    PubMed

    van Liempt, Ellis; van Vliet, Sandra J; Engering, Anneke; García Vallejo, Juan Jesus; Bank, Christine M C; Sanchez-Hernandez, Marta; van Kooyk, Yvette; van Die, Irma

    2007-04-01

    In schistosomiasis, a parasitic disease caused by helminths, the parasite eggs induce a T helper 2 cell (T(H)2) response in the host. Here, the specific role of human monocyte-derived dendritic cells (DCs) in initiation and polarization of the egg-specific T cell responses was examined. We demonstrate that immature DCs (iDCs) pulsed with schistosome soluble egg antigens (SEA) do not show an increase in expression of co-stimulatory molecules or cytokines, indicating that no conventional maturation was induced. The ability of SEA to affect the Toll-like receptor (TLR) induced maturation of iDCs was examined by copulsing the DCs with SEA and TLR-ligands. SEA suppressed both the maturation of iDCs induced by poly-I:C and LPS, as indicated by a decrease in co-stimulatory molecule expression and production of IL-12, IL-6 and TNF-alpha. In addition, SEA suppressed T(H)1 responses induced by the poly-I:C-pulsed DCs, and skewed the LPS-induced mixed response towards a T(H)2 response. Immature DCs rapidly internalized SEA through the C-type lectins DC-SIGN, MGL and the mannose receptor and the antigens were targeted to MHC class II-positive lysosomal compartments. The internalization of SEA by multiple C-type lectins may be important to regulate the response of the iDCs to TLR-induced signals.

  8. A central role for HSC70 in regulating antigen trafficking and MHC class II presentation.

    PubMed

    Deffit, Sarah N; Blum, Janice S

    2015-12-01

    Cells rely on multiple intracellular trafficking pathways to capture antigens for proteolysis. The resulting peptides bind to MHC class II molecules to promote CD4(+) T cell recognition. Endocytosis enhances the capture of extracellular and cell surface bound antigens for processing and presentation, while autophagy pathways shunt cytoplasmic and nuclear antigens for presentation in the context of MHC class II molecules. Understanding how physiological changes and cellular stress alter antigen trafficking and the repertoire of peptides presented by class II molecules remains challenging, yet important in devising novel approaches to boost immune responses to pathogens and tumors. An abundant, constitutively expressed cytoplasmic chaperone, HSC70 plays a central role in modulating antigen transport within cells to control MHC class II presentation during nutrient stress. HSC70 may serve as a molecular switch to modulate endocytic and autophagy pathways, impacting the source of antigens delivered for MHC class II presentation during cellular stress.

  9. In vitro binding of anthrax protective antigen on bacteriophage T4 capsid surface through Hoc-capsid interactions: A strategy for efficient display of large full-length proteins

    SciTech Connect

    Shivachandra, Sathish B.; Rao, Mangala; Janosi, Laszlo; Sathaliyawala, Taheri; Matyas, Gary R.; Alving, Carl R.; Leppla, Stephen H.; Rao, Venigalla B. . E-mail: rao@cua.edu

    2006-02-05

    An in vitro binding system is described to display large full-length proteins on bacteriophage T4 capsid surface at high density. The phage T4 icosahedral capsid features 155 copies of a nonessential highly antigenic outer capsid protein, Hoc, at the center of each major capsid protein hexon. Gene fusions were engineered to express the 83-kDa protective antigen (PA) from Bacillus anthracis fused to the N-terminus of Hoc and the 130-kDa PA-Hoc protein was expressed in Escherichia coli and purified. The purified PA-Hoc was assembled in vitro on hoc {sup -} phage particles. Binding was specific, stable, and of high affinity. This defined in vitro system allowed manipulation of the copy number of displayed PA and imposed no significant limitation on the size of the displayed antigen. In contrast to in vivo display systems, the in vitro approach allows all the capsid binding sites to be occupied by the 130-kDa PA-Hoc fusion protein. The PA-T4 particles were immunogenic in mice in the absence of an adjuvant, eliciting strong PA-specific antibodies and anthrax lethal toxin neutralizing antibodies. The in vitro display on phage T4 offers a novel platform for potential construction of customized vaccines against anthrax and other infectious diseases.

  10. Effect of low-dose testosterone treatment on androgen regulated proteins prostate specific antigen and sex hormone binding globulin in short prepubertal boys: lack of initiation of puberty.

    PubMed

    Gupta, M K; Brown, D C; Faiman, C; Kelnar, C J H; Wu, F C W

    2003-01-01

    The efficacy of testosterone undecanoate (TU) treatment in constitutional delay of growth (CHD) is well recognized. We investigated its role in initiating puberty. Sera taken prior to, just after 6 months on and after 6 months off treatment with TU (20 mg daily) were analyzed from eight boys and compared to results from eight boys receiving placebo. Prostate specific antigen (PSA) and sex hormone binding globulin (SHBG), sleep-entrained pulsatility and mean overnight luteinizing hormone (mLH), and morning testosterone (T) levels were measured. Free androgen index (FAI) was calculated. Testicular volume (TV) and growth parameters were assessed. During treatment, there was a significant increase in height velocity in boys taking TU vs placebo (mean +/- SD: 5.7 +/- 2.0 vs 3.2 +/- 0.9 cm/year, p = 0.008) but no significant differences were observed in regard to LH pulsatility, mLH, T, SHBG, FAI, PSA and TV values. PSA was detectable in four patients (two each in the TU and placebo groups) at 6 months off treatment indicating pubertal progression. Among the hormones measured, only pretreatment mLH levels were significantly higher in the PSA-positive patients compared to 12 PSA-negative patients (mean +/- SEM: 1.5 +/- 0.39 vs 0.37 +/- 0.06 IU/l, p < 0.001). In conclusion, TU treatment shows no significant effect on initiation or advancement of puberty despite its resultant growth acceleration. Among the hormonal changes studied, mLH levels were the earliest indicator of pubertal initiation.

  11. Mapping of immunodominant B-cell epitopes and the human serum albumin-binding site in natural hepatitis B virus surface antigen of defined genosubtype.

    PubMed

    Sobotta, D; Sominskaya, I; Jansons, J; Meisel, H; Schmitt, S; Heermann, K H; Kaluza, G; Pumpens, P; Gerlich, W H

    2000-02-01

    Twelve MAbs were generated by immunization of BALB/c mice with plasma-derived hepatitis B virus surface spherical antigen particles subtype ayw2 (HBsAg/ayw2 genotype D). Their epitopes were mapped by analysis of reactivity with plasma-derived HBsAg/ayw2 and HBsAg/adw2 (genotype A) in enzyme immunoassays and blots. Mapping was supported by nested sets of truncated preS2 proteins and preS2 peptides. Five antibodies were S domain-specific, seven were preS2-specific and 11 had a preference for genotype D. According to our data, group I of the three known epitope groups of preS2 has to be divided into IA and IB. Three preS2-specific MAbs forming the new group IA reacted with genotype D residues 3-15 which have not yet been described as an epitope region. IA antibodies strongly inhibited the binding of polymerized human serum albumin. Two antibodies (group II) reacted with the glycosylated N-terminal region of preS2 in plasma-derived HBsAg, but not with a preparation from transfected murine cells. One group III antibody was subtype-specific and reacted with the highly variable preS2 sequence 38-48. Only one antibody (group IB) mapped to the region (old group I) which was believed to be immunodominant and genotype-independent. Geno(sub)type-specific epitopes of preS2 are obviously the immunodominant components of natural HBsAg in BALB/c mice, but these epitopes may be masked by serum albumins in humans. The data may explain why it is difficult to detect anti-preS2 antibodies in human recipients of preS2-containing vaccines, in spite of the preS2 immunodominance in mice.

  12. Neural networks for determining protein specificity and multiple alignment of binding sites

    SciTech Connect

    Heumann, J.M.; Lapedes, A.S.; Stormo, G.D.

    1994-12-31

    We use a quantitative definition of specificity to develop a neural network for the identification of common protein binding sites in a collection of unaligned DNA fragments. We demonstrate the equivalence of the method to maximizing Information Content of the aligned sites when simple models of the binding energy and the genome are employed. The network method subsumes those simple models and is capable of working with more complicated ones. This is demonstrated using a Markov model of the E. coli genome and a sampling method to approximate the partition function. A variation of Gibbs sampling aids in avoiding local minima.

  13. Liposome entrapment and immunogenic studies of a synthetic lipophilic multiple antigenic peptide bearing VP1 and VP3 domains of the hepatitis A virus: a robust method for vaccine design.

    PubMed

    Haro, Isabel; Pérez, Silvia; García, Mónica; Chan, Weng C; Ercilla, Guadalupe

    2003-04-10

    Multiple antigen peptides (MAP) have been demonstrated to be efficient immunological reagents for the induction of immune responses to a variety of infectious agents. Several peptide domains of the hepatitis A virus (HAV) capsid proteins, mainly VP1 and VP3, are the immunodominant targets for a protective antibody response. In the present study we analyse the immunogenic properties of a tetrameric heterogeneous palmitoyl-derivatised MAP containing two defined HAV peptide sequences, VP1(11-25) and VP3(102-121), in rabbits immunised with either Freund's adjuvant or multilamellar liposomes. The immune response was evaluated with a specific enzyme immunoassay using MAP[VP1+VP3], VP1 and VP3 as targets. The avidity of the immune response was measured by a non-competitive enzyme-linked immunosorbent assay and by the surface plasmon resonance technology. Antisera raised against the lipo-MAP peptide entrapped in liposomes demonstrated high avidity of binding with affinity rate constants approximately one order of magnitude greater than those obtained with the Freund's protocol.

  14. Multiple binding of repressed mRNAs by the P-body protein Rck/p54

    PubMed Central

    Ernoult-Lange, Michèle; Baconnais, Sonia; Harper, Maryannick; Minshall, Nicola; Souquere, Sylvie; Boudier, Thomas; Bénard, Marianne; Andrey, Philippe; Pierron, Gérard; Kress, Michel; Standart, Nancy; le Cam, Eric; Weil, Dominique

    2012-01-01

    Translational repression is achieved by protein complexes that typically bind 3′ UTR mRNA motifs and interfere with the formation of the cap-dependent initiation complex, resulting in mRNPs with a closed-loop conformation. We demonstrate here that the human DEAD-box protein Rck/p54, which is a component of such complexes and central to P-body assembly, is in considerable molecular excess with respect to cellular mRNAs and enriched to a concentration of 0.5 mM in P-bodies, where it is organized in clusters. Accordingly, multiple binding of p54 proteins along mRNA molecules was detected in vivo. Consistently, the purified protein bound RNA with no sequence specificity and high nanomolar affinity. Moreover, bound RNA molecules had a relaxed conformation. While RNA binding was ATP independent, relaxing of bound RNA was dependent on ATP, though not on its hydrolysis. We propose that Rck/p54 recruitment by sequence-specific translational repressors leads to further binding of Rck/p54 along mRNA molecules, resulting in their masking, unwinding, and ultimately recruitment to P-bodies. Rck/p54 proteins located at the 5′ extremity of mRNA can then recruit the decapping complex, thus coupling translational repression and mRNA degradation. PMID:22836354

  15. Development of a Competitive Binding Assay System with Recombinant Estrogen Receptors from Multiple Species

    EPA Science Inventory

    ABSTRACT In the current study, we developed a new system using full-length recombinant baculovirus-expressed estrogen receptors which allows for direct comparison of binding across species. Estrogen receptors representing five vertebrate classes were compared: human (hERα), quai...

  16. Binding of Multiple Features in Memory by High-Functioning Adults with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Bowler, Dermot M.; Gaigg, Sebastian B.; Gardiner, John M.

    2014-01-01

    Diminished episodic memory and diminished use of semantic information to aid recall by individuals with autism spectrum disorder (ASD) are both thought to result from diminished relational binding of elements of complex stimuli. To test this hypothesis, we asked high-functioning adults with ASD and typical comparison participants to study grids in…

  17. Multiple roles for polypyrimidine tract binding (PTB) proteins in trypanosome RNA metabolism

    PubMed Central

    Stern, Michael Zeev; Gupta, Sachin Kumar; Salmon-Divon, Mali; Haham, Tomer; Barda, Omer; Levi, Sarit; Wachtel, Chaim; Nilsen, Timothy W.; Michaeli, Shulamit

    2009-01-01

    Trypanosomatid genomes encode for numerous proteins containing an RNA recognition motif (RRM), but the function of most of these proteins in mRNA metabolism is currently unknown. Here, we report the function of two such proteins that we have named PTB1 and PTB2, which resemble the mammalian polypyrimidine tract binding proteins (PTB). RNAi silencing of these factors indicates that both are essential for life. PTB1 and PTB2 reside mostly in the nucleus, but are found in the cytoplasm, as well. Microarray analysis performed on PTB1 and PTB2 RNAi silenced cells indicates that each of these factors differentially affects the transcriptome, thus regulating a different subset of mRNAs. PTB1 and PTB2 substrates were categorized bioinformatically, based on the presence of PTB binding sites in their 5′ and 3′ flanking sequences. Both proteins were shown to regulate mRNA stability. Interestingly, PTB proteins are essential for trans-splicing of genes containing C-rich polypyrimidine tracts. PTB1, but not PTB2, also affects cis-splicing. The specificity of binding of PTB1 was established in vivo and in vitro using a model substrate. This study demonstrates for the first time that trans-splicing of only certain substrates requires specific factors such as PTB proteins for their splicing. The trypanosome PTB proteins, like their mammalian homologs, represent multivalent RNA binding proteins that regulate mRNAs from their synthesis to degradation. PMID:19218552

  18. Allo-antigen stimulated CD8+ T-cells suppress NF-κB and Ets-1 DNA binding activity, and inhibit phosphorylated NF-κB p65 nuclear localization in CD4+ T-cells.

    PubMed

    Nagashima, Ryuichi; Kawakami, Fumitaka; Takahashi, Shinichiro; Obata, Fumiya; Kubo, Makoto

    2014-08-01

    CD8+ T-cells of asymptomatic HIV-1 carriers (AC) suppress human immunodeficiency virus type 1 (HIV-1) replication in a class I major histocompatibility complex (MHC-I)-restricted and -unrestricted manner. In order to investigate the mechanism of MHC-I-unrestricted CD8+ T-cell-mediated HIV-1 suppression, we previously established allo-antigen stimulated CD8+T-cells from HIV-1-uninfected donors. These allo-antigen stimulated CD8+ T-cells suppressed HIV-1 replication in acutely infected autologous CD4+ T-cells when directly co-cultured. To elucidate the mechanism of HIV-1 replication suppression, we analyzed DNA-binding activity and phosphorylation of transcriptional factors associated with HIV-1 replication by electrophoresis mobility shift assay and Western blotting. When CD4+ T-cells were cultured with allo-antigen stimulated CD8+ T-cells, the reduction of NF-κB and Ets-1 DNA-binding activity was observed. Nuclear localization of NF-κB p65 and Ets-1 was suppressed in CD4+ T-cells. Although NF-κB p65 and Ets-1 are known to be regulated by protein kinase A (PKA), no difference was observed in the expression and phosphorylation of the PKA catalytic subunit in CD4+ T-cells cultured with PHA-treated CD8+ T-cells or allo-antigen stimulated CD8+ T-cells. Cyclic AMP is also known to enter through gap junctions, but the suppression of HIV-1 replication mediated by allo-antigen stimulated CD8+ T-cells was not affected by the gap junction inhibitor. The nuclear transport of phosphorylated NF-κB p65 (Ser276) was inhibited only in CD4+ T-cells cultured with allo-antigen stimulated CD8+ T-cells. Our results indicate that allo-antigen stimulated CD8+ T-cells suppress the transcriptional activity of NF-κB p65 or Ets-1 in an antigen-nonspecific manner, and inhibit the nuclear transport of phosphorylated NF-κB p65 (Ser276).

  19. Binding of antibodies to the extractable nuclear antigens SS-A/Ro and SS-B/La is induced on the surface of human keratinocytes by ultraviolet light (UVL): Implications for the pathogenesis of photosensitive cutaneous lupus

    SciTech Connect

    Furukawa, F.; Kashihara-Sawami, M.; Lyons, M.B.; Norris, D.A. )

    1990-01-01

    Autoantibodies to the non-histone nucleoprotein antigens SS-A/Ro, SS-B/La, and RNP are highly associated with photosensitive cutaneous lupus erythematosus (LE). In order to better understand the potential mechanisms of ultraviolet (UV) light on photosensitivity in patients with cutaneous LE, we designed immunopathologic in vitro and in vivo experiments to evaluate the effects of UV on the binding of such autoantibodies to the surface of human keratinocytes, one major target of immunologic damage in photosensitive LE. Short-term 2% paraformaldehyde fixation of suspensions of cultured human keratinocytes previously incubated with monospecific antiserum probes enabled the detection of ENA expression on the cell surface by flow-cytometry analysis. UVB light (280-320 nm) induced the binding of monospecific antibody probes for SS-A/Ro and SS-B/La on keratinocytes in a dose-dependent pattern with maximal induction observed at the dose of 200 mJ/cm2 UVB. Binding of SS-A/Ro, SS-B/La, and RNP antibody was augmented strongly, but binding of anti-Sm was very weak. In contrast, UVA (320-400 nm) light had no effect on the induction of binding of these antibody probes. Identical results were seen by standard immunofluorescence techniques. Hydroxyurea-treated keratinocytes showed similar induction of those antigens by UVB irradiation, which suggested that ENA expression on cultured keratinocytes by UVB were cell-cycle independent. Tunicamycin, an inhibitor of glycosylation of proteins, reduced UVB light effect on the SS-A/Ro and SS-B/La antigen's expression. These in vitro FACS analyses revealed that ENA augmentation on the keratinocyte cell surface was dose dependent, UVB dependent, glycosylation dependent, and cell-cycle independent. In vivo ENA augmentation on the keratinocyte surface was examined in suction blister epidermal roofs.

  20. Strategic priming with multiple antigens can yield memory cell phenotypes optimized for infection with Mycobacterium tuberculosis: A computational study

    SciTech Connect

    Ziraldo, Cordelia; Gong, Chang; Kirschner, Denise E.; Linderman, Jennifer J.

    2016-01-06

    Lack of an effective vaccine results in 9 million new cases of tuberculosis (TB) every year and 1.8 million deaths worldwide. While many infants are vaccinated at birth with BCG (an attenuated M. bovis), this does not prevent infection or development of TB after childhood. Immune responses necessary for prevention of infection or disease are still unknown, making development of effective vaccines against TB challenging. Several new vaccines are ready for human clinical trials, but these trials are difficult and expensive; especially challenging is determining the appropriate cellular response necessary for protection. The magnitude of an immune response is likely key to generating a successful vaccine. Characteristics such as numbers of central memory (CM) and effector memory (EM) T cells responsive to a diverse set of epitopes are also correlated with protection. Promising vaccines against TB contain mycobacterial subunit antigens (Ag) present during both active and latent infection. We hypothesize that protection against different key immunodominant antigens could require a vaccine that produces different levels of EM and CM for each Ag-specific memory population. We created a computational model to explore EM and CM values, and their ratio, within what we term Memory Design Space. Our model captures events involved in T cell priming within lymph nodes and tracks their circulation through blood to peripheral tissues. We used the model to test whether multiple Ag-specific memory cell populations could be generated with distinct locations within Memory Design Space at a specific time point post vaccination. Boosting can further shift memory populations to memory cell ratios unreachable by initial priming events. By strategically varying antigen load, properties of cellular interactions within the LN, and delivery parameters (e.g., number of boosts) of multi-subunit vaccines, we can generate multiple Ag-specific memory populations that cover a wide range of

  1. Multiple changes of penicillin-binding proteins in penicillin-resistant clinical isolates of Streptococcus pneumoniae.

    PubMed Central

    Hakenbeck, R; Tarpay, M; Tomasz, A

    1980-01-01

    Penicillin-binding properties and characteristics of penicillin-binding proteins (PBPs) were investigated in several clinical isolates of Streptococcus pneumoniae differing in their susceptibilities to penicillin (minimal inhibitory concentration [MIC], 0.03 to 0.5 microgram/ml) and compared with the penicillin-susceptible strain R36A (MIC, 0.07 microgram/ml). Several changes accompanied the development of resistance: the relative affinity to penicillin of whole cells, isolated membranes, and two major PBPs after in vivo or in vitro labeling decreased (with increasing resistance). Furthermore, one additional PBP (2') appeared in four of five relatively resistant strains with an MIC of 0.25 microgram/ml and higher. PBP 3 maintained the same high affinity toward penicillin in all strains under all labeling conditions. Images PMID:7425601

  2. Multiple Asparagine Deamidation of Bacillus anthracis Protective Antigen Causes Charge Isoforms Whose Complexity Correlates with Reduced Biological Activity

    DTIC Science & Technology

    2007-01-01

    Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour...subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1 . REPORT DATE 1 ...FEB 2007 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Multiple asparagine deamidation of Bacillus anthracis protective

  3. The 15 SCR flexible extracellular domains of human complement receptor type 2 can mediate multiple ligand and antigen interactions.

    PubMed

    Gilbert, Hannah E; Asokan, Rengasamy; Holers, V Michael; Perkins, Stephen J

    2006-10-06

    Complement receptor type 2 (CR2, CD21) is a cell surface protein that links the innate and adaptive immune response during the activation of B cells. The extracellular portion of CR2 comprises 15 or 16 short complement regulator (SCR) domains, for which the overall arrangement in solution is unknown. This was determined by constrained scattering and ultracentrifugation modelling. The radius of gyration of CR2 SCR 1-15 was determined to be 11.5 nm by both X-ray and neutron scattering, and that of its cross-section was 1.8 nm. The distance distribution function P(r) showed that the overall length of CR2 SCR 1-15 was 38 nm. Sedimentation equilibrium curve fits gave a mean molecular weight of 135,000 (+/- 13,000) Da, in agreement with a fully glycosylated structure. Velocity experiments using the g*(s) derivative method gave a sedimentation coefficient of 4.2 (+/- 0.1) S. In order to construct a model of CR2 SCR 1-15 for constrained fitting, homology models for the 15 SCR domains were combined with randomised linker peptides generated by molecular dynamics simulations. Using an automated procedure, the analysis of 15,000 possible CR2 SCR 1-15 models showed that only those models in which the 15 SCR domains were flexible but partially folded back accounted for the scattering and sedimentation data. The best-fit CR2 models provided a visual explanation for the versatile interaction of CR2 with four ligands C3d, CD23, gp350 and IFN-alpha. The flexible location of CR2 SCR 1-2 is likely to facilitate interactions of C3d-antigen complexes with the B cell receptor.

  4. Self-Amplifying mRNA Vaccines Expressing Multiple Conserved Influenza Antigens Confer Protection against Homologous and Heterosubtypic Viral Challenge

    PubMed Central

    Magini, Diletta; Giovani, Cinzia; Mangiavacchi, Simona; Maccari, Silvia; Cecchi, Raffaella; Ulmer, Jeffrey B.; De Gregorio, Ennio; Geall, Andrew J.; Brazzoli, Michela; Bertholet, Sylvie

    2016-01-01

    Current hemagglutinin (HA)-based seasonal influenza vaccines induce vaccine strain-specific neutralizing antibodies that usually fail to provide protection against mismatched circulating viruses. Inclusion in the vaccine of highly conserved internal proteins such as the nucleoprotein (NP) and the matrix protein 1 (M1) was shown previously to increase vaccine efficacy by eliciting cross-reactive T-cells. However, appropriate delivery systems are required for efficient priming of T-cell responses. In this study, we demonstrated that administration of novel self-amplifying mRNA (SAM®) vectors expressing influenza NP (SAM(NP)), M1 (SAM(M1)), and NP and M1 (SAM(M1-NP)) delivered with lipid nanoparticles (LNP) induced robust polyfunctional CD4 T helper 1 cells, while NP-containing SAM also induced cytotoxic CD8 T cells. Robust expansions of central memory (TCM) and effector memory (TEM) CD4 and CD8 T cells were also measured. An enhanced recruitment of NP-specific cytotoxic CD8 T cells was observed in the lungs of SAM(NP)-immunized mice after influenza infection that paralleled with reduced lung viral titers and pathology, and increased survival after homologous and heterosubtypic influenza challenge. Finally, we demonstrated for the first time that the co-administration of RNA (SAM(M1-NP)) and protein (monovalent inactivated influenza vaccine (MIIV)) was feasible, induced simultaneously NP-, M1- and HA-specific T cells and HA-specific neutralizing antibodies, and enhanced MIIV efficacy against a heterologous challenge. In conclusion, systemic administration of SAM vectors expressing conserved internal influenza antigens induced protective immune responses in mice, supporting the SAM® platform as another promising strategy for the development of broad-spectrum universal influenza vaccines. PMID:27525409

  5. Supramolecular Polymers with Multiple Types of Binding Motifs: From Fundamental Studies to Multifunctional Materials

    DTIC Science & Technology

    2015-07-10

    the goal of preparing multi-responsive polymer actuators, we have incorporated liquid crystalline metal-binding Bip monomers into polymeric networks...SECURITY CLASSIFICATION OF: This research project is focused on the development and investigation of a new class of multi-stimuli-responsive polymers ...studies metallo and hydrogen bonded supramolecular polymers that exhibit defect healing characteristics and multi- 1. REPORT DATE (DD-MM-YYYY) 4

  6. Identification of multiple salicylic acid-binding proteins using two high throughput screens

    PubMed Central

    Manohar, Murli; Tian, Miaoying; Moreau, Magali; Park, Sang-Wook; Choi, Hyong Woo; Fei, Zhangjun; Friso, Giulia; Asif, Muhammed; Manosalva, Patricia; von Dahl, Caroline C.; Shi, Kai; Ma, Shisong; Dinesh-Kumar, Savithramma P.; O'Doherty, Inish; Schroeder, Frank C.; van Wijk, Klass J.; Klessig, Daniel F.

    2014-01-01

    Salicylic acid (SA) is an important hormone involved in many diverse plant processes, including floral induction, stomatal closure, seed germination, adventitious root initiation, and thermogenesis. It also plays critical functions during responses to abiotic and biotic stresses. The role(s) of SA in signaling disease resistance is by far the best studied process, although it is still only partially understood. To obtain insights into how SA carries out its varied functions, particularly in activating disease resistance, two new high throughput screens were developed to identify novel SA-binding proteins (SABPs). The first utilized crosslinking of the photo-reactive SA analog 4-AzidoSA (4AzSA) to proteins in an Arabidopsis leaf extract, followed by immuno-selection with anti-SA antibodies and then mass spectroscopy-based identification. The second utilized photo-affinity crosslinking of 4AzSA to proteins on a protein microarray (PMA) followed by detection with anti-SA antibodies. To determine whether the candidate SABPs (cSABPs) obtained from these screens were true SABPs, recombinantly-produced proteins were generated and tested for SA-inhibitable crosslinking to 4AzSA, which was monitored by immuno-blot analysis, SA-inhibitable binding of the SA derivative 3-aminoethylSA (3AESA), which was detected by a surface plasmon resonance (SPR) assay, or SA-inhibitable binding of [3H]SA, which was detected by size exclusion chromatography. Based on our criteria that true SABPs must exhibit SA-binding activity in at least two of these assays, nine new SABPs are identified here; nine others were previously reported. Approximately 80 cSABPs await further assessment. In addition, the conflicting reports on whether NPR1 is an SABP were addressed by showing that it bound SA in all three of the above assays. PMID:25628632

  7. Human leucocyte antigen class I‐redirected anti‐tumour CD4+ T cells require a higher T cell receptor binding affinity for optimal activity than CD8+ T cells

    PubMed Central

    Tan, M. P.; Dolton, G. M.; Gerry, A. B.; Brewer, J. E.; Bennett, A. D.; Pumphrey, N. J.; Jakobsen, B. K.

    2016-01-01

    Summary CD4+ T helper cells are a valuable component of the immune response towards cancer. Unfortunately, natural tumour‐specific CD4+ T cells occur in low frequency, express relatively low‐affinity T cell receptors (TCRs) and show poor reactivity towards cognate antigen. In addition, the lack of human leucocyte antigen (HLA) class II expression on most cancers dictates that these cells are often unable to respond to tumour cells directly. These deficiencies can be overcome by transducing primary CD4+ T cells with tumour‐specific HLA class I‐restricted TCRs prior to adoptive transfer. The lack of help from the co‐receptor CD8 glycoprotein in CD4+ cells might result in these cells requiring a different optimal TCR binding affinity. Here we compared primary CD4+ and CD8+ T cells expressing wild‐type and a range of affinity‐enhanced TCRs specific for the HLA A*0201‐restricted NY‐ESO‐1‐ and gp100 tumour antigens. Our major findings are: (i) redirected primary CD4+ T cells expressing TCRs of sufficiently high affinity exhibit a wide range of effector functions, including cytotoxicity, in response to cognate peptide; and (ii) optimal TCR binding affinity is higher in CD4+ T cells than CD8+ T cells. These results indicate that the CD4+ T cell component of current adoptive therapies using TCRs optimized for CD8+ T cells is below par and that there is room for substantial improvement. PMID:27324616

  8. Cross-class metallo-β-lactamase inhibition by bisthiazolidines reveals multiple binding modes

    PubMed Central

    Hinchliffe, Philip; González, Mariano M.; Mojica, Maria F.; González, Javier M.; Castillo, Valerie; Saiz, Cecilia; Kosmopoulou, Magda; Tooke, Catherine L.; Llarrull, Leticia I.; Mahler, Graciela; Bonomo, Robert A.; Vila, Alejandro J.; Spencer, James

    2016-01-01

    Metallo-β-lactamases (MBLs) hydrolyze almost all β-lactam antibiotics and are unaffected by clinically available β-lactamase inhibitors (βLIs). Active-site architecture divides MBLs into three classes (B1, B2, and B3), complicating development of βLIs effective against all enzymes. Bisthiazolidines (BTZs) are carboxylate-containing, bicyclic compounds, considered as penicillin analogs with an additional free thiol. Here, we show both l- and d-BTZ enantiomers are micromolar competitive βLIs of all MBL classes in vitro, with Kis of 6–15 µM or 36–84 µM for subclass B1 MBLs (IMP-1 and BcII, respectively), and 10–12 µM for the B3 enzyme L1. Against the B2 MBL Sfh-I, the l-BTZ enantiomers exhibit 100-fold lower Kis (0.26–0.36 µM) than d-BTZs (26–29 µM). Importantly, cell-based time-kill assays show BTZs restore β-lactam susceptibility of Escherichia coli-producing MBLs (IMP-1, Sfh-1, BcII, and GOB-18) and, significantly, an extensively drug-resistant Stenotrophomonas maltophilia clinical isolate expressing L1. BTZs therefore inhibit the full range of MBLs and potentiate β-lactam activity against producer pathogens. X-ray crystal structures reveal insights into diverse BTZ binding modes, varying with orientation of the carboxylate and thiol moieties. BTZs bind the di-zinc centers of B1 (IMP-1; BcII) and B3 (L1) MBLs via the free thiol, but orient differently depending upon stereochemistry. In contrast, the l-BTZ carboxylate dominates interactions with the monozinc B2 MBL Sfh-I, with the thiol uninvolved. d-BTZ complexes most closely resemble β-lactam binding to B1 MBLs, but feature an unprecedented disruption of the D120–zinc interaction. Cross-class MBL inhibition therefore arises from the unexpected versatility of BTZ binding. PMID:27303030

  9. Structural and Functional Characterization of CRM1-Nup214 Interactions Reveals Multiple FG-Binding Sites Involved in Nuclear Export.

    PubMed

    Port, Sarah A; Monecke, Thomas; Dickmanns, Achim; Spillner, Christiane; Hofele, Romina; Urlaub, Henning; Ficner, Ralf; Kehlenbach, Ralph H

    2015-10-27

    CRM1 is the major nuclear export receptor. During translocation through the nuclear pore, transport complexes transiently interact with phenylalanine-glycine (FG) repeats of multiple nucleoporins. On the cytoplasmic side of the nuclear pore, CRM1 tightly interacts with the nucleoporin Nup214. Here, we present the crystal structure of a 117-amino-acid FG-repeat-containing fragment of Nup214, in complex with CRM1, Snurportin 1, and RanGTP at 2.85 Å resolution. The structure reveals eight binding sites for Nup214 FG motifs on CRM1, with intervening stretches that are loosely attached to the transport receptor. Nup214 binds to N- and C-terminal regions of CRM1, thereby clamping CRM1 in a closed conformation and stabilizing the export complex. The role of conserved hydrophobic pockets for the recognition of FG motifs was analyzed in biochemical and cell-based assays. Comparative studies with RanBP3 and Nup62 shed light on specificities of CRM1-nucleoporin binding, which serves as a paradigm for transport receptor-nucleoporin interactions.

  10. A DNA-binding Molecule Targeting the Adaptive Hypoxic Response in Multiple Myeloma has Potent Anti-tumor Activity

    PubMed Central

    Mysore, Veena S.; Szablowski, Jerzy; Dervan, Peter B.; Frost, Patrick J.

    2016-01-01

    Multiple myeloma (MM) is incurable and invariably becomes resistant to chemotherapy. Although the mechanisms remain unclear, hypoxic conditions in the bone marrow have been implicated in contributing to MM progression, angiogenesis, and resistance to chemotherapy. These effects occur via adaptive cellular responses mediated by hypoxia-inducible transcription factors (HIFs), and targeting HIFs can have anti-cancer effects in both solid and hematological malignancies. Here, it was found that in most myeloma cell lines tested, HIF1α, but not HIF2α expression was oxygen dependent and this could be explained by the differential expression of the regulatory prolyl-hydroxylase isoforms. The anti-MM effects of a sequence-specific DNA-binding pyrrole-imidazole polyamide (HIF-PA), that disrupts the HIF heterodimer from binding to its cognate DNA sequences, were also investigated. HIF-PA is cell permeable, localizes to the nuclei, and binds specific regions of DNA with an affinity comparable to that of HIF transcription factors. Most of the MM cells were resistant to hypoxia-mediated apoptosis, and HIF-PA treatment could overcome this resistance in vitro. Using xenograft models, it was determined that HIF-PA significantly decreased tumor volume and increased hypoxic and apoptotic regions within solid tumor nodules and the growth of myeloma cells engrafted in the bone marrow. This provides a rationale for targeting the adaptive cellular hypoxic response of the O2-dependent activation of HIFα using polyamides. PMID:26801054

  11. The critical role of antigen-presentation-induced cytokine crosstalk in the central nervous system in multiple sclerosis and experimental autoimmune encephalomyelitis.

    PubMed

    Sosa, Rebecca A; Forsthuber, Thomas G

    2011-10-01

    Multiple sclerosis (MS) is a debilitating disease of the central nervous system (CNS) that has been extensively studied using the animal model experimental autoimmune encephalomyelitis (EAE). It is believed that CD4(+) T lymphocytes play an important role in the pathogenesis of this disease by mediating the demyelination of neuronal axons via secretion of proinflammatory cytokines resulting in the clinical manifestations. Although a great deal of information has been gained in the last several decades about the cells involved in the inflammatory and disease mediating process, important questions have remained unanswered. It has long been held that initial neuroantigen presentation and T cell activation events occur in the immune periphery and then translocate to the CNS. However, an increasing body of evidence suggests that antigen (Ag) presentation might initiate within the CNS itself. Importantly, it has remained unresolved which antigen presenting cells (APCs) in the CNS are the first to acquire and present neuroantigens during EAE/MS to T cells, and what the conditions are under which this takes place, ie, whether this occurs in the healthy CNS or only during inflammatory conditions and what the related cytokine microenvironment is comprised of. In particular, the central role of interferon-γ as a primary mediator of CNS pathology during EAE has been challenged by the emergence of Th17 cells producing interleukin-17. This review describes our current understanding of potential APCs in the CNS and the contribution of these and other CNS-resident cells to disease pathology. Additionally, we discuss the question of where Ag presentation is initiated and under what conditions neuroantigens are made available to APCs with special emphasis on which cytokines may be important in this process.

  12. The Critical Role of Antigen-Presentation-Induced Cytokine Crosstalk in the Central Nervous System in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Sosa, Rebecca A.

    2011-01-01

    Multiple sclerosis (MS) is a debilitating disease of the central nervous system (CNS) that has been extensively studied using the animal model experimental autoimmune encephalomyelitis (EAE). It is believed that CD4+ T lymphocytes play an important role in the pathogenesis of this disease by mediating the demyelination of neuronal axons via secretion of proinflammatory cytokines resulting in the clinical manifestations. Although a great deal of information has been gained in the last several decades about the cells involved in the inflammatory and disease mediating process, important questions have remained unanswered. It has long been held that initial neuroantigen presentation and T cell activation events occur in the immune periphery and then translocate to the CNS. However, an increasing body of evidence suggests that antigen (Ag) presentation might initiate within the CNS itself. Importantly, it has remained unresolved which antigen presenting cells (APCs) in the CNS are the first to acquire and present neuroantigens during EAE/MS to T cells, and what the conditions are under which this takes place, ie, whether this occurs in the healthy CNS or only during inflammatory conditions and what the related cytokine microenvironment is comprised of. In particular, the central role of interferon-γ as a primary mediator of CNS pathology during EAE has been challenged by the emergence of Th17 cells producing interleukin-17. This review describes our current understanding of potential APCs in the CNS and the contribution of these and other CNS-resident cells to disease pathology. Additionally, we discuss the question of where Ag presentation is initiated and under what conditions neuroantigens are made available to APCs with special emphasis on which cytokines may be important in this process. PMID:21919736

  13. Toxocara canis: monoclonal antibodies to larval excretory-secretory antigens that bind with genus and species specificity to the cuticular surface of infective larvae.

    PubMed

    Bowman, D D; Mika-Grieve, M; Grieve, R B

    1987-12-01

    When maintained in culture, the infective-stage larvae of Toxocara canis produce a group of excretory-secretory antigens. Monoclonal antibodies to these antigens have been produced and partially characterized. Hybridomas were made using spleens from mice that had been given 250 embryonated eggs of T. canis followed by immunization with excretory-secretory antigens. Monoclonal antibodies were first screened against excretory-secretory antigens using an indirect enzyme-linked immunosorbent assay. Those antibodies positive in this assay were then screened against the surfaces of formalin-fixed, infective-stage larvae using an indirect fluorescent antibody assay. The two monoclonal antibodies showing fluorescence were also tested against the surfaces of infective-stage larvae of Toxocara cati, Baylisascaris procyonis, Toxascaris leonina, Ascaris suum, a Porrocaecum sp., and Dirofilaria immitis. One of these two antibodies bound to the surface of T. canis and T. cati while the other bound only to the surface of T. canis; neither were reactive with the other ascaridoid larvae or the larvae of D. immitis. Enzyme-linked immunoelectrotransfer blotting techniques were used to demonstrate that the cross-reactive antibody recognized antigens with molecular weights of about 200 kDa while the more specific monoclonal antibody recognized antigens with approximate molecular weights of 80 kDa. The specificity of these two antibodies for T. canis and T. cati should prove helpful in the development of more specific assays for the diagnosis of visceral and ocular larva migrans.

  14. MTI-101 (cyclized HYD1) binds a CD44 containing complex and induces necrotic cell death in multiple myeloma

    PubMed Central

    Gebhard, Anthony W.; Jain, Priyesh; Nair, Rajesh R.; Emmons, Michael F.; Argilagos, Raul F.; Koomen, John M.; McLaughlin, Mark L.; Hazlehurst, Lori A.

    2013-01-01

    Our laboratory recently reported that treatment with the d-amino acid containing peptide HYD1 induces necrotic cell death in multiple myeloma (MM) cell lines. Due to the intriguing biological activity and promising in vivo activity of HYD1, we pursued strategies for increasing the therapeutic efficacy of the linear peptide. These efforts led to a cyclized peptidomimetic, MTI-101, with increased in vitro activity and robust in vivo activity as single agent using two myeloma models that consider the bone marrow microenvironment. MTI-101 treatment similar to HYD1 induced reactive oxygen species, depleted ATP levels and failed to activate caspase 3. Moreover, MTI-101 is cross-resistant in H929 cells selected for acquired resistance to HYD1. Here, we pursued an unbiased chemical biology approach using biotinylated peptide affinity purification and LC-MS/MS analysis to identify binding partners of MTI-101. Using this approach CD44 was identified as a predominant binding partner. Reducing the expression of CD44 was sufficient to induce cell death in MM cell lines, indicating that MM cells require CD44 expression for survival. Ectopic expression of CD44s correlated with increased binding of the FAM-conjugated peptide. However ectopic expression of CD44s was not sufficient to increase the sensitivity to MTI-101 induced cell death. Mechanistically, we show that MTI-101 induced cell death occurs via a Rip1, Rip3 or Drp1 dependent and independent pathway. Finally, we show that MTI-101 has robust activity as a single agent in the SCID-Hu bone implant and 5TGM1 in vivo model of multiple myeloma. PMID:24048737

  15. Multiple binding modes of substrate to the catalytic RNA subunit of RNase P from Escherichia coli.

    PubMed Central

    Pomeranz Krummel, D A; Altman, S

    1999-01-01

    M1 RNA that contained 4'-thiouridine was photochemically cross-linked to different substrates and to a product of the reaction it governs. The locations of the cross-links in these photochemically induced complexes were identified. The cross-links indicated that different substrates share some contacts but have distinct binding modes to M1 RNA. The binding of some substrates also results in a substrate-dependent conformational change in the enzymatic RNA, as evidenced by the appearance of an M1 RNA intramolecular cross-link. The identification of the cross-links between M1 RNA and product indicate that they are shared with only one of the three cross-linked E-S complexes that were identified, an indication of noncompetitive inhibition by the product. We also examined whether the cross-linked complexes between M1 RNA and substrate(s) or product are altered in the presence of the enzyme's protein cofactor (C5 protein) and in the presence of different concentrations of divalent metal ions. C5 protein enhanced the yield of certain M1 RNA-substrate cross-linked complexes for both wild-type M1 RNA and a deletion mutant of M1 RNA (delta[273-281]), but not for the M1 RNA-product complex. High concentrations of Mg2+ increased the yield of all M1 RNA-substrate complexes but not the M1 RNA-product complex. PMID:10445877

  16. Long-term music training tunes how the brain temporally binds signals from multiple senses.

    PubMed

    Lee, Hweeling; Noppeney, Uta

    2011-12-20

    Practicing a musical instrument is a rich multisensory experience involving the integration of visual, auditory, and tactile inputs with motor responses. This combined psychophysics-fMRI study used the musician's brain to investigate how sensory-motor experience molds temporal binding of auditory and visual signals. Behaviorally, musicians exhibited a narrower temporal integration window than nonmusicians for music but not for speech. At the neural level, musicians showed increased audiovisual asynchrony responses and effective connectivity selectively for music in a superior temporal sulcus-premotor-cerebellar circuitry. Critically, the premotor asynchrony effects predicted musicians' perceptual sensitivity to audiovisual asynchrony. Our results suggest that piano practicing fine tunes an internal forward model mapping from action plans of piano playing onto visible finger movements and sounds. This internal forward model furnishes more precise estimates of the relative audiovisual timings and hence, stronger prediction error signals specifically for asynchronous music in a premotor-cerebellar circuitry. Our findings show intimate links between action production and audiovisual temporal binding in perception.

  17. L-phenylalanine ammonia-lyase from French bean (Phaseolus vulgaris L.). Characterization and differential expression of antigenic multiple Mr forms.

    PubMed

    Bolwell, G P; Rodgers, M W

    1991-10-01

    L-Phenylalanine ammonia-lyase (PAL; EC 4.3.1.5) purified from suspension-cultured cells of French bean (Phaseolus vulgaris) has been further characterized. A number of techniques, including use of an antiserum and affinity probes, have established that all the antigenic polypeptides represent polymorphic Mr forms of the enzyme. These peptides include an apparently higher-Mr (83,000) form which shows different kinetics of induction from the Mr-77000 forms that have been extensively characterized previously. The larger subunit appeared to be PAL by the following criteria: (a) binding to specific affinity and antibody matrices; (b) peptide mapping; (c) active-site labelling; and (d) amino acid composition. The increased Mr of the larger subunit was not completely attributable to glycosylation, although some sugar residues were detected in this Mr-83000 form but not in the other Mr forms. Mr-83000 subunits were also immunoprecipitated from translations in vitro of mRNA from cells that had been stressed for a long period. They were also detected in leaf tissues that were not yet undergoing an extensive wound response. This form of the enzyme may be constitutive and involved in the low-level accumulation of phenolics in most cell types. By contrast, the Mr-77000 forms of PAL were rapidly induced during elicitor action, wounding or cytokinin-induced xylogenesis as a key regulatory enzyme involved in the synthesis of phenolics under stress conditions or during differentiation.

  18. Trade-offs in antibody repertoires to complex antigens

    PubMed Central

    Childs, Lauren M.; Baskerville, Edward B.; Cobey, Sarah

    2015-01-01

    Pathogens vary in their antigenic complexity. While some pathogens such as measles present a few relatively invariant targets to the immune system, others such as malaria display considerable antigenic diversity. How the immune response copes in the presence of multiple antigens, and whether a trade-off exists between the breadth and efficacy of antibody (Ab)-mediated immune responses, are unsolved problems. We present a theoretical model of affinity maturation of B-cell receptors (BCRs) during a primary infection and examine how variation in the number of accessible antigenic sites alters the Ab repertoire. Naive B cells with randomly generated receptor sequences initiate the germinal centre (GC) reaction. The binding affinity of a BCR to an antigen is quantified via a genotype–phenotype map, based on a random energy landscape, that combines local and distant interactions between residues. In the presence of numerous antigens or epitopes, B-cell clones with different specificities compete for stimulation during rounds of mutation within GCs. We find that the availability of many epitopes reduces the affinity and relative breadth of the Ab repertoire. Despite the stochasticity of somatic hypermutation, patterns of immunodominance are strongly shaped by chance selection of naive B cells with specificities for particular epitopes. Our model provides a mechanistic basis for the diversity of Ab repertoires and the evolutionary advantage of antigenically complex pathogens. PMID:26194759

  19. Trade-offs in antibody repertoires to complex antigens.

    PubMed

    Childs, Lauren M; Baskerville, Edward B; Cobey, Sarah

    2015-09-05

    Pathogens vary in their antigenic complexity. While some pathogens such as measles present a few relatively invariant targets to the immune system, others such as malaria display considerable antigenic diversity. How the immune response copes in the presence of multiple antigens, and whether a trade-off exists between the breadth and efficacy of antibody (Ab)-mediated immune responses, are unsolved problems. We present a theoretical model of affinity maturation of B-cell receptors (BCRs) during a primary infection and examine how variation in the number of accessible antigenic sites alters the Ab repertoire. Naive B cells with randomly generated receptor sequences initiate the germinal centre (GC) reaction. The binding affinity of a BCR to an antigen is quantified via a genotype-phenotype map, based on a random energy landscape, that combines local and distant interactions between residues. In the presence of numerous antigens or epitopes, B-cell clones with different specificities compete for stimulation during rounds of mutation within GCs. We find that the availability of many epitopes reduces the affinity and relative breadth of the Ab repertoire. Despite the stochasticity of somatic hypermutation, patterns of immunodominance are strongly shaped by chance selection of naive B cells with specificities for particular epitopes. Our model provides a mechanistic basis for the diversity of Ab repertoires and the evolutionary advantage of antigenically complex pathogens.

  20. Multiple Binding Modes between HNF4α and the LXXLL Motifs of PGC-1α Lead to Full Activation*

    PubMed Central

    Rha, Geun Bae; Wu, Guangteng; Shoelson, Steven E.; Chi, Young-In

    2009-01-01

    Hepatocyte nuclear factor 4α (HNF4α) is a novel nuclear receptor that participates in a hierarchical network of transcription factors regulating the development and physiology of such vital organs as the liver, pancreas, and kidney. Among the various transcriptional coregulators with which HNF4α interacts, peroxisome proliferation-activated receptor γ (PPARγ) coactivator 1α (PGC-1α) represents a novel coactivator whose activation is unusually robust and whose binding mode appears to be distinct from that of canonical coactivators such as NCoA/SRC/p160 family members. To elucidate the potentially unique molecular mechanism of PGC-1α recruitment, we have determined the crystal structure of HNF4α in complex with a fragment of PGC-1α containing all three of its LXXLL motifs. Despite the presence of all three LXXLL motifs available for interactions, only one is bound at the canonical binding site, with no additional contacts observed between the two proteins. However, a close inspection of the electron density map indicates that the bound LXXLL motif is not a selected one but an averaged structure of more than one LXXLL motif. Further biochemical and functional studies show that the individual LXXLL motifs can bind but drive only minimal transactivation. Only when more than one LXXLL motif is involved can significant transcriptional activity be measured, and full activation requires all three LXXLL motifs. These findings led us to propose a model wherein each LXXLL motif has an additive effect, and the multiple binding modes by HNF4α toward the LXXLL motifs of PGC-1α could account for the apparent robust activation by providing a flexible mechanism for combinatorial recruitment of additional coactivators and mediators. PMID:19846556

  1. Tetramerization and interdomain flexibility of the replication initiation controller YabA enables simultaneous binding to multiple partners

    PubMed Central

    Felicori, Liza; Jameson, Katie H.; Roblin, Pierre; Fogg, Mark J.; Garcia-Garcia, Transito; Ventroux, Magali; Cherrier, Mickaël V.; Bazin, Alexandre; Noirot, Philippe; Wilkinson, Anthony J.; Molina, Franck; Terradot, Laurent; Noirot-Gros, Marie-Françoise

    2016-01-01

    YabA negatively regulates initiation of DNA replication in low-GC Gram-positive bacteria. The protein exerts its control through interactions with the initiator protein DnaA and the sliding clamp DnaN. Here, we combined X-ray crystallography, X-ray scattering (SAXS), modeling and biophysical approaches, with in vivo experimental data to gain insight into YabA function. The crystal structure of the N-terminal domain (NTD) of YabA solved at 2.7 Å resolution reveals an extended α-helix that contributes to an intermolecular four-helix bundle. Homology modeling and biochemical analysis indicates that the C-terminal domain (CTD) of YabA is a small Zn-binding domain. Multi-angle light scattering and SAXS demonstrate that YabA is a tetramer in which the CTDs are independent and connected to the N-terminal four-helix bundle via flexible linkers. While YabA can simultaneously interact with both DnaA and DnaN, we found that an isolated CTD can bind to either DnaA or DnaN, individually. Site-directed mutagenesis and yeast-two hybrid assays identified DnaA and DnaN binding sites on the YabA CTD that partially overlap and point to a mutually exclusive mode of interaction. Our study defines YabA as a novel structural hub and explains how the protein tetramer uses independent CTDs to bind multiple partners to orchestrate replication initiation in the bacterial cell. PMID:26615189

  2. Lenalidomide enhances antigen-specific activity and decreases CD45RA expression of T cells from patients with multiple myeloma.

    PubMed

    Neuber, Brigitte; Herth, Isabelle; Tolliver, Claudia; Schoenland, Stefan; Hegenbart, Ute; Hose, Dirk; Witzens-Harig, Mathias; Ho, Anthony D; Goldschmidt, Hartmut; Klein, Bernard; Hundemer, Michael

    2011-07-15

    The aim of this study was to investigate whether the specific T cell response against the multiple myeloma Ag HM1.24 is enhanced by the immunomodulatory drug lenalidomide (Revlimid). Ag-specific CD3(+)CD8(+) T cells against the HM1.24 Ag were expanded in vitro by dendritic cells in 29 healthy donors and 26 patients with plasma cell dyscrasias. Ag-specific activation was analyzed by IFN-γ, granzyme B, and perforin secretion using ELISA, ELISPOT assay, and intracellular staining, and generation of Ag-specific T cells was analyzed by tetramer staining. Expression of T cell maturation markers (CD45RA, CD45R0, CCR7, and CD28) was investigated by flow cytometry. We found that activation of HM1.24-specific T cells from healthy donors and patients with plasma cell dyscrasias was enhanced significantly by lenalidomide and furthermore that the impact of lenalidomide on T cells depends on the duration of the exposure. Notably, lenalidomide supports the downregulation of CD45RA on T cells upon activation, observed in healthy donors and in patients in vitro and also in patients during lenalidomide therapy in vivo. We showed for the first time, to our knowledge, that lenalidomide enhances the Ag-specific activation of T cells and the subsequent downregulation of CD45RA expression of T cells in vitro and in vivo.

  3. Increased IgG4 responses to multiple food and animal antigens indicate a polyclonal expansion and differentiation of pre-existing B cells in IgG4-related disease

    PubMed Central

    Culver, Emma L; Vermeulen, Ellen; Makuch, Mateusz; van Leeuwen, Astrid; Sadler, Ross; Cargill, Tamsin; Klenerman, Paul; Aalberse, Rob C; van Ham, S Marieke; Barnes, Eleanor; Rispens, Theo

    2015-01-01

    Background IgG4-related disease (IgG4-RD) is a systemic fibroinflammatory condition, characterised by an elevated serum IgG4 concentration and abundant IgG4-positive plasma cells in the involved organs. An important question is whether the elevated IgG4 response is causal or a reflection of immune-regulatory mechanisms of the disease. Objectives To investigate if the IgG4 response in IgG4-RD represents a generalised polyclonal amplification by examining the response to common environmental antigens. Methods Serum from 24 patients with IgG4-RD (14 treatment-naive, 10 treatment-experienced), 9 patients with primary sclerosing cholangitis and an elevated serum IgG4 (PSC-high IgG4), and 18 healthy controls were tested against egg white and yolk, milk, banana, cat, peanut, rice and wheat antigens by radioimmunoassay. Results We demonstrated an elevated polyclonal IgG4 response to multiple antigens in patients with IgG4-RD and in PSC-high IgG4, compared with healthy controls. There was a strong correlation between serum IgG4 and antigen-specific responses. Responses to antigens were higher in treatment-naive compared with treatment-experienced patients with IgG4-RD. Serum electrophoresis and immunofixation demonstrated polyclonality. Conclusions This is the first study to show enhanced levels of polyclonal IgG4 to multiple antigens in IgG4-RD. This supports that elevated IgG4 levels reflect an aberrant immunological regulation of the overall IgG4 response, but does not exclude that causality of disease could be antigen-driven. PMID:25646372

  4. The intrinsically disordered amino-terminal region of human RecQL4: multiple DNA-binding domains confer annealing, strand exchange and G4 DNA binding

    PubMed Central

    Keller, Heidi; Kiosze, Kristin; Sachsenweger, Juliane; Haumann, Sebastian; Ohlenschläger, Oliver; Nuutinen, Tarmo; Syväoja, Juhani E.; Görlach, Matthias; Grosse, Frank; Pospiech, Helmut

    2014-01-01

    Human RecQL4 belongs to the ubiquitous RecQ helicase family. Its N-terminal region represents the only homologue of the essential DNA replication initiation factor Sld2 of Saccharomyces cerevisiae, and also participates in the vertebrate initiation of DNA replication. Here, we utilized a random screen to identify N-terminal fragments of human RecQL4 that could be stably expressed in and purified from Escherichia coli. Biophysical characterization of these fragments revealed that the Sld2 homologous RecQL4 N-terminal domain carries large intrinsically disordered regions. The N-terminal fragments were sufficient for the strong annealing activity of RecQL4. Moreover, this activity appeared to be the basis for an ATP-independent strand exchange activity. Both activities relied on multiple DNA-binding sites with affinities to single-stranded, double-stranded and Y-structured DNA. Finally, we found a remarkable affinity of the N-terminus for guanine quadruplex (G4) DNA, exceeding the affinities for other DNA structures by at least 60-fold. Together, these findings suggest that the DNA interactions mediated by the N-terminal region of human RecQL4 represent a central function at the replication fork. The presented data may also provide a mechanistic explanation for the role of elements with a G4-forming propensity identified in the vicinity of vertebrate origins of DNA replication. PMID:25336622

  5. Bayesian multiple-instance motif discovery with BAMBI: inference of recombinase and transcription factor binding sites

    PubMed Central

    Jajamovich, Guido H.; Wang, Xiaodong; Arkin, Adam P.; Samoilov, Michael S.

    2011-01-01

    Finding conserved motifs in genomic sequences represents one of essential bioinformatic problems. However, achieving high discovery performance without imposing substantial auxiliary constraints on possible motif features remains a key algorithmic challenge. This work describes BAMBI—a sequential Monte Carlo motif-identification algorithm, which is based on a position weight matrix model that does not require additional constraints and is able to estimate such motif properties as length, logo, number of instances and their locations solely on the basis of primary nucleotide sequence data. Furthermore, should biologically meaningful information about motif attributes be available, BAMBI takes advantage of this knowledge to further refine the discovery results. In practical applications, we show that the proposed approach can be used to find sites of such diverse DNA-binding molecules as the cAMP receptor protein (CRP) and Din-family site-specific serine recombinases. Results obtained by BAMBI in these and other settings demonstrate better statistical performance than any of the four widely-used profile-based motif discovery methods: MEME, BioProspector with BioOptimizer, SeSiMCMC and Motif Sampler as measured by the nucleotide-level correlation coefficient. Additionally, in the case of Din-family recombinase target site discovery, the BAMBI-inferred motif is found to be the only one functionally accurate from the underlying biochemical mechanism standpoint. C++ and Matlab code is available at http://www.ee.columbia.edu/~guido/BAMBI or http://genomics.lbl.gov/BAMBI/. PMID:21948794

  6. Coexistence of multiple minor states of fatty acid binding protein and their functional relevance

    PubMed Central

    Yu, Binhan; Yang, Daiwen

    2016-01-01

    Proteins are dynamic over a wide range of timescales, but determining the number of distinct dynamic processes and identifying functionally relevant dynamics are still challenging. Here we present the study on human intestinal fatty acid binding protein (hIFABP) using a novel analysis of 15N relaxation dispersion (RD) and chemical shift saturation transfer (CEST) experiments. Through combined analysis of the two types of experiments, we found that hIFABP exists in a four-state equilibrium in which three minor states interconvert directly with the major state. According to conversion rates from the major “closed” state to minor states, these minor states are irrelevant to the function of fatty acid transport. Based on chemical shifts of the minor states which could not be determined from RD data alone but were extracted from a combined analysis of RD and CEST data, we found that all the minor states are native-like. This conclusion is further supported by hydrogen-deuterium exchange experiments. Direct conversions between the native state and native-like intermediate states may suggest parallel multitrack unfolding/folding pathways of hIFABP. Moreover, hydrogen-deuterium exchange data indicate the existence of another locally unfolded minor state that is relevant to the fatty acid entry process. PMID:27677899

  7. Purification and identification of cell surface antigens using lamprey monoclonal antibodies

    PubMed Central

    Yu, Cuiling; Ali, Shabab; St. Germain, Jonathan; Liu, Yanling; Yu, Xuecong; Jaye, David L.; Moran, Michael F.; Cooper, Max D.; Ehrhardt, Götz R.A.

    2013-01-01

    Variable lymphocyte receptor (VLR) B antibodies of the evolutionary distant sea lamprey are structurally distinct from conventional mammalian antibodies. The different protein architecture and large evolutionary distance of jawless vertebrates suggest that VLR antibodies may represent promising tools for biomarker discovery. Here we report the generation of panels of monoclonal VLR antibodies from lamprey larvae immunized with human T cells and the use of a recombinant monoclonal VLR antibody for antigen purification and mass spectrometric identification. We demonstrate that despite predicted low affinity of individual VLR antigen binding units to the antigen, the high avidity resulting from decameric assembly of secreted VLR antibodies allows for efficient antigen capture and subsequent identification by mass spectometry. We show that VLR antibodies detect their antigens with high specificity and can be used in various standard laboratory application techniques. The lamprey antibodies are novel reagents that can complement conventional monoclonal antibodies in multiple scientific research disciplines. PMID:22964555

  8. Multiple stepwise pattern for potential of mean force in unfolding the thrombin binding aptamer in complex with Sr2+.

    PubMed

    Yang, Changwon; Jang, Soonmin; Pak, Youngshang

    2011-12-14

    Using all-atom molecular dynamics simulation in conjunction with umbrella sampling, we obtained the unfolding free energy and the force extension profiles of the thrombin binding DNA aptamer (15-TBA) in complex with Sr(2+) (Protein Data Bank code: 1RDE). The resulting potential of mean force (PMF) displays a multiple stepwise pattern with distinct plateau regions. The detailed analysis of the simulation result indicated that each plateau was created by the interplay of the metal ion interacting with self-arranging guanine bases and the successive uptakes of water molecules. The current PMF simulation provides a quantitative description of the unfolding process of 15-TBA DNA driven by stretching and gives molecular insight on its detailed changes of base pair interactions in the presence of the metal cation.

  9. A T cell receptor antagonist peptide induces T cells that mediate bystander suppression and prevent autoimmune encephalomyelitis induced with multiple myelin antigens

    PubMed Central

    Nicholson, Lindsay B.; Murtaza, Anwar; Hafler, Brian P.; Sette, Alessandro; Kuchroo, Vijay K.

    1997-01-01

    Experimental autoimmune encephalomyelitis (EAE) induced with myelin proteolipid protein (PLP) residues 139–151 (HSLGKWLGHPDKF) can be prevented by treatment with a T cell receptor (TCR) antagonist peptide (L144/R147) generated by substituting at the two principal TCR contact residues in the encephalitogenic peptide. The TCR antagonist peptide blocks activation of encephalitogenic Th1 helper cells in vitro, but the mechanisms by which the antagonist peptide blocks EAE in vivo are not clear. Immunization with L144/R147 did not inhibit generation of PLP-(139–151)-specific T cells in vivo. Furthermore, preimmunization with L144/R147 protected mice from EAE induced with the encephalitogenic peptides PLP-(178–191) and myelin oligodendrocyte protein (MOG) residues 92–106 and with mouse myelin basic protein (MBP). These data suggest that the L144/R147 peptide does not act as an antagonist in vivo but mediates bystander suppression, probably by the generation of regulatory T cells. To confirm this we generated T cell lines and clones from animals immunized with PLP-(139–151) plus L144/R147. T cells specific for L144/R147 peptide were crossreactive with the native PLP-(139–151) peptide, produced Th2/Th0 cytokines, and suppressed EAE upon adoptive transfer. These studies demonstrate that TCR antagonist peptides may have multiple biological effects in vivo. One of the principal mechanisms by which these peptides inhibit autoimmunity is by the induction of regulatory T cells, leading to bystander suppression of EAE. These results have important implications for the treatment of autoimmune diseases where there are autopathogenic responses to multiple antigens in the target organ. PMID:9256473

  10. The MAR-binding protein SATB1 orchestrates temporal and spatial expression of multiple genes during T-cell development

    PubMed Central

    Alvarez, John D.; Yasui, Dag H.; Niida, Hiroyuki; Joh, Tadashi; Loh, Dennis Y.; Kohwi-Shigematsu, Terumi

    2000-01-01

    SATB1 is expressed primarily in thymocytes and can act as a transcriptional repressor. SATB1 binds in vivo to the matrix attachment regions (MARs) of DNA, which are implicated in the loop domain organization of chromatin. The role of MAR-binding proteins in specific cell lineages is unknown. We generated SATB1-null mice to determine how SATB1 functions in the T-cell lineage. SATB1-null mice are small in size, have disproportionately small thymi and spleens, and die at 3 weeks of age. At the cellular level, multiple defects in T-cell development were observed. Immature CD3−CD4−CD8− triple negative (TN) thymocytes were greatly reduced in number, and thymocyte development was blocked mainly at the DP stage. The few peripheral CD4+ single positive (SP) cells underwent apoptosis and failed to proliferate in response to activating stimuli. At the molecular level, among 589 genes examined, at least 2% of genes including a proto-oncogene, cytokine receptor genes, and apoptosis-related genes were derepressed at inappropriate stages of T-cell development in SATB1-null mice. For example, IL-2Rα and IL-7Rα genes were ectopically transcribed in CD4+CD8+ double positive (DP) thymocytes. SATB1 appears to orchestrate the temporal and spatial expression of genes during T-cell development, thereby ensuring the proper development of this lineage. Our data provide the first evidence that MAR-binding proteins can act as global regulators of cell function in specific cell lineages. PMID:10716941

  11. Synthetic oligonucleotide antigens modified with locked nucleic acids detect disease specific antibodies

    NASA Astrophysics Data System (ADS)

    Samuelsen, Simone V.; Solov’Yov, Ilia A.; Balboni, Imelda M.; Mellins, Elizabeth; Nielsen, Christoffer Tandrup; Heegaard, Niels H. H.; Astakhova, Kira

    2016-10-01

    New techniques to detect and quantify antibodies to nucleic acids would provide a significant advance over current methods, which often lack specificity. We investigate the potential of novel antigens containing locked nucleic acids (LNAs) as targets for antibodies. Particularly, employing molecular dynamics we predict optimal nucleotide composition for targeting DNA-binding antibodies. As a proof of concept, we address a problem of detecting anti-DNA antibodies that are characteristic of systemic lupus erythematosus, a chronic autoimmune disease with multiple manifestations. We test the best oligonucleotide binders in surface plasmon resonance studies to analyze binding and kinetic aspects of interactions between antigens and target DNA. These DNA and LNA/DNA sequences showed improved binding in enzyme-linked immunosorbent assay using human samples of pediatric lupus patients. Our results suggest that the novel method is a promising tool to create antigens for research and point-of-care monitoring of anti-DNA antibodies.

  12. Synthetic oligonucleotide antigens modified with locked nucleic acids detect disease specific antibodies

    PubMed Central

    Samuelsen, Simone V.; Solov’yov, Ilia A.; Balboni, Imelda M.; Mellins, Elizabeth; Nielsen, Christoffer Tandrup; Heegaard, Niels H. H.; Astakhova, Kira

    2016-01-01

    New techniques to detect and quantify antibodies to nucleic acids would provide a significant advance over current methods, which often lack specificity. We investigate the potential of novel antigens containing locked nucleic acids (LNAs) as targets for antibodies. Particularly, employing molecular dynamics we predict optimal nucleotide composition for targeting DNA-binding antibodies. As a proof of concept, we address a problem of detecting anti-DNA antibodies that are characteristic of systemic lupus erythematosus, a chronic autoimmune disease with multiple manifestations. We test the best oligonucleotide binders in surface plasmon resonance studies to analyze binding and kinetic aspects of interactions between antigens and target DNA. These DNA and LNA/DNA sequences showed improved binding in enzyme-linked immunosorbent assay using human samples of pediatric lupus patients. Our results suggest that the novel method is a promising tool to create antigens for research and point-of-care monitoring of anti-DNA antibodies. PMID:27775006

  13. Bilateral retinal and brain tumors in transgenic mice expressing simian virus 40 large T antigen under control of the human interphotoreceptor retinoid-binding protein promoter

    PubMed Central

    1992-01-01

    We have previously shown that postnatal expression of the viral oncoprotein SV40 T antigen in rod photoreceptors (transgene MOT1), at a time when retinal cells have withdrawn from the mitotic cycle, leads to photoreceptor cell death (Al-Ubaidi et al., 1992. Proc. Natl. Acad. Sci. USA. 89:1194-1198). To study the effect of the specificity of the promoter, we replaced the mouse opsin promoter in MOT1 by a 1.3-kb promoter fragment of the human IRBP gene which is expressed in both rod and cone photoreceptors during embryonic development. The resulting construct, termed HIT1, was injected into mouse embryos and five transgenic mice lines were established. Mice heterozygous for HIT1 exhibited early bilateral retinal and brain tumors with varying degrees of incidence. Histopathological examination of the brain and eyes of three of the families showed typical primitive neuroectodermal tumors. In some of the bilateral retinal tumors, peculiar rosettes were observed, which were different from the Flexner-Wintersteiner rosettes typically associated with human retinoblastomas. The ocular and cerebral tumors, however, contained Homer-Wright rosettes, and showed varying degrees of immunoreactivity to antibodies against the neuronal specific antigens, synaptophysin and Leu7, but not to antibodies against photoreceptor specific proteins. Taken together, the results indicate that the specificity of the promoter used for T antigen and/or the time of onset of transgene expression determines the fate of photoreceptor cells expressing T antigen. PMID:1334963

  14. Nck Binds to the T Cell Antigen Receptor Using Its SH3.1 and SH2 Domains in a Cooperative Manner, Promoting TCR Functioning.

    PubMed

    Paensuwan, Pussadee; Hartl, Frederike A; Yousefi, O Sascha; Ngoenkam, Jatuporn; Wipa, Piyamaporn; Beck-Garcia, Esmeralda; Dopfer, Elaine P; Khamsri, Boonruang; Sanguansermsri, Donruedee; Minguet, Susana; Schamel, Wolfgang W; Pongcharoen, Sutatip

    2016-01-01

    Ligand binding to the TCR causes a conformational change at the CD3 subunits to expose the CD3ε cytoplasmic proline-rich sequence (PRS). It was suggested that the PRS is important for TCR signaling and T cell activation. It has been shown that the purified, recombinant SH3.1 domain of the adaptor molecule noncatalytic region of tyrosine kinase (Nck) can bind to the exposed PRS of CD3ε, but the molecular mechanism of how full-length Nck binds to the TCR in cells has not been investigated so far. Using the in situ proximity ligation assay and copurifications, we show that the binding of Nck to the TCR requires partial phosphorylation of CD3ε, as it is based on two cooperating interactions. First, the SH3.1(Nck) domain has to bind to the nonphosphorylated and exposed PRS, that is, the first ITAM tyrosine has to be in the unphosphorylated state. Second, the SH2(Nck) domain has to bind to the second ITAM tyrosine in the phosphorylated state. Likewise, mutations of the SH3.1 and SH2 domains in Nck1 resulted in the loss of Nck1 binding to the TCR. Furthermore, expression of an SH3.1-mutated Nck impaired TCR signaling and T cell activation. Our data suggest that the exact pattern of CD3ε phosphorylation is critical for TCR functioning.

  15. Assessment of proliferating cell nuclear antigen and its relationship with proinflammatory cytokines and parameters of disease activity in multiple myeloma patients.

    PubMed

    Tsirakis, G; Pappa, C A; Kaparou, M; Katsomitrou, V; Hatzivasili, A; Alegakis, T; Xekalou, A; Stathopoulos, E N; Alexandrakis, M G

    2011-01-01

    Multiple myeloma (MM) is a malignant plasma cell disease. Several proinflammatory cytokines produced by malignant plasma cells and bone marrow (BM) stromal cells are involved in the pathogenesis of the disease. We evaluated serum levels of the proinflammatory cytokines Interleukin-1β (IL-1β), Interleukin-6 (IL-6), Interleukin-8 (IL-8), macrophage inflammatory protein-1α (MIP-1α), in MM patients before treatment, and determined its significance in tumor progression. We also analyzed the correlation between measured parameters with proliferating cell nuclear antigen (PCNA). Forty-four MM patients and 20 healthy controls were studied. Serum levels of the proinflammatory cytokines were measured using enzyme-linked immunosorbent assay (ELISA), whereas PCNA value in the BM was determined by immunohistochemistry staining. The mean concentrations of the measured cytokines were significantly different among the three stages of disease, with higher values in advanced disease stage. Furthermore, patients with MM had significantly higher serum levels of the measured cytokines than in controls. A positive correlation was found between IL-6 with IL-1β, IL-8 and MIP-1α. Similarly, IL-8 and MIP-1α were positively correlated with markers of disease activity such as β2 microglobulin and LDH. The proliferation index, determined by PCNA immunostaining, was higher in advanced disease stage. Furthermore PCNA value correlated significantly with β2 microglobulin, LDH and the levels of the measured cytokines. Our results showed that the proliferative activity, as measured with PCNA, increases in parallel with disease stage. The positive correlation between PCNA and other measured mediators supports the involvement of these factors in the biology of myeloma cell growth and can be used as markers of disease activity and as possible therapeutic targets.

  16. Multiple length peptide-pheromone variants produced by Streptococcus pyogenes directly bind Rgg proteins to confer transcriptional regulation.

    PubMed

    Aggarwal, Chaitanya; Jimenez, Juan Cristobal; Nanavati, Dhaval; Federle, Michael J

    2014-08-08

    Streptococcus pyogenes, a human-restricted pathogen, accounts for substantial mortality related to infections worldwide. Recent studies indicate that streptococci produce and respond to several secreted peptide signaling molecules (pheromones), including those known as short hydrophobic peptides (SHPs), to regulate gene expression by a quorum-sensing mechanism. Upon transport into the bacterial cell, pheromones bind to and modulate activity of receptor proteins belonging to the Rgg family of transcription factors. Previously, we reported biofilm regulation by the Rgg2/3 quorum-sensing circuit in S. pyogenes. The aim of this study was to identify the composition of mature pheromones from cell-free culture supernatants that facilitate biofilm formation. Bioluminescent reporters were employed to detect active pheromones in culture supernatants fractionated by reverse-phase chromatography, and mass spectrometry was used to characterize their properties. Surprisingly, multiple SHPs that varied by length were detected. Synthetic peptides of each variant were tested individually using bioluminescence reporters and biofilm growth assays, and although activities differed widely among the group, peptides comprising the C-terminal eight amino acids of the full-length native peptide were most active. Direct Rgg/SHP interactions were determined using a fluorescence polarization assay that utilized FITC-labeled peptide ligands. Peptide receptor affinities were seen to be as low as 500 nm and their binding affinities directly correlated with observed bioactivity. Revelation of naturally produced pheromones along with determination of their affinity for cognate receptors are important steps forward in designing compounds whose purpose is positioned for future therapeutics aimed at treating infections through the interference of bacterial communication.

  17. Keys to Lipid Selection in Fatty Acid Amide Hydrolase Catalysis: Structural Flexibility, Gating Residues and Multiple Binding Pockets

    PubMed Central

    Palermo, Giulia; Bauer, Inga; Campomanes, Pablo; Cavalli, Andrea; Armirotti, Andrea; Girotto, Stefania; Rothlisberger, Ursula; De Vivo, Marco

    2015-01-01

    The fatty acid amide hydrolase (FAAH) regulates the endocannabinoid system cleaving primarily the lipid messenger anandamide. FAAH has been well characterized over the years and, importantly, it represents a promising drug target to treat several diseases, including inflammatory-related diseases and cancer. But its enzymatic mechanism for lipid selection to specifically hydrolyze anandamide, rather than similar bioactive lipids, remains elusive. Here, we clarify this mechanism in FAAH, examining the role of the dynamic paddle, which is formed by the gating residues Phe432 and Trp531 at the boundary between two cavities that form the FAAH catalytic site (the “membrane-access” and the “acyl chain-binding” pockets). We integrate microsecond-long MD simulations of wild type and double mutant model systems (Phe432Ala and Trp531Ala) of FAAH, embedded in a realistic membrane/water environment, with mutagenesis and kinetic experiments. We comparatively analyze three fatty acid substrates with different hydrolysis rates (anandamide > oleamide > palmitoylethanolamide). Our findings identify FAAH’s mechanism to selectively accommodate anandamide into a multi-pocket binding site, and to properly orient the substrate in pre-reactive conformations for efficient hydrolysis that is interceded by the dynamic paddle. Our findings therefore endorse a structural framework for a lipid selection mechanism mediated by structural flexibility and gating residues between multiple binding cavities, as found in FAAH. Based on the available structural data, this exquisite catalytic strategy for substrate specificity seems to be shared by other lipid-degrading enzymes with similar enzymatic architecture. The mechanistic insights for lipid selection might assist de-novo enzyme design or drug discovery efforts. PMID:26111155

  18. Targeting glutamine metabolism in multiple myeloma enhances BIM binding to BCL-2 eliciting synthetic lethality to venetoclax.

    PubMed

    Bajpai, R; Matulis, S M; Wei, C; Nooka, A K; Von Hollen, H E; Lonial, S; Boise, L H; Shanmugam, M

    2016-07-28

    Multiple myeloma (MM) is a plasma cell malignancy that is largely incurable due to development of resistance to therapy-elicited cell death. Nutrients are intricately connected to maintenance of cellular viability in part by inhibition of apoptosis. We were interested to determine if examination of metabolic regulation of BCL-2 proteins may provide insight on alternative routes to engage apoptosis. MM cells are reliant on glucose and glutamine and withdrawal of either nutrient is associated with varying levels of apoptosis. We and others have demonstrated that glucose maintains levels of key resistance-promoting BCL-2 family member, myeloid cell leukemic factor 1 (MCL-1). Cells continuing to survive in the absence of glucose or glutamine were found to maintain expression of MCL-1 but importantly induce pro-apoptotic BIM expression. One potential mechanism for continued survival despite induction of BIM could be due to binding and sequestration of BIM to alternate pro-survival BCL-2 members. Our investigation revealed that cells surviving glutamine withdrawal in particular, enhance expression and binding of BIM to BCL-2, consequently sensitizing these cells to the BH3 mimetic venetoclax. Glutamine deprivation-driven sensitization to venetoclax can be reversed by metabolic supplementation with TCA cycle intermediate α-ketoglutarate. Inhibition of glucose metabolism with the GLUT4 inhibitor ritonavir elicits variable cytotoxicity in MM that is marginally enhanced with venetoclax treatment, however, targeting glutamine metabolism with 6-diazo-5-oxo-l-norleucine uniformly sensitized MM cell lines and relapse/refractory patient samples to venetoclax. Our studies reveal a potent therapeutic strategy of metabolically driven synthetic lethality involving targeting glutamine metabolism for sensitization to venetoclax in MM.

  19. Multiple Length Peptide-Pheromone Variants Produced by Streptococcus pyogenes Directly Bind Rgg Proteins to Confer Transcriptional Regulation*

    PubMed Central

    Aggarwal, Chaitanya; Jimenez, Juan Cristobal; Nanavati, Dhaval; Federle, Michael J.

    2014-01-01

    Streptococcus pyogenes, a human-restricted pathogen, accounts for substantial mortality related to infections worldwide. Recent studies indicate that streptococci produce and respond to several secreted peptide signaling molecules (pheromones), including those known as short hydrophobic peptides (SHPs), to regulate gene expression by a quorum-sensing mechanism. Upon transport into the bacterial cell, pheromones bind to and modulate activity of receptor proteins belonging to the Rgg family of transcription factors. Previously, we reported biofilm regulation by the Rgg2/3 quorum-sensing circuit in S. pyogenes. The aim of this study was to identify the composition of mature pheromones from cell-free culture supernatants that facilitate biofilm formation. Bioluminescent reporters were employed to detect active pheromones in culture supernatants fractionated by reverse-phase chromatography, and mass spectrometry was used to characterize their properties. Surprisingly, multiple SHPs that varied by length were detected. Synthetic peptides of each variant were tested individually using bioluminescence reporters and biofilm growth assays, and although activities differed widely among the group, peptides comprising the C-terminal eight amino acids of the full-length native peptide were most active. Direct Rgg/SHP interactions were determined using a fluorescence polarization assay that utilized FITC-labeled peptide ligands. Peptide receptor affinities were seen to be as low as 500 nm and their binding affinities directly correlated with observed bioactivity. Revelation of naturally produced pheromones along with determination of their affinity for cognate receptors are important steps forward in designing compounds whose purpose is positioned for future therapeutics aimed at treating infections through the interference of bacterial communication. PMID:24958729

  20. Naturally Acquired Human Immunity to Pneumococcus Is Dependent on Antibody to Protein Antigens

    PubMed Central

    Reglinski, Mark; Jose, Ricardo J.; Marshall, Helina; de Vogel, Corné; Gordon, Stephen; Petersen, Fernanda C.; Baxendale, Helen

    2017-01-01

    Naturally acquired immunity against invasive pneumococcal disease (IPD) is thought to be dependent on anti-capsular antibody. However nasopharyngeal colonisation by Streptococcus pneumoniae also induces antibody to protein antigens that could be protective. We have used human intravenous immunoglobulin preparation (IVIG), representing natural IgG responses to S. pneumoniae, to identify the classes of antigens that are functionally relevant for immunity to IPD. IgG in IVIG recognised capsular antigen and multiple S. pneumoniae protein antigens, with highly conserved patterns between different geographical sources of pooled human IgG. Incubation of S. pneumoniae in IVIG resulted in IgG binding to the bacteria, formation of bacterial aggregates, and enhanced phagocytosis even for unencapsulated S. pneumoniae strains, demonstrating the capsule was unlikely to be the dominant protective antigen. IgG binding to S. pneumoniae incubated in IVIG was reduced after partial chemical or genetic removal of bacterial surface proteins, and increased against a Streptococcus mitis strain expressing the S. pneumoniae protein PspC. In contrast, depletion of type-specific capsular antibody from IVIG did not affect IgG binding, opsonophagocytosis, or protection by passive vaccination against IPD in murine models. These results demonstrate that naturally acquired protection against IPD largely depends on antibody to protein antigens rather than the capsule. PMID:28135322

  1. Measurement of IgG, IgA and IgE antibodies to Dermatophagoides pteronyssinus by antigen-binding assay, using a partially purified fraction of mite extract (F4P1).

    PubMed Central

    Chapman, M D; Platts-Mills, T A

    1978-01-01

    An extract of Dermatophagoides pteronyssinus culture has been fractionated by chromatography on Sephadex G-100 and Pevikon block electrophoresis to obtain a partially purified allergen (F4P1). This preparation has a molecular weight of between 15--25,000 Dalton, migrates slowly on electrophoresis, and is colourless in solution. The skin-test reactivity of F1P1 was comparable to that of crude D. pteronyssinus extract. F4P1 was radio-labelled with 125I and used in an antigen-binding radioimmunoassay to measure IgG, IgA and IgE antibody (ab) to D. pteronyssinus. IgG, ab was detected in serum from 32/34 (94%) mite-allergic persons, and from 10/31 (30%) nonallergic persons. IgA ab and IgE ab were found in sera from 22/34 (65%) and 37/34 (79%) allergic persons respectively. Neither IgA nor IgE ab could be detected in sera from non-allergic persons. An excellent correlation was found between radioallergo-sorbent technique (RAST), using crude D. pteronyssinus extract and IgE-binding activity (BA) for F4P1, (r=0.94, P less than 0.001). The antigen-binding assay for IgE BA was as sensitive as RAST, but less sensitive than PK testing. There was a very good quantitative correlation between IgG BA and IgE BA (r = 0.84, P less than 0.001). IgG BA was shown to rise in the serum of three patients treated with injections of D. pteronyssinus extract. PMID:750116

  2. A Crystallin Fold in the Interleukin-4-inducing Principle of Schistosoma mansoni Eggs (IPSE/α-1) Mediates IgE Binding for Antigen-independent Basophil Activation*

    PubMed Central

    Meyer, N. Helge; Mayerhofer, Hubert; Tripsianes, Konstantinos; Blindow, Silke; Barths, Daniela; Mewes, Astrid; Weimar, Thomas; Köhli, Thies; Bade, Steffen; Madl, Tobias; Frey, Andreas; Haas, Helmut; Mueller-Dieckmann, Jochen; Sattler, Michael; Schramm, Gabriele

    2015-01-01

    The IL-4-inducing principle from Schistosoma mansoni eggs (IPSE/α-1), the major secretory product of eggs from the parasitic worm S. mansoni, efficiently triggers basophils to release the immunomodulatory key cytokine interleukin-4. Activation by IPSE/α-1 requires the presence of IgE on the basophils, but the detailed molecular mechanism underlying activation is unknown. NMR and crystallographic analysis of IPSEΔNLS, a monomeric IPSE/α-1 mutant, revealed that IPSE/α-1 is a new member of the βγ-crystallin superfamily. We demonstrate that this molecule is a general immunoglobulin-binding factor with highest affinity for IgE. NMR binding studies of IPSEΔNLS with the 180-kDa molecule IgE identified a large positively charged binding surface that includes a flexible loop, which is unique to the IPSE/α-1 crystallin fold. Mutational analysis of amino acids in the binding interface showed that residues contributing to IgE binding are important for IgE-dependent activation of basophils. As IPSE/α-1 is unable to cross-link IgE, we propose that this molecule, by taking advantage of its unique IgE-binding crystallin fold, activates basophils by a novel, cross-linking-independent mechanism. PMID:26163514

  3. A Crystallin Fold in the Interleukin-4-inducing Principle of Schistosoma mansoni Eggs (IPSE/α-1) Mediates IgE Binding for Antigen-independent Basophil Activation.

    PubMed

    Meyer, N Helge; Mayerhofer, Hubert; Tripsianes, Konstantinos; Blindow, Silke; Barths, Daniela; Mewes, Astrid; Weimar, Thomas; Köhli, Thies; Bade, Steffen; Madl, Tobias; Frey, Andreas; Haas, Helmut; Mueller-Dieckmann, Jochen; Sattler, Michael; Schramm, Gabriele

    2015-09-04

    The IL-4-inducing principle from Schistosoma mansoni eggs (IPSE/α-1), the major secretory product of eggs from the parasitic worm S. mansoni, efficiently triggers basophils to release the immunomodulatory key cytokine interleukin-4. Activation by IPSE/α-1 requires the presence of IgE on the basophils, but the detailed molecular mechanism underlying activation is unknown. NMR and crystallographic analysis of IPSEΔNLS, a monomeric IPSE/α-1 mutant, revealed that IPSE/α-1 is a new member of the βγ-crystallin superfamily. We demonstrate that this molecule is a general immunoglobulin-binding factor with highest affinity for IgE. NMR binding studies of IPSEΔNLS with the 180-kDa molecule IgE identified a large positively charged binding surface that includes a flexible loop, which is unique to the IPSE/α-1 crystallin fold. Mutational analysis of amino acids in the binding interface showed that residues contributing to IgE binding are important for IgE-dependent activation of basophils. As IPSE/α-1 is unable to cross-link IgE, we propose that this molecule, by taking advantage of its unique IgE-binding crystallin fold, activates basophils by a novel, cross-linking-independent mechanism.

  4. Biochemical and Structural Characterization of Lysophosphatidic Acid Binding by a Humanized Monoclonal Antibody

    SciTech Connect

    J Fleming; J Wojciak; M Campbell; T Huxford

    2011-12-31

    Lysophosphatidic acid (LPA) is a common product of glycerophospholipid metabolism and an important mediator of signal transduction. Aberrantly high LPA concentrations accompany multiple disease states. One potential approach for treatment of these diseases, therefore, is the therapeutic application of antibodies that recognize and bind LPA as their antigen. We have determined the X-ray crystal structure of an anti-LPA antibody (LT3015) Fab fragment in its antigen-free form to 2.15 {angstrom} resolution and in complex with two LPA isotypes (14:0 and 18:2) to resolutions of 1.98 and 2.51 {angstrom}, respectively. The variable CDR (complementarity-determining region) loops at the antigen binding site adopt nearly identical conformations in the free and antigen-bound crystal structures. The crystallographic models reveal that the LT3015 antibody employs both heavy- and light-chain CDR loops to create a network of eight hydrogen bonds with the glycerophosphate head group of its LPA antigen. The head group is almost completely excluded from contact with solvent, while the hydrocarbon tail is partially solvent-exposed. In general, mutation of amino acid residues at the antigen binding site disrupts LPA binding. However, the introduction of particular mutations chosen strategically on the basis of the structures can positively influence LPA binding affinity. Finally, these structures elucidate the exquisite specificity demonstrated by an anti-lipid antibody for binding a structurally simple and seemingly unconstrained target molecule.

  5. Stimulus-response bindings code both abstract and specific representations of stimuli: evidence from a classification priming design that reverses multiple levels of response representation.

    PubMed

    Horner, A J; Henson, R N

    2011-11-01

    Repetition priming can be caused by the rapid retrieval of previously encoded stimulus-response (S-R) bindings. S-R bindings have recently been shown to simultaneously code multiple levels of response representation, from specific Motor-actions to more abstract Decisions ("yes"/"no") and Classifications (e.g., "man-made"/"natural"). Using an experimental design that reverses responses at all of these levels, we assessed whether S-R bindings also code multiple levels of stimulus representation. Across two experiments, we found effects of response reversal on priming when switching between object pictures and object names, consistent with S-R bindings that code stimuli at an abstract level. Nonetheless, the size of this reversal effect was smaller for such across-format (e.g., word-picture) repetition than for within-format (e.g., picture-picture) repetition, suggesting additional coding of format-specific stimulus representations. We conclude that S-R bindings simultaneously represent both stimuli and responses at multiple levels of abstraction.

  6. (S)-2-Amino-6-nitrohexanoic Acid Binds to Human Arginase I through Multiple Nitro−Metal Coordination Interactions in the Binuclear Manganese Cluster

    SciTech Connect

    Zakharian, T.; Di Costanzo, L; Christianson, D

    2008-01-01

    The binding affinity of (S)-2-amino-6-nitrohexanoic acid to human arginase I was studied using surface plasmon resonance (K{sub d} = 60 {mu}M), and the X-ray crystal structure of the enzyme-inhibitor complex was determined at 1.6 {angstrom} resolution to reveal multiple nitro-metal coordination interactions.

  7. Vitamin D Binding Protein Isoforms and Apolipoprotein E in Cerebrospinal Fluid as Prognostic Biomarkers of Multiple Sclerosis

    PubMed Central

    Lis, Katarzyna; Minari, Nicoletta; Falvo, Sara; Marnetto, Fabiana; Caldano, Marzia; Reviglione, Raffaella; Berchialla, Paola; Capobianco, Marco A.; Malentacchi, Maria; Corpillo, Davide; Bertolotto, Antonio

    2015-01-01

    Background Multiple sclerosis (MS) is a multifactorial autoimmune disease of the central nervous system with a heterogeneous and unpredictable course. To date there are no prognostic biomarkers even if they would be extremely useful for early patient intervention with personalized therapies. In this context, the analysis of inter-individual differences in cerebrospinal fluid (CSF) proteome may lead to the discovery of biological markers that are able to distinguish the various clinical forms at diagnosis. Methods To this aim, a two dimensional electrophoresis (2-DE) study was carried out on individual CSF samples from 24 untreated women who underwent lumbar puncture (LP) for suspected MS. The patients were clinically monitored for 5 years and then classified according to the degree of disease aggressiveness and the disease-modifying therapies prescribed during follow up. Results The hierarchical cluster analysis of 2-DE dataset revealed three protein spots which were identified by means of mass spectrometry as Apolipoprotein E (ApoE) and two isoforms of vitamin D binding protein (DBP). These three protein spots enabled us to subdivide the patients into subgroups correlated with clinical classification (MS aggressive forms identification: 80%). In particular, we observed an opposite trend of values for the two protein spots corresponding to different DBP isoforms suggesting a role of a post-translational modification rather than the total protein content in patient categorization. Conclusions These findings proved to be very interesting and innovative and may be developed as new candidate prognostic biomarkers of MS aggressiveness, if confirmed. PMID:26046356

  8. Multiple ATP-binding cassette transporters are involved in insecticide resistance in the small brown planthopper, Laodelphax striatellus.

    PubMed

    Sun, H; Pu, J; Chen, F; Wang, J; Han, Z

    2017-03-16

    ATP-binding cassette (ABC) transporters are membrane-bound proteins involved in the movement of various substrates, including drugs and insecticides, across the lipid membrane. Demonstration of the role of human ABC transporters in multidrug resistance has led to speculation that they might be an important mechanism controlling the fate of insecticides in insects. However, the role of ABC transporters in insects remains largely unknown. The small brown planthopper, Laodelphax striatellus Fallén, has developed resistance to most of the insecticides used for its control. Our goals were to identify the ABC transporters in La. striatellus and to examine their involvement in resistance mechanisms, using related strains resistant to chlorpyrifos, deltamethrin and imidacloprid, compared with the susceptible strain. Based on the transcriptome of La. striatellus, 40 full-length ABC transporters belonging to the ABCA-ABCH subfamilies were identified. Quantitative PCR revealed that over 20% of genes were significantly up-regulated in different resistant strains, and eight genes from the ABCB/C/D/G subfamilies were up-regulated in all three resistant strains, compared with the susceptible strain. Furthermore, synergism studies showed verapamil significantly enhanced insecticide toxicity in various resistant strains but not in the susceptible strain. These results suggest that ABC transporters might be involved in resistance to multiple insecticides in La. striatellus.

  9. A proprotein convertase subtilisin-like/kexin type 9 (PCSK9) C-terminal domain antibody antigen-binding fragment inhibits PCSK9 internalization and restores low density lipoprotein uptake.

    PubMed

    Ni, Yan G; Condra, Jon H; Orsatti, Laura; Shen, Xun; Di Marco, Stefania; Pandit, Shilpa; Bottomley, Matthew J; Ruggeri, Lionello; Cummings, Richard T; Cubbon, Rose M; Santoro, Joseph C; Ehrhardt, Anka; Lewis, Dale; Fisher, Timothy S; Ha, Sookhee; Njimoluh, Leila; Wood, Dana D; Hammond, Holly A; Wisniewski, Douglas; Volpari, Cinzia; Noto, Alessia; Lo Surdo, Paola; Hubbard, Brian; Carfí, Andrea; Sitlani, Ayesha

    2010-04-23

    PCSK9 binds to the low density lipoprotein receptor (LDLR) and leads to LDLR degradation and inhibition of plasma LDL cholesterol clearance. Consequently, the role of PCSK9 in modulating circulating LDL makes it a promising therapeutic target for treating hypercholesterolemia and coronary heart disease. Although the C-terminal domain of PCSK9 is not involved in LDLR binding, the location of several naturally occurring mutations within this region suggests that it has an important role for PCSK9 function. Using a phage display library, we identified an anti-PCSK9 Fab (fragment antigen binding), 1G08, with subnanomolar affinity for PCSK9. In an assay measuring LDL uptake in HEK293 and HepG2 cells, 1G08 Fab reduced 50% the PCSK9-dependent inhibitory effects on LDL uptake. Importantly, we found that 1G08 did not affect the PCSK9-LDLR interaction but inhibited the internalization of PCSK9 in these cells. Furthermore, proteolysis and site-directed mutagenesis studies demonstrated that 1G08 Fab binds a region of beta-strands encompassing Arg-549, Arg-580, Arg-582, Glu-607, Lys-609, and Glu-612 in the PCSK9 C-terminal domain. Consistent with these results, 1G08 fails to bind PCSK9DeltaC, a truncated form of PCSK9 lacking the C-terminal domain. Additional studies revealed that lack of the C-terminal domain compromised the ability of PCSK9 to internalize into cells, and to inhibit LDL uptake. Together, the present study demonstrate that the PCSK9 C-terminal domain contribute to its inhibition of LDLR function mainly through its role in the cellular uptake of PCSK9 and LDLR complex. 1G08 Fab represents a useful new tool for delineating the mechanism of PCSK9 uptake and LDLR degradation.

  10. Proliferating cell nuclear antigen: a proteomics view.

    PubMed

    Naryzhny, S N

    2008-11-01

    Proliferating cell nuclear antigen (PCNA), a cell cycle marker protein, is well known as a DNA sliding clamp for DNA polymerase delta and as an essential component for eukaryotic chromosomal DNA replication and repair. Due to its mobility inside nuclei, PCNA is dynamically presented in a soluble or chromatin-associated form. The heterogeneity and specific modifications of PCNA may reflect its multiple functions and the presence of many binding partners in the cell. The recent proteomics approaches applied to characterizing PCNA interactions revealed multiple PCNA partners with a wide spectrum of activity and unveiled the possible existence of new PCNA functions. Since more than 100 PCNA-interacting proteins and several PCNA modifications have already been reported, a proteomics point of view seems exactly suitable to better understand the role of PCNA in cellular functions.

  11. Interpretation of Ocular Melanin Drug Binding Assays. Alternatives to the Model of Multiple Classes of Independent Sites.

    PubMed

    Manzanares, José A; Rimpelä, Anna-Kaisa; Urtti, Arto

    2016-04-04

    Melanin has a high binding affinity for a wide range of drugs. The determination of the melanin binding capacity and its binding affinity are important, e.g., in the determination of the ocular drug distribution, the prediction of drug effects in the eye, and the trans-scleral drug delivery. The binding parameters estimated from a given data set vary significantly when using different isotherms or different nonlinear fitting methods. In this work, the commonly used bi-Langmuir isotherm, which assumes two classes of independent sites, is confronted with the Sips isotherm. Direct, log-log, and Scatchard plots are used, and the interpretation of the binding curves in the latter is critically analyzed. In addition to the goodness of fit, the emphasis is placed on the physical meaning of the binding parameters. The bi-Langmuir model imposes a bimodal distribution of binding energies for the sites on the melanin granules, but the actual distribution is most likely continuous and unimodal, as assumed by the Sips isotherm. Hence, the latter describes more accurately the distribution of binding energies and also the experimental results of melanin binding to drugs and metal ions. Simulations are used to show that the existence of two classes of sites cannot be confirmed on the sole basis of the shape of the binding curve in the Scatchard plot, and that serious doubts may appear on the meaning of the binding parameters of the bi-Langmuir model. Experimental results of melanin binding to chloroquine and metoprolol are used to illustrate the importance of the choice of the binding isotherm and of the method used to evaluate the binding parameters.

  12. T cell tolerance and activation to a transgene-encoded tumor antigen.

    PubMed

    Antoniou, A; McCormick, D; Scott, D; Yeoman, H; Chandler, P; Mellor, A; Dyson, J

    1996-05-01

    Much has been learned in recent years concerning the nature of tumor antigens recognized by T cells. To apply this knowledge clinically, the nature of the host response to individual and multiple tumor antigens has to be characterized. This will help to define the efficacy of immune surveillance and the immune status of the host following exposure to tumor antigens expressed on pre-neoplastic tissue. To approach these questions, we have developed a transgenic mouse which expresses the tumor-specific antigen P91A. The single amino acid substitution in P91A results in the expression of a new MHC class I (H-2Ld)-binding peptide. In transgenic tissue, the H-2Ld/P91A complex is expressed in isolation from other tumor-associated antigens, allowing definition of the immune response to a single defined tumor antigen, a situation closely analogous to events during tumorigenesis. We show that CD8+ T cell immune surveillance of P91A is ineffective without the introduction of a helper determinant operating through stimulation of CD4+ T cells. Recognition of the isolated P91A tumor antigen on normal tissue by CD8+ T cells is a tolerogenic process. Induction of T cell tolerance suggests tumor antigen-T cell interactions occurring during tumorigenesis may elicit T cell tolerance and hence confound some immunotherapeutic approaches.

  13. The Neck Region of the C-type Lectin DC-SIGN Regulates Its Surface Spatiotemporal Organization and Virus-binding Capacity on Antigen-presenting Cells*

    PubMed Central

    Manzo, Carlo; Torreno-Pina, Juan A.; Joosten, Ben; Reinieren-Beeren, Inge; Gualda, Emilio J.; Loza-Alvarez, Pablo; Figdor, Carl G.; Garcia-Parajo, Maria F.; Cambi, Alessandra

    2012-01-01

    The C-type lectin DC-SIGN expressed on dendritic cells (DCs) facilitates capture and internalization of a plethora of different pathogens. Although it is known that DC-SIGN organizes in nanoclusters at the surface of DCs, the molecular mechanisms responsible for this well defined nanopatterning and role in viral binding remain enigmatic. By combining biochemical and advanced biophysical techniques, including optical superresolution and single particle tracking, we demonstrate that DC-SIGN intrinsic nanoclustering strictly depends on its molecular structure. DC-SIGN nanoclusters exhibited free, Brownian diffusion on the cell membrane. Truncation of the extracellular neck region, known to abrogate tetramerization, significantly reduced nanoclustering and concomitantly increased lateral diffusion. Importantly, DC-SIGN nanocluster dissolution exclusively compromised binding to nanoscale size pathogens. Monte Carlo simulations revealed that heterogeneity on nanocluster density and spatial distribution confers broader binding capabilities to DC-SIGN. As such, our results underscore a direct relationship between spatial nanopatterning, driven by intermolecular interactions between the neck regions, and receptor diffusion to provide DC-SIGN with the exquisite ability to dock pathogens at the virus length scale. Insight into how virus receptors are organized prior to virus binding and how they assemble into functional platforms for virus docking is helpful to develop novel strategies to prevent virus entry and infection. PMID:23019323

  14. Kinetic and equilibrium metal-ion-binding behaviour reflected in a metal-ion-dependent antigenic determinant in bovine prothrombin. Comparison with bovine prothrombin fragment 1.

    PubMed Central

    Madar, D A; Hall, T J; Hiskey, R G; Koehler, K A

    1981-01-01

    Rabbit anti-(bovine prothrombin fragment 1) antibodies were fractionated by using fragment-1 affinity chromatography in the absence of metal ions, and showed an absolute requirement for the presence of metal ions in their interactions with bovine fragment 1 or prothrombin. These antibodies were employed to evaluate both the rate constants for a protein conformation change and the equilibrium metal-ion binding to isolated bovine fragment 1 and intact prothrombin. The close similarity of the rates obtained for the conformation change in fragment 1 and those observed in prothrombin indicated that the same process is involved in both proteins and that the non-fragment-1 region of the prothrombin has essentially no effect on this process in the fragment-1 region. Equilibrium metal-ion-binding studies indicate that the details of the metal-ion-binding process in fragment 1 and prothrombin are essentially the same. We conclude that the metal-ion-binding behaviour of the fragment-1 domain of intact prothrombin is identical with that of isolated fragment 1. PMID:6171251

  15. Nanolipoprotein Particles (NLPs) as Versatile Vaccine Platforms for Co-delivery of Multiple Adjuvants with Subunit Antigens from Burkholderia spp. and F. tularensis - Technical Report

    SciTech Connect

    Fischer, N. O.

    2015-01-13

    The goal of this proposal is to demonstrate that colocalization of protein subunit antigens and adjuvants on nanolipoprotein particles (NLPs) can increase the protective efficacy of subunit antigens from Burkholderia spp. and Francisella tularensis against an aerosol challenge. In the third quarter of the third year, F344 rats vaccinated with adjuvanted NLP formulations were challenged with F. tularensis SCHU S4 at Battelle. Preliminary data indicate that up to 65% of females vaccinated intranasally with an NLP-based formulation survived this challenge, compared to only 20% survival of naïve animals. In addition, NLPs were successfully formulated with Burkholderia protein antigens. IACUC approval for immunological assessments in BALB/c mice was received and we anticipate that these assessments will begin by March 2015, pending ACURO approval.

  16. Effects of pre-existing anti-carrier immunity and antigenic element multiplicity on efficacy of a modular virus-like particle vaccine.

    PubMed

    Chuan, Yap P; Rivera-Hernandez, Tania; Wibowo, Nani; Connors, Natalie K; Wu, Yang; Hughes, Fiona K; Lua, Linda H L; Middelberg, Anton P J

    2013-09-01

    Modularization of a peptide antigen for presentation on a microbially synthesized murine polyomavirus (MuPyV) virus-like particle (VLP) offers a new alternative for rapid and low-cost vaccine delivery at a global scale. In this approach, heterologous modules containing peptide antigenic elements are fused to and displayed on the VLP carrier, allowing enhancement of peptide immunogenicity via ordered and densely repeated presentation of the modules. This study addresses two key engineering questions pertaining to this platform, exploring the effects of (i) pre-existing carrier-specific immunity on modular VLP vaccine effectiveness and (ii) increase in the antigenic element number per VLP on peptide-specific immune response. These effects were studied in a mouse model and with modular MuPyV VLPs presenting a group A streptococcus (GAS) peptide antigen, J8i. The data presented here demonstrate that immunization with a modular VLP could induce high levels of J8i-specific antibodies despite a strong pre-existing anti-carrier immune response. Doubling of the J8i antigenic element number per VLP did not enhance J8i immunogenicity at a constant peptide dose. However, the strategy, when used in conjunction with increased VLP dose, could effectively increase the peptide dose up to 10-fold, leading to a significantly higher J8i-specific antibody titer. This study further supports feasibility of the MuPyV modular VLP vaccine platform by showing that, in the absence of adjuvant, modularized GAS antigenic peptide at a dose as low as 150 ng was sufficient to raise a high level of peptide-specific IgGs indicative of bactericidal activity.

  17. A study on antigenicity and receptor-binding ability of fragment 450-650 of the spike protein of SARS coronavirus

    SciTech Connect

    Zhao Jincun; Wang Wei; Yuan Zhihong; Jia Rujing; Zhao Zhendong; Xu Xiaojun; Lv Ping; Zhang Yan; Jiang Chengyu; Gao Xiaoming . E-mail: xmgao@bjmu.edu.cn

    2007-03-15

    The spike (S) protein of SARS coronavirus (SARS-CoV) is responsible for viral binding with ACE2 molecules. Its receptor-binding motif (S-RBM) is located between residues 424 and 494, which folds into 2 anti-parallel {beta}-sheets, {beta}5 and {beta}6. We have previously demonstrated that fragment 450-650 of the S protein (S450-650) is predominantly recognized by convalescent sera of SARS patients. The N-terminal 60 residues (450-510) of the S450-650 fragment covers the entire {beta}6 strand of S-RBM. In the present study, we demonstrate that patient sera predominantly recognized 2 linear epitopes outside the {beta}6 fragment, while the mouse antisera, induced by immunization of BALB/c mice with recombinant S450-650, mainly recognized the {beta}6 strand-containing region. Unlike patient sera, however, the mouse antisera were unable to inhibit the infectivity of S protein-expressing (SARS-CoV-S) pseudovirus. Fusion protein between green fluorescence protein (GFP) and S450-650 (S450-650-GFP) was able to stain Vero E6 cells and deletion of the {beta}6 fragment rendered the fusion product (S511-650-GFP) unable to do so. Similarly, recombinant S450-650, but not S511-650, was able to block the infection of Vero E6 cells by the SARS-CoV-S pseudovirus. Co-precipitation experiments confirmed that S450-650 was able to specifically bind with ACE2 molecules in lysate of Vero E6 cells. However, the ability of S450-510, either alone or in fusion with GFP, to bind with ACE2 was significantly poorer compared with S450-650. Our data suggest a possibility that, although the {beta}6 strand alone is able to bind with ACE2 with relatively high affinity, residues outside the S-RBM could also assist the receptor binding of SARS-CoV-S protein.

  18. Nanolipoprotein Particles (NLPs) as Versatile Vaccine Platforms for Co-delivery of Multiple Adjuvants with Subunit Antigens from Burkholderia spp. and F. tularensis - Technical Report

    SciTech Connect

    Fischer, N. O.

    2015-01-06

    The goal of this proposal is to demonstrate that colocalization of protein subunit antigens and adjuvants on nanolipoprotein particles (NLPs) can increase the protective efficacy of subunit antigens from Burkholderia spp. and Francisella tularensis against an aerosol challenge. In the second quarter of the third year, LLNL finalized all immunological assessments of NLP vaccine formulations in the F344 model. Battelle has immunized rats with three unique NLP formulations by either intramuscular or intranasal administration. All inoculations have been completed, and protective efficacy against an aerosolized challenge will begin at the end of October, 2014.

  19. A theoretical compartment model for antigen kinetics in the skin.

    PubMed

    Römgens, Anne M; Bader, Dan L; Bouwstra, Joke A; Oomens, Cees W J

    2016-03-10

    The skin is a promising location for vaccination with its abundant population of antigen capturing and presenting cells. The development of new techniques, such as the use of microneedles, can facilitate the delivery of vaccines into the skin. In recent years, many different types of microneedle arrays have been designed. However, their geometry and arrangement within an array may be optimized to trigger sufficient antigen presenting cells. A computational model can support the rational design of microneedle arrays. Therefore, the aim of the current study was to describe the distribution and kinetics of a delivered antigen within the skin using a theoretical compartment model, which included binding of antigens to receptors and their uptake by cells, and to determine which parameters should be measured to validate the model for a specific application. Multiple simulations were performed using a high and low antigen delivery dose and a range of values for the rate constants. The results indicated that the cells were highly saturated when a high dose was applied, while for a low dose saturation was only reached in 5% of the simulations. This was caused by the difference in the ratio between the administered dose and the available binding sites and suggests the dose should be adapted to the number of cells and receptors for a specific compound. The sensitivity analysis of the model parameters confirmed that the initial dose and receptor concentrations were indeed the two parameters that had the largest influence on the variance in antigen concentrations within the cells and circulation at equilibrium. Hence, these parameters are important to be measured in vivo. The presented pharmacokinetics model can be used in future computational models to predict the influence of microneedle array geometry to optimize their design.

  20. LANA Binds to Multiple Active Viral and Cellular Promoters and Associates with the H3K4Methyltransferase hSET1 Complex

    PubMed Central

    Hu, Jianhong; Yang, Yajie; Turner, Peter C.; Jain, Vaibhav; McIntyre, Lauren M.; Renne, Rolf

    2014-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is a γ-herpesvirus associated with KS and two lymphoproliferative diseases. Recent studies characterized epigenetic modification of KSHV episomes during latency and determined that latency-associated genes are associated with H3K4me3 while most lytic genes are associated with the silencing mark H3K27me3. Since the latency-associated nuclear antigen (LANA) (i) is expressed very early after de novo infection, (ii) interacts with transcriptional regulators and chromatin remodelers, and (iii) regulates the LANA and RTA promoters, we hypothesized that LANA may contribute to the establishment of latency through epigenetic control. We performed a detailed ChIP-seq analysis in cells of lymphoid and endothelial origin and compared H3K4me3, H3K27me3, polII, and LANA occupancy. On viral episomes LANA binding was detected at numerous lytic and latent promoters, which were transactivated by LANA using reporter assays. LANA binding was highly enriched at H3K4me3 peaks and this co-occupancy was also detected on many host gene promoters. Bioinformatic analysis of enriched LANA binding sites in combination with biochemical binding studies revealed three distinct binding patterns. A small subset of LANA binding sites showed sequence homology to the characterized LBS1/2 sequence in the viral terminal repeat. A large number of sites contained a novel LANA binding motif (TCCAT)3 which was confirmed by gel shift analysis. Third, some viral and cellular promoters did not contain LANA binding sites and are likely enriched through protein/protein interaction. LANA was associated with H3K4me3 marks and in PEL cells 86% of all LANA bound promoters were transcriptionally active, leading to the hypothesis that LANA interacts with the machinery that methylates H3K4. Co-immunoprecipitation demonstrated LANA association with endogenous hSET1 complexes in both lymphoid and endothelial cells suggesting that LANA may contribute to the epigenetic

  1. Purified JC virus T antigen derived from insect cells preferentially interacts with binding site II of the viral core origin under replication conditions.

    PubMed

    Bollag, B; Mackeen, P C; Frisque, R J

    1996-04-01

    The human polyomavirus JC virus (JCV) establishes persistent, asymptomatic infections in most individuals, but in severely immunocompromised hosts it may cause the fatal demyelinating brain disease progressive multifocal leukoencephalopathy. In cell culture JCV multiplies inefficiently and exhibits a narrow host range. This restricted behavior occurs, in part, at the level of DNA replication, which is regulated by JCV's multifunctional large tumor protein (TAg). To prepare purified JCV TAg (JCT) for biochemical analyses, the recombinant baculovirus B-JCT was generated by cotransfection of insect cells with wild-type baculovirus and the vector pVL-JCT(Int-) containing the JCT-coding sequence downstream of the efficient polyhedrin promoter. JCT expressed in infected cells was immunoaffinity purified using the anti-JCT monoclonal antibody PAb 2000. Characterization of the viral oncoprotein indicated that it exists in solution as a mixture of monomeric and oligomeric species. With the addition of ATP, the population of monomers decreased and that of hexamers and double hexamers increased. A DNA mobility shift assay indicated that origin binding occurred primarily with the double-hexamer form. A comparison of the specific DNA-binding activities of JCT and SV40 TAg (SVT) revealed that JCT generally exhibited greater affinity for binding site II relative to binding site I (B.S. I) of both viral origin regions, whereas SVT preferentially bound B.S. I. Furthermore, JCT bound nonviral DNA more efficiently than did SVT. These functional differences between the two TAgs may contribute to the reduced DNA replication potential of JCV in vitro, and to the virus' ability to establish persistent infections in vivo.

  2. PCSK9 binds to multiple receptors and can be functionally inhibited by an EGF-A peptide.

    PubMed

    Shan, LiXin; Pang, Ling; Zhang, Rumin; Murgolo, Nicholas J; Lan, Hong; Hedrick, Joseph A

    2008-10-10

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to low density lipoprotein receptor (LDLR) and induces its internalization and degradation. PCSK9 binding to LDLR is mediated through the LDLR epidermal growth factor-like repeat A (EGF-A) domain. We show for the first time that an EGF-A peptide inhibits PCSK9-mediated degradation of LDLR in HepG2 cells. In addition to LDLR, we show that PCSK9 also binds directly to ApoER2 and mouse VLDLR. Importantly, binding of PCSK9 to either LDLR or mouse VLDLR was effectively inhibited by EGF-A while binding to ApoER2 was less affected. In contrast, LDL receptor-associated protein (RAP), which interacts with LDL receptor repeat type A (LA) domains, inhibited PCSK9 binding to ApoER2 with greater efficacy than either LDLR or mVLDLR. These data demonstrate that while PCSK9 binds several receptors via its EGF-A binding domain, additional contacts with other receptor domains are also involved.

  3. Human polyoma JC virus minor capsid proteins, VP2 and VP3, enhance large T antigen binding to the origin of viral DNA replication: evidence for their involvement in regulation of the viral DNA replication.

    PubMed

    Saribas, A Sami; Mun, Sarah; Johnson, Jaslyn; El-Hajmoussa, Mohammad; White, Martyn K; Safak, Mahmut

    2014-01-20

    JC virus (JCV) lytically infects the oligodendrocytes in the central nervous system in a subset of immunocompromized patients and causes the demyelinating disease, progressive multifocal leukoencephalopathy. JCV replicates and assembles into infectious virions in the nucleus. However, understanding the molecular mechanisms of its virion biogenesis remains elusive. In this report, we have attempted to shed more light on this process by investigating molecular interactions between large T antigen (LT-Ag), Hsp70 and minor capsid proteins, VP2/VP3. We demonstrated that Hsp70 interacts with VP2/VP3 and LT-Ag; and accumulates heavily in the nucleus of the infected cells. We also showed that VP2/VP3 associates with LT-Ag through their DNA binding domains resulting in enhancement in LT-Ag DNA binding to Ori and induction in viral DNA replication. Altogether, our results suggest that VP2/VP3 and Hsp70 actively participate in JCV DNA replication and may play critical roles in coupling of viral DNA replication to virion encapsidation.

  4. Transcription of Epstein-Barr virus-encoded nuclear antigen 1 promoter Qp is repressed by transforming growth factor-beta via Smad4 binding element in human BL cells.

    PubMed

    Liang, C L; Tsai, C N; Chung, P J; Chen, J L; Sun, C M; Chen, R H; Hong, J H; Chang, Y S

    2000-11-10

    In Epstein-Barr virus (EBV)-infected BL cells, the oncogenic EBV-encoded nuclear antigen 1 (EBNA 1) gene is directed from the latent promoter Qp. Yeast one-hybrid screen analysis using the -50 to -37 sequence of Qp as the bait was carried out to identify transcriptional factors that may control Qp activity. Results showed that Smad4 binds the -50 to -37 sequence of Qp, indicating that this promoter is potentially regulated by TGF-beta. The association of Smad4 with Qp was further confirmed by supershift of EMSA complexes using Smad4-specific antibody. The transfection of a Qp reporter construct in two EBV(+) BL cell lines, Rael and WW2, showed that Qp activity is repressed in response to the TGF-beta treatment. This repression involves the interaction of a Smad3/Smad4 complex and the transcriptional repressor TGIF, as determined by cotransfection assay and coimmunoprecipitation analysis. Results suggest that TGF-beta may transcriptionally repress Qp through the Smad4-binding site in human BL cells.

  5. Structural Based Analyses of the JC Virus T-Antigen F258L Mutant Provides Evidence for DNA Dependent Conformational Changes in the C-Termini of Polyomavirus Origin Binding Domains

    PubMed Central

    Meinke, Gretchen; Phelan, Paul J.; Shin, Jong; Gagnon, David; Archambault, Jacques; Bohm, Andrew; Bullock, Peter A.

    2016-01-01

    The replication of human polyomavirus JCV, which causes Progressive Multifocal Leukoencephalopathy, is initiated by the virally encoded T-antigen (T-ag). The structure of the JC virus T-ag origin-binding domain (OBD) was recently solved by X-ray crystallography. This structure revealed that the OBD contains a C-terminal pocket, and that residues from the multifunctional A1 and B2 motifs situated on a neighboring OBD molecule dock into the pocket. Related studies established that a mutation in a pocket residue (F258L) rendered JCV T-ag unable to support JCV DNA replication. To establish why this mutation inactivated JCV T-ag, we have solved the structure of the F258L JCV T-ag OBD mutant. Based on this structure, it is concluded that the structural consequences of the F258L mutation are limited to the pocket region. Further analyses, utilizing the available polyomavirus OBD structures, indicate that the F258 region is highly dynamic and that the relative positions of F258 are governed by DNA binding. The possible functional consequences of the DNA dependent rearrangements, including promotion of OBD cycling at the replication fork, are discussed. PMID:26735515

  6. Structural Based Analyses of the JC Virus T-Antigen F258L Mutant Provides Evidence for DNA Dependent Conformational Changes in the C-Termini of Polyomavirus Origin Binding Domains.

    PubMed

    Meinke, Gretchen; Phelan, Paul J; Shin, Jong; Gagnon, David; Archambault, Jacques; Bohm, Andrew; Bullock, Peter A

    2016-01-01

    The replication of human polyomavirus JCV, which causes Progressive Multifocal Leukoencephalopathy, is initiated by the virally encoded T-antigen (T-ag). The structure of the JC virus T-ag origin-binding domain (OBD) was recently solved by X-ray crystallography. This structure revealed that the OBD contains a C-terminal pocket, and that residues from the multifunctional A1 and B2 motifs situated on a neighboring OBD molecule dock into the pocket. Related studies established that a mutation in a pocket residue (F258L) rendered JCV T-ag unable to support JCV DNA replication. To establish why this mutation inactivated JCV T-ag, we have solved the structure of the F258L JCV T-ag OBD mutant. Based on this structure, it is concluded that the structural consequences of the F258L mutation are limited to the pocket region. Further analyses, utilizing the available polyomavirus OBD structures, indicate that the F258 region is highly dynamic and that the relative positions of F258 are governed by DNA binding. The possible functional consequences of the DNA dependent rearrangements, including promotion of OBD cycling at the replication fork, are discussed.

  7. Blockade of very late antigen-4 integrin binding to fibronectin with connecting segment-1 peptide reduces accelerated coronary arteriopathy in rabbit cardiac allografts.

    PubMed Central

    Molossi, S; Elices, M; Arrhenius, T; Diaz, R; Coulber, C; Rabinovitch, M

    1995-01-01

    Graft arteriopathy, a leading cause of cardiac allograft failure, is associated with increased intimal smooth muscle cells, inflammatory cells, and accumulation of extracellular matrix. We hypothesized that cellular fibronectin plays a pivotal role in the progression of the allograft arteriopathy by directing the transendothelial trafficking of inflammatory cells through interaction of the connecting segment-1 (CS1) motif with the very late antigen-4 (VLA-4) integrin, and tested this in vivo using a blocking peptide. Cholesterol-fed rabbits underwent heterotopic cardiac transplantation without immunosuppression. The treatment group (n = 7) received a synthetic CS1 peptide (1 mg/kg per d, subcutaneously), and the controls (n = 7) received an inactive peptide (1 mg/kg per d, subcutaneously). At 7-8 d after transplantation, hearts were harvested and sectioned for morphometric analysis and immunohistochemical studies. We observed a > 50% decrease in the incidence (P < 0.001) and severity (P < 0.001) of donor coronary artery intimal thickening in the CS1-treated compared with the control group. These findings correlated with reduced infiltration of T cells (P < 0.05), a trend toward decreased expression of adhesion molecules (P < 0.06), and less accumulation of fibronectin (P < 0.03). Our data suggest that the VLA-4-fibronectin interaction is critical to the progression of the allograft arteriopathy by perpetuating the immune-inflammatory response in the vessel wall. Images PMID:7539456

  8. Antigenic Characterization of the HCMV gH/gL/gO and Pentamer Cell Entry Complexes Reveals Binding Sites for Potently Neutralizing Human Antibodies

    PubMed Central

    Ciferri, Claudio; Chandramouli, Sumana; Leitner, Alexander; Donnarumma, Danilo; Cianfrocco, Michael A.; Gerrein, Rachel; Friedrich, Kristian; Aggarwal, Yukti; Palladino, Giuseppe; Aebersold, Ruedi; Norais, Nathalie; Settembre, Ethan C.; Carfi, Andrea

    2015-01-01

    Human Cytomegalovirus (HCMV) is a major cause of morbidity and mortality in transplant patients and in fetuses following congenital infection. The glycoprotein complexes gH/gL/gO and gH/gL/UL128/UL130/UL131A (Pentamer) are required for HCMV entry in fibroblasts and endothelial/epithelial cells, respectively, and are targeted by potently neutralizing antibodies in the infected host. Using purified soluble forms of gH/gL/gO and Pentamer as well as a panel of naturally elicited human monoclonal antibodies, we determined the location of key neutralizing epitopes on the gH/gL/gO and Pentamer surfaces. Mass Spectrometry (MS) coupled to Chemical Crosslinking or to Hydrogen Deuterium Exchange was used to define residues that are either in proximity or part of neutralizing epitopes on the glycoprotein complexes. We also determined the molecular architecture of the gH/gL/gO- and Pentamer-antibody complexes by Electron Microscopy (EM) and 3D reconstructions. The EM analysis revealed that the Pentamer specific neutralizing antibodies bind to two opposite surfaces of the complex, suggesting that they may neutralize infection by different mechanisms. Together, our data identify the location of neutralizing antibodies binding sites on the gH/gL/gO and Pentamer complexes and provide a framework for the development of antibodies and vaccines against HCMV. PMID:26485028

  9. A novel virus-like particle based on hepatitis B core antigen and substrate-binding domain of bacterial molecular chaperone DnaK.

    PubMed

    Wang, Xue Jun; Gu, Kai; Xiong, Qi Yan; Shen, Liang; Cao, Rong Yue; Li, Ming Hui; Li, Tai Ming; Wu, Jie; Liu, Jing Jing

    2009-12-09

    Hepatitis B virus core (HBc) protein has been proved to be an attractive carrier for foreign epitopes, and can display green fluorescent protein (GFP) on its surface. The structure of substrate-binding domain of DnaK [DnaK (394-504 aa), DnaK SBD] is similar to GFP, we therefore reasoned that DnaK SBD might also be tolerated. Electron microscopic observations suggested that the chimeric proteins containing the truncated HBc (HBcDelta) and DnaK SBD could self-assemble into virus-like particle (VLP). Then the accessibility of DnaK SBD and the adjuvanticity of VLP HBcDelta-SBD were demonstrated by two recombinant peptide vaccines against gonadotropin-releasing hormone (GnRH), GhM and GhMNR. The latter carries in addition the peptide motif NRLLLTG which is known to bind to DnaK and DnaK SBD. The combination of VLP HBcDelta-SBD and GhMNR elicited stronger humoral responses and caused further testicular atrophy than the combinations of VLP HBcDelta and GhMNR or VLP HBcDelta-SBD and GhM in Balb/c mice. These findings indicate VLP HBcDelta-SBD might serve as an excellent carrier for GhMNR and some other peptide vaccines.

  10. Multiple roles for PI 3-kinase in the regulation of PLCgamma activity and Ca2+ mobilization in antigen-stimulated mast cells.

    PubMed

    Barker, S A; Lujan, D; Wilson, B S

    1999-03-01

    Cross-linking the IgE-bound FcepsilonRI with polyvalent antigen leads to Ca2+-dependent degranulation from mast cells and basophils, initiating the allergic response. This overview addresses novel roles for PI 3-kinase in the regulation of signaling events that lie downstream of FcepsilonRI-mediated tyrosine kinase activation. The first novel role for PI 3-kinase is in the regulation of PLCgamma activity and is demonstrated by a dramatic inhibition of FcepsilonRI-induced Ins(1,4,5)P3 production after treatment of RBL-2H3 cells with wortmannin, a PI 3-kinase inhibitor. We show that PI 3-kinase lipid products support Ins(1,4,5)P3 production in at least two ways: by promoting translocation and phosphorylation of PLCgamma1 and by direct stimulation of both PLCgamma isoforms. In vitro stimulation of PLCgamma activity by PtdIns(3,4,5)P3 synergizes with activation by in vivo tyrosine phosphorylation for maximal enzymatic activity. A second novel role for PI 3-kinase is in the regulation of antigen-stimulated Ca2+ influx. Compared with control cells, Ca2+ responses are markedly diminished in antigen-stimulated cells after wortmannin pretreatment. Differences include both a longer lag time to the initial elevation in Ca2+ after antigen and an inhibition of the sustained Ca2+ influx phase. However, thapsigargin challenge during the sustained phase demonstrates no difference in the state of the Ca2+ stores in antigen-stimulated cells in the presence or absence of wortmannin. These data suggest that sufficient Ins(1,4,5)P3 is synthesized in wortmannin-treated cells to mobilize intracellular calcium stores and, furthermore, that the affected phase of Ca2+ influx is unlikely to be attributed to capacitative mechanisms. These data are consistent with a model where at least two pathways mediate Ca2+ influx in antigen-stimulated RBL-2H3 cells, one that is dependent on signals from empty stores (capacitative influx) and another that is downstream of PI 3-kinase.

  11. Poloxamines display a multiple inhibitory activity of ATP-binding cassette (ABC) transporters in cancer cell lines.

    PubMed

    Cuestas, María L; Sosnik, Alejandro; Mathet, Verónica L

    2011-08-01

    Primary hepatocellular carcinoma is the third most common fatal cancer worldwide with more than 500,000 annual deaths. Approximately 40% of the patients with HCC showed tumoral overexpression of transmembrane proteins belonging to the ATP-binding cassette protein superfamily (ABC) which pump drugs out of cells. The overexpression of these efflux transporters confers on the cells a multiple drug resistance phenotype, which is considered a crucial cause of treatment refractoriness in patients with cancer. The aim of this study was to investigate the inhibitory effect of different concentrations of pH- and temperature-responsive X-shaped poly(ethylene oxide)-poly(propylene oxide) block copolymers (poloxamines, Tetronic, PEO-PPO) showing a wide range of molecular weights and EO/PO ratios on the functional activity of three different ABC proteins, namely P-glycoprotein (P-gp or MDR1), breast cancer resistance protein (BCRP), and multidrug resistance-associated protein MRP1, in two human hepatocarcinoma cell lines, HepG2 and Huh7. First, the cytotoxicity of the different copolymers (at different concentrations) on both liver carcinoma cell lines was thoroughly evaluated by means of apoptosis analysis using annexin V and propidium iodide (PI). Thus, viable cells (AV-/PI-), early apoptotic cells (AV+/PI-) and late apoptotic cells (V-FITC+/PI+) were identified. Results pointed out copolymers of intermediate to high hydrophobicity and intermediate molecular weight (e.g., T904) as the most cytotoxic. Then, DiOC2, rhodamine 123 and vinblastine were used as differential substrates of these pumps. HeLa, an epithelial cell line of human cervical cancer that does not express P-gp, was used exclusively as a control and enabled the discerning between P-gp and MRP1 inhibition. Moderate to highly hydrophobic poloxamines T304, T904 and T1301 showed inhibitory activity against P-gp and BCRP but not against MRP1 in both hepatic cell lines. A remarkable dependence of this effect on the

  12. A single Alal 39-to-Glu substitution in the Renibacterium salmoninarum virulence-associated protein p57 results in antigenic variation and is associated with enhanced p57 binding to Chinook salmon leukocytes

    USGS Publications Warehouse

    Wiens, Gregory D.; Pascho, Ron; Winton, James R.

    2002-01-01

    The gram-positive bacterium Renibacterium salmoninarum produces relatively large amounts of a 57-kDa protein (p57) implicated in the pathogenesis of salmonid bacterial kidney disease. Antigenic variation in p57 was identified by using monoclonal antibody 4C11, which exhibited severely decreased binding to R. salmoninarum strain 684 p57 and bound robustly to the p57 proteins of seven other R. salmoninarum strains. This difference in binding was not due to alterations in p57 synthesis, secretion, or bacterial cell association. The molecular basis of the 4C11 epitope loss was determined by amplifying and sequencing the two identical genes encoding p57, msa1 and msa2. The 5′ and coding sequences of the 684 msa1 and msa2 genes were identical to those of the ATCC 33209 msa1and msa2 genes except for a single C-to-A nucleotide mutation. This mutation was identified in both the msa1 and msa2 genes of strain 684 and resulted in an Ala139-to-Glu substitution in the amino-terminal region of p57. We examined whether this mutation in p57 altered salmonid leukocyte and rabbit erythrocyte binding activities. R. salmoninarum strain 684 extracellular protein exhibited a twofold increase in agglutinating activity for chinook salmon leukocytes and rabbit erythrocytes compared to the activity of the ATCC 33209 extracellular protein. A specific and quantitative p57 binding assay confirmed the increased binding activity of 684 p57. Monoclonal antibody 4C11 blocked the agglutinating activity of the ATCC 33209 extracellular protein but not the agglutinating activity of the 684 extracellular protein. These results indicate that the Ala139-to-Glu substitution altered immune recognition and was associated with enhanced biological activity of R. salmoninarum 684 p57.

  13. Development of porcine ficolin-alpha monoclonal and polyclonal antibodies for determining the binding capacity of multiple GlcNAc-binding proteins to bacterial danger components.

    PubMed

    Nahid, M Abu; Ross, Steven J; Umiker, Benjamin R; Li, Huapeng; Sugii, Sunji; Bari, Latiful

    2016-02-01

    Ficolins are a group of oligomeric defense proteins assembled from collagen-like stalks and fibrinogen-like domains that have common biochemical specificity for N-acetyl-d-glucose amine (GlcNAc) and can function as opsonins. In this report, GlcNAc-binding protein (GBP) purified from porcine nonimmune serum was biochemically characterized as ficolin-α. Ficolin-α was used as an immunogen to generate both rabbit polyclonal and murine monoclonal anti-ficolin-α antibodies, which are not yet commercially available. GBPs have been shown to be present in many animals, including humans; however, their functions are largely unknown. GBPs from chicken, dog, horse, bovine, and human sera were isolated using various chromatography methods. Interestingly, anti-ficolin-α antibody showed cross-reaction with those animal sera GBPs. Furthermore, anti-ficolin-α antibody was reactive with the GlcNAc eluate of Escherichia coli O26-bound and Salmonella-bound porcine serum proteins. Functionally, GBPs and bacteria-reactive pig serum proteins were able to bind with pathogen-associated molecular patterns such as lipopolysaccharides and lipoteichoic acids. Our studies demonstrate that ficolin-α specific antibody was reactive with GBPs from many species as well as bacteria-reactive serum proteins. These proteins may play important roles in innate immunity by sensing danger components that can lead to antibacterial activity.

  14. A selective high affinity ligand (SHAL) designed to bind to an over-expressed human antigen on non-Hodgkin's lymphoma also binds to canine B-cell lymphomas.

    PubMed

    Balhorn, Rod L; Skorupski, Katherine A; Hok, Saphon; Balhorn, Monique Cosman; Guerrero, Teri; Rebhun, Robert B

    2010-10-15

    Therapies using antibodies directed against cell surface proteins have improved survival for human patients with non-Hodgkin's lymphoma (NHL). It is possible that similar immuno-therapeutic approaches may also benefit canine NHL patients. Unfortunately, variability between human and canine epitopes often limits the usefulness of such therapies in pet dogs. The Lym-1 antibody recognizes a unique epitope on HLA-DR10 that is expressed on the majority of human B-cell malignancies. The Lym-1 antibody has now been observed to bind to dog lymphocytes and B-cell NHL. Sequence comparisons and computer modeling of a human and three canine DRB1 proteins identified several orthologs of human HLA-DR10 expressed by dog lymphocytes. Immuno-staining confirmed the presence of proteins containing the Lym-1 epitope on dog lymphocytes and B-cell NHL. In addition, a selective high affinity ligand (SHAL) SH-7139 designed to bind within the Lym-1 epitope of HLA-DR10 was also observed to bind to canine B-cell NHL tissue. This SHAL, which is selectively cytotoxic to cells expressing HLA-DR10 and has been shown to cure mice bearing human B-cell lymphoma xenografts, may prove useful in treating B-cell malignancies in pet dogs.

  15. Nude mice produce a T cell-derived antigen-binding factor that mediates the early component of delayed-type hypersensitivity.

    PubMed

    Herzog, W R; Meade, R; Pettinicchi, A; Ptak, W; Askenase, P W

    1989-03-15

    The elicitation of delayed-type hypersensitivity (DTH) reactions in mice is caused by the sequential action of two different T cells. An early-acting, DTH-initiating T cell produces an Ag-specific T cell factor, that is analogous to IgE antibody and initiates DTH by sensitizing the local tissues for release of the vasoactive amine serotonin. In picryl chloride or oxazolone contact sensitivity, this T cell factor is Ag-specific, but MHC unrestricted. We, therefore, hypothesized that DTH-initiating T cells are primitive T cells with Ag receptors that can bind Ag without MHC restriction. In order to characterize the origin of this DTH-initiating T cell and the conditions that are necessary for its development, we contact-sensitized various strains of immunodeficient mice. Surprisingly, we found that the early phase of DTH was present in athymic nude mice. In contrast, the early component of DTH was absent in mice with severe combined immunodeficiency. These mice lack T and B cells, but have NK cells. These findings suggested that the early component of DTH was not caused by NK cells, and was caused by cells belonging to a lineage from a rearranging gene family. The early component of DTH in nude mice was Ag specific, was caused by MHC unrestricted Thy-1+ T cells, and was mediated by Ag-binding, Ag-specific T cell factors. We found that DTH-initiating, T cell-derived, Ag-binding molecules from nude mice and normal CBA/J mice had the same functional properties. The early component of DTH was elicited in two different systems (contact sensitivity and SRBC-specific DTH) in two strains of nude mice (BALB/c athymic nudes and CByB6F1/J-nu) from two different suppliers, but not in BALB/c and athymic nudes from a third supplier. From these findings we concluded that DTH-initiating T cells, which produce IgE-like Ag-specific T cell factors, are present in some strains of athymic nude mice and thus are relatively thymic independent T cells.

  16. Antigen-antibody selective recognition using LiTaO3 SH-SAW sensors: investigations on macromolecules effects on binding kinetic constants

    NASA Astrophysics Data System (ADS)

    Bergaoui, Y.; Zerrouki, C.; Fourati, N.; Fougnion, J. M.; Abdelghani, A.

    2011-10-01

    A gravimetric surface acoustic wave (SAW) biosensor, based on the biotin-streptavidin and antistreptavidin-streptavidin recognitions, has been carried out. A network analyser and a pulse excitation technique were used to monitor both amplitude and phase changes. The SAW biosensor presented a total selective recognition of streptavidin-antistreptavidin and HRPstreptavidin-antistreptavidin. The presence of HRP (Horseradish peroxidase) affects neither the selectivity nor the sensitivity (of order of 0.25°/nM) of the biosensor, nevertheless, it causes a reduction of binding kinetics by a factor ranging between 2 to 5, as well as a diminution of antistreptavidin saturation concentration (of 40%). Results showed that equilibrium constants can be different, depending on evaluation method (from saturation values or from linear part of the output signal variation according to solution concentration).

  17. Antigenic and physical diversity of Neisseria gonorrhoeae lipooligosaccharides.

    PubMed Central

    Mandrell, R; Schneider, H; Apicella, M; Zollinger, W; Rice, P A; Griffiss, J M

    1986-01-01

    We used mouse monoclonal antibodies (MAbs) to characterize Neisseria gonorrhoeae lipooligosaccharide (LOS). LOSs that bound two or more MAbs in a solid-phase radioimmunoassay usually bound them to different LOS components, as separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE); strains with multiple LOS components on SDS-PAGE usually bound more than one MAb. However, the LOS of some strains bound the same MAb to two LOS components with different relative molecular weights, and some individual LOS components bound more than one MAb. LOSs from different strains bound different amounts of the same MAb at saturation, reflecting differences in the quantitative expression of individual LOS components. Not all components recognized by MAbs were stained by silver after periodate oxidation. Treatment with NaOH variously affected epitopes defined by different MAbs. MAb 3F11 completely inhibited and MAb 2-1-L8 partially inhibited the binding of 125I-labeled 06B4 MAb to WR220 LOS and WR220 outer membranes in competitive binding studies. Other MAbs did not compete with the binding of 125I-labeled 06B4 to either antigen. We conclude that a strain of N. gonorrhoeae elaborates multiple LOSs that can be separated by SDS-PAGE and that are antigenically distinct. Epitope expression within these glycolipids is complex. Images PMID:2428752

  18. Antibodies to liver membrane antigens in chronic active hepatitis (CAH). II. Specificity for autoimmune CAH.

    PubMed Central

    Frazer, I H; Kronborg, I J; Mackay, I R

    1983-01-01

    An immunoradiometric assay for IgG class autoantibody to liver membrane antigens, based on serum binding to glutaraldehyde treated monkey hepatocytes, was used to examine sera from patients with chronic active hepatitis (CAH) and other acute and chronic liver diseases. All sera from normals and patients showed binding, up to a titre of 1/2,048. For comparison of assays, results were normalized by selecting two reference sera, one with a high degree of binding, and one from a healthy subject with a low degree of binding: at a dilution of 1/2,048, these sera were given binding values of 100% and 0%. The values for the binding of unknown sera at the same dilution were calculated from these two reference values. For 26 patients with autoimmune CAH, the mean (+/- s.d.) percentage binding value (70 +/- 33%) was significantly higher than the mean value for 26 healthy subjects (10 +/- 15%), and high binding values were significantly associated with biochemically active hepatitis. The mean percentage binding value was moderately increased for eight patients with HBsAg associated CAH (42 +/- 12%), 13 patients with alcoholic hepatitis with cirrhosis (37 +/- 25%) and 45 patients with acute viral hepatitis A (40 +/- 27%) or B (52 +/- 37%). At a cut-off binding value of 65%, the assay as a single diagnostic procedure was shown to have a 70% sensitivity and a 95% specificity for the diagnosis of autoimmune CAH. Better understanding of the pathogenetic significance of antibodies to liver membrane antigens in CAH and other liver diseases will depend upon biochemical analysis of the presumably multiple antigenic determinants on the hepatocyte membrane. PMID:6616969

  19. New insights from molecular dynamic simulation studies of the multiple binding modes of a ligand with G-quadruplex DNA.

    PubMed

    Hou, Jin-Qiang; Chen, Shuo-Bin; Tan, Jia-Heng; Luo, Hai-Bin; Li, Ding; Gu, Lian-Quan; Huang, Zhi-Shu

    2012-12-01

    G-quadruplexes are higher-order DNA and RNA structures formed from guanine-rich sequences. These structures have recently emerged as a new class of potential molecular targets for anticancer drugs. An understanding of the three-dimensional interactions between small molecular ligands and their G-quadruplex targets in solution is crucial for rational drug design and the effective optimization of G-quadruplex ligands. Thus far, rational ligand design has been focused mainly on the G-quartet platform. It should be noted that small molecules can also bind to loop nucleotides, as observed in crystallography studies. Hence, it would be interesting to elucidate the mechanism underlying how ligands in distinct binding modes influence the flexibility of G-quadruplex. In the present study, based on a crystal structure analysis, the models of a tetra-substituted naphthalene diimide ligand bound to a telomeric G-quadruplex with different modes were built and simulated with a molecular dynamics simulation method. Based on a series of computational analyses, the structures, dynamics, and interactions of ligand-quadruplex complexes were studied. Our results suggest that the binding of the ligand to the loop is viable in aqueous solutions but dependent on the particular arrangement of the loop. The binding of the ligand to the loop enhances the flexibility of the G-quadruplex, while the binding of the ligand simultaneously to both the quartet and the loop diminishes its flexibility. These results add to our understanding of the effect of a ligand with different binding modes on G-quadruplex flexibility. Such an understanding will aid in the rational design of more selective and effective G-quadruplex binding ligands.

  20. Human C1qRp is identical with CD93 and the mNI-11 antigen but does not bind C1q.

    PubMed

    McGreal, Eamon P; Ikewaki, Nobunao; Akatsu, Hiroyasu; Morgan, B Paul; Gasque, Philippe

    2002-05-15

    It has been suggested that the human C1qRp is a receptor for the complement component C1q; however, there is no direct evidence for an interaction between C1q and C1qRp. In this study, we demonstrate that C1q does not show enhanced binding to C1qRp-transfected cells compared with control cells. Furthermore, a soluble recombinant C1qRp-Fc chimera failed to interact with immobilized C1q. The proposed role of C1qRp in the phagocytic response in vivo is also unsupported in that we demonstrate that this molecule is not expressed by macrophages in a variety of human tissues and the predominant site of expression is on endothelial cells. Studies on the rodent homolog of C1qRp, known as AA4, have suggested that this molecule may function as an intercellular adhesion molecule. Here we show that C1qRp is the Ag recognized by several previously described mAbs, mNI-11 and two anti-CD93 Abs (clones X2 and VIMD2b). Interestingly, mNI-11 (Fab') has been shown to promote monocyte-monocyte and monocyte-endothelial cell adhesive interactions. We produced a recombinant C1qRp-Fc chimera containing the C-type lectin-like domain of C1qRp and found specific binding to vascular endothelial cells in sections of inflamed human tonsil, indicating the presence of a C1qRp ligand at this site. This interaction was Ca(2+) independent and was not blocked by our anti-C1qRp mAb BIIG-4, but was blocked by the proadhesive mAb mNI-11. Collectively, these data indicate that C1qRp is not a receptor for C1q, and they support the emerging role of C1qRp (here renamed CD93) in functions relevant to intercellular adhesion.

  1. Studies of the biogenic amine transporters. IV. Demonstration of a multiplicity of binding sites in rat caudate membranes for the cocaine analog [125I]RTI-55.

    PubMed

    Rothman, R B; Cadet, J L; Akunne, H C; Silverthorn, M L; Baumann, M H; Carroll, F I; Rice, K C; de Costa, B R; Partilla, J S; Wang, J B

    1994-07-01

    membranes prepared from rat caudate or COS cells that transiently expressed the cloned cocaine-sensitive DA transporter complementary DNA. Similar experiments also resolved two components of the caudate 5-HT transporter. Viewed collectively, these data provide evidence that [125I]RTI-55 labels multiple binding sites associated with the DA and 5-HT transporters.

  2. Secretory component delays the conversion of secretory IgA into antigen-binding competent F(ab')2: a possible implication for mucosal defense.

    PubMed

    Crottet, P; Corthésy, B

    1998-11-15

    Secretory component (SC) represents the soluble ectodomain of the polymeric Ig receptor, a membrane protein that transports mucosal Abs across epithelial cells. In the protease-rich environment of the intestine, SC is thought to stabilize the associated IgA by unestablished molecular mechanisms. To address this question, we reconstituted SC-IgA complexes in vitro by incubating dimeric IgA (IgAd) with either recombinant human SC (rSC) or SC isolated from human colostral milk (SCm). Both complexes exhibited an identical degree of covalency when exposed to redox agents, peptidyl disulfide isomerase, and temperature changes. In cross-competition experiments, 50% inhibition of binding to IgAd was achieved at approximately 10 nM SC competitor. Western blot analysis of IgAd digested with intestinal washes indicated that the alpha-chain in IgAd was primarily split into a 40-kDa species, a phenomenon delayed in rSC- or SCm-IgAd complexes. In the same assay, either of the SCs was resistant to degradation only if complexed with IgAd. In contrast, the kappa light chain was not digested at all, suggesting that the F(ab')2 region was left intact. Accordingly, IgAd and SC-IgAd digestion products retained functionality as indicated by Ag reactivity in ELISA. Size exclusion chromatography under native conditions of digested IgAd and rSC-IgAd demonstrates that SC exerts its protective role in secretory IgA by delaying cleavage in the hinge/Fc region of the alpha-chain, not by holding together degraded fragments. The function of integral secretory IgA and F(ab')2 is discussed in terms of mucosal immune defenses.

  3. The non-canonical protein binding site at the monomer-monomer interface of yeast proliferating cell nuclear antigen (PCNA) regulates the Rev1-PCNA interaction and Polζ/Rev1-dependent translesion DNA synthesis.

    PubMed

    Sharma, Neeru M; Kochenova, Olga V; Shcherbakova, Polina V

    2011-09-23

    Rev1 and DNA polymerase ζ (Polζ) are involved in the tolerance of DNA damage by translesion synthesis (TLS). The proliferating cell nuclear antigen (PCNA), the auxiliary factor of nuclear DNA polymerases, plays an important role in regulating the access of TLS polymerases to the primer terminus. Both Rev1 and Polζ lack the conserved hydrophobic motif that is used by many proteins for the interaction with PCNA at its interdomain connector loop. We have previously reported that the interaction of yeast Polζ with PCNA occurs at an unusual site near the monomer-monomer interface of the trimeric PCNA. Using GST pull-down assays, PCNA-coupled affinity beads pull-down and gel filtration chromatography, we show that the same region is required for the physical interaction of PCNA with the polymerase-associated domain (PAD) of Rev1. The interaction is disrupted by the pol30-113 mutation that results in a double amino acid substitution at the monomer-monomer interface of PCNA. Genetic analysis of the epistatic relationship of the pol30-113 mutation with an array of DNA repair and damage tolerance mutations indicated that PCNA-113 is specifically defective in the Rev1/Polζ-dependent TLS pathway. Taken together, the data suggest that Polζ and Rev1 are unique among PCNA-interacting proteins in using the novel binding site near the intermolecular interface of PCNA. The new mode of Rev1-PCNA binding described here suggests a mechanism by which Rev1 adopts a catalytically inactive configuration at the replication fork.

  4. CD1 antigen presentation: how it works.

    PubMed

    Barral, Duarte C; Brenner, Michael B

    2007-12-01

    The classic concept of self-non-self discrimination by the immune system focused on the recognition of fragments from proteins presented by classical MHC molecules. However, the discovery of MHC-class-I-like CD1 antigen-presentation molecules now explains how the immune system also recognizes the abundant and diverse universe of lipid-containing antigens. The CD1 molecules bind and present amphipathic lipid antigens for recognition by T-cell receptors. Here, we outline the recent advances in our understanding of how the processes of CD1 assembly, trafficking, lipid-antigen binding and T-cell activation are achieved and the new insights into how lipid antigens differentially elicit CD1-restricted innate and adaptive T-cell responses.

  5. Multiple amino acids in the capsid structure of canine parvovirus coordinately determine the canine host range and specific antigenic and hemagglutination properties.

    PubMed Central

    Chang, S F; Sgro, J Y; Parrish, C R

    1992-01-01

    Canine parvovirus (CPV) and feline panleukopenia virus (FPV) are over 98% similar in DNA sequence but have specific host range, antigenic, and hemagglutination (HA) properties which were located within the capsid protein gene. In vitro mutagenesis and recombination were used to prepare 16 different recombinant genomic clones, and viruses derived from those clones were analyzed for their in vitro host range, antigenic, and HA properties. The region of CPV from 59 to 91 map units determined the ability to replicate in canine cells. A complex series of interactions was observed among the individual sequence differences between 59 and 73 map units. The canine host range required that VP2 amino acids (aa) 93 and 323 both be the CPV sequence, and those two CPV sequences introduced alone into FPV greatly increased viral replication in canine cells. Changing any one of aa 93, 103, or 323 of CPV to the FPV sequence either greatly decreased replication in canine cells or resulted in an inviable plasmid. The Asn-Lys difference of aa 93 alone was responsible for the CPV-specific epitope recognized by monoclonal antibodies. An FPV-specific epitope was affected by aa 323. Amino acids 323 and 375 together determined the pH dependence of HA. Amino acids involved in the various specific properties were all around the threefold spikes of the viral particle. Images PMID:1331498

  6. Bindings between Stimuli and Multiple Response Codes Dominate Long-Lag Repetition Priming in Speeded Classification Tasks

    ERIC Educational Resources Information Center

    Horner, Aidan J.; Henson, Richard N.

    2009-01-01

    Repetition priming is often thought to reflect the facilitation of 1 or more processes engaged during initial and subsequent presentations of a stimulus. Priming can also reflect the formation of direct, stimulus-response (S-R) bindings, retrieval of which bypasses many of the processes engaged during the initial presentation. Using long-lag…

  7. [[superscript 3]H]-Flunitrazepam-Labeled Benzodiazepine Binding Sites in the Hippocampal Formation in Autism: A Multiple Concentration Autoradiographic Study

    ERIC Educational Resources Information Center

    Guptill, Jeffrey T.; Booker, Anne B.; Gibbs, Terrell T.; Kemper, Thomas L.; Bauman, Margaret L.; Blatt, Gene J.

    2007-01-01

    Increasing evidence indicates that the GABAergic system in cerebellar and limbic structures is affected in autism. We extended our previous study that found reduced [[superscript 3]H] flunitrazepam-labeled benzodiazepine sites in the autistic hippocampus to determine whether this reduction was due to a decrease in binding site number (B [subscript…

  8. Analyses of the interaction between the origin binding domain from simian virus 40 T antigen and single-stranded DNA provide insights into DNA unwinding and initiation of DNA replication.

    PubMed

    Reese, Danielle K; Meinke, Gretchen; Kumar, Anuradha; Moine, Stephanie; Chen, Kathleen; Sudmeier, James L; Bachovchin, William; Bohm, Andrew; Bullock, Peter A

    2006-12-01

    DNA helicases are essential for DNA metabolism; however, at the molecular level little is known about how they assemble or function. Therefore, as a model for a eukaryotic helicase, we are analyzing T antigen (T-ag) the helicase encoded by simian virus 40. In this study, nuclear magnetic resonance (NMR) methods were used to investigate the transit of single-stranded DNA (ssDNA) through the T-ag origin-binding domain (T-ag OBD). When the residues that interact with ssDNA are viewed in terms of the structure of a hexamer of the T-ag OBD, comprised of residues 131 to 260, they indicate that ssDNA passes over one face of the T-ag OBD and then transits through a gap in the open ring structure. The NMR-based conclusions are supported by an analysis of previously described mutations that disrupt critical steps during the initiation of DNA replication. These and related observations are discussed in terms of the threading of DNA through T-ag hexamers and the initiation of viral DNA replication.

  9. Analyses of the Interaction between the Origin Binding Domain from Simian Virus 40 T Antigen and Single-Stranded DNA Provide Insights into DNA Unwinding and Initiation of DNA Replication▿

    PubMed Central

    Reese, Danielle K.; Meinke, Gretchen; Kumar, Anuradha; Moine, Stephanie; Chen, Kathleen; Sudmeier, James L.; Bachovchin, William; Bohm, Andrew; Bullock, Peter A.

    2006-01-01

    DNA helicases are essential for DNA metabolism; however, at the molecular level little is known about how they assemble or function. Therefore, as a model for a eukaryotic helicase, we are analyzing T antigen (T-ag) the helicase encoded by simian virus 40. In this study, nuclear magnetic resonance (NMR) methods were used to investigate the transit of single-stranded DNA (ssDNA) through the T-ag origin-binding domain (T-ag OBD). When the residues that interact with ssDNA are viewed in terms of the structure of a hexamer of the T-ag OBD, comprised of residues 131 to 260, they indicate that ssDNA passes over one face of the T-ag OBD and then transits through a gap in the open ring structure. The NMR-based conclusions are supported by an analysis of previously described mutations that disrupt critical steps during the initiation of DNA replication. These and related observations are discussed in terms of the threading of DNA through T-ag hexamers and the initiation of viral DNA replication. PMID:17005644

  10. Zoom Zoom: racing CARs for multiple myeloma.

    PubMed

    Maus, Marcela V; June, Carl H

    2013-04-15

    Chimeric antigen receptors redirect T cells to surface antigens. Discovery and validation of appropriate target antigens expand the possible indications for chimeric-antigen receptor (CAR)-T cells. B-cell maturation antigen (BCMA) is expressed only on mature B cells and plasma cells and promotes their survival. BCMA is a promising target for CAR-T cells in multiple myeloma.

  11. Human Leukocyte Antigen (HLA) B27 Allotype-Specific Binding and Candidate Arthritogenic Peptides Revealed through Heuristic Clustering of Data-independent Acquisition Mass Spectrometry (DIA-MS) Data.

    PubMed

    Schittenhelm, Ralf B; Sivaneswaran, Saranjah; Lim Kam Sian, Terry C C; Croft, Nathan P; Purcell, Anthony W

    2016-06-01

    Expression of HLA-B27 is strongly associated with ankylosing spondylitis (AS) and other spondyloarthropathies. While this is true for the majority of HLA-B27 allotypes, HLA-B*27:06 and HLA-B*27:09 are not associated with AS. These two subtypes contain polymorphisms that are ideally positioned to influence the bound peptide repertoire. The existence of disease-inducing peptides (so-called arthritogenic peptides) has therefore been proposed that are exclusively presented by disease-associated HLA-B27 allotypes. However, we have recently demonstrated that this segregation of allotype-bound peptides is not the case and that many peptides that display sequence features predicted to favor binding to disease-associated subtypes are also capable of being presented naturally by protective alleles. To further probe more subtle quantitative changes in peptide presentation, we have used a combination of data-independent acquisition (DIA) and multiple reaction monitoring (MRM) mass spectrometry to quantify the abundance of 1646 HLA-B27 restricted peptides across the eight most frequent HLA-B27 allotypes (HLA-B*27:02-HLA-B*27:09). We utilized K means cluster analysis to group peptides with similar allelic binding preferences across the eight HLA-B27 allotypes, which enabled us to identify the most-stringent binding characteristics for each HLA-B27 allotype and further refined their existing consensus-binding motifs. Moreover, a thorough analysis of this quantitative dataset led to the identification of 26 peptides, which are presented in lower abundance by HLA-B*27:06 and HLA-B*27:09 compared with disease-associated HLA-B27 subtypes. Although these differences were observed to be very subtle, these 26 peptides might encompass the sought-after arthritogenic peptide(s).

  12. Intricate Crystal Structure of Dihydrolipoamide Dehydrogenase (E3) with its Binding Protein: Multiple Copies, Dynamic and Static Disorders

    NASA Technical Reports Server (NTRS)

    Makal, A.; Hong, Y. S.; Potter, R.; Vettaikkorumakankauv, A. K.; Korotchkina, L. G.; Patel, M. S.; Ciszak, E.

    2004-01-01

    Human E3 and binding protein E3BP are two components of the pyruvate dehydrogenase complex. Crystallization of E3 with 221-amino acid fragment of E3BP (E3BPdd) led to crystals that diffracted to a resolution of 2.6 Angstroms. Structure determination involved molecular replacement using a dimer of E3 homolog as a search model and de novo building of the E3BPdd peptide. Solution was achieved by inclusion of one E3 dimer at a time, followed by refinement until five E3 dimers were located. This complete content of E3 provided electron density maps suitable for tracing nine peptide chains of E3BPdd, eight of them being identified with partial occupancies. Final content of the asymmetric unit consists of five E3 dimers, each binding one E3BPdd molecule. In four of these molecular complexes, E3BPdd is in static disorder resulting in E3BPdd binding to either one or the other monomer of the E3 dimer. However, E3BPdd of the fifth E3 dimer forms specific contacts that lock it at one monomer. In addition to this static disorder, E3BPdd reveals high mobility in the limited space of the crystal lattice. Support from NIH and NASA.

  13. Common antigen structures of HL-A antigens

    PubMed Central

    Miyakawa, Y.; Tanigaki, N.; Yagi, Y.; Pressman, D.

    1973-01-01

    Antigenic determinants recognizable by rabbits were found to be present on the molecular fragments (48,000 Daltons) which were obtained by papain-solubilization of the membrane fractions of cultured human lymphoid cells and which carried the HL-A determinants. Results were obtained which suggest that these antigenic determinants are present in common on these molecular fragments carrying HL-A determinants regardless of their HL-A specificity and are restricted to the molecular fragments which carry HL-A determinants. The study was made by use of radioimmune methods involving the binding of radioiodine-labelled soluble HL-A antigen preparations by anti-HL-A alloantisera and by rabbit antisera raised against the membrane fractions of cultured human lymphoid cells. PMID:4119543

  14. Development of biohybrid immuno-selective membranes for target antigen recognition.

    PubMed

    Militano, Francesca; Poerio, Teresa; Mazzei, Rosalinda; Salerno, Simona; Bartolo, Loredana De; Giorno, Lidietta

    2017-02-03

    Membranes are gaining increasing interest in solid-phase analytical assay and biosensors applications, in particular as functional surface for bioreceptors immobilization and stabilization as well as for the concentration of target molecules in microsystems. In this work, regenerated cellulose immuno-affinity membranes were developed and they were used for the selective capture of interleukin-6 (IL-6) as targeted antigen. Protein G was covalently linked on the membrane surface and it was successfully used for the oriented site-specific antibody immobilization. The antibody binding capacity of the protein G-coupled membrane was evaluated. The specific anti IL-6 antibody was immobilized and a quantitative analysis of the amount of IL-6 captured by the immuno-affinity membrane was performed. The immobilization procedure was optimized to eliminate the non-specific binding of antigen on the membrane surface. Additionally, the interaction between anti IL-6 antibody and protein G was stabilized by chemical cross-linking with glutaraldehyde and the capture ability of immuno-affinity membranes, with and without the cross-linker, was compared. The maximum binding capacity of the protein G-coupled membrane was 43.8µg/cm(2) and the binding efficiency was 88%. The immuno-affinity membranes showed a high IL-6 capture efficiency at very low antigen concentration, up to a maximum of 91%, the amount of captured IL-6 increased linearly as increasing the initial concentration. The cross-linked surface retained the antigen binding capacity demonstrating its robustness in being reused, without antibody leakage or reduction in antibody binding capacity. The overall results demonstrated the possibility of a reliable application of the immuno-affinity membrane developed for biosensors and bioassays also in multiple use.

  15. Antibodies Raised Against Chlamydial Lipopolysaccharide Antigens Reveal Convergence in Germline Gene Usage and Differential Epitope Recognition

    PubMed Central

    Brooks, Cory L; Müller-Loennies, Sven; Borisova, Svetlana N.; Brade, Lore; Kosma, Paul; Hirama, Tomoko; MacKenzie, C. Roger; Brade, Helmut; Evans, Stephen V

    2011-01-01

    In order to explore monoclonal antibody recognition carbohydrate antigens, several structures from two monoclonal antibodies directed against carbohydrate epitopes derived from chlamydial LPS have been solved to high resolution. With the exception of CDR H3, antibodies S54-10 and S73-2 are both derived from the same set of germline gene segments as the previously reported structures S25-2 and S45-18. Despite this similarity, the antibodies differ in specificity and the mechanism by which they recognize their cognate antigen. S54-10 uses an unrelated CDR H3 to recognize its antigen in a fashion analogous to S45-18; however, S73-2 recognizes the same antigen as S45-18 and S54-10 in a wholly unrelated manner. Together, these antibody-antigen structures provide snapshots into how the immune system uses the same set of inherited germline gene segments to generate multiple possible specificities that allow for differential recognition of epitopes, and how unrelated CDR H3 sequences can result in convergent binding of clinically-relevant bacterial antigens. PMID:20000757

  16. Characterization of a multiple endogenously expressed adenosine triphosphate-binding cassette transporters using nuclear and cellular membrane affinity chromatography columns.

    PubMed

    Habicht, K-L; Singh, N S; Khadeer, M A; Shimmo, R; Wainer, I W; Moaddel, R

    2014-04-25

    Glioblastoma multiforme is an aggressive form of human astrocytoma, with poor prognosis due to multi-drug resistance to a number of anticancer drugs. The observed multi-drug resistance is primarily due to the efflux activity of ATP-Binding Cassette (ABC) efflux transporters such as Pgp, MRP1 and BCRP. The expression of these transporters has been demonstrated in nuclear and cellular membranes of the LN-229 human glioblastoma cell line. Nuclear membrane and cellular membrane fragments from LN-229 cells were immobilized on the IAM stationary phase to create nuclear and cellular membrane affinity chromatography columns, (NMAC(LN-229)) and (CMAC(LN-229)), respectively. Pgp, MRP1 and BCRP transporters co-immobilized on both columns were characterized and compared by establishing the binding affinities for estrone-3-sulfate (3.8 vs. 3.7μM), verapamil (0.6 vs. 0.7μM) and prazosin (0.099 vs. 0.033μM) on each column and no significant differences were observed. Since the marker ligands had overlapping selectivities, the selective characterization of each transporter was carried out by saturation of the binding sites of the non-targeted transporters. The addition of verapamil (Pgp and MRP1 substrate) to the mobile phase allowed the comparative screening of eight compounds at the nuclear and cellular BCRP using etoposide as the marker ligand. AZT increased the retention of etoposide (+15%), a positive allosteric interaction, on the CMAC(LN-229) column and decreased it (-5%) on the NMAC(LN-229), while the opposite effect was produced by rhodamine. The results indicate that there are differences between the cellular and nuclear membrane expressed BCRP and that NMAC and CMAC columns can be used to probe these differences.

  17. Multiple calcium channels in synaptosomes: voltage dependence of 1,4-dihydropyridine binding and effects on function

    SciTech Connect

    Dunn, S.M.J.

    1988-07-12

    The voltage dependence of binding of the calcium channel antagonist, (+)-(/sup 3/H)PN200-110, to rat brain synaptosomes and the effects of dihydropyridines on /sup 45/Ca/sup 2 +/ uptake have been investigated. Under nondepolarizing conditions (+)-(/sup 3/H)PN200-110 binds to a single class of sites with a K/sub d/ of 0.07 nM and a binding capacity of 182 fmol/mg of protein. When the synaptosomal membrane potential was dissipated either by osmotic lysis of the synaptosomes or by depolarization induced by raising the external K/sup +/ concentration, there was a decrease in affinity with no change in the number of sites. The effects of calcium channel ligands on /sup 45/Ca/sup 2 +/ uptake by synaptosomes have been measured as a function of external potassium concentration, i.e., membrane potential. Depolarization led to a rapid influx of /sup 45/Ca/sup 2 +/ whose magnitude was voltage-dependent. Verapamil almost completely inhibited calcium uptake at all potassium concentrations studies. In contrast, the effects of dihydropyridines (2 ..mu..M) appear to be voltage-sensitive. At relatively low levels of depolarization nitrendipine and PN200-110 completely inhibited /sup 45/Ca/sup 2 +/ influx, whereas the agonist Bay K8644 slightly potentiated the response. At higher K/sup +/ concentrations an additional dihydropyridine-insensitive component of calcium uptake was observed. These results provide evidence for the presence of dihydropyridine-sensitive calcium channels in synaptosomes which may be activated under conditions of partial depolarization.

  18. Validation of affinity reagents using antigen microarrays.

    PubMed

    Sjöberg, Ronald; Sundberg, Mårten; Gundberg, Anna; Sivertsson, Asa; Schwenk, Jochen M; Uhlén, Mathias; Nilsson, Peter

    2012-06-15

    There is a need for standardised validation of affinity reagents to determine their binding selectivity and specificity. This is of particular importance for systematic efforts that aim to cover the human proteome with different types of binding reagents. One such international program is the SH2-consortium, which was formed to generate a complete set of renewable affinity reagents to the SH2-domain containing human proteins. Here, we describe a microarray strategy to validate various affinity reagents, such as recombinant single-chain antibodies, mouse monoclonal antibodies and antigen-purified polyclonal antibodies using a highly multiplexed approach. An SH2-specific antigen microarray was designed and generated, containing more than 6000 spots displayed by 14 identical subarrays each with 406 antigens, where 105 of them represented SH2-domain containing proteins. Approximately 400 different affinity reagents of various types were analysed on these antigen microarrays carrying antigens of different types. The microarrays revealed not only very detailed specificity profiles for all the binders, but also showed that overlapping target sequences of spotted antigens were detected by off-target interactions. The presented study illustrates the feasibility of using antigen microarrays for integrative, high-throughput validation of various types of binders and antigens.

  19. Spodoptera frugiperda resistance to oral infection by Autographa californica multiple nucleopolyhedrovirus linked to aberrant occlusion-derived virus binding in the midgut.

    PubMed

    Haas-Stapleton, Eric J; Washburn, Jan O; Volkman, Loy E

    2005-05-01

    Spodoptera frugiperda larvae are highly resistant to oral infection by Autographa californica multiple nucleopolyhedrovirus (AcMNPV) (LD(50), approximately 9200 occlusions), but extremely susceptible to budded virus within the haemocoel (LD(50), <1 p.f.u.). The inability of AcMNPV occlusion-derived virus (ODV) to establish primary infections readily within midgut cells accounts for a major proportion of oral resistance. To determine whether inappropriate binding of AcMNPV ODV to S. frugiperda midgut cells contributes to lack of oral infectivity, the binding and fusion properties of AcMNPV ODV were compared with those of the ODV of a new isolate of Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV) obtained from a field-collected larva (oral LD(50), 12 occlusions). By using a fluorescence-dequenching assay conducted in vivo, it was found that AcMNPV ODV bound to the midgut epithelia of S. frugiperda larvae at approximately 15 % of the level of SfMNPV ODV, but that, once bound, the efficiencies of fusion for the two ODVs were similar: 60 % for AcMNPV and 53 % for SfMNPV. Whilst the difference in binding efficiencies was significant, it could not account entirely for the observed differences in infectivity. Competition experiments, however, revealed that, in S. frugiperda larvae, SfMNPV ODV bound to a midgut cell receptor that was not bound by AcMNPV ODV, indicating that ODV interaction with a specific receptor(s) was necessary for productive infection of midgut columnar epithelial cells. Fusion in the absence of this ligand-receptor interaction did not result in productive infections.

  20. Glucuronidation of Dihydrotestosterone and trans-Androsterone by Recombinant UDP-Glucuronosyltransferase (UGT) 1A4: Evidence for Multiple UGT1A4 Aglycone Binding Sites

    PubMed Central

    Zhou, Jin; Tracy, Timothy S.

    2010-01-01

    UDP-glucuronosyltransferase (UGT) 1A4-catalyzed glucuronidation is an important drug elimination pathway. Although atypical kinetic profiles (nonhyperbolic, non-Michaelis-Menten) of UGT1A4-catalyzed glucuronidation have been reported occasionally, systematic kinetic studies to explore the existence of multiple aglycone binding sites in UGT1A4 have not been conducted. To this end, two positional isomers, dihydrotestosterone (DHT) and trans-androsterone (t-AND), were used as probe substrates, and their glucuronidation kinetics with HEK293-expressed UGT1A4 were evaluated both alone and in the presence of a UGT1A4 substrate [tamoxifen (TAM) or lamotrigine (LTG)]. Coincubation with TAM, a high-affinity UGT1A4 substrate, resulted in a concentration-dependent activation/inhibition effect on DHT and t-AND glucuronidation, whereas LTG, a low-affinity UGT1A4 substrate, noncompetitively inhibited both processes. The glucuronidation kinetics of TAM were then evaluated both alone and in the presence of different concentrations of DHT or t-AND. TAM displayed substrate inhibition kinetics, suggesting that TAM may have two binding sites in UGT1A4. However, the substrate inhibition kinetic profile of TAM became more hyperbolic as the DHT or t-AND concentration was increased. Various two-site kinetic models adequately explained the interactions between TAM and DHT or TAM and t-AND. In addition, the effect of TAM on LTG glucuronidation was evaluated. In contrast to the mixed effect of TAM on DHT and t-AND glucuronidation, TAM inhibited LTG glucuronidation. Our results suggest that multiple aglycone binding sites exist within UGT1A4, which may result in atypical kinetics (both homotropic and heterotropic) in a substrate-dependent fashion. PMID:20007295

  1. Glucuronidation of dihydrotestosterone and trans-androsterone by recombinant UDP-glucuronosyltransferase (UGT) 1A4: evidence for multiple UGT1A4 aglycone binding sites.

    PubMed

    Zhou, Jin; Tracy, Timothy S; Remmel, Rory P

    2010-03-01

    UDP-glucuronosyltransferase (UGT) 1A4-catalyzed glucuronidation is an important drug elimination pathway. Although atypical kinetic profiles (nonhyperbolic, non-Michaelis-Menten) of UGT1A4-catalyzed glucuronidation have been reported occasionally, systematic kinetic studies to explore the existence of multiple aglycone binding sites in UGT1A4 have not been conducted. To this end, two positional isomers, dihydrotestosterone (DHT) and trans-androsterone (t-AND), were used as probe substrates, and their glucuronidation kinetics with HEK293-expressed UGT1A4 were evaluated both alone and in the presence of a UGT1A4 substrate [tamoxifen (TAM) or lamotrigine (LTG)]. Coincubation with TAM, a high-affinity UGT1A4 substrate, resulted in a concentration-dependent activation/inhibition effect on DHT and t-AND glucuronidation, whereas LTG, a low-affinity UGT1A4 substrate, noncompetitively inhibited both processes. The glucuronidation kinetics of TAM were then evaluated both alone and in the presence of different concentrations of DHT or t-AND. TAM displayed substrate inhibition kinetics, suggesting that TAM may have two binding sites in UGT1A4. However, the substrate inhibition kinetic profile of TAM became more hyperbolic as the DHT or t-AND concentration was increased. Various two-site kinetic models adequately explained the interactions between TAM and DHT or TAM and t-AND. In addition, the effect of TAM on LTG glucuronidation was evaluated. In contrast to the mixed effect of TAM on DHT and t-AND glucuronidation, TAM inhibited LTG glucuronidation. Our results suggest that multiple aglycone binding sites exist within UGT1A4, which may result in atypical kinetics (both homotropic and heterotropic) in a substrate-dependent fashion.

  2. Lyme Disease-Causing Borrelia Species Encode Multiple Lipoproteins Homologous to Peptide-Binding Proteins of ABC-Type Transporters

    PubMed Central

    Kornacki, Jon A.; Oliver, Donald B.

    1998-01-01

    To identify cell envelope proteins of Borrelia burgdorferi, the causative agent of Lyme disease, we constructed a library of B. burgdorferi genes fused to the Escherichia coli phoA gene, which expresses enzymatically active alkaline phosphatase. One such gene, oppA-1, encodes a predicted polypeptide with significant similarities to various peptide-binding proteins of ABC-type transporters. Immediately downstream of oppA-1 are two genes, oppA-2 and oppA-3, whose predicted polypeptide products show strong similarities in their amino acid sequences to OppA-1, including a sequence that resembles the most highly conserved region in peptide-binding proteins. By labeling with [3H]palmitate, OppA-1, OppA-2, and OppA-3 were shown to be lipoproteins. DNA hybridization analysis showed that the oppA-1 oppA-2 oppA-3 region is located on the linear chromosome of B. burgdorferi, and the genes are conserved among different Borrelia species that cause Lyme disease (B. burgdorferi, B. garinii, and B. afzelli), suggesting that all three homologous genes are important to the maintenance of Lyme disease spirochetes in one or more of their hosts. PMID:9712756

  3. HPC Analysis of Multiple Binding Sites Communication and Allosteric Modulations in Drug Design: The HSP Case Study.

    PubMed

    Chiappori, Federica; Milanesi, Luciano; Merelli, Ivan

    2016-01-01

    Allostery is a long-range macromolecular mechanism of internal regulation, in which the bindi