Method for generating maximally entangled states of multiple three-level atoms in cavity QED
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin Guangsheng; Li Shushen; Feng Songlin
2004-03-01
We propose a scheme to generate maximally entangled states (MESs) of multiple three-level atoms in microwave cavity QED based on the resonant atom-cavity interaction. In the scheme, multiple three-level atoms initially in their ground states are sequently sent through two suitably prepared cavities. After a process of appropriate atom-cavity interaction, a subsequent measurement on the second cavity field projects the atoms onto the MESs. The practical feasibility of this method is also discussed.
Study of multi-level atomic systems with the application of magnetic field
NASA Astrophysics Data System (ADS)
Hu, Jianping; Roy, Subhankar; Ummal Momeen, M.
2018-04-01
The complexity of multiple energy levels associated with each atomic system determines the various processes related to light- matter interactions. It is necessary to understand the influence of different levels in a given atomic system. In this work we focus on multi- level atomic schemes with the application of magnetic field. We analyze the different EIT windows which appears in the presence of moderately high magnetic field (∼ 10 G) strength.
Circuit QED with qutrits: Coupling three or more atoms via virtual-photon exchange
NASA Astrophysics Data System (ADS)
Zhao, Peng; Tan, Xinsheng; Yu, Haifeng; Zhu, Shi-Liang; Yu, Yang
2017-10-01
We present a model to describe a generic circuit QED system which consists of multiple artificial three-level atoms, namely, qutrits, strongly coupled to a cavity mode. When the state transition of the atoms disobeys the selection rules the process that does not conserve the number of excitations can happen determinatively. Therefore, we can realize coherent exchange interaction among three or more atoms mediated by the exchange of virtual photons. In addition, we generalize the one-cavity-mode mediated interactions to the multicavity situation, providing a method to entangle atoms located in different cavities. Using experimentally feasible parameters, we investigate the dynamics of the model including three cyclic-transition three-level atoms, for which the two lowest energy levels can be treated as qubits. Hence, we have found that two qubits can jointly exchange excitation with one qubit in a coherent and reversible way. In the whole process, the population in the third level of atoms is negligible and the cavity photon number is far smaller than 1. Our model provides a feasible scheme to couple multiple distant atoms together, which may find applications in quantum information processing.
A three-level atomicity model for decentralized workflow management systems
NASA Astrophysics Data System (ADS)
Ben-Shaul, Israel Z.; Heineman, George T.
1996-12-01
A workflow management system (WFMS) employs a workflow manager (WM) to execute and automate the various activities within a workflow. To protect the consistency of data, the WM encapsulates each activity with a transaction; a transaction manager (TM) then guarantees the atomicity of activities. Since workflows often group several activities together, the TM is responsible for guaranteeing the atomicity of these units. There are scalability issues, however, with centralized WFMSs. Decentralized WFMSs provide an architecture for multiple autonomous WFMSs to interoperate, thus accommodating multiple workflows and geographically-dispersed teams. When atomic units are composed of activities spread across multiple WFMSs, however, there is a conflict between global atomicity and local autonomy of each WFMS. This paper describes a decentralized atomicity model that enables workflow administrators to specify the scope of multi-site atomicity based upon the desired semantics of multi-site tasks in the decentralized WFMS. We describe an architecture that realizes our model and execution paradigm.
NASA Astrophysics Data System (ADS)
Patel, M.; De Jager, G.; Nkosi, Z.; Wyngaard, A.; Govender, K.
2017-10-01
In this paper we report on the study of two and multi-level atoms interacting with multiple laser beams. The semi-classical approach is used to describe the system in which the atoms are treated quantum mechanically via the density matrix operator, while the laser beams are treated classically using Maxwells equations. We present results of a two level atom interacting with single and multiple laser beams and demonstrate Rabi oscillations between the levels. The effects of laser modulation on the dynamics of the atom (atomic populations and coherences) are examined by solving the optical Bloch equations. Plots of the density matrix elements as a function of time are presented for various parameters such as laser intensity, detuning, modulation etc. In addition, phase-space plots and Fourier analysis of the density matrix elements are provided. The atomic polarization, estimated from the coherence terms of the density matrix elements, is used in the numerical solution of Maxwells equations to determine the behaviour of the laser beams as they propagate through the atomic ensemble. The effects of saturation and hole-burning are demonstrated in the case of two counter propagating beams with one being a strong beam and the other being very weak. The above work is extended to include four-wave mixing in four level atoms in a diamond configuration. Two co-propagating beams of different wavelengths drive the atoms from a ground state |1〉 to an excited state |3〉 via an intermediate state |2〉. The atoms then move back to the ground state via another intermediate state |4〉, resulting in the generation of two additional correlated photon beams. The characteristics of these additional photons are studied.
Electronic levels and charge distribution near the interface of nickel
NASA Technical Reports Server (NTRS)
Waber, J. T.
1982-01-01
The energy levels in clusters of nickel atoms were investigated by means of a series of cluster calculations using both the multiple scattering and computational techniques (designated SSO) which avoids the muffin-tin approximation. The point group symmetry of the cluster has significant effect on the energy of levels nominally not occupied. This influences the electron transfer process during chemisorption. The SSO technique permits the approaching atom or molecule plus a small number of nickel atoms to be treated as a cluster. Specifically, molecular levels become more negative in the O atom, as well as in a CO molecule, as the metal atoms are approached. Thus, electron transfer from the nickel and bond formation is facilitated. This result is of importance in understanding chemisorption and catalytic processes.
Simultaneously exciting two atoms with photon-mediated Raman interactions
NASA Astrophysics Data System (ADS)
Zhao, Peng; Tan, Xinsheng; Yu, Haifeng; Zhu, Shi-Liang; Yu, Yang
2017-06-01
We propose an approach to simultaneously excite two atoms by using a cavity-assisted Raman process in combination with a cavity-photon-mediated interaction. The system consists of a two-level atom and a Λ -type or V -type three-level atom, which are coupled together with a cavity mode. Having derived the effective Hamiltonian, we find that under certain circumstances a single photon can simultaneously excite two atoms. In addition, multiple photons and even a classical field can also simultaneously excite two atoms. As an example, we show a scheme to realize our proposal in a circuit QED setup, which is artificial atoms coupled with a cavity. The dynamics and the quantum-statistical properties of the process are investigated with experimentally feasible parameters.
Ab-initio atomic level stress and role of d-orbitals in CuZr, CuZn and CuY
NASA Astrophysics Data System (ADS)
Ojha, Madhusudan; Nicholson, Don M.; Egami, Takeshi
2015-03-01
Atomic level stress offers a new tool to characterize materials within the local approximation to density functional theory (DFT). Ab-initio atomic level stresses in B2 structures of CuZr, CuZn and CuY are calculated and results are explained on the basis of d-orbital contributions to Density of States (DOS). The overlap of d-orbital DOS plays an important role in the relative magnitude of atomic level stresses in these structures. The trends in atomic level stresses that we observed in these simple B2 structures are also seen in complex structures such as liquids, glasses and solid solutions. The stresses are however modified by the different coordination and relaxed separation distances in these complex structures. We used the Locally Self-Consistent Multiple Scattering (LSMS) code and Vienna Ab-initio Simulation Package (VASP) for ab-initio calculations.
Evolution in time of an N-atom system. II. Calculation of the eigenstates
NASA Astrophysics Data System (ADS)
Rudolph, Terry; Yavin, Itay; Freedhoff, Helen
2004-01-01
We calculate the energy eigenvalues and eigenstates corresponding to coherent single and multiple excitations of a number of different arrays of N identical two-level atoms (TLA’s) or qubits, including polygons, “diamond” structures, polygon multilayers, icosahedra, and dodecahedra. We assume only that the coupling occurs via an exchange interaction which depends on the separation between the atoms. We include the interactions between all pairs of atoms, and our results are valid for arbitrary separations relative to the radiation wavelength.
Using Multiple Representations to Resolve Conflict in Student Conceptual Understanding of Chemistry
NASA Astrophysics Data System (ADS)
Daubenmire, Paul L.
Much like a practiced linguist, expert chemists utilize the power and elegance of chemical symbols to understand what is happening at the atomic level and to manipulate atoms and molecules to effect an observable change at the macroscopic level. Unfortunately, beginning chemistry is often taught in a way that emphasizes memorizing the symbolic representations of equations and reactions without much opportunity to meaningfully connect the observable macroscopic phenomena with an understanding of the chemistry taking place at the atomic level. The compartmentalized manner of chemistry instruction in most chemistry classrooms further nullifies the efficacy of the triplet relationship to connect between macroscopic observations, symbolic representations, and atomic scale views. If symbolic representations are presented as the goal of instruction, rather than as the means to gain understanding, then students will be impaired in developing a coherent understanding of chemical principles. This dissertation describes the development and implementation of an interview study to examine how undergraduate students interpreted multiple representations of a chemical equilibrium. To establish a baseline of ideas, students first were coached to verbally generate successive representations. They were then cued to think about the chemistry occurring between atoms and ions at the molecular level. Next, an experiment involving a change in states of matter and color was performed which paralleled the symbolic representations. Through self-explanations and verbalizing of conjectures, students were encouraged to explore, interpret, and refine their understanding of the observations related to the chemical symbols presented to them. Finally, with the goal of fostering a deeper understanding of the process of equilibrium, a dynamic visualization of the molecular level was introduced as a tool for helping students connect these multiple representations. This study revealed that one way in which students develop conceptual understanding and resolve conflicts between different representations of the same phenomena is by verbalizing their ideas as a conjecture (as a verbal explanation to advance towards a hypothesis). Thus, it is proposed that symbolic representations are most effective viewed not as an end goal but as a bridge for connecting macroscopic, visible phenomena with what is occurring at the molecular, invisible level. When the focus on merely memorizing chemical equations and symbols is removed, students can gain a coherent understanding of the meaning available when multiple representations are viewed together.
Multiple Doped Erbium Glasses,
GLASS, LASERS, ERBIUM, ERBIUM COMPOUNDS, DOPING, OXIDES, OPTIMIZATION, ATOMIC ENERGY LEVELS, PHOSPHATES , YTTERBIUM COMPOUNDS, NEODYMIUM COMPOUNDS, OPTICAL PUMPING, FLUORESCENCE, LIFE EXPECTANCY(SERVICE LIFE), BAND SPECTRA.
Abstract Analyses of arsenic (As) species in tissues and body fluids of individuals chronically exposed to inorganic arsenic (iAs) provide essential information about the exposure level and pattern of iAs metabolism. We have previously described an oxidation state-specifi...
Adiabatic quantum computation with neutral atoms via the Rydberg blockade
NASA Astrophysics Data System (ADS)
Goyal, Krittika; Deutsch, Ivan
2011-05-01
We study a trapped-neutral-atom implementation of the adiabatic model of quantum computation whereby the Hamiltonian of a set of interacting qubits is changed adiabatically so that its ground state evolves to the desired output of the algorithm. We employ the ``Rydberg blockade interaction,'' which previously has been used to implement two-qubit entangling gates in the quantum circuit model. Here it is employed via off-resonant virtual dressing of the excited levels, so that atoms always remain in the ground state. The resulting dressed-Rydberg interaction is insensitive to the distance between the atoms within a certain blockade radius, making this process robust to temperature and vibrational fluctuations. Single qubit interactions are implemented with global microwaves and atoms are locally addressed with light shifts. With these ingredients, we study a protocol to implement the two-qubit Quadratic Unconstrained Binary Optimization (QUBO) problem. We model atom trapping, addressing, coherent evolution, and decoherence. We also explore collective control of the many-atom system and generalize the QUBO problem to multiple qubits. We study a trapped-neutral-atom implementation of the adiabatic model of quantum computation whereby the Hamiltonian of a set of interacting qubits is changed adiabatically so that its ground state evolves to the desired output of the algorithm. We employ the ``Rydberg blockade interaction,'' which previously has been used to implement two-qubit entangling gates in the quantum circuit model. Here it is employed via off-resonant virtual dressing of the excited levels, so that atoms always remain in the ground state. The resulting dressed-Rydberg interaction is insensitive to the distance between the atoms within a certain blockade radius, making this process robust to temperature and vibrational fluctuations. Single qubit interactions are implemented with global microwaves and atoms are locally addressed with light shifts. With these ingredients, we study a protocol to implement the two-qubit Quadratic Unconstrained Binary Optimization (QUBO) problem. We model atom trapping, addressing, coherent evolution, and decoherence. We also explore collective control of the many-atom system and generalize the QUBO problem to multiple qubits. We acknowledge funding from the AQUARIUS project, Sandia National Laboratories
Cold Atom Source Containing Multiple Magneto-Optical Traps
NASA Technical Reports Server (NTRS)
Ramirez-Serrano, Jaime; Kohel, James; Kellogg, James; Lim, Lawrence; Yu, Nan; Maleki, Lute
2007-01-01
An apparatus that serves as a source of a cold beam of atoms contains multiple two-dimensional (2D) magneto-optical traps (MOTs). (Cold beams of atoms are used in atomic clocks and in diverse scientific experiments and applications.) The multiple-2D-MOT design of this cold atom source stands in contrast to single-2D-MOT designs of prior cold atom sources of the same type. The advantages afforded by the present design are that this apparatus is smaller than prior designs.
Variable energy, high flux, ground-state atomic oxygen source
NASA Technical Reports Server (NTRS)
Chutjian, Ara (Inventor); Orient, Otto J. (Inventor)
1987-01-01
A variable energy, high flux atomic oxygen source is described which is comprised of a means for producing a high density beam of molecules which will emit O(-) ions when bombarded with electrons; a means of producing a high current stream of electrons at a low energy level passing through the high density beam of molecules to produce a combined stream of electrons and O(-) ions; means for accelerating the combined stream to a desired energy level; means for producing an intense magnetic field to confine the electrons and O(-) ions; means for directing a multiple pass laser beam through the combined stream to strip off the excess electrons from a plurality of the O(-) ions to produce ground-state O atoms within the combined stream; electrostatic deflection means for deflecting the path of the O(-) ions and the electrons in the combined stream; and, means for stopping the O(-) ions and the electrons and for allowing only the ground-state O atoms to continue as the source of the atoms of interest. The method and apparatus are also adaptable for producing other ground-state atoms and/or molecules.
Alkan, Fahri; Muñoz-Castro, Alvaro; Aikens, Christine M
2017-10-26
We perform a theoretical investigation using density functional theory (DFT) and time-dependent DFT (TDDFT) on the doping of the Au 25 (SR) 18 -1 nanocluster with group IX transition metals (M = cobalt, rhodium and iridium). Different doping motifs, charge states and spin multiplicities were considered for the single-atom doped nanoclusters. Our results show that the interaction (or the lack of interaction) between the d-type energy levels that mainly originate from the dopant atom and the super-atomic levels plays an important role in the energetics, the electronic structure and the optical properties of the doped systems. The evaluated MAu 24 (SR) 18 q (q = -1, -3) systems favor an endohedral disposition of the doping atom typically in a singlet ground state, with either a 6- or 8-valence electron icosahedral core. For the sake of comparison, the role of the d energy levels in the electronic structure of a variety of doped Au 25 (SR) 18 -1 nanoclusters was investigated for dopant atoms from other families such as Cd, Ag and Pd. Finally, the effect of spin-orbit coupling (SOC) on the electronic structure and absorption spectra was determined. The information in this study regarding the relative energetics of the d-based and super-atom energy levels can be useful to extend our understanding of the preferred doping modes of different transition metals in protected gold nanoclusters.
Correlation of materials properties with the atomic density concept
NASA Technical Reports Server (NTRS)
1975-01-01
Based on the hypothesis that the number of atoms per unit volume, accurately calculable for any substance of known real density and chemical composition, various characterizing parameters (energy levels of electrons interacting among atoms of the same or different kinds, atomic mass, bond intensity) were chosen for study. A multiple exponential equation was derived to express the relationship. Various properties were examined, and correlated with the various parameters. Some of the properties considered were: (1) heat of atomization, (2) boiling point, (3) melting point, (4) shear elastic modulus of cubic crystals, (5) thermal conductivity, and (6) refractive index for transparent substances. The solid elements and alkali halides were the materials studied. It is concluded that the number of different properties can quantitively be described by a common group of parameters for the solid elements, and a wide variety of compounds.
Atomic-level characterization of the structural dynamics of proteins.
Shaw, David E; Maragakis, Paul; Lindorff-Larsen, Kresten; Piana, Stefano; Dror, Ron O; Eastwood, Michael P; Bank, Joseph A; Jumper, John M; Salmon, John K; Shan, Yibing; Wriggers, Willy
2010-10-15
Molecular dynamics (MD) simulations are widely used to study protein motions at an atomic level of detail, but they have been limited to time scales shorter than those of many biologically critical conformational changes. We examined two fundamental processes in protein dynamics--protein folding and conformational change within the folded state--by means of extremely long all-atom MD simulations conducted on a special-purpose machine. Equilibrium simulations of a WW protein domain captured multiple folding and unfolding events that consistently follow a well-defined folding pathway; separate simulations of the protein's constituent substructures shed light on possible determinants of this pathway. A 1-millisecond simulation of the folded protein BPTI reveals a small number of structurally distinct conformational states whose reversible interconversion is slower than local relaxations within those states by a factor of more than 1000.
Evaluation of atomic pressure in the multiple time-step integration algorithm.
Andoh, Yoshimichi; Yoshii, Noriyuki; Yamada, Atsushi; Okazaki, Susumu
2017-04-15
In molecular dynamics (MD) calculations, reduction in calculation time per MD loop is essential. A multiple time-step (MTS) integration algorithm, the RESPA (Tuckerman and Berne, J. Chem. Phys. 1992, 97, 1990-2001), enables reductions in calculation time by decreasing the frequency of time-consuming long-range interaction calculations. However, the RESPA MTS algorithm involves uncertainties in evaluating the atomic interaction-based pressure (i.e., atomic pressure) of systems with and without holonomic constraints. It is not clear which intermediate forces and constraint forces in the MTS integration procedure should be used to calculate the atomic pressure. In this article, we propose a series of equations to evaluate the atomic pressure in the RESPA MTS integration procedure on the basis of its equivalence to the Velocity-Verlet integration procedure with a single time step (STS). The equations guarantee time-reversibility even for the system with holonomic constrants. Furthermore, we generalize the equations to both (i) arbitrary number of inner time steps and (ii) arbitrary number of force components (RESPA levels). The atomic pressure calculated by our equations with the MTS integration shows excellent agreement with the reference value with the STS, whereas pressures calculated using the conventional ad hoc equations deviated from it. Our equations can be extended straightforwardly to the MTS integration algorithm for the isothermal NVT and isothermal-isobaric NPT ensembles. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Double-image storage optimized by cross-phase modulation in a cold atomic system
NASA Astrophysics Data System (ADS)
Qiu, Tianhui; Xie, Min
2017-09-01
A tripod-type cold atomic system driven by double-probe fields and a coupling field is explored to store double images based on the electromagnetically induced transparency (EIT). During the storage time, an intensity-dependent signal field is applied further to extend the system with the fifth level involved, then the cross-phase modulation is introduced for coherently manipulating the stored images. Both analytical analysis and numerical simulation clearly demonstrate a tunable phase shift with low nonlinear absorption can be imprinted on the stored images, which effectively can improve the visibility of the reconstructed images. The phase shift and the energy retrieving rate of the probe fields are immune to the coupling intensity and the atomic optical density. The proposed scheme can easily be extended to the simultaneous storage of multiple images. This work may be exploited toward the end of EIT-based multiple-image storage devices for all-optical classical and quantum information processings.
Decoherence-Free Interaction between Giant Atoms in Waveguide Quantum Electrodynamics
NASA Astrophysics Data System (ADS)
Kockum, Anton Frisk; Johansson, Göran; Nori, Franco
2018-04-01
In quantum-optics experiments with both natural and artificial atoms, the atoms are usually small enough that they can be approximated as pointlike compared to the wavelength of the electromagnetic radiation with which they interact. However, superconducting qubits coupled to a meandering transmission line, or to surface acoustic waves, can realize "giant artificial atoms" that couple to a bosonic field at several points which are wavelengths apart. Here, we study setups with multiple giant atoms coupled at multiple points to a one-dimensional (1D) waveguide. We show that the giant atoms can be protected from decohering through the waveguide, but still have exchange interactions mediated by the waveguide. Unlike in decoherence-free subspaces, here the entire multiatom Hilbert space (2N states for N atoms) is protected from decoherence. This is not possible with "small" atoms. We further show how this decoherence-free interaction can be designed in setups with multiple atoms to implement, e.g., a 1D chain of atoms with nearest-neighbor couplings or a collection of atoms with all-to-all connectivity. This may have important applications in quantum simulation and quantum computing.
Decoherence-Free Interaction between Giant Atoms in Waveguide Quantum Electrodynamics.
Kockum, Anton Frisk; Johansson, Göran; Nori, Franco
2018-04-06
In quantum-optics experiments with both natural and artificial atoms, the atoms are usually small enough that they can be approximated as pointlike compared to the wavelength of the electromagnetic radiation with which they interact. However, superconducting qubits coupled to a meandering transmission line, or to surface acoustic waves, can realize "giant artificial atoms" that couple to a bosonic field at several points which are wavelengths apart. Here, we study setups with multiple giant atoms coupled at multiple points to a one-dimensional (1D) waveguide. We show that the giant atoms can be protected from decohering through the waveguide, but still have exchange interactions mediated by the waveguide. Unlike in decoherence-free subspaces, here the entire multiatom Hilbert space (2^{N} states for N atoms) is protected from decoherence. This is not possible with "small" atoms. We further show how this decoherence-free interaction can be designed in setups with multiple atoms to implement, e.g., a 1D chain of atoms with nearest-neighbor couplings or a collection of atoms with all-to-all connectivity. This may have important applications in quantum simulation and quantum computing.
Protected Quantum Computation with Multiple Resonators in Ultrastrong Coupling Circuit QED
NASA Astrophysics Data System (ADS)
Nataf, Pierre; Ciuti, Cristiano
2011-11-01
We investigate theoretically the dynamical behavior of a qubit obtained with the two ground eigenstates of an ultrastrong coupling circuit-QED system consisting of a finite number of Josephson fluxonium atoms inductively coupled to a transmission line resonator. We show a universal set of quantum gates by using multiple transmission line resonators (each resonator represents a single qubit). We discuss the intrinsic “anisotropic” nature of noise sources for fluxonium artificial atoms. Through a master equation treatment with colored noise and many-level dynamics, we prove that, for a general class of anisotropic noise sources, the coherence time of the qubit and the fidelity of the quantum operations can be dramatically improved in an optimal regime of ultrastrong coupling, where the ground state is an entangled photonic “cat” state.
Atom Interferometry in a Warm Vapor
Biedermann, G. W.; McGuinness, H. J.; Rakholia, A. V.; ...
2017-04-17
Here, we demonstrate matter-wave interference in a warm vapor of rubidium atoms. Established approaches to light-pulse atom interferometry rely on laser cooling to concentrate a large ensemble of atoms into a velocity class resonant with the atom optical light pulse. In our experiment, we show that clear interference signals may be obtained without laser cooling. This effect relies on the Doppler selectivity of the atom interferometer resonance. Lastly, this interferometer may be configured to measure accelerations, and we demonstrate that multiple interferometers may be operated simultaneously by addressing multiple velocity classes.
NASA Astrophysics Data System (ADS)
Roy, Chiranjeeb; John, Sajeev
2010-02-01
We derive a quantum theory of the role of acoustic and optical phonons in modifying the optical absorption line shape, polarization dynamics, and population dynamics of a two-level atom (quantum dot) in the “colored” electromagnetic vacuum of a photonic band-gap (PBG) material. This is based on a microscopic Hamiltonian describing both radiative and vibrational processes quantum mechanically. We elucidate the extent to which phonon-assisted decay limits the lifetime of a single photon-atom bound state and derive the modified spontaneous emission dynamics due to coupling to various phonon baths. We demonstrate that coherent interaction with undamped phonons can lead to an enhanced lifetime of a photon-atom bound state in a PBG. This results in reduction of the steady-state atomic polarization but an increase in the fractionalized upper state population in the photon-atom bound state. We demonstrate, on the other hand, that the lifetime of the photon-atom bound state in a PBG is limited by the lifetime of phonons due to lattice anharmonicities (breakup of phonons into lower energy phonons) and purely nonradiative decay. We also derive the modified polarization decay and dephasing rates in the presence of such damping. This leads to a microscopic, quantum theory of the optical absorption line shapes. Our model and formalism provide a starting point for describing dephasing and relaxation in the presence of external coherent fields and multiple quantum dot interactions in electromagnetic reservoirs with radiative memory effects.
Optical properties of an atomic ensemble coupled to a band edge of a photonic crystal waveguide
NASA Astrophysics Data System (ADS)
Munro, Ewan; Kwek, Leong Chuan; Chang, Darrick E.
2017-08-01
We study the optical properties of an ensemble of two-level atoms coupled to a 1D photonic crystal waveguide (PCW), which mediates long-range coherent dipole-dipole interactions between the atoms. We show that the long-range interactions can dramatically alter the linear and nonlinear optical behavior, as compared to a typical atomic ensemble. In particular, in the linear regime, we find that the transmission spectrum contains multiple transmission dips, whose properties we characterize. Moreover, we show how the linear spectrum may be used to infer the number of atoms present in the system, constituting an important experimental tool in a regime where techniques for conventional ensembles break down. We also show that some of the transmission dips are associated with an effective ‘two-level’ resonance that forms due to the long-range interactions. In particular, under strong global driving and appropriate conditions, we find that the atomic ensemble is only capable of absorbing and emitting single collective excitations at a time. Our results are of direct relevance to atom-PCW experiments that should soon be realizable.
Analyses of arsenic (As) species in body fluids and tissues of individuals chronically exposed to inorganic arsenic (iAs) provide essential information about the exposure level and pattern of iAs metabolism. This information facilitates the risk assessment of disorders associated...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biedermann, G. W.; McGuinness, H. J.; Rakholia, A. V.
Here, we demonstrate matter-wave interference in a warm vapor of rubidium atoms. Established approaches to light-pulse atom interferometry rely on laser cooling to concentrate a large ensemble of atoms into a velocity class resonant with the atom optical light pulse. In our experiment, we show that clear interference signals may be obtained without laser cooling. This effect relies on the Doppler selectivity of the atom interferometer resonance. Lastly, this interferometer may be configured to measure accelerations, and we demonstrate that multiple interferometers may be operated simultaneously by addressing multiple velocity classes.
Stability of gas atomized reactive powders through multiple step in-situ passivation
Anderson, Iver E.; Steinmetz, Andrew D.; Byrd, David J.
2017-05-16
A method for gas atomization of oxygen-reactive reactive metals and alloys wherein the atomized particles are exposed as they solidify and cool in a very short time to multiple gaseous reactive agents for the in-situ formation of a protective reaction film on the atomized particles. The present invention is especially useful for making highly pyrophoric reactive metal or alloy atomized powders, such as atomized magnesium and magnesium alloy powders. The gaseous reactive species (agents) are introduced into the atomization spray chamber at locations downstream of a gas atomizing nozzle as determined by the desired powder or particle temperature for the reactions and the desired thickness of the reaction film.
Highly Scalable Matching Pursuit Signal Decomposition Algorithm
NASA Technical Reports Server (NTRS)
Christensen, Daniel; Das, Santanu; Srivastava, Ashok N.
2009-01-01
Matching Pursuit Decomposition (MPD) is a powerful iterative algorithm for signal decomposition and feature extraction. MPD decomposes any signal into linear combinations of its dictionary elements or atoms . A best fit atom from an arbitrarily defined dictionary is determined through cross-correlation. The selected atom is subtracted from the signal and this procedure is repeated on the residual in the subsequent iterations until a stopping criterion is met. The reconstructed signal reveals the waveform structure of the original signal. However, a sufficiently large dictionary is required for an accurate reconstruction; this in return increases the computational burden of the algorithm, thus limiting its applicability and level of adoption. The purpose of this research is to improve the scalability and performance of the classical MPD algorithm. Correlation thresholds were defined to prune insignificant atoms from the dictionary. The Coarse-Fine Grids and Multiple Atom Extraction techniques were proposed to decrease the computational burden of the algorithm. The Coarse-Fine Grids method enabled the approximation and refinement of the parameters for the best fit atom. The ability to extract multiple atoms within a single iteration enhanced the effectiveness and efficiency of each iteration. These improvements were implemented to produce an improved Matching Pursuit Decomposition algorithm entitled MPD++. Disparate signal decomposition applications may require a particular emphasis of accuracy or computational efficiency. The prominence of the key signal features required for the proper signal classification dictates the level of accuracy necessary in the decomposition. The MPD++ algorithm may be easily adapted to accommodate the imposed requirements. Certain feature extraction applications may require rapid signal decomposition. The full potential of MPD++ may be utilized to produce incredible performance gains while extracting only slightly less energy than the standard algorithm. When the utmost accuracy must be achieved, the modified algorithm extracts atoms more conservatively but still exhibits computational gains over classical MPD. The MPD++ algorithm was demonstrated using an over-complete dictionary on real life data. Computational times were reduced by factors of 1.9 and 44 for the emphases of accuracy and performance, respectively. The modified algorithm extracted similar amounts of energy compared to classical MPD. The degree of the improvement in computational time depends on the complexity of the data, the initialization parameters, and the breadth of the dictionary. The results of the research confirm that the three modifications successfully improved the scalability and computational efficiency of the MPD algorithm. Correlation Thresholding decreased the time complexity by reducing the dictionary size. Multiple Atom Extraction also reduced the time complexity by decreasing the number of iterations required for a stopping criterion to be reached. The Course-Fine Grids technique enabled complicated atoms with numerous variable parameters to be effectively represented in the dictionary. Due to the nature of the three proposed modifications, they are capable of being stacked and have cumulative effects on the reduction of the time complexity.
Cascaded two-photon nonlinearity in a one-dimensional waveguide with multiple two-level emitters
Roy, Dibyendu
2013-01-01
We propose and theoretically investigate a model to realize cascaded optical nonlinearity with few atoms and photons in one-dimension (1D). The optical nonlinearity in our system is mediated by resonant interactions of photons with two-level emitters, such as atoms or quantum dots in a 1D photonic waveguide. Multi-photon transmission in the waveguide is nonreciprocal when the emitters have different transition energies. Our theory provides a clear physical understanding of the origin of nonreciprocity in the presence of cascaded nonlinearity. We show how various two-photon nonlinear effects including spatial attraction and repulsion between photons, background fluorescence can be tuned by changing the number of emitters and the coupling between emitters (controlled by the separation). PMID:23948782
Velocity measurements by laser resonance fluorescence. [single atom diffusional motion
NASA Technical Reports Server (NTRS)
She, C. Y.; Fairbank, W. M., Jr.
1980-01-01
The photonburst correlation method was used to detect single atoms in a buffer gas. Real time flow velocity measurements with laser induced resonance fluorescence from single or multiple atoms was demonstrated and this method was investigated as a tool for wind tunnel flow measurement. Investigations show that single atoms and their real time diffusional motion on a buffer gas can be measured by resonance fluorescence. By averaging over many atoms, flow velocities up to 88 m/s were measured in a time of 0.5 sec. It is expected that higher flow speeds can be measured and that the measurement time can be reduced by a factor of 10 or more by careful experimental design. The method is clearly not ready for incorporation in high speed wind tunnels because it is not yet known whether the stray light level will be higher or lower, and it is not known what detection efficiency can be obtained in a wind tunnel situation.
Intrinsic electronic defects and multiple-atom processes in the oxidic semiconductor Ga2O3
NASA Astrophysics Data System (ADS)
Schmeißer, Dieter; Henkel, Karsten
2018-04-01
We report on the electronic structure of gallium oxide (Ga2O3) single crystals as studied by resonant photoelectron spectroscopy (resPES). We identify intrinsic electronic defects that are formed by mixed-atomic valence states. We differentiate three coexisting defect states that differ in their electronic correlation energy and their spatial localization lengths. Their relative abundance is described by a fractional ionicity with covalent and ionic bonding contributions. For Ga2O3, our analyses of the resPES data enable us to derive two main aspects: first, experimental access is given to determine the ionicity based on the original concepts of Pauling and Phillips. Second, we report on multi-atomic energy loss processes in the Ga2p core level and X-ray absorption data. The two experimental findings can be explained consistently in the same context of mixed-atomic valence states and intrinsic electronic defects.
Matrix-Assisted Plasma Atomization Emission Spectrometry for Surface Sampling Elemental Analysis
Yuan, Xin; Zhan, Xuefang; Li, Xuemei; Zhao, Zhongjun; Duan, Yixiang
2016-01-01
An innovative technology has been developed involving a simple and sensitive optical spectrometric method termed matrix-assisted plasma atomization emission spectrometry (MAPAES) for surface sampling elemental analysis using a piece of filter paper (FP) for sample introduction. MAPAES was carried out by direct interaction of the plasma tail plume with the matrix surface. The FP absorbs energy from the plasma source and releases combustion heating to the analytes originally present on its surface, thus to promote the atomization and excitation process. The matrix-assisted plasma atomization excitation phenomenon was observed for multiple elements. The FP matrix served as the partial energy producer and also the sample substrate to adsorb sample solution. Qualitative and quantitative determinations of metal ions were achieved by atomic emission measurements for elements Ba, Cu, Eu, In, Mn, Ni, Rh and Y. The detection limits were down to pg level with linear correlation coefficients better than 0.99. The proposed MAPAES provides a new way for atomic spectrometry which offers advantages of fast analysis speed, little sample consumption, less sample pretreatment, small size, and cost-effective. PMID:26762972
Electronic and magnetic properties of small rhodium clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soon, Yee Yeen; Yoon, Tiem Leong; Lim, Thong Leng
2015-04-24
We report a theoretical study of the electronic and magnetic properties of rhodium-atomic clusters. The lowest energy structures at the semi-empirical level of rhodium clusters are first obtained from a novel global-minimum search algorithm, known as PTMBHGA, where Gupta potential is used to describe the atomic interaction among the rhodium atoms. The structures are then re-optimized at the density functional theory (DFT) level with exchange-correlation energy approximated by Perdew-Burke-Ernzerhof generalized gradient approximation. For the purpose of calculating the magnetic moment of a given cluster, we calculate the optimized structure as a function of the spin multiplicity within the DFT framework.more » The resultant magnetic moments with the lowest energies so obtained allow us to work out the magnetic moment as a function of cluster size. Rhodium atomic clusters are found to display a unique variation in the magnetic moment as the cluster size varies. However, Rh{sub 4} and Rh{sub 6} are found to be nonmagnetic. Electronic structures of the magnetic ground-state structures are also investigated within the DFT framework. The results are compared against those based on different theoretical approaches available in the literature.« less
NASA Astrophysics Data System (ADS)
Amin Bacha, Bakht; Ahmad, Iftikhar; Ullah, Arif; Ali, Hazrat
2013-10-01
We investigate the behavior of light propagation in an N-type four-level gain assisted model (Agarwal and Dasgupta 2004 Phys. Rev. A 70 023802) under poly-chromatic pump fields. The system exhibits interesting results of multiple controllable pairs of the gain doublet profile with changes in the intensity of the control field. We observe multiple anomalous dispersive regions for superluminal propagation in the medium. A negative group velocity of -37.50 m s-1 with a negative time delay of -8 ms is observed between each gain doublet in anomalous dispersive regions. This generalized model and its predictions can be tested with existing experimental setups.
NASA Astrophysics Data System (ADS)
Greco, Giorgia; Witkowska, Agnieszka; Principi, Emiliano; Minicucci, Marco; di Cicco, Andrea
2011-04-01
This work reports a detailed investigation of the local structure and chemical disorder of a Pt3±δCo thin film and Pt3±δCo nanoparticles. We have used a combination of techniques including x-ray absorption spectroscopy (XAS), x-ray diffraction (XRD), and high-resolution transmission electron microscopy (TEM). High-quality XAS spectra at the Co K edge and Pt L3 edge have been analyzed using double-edge multiple-scattering data analysis. Structural extended x-ray absorption fine structure (EXAFS) refinements have been performed accounting for the reduction of the coordination numbers and degeneracy of three-atom configurations, resulting from the measured size distribution and stoichiometry. The important effect of chemical ordering on pair and three-atom configurations has been studied using computer simulations based on a simple model accounting for substitutional disorder, defined by an order parameter s. It has been found that individual EXAFS signals related to the minority species (Co) are extremely sensitive to substitutional disorder so their intensities, especially those of the collinear three-atom configurations, can be used as a measure of the ordering level. The thin film has been found to be chemically disordered (s⩽0.4), in agreement with previous estimates. The Pt3±δCo nanoalloy has been found to be partially ordered (s=0.6±0.1) while the local structure around Co atoms is characterized by a higher level of structural disorder as compared to the bulk-like thin film. The robust approach for nanomaterial characterization used in this work combining different techniques can, in principle, be applied for structural refinements of any binary nanocrystalline functional system.
Silicon carbide white light LEDs for solid-state lighting
NASA Astrophysics Data System (ADS)
Bet, Sachin; Quick, Nathaniel; Kar, Aravinda
2007-02-01
White light emitting diodes (LEDs) have been successfully fabricated for the first time in silicon carbide substrates (4H-SiC) using a novel laser doping technique. The donor-acceptor pair (DAP) recombination mechanism for luminescence has been used to tailor these LEDs. Chromium (Cr), which produces multiple acceptor sites per atom, and selenium which produces multiple donor sites per atom were successfully incorporated into SiC for the first time using laser doping. Aluminum (Al) and nitrogen (N) were also laser-doped into SiC. Green (521-575 nm) and blue (460-498 nm) wavelengths were observed due to radiative recombination transitions between donor-acceptors pairs of N-Cr and N-Al respectively, while a prominent violet (408 nm) wavelength was observed due to transitions from the nitrogen level to the valence band level. The red (698-738 nm) luminescence was mainly due to nitrogen excitons and other defect levels. This RGB combination produced a broadband white light spectrum extending from 380 to 900 nm. The color space tri-stimulus values were X = 0.3322, Y = 0.3320 and Z = 0.3358 as per 1931 CIE (International Commission on Illumination) for 4H-SiC corresponding to a color rendering index of 96.56; the color temperature of 5510 K is very close to average daylight (5500 K).
Chlorine adsorption on the InAs (001) surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakulin, A. V.; Eremeev, S. V.; Tereshchenko, O. E.
2011-01-15
Chlorine adsorption on the In-stabilized InAs(001) surface with {zeta}-(4 Multiplication-Sign 2) and {beta}3 Prime -(4 Multiplication-Sign 2) reconstructions and on the Ga-stabilized GaAs (001)-{zeta}-(4 Multiplication-Sign 2) surface has been studied within the electron density functional theory. The equilibrium structural parameters of these reconstructions, surface atom positions, bond lengths in dimers, and their changes upon chlorine adsorption are determined. The electronic characteristics of the clean surface and the surface with adsorbed chlorine are calculated. It is shown that the most energetically favorable positions for chlorine adsorption are top positions over dimerized indium or gallium atoms. The mechanism of chlorine binding withmore » In(Ga)-stabilized surface is explained. The interaction of chlorine atoms with dimerized surface atoms weakens surface atom bonds and controls the initial stage of surface etching.« less
Two body and multibody interaction in a cold Rydberg gas
NASA Astrophysics Data System (ADS)
Han, Jianing; Gallagher, Tom
2009-05-01
Cold Rydberg atoms trapped in a Magneto Optical Trap (MOT) are not isolated and they tend to bond through dipole-dipole and multiple-multiple interactions between Rydberg atoms. The dipole-dipole interaction and van der Waals interaction between two atoms have been intensively studied. However, the fact that the dipole-dipole interaction and van der Waals interaction show the same size of broadening, studied by Raithel's group, and there is transition between two molecular states, studied by Farooqi and Overstreet, can not be explained by the two atom picture. The purpose of this paper is to show the multibody nature of a dense cold Rydberg gas by studying the molecular state microwave spectrum. Specifically, single body, two body and three body interaction regions are separated. Moreover, the multibody energy levels for selected geometries are calculated. In addition, multibody blockade will be discussed. [3pt] [1] A. Reinhard, K. C. Younge, T. Cubel Liebisch, B. Knuffman, P. R. Berman, and G. Raithel, Phys. Rev. Lett. 100, 233201 (2008).[0pt] [2] S.M. Farooqi, D. Tong, S. Krishnan, J. Stanojevic,Y.P. Zhang, J.R. Ensher, A.S. Estrin, C. Boisseau, R. Cote, E.E. Eyler, and P.L. Gould, Phys. Rev. Lett. 91, 183002 (2003).[0pt] [3] K. Richard Overstreet, Arne Schwettmann, Jonathan Tallant, and James P. Shaffer, Phys. Rev. A 76, 011403 (2007).
Yan, Si; Guo, Changmiao; Hou, Guangjin; Zhang, Huilan; Lu, Xingyu; Williams, John Charles; Polenova, Tatyana
2015-11-24
Microtubules and their associated proteins perform a broad array of essential physiological functions, including mitosis, polarization and differentiation, cell migration, and vesicle and organelle transport. As such, they have been extensively studied at multiple levels of resolution (e.g., from structural biology to cell biology). Despite these efforts, there remain significant gaps in our knowledge concerning how microtubule-binding proteins bind to microtubules, how dynamics connect different conformational states, and how these interactions and dynamics affect cellular processes. Structures of microtubule-associated proteins assembled on polymeric microtubules are not known at atomic resolution. Here, we report a structure of the cytoskeleton-associated protein glycine-rich (CAP-Gly) domain of dynactin motor on polymeric microtubules, solved by magic angle spinning NMR spectroscopy. We present the intermolecular interface of CAP-Gly with microtubules, derived by recording direct dipolar contacts between CAP-Gly and tubulin using double rotational echo double resonance (dREDOR)-filtered experiments. Our results indicate that the structure adopted by CAP-Gly varies, particularly around its loop regions, permitting its interaction with multiple binding partners and with the microtubules. To our knowledge, this study reports the first atomic-resolution structure of a microtubule-associated protein on polymeric microtubules. Our approach lays the foundation for atomic-resolution structural analysis of other microtubule-associated motors.
Stretching single atom contacts at multiple subatomic step-length.
Wei, Yi-Min; Liang, Jing-Hong; Chen, Zhao-Bin; Zhou, Xiao-Shun; Mao, Bing-Wei; Oviedo, Oscar A; Leiva, Ezequiel P M
2013-08-14
This work describes jump-to-contact STM-break junction experiments leading to novel statistical distribution of last-step length associated with conductance of a single atom contact. Last-step length histograms are observed with up to five for Fe and three for Cu peaks at integral multiples close to 0.075 nm, a subatomic distance. A model is proposed in terms of gliding from a fcc hollow-site to a hcp hollow-site of adjacent atomic planes at 1/3 regular layer spacing along with tip stretching to account for the multiple subatomic step-length behavior.
Terahertz response of fractal meta-atoms based on concentric rectangular square resonators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Zhiqiang; Zhao, Zhenyu, E-mail: zyzhao@shnu.edu.cn; Shi, Wangzhou
We investigate the terahertz electromagnetic responses of fractal meta-atoms (MAs) induced by different mode coupling mechanisms. Two types of MAs based on concentric rectangular square (CRS) resonators are presented: independent CRS (I-CRS) and junctional-CRS (J-CRS). In I-CRS, each resonator works as an independent dipole so as to result in the multiple resonance modes when the fractal level is above 1. In J-CRS, however, the generated layer is rotated by π/2 radius to the adjacent CRS in one MA. The multiple resonance modes are coupled into a single mode resonance. The fractal level increasing induces resonance modes redshift in I-CRS whilemore » blueshift in J-CRS. When the fractal level is below 4, the mode Q factor of J-CRS is in between the two modes of I-CRS; when the fractal level is 4 or above, the mode Q factor of J-CRS exceeds the two modes of I-CRS. Furthermore, the modulation depth (MD) decreases in I-CRS while it increases in J-CRS with the increase in fractal levels. The surface currents analysis reveals that the capacitive coupling of modes in I-CRS results in the modes redshift, while the conductive coupling of modes in J-CRS induces the mode blueshift. A high Q mode with large MD can be achieved via conductive coupling between the resonators of different scales in a fractal MA.« less
XaNSoNS: GPU-accelerated simulator of diffraction patterns of nanoparticles
NASA Astrophysics Data System (ADS)
Neverov, V. S.
XaNSoNS is an open source software with GPU support, which simulates X-ray and neutron 1D (or 2D) diffraction patterns and pair-distribution functions (PDF) for amorphous or crystalline nanoparticles (up to ∼107 atoms) of heterogeneous structural content. Among the multiple parameters of the structure the user may specify atomic displacements, site occupancies, molecular displacements and molecular rotations. The software uses general equations nonspecific to crystalline structures to calculate the scattering intensity. It supports four major standards of parallel computing: MPI, OpenMP, Nvidia CUDA and OpenCL, enabling it to run on various architectures, from CPU-based HPCs to consumer-level GPUs.
Atomic-scale electrochemistry on the surface of a manganite
Vasudevan, Rama K.; Tselev, Alexander; Baddorf, Arthur P.; ...
2015-04-09
The doped manganese oxides (manganites) have been widely studied for their colossal magnetoresistive effects, for potential applications in oxide spintronics, electroforming in resistive switching devices, and are materials of choice as cathodes in modern solid oxide fuel cells. However, little experimental knowledge of the dynamics of the surfaces of perovskite manganites at the atomic scale exists. Here, through in-situ scanning tunnelling microscopy (STM), we demonstrate atomic resolution on samples of La 0.625Ca 0.375MnO 3 grown on (001) SrTiO 3 by pulsed laser deposition (PLD). Furthermore, by applying triangular DC waveforms of increasing amplitude to the STM tip, and measuring themore » tunnelling current, we demonstrate the ability to both perform and monitor surface electrochemical processes at the atomic level, including, for the first time in a manganite, formation of single and multiple oxygen vacancies, disruption of the overlying manganite layers, and removal and deposition of individual atomic units or clusters. Our work paves the way for better understanding of surface oxygen reactions in these systems.« less
NASA Astrophysics Data System (ADS)
Ghafoor, Fazal; Bacha, Bakht Amin; Khan, Salman
2015-05-01
A gain-based four-level atomic medium for the stability in superluminal light propagation using control field and inverse Doppler shift as coherence generators is studied. In regimes of weak and strong control field, a broadband and multiple controllable transparency windows are, respectively, identified with significantly enhanced group indices. The observed Doppler effect for the class of high atomic velocity of the medium is counterintuitive in comparison to the effect of the class of low atomic velocity. The intensity of each of the two pump fields is kept less than the optimum limit reported in [M. D. Stenner and D. J. Gauthier, Phys. Rev. A 67, 063801 (2003), 10.1103/PhysRevA.67.063801] for stability in the superluminal light pulse. Consequently, superluminal stable domains with the generated coherence are explored.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Wei; Warrick, Erika R.; Neumark, Daniel M.
Using attosecond transient absorption, the dipole response of an argon atom in the vacuum ultraviolet (VUV) region is studied when an external electromagnetic field is present. An isolated attosecond VUV pulse populates Rydberg states lying 15 eV above the argon ground state. A synchronized few-cycle near infrared (NIR) pulse modifies the oscillating dipoles of argon impulsively, leading to alterations in the VUV absorption spectra. As the NIR pulse is delayed with respect to the VUV pulse, multiple features in the absorption profile emerge simultaneously including line broadening, sideband structure, sub-cycle fast modulations, and 5-10 fs slow modulations. These features indicatemore » the coexistence of two general processes of the light-matter interaction: the energy shift of individual atomic levels and coherent population transfer between atomic eigenstates, revealing coherent superpositions. Finally, an intuitive formula is derived to treat both effects in a unifying framework, allowing one to identify and quantify the two processes in a single absorption spectrogram.« less
NASA Astrophysics Data System (ADS)
Cao, Wei; Warrick, Erika R.; Neumark, Daniel M.; Leone, Stephen R.
2016-01-01
Using attosecond transient absorption, the dipole response of an argon atom in the vacuum ultraviolet (VUV) region is studied when an external electromagnetic field is present. An isolated attosecond VUV pulse populates Rydberg states lying 15 eV above the argon ground state. A synchronized few-cycle near infrared (NIR) pulse modifies the oscillating dipoles of argon impulsively, leading to alterations in the VUV absorption spectra. As the NIR pulse is delayed with respect to the VUV pulse, multiple features in the absorption profile emerge simultaneously including line broadening, sideband structure, sub-cycle fast modulations, and 5-10 fs slow modulations. These features indicate the coexistence of two general processes of the light-matter interaction: the energy shift of individual atomic levels and coherent population transfer between atomic eigenstates, revealing coherent superpositions. An intuitive formula is derived to treat both effects in a unifying framework, allowing one to identify and quantify the two processes in a single absorption spectrogram.
Cao, Wei; Warrick, Erika R.; Neumark, Daniel M.; ...
2016-01-18
Using attosecond transient absorption, the dipole response of an argon atom in the vacuum ultraviolet (VUV) region is studied when an external electromagnetic field is present. An isolated attosecond VUV pulse populates Rydberg states lying 15 eV above the argon ground state. A synchronized few-cycle near infrared (NIR) pulse modifies the oscillating dipoles of argon impulsively, leading to alterations in the VUV absorption spectra. As the NIR pulse is delayed with respect to the VUV pulse, multiple features in the absorption profile emerge simultaneously including line broadening, sideband structure, sub-cycle fast modulations, and 5-10 fs slow modulations. These features indicatemore » the coexistence of two general processes of the light-matter interaction: the energy shift of individual atomic levels and coherent population transfer between atomic eigenstates, revealing coherent superpositions. Finally, an intuitive formula is derived to treat both effects in a unifying framework, allowing one to identify and quantify the two processes in a single absorption spectrogram.« less
NASA Astrophysics Data System (ADS)
Lode, Axel U. J.; Diorico, Fritz S.; Wu, RuGway; Molignini, Paolo; Papariello, Luca; Lin, Rui; Lévêque, Camille; Exl, Lukas; Tsatsos, Marios C.; Chitra, R.; Mauser, Norbert J.
2018-05-01
We consider laser-pumped one-dimensional two-component bosons in a parabolic trap embedded in a high-finesse optical cavity. Above a threshold pump power, the photons that populate the cavity modify the effective atom trap and mediate a coupling between the two components of the Bose–Einstein condensate. We calculate the ground state of the laser-pumped system and find different stages of self-organization depending on the power of the laser. The modified potential and the laser-mediated coupling between the atomic components give rise to rich many-body physics: an increase of the pump power triggers a self-organization of the atoms while an even larger pump power causes correlations between the self-organized atoms—the BEC becomes fragmented and the reduced density matrix acquires multiple macroscopic eigenvalues. In this fragmented superradiant state, the atoms can no longer be described as two-level systems and the mapping of the system to the Dicke model breaks down.
NASA Astrophysics Data System (ADS)
Rosenblum, Serge; Borne, Adrien; Dayan, Barak
2017-03-01
The long-standing goal of deterministic quantum interactions between single photons and single atoms was recently realized in various experiments. Among these, an appealing demonstration relied on single-photon Raman interaction (SPRINT) in a three-level atom coupled to a single-mode waveguide. In essence, the interference-based process of SPRINT deterministically swaps the qubits encoded in a single photon and a single atom, without the need for additional control pulses. It can also be harnessed to construct passive entangling quantum gates, and can therefore form the basis for scalable quantum networks in which communication between the nodes is carried out only by single-photon pulses. Here we present an analytical and numerical study of SPRINT, characterizing its limitations and defining parameters for its optimal operation. Specifically, we study the effect of losses, imperfect polarization, and the presence of multiple excited states. In all cases we discuss strategies for restoring the operation of SPRINT.
Quasi-Solid-State Single-Atom Transistors.
Xie, Fangqing; Peukert, Andreas; Bender, Thorsten; Obermair, Christian; Wertz, Florian; Schmieder, Philipp; Schimmel, Thomas
2018-06-21
The single-atom transistor represents a quantum electronic device at room temperature, allowing the switching of an electric current by the controlled and reversible relocation of one single atom within a metallic quantum point contact. So far, the device operates by applying a small voltage to a control electrode or "gate" within the aqueous electrolyte. Here, the operation of the atomic device in the quasi-solid state is demonstrated. Gelation of pyrogenic silica transforms the electrolyte into the quasi-solid state, exhibiting the cohesive properties of a solid and the diffusive properties of a liquid, preventing the leakage problem and avoiding the handling of a liquid system. The electrolyte is characterized by cyclic voltammetry, conductivity measurements, and rotation viscometry. Thus, a first demonstration of the single-atom transistor operating in the quasi-solid-state is given. The silver single-atom and atomic-scale transistors in the quasi-solid-state allow bistable switching between zero and quantized conductance levels, which are integer multiples of the conductance quantum G 0 = 2e 2 /h. Source-drain currents ranging from 1 to 8 µA are applied in these experiments. Any obvious influence of the gelation of the aqueous electrolyte on the electron transport within the quantum point contact is not observed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Impact of Multifunctional Bimetallic Materials on Lithium Battery Electrochemistry.
Durham, Jessica L; Poyraz, Altug S; Takeuchi, Esther S; Marschilok, Amy C; Takeuchi, Kenneth J
2016-09-20
Electric energy storage devices such as batteries are complex systems comprised of a variety of materials with each playing separate yet interactive roles, complicated by length scale interactions occurring from the molecular to the mesoscale. Thus, addressing specific battery issues such as functional capacity requires a comprehensive perspective initiating with atomic level concepts. For example, the electroactive materials which contribute to the functional capacity in a battery comprise approximately 30% or less of the total device mass. Thus, the design and implementation of multifunctional materials can conceptually reduce or eliminate the contribution of passive materials to the size and mass of the final system. Material multifunctionality can be achieved through appropriate material design on the atomic level resulting in bimetallic electroactive materials where one metal cation forms mesoscale conductive networks upon discharge while the other metal cations can contribute to atomic level structure and net functional secondary capacity, a device level issue. Specifically, this Account provides insight into the multimechanism electrochemical redox processes of bimetallic cathode materials based on transition metal oxides (MM'O) or phosphorus oxides (MM'PO) where M = Ag and M' = V or Fe. One discharge process can be described as reduction-displacement where Ag(+) is reduced to Ag(0) and displaced from the parent structure. This reduction-displacement reaction in silver-containing bimetallic electrodes allows for the in situ formation of a conductive network, enhancing the electrochemical performance of the electrode and reducing or eliminating the need for conductive additives. A second discharge process occurs through the reduction of the second transition metal, V or Fe, where the oxidation state of the metal center is reduced and lithium cations are inserted into the structure. As both metal centers contribute to the functional capacity, determining the kinetically and thermodynamically preferred reduction processes at various states of discharge is critical to elucidating the mechanism. Specific advanced in situ and ex situ characterization techniques are conducive to gaining insight regarding the electrochemical behavior of these multifunctional materials over multiple length scales. At the material level, optical microscopy, scanning electron microscopy, and local conductivity measurement via a nanoprobe can track the discharge mechanism of an isolated single particle. At the mesoscale electrode level, in situ data from synchrotron based energy dispersive X-ray diffraction (EDXRD) within fully intact steel batteries can be used to spatially map the distribution of silver metal generated through reduction displacement as a function of discharge depth and discharge rate. As illustrated here, appropriate design of materials with multiple electrochemically active metal centers and properties tuned through strategically conceptualized materials synthesis may provide a path toward the next generation of high energy content electroactive materials and systems. Full understanding of the multiple electrochemical mechanisms can be achieved only by utilizing advanced characterization tools over multiple length scales.
Realization of quantum gates with multiple control qubits or multiple target qubits in a cavity
NASA Astrophysics Data System (ADS)
Waseem, Muhammad; Irfan, Muhammad; Qamar, Shahid
2015-06-01
We propose a scheme to realize a three-qubit controlled phase gate and a multi-qubit controlled NOT gate of one qubit simultaneously controlling n-target qubits with a four-level quantum system in a cavity. The implementation time for multi-qubit controlled NOT gate is independent of the number of qubit. Three-qubit phase gate is generalized to n-qubit phase gate with multiple control qubits. The number of steps reduces linearly as compared to conventional gate decomposition method. Our scheme can be applied to various types of physical systems such as superconducting qubits coupled to a resonator and trapped atoms in a cavity. Our scheme does not require adjustment of level spacing during the gate implementation. We also show the implementation of Deutsch-Joza algorithm. Finally, we discuss the imperfections due to cavity decay and the possibility of physical implementation of our scheme.
Adsorption of dysprosium on the graphite (0001) surface: Nucleation and growth at 300 K
Kwolek, Emma J.; Lei, Huaping; Lii-Rosales, Ann; ...
2016-06-13
We have studied nucleation and growth of Dy islands on the basal plane of graphite at 300 K using scanning tunneling microscopy, density functional theory (DFT) in a form that includes van der Waals interactions, and analytic theory. The interaction of atomic Dy with graphite is strong, while the diffusion barrier is small. Experiment shows that at 300 K, the density of nucleated islands is close to the value predicted for homogeneous nucleation, using critical nucleus size of 1 and the DFT-derived diffusion barrier. Homogeneous nucleation is also supported by the monomodal shape of the island size distributions. Comparison withmore » the published island density of Dy on graphene shows that the value is about two orders of magnitude smaller on graphite, which can be attributed to more effective charge screening in graphite. The base of each island is 3 atomic layers high and atomically ordered, forming a coincidence lattice with the graphite. Islands resist coalescence, probably due to multiple rotational orientations associated with the coincidence lattice. Upper levels grow as discernible single-atom layers. Analysis of the level populations reveals significant downward interlayer transport, which facilitates growth of the base. As a result, this island shape is metastable, since more compact three-dimensional islands form at elevated growth temperature.« less
Adsorption of dysprosium on the graphite (0001) surface: Nucleation and growth at 300 K
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwolek, Emma J.; Lii-Rosales, Ann; Department of Chemistry, Iowa State University, Ames, Iowa 50011
2016-12-07
We have studied nucleation and growth of Dy islands on the basal plane of graphite at 300 K using scanning tunneling microscopy, density functional theory (DFT) in a form that includes van der Waals interactions, and analytic theory. The interaction of atomic Dy with graphite is strong, while the diffusion barrier is small. Experiment shows that at 300 K, the density of nucleated islands is close to the value predicted for homogeneous nucleation, using critical nucleus size of 1 and the DFT-derived diffusion barrier. Homogeneous nucleation is also supported by the monomodal shape of the island size distributions. Comparison withmore » the published island density of Dy on graphene shows that the value is about two orders of magnitude smaller on graphite, which can be attributed to more effective charge screening in graphite. The base of each island is 3 atomic layers high and atomically ordered, forming a coincidence lattice with the graphite. Islands resist coalescence, probably due to multiple rotational orientations associated with the coincidence lattice. Upper levels grow as discernible single-atom layers. Analysis of the level populations reveals significant downward interlayer transport, which facilitates growth of the base. This island shape is metastable, since more compact three-dimensional islands form at elevated growth temperature.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teramoto, Yoshiyuki; Ono, Ryo; Oda, Tetsuji
To study the production mechanism of atomic nitrogen, the temporal profile and spatial distribution of atomic nitrogen are measured in atmospheric pressure pulsed positive corona discharge using two-photon absorption laser-induced fluorescence. The absolute atomic nitrogen density in the streamer filaments is estimated from decay rate of atomic nitrogen in N{sub 2} discharge. The results indicate that the absolute atomic nitrogen density is approximately constant against discharge energy. When the discharge voltage is 21.5 kV, production yield of atomic nitrogen produced by an N{sub 2} discharge pulse is estimated to be 2.9 - 9.8 Multiplication-Sign 10{sup 13} atoms and the energymore » efficiency of atomic nitrogen production is estimated to be about 1.8 - 6.1 Multiplication-Sign 10{sup 16} atoms/J. The energy efficiency of atomic nitrogen production in N{sub 2} discharge is constant against the discharge energy, while that in N{sub 2}/O{sub 2} discharge increases with discharge energy. In the N{sub 2}/O{sub 2} discharge, two-step process of N{sub 2} dissociation plays significant role for atomic nitrogen production.« less
The RPA Atomization Energy Puzzle.
Ruzsinszky, Adrienn; Perdew, John P; Csonka, Gábor I
2010-01-12
There is current interest in the random phase approximation (RPA), a "fifth-rung" density functional for the exchange-correlation energy. RPA has full exact exchange and constructs the correlation with the help of the unoccupied Kohn-Sham orbitals. In many cases (uniform electron gas, jellium surface, and free atom), the correction to RPA is a short-ranged effect that is captured by a local spin density approximation (LSDA) or a generalized gradient approximation (GGA). Nonempirical density functionals for the correction to RPA were constructed earlier at the LSDA and GGA levels (RPA+), but they are constructed here at the fully nonlocal level (RPA++), using the van der Waals density functional (vdW-DF) of Langreth, Lundqvist, and collaborators. While they make important and helpful corrections to RPA total and ionization energies of free atoms, they correct the RPA atomization energies of molecules by only about 1 kcal/mol. Thus, it is puzzling that RPA atomization energies are, on average, about 10 kcal/mol lower than those of accurate values from experiment. We find here that a hybrid of 50% Perdew-Burke-Ernzerhof GGA with 50% RPA+ yields atomization energies much more accurate than either one does alone. This suggests a solution to the puzzle: While the proper correction to RPA is short-ranged in some systems, its contribution to the correlation hole can spread out in a molecule with multiple atomic centers, canceling part of the spread of the exact exchange hole (more so than in RPA or RPA+), making the true exchange-correlation hole more localized than in RPA or RPA+. This effect is not captured even by the vdW-DF nonlocality, but it requires the different kind of full nonlocality present in a hybrid functional.
NASA Astrophysics Data System (ADS)
Cipolla, Sam J.; Mildebrath, Mark E.
1983-12-01
The density of atoms in a solid target fosters a multiple-collision mechanism that leads to the production of an equilibrium fraction of L-shell vacancies in an incident heavy ion. It is then possiblein a subsequent ion-atom collision in the solid for an L-vacancy to be transferred to the K-shell of a target atom via rotational coupling of the 2p π-2p σ molecular orbitals formed in the ion-atom quasimolecule. The vacancy-transfer cross section and the equilibrium fraction and lifetime of the vacancies can be found by using an appropriate multiple-collision analysis of the characteristic target and projectile X-rays. Results will be presented for 160-380 keV Ar 2+ incident of targets of Mg, Al, and Si.
NASA Astrophysics Data System (ADS)
Zhelyazkova, V.; Hogan, S. D.
2017-12-01
We present the results of experiments demonstrating the spectroscopic detection of Förster resonance energy transfer from NH3 in the X1A1 ground electronic state to helium atoms in 1sns 3S1 Rydberg levels, where n = 37 and n = 40. For these values of n, the 1sns 3S1 → 1snp 3PJ transitions in helium lie close to resonance with the ground-state inversion transitions in NH3 and can be tuned through resonance using electric fields of less than 10 V/cm. In the experiments, energy transfer was detected by direct state-selective electric field ionization of the 3S1 and 3PJ Rydberg levels and by monitoring the population of the 3DJ levels following pulsed microwave transfer from the 3PJ levels. Detection by microwave spectroscopic methods represents a highly state selective, low-background approach to probing the collisional energy transfer process and the environment in which the atom-molecule interactions occur. The experimentally observed electric-field dependence of the resonant energy transfer process, probed both by direct electric field ionization and by microwave transfer, agrees well with the results of calculations performed using a simple theoretical model of the energy transfer process. For measurements performed in zero electric field with atoms prepared in the 1s40s 3S1 level, the transition from a regime in which a single energy transfer channel can be isolated for detection to one in which multiple collision channels begin to play a role has been identified as the NH3 density was increased.
Chromium Exposure and Hygienic Behaviors in Printing Workers in Southern Thailand
Decharat, Somsiri
2015-01-01
Objectives. The main objective of this study was to assess the chromium exposure levels in printing workers. The study evaluated the airborne, serum, and urinary chromium levels and determines any correlation between level of chromium in specimen and airborne chromium levels. Material and Methods. A cross-sectional study was conducted with 75 exposed and 75 matched nonexposed subjects. Air breathing zone was measured by furnace atomic absorption spectrophotometer. Serum and urine samples were collected to determine chromium levels by graphite furnaces atomic absorption spectrometer chromium analyzer. Results and Discussion. The printing workers' urinary chromium levels (6.86 ± 1.93 μg/g creatinine) and serum chromium levels (1.24 ± 1.13 μg/L) were significantly higher than the control group (p < 0.001 and p < 0.001). Work position, duration of work, personal protective equipment (PPE), and personal hygiene were significantly associated with urinary chromium level and serum chromium levels (p < 0.001 and p < 0.001). This study found a correlation between airborne chromium levels and urinary chromium levels (r = 0.247, p = 0.032). A multiple regression model was constructed. Significant predictors of urinary and serum chromium levels were shown in this study. Conclusion. Improvements in working conditions, occupational health training, and PPE use are recommended to reduce chromium exposure. PMID:26448746
2015-01-01
In this work, we investigate the dynamic motions of fatty acid binding protein 4 (FABP4) in the absence and presence of a ligand by explicitly solvated all-atom molecular dynamics simulations. The dynamics of one ligand-free FABP4 and four ligand-bound FABP4s is compared via multiple 1.2 μs simulations. In our simulations, the protein interconverts between the open and closed states. Ligand-free FABP4 prefers the closed state, whereas ligand binding induces a conformational transition to the open state. Coupled with opening and closing of FABP4, the ligand adopts distinct binding modes, which are identified and compared with crystal structures. The concerted dynamics of protein and ligand suggests that there may exist multiple FABP4–ligand binding conformations. Thus, this work provides details about how ligand binding affects the conformational preference of FABP4 and how ligand binding is coupled with a conformational change of FABP4 at an atomic level. PMID:25231537
Li, Yan; Li, Xiang; Dong, Zigang
2014-10-14
In this work, we investigate the dynamic motions of fatty acid binding protein 4 (FABP4) in the absence and presence of a ligand by explicitly solvated all-atom molecular dynamics simulations. The dynamics of one ligand-free FABP4 and four ligand-bound FABP4s is compared via multiple 1.2 μs simulations. In our simulations, the protein interconverts between the open and closed states. Ligand-free FABP4 prefers the closed state, whereas ligand binding induces a conformational transition to the open state. Coupled with opening and closing of FABP4, the ligand adopts distinct binding modes, which are identified and compared with crystal structures. The concerted dynamics of protein and ligand suggests that there may exist multiple FABP4-ligand binding conformations. Thus, this work provides details about how ligand binding affects the conformational preference of FABP4 and how ligand binding is coupled with a conformational change of FABP4 at an atomic level.
Observation of electromagnetically induced Talbot effect in an atomic system
NASA Astrophysics Data System (ADS)
Zhang, Zhaoyang; Liu, Xing; Zhang, Dan; Sheng, Jiteng; Zhang, Yiqi; Zhang, Yanpeng; Xiao, Min
2018-01-01
The electromagnetically induced Talbot effect (EITE) resulting from the repeated self-reconstruction of a spatially intensity-modulated probe field is experimentally demonstrated in a three-level atomic configuration. The probe beam is launched into an optically induced lattice (established by the interference of two coupling fields) inside a rubidium vapor cell and is diffracted by the electromagnetically induced grating that was formed. The diffraction pattern repeats itself at the planes of integer multiple Talbot lengths. In addition, a fractional EITE is also investigated. The experimental observations agree well with the theoretical predictions. This investigation may potentially pave the way for studying the nonlinear and quantum dynamical features that have been predicted for established periodic optical systems.
Experimental optimization of directed field ionization
NASA Astrophysics Data System (ADS)
Liu, Zhimin Cheryl; Gregoric, Vincent C.; Carroll, Thomas J.; Noel, Michael W.
2017-04-01
The state distribution of an ensemble of Rydberg atoms is commonly measured using selective field ionization. The resulting time resolved ionization signal from a single energy eigenstate tends to spread out due to the multiple avoided Stark level crossings atoms must traverse on the way to ionization. The shape of the ionization signal can be modified by adding a perturbation field to the main field ramp. Here, we present experimental results of the manipulation of the ionization signal using a genetic algorithm. We address how both the genetic algorithm and the experimental parameters were adjusted to achieve an optimized result. This work was supported by the National Science Foundation under Grants No. 1607335 and No. 1607377.
A quantum trampoline for ultra-cold atoms
NASA Astrophysics Data System (ADS)
Robert-de-Saint-Vincent, M.; Brantut, J.-P.; Bordé, Ch. J.; Aspect, A.; Bourdel, T.; Bouyer, P.
2010-01-01
We have observed the interferometric suspension of a free-falling Bose-Einstein condensate periodically submitted to multiple-order diffraction by a vertical 1D standing wave. This scheme permits simultaneously the compensation of gravity and coherent splitting/recombination of the matter waves. It results in high-contrast interference in the number of atoms detected at constant height. For long suspension times, multiple-wave interference is revealed through a sharpening of the fringes. We characterize our atom interferometer and use it to measure the acceleration of gravity.
An atomic gravitational wave interferometric sensor in low earth orbit (AGIS-LEO)
NASA Astrophysics Data System (ADS)
Hogan, Jason M.; Johnson, David M. S.; Dickerson, Susannah; Kovachy, Tim; Sugarbaker, Alex; Chiow, Sheng-Wey; Graham, Peter W.; Kasevich, Mark A.; Saif, Babak; Rajendran, Surjeet; Bouyer, Philippe; Seery, Bernard D.; Feinberg, Lee; Keski-Kuha, Ritva
2011-07-01
We propose an atom interferometer gravitational wave detector in low Earth orbit (AGIS-LEO). Gravitational waves can be observed by comparing a pair of atom interferometers separated by a 30 km baseline. In the proposed configuration, one or three of these interferometer pairs are simultaneously operated through the use of two or three satellites in formation flight. The three satellite configuration allows for the increased suppression of multiple noise sources and for the detection of stochastic gravitational wave signals. The mission will offer a strain sensitivity of {<10^{-18}/sqrt{Hz}} in the 50mHz-10Hz frequency range, providing access to a rich scientific region with substantial discovery potential. This band is not currently addressed with the LIGO, VIRGO, or LISA instruments. We analyze systematic backgrounds that are relevant to the mission and discuss how they can be mitigated at the required levels. Some of these effects do not appear to have been considered previously in the context of atom interferometry, and we therefore expect that our analysis will be broadly relevant to atom interferometric precision measurements. Finally, we present a brief conceptual overview of shorter-baseline ({lesssim100 m}) atom interferometer configurations that could be deployed as proof-of-principle instruments on the International Space Station (AGIS-ISS) or an independent satellite.
A multi-channel tunable source for atomic sensors
NASA Astrophysics Data System (ADS)
Bigelow, Matthew S.; Roberts, Tony D.; McNeil, Shirley A.; Hawthorne, Todd; Battle, Phil
2015-09-01
We have designed and completed initial testing on a laser source suitable for atomic interferometry from compact, robust, integrated components. Our design is enabled by capitalizing on robust, well-commercialized, low-noise telecom components with high reliability and declining costs which will help to drive the widespread deployment of this system. The key innovation is the combination of current telecom-based fiber laser and modulator technology with periodicallypoled waveguide technology to produce tunable laser light at rubidium D1 and D2 wavelengths (and expandable to other alkalis) using second harmonic generation (SHG). Unlike direct-diode sources, this source is immune to feedback at the Rb line eliminating the need for bulky high-power isolators in the system. In addition, the source has GHz-level frequency agility and in our experiments was found to only be limited by the agility of our RF generator. As a proof-of principle, the source was scanned through the Doppler-broadened Rb D2 absorption line. With this technology, multiple channels can be independently tuned to produce the fields needed for addressing atomic states in atom interferometers and clocks. Thus, this technology could be useful in the development cold-atom inertial sensors and gyroscopes.
NASA Technical Reports Server (NTRS)
Baker, John G.; Thorpe, J. I.
2012-01-01
We consider a class of proposed gravitational wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, non-inertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g. multiple arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe. Whether this potential advantage outweighs the additional complexity associated with including atom interferometers will require further study.
NASA Technical Reports Server (NTRS)
Baker, John G.
2012-01-01
We consider a class of proposed gravitational wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, non-inertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g. multiple arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe.
Baker, John G; Thorpe, J I
2012-05-25
We consider a class of proposed gravitational-wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, noninertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g., multiple-arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and, in principle, favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe.
NASA Astrophysics Data System (ADS)
Allen, Emily Christine
Mental models for scientific learning are often defined as, "cognitive tools situated between experiments and theories" (Duschl & Grandy, 2012). In learning, these cognitive tools are used to not only take in new information, but to help problem solve in new contexts. Nancy Nersessian (2008) describes a mental model as being "[loosely] characterized as a representation of a system with interactive parts with representations of those interactions. Models can be qualitative, quantitative, and/or simulative (mental, physical, computational)" (p. 63). If conceptual parts used by the students in science education are inaccurate, then the resulting model will not be useful. Students in college general chemistry courses are presented with multiple abstract topics and often struggle to fit these parts into complete models. This is especially true for topics that are founded on quantum concepts, such as atomic structure and molecular bonding taught in college general chemistry. The objectives of this study were focused on how students use visual tools introduced during instruction to reason with atomic and molecular structure, what misconceptions may be associated with these visual tools, and how visual modeling skills may be taught to support students' use of visual tools for reasoning. The research questions for this study follow from Gilbert's (2008) theory that experts use multiple representations when reasoning and modeling a system, and Kozma and Russell's (2005) theory of representational competence levels. This study finds that as students developed greater command of their understanding of abstract quantum concepts, they spontaneously provided additional representations to describe their more sophisticated models of atomic and molecular structure during interviews. This suggests that when visual modeling with multiple representations is taught, along with the limitations of the representations, it can assist students in the development of models for reasoning about abstract topics such as atomic and molecular structure. There is further gain if students' difficulties with these representations are targeted through the use additional instruction such as a workbook that requires the students to exercise their visual modeling skills.
Elucidating the mechanism of protein water channels by molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Grubmuller, Helmut
2004-03-01
Aquaporins are highly selective water channels. Molecular dynamics simulations of multiple water permeation events correctly predict the measured rate and explain at the atomic level why these membrane channels are so efficient, while blocking other small molecules, ions, and even protons. High efficiency is achieved through a carefully tailored balance of hydrogen bonds that the protein substitutes for the bulk interactions; selectivity is achieved mainly by electrostatic barriers.
A Transparently-Scalable Metadata Service for the Ursa Minor Storage System
2010-06-25
provide application-level guarantees. For example, many document editing programs imple- ment atomic updates by writing the new document ver- sion into a...Transparently-Scalable Metadata Service for the Ursa Minor Storage System 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...operations that could involve multiple servers, how close existing systems come to transparent scala - bility, how systems that handle multi-server
NASA Astrophysics Data System (ADS)
Xue, L.; Tang, D. H.; Qu, X. D.; Sun, L. Z.; Lu, Wei; Zhong, J. X.
2011-09-01
Using first-principles method within the framework of the density functional theory, we study the formation energies and the binding energies of multiple hydrogen-mercury vacancy complex impurities (nH-VHg, n = 1,2,3,4) in Hg0.75Cd0.25Te. We find that, when mercury vacancies exist in Hg0.75Cd0.25Te, the formation of the complex impurity between H and VHg (1H-VHg) is easy and its binding energy is up to 0.56 eV. In this case, the deep acceptor level of mercury vacancy is passivated. As the hydrogen concentration increases, we find that the complex impurity between VHg and two hydrogen atoms (2H-VHg) is more stable than 1H-VHg. This complex passivates both the two acceptor levels introduced by mercury vacancy and neutralizes the p-type dopant characteristics of VHg in Hg0.75Cd0.25Te. Moreover, we find that the complex impurities formed by one VHg and three or four H atoms (3H-VHg, 4H-VHg) are still stable in Hg0.75Cd0.25Te, changing the VHg doped p-type Hg0.75Cd0.25Te to n-type material.
NASA Astrophysics Data System (ADS)
Jałochowski, M.; Kwapiński, T.; Łukasik, P.; Nita, P.; Kopciuszyński, M.
2016-07-01
Structural and electron transport properties of multiple Pb atomic chains fabricated on the Si(5 5 3)-Au surface are investigated using scanning tunneling spectroscopy, reflection high electron energy diffraction, angular resolved photoemission electron spectroscopy and in situ electrical resistance. The study shows that Pb atomic chains growth modulates the electron band structure of pristine Si(5 5 3)-Au surface and hence changes its sheet resistivity. Strong correlation between chains morphology, electron band structure and electron transport properties is found. To explain experimental findings a theoretical tight-binding model of multiple atomic chains interacting on effective substrate is proposed.
Impact of Multifunctional Bimetallic Materials on Lithium Battery Electrochemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durham, Jessica L.; Poyraz, Altug S.; Takeuchi, Esther S.
Electric energy storage devices such as batteries are complex systems comprised of a variety of materials with each playing separate yet interactive roles, complicated by length scale interactions occurring from the molecular to the mesoscale. Thus, addressing specific battery issues such as functional capacity requires a comprehensive perspective initiating with atomic level concepts. For example, the electroactive materials which contribute to the functional capacity in a battery comprise approximately 30% or less of the total device mass. Thus, the design and implementation of multifunctional materials can conceptually reduce or eliminate the contribution of passive materials to the size and massmore » of the final system. Material multi-functionality can be achieved through appropriate material design on the atomic level resulting in bimetallic electroactive materials where one metal cation forms mesoscale conductive networks upon discharge while the other metal cation can contribute to atomic level structure and net functional secondary capacity, a device level issue. Specifically, this Account provides insight into the multi-mechanism electrochemical redox processes of bimetallic cathode materials based on transition metal oxides (MM’O) or phosphorous oxides (MM’PO) where M = Ag and M’ = V or Fe. One discharge process can be described as reduction-displacement where Ag + is reduced to Ag 0 and displaced from the parent structure. This reduction-displacement reaction in silver-containing bimetallic electrodes allows for the in-situ formation of a conductive network, enhancing the electrochemical performance of the electrode and reducing or eliminating the need for conductive additives. A second discharge process occurs through the reduction of the second transition metal, V or Fe, where the oxidation state of the metal center is reduced and lithium cations are inserted into the structure. As both metal centers contribute to the functional capacity, determining the kinetically and thermodynamically preferred reduction processes at various states of discharge is critical to elucidating the mechanism. Specific advanced in-situ and ex-situ characterization techniques are conducive to gaining insight regarding the electrochemical behavior of these multifunctional materials over multiple length scales. At the material level, optical microscopy, scanning electron microscopy, and local conductivity measurement via a nanoprobe can track the discharge mechanism of an isolated single particle. At the mesoscale electrode level, in-situ data from synchrotron based energy dispersive X-ray diffraction (EDXRD) within fully intact steel batteries can be used to spatially map the distribution of silver metal generated through reduction displacement as a function of discharge depth and discharge rate. As illustrated here, appropriate design of materials with multiple electrochemically active metal centers and properties tuned through strategically conceptualized materials synthesis may provide a path toward the next generation of high energy content electroactive materials and systems. In conclusion, full understanding of the multiple electrochemical mechanisms can be achieved only by utilizing advanced characterization tools over multiple length scales.« less
Impact of Multifunctional Bimetallic Materials on Lithium Battery Electrochemistry
Durham, Jessica L.; Poyraz, Altug S.; Takeuchi, Esther S.; ...
2016-08-26
Electric energy storage devices such as batteries are complex systems comprised of a variety of materials with each playing separate yet interactive roles, complicated by length scale interactions occurring from the molecular to the mesoscale. Thus, addressing specific battery issues such as functional capacity requires a comprehensive perspective initiating with atomic level concepts. For example, the electroactive materials which contribute to the functional capacity in a battery comprise approximately 30% or less of the total device mass. Thus, the design and implementation of multifunctional materials can conceptually reduce or eliminate the contribution of passive materials to the size and massmore » of the final system. Material multi-functionality can be achieved through appropriate material design on the atomic level resulting in bimetallic electroactive materials where one metal cation forms mesoscale conductive networks upon discharge while the other metal cation can contribute to atomic level structure and net functional secondary capacity, a device level issue. Specifically, this Account provides insight into the multi-mechanism electrochemical redox processes of bimetallic cathode materials based on transition metal oxides (MM’O) or phosphorous oxides (MM’PO) where M = Ag and M’ = V or Fe. One discharge process can be described as reduction-displacement where Ag + is reduced to Ag 0 and displaced from the parent structure. This reduction-displacement reaction in silver-containing bimetallic electrodes allows for the in-situ formation of a conductive network, enhancing the electrochemical performance of the electrode and reducing or eliminating the need for conductive additives. A second discharge process occurs through the reduction of the second transition metal, V or Fe, where the oxidation state of the metal center is reduced and lithium cations are inserted into the structure. As both metal centers contribute to the functional capacity, determining the kinetically and thermodynamically preferred reduction processes at various states of discharge is critical to elucidating the mechanism. Specific advanced in-situ and ex-situ characterization techniques are conducive to gaining insight regarding the electrochemical behavior of these multifunctional materials over multiple length scales. At the material level, optical microscopy, scanning electron microscopy, and local conductivity measurement via a nanoprobe can track the discharge mechanism of an isolated single particle. At the mesoscale electrode level, in-situ data from synchrotron based energy dispersive X-ray diffraction (EDXRD) within fully intact steel batteries can be used to spatially map the distribution of silver metal generated through reduction displacement as a function of discharge depth and discharge rate. As illustrated here, appropriate design of materials with multiple electrochemically active metal centers and properties tuned through strategically conceptualized materials synthesis may provide a path toward the next generation of high energy content electroactive materials and systems. In conclusion, full understanding of the multiple electrochemical mechanisms can be achieved only by utilizing advanced characterization tools over multiple length scales.« less
Atomic Theory and Multiple Combining Proportions: The Search for Whole Number Ratios.
Usselman, Melvyn C; Brown, Todd A
2015-04-01
John Dalton's atomic theory, with its postulate of compound formation through atom-to-atom combination, brought a new perspective to weight relationships in chemical reactions. A presumed one-to-one combination of atoms A and B to form a simple compound AB allowed Dalton to construct his first table of relative atomic weights from literature analyses of appropriate binary compounds. For such simple binary compounds, the atomic theory had little advantages over affinity theory as an explanation of fixed proportions by weight. For ternary compounds of the form AB2, however, atomic theory made quantitative predictions that were not deducible from affinity theory. Atomic theory required that the weight of B in the compound AB2 be exactly twice that in the compound AB. Dalton, Thomas Thomson and William Hyde Wollaston all published within a few years of each other experimental data that claimed to give the predicted results with the required accuracy. There are nonetheless several experimental barriers to obtaining the desired integral multiple proportions. In this paper I will discuss replication experiments which demonstrate that only Wollaston's results are experimentally reliable. It is likely that such replicability explains why Wollaston's experiments were so influential.
Filler, Guido; Felder, Sarah
2014-08-01
In end-stage chronic kidney disease (CKD), pediatric nephrologists must consider the homeostasis of the multiple water-soluble ions that are influenced by renal replacement therapy (RRT). While certain ions such as potassium and calcium are closely monitored, little is known about the handling of trace elements in pediatric dialysis. RRT may lead to accumulation of toxic trace elements, either due to insufficient elimination or due to contamination, or to excessive removal of essential trace elements. However, trace elements are not routinely monitored in dialysis patients and no mechanism for these deficits or toxicities has been established. This review summarizes the handling of trace elements, with particular attention to pediatric data. The best data describe lead and indicate that there is a higher prevalence of elevated lead (Pb, atomic number 82) levels in children on RRT when compared to adults. Lead is particularly toxic in neurodevelopment and lead levels should therefore be monitored. Monitoring of zinc (Zn, atomic number 30) and selenium (Se, atomic number 34) may be indicated in the monitoring of all pediatric dialysis patients to reduce morbidity from deficiency. Prospective studies evaluating the impact of abnormal trace elements and the possible therapeutic value of intervention are required.
Silver Films with Hierarchical Chirality.
Ma, Liguo; Cao, Yuanyuan; Duan, Yingying; Han, Lu; Che, Shunai
2017-07-17
Physical fabrication of chiral metallic films usually results in singular or large-sized chirality, restricting the optical asymmetric responses to long electromagnetic wavelengths. The chiral molecule-induced formation of silver films prepared chemically on a copper substrate through a redox reaction is presented. Three levels of chirality were identified: primary twisted nanoflakes with atomic crystal lattices, secondary helical stacking of these nanoflakes to form nanoplates, and tertiary micrometer-sized circinates consisting of chiral arranged nanoplates. The chiral Ag films exhibited multiple plasmonic absorption- and scattering-based optical activities at UV/Vis wavelengths based on their hierarchical chirality. The Ag films showed chiral selectivity for amino acids in catalytic electrochemical reactions, which originated from their primary atomic crystal lattices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Coherent Multiple Light Scattering in Ultracold Atomic Rb
NASA Astrophysics Data System (ADS)
Kulatunga, Pasad; Sukenik, C. I.; Balik, Salim; Havey, M. D.; Kupriyanov, D. V.; Sokolov, I. M.
2003-05-01
Wave transport in mesoscopic systems can be strongly influenced by coherent multiple scattering,which can lead to novel magneto-optic, transmission, and backscattering effects of light in atomic vapors. Although related to traditional studies of radiation trapping, in ultracold vapors negligible frequency or phase redistribution takes place in the scattering, and high-order coherent light scattering occurs. Among other things, this leads to enhancement of the influence of otherwise small non-resonant terms in the scattering amplitudes. We report investigation of multiple coherent light scattering from ultracold Rb atoms confined in a magneto-optic trap (MOT). In experimental studies, measurements are made of the angular, spectral, and polarization-dependent coherent backscattering profile of a low-intensity probe beam tuned near the F = 3 - F' = 4 hyperfine transition. The influence of higher probe beam intensity is also studied. In a theoretical study of angular intensity enhancement of backscattered light, we consider scattering orders up to 10 and a realistic and asymmetric Gaussian atom distribution in the MOT. Supported by NSF, NATO, and RFBR.
ERIC Educational Resources Information Center
Sunyono; Yuanita, L.; Ibrahim, M.
2015-01-01
The aim of this research is identify the effectiveness of a multiple representation-based learning model, which builds a mental model within the concept of atomic structure. The research sample of 108 students in 3 classes is obtained randomly from among students of Mathematics and Science Education Studies using a stratified random sampling…
[Influence of multiple sintering on wear behavior of Cercon veneering ceramic].
Gao, Qing-ping; Chao, Yong-lie; Jian, Xin-chun; Guo, Feng
2010-04-01
To investigate the influence of multiple sintering on wear behavior of Cercon veneering ceramic. Samples were fabricated according to the manufacture's requirement for different sintering times (1, 3, 5, 7 times). The wear test was operated with a modified MM-200 friction and wear machine in vitro. The wear scars were characterized by scanning electron microscope (SEM) and atomic force microscopy (AFM). With the sintering times increasing, the wear scar width became larger. The correlation was significant at the 0.01 level. Significant difference was observed in wear scar width among different samples (P < 0.05). SEM and AFM results showed that veneering ceramic wear facets demonstrated grooves characteristic of abrasive wear. Multiple sintering can decrease the wear ability of Cercon veneer, and the wear pattern has the tendency to severe wear.
Rusu, Mirabela; Birmanns, Stefan
2010-04-01
A structural characterization of multi-component cellular assemblies is essential to explain the mechanisms governing biological function. Macromolecular architectures may be revealed by integrating information collected from various biophysical sources - for instance, by interpreting low-resolution electron cryomicroscopy reconstructions in relation to the crystal structures of the constituent fragments. A simultaneous registration of multiple components is beneficial when building atomic models as it introduces additional spatial constraints to facilitate the native placement inside the map. The high-dimensional nature of such a search problem prevents the exhaustive exploration of all possible solutions. Here we introduce a novel method based on genetic algorithms, for the efficient exploration of the multi-body registration search space. The classic scheme of a genetic algorithm was enhanced with new genetic operations, tabu search and parallel computing strategies and validated on a benchmark of synthetic and experimental cryo-EM datasets. Even at a low level of detail, for example 35-40 A, the technique successfully registered multiple component biomolecules, measuring accuracies within one order of magnitude of the nominal resolutions of the maps. The algorithm was implemented using the Sculptor molecular modeling framework, which also provides a user-friendly graphical interface and enables an instantaneous, visual exploration of intermediate solutions. (c) 2009 Elsevier Inc. All rights reserved.
Reveles, J U; Khanna, S N; Roach, P J; Castleman, A W
2006-12-05
We recently demonstrated that, in gas phase clusters containing aluminum and iodine atoms, an Al(13) cluster behaves like a halogen atom, whereas an Al(14) cluster exhibits properties analogous to an alkaline earth atom. These observations, together with our findings that Al(13)(-) is inert like a rare gas atom, have reinforced the idea that chosen clusters can exhibit chemical behaviors reminiscent of atoms in the periodic table, offering the exciting prospect of a new dimension of the periodic table formed by cluster elements, called superatoms. As the behavior of clusters can be controlled by size and composition, the superatoms offer the potential to create unique compounds with tailored properties. In this article, we provide evidence of an additional class of superatoms, namely Al(7)(-), that exhibit multiple valences, like some of the elements in the periodic table, and hence have the potential to form stable compounds when combined with other atoms. These findings support the contention that there should be no limitation in finding clusters, which mimic virtually all members of the periodic table.
Quantifying the Hierarchical Order in Self-Aligned Carbon Nanotubes from Atomic to Micrometer Scale.
Meshot, Eric R; Zwissler, Darwin W; Bui, Ngoc; Kuykendall, Tevye R; Wang, Cheng; Hexemer, Alexander; Wu, Kuang Jen J; Fornasiero, Francesco
2017-06-27
Fundamental understanding of structure-property relationships in hierarchically organized nanostructures is crucial for the development of new functionality, yet quantifying structure across multiple length scales is challenging. In this work, we used nondestructive X-ray scattering to quantitatively map the multiscale structure of hierarchically self-organized carbon nanotube (CNT) "forests" across 4 orders of magnitude in length scale, from 2.0 Å to 1.5 μm. Fully resolved structural features include the graphitic honeycomb lattice and interlayer walls (atomic), CNT diameter (nano), as well as the greater CNT ensemble (meso) and large corrugations (micro). Correlating orientational order across hierarchical levels revealed a cascading decrease as we probed finer structural feature sizes with enhanced sensitivity to small-scale disorder. Furthermore, we established qualitative relationships for single-, few-, and multiwall CNT forest characteristics, showing that multiscale orientational order is directly correlated with number density spanning 10 9 -10 12 cm -2 , yet order is inversely proportional to CNT diameter, number of walls, and atomic defects. Lastly, we captured and quantified ultralow-q meridional scattering features and built a phenomenological model of the large-scale CNT forest morphology, which predicted and confirmed that these features arise due to microscale corrugations along the vertical forest direction. Providing detailed structural information at multiple length scales is important for design and synthesis of CNT materials as well as other hierarchically organized nanostructures.
Huang, Zhicheng; Gu, Yu; Liu, Xiaodong; Zhang, Lifen; Cheng, Zhenping; Zhu, Xiulin
2017-05-01
It is well known that the recently developed photoinduced metal-free atom transfer radical polymerization (ATRP) has been considered as a promising methodology to completely eliminate transition metal residue in polymers. However, a serious problem needs to be improved, namely, large amount of organic photocatalysts should be used to keep the controllability over molecular weights and molecular weight distributions. In this work, a novel photocatalyst 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) with strong excited state reduction potential is successfully used to mediate a metal-free ATRP of methyl methacrylate just with parts per million (ppm) level usage under irradiation of blue light emitting diode at room temperature, using ethyl α-bromophenyl-acetate as a typical initiator with high initiator efficiency. The polymerization kinetic study, multiple controlled "on-off" light switching cycle regulation, and chain extension experiment confirm the "living"/controlled features of this promising photoinduced metal-free ATRP system with good molecular weight control in the presence of ppm level photocatalyst 4CzIPN. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Gregoric, Vincent C.; Kang, Xinyue; Liu, Zhimin Cheryl; Rowley, Zoe A.; Carroll, Thomas J.; Noel, Michael W.
2017-04-01
Selective field ionization is an important experimental technique used to study the state distribution of Rydberg atoms. This is achieved by applying a steadily increasing electric field, which successively ionizes more tightly bound states. An atom prepared in an energy eigenstate encounters many avoided Stark level crossings on the way to ionization. As it traverses these avoided crossings, its amplitude is split among multiple different states, spreading out the time resolved electron ionization signal. By perturbing the electric field ramp, we can change how the atoms traverse the avoided crossings, and thus alter the shape of the ionization signal. We have used a genetic algorithm to evolve these perturbations in real time in order to arrive at a target ionization signal shape. This process is robust to large fluctuations in experimental conditions. This work was supported by the National Science Foundation under Grants No. 1607335 and No. 1607377 and used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant Number OCI-1053575.
Scappucci, G; Klesse, W M; Hamilton, A R; Capellini, G; Jaeger, D L; Bischof, M R; Reidy, R F; Gorman, B P; Simmons, M Y
2012-09-12
Stacking of two-dimensional electron gases (2DEGs) obtained by δ-doping of Ge and patterned by scanning probe lithography is a promising approach to realize ultrascaled 3D epitaxial circuits, where multiple layers of active electronic components are integrated both vertically and horizontally. We use atom probe tomography and magnetotransport to correlate the real space 3D atomic distribution of dopants in the crystal with the quantum correction to the conductivity observed at low temperatures, probing if closely stacked δ-layers in Ge behave as independent 2DEGs. We find that at a separation of 9 nm the stacked-2DEGs, while interacting, still maintain their individuality in terms of electron transport and show long phase coherence lengths (∼220 nm). Strong vertical electron confinement is crucial to this finding, resulting in an interlayer scattering time much longer (∼1000 × ) than the scattering time within the dopant plane.
MCDF calculations of Auger cascade processes
NASA Astrophysics Data System (ADS)
Beerwerth, Randolf; Fritzsche, Stephan
2017-10-01
We model the multiple ionization of near-neutral core-excited atoms where a cascade of Auger processes leads to the emission of several electrons. We utilize the multiconfiguration Dirac-Fock (MCDF) method to generate approximate wave functions for all fine-structure levels and to account for all decays between them. This approach allows to compute electron spectra, the population of final-states and ion yields, that are accessible in many experiments. Furthermore, our approach is based on the configuration interaction method. A careful treatment of correlation between electronic configurations enables one to model three-electron processes such as an Auger decay that is accompanied by an additional shake-up transition. Here, this model is applied to the triple ionization of atomic cadmium, where we show that the decay of inner-shell 4p holes to triply-charged final states is purely due to the shake-up transition of valence 5s electrons. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.
Project Physics Tests 5, Models of the Atom.
ERIC Educational Resources Information Center
Harvard Univ., Cambridge, MA. Harvard Project Physics.
Test items relating to Project Physics Unit 5 are presented in this booklet. Included are 70 multiple-choice and 23 problem-and-essay questions. Concepts of atomic model are examined on aspects of relativistic corrections, electron emission, photoelectric effects, Compton effect, quantum theories, electrolysis experiments, atomic number and mass,…
This paper describes an automated system for the oxidation state specific speciation of inorganic and methylated arsenicals by selective hydride generation - cryotrapping- gas chromatography - atomic absorption spectrometry with the multiatomizer. The corresponding arsines are ge...
Atom optics in the time domain
NASA Astrophysics Data System (ADS)
Arndt, M.; Szriftgiser, P.; Dalibard, J.; Steane, A. M.
1996-05-01
Atom-optics experiments are presented using a time-modulated evanescent light wave as an atomic mirror in the trampoline configuration, i.e., perpendicular to the direction of the atomic free fall. This modulated mirror is used to accelerate cesium atoms, to focus their trajectories, and to apply a ``multiple lens'' to separately focus different velocity classes of atoms originating from a point source. We form images of a simple two-slit object to show the resolution of the device. The experiments are modelled by a general treatment analogous to classical ray optics.
Unlocking higher harmonics in atomic force microscopy with gentle interactions.
Santos, Sergio; Barcons, Victor; Font, Josep; Verdaguer, Albert
2014-01-01
In dynamic atomic force microscopy, nanoscale properties are encoded in the higher harmonics. Nevertheless, when gentle interactions and minimal invasiveness are required, these harmonics are typically undetectable. Here, we propose to externally drive an arbitrary number of exact higher harmonics above the noise level. In this way, multiple contrast channels that are sensitive to compositional variations are made accessible. Numerical integration of the equation of motion shows that the external introduction of exact harmonic frequencies does not compromise the fundamental frequency. Thermal fluctuations are also considered within the detection bandwidth of interest and discussed in terms of higher-harmonic phase contrast in the presence and absence of an external excitation of higher harmonics. Higher harmonic phase shifts further provide the means to directly decouple the true topography from that induced by compositional heterogeneity.
NASA Astrophysics Data System (ADS)
Evans, Jim; Han, Yong; Stoldt, Conrad; Thiel, Patricia
Coalescence or sintering of nanoscale features on metal(100) surfaces is mediated by periphery or edge diffusion. These processes are highly sensitive to the multiple diffusion barriers for various local edge environments. We provide an optimal strategy to determine both thermodynamics and kinetics for these systems at the ab initio level. The former requires assessing conventional interactions between adatoms at adsorption sites. The latter requires assessing unconventional interactions between the hopping atom at a bridge site transition state and other nearby atoms. KMC simulation reveals that this formulation recovers observed sintering times for Ag nanoislands on Ag(100), including a novel size dependence. The formulation also applies for nanopits where there are additional challenges to capture kinetics. Work supported by NSF Grant CHE-1507223.
Lineshape-asymmetry elimination in weak atomic transitions driven by an intense standing wave field
NASA Astrophysics Data System (ADS)
Antypas, Dionysios; Fabricant, Anne; Budker, Dmitry
2018-05-01
Owing to the ac-Stark effect, the lineshape of a weak optical transition in an atomic beam can become significantly distorted, when driven by an intense standing wave field. We use an Yb atomic beam to study the lineshape of the 6s2 1S0 -> 5d6s 3D1 transition, which is excited with light circulating in a Fabry-Perot resonator. We demonstrate two methods to avoid the distortion of the transition profile. Of these, one relies on the operation of the resonator in multiple longitudinal modes, and the other in multiple transverse modes.
Hernández-Zavala, Araceli; Matoušek, Tomáš; Drobná, Zuzana; Paul, David S.; Walton, Felecia; Adair, Blakely M.; Jiří, Dědina; Thomas, David J.
2008-01-01
Analyses of arsenic (As) species in tissues and body fluids of individuals chronically exposed to inorganic arsenic (iAs) provide essential information about the exposure level and pattern of iAs metabolism. We have previously described an oxidation state-specific analysis of As species in biological matrices by hydride-generation atomic absorption spectrometry (HG-AAS), using cryotrapping (CT) for preconcentration and separation of arsines. To improve performance and detection limits of the method, HG and CT steps are automated and a conventional flame-in-tube atomizer replaced with a recently developed multiple microflame quartz tube atomizer (multiatomizer). In this system, arsines from AsIII-species are generated in a mixture of Tris-HCl (pH 6) and sodium borohydride. For generation of arsines from both AsIII- and AsV-species, samples are pretreated with L-cysteine. Under these conditions, dimethylthioarsinic acid, a newly described metabolite of iAs, does not interfere significantly with detection and quantification of methylated trivalent arsenicals. Analytical performance of the automated HG-CT-AAS was characterized by analyses of cultured cells and mouse tissues that contained mono- and dimethylated metabolites of iAs. The capacity to detect methylated AsIII- and AsV-species was verified, using an in vitro methylation system containing recombinant rat arsenic (+3 oxidation state) methyltransferase and cultured rat hepatocytes treated with iAs. Compared with the previous HG-CT-AAS design, detection limits for iAs and its metabolites have improved significantly with the current system, ranging from 8 to 20 pg. Recoveries of As were between 78 and 117%. The precision of the method was better than 5% for all biological matrices examined. Thus, the automated HG-CT-AAS system provides an effective and sensitive tool for analysis of all major human metabolites of iAs in complex biological matrices. PMID:18677417
Hiroshima: Perspectives on the Atomic Bombing.
ERIC Educational Resources Information Center
Cheng, Amy
In this curriculum module students analyze both U.S. and Japanese perspectives of the atomic bombing of Hiroshima. The activities integrate Howard Gardner's work on multiple intelligences. The module is recommended as a supplement to textbook coverage of the war in the Pacific and of the atomic bombing of Hiroshima. It can be used to support both…
Cancer in Children and Adolescents
... to radiation from the World War II atomic bomb blasts had an elevated risk of leukemia ( 12 ), ... of leukemia, lymphoma and multiple myeloma among atomic bomb survivors: 1950-2001. Radiation Research 2013; 179(3): ...
Adsorbate-induced reconstruction in the phase 1 × 2-3H/Rh(110)
NASA Astrophysics Data System (ADS)
Michl, M.; Nichtl-Pecher, W.; Oed, W.; Landskron, H.; Heinz, K.; Müller, K.
1989-10-01
The 1 × 2-3H superstructure of hydrogen on Rh(110) at coverage θ = {3}/{2} is analysed by low energy electron diffraction at 90 K. The spectra of eight beams are recorded with a computer-controlled TV measurement technique which yields low noise data even for weak superstructure spots by multiple averaging. Comparison to full dynamical calculations shows that a kinematic treatment of the hydrogen layer diffraction coupled to the full dynamical diffraction of the substrate is a very good approximation. Spectra computed in this way are compared with experimental data by R-factor evaluation. The three non-equivalent hydrogen atoms are found to adsorb in quasi-three-fold coordinated adsorption sites with slightly different local configurations and with H-Rh bond lengths between 1.87 and 1.93 Å to the first-layer rhodium atoms. Interaction between the adatoms seems to weaken the bonding to the adjacent atom in the second layer, so that H-Rh bond lengths larger than 2.17 Å result. A slight reconstruction of the substrate is necessary to bring superstructure spot intensities near the experimentally observed level. Rhodium atoms bonded to two hydrogen atoms are moved out of the surface by 0.03 ± 0.02 Å relative to Rh atoms bonded to only a single H atom. The relaxation of the first Rh layer spacing is determined to be {d 12}/{d 0} = -3.8 ± 1% and {d 22}/{d 0} = 0 ± 1% . The best fit Pendry R-factor is 0.33.
Challenges of sulfur SAD phasing as a routine method in macromolecular crystallography.
Doutch, James; Hough, Michael A; Hasnain, S Samar; Strange, Richard W
2012-01-01
The sulfur SAD phasing method allows the determination of protein structures de novo without reference to derivatives such as Se-methionine. The feasibility for routine automated sulfur SAD phasing using a number of current protein crystallography beamlines at several synchrotrons was examined using crystals of trimeric Achromobacter cycloclastes nitrite reductase (AcNiR), which contains a near average proportion of sulfur-containing residues and two Cu atoms per subunit. Experiments using X-ray wavelengths in the range 1.9-2.4 Å show that we are not yet at the level where sulfur SAD is routinely successful for automated structure solution and model building using existing beamlines and current software tools. On the other hand, experiments using the shortest X-ray wavelengths available on existing beamlines could be routinely exploited to solve and produce unbiased structural models using the similarly weak anomalous scattering signals from the intrinsic metal atoms in proteins. The comparison of long-wavelength phasing (the Bijvoet ratio for nine S atoms and two Cu atoms is ~1.25% at ~2 Å) and copper phasing (the Bijvoet ratio for two Cu atoms is 0.81% at ~0.75 Å) for AcNiR suggests that lower data multiplicity than is currently required for success should in general be possible for sulfur phasing if appropriate improvements to beamlines and data collection strategies can be implemented.
NASA Astrophysics Data System (ADS)
Liu, Pengfei; Zeng, Jiaolong; Yuan, Jianmin
2018-04-01
Multiple electron processes occur widely in atoms, molecules, clusters, and condensed matters when they are interacting with energetic particles or intense laser fields. Direct multielectron processes (DMEP) are the most complicated among the general multiple electron processes and are the most difficult to describe theoretically. In this work, a unified and accurate theoretical formalism is proposed on the DMEP of atoms including the multiple auger decay and multiple ionization by an impact of a single electron or a single photon based on the atomic collision theory described by a correlated many-body Green's function. Such a practical treatment is made possible by taking consideration of the different coherence features of the atoms (matter waves) in the initial and final states. We first explain how the coherence characteristics of the ejected continuum electrons is largely destructed, by taking the electron impact direct double ionization process as an example. The direct double ionization process is completely different from the single ionization where the complete interference can be maintained. The detailed expressions are obtained for the energy correlations among the continuum electrons and energy resolved differential and integral cross sections according to the separation of knock-out (KO) and shake-off (SO) mechanisms for the electron impact direct double ionization, direct double and triple auger decay, and double and triple photoionization (TPI) processes. Extension to higher order DMEP than triple ionization is straight forward by adding contributions of the following KO and SO processes. The approach is applied to investigate the electron impact double ionization processes of C+, N+, and O+, the direct double and triple auger decay of the K-shell excited states of C+ 1s2{s}22{p}2{}2D and {}2P, and the double and TPI of lithium. Comparisons with the experimental and other theoretical investigations wherever available in the literature show that our theoretical formalism is accurate and effective in treating the atomic multielectron processes.
Passivation and alloying element retention in gas atomized powders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heidloff, Andrew J.; Rieken, Joel R.; Anderson, Iver E.
A method for gas atomization of a titanium alloy, nickel alloy, or other alumina (Al.sub.2O.sub.3)-forming alloy wherein the atomized particles are exposed as they solidify and cool in a very short time to multiple gaseous reactive agents for the in-situ formation of a passivation reaction film on the atomized particles wherein the reaction film retains a precursor halogen alloying element that is subsequently introduced into a microstructure formed by subsequent thermally processing of the atomized particles to improve oxidation resistance.
NASA Astrophysics Data System (ADS)
Roy, Chiranjeeb
In this thesis we study the role of nonradiative degrees of freedom on quantum optical properties of mesoscopic quantum dots placed in the structured electromagnetic reservoir of a photonic crystal. We derive a quantum theory of the role of acoustic and optical phonons in modifying the optical absorption lineshape, polarization dynamics, and population dynamics of a two-level atom (quantum dot) in the "colored" electromagnetic vacuum of a photonic band gap (PBG) material. This is based on a microscopic Hamiltonian describing both radiative and vibrational processes quantum mechanically. Phonon sidebands in an ordinary electromagnetic reservoir are recaptured in a simple model of optical phonons using a mean-field factorization of the atomic and lattice displacement operators. Our formalism is then used to treat the non-Markovian dynamics of the same system within the structured electromagnetic density of states of a photonic crystal. We elucidate the extent to which phonon-assisted decay limits the lifetime of a single photon-atom bound state and derive the modified spontaneous emission dynamics due to coupling to various phonon baths. We demonstrate that coherent interaction with undamped phonons can lead to enhanced lifetime of a photon-atom bound state in a PBG by (i) dephasing and reducing the transition electric dipole moment of the atom and (ii) reducing the quantum mechanical overlap of the state vectors of the excited and ground state (polaronic shift). This results in reduction of the steady-state atomic polarization but an increase in the fractionalized upper state population in the photon-atom bound state. We demonstrate, on the other hand, that the lifetime of the photon-atom bound state in a PBG is limited by the lifetime of phonons due to lattice anharmonicities (break-up of phonons into lower energy phonons) and purely nonradiative decay. We demonstrate how these additional damping effects limit the extent of the polaronic (Franck-Condon) shift of the atomic excited state. We also derive the modified polarization decay and dephasing rates in the presence of such damping. This leads to a microscopic, quantum theory of the optical absorption lineshapes. Our model and formalism provide a starting point for describing dephasing and relaxation in the presence of external coherent fields and multiple quantum dot interactions in electromagnetic reservoirs with radiative memory effects.
Protein Structure and Function Prediction Using I-TASSER
Yang, Jianyi; Zhang, Yang
2016-01-01
I-TASSER is a hierarchical protocol for automated protein structure prediction and structure-based function annotation. Starting from the amino acid sequence of target proteins, I-TASSER first generates full-length atomic structural models from multiple threading alignments and iterative structural assembly simulations followed by atomic-level structure refinement. The biological functions of the protein, including ligand-binding sites, enzyme commission number, and gene ontology terms, are then inferred from known protein function databases based on sequence and structure profile comparisons. I-TASSER is freely available as both an on-line server and a stand-alone package. This unit describes how to use the I-TASSER protocol to generate structure and function prediction and how to interpret the prediction results, as well as alternative approaches for further improving the I-TASSER modeling quality for distant-homologous and multi-domain protein targets. PMID:26678386
NASA Astrophysics Data System (ADS)
Horstemeyer, M. F.
This review of multiscale modeling covers a brief history of various multiscale methodologies related to solid materials and the associated experimental influences, the various influence of multiscale modeling on different disciplines, and some examples of multiscale modeling in the design of structural components. Although computational multiscale modeling methodologies have been developed in the late twentieth century, the fundamental notions of multiscale modeling have been around since da Vinci studied different sizes of ropes. The recent rapid growth in multiscale modeling is the result of the confluence of parallel computing power, experimental capabilities to characterize structure-property relations down to the atomic level, and theories that admit multiple length scales. The ubiquitous research that focus on multiscale modeling has broached different disciplines (solid mechanics, fluid mechanics, materials science, physics, mathematics, biological, and chemistry), different regions of the world (most continents), and different length scales (from atoms to autos).
Multiple coherent light scattering in ultracold rubidium
NASA Astrophysics Data System (ADS)
Kulatunga, P.; Sukenik, C. I.; Havey, M. D.; Kupriyanov, D. V.; Sokolov, I. M.
2001-11-01
We report investigation of multiple coherent light scattering from ^85Rb atoms confined in a magneto-optic trap. In a theoretical study of intensity enhancement of near-resonant backscattered light from cold ^85,87Rb atoms, we consider the dominant mode of double scattering only. Enhancement factors are calculated for all D1 and D2 hyperfine components and for both isotopes. In experimental studies, measurements are made of coherent backscattering of a low-intensity probe beam tuned near the F = 3 - F' = 4 transition in ^85Rb atoms. Polarization of backscattered light is determined by a backscattering polarimeter; the spatial distribution of light intensity is measured by a liquid-nitrogen cooled CCD camera set in the focal plane of the analyzing optics. The instrument has angular resolution of about 100 micro-radians, and a polarization analyzing power of roughly 1000. In this paper we describe the instrument details, including calibration procedures, and progress towards observation of atomic coherent backscattering.
Multiple coherent light scattering in ultracold rubidium
NASA Astrophysics Data System (ADS)
Havey, M. D.; Sukenik, C. I.; Kulatunga, P.; Kupriyanov, D. V.; Sokolov, I. M.
2001-05-01
We report investigation of multiple coherent light scattering from ^85Rb atoms confined in a magneto-optic trap. In a theoretical study of intensity enhancement of near-resonant backscattered light from cold ^85,87Rb atoms, we consider the dominant mode of double scattering only. Enhancement factors are calculated for all D1 and D2 hyperfine components and for both isotopes. In experimental studies, measurements are made of coherent backscattering of a low-intensity probe beam tuned near the F = 3 - F' = 4 transition in ^85Rb atoms. Polarization of backscattered light is determined by a backscattering polarimeter; the spatial distribution of light intensity is measured by a liquid-nitrogen cooled CCD camera set in the focal plane of the analyzing optics. The instrument has angular resolution of about 100 micro-radians, and a polarization analyzing power of roughly 1000. In this paper we describe the instrument details, including calibration procedures, and progress towards observation of atomic coherent backscattering.
Atomicity violation detection using access interleaving invariants
Zhou, Yuanyuan; Lu, Shan; Tucek, Joseph Andrew
2013-09-10
During execution of a program, the situation where the atomicity of a pair of instructions that are to be executed atomically is violated is identified, and a bug is detected as occurring in the program at the pair of instructions. The pairs of instructions that are to be executed atomically can be identified in different manners, such as by executing a program multiple times and using the results of those executions to automatically identify the pairs of instructions.
NASA Astrophysics Data System (ADS)
Yin, H.; Ziemann, P.
2014-06-01
Phase pure cubic boron nitride (c-BN) films have been epitaxially grown on (001) diamond substrates at 900 °C. The n-type doping of c-BN epitaxial films relies on the sequential growth of nominally undoped (p-) and Si doped (n-) layers with well-controlled thickness (down to several nanometer range) in the concept of multiple delta doping. The existence of nominally undoped c-BN overgrowth separates the Si doped layers, preventing Si dopant segregation that was observed for continuously doped epitaxial c-BN films. This strategy allows doping of c-BN films can be scaled up to multiple numbers of doped layers through atomic level control of the interface in the future electronic devices. Enhanced electronic transport properties with higher hall mobility (102 cm2/V s) have been demonstrated at room temperature as compared to the normally continuously Si doped c-BN films.
EDA-gram: designing electrodermal activity fingerprints for visualization and feature extraction.
Chaspari, Theodora; Tsiartas, Andreas; Stein Duker, Leah I; Cermak, Sharon A; Narayanan, Shrikanth S
2016-08-01
Wearable technology permeates every aspect of our daily life increasing the need of reliable and interpretable models for processing the large amount of biomedical data. We propose the EDA-Gram, a multidimensional fingerprint of the electrodermal activity (EDA) signal, inspired by the widely-used notion of spectrogram. The EDA-Gram is based on the sparse decomposition of EDA from a knowledge-driven set of dictionary atoms. The time axis reflects the analysis frames, the spectral dimension depicts the width of selected dictionary atoms, while intensity values are computed from the atom coefficients. In this way, EDA-Gram incorporates the amplitude and shape of Skin Conductance Responses (SCR), which comprise an essential part of the signal. EDA-Gram is further used as a foundation for signal-specific feature design. Our results indicate that the proposed representation can accentuate fine-grain signal fluctuations, which might not always be apparent through simple visual inspection. Statistical analysis and classification/regression experiments further suggest that the derived features can differentiate between multiple arousal levels and stress-eliciting environments for two datasets.
Topological Characterization of Carbon Graphite and Crystal Cubic Carbon Structures.
Siddiqui, Wei Gao Muhammad Kamran; Naeem, Muhammad; Rehman, Najma Abdul
2017-09-07
Graph theory is used for modeling, designing, analysis and understanding chemical structures or chemical networks and their properties. The molecular graph is a graph consisting of atoms called vertices and the chemical bond between atoms called edges. In this article, we study the chemical graphs of carbon graphite and crystal structure of cubic carbon. Moreover, we compute and give closed formulas of degree based additive topological indices, namely hyper-Zagreb index, first multiple and second multiple Zagreb indices, and first and second Zagreb polynomials.
Controlled rephasing of single spin-waves in a quantum memory based on cold atoms
NASA Astrophysics Data System (ADS)
Farrera, Pau; Albrecht, Boris; Heinze, Georg; Cristiani, Matteo; de Riedmatten, Hugues; Quantum Photonics With Solids; Atoms Team
2015-05-01
Quantum memories for light allow a reversible transfer of quantum information between photons and long lived matter quantum bits. In atomic ensembles, this information is commonly stored in the form of single collective spin excitations (spin-waves). In this work we demonstrate that we can actively control the dephasing of the spin-waves created in a quantum memory based on a cold Rb87 atomic ensemble. The control is provided by an external magnetic field gradient, which induces an inhomogeneous broadening of the atomic hyperfine levels. We show that acting on this gradient allows to control the dephasing of individual spin-waves and to induce later a rephasing. The spin-waves are then mapped into single photons, and we demonstrate experimentally that the active rephasing preserves the sub-Poissonian statistics of the retrieved photons. Finally we show that this rephasing control enables the creation and storage of multiple spin-waves in different temporal modes, which can be selectively readout. This is an important step towards the implementation of a functional temporally multiplexed quantum memory for quantum repeaters. We acknowledge support from the ERC starting grant, the Spanish Ministry of Economy and Competitiveness, the Fondo Europeo de Desarrollo Regional, and the International PhD- fellowship program ``la Caixa''-Severo Ochoa @ICFO.
Analytical transition-matrix treatment of electric multipole polarizabilities of hydrogen-like atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kharchenko, V.F., E-mail: vkharchenko@bitp.kiev.ua
2015-04-15
The direct transition-matrix approach to the description of the electric polarization of the quantum bound system of particles is used to determine the electric multipole polarizabilities of the hydrogen-like atoms. It is shown that in the case of the bound system formed by the Coulomb interaction the corresponding inhomogeneous integral equation determining an off-shell scattering function, which consistently describes virtual multiple scattering, can be solved exactly analytically for all electric multipole polarizabilities. Our method allows to reproduce the known Dalgarno–Lewis formula for electric multipole polarizabilities of the hydrogen atom in the ground state and can also be applied to determinemore » the polarizability of the atom in excited bound states. - Highlights: • A new description for electric polarization of hydrogen-like atoms. • Expression for multipole polarizabilities in terms of off-shell scattering functions. • Derivation of integral equation determining the off-shell scattering function. • Rigorous analytic solving the integral equations both for ground and excited states. • Study of contributions of virtual multiple scattering to electric polarizabilities.« less
To acquire more detailed radiation drive by use of ``quasi-steady'' approximation in atomic kinetics
NASA Astrophysics Data System (ADS)
Ren, Guoli; Pei, Wenbing; Lan, Ke; Gu, Peijun; Li, Xin
2012-10-01
In current routine 2D simulation of hohlraum physics, we adopt the principal-quantum- number(n-level) average atom model(AAM) in NLTE plasma description. However, the detailed experimental frequency-dependant radiative drive differs from our n-level simulated drive, which reminds us the need of a more detailed atomic kinetics description. The orbital-quantum- number(nl-level) average atom model is a natural consideration, however the nl-level in-line calculation needs much more computational resource. By distinguishing the rapid bound-bound atomic processes from the relative slow bound-free atomic processes, we found a method to build up a more detailed bound electron distribution(nl-level even nlm-level) using in-line n-level calculated plasma conditions(temperature, density, and average ionization degree). We name this method ``quasi-steady approximation'' in atomic kinetics. Using this method, we re-build the nl-level bound electron distribution (Pnl), and acquire a new hohlraum radiative drive by post-processing. Comparison with the n-level post-processed hohlraum drive shows that we get an almost identical radiation flux but with more fine frequency-denpending spectrum structure which appears only in nl-level transition with same n number(n=0) .
Yeung, B; Vouros, P; Reddy, G S
1993-08-13
A mass spectrometric method for the detection of vitamin D3 metabolites is described. This method involves the derivatization of the metabolites by cycloaddition with 4-phenyl-1,2,4-triazoline-3,5-dione, followed by their characterization by continuous-flow fast atom bombardment (CF-FAB) tandem mass spectrometry (MS-MS) and high-performance liquid chromatography (HPLC). Using HPLC, this derivatization has been shown to increase the UV detectability of 25-hydroxyvitamin D3 by about 5-fold. The FAB spectra of the adducts are dominated by peaks corresponding to a protonated molecule and a fragment ion derived in part from the loss of the side chain. Multiple reaction monitoring (MRM) of this transition by MS-MS may be utilized for trace level analysis of vitamin D metabolites. Sample introduction by flow injection yields detection limits in the low nanogram to high picogram range, whereas the use of on-line capillary LC has been found to decrease the detection limits to the low picogram level.
Influence of δ p-doping on the behaviour of GaAs/AlGaAs SAM-APDs for synchrotron radiation
NASA Astrophysics Data System (ADS)
Steinhartova, T.; Nichetti, C.; Antonelli, M.; Cautero, G.; Menk, R. H.; Pilotto, A.; Driussi, F.; Palestri, P.; Selmi, L.; Koshmak, K.; Nannarone, S.; Arfelli, F.; Dal Zilio, S.; Biasiol, G.
2017-11-01
This work focuses on the development and the characterization of avalanche photodiodes with separated absorption and multiplication regions grown by molecular beam epitaxy. The i-GaAs absorption region is separated from the multiplication region by a δ p-doped layer of carbon atoms, which ensures that after applying a reverse bias, the vast majority of the potential drops in the multiplication region. Therein, thin layers of AlGaAs and GaAs alternate periodically in a so-called staircase structure to create a periodic modulation of the band gap, which under bias enables a well-defined charge multiplication and results in a low multiplication noise. The influence of the concentration of carbon atoms in the δ p-doped layer on the device characteristics was investigated and experimental data are presented together with simulation results.
NASA Astrophysics Data System (ADS)
Lee, Jongmin; Eichenfield, Matt; Douglas, Erica; Mudrick, John; Biedermann, Grant; Jau, Yuan-Yu
2017-04-01
Trapping neutral atoms in the evanescent fields generated by microfabricated nano-waveguides will provide a new platform for neutral atom quantum controls via strong atom-photon interactions. At Sandia National Labs, we are aiming at developing the related technology that can enable the efficient optical coupling to the waveguide at multiple wavelengths, fabrication nano-waveguides to handle required optical power, more robust waveguide structure, and the new fabrication geometry to facilitate the cold-atom experiments. We will report our latest results on the related subjects. Sandia National Laboratories, Albuquerque, New Mexico 87185, USA.
Teaching and Learning Multiple Perspectives: The Atomic Bomb.
ERIC Educational Resources Information Center
Doppen, Frans H.
2000-01-01
Explores how historical empathy can give students a richer understanding of the past, focusing on the development of the students' historical understanding through an analysis of 18 documents on President Truman's decision to use the atomic bomb against Japan. (CMK)
Studies of Rotationally and Vibrationally Inelastic Collisions of NaK with Atomic Perturbers
NASA Astrophysics Data System (ADS)
Richter, Kara M.
This dissertation discusses investigations of vibrationally and rotationally inelastic collisions of NaK with argon, helium and potassium as collision partners. We have investigated collisions of NaK molecules in the 2(A) 1Sigma+, state with argon and helium collision partners in a laser-induced fluorescence (LIF) experiment. The pump laser prepares the molecules in particular ro-vibrational (v, J) levels in the 2(A) 1Sigma+, state. These excited molecules then emit fluorescence as they make transitions back to the ground [2(X)1Sigma +] state, and this fluorescence is collected by a Bomem Fourier-transform spectrometer. Weak collisional satellite lines appear flanking strong, direct lines in the recorded spectra. These satellite lines are due to collisions of the NaK molecule in the 2(A)1Sigma+, state with noble gas and alkali atom perturbers, which carry population to nearby rotational levels [(v, J) →(v, J + DeltaJ)] or to various rotational levels of nearby vibrational levels, [(v, J)→ (v + Deltav, J + DeltaJ)]. Ratios of the intensity of each collisional line to the intensity of the direct line then yields information pertaining to the transfer of population in the collision. Our results show a propensity for DeltaJ = even collisions of NaK with noble gas atoms, which is slightly more pronounced for collisions with helium than with argon. Such a DeltaJ = even propensity was not observed in the vibrationally inelastic collisions. Although it would be desirable to operate in the single collision regime, practical considerations make that difficult to achieve. Therefore, we have developed a method to estimate the effects of multiple collisions on our measured rate coefficients and have obtained approximate corrected values.
USDA-ARS?s Scientific Manuscript database
Atoms in biomolecular structures like alpha helices contain an array of distances and angles which include abundant multiple patterns of redundancies. Thus all peptides backbones contain the three atom sequence N-C*C, whereas the repeating set of a four atom sequences (N-C*C-N, C*-C-N-C*, and C-N-C...
ERIC Educational Resources Information Center
Eymur, Guluzar; Çetin, Pinar; Geban, Ömer
2013-01-01
The purpose of this study was to analyze and compare the alternative conceptions of high school students and preservice teachers on the concept of atomic size. The Atomic Size Diagnostic Instrument was developed; it is composed of eight, two-tier multiple-choice items. The results of the study showed that as a whole 56.2% of preservice teachers…
Electron impact excitation rate coefficients for P-like Ni XIV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, K.; Shanghai EBIT Lab, Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai 200433; Yan, J.
2012-07-15
We have calculated the atomic data including electron impact excitations and radiative decays among the lowest 143 fine-structure levels arising from 3s{sup 2}3p{sup 3}, 3s3p{sup 4}, 3s{sup 2}3p{sup 2}3d, 3p{sup 5}, 3s3p{sup 3}3d, and 3s{sup 2}3p3d{sup 2} configurations in P-like Ni XIV. Direct excitation collision strengths are calculated employing the relativistic distorted-wave method. Resonances are included via the isolated resonance approximation using distorted-waves. Resonance contributions from S-like [3s{sup 2}3p{sup 3}, 3s3p{sup 4}, 3s{sup 2}3p{sup 2}3d,3p{sup 5}, 3s3p{sup 3}3d,3s{sup 2}3p3d{sup 2}, 3p{sup 4}3d,3s3p{sup 2}3d{sup 2},3s{sup 2}3d{sup 3}]n{sup Prime }l{sup Prime} complex series are taken into account. Effective collision strengths are reportedmore » over an electron temperature range of 1.0 Multiplication-Sign 10{sup 5}-1.0 Multiplication-Sign 10{sup 8} K. -- Highlights: Black-Right-Pointing-Pointer Radiative and collisional atomic data are presented for the lowest 143 fine-structure levels in P-like Ni XIV. Black-Right-Pointing-Pointer Calculations are performed using the FAC package. Black-Right-Pointing-Pointer Resonances enhance significantly a large amount of transitions. Black-Right-Pointing-Pointer Resonances play an important role of level population and line intensity ratios.« less
Squeezed light from multi-level closed-cycling atomic systems
NASA Technical Reports Server (NTRS)
Xiao, Min; Zhu, Yi-Fu
1994-01-01
Amplitude squeezing is calculated for multi-level closed-cycling atomic systems. These systems can last without atomic population inversion in any atomic bases. Maximum squeezing is obtained for the parameters in the region of lasing without inversion. A practical four-level system and an ideal three-level system are presented. The latter system is analyzed in some detail and the mechanism of generating amplitude squeezing is discussed.
Reconstruction of biological pathways and metabolic networks from in silico labeled metabolites.
Hadadi, Noushin; Hafner, Jasmin; Soh, Keng Cher; Hatzimanikatis, Vassily
2017-01-01
Reaction atom mappings track the positional changes of all of the atoms between the substrates and the products as they undergo the biochemical transformation. However, information on atom transitions in the context of metabolic pathways is not widely available in the literature. The understanding of metabolic pathways at the atomic level is of great importance as it can deconvolute the overlapping catabolic/anabolic pathways resulting in the observed metabolic phenotype. The automated identification of atom transitions within a metabolic network is a very challenging task since the degree of complexity of metabolic networks dramatically increases when we transit from metabolite-level studies to atom-level studies. Despite being studied extensively in various approaches, the field of atom mapping of metabolic networks is lacking an automated approach, which (i) accounts for the information of reaction mechanism for atom mapping and (ii) is extendable from individual atom-mapped reactions to atom-mapped reaction networks. Hereby, we introduce a computational framework, iAM.NICE (in silico Atom Mapped Network Integrated Computational Explorer), for the systematic atom-level reconstruction of metabolic networks from in silico labelled substrates. iAM.NICE is to our knowledge the first automated atom-mapping algorithm that is based on the underlying enzymatic biotransformation mechanisms, and its application goes beyond individual reactions and it can be used for the reconstruction of atom-mapped metabolic networks. We illustrate the applicability of our method through the reconstruction of atom-mapped reactions of the KEGG database and we provide an example of an atom-level representation of the core metabolic network of E. coli. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Kolesnikov, E. K.; Manuilov, A. S.; Petrov, V. S.; Klyushnikov, G. N.; Chernov, S. V.
2017-06-01
The influence of the current neutralization process, the phase mixing of the trajectories of electrons and multiple Coulomb scattering of electrons beam on the atoms of the background medium on the spatial increment of the growth of sausage instability of a relativistic electron beam propagating in ohmic plasma channel has been considered. It has been shown that the amplification of the current neutralization leads to a significant increase in this instability, and phase mixing and the process of multiple scattering of electrons beam on the atoms of the background medium are the stabilizing factor.
Atomic Structure. Independent Learning Project for Advanced Chemistry (ILPAC). Unit S2.
ERIC Educational Resources Information Center
Inner London Education Authority (England).
This unit on atomic structure is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit consists of two levels. Level one focuses on the atomic nucleus. Level two focuses on the arrangement of extranuclear electrons, approaching atomic orbitals through both electron bombardment and spectra.…
Efficient accesses of data structures using processing near memory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayasena, Nuwan S.; Zhang, Dong Ping; Diez, Paula Aguilera
Systems, apparatuses, and methods for implementing efficient queues and other data structures. A queue may be shared among multiple processors and/or threads without using explicit software atomic instructions to coordinate access to the queue. System software may allocate an atomic queue and corresponding queue metadata in system memory and return, to the requesting thread, a handle referencing the queue metadata. Any number of threads may utilize the handle for accessing the atomic queue. The logic for ensuring the atomicity of accesses to the atomic queue may reside in a management unit in the memory controller coupled to the memory wheremore » the atomic queue is allocated.« less
Lee, Richmond; Gryn'ova, Ganna; Ingold, K U; Coote, Michelle L
2016-08-24
High-level ab initio calculations are used to identify the mechanism of secondary (and primary) alkylperoxyl radical termination and explain why their reactions are much faster than their tertiary counterparts. Contrary to existing literature, the decomposition of both tertiary and non-tertiary tetroxides follows the same asymmetric two-step bond cleavage pathway to form a caged intermediate of overall singlet multiplicity comprising triplet oxygen and two alkoxyl radicals. The alpha hydrogen atoms of non-tertiary species facilitate this process by forming unexpected CHO hydrogen bonds to the evolving O2. For non-tertiary peroxyls, subsequent alpha hydrogen atom transfer then yields the experimentally observed non-radical products, ketone, alcohol and O2, whereas for tertiary species, this reaction is precluded and cage escape of the (unpaired) alkoxyl radicals is a likely outcome with important consequences for autoxidation.
Dissipation-Induced Anomalous Multicritical Phenomena
NASA Astrophysics Data System (ADS)
Soriente, M.; Donner, T.; Chitra, R.; Zilberberg, O.
2018-05-01
We explore the influence of dissipation on a paradigmatic driven-dissipative model where a collection of two level atoms interact with both quadratures of a quantum cavity mode. The closed system exhibits multiple phase transitions involving discrete and continuous symmetries breaking and all phases culminate in a multicritical point. In the open system, we show that infinitesimal dissipation erases the phase with broken continuous symmetry and radically alters the model's phase diagram. The multicritical point now becomes brittle and splits into two tricritical points where first- and second-order symmetry-breaking transitions meet. A quantum fluctuations analysis shows that, surprisingly, the tricritical points exhibit anomalous finite fluctuations, as opposed to standard tricritical points arising in
Optical Magnetometry using Multipass Cells with overlapping beams
NASA Astrophysics Data System (ADS)
McDonough, Nathaniel David; Lucivero, Vito Giovanni; Dural, Nezih; Romalis, Michael
2017-04-01
In recent years, multipass cells with cylindrical mirrors have proven to be a successful way of making highly sensitive atomic magnetometers. In such cells a small laser beam makes 40 to 100 passes within the cell without significant overlap with itself. Here we describe a new multi-pass geometry which uses spherical mirrors to reflect the probe beam multiple times over the same cell region. Such geometry reduces the effects of atomic diffusion while preserving the advantages of multi-pass cells over standing-wave cavities, namely a deterministic number of passes and absence of interference. We have fabricated several cells with this geometry and obtained good agreement between the measured and calculated levels of quantum spin noise. We will report on our effort to characterize the diffusion spin-correlation function in these cells and operation of the cell as a magnetometer. This work is supported by DARPA.
NASA Astrophysics Data System (ADS)
Grotti, Marco; Abelmoschi, Maria Luisa; Soggia, Francesco; Tiberiade, Christian; Frache, Roberto
2000-12-01
The multivariate effects of Na, K, Mg and Ca as nitrates on the electrothermal atomisation of manganese, cadmium and iron were studied by multiple linear regression modelling. Since the models proved to efficiently predict the effects of the considered matrix elements in a wide range of concentrations, they were applied to correct the interferences occurring in the determination of trace elements in seawater after pre-concentration of the analytes. In order to obtain a statistically significant number of samples, a large volume of the certified seawater reference materials CASS-3 and NASS-3 was treated with Chelex-100 resin; then, the chelating resin was separated from the solution, divided into several sub-samples, each of them was eluted with nitric acid and analysed by electrothermal atomic absorption spectrometry (for trace element determinations) and inductively coupled plasma optical emission spectrometry (for matrix element determinations). To minimise any other systematic error besides that due to matrix effects, accuracy of the pre-concentration step and contamination levels of the procedure were checked by inductively coupled plasma mass spectrometric measurements. Analytical results obtained by applying the multiple linear regression models were compared with those obtained with other calibration methods, such as external calibration using acid-based standards, external calibration using matrix-matched standards and the analyte addition technique. Empirical models proved to efficiently reduce interferences occurring in the analysis of real samples, allowing an improvement of accuracy better than for other calibration methods.
Beck, Annelise R; Bernhardt, Birgitta; Warrick, Erika R.; ...
2014-11-07
Electronic wavepackets composed of multiple bound excited states of atomic neon lying between 19.6 and 21.5 eV are launched using an isolated attosecond pulse. Individual quantum beats of the wavepacket are detected by perturbing the induced polarization of the medium with a time-delayed few-femtosecond near-infrared (NIR) pulse via coupling the individual states to multiple neighboring levels. All of the initially excited states are monitored simultaneously in the attosecond transient absorption spectrum, revealing Lorentzian to Fano lineshape spectral changes as well as quantum beats. The most prominent beating of the several that were observed was in the spin–orbit split 3d absorptionmore » features, which has a 40 femtosecond period that corresponds to the spin–orbit splitting of 0.1 eV. The few-level models and multilevel calculations confirm that the observed magnitude of oscillation depends strongly on the spectral bandwidth and tuning of the NIR pulse and on the location of possible coupling states.« less
Mejía, Sol M; Mills, Matthew J L; Shaik, Majeed S; Mondragon, Fanor; Popelier, Paul L A
2011-05-07
Quantum Chemical Topology (QCT) is used to reveal the dynamics of atom-atom interactions in a liquid. A molecular dynamics simulation was carried out on an ethanol-water liquid mixture at its azeotropic concentration (X(ethanol)=0.899), using high-rank multipolar electrostatics. A thousand (ethanol)(9)-water heterodecamers, respecting the water-ethanol ratio of the azeotropic mixture, were extracted from the simulation. Ab initio electron densities were computed at the B3LYP/6-31+G(d) level for these molecular clusters. A video shows the dynamical behavior of a pattern of bond critical points and atomic interaction lines, fluctuating over 1 ns. A bond critical point distribution revealed the fluctuating behavior of water and ethanol molecules in terms of O-H···O, C-H···O and H···H interactions. Interestingly, the water molecule formed one to six C-H···O and one to four O-H···O interactions as a proton acceptor. We found that the more localized a dynamical bond critical point distribution, the higher the average electron density at its bond critical points. The formation of multiple C-H···O interactions affected the shape of the oxygen basin of the water molecule, which is shown in three dimensions. The hydrogen atoms of water strongly preferred to form H···H interactions with ethanol's alkyl hydrogen atoms over its hydroxyl hydrogen. This journal is © the Owner Societies 2011
DOE Office of Scientific and Technical Information (OSTI.GOV)
Universal Common Communication Substrate (UCCS) is a low-level communication substrate that exposes high-performance communication primitives, while providing network interoperability. It is intended to support multiple upper layer protocol (ULPs) or programming models including SHMEM,UPC,Titanium,Co-Array Fortran,Global Arrays,MPI,GASNet, and File I/O. it provides various communication operations including one-sided and two-sided point-to-point, collectives, and remote atomic operations. In addition to operations for ULPs, it provides an out-of-band communication channel required typically required to wire-up communication libraries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jesse, Stephen; He, Qian; Lupini, Andrew R.
2015-10-19
We demonstrate atomic-level sculpting of 3D crystalline oxide nanostructures from metastable amorphous layer in a scanning transmission electron microscope (STEM). Strontium titanate nanostructures grow epitaxially from the crystalline substrate following the beam path. This method can be used for fabricating crystalline structures as small as 1-2 nm and the process can be observed in situ with atomic resolution. We further demonstrate fabrication of arbitrary shape structures via control of the position and scan speed of the electron beam. Combined with broad availability of the atomic resolved electron microscopy platforms, these observations suggest the feasibility of large scale implementation of bulkmore » atomic-level fabrication as a new enabling tool of nanoscience and technology, providing a bottom-up, atomic-level complement to 3D printing.« less
SpectraPlot.com: Integrated spectroscopic modeling of atomic and molecular gases
NASA Astrophysics Data System (ADS)
Goldenstein, Christopher S.; Miller, Victor A.; Mitchell Spearrin, R.; Strand, Christopher L.
2017-10-01
SpectraPlot is a web-based application for simulating spectra of atomic and molecular gases. At the time this manuscript was written, SpectraPlot consisted of four primary tools for calculating: (1) atomic and molecular absorption spectra, (2) atomic and molecular emission spectra, (3) transition linestrengths, and (4) blackbody emission spectra. These tools currently employ the NIST ASD, HITRAN2012, and HITEMP2010 databases to perform line-by-line simulations of spectra. SpectraPlot employs a modular, integrated architecture, enabling multiple simulations across multiple databases and/or thermodynamic conditions to be visualized in an interactive plot window. The primary objective of this paper is to describe the architecture and spectroscopic models employed by SpectraPlot in order to provide its users with the knowledge required to understand the capabilities and limitations of simulations performed using SpectraPlot. Further, this manuscript discusses the accuracy of several underlying approximations used to decrease computational time, in particular, the use of far-wing cutoff criteria.
Determination of effective atomic number of biomedical samples using Gamma ray back-scattering
NASA Astrophysics Data System (ADS)
Singh, Inderjeet; Singh, Bhajan; Sandhu, B. S.; Sabharwal, Arvind D.
2018-05-01
The study of effective atomic number of biomedical sample has been carried out by using a non-destructive multiple back-scattering technique. Also radiation characterization method is used to compare the tissue equivalent material as human tissue. Response function of 3″ × 3″ NaI(Tl) scintillation detector is implemented on recorded pulse-height distribution to boost the counts under the photo-peak and help to reduce the uncertainty in the experimental result. Monte Carlo calculation for multiple back-scattered events supports the reported experimental work.
NASA Astrophysics Data System (ADS)
Laverick, M.; Lobel, A.; Merle, T.; Royer, P.; Martayan, C.; David, M.; Hensberge, H.; Thienpont, E.
2018-04-01
Context. Fundamental atomic parameters, such as oscillator strengths, play a key role in modelling and understanding the chemical composition of stars in the Universe. Despite the significant work underway to produce these parameters for many astrophysically important ions, uncertainties in these parameters remain large and can propagate throughout the entire field of astronomy. Aims: The Belgian repository of fundamental atomic data and stellar spectra (BRASS) aims to provide the largest systematic and homogeneous quality assessment of atomic data to date in terms of wavelength, atomic and stellar parameter coverage. To prepare for it, we first compiled multiple literature occurrences of many individual atomic transitions, from several atomic databases of astrophysical interest, and assessed their agreement. In a second step synthetic spectra will be compared against extremely high-quality observed spectra, for a large number of BAFGK spectral type stars, in order to critically evaluate the atomic data of a large number of important stellar lines. Methods: Several atomic repositories were searched and their data retrieved and formatted in a consistent manner. Data entries from all repositories were cross-matched against our initial BRASS atomic line list to find multiple occurrences of the same transition. Where possible we used a new non-parametric cross-match depending only on electronic configurations and total angular momentum values. We also checked for duplicate entries of the same physical transition, within each retrieved repository, using the non-parametric cross-match. Results: We report on the number of cross-matched transitions for each repository and compare their fundamental atomic parameters. We find differences in log(gf) values of up to 2 dex or more. We also find and report that 2% of our line list and Vienna atomic line database retrievals are composed of duplicate transitions. Finally we provide a number of examples of atomic spectral lines with different retrieved literature log(gf) values, and discuss the impact of these uncertain log(gf) values on quantitative spectroscopy. All cross-matched atomic data and duplicate transition pairs are available to download at http://brass.sdf.org
Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mannix, A. J.; Zhou, X. -F.; Kiraly, B.
At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal.
Electron impact ionization of metastable 2P-state hydrogen atoms in the coplanar geometry
NASA Astrophysics Data System (ADS)
Dhar, S.; Nahar, N.
Triple differential cross sections (TDCS) for the ionization of metastable 2P-state hydrogen atoms by electrons are calculated for various kinematic conditions in the asymmetric coplanar geometry. In this calculation, the final state is described by a multiple-scattering theory for ionization of hydrogen atoms by electrons. Results show qualitative agreement with the available experimental data and those of other theoretical computational results for ionization of hydrogen atoms from ground state, and our first Born results. There is no available other theoretical results and experimental data for ionization of hydrogen atoms from the 2P state. The present study offers a wide scope for the experimental study for ionization of hydrogen atoms from the metastable 2P state.
Jesse, Stephen; He, Qian; Lupini, Andrew R; Leonard, Donovan N; Oxley, Mark P; Ovchinnikov, Oleg; Unocic, Raymond R; Tselev, Alexander; Fuentes-Cabrera, Miguel; Sumpter, Bobby G; Pennycook, Stephen J; Kalinin, Sergei V; Borisevich, Albina Y
2015-11-25
The atomic-level sculpting of 3D crystalline oxide nanostructures from metastable amorphous films in a scanning transmission electron microscope (STEM) is demonstrated. Strontium titanate nanostructures grow epitaxially from the crystalline substrate following the beam path. This method can be used for fabricating crystalline structures as small as 1-2 nm and the process can be observed in situ with atomic resolution. The fabrication of arbitrary shape structures via control of the position and scan speed of the electron beam is further demonstrated. Combined with broad availability of the atomic resolved electron microscopy platforms, these observations suggest the feasibility of large scale implementation of bulk atomic-level fabrication as a new enabling tool of nanoscience and technology, providing a bottom-up, atomic-level complement to 3D printing. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Physics and Its Multiple Roles in the International Atomic Energy Agency
NASA Astrophysics Data System (ADS)
Massey, Charles D.
2017-01-01
The IAEA is the world's centre for cooperation in the nuclear field. It was set up as the world's ``Atoms for Peace'' organization in 1957 within the United Nations family. The Agency works with its Member States and multiple partners worldwide to promote the safe, secure and peaceful use of nuclear technologies. Three main areas of work underpin the IAEA's mission: Safety and Security, Science and Technology, and Safeguards and Verification. To carry out its mission, the Agency is authorized to encourage and assist research on, and development and practical application of, atomic energy for peaceful uses throughout the world; foster the exchange of scientific and technical information on peaceful uses of atomic energy; and encourage the exchange of training of scientists and experts in the field of peaceful uses of atomic energy. Nowadays, nuclear physics and nuclear technology are applied in a great variety of social areas, such as power production, medical diagnosis and therapies, environmental protection, security control, material tests, food processing, waste treatments, agriculture and artifacts analysis. This presentation will cover the role and practical application of physics at the IAEA, and, in particular, focus on the role physics has, and will play, in nuclear security.
Sindona, A; Pisarra, M; Maletta, S; Riccardi, P; Falcone, G
2010-12-01
Resonant neutralization of hyperthermal energy Na(+) ions impinging on Cu(100) surfaces is studied, focusing on two specific collision events: one in which the projectile is reflected off the surface, the other in which the incident atom penetrates the outer surface layers initiating a series of scattering processes, within the target, and coming out together with a single surface atom. A semi-empirical model potential is adopted that embeds: (i) the electronic structure of the sample, (ii) the central field of the projectile, and (iii) the contribution of the Cu atom ejected in multiple scattering events. The evolution of the ionization orbital of the scattered atom is simulated, backwards in time, using a wavepacket propagation algorithm. The output of the approach is the neutralization probability, obtained by projecting the time-reversed valence wavefunction of the projectile onto the initially filled conduction band states. The results are in agreement with available data from the literature (Keller et al 1995 Phys. Rev. Lett. 75 1654) indicating that the motion of surface atoms, exiting the targets with kinetic energies of the order of a few electronvolts, plays a significant role in the final charge state of projectiles.
Improved Simulations of Astrophysical Plasmas: Computation of New Atomic Data
NASA Technical Reports Server (NTRS)
Gorczyca, Thomas W.; Korista, Kirk T.
2005-01-01
Our research program is designed to carry out state-of-the-art atomic physics calculations crucial to advancing our understanding of fundamental astrophysical problems. We redress the present inadequacies in the atomic data base along two important areas: dielectronic recombination and inner-shell photoionization and multiple electron ejection/Auger fluorescence therefrom. All of these data are disseminated to the astrophysical community in the proper format for implementation in spectral simulation code.
Ting, Jason; Anderson, Iver E.; Terpstra, Robert L.
2000-03-16
A high pressure close-coupled gas atomizing nozzle includes multiple discrete gas jet discharge orifices having aerodynamically designed convergent-divergent geometry with an first converging section communicated to a gas supply manifold and to a diverging section by a constricted throat section to increase atomizing gas velocity. The gas jet orifices are oriented at gas jet apex angle selected relative to the melt supply tip apex angle to establish a melt aspiration condition at the melt supply tip.
Wang, Zhiping; Cao, Dewei; Yu, Benli
2016-05-01
We present a new scheme for three-dimensional (3D) atom localization in a three-level atomic system via measuring the absorption of a weak probe field. Owing to the space-dependent atom-field interaction, the position probability distribution of the atom can be directly determined by measuring the probe absorption. It is found that, by properly varying the parameters of the system, the probability of finding the atom in 3D space can be almost 100%. Our scheme opens a promising way to achieve high-precision and high-efficiency 3D atom localization, which provides some potential applications in laser cooling or atom nano-lithography via atom localization.
Efficient mass-selective three-photon ionization of zirconium atoms
Page, Ralph H.
1994-01-01
In an AVLIS process, .sup.91 Zr is selectively removed from natural zirconium by a three-step photoionization wherein Zr atoms are irradiated by a laser beam having a wavelength .lambda..sub.1, selectively raising .sup.91 Zr atoms to an odd-parity E.sub.1 energy level in the range of 16000-19000 cm.sup.-1, are irradiated by a laser beam having a wavelength .lambda..sub.2 to raise the atoms from an E.sub.l level to an even-parity E.sub.2 energy level in the range of 35000-37000 cm.sup.-1 and are irradiated by a laser beam having a wavelength .lambda..sub.3 to cause a resonant transition of atoms from an E.sub.2 level to an autoionizing level above 53506 cm.sup.-1. .lambda..sub.3 wavelengths of 5607, 6511 or 5756 .ANG. will excite a zirconium atom from an E.sub.2 energy state of 36344 cm.sup.-1 to an autoionizing level; a .lambda..sub.3 wavelength of 5666 .ANG. will cause an autoionizing transition from an E.sub.2 level of 36068 cm.sup.-1 ; and a .lambda. .sub.3 wavelength of 5662 .ANG. will cause an ionizing resonance of an atom at an E.sub.2 level of 35904 cm.sup.-1.
Principle and Reconstruction Algorithm for Atomic-Resolution Holography
NASA Astrophysics Data System (ADS)
Matsushita, Tomohiro; Muro, Takayuki; Matsui, Fumihiko; Happo, Naohisa; Hosokawa, Shinya; Ohoyama, Kenji; Sato-Tomita, Ayana; Sasaki, Yuji C.; Hayashi, Kouichi
2018-06-01
Atomic-resolution holography makes it possible to obtain the three-dimensional (3D) structure around a target atomic site. Translational symmetry of the atomic arrangement of the sample is not necessary, and the 3D atomic image can be measured when the local structure of the target atomic site is oriented. Therefore, 3D local atomic structures such as dopants and adsorbates are observable. Here, the atomic-resolution holography comprising photoelectron holography, X-ray fluorescence holography, neutron holography, and their inverse modes are treated. Although the measurement methods are different, they can be handled with a unified theory. The algorithm for reconstructing 3D atomic images from holograms plays an important role. Although Fourier transform-based methods have been proposed, they require the multiple-energy holograms. In addition, they cannot be directly applied to photoelectron holography because of the phase shift problem. We have developed methods based on the fitting method for reconstructing from single-energy and photoelectron holograms. The developed methods are applicable to all types of atomic-resolution holography.
Hund’s rule in superatoms with transition metal impurities
Medel, Victor M.; Reveles, Jose Ulises; Khanna, Shiv N.; Chauhan, Vikas; Sen, Prasenjit; Castleman, A. Welford
2011-01-01
The quantum states in metal clusters bunch into supershells with associated orbitals having shapes resembling those in atoms, giving rise to the concept that selected clusters could mimic the characteristics of atoms and be classified as superatoms. Unlike atoms, the superatom orbitals span over multiple atoms and the filling of orbitals does not usually exhibit Hund’s rule seen in atoms. Here, we demonstrate the possibility of enhancing exchange splitting in superatom shells via a composite cluster of a central transition metal and surrounding nearly free electron metal atoms. The transition metal d states hybridize with superatom D states and result in enhanced splitting between the majority and minority sets where the moment and the splitting can be controlled by the nature of the central atom. We demonstrate these findings through studies on TMMgn clusters where TM is a 3d atom. The clusters exhibit Hund’s filling, opening the pathway to superatoms with magnetic shells. PMID:21646542
Hund's rule in superatoms with transition metal impurities.
Medel, Victor M; Reveles, Jose Ulises; Khanna, Shiv N; Chauhan, Vikas; Sen, Prasenjit; Castleman, A Welford
2011-06-21
The quantum states in metal clusters bunch into supershells with associated orbitals having shapes resembling those in atoms, giving rise to the concept that selected clusters could mimic the characteristics of atoms and be classified as superatoms. Unlike atoms, the superatom orbitals span over multiple atoms and the filling of orbitals does not usually exhibit Hund's rule seen in atoms. Here, we demonstrate the possibility of enhancing exchange splitting in superatom shells via a composite cluster of a central transition metal and surrounding nearly free electron metal atoms. The transition metal d states hybridize with superatom D states and result in enhanced splitting between the majority and minority sets where the moment and the splitting can be controlled by the nature of the central atom. We demonstrate these findings through studies on TMMg(n) clusters where TM is a 3d atom. The clusters exhibit Hund's filling, opening the pathway to superatoms with magnetic shells.
Park, Sang Wook; Choi, Jong Youn; Siddiqui, Shariq; Sahu, Bhagawan; Galatage, Rohit; Yoshida, Naomi; Kachian, Jessica; Kummel, Andrew C
2017-02-07
Si 0.5 Ge 0.5 (110) surfaces were passivated and functionalized using atomic H, hydrogen peroxide (H 2 O 2 ), and either tetrakis(dimethylamino)titanium (TDMAT) or titanium tetrachloride (TiCl 4 ) and studied in situ with multiple spectroscopic techniques. To passivate the dangling bonds, atomic H and H 2 O 2 (g) were utilized and scanning tunneling spectroscopy (STS) demonstrated unpinning of the surface Fermi level. The H 2 O 2 (g) could also be used to functionalize the surface for metal atomic layer deposition. After subsequent TDMAT or TiCl 4 dosing followed by a post-deposition annealing, scanning tunneling microscopy demonstrated that a thermally stable and well-ordered monolayer of TiO x was deposited on Si 0.5 Ge 0.5 (110), and X-ray photoelectron spectroscopy verified that the interfaces only contained Si-O-Ti bonds and a complete absence of GeO x . STS measurements confirmed a TiO x monolayer without mid-gap and conduction band edge states, which should be an ideal ultrathin insulating layer in a metal-insulator-semiconductor structure. Regardless of the Ti precursors, the final Ti density and electronic structure were identical since the Ti bonding is limited by the high coordination of Ti to O.
DOE Office of Scientific and Technical Information (OSTI.GOV)
François, B.; Boudot, R.; Calosso, C. E.
2014-09-15
We report the development, absolute phase noise, and residual phase noise characterization of a 9.192 GHz microwave frequency synthesis chain devoted to be used as a local oscillator in a high-performance cesium vapor cell atomic clock based on coherent population trapping (CPT). It is based on frequency multiplication of an ultra-low phase noise 100 MHz oven-controlled quartz crystal oscillator using a nonlinear transmission line-based chain. Absolute phase noise performances of the 9.192 GHz output signal are measured to be −42, −100, −117 dB rad{sup 2}/Hz and −129 dB rad{sup 2}/Hz at 1 Hz, 100 Hz, 1 kHz, and 10 kHz offset frequencies, respectively. Comparedmore » to current results obtained in a state-of-the-art CPT-based frequency standard developed at LNE-SYRTE, this represents an improvement of 8 dB and 10 dB at f = 166 Hz and f = 10 kHz, respectively. With such performances, the expected Dick effect contribution to the atomic clock short term frequency stability is reported at a level of 6.2 × 10{sup −14} at 1 s integration time, that is a factor 3 higher than the atomic clock shot noise limit. Main limitations are pointed out.« less
NASA Astrophysics Data System (ADS)
Kaur, Paramjit; Wasan, Ajay
2017-03-01
We present a theoretical model, using density matrix approach, to study the effect of external longitudinal and transverse magnetic fields on the optical properties of an inhomogeneously broadened multilevel Λ-system using the D2 line in 85Rb and 87Rb atoms. The presence of closely spaced multiple excited states causes asymmetry in the absorption and dispersion profiles. We observe a wide EIT window with a positive slope at the line center for a stationary atom. While for a moving atom, the linewidth of EIT window reduces and positive dispersion becomes steeper. When magnetic field is applied, our calculations show multiple EIT subwindows that are significantly narrower and shallow than single EIT window. The number of EIT subwindows depend on the orientation of the magnetic field. We also obtain multiple positive dispersive regions for subluminal propagation in the medium. The anomalous dispersion exists in between two subwindows showing the superluminal light propagation. Our theoretical analysis explain the experiments performed by Wei et al. [Phys. Rev. A 72, 023806 (2005)] and Iftiquar et al. [Phys. Rev. A 79, 013808 (2009)].
On the theory and simulation of multiple Coulomb scattering of heavy-charged particles.
Striganov, S I
2005-01-01
The Moliere theory of multiple Coulomb scattering is modified to take into account the difference between processes of scattering off atomic nuclei and electrons. A simple analytical expression for angular distribution of charged particles passing through a thick absorber is found. It does not assume any special form for a differential scattering cross section and has a wider range of applicability than a gaussian approximation. A well-known method to simulate multiple Coulomb scatterings is based on treating 'soft' and 'hard' collisions differently. An angular deflection in a large number of 'soft' collisions is sampled using the proposed distribution function, a small number of 'hard' collision are simulated directly. A boundary between 'hard' and 'soft' collisions is defined, providing a precise sampling of a scattering angle (1% level) and a small number of 'hard' collisions. A corresponding simulating module takes into account projectile and nucleus charged distributions and exact kinematics of a projectile-electron interaction.
An open source digital servo for atomic, molecular, and optical physics experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leibrandt, D. R., E-mail: david.leibrandt@nist.gov; Heidecker, J.
2015-12-15
We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical physics experiments. The servo is capable of feedback bandwidths up to roughly 1 MHz (limited by the 320 ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of themore » laser used to probe the narrow clock transition of {sup 27}Al{sup +} in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser.« less
An open source digital servo for atomic, molecular, and optical physics experiments.
Leibrandt, D R; Heidecker, J
2015-12-01
We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical physics experiments. The servo is capable of feedback bandwidths up to roughly 1 MHz (limited by the 320 ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of the laser used to probe the narrow clock transition of (27)Al(+) in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser.
An open source digital servo for atomic, molecular, and optical physics experiments
NASA Astrophysics Data System (ADS)
Leibrandt, D. R.; Heidecker, J.
2015-12-01
We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical physics experiments. The servo is capable of feedback bandwidths up to roughly 1 MHz (limited by the 320 ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of the laser used to probe the narrow clock transition of 27Al+ in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser.
An open source digital servo for atomic, molecular, and optical physics experiments
Leibrandt, D. R.; Heidecker, J.
2016-01-01
We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical physics experiments. The servo is capable of feedback bandwidths up to roughly 1 MHz (limited by the 320 ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of the laser used to probe the narrow clock transition of 27Al+ in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser. PMID:26724014
Sensing Atomic Motion from the Zero Point to Room Temperature with Ultrafast Atom Interferometry.
Johnson, K G; Neyenhuis, B; Mizrahi, J; Wong-Campos, J D; Monroe, C
2015-11-20
We sense the motion of a trapped atomic ion using a sequence of state-dependent ultrafast momentum kicks. We use this atom interferometer to characterize a nearly pure quantum state with n=1 phonon and accurately measure thermal states ranging from near the zero-point energy to n[over ¯]~10^{4}, with the possibility of extending at least 100 times higher in energy. The complete energy range of this method spans from the ground state to far outside of the Lamb-Dicke regime, where atomic motion is greater than the optical wavelength. Apart from thermometry, these interferometric techniques are useful for characterizing ultrafast entangling gates between multiple trapped ions.
Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs.
Mannix, Andrew J; Zhou, Xiang-Feng; Kiraly, Brian; Wood, Joshua D; Alducin, Diego; Myers, Benjamin D; Liu, Xiaolong; Fisher, Brandon L; Santiago, Ulises; Guest, Jeffrey R; Yacaman, Miguel Jose; Ponce, Arturo; Oganov, Artem R; Hersam, Mark C; Guisinger, Nathan P
2015-12-18
At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal. Copyright © 2015, American Association for the Advancement of Science.
Parallel Low-Loss Measurement of Multiple Atomic Qubits
NASA Astrophysics Data System (ADS)
Kwon, Minho; Ebert, Matthew F.; Walker, Thad G.; Saffman, M.
2017-11-01
We demonstrate low-loss measurement of the hyperfine ground state of rubidium atoms by state dependent fluorescence detection in a dipole trap array of five sites. The presence of atoms and their internal states are minimally altered by utilizing circularly polarized probe light and a strictly controlled quantization axis. We achieve mean state detection fidelity of 97% without correcting for imperfect state preparation or background losses, and 98.7% when corrected. After state detection and correction for background losses, the probability of atom loss due to the state measurement is <2 % and the initial hyperfine state is preserved with >98 % probability.
Pang, Yuan-Ping
2016-09-01
Predicting crystallographic B-factors of a protein from a conventional molecular dynamics simulation is challenging, in part because the B-factors calculated through sampling the atomic positional fluctuations in a picosecond molecular dynamics simulation are unreliable, and the sampling of a longer simulation yields overly large root mean square deviations between calculated and experimental B-factors. This article reports improved B-factor prediction achieved by sampling the atomic positional fluctuations in multiple picosecond molecular dynamics simulations that use uniformly increased atomic masses by 100-fold to increase time resolution. Using the third immunoglobulin-binding domain of protein G, bovine pancreatic trypsin inhibitor, ubiquitin, and lysozyme as model systems, the B-factor root mean square deviations (mean ± standard error) of these proteins were 3.1 ± 0.2-9 ± 1 Å 2 for Cα and 7.3 ± 0.9-9.6 ± 0.2 Å 2 for Cγ, when the sampling was done for each of these proteins over 20 distinct, independent, and 50-picosecond high-mass molecular dynamics simulations with AMBER forcefield FF12MC or FF14SB. These results suggest that sampling the atomic positional fluctuations in multiple picosecond high-mass molecular dynamics simulations may be conducive to a priori prediction of crystallographic B-factors of a folded globular protein.
Effect of Spin Multiplicity in O2 Adsorption and Dissociation on Small Bimetallic AuAg Clusters.
García-Cruz, Raúl; Poulain, Enrique; Hernández-Pérez, Isaías; Reyes-Nava, Juan A; González-Torres, Julio C; Rubio-Ponce, A; Olvera-Neria, Oscar
2017-08-17
To dispose of atomic oxygen, it is necessary the O 2 activation; however, an energy barrier must be overcome to break the O-O bond. This work presents theoretical calculations of the O 2 adsorption and dissociation on small pure Au n and Ag m and bimetallic Au n Ag m (n + m ≤ 6) clusters using the density functional theory (DFT) and the zeroth-order regular approximation (ZORA) to explicitly include scalar relativistic effects. The most stable Au n Ag m clusters contain a higher concentration of Au with Ag atoms located in the center of the cluster. The O 2 adsorption energy on pure and bimetallic clusters and the ensuing geometries depend on the spin multiplicity of the system. For a doublet multiplicity, O 2 is adsorbed in a bridge configuration, whereas for a triplet only one O-metal bond is formed. The charge transfer from metal toward O 2 occupies the σ* O-O antibonding natural bond orbital, which weakens the oxygen bond. The Au 3 ( 2 A) cluster presents the lowest activation energy to dissociate O 2 , whereas the opposite applies to the AuAg ( 3 A) system. In the O 2 activation, bimetallic clusters are not as active as pure Au n clusters due to the charge donated by Ag atoms being shared between O 2 and Au atoms.
SKIRT: Hybrid parallelization of radiative transfer simulations
NASA Astrophysics Data System (ADS)
Verstocken, S.; Van De Putte, D.; Camps, P.; Baes, M.
2017-07-01
We describe the design, implementation and performance of the new hybrid parallelization scheme in our Monte Carlo radiative transfer code SKIRT, which has been used extensively for modelling the continuum radiation of dusty astrophysical systems including late-type galaxies and dusty tori. The hybrid scheme combines distributed memory parallelization, using the standard Message Passing Interface (MPI) to communicate between processes, and shared memory parallelization, providing multiple execution threads within each process to avoid duplication of data structures. The synchronization between multiple threads is accomplished through atomic operations without high-level locking (also called lock-free programming). This improves the scaling behaviour of the code and substantially simplifies the implementation of the hybrid scheme. The result is an extremely flexible solution that adjusts to the number of available nodes, processors and memory, and consequently performs well on a wide variety of computing architectures.
Preparation of Ultracold Atom Clouds at the Shot Noise Level.
Gajdacz, M; Hilliard, A J; Kristensen, M A; Pedersen, P L; Klempt, C; Arlt, J J; Sherson, J F
2016-08-12
We prepare number stabilized ultracold atom clouds through the real-time analysis of nondestructive images and the application of feedback. In our experiments, the atom number N∼10^{6} is determined by high precision Faraday imaging with uncertainty ΔN below the shot noise level, i.e., ΔN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levine, Benjamin G., E-mail: ben.levine@temple.ed; Stone, John E., E-mail: johns@ks.uiuc.ed; Kohlmeyer, Axel, E-mail: akohlmey@temple.ed
2011-05-01
The calculation of radial distribution functions (RDFs) from molecular dynamics trajectory data is a common and computationally expensive analysis task. The rate limiting step in the calculation of the RDF is building a histogram of the distance between atom pairs in each trajectory frame. Here we present an implementation of this histogramming scheme for multiple graphics processing units (GPUs). The algorithm features a tiling scheme to maximize the reuse of data at the fastest levels of the GPU's memory hierarchy and dynamic load balancing to allow high performance on heterogeneous configurations of GPUs. Several versions of the RDF algorithm aremore » presented, utilizing the specific hardware features found on different generations of GPUs. We take advantage of larger shared memory and atomic memory operations available on state-of-the-art GPUs to accelerate the code significantly. The use of atomic memory operations allows the fast, limited-capacity on-chip memory to be used much more efficiently, resulting in a fivefold increase in performance compared to the version of the algorithm without atomic operations. The ultimate version of the algorithm running in parallel on four NVIDIA GeForce GTX 480 (Fermi) GPUs was found to be 92 times faster than a multithreaded implementation running on an Intel Xeon 5550 CPU. On this multi-GPU hardware, the RDF between two selections of 1,000,000 atoms each can be calculated in 26.9 s per frame. The multi-GPU RDF algorithms described here are implemented in VMD, a widely used and freely available software package for molecular dynamics visualization and analysis.« less
Stone, John E.; Kohlmeyer, Axel
2011-01-01
The calculation of radial distribution functions (RDFs) from molecular dynamics trajectory data is a common and computationally expensive analysis task. The rate limiting step in the calculation of the RDF is building a histogram of the distance between atom pairs in each trajectory frame. Here we present an implementation of this histogramming scheme for multiple graphics processing units (GPUs). The algorithm features a tiling scheme to maximize the reuse of data at the fastest levels of the GPU’s memory hierarchy and dynamic load balancing to allow high performance on heterogeneous configurations of GPUs. Several versions of the RDF algorithm are presented, utilizing the specific hardware features found on different generations of GPUs. We take advantage of larger shared memory and atomic memory operations available on state-of-the-art GPUs to accelerate the code significantly. The use of atomic memory operations allows the fast, limited-capacity on-chip memory to be used much more efficiently, resulting in a fivefold increase in performance compared to the version of the algorithm without atomic operations. The ultimate version of the algorithm running in parallel on four NVIDIA GeForce GTX 480 (Fermi) GPUs was found to be 92 times faster than a multithreaded implementation running on an Intel Xeon 5550 CPU. On this multi-GPU hardware, the RDF between two selections of 1,000,000 atoms each can be calculated in 26.9 seconds per frame. The multi-GPU RDF algorithms described here are implemented in VMD, a widely used and freely available software package for molecular dynamics visualization and analysis. PMID:21547007
The Nature of the Interactions in Triethanolammonium-Based Ionic Liquids. A Quantum Chemical Study.
Fedorova, Irina V; Safonova, Lyubov P
2018-05-10
Structural features and interionic interactions play a crucial role in determining the overall stability of ionic liquids and their physicochemical properties. Therefore, we performed high-level quantum-chemical study of different cation-anion pairs representing the building units of protic ionic liquids based on triethanolammonium cation and anions of sulfuric, nitric, phosphoric, and phosphorus acids to provide essential insight into these phenomena at the molecular level. It was shown that every structure is stabilized through multiple H bonds between the protons in the N-H and O-H groups of the cation and different oxygen atoms of the anion acid. Using atoms in molecules topological parameters and natural bond orbital analysis, we determined the nature and strength of these interactions. Our calculations suggest that the N-H group of the cation has more proton donor-like character than the O-H group that makes the N-H···O hydrogen bonds stronger. A close relation between the binding energies of these ion pairs and experimental melting points was established: the smaller the absolute value of the binding energy between ions, the lower is the melting point.
Efficient mass-selective three-photon ionization of zirconium atoms
Page, R.H.
1994-12-27
In an AVLIS process, [sup 91]Zr is selectively removed from natural zirconium by a three-step photoionization wherein Zr atoms are irradiated by a laser beam having a wavelength [lambda][sub 1], selectively raising [sup 91]Zr atoms to an odd-parity E[sub 1] energy level in the range of 16000--19000 cm[sup [minus]1], are irradiated by a laser beam having a wavelength [lambda][sub 2] to raise the atoms from an E[sub l] level to an even-parity E[sub 2] energy level in the range of 35000--37000 cm[sup [minus]1] and are irradiated by a laser beam having a wavelength [lambda][sub 3] to cause a resonant transition of atoms from an E[sub 2] level to an autoionizing level above 53506 cm[sup [minus]1][lambda][sub 3] wavelengths of 5607, 6511 or 5756 [angstrom] will excite a zirconium atom from an E[sub 2] energy state of 36344 cm[sup [minus]1] to an autoionizing level; a [lambda][sub 3] wavelength of 5666 [angstrom] will cause an autoionizing transition from an E[sub 2] level of 36068 cm[sup [minus]1]; and a [lambda][sub 3] wavelength of 5662 [angstrom] will cause an ionizing resonance of an atom at an E[sub 2] level of 35904 cm[sup [minus]1]. 4 figures.
The effect of leveling coatings on the atomic oxygen durability of solar concentrator surfaces
NASA Technical Reports Server (NTRS)
Degroh, Kim K.; Dever, Therese M.; Quinn, William F.
1990-01-01
Space power systems for Space Station Freedom will be exposed to the harsh environment of low earth orbit (LEO). Neutral atomic oxygen is the major constituent in LEO and has the potential of severely reducing the efficiency of solar dynamic power systems through degradation of the concentrator surfaces. Several transparent dielectric thin films have been found to provide atomic oxygen protection, but atomic oxygen undercutting at inherent defect sites is still a threat to solar dynamic power system survivability. Leveling coatings smooth microscopically rough surfaces, thus eliminating potential defect sites prone to oxidation attack on concentrator surfaces. The ability of leveling coatings to improve the atomic oxygen durability of concentrator surfaces was investigated. The application of a EPO-TEK 377 epoxy leveling coating on a graphite epoxy substrate resulted in an increase in solar specular reflectance, a decrease in the atomic oxygen defect density by an order of magnitude and a corresponding order of magnitude decrease in the percent loss of specular reflectance during atomic oxygen plasma ashing.
Ground Levels and Ionization Energies for the Neutral Atoms
National Institute of Standards and Technology Data Gateway
SRD 111 Ground Levels and Ionization Energies for the Neutral Atoms (Web, free access) Data for ground state electron configurations and ionization energies for the neutral atoms (Z = 1-104) including references.
NASA Astrophysics Data System (ADS)
Barati, Fatemeh; Grossnickle, Max; Su, Shanshan; Lake, Roger; Aji, Vivek; Gabor, Nathaniel
Two-dimensional heterostructures composed of atomically thin transition metal dichalcogenides provide the opportunity to design novel devices for the study of electron-hole pair multiplication. We report on highly efficient multiplication of interlayer electron-hole pairs at the interface of a tungsten diselenide / molybdenum diselenide heterostructure. Electronic transport measurements of the interlayer current-voltage characteristics indicate that layer-indirect electron-hole pairs are generated by hot electron impact excitation. Our findings, which demonstrate an efficient energy relaxation pathway that competes with electron thermalization losses, make 2D semiconductor heterostructures viable for a new class of hot-carrier energy harvesting devices that exploit layer-indirect electron-hole excitations. SHINES, an Energy Frontier Research Center funded by the U.S. Department of Energy, Air Force Office of Scientific Research.
Radio-frequency-modulated Rydberg states in a vapor cell
NASA Astrophysics Data System (ADS)
Miller, S. A.; Anderson, D. A.; Raithel, G.
2016-05-01
We measure strong radio-frequency (RF) electric fields using rubidium Rydberg atoms prepared in a room-temperature vapor cell as field sensors. Electromagnetically induced transparency is employed as an optical readout. We RF-modulate the 60{{{S}}}1/2 and 58{{{D}}}5/2 Rydberg states with 50 and 100 MHz fields, respectively. For weak to moderate RF fields, the Rydberg levels become Stark-shifted, and sidebands appear at even multiples of the driving frequency. In high fields, the adjacent hydrogenic manifold begins to intersect the shifted levels, providing rich spectroscopic structure suitable for precision field measurements. A quantitative description of strong-field level modulation and mixing of S and D states with hydrogenic states is provided by Floquet theory. Additionally, we estimate the shielding of DC electric fields in the interior of the glass vapor cell.
NASA Technical Reports Server (NTRS)
Chuang, L. S.; Chan, K. W.; Wada, M.
1985-01-01
Cosmic ray particles at sea level penetrate a thick layer of dense medium without appreciable interaction. These penetrating particles are identified with muons. The only appreciable interaction of muons are by knock on processes. A muon may have single, double or any number of knock on with atoms of the material so that one, two, three or more particles will come out from the medium in which the knock on processes occur. The probability of multiparticle production is expected to decrease with the increase of multiplicity. Measurements of the single, double, and triple particles generated in a dense medium (Fe and Al) by sea level cosmic rays at 22.42 N. Lat. and 114.20 E. Long. (Hong Kong) are presented using a detector composed of two plastic scintillators connected in coincidence.
Zhao, Yanying; Gong, Yu; Chen, Mohua; Ding, Chuanfan; Zhou, Mingfei
2005-12-29
The combination of matrix isolation infrared spectroscopic and quantum chemical calculation results provide strong evidence that scandium and yttrium monoxide cations, ScO+ and YO+, coordinate multiple noble gas atoms in forming noble gas complexes. The results showed that ScO+ coordinates five Ar, Kr, or Xe atoms, and YO+ coordinates six Ar or Kr and five Xe atoms in solid noble gas matrixes. Hence, the ScO+ and YO+ cations trapped in solid noble gas matrixes should be regarded as the [ScO(Ng)5]+ (Ng = Ar, Kr, or Xe), [YO(Ng)6]+ (Ng = Ar or Kr) or [YO(Xe)5]+ complexes. Experiments with dilute krypton or xenon in argon or krypton in xenon produced new IR bands, which are due to the stepwise formation of the [ScO(Ar)(5-n)(Kr)n]+, [ScO(Kr)(5-n)(Xe)n]+ (n = 1-5), [YO(Ar)(6-n)(Kr)n]+ (n = 1-6), and [YO(Ar)(6-n)(Xe)n]+ (n = 1-4) complexes.
Golmohammadi, Hassan
2009-11-30
A quantitative structure-property relationship (QSPR) study was performed to develop models those relate the structure of 141 organic compounds to their octanol-water partition coefficients (log P(o/w)). A genetic algorithm was applied as a variable selection tool. Modeling of log P(o/w) of these compounds as a function of theoretically derived descriptors was established by multiple linear regression (MLR), partial least squares (PLS), and artificial neural network (ANN). The best selected descriptors that appear in the models are: atomic charge weighted partial positively charged surface area (PPSA-3), fractional atomic charge weighted partial positive surface area (FPSA-3), minimum atomic partial charge (Qmin), molecular volume (MV), total dipole moment of molecule (mu), maximum antibonding contribution of a molecule orbital in the molecule (MAC), and maximum free valency of a C atom in the molecule (MFV). The result obtained showed the ability of developed artificial neural network to prediction of partition coefficients of organic compounds. Also, the results revealed the superiority of ANN over the MLR and PLS models. Copyright 2009 Wiley Periodicals, Inc.
Mechanistic characterization of chloride interferences in electrothermal atomization systems
Shekiro, J.M.; Skogerboe, R.K.; Taylor, Howard E.
1988-01-01
A computer-controlled spectrometer with a photodiode array detector has been used for wavelength and temperature resolved characterization of the vapor produced by an electrothermal atomizer. The system has been used to study the chloride matrix interference on the atomic absorption spectrometric determination of manganese and copper. The suppression of manganese and copper atom populations by matrix chlorides such as those of calcium and magnesium is due to the gas-phase formation of an analyte chloride species followed by the diffusion of significant fractions of these species from the atom cell prior to completion of the atomization process. The analyte chloride species cannot be formed when matrix chlorides with metal-chloride bond dissociation energies above those of the analyte chlorides are the principal entitles present. The results indicate that multiple wavelength spectrometry used to obtain temperature-resolved spectra is a viable tool in the mechanistic characterization of interference effects observed with electrothermal atomization systems. ?? 1988 American Chemical Society.
Compact atom interferometer using single laser
NASA Astrophysics Data System (ADS)
Chiow, Sheng-wey; Yu, Nan
2018-06-01
A typical atom interferometer requires vastly different laser frequencies at different stages of operation, e.g., near resonant light for laser cooling and far detuned light for atom optics, such that multiple lasers are typically employed. The number of laser units constrains the achievable minimum size and power in practical devices for resource critical environments such as space. We demonstrate a compact atom interferometer accelerometer operated by a single diode laser. This is achieved by dynamically changing the laser output frequency in GHz range while maintaining spectroscopic reference to an atomic transition via a sideband generated by phase modulation. At the same time, a beam path sharing configuration is also demonstrated for a compact sensor head design, in which atom interferometer beams share the same path as that of the cooling beam. This beam path sharing also significantly simplifies three-axis atomic accelerometry in microgravity using single sensor head.
Patterns of Hierarchical Structure in the Medical Lexicon
Michael, Patricia A.; Cole, William G.; Stewart, James; Blois, Marsden S.
1987-01-01
Concepts in basic and clinical medical science cover a wide range of levels of description, from the subatomic level to the level of the patient as a whole. Medical language may have usage regularities consistent with this hierarchical nature of medical knowledge. Preliminary studies of word occurrence in abstracts drawn from three medical journals representing three broadly defined levels of description (chemical system, physiologic system, and patient as a whole) demonstrated a nonuniform word usage, with many words unique to one or another journal. In this present study, word occurrence was examined in an expanded pool of medical text consisting of sixteen textbooks representing ten different levels of description: atom/ion, micromolecule, macromolecule, organelle, cell, tissue, organ, physiologic system, major body part (or multiple physiologic systems) and patient as a whole. Word usage was found to be nonuniform, with many words unique to specific levels. The presence of such usage regularities may provide a basis for facilitating the automatic classification and retrieval of medical text.
NASA Technical Reports Server (NTRS)
Rutledge, Sharon K.; Banks, Bruce A.
1996-01-01
Material erosion data collected during flight experiments such as the Environmental Oxygen Interaction with Materials (EOIM)-3 and the Long Duration Exposure Facility (LDEF) have raised questions as to the sensitivity of material erosion to levels of atomic oxygen exposure and vacuum ultraviolet (VUV) radiation. The erosion sensitivity of some materials such as FEP Teflon used as a thermal control material on satellites in low Earth orbit (LEO), is particularly important but difficult to determine. This is in large part due to the inability to hold all but one exposure parameter constant during a flight experiment. This is also difficult to perform in a ground based facility, because often the variation of the level of atomic oxygen or VUV radiation also results in a change in the level of the other parameter. A facility has been developed which allows each parameter to be changed almost independently and offer broad area exposure. The resulting samples can be made large enough for mechanical testing. The facility uses an electron cyclotron resonance plasma source to provide the atomic oxygen. A series of glass plates is used to focus the atomic oxygen while filtering the VUV radiation from the plasma source. After filtering, atomic oxygen effective flux levels can still be measured which are as high as 7 x 10(exp 15) atoms/cm(exp 2)-sec which is adequate for accelerated testing. VUV radiation levels after filtering can be as low as 0.3 suns. Additional VUV suns can be added with the use of deuterium lamps which allow the VUV level to be changed while keeping the flux of atomic oxygen constant. This paper discusses the facility, and results from exposure of Kapton and FEP at pre-determined atomic oxygen flux and VUV sun levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laursen, S.L.
Investigations of chemical reactions on electronically excited reaction surfaces are presented. The role of excited-surface multiplicity is of particular interest, as are chemical reactivity and energy transfer in systems in which photochemistry is initiated through a metal atom sensitizer.'' Two approaches are employed: A heavy-atom matrix affords access to forbidden triplet reaction surfaces, eliminating the need for a potentially reactive sensitizer. Later, the role of the metal atom in the photosensitization process is examined directly.
Tunneling and traversal of ultracold three-level atoms through vacuum-induced potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badshah, Fazal; Irfan, Muhammad; Qamar, Shahid
2011-09-15
The passage of ultracold three-level atoms through the potential induced by the vacuum cavity mode is discussed using cascade atomic configuration. We study the tunneling or traversal time of the ultracold atoms via a bimodal high-Q cavity. It is found that the phase time, which may be considered as a measure for the time required to traverse the cavity, exhibits superclassical and subclassical behaviors. Further, the dark states and interference effects in cascade atomic configuration may influence the passage time of the atom through the cavity.
NASA Astrophysics Data System (ADS)
Levashov, V. A.
2014-11-01
In order to gain insight into the connection between the vibrational dynamics and the atomic-level Green-Kubo stress correlation function in liquids, we consider this connection in a model crystal instead. Of course, vibrational dynamics in liquids and crystals are quite different and it is not expected that the results obtained on a model crystal should be valid for liquids. However, these considerations provide a benchmark to which the results of the previous molecular dynamics simulations can be compared. Thus, assuming that vibrations are plane waves, we derive analytical expressions for the atomic-level stress correlation functions in the classical limit and analyze them. These results provide, in particular, a recipe for analysis of the atomic-level stress correlation functions in Fourier space and extraction of the wave-vector and frequency-dependent information. We also evaluate the energies of the atomic-level stresses. The energies obtained are significantly smaller than the energies previously determined in molecular dynamics simulations of several model liquids. This result suggests that the average energies of the atomic-level stresses in liquids and glasses are largely determined by the structural disorder. We discuss this result in the context of equipartition of the atomic-level stress energies. Analysis of the previously published data suggests that it is possible to speak about configurational and vibrational contributions to the average energies of the atomic-level stresses in a glass state. However, this separation in a liquid state is problematic. We also introduce and briefly consider the atomic-level transverse current correlation function. Finally, we address the broadening of the peaks in the pair distribution function with increase of distance. We find that the peaks' broadening (by ≈40 % ) occurs due to the transverse vibrational modes, while contribution from the longitudinal modes does not change with distance.
Li, Xiang; Eustis, Soren N; Bowen, Kit H; Kandalam, Anil
2008-09-28
The gas-phase, iron and cobalt cyclooctatetraene cluster anions, [Fe(1,2)(COT)](-) and [Co(COT)](-), were generated using a laser vaporization source and studied using mass spectrometry and anion photoelectron spectroscopy. Density functional theory was employed to compute the structures and spin multiplicities of these cluster anions as well as those of their corresponding neutrals. Both experimental and theoretically predicted electron affinities and photodetachment transition energies are in good agreement, authenticating the structures and spin multiplicities predicted by theory. The implied spin magnetic moments of these systems suggest that [Fe(COT)], [Fe(2)(COT)], and [Co(COT)] retain the magnetic moments of the Fe atom, the Fe(2) dimer, and the Co atom, respectively. Thus, the interaction of these transition metal, atomic and dimeric moieties with a COT molecule does not quench their magnetic moments, leading to the possibility that these combinations may be useful in forming novel magnetic materials.
Hyde, Jonathan M; DaCosta, Gérald; Hatzoglou, Constantinos; Weekes, Hannah; Radiguet, Bertrand; Styman, Paul D; Vurpillot, Francois; Pareige, Cristelle; Etienne, Auriane; Bonny, Giovanni; Castin, Nicolas; Malerba, Lorenzo; Pareige, Philippe
2017-04-01
Irradiation of reactor pressure vessel (RPV) steels causes the formation of nanoscale microstructural features (termed radiation damage), which affect the mechanical properties of the vessel. A key tool for characterizing these nanoscale features is atom probe tomography (APT), due to its high spatial resolution and the ability to identify different chemical species in three dimensions. Microstructural observations using APT can underpin development of a mechanistic understanding of defect formation. However, with atom probe analyses there are currently multiple methods for analyzing the data. This can result in inconsistencies between results obtained from different researchers and unnecessary scatter when combining data from multiple sources. This makes interpretation of results more complex and calibration of radiation damage models challenging. In this work simulations of a range of different microstructures are used to directly compare different cluster analysis algorithms and identify their strengths and weaknesses.
Point defect induced segregation of alloying solutes in α-Fe
NASA Astrophysics Data System (ADS)
You, Yu-Wei; Zhang, Yange; Li, Xiangyan; Xu, Yichun; Liu, C. S.; Chen, J. L.; Luo, G.-N.
2016-10-01
Segregation of alloying solute toward clusters and precipitates can result in hardening and embrittlement of ferritic and ferritic/martensitic steels in aging nuclear power plants. Thus, it is essential to study the segregation of solute in α-Fe. In this study, the segregation of eight kinds of alloying solutes (Al, Si, P, S, Ga, Ge, As, Se) in defect-free system and at vacancy, divacancy, and self-interstitial atom in α-Fe has been systematically studied by first-principles calculations. We find that it is energetically favorable for multiple solute S or Se atoms to segregate in defect-free system to form solute clusters, whereas it is very difficult for the other solute atoms to form the similar clusters. With the presence of vacancy and divacancy, the segregation of all the solutes are significantly promoted to form vacancy-solute and divacancy-solute clusters. The divacancy-solute cluster is more stable than the vacancy-solute cluster. The most-stable self-interstitial atom 〈110〉 dumbbell is also found to tightly bind with multiple solute atoms. The 〈110〉-S is even more stable than divacancy-S cluster. Meanwhile, the law of mass action is employed to predict the concentration evolution of vacancy-Si, vacancy-P, and vacancy-S clusters versus temperature and vacancy concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, X.Q.
1992-01-01
The authors have studied a simple model consisting of a chain of atoms with two atoms per unit cell. This model develops two bands when the inter-cell and intra-cell hopping amplitudes are different. They have found that superconductivity predominantly occurs when the Fermi level is close to the top of the upper band where the wavefunction has antibonding feature both inside the unit cell and between unit cells. Superconductivity occurs only in a restricted parameter range when the Fermi level is close to the top of the lower band because of the repulsive interaction within the unit cell. They findmore » that pair expectation values that 'mix' carriers of both bands can exist when interband interactions other than V12 of Suhl et al are present. But the magnitude of the 'mixed pairs' order parameters is much smaller than that of the intra-band pairs. The V12 of Suhl et al is the most important interband interaction that gives rise to the main features of a two-band model: a single transition temperature and two different gaps. They have used the model of hole superconductivity to study the variation of T(sub c) among transition metal series--the Matthias rules. They have found that the observed T(sub c)'s are consistent with superconductivity of a metal with multiple bands at the Fermi level being caused by the single band with strongest antibonding character at the Fermi level. When the Fermi level is the lower part of a band, there is no T(sub c). As the band is gradually filled, T(sub c) rises, passes through a maximum, then drops to zero when the band is full. This characteristic feature is independent of any fine structure of the band. The position of the peak and the width of the peak are correlated. Quantitative agreement with the experimental results is obtained by choosing parameters of onsite Coulomb interaction U, modulated hopping term Delta-t, and nearest neighbor repulsion V to fit the magnitude of T(sub c) and the positions of experimental peaks.« less
Iwanaga, Masako; Tomonaga, Masao
2014-02-01
Exposure to ionizing radiation is a known environmental risk factor for a variety of cancers including hematological malignancies, such as leukemia, myelodysplastic syndromes, and multiple myeloma. Therefore, for Hiroshima and Nagasaki atomic bomb survivors (surviving victims who were exposed to ionizing radiation emitted from the nuclear weapons), several cancer-screening tests have been provided annually, with government support, to detect the early stage of malignancies. An M-protein screening test has been used to detect multiple myeloma at an early stage among atomic bomb survivors. In the screening process, a number of patients with monoclonal gammopathy of undetermined significance (MGUS), in addition to multiple myeloma, have been identified. In 2009 and 2011, we reported the age- and sex-specific prevalence of MGUS between 1988 and 2004 and the possible role of radiation exposure in the development of MGUS using the screening data of more than 1000 patients with MGUS among approximately 52,000 Nagasaki atomic bomb survivors. The findings included: (1) a significant lower overall prevalence (2.1%) than that observed in Caucasian or African-origin populations; (2) a significantly higher prevalence in men than in women; (3) an age-related increase in the prevalence; (4) a significantly higher prevalence in people exposed to higher radiation doses only among those exposed at age 20 years or younger; and (5) a lower frequency of immunoglobulin M MGUS in Japanese patients than in patients in Western countries. The large study of MGUS among Nagasaki atomic bomb survivors has provided important findings for the etiology of MGUS, including a possible role of radiation exposure on the cause of MGUS and an ethnicity-related difference in the characteristics of MGUS. Copyright © 2014 Elsevier Inc. All rights reserved.
Atom-field dressed states in slow-light waveguide QED
NASA Astrophysics Data System (ADS)
Calajó, Giuseppe; Ciccarello, Francesco; Chang, Darrick; Rabl, Peter
2016-03-01
We discuss the properties of atom-photon bound states in waveguide QED systems consisting of single or multiple atoms coupled strongly to a finite-bandwidth photonic channel. Such bound states are formed by an atom and a localized photonic excitation and represent the continuum analog of the familiar dressed states in single-mode cavity QED. Here we present a detailed analysis of the linear and nonlinear spectral features associated with single- and multiphoton dressed states and show how the formation of bound states affects the waveguide-mediated dipole-dipole interactions between separated atoms. Our results provide both a qualitative and quantitative description of the essential strong-coupling processes in waveguide QED systems, which are currently being developed in the optical and microwave regimes.
General properties of quantum optical systems in a strong field limit
NASA Technical Reports Server (NTRS)
Chumakov, S. M.; Klimov, Andrei B.
1994-01-01
We investigate the dynamics of an arbitrary atomic system (n-level atoms or many n-level atoms) interacting with a resonant quantized mode of an em field. If the initial field state is a coherent state with a large photon number then the system dynamics possesses some general features, independently of the particular structure of the atomic system. Namely, trapping states, factorization of the wave function, collapses and revivals of the atomic energy oscillations are discussed.
Quantum Computation by Optically Coupled Steady Atoms/Quantum-Dots Inside a Quantum Cavity
NASA Technical Reports Server (NTRS)
Pradhan, P.; Wang, K. L.; Roychowdhury, V. P.; Anantram, M. P.; Mor, T.; Saini, Subhash (Technical Monitor)
1999-01-01
We present a model for quantum computation using $n$ steady 3-level atoms kept inside a quantum cavity, or using $n$ quantum-dots (QDs) kept inside a quantum cavity. In this model one external laser is pointed towards all the atoms/QDs, and $n$ pairs of electrodes are addressing the atoms/QDs, so that each atom is addressed by one pair. The energy levels of each atom/QD are controlled by an external Stark field given to the atom/QD by its external pair of electrodes. Transition between two energy levels of an individual atom/ QD are controlled by the voltage on its electrodes, and by the external laser. Interactions between two atoms/ QDs are performed with the additional help of the cavity mode (using on-resonance condition). Laser frequency, cavity frequency, and energy levels are far off-resonance most of the time, and they are brought to the resonance (using the Stark effect) only at the time of operations. Steps for a controlled-NOT gate between any two atoms/QDs have been described for this model. Our model demands some challenging technological efforts, such as manufacturing single-electron QDs inside a cavity. However, it promises big advantages over other existing models which are currently implemented, and might enable a much easier scale-up, to compute with many more qubits.
Quantized conductance operation near a single-atom point contact in a polymer-based atomic switch
NASA Astrophysics Data System (ADS)
Krishnan, Karthik; Muruganathan, Manoharan; Tsuruoka, Tohru; Mizuta, Hiroshi; Aono, Masakazu
2017-06-01
Highly-controlled conductance quantization is achieved near a single-atom point contact in a redox-based atomic switch device, in which a poly(ethylene oxide) (PEO) film is sandwiched between Ag and Pt electrodes. Current-voltage measurements revealed reproducible quantized conductance of ˜1G 0 for more than 102 continuous voltage sweep cycles under a specific condition, indicating the formation of a well-defined single-atom point contact of Ag in the PEO matrix. The device exhibited a conductance state distribution centered at 1G 0, with distinct half-integer multiples of G 0 and small fractional variations. First-principles density functional theory simulations showed that the experimental observations could be explained by the existence of a tunneling gap and the structural rearrangement of an atomic point contact.
Levashov, V A; Stepanov, M G
2016-01-01
Considerations of local atomic-level stresses associated with each atom represent a particular approach to address structures of disordered materials at the atomic level. We studied structural correlations in a two-dimensional model liquid using molecular dynamics simulations in the following way. We diagonalized the atomic-level stress tensor of every atom and investigated correlations between the eigenvalues and orientations of the eigenvectors of different atoms as a function of distance between them. It is demonstrated that the suggested approach can be used to characterize structural correlations in disordered materials. In particular, we found that changes in the stress correlation functions on decrease of temperature are the most pronounced for the pairs of atoms with separation distance that corresponds to the first minimum in the pair density function. We also show that the angular dependencies of the stress correlation functions previously reported by Wu et al. [Phys. Rev. E 91, 032301 (2015)10.1103/PhysRevE.91.032301] do not represent the anisotropic Eshelby's stress fields, as it is suggested, but originate in the rotational properties of the stress tensors.
AtomicJ: An open source software for analysis of force curves
NASA Astrophysics Data System (ADS)
Hermanowicz, Paweł; Sarna, Michał; Burda, Kvetoslava; Gabryś, Halina
2014-06-01
We present an open source Java application for analysis of force curves and images recorded with the Atomic Force Microscope. AtomicJ supports a wide range of contact mechanics models and implements procedures that reduce the influence of deviations from the contact model. It generates maps of mechanical properties, including maps of Young's modulus, adhesion force, and sample height. It can also calculate stacks, which reveal how sample's response to deformation changes with indentation depth. AtomicJ analyzes force curves concurrently on multiple threads, which allows for high speed of analysis. It runs on all popular operating systems, including Windows, Linux, and Macintosh.
NASA Astrophysics Data System (ADS)
Kowalewska, Zofia; Bulska, Ewa; Hulanicki, Adam
1999-05-01
Platinum reforming catalysts are easily poisoned by increased levels of lead, therefore a sensitive atomic absorption spectrometric procedure for lead determination in fractions from crude oil distillation was developed. Lead was present in organic form in the samples analysed therefore the behaviour of various lead compounds (Pb-alkylarylsulphonate, Pb-4-cyclohexanobutyrate, tetraethyllead, Pb in fuel oil) was studied. The best procedure for the determination of lead in different petroleum products, including those containing asphaltenes includes a pretreatment with iodine and methyltrioctylammonium chloride, followed by the use of an organic Pd-Mg modifier. Under these conditions an effective matrix removal is possible at a pyrolysis temperature up to approximately 1100°C and the behaviour of lead present in different forms is unified. The characteristic mass is 11-12 pg Pb, corresponding to a detection limit of 0.25 ng g -1 for 20 μl sample solution. This can be lowered by multiple injection.
Constitutive modeling of intrinsic and oxygen-contaminated silicon monocrystals in easy glide
NASA Astrophysics Data System (ADS)
Cochard, J.; Yonenaga, I.; Gouttebroze, S.; M'Hamdi, M.; Zhang, Z. L.
2010-11-01
We generalize in this work the constitutive model for silicon crystals of Alexander and Haasen. Strain-rate and temperature dependency of the mechanical behavior of intrinsic crystals are correctly accounted for into stage I of hardening. We show that the steady-state of deformation in stage I is very well reproduced in a wide range of temperature and strain rate. The case of extrinsic crystals containing high levels of dissolved oxygen is examined. The introduction of an effective density of mobile dislocations dependent on the unlocking stress created by oxygen atoms gathered at the dislocation cores is combined to an alteration of the dislocation multiplication rate, due to pinning of the dislocation line by oxygen atoms. This increases the upper yield stress with the bulk oxygen concentration in agreement with experimental observations. The fraction of effectively mobile dislocations is found to decay exponentially with the unlocking stress. Finally, the influence of oxygen migration back onto the dislocations from the bulk on the stress distribution in silicon bars is investigated.
ERIC Educational Resources Information Center
Arnold, Randy J.; Arndt, Brett; Blaser, Emilia; Blosser, Chris; Caulton, Dana; Chung, Won Sog; Fiorenza, Garrett; Heath, Wyatt; Jacobs, Alex; Kahng, Eunice; Koh, Eun; Le, Thao; Mandla, Kyle; McCory, Chelsey; Newman, Laura; Pithadia, Amit; Reckelhoff, Anna; Rheinhardt, Joseph; Skljarevski, Sonja; Stuart, Jordyn; Taylor, Cassie; Thomas, Scott; Tse, Kyle; Wall, Rachel; Warkentien, Chad
2011-01-01
A multivitamin tablet and liquid are analyzed for the elements calcium, magnesium, iron, zinc, copper, and manganese using atomic absorption spectrometry. Linear calibration and standard addition are used for all elements except calcium, allowing for an estimate of the matrix effects encountered for this complex sample. Sample preparation using…
40 CFR 141.23 - Inorganic chemical sampling and analytical requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Inorganic Contaminants Contaminant MCL (mg/l) Methodology Detection limit (mg/l) Antimony 0.006 Atomic... January 23, 2006. Unit then, the MCL is 0.05 mg/L. 7 The MDL reported for EPA method 200.9 (Atomic... higher. Using multiple depositions, EPA 200.9 is capable of obtaining MDL of 0.0001 mg/L. 8 Using...
Multiple heteroatom substitution to graphene nanoribbon
Meyer, Ernst
2018-01-01
Substituting heteroatoms into nanostructured graphene elements, such as graphene nanoribbons, offers the possibility for atomic engineering of electronic properties. To characterize these substitutions, functionalized atomic force microscopy (AFM)—a tool to directly resolve chemical structures—is one of the most promising tools, yet the chemical analysis of heteroatoms has been rarely performed. We synthesized multiple heteroatom-substituted graphene nanoribbons and showed that AFM can directly resolve elemental differences and can be correlated to the van der Waals radii, as well as the modulated local electron density caused by the substitution. This elemental-sensitive measurement takes an important step in the analysis of functionalized two-dimensional carbon materials. PMID:29662955
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hegde, Raghurama P.; Fedorov, Alexander A.; Sauder, J. Michael
Single-wavelength anomalous dispersion (SAD) utilizing anomalous signal from native S atoms, or other atoms withZ≤ 20, generally requires highly redundant data collected using relatively long-wavelength X-rays. Here, the results from two proteins are presented where the anomalous signal from serendipitously acquired surface-bound Ca atoms with an anomalous data multiplicity of around 10 was utilized to drivede novostructure determination. In both cases, the Ca atoms were acquired from the crystallization solution, and the data-collection strategy was not optimized to exploit the anomalous signal from these scatterers. The X-ray data were collected at 0.98 Å wavelength in one case and at 1.74more » Å in the other (the wavelength was optimized for sulfur, but the anomalous signal from calcium was exploited for structure solution). Similarly, using a test case, it is shown that data collected at ~1.0 Å wavelength, where thef'' value for sulfur is 0.28 e, are sufficient for structure determination using intrinsic S atoms from a strongly diffracting crystal. Interestingly, it was also observed thatSHELXDwas capable of generating a substructure solution from high-exposure data with a completeness of 70% for low-resolution reflections extending to 3.5 Å resolution with relatively low anomalous multiplicity. Considering the fact that many crystallization conditions contain anomalous scatterers such as Cl, Ca, Mnetc., checking for the presence of fortuitous anomalous signal in data from well diffracting crystals could prove useful in either determining the structurede novoor in accurately assigning surface-bound atoms.« less
Ab Initio Vibrational Levels For HO2 and Vibrational Splittings for Hydrogen Atom Transfer
NASA Technical Reports Server (NTRS)
Barclay, V. J.; Dateo, Christopher E.; Hamilton, I. P.; Arnold, James O. (Technical Monitor)
1994-01-01
We calculate vibrational levels and wave functions for HO2 using the recently reported ab initio potential energy surface of Walch and Duchovic. There is intramolecular hydrogen atom transfer when the hydrogen atom tunnels through a T-shaped saddle point separating two equivalent equilibrium geometries, and correspondingly, the energy levels are split. We focus on vibrational levels and wave functions with significant splitting. The first three vibrational levels with splitting greater than 2/cm are (15 0), (0 7 1) and (0 8 0) where V(sub 2) is the O-O-H bend quantum number. We discuss the dynamics of hydrogen atom transfer; in particular, the O-O distances at which hydrogen atom transfer is most probable for these vibrational levels. The material of the proposed presentation was reviewed and the technical content will not reveal any information not already in the public domain and will not give any foreign industry or government a competitive advantage.
Multiple transparency windows and Fano interferences induced by dipole-dipole couplings
NASA Astrophysics Data System (ADS)
Diniz, E. C.; Borges, H. S.; Villas-Boas, C. J.
2018-04-01
We investigate the optical properties of a two-level system (TLS) coupled to a one-dimensional array of N other TLSs with dipole-dipole coupling between the first neighbors. The first TLS is probed by a weak field, and we assume that it has a decay rate much greater than the decay rates of the other TLSs. For N =1 and in the limit of a Rabi frequency of a probe field much smaller than the dipole-dipole coupling, the optical response of the first TLS, i.e., its absorption and dispersion, is equivalent to that of a three-level atomic system in the configuration which allows one to observe the electromagnetically induced transparency (EIT) phenomenon. Thus, here we investigate an induced transparency phenomenon where the dipole-dipole coupling plays the same role as the control field in EIT in three-level atoms. We describe this physical phenomenon, named a dipole-induced transparency (DIT), and investigate how it scales with the number of coupled TLSs. In particular, we have shown that the number of TLSs coupled to the main TLS is exactly equal to the number of transparency windows. The ideas presented here are very general and can be implemented in different physical systems, such as an array of superconducting qubits, or an array of quantum dots, spin chains, optical lattices, etc.
3D atom microscopy in the presence of Doppler shift
NASA Astrophysics Data System (ADS)
Rahmatullah; Chuang, You-Lin; Lee, Ray-Kuang; Qamar, Sajid
2018-03-01
The interaction of hot atoms with laser fields produces a Doppler shift, which can severely affect the precise spatial measurement of an atom. We suggest an experimentally realizable scheme to address this issue in the three-dimensional position measurement of a single atom in vapors of rubidium atoms. A three-level Λ-type atom-field configuration is considered where a moving atom interacts with three orthogonal standing-wave laser fields and spatial information of the atom in 3D space is obtained via an upper-level population using a weak probe laser field. The atom moves with velocity v along the probe laser field, and due to the Doppler broadening the precision of the spatial information deteriorates significantly. It is found that via a microwave field, precision in the position measurement of a single hot rubidium atom can be attained, overcoming the limitation posed by the Doppler shift.
Detection of subsurface core-level shifts in Si 2p core-level photoemission from Si(111)-(1x1):As
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paggel, J.J.; Hasselblatt, M.; Horn, K.
1997-04-01
The (7 x 7) reconstruction of the Si(111) surface arises from a lowering energy through the reduction of the number of dangling bonds. This reconstruction can be removed by the adsorption of atoms such as hydrogen which saturate the dangling bonds, or by the incorporation of atoms, such as arsenic which, because of the additional electron it possesses, can form three bonds and a nonreactive lone pair orbital from the remaining two electrons. Core and valence level photoemission and ion scattering data have shown that the As atoms replace the top silicon atoms. Previous core level spectra were interpreted inmore » terms of a bulk and a single surface doublet. The authors present results demonstrate that the core level spectrum contains two more lines. The authors assign these to subsurface silicon layers which also experience changes in the charge distribution when a silicon atom is replaced by an arsenic atom. Subsurface core level shifts are not unexpected since the modifications of the electronic structure and/or of photohole screening are likely to decay into the bulk and not just to affect the top-most substrate atoms. The detection of subsurface components suggests that the adsorption of arsenic leads to charge flow also in the second double layer of the Si(111) surface. In view of the difference in atomic radius between As and Si, it was suggested that the (1 x 1): As surface is strained. The presence of charge rearrangement up to the second double layer implies that the atomic coordinates also exhibit deviations from their ideal Si(111) counterparts, which might be detected through a LEED I/V or photoelectron diffraction analysis.« less
Tansel, Berrin; Surita, Sharon C
2016-06-01
Siloxane levels in biogas can jeopardize the warranties of the engines used at the biogas to energy facilities. The chemical structure of siloxanes consists of silicon and oxygen atoms, alternating in position, with hydrocarbon groups attached to the silicon side chain. Siloxanes can be either in cyclic (D) or linear (L) configuration and referred with a letter corresponding to their structure followed by a number corresponding to the number of silicon atoms present. When siloxanes are burned, the hydrocarbon fraction is lost and silicon is converted to silicates. The purpose of this study was to evaluate the adequacy of activated carbon gas samplers for quantitative analysis of siloxanes in biogas samples. Biogas samples were collected from a landfill and an anaerobic digester using multiple carbon sorbent tubes assembled in series. One set of samples was collected for 30min (sampling 6-L gas), and the second set was collected for 60min (sampling 12-L gas). Carbon particles were thermally desorbed and analyzed by Gas Chromatography Mass Spectrometry (GC/MS). The results showed that biogas sampling using a single tube would not adequately capture octamethyltrisiloxane (L3), hexamethylcyclotrisiloxane (D3), octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5) and dodecamethylcyclohexasiloxane (D6). Even with 4 tubes were used in series, D5 was not captured effectively. The single sorbent tube sampling method was adequate only for capturing trimethylsilanol (TMS) and hexamethyldisiloxane (L2). Affinity of siloxanes for activated carbon decreased with increasing molecular weight. Using multiple carbon sorbent tubes in series can be an appropriate method for developing a standard procedure for determining siloxane levels for low molecular weight siloxanes (up to D3). Appropriate quality assurance and quality control procedures should be developed for adequately quantifying the levels of the higher molecular weight siloxanes in biogas with sorbent tubes. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nogami, Keisuke; Sakai, Yasuhiro; Mineta, Shota
2015-11-15
Visible emission spectra were acquired from neutral atoms sputtered by 35–60 keV Kr{sup +} ions from a polycrystalline tungsten surface. Mean velocities of excited tungsten atoms in seven different 6p states were also obtained via the dependence of photon intensities on the distance from the surface. The average velocities parallel to the surface normal varied by factors of 2–4 for atoms in the different 6p energy levels. However, they were almost independent of the incident ion kinetic energy. The 6p-level energy dependence indicated that the velocities of the excited atoms were determined by inelastic processes that involve resonant charge exchange.
NASA Astrophysics Data System (ADS)
Abo-Kahla, D. A. M.; Abdel-Aty, M.; Farouk, A.
2018-05-01
An atom with only two energy eigenvalues is described by a two-dimensional state space spanned by the two energy eigenstates is called a two-level atom. We consider the interaction between a two-level atom system with a constant velocity. An analytic solution of the systems which interacts with a quantized field is provided. Furthermore, the significant effect of the temperature on the atomic inversion, the purity and the information entropy are discussed in case of the initial state either an exited state or a maximally mixed state. Additionally, the effect of the half wavelengths number of the field-mode is investigated.
Proposed software system for atomic-structure calculation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, C.F.
1981-07-01
Atomic structure calculations are understood well enough that, at a routine level, an atomic structure software package can be developed. At the Atomic Physics Conference in Riga, 1978 L.V. Chernysheva and M.Y. Amusia of Leningrad University, presented a paper on Software for Atomic Calculations. Their system, called ATOM is based on the Hartree-Fock approximation and correlation is included within the framework of RPAE. Energy level calculations, transition probabilities, photo-ionization cross-sections, electron scattering cross-sections are some of the physical properties that can be evaluated by their system. The MCHF method, together with CI techniques and the Breit-Pauli approximation also provides amore » sound theoretical basis for atomic structure calculations.« less
Quantification of chemical elements in blood of patients affected by multiple sclerosis.
Forte, Giovanni; Visconti, Andrea; Santucci, Simone; Ghazaryan, Anna; Figà-Talamanca, Lorenzo; Cannoni, Stefania; Bocca, Beatrice; Pino, Anna; Violante, Nicola; Alimonti, Alessandro; Salvetti, Marco; Ristori, Giovanni
2005-01-01
Although some studies suggested a link between exposure to trace elements and development of multiple sclerosis (MS), clear information on their role in the aetiology of MS is still lacking. In this study the concentrations of Al, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, Li, Mg, Mn, Mo, Ni, Pb, Sb, Si, Sn, Sr, Tl, V, W, Zn and Zr were determined in the blood of 60 patients with MS and 60 controls. Quantifications were performed by inductively coupled plasma (ICP) atomic emission spectrometry and sector field ICP mass spectrometry. When the two groups were compared, an increased level of Co, Cu and Ni and a decrement of Be, Fe, Hg, Mg, Mo, Pb and Zn in blood of patients were observed. In addition, the discriminant analysis pointed out that Cu, Be, Hg, Co and Mo were able to discriminate between MS patients and controls (92.5% of cases correctly classified).
Energy Levels and Spectral Lines of Li Atoms in White Dwarf Strength Magnetic Fields
NASA Astrophysics Data System (ADS)
Zhao, L. B.
2018-04-01
A theoretical approach based on B-splines has been developed to calculate atomic structures and discrete spectra of Li atoms in a strong magnetic field typical of magnetic white dwarf stars. Energy levels are presented for 20 electronic states with the symmetries 20+, 20‑, 2(‑1)+, 2(‑1)‑, and 2(‑2)+. The magnetic field strengths involved range from 0 to 2350 MG. The wavelengths and oscillator strengths for the electric dipole transitions relevant to these magnetized atomic states are reported. The current results are compared to the limited theoretical data in the literature. A good agreement has been found for the lower energy levels, but a significant discrepancy is clearly visible for the higher energy levels. The existing discrepancies of the wavelengths and oscillator strengths are also discussed. Our investigation shows that the spectrum data of magnetized Li atoms previously published are obviously far from meeting requirements of analyzing discrete atomic spectra of magnetic white dwarfs with lithium atmospheres.
Experimental Raman adiabatic transfer of optical states in rubidium
NASA Astrophysics Data System (ADS)
Appel, Jürgen; Figueroa, Eden; Vewinger, Frank; Marzlin, Karl-Peter; Lvovsky, Alexander
2007-06-01
An essential element of a quantum optical communication network is a tool for transferring and/or distributing quantum information between optical modes (possibly of different frequencies) in a loss- and decoherence-free fashion. We present a theory [1] and an experimental demonstration [2] of a protocol for routing and frequency conversion of optical quantum information via electromagnetically-induced transparency in an atomic system with multiple excited levels. Transfer of optical states between different signal modes is implemented by adiabatically changing the control fields. The proof-of-principle experiment is performed using the hyperfine levels of the rubidium D1 line. [1] F. Vewinger, J. Appel, E. Figueroa, A. I. Lvovsky, quant-ph/0611181 [2] J. Appel, K.-P. Marzlin, A. I. Lvovsky, Phys. Rev. A 73, 013804 (2006)
NASA Astrophysics Data System (ADS)
Ren, Guoli; Pei, Wenbing; Lan, Ke; Li, Xin; Hohlraum Physics Team
2014-10-01
In current routine 2D simulation of hohlraum physics, we adopt the principal-quantum-number (n-level) average atom model (AAM) in NLTE plasma description. The more sophisticated atomic kinetics description is better choice, but the in-line calculation consumes much more resource. By distinguishing the much more fast bound-bound atomic processes from the relative slow bound-free atomic processes, we found a method to built up a bound electron distribution (n-level or nl-level) using in-line n-level calculated plasma condition (such as temperature, density, average ionization degree). We name this method ``quasi-steady approximation.'' Using this method and the plasma condition calculated under n-level, we re-build the nl-level bound electron distribution (Pnl), and acquire a new hohlraum radiative drive by post-processing. Comparison with the n-level post-processed hohlraum drive shows that we get an almost identical radiation flux but with more-detailed frequency-dependant structures. Also we use this method in the benchmark gold sphere experiment, the constructed nl-level radiation drive resembles the experimental results and DCA results, while the n-level raditation does not.
HD-MTL: Hierarchical Deep Multi-Task Learning for Large-Scale Visual Recognition.
Fan, Jianping; Zhao, Tianyi; Kuang, Zhenzhong; Zheng, Yu; Zhang, Ji; Yu, Jun; Peng, Jinye
2017-02-09
In this paper, a hierarchical deep multi-task learning (HD-MTL) algorithm is developed to support large-scale visual recognition (e.g., recognizing thousands or even tens of thousands of atomic object classes automatically). First, multiple sets of multi-level deep features are extracted from different layers of deep convolutional neural networks (deep CNNs), and they are used to achieve more effective accomplishment of the coarseto- fine tasks for hierarchical visual recognition. A visual tree is then learned by assigning the visually-similar atomic object classes with similar learning complexities into the same group, which can provide a good environment for determining the interrelated learning tasks automatically. By leveraging the inter-task relatedness (inter-class similarities) to learn more discriminative group-specific deep representations, our deep multi-task learning algorithm can train more discriminative node classifiers for distinguishing the visually-similar atomic object classes effectively. Our hierarchical deep multi-task learning (HD-MTL) algorithm can integrate two discriminative regularization terms to control the inter-level error propagation effectively, and it can provide an end-to-end approach for jointly learning more representative deep CNNs (for image representation) and more discriminative tree classifier (for large-scale visual recognition) and updating them simultaneously. Our incremental deep learning algorithms can effectively adapt both the deep CNNs and the tree classifier to the new training images and the new object classes. Our experimental results have demonstrated that our HD-MTL algorithm can achieve very competitive results on improving the accuracy rates for large-scale visual recognition.
Molecular Dynamics Simulations, Challenges and Opportunities: A Biologist's Prospective.
Kumari, Indu; Sandhu, Padmani; Ahmed, Mushtaq; Akhter, Yusuf
2017-08-30
Molecular dynamics (MD) is a computational technique which is used to study biomolecules in virtual environment. Each of the constituent atoms represents a particle and hence the biomolecule embodies a multi-particle mechanical system analyzed within a simulation box during MD analysis. The potential energies of the atoms are explained by a mathematical expression consisting of different forces and space parameters. There are various software and force fields that have been developed for MD studies of the biomolecules. MD analysis has unravelled the various biological mechanisms (protein folding/unfolding, protein-small molecule interactions, protein-protein interactions, DNA/RNA-protein interactions, proteins embedded in membrane, lipid-lipid interactions, drug transport etc.) operating at the atomic and molecular levels. However, there are still some parameters including torsions in amino acids, carbohydrates (whose structure is extended and not well defined like that of proteins) and single stranded nucleic acids for which the force fields need further improvement, although there are several workers putting in constant efforts in these directions. The existing force fields are not efficient for studying the crowded environment inside the cells, since these interactions involve multiple factors in real time. Therefore, the improved force fields may provide the opportunities for their wider applications on the complex biosystems in diverse cellular conditions. In conclusion, the intervention of MD in the basic sciences involving interdisciplinary approaches will be helpful for understanding many fundamental biological and physiological processes at the molecular levels that may be further applied in various fields including biotechnology, fisheries, sustainable agriculture and biomedical research. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Astrophysics Data System (ADS)
Duffó, G. S.; Arva, E. A.; Schulz, F. M.; Vazquez, D. R.
2013-07-01
The National Atomic Energy Commission of the Argentine Republic is developing a nuclear waste disposal management programme that contemplates the design and construction of a facility for the final disposal of intermediate-level radioactive wastes. The repository is based on the use of multiple, independent and redundant barriers. The major components are made in reinforced concrete so, the durability of these structures is an important aspect for the facility integrity. This work presents an investigation performed on an instrumented reinforced concrete prototype specifically designed for this purpose, to study the behaviour of an intermediate level radioactive waste disposal facility from the rebar corrosion point of view. The information obtained will be used for the final design of the facility in order to guarantee a service life more or equal than the foreseen durability for this type of facilities.
NASA Astrophysics Data System (ADS)
Duffó, G. S.; Arva, E. A.; Schulz, F. M.; Vazquez, D. R.
2012-01-01
The National Atomic Energy Commission of the Argentine Republic is developing a nuclear waste disposal management programme that contemplates the design and construction of a facility for the final disposal of intermediate-level radioactive wastes. The repository is based on the use of multiple, independent and redundant barriers. The major components are made in reinforced concrete so, the durability of these structures is an important aspect for the facility integrity. This work presents an investigation performed on a reinforced concrete specifically designed for this purpose, to predict the service life of the intermediate level radioactive waste disposal facility from data obtained with several techniques. Results obtained with corrosion sensors embedded in a concrete prototype are also included. The information obtained will be used for the final design of the facility in order to guarantee a service life more or equal than the foreseen durability for this type of facilities.
An Introduction to Atomic Layer Deposition
NASA Technical Reports Server (NTRS)
Dwivedi, Vivek H.
2017-01-01
Atomic Layer Deposition has been instrumental in providing a deposition method for multiple space flight applications. It is well known that ALD is a cost effective nanoadditive-manufacturing technique that allows for the conformal coating of substrates with atomic control in a benign temperature and pressure environment. Through the introduction of paired precursor gases, thin films can be deposited on a myriad of substrates from flat surfaces to those with significant topography. By providing atomic layer control, where single layers of atoms can be deposited, the fabrication of metal transparent films, precise nano-laminates, and coatings of nano-channels, pores and particles is achievable. The feasibility of this technology for NASA line of business applications range from thermal systems, optics, sensors, to environmental protection. An overview of this technology will be presented.
NASA Astrophysics Data System (ADS)
Keebaugh, Christof; Marshman, Emily; Singh, Chandralekha
2018-07-01
Understanding when and how to make limiting case approximations and why they are valid in a particular situation is a hallmark of expertise in physics. Using limiting cases can simplify the problem-solving process significantly and they often provide a means to check that the results obtained are reasonable. We discuss an investigation of student difficulties with the corrections to the energy spectrum of the hydrogen atom for the limiting cases of the strong and weak field Zeeman effects using degenerate perturbation theory. This investigation was carried out in advanced quantum mechanics courses by administering written free-response and multiple-choice questions and conducting individual interviews with students. Here we first discuss the common student difficulties related to these concepts. We then describe how the research on student difficulties was used as a guide to develop and evaluate a quantum interactive learning tutorial (QuILT) which strives to help students develop a functional understanding of the concepts necessary for finding the corrections to the energy spectrum of the hydrogen atom for the strong field and weak field Zeeman effects. The development of the QuILT and its evaluation in the undergraduate and PhD level courses are presented.
NASA Astrophysics Data System (ADS)
Hossain, Mohammad Jakir; Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul
2017-12-01
In this paper, a miniaturized wideband left-handed (LH) meta-atom based on planar modified multiple hexagonal split ring resonators was designed, simulated, fabricated and tested that can maintain a left-handed property. An analysis and comparison of the different array structures were performed that obtained better effective medium ratio (EMR) and wideband (5.54 GHz) for multi band operations in the microwave regime. Finite-difference time-domain (FDTD) method based Computer Simulation Technology was implemented to design the meta-atom. The meta-atom showed multi-band response in conjunction with wideband and LH property over the certain frequency bands in the microwave spectra. The EMR was considerably improved compared to previously reported meta-atoms. The measured results showed good agreement with the simulated results. The dimensions, S-parameters and EMR parameters of the proposed miniaturized LH meta-atom are appropriate for L-, S-, C-, X-, and Ku-band applications.
NASA Astrophysics Data System (ADS)
Hossain, Mohammad Jakir; Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul
2018-03-01
In this paper, a miniaturized wideband left-handed (LH) meta-atom based on planar modified multiple hexagonal split ring resonators was designed, simulated, fabricated and tested that can maintain a left-handed property. An analysis and comparison of the different array structures were performed that obtained better effective medium ratio (EMR) and wideband (5.54 GHz) for multi band operations in the microwave regime. Finite-difference time-domain (FDTD) method based Computer Simulation Technology was implemented to design the meta-atom. The meta-atom showed multi-band response in conjunction with wideband and LH property over the certain frequency bands in the microwave spectra. The EMR was considerably improved compared to previously reported meta-atoms. The measured results showed good agreement with the simulated results. The dimensions, S-parameters and EMR parameters of the proposed miniaturized LH meta-atom are appropriate for L-, S-, C-, X-, and Ku-band applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Buddhadeb; Papanastasiou, Dimitrios K.; Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309
2012-10-28
Oxalyl chloride, (ClCO){sub 2}, has been used as a Cl atom photolytic precursor in numerous laboratory kinetic and photochemical studies. In this study, the UV/vis absorption spectrum of (ClCO){sub 2} and the Cl atom quantum yields in its photolysis at 193, 248, and 351 nm are reported. The UV/vis spectrum was measured between 200 and 450 nm at 296 K using diode array spectroscopy in conjunction with an absolute cross section obtained at 213.9 nm. Our results are in agreement with the spectrum reported by Baklanov and Krasnoperov [J. Phys. Chem. A 105, 97-103 (2001)], which was obtained at 11more » discrete wavelengths between 193.3 and 390 nm. Cl atom quantum yields, {Phi}({lambda}), were measured using pulsed laser photolysis coupled with time resolved atomic resonance fluorescence detection of Cl. The UV photolysis of (ClCO){sub 2} has been shown in previous studies to occur via an impulsive three-body dissociation mechanism, (COCl){sub 2}+ hv{yields} ClCO*+ Cl + CO (2), where the excited ClCO radical, ClCO*, either dissociates or stabilizes ClCO*{yields} Cl + CO (3a), {yields} ClCO (3b). ClCO is thermally unstable at the temperatures (253-298 K) and total pressures (13-128 Torr) used in our experiments ClCO + M {yields} Cl + CO + M (4) leading to the formation of a secondary Cl atom that was resolvable in the Cl atom temporal profiles obtained in the 248 and 351 nm photolysis of (ClCO){sub 2}. {Phi}(193 nm) was found to be 2.07 {+-} 0.37 independent of bath gas pressure (25.8-105.7 Torr, N{sub 2}), i.e., the branching ratio for channel 2a or the direct formation of 2Cl + 2CO in the photolysis of (ClCO){sub 2} is >0.95. At 248 nm, the branching ratio for channel 2a was determined to be 0.79 {+-} 0.15, while the total Cl atom yield, i.e., following the completion of reaction (4), was found to be 1.98 {+-} 0.26 independent of bath gas pressure (15-70 Torr, N{sub 2}). {Phi}(351 nm) was found to be pressure dependent between 7.8 and 122.4 Torr (He, N{sub 2}). The low-pressure limit of the total Cl atom quantum yield, {Phi}{sub 0}(351 nm), was 2.05 {+-} 0.24. As part of this work, rate coefficients for the thermal decomposition of ClCO were measured between 253 and 298 K at total pressures between 13 and 128 Torr (He and N{sub 2} bath gases). The N{sub 2} bath gas results were combined with the data reported in Nicovich et al. [J. Chem. Phys. 92, 3539-3544 (1990)] to yield k{sub 4}(T, N{sub 2}) = (4.7 {+-} 0.7) Multiplication-Sign 10{sup -10} exp [-(2987 {+-} 16)/T] cm{sup 3} molecule{sup -1} s{sup -1}, while the He bath gas data fit yielded k{sub 4}(T, He) = (2.3 {+-} 2.1) Multiplication-Sign 10{sup -10} exp [-(2886 {+-} 218)/T] cm{sup 3} molecule{sup -1} s{sup -1}. The quoted uncertainties are at the 2{sigma} level from the precision of the fit. In addition, the room temperature rate coefficient for the Cl + ClNO reaction was measured in this work to be (1.03 {+-} 0.10) Multiplication-Sign 10{sup -10} cm{sup 3} molecule{sup -1} s{sup -1}.« less
Optical field induced rotation of polarization in rubidium atoms with the additional magnetic field
NASA Astrophysics Data System (ADS)
Ummal Momeen, M.; Hu, Jianping
2017-11-01
We present the magnetic and optical field induced rotation of polarization in 87Rb and 85Rb atoms at geophysical magnetic fields. The line shape varies considerably in the presence of a magnetic field of the order of a few mG. Multiple Zeeman sublevel EIT systems involving rubidium atoms are investigated. Theoretical formalism of optical field induced polarization rotation in the presence of a magnetic field is discussed by considering all the Zeeman sublevels. It is noted that the ground state population distribution also plays a major role.
Singlet vs. triplet interelectronic repulsion in confined atoms
NASA Astrophysics Data System (ADS)
Sarsa, A.; Buendía, E.; Gálvez, F. J.; Katriel, J.
2018-06-01
Hund's multiplicity rule invariably holds for the ground configurations of few-electron atoms as well as those of multi-electron quantum dots. However, the ordering of the corresponding interelectronic repulsions exhibits a reversal in the former but not in the latter system, upon varying the system parameters. Here, we investigate the transition between these two types of behaviour by studying few-electron atoms confined in spherical cavities. "Counter-intuitive" ordering of the interelectronic repulsions is confirmed when the nuclear charge is low enough and the cavity radius is large enough.
Enhanced squeezing of a collective spin via control of its qudit subsystems.
Norris, Leigh M; Trail, Collin M; Jessen, Poul S; Deutsch, Ivan H
2012-10-26
Unitary control of qudits can improve the collective spin squeezing of an atomic ensemble. Preparing the atoms in a state with large quantum fluctuations in magnetization strengthens the entangling Faraday interaction. The resulting increase in interatomic entanglement can be converted into metrologically useful spin squeezing. Further control can squeeze the internal atomic spin without compromising entanglement, providing an overall multiplicative factor in the collective squeezing. We model the effects of optical pumping and study the tradeoffs between enhanced entanglement and decoherence. For realistic parameters we see improvements of ~10 dB.
Influence of atomic densities on propagation property for ultrashort pulses in a two-level medium
NASA Astrophysics Data System (ADS)
Liu, Bingxin; Gong, Shangqing; Song, Xiaohong; Jin, Shiqi
2005-05-01
The influence of atomic densities on the propagation property for ultrashort pulses in a two-level atom (TLA) medium is investigated. With higher atomic densities, the self-induced transparency (SIT) cannot be recovered even for 2? ultrashort pulses. New features such as pulse splitting, red-shift and blue-shift of the corresponding spectra arise, and the component of central frequency gradually disappears.
Approaching the Limit in Atomic Spectrochemical Analysis.
ERIC Educational Resources Information Center
Hieftje, Gary M.
1982-01-01
To assess the ability of current analytical methods to approach the single-atom detection level, theoretical and experimentally determined detection levels are presented for several chemical elements. A comparison of these methods shows that the most sensitive atomic spectrochemical technique currently available is based on emission from…
NASA Astrophysics Data System (ADS)
Zhang, Yu-Qing; Zhu, Zhong-Hua; Peng, Zhao-Hui; Jiang, Chun-Lei; Chai, Yi-Feng; Hai, Lian; Tan, Lei
2018-06-01
We theoretically study the single-photon transport along a one-dimensional optical waveguide coupled to an optomechanical cavity containing a Λ-type three-level atom. Our numerical results show that the transmission spectra of the incident photon can be well controlled by such a hybrid atom-optomechanical system. The effects of the optomechanical coupling strength, the classical laser beam applied to the atom, atom-cavity detuning, and atomic dissipation on the single-photon transport properties are analyzed. It is of particular interest that an analogous double electromagnetically induced transparency emerges in the single-photon transmission spectra.
Efficient atom localization via probe absorption in an inverted-Y atomic system
NASA Astrophysics Data System (ADS)
Wu, Jianchun; Wu, Bo; Mao, Jiejian
2018-06-01
The behaviour of atom localization in an inverted-Y atomic system is theoretically investigated. For the atoms interacting with a weak probe field and several orthogonal standing-wave fields, their position information can be obtained by measuring the probe absorption. Compared with the traditional scheme, we couple the probe field to the transition between the middle and top levels. It is found that the probe absorption sensitively depends on the detuning and strength of the relevant light fields. Remarkably, the atom can be localized at a particular position in the standing-wave fields by coupling a microwave field to the transition between the two ground levels.
Nuclear Stability and Nucleon-Nucleon Interactions in Introductory and General Chemistry Textbooks
ERIC Educational Resources Information Center
Millevolte, Anthony
2010-01-01
The nucleus is a highly dense and highly charged substructure of atoms. In the nuclei of all atoms beyond hydrogen, multiple protons are in close proximity to each other in spite of strong electrostatic repulsions between them. The attractive internucleon strong force is described and its origin explained by using a simple quark model for the…
NASA Astrophysics Data System (ADS)
Koga, Ryoichi; Tsuchiya, Fuminori; Kagitani, Masato; Sakanoi, Takeshi; Yoneda, Mizuki; Yoshioka, Kazuo; Kimura, Tomoki; Murakami, Go; Yamazaki, Atsushi; Yoshikawa, Ichiro; Smith, H. Todd
2018-01-01
Io has an atmosphere produced by volcanism and sublimation of frosts deposited around active volcanoes. However, the time variation of atomic oxygen escaping Io's atmosphere is not well known. In this paper, we show a significant increase in atomic oxygen around Io during a volcanic event. Brightening of Io's extended sodium nebula was observed in the spring of 2015. We used the Hisaki satellite to investigate the time variation of atomic oxygen emission around Io during the same period. This investigation reveals that the duration of atomic oxygen brightness increases from a volcanically quiet level to a maximum level during the same approximate time period of 30 days as the observed sodium brightness. On the other hand, the recovery of the atomic oxygen brightness from the maximum to the quiet level (60 days) was longer than that of the sodium nebula decreasing (40 days). Additionally, a dawn-dusk asymmetry of the atomic oxygen emission is observed.
Optical Pattern Formation in Cold Atoms: Explaining the Red-Blue Asymmetry
NASA Astrophysics Data System (ADS)
Schmittberger, Bonnie; Gauthier, Daniel
2013-05-01
The study of pattern formation in atomic systems has provided new insight into fundamental many-body physics and low-light-level nonlinear optics. Pattern formation in cold atoms in particular is of great interest in condensed matter physics and quantum information science because atoms undergo self-organization at ultralow input powers. We recently reported the first observation of pattern formation in cold atoms but found that our results were not accurately described by any existing theoretical model of pattern formation. Previous models describing pattern formation in cold atoms predict that pattern formation should occur using both red and blue-detuned pump beams, favoring a lower threshold for blue detunings. This disagrees with our recent work, in which we only observed pattern formation with red-detuned pump beams. Previous models also assume a two-level atom, which cannot account for the cooling processes that arise when beams counterpropagate through a cold atomic vapor. We describe a new model for pattern formation that accounts for Sisyphus cooling in multi-level atoms, which gives rise to a new nonlinearity via spatial organization of the atoms. This spatial organization causes a sharp red-blue detuning asymmetry, which agrees well with our experimental observations. We gratefully acknowledge the financial support of the NSF through Grant #PHY-1206040.
Coherent control of strong-field two-pulse ionization of Rydberg atoms.
Fedorov, M; Poluektov, N
2000-02-28
Strong-field ionization of Rydberg atoms is investigated in its dependence on phase features of the initial coherent population of Rydberg levels. In the case of a resonance between Rydberg levels and some lower-energy atomic level (V-type transitions), this dependence is shown to be very strong: by a proper choice of the initial population an atom can be made either completely or very little ionized by a strong laser pulse. It is shown that phase features of the initial coherent population of Rydberg levels and the ionization yield can be efficiently controlled in a scheme of ionization by two strong laser pulses with a varying delay time between them.
Jones, J; Richter, K; Price, T J; Ross, A J; Crozet, P; Faust, C; Malenda, R F; Carlus, S; Hickman, A P; Huennekens, J
2017-10-14
We report measurements of rate coefficients at T ≈ 600 K for rotationally inelastic collisions of NaK molecules in the 2(A) 1 Σ + electronic state with helium, argon, and potassium atom perturbers. Several initial rotational levels J between 14 and 44 were investigated. Collisions involving molecules in low-lying vibrational levels (v = 0, 1, and 2) of the 2(A) 1 Σ + state were studied using Fourier-transform spectroscopy. Collisions involving molecules in a higher vibrational level, v = 16, were studied using pump/probe, optical-optical double resonance spectroscopy. In addition, polarization spectroscopy measurements were carried out to study the transfer of orientation in these collisions. Many, but not all, of the measurements were carried out in the "single-collision regime" where more than one collision is unlikely to occur within the lifetime of the excited molecule. The analysis of the experimental data, which is described in detail, includes an estimate of effects of multiple collisions on the reported rate coefficients. The most significant result of these experiments is the observation of a strong propensity for ΔJ = even transitions in collisions involving either helium or argon atoms; the propensity is much stronger for helium than for argon. For the initial rotational levels studied experimentally, almost all initial orientation is preserved in collisions of NaK 2(A) 1 Σ + molecules with helium. Roughly between 1/3 and 2/3 of the orientation is preserved in collisions with argon, and almost all orientation is destroyed in collisions with potassium atoms. Complementary measurements on rotationally inelastic collisions of NaCs 2(A) 1 Σ + with argon do not show a ΔJ = even propensity. The experimental results are compared with new theoretical calculations of collisions of NaK 2(A) 1 Σ + with helium and argon. The calculations are in good agreement with the absolute magnitudes of the experimentally determined rate coefficients and accurately reproduce the very strong propensity for ΔJ = even transitions in helium collisions and the less strong propensity for ΔJ = even transitions in argon collisions. The calculations also show that collisions with helium are less likely to destroy orientation than collisions with argon, in agreement with the experimental results.
NASA Astrophysics Data System (ADS)
Jones, J.; Richter, K.; Price, T. J.; Ross, A. J.; Crozet, P.; Faust, C.; Malenda, R. F.; Carlus, S.; Hickman, A. P.; Huennekens, J.
2017-10-01
We report measurements of rate coefficients at T ≈ 600 K for rotationally inelastic collisions of NaK molecules in the 2(A)1Σ+ electronic state with helium, argon, and potassium atom perturbers. Several initial rotational levels J between 14 and 44 were investigated. Collisions involving molecules in low-lying vibrational levels (v = 0, 1, and 2) of the 2(A)1Σ+ state were studied using Fourier-transform spectroscopy. Collisions involving molecules in a higher vibrational level, v = 16, were studied using pump/probe, optical-optical double resonance spectroscopy. In addition, polarization spectroscopy measurements were carried out to study the transfer of orientation in these collisions. Many, but not all, of the measurements were carried out in the "single-collision regime" where more than one collision is unlikely to occur within the lifetime of the excited molecule. The analysis of the experimental data, which is described in detail, includes an estimate of effects of multiple collisions on the reported rate coefficients. The most significant result of these experiments is the observation of a strong propensity for ΔJ = even transitions in collisions involving either helium or argon atoms; the propensity is much stronger for helium than for argon. For the initial rotational levels studied experimentally, almost all initial orientation is preserved in collisions of NaK 2(A)1Σ+ molecules with helium. Roughly between 1/3 and 2/3 of the orientation is preserved in collisions with argon, and almost all orientation is destroyed in collisions with potassium atoms. Complementary measurements on rotationally inelastic collisions of NaCs 2(A)1Σ+ with argon do not show a ΔJ = even propensity. The experimental results are compared with new theoretical calculations of collisions of NaK 2(A)1Σ+ with helium and argon. The calculations are in good agreement with the absolute magnitudes of the experimentally determined rate coefficients and accurately reproduce the very strong propensity for ΔJ = even transitions in helium collisions and the less strong propensity for ΔJ = even transitions in argon collisions. The calculations also show that collisions with helium are less likely to destroy orientation than collisions with argon, in agreement with the experimental results.
De Haas-van Alphen effect of a two-dimensional ultracold atomic gas
NASA Astrophysics Data System (ADS)
Farias, B.; Furtado, C.
2016-01-01
In this paper, we show how the ultracold atom analogue of the two-dimensional de Haas-van Alphen effect in electronic condensed matter systems can be induced by optical fields in a neutral atomic system. The interaction between the suitable spatially varying laser fields and tripod-type trapped atoms generates a synthetic magnetic field which leads the particles to organize themselves in Landau levels. Initially, with the atomic gas in a regime of lowest Landau level, we display the oscillatory behaviour of the atomic energy and its derivative with respect to the effective magnetic field (B) as a function of 1/B. Furthermore, we estimate the area of the Fermi circle of the two-dimensional atomic gas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, B. A.; Chu, Y. S.; He, L.
2015-12-01
Epitaxial films of CoxMnyGez grown on Ge (111) substrates by molecular-beam-epitaxy techniques have been investigated as a continuous function of composition using combinatorial synchrotron x-ray diffraction (XRD) and x-ray fluorescence (XRF) spectroscopy techniques. A high-resolution ternary epitaxial phase diagram is obtained, revealing a small number of structural phases stabilized over large compositional regions. Ordering of the constituent elements in the compositional region near the full Heusler alloy Co2MnGe has been examined in detail using both traditional XRD and a new multiple-edge anomalous diffraction (MEAD) technique. Multiple-edge anomalous diffraction involves analyzing the energy dependence of multiple reflections across each constituent absorptionmore » edge in order to detect and quantify the elemental distribution of occupation in specific lattice sites. Results of this paper show that structural and chemical ordering are very sensitive to the Co : Mn atomic ratio, such that the ordering is the highest at an atomic ratio of 2 but significantly reduced even a few percent off this ratio. The in-plane lattice is nearly coherent with that of the Ge substrate, while the approximately 2% lattice mismatch is accommodated by the out-of-plane tetragonal strain. The quantitative MEAD analysis further reveals no detectable amount (< 0.5%) of Co-Mn site swapping, but instead high levels (26%) of Mn-Ge site swapping. Increasing Ge concentration above the Heusler stoichiometry (Co0.5Mn0.25Ge0.25) is shown to correlate with increased lattice vacancies, antisites, and stacking faults, but reduced lattice relaxation. The highest degree of chemical ordering is observed off the Heusler stoichiometry with a Ge enrichment of 5 at.%.« less
Quantum sized gold nanoclusters with atomic precision.
Qian, Huifeng; Zhu, Manzhou; Wu, Zhikun; Jin, Rongchao
2012-09-18
Gold nanoparticles typically have a metallic core, and the electronic conduction band consists of quasicontinuous energy levels (i.e. spacing δ ≪ k(B)T, where k(B)T is the thermal energy at temperature T (typically room temperature) and k(B) is the Boltzmann constant). Electrons in the conduction band roam throughout the metal core, and light can collectively excite these electrons to give rise to plasmonic responses. This plasmon resonance accounts for the beautiful ruby-red color of colloidal gold first observed by Faraday back in 1857. On the other hand, when gold nanoparticles become extremely small (<2 nm in diameter), significant quantization occurs to the conduction band. These quantum-sized nanoparticles constitute a new class of nanomaterial and have received much attention in recent years. To differentiate quantum-sized nanoparticles from conventional plasmonic gold nanoparticles, researchers often refer to the ultrasmall nanoparticles as nanoclusters. In this Account, we chose several typical sizes of gold nanoclusters, including Au(25)(SR)(18), Au(38)(SR)(24), Au(102)(SR)(44), and Au(144)(SR)(60), to illustrate the novel properties of metal nanoclusters imparted by quantum size effects. In the nanocluster size regime, many of the physical and chemical properties of gold nanoparticles are fundamentally altered. Gold nanoclusters have discrete electronic energy levels as opposed to the continuous band in plasmonic nanoparticles. Quantum-sized nanoparticles also show multiple optical absorption peaks in the optical spectrum versus a single surface plasmon resonance (SPR) peak at 520 nm for spherical gold nanocrystals. Although larger nanocrystals show an fcc structure, nanoclusters often have non-fcc atomic packing structures. Nanoclusters also have unique fluorescent, chiral, and magnetic properties. Due to the strong quantum confinement effect, adding or removing one gold atom significantly changes the structure and the electronic and optical properties of the nanocluster. Therefore, precise atomic control of nanoclusters is critically important: the nanometer precision typical of conventional nanoparticles is not sufficient. Atomically precise nanoclusters are represented by molecular formulas (e.g. Au(n)(SR)(m) for thiolate-protected ones, where n and m denote the respective number of gold atoms and ligands). Recently, major advances in the synthesis and structural characterization of molecular purity gold nanoclusters have made in-depth investigations of the size evolution of metal nanoclusters possible. Metal nanoclusters lie in the intermediate regime between localized atomic states and delocalized band structure in terms of electronic properties. We anticipate that future research on quantum-sized nanoclusters will stimulate broad scientific and technological interests in this special type of metal nanomaterial.
Li, Chuang; Yang, Sen; Song, Jie; Xia, Yan; Ding, Weiqiang
2017-05-15
In this paper, a scheme for the generation of long-living entanglement between two distant Λ-type three-level atoms separately trapped in two dissipative cavities is proposed. In this scheme, two dissipative cavities are coupled to their own non-Markovian environments and two three-level atoms are driven by the classical fields. The entangled state between the two atoms is produced by performing Bell state measurement (BSM) on photons leaving the dissipative cavities. Using the time-dependent Schördinger equation, we obtain the analytical results for the evolution of the entanglement. It is revealed that, by manipulating the detunings of classical field, the long-living stationary entanglement between two atoms can be generated in the presence of dissipation.
Development of the Science Data System for the International Space Station Cold Atom Lab
NASA Technical Reports Server (NTRS)
van Harmelen, Chris; Soriano, Melissa A.
2015-01-01
Cold Atom Laboratory (CAL) is a facility that will enable scientists to study ultra-cold quantum gases in a microgravity environment on the International Space Station (ISS) beginning in 2016. The primary science data for each experiment consists of two images taken in quick succession. The first image is of the trapped cold atoms and the second image is of the background. The two images are subtracted to obtain optical density. These raw Level 0 atom and background images are processed into the Level 1 optical density data product, and then into the Level 2 data products: atom number, Magneto-Optical Trap (MOT) lifetime, magnetic chip-trap atom lifetime, and condensate fraction. These products can also be used as diagnostics of the instrument health. With experiments being conducted for 8 hours every day, the amount of data being generated poses many technical challenges, such as downlinking and managing the required data volume. A parallel processing design is described, implemented, and benchmarked. In addition to optimizing the data pipeline, accuracy and speed in producing the Level 1 and 2 data products is key. Algorithms for feature recognition are explored, facilitating image cropping and accurate atom number calculations.
Final Report for DE-FG02-99ER45795
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilkins, John Warren
The research supported by this grant focuses on atomistic studies of defects, phase transitions, electronic and magnetic properties, and mechanical behaviors of materials. We have been studying novel properties of various emerging nanoscale materials on multiple levels of length and time scales, and have made accurate predictions on many technologically important properties. A significant part of our research has been devoted to exploring properties of novel nano-scale materials by pushing the limit of quantum mechanical simulations, and development of a rigorous scheme to design accurate classical inter-atomic potentials for larger scale atomistic simulations for many technologically important metals and metalmore » alloys.« less
Preciat Gonzalez, German A.; El Assal, Lemmer R. P.; Noronha, Alberto; ...
2017-06-14
The mechanism of each chemical reaction in a metabolic network can be represented as a set of atom mappings, each of which relates an atom in a substrate metabolite to an atom of the same element in a product metabolite. Genome-scale metabolic network reconstructions typically represent biochemistry at the level of reaction stoichiometry. However, a more detailed representation at the underlying level of atom mappings opens the possibility for a broader range of biological, biomedical and biotechnological applications than with stoichiometry alone. Complete manual acquisition of atom mapping data for a genome-scale metabolic network is a laborious process. However, manymore » algorithms exist to predict atom mappings. How do their predictions compare to each other and to manually curated atom mappings? For more than four thousand metabolic reactions in the latest human metabolic reconstruction, Recon 3D, we compared the atom mappings predicted by six atom mapping algorithms. We also compared these predictions to those obtained by manual curation of atom mappings for over five hundred reactions distributed among all top level Enzyme Commission number classes. Five of the evaluated algorithms had similarly high prediction accuracy of over 91% when compared to manually curated atom mapped reactions. On average, the accuracy of the prediction was highest for reactions catalysed by oxidoreductases and lowest for reactions catalysed by ligases. In addition to prediction accuracy, the algorithms were evaluated on their accessibility, their advanced features, such as the ability to identify equivalent atoms, and their ability to map hydrogen atoms. In addition to prediction accuracy, we found that software accessibility and advanced features were fundamental to the selection of an atom mapping algorithm in practice.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preciat Gonzalez, German A.; El Assal, Lemmer R. P.; Noronha, Alberto
The mechanism of each chemical reaction in a metabolic network can be represented as a set of atom mappings, each of which relates an atom in a substrate metabolite to an atom of the same element in a product metabolite. Genome-scale metabolic network reconstructions typically represent biochemistry at the level of reaction stoichiometry. However, a more detailed representation at the underlying level of atom mappings opens the possibility for a broader range of biological, biomedical and biotechnological applications than with stoichiometry alone. Complete manual acquisition of atom mapping data for a genome-scale metabolic network is a laborious process. However, manymore » algorithms exist to predict atom mappings. How do their predictions compare to each other and to manually curated atom mappings? For more than four thousand metabolic reactions in the latest human metabolic reconstruction, Recon 3D, we compared the atom mappings predicted by six atom mapping algorithms. We also compared these predictions to those obtained by manual curation of atom mappings for over five hundred reactions distributed among all top level Enzyme Commission number classes. Five of the evaluated algorithms had similarly high prediction accuracy of over 91% when compared to manually curated atom mapped reactions. On average, the accuracy of the prediction was highest for reactions catalysed by oxidoreductases and lowest for reactions catalysed by ligases. In addition to prediction accuracy, the algorithms were evaluated on their accessibility, their advanced features, such as the ability to identify equivalent atoms, and their ability to map hydrogen atoms. In addition to prediction accuracy, we found that software accessibility and advanced features were fundamental to the selection of an atom mapping algorithm in practice.« less
Preciat Gonzalez, German A; El Assal, Lemmer R P; Noronha, Alberto; Thiele, Ines; Haraldsdóttir, Hulda S; Fleming, Ronan M T
2017-06-14
The mechanism of each chemical reaction in a metabolic network can be represented as a set of atom mappings, each of which relates an atom in a substrate metabolite to an atom of the same element in a product metabolite. Genome-scale metabolic network reconstructions typically represent biochemistry at the level of reaction stoichiometry. However, a more detailed representation at the underlying level of atom mappings opens the possibility for a broader range of biological, biomedical and biotechnological applications than with stoichiometry alone. Complete manual acquisition of atom mapping data for a genome-scale metabolic network is a laborious process. However, many algorithms exist to predict atom mappings. How do their predictions compare to each other and to manually curated atom mappings? For more than four thousand metabolic reactions in the latest human metabolic reconstruction, Recon 3D, we compared the atom mappings predicted by six atom mapping algorithms. We also compared these predictions to those obtained by manual curation of atom mappings for over five hundred reactions distributed among all top level Enzyme Commission number classes. Five of the evaluated algorithms had similarly high prediction accuracy of over 91% when compared to manually curated atom mapped reactions. On average, the accuracy of the prediction was highest for reactions catalysed by oxidoreductases and lowest for reactions catalysed by ligases. In addition to prediction accuracy, the algorithms were evaluated on their accessibility, their advanced features, such as the ability to identify equivalent atoms, and their ability to map hydrogen atoms. In addition to prediction accuracy, we found that software accessibility and advanced features were fundamental to the selection of an atom mapping algorithm in practice.
How main-chains of proteins explore the free-energy landscape in native states.
Senet, Patrick; Maisuradze, Gia G; Foulie, Colette; Delarue, Patrice; Scheraga, Harold A
2008-12-16
Understanding how a single native protein diffuses on its free-energy landscape is essential to understand protein kinetics and function. The dynamics of a protein is complex, with multiple relaxation times reflecting a hierarchical free-energy landscape. Using all-atom molecular dynamics simulations of an alpha/beta protein (crambin) and a beta-sheet polypeptide (BS2) in their "native" states, we demonstrate that the mean-square displacement of dihedral angles, defined by 4 successive C(alpha) atoms, increases as a power law of time, t(alpha), with an exponent alpha between 0.08 and 0.39 (alpha = 1 corresponds to Brownian diffusion), at 300 K. Residues with low exponents are located mainly in well-defined secondary elements and adopt 1 conformational substate. Residues with high exponents are found in loops/turns and chain ends and exist in multiple conformational substates, i.e., they move on multiple-minima free-energy profiles.
How main-chains of proteins explore the free-energy landscape in native states
Senet, Patrick; Maisuradze, Gia G.; Foulie, Colette; Delarue, Patrice; Scheraga, Harold A.
2008-01-01
Understanding how a single native protein diffuses on its free-energy landscape is essential to understand protein kinetics and function. The dynamics of a protein is complex, with multiple relaxation times reflecting a hierarchical free-energy landscape. Using all-atom molecular dynamics simulations of an α/β protein (crambin) and a β-sheet polypeptide (BS2) in their “native” states, we demonstrate that the mean-square displacement of dihedral angles, defined by 4 successive Cα atoms, increases as a power law of time, tα, with an exponent α between 0.08 and 0.39 (α = 1 corresponds to Brownian diffusion), at 300 K. Residues with low exponents are located mainly in well-defined secondary elements and adopt 1 conformational substate. Residues with high exponents are found in loops/turns and chain ends and exist in multiple conformational substates, i.e., they move on multiple-minima free-energy profiles. PMID:19073932
Local Structures of High-Entropy Alloys (HEAs) on Atomic Scales: An Overview
Diao, Haoyan; Santodonato, Louis J.; Tang, Zhi; ...
2015-08-29
The high-entropy alloys (HEAs), containing several elements mixed in equimolar or near-equimolar ratios, have shown exceptional engineering properties. Local structures on atomic level are essential to understand the mechanical behaviors and related mechanisms. In this paper, the local structure and stress on the atomic level are reviewed by the pair-distribution function (PDF) of neutron-diffraction data, ab-initio-molecular-dynamics (AIMD) simulations, and atomic-probe microscopy (APT).
NASA Astrophysics Data System (ADS)
Zhang, Wei; Gan, Jie; Li, Qian; Gao, Kun; Sun, Jian; Xu, Ning; Ying, Zhifeng; Wu, Jiada
2011-06-01
The self-diffusion dynamics of Cu adatoms on Cu(1 0 0) surface has been studied based on the calculation of the energy barriers for various hopping events using lattice-gas based approach and a modified model. To simplify the description of the interactions and the calculation of the energy barrier, a three-tier hierarchy of description of atomic configurations was conceived in which the active adatom and its nearest atoms were chosen to constitute basic configuration and taken as a whole to study many-body interactions of the atoms in various atomic configurations, whereas the impacts of the next nearest atoms on the diffusion of the active adatom were considered as multi-site interactions. Besides the simple hopping of single adatoms, the movements of dimers and trimers as the results of multiple hopping events have also been examined. Taking into account the hopping events of all adatoms, the stability of atomic configurations has been examined and the evolution of atomic configurations has also been analyzed.
Interactive Web-based Visualization of Atomic Position-time Series Data
NASA Astrophysics Data System (ADS)
Thapa, S.; Karki, B. B.
2017-12-01
Extracting and interpreting the information contained in large sets of time-varying three dimensional positional data for the constituent atoms of simulated material is a challenging task. We have recently implemented a web-based visualization system to analyze the position-time series data extracted from the local or remote hosts. It involves a pre-processing step for data reduction, which involves skipping uninteresting parts of the data uniformly (at full atomic configuration level) or non-uniformly (at atomic species level or individual atom level). Atomic configuration snapshot is rendered using the ball-stick representation and can be animated by rendering successive configurations. The entire atomic dynamics can be captured as the trajectories by rendering the atomic positions at all time steps together as points. The trajectories can be manipulated at both species and atomic levels so that we can focus on one or more trajectories of interest, and can be also superimposed with the instantaneous atomic structure. The implementation was done using WebGL and Three.js for graphical rendering, HTML5 and Javascript for GUI, and Elasticsearch and JSON for data storage and retrieval within the Grails Framework. We have applied our visualization system to the simulation datatsets for proton-bearing forsterite (Mg2SiO4) - an abundant mineral of Earths upper mantle. Visualization reveals that protons (hydrogen ions) incorporated as interstitials are much more mobile than protons substituting the host Mg and Si cation sites. The proton diffusion appears to be anisotropic with high mobility along the x-direction, showing limited discrete jumps in other two directions.
NASA Astrophysics Data System (ADS)
Faghihi, M. J.; Tavassoly, M. K.
2012-02-01
In this paper, we study the interaction between a three-level atom and a quantized single-mode field with ‘intensity-dependent coupling’ in a ‘Kerr medium’. The three-level atom is considered to be in a Λ-type configuration. Under particular initial conditions, which may be prepared for the atom and the field, the dynamical state vector of the entire system will be explicitly obtained, for the arbitrary nonlinearity function f(n) associated with any physical system. Then, after evaluating the variation of the field entropy against time, we will investigate the quantum statistics as well as some of the nonclassical properties of the introduced state. During our calculations we investigate the effects of intensity-dependent coupling, Kerr medium and detuning parameters on the depth and domain of the nonclassicality features of the atom-field state vector. Finally, we compare our obtained results with those of V-type three-level atoms.
Understanding the detection of carbon in austenitic high-Mn steel using atom probe tomography.
Marceau, R K W; Choi, P; Raabe, D
2013-09-01
A high-Mn TWIP steel having composition Fe-22Mn-0.6C (wt%) is considered in this study, where the need for accurate and quantitative analysis of clustering and short-range ordering by atom probe analysis requires a better understanding of the detection of carbon in this system. Experimental measurements reveal that a high percentage of carbon atoms are detected as molecular ion species and on multiple hit events, which is discussed with respect to issues such as optimal experimental parameters, correlated field evaporation and directional walk/migration of carbon atoms at the surface of the specimen tip during analysis. These phenomena impact the compositional and spatial accuracy of the atom probe measurement and thus require careful consideration for further cluster-finding analysis. Copyright © 2013 Elsevier B.V. All rights reserved.
Laser techniques for spectroscopy of core-excited atomic levels
NASA Technical Reports Server (NTRS)
Harris, S. E.; Young, J. F.; Falcone, R. W.; Rothenberg, J. E.; Willison, J. R.
1982-01-01
We discuss three techniques which allow the use of tunable lasers for high resolution and picosecond time scale spectroscopy of core-excited atomic levels. These are: anti-Stokes absorption spectroscopy, laser induced emission from metastable levels, and laser designation of selected core-excited levels.
Optical-bistability-enabled control of resonant light transmission for an atom-cavity system
NASA Astrophysics Data System (ADS)
Sawant, Rahul; Rangwala, S. A.
2016-02-01
The control of light transmission through a standing-wave Fabry-Pérot cavity containing atoms is theoretically and numerically investigated, when the cavity mode beam and an intersecting control beam are both close to specific atomic resonances. A four-level atomic system is considered and its interaction with the cavity mode is studied by solving for the cavity field and atomic state populations. The conditions for optical bistability of the atom-cavity system are obtained. The response of the intracavity intensity to an intersecting beam on atomic resonance is understood in the presence of stationary atoms (closed system) and nonstatic atoms (open system) in the cavity. The nonstatic system of atoms is modelled by adjusting the atomic state populations to represent the exchange of atoms in the cavity mode, which corresponds to a thermal environment where atoms are moving in and out of the cavity mode volume. The control behavior with three- and two-level atomic systems is also studied, and the rich physics arising out of these systems for closed and open atomic systems is discussed. The solutions to the models are used to interpret the steady-state and transient behavior observed by Sharma et al. [Phys. Rev. A 91, 043824 (2015)], 10.1103/PhysRevA.91.043824.
Enhancing light-atom interactions via atomic bunching
NASA Astrophysics Data System (ADS)
Schmittberger, Bonnie L.; Gauthier, Daniel J.
2014-07-01
There is a broad interest in enhancing the strength of light-atom interactions to the point where injecting a single photon induces a nonlinear material response. Here we show theoretically that sub-Doppler-cooled two-level atoms that are spatially organized by weak optical fields give rise to a nonlinear material response that is greatly enhanced beyond that attainable in a homogeneous gas. Specifically, in the regime where the intensity of the applied optical fields is much less than the off-resonance saturation intensity, we show that the third-order nonlinear susceptibility scales inversely with atomic temperature and, due to this scaling, can be two orders of magnitude larger than that of a homogeneous gas for typical experimental parameters. As a result, we predict that spatially bunched two-level atoms can exhibit single-photon nonlinearities. Our model is valid for all regimes of atomic bunching and simultaneously accounts for the backaction of the atoms on the optical fields. Our results agree with previous theoretical and experimental results for light-atom interactions that have considered only limited regimes of atomic bunching. For lattice beams tuned to the low-frequency side of the atomic transition, we find that the nonlinearity transitions from a self-focusing type to a self-defocusing type at a critical intensity. We also show that higher than third-order nonlinear optical susceptibilities are significant in the regime where the dipole potential energy is on the order of the atomic thermal energy. We therefore find that it is crucial to retain high-order nonlinearities to accurately predict interactions of laser fields with spatially organized ultracold atoms. The model presented here is a foundation for modeling low-light-level nonlinear optical processes for ultracold atoms in optical lattices.
Solid-state harmonics beyond the atomic limit.
Ndabashimiye, Georges; Ghimire, Shambhu; Wu, Mengxi; Browne, Dana A; Schafer, Kenneth J; Gaarde, Mette B; Reis, David A
2016-06-23
Strong-field laser excitation of solids can produce extremely nonlinear electronic and optical behaviour. As recently demonstrated, this includes the generation of high harmonics extending into the vacuum-ultraviolet and extreme-ultraviolet regions of the electromagnetic spectrum. High harmonic generation is shown to occur fundamentally differently in solids and in dilute atomic gases. How the microscopic mechanisms in the solid and the gas differ remains a topic of intense debate. Here we report a direct comparison of high harmonic generation in the solid and gas phases of argon and krypton. Owing to the weak van der Waals interaction, rare (noble)-gas solids are a near-ideal medium in which to study the role of high density and periodicity in the generation process. We find that the high harmonic generation spectra from the rare-gas solids exhibit multiple plateaus extending well beyond the atomic limit of the corresponding gas-phase harmonics measured under similar conditions. The appearance of multiple plateaus indicates strong interband couplings involving multiple single-particle bands. We also compare the dependence of the solid and gas harmonic yield on laser ellipticity and find that they are similar, suggesting the importance of electron-hole recollision in these solids. This implies that gas-phase methods such as polarization gating for attosecond pulse generation and orbital tomography could be realized in solids.
Harpale, Abhilash; Panesi, Marco; Chew, Huck Beng
2015-02-14
Using first principle calculations, we study the surface-to-bulk diffusion of C atoms in Ni(111) and Cu(111) substrates, and compare the barrier energies associated with the diffusion of an isolated C atom versus multiple interacting C atoms. We find that the preferential Ni-C bonding over C-C bonding induces a repulsive interaction between C atoms located at diagonal octahedral voids in Ni substrates. This C-C interaction accelerates C atom diffusion in Ni with a reduced barrier energy of ∼1 eV, compared to ∼1.4-1.6 eV for the diffusion of isolated C atoms. The diffusion barrier energy of isolated C atoms in Cu is lower than in Ni. However, bulk diffusion of interacting C atoms in Cu is not possible due to the preferential C-C bonding over C-Cu bonding, which results in C-C dimer pair formation near the surface. The dramatically different C-C interaction effects within the different substrates explain the contrasting growth mechanisms of graphene on Ni(111) and Cu(111) during chemical vapor deposition.
Maxwell, Peter I.
2017-01-01
Accurate description of the intrinsic preferences of amino acids is important to consider when developing a biomolecular force field. In this study, we use a modern energy partitioning approach called Interacting Quantum Atoms to inspect the cause of the φ and ψ torsional preferences of three dipeptides (Gly, Val, and Ile). Repeating energy trends at each of the molecular, functional group, and atomic levels are observed across both (1) the three amino acids and (2) the φ/ψ scans in Ramachandran plots. At the molecular level, it is surprisingly electrostatic destabilization that causes the high‐energy regions in the Ramachandran plot, not molecular steric hindrance (related to the intra‐atomic energy). At the functional group and atomic levels, the importance of key peptide atoms (Oi –1, Ci, Ni, Ni +1) and some sidechain hydrogen atoms (Hγ) are identified as responsible for the destabilization seen in the energetically disfavored Ramachandran regions. Consistently, the Oi –1 atoms are particularly important for the explanation of dipeptide intrinsic behavior, where electrostatic and steric destabilization unusually complement one another. The findings suggest that, at least for these dipeptides, it is the peptide group atoms that dominate the intrinsic behavior, more so than the sidechain atoms. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:28841241
Interaction of sodium atoms with stacking faults in silicon with different Fermi levels
NASA Astrophysics Data System (ADS)
Ohno, Yutaka; Morito, Haruhiko; Kutsukake, Kentaro; Yonenaga, Ichiro; Yokoi, Tatsuya; Nakamura, Atsutomo; Matsunaga, Katsuyuki
2018-06-01
Variation in the formation energy of stacking faults (SFs) with the contamination of Na atoms was examined in Si crystals with different Fermi levels. Na atoms agglomerated at SFs under an electronic interaction, reducing the SF formation energy. The energy decreased with the decrease of the Fermi level: it was reduced by more than 10 mJ/m2 in p-type Si, whereas it was barely reduced in n-type Si. Owing to the energy reduction, Na atoms agglomerating at SFs in p-type Si are stable compared with those in n-type Si, and this hypothesis was supported by ab initio calculations.
Relative Energy Shift of a Two-Level Atom in a Cylindrical Spacetime
NASA Astrophysics Data System (ADS)
Zhang, Jia-Lin
2012-11-01
We investigate the evolution dynamics of a two-level atom system interacting with the massless scalar field in a Cylindrical spacetime. We find that both the energy shifts of ground state and excited state can be separated into two parts due to the vacuum fluctuations. One is the corresponding energy shift for a rest atom in four-dimensional Minkowski space without spatial compactification, the other is just the modification of the spatial compactified periodic length. It will reveal that the influence of the presence of one spatial compactified dimension can not be neglected in Lamb shift as the relative energy level shift of an atom.
Light, Thomas D.; Schmidt, Jeanine M.
2011-01-01
Mineralized and altered rock samples collected from the northern Talkeetna Mountains, Alaska, were analyzed by two different inductively coupled plasma atomic-emission spectrometry (ICP-AES) methods for as many as 44 elements; by fire assay and either direct-coupled plasma (DCP) or atomic absorption spectrophotometry (AAS) for gold (Au); by cold vapor atomic absorption (CVAA) for mercury (Hg); and by irradiated neutron activation analysis (INAA) for tungsten (W). The analytical results showed that some samples contain high values of multiple elements and may be potential indicators of hydrothermal mineralization in the area.
Simple and efficient LCAO basis sets for the diffuse states in carbon nanostructures.
Papior, Nick R; Calogero, Gaetano; Brandbyge, Mads
2018-06-27
We present a simple way to describe the lowest unoccupied diffuse states in carbon nanostructures in density functional theory calculations using a minimal LCAO (linear combination of atomic orbitals) basis set. By comparing plane wave basis calculations, we show how these states can be captured by adding long-range orbitals to the standard LCAO basis sets for the extreme cases of planar sp 2 (graphene) and curved carbon (C 60 ). In particular, using Bessel functions with a long range as additional basis functions retain a minimal basis size. This provides a smaller and simpler atom-centered basis set compared to the standard pseudo-atomic orbitals (PAOs) with multiple polarization orbitals or by adding non-atom-centered states to the basis.
Atomic scale study of nanocontacts
NASA Astrophysics Data System (ADS)
Buldum, A.; Ciraci, S.; Batra, Inder P.; Fong, C. Y.
1998-03-01
Nanocontact and subsequent pulling off a sharp Ni(111) tip on a Cu(110) surface are investigated by using molecular dynamics method with embedded atom model. As the contact is formed, the sharp tip experiences multiple jump to contact in the attractive force range. The contact interface develops discontinuously mainly due to disorder-order transformations which lead to disappearance of a layer and hence abrupt changes in the normal force variation. Atom exchange occurs in the repulsive range. The connective neck is reduced also discontinuously by pulling off the tip. The novel atomic structure of the neck under the tensile force is analyzed. We also presented a comperative study for the contact by a Si(111) tip on Si(111)-(2x1) surface.
Simple and efficient LCAO basis sets for the diffuse states in carbon nanostructures
NASA Astrophysics Data System (ADS)
Papior, Nick R.; Calogero, Gaetano; Brandbyge, Mads
2018-06-01
We present a simple way to describe the lowest unoccupied diffuse states in carbon nanostructures in density functional theory calculations using a minimal LCAO (linear combination of atomic orbitals) basis set. By comparing plane wave basis calculations, we show how these states can be captured by adding long-range orbitals to the standard LCAO basis sets for the extreme cases of planar sp 2 (graphene) and curved carbon (C60). In particular, using Bessel functions with a long range as additional basis functions retain a minimal basis size. This provides a smaller and simpler atom-centered basis set compared to the standard pseudo-atomic orbitals (PAOs) with multiple polarization orbitals or by adding non-atom-centered states to the basis.
Multiple indicators, multiple causes measurement error models
Tekwe, Carmen D.; Carter, Randy L.; Cullings, Harry M.; ...
2014-06-25
Multiple indicators, multiple causes (MIMIC) models are often employed by researchers studying the effects of an unobservable latent variable on a set of outcomes, when causes of the latent variable are observed. There are times, however, when the causes of the latent variable are not observed because measurements of the causal variable are contaminated by measurement error. The objectives of this study are as follows: (i) to develop a novel model by extending the classical linear MIMIC model to allow both Berkson and classical measurement errors, defining the MIMIC measurement error (MIMIC ME) model; (ii) to develop likelihood-based estimation methodsmore » for the MIMIC ME model; and (iii) to apply the newly defined MIMIC ME model to atomic bomb survivor data to study the impact of dyslipidemia and radiation dose on the physical manifestations of dyslipidemia. Finally, as a by-product of our work, we also obtain a data-driven estimate of the variance of the classical measurement error associated with an estimate of the amount of radiation dose received by atomic bomb survivors at the time of their exposure.« less
Saravanan, Chandra; Shao, Yihan; Baer, Roi; Ross, Philip N; Head-Gordon, Martin
2003-04-15
A sparse matrix multiplication scheme with multiatom blocks is reported, a tool that can be very useful for developing linear-scaling methods with atom-centered basis functions. Compared to conventional element-by-element sparse matrix multiplication schemes, efficiency is gained by the use of the highly optimized basic linear algebra subroutines (BLAS). However, some sparsity is lost in the multiatom blocking scheme because these matrix blocks will in general contain negligible elements. As a result, an optimal block size that minimizes the CPU time by balancing these two effects is recovered. In calculations on linear alkanes, polyglycines, estane polymers, and water clusters the optimal block size is found to be between 40 and 100 basis functions, where about 55-75% of the machine peak performance was achieved on an IBM RS6000 workstation. In these calculations, the blocked sparse matrix multiplications can be 10 times faster than a standard element-by-element sparse matrix package. Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 24: 618-622, 2003
Multiple Indicators, Multiple Causes Measurement Error Models
Tekwe, Carmen D.; Carter, Randy L.; Cullings, Harry M.; Carroll, Raymond J.
2014-01-01
Multiple Indicators, Multiple Causes Models (MIMIC) are often employed by researchers studying the effects of an unobservable latent variable on a set of outcomes, when causes of the latent variable are observed. There are times however when the causes of the latent variable are not observed because measurements of the causal variable are contaminated by measurement error. The objectives of this paper are: (1) to develop a novel model by extending the classical linear MIMIC model to allow both Berkson and classical measurement errors, defining the MIMIC measurement error (MIMIC ME) model, (2) to develop likelihood based estimation methods for the MIMIC ME model, (3) to apply the newly defined MIMIC ME model to atomic bomb survivor data to study the impact of dyslipidemia and radiation dose on the physical manifestations of dyslipidemia. As a by-product of our work, we also obtain a data-driven estimate of the variance of the classical measurement error associated with an estimate of the amount of radiation dose received by atomic bomb survivors at the time of their exposure. PMID:24962535
Multiple indicators, multiple causes measurement error models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tekwe, Carmen D.; Carter, Randy L.; Cullings, Harry M.
Multiple indicators, multiple causes (MIMIC) models are often employed by researchers studying the effects of an unobservable latent variable on a set of outcomes, when causes of the latent variable are observed. There are times, however, when the causes of the latent variable are not observed because measurements of the causal variable are contaminated by measurement error. The objectives of this study are as follows: (i) to develop a novel model by extending the classical linear MIMIC model to allow both Berkson and classical measurement errors, defining the MIMIC measurement error (MIMIC ME) model; (ii) to develop likelihood-based estimation methodsmore » for the MIMIC ME model; and (iii) to apply the newly defined MIMIC ME model to atomic bomb survivor data to study the impact of dyslipidemia and radiation dose on the physical manifestations of dyslipidemia. Finally, as a by-product of our work, we also obtain a data-driven estimate of the variance of the classical measurement error associated with an estimate of the amount of radiation dose received by atomic bomb survivors at the time of their exposure.« less
NASA Astrophysics Data System (ADS)
Faghihi, M. J.; Tavassoly, M. K.; Hatami, M.
In this paper, a model by which we study the interaction between a motional three-level atom and two-mode field injected simultaneously in a bichromatic cavity is considered; the three-level atom is assumed to be in a Λ-type configuration. As a result, the atom-field and the field-field interaction (parametric down conversion) will be appeared. It is shown that, by applying a canonical transformation, the introduced model can be reduced to a well-known form of the generalized Jaynes-Cummings model. Under particular initial conditions, which may be prepared for the atom and the field, the time evolution of state vector of the entire system is analytically evaluated. Then, the dynamics of atom by considering ‘atomic population inversion’ and two different measures of entanglement, i.e., ‘von Neumann entropy’ and ‘idempotency defect’ is discussed, in detail. It is deduced from the numerical results that, the duration and the maximum amount of the considered physical quantities can be suitably tuned by selecting the proper field-mode structure parameter p and the detuning parameters.
NASA Astrophysics Data System (ADS)
Sehati, N.; Tavassoly, M. K.
2017-08-01
Inspiring from the scheme proposed in (Zheng in Phys Rev A 69:064,302 2004), our aim is to teleport an unknown qubit atomic state using the cavity QED method without using the explicit Bell-state measurement, and so the additional atom is not required. Two identical Λ-type three-level atoms are interacted separately and subsequently with a two-mode quantized cavity field where each mode is expressed with a single-photon field state. The interaction between atoms and field is well described via the Jaynes-Cummings model. It is then shown that how if the atomic detection results a particular state of atom 1, an unknown state can be appropriately teleported from atom 1 to atom 2. This teleportation procedure successfully leads to the high fidelity F (success probability P_g) in between 69%≲ F≲ 100% (0.14≲ P_g≲ 0.56). At last, we illustrated that our scheme considerably improves similar previous proposals.
Repetitive Interrogation of 2-Level Quantum Systems
NASA Technical Reports Server (NTRS)
Prestage, John D.; Chung, Sang K.
2010-01-01
Trapped ion clocks derive information from a reference atomic transition by repetitive interrogations of the same quantum system, either a single ion or ionized gas of many millions of ions. Atomic beam frequency standards, by contrast, measure reference atomic transitions in a continuously replenished "flow through" configuration where initial ensemble atomic coherence is zero. We will describe some issues and problems that can arise when atomic state selection and preparation of the quantum atomic system is not completed, that is, optical pumping has not fully relaxed the coherence and also not fully transferred atoms to the initial state. We present a simple two-level density matrix analysis showing how frequency shifts during the state-selection process can cause frequency shifts of the measured clock transition. Such considerations are very important when a low intensity lamp light source is used for state selection, where there is relatively weak relaxation and re-pumping of ions to an initial state and much weaker 'environmental' relaxation of the atomic coherence set-up in the atomic sample.
Research on the properties and interactions of simple atomic and ionic systems
NASA Technical Reports Server (NTRS)
Novick, R.
1972-01-01
Simple ionic systems were studied, such as metastable autoionizing states of the negative He ion, two-photon decay spectrum of metastable He ion, optical excitation with low energy ions, and lifetime measurements of singly ionized Li and metastable He ion. Simple atomic systems were also investigated. Metastable autoionizing atomic energy levels in alkali elements were included, along with lifetime measurements of Cr-53, group 2A isotopes, and alkali metal atoms using level crossing and optical double resonance spectroscopy.
Energy levels for Ac-212 (Actinium-212)
NASA Astrophysics Data System (ADS)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of Subvolume C `Tables of Excitations of Proton- and Neutron-rich Unstable Nuclei' of Volume 19 `Nuclear States from Charged Particle Reactions' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides energy levels for atomic nuclei of the isotope Ac-212 (actinium, atomic number Z = 89, mass number A = 212).
Environment applications for ion mobility spectrometry
NASA Technical Reports Server (NTRS)
Ritchie, Robert K.; Rudolph, Andreas
1995-01-01
The detection of environmentally important polychlorinated aromatics by ion mobility spectrometry (IMS) was investigated. Single polychlorinated biphenyl (PCB) isomers (congeners) having five or more chlorine atoms were reliably detected in isooctane solution at levels of 35 ng with a Barringer IONSCAN ion mobility spectrometer operating in negative mode; limits of detection (LOD) were extrapolated to be in the low ng region. Mixtures of up to four PCB congeners, showing characteristic multiple peaks, and complex commercial mixtures of PCBs (Aroclors) were also detected. Detection of Aroclors in transformer oil was suppressed by the presence of the antioxidant BHT (2,6-di-t-butyl4-methylphenol) in the oil. The wood preservative pentachlorophenol (PCP) was easily detected in recycled wood shavings at levels of 52 ppm with the IONSCAN; the LOD was extrapolated to be in the low ppm region.
NASA Astrophysics Data System (ADS)
Cashen, M.; Yatsenko, L.; Metcalf, H.
2001-05-01
Sisyphus cooling arises when the conservative dipole force of a monochromatic optical standing wave (SW) is modified by optical pumping among multiple ground state sublevels at low intensity(J. Dalibard and C. Cohen-Tannoudji, J. Opt. Soc. B6), 2023 (1989)., or among dressed state manifolds at high intensity(A. Aspect et al., Phys. Rev. Lett. 57), 1688 (1986). As part of our ongoing exploration of optical forces in non-monochromatic light, we have discovered a new type of Sisyphus cooling in a two-level atom where the optical pumping is driven by a second SW produced as a sideband from weak frequency modulation. Each beam of the carrier's SW has a Rabi frequency Ωc ~ 20 γ and is tuned below atomic resonance by δc ~ -38 γ. Thus the light shift at the antinodes is ω_c^ls ~ 8.6 γ. For the sideband, Ωs ~ 1.4 γ and δs ~ +1 γ so ω_s^ls ~ 1 γ. The resulting forces satisfy Fc > 8 F_s. By contrast, the excitation rate γ_s^p > 2 γ_c^p. We choose the relative spatial phase of the SW's to be π, so moving atoms are most likely to be excited at the red-tuned carrier nodes, and thus they climb more hills than they descend. We observe transverse cooling of a beam of He metastables when δc < 0 and heating otherwise, in contrast to Ref. 3 because here the excitation is at the nodes of the high intensity carrier SW. We also observe channeling of the slow atoms in the carrier's SW.
Yang, Yong; Yang, Yang; Chen, Shuangming; Lu, Qichen; Song, Li; Wei, Yen; Wang, Xun
2017-11-16
Superthin nanostructures, particularly with atomic-level thicknesses, typically display unique optical properties because of their exceptional light-matter interactions. Here, we report a facile strategy for the synthesis of sulfur-doped molybdenum oxide nanorings with an atomic-level size (thickness of 0.5 nm) and a tunable ring-in-ring architecture. These atomic-level nanorings displayed strong photo-absorption in both the visible and infrared-light ranges and acted as a photothermal agent. Under irradiation with an 808 nm laser with an intensity of 1 W/cm 2 , a composite of the nanorings embedded in polydimethylsiloxane showed an ultrafast photothermal effect, delivering a local temperature of up to 400 °C within 20 s, which to the best of our knowledge is the highest temperature by light irradiation reported to date. Meanwhile, the resulting nanorings were also employed as a photoinitiator to remotely induce a visible-light shape memory response, self-healing, reshaping performance and reversible actuation of dynamic three-dimensional structures. This study demonstrates an advancement towards controlling atomic-level-sized nanostructures and achieving greatly enhanced optical performances for optoelectronics.
Evaluation of lithium serum level in multiple sclerosis patients: A neuroprotective element.
Karimi, Atieh; Bahrampour, Kobra; Momeni Moghaddam, Mohammad Amin; Asadikaram, Gholamreza; Ebrahimi, Ghasem; Torkzadeh-Mahani, Masoud; Esmaeili Tarzi, Mojdeh; Nematollahi, Mohammad Hadi
2017-10-01
It has been claimed that continuous and high production of nitric oxide (NO) and its metabolites may be involved in the pathogenesis of several neurological disorders such as multiple sclerosis. A number of studies have demonstrated that lithium regulates NO levels in disorders of the central nervous system. The aim of this study was to investigate whether NO as a marker of disease activity is correlated with lithium deficiency in relapsing remitting multiple sclerosis (RR-MS). This case-controlled study comprised 44 patients with RR-MS and 43 healthy subjects matched by age, gender, smoking status, and body mass index. The Griess reaction was used to measure the NO metabolites, nitrite and nitrate in serum. In addition serum lithium levels were measured using atomic absorption spectrometry method. The mean serum NO concentrations in the groups RR-MS and the control were 18.5 ± 3.1µM and 15.5 ± 2.9µM, respectively. Data analysis showed a statistically significant difference between subjects with RR-MS and the control group (p < 0.05). Furthermore, serum lithium concentrations in RR-MS (0.57 ± 0.2) were remarkably lower in RR-MS patients than the controls (2.29 ± 0.7) (p < 0.05). The present findings suggest that lithium deficiency may upregulates NO production in RR-MS. Further studies with larger samples are needed to confirm the effects of lithium treatment on NO pathway and its association with synaptic plasticity in RR-MS patients. Copyright © 2017 Elsevier B.V. All rights reserved.
Multiscale imaging of bone microdamage
Poundarik, Atharva A.; Vashishth, Deepak
2015-01-01
Bone is a structural and hierarchical composite that exhibits remarkable ability to sustain complex mechanical loading and resist fracture. Bone quality encompasses various attributes of bone matrix from the quality of its material components (type-I collagen, mineral and non-collagenous matrix proteins) and cancellous microarchitecture, to the nature and extent of bone microdamage. Microdamage, produced during loading, manifests in multiple forms across the scales of hierarchy in bone and functions to dissipate energy and avert fracture. Microdamage formation is a key determinant of bone quality, and through a range of biological and physical mechanisms, accumulates with age and disease. Accumulated microdamage in bone decreases bone strength and increases bone’s propensity to fracture. Thus, a thorough assessment of microdamage, across the hierarchical levels of bone, is crucial to better understand bone quality and bone fracture. This review article details multiple imaging modalities that have been used to study and characterize microdamage; from bulk staining techniques originally developed by Harold Frost to assess linear microcracks, to atomic force microscopy, a modality that revealed mechanistic insights into the formation diffuse damage at the ultrastructural level in bone. New automated techniques using imaging modalities such as microcomputed tomography are also presented for a comprehensive overview. PMID:25664772
Pauling, Linus
1989-01-01
A doubly icosahedral complex involves roughly spherical clusters of atoms with icosahedral point-group symmetry, which are themselves, in parallel orientation, icosahedrally packed. These complexes may form cubic crystallites; three structures of this sort have been identified. Analysis of electron diffraction photographs of the decagonal quasicrystal Al6Pd has led to its description as involving pentagonal twinning of an orthorhombic crystal with a = 51.6 Å, b = 37.6 Å, and c = 33.24 Å, with about 4202 atoms in the unit, comprising two 1980-atom doubly icosahedral complexes, each involving icosahedral packing of 45 44-atom icosahedral complexes (at 0 0 0 and 1/2 1/2 1/2) and 242 interstitial atoms. The complexes and clusters are oriented with one of their fivefold axes in the c-axis direction. Images PMID:16594092
Pauling, L
1989-12-01
A doubly icosahedral complex involves roughly spherical clusters of atoms with icosahedral point-group symmetry, which are themselves, in parallel orientation, icosahedrally packed. These complexes may form cubic crystallites; three structures of this sort have been identified. Analysis of electron diffraction photographs of the decagonal quasicrystal Al(6)Pd has led to its description as involving pentagonal twinning of an orthorhombic crystal with a = 51.6 A, b = 37.6 A, and c = 33.24 A, with about 4202 atoms in the unit, comprising two 1980-atom doubly icosahedral complexes, each involving icosahedral packing of 45 44-atom icosahedral complexes (at 0 0 0 and 1/2 1/2 1/2) and 242 interstitial atoms. The complexes and clusters are oriented with one of their fivefold axes in the c-axis direction.
Composition Formulas of Inorganic Compounds in Terms of Cluster Plus Glue Atom Model.
Ma, Yanping; Dong, Dandan; Wu, Aimin; Dong, Chuang
2018-01-16
The present paper attempts to identify the molecule-like structural units in inorganic compounds, by applying the so-called "cluster plus glue atom model". This model, originating from metallic glasses and quasi-crystals, describes any structure in terms of a nearest-neighbor cluster and a few outer-shell glue atoms, expressed in the cluster formula [cluster](glue atoms). Similar to the case for normal molecules where the charge transfer occurs within the molecule to meet the commonly known octet electron rule, the octet state is reached after matching the nearest-neighbor cluster with certain outer-shell glue atoms. These kinds of structural units contain information on local atomic configuration, chemical composition, and electron numbers, just as for normal molecules. It is shown that the formulas of typical inorganic compounds, such as fluorides, oxides, and nitrides, satisfy a similar octet electron rule, with the total number of valence electrons per unit formula being multiples of eight.
Fast and accurate grid representations for atom-based docking with partner flexibility.
de Vries, Sjoerd J; Zacharias, Martin
2017-06-30
Macromolecular docking methods can broadly be divided into geometric and atom-based methods. Geometric methods use fast algorithms that operate on simplified, grid-like molecular representations, while atom-based methods are more realistic and flexible, but far less efficient. Here, a hybrid approach of grid-based and atom-based docking is presented, combining precalculated grid potentials with neighbor lists for fast and accurate calculation of atom-based intermolecular energies and forces. The grid representation is compatible with simultaneous multibody docking and can tolerate considerable protein flexibility. When implemented in our docking method ATTRACT, grid-based docking was found to be ∼35x faster. With the OPLSX forcefield instead of the ATTRACT coarse-grained forcefield, the average speed improvement was >100x. Grid-based representations may allow atom-based docking methods to explore large conformational spaces with many degrees of freedom, such as multiple macromolecules including flexibility. This increases the domain of biological problems to which docking methods can be applied. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Samanta, Arup; Muruganathan, Manoharan; Hori, Masahiro; Ono, Yukinori; Mizuta, Hiroshi; Tabe, Michiharu; Moraru, Daniel
2017-02-01
Quantum dots formed by donor-atoms in Si nanodevices can provide a breakthrough for functionality at the atomic level with one-by-one control of electrons. However, single-electron effects in donor-atom devices have only been observed at low temperatures mainly due to the low tunnel barriers. If a few donor-atoms are closely coupled as a molecule to form a quantum dot, the ground-state energy level is significantly deepened, leading to higher tunnel barriers. Here, we demonstrate that such an a-few-donor quantum dot, formed by selective conventional doping of phosphorus (P) donors in a Si nano-channel, sustains Coulomb blockade behavior even at room temperature. In this work, such a quantum dot is formed by 3 P-donors located near the center of the selectively-doped area, which is consistent with a statistical analysis. This finding demonstrates practical conditions for atomic- and molecular-level electronics based on donor-atoms in silicon nanodevices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iyer, Abishek K.; Yin, Wenlong; Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900
The quaternary Ga-containing chalcogenides La{sub 3}Ag{sub 0.6}GaS{sub 7}, La{sub 3}Ag{sub 0.6}GaSe{sub 7}, La{sub 3}ZnGaSe{sub 7}, and La{sub 3}CdGaSe{sub 7}, as well as the related ternary chalcogenide La{sub 3}Ga{sub 1.67}S{sub 7}, were prepared by reactions of the elements at 950 °C. They adopt noncentrosymmetric hexagonal structures (space group P6{sub 3}, Z=2) with cell parameters (a=10.2 Å, c=6.1 Å for the sulfides; a=10.6 Å, c=6.4 Å for the selenides) that are largely controlled by the geometrical requirements of one-dimensional stacks of Ga-centered tetrahedra separated by the La atoms. Among these compounds, which share the common formulation La{sub 3}M{sub 1–x}GaCh{sub 7} (M=Ga, Ag,more » Zn, Cd; Ch=S, Se), the M atoms occupy sites within a stacking of trigonal antiprisms formed by Ch atoms. The location of the M site varies between extremes with trigonal antiprismatic (CN6) and trigonal planar (CN3) geometry. Partial occupation of these sites and intermediate ones accounts for the considerable versatility of these structures and the occurrence of large metal displacement parameters. The site occupations can be understood in a simple way as being driven by the need to satisfy appropriate bond valence sums for both the M and Ch atoms. Band structure calculations rationalize the substoichiometry observed in the Ag-containing compounds (La{sub 3}Ag{sub 0.6}GaS{sub 7}, La{sub 3}Ag{sub 0.6}GaSe{sub 7}) as a response to overbonding. X-ray photoelectron spectroscopy supports the presence of monovalent Ag atoms in these compounds, which are not charge-balanced. - Graphical abstract: Partial occupation of metal atoms in multiple sites accounts for versatility in Ga-containing chalcogenides La{sub 3}M{sub 1–x}GaCh{sub 7} with noncentrosymmetric hexagonal structures. - Highlights: • La{sub 3}M{sub 1–x}GaCh{sub 7} (M =Ga, Ag, Zn, Cd; Ch =S, Se) adopt related hexagonal structures. • Large displacements of M atoms originate from partial occupation of multiple sites. • Bond valence sum arguments give a simple explanation for site preference. • XPS studies confirm presence of monovalent Ag in La{sub 3}Ag{sub 0.6}GaCh{sub 7}. • Substoichiometry in La{sub 3}Ag{sub 0.6}GaCh{sub 7} avoids occupation of Ag–Ch antibonding levels.« less
Shekhar, R
2012-05-15
A method has been developed to improve the sensitivity of the electrolyte cathode discharge atomic emission spectrometry (ELCAD-AES) for mercury determination. Effects of various low molecular weight organic solvents at different volume percentages as well as at different acid molarities on the mercury signal were investigated using ELCAD-AES. The addition of few percent of organic solvent, acetic acid produced significant enhancement in mercury signal. Acetic acid of 5% (v/v) with the 0.2M acidity has been found to give 500% enhancement for mercury signal in flow injection mode. Under the optimized parameters the repeatability, expressed as the percentage relative standard deviation of spectral peak area for mercury with 5% acetic acid was found to be 10% for acid blank solution and 5% for 20 ng/mL mercury standard based on multiple measurements with a multiple sample loading in flow injection mode. Limit of detection of this method was determined to be 2 ng/mL for inorganic mercury. The proposed method has been validated by determining mercury in certified reference materials, Tuna fish (IAEA-350) and Aquatic plant (BCR-060). Accuracy of the method for the mercury determination in the reference materials has been found to be between 3.5% and 5.9%. This study enhances the utility of ELCAD-AES for various types of biological and environmental materials to quantify total mercury at very low levels. Copyright © 2012 Elsevier B.V. All rights reserved.
Two-photon-excited fluorescence spectroscopy of atomic fluorine at 170 nm
NASA Technical Reports Server (NTRS)
Herring, G. C.; Dyer, Mark J.; Jusinski, Leonard E.; Bischel, William K.
1988-01-01
Two-photon-excited fluorescence spectroscopy of atomic fluorine is reported. A doubled dye laser at 286-nm is Raman shifted in H2 to 170 nm (sixth anti-Stokes order) to excite ground-state 2P(0)J fluorine atoms to the 2D(0)J level. The fluorine atoms are detected by one of two methods: observing the fluorescence decay to the 2PJ level or observing F(+) production through the absorption of an additional photon by the excited atoms. Relative two-photon absorption cross sections to and the radiative lifetimes of the 2D(0)J states are measured.
NASA Astrophysics Data System (ADS)
Primo, Ana; Neatu, Florentina; Florea, Mihaela; Parvulescu, Vasile; Garcia, Hermenegildo
2014-10-01
Catalysis makes possible a chemical reaction by increasing the transformation rate. Hydrogenation of carbon-carbon multiple bonds is one of the most important examples of catalytic reactions. Currently, this type of reaction is carried out in petrochemistry at very large scale, using noble metals such as platinum and palladium or first row transition metals such as nickel. Catalysis is dominated by metals and in many cases by precious ones. Here we report that graphene (a single layer of one-atom-thick carbon atoms) can replace metals for hydrogenation of carbon-carbon multiple bonds. Besides alkene hydrogenation, we have shown that graphenes also exhibit high selectivity for the hydrogenation of acetylene in the presence of a large excess of ethylene.
Enhanced secondary ion emission with a bismuth cluster ion source
NASA Astrophysics Data System (ADS)
Nagy, G.; Walker, A. V.
2007-04-01
We have investigated the mechanism of secondary ion yield enhancement using Bin+ (n = 1-6) primary ions and three different samples - dl-phenylalanine, Irganox 1010 and polystyrene - adsorbed on Al, Si and Ag substrates. The largest changes in secondary ion yields are observed for Bi2+ and Bi3+ primary ions. Smaller increases in secondary ion yield are found using Bi4+, Bi5+ and Bi6+ projectiles. The secondary ion yield enhancements are generally larger on Si than on Al. Using Bin+ structures obtained from density functional theory (DFT) calculations we demonstrate that the yield enhancements cannot be explained by an increase in the deposited energy density (energy per area) into the substrate. These data show that the mechanism of Bin+ sputtering is very similar to that for Aun+ primary ion beams. When a polyatomic primary ion strikes the substrate, its constituent atoms are likely to remain near to each other, and so a substrate atom can be struck simultaneously by multiple atoms. The action of these multiple concerted impacts leads to efficient energy transfer in the near surface region and an increase in the number of secondary ions ejected from the surface. Such concerted impacts involve one, two or three projectile atoms, which explains well the nonlinear yield enhancements observed going from Bi+ to Bi2+ to Bi3+.
Superradiance in a Large and Dilute Cloud of Cold Atoms in the Linear-Optics Regime.
Araújo, Michelle O; Krešić, Ivor; Kaiser, Robin; Guerin, William
2016-08-12
Superradiance has been extensively studied in the 1970s and 1980s in the regime of superfluorescence, where a large number of atoms are initially excited. Cooperative scattering in the linear-optics regime, or "single-photon superradiance," has been investigated much more recently, and superradiant decay has also been predicted, even for a spherical sample of large extent and low density, where the distance between atoms is much larger than the wavelength. Here, we demonstrate this effect experimentally by directly measuring the decay rate of the off-axis fluorescence of a large and dilute cloud of cold rubidium atoms after the sudden switch off of a low-intensity laser driving the atomic transition. We show that, at large detuning, the decay rate increases with the on-resonance optical depth. In contrast to forward scattering, the superradiant decay of off-axis fluorescence is suppressed near resonance due to attenuation and multiple-scattering effects.
NIST Databases on Atomic Spectra
NASA Astrophysics Data System (ADS)
Reader, J.; Wiese, W. L.; Martin, W. C.; Musgrove, A.; Fuhr, J. R.
2002-11-01
The NIST atomic and molecular spectroscopic databases now available on the World Wide Web through the NIST Physics Laboratory homepage include Atomic Spectra Database, Ground Levels and Ionization Energies for the Neutral Atoms, Spectrum of Platinum Lamp for Ultraviolet Spectrograph Calibration, Bibliographic Database on Atomic Transition Probabilities, Bibliographic Database on Atomic Spectral Line Broadening, and Electron-Impact Ionization Cross Section Database. The Atomic Spectra Database (ASD) [1] offers evaluated data on energy levels, wavelengths, and transition probabilities for atoms and atomic ions. Data are given for some 950 spectra and 70,000 energy levels. About 91,000 spectral lines are included, with transition probabilities for about half of these. Additional data resulting from our ongoing critical compilations will be included in successive new versions of ASD. We plan to include, for example, our recently published data for some 16,000 transitions covering most ions of the iron-group elements, as well as Cu, Kr, and Mo [2]. Our compilations benefit greatly from experimental and theoretical atomic-data research being carried out in the NIST Atomic Physics Division. A new compilation covering spectra of the rare gases in all stages of ionization, for example, revealed a need for improved data in the infrared. We have thus measured these needed data with our high-resolution Fourier transform spectrometer [3]. An upcoming new database will give wavelengths and intensities for the stronger lines of all neutral and singly-ionized atoms, along with energy levels and transition probabilities for the persistent lines [4]. A critical compilation of the transition probabilities of Ba I and Ba II [5] has been completed and several other compilations of atomic transition probabilities are nearing completion. These include data for all spectra of Na, Mg, Al, and Si [6]. Newly compiled data for selected ions of Ne, Mg, Si and S, will form the basis for a new database intended to assist interpretation of soft x-ray astronomical spectra, such as from the Chandra X-ray Observatory. These data will be available soon on the World Wide Web [7].
A triple point in 3-level systems
NASA Astrophysics Data System (ADS)
Nahmad-Achar, E.; Cordero, S.; López-Peña, R.; Castaños, O.
2014-11-01
The energy spectrum of a 3-level atomic system in the Ξ-configuration is studied. This configuration presents a triple point independently of the number of atoms, which remains in the thermodynamic limit. This means that in a vicinity of this point any quantum fluctuation will drastically change the composition of the ground state of the system. We study the expectation values of the atomic population of each level, the number of photons, and the probability distribution of photons at the triple point.
NASA Astrophysics Data System (ADS)
Cruz Inclán, Carlos M.; González Lazo, Eduardo; Rodríguez Rodríguez, Arturo; Guzmán Martínez, Fernando; Abreu Alfonso, Yamiel; Piñera Hernández, Ibrahin; Leyva Fabelo, Antonio
2017-09-01
The present work deals with the numerical simulation of gamma and electron radiation damage processes under high brightness and radiation particle fluency on regard to two new radiation induced atom displacement processes, which concern with both, the Monte Carlo Method based numerical simulation of the occurrence of atom displacement process as a result of gamma and electron interactions and transport in a solid matrix and the atom displacement threshold energies calculated by Molecular Dynamic methodologies. The two new radiation damage processes here considered in the framework of high brightness and particle fluency irradiation conditions are: 1) The radiation induced atom displacement processes due to a single primary knockout atom excitation in a defective target crystal matrix increasing its defect concentrations (vacancies, interstitials and Frenkel pairs) as a result of a severe and progressive material radiation damage and 2) The occurrence of atom displacements related to multiple primary knockout atom excitations for the same or different atomic species in an perfect target crystal matrix due to subsequent electron elastic atomic scattering in the same atomic neighborhood during a crystal lattice relaxation time. In the present work a review numeral simulation attempts of these two new radiation damage processes are presented, starting from the former developed algorithms and codes for Monte Carlo simulation of atom displacements induced by electron and gamma in
Teleporting entanglements of cavity-field states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pires, Geisa; Baseia, B.; Almeida, N.G. de
2004-08-01
We present a scheme to teleport an entanglement of zero- and one-photon states from one cavity to another. The scheme, which has 100% success probability, relies on two perfect and identical bimodal cavities, a collection of two kinds of two-level atoms, a three-level atom in a ladder configuration driven by a classical field, Ramsey zones, and selective atomic-state detectors.
NASA Astrophysics Data System (ADS)
Sun, Yuan; Liu, Chang; Chen, Ping-Xing; Liu, Liang
2018-02-01
People have been paying attention to the role of atoms' complex internal level structures in the research of electromagnetically induced transparency (EIT) for a long time, where the various degenerate Zeeman levels usually generate complex linkage patterns for the atomic transitions. It turns out, with special choices of the atomic states and the atomic transitions' linkage structure, clear signatures of quantum interference induced by the probe and coupling light's polarizations can emerge from a typical EIT phenomena. We propose to study a four-state system with double-V linkage pattern for the transitions and analyze the polarization-induced interference under the EIT condition. We show that such interference arises naturally under mild conditions on the optical field and atom manipulation techniques. Moreover, we construct a variation form of double-M linkage pattern where the polarization-induced interference enables polarization-dependent cross modulation between incident weak lights that can be effective even at the few-photon level. The theme is to gain more insight into the essential question: how can we build a nontrivial optical medium where incident lights experience polarization-dependent nonlinear optical interactions, valid for a wide range of incidence intensities down to the few-photon level?
NASA Astrophysics Data System (ADS)
Zhang, Duo; Li, Jiahua; Ding, Chunling; Yang, Xiaoxue
2012-05-01
The spontaneous emission properties of a microwave-field-driven four-level atom embedded in anisotropic double-band photonic crystals (PCs) are investigated. We discuss the influences of the band-edge positions, Rabi frequency and detuning of the microwave field on the emission spectrum. It is found that several interesting features such as spectral-line enhancement, spectral-line suppression, spectral-line overlap, and multi-peak structures can be observed in the spectra. The proposed scheme can be achieved by use of a microwave-coupled field into hyperfine levels in rubidium atom confined in a photonic crystal. These theoretical investigations may provide more degrees of freedom to manipulate the atomic spontaneous emission.
Cheng, Sara Y.; Duong, Hai V.; Compton, Campbell; Vaughn, Mark W.; Nguyen, Hoa; Cheng, Kwan H.
2015-01-01
Quantifying protein-induced lipid disruptions at the atomistic level is a challenging problem in membrane biophysics. Here we propose a novel 3D Voronoi tessellation nearest-atom-neighbor shell method to classify and characterize lipid domains into discrete concentric lipid shells surrounding membrane proteins in structurally heterogeneous lipid membranes. This method needs only the coordinates of the system and is independent of force fields and simulation conditions. As a proof-of-principle, we use this multiple lipid shell method to analyze the lipid disruption profiles of three simulated membrane systems: phosphatidylcholine, phosphatidylcholine/cholesterol, and beta-amyloid/phosphatidylcholine/cholesterol. We observed different atomic volume disruption mechanisms due to cholesterol and beta-amyloid Additionally, several lipid fractional groups and lipid-interfacial water did not converge to their control values with increasing distance or shell order from the protein. This volume divergent behavior was confirmed by bilayer thickness and chain orientational order calculations. Our method can also be used to analyze high-resolution structural experimental data. PMID:25637891
Maxwell, Peter I; Popelier, Paul L A
2017-11-05
Accurate description of the intrinsic preferences of amino acids is important to consider when developing a biomolecular force field. In this study, we use a modern energy partitioning approach called Interacting Quantum Atoms to inspect the cause of the φ and ψ torsional preferences of three dipeptides (Gly, Val, and Ile). Repeating energy trends at each of the molecular, functional group, and atomic levels are observed across both (1) the three amino acids and (2) the φ/ψ scans in Ramachandran plots. At the molecular level, it is surprisingly electrostatic destabilization that causes the high-energy regions in the Ramachandran plot, not molecular steric hindrance (related to the intra-atomic energy). At the functional group and atomic levels, the importance of key peptide atoms (O i -1 , C i , N i , N i +1 ) and some sidechain hydrogen atoms (H γ ) are identified as responsible for the destabilization seen in the energetically disfavored Ramachandran regions. Consistently, the O i -1 atoms are particularly important for the explanation of dipeptide intrinsic behavior, where electrostatic and steric destabilization unusually complement one another. The findings suggest that, at least for these dipeptides, it is the peptide group atoms that dominate the intrinsic behavior, more so than the sidechain atoms. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.
The adsorption of helium atoms on coronene cations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurzthaler, Thomas; Rasul, Bilal; Kuhn, Martin
2016-08-14
We report the first experimental study of the attachment of multiple foreign atoms to a cationic polycyclic aromatic hydrocarbon (PAH). The chosen PAH was coronene, C{sub 24}H{sub 12}, which was added to liquid helium nanodroplets and then subjected to electron bombardment. Using mass spectrometry, coronene cations decorated with helium atoms were clearly seen and the spectrum shows peaks with anomalously high intensities (“magic number” peaks), which represent ion-helium complexes with added stability. The data suggest the formation of a rigid helium layer consisting of 38 helium atoms that completely cover both faces of the coronene ion. Additional magic numbers canmore » be seen for the further addition of 3 and 6 helium atoms, which are thought to attach to the edge of the coronene. The observation of magic numbers for the addition of 38 and 44 helium atoms is in good agreement with a recent path integral Monte Carlo prediction for helium atoms on neutral coronene. An understanding of how atoms and molecules attach to PAH ions is important for a number of reasons including the potential role such complexes might play in the chemistry of the interstellar medium.« less
Marrero-Ponce, Yovani
2004-01-01
This report describes a new set of molecular descriptors of relevance to QSAR/QSPR studies and drug design, atom linear indices fk(xi). These atomic level chemical descriptors are based on the calculation of linear maps on Rn[fk(xi): Rn--> Rn] in canonical basis. In this context, the kth power of the molecular pseudograph's atom adjacency matrix [Mk(G)] denotes the matrix of fk(xi) with respect to the canonical basis. In addition, a local-fragment (atom-type) formalism was developed. The kth atom-type linear indices are calculated by summing the kth atom linear indices of all atoms of the same atom type in the molecules. Moreover, total (whole-molecule) linear indices are also proposed. This descriptor is a linear functional (linear form) on Rn. That is, the kth total linear indices is a linear map from Rn to the scalar R[ fk(x): Rn --> R]. Thus, the kth total linear indices are calculated by summing the atom linear indices of all atoms in the molecule. The features of the kth total and local linear indices are illustrated by examples of various types of molecular structures, including chain-lengthening, branching, heteroatoms-content, and multiple bonds. Additionally, the linear independence of the local linear indices to other 0D, 1D, 2D, and 3D molecular descriptors is demonstrated by using principal component analysis for 42 very heterogeneous molecules. Much redundancy and overlapping was found among total linear indices and most of the other structural indices presently in use in the QSPR/QSAR practice. On the contrary, the information carried by atom-type linear indices was strikingly different from that codified in most of the 229 0D-3D molecular descriptors used in this study. It is concluded that the local linear indices are an independent indices containing important structural information to be used in QSPR/QSAR and drug design studies. In this sense, atom, atom-type, and total linear indices were used for the prediction of pIC50 values for the cleavage process of a set of flavone derivatives inhibitors of HIV-1 integrase. Quantitative models found are significant from a statistical point of view (R of 0.965, 0.902, and 0.927, respectively) and permit a clear interpretation of the studied properties in terms of the structural features of molecules. A LOO cross-validation procedure revealed that the regression models had a fairly good predictability (q2 of 0.679, 0.543, and 0.721, respectively). The comparison with other approaches reveals good behavior of the method proposed. The approach described in this paper appears to be an excellent alternative or guides for discovery and optimization of new lead compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bürger, Stefan; Riciputi, Lee R; Bostick, Debra A
A ThermoFisher 'Triton' multi-collector thermal ionization mass spectrometer (MC-TIMS) was evaluated for trace and ultra-trace level isotoperatioanalysis of actinides (uranium, plutonium, and americium), fission products and geolocators (strontium, cesium, and neodymium). Total efficiencies (atoms loaded to ions detected) of up to 0.5-2% for U, Pu, and Am, and 1-30% for Sr, Cs, and Nd can be reported employing resin bead load techniques onto flat ribbon Re filaments or resin beads loaded into a millimeter-sized cavity drilled into a Re rod. This results in detection limits of <0.1 fg (10{sup 4} atoms to 10{sup 5} atoms) for {sup 239-242+244}Pu, {sup 233+236}U,more » {sup 241-243}Am, {sup 89,90}Sr, and {sup 134,135,137}Cs, and {le} 1 pg for natural Nd isotopes (limited by the chemical processing blank) using a secondary electron multiplier (SEM) or multiple-ion counters (MICs). Relative standard deviations (RSD) as small as 0.1% and abundance sensitivities of 1 x 10{sup 6} or better using a SEM are reported here. Precisions of RSD {approx} 0.01-0.001% using a multi-collector Faraday cup array can be achieved at sub-nanogram concentrations for strontium and neodymium and are suitable to gain crucial geolocation information. The analytical protocols reported herein are of particular value for nuclear forensic and nuclear safeguard applications.« less
Isotropic Inelastic Collisions in a Multiterm Atom with Hyperfine Structure
NASA Astrophysics Data System (ADS)
Belluzzi, Luca; Landi Degl'Innocenti, Egidio; Trujillo Bueno, Javier
2015-10-01
A correct modeling of the scattering polarization profiles observed in some spectral lines of diagnostic interest, the sodium doublet being one of the most important examples, requires taking hyperfine structure (HFS) and quantum interference between different J-levels into account. An atomic model suitable for taking these physical ingredients into account is the so-called multiterm atom with HFS. In this work, we introduce and study the transfer and relaxation rates due to isotropic inelastic collisions with electrons, which enter the statistical equilibrium equations (SEE) for the atomic density matrix of this atomic model. Under the hypothesis that the electron-atom interaction is described by a dipolar operator, we provide useful relations between the rates describing the transfer and relaxation of quantum interference between different levels (whose numerical values are in most cases unknown) and the usual rates for the atomic level populations, for which experimental data and/or approximate theoretical expressions are generally available. For the particular case of a two-term atom with HFS, we present an analytical solution of the SEE for the spherical statistical tensors of the upper term, including both radiative and collisional processes, and we derive the expression of the emission coefficient in the four Stokes parameters. Finally, an illustrative application to the Na i D1 and D2 lines is presented.
Uncertainties in Atomic Data and Their Propagation Through Spectral Models. I.
NASA Technical Reports Server (NTRS)
Bautista, M. A.; Fivet, V.; Quinet, P.; Dunn, J.; Gull, T. R.; Kallman, T. R.; Mendoza, C.
2013-01-01
We present a method for computing uncertainties in spectral models, i.e., level populations, line emissivities, and emission line ratios, based upon the propagation of uncertainties originating from atomic data.We provide analytic expressions, in the form of linear sets of algebraic equations, for the coupled uncertainties among all levels. These equations can be solved efficiently for any set of physical conditions and uncertainties in the atomic data. We illustrate our method applied to spectral models of Oiii and Fe ii and discuss the impact of the uncertainties on atomic systems under different physical conditions. As to intrinsic uncertainties in theoretical atomic data, we propose that these uncertainties can be estimated from the dispersion in the results from various independent calculations. This technique provides excellent results for the uncertainties in A-values of forbidden transitions in [Fe ii]. Key words: atomic data - atomic processes - line: formation - methods: data analysis - molecular data - molecular processes - techniques: spectroscopic
NASA Astrophysics Data System (ADS)
Wang, Jian-ming; Xu, Xue-xiang
2018-04-01
Using dressed state method, we cleverly solve the dynamics of atom-field interaction in the process of two-photon absorption and emission between atomic levels. Here we suppose that the atom is initially in the ground state and the optical field is initially in Fock state, coherent state or thermal state, respectively. The properties of the atom, including the population in excited state and ground state, the atom inversion, and the properties for optical field, including the photon number distribution, the mean photon number, the second-order correlation function and the Wigner function, are discussed in detail. We derive their analytical expressions and then make numerical analysis for them. In contrast with Jaynes-Cummings model, some similar results, such as quantum Rabi oscillation, revival and collapse, are also exhibit in our considered model. Besides, some novel nonclassical states are generated.
Quantum-projection-noise-limited interferometry with coherent atoms in a Ramsey-type setup
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doering, D.; McDonald, G.; Debs, J. E.
2010-04-15
Every measurement of the population in an uncorrelated ensemble of two-level systems is limited by what is known as the quantum projection noise limit. Here, we present quantum-projection-noise-limited performance of a Ramsey-type interferometer using freely propagating coherent atoms. The experimental setup is based on an electro-optic modulator in an inherently stable Sagnac interferometer, optically coupling the two interfering atomic states via a two-photon Raman transition. Going beyond the quantum projection noise limit requires the use of reduced quantum uncertainty (squeezed) states. The experiment described demonstrates atom interferometry at the fundamental noise level and allows the observation of possible squeezing effectsmore » in an atom laser, potentially leading to improved sensitivity in atom interferometers.« less
Noise squeezing of fields that bichromatically excite atoms in a cavity.
Li, Lingchao; Hu, Xiangming; Rao, Shi; Xu, Jun
2016-11-14
It is well known that bichromatic excitation on one common transition can tune the emission or absorption spectra of atoms due to the modulation frequency dependent non-linearities. However little attention has been focused on the quantum dynamics of fields under bichromatic excitation. Here we present dissipative effects on noise correlations of fields in bichromatic interactions with atoms in cavities. We first consider an ensemble of two-level atoms that interacts with the two cavity fields of different frequencies and considerable amplitudes. By transferring the atom-field nonlinearities to the dressed atoms we separate out the dissipative interactions of Bogoliubov modes with the dressed atoms. The Bogoliubov mode dissipation establishes stable two-photon processes of two involved fields and therefore leads to two-mode squeezing. As a generalization, we then consider an ensemble of three-level Λ atoms for cascade bichromatic interactions. We extract the Bogoliubov-like four-mode interactions, which establish a quadrilateral of the two-photon processes of four involved fields and thus result in four-mode squeezing.
Fast generating Greenberger-Horne-Zeilinger state via iterative interaction pictures
NASA Astrophysics Data System (ADS)
Huang, Bi-Hua; Chen, Ye-Hong; Wu, Qi-Cheng; Song, Jie; Xia, Yan
2016-10-01
We delve a little deeper into the construction of shortcuts to adiabatic passage for three-level systems by iterative interaction picture (multiple Schrödinger dynamics). As an application example, we use the deduced iterative based shortcuts to rapidly generate the Greenberger-Horne-Zeilinger (GHZ) state in a three-atom system with the help of quantum Zeno dynamics. Numerical simulation shows the dynamics designed by the iterative picture method is physically feasible and the shortcut scheme performs much better than that using the conventional adiabatic passage techniques. Also, the influences of various decoherence processes are discussed by numerical simulation and the results prove that the scheme is fast and robust against decoherence and operational imperfection.
Research on System Coherence Evolution of Different Environmental Models
NASA Astrophysics Data System (ADS)
Zhang, Si-Qi; Lu, Jing-Bin; Li, Hong; Liu, Ji-Ping; Zhang, Xiao-Ru; Liu, Han; Liang, Yu; Ma, Ji; Liu, Xiao-Jing; Wu, Xiang-Yao
2018-04-01
In this paper, we have studied the evolution curve of two-level atomic system that the initial state is excited state. At the different of environmental reservoir models, which include the single Lorentzian, ideal photon band-gap, double Lorentzian and square Lorentzian reservoir, we researched the influence of these environmental reservoir models on the evolution of energy level population. At static no modulation, comparing the four environmental models, the atomic energy level population oscillation of square Lorentzian reservoir model is fastest, and the atomic system decoherence is slowest. Under dynamic modulation, comparing the photon band-gap model with the single Lorentzian reservoir model, no matter what form of dynamic modulation, the time of atoms decay to the ground state is longer for the photonic band-gap model. These conclusions make the idea of using the environmental change to modulate the coherent evolution of atomic system become true.
Databases and coordinated research projects at the IAEA on atomic processes in plasmas
NASA Astrophysics Data System (ADS)
Braams, Bastiaan J.; Chung, Hyun-Kyung
2012-05-01
The Atomic and Molecular Data Unit at the IAEA works with a network of national data centres to encourage and coordinate production and dissemination of fundamental data for atomic, molecular and plasma-material interaction (A+M/PMI) processes that are relevant to the realization of fusion energy. The Unit maintains numerical and bibliographical databases and has started a Wiki-style knowledge base. The Unit also contributes to A+M database interface standards and provides a search engine that offers a common interface to multiple numerical A+M/PMI databases. Coordinated Research Projects (CRPs) bring together fusion energy researchers and atomic, molecular and surface physicists for joint work towards the development of new data and new methods. The databases and current CRPs on A+M/PMI processes are briefly described here.
On the calculation of atomic term populations
NASA Technical Reports Server (NTRS)
Kastner, S. O.; Bhatia, A. K.
1992-01-01
The usefulness of calculations on model atomic term systems which can give spectral multiplet intensities is emphasized, in contrast to more detailed level calculations which are not always feasible because of lack of appropriate atomic data. A more general expression for the multiplet radiative transition rate is proposed to facilitate term representations. The differences between term and level representations are discussed quantitatively with respect to a model three-level atom and real examples of the C III and Ne IV ions. It is shown that term representations fail at lower densities when level inverse lifetimes within terms differ by only a few orders of magnitude. In such cases one must resort to other methods; a hybrid calculation is therefore proposed to fill this need and is carried out for the C III ion to demonstrate its feasibility and validity.
Accurate atom-mapping computation for biochemical reactions.
Latendresse, Mario; Malerich, Jeremiah P; Travers, Mike; Karp, Peter D
2012-11-26
The complete atom mapping of a chemical reaction is a bijection of the reactant atoms to the product atoms that specifies the terminus of each reactant atom. Atom mapping of biochemical reactions is useful for many applications of systems biology, in particular for metabolic engineering where synthesizing new biochemical pathways has to take into account for the number of carbon atoms from a source compound that are conserved in the synthesis of a target compound. Rapid, accurate computation of the atom mapping(s) of a biochemical reaction remains elusive despite significant work on this topic. In particular, past researchers did not validate the accuracy of mapping algorithms. We introduce a new method for computing atom mappings called the minimum weighted edit-distance (MWED) metric. The metric is based on bond propensity to react and computes biochemically valid atom mappings for a large percentage of biochemical reactions. MWED models can be formulated efficiently as Mixed-Integer Linear Programs (MILPs). We have demonstrated this approach on 7501 reactions of the MetaCyc database for which 87% of the models could be solved in less than 10 s. For 2.1% of the reactions, we found multiple optimal atom mappings. We show that the error rate is 0.9% (22 reactions) by comparing these atom mappings to 2446 atom mappings of the manually curated Kyoto Encyclopedia of Genes and Genomes (KEGG) RPAIR database. To our knowledge, our computational atom-mapping approach is the most accurate and among the fastest published to date. The atom-mapping data will be available in the MetaCyc database later in 2012; the atom-mapping software will be available within the Pathway Tools software later in 2012.
Atomic-Layer-Confined Doping for Atomic-Level Insights into Visible-Light Water Splitting.
Lei, Fengcai; Zhang, Lei; Sun, Yongfu; Liang, Liang; Liu, Katong; Xu, Jiaqi; Zhang, Qun; Pan, Bicai; Luo, Yi; Xie, Yi
2015-08-03
A model of doping confined in atomic layers is proposed for atomic-level insights into the effect of doping on photocatalysis. Co doping confined in three atomic layers of In2S3 was implemented with a lamellar hybrid intermediate strategy. Density functional calculations reveal that the introduction of Co ions brings about several new energy levels and increased density of states at the conduction band minimum, leading to sharply increased visible-light absorption and three times higher carrier concentration. Ultrafast transient absorption spectroscopy reveals that the electron transfer time of about 1.6 ps from the valence band to newly formed localized states is due to Co doping. The 25-fold increase in average recovery lifetime is believed to be responsible for the increased of electron-hole separation. The synthesized Co-doped In2S3 (three atomic layers) yield a photocurrent of 1.17 mA cm(-2) at 1.5 V vs. RHE, nearly 10 and 17 times higher than that of the perfect In2S3 (three atomic layers) and the bulk counterpart, respectively. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Study of atomic coherence effects in multi-level V+Ξ system involving Rydberg state
NASA Astrophysics Data System (ADS)
Kaur, Amanjot; Singh, Neeraj; Kaur, Paramjit
2018-06-01
We present theoretical model to investigate the influence of hyperfine levels on the atomic coherences of V+Ξ Rydberg system. Using density matrix formulation, an analytical expression of atomic coherence for weak probe field is derived. The closely spaced hyperfine levels cause asymmetry and red shift while wavelength mismatching induced due to Rydberg state leads to reduction in magnitude and broadening of group index, absorption and dispersion profiles for moving atoms. Our system shows both Rydberg Electromagnetically induced transparency (EIT) with subluminal behavior and Rydberg Electromagnetically induced absorption (EIA) with superluminal propagation by adjusting the strengths of control and switching fields. Variation of group index with probe detuning reveals anomalous dispersion regions at Autler-Townes doublet positions. Group index for Doppler-broadened atoms at resonance condition has lower magnitude as compared to the stationary atoms and hence the group delay time of the pulse is also reduced. We also explore in-depth non-degenerate four-wave mixing (FWM) which is ignited due to the presence of three electromagnetic (e.m.) fields and concurrently, establish relationship between FWM and multi-photon atomic coherence. The transient behavior is also studied for practical realization of our considered system as optical switch.
Jesse, Stephen; Hudak, Bethany M; Zarkadoula, Eva; Song, Jiaming; Maksov, Artem; Fuentes-Cabrera, Miguel; Ganesh, Panchapakesan; Kravchenko, Ivan; Snijders, Panchapakesan C; Lupini, Andrew R; Borisevich, Albina Y; Kalinin, Sergei V
2018-06-22
Semiconductor fabrication is a mainstay of modern civilization, enabling the myriad applications and technologies that underpin everyday life. However, while sub-10 nanometer devices are already entering the mainstream, the end of the Moore's law roadmap still lacks tools capable of bulk semiconductor fabrication on sub-nanometer and atomic levels, with probe-based manipulation being explored as the only known pathway. Here we demonstrate that the atomic-sized focused beam of a scanning transmission electron microscope can be used to manipulate semiconductors such as Si on the atomic level, inducing growth of crystalline Si from the amorphous phase, reentrant amorphization, milling, and dopant front motion. These phenomena are visualized in real-time with atomic resolution. We further implement active feedback control based on real-time image analytics to automatically control the e-beam motion, enabling shape control and providing a pathway for atom-by-atom correction of fabricated structures in the near future. These observations open a new epoch for atom-by-atom manufacturing in bulk, the long-held dream of nanotechnology.
NASA Astrophysics Data System (ADS)
Jesse, Stephen; Hudak, Bethany M.; Zarkadoula, Eva; Song, Jiaming; Maksov, Artem; Fuentes-Cabrera, Miguel; Ganesh, Panchapakesan; Kravchenko, Ivan; Snijders, Panchapakesan C.; Lupini, Andrew R.; Borisevich, Albina Y.; Kalinin, Sergei V.
2018-06-01
Semiconductor fabrication is a mainstay of modern civilization, enabling the myriad applications and technologies that underpin everyday life. However, while sub-10 nanometer devices are already entering the mainstream, the end of the Moore’s law roadmap still lacks tools capable of bulk semiconductor fabrication on sub-nanometer and atomic levels, with probe-based manipulation being explored as the only known pathway. Here we demonstrate that the atomic-sized focused beam of a scanning transmission electron microscope can be used to manipulate semiconductors such as Si on the atomic level, inducing growth of crystalline Si from the amorphous phase, reentrant amorphization, milling, and dopant front motion. These phenomena are visualized in real-time with atomic resolution. We further implement active feedback control based on real-time image analytics to automatically control the e-beam motion, enabling shape control and providing a pathway for atom-by-atom correction of fabricated structures in the near future. These observations open a new epoch for atom-by-atom manufacturing in bulk, the long-held dream of nanotechnology.
Valois, Caroline R A; Silva, Luciano P; Azevedo, Ricardo B
2008-07-01
The purpose of this study was to evaluate the surface of rotary nickel-titanium (Ni-Ti) files after multiple autoclave cycles. Two different types of rotary Ni-Ti (Greater Taper and ProFile) were attached to a glass base. After 1, 5, and 10 autoclave cycles the files were positioned in the atomic force microscope. The analyses were performed on 15 different points. The same files were used as control before any autoclave cycle. The following vertical topographic parameters were measured: arithmetic mean roughness, maximum height, and root mean square. The differences were tested by analysis of variance with Tukey test. All topographic parameters were higher for both Greater Taper and ProFile after 10 cycles compared with the control (P < .05). ProFile also showed higher topographic parameters after 5 cycles compared with the control (P < .05). The results indicated that multiple autoclave cycles increase the depth of surface irregularities located on rotary Ni-Ti files.
Semiclassical approach to atomic decoherence by gravitational waves
NASA Astrophysics Data System (ADS)
Quiñones, D. A.; Varcoe, B. T. H.
2018-01-01
A new heuristic model of interaction of an atomic system with a gravitational wave (GW) is proposed. In it, the GW alters the local electromagnetic field of the atomic nucleus, as perceived by the electron, changing the state of the system. The spectral decomposition of the wave function is calculated, from which the energy is obtained. The results suggest a shift in the difference of the atomic energy levels, which will induce a small detuning to a resonant transition. The detuning increases with the quantum numbers of the levels, making the effect more prominent for Rydberg states. We performed calculations on the Rabi oscillations of atomic transitions, estimating how they would vary as a result of the proposed effect.
National Institute of Standards and Technology Data Gateway
SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access) This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.
Zepeda, L Gerardo; Burgueño-Tapia, Eleuterio; Joseph-Nathan, Pedro
2011-04-01
This communication highlights the need of building hierarchical digraphs for the unequivocal assignment of stereochemical descriptors of (-)-myrtenal, a naturally-occurring oxygenated monoterpene whose absolute configuration (AC) is sometimes misrepresented in its structural formulae. Differentiation between duplicated atoms and phantom atoms for the proper application of the sequence rules is shown to be an essential step to get a proper construction of hierarchical digraphs.
Are X-rays the key to integrated computational materials engineering?
Ice, Gene E.
2015-11-01
The ultimate dream of materials science is to predict materials behavior from composition and processing history. Owing to the growing power of computers, this long-time dream has recently found expression through worldwide excitement in a number of computation-based thrusts: integrated computational materials engineering, materials by design, computational materials design, three-dimensional materials physics and mesoscale physics. However, real materials have important crystallographic structures at multiple length scales, which evolve during processing and in service. Moreover, real materials properties can depend on the extreme tails in their structural and chemical distributions. This makes it critical to map structural distributions with sufficient resolutionmore » to resolve small structures and with sufficient statistics to capture the tails of distributions. For two-dimensional materials, there are high-resolution nondestructive probes of surface and near-surface structures with atomic or near-atomic resolution that can provide detailed structural, chemical and functional distributions over important length scales. Furthermore, there are no nondestructive three-dimensional probes with atomic resolution over the multiple length scales needed to understand most materials.« less
X-ray natural widths, level widths and Coster-Kronig transition probabilities
NASA Astrophysics Data System (ADS)
Papp, T.; Campbell, J. L.; Varga, D.
1997-01-01
A critical review is given for the K-N7 atomic level widths. The experimental level widths were collected from x-ray photoelectron spectroscopy (XPS), x-ray emission spectroscopy (XES), x-ray spectra fluoresced by synchrotron radiation, and photoelectrons from x-ray absorption (PAX). There are only limited atomic number ranges for a few atomic levels where data are available from more than one source. Generally the experimental level widths have large scatter compared to the reported error bars. The experimental data are compared with the recent tabulation of Perkins et al. and of Ohno et al. Ohno et al. performed a many body approach calculation for limited atomic number ranges and have obtained reasonable agreement with the experimental data. Perkins et al. presented a tabulation covering the K-Q1 shells of all atoms, based on extensions of the Scofield calculations for radiative rates and extensions of the Chen calculations for non-radiative rates. The experimental data are in disagreement with this tabulation, in excess of a factor of two in some cases. A short introduction to the experimental Coster-Kronig transition probabilities is presented. It is our opinion that the different experimental approaches result in systematically different experimental data.
NASA Astrophysics Data System (ADS)
Shui, Tao; Yang, Wen-Xing; Chen, Ai-Xi; Liu, Shaopeng; Li, Ling; Zhu, Zhonghu
2018-03-01
We propose a scheme for high-precision two-dimensional (2D) atom localization via the four-wave mixing (FWM) in a four-level double-Λ atomic system. Due to the position-dependent atom-field interaction, the 2D position information of the atoms can be directly determined by the measurement of the normalized light intensity of output FWM-generated field. We further show that, when the position-dependent generated FWM field has become sufficiently intense, efficient back-coupling to the FWM generating state becomes important. This back-coupling pathway leads to competitive multiphoton destructive interference of the FWM generating state by three supplied and one internally generated fields. We find that the precision of 2D atom localization can be improved significantly by the multiphoton destructive interference and depends sensitively on the frequency detunings and the pump field intensity. Interestingly enough, we show that adjusting the frequency detunings and the pump field intensity can modify significantly the FWM efficiency, and consequently lead to a redistribution of the atoms. As a result, the atom can be localized in one of four quadrants with holding the precision of atom localization.
Entanglement evaluation with atomic Fisher information
NASA Astrophysics Data System (ADS)
Obada, A.-S. F.; Abdel-Khalek, S.
2010-02-01
In this paper, the concept of atomic Fisher information (AFI) is introduced. The marginal distributions of the AFI are defined. This quantity is used as a parameter of entanglement and compared with linear and atomic Wehrl entropies of the two-level atom. The evolution of the atomic Fisher information and atomic Wehrl entropy for only the pure state (or dissipation-free) of the Jaynes-Cummings model is analyzed. We demonstrate the connections between these measures.
A new method for calculating time-dependent atomic level populations
NASA Technical Reports Server (NTRS)
Kastner, S. O.
1981-01-01
A method is described for reducing the number of levels to be dealt with in calculating time-dependent populations of atoms or ions in plasmas. The procedure effectively extends the collisional-radiative model to consecutive stages of ionization, treating ground and metastable levels explicitly and excited levels implicitly. Direct comparisons of full and simulated systems are carried out for five-level models.
Gardberg, Anna S; Del Castillo, Alexis Rae; Weiss, Kevin L; Meilleur, Flora; Blakeley, Matthew P; Myles, Dean A A
2010-05-01
The locations of H atoms in biological structures can be difficult to determine using X-ray diffraction methods. Neutron diffraction offers a relatively greater scattering magnitude from H and D atoms. Here, 1.65 A resolution neutron diffraction studies of fully perdeuterated and selectively CH(3)-protonated perdeuterated crystals of Pyrococcus furiosus rubredoxin (D-rubredoxin and HD-rubredoxin, respectively) at room temperature (RT) are described, as well as 1.1 A resolution X-ray diffraction studies of the same protein at both RT and 100 K. The two techniques are quantitatively compared in terms of their power to directly provide atomic positions for D atoms and analyze the role played by atomic thermal motion by computing the sigma level at the D-atom coordinate in simulated-annealing composite D-OMIT maps. It is shown that 1.65 A resolution RT neutron data for perdeuterated rubredoxin are approximately 8 times more likely overall to provide high-confidence positions for D atoms than 1.1 A resolution X-ray data at 100 K or RT. At or above the 1.0sigma level, the joint X-ray/neutron (XN) structures define 342/378 (90%) and 291/365 (80%) of the D-atom positions for D-rubredoxin and HD-rubredoxin, respectively. The X-ray-only 1.1 A resolution 100 K structures determine only 19/388 (5%) and 8/388 (2%) of the D-atom positions above the 1.0sigma level for D-rubredoxin and HD-rubredoxin, respectively. Furthermore, the improved model obtained from joint XN refinement yielded improved electron-density maps, permitting the location of more D atoms than electron-density maps from models refined against X-ray data only.
Resonance fluorescence in the resolvent-operator formalism
NASA Astrophysics Data System (ADS)
Debierre, V.; Harman, Z.
2017-10-01
The Mollow spectrum for the light scattered by a driven two-level atom is derived in the resolvent operator formalism. The derivation is based on the construction of a master equation from the resolvent operator of the atom-field system. We show that the natural linewidth of the excited atomic level remains essentially unmodified, to a very good level of approximation, even in the strong-field regime, where Rabi flopping becomes relevant inside the self-energy loop that yields the linewidth. This ensures that the obtained master equation and the spectrum derived matches that of Mollow.
Squeezing via two-photon transitions
NASA Astrophysics Data System (ADS)
Savage, C. M.; Walls, D. F.
1986-05-01
The squeezing spectrum for a cavity field mode interacting with an ensemble of three-level 'Lambda-configuration' atoms by an effective two-photon transition is calculated. The advantage of the three-level Lambda system as a squeezing medium, that is, optical nonlinearity without atomic saturation, has recently been pointed out by Reid, Walls, and Dalton. Perfect squeezing is predicted at the turning points for dispersive optical bistability and good squeezing for a range of other cases. Three-level ladder atoms interacting by an effective two-photon transition are also shown to give perfect squeezing in the dispersive limit.
Internal Spin Control, Squeezing and Decoherence in Ensembles of Alkali Atomic Spins
NASA Astrophysics Data System (ADS)
Norris, Leigh Morgan
Large atomic ensembles interacting with light are one of the most promising platforms for quantum information processing. In the past decade, novel applications for these systems have emerged in quantum communication, quantum computing, and metrology. Essential to all of these applications is the controllability of the atomic ensemble, which is facilitated by a strong coupling between the atoms and light. Non-classical spin squeezed states are a crucial step in attaining greater ensemble control. The degree of entanglement present in these states, furthermore, serves as a benchmark for the strength of the atom-light interaction. Outside the broader context of quantum information processing with atomic ensembles, spin squeezed states have applications in metrology, where their quantum correlations can be harnessed to improve the precision of magnetometers and atomic clocks. This dissertation focuses upon the production of spin squeezed states in large ensembles of cold trapped alkali atoms interacting with optical fields. While most treatments of spin squeezing consider only the case in which the ensemble is composed of two level systems or qubits, we utilize the entire ground manifold of an alkali atom with hyperfine spin f greater than or equal to 1/2, a qudit. Spin squeezing requires non-classical correlations between the constituent atomic spins, which are generated through the atoms' collective coupling to the light. Either through measurement or multiple interactions with the atoms, the light mediates an entangling interaction that produces quantum correlations. Because the spin squeezing treated in this dissertation ultimately originates from the coupling between the light and atoms, conventional approaches of improving this squeezing have focused on increasing the optical density of the ensemble. The greater number of internal degrees of freedom and the controllability of the spin-f ground hyperfine manifold enable novel methods of enhancing squeezing. In particular, we find that state preparation using control of the internal hyperfine spin increases the entangling power of squeezing protocols when f>1/2. Post-processing of the ensemble using additional internal spin control converts this entanglement into metrologically useful spin squeezing. By employing a variation of the Holstein-Primakoff approximation, in which the collective spin observables of the atomic ensemble are treated as quadratures of a bosonic mode, we model entanglement generation, spin squeezing and the effects of internal spin control. The Holstein-Primakoff formalism also enables us to take into account the decoherence of the ensemble due to optical pumping. While most works ignore or treat optical pumping phenomenologically, we employ a master equation derived from first principles. Our analysis shows that state preparation and the hyperfine spin size have a substantial impact upon both the generation of spin squeezing and the decoherence of the ensemble. Through a numerical search, we determine state preparations that enhance squeezing protocols while remaining robust to optical pumping. Finally, most work on spin squeezing in atomic ensembles has treated the light as a plane wave that couples identically to all atoms. In the final part of this dissertation, we go beyond the customary plane wave approximation on the light and employ focused paraxial beams, which are more efficiently mode matched to the radiation pattern of the atomic ensemble. The mathematical formalism and the internal spin control techniques that we applied in the plane wave case are generalized to accommodate the non-homogeneous paraxial probe. We find the optimal geometries of the atomic ensemble and the probe for mode matching and generation of spin squeezing.
Internal Spin Control, Squeezing and Decoherence in Ensembles of Alkali Atomic Spins
NASA Astrophysics Data System (ADS)
Norris, Leigh Morgan
Large atomic ensembles interacting with light are one of the most promising platforms for quantum information processing. In the past decade, novel applications for these systems have emerged in quantum communication, quantum computing, and metrology. Essential to all of these applications is the controllability of the atomic ensemble, which is facilitated by a strong coupling between the atoms and light. Non-classical spin squeezed states are a crucial step in attaining greater ensemble control. The degree of entanglement present in these states, furthermore, serves as a benchmark for the strength of the atom-light interaction. Outside the broader context of quantum information processing with atomic ensembles, spin squeezed states have applications in metrology, where their quantum correlations can be harnessed to improve the precision of magnetometers and atomic clocks. This dissertation focuses upon the production of spin squeezed states in large ensembles of cold trapped alkali atoms interacting with optical fields. While most treatments of spin squeezing consider only the case in which the ensemble is composed of two level systems or qubits, we utilize the entire ground manifold of an alkali atom with hyperfine spin f greater or equal to 1/2, a qudit. Spin squeezing requires non-classical correlations between the constituent atomic spins, which are generated through the atoms' collective coupling to the light. Either through measurement or multiple interactions with the atoms, the light mediates an entangling interaction that produces quantum correlations. Because the spin squeezing treated in this dissertation ultimately originates from the coupling between the light and atoms, conventional approaches of improving this squeezing have focused on increasing the optical density of the ensemble. The greater number of internal degrees of freedom and the controllability of the spin-f ground hyperfine manifold enable novel methods of enhancing squeezing. In particular, we find that state preparation using control of the internal hyperfine spin increases the entangling power of squeezing protocols when f >1/2. Post-processing of the ensemble using additional internal spin control converts this entanglement into metrologically useful spin squeezing. By employing a variation of the Holstein-Primakoff approximation, in which the collective spin observables of the atomic ensemble are treated as quadratures of a bosonic mode, we model entanglement generation, spin squeezing and the effects of internal spin control. The Holstein-Primakoff formalism also enables us to take into account the decoherence of the ensemble due to optical pumping. While most works ignore or treat optical pumping phenomenologically, we employ a master equation derived from first principles. Our analysis shows that state preparation and the hyperfine spin size have a substantial impact upon both the generation of spin squeezing and the decoherence of the ensemble. Through a numerical search, we determine state preparations that enhance squeezing protocols while remaining robust to optical pumping. Finally, most work on spin squeezing in atomic ensembles has treated the light as a plane wave that couples identically to all atoms. In the final part of this dissertation, we go beyond the customary plane wave approximation on the light and employ focused paraxial beams, which are more efficiently mode matched to the radiation pattern of the atomic ensemble. The mathematical formalism and the internal spin control techniques that we applied in the plane wave case are generalized to accommodate the non-homogeneous paraxial probe. We find the optimal geometries of the atomic ensemble and the probe for mode matching and generation of spin squeezing.
Perspectives from the NSF-sponsored workshop on Grand Challenges in Nanomaterials
NASA Astrophysics Data System (ADS)
Hull, Robert
2004-03-01
At an NSF-sponsored workshop in June 2003, about seventy research leaders in the field of nanomaterials met to discuss, explore and identify future new directions and critical needs ("Grand Challenges") for the next decade and beyond. The key pervasive theme that was identified was the need to develop techniques for assembly of nanoscaled materials over multiple lengths scales, at the levels of efficiency, economy, and precision necessary to realize broad new classes of applications in such diverse technologies as electronics, computation, telecommunications, data storage, energy storage / transmission / generation, health care, transportation, civil infrastructure, military applications, national security, and the environment. Elements of this strategy include development of new self-assembly and lithographic techniques; biologically-mediated synthesis; three-dimensional atomic-scale measurement of structure, properties and chemistry; harnessing of the sub-atomic properties of materials such as electron spin and quantum interactions; new computational methods that span all relevant length- and time- scales; a fundamental understanding of acceptable / achievable "fault tolerance" at the nanoscale; and methods for real-time and distributed sensing of nanoscale assembly. A parallel theme was the need to provide education concerning the potential, applications, and benefits of nanomaterials to all components of society and all levels of the educational spectrum. This talk will summarize the conclusions and recommendations from this workshop, and illustrate the future potential of this field through presentation of selected break-through results provided by workshop participants.
Unterberger, Michael J; Holzapfel, Gerhard A
2014-11-01
The protein actin is a part of the cytoskeleton and, therefore, responsible for the mechanical properties of the cells. Starting with the single molecule up to the final structure, actin creates a hierarchical structure of several levels exhibiting a remarkable behavior. The hierarchy spans several length scales and limitations in computational power; therefore, there is a call for different mechanical modeling approaches for the different scales. On the molecular level, we may consider each atom in molecular dynamics simulations. Actin forms filaments by combining the molecules into a double helix. In a model, we replace molecular subdomains using coarse-graining methods, allowing the investigation of larger systems of several atoms. These models on the nanoscale inform continuum mechanical models of large filaments, which are based on worm-like chain models for polymers. Assemblies of actin filaments are connected with cross-linker proteins. Models with discrete filaments, so-called Mikado models, allow us to investigate the dependence of the properties of networks on the parameters of the constituents. Microstructurally motivated continuum models of the networks provide insights into larger systems containing cross-linked actin networks. Modeling of such systems helps to gain insight into the processes on such small scales. On the other hand, they call for verification and hence trigger the improvement of established experiments and the development of new methods.
About Essence of the Wave Function on Atomic Level and in Superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikulov, A. V.
The wave function was proposed for description of quantum phenomena on the atomic level. But now it is well known that quantum phenomena are observed not only on atomic level and the wave function is used for description of macroscopic quantum phenomena, such as superconductivity. The essence of the wave function on level elementary particles was and is the subject of heated argument among founders of quantum mechanics and other physicists. This essence seems more clear in superconductor. But impossibility of probabilistic interpretation of wave function in this case results to obvious contradiction of quantum principles with some fundamental principlesmore » of physics.« less
NASA Astrophysics Data System (ADS)
Bamba, Motoaki; Ogawa, Tetsuo
2016-03-01
We investigate theoretically the light amplification by stimulated emission of radiation (laser) in the ultrastrong light-matter interaction regime under the two-level and single-mode approximations. The conventional picture of the laser is broken under the ultrastrong interaction. Instead, we must explicitly discuss the dynamics of the electric field and of the magnetic one distinctively, which make the "laser" qualitatively different from the conventional laser. We found that the laser generally accompanies odd-order harmonics of the electromagnetic fields both inside and outside the cavity and a synchronization with an oscillation of atomic population. A bistability is also demonstrated. However, since our model is quite simplified, we got quantitatively different results from the Hamiltonians in the velocity and length forms of the light-matter interaction, while the appearance of the multiple harmonics and the bistability is qualitatively reliable.
Liu, Min; Liu, Jingjun; Li, Zhilin; Wang, Feng
2018-02-28
Developing atomic-level transition oxides may be one of the most promising ways for providing ultrahigh electrocatalytic performance for oxygen reduction reaction (ORR), compared with their bulk counterparts. In this article, we developed a set of atomically thick Co 3 O 4 layers covered on Co nanoparticles through partial reduction of Co 3 O 4 nanoparticles using melamine as a reductive additive at an elevated temperature. Compared with the original Co 3 O 4 nanoparticles, the synthesized Co 3 O 4 with a thickness of 1.1 nm exhibits remarkably enhanced ORR activity and durability, which are even higher than those obtained by a commercial Pt/C in an alkaline environment. The superior activity can be attributed to the unique physical and chemical structures of the atomic-level oxide featuring the narrowed band gap and decreased work function, caused by the escaped lattice oxygen and the enriched coordination-unsaturated Co 2+ in this atomic layer. Besides, the outstanding durability of the catalyst can result from the chemically epitaxial deposition of the Co 3 O 4 on the cobalt surface. Therefore, the proposed synthetic strategy may offer a smart way to develop other atomic-level transition metals with high electrocatalytic activity and stability for energy conversion and storage devices.
Two-level structural sparsity regularization for identifying lattices and defects in noisy images
Li, Xin; Belianinov, Alex; Dyck, Ondrej E.; ...
2018-03-09
Here, this paper presents a regularized regression model with a two-level structural sparsity penalty applied to locate individual atoms in a noisy scanning transmission electron microscopy image (STEM). In crystals, the locations of atoms is symmetric, condensed into a few lattice groups. Therefore, by identifying the underlying lattice in a given image, individual atoms can be accurately located. We propose to formulate the identification of the lattice groups as a sparse group selection problem. Furthermore, real atomic scale images contain defects and vacancies, so atomic identification based solely on a lattice group may result in false positives and false negatives.more » To minimize error, model includes an individual sparsity regularization in addition to the group sparsity for a within-group selection, which results in a regression model with a two-level sparsity regularization. We propose a modification of the group orthogonal matching pursuit (gOMP) algorithm with a thresholding step to solve the atom finding problem. The convergence and statistical analyses of the proposed algorithm are presented. The proposed algorithm is also evaluated through numerical experiments with simulated images. The applicability of the algorithm on determination of atom structures and identification of imaging distortions and atomic defects was demonstrated using three real STEM images. In conclusion, we believe this is an important step toward automatic phase identification and assignment with the advent of genomic databases for materials.« less
Two-level structural sparsity regularization for identifying lattices and defects in noisy images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xin; Belianinov, Alex; Dyck, Ondrej E.
Here, this paper presents a regularized regression model with a two-level structural sparsity penalty applied to locate individual atoms in a noisy scanning transmission electron microscopy image (STEM). In crystals, the locations of atoms is symmetric, condensed into a few lattice groups. Therefore, by identifying the underlying lattice in a given image, individual atoms can be accurately located. We propose to formulate the identification of the lattice groups as a sparse group selection problem. Furthermore, real atomic scale images contain defects and vacancies, so atomic identification based solely on a lattice group may result in false positives and false negatives.more » To minimize error, model includes an individual sparsity regularization in addition to the group sparsity for a within-group selection, which results in a regression model with a two-level sparsity regularization. We propose a modification of the group orthogonal matching pursuit (gOMP) algorithm with a thresholding step to solve the atom finding problem. The convergence and statistical analyses of the proposed algorithm are presented. The proposed algorithm is also evaluated through numerical experiments with simulated images. The applicability of the algorithm on determination of atom structures and identification of imaging distortions and atomic defects was demonstrated using three real STEM images. In conclusion, we believe this is an important step toward automatic phase identification and assignment with the advent of genomic databases for materials.« less
ISOTROPIC INELASTIC COLLISIONS IN A MULTITERM ATOM WITH HYPERFINE STRUCTURE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belluzzi, Luca; Landi Degl’Innocenti, Egidio; Bueno, Javier Trujillo
2015-10-10
A correct modeling of the scattering polarization profiles observed in some spectral lines of diagnostic interest, the sodium doublet being one of the most important examples, requires taking hyperfine structure (HFS) and quantum interference between different J-levels into account. An atomic model suitable for taking these physical ingredients into account is the so-called multiterm atom with HFS. In this work, we introduce and study the transfer and relaxation rates due to isotropic inelastic collisions with electrons, which enter the statistical equilibrium equations (SEE) for the atomic density matrix of this atomic model. Under the hypothesis that the electron–atom interaction ismore » described by a dipolar operator, we provide useful relations between the rates describing the transfer and relaxation of quantum interference between different levels (whose numerical values are in most cases unknown) and the usual rates for the atomic level populations, for which experimental data and/or approximate theoretical expressions are generally available. For the particular case of a two-term atom with HFS, we present an analytical solution of the SEE for the spherical statistical tensors of the upper term, including both radiative and collisional processes, and we derive the expression of the emission coefficient in the four Stokes parameters. Finally, an illustrative application to the Na i D{sub 1} and D{sub 2} lines is presented.« less
Surface atomic structure of alloyed Mn 5Ge 3(0 0 0 1) by scanning tunneling microscopy
NASA Astrophysics Data System (ADS)
Kim, Howon; Jung, Goo-Eun; Yoon, Jong Keon; Chung, Kyung Hoon; Kahng, Se-Jong
Surface atomic structure of Mn 5Ge 3(0 0 0 1) is studied by scanning tunneling microscopy. Hexagonal honeycomb ordering is observed at high energy levels, ∣ E - EF∣ ˜ 1.2 eV, on the flat regions of three-dimensional Mn 5Ge 3 islands. At low energy levels, ∣ E - EF∣ ˜ 0.5 eV, however, atomic images exhibit dot-array and ring-array structures, which show complete and partial contrast inversion, compared to the honeycomb ordering. Experimental observations are discussed on the basis of possible atomic models.
Microcavities coupled to multilevel atoms
NASA Astrophysics Data System (ADS)
Schmid, Sandra Isabelle; Evers, Jörg
2011-11-01
A three-level atom in the Λ configuration coupled to a microcavity is studied. The two transitions of the atom are assumed to couple to different counterpropagating mode pairs in the cavity. We analyze the dynamics both in the strong-coupling and the bad-cavity limits. We find that, compared to a two-level setup, the third atomic state and the additional control field modes crucially modify the system dynamics and enable more advanced control schemes. All results are explained using appropriate dressed-state and eigenmode representations. As potential applications, we discuss optical switching and turnstile operations and detection of particles close to the resonator surface.
Transition model for ricin-aptamer interactions with multiple pathways and energy barriers
NASA Astrophysics Data System (ADS)
Wang, Bin; Xu, Bingqian
2014-02-01
We develop a transition model to interpret single-molecule ricin-aptamer interactions with multiple unbinding pathways and energy barriers measured by atomic force microscopy dynamic force spectroscopy. Molecular simulations establish the relationship between binding conformations and the corresponding unbinding pathways. Each unbinding pathway follows a Bell-Evans multiple-barrier model. Markov-type transition matrices are developed to analyze the redistribution of unbinding events among the pathways under different loading rates. Our study provides detailed information about complex behaviors in ricin-aptamer unbinding events.
Liao, Quanwen; Zeng, Lingping; Liu, Zhichun; Liu, Wei
2016-01-01
Tailoring the thermal conductivity of polymers is central to enlarge their applications in the thermal management of flexible integrated circuits. Progress has been made over the past decade by fabricating materials with various nanostructures, but a clear relationship between various functional groups and thermal properties of polymers remains to be established. Here, we numerically study the thermal conductivity of single-stranded carbon-chain polymers with multiple substituents of hydrogen atoms through atomic mass modification. We find that their thermal conductivity can be tuned by atomic mass modifications as revealed through molecular dynamics simulations. The simulation results suggest that heavy homogeneous substituents do not assist heat transport and trace amounts of heavy substituents can in fact hinder heat transport substantially. Our analysis indicates that carbon chain has the biggest contribution (over 80%) to the thermal conduction in single-stranded carbon-chain polymers. We further demonstrate that atomic mass modifications influence the phonon bands of bonding carbon atoms, and the discrepancies of phonon bands between carbon atoms are responsible for the remarkable drops in thermal conductivity and large thermal resistances in carbon chains. Our study provides fundamental insight into how to tailor the thermal conductivity of polymers through variable substituents. PMID:27713563
Highly dispersed metal catalyst
Xiao, Xin; West, William L.; Rhodes, William D.
2016-11-08
A supported catalyst having an atomic level single atom structure is provided such that substantially all the catalyst is available for catalytic function. A process of forming a single atom catalyst unto a porous catalyst support is also provided.
Antioxidant Properties of Kynurenines: Density Functional Theory Calculations
2016-01-01
Kynurenines, the main products of tryptophan catabolism, possess both prooxidant and anioxidant effects. Having multiple neuroactive properties, kynurenines are implicated in the development of neurological and cognitive disorders, such as Alzheimer's, Parkinson's, and Huntington's diseases. Autoxidation of 3-hydroxykynurenine (3HOK) and its derivatives, 3-hydroxyanthranilic acid (3HAA) and xanthommatin (XAN), leads to the hyperproduction of reactive oxygen species (ROS) which damage cell structures. At the same time, 3HOK and 3HAA have been shown to be powerful ROS scavengers. Their ability to quench free radicals is believed to result from the presence of the aromatic hydroxyl group which is able to easily abstract an electron and H-atom. In this study, the redox properties for kynurenines and several natural and synthetic antioxidants have been calculated at different levels of density functional theory in the gas phase and water solution. Hydroxyl bond dissociation enthalpy (BDE) and ionization potential (IP) for 3HOK and 3HAA appear to be lower than for xanthurenic acid (XAA), several phenolic antioxidants, and ascorbic acid. BDE and IP for the compounds with aromatic hydroxyl group are lower than for their precursors without hydroxyl group. The reaction rate for H donation to *O-atom of phenoxyl radical (Ph-O*) and methyl peroxy radical (Met-OO*) decreases in the following rankings: 3HOK ~ 3HAA > XAAOXO > XAAENOL. The enthalpy absolute value for Met-OO* addition to the aromatic ring of the antioxidant radical increases in the following rankings: 3HAA* < 3HOK* < XAAOXO* < XAAENOL*. Thus, the high free radical scavenging activity of 3HAA and 3HOK can be explained by the easiness of H-atom abstraction and transfer to O-atom of the free radical, rather than by Met-OO* addition to the kynurenine radical. PMID:27861556
Atomic oxygen interaction at defect sights in protective coatings on polymers flown on LDEF
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Degroh, Kim K.; Auer, Bruce M.; Gebauer, Linda; Lamoreaux, Cynthia
1993-01-01
Although the Long Duration Exposure Facility (LDEF) has exposed materials with a fixed orientation relative to the ambient low-Earth-orbital environment, arrival of atomic oxygen is angularly distributed as a result of the atomic oxygen's high temperature Maxwellian velocity distribution and the LDEF's orbital inclination. Thus, atomic oxygen entering defects in protective coatings on polymeric surfaces can cause wider undercut cavities than the size of the defect in the protective coating. Because only a small fraction of atomic oxygen reacts upon first impact with most polymeric materials, secondary reactions with lower energy thermally accommodated atomic oxygen can occur. The secondary reactions of scattered and/or thermally accommodated atomic oxygen also contribute to widening the undercut cavity beneath the protective coating defect. As the undercut cavity enlarges, exposing more polymer, the probability of atomic oxygen reacting with underlying polymeric material increases because of multiple opportunities for reaction. Thus, the effective atomic oxygen erosion yield for atoms entering defects increases above that of the unprotected material. Based on the results of analytical modeling and computational modeling, aluminized Kapton multilayer insulation exposed to atomic oxygen on row 9 lost the entire externally exposed layer of polyimide Kapton, yet based on the results of this investigation, the bottom surface aluminum film must have remained in place, but crazed. Atomic oxygen undercutting at defect sites in protective coatings on graphite epoxy composites indicates that between 40 to 100 percent of the atomic oxygen thermally accommodates upon impact, and that the reaction probability of thermally accommodated atomic oxygen may range from 7.7 x 10(exp -6) to 2.1 x 10(exp -3), depending upon the degree of thermal accommodation upon each impact.
McCarty, J; Clark, A J; Copperman, J; Guenza, M G
2014-05-28
Structural and thermodynamic consistency of coarse-graining models across multiple length scales is essential for the predictive role of multi-scale modeling and molecular dynamic simulations that use mesoscale descriptions. Our approach is a coarse-grained model based on integral equation theory, which can represent polymer chains at variable levels of chemical details. The model is analytical and depends on molecular and thermodynamic parameters of the system under study, as well as on the direct correlation function in the k → 0 limit, c0. A numerical solution to the PRISM integral equations is used to determine c0, by adjusting the value of the effective hard sphere diameter, dHS, to agree with the predicted equation of state. This single quantity parameterizes the coarse-grained potential, which is used to perform mesoscale simulations that are directly compared with atomistic-level simulations of the same system. We test our coarse-graining formalism by comparing structural correlations, isothermal compressibility, equation of state, Helmholtz and Gibbs free energies, and potential energy and entropy using both united atom and coarse-grained descriptions. We find quantitative agreement between the analytical formalism for the thermodynamic properties, and the results of Molecular Dynamics simulations, independent of the chosen level of representation. In the mesoscale description, the potential energy of the soft-particle interaction becomes a free energy in the coarse-grained coordinates which preserves the excess free energy from an ideal gas across all levels of description. The structural consistency between the united-atom and mesoscale descriptions means the relative entropy between descriptions has been minimized without any variational optimization parameters. The approach is general and applicable to any polymeric system in different thermodynamic conditions.
Conduction of molecular electronic devices: qualitative insights through atom-atom polarizabilities.
Stuyver, T; Fias, S; De Proft, F; Fowler, P W; Geerlings, P
2015-03-07
The atom-atom polarizability and the transmission probability at the Fermi level, as obtained through the source-and-sink-potential method for every possible configuration of contacts simultaneously, are compared for polycyclic aromatic compounds. This comparison leads to the conjecture that a positive atom-atom polarizability is a necessary condition for transmission to take place in alternant hydrocarbons without non-bonding orbitals and that the relative transmission probability for different configurations of the contacts can be predicted by analyzing the corresponding atom-atom polarizability. A theoretical link between the two considered properties is derived, leading to a mathematical explanation for the observed trends for transmission based on the atom-atom polarizability.
Statistical clumped isotope signatures
Röckmann, T.; Popa, M. E.; Krol, M. C.; Hofmann, M. E. G.
2016-01-01
High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168
Simulation of a 3D MOT-Optical Molasses Hybrid for Potassium-41 Atoms
NASA Astrophysics Data System (ADS)
Peterson, W. A.; Wrubel, Jonathan
2017-04-01
We report a design and numerical model for a 3D magneto-optical trap (MOT)-optical molasses hybrid for potassium-41 atoms. In this arrangement, the usual quadrupole magnetic field is replaced by an octupole field. The octupole field has a central region of very low magnetic field where our simulations show that the atoms experience an optical molasses, resulting in sub-doppler cooling not possible in a quadrupole MOT. The simulations also show that the presence of the magneto-optical trapping force at the edge of the cooling beams provides a restoring force which cycles atoms through the molasses region. We plan to use this hybrid trap to directly load a far off-resonance optical dipole trap. Because the atoms are recycled for multiple passes through the molasses, we expect a higher phase-space density of atoms loaded into the dipole trap. Similar hybrid cooling schemes should be relevant for lithium-6 and lithium-7, which also have poorly resolved D2 hyperfine structure. Research Corporation for Science Advancement, Cottrell College Science Award.
Self-regulated Gd atom trapping in open Fe nanocorrals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, R. X.; Liu, Z.; Miao, B. F.
2014-07-01
Utilizing open Fe nanocorrals built by atom manipulation, we demonstrate self-regulated Gd atom trapping in open quantum corrals. The number of Gd atoms trapped is exactly determined by the diameter of the corral. The quantization can be understood as a self-regulating process, arising from the long-range interaction between Gd atoms and the open corral. We illustrate with arrays of open corrals that such atom trapping can suppress unwanted statistical fluctuations. Our approach opens a potential pathway for nanomaterial design and fabrication with atomic-level precision.
Resonance fluorescence based two- and three-dimensional atom localization
NASA Astrophysics Data System (ADS)
Wahab, Abdul; Rahmatullah; Qamar, Sajid
2016-06-01
Two- and three-dimensional atom localization in a two-level atom-field system via resonance fluorescence is suggested. For the two-dimensional localization, the atom interacts with two orthogonal standing-wave fields, whereas for the three-dimensional atom localization, the atom interacts with three orthogonal standing-wave fields. The effect of the detuning and phase shifts associated with the corresponding standing-wave fields is investigated. A precision enhancement in position measurement of the single atom can be noticed via the control of the detuning and phase shifts.
Atom Interferometer Technologies in Space for Gravity Mapping and Gravity Science
NASA Astrophysics Data System (ADS)
Williams, Jason; Chiow, Sheng-Wey; Kellogg, James; Kohel, James; Yu, Nan
2015-05-01
Atom interferometers utilize the wave-nature of atomic gases for precision measurements of inertial forces, with potential applications ranging from gravity mapping for planetary science to unprecedented tests of fundamental physics with quantum gases. The high stability and sensitivity intrinsic to these devices already place them among the best terrestrial sensors available for measurements of gravitational accelerations, rotations, and gravity gradients, with the promise of several orders of magnitude improvement in their detection sensitivity in microgravity. Consequently, multiple precision atom-interferometer-based projects are under development at the Jet Propulsion Laboratory, including a dual-atomic-species interferometer that is to be integrated into the Cold Atom Laboratory onboard the International Space Station and a highly stable gravity gradiometer in a transportable design relevant for earth science measurements. We will present JPL's activities in the use of precision atom interferometry for gravity mapping and gravitational wave detection in space. Our recent progresses bringing the transportable JPL atom interferometer instrument to be competitive with the state of the art and simulations of the expected capabilities of a proposed flight project will also be discussed. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
Stability branching induced by collective atomic recoil in an optomechanical ring cavity
NASA Astrophysics Data System (ADS)
Ian, Hou
2017-02-01
In a ring cavity filled with an atomic condensate, self-bunching of atoms due to the cavity pump mode produce an inversion that re-emits into the cavity probe mode with an exponential gain, forming atomic recoil lasing. An optomechanical ring cavity is formed when one of the reflective mirrors is mounted on a mechanical vibrating beam. In this paper, we extend studies on the stability of linear optomechanical cavities to such ring cavities with two counter-propagating cavity modes, especially when the forward propagating pump mode is taken to its weak coupling limit. We find that when the atomic recoil is in action, stable states of the mechanical mode of the mirror converge into branch cuts, where the gain produced by the recoiling strikes balance with the multiple decay sources, such as cavity leakage in the optomechanical system. This balance is obtained when the propagation delay in the dispersive atomic medium matches in a periodic pattern to the frequencies and linewidths of the cavity mode and the collective bosonic mode of the atoms. We show an input-output hysteresis cycle between the atomic mode and the cavity mode to verify the multi-valuation of the stable states after branching at the weak coupling limit.
Databases and coordinated research projects at the IAEA on atomic processes in plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braams, Bastiaan J.; Chung, Hyun-Kyung
2012-05-25
The Atomic and Molecular Data Unit at the IAEA works with a network of national data centres to encourage and coordinate production and dissemination of fundamental data for atomic, molecular and plasma-material interaction (A+M/PMI) processes that are relevant to the realization of fusion energy. The Unit maintains numerical and bibliographical databases and has started a Wiki-style knowledge base. The Unit also contributes to A+M database interface standards and provides a search engine that offers a common interface to multiple numerical A+M/PMI databases. Coordinated Research Projects (CRPs) bring together fusion energy researchers and atomic, molecular and surface physicists for joint workmore » towards the development of new data and new methods. The databases and current CRPs on A+M/PMI processes are briefly described here.« less
NASA Astrophysics Data System (ADS)
Song, Chenchen; Martínez, Todd J.
2016-05-01
We present a tensor hypercontracted (THC) scaled opposite spin second order Møller-Plesset perturbation theory (SOS-MP2) method. By using THC, we reduce the formal scaling of SOS-MP2 with respect to molecular size from quartic to cubic. We achieve further efficiency by exploiting sparsity in the atomic orbitals and using graphical processing units (GPUs) to accelerate integral construction and matrix multiplication. The practical scaling of GPU-accelerated atomic orbital-based THC-SOS-MP2 calculations is found to be N2.6 for reference data sets of water clusters and alanine polypeptides containing up to 1600 basis functions. The errors in correlation energy with respect to density-fitting-SOS-MP2 are less than 0.5 kcal/mol for all systems tested (up to 162 atoms).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devaraj, Arun; Vijayakumar, Murugesan; Bao, Jie
The nanoscale compositional mapping of fresh HZSM-5 catalyst synthesized using hydrothermal process as well as after just steaming and after ethanol conversion reaction for 72 hours at realistic catalytic conditions was investigated using atom probe tomography. Atom probe tomography permitted direct atomic scale imaging of non-uniform distribution of Al within the HZSM-5 as well as for the first time image the hydrocarbon coking after ethanol reaction. Clear evidences for existence of multiple C-H molecular species which appear to aggregate as clusters within the pores of spent HZSM-5 catalyst materials is provided. These results provide evidence for the ability of atommore » probe tomography, a powerful 3D characterization tool in interrogating the atomic scale chemistry of zeolite catalyst materials at industrially relevant catalytic conditions.« less
Song, Chenchen; Martínez, Todd J
2016-05-07
We present a tensor hypercontracted (THC) scaled opposite spin second order Møller-Plesset perturbation theory (SOS-MP2) method. By using THC, we reduce the formal scaling of SOS-MP2 with respect to molecular size from quartic to cubic. We achieve further efficiency by exploiting sparsity in the atomic orbitals and using graphical processing units (GPUs) to accelerate integral construction and matrix multiplication. The practical scaling of GPU-accelerated atomic orbital-based THC-SOS-MP2 calculations is found to be N(2.6) for reference data sets of water clusters and alanine polypeptides containing up to 1600 basis functions. The errors in correlation energy with respect to density-fitting-SOS-MP2 are less than 0.5 kcal/mol for all systems tested (up to 162 atoms).
Chu, Minmin; Liu, Xin; Sui, Yanhui; Luo, Jie; Meng, Changgong
2015-10-27
Taking the adsorption of CO, NO, O₂ and O as probes, we investigated the electronic structure of transition metal atoms (TM, TM = Fe, Co, Ni, Cu and Zn) embedded in graphene by first-principles-based calculations. We showed that these TM atoms can be effectively stabilized on monovacancy defects on graphene by forming plausible interactions with the C atoms associated with dangling bonds. These interactions not only give rise to high energy barriers for the diffusion and aggregation of the embedded TM atoms to withstand the interference of reaction environments, but also shift the energy levels of TM-d states and regulate the reactivity of the embedded TM atoms. The adsorption of CO, NO, O₂ and O correlates well with the weight averaged energy level of TM-d states, showing the crucial role of interfacial TM-C interactions on manipulating the reactivity of embedded TM atoms. These findings pave the way for the developments of effective monodispersed atomic TM composites with high stability and desired performance for gas sensing and catalytic applications.
Cooperative single-photon subradiant states in a three-dimensional atomic array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jen, H.H., E-mail: sappyjen@gmail.com
2016-11-15
We propose a complete superradiant and subradiant states that can be manipulated and prepared in a three-dimensional atomic array. These subradiant states can be realized by absorbing a single photon and imprinting the spatially-dependent phases on the atomic system. We find that the collective decay rates and associated cooperative Lamb shifts are highly dependent on the phases we manage to imprint, and the subradiant state of long lifetime can be found for various lattice spacings and atom numbers. We also investigate both optically thin and thick atomic arrays, which can serve for systematic studies of super- and sub-radiance. Our proposal offers an alternative schememore » for quantum memory of light in a three-dimensional array of two-level atoms, which is applicable and potentially advantageous in quantum information processing. - Highlights: • Cooperative single-photon subradiant states in a three-dimensional atomic array. • Subradiant state manipulation via spatially-increasing phase imprinting. • Quantum storage of light in the subradiant state in two-level atoms.« less
Rydberg interaction induced enhanced excitation in thermal atomic vapor.
Kara, Dushmanta; Bhowmick, Arup; Mohapatra, Ashok K
2018-03-27
We present the experimental demonstration of interaction induced enhancement in Rydberg excitation or Rydberg anti-blockade in thermal atomic vapor. We have used optical heterodyne detection technique to measure Rydberg population due to two-photon excitation to the Rydberg state. The anti-blockade peak which doesn't satisfy the two-photon resonant condition is observed along with the usual two-photon resonant peak which can't be explained using the model with non-interacting three-level atomic system. A model involving two interacting atoms is formulated for thermal atomic vapor using the dressed states of three-level atomic system to explain the experimental observations. A non-linear dependence of vapor density is observed for the anti-blockade peak which also increases with increase in principal quantum number of the Rydberg state. A good agreement is found between the experimental observations and the proposed interacting model. Our result implies possible applications towards quantum logic gates using Rydberg anti-blockade in thermal atomic vapor.
Resonant enhanced multiphoton ionization studies of atomic oxygen
NASA Technical Reports Server (NTRS)
Dixit, S. N.; Levin, D.; Mckoy, V.
1987-01-01
In resonant enhanced multiphoton ionization (REMPI), an atom absorbs several photons making a transition to a resonant intermediate state and subsequently ionizing out of it. With currently available tunable narrow-band lasers, the extreme sensitivity of REMPI to the specific arrangement of levels can be used to selectively probe minute amounts of a single species (atom) in a host of background material. Determination of the number density of atoms from the observed REMPI signal requires a knowledge of the multiphoton ionization cross sections. The REMPI of atomic oxygen was investigated through various excitation schemes that are feasible with available light sources. Using quantum defect theory (QDT) to estimate the various atomic parameters, the REMPI dynamics in atomic oxygen were studied incorporating the effects of saturation and a.c. Stark shifts. Results are presented for REMPI probabilities for excitation through various 2p(3) (4S sup o) np(3)P and 2p(3) (4S sup o) nf(3)F levels.
Validity of the two-level approximation in the interaction of few-cycle light pulses with atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng Jing; Zhou Jianying
2003-04-01
The validity of the two-level approximation (TLA) in the interaction of atoms with few-cycle light pulses is studied by investigating a simple (V)-type three-level atom model. Even the transition frequency between the ground state and the third level is far away from the spectrum of the pulse; this additional transition can make the TLA inaccuracy. For a sufficiently large transition frequency or a weak coupling between the ground state and the third level, the TLA is a reasonable approximation and can be used safely. When decreasing the pulse width or increasing the pulse area, the TLA will give rise tomore » non-negligible errors compared with the precise results.« less
Validity of the two-level approximation in the interaction of few-cycle light pulses with atoms
NASA Astrophysics Data System (ADS)
Cheng, Jing; Zhou, Jianying
2003-04-01
The validity of the two-level approximation (TLA) in the interaction of atoms with few-cycle light pulses is studied by investigating a simple
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farley, J.W.; Wing, W.H.
1981-05-01
A highly excited (Rydberg) atom bathed in blackbody radiation is perturbed in two ways. A dynamic Stark shift is induced by the off-resonant components of the blackbody radiation. Additionally, electric-dipole transitions to other atomic energy levels are induced by the resonant components of the blackbody radiation. This depopulation effect shortens the Rydberg-state lifetime, thereby broadening the energy level. Calculations of these two effects in many states of hydrogen, helium, and the alkali-metal atoms Li, Na, K, Rb, and Cs are presented for T = 300 K. Contributions from the entire blackbody spectrum and from both discrete and continuous perturbing statesmore » are included. The accuracy is considerably greater than that of previous estimates.« less
Experimental triple-slit interference in a strongly driven V-type artificial atom
NASA Astrophysics Data System (ADS)
Dada, Adetunmise C.; Santana, Ted S.; Koutroumanis, Antonios; Ma, Yong; Park, Suk-In; Song, Jindong; Gerardot, Brian D.
2017-08-01
Rabi oscillations of a two-level atom appear as a quantum interference effect between the amplitudes associated with atomic superpositions, in analogy with the classic double-slit experiment which manifests a sinusoidal interference pattern. By extension, through direct detection of time-resolved resonance fluorescence from a quantum-dot neutral exciton driven in the Rabi regime, we experimentally demonstrate triple-slit-type quantum interference via quantum erasure in a V-type three-level artificial atom. This result is of fundamental interest in the experimental studies of the properties of V-type three-level systems and may pave the way for further insight into their coherence properties as well as applications for quantum information schemes. It also suggests quantum dots as candidates for multipath-interference experiments for probing foundational concepts in quantum physics.
Direct observation of nanowire growth and decomposition.
Rackauskas, Simas; Shandakov, Sergey D; Jiang, Hua; Wagner, Jakob B; Nasibulin, Albert G
2017-09-26
Fundamental concepts of the crystal formation suggest that the growth and decomposition are determined by simultaneous embedding and removal of the atoms. Apparently, by changing the crystal formation conditions one can switch the regimes from the growth to decomposition. To the best of our knowledge, so far this has been only postulated, but never observed at the atomic level. By means of in situ environmental transmission electron microscopy we monitored and examined the atomic layer transformation at the conditions of the crystal growth and its decomposition using CuO nanowires selected as a model object. The atomic layer growth/decomposition was studied by varying an O 2 partial pressure. Three distinct regimes of the atomic layer evolution were experimentally observed: growth, transition and decomposition. The transition regime, at which atomic layer growth/decomposition switch takes place, is characterised by random nucleation of the atomic layers on the growing {111} surface. The decomposition starts on the side of the nanowire by removing the atomic layers without altering the overall crystal structure, which besides the fundamental importance offers new possibilities for the nanowire manipulation. Understanding of the crystal growth kinetics and nucleation at the atomic level is essential for the precise control of 1D crystal formation.
Experimental Preparation and Measurement of Quantum States of Motion of a Trapped Atom
1997-01-01
trapped atom are quantum harmonic oscillators, their couplings to internal atomic levels (described by the Jaynes - Cummings model (JCM) [ l , 21) are... wave approximation in a frame rotating with WO, where hwo is the energy difference of the two internal levels, the interaction of the classical laser... Jaynes - Cummings model , the system is suited to realizing many proposals originally introduced in the realm of quantum optics and cavity quantum
Cole, Jacqueline M.; Low, Kian Sing; Gong, Yun
2015-11-24
Here, we present the discovery of a new crystal structure polymorph (1) and pseudopolymorph (2) of the Black Dye, one of the world’s leading dyes for dye-sensitized solar cells, DSSCs (10.4% device performance efficiency). This reveals that Black Dye molecules can adopt multiple low-energy conformers. This is significant since it challenges existing models of the Black Dye···TiO 2 adsorption process that renders a DSSC working electrode; these have assumed a single molecular conformation that refers to the previously reported Black Dye crystal structure (3). The marked structural differences observed between 1, 2, and 3 make the need for modeling multiplemore » conformations more acute. Additionally, the ordered form of the Black Dye (1) provides a more appropriate depiction of its anionic structure, especially regarding its anchoring group and NCS bonding descriptions. The tendency toward NCS ligand isomerism, evidenced via the disordered form 2, has consequences for electron injection and electron recombination in Black Dye embedded DSSC devices. Dyes 2 and 3 differ primarily by the absence or presence of a solvent of crystallization, respectively; solvent environment effects on the dye are thereby elucidated. This discovery of multiple Black Dye conformers from diffraction, with atomic-level definition, complements recently reported nanoscopic evidence for multiple dye conformations existing at a dye···TiO 2 interface, for a chemically similar DSSC dye; those results emanated from imaging and spectroscopy, but were unresolved at the submolecular level. Taken together, these findings lead to the general notion that multiple dye conformations should be explicitly considered when modeling dye···TiO 2 interfaces in DSSCs, at least for ruthenium-based dye complexes.« less
NASA Astrophysics Data System (ADS)
Faghihi, M. J.; Tavassoly, M. K.
2013-07-01
In this paper, we study the interaction between a moving Λ-type three-level atom and a single-mode cavity field in the presence of intensity-dependent atom-field coupling. After obtaining the state vector of the entire system explicitly, we study the nonclassical features of the system such as quantum entanglement, position-momentum entropic squeezing, quadrature squeezing and sub-Poissonian statistics. According to the obtained numerical results we illustrate that the squeezed period, the duration of entropy squeezing and the maximal squeezing can be controlled by choosing the appropriate nonlinearity function together with entering the atomic motion effect by the suitable selection of the field-mode structure parameter. Also, the atomic motion, as well as the nonlinearity function, leads to the oscillatory behaviour of the degree of entanglement between the atom and field.
Intensity and amplitude correlations in the fluorescence from atoms with interacting Rydberg states
NASA Astrophysics Data System (ADS)
Xu, Qing; Mølmer, Klaus
2015-09-01
We explore the fluorescence signals from a pair of atoms driven towards Rydberg states on a three-level ladder transition. The dipole-dipole interactions between Rydberg excited atoms significantly distort the dark state and electromagnetically induced transparency behavior observed with independent atoms and, thus, their steady-state light emission. We calculate and analyze the temporal correlations between intensities and amplitudes of the signals emitted by the atoms and explain their origin in the atomic Rydberg state interactions.
A Nonlinear Model for Fuel Atomization in Spray Combustion
NASA Technical Reports Server (NTRS)
Liu, Nan-Suey (Technical Monitor); Ibrahim, Essam A.; Sree, Dave
2003-01-01
Most gas turbine combustion codes rely on ad-hoc statistical assumptions regarding the outcome of fuel atomization processes. The modeling effort proposed in this project is aimed at developing a realistic model to produce accurate predictions of fuel atomization parameters. The model involves application of the nonlinear stability theory to analyze the instability and subsequent disintegration of the liquid fuel sheet that is produced by fuel injection nozzles in gas turbine combustors. The fuel sheet is atomized into a multiplicity of small drops of large surface area to volume ratio to enhance the evaporation rate and combustion performance. The proposed model will effect predictions of fuel sheet atomization parameters such as drop size, velocity, and orientation as well as sheet penetration depth, breakup time and thickness. These parameters are essential for combustion simulation codes to perform a controlled and optimized design of gas turbine fuel injectors. Optimizing fuel injection processes is crucial to improving combustion efficiency and hence reducing fuel consumption and pollutants emissions.
Observation of coherent backscattering of light in ultracold ^85Rb
NASA Astrophysics Data System (ADS)
Kulatunga, P.; Sukenik, C. I.; Havey, M. D.; Kupriyanov, D. V.; Sokolov, I. M.
2002-05-01
We report investigation of multiple coherent light scattering from ^85Rb atoms confined in a magneto-optic trap. In experimental studies, measurements are made of coherent backscattering of a low-intensity probe beam tuned near the F = 3 - F' = 4 transition in ^85Rb atoms. Polarization of backscattered light is determined by a backscattering polarimeter; the spatial distribution of light intensity is measured by a liquid-nitrogen cooled CCD camera set in the focal plane of the analyzing optics. The instrument has angular resolution of about 100 micro-radians, and a polarization analyzing power of roughly 1000. In this paper we describe the instrument details, including calibration procedures, and our measurements of atomic coherent backscattering. In a theoretical study of intensity enhancement of near-resonant backscattered light from cold ^85,87Rb atoms, we consider scattering orders up to 8 and a Gaussian atom distribution in the MOT. Enhancement factors are calculated for all D1 and D2 hyperfine components and for both isotopes.
NASA Astrophysics Data System (ADS)
Bondarescu, Ruxandra; Schärer, Andreas; Jetzer, Philippe; Angélil, Raymond; Saha, Prasenjit; Lundgren, Andrew
2015-05-01
The successful miniaturisation of extremely accurate atomic clocks and atom interferometers invites prospects for satellite missions to perform precision experiments. We discuss the effects predicted by general relativity and alternative theories of gravity that can be detected by a clock, which orbits the Earth. Our experiment relies on the precise tracking of the spacecraft using its observed tick-rate. The spacecraft's reconstructed four-dimensional trajectory will reveal the nature of gravitational perturbations in Earth's gravitational field, potentially differentiating between different theories of gravity. This mission can measure multiple relativistic effects all during the course of a single experiment, and constrain the Parametrized Post-Newtonian Parameters around the Earth. A satellite carrying a clock of fractional timing inaccuracy of Δ f / f ˜ 10-16 in an elliptic orbit around the Earth would constrain the PPN parameters |β - 1|, |γ - 1| ≲ 10-6. We also briefly review potential constraints by atom interferometers on scalar tensor theories and in particular on Chameleon and dilaton models.
Heralded entangling quantum gate via cavity-assisted photon scattering
NASA Astrophysics Data System (ADS)
Borges, Halyne S.; Rossatto, Daniel Z.; Luiz, Fabrício S.; Villas-Boas, Celso J.
2018-01-01
We theoretically investigate the generation of heralded entanglement between two identical atoms via cavity-assisted photon scattering in two different configurations, namely, either both atoms confined in the same cavity or trapped into locally separated ones. Our protocols are given by a very simple and elegant single-step process, the key mechanism of which is a controlled-phase-flip gate implemented by impinging a single photon on single-sided cavities. In particular, when the atoms are localized in remote cavities, we introduce a single-step parallel quantum circuit instead of the serial process extensively adopted in the literature. We also show that such parallel circuit can be straightforwardly applied to entangle two macroscopic clouds of atoms. Both protocols proposed here predict a high entanglement degree with a success probability close to unity for state-of-the-art parameters. Among other applications, our proposal and its extension to multiple atom-cavity systems step toward a suitable route for quantum networking, in particular for quantum state transfer, quantum teleportation, and nonlocal quantum memory.
Faraday spectroscopy of ultracold atoms guided in hollow core optical fibers
NASA Astrophysics Data System (ADS)
Fatemi, Fredrik; Pechkis, Joseph
2013-05-01
We have performed spatially and temporally resolved magnetometry using Faraday spectroscopy of ultracold rubidium atoms confined in hollow core optical fibers. We first guide 105 Rb atoms into a 3-cm-long, 100-micron-core hollow fiber using blue-detuned hollow waveguide modes. Inside the fiber, the atoms are exposed to an optical pumping pulse, and the Larmor precession is monitored by the polarization rotation of a probe laser beam detuned by 50 GHz. The intense guide beams can perturb the detected Larmor precession frequencies, but we show that by confining the atoms to the intensity null of higher order blue-detuned hollow modes, these perturbations are reduced by over 95% compared to red-detuned guides. By adjusting the guide beam detuning and polarization, the deleterious effects of both photon scattering and frequency shifts can be suppressed such that multiple magnetic field measurements with sensitivity of 30 nT per sampling pulse can be obtained throughout the length of the fiber in a single loading cycle. Work supported by ONR and DARPA.
Super-Coulombic atom-atom interactions in hyperbolic media
NASA Astrophysics Data System (ADS)
Cortes, Cristian L.; Jacob, Zubin
2017-01-01
Dipole-dipole interactions, which govern phenomena such as cooperative Lamb shifts, superradiant decay rates, Van der Waals forces and resonance energy transfer rates, are conventionally limited to the Coulombic near-field. Here we reveal a class of real-photon and virtual-photon long-range quantum electrodynamic interactions that have a singularity in media with hyperbolic dispersion. The singularity in the dipole-dipole coupling, referred to as a super-Coulombic interaction, is a result of an effective interaction distance that goes to zero in the ideal limit irrespective of the physical distance. We investigate the entire landscape of atom-atom interactions in hyperbolic media confirming the giant long-range enhancement. We also propose multiple experimental platforms to verify our predicted effect with phonon-polaritonic hexagonal boron nitride, plasmonic super-lattices and hyperbolic meta-surfaces as well. Our work paves the way for the control of cold atoms above hyperbolic meta-surfaces and the study of many-body physics with hyperbolic media.
NASA Astrophysics Data System (ADS)
Jennewein, Stephan; Brossard, Ludovic; Sortais, Yvan R. P.; Browaeys, Antoine; Cheinet, Patrick; Robert, Jacques; Pillet, Pierre
2018-05-01
We measure the coherent scattering of low-intensity, near-resonant light by a cloud of laser-cooled two-level rubidium atoms with a size comparable to the wavelength of light. We isolate a two-level atomic structure by applying a 300-G magnetic field. We measure both the temporal and the steady-state coherent optical response of the cloud for various detunings of the laser and for atom numbers ranging from 5 to 100. We compare our results to a microscopic coupled-dipole model and to a multimode, paraxial Maxwell-Bloch model. In the low-intensity regime, both models are in excellent agreement, thus validating the Maxwell-Bloch model. Comparing to the data, the models are found in very good agreement for relatively low densities (n /k3≲0.1 ), while significant deviations start to occur at higher density. This disagreement indicates that light scattering in dense, cold atomic ensembles is still not quantitatively understood, even in pristine experimental conditions.
Atom Probe Tomography of Geomaterials
NASA Astrophysics Data System (ADS)
Parman, S. W.; Diercks, D.; Gorman, B.; Cooper, R. F.
2013-12-01
From the electron microprobe to the secondary ion microprobe to laser-ablation ICP-MS, steady improvements in the spatial resolution and detection limits of geochemical micro-analysis have been central to generating new discoveries. Atom probe tomography (APT) is a relatively new technology that promises nm-scale spatial resolution (in three dimensions) with ppm level detection limits. The method is substantially different from traditional beam-based (electron, ion, laser) methods. In APT, the sample is shaped (usually with a dual-beam FIB) into a needle with typical dimensions of 1-2 μm height and 100-200 nm diameter. Within the atom probe, the needle is evaporated one atom (ideally) at a time by a high electric field (ten's of V per square nm at the needle tip). A femtosecond laser (12 ps pulse width) is used to assist in evaporating non-conducting samples. The two-dimensional detector locates where the atom was released from the needle's surface and so can reconstruct the positions of all detected atoms in three dimensions. It also records the time of flight of the ion, which is used to calculate the mass/charge ratio of the ion. We will discuss our results analyzing a range of geologic materials. In one case, naturally occurring platinum group alloys (PGA) from the Josephine Ophiolite have been imaged. Such alloys are of interest as recorders of the Os heterogeneity of the mantle [1,2]. Optimal ablation was achieved with a laser power of 120-240 pJ and laser pulse rates 500 kHz. Runs were stopped after 10 million atoms were imaged. An example analysis is: Pt 61(1), Fe 26.1(9), Rh 1.20(4), Ir 7.0(7), Ni 2.65(8), Ru 0.20(9), Cu 1.22(8), Co 0.00029(5). Values are in atomic %; values in parentheses are one-sigma standard deviations on five separate needles from the same FIB lift-out, which was 30 μm long. Assuming the sample is homogenous over the 30 μm from which the needle was extracted, the analyses suggest relative errors for major elements below 5% and for trace elements (100ppm level) below 20%. The images of the PGA grains have sub-nm spatial resolution, remarkably showing clear atomic planes of the hexoctahedral structure. Conducting materials such as the PGA grains are ideal materials for APT analysis. Silicates present a much more challenging target due to their electrical resistance and strong metal-oxygen bonds. The oxide bonds are difficult to break, resulting in ablation of oxide molecules with various charge states. These cause multiple interferences for many major elements of interest such as Si, Fe, Mg and Ca. We have imaged a range of olivine compositions (Fo0 to Fo90). Due to its higher electrical conductivity, fayalite evaporates at lower field voltages than more Mg-rich olivines. The spatial resolution is ~nm scale, so atomic planes are not resolvable. Chemical analyses are improved by low laser energies (<0.1pJ) at laser pulse rates of 500 kHz, as well as by large tip radii, which improves heat diffusion out of the needle. [1] Pearson et al 2007 Nature 449: 202-205 [2] Luguet et al 2008 Science 319: 453-456
NASA Astrophysics Data System (ADS)
Quezada, L. F.; Nahmad-Achar, E.
2018-06-01
We use coherent states as trial states for a variational approach to study a system of a finite number of three-level atoms interacting in a dipolar approximation with a one-mode electromagnetic field. The atoms are treated as semidistinguishable using different cooperation numbers and representations of SU(3). We focus our analysis on the quantum phases of the system as well as the behavior of the most relevant observables near the phase transitions. The results are computed for all three possible configurations (Ξ , Λ , and V ) of the three-level atoms.
Atomic-level simulation of ferroelectricity in perovskite solid solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sepliarsky, M.; Instituto de Fisica Rosario, CONICET-UNR, Rosario,; Phillpot, S. R.
2000-06-26
Building on the insights gained from electronic-structure calculations and from experience obtained with an earlier atomic-level method, we developed an atomic-level simulation approach based on the traditional Buckingham potential with shell model which correctly reproduces the ferroelectric phase behavior and dielectric and piezoelectric properties of KNbO{sub 3}. This approach now enables the simulation of solid solutions and defected systems; we illustrate this capability by elucidating the ferroelectric properties of a KTa{sub 0.5}Nb{sub 0.5}O{sub 3} random solid solution. (c) 2000 American Institute of Physics.
Mitani, Yuji; Kubo, Mamoru; Muramoto, Ken-ichiro; Fukuma, Takeshi
2009-08-01
We have developed a wideband digital frequency detector for high-speed frequency modulation atomic force microscopy (FM-AFM). We used a subtraction-based phase comparator (PC) in a phase-locked loop circuit instead of a commonly used multiplication-based PC, which has enhanced the detection bandwidth to 100 kHz. The quantitative analysis of the noise performance revealed that the internal noise from the developed detector is small enough to provide the theoretically limited noise performance in FM-AFM experiments in liquid. FM-AFM imaging of mica in liquid was performed with the developed detector, showing its stability and applicability to true atomic-resolution imaging in liquid.
Applicability of Macroscopic Wear and Friction Laws on the Atomic Length Scale.
Eder, S J; Feldbauer, G; Bianchi, D; Cihak-Bayr, U; Betz, G; Vernes, A
2015-07-10
Using molecular dynamics, we simulate the abrasion process of an atomically rough Fe surface with multiple hard abrasive particles. By quantifying the nanoscopic wear depth in a time-resolved fashion, we show that Barwell's macroscopic wear law can be applied at the atomic scale. We find that in this multiasperity contact system, the Bowden-Tabor term, which describes the friction force as a function of the real nanoscopic contact area, can predict the kinetic friction even when wear is involved. From this the Derjaguin-Amontons-Coulomb friction law can be recovered, since we observe a linear dependence of the contact area on the applied load in accordance with Greenwood-Williamson contact mechanics.
Narrow-line magneto-optical cooling and trapping of strongly magnetic atoms.
Berglund, Andrew J; Hanssen, James L; McClelland, Jabez J
2008-03-21
Laser cooling on weak transitions is a useful technique for reaching ultracold temperatures in atoms with multiple valence electrons. However, for strongly magnetic atoms a conventional narrow-line magneto-optical trap (MOT) is destabilized by competition between optical and magnetic forces. We overcome this difficulty in Er by developing an unusual narrow-line MOT that balances optical and magnetic forces using laser light tuned to the blue side of a narrow (8 kHz) transition. The trap population is spin polarized with temperatures reaching below 2 muK. Our results constitute an alternative method for laser cooling on weak transitions, applicable to rare-earth-metal and metastable alkaline earth elements.
Theory of warm ionized gases: equation of state and kinetic Schottky anomaly.
Capolupo, A; Giampaolo, S M; Illuminati, F
2013-10-01
Based on accurate Lennard-Jones-type interaction potentials, we derive a closed set of state equations for the description of warm atomic gases in the presence of ionization processes. The specific heat is predicted to exhibit peaks in correspondence to single and multiple ionizations. Such kinetic analog in atomic gases of the Schottky anomaly in solids is enhanced at intermediate and low atomic densities. The case of adiabatic compression of noble gases is analyzed in detail and the implications on sonoluminescence are discussed. In particular, the predicted plasma electron density in a sonoluminescent bubble turns out to be in good agreement with the value measured in recent experiments.
Deciphering chemical order/disorder and material properties at the single-atom level.
Yang, Yongsoo; Chen, Chien-Chun; Scott, M C; Ophus, Colin; Xu, Rui; Pryor, Alan; Wu, Li; Sun, Fan; Theis, Wolfgang; Zhou, Jihan; Eisenbach, Markus; Kent, Paul R C; Sabirianov, Renat F; Zeng, Hao; Ercius, Peter; Miao, Jianwei
2017-02-01
Perfect crystals are rare in nature. Real materials often contain crystal defects and chemical order/disorder such as grain boundaries, dislocations, interfaces, surface reconstructions and point defects. Such disruption in periodicity strongly affects material properties and functionality. Despite rapid development of quantitative material characterization methods, correlating three-dimensional (3D) atomic arrangements of chemical order/disorder and crystal defects with material properties remains a challenge. On a parallel front, quantum mechanics calculations such as density functional theory (DFT) have progressed from the modelling of ideal bulk systems to modelling 'real' materials with dopants, dislocations, grain boundaries and interfaces; but these calculations rely heavily on average atomic models extracted from crystallography. To improve the predictive power of first-principles calculations, there is a pressing need to use atomic coordinates of real systems beyond average crystallographic measurements. Here we determine the 3D coordinates of 6,569 iron and 16,627 platinum atoms in an iron-platinum nanoparticle, and correlate chemical order/disorder and crystal defects with material properties at the single-atom level. We identify rich structural variety with unprecedented 3D detail including atomic composition, grain boundaries, anti-phase boundaries, anti-site point defects and swap defects. We show that the experimentally measured coordinates and chemical species with 22 picometre precision can be used as direct input for DFT calculations of material properties such as atomic spin and orbital magnetic moments and local magnetocrystalline anisotropy. This work combines 3D atomic structure determination of crystal defects with DFT calculations, which is expected to advance our understanding of structure-property relationships at the fundamental level.
Blood zinc levels in nursing women from different regions of the West Bank of Palestine.
Shawahna, Ramzi; Zyoud, Ahed; Jallad, Donia; Hadwan, Labebah; Ihssan, Neeran; Hilal, Hikmat
2017-07-06
Pregnant and nursing women are at higher risk of zinc deficiency which can have detrimental consequences on health. We assessed blood zinc levels in 72 nursing women from the West Bank of Palestine and investigated the association between sociodemographic variables and blood zinc levels. Blood samples were analyzed for their zinc contents using graphite furnace atomic absorption spectrophotometry. Blood and data collection were performed between July and December 2016. The median blood zinc level was 4.53 mg/L (interquartile range of 0.38 mg/L). In unadjusted analyses, blood zinc levels were higher in nursing women who lived in cities (p-value <.001), had higher household income (p-value <.001), whose husbands had a white collar job (p-value <.05), were nonsmokers (p-value <.05), did not use hair dyes (p-value <.05), and consumed energy beverages (p-value <.001). Multiple linear analysis showed that living in cities and consuming energy beverages remained significantly associated with higher blood zinc levels (p-value <.05). Blood zinc levels were in the range previously reported for similar non-malnourished populations. Nursing women living in cities and those consuming energy beverages tended to have higher blood zinc levels. Urbanized lifestyle might have enhanced blood zinc levels in nursing women.
Wang, Zhiping; Chen, Jinyu; Yu, Benli
2017-02-20
We investigate the two-dimensional (2D) and three-dimensional (3D) atom localization behaviors via spontaneously generated coherence in a microwave-driven four-level atomic system. Owing to the space-dependent atom-field interaction, it is found that the detecting probability and precision of 2D and 3D atom localization behaviors can be significantly improved via adjusting the system parameters, the phase, amplitude, and initial population distribution. Interestingly, the atom can be localized in volumes that are substantially smaller than a cubic optical wavelength. Our scheme opens a promising way to achieve high-precision and high-efficiency atom localization, which provides some potential applications in high-dimensional atom nanolithography.
NASA Technical Reports Server (NTRS)
Sokalski, W. A.; Shibata, M.; Ornstein, R. L.; Rein, R.
1992-01-01
The quality of several atomic charge models based on different definitions has been analyzed using cumulative atomic multipole moments (CAMM). This formalism can generate higher atomic moments starting from any atomic charges, while preserving the corresponding molecular moments. The atomic charge contribution to the higher molecular moments, as well as to the electrostatic potentials, has been examined for CO and HCN molecules at several different levels of theory. The results clearly show that the electrostatic potential obtained from CAMM expansion is convergent up to R-5 term for all atomic charge models used. This illustrates that higher atomic moments can be used to supplement any atomic charge model to obtain more accurate description of electrostatic properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, B. A.; Chu, Y. S.; He, L.
2015-12-14
Epitaxial films of C o x M n y G e z grown on Ge (111) substrates by molecular-beam-epitaxy techniques have been investigated as a continuous function of composition using combinatorial synchrotron x-ray diffraction (XRD) and x-ray fluorescence (XRF) spectroscopy techniques. A high-resolution ternary epitaxial phase diagram is obtained, revealing a small number of structural phases stabilized over large compositional regions. Ordering of the constituent elements in the compositional region near the full Heusler alloy C o 2 MnGe has been examined in detail using both traditional XRD and a new multiple-edge anomalous diffraction (MEAD) technique. Multiple-edge anomalous diffraction involvesmore » analyzing the energy dependence of multiple reflections across each constituent absorption edge in order to detect and quantify the elemental distribution of occupation in specific lattice sites. Results of this paper show that structural and chemical ordering are very sensitive to the Co : Mn atomic ratio, such that the ordering is the highest at an atomic ratio of 2 but significantly reduced even a few percent off this ratio. The in-plane lattice is nearly coherent with that of the Ge substrate, while the approximately 2% lattice mismatch is accommodated by the out-of-plane tetragonal strain. The quantitative MEAD analysis further reveals no detectable amount (<0.5%) of Co-Mn site swapping, but instead high levels (26%) of Mn-Ge site swapping. Increasing Ge concentration above the Heusler stoichiometry ( C o 0.5 M n 0.25 G e 0.25 ) is shown to correlate with increased lattice vacancies, antisites, and stacking faults, but reduced lattice relaxation. The highest degree of chemical ordering is observed off the Heusler stoichiometry with a Ge enrichment of 5 at.%.« less
Collins, B. A.; Chu, Y.; He, L.; ...
2015-12-14
We found that epitaxial films of Co xMn yGe z grown on Ge (111) substrates by molecular-beam-epitaxy techniques have been investigated as a continuous function of composition using combinatorial synchrotron x-ray diffraction (XRD) and x-ray fluorescence (XRF) spectroscopy techniques. A high-resolution ternary epitaxial phase diagram is obtained, revealing a small number of structural phases stabilized over large compositional regions. Ordering of the constituent elements in the compositional region near the full Heusler alloy Co 2MnGe has been examined in detail using both traditional XRD and a new multiple-edge anomalous diffraction (MEAD) technique. Multiple-edge anomalous diffraction involves analyzing the energy dependencemore » of multiple reflections across each constituent absorption edge in order to detect and quantify the elemental distribution of occupation in specific lattice sites. Results of this paper show that structural and chemical ordering are very sensitive to the Co : Mn atomic ratio, such that the ordering is the highest at an atomic ratio of 2 but significantly reduced even a few percent off this ratio. The in-plane lattice is nearly coherent with that of the Ge substrate, while the approximately 2% lattice mismatch is accommodated by the out-of-plane tetragonal strain. Furthermore, the quantitative MEAD analysis reveals no detectable amount (<0.5%) of Co-Mn site swapping, but instead high levels (26%) of Mn-Ge site swapping. Increasing Ge concentration above the Heusler stoichiometry (Co 0.5 Mn 0.25 Ge 0.25 ) is shown to correlate with increased lattice vacancies, antisites, and stacking faults, but reduced lattice relaxation. The highest degree of chemical ordering is observed off the Heusler stoichiometry with a Ge enrichment of 5 at.%.« less
Books on Atomic Energy for Adults and Children, Understanding the Atom Series.
ERIC Educational Resources Information Center
Atomic Energy Commission, Oak Ridge, TN. Div. of Technical Information.
This booklet in the "Understanding the Atom" series includes annotated bibliographies for children (grade level indicated) and adults. Over 100 basic books on atomic energy and closely related subjects are alphabetized by title and an author index. A list of publisher addresses are included. A brief introduction to library usage is given. The…
Recirculation of Laser Power in an Atomic Fountain
NASA Technical Reports Server (NTRS)
Enzer, Daphna G.; Klipstein, WIlliam M.; Moore, James D.
2007-01-01
A new technique for laser-cooling atoms in a cesium atomic fountain frequency standard relies on recirculation of laser light through the atom-collection region of the fountain. The recirculation, accomplished by means of reflections from multiple fixed beam-splitter cubes, is such that each of two laser beams makes three passes. As described below, this recirculation scheme offers several advantages over prior designs, including simplification of the laser system, greater optical power throughput, fewer optical and electrical connections, and simplification of beam power balancing. A typical laser-cooled cesium fountain requires the use of six laser beams arranged as three orthogonal pairs of counter-propagating beams to decelerate the atoms and hold them in a three-dimensional optical trap in vacuum. Typically, these trapping/cooling beams are linearly polarized and are positioned and oriented so that (1) counter-propagating beams in each pair have opposite linear polarizations and (2) three of the six orthogonal beams have the sum of their propagation directions pointing up, while the other three have the sum of their propagation directions pointing down. In a typical prior design, two lasers are used - one to generate the three "up" beams, the other to generate the three "down" beams. For this purpose, the output of each laser is split three ways, then the resulting six beams are delivered to the vacuum system, independently of each other, via optical fibers. The present recirculating design also requires two lasers, but the beams are not split before delivery. Instead, only one "up" beam and one oppositely polarized "down" beam are delivered to the vacuum system, and each of these beams is sent through the collection region three times. The polarization of each beam on each pass through the collection region is set up to yield the same combination of polarization and propagation directions as described above. In comparison with the prior design, the present recirculating design utilizes the available laser light more efficiently, making it possible to trap more atoms at a given laser power or the same number of atoms at a lower laser power. The present design is also simpler in that it requires fewer optical fibers, fiber couplings, and collimators, and fewer photodiodes for monitoring beam powers. Additionally, the present design alleviates the difficulty of maintaining constant ratios among power levels of the beams within each "up" or "down" triplet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stuyver, T.; Fias, S., E-mail: sfias@vub.ac.be; De Proft, F.
The atom-atom polarizability and the transmission probability at the Fermi level, as obtained through the source-and-sink-potential method for every possible configuration of contacts simultaneously, are compared for polycyclic aromatic compounds. This comparison leads to the conjecture that a positive atom-atom polarizability is a necessary condition for transmission to take place in alternant hydrocarbons without non-bonding orbitals and that the relative transmission probability for different configurations of the contacts can be predicted by analyzing the corresponding atom-atom polarizability. A theoretical link between the two considered properties is derived, leading to a mathematical explanation for the observed trends for transmission based onmore » the atom-atom polarizability.« less
Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.
1989-01-01
A charged particle spectrometer for performing ultrasensitive quantitative analysis of selected atomic components removed from a sample. Significant improvements in performing energy and angular refocusing spectroscopy are accomplished by means of a two dimensional structure for generating predetermined electromagnetic field boundary conditions. Both resonance and non-resonance ionization of selected neutral atomic components allow accumulation of increased chemical information. A multiplexed operation between a SIMS mode and a neutral atomic component ionization mode with EARTOF analysis enables comparison of chemical information from secondary ions and neutral atomic components removed from the sample. An electronic system is described for switching high level signals, such as SIMS signals, directly to a transient recorder and through a charge amplifier to the transient recorder for a low level signal pulse counting mode, such as for a neutral atomic component ionization mode.
Correlation of reaction sites during the chlorine extraction by hydrogen atom from Cl /Si(100)-2×1
NASA Astrophysics Data System (ADS)
Hsieh, Ming-Feng; Chung, Jen-Yang; Lin, Deng-Sung; Tsay, Shiow-Fon
2007-07-01
The Cl abstraction by gas-phase H atoms from a Cl-terminated Si(100) surface was investigated by scanning tunneling microscopy (STM), high-resolution core level photoemission spectroscopy, and computer simulation. The core level measurements indicate that some additional reactions occur besides the removal of Cl. The STM images show that the Cl-extracted sites disperse randomly in the initial phase of the reaction, but form small clusters as more Cl is removed, indicating a correlation between Cl-extracted sites. These results suggest that the hot-atom process may occur during the atom-adatom collision.
Optical memory based on quantized atomic center-of-mass motion.
Lopez, J P; de Almeida, A J F; Felinto, D; Tabosa, J W R
2017-11-01
We report a new type of optical memory using a pure two-level system of cesium atoms cooled by the magnetically assisted Sisyphus effect. The optical information of a probe field is stored in the coherence between quantized vibrational levels of the atoms in the potential wells of a 1-D optical lattice. The retrieved pulse shows Rabi oscillations with a frequency determined by the reading beam intensity and are qualitatively understood in terms of a simple theoretical model. The exploration of the external degrees of freedom of an atom may add another capability in the design of quantum-information protocols using light.
Development of a microlesson in teaching energy levels of atoms
NASA Astrophysics Data System (ADS)
Rodriguez, Cherilyn A.; Buan, Amelia T.
2018-01-01
Energy levels of atoms is one of the difficult topics in understanding atomic structure of matter. It appears tobe abstract, theoretical and needs visual representation and images. Hence, in this study a microlesson in teaching the high school chemistry concept on the energy levels of atoms is developed and validated. The researchers utilized backward curriculum design in planning the microlesson to meet the standards of the science K-12 curriculum. The planning process of the microlesson involved a) Identifying the learning competencies in K-12 science curriculum b) write learning objectives c) planning of assessment tools d) making a storyboard e) designing the microlesson and validate and revise the microlesson. The microlesson made use of varied resources in the internet from which the students accessed and collected information about energy levels of atoms. Working in groups, the students synthesized the information on how and why fireworks produce various colors of light through a post card. Findings of the study showed that there was an increase of achievement in learning the content and the students were highly motivated to learn chemistry. Furthermore, the students perceived that the microlesson helped them to understand the chemistry concept through the use of appropriate multimedia activities.
Parish, Chad M.; Miller, Michael K.
2014-12-09
Nanostructured ferritic alloys (NFAs) exhibit complex microstructures consisting of 100-500 nm ferrite grains, grain boundary solute enrichment, and multiple populations of precipitates and nanoclusters (NCs). Understanding these materials' excellent creep and radiation-tolerance properties requires a combination of multiple atomic-scale experimental techniques. Recent advances in scanning transmission electron microscopy (STEM) hardware and data analysis methods have the potential to revolutionize nanometer to micrometer scale materials analysis. The application of these methods is applied to NFAs as a test case and is compared to both conventional STEM methods as well as complementary methods such as scanning electron microscopy and atom probe tomography.more » In this paper, we review past results and present new results illustrating the effectiveness of latest-generation STEM instrumentation and data analysis.« less
Full multiple-scattering calculations on silicates and oxides at the Al K edge
NASA Astrophysics Data System (ADS)
Cabaret, Delphine; Sainctavit, Philippe; Ildefonse, Philippe; Flank, Anne-Marie
1996-05-01
We present full multiple-scattering calculations at the aluminium K edge that we compare with experiments for four crystalline silicates and oxide minerals. In the different minerals aluminium atoms are either fourfold or sixfold coordinated to oxygen atoms in Al sites that are poorly symmetric. The calculations are based on different choices of one-electron potentials according to aluminium coordinations and crystallographic structures of the compounds. Hence it is possible to determine how the near-edge spectral features are a sensitive probe of the effective potential seen by the photoelectron in the molecular environment. The purpose of this work is to determine on the one hand the relation between Al K-edge spectral features and the geometrical arrangements around the aluminium sites, and on the other hand the electronic structure of the compounds.
NASA Astrophysics Data System (ADS)
Hla, Saw Wai
2014-05-01
Atomic manipulation using a scanning tunneling microscope (STM) tip enables the construction of quantum structures on an atom-by-atom basis, as well as the investigation of the electronic and dynamical properties of individual atoms on a one-atom-at-a-time basis. An STM is not only an instrument that is used to ‘see’ individual atoms by means of imaging, but is also a tool that is used to ‘touch’ and ‘take’ the atoms, or to ‘hear’ their movements. Therefore, the STM can be considered as the ‘eyes’, ‘hands’ and ‘ears’ of the scientists, connecting our macroscopic world to the exciting atomic world. In this article, various STM atom manipulation schemes and their example applications are described. The future directions of atomic level assembly on surfaces using scanning probe tips are also discussed.
Total photoionization cross sections of atomic oxygen from threshold to 44.3 A
NASA Technical Reports Server (NTRS)
Angel, G. C.; Samson, James A. R.
1988-01-01
Synchrotron radiation was used to obtain the relative photoionization cross section of atomic oxygen for the production of singly charged ions over the 44.3-910.5-A wavelength range. Measurement of the contribution of multiple ionization to the cross sections has made possible the determination of total photoionization cross sections below 250 A. The series of autoionizing resonances leading to the 4P state of the oxygen ion has been observed using an ionization-type experimental procedure for the first time.
Limiting assumptions in molecular modeling: electrostatics.
Marshall, Garland R
2013-02-01
Molecular mechanics attempts to represent intermolecular interactions in terms of classical physics. Initial efforts assumed a point charge located at the atom center and coulombic interactions. It is been recognized over multiple decades that simply representing electrostatics with a charge on each atom failed to reproduce the electrostatic potential surrounding a molecule as estimated by quantum mechanics. Molecular orbitals are not spherically symmetrical, an implicit assumption of monopole electrostatics. This perspective reviews recent evidence that requires use of multipole electrostatics and polarizability in molecular modeling.
Spontaneous emission and atomic line shift in causal perturbation theory
NASA Astrophysics Data System (ADS)
Marzlin, Karl-Peter; Fitzgerald, Bryce
2018-04-01
We derive a spontaneous emission rate and line shift for two-level atoms coupled to the radiation field using causal perturbation theory. In this approach, employing the theory of distribution splitting prevents the occurrence of divergent integrals. Our method confirms the result for an atomic decay rate but suggests that the cutoff frequency for the atomic line shift is determined by the atomic mass, rather than the Bohr radius or electron mass.
An atomic model for neutral and singly ionized uranium
NASA Technical Reports Server (NTRS)
Maceda, E. L.; Miley, G. H.
1979-01-01
A model for the atomic levels above ground state in neutral, U(0), and singly ionized, U(+), uranium is described based on identified atomic transitions. Some 168 states in U(0) and 95 in U(+) are found. A total of 1581 atomic transitions are used to complete this process. Also discussed are the atomic inverse lifetimes and line widths for the radiative transitions as well as the electron collisional cross sections.
NASA Astrophysics Data System (ADS)
Ren, Guoli; Pei, Wenbing; Lan, Ke; Gu, Peijun; Li, Xin; Institute of Applied Physics; Computional Mathematics Team
2011-10-01
In current routine 2D simulation of hohlraum physics, we adopt the principal-quantum- number(n-level) average atom model(AAM). However, the experimental frequency-dependant radiative drive differs from our n-level simulated drive, which reminds us the need of a more detailed atomic kinetics description. The orbital-quantum-number(nl-level) AAM is a natural consideration but the in-line calculation consumes much more resources. We use a new method to built up a nl-level bound electron distribution using in-line n-level calculated plasma condition (such as temperature, density, average ionization degree). We name this method ``quasi-steady approximation.'' Using the re-built nl-level bound electron distribution (Pnl) , we acquire a new hohlraum radiative drive by post-processing. Comparison with the n-level post-processed hohlraum drive shows that we get an almost identical radiation flux but with more-detailed frequency-dependant structures.
Computer display and manipulation of biological molecules
NASA Technical Reports Server (NTRS)
Coeckelenbergh, Y.; Macelroy, R. D.; Hart, J.; Rein, R.
1978-01-01
This paper describes a computer model that was designed to investigate the conformation of molecules, macromolecules and subsequent complexes. Utilizing an advanced 3-D dynamic computer display system, the model is sufficiently versatile to accommodate a large variety of molecular input and to generate data for multiple purposes such as visual representation of conformational changes, and calculation of conformation and interaction energy. Molecules can be built on the basis of several levels of information. These include the specification of atomic coordinates and connectivities and the grouping of building blocks and duplicated substructures using symmetry rules found in crystals and polymers such as proteins and nucleic acids. Called AIMS (Ames Interactive Molecular modeling System), the model is now being used to study pre-biotic molecular evolution toward life.
Ab initio chemical kinetics for the HCCO + OH reaction
NASA Astrophysics Data System (ADS)
Mai, Tam V.-T.; Raghunath, P.; Le, Xuan T.; Huynh, Lam K.; Nam, Pham-Cam; Lin, M. C.
2014-01-01
The mechanism for the reaction of HCCO and OH has been investigated at different high-levels of theory. The reaction was found to occur on singlet and triplet potential energy surfaces with multiple accessible paths. Rate constants predicted by variational RRKM/ME calculations show that the reaction on both surfaces occurs primarily by barrierless OH attack at both C atoms producing excited intermediates which fragment to produce predominantly CO and 1,3HCOH with kS = 3.12 × 10-8T-0.59exp[-73.0/T] and kT = 6.29 × 10-11T0.13exp[108/T] cm3 molecule-1 s-1 at T = 300-2000 K, independent of pressure at P < 76 000 Torr.
On the Convenience of Using the Complete Linearization Method in Modelling the BLR of AGN
NASA Astrophysics Data System (ADS)
Patriarchi, P.; Perinotto, M.
The Complete Linearization Method (Mihalas, 1978) consists in the determination of the radiation field (at a set of frequency points), atomic level populations, temperature, electron density etc., by resolving the system of radiative transfer, thermal equilibrium, statistical equilibrium equations simultaneously and self-consistently. Since the system is not linear, it must be solved by iteration after linearization, using a perturbative method, starting from an initial guess solution. Of course the Complete Linearization Method is more time consuming than the previous one. But how great can this disadvantage be in the age of supercomputers? It is possible to approximately evaluate the CPU time needed to run a model by computing the number of multiplications necessary to solve the system.
Observation of the fluorescence spectrum for a driven cascade model system in atomic beam.
Tian, Si-Cong; Wang, Chun-Liang; Tong, Cun-Zhu; Wang, Li-Jun; Wang, Hai-Hua; Yang, Xiu-Bin; Kang, Zhi-Hui; Gao, Jin-Yue
2012-10-08
We experimentally study the resonance fluorescence from an excited two-level atom when the atomic upper level is coupled by a nonresonant field to a higher-lying state in a rubidium atomic beam. The heights, widths and positions of the fluorescence peaks can be controlled by modifying the detuning of the auxiliary field. We explain the observed spectrum with the transition properties of the dressed states generated by the coupling of the two laser fields. We also attribute the line narrowing to the effects of Spontaneously Generated Coherence between the close-lying levels in the dressed state picture generated by the auxiliary field. And the corresponding spectrum can be viewed as the evidence of Spontaneously Generated Coherence. The experimental results agree well with calculations based on the density-matrix equations.
Magnetic behavior of Si-Ge bond in SixGe4-x nano-clusters
NASA Astrophysics Data System (ADS)
Nahali, Masoud; Mehri, Ali
2018-06-01
The structure of SixGe4-x nano-clusters were optimized by MPW1B95 level of theory using MG3S and SDB-aug-cc-PVTZ basis set. The agreement of the calculated ionization and dissociation energies with experimental values validates the reported structures of nano-clusters and justifies the use of hybrid meta density functional method. Since the Si-Si bond is stronger than Si-Ge and Ge-Ge bonds, the Si-Si, Si-Ge, and Ge-Ge diagonal bonds determine the precedence of the stability in these nano-clusters. The hybrid meta density functional calculations were carried out to investigate the adsorption of CO on all possible SixGe4-x nano-clusters. It was found that the silicon atom generally makes a stronger bond with CO than germanium and thereby preferentially affects the shape of structures having higher multiplicity. In Si-Ge structures with higher spin more than 95% of spins accumulate on positions with less bonds to other atoms of the cluster. Through CO adsorption on these clusters bridge structures are made that behave as spin bridge which conduct the spin from the nano-cluster surface to the adsorbate atoms. A better understanding of bridged structures was achieved upon introducing the 'spin bridge' concept. Based on exhaustive spin density analysis, it was found that the reason for the extra negative charge on oxygen in the bridged structures is the relocation of spin from the surface through the bridge.
Strain gradient drives shear banding in metallic glasses
NASA Astrophysics Data System (ADS)
Tian, Zhi-Li; Wang, Yun-Jiang; Chen, Yan; Dai, Lan-Hong
2017-09-01
Shear banding is a nucleation-controlled process in metallic glasses (MGs) involving multiple temporal-spatial scales, which hinders a concrete understanding of its structural origin down to the atomic scale. Here, inspired by the morphology of composite materials, we propose a different perspective of MGs as a hard particle-reinforced material based on atomic-scale structural heterogeneity. The local stable structures indicated by a high level of local fivefold symmetry (L5FS) act as hard "particles" which are embedded in the relatively soft matrix. We demonstrate this concept by performing atomistic simulations of shear banding in CuZr MG. A shear band is prone to form in a sample with a high degree of L5FS which is slowly quenched from the liquid. An atomic-scale analysis on strain and the structural evolution reveals that it is the strain gradient effect that has originated from structural heterogeneity that facilitates shear transformation zones (STZs) to mature shear bands. An artificial composite model with a high degree of strain gradient, generated by inserting hard MG strips into a soft MG matrix, demonstrates a great propensity for shear banding. It therefore confirms the critical role strain gradient plays in shear banding. The strain gradient effect on shear banding is further quantified with a continuum model and a mechanical instability analysis. These physical insights might highlight the strain gradient as the hidden driving force in transforming STZs into shear bands in MGs.
Direct Determination of Nonmetals in Solution with Atomic Spectrometry.
ERIC Educational Resources Information Center
McGregor, David A.; And Others
1988-01-01
Addresses solution nonmetal determinations on a fundamental level. Characterizes research in this area of chemical instrumentation. Discusses the fundamental limitations of nonmetal atomic spectrometry, the status of nonmetals and atomic spectroscopic techniques, and current directions in solution nonmetal determinations. (CW)
Silva, Arnaldo F; da Silva, João V; Haiduke, R L A; Bruns, Roy E
2011-11-17
Infrared fundamental vibrational intensities and quantum theory atoms in molecules (QTAIM) charge-charge flux-dipole flux (CCFDF) contributions to the polar tensors of the fluorochloromethanes have been calculated at the QCISD/cc-pVTZ level. A root-mean-square error of 20.0 km mol(-1) has been found compared to an experimental error estimate of 14.4 and 21.1 km mol(-1) for MP2/6-311++G(3d,3p) results. The errors in the QCISD polar tensor elements and mean dipole moment derivatives are 0.059 e when compared with the experimental values. Both theoretical levels provide results showing that the dynamical charge and dipole fluxes provide significant contributions to the mean dipole moment derivatives and tend to be of opposite signs canceling one another. Although the experimental mean dipole moment derivative values suggest that all the fluorochloromethane molecules have electronic structures consistent with a simple electronegativity model with transferable atomic charges for their terminal atoms, the QTAIM/CCFDF models confirm this only for the fluoromethanes. Whereas the fluorine atom does not suffer a saturation effect in its capacity to drain electronic charge from carbon atoms that are attached to other fluorine and chlorine atoms, the zero flux electronic charge of the chlorine atom depends on the number and kind of the other substituent atoms. Both the QTAIM carbon charges (r = 0.990) and mean dipole moment derivatives (r = 0.996) are found to obey Siegbahn's potential model for carbon 1s electron ionization energies at the QCISD/cc-pVTZ level. The latter is a consequence of the carbon mean derivatives obeying the electronegativity model and not necessarily to their similarities with atomic charges. Atomic dipole contributions to the neighboring atom electrostatic potentials of the fluorochloromethanes are found to be of comparable size to the atomic charge contributions and increase the accuracy of Siegbahn's model for the QTAIM charge model results. Substitution effects of the hydrogen, fluorine, and chlorine atoms on the charge and dipole flux QTAIM contributions are found to be additive for the mean dipole derivatives of the fluorochloromethanes.
A Simple Approach for the Calculation of Energy Levels of Light Atoms
ERIC Educational Resources Information Center
Woodyard, Jack R., Sr.
1972-01-01
Describes a method for direct calculation of energy levels by using elementary techniques. Describes the limitations of the approach but also claims that with a minimum amount of labor a student can get greater understanding of atomic physics problems. (PS)
Metal-Insulator Transition Revisited for Cold Atoms in Non-Abelian Gauge Potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satija, Indubala I.; National Institute of Standards and Technology, Gaithersburg, Maryland 20899; Dakin, Daniel C.
2006-11-24
We discuss the possibility of realizing metal-insulator transitions with ultracold atoms in two-dimensional optical lattices in the presence of artificial gauge potentials. For Abelian gauges, such transitions occur when the magnetic flux penetrating the lattice plaquette is an irrational multiple of the magnetic flux quantum. Here we present the first study of these transitions for non-Abelian U(2) gauge fields. In contrast to the Abelian case, the spectrum and localization transition in the non-Abelian case is strongly influenced by atomic momenta. In addition to determining the localization boundary, the momentum fragments the spectrum. Other key characteristics of the non-Abelian case includemore » the absence of localization for certain states and satellite fringes around the Bragg peaks in the momentum distribution and an interesting possibility that the transition can be tuned by the atomic momenta.« less
Emmrich, Matthias; Huber, Ferdinand; Pielmeier, Florian; Welker, Joachim; Hofmann, Thomas; Schneiderbauer, Maximilian; Meuer, Daniel; Polesya, Svitlana; Mankovsky, Sergiy; Ködderitzsch, Diemo; Ebert, Hubert; Giessibl, Franz J
2015-04-17
Clusters built from individual iron atoms adsorbed on surfaces (adatoms) were investigated by atomic force microscopy (AFM) with subatomic resolution. Single copper and iron adatoms appeared as toroidal structures and multiatom clusters as connected structures, showing each individual atom as a torus. For single adatoms, the toroidal shape of the AFM image depends on the bonding symmetry of the adatom to the underlying structure [twofold for copper on copper(110) and threefold for iron on copper(111)]. Density functional theory calculations support the experimental data. The findings correct our previous work, in which multiple minima in the AFM signal were interpreted as a reflection of the orientation of a single front atom, and suggest that dual and triple minima in the force signal are caused by dimer and trimer tips, respectively. Copyright © 2015, American Association for the Advancement of Science.
Scaling of Advanced Theory-of-Mind Tasks.
Osterhaus, Christopher; Koerber, Susanne; Sodian, Beate
2016-11-01
Advanced theory-of-mind (AToM) development was investigated in three separate studies involving 82, 466, and 402 elementary school children (8-, 9-, and 10-year-olds). Rasch and factor analyses assessed whether common conceptual development underlies higher-order false-belief understanding, social understanding, emotion recognition, and perspective-taking abilities. The results refuted a unidimensional scale and revealed three distinct AToM factors: social reasoning, reasoning about ambiguity, and recognizing transgressions of social norms. Developmental progressions emerged for the two reasoning factors but not for recognizing transgressions of social norms. Both social factors were significantly related to inhibition, whereas language development only predicted performance on social reasoning. These findings suggest that AToM comprises multiple abilities, which are subject to distinct cognitive influences. Importantly, only two AToM factors involve conceptual development. © 2016 The Authors. Child Development © 2016 Society for Research in Child Development, Inc.
Correspondence: Reply to ‘Phantom phonon localization in relaxors’
Manley, Michael E.; Abernathy, Douglas L.; Budai, John D.
2017-12-05
The Correspondence by Gehring et al. mistakes Anderson phonon localization for the concept of an atomic-scale local mode. An atomic-scale local mode refers to a single atom vibrating on its own within a crystal. Such a local mode will have an almost flat intensity profile, but this is not the same as phonon localization. Anderson localization is a wave interference effect in a disordered system that results in waves becoming spatially localized. The length scale of the localized waves is set by the wavelength, which is approximately 2 nm in this case. This larger length scale in real space meansmore » narrower intensity profiles in reciprocal space. Here, we conclude that the claims in the Correspondence by Gehring et al. are incorrect because they mistakenly assume that the length scale for Anderson localization is atomic, and because the experimental observations rule out multiple scattering as the origin.« less
Correspondence: Reply to ‘Phantom phonon localization in relaxors’
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manley, Michael E.; Abernathy, Douglas L.; Budai, John D.
The Correspondence by Gehring et al. mistakes Anderson phonon localization for the concept of an atomic-scale local mode. An atomic-scale local mode refers to a single atom vibrating on its own within a crystal. Such a local mode will have an almost flat intensity profile, but this is not the same as phonon localization. Anderson localization is a wave interference effect in a disordered system that results in waves becoming spatially localized. The length scale of the localized waves is set by the wavelength, which is approximately 2 nm in this case. This larger length scale in real space meansmore » narrower intensity profiles in reciprocal space. Here, we conclude that the claims in the Correspondence by Gehring et al. are incorrect because they mistakenly assume that the length scale for Anderson localization is atomic, and because the experimental observations rule out multiple scattering as the origin.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Chenchen; Martínez, Todd J.; SLAC National Accelerator Laboratory, Menlo Park, California 94025
We present a tensor hypercontracted (THC) scaled opposite spin second order Møller-Plesset perturbation theory (SOS-MP2) method. By using THC, we reduce the formal scaling of SOS-MP2 with respect to molecular size from quartic to cubic. We achieve further efficiency by exploiting sparsity in the atomic orbitals and using graphical processing units (GPUs) to accelerate integral construction and matrix multiplication. The practical scaling of GPU-accelerated atomic orbital-based THC-SOS-MP2 calculations is found to be N{sup 2.6} for reference data sets of water clusters and alanine polypeptides containing up to 1600 basis functions. The errors in correlation energy with respect to density-fitting-SOS-MP2 aremore » less than 0.5 kcal/mol for all systems tested (up to 162 atoms).« less
New Angles on Standard Force Fields: Toward a General Approach for Treating Atomic-Level Anisotropy
Van Vleet, Mary J.; Misquitta, Alston J.; Schmidt, J. R.
2017-12-21
Nearly all standard force fields employ the “sum-of-spheres” approximation, which models intermolecular interactions purely in terms of interatomic distances. Nonetheless, atoms in molecules can have significantly nonspherical shapes, leading to interatomic interaction energies with strong orientation dependencies. Neglecting this “atomic-level anisotropy” can lead to significant errors in predicting interaction energies. Herein, we propose a simple, transferable, and computationally efficient model (MASTIFF) whereby atomic-level orientation dependence can be incorporated into ab initio intermolecular force fields. MASTIFF includes anisotropic exchange-repulsion, charge penetration, and dispersion effects, in conjunction with a standard treatment of anisotropic long-range (multipolar) electrostatics. To validate our approach, we benchmarkmore » MASTIFF against various sum-of-spheres models over a large library of intermolecular interactions between small organic molecules. MASTIFF achieves quantitative accuracy, with respect to both high-level electronic structure theory and experiment, thus showing promise as a basis for “next-generation” force field development.« less
New Angles on Standard Force Fields: Toward a General Approach for Treating Atomic-Level Anisotropy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Vleet, Mary J.; Misquitta, Alston J.; Schmidt, J. R.
Nearly all standard force fields employ the “sum-of-spheres” approximation, which models intermolecular interactions purely in terms of interatomic distances. Nonetheless, atoms in molecules can have significantly nonspherical shapes, leading to interatomic interaction energies with strong orientation dependencies. Neglecting this “atomic-level anisotropy” can lead to significant errors in predicting interaction energies. Herein, we propose a simple, transferable, and computationally efficient model (MASTIFF) whereby atomic-level orientation dependence can be incorporated into ab initio intermolecular force fields. MASTIFF includes anisotropic exchange-repulsion, charge penetration, and dispersion effects, in conjunction with a standard treatment of anisotropic long-range (multipolar) electrostatics. To validate our approach, we benchmarkmore » MASTIFF against various sum-of-spheres models over a large library of intermolecular interactions between small organic molecules. MASTIFF achieves quantitative accuracy, with respect to both high-level electronic structure theory and experiment, thus showing promise as a basis for “next-generation” force field development.« less
A Tandem Catalyst with Multiple Metal Oxide Interfaces Produced by Atomic Layer Deposition.
Ge, Huibin; Zhang, Bin; Gu, Xiaomin; Liang, Haojie; Yang, Huimin; Gao, Zhe; Wang, Jianguo; Qin, Yong
2016-06-13
Ideal heterogeneous tandem catalysts necessitate the rational design and integration of collaborative active sites. Herein, we report on the synthesis of a new tandem catalyst with multiple metal-oxide interfaces based on a tube-in-tube nanostructure using template-assisted atomic layer deposition, in which Ni nanoparticles are supported on the outer surface of the inner Al2 O3 nanotube (Ni/Al2 O3 interface) and Pt nanoparticles are attached to the inner surface of the outer TiO2 nanotube (Pt/TiO2 interface). The tandem catalyst shows remarkably high catalytic efficiency in nitrobenzene hydrogenation over Pt/TiO2 interface with hydrogen formed in situ by the decomposition of hydrazine hydrate over Ni/Al2 O3 interface. This can be ascribed to the synergy effect of the two interfaces and the confined nanospace favoring the instant transfer of intermediates. The tube-in-tube tandem catalyst with multiple metal-oxide interfaces represents a new concept for the design of highly efficient and multifunctional nanocatalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A simple atomic-level hydrophobicity scale reveals protein interfacial structure.
Kapcha, Lauren H; Rossky, Peter J
2014-01-23
Many amino acid residue hydrophobicity scales have been created in an effort to better understand and rapidly characterize water-protein interactions based only on protein structure and sequence. There is surprisingly low consistency in the ranking of residue hydrophobicity between scales, and their ability to provide insightful characterization varies substantially across subject proteins. All current scales characterize hydrophobicity based on entire amino acid residue units. We introduce a simple binary but atomic-level hydrophobicity scale that allows for the classification of polar and non-polar moieties within single residues, including backbone atoms. This simple scale is first shown to capture the anticipated hydrophobic character for those whole residues that align in classification among most scales. Examination of a set of protein binding interfaces establishes good agreement between residue-based and atomic-level descriptions of hydrophobicity for five residues, while the remaining residues produce discrepancies. We then show that the atomistic scale properly classifies the hydrophobicity of functionally important regions where residue-based scales fail. To illustrate the utility of the new approach, we show that the atomic-level scale rationalizes the hydration of two hydrophobic pockets and the presence of a void in a third pocket within a single protein and that it appropriately classifies all of the functionally important hydrophilic sites within two otherwise hydrophobic pores. We suggest that an atomic level of detail is, in general, necessary for the reliable depiction of hydrophobicity for all protein surfaces. The present formulation can be implemented simply in a manner no more complex than current residue-based approaches. © 2013.
Joint Sparse Recovery With Semisupervised MUSIC
NASA Astrophysics Data System (ADS)
Wen, Zaidao; Hou, Biao; Jiao, Licheng
2017-05-01
Discrete multiple signal classification (MUSIC) with its low computational cost and mild condition requirement becomes a significant noniterative algorithm for joint sparse recovery (JSR). However, it fails in rank defective problem caused by coherent or limited amount of multiple measurement vectors (MMVs). In this letter, we provide a novel sight to address this problem by interpreting JSR as a binary classification problem with respect to atoms. Meanwhile, MUSIC essentially constructs a supervised classifier based on the labeled MMVs so that its performance will heavily depend on the quality and quantity of these training samples. From this viewpoint, we develop a semisupervised MUSIC (SS-MUSIC) in the spirit of machine learning, which declares that the insufficient supervised information in the training samples can be compensated from those unlabeled atoms. Instead of constructing a classifier in a fully supervised manner, we iteratively refine a semisupervised classifier by exploiting the labeled MMVs and some reliable unlabeled atoms simultaneously. Through this way, the required conditions and iterations can be greatly relaxed and reduced. Numerical experimental results demonstrate that SS-MUSIC can achieve much better recovery performances than other MUSIC extended algorithms as well as some typical greedy algorithms for JSR in terms of iterations and recovery probability.
2014-01-01
glass, the polyhedron -center atoms are all silicon and each silicon atom is surrounded by four oxygen atoms (while each oxygen atom is connected to...of non-bridging (connected to only a single network forming cation) oxygen atoms per network polyhedron and takes on a zero value in the case of...network polyhedron and takes on a value of 4.0 in the case of fused silica. In addition to the three parameters mentioned above, the “seemingly
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-05
... NUCLEAR REGULATORY COMMISSION [Docket No. 50-16; NRC-2009-0073] DTE ENERGY; Enrico Fermi Atomic... License No. DPR-9 issued for Enrico Fermi Atomic Power Plant, Unit 1 (Fermi-1), located in Monroe County... undue hazard to life or property. There are no provisions in the Atomic Energy Act (or in any other...
A Bibliography of Basic Books on Atomic Energy, A World of the Atom Series Booklet.
ERIC Educational Resources Information Center
Atomic Energy Commission, Washington, DC.
This booklet in the "World of the Atom" Series replaces the earlier Books on Atomic Energy for Adults and Children. It includes annotated bibliographies for children (grade level indicated) and adults. Over 60 books are classed as elementary and over 70 as advanced. These are alphabetized by title and also indexed by author. A list of…
NASA Astrophysics Data System (ADS)
Mérawa, M.; Dargelos, A.
1998-07-01
The present paper gives an account of investigations of the polarizability of the alkali atoms Li, Na, diatomics homonuclear and heteronuclear Li2, Na2 and NaLi at SCF (Self Consistent Field) level of approximation and at correlated level, using a time Time-Dependent Gauge Invariant method (TDGI). Our static polarizability values agree with the best experimental and theoretical determinations. The Van der Waals C6 coefficients for the atom-atom, atom-dimer and dimer-dimer interactions have been evaluated. Les polarisabilités des atomes alcalins Li, Na, et des molécules diatomiques homonucléaires et hétéronucléaire Li2, Na2 et NaLi, ont été calculées au niveau SCF (Self Consistent Field) et au niveau corrélé à partir d'une méthode invariante de jauge dépendante du temps(TDGI). Nos valeurs des polarisabilités statiques sont en accord avec les meilleurs déterminations expérimentales et théoriques. Les coefficients C6 de Van de Waals pour les interactions atome-atome, atome-dimère et dimère-dimère ont également été évalués.
Core-level photoemission investigation of atomic-fluorine adsorption on GaAs(110)
NASA Astrophysics Data System (ADS)
McLean, A. B.; Terminello, L. J.; McFeely, F. R.
1989-12-01
The adsorption of atomic F on the cleaved GaAs(110) surface has been studied with use of high-resolution core-level photoelectron spectroscopy by exposing the GaAs(110) surfaces to XeF2, which adsorbs dissociatively, leaving atomic F behind. This surface reaction produces two chemically shifted components in the Ga 3d core-level emission which are attributed to an interfacial monofluoride and a stable trifluoride reaction product, respectively. The As 3d core level develops only one chemically shifted component and from its exposure-dependent behavior it is attributed to an interfacial monofluoride. Least-squares analysis of the core-level line shapes revealed that (i) the F bonds to both the anion and the cation , (ii) the GaF3 component (characteristic of strong interfacial reaction) and the surface core-level shifted component (characteristic of a well ordered, atomically clean surface) are present together over a relatively large range of XeF2 exposures, and (iii) it is the initial disruption of the GaAs(110) surface that is the rate-limiting step in this surface reaction. These results are compared with similar studies of Cl and O adsorption on GaAs(110).
Highly monodisperse multiple twinned AuCu-Pt trimetallic nanoparticles with high index surfaces.
Khanal, Subarna; Bhattarai, Nabraj; McMaster, David; Bahena, Daniel; Velazquez-Salazar, J Jesus; Jose-Yacaman, Miguel
2014-08-14
Trimetallic nanoparticles possess different properties than their mono- and bi-metallic counterparts, opening a wide range of possibilities for diverse potential applications with the notion to study possible morphology, atomic ordering, reduce precious metal consumption and many others. In this paper, we present a comprehensive experimental study on AuCu-Pt trimetallic nanoparticles with an average diameter of 15 ± 1.0 nm, synthesized in a one-pot synthesis method and characterized by the Cs-corrected scanning transmission electron microscopy technique that allowed us to probe the structure at the atomic level resolution. A new way to control the nanoparticle morphology by the presence of third metal (Pt) is also discussed by the overgrowth of Pt on the as prepared AuCu core by Frank-van der Merwe (FM) layer-by-layer and Stranski-Krastanov (SK) island-on-wetting-layer growth modes. With the application of this research, we are now a step closer to produce optimum catalysts in which the active phase forms only surface monolayers. In addition, the nanoalloy exhibits high index facet surfaces with {211} and {321} families that are highly open-structure surfaces and are interesting for the catalytic applications.
Highly Monodisperse Multiple Twinned AuCu/Pt Trimetallic Nanoparticles with High Index Surfaces
Khanal, Subarna; Bhattarai, Nabraj; McMaster, David; Bahena, Daniel; Velazquez-Salazar, J. Jesus
2014-01-01
Trimetallic nanoparticles present different properties than their mono- and bi-metallic counterparts, opening a wide range of possibilities for diverse potential applications with the notion to study possible morphology, atomic ordering, reduce precious metal consumption and many others. In this paper, we are presenting a comprehensive experimental study on AuCu/Pt trimetallic nanoparticles with an average diameter 15 ± 1.0 nm, synthesized in one-pot synthesis method and characterized by Cs-corrected scanning transmission electron microscopy technique that allowed us to probe the structure at the atomic level resolution. A new way to control the nanoparticle morphology by the presence of third metal (Pt) is also discussed by the overgrowth of Pt on as prepared AuCu core by Frank–van der Merwe (FM) layer-by-layer and Stranski–Krastanov (SK) island-on-wetting-layer growth modes. With the application of this research, we are now a step closer to produce optimum catalysts in which the active phase forms only surface monolayers. In addition, the nanoalloy presents high index facet surfaces with {211} and {321} families, that are highly open-structure surfaces and are interesting for the catalytic applications. PMID:24975090
X-ray Modeling of Classical Novae
NASA Astrophysics Data System (ADS)
Nemeth, Peter
2010-01-01
It has been observed and theoretically supported in the last decade that the peak of the spectral energy distribution of classical novae gradually shifts to higher energies at constant bolometric luminosity after a nova event. For this reason, comprehensive evolutionary studies require spectral analysis in multiple spectral bands. After a nova explosion, the white dwarf can maintain stable surface hydrogen burning, the duration of which strongly correlates with the white dwarf mass. During this stage the peak of the luminosity is in the soft X-ray band (15 - 60 Angstroms). By extending the modeling range of TLUSTY/SYNSPEC, I analyse the luminosity and abundance evolution of classical novae. Model atoms required for this work were built using atomic data from NIST/ASD and TOPBASE. The accurate but incomplete set of energy levels and radiative transitions in NIST were completed with calculated data from TOPBASE. Synthetic spectra were then compared to observed data to derive stellar parameters. I show the capabilities and validity of this project on the example of V4743 Sgr. This nova was observed with both Chandra and XMM-Newton observatories and has already been modeled by several scientific groups (PHOENIX, TMAP).
Enhancing optical nonreciprocity by an atomic ensemble in two coupled cavities
NASA Astrophysics Data System (ADS)
Song, L. N.; Wang, Z. H.; Li, Yong
2018-05-01
We study the optical nonreciprocal propagation in an optical molecule of two coupled cavities with one of them interacting with a two-level atomic ensemble. The effect of increasing the number of atoms on the optical isolation ratio of the system is studied. We demonstrate that the significant nonlinearity supplied by the coupling of the atomic ensemble with the cavity leads to the realization of greatly-enhanced optical nonreciprocity compared with the case of single atom.
Yoon, Hoon Hahn; Jung, Sungchul; Choi, Gahyun; Kim, Junhyung; Jeon, Youngeun; Kim, Yong Soo; Jeong, Hu Young; Kim, Kwanpyo; Kwon, Soon-Yong; Park, Kibog
2017-01-11
We report the systematic experimental studies demonstrating that a graphene layer inserted at metal/n-Si(001) interface is efficient to explore interface Fermi-level pinning effect. It is confirmed that an inserted graphene layer prevents atomic interdiffusion to form an atomically abrupt Schottky contact. The Schottky barriers of metal/graphene/n-Si(001) junctions show a very weak dependence on metal work-function, implying that the metal Fermi-level is almost completely pinned at charge neutrality level close to the valence band edge of Si. The atomically impermeable and electronically transparent properties of graphene can be used generally to form an intact Schottky contact for all semiconductors.
Deciphering chemical order/disorder and material properties at the single-atom level
Yang, Yongsoo; Chen, Chien-Chun; Scott, M. C.; ...
2017-02-01
Perfect crystals are rare in nature. Real materials often contain crystal defects and chemical order/disorder such as grain boundaries, dislocations, interfaces, surface reconstructions and point defects. Such disruption in periodicity strongly affects material properties and functionality. Despite rapid development of quantitative material characterization methods, correlating three-dimensional (3D) atomic arrangements of chemical order/disorder and crystal defects with material properties remains a challenge. On a parallel front, quantum mechanics calculations such as density functional theory (DFT) have progressed from the modelling of ideal bulk systems to modelling ‘real’ materials with dopants, dislocations, grain boundaries and interfaces; but these calculations rely heavily onmore » average atomic models extracted from crystallography. To improve the predictive power of first-principles calculations, there is a pressing need to use atomic coordinates of real systems beyond average crystallographic measurements. Here we determine the 3D coordinates of 6,569 iron and 16,627 platinum atoms in an iron-platinum nanoparticle, and correlate chemical order/disorder and crystal defects with material properties at the single-atom level. We identify rich structural variety with unprecedented 3D detail including atomic composition, grain boundaries, anti-phase boundaries, anti-site point defects and swap defects. We show that the experimentally measured coordinates and chemical species with 22 picometre precision can be used as direct input for DFT calculations of material properties such as atomic spin and orbital magnetic moments and local magnetocrystalline anisotropy. The work presented here combines 3D atomic structure determination of crystal defects with DFT calculations, which is expected to advance our understanding of structure–property relationships at the fundamental level.« less
Gruen, D.M.; Young, C.E.; Pellin, M.J.
1989-12-26
A charged particle spectrometer is described for performing ultrasensitive quantitative analysis of selected atomic components removed from a sample. Significant improvements in performing energy and angular refocusing spectroscopy are accomplished by means of a two dimensional structure for generating predetermined electromagnetic field boundary conditions. Both resonance and non-resonance ionization of selected neutral atomic components allow accumulation of increased chemical information. A multiplexed operation between a SIMS mode and a neutral atomic component ionization mode with EARTOF analysis enables comparison of chemical information from secondary ions and neutral atomic components removed from the sample. An electronic system is described for switching high level signals, such as SIMS signals, directly to a transient recorder and through a charge amplifier to the transient recorder for a low level signal pulse counting mode, such as for a neutral atomic component ionization mode. 12 figs.
NASA Astrophysics Data System (ADS)
Badshah, Fazal; Irfan, Muhammad; Qamar, Sajid; Qamar, Shahid
2016-04-01
We consider the resonant interaction of an ultracold two-level atom with an electromagnetic field inside a high-Q micromaser cavity. In particular, we study the tunneling and traversal of ultracold atoms through vacuum-induced potentials for secant hyperbolic square and sinusoidal cavity mode functions. The phase time which may be considered as an appropriate measure of the time required for the atoms to cross the cavity, significantly modifies with the change of cavity mode profile. For example, switching between the sub and superclassical behaviors in phase time can occur due to the mode function. Similarly, negative phase time appears for the transmission of the two-level atoms in both excited and ground states for secant hyperbolic square mode function which is in contrast to the mesa mode case.
Cavity electromagnetically induced transparency via spontaneously generated coherence
NASA Astrophysics Data System (ADS)
Tariq, Muhammad; Ziauddin, Bano, Tahira; Ahmad, Iftikhar; Lee, Ray-Kuang
2017-09-01
A four-level N-type atomic ensemble enclosed in a cavity is revisited to investigate the influence of spontaneous generated coherence (SGC) on transmission features of weak probe light field. A weak probe field is propagating through the cavity where each atom inside the cavity follows four-level N-type atom-field configuration of rubidium (?) atom. We use input-output theory and study the interaction of atomic ensemble and three cavity fields which are coupled to the same cavity mode. A SGC affects the transmission properties of weak probe light field due to which a transparency window (cavity EIT) appears. At resonance condition the transparency window increases with increasing the SGC in the system. We also studied the influence of the SGC on group delay and investigated magnitude enhancement of group delay for the maximum SGC in the system.
Kinetics of oxygen atom formation during the oxidation of methane behind shock waves
NASA Technical Reports Server (NTRS)
Jachimowski, C. J.
1974-01-01
An experimental and analytical study of the formation of oxygen atoms during the oxidation of methane and methane-hydrogen mixtures behind incident shock waves was carried out over the temperature range 1790-2584 K at reaction pressures between 1.2 and 1.7 atm. Oxygen atom levels were determined indirectly by measurement of emission from reaction of O with CO. On the basis of these data and ignition-delay data reported in the literature, a kinetic scheme for methane oxidation was assembled. The proposed kinetic mechanism, in general, predicts higher peak oxygen atom levels than the current oxidation mechanisms proposed by Bowman and Seery and by Skinner and his co-workers.
Initiating heavy-atom-based phasing by multi-dimensional molecular replacement.
Pedersen, Bjørn Panyella; Gourdon, Pontus; Liu, Xiangyu; Karlsen, Jesper Lykkegaard; Nissen, Poul
2016-03-01
To obtain an electron-density map from a macromolecular crystal the phase problem needs to be solved, which often involves the use of heavy-atom derivative crystals and concomitant heavy-atom substructure determination. This is typically performed by dual-space methods, direct methods or Patterson-based approaches, which however may fail when only poorly diffracting derivative crystals are available. This is often the case for, for example, membrane proteins. Here, an approach for heavy-atom site identification based on a molecular-replacement parameter matrix (MRPM) is presented. It involves an n-dimensional search to test a wide spectrum of molecular-replacement parameters, such as different data sets and search models with different conformations. Results are scored by the ability to identify heavy-atom positions from anomalous difference Fourier maps. The strategy was successfully applied in the determination of a membrane-protein structure, the copper-transporting P-type ATPase CopA, when other methods had failed to determine the heavy-atom substructure. MRPM is well suited to proteins undergoing large conformational changes where multiple search models should be considered, and it enables the identification of weak but correct molecular-replacement solutions with maximum contrast to prime experimental phasing efforts.
Initiating heavy-atom-based phasing by multi-dimensional molecular replacement
Pedersen, Bjørn Panyella; Gourdon, Pontus; Liu, Xiangyu; Karlsen, Jesper Lykkegaard; Nissen, Poul
2016-01-01
To obtain an electron-density map from a macromolecular crystal the phase problem needs to be solved, which often involves the use of heavy-atom derivative crystals and concomitant heavy-atom substructure determination. This is typically performed by dual-space methods, direct methods or Patterson-based approaches, which however may fail when only poorly diffracting derivative crystals are available. This is often the case for, for example, membrane proteins. Here, an approach for heavy-atom site identification based on a molecular-replacement parameter matrix (MRPM) is presented. It involves an n-dimensional search to test a wide spectrum of molecular-replacement parameters, such as different data sets and search models with different conformations. Results are scored by the ability to identify heavy-atom positions from anomalous difference Fourier maps. The strategy was successfully applied in the determination of a membrane-protein structure, the copper-transporting P-type ATPase CopA, when other methods had failed to determine the heavy-atom substructure. MRPM is well suited to proteins undergoing large conformational changes where multiple search models should be considered, and it enables the identification of weak but correct molecular-replacement solutions with maximum contrast to prime experimental phasing efforts. PMID:26960131
Influence of attrition milling on nano-grain boundaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rawers, J.; Cook, D.
1999-03-01
Nanostructured materials have a relatively large proportion of their atoms associated with the grain boundary, and the method used to develop the nano-grains has a strong influence on the resulting grain boundary structure. In this study, attrition milling iron powders and blends of iron powders produced micron-size particles composed of nano-size grains. Mechanical cold-working powder resulted in dislocation generation, multiplication, and congealing that produced grain refinement. As the grain size approached nano-dimensions, dislocations were no longer sustained within the grain and once generated, rapidly diffused to the grain boundary. Dislocations on the grain boundary strained the local lattice structure which,more » as the grain size decreased, became the entire grain. Mechanical alloying of substitutional aluminium atoms into iron powder resulted in the aluminium atoms substituting for iron atoms in the grain boundary cells and providing a grain boundary structure similar to that of the iron powder processed in argon. Attrition milling iron powder in nitrogen gas resulted in nitrogen atoms being adsorbed onto the particle surface. Continued mechanical milling infused the nitrogen atoms into interstitial lattice sites on the grain boundary which also contributed to expanding and straining the local lattice.« less
Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles.
Yan, Zhihui; Wu, Liang; Jia, Xiaojun; Liu, Yanhong; Deng, Ruijie; Li, Shujing; Wang, Hai; Xie, Changde; Peng, Kunchi
2017-09-28
It is crucial for the physical realization of quantum information networks to first establish entanglement among multiple space-separated quantum memories and then, at a user-controlled moment, to transfer the stored entanglement to quantum channels for distribution and conveyance of information. Here we present an experimental demonstration on generation, storage, and transfer of deterministic quantum entanglement among three spatially separated atomic ensembles. The off-line prepared multipartite entanglement of optical modes is mapped into three distant atomic ensembles to establish entanglement of atomic spin waves via electromagnetically induced transparency light-matter interaction. Then the stored atomic entanglement is transferred into a tripartite quadrature entangled state of light, which is space-separated and can be dynamically allocated to three quantum channels for conveying quantum information. The existence of entanglement among three released optical modes verifies that the system has the capacity to preserve multipartite entanglement. The presented protocol can be directly extended to larger quantum networks with more nodes.Continuous-variable encoding is a promising approach for quantum information and communication networks. Here, the authors show how to map entanglement from three spatial optical modes to three separated atomic samples via electromagnetically induced transparency, releasing it later on demand.
Atom-Level Understanding of the Sodiation Process in Silicon Anode Material.
Jung, Sung Chul; Jung, Dae Soo; Choi, Jang Wook; Han, Young-Kyu
2014-04-03
Despite the exceptionally large capacities in Li ion batteries, Si has been considered inappropriate for applications in Na ion batteries. We report an atomic-level study on the applicability of a Si anode in Na ion batteries using ab initio molecular dynamics simulations. While crystalline Si is not suitable for alloying with Na atoms, amorphous Si can accommodate 0.76 Na atoms per Si atom, corresponding to a specific capacity of 725 mA h g(-1). Bader charge analyses reveal that the sodiation of an amorphous Si electrode continues until before the local Na-rich clusters containing neutral Na atoms are formed. The amorphous Na0.76Si phase undergoes a volume expansion of 114% and shows a Na diffusivity of 7 × 10(-10) cm(2) s(-1) at room temperature. Overall, the amorphous Si phase turns out quite attractive in performance compared to other alloy-type anode materials. This work suggests that amorphous Si might be a competitive candidate for Na ion battery anodes.
Quantum synchronization of many coupled atoms for an ultranarrow linewidth laser
NASA Astrophysics Data System (ADS)
He, Peiru; Xu, Minghui; Tieri, David; Zhu, Bihui; Rey, Ana Maria; Hazzard, Kaden; Holland, Murray
2014-05-01
We theoretically investigate the effect of quantum synchronization on many coupled two-level atoms acting as high quality oscillators. We show that quantum synchronization - the spontaneous alignment of the phase (of the two-level superposition) between different atoms - provides a potential approach to produce robust atomic coherences and coherent light with ultranarrow linewidth and extreme phase stability. The atoms may be coupled either through their direct dipole-dipole interactions or, as in a superradiant laser, through an optical cavity. We develop a variety of analytic and computational approaches for this problem, including exact open quantum system methods for small systems, semiclassical theories, and approaches that make use of the permutation symmetry of identically coupled ensembles. We investigate the first and second order coherence properties of both the optical and atomic degrees of freedom. We study synchronization in both the steady-state, as well as during the dynamically applied pulse sequences of Rabi and Ramsey interferometry. This work was supported by the DARPA QuASAR program, the NSF, and NIST.
NASA Astrophysics Data System (ADS)
Fan, Qiu-Bo; Wang, Yi-Ru; Chen, Jin; Pan, Yue-Wu; Han, Bai-Ping; Fu, Chang-Bao; Sun, Yan
2017-06-01
The steady-state properties of a hybrid system are investigated in this paper. Many cold atoms in the four-level tripod configuration are confined in an optical cavity with a movable end mirror. The confined cold atoms are driven with two external classical fields and an internal cavity field. The internal cavity field is excited by an external driving field and shows a radiation pressure upon the movable end mirror. The coupling of atom-light and opto-mechanical interactions is enhanced by embedding a four-level atomic system in a typical opto-mechanical cavity. And an enhanced nonlinear feedback mechanism is offered by the enhanced coupling, which permits the observation of five and three steady-state solutions for relevant variables near two-photon resonance. The enhanced nonlinear feedback mechanism also allows us to observe the obvious difference in the double-EIT phenomenon between the atom-assisted opto-mechanical system and usual atom-field system.
NASA Astrophysics Data System (ADS)
Shin, H.-C.; Ahn, S. J.; Kim, H. W.; Moon, Y.; Rai, K. B.; Woo, S. H.; Ahn, J. R.
2016-08-01
Atom (or molecule) intercalations and deintercalations have been used to control the electronic properties of graphene. In general, finite energies above room temperature (RT) thermal energy are required for the intercalations and deintercalations. Here, we demonstrate that alkali metal atoms can be deintercalated from epitaxial graphene on a SiC substrate at RT, resulting in the reduction in density of states at the Fermi level. The change in density of states at the Fermi level at RT can be applied to a highly sensitive graphene sensor operating at RT. Na atoms, which were intercalated at a temperature of 80 °C, were deintercalated at a high temperature above 1000 °C when only a thermal treatment was used. In contrast to the thermal treatment, the intercalated Na atoms were deintercalated at RT when tetrafluorotetracyanoquinodimethane (F4-TCNQ) molecules were adsorbed on the surface. The RT deintercalation occurred via the formation of charge-transfer complexes between Na atoms and F4-TCNQ molecules.
Effect of atomic disorder on the magnetic phase separation.
Groshev, A G; Arzhnikov, A K
2018-05-10
The effect of disorder on the magnetic phase separation between the antiferromagnetic and incommensurate helical [Formula: see text] and [Formula: see text] phases is investigated. The study is based on the quasi-two-dimensional single-band Hubbard model in the presence of atomic disorder (the [Formula: see text] Anderson-Hubbard model). A model of binary alloy disorder is considered, in which the disorder is determined by the difference in energy between the host and impurity atomic levels at a fixed impurity concentration. The problem is solved within the theory of functional integration in static approximation. Magnetic phase diagrams are obtained as functions of the temperature, the number of electrons and impurity concentration with allowance for phase separation. It is shown that for the model parameters chosen, the disorder caused by impurities whose atomic-level energy is greater than that of the host atomic levels, leads to qualitative changes in the phase diagram of the impurity-free system. In the opposite case, only quantitative changes occur. The peculiarities of the effect of disorder on the phase separation regions of the quasi-two-dimensional Hubbard model are discussed.
Effect of atomic disorder on the magnetic phase separation
NASA Astrophysics Data System (ADS)
Groshev, A. G.; Arzhnikov, A. K.
2018-05-01
The effect of disorder on the magnetic phase separation between the antiferromagnetic and incommensurate helical and phases is investigated. The study is based on the quasi-two-dimensional single-band Hubbard model in the presence of atomic disorder (the Anderson–Hubbard model). A model of binary alloy disorder is considered, in which the disorder is determined by the difference in energy between the host and impurity atomic levels at a fixed impurity concentration. The problem is solved within the theory of functional integration in static approximation. Magnetic phase diagrams are obtained as functions of the temperature, the number of electrons and impurity concentration with allowance for phase separation. It is shown that for the model parameters chosen, the disorder caused by impurities whose atomic-level energy is greater than that of the host atomic levels, leads to qualitative changes in the phase diagram of the impurity-free system. In the opposite case, only quantitative changes occur. The peculiarities of the effect of disorder on the phase separation regions of the quasi-two-dimensional Hubbard model are discussed.
Semiclassical quantization of Bohr orbits in the helium atom
NASA Astrophysics Data System (ADS)
Belov, V. V.; Maksimov, V. A.
2007-05-01
We use the complex WKB-Maslov method to construct the semiclassical spectral series corresponding to the resonance Bohr orbits in the helium atom. The semiclassical energy levels represented as the Rydberg tetra series correspond to the doubly symmetrically excited states of helium-like atoms. This level series contains the Rydberg triple series reported by Richter and Wintgen in 1991, which corresponds to the Z2+e-e- configuration of electrons observed by Eichmann and his collaborators in experiments on the laser excitation of the barium atom in 1992. The lower-level extrapolation of the formula obtained for the semiclassical spectrum gives the value of the ground state energy, which differs by 6% from the experimental value obtained by Bergeson and his collaborators in 1998. We also calculate the fine structure of the semiclassical spectrum due to the spin-orbit and spin-spin interactions of electrons.
Time-dependent interaction between a two-level atom and a su(1,1) Lie algebra quantum system
NASA Astrophysics Data System (ADS)
Abdalla, M. Sebaweh; Khalil, E. M.; Obada, A.-S. F.
2017-06-01
The problem of the interaction between a two-level atom and a two-mode field in the parametric amplifier-type is considered. A similar problem appears in an ion trapped in a two-dimensional trap. The problem is transformed into an interaction governed by su(1,1) Lie algebraic operators with phase and coupling parameter depending on time. Under an integrability condition, that relates phase and coupling, a solution to the wavefunction is obtained using the Schrödinger equation. The effects of the functional dependence of the coupling and the initial state of the two-level atom on atomic inversion, the degree of entanglement, the fidelity and the Glauber second-order correlation function are investigated. It is shown that the acceleration term plays an important role in controlling the function behavior of the considered quantities.
NASA Astrophysics Data System (ADS)
Sarkisyan, M. A.
1989-02-01
An analysis is made of the interaction of a three-level "cascade" atomic system with a resonant laser field. An investigation is made of the dynamics of the populations of the quasienergy states and of the atomic levels over times greater than the spontaneous transition times. In the steady-state regime the distribution of atoms over various quasienergy states is obtained under two-photon resonance conditions and for the case when all the resonances are strong. It is found that a suitable selection of the interaction parameters can establish an inversion between the quasienergy states and also due to atomic transitions. The total probability of spontaneous scattering is calculated. It is shown that, under two-photon resonance conditions, the scattering intensity increases sharply due to a self-induced resonance.
Real-space identification of intermolecular bonding with atomic force microscopy.
Zhang, Jun; Chen, Pengcheng; Yuan, Bingkai; Ji, Wei; Cheng, Zhihai; Qiu, Xiaohui
2013-11-01
We report a real-space visualization of the formation of hydrogen bonding in 8-hydroxyquinoline (8-hq) molecular assemblies on a Cu(111) substrate, using noncontact atomic force microscopy (NC-AFM). The atomically resolved molecular structures enable a precise determination of the characteristics of hydrogen bonding networks, including the bonding sites, orientations, and lengths. The observation of bond contrast was interpreted by ab initio density functional calculations, which indicated the electron density contribution from the hybridized electronic state of the hydrogen bond. Intermolecular coordination between the dehydrogenated 8-hq and Cu adatoms was also revealed by the submolecular resolution AFM characterization. The direct identification of local bonding configurations by NC-AFM would facilitate detailed investigations of intermolecular interactions in complex molecules with multiple active sites.
Dalton's disputed nitric oxide experiments and the origins of his atomic theory.
Usselman, Melvyn C; Leaist, Derek G; Watson, Katherine D
2008-01-11
In 1808 John Dalton published his first general account of chemical atomic theory, a cornerstone of modern chemistry. The theory originated in his earlier studies of the properties of atmospheric gases. In 1803 Dalton discovered that oxygen combined with either one or two volumes of nitric oxide in closed vessels over water and this pioneering observation of integral multiple proportions provided important experimental evidence for his incipient atomic ideas. Previous attempts to reproduce Dalton's experiments have been unsuccessful and some commentators have concluded the results were fraudulent. We report a successful reconstruction of Dalton's experiments and provide an analysis exonerating him of any scientific misconduct. But we conclude that Dalton, already thinking atomistically, adjusted experimental conditions to obtain the integral combining proportions.
Intertwined and vestigial order with ultracold atoms in multiple cavity modes
NASA Astrophysics Data System (ADS)
Gopalakrishnan, Sarang; Shchadilova, Yulia E.; Demler, Eugene
2017-12-01
Atoms in transversely pumped optical cavities "self-organize" by forming a density wave and emitting superradiantly into the cavity mode(s). For a single-mode cavity, the properties of this self-organization transition are well characterized both theoretically and experimentally. Here, we explore the self-organization of a Bose-Einstein condensate in the presence of two cavity modes—a system that recently was realized experimentally [Léonard et al., Nature (London) 543, 87 (2017), 10.1038/nature21067]. We argue that this system can exhibit a "vestigially ordered" phase in which neither cavity mode exhibits superradiance but the cavity modes are mutually phase locked by the atoms. We argue that this vestigially ordered phase should generically be present in multimode cavity geometries.
Presynaptic Filament Dynamics in Homologous Recombination and DNA Repair
Liu, Jie; Ehmsen, Kirk T.; Heyer, Wolf-Dietrich; Morrical, Scott W.
2014-01-01
Homologous Recombination (HR) is an essential genome stability mechanism used for high-fidelity repair of DNA double-strand breaks and for the recovery of stalled or collapsed DNA replication forks. The crucial homology search and DNA strand exchange steps of HR are catalyzed by presynaptic filaments—helical filaments of a recombinase enzyme bound to single-stranded DNA. Presynaptic filaments are fundamentally dynamic structures, the assembly, catalytic turnover, and disassembly of which must be closely coordinated with other elements of the DNA recombination, repair, and replication machinery in order for genome maintenance functions to be effective. Here, we review the major dynamic elements controlling the assembly, activity, and disassembly of presynaptic filaments: some intrinsic such as recombinase ATP binding and hydrolytic activities, others extrinsic such as ssDNA-binding proteins, mediator proteins, and DNA motor proteins. We examine dynamic behavior on multiple levels, including atomic- and filament-level structural changes associated with ATP binding and hydrolysis as evidenced in crystal structures, as well as subunit binding and dissociation events driven by intrinsic and extrinsic factors. We examine the biochemical properties of recombination proteins from four model systems (T4 phage, E. coli, S. cerevisiae, and H. sapiens), demonstrating how their properties are tailored for the context-specific requirements in these diverse species. We propose that the presynaptic filament has evolved to rely on multiple external factors for increased multi-level regulation of HR processes in genomes with greater structural and sequence complexity. PMID:21599536
Protecting quantum coherence of two-level atoms from vacuum fluctuations of electromagnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiaobao; Tian, Zehua; Wang, Jieci
In the framework of open quantum systems, we study the dynamics of a static polarizable two-level atom interacting with a bath of fluctuating vacuum electromagnetic field and explore under which conditions the coherence of the open quantum system is unaffected by the environment. For both a single-qubit and two-qubit systems, we find that the quantum coherence cannot be protected from noise when the atom interacts with a non-boundary electromagnetic field. However, with the presence of a boundary, the dynamical conditions for the insusceptible of quantum coherence are fulfilled only when the atom is close to the boundary and is transverselymore » polarizable. Otherwise, the quantum coherence can only be protected in some degree in other polarizable direction. -- Highlights: •We study the dynamics of a two-level atom interacting with a bath of fluctuating vacuum electromagnetic field. •For both a single and two-qubit systems, the quantum coherence cannot be protected from noise without a boundary. •The insusceptible of the quantum coherence can be fulfilled only when the atom is close to the boundary and is transversely polarizable. •Otherwise, the quantum coherence can only be protected in some degree in other polarizable direction.« less
Alcohol-Binding Sites in Distinct Brain Proteins: The Quest for Atomic Level Resolution
Howard, Rebecca J.; Slesinger, Paul A.; Davies, Daryl L.; Das, Joydip; Trudell, James R.; Harris, R. Adron
2011-01-01
Defining the sites of action of ethanol on brain proteins is a major prerequisite to understanding the molecular pharmacology of this drug. The main barrier to reaching an atomic-level understanding of alcohol action is the low potency of alcohols, ethanol in particular, which is a reflection of transient, low-affinity interactions with their targets. These mechanisms are difficult or impossible to study with traditional techniques such as radioligand binding or spectroscopy. However, there has been considerable recent progress in combining X-ray crystallography, structural modeling, and site-directed mutagenesis to define the sites and mechanisms of action of ethanol and related alcohols on key brain proteins. We review such insights for several diverse classes of proteins including inwardly rectifying potassium, transient receptor potential, and neurotransmit-ter-gated ion channels, as well as protein kinase C epsilon. Some common themes are beginning to emerge from these proteins, including hydrogen bonding of the hydroxyl group and van der Waals interactions of the methylene groups of ethanol with specific amino acid residues. The resulting binding energy is proposed to facilitate or stabilize low-energy state transitions in the bound proteins, allowing ethanol to act as a “molecular lubricant” for protein function. We discuss evidence for characteristic, discrete alcohol-binding sites on protein targets, as well as evidence that binding to some proteins is better characterized by an interaction region that can accommodate multiple molecules of ethanol. PMID:21676006
Three-body effects in Casimir-Polder repulsion
NASA Astrophysics Data System (ADS)
Milton, Kimball A.; Abalo, E. K.; Parashar, Prachi; Pourtolami, Nima; Brevik, Iver; Ellingsen, Simen Å.; Buhmann, Stefan Yoshi; Scheel, Stefan
2015-04-01
In this paper we study an archetypical scenario in which repulsive Casimir-Polder forces between an atom or molecule and two macroscopic bodies can be achieved. This is an extension of previous studies of the interaction between a polarizable atom and a wedge, in which repulsion occurs if the atom is sufficiently anisotropic and close enough to the symmetry plane of the wedge. A similar repulsion occurs if such an atom passes a thin cylinder or a wire. An obvious extension is to compute the interaction between such an atom and two facing wedges, which includes as a special case the interaction of an atom with a conducting screen possessing a slit, or between two parallel wires. To this end we further extend the electromagnetic multiple-scattering formalism for three-body interactions. To test this machinery we reinvestigate the interaction of a polarizable atom between two parallel conducting plates. In that case, three-body effects are shown to be small and are dominated by three- and four-scattering terms. The atom-wedge calculation is illustrated by an analogous scalar situation, described in the Appendix. The wedge-wedge-atom geometry is difficult to analyze because this is a scale-free problem. However, it is not so hard to investigate the three-body corrections to the interaction between an anisotropic atom or nanoparticle and a pair of parallel conducting cylinders and show that the three-body effects are very small and do not affect the Casimir-Polder repulsion at large distances between the cylinders. Finally, we consider whether such highly anisotropic atoms needed for repulsion are practically realizable. Since this appears rather difficult to accomplish, it may be more feasible to observe such effects with highly anisotropic nanoparticles.
Tunca, Evren; Aydın, Mehmet; Şahin, Ülkü Alver
2018-03-01
The aim of this study is an assessment of metal pollution levels in Aegean Sea sediment. Sediment samples collected from 7 different locations (Yeniköy, Edremit, Ayvalık, Dikili, Aliağa, Hekimadası, and Ildır) along the northern Mediterranean region of Turkey were investigated for 11 elements (Cu, Fe, Zn, V, Cd, Ni, As, Pb, Mn, Co, and Cr). Graphite furnace atomic absorption spectrophotometry (GFAAS) and flame atomic absorption spectrophotometry (FAAS) were used for elemental analysis. The findings were evaluated with sediment assessment methods by taking two different values as a reference and then investigating the adverse biological effects of elemental profiles on living organisms. Pb, Mn, As, Cd, and Cr concentrations were within a moderate to significant range in terms of contamination factor [Formula: see text]), albeit varying according to reference and location. The most problematic region and elements regarding the enrichment factor (EF) was Ayvalık and As, Ni, Cu, Pb, Co, and Cd. However, according to the EF, the anthropogenic effect was not at an alarming level. This was further supported by the results of the geoaccumulation index (Igeo). The findings of the modified degree of contamination (mC d ) and the pollution load index (PLI) suggested that the accumulation was greatest in Ayvalık, and the least in Hekimadası and Ildır. The location with the highest elemental total toxic unit (ΣTU) was Edremit. The effect of the existing element profile on organisms was 21% in this location when the mean effect range-median quotient (m-ERM-q) was considered. As and Ni concentrations in all stations were found to be higher than threshold effect level (TEL) and Effect Range Low (ERL). Ni levels in Edremit exceeded the probable effect level (PEL) and Effect Range Median (ERM). Toxic unit (TU) values of these two elements in all stations ranged from 59.30 to 80.43%.
NASA Astrophysics Data System (ADS)
Pickering, Juliet C.; Nave, Gillian; Liggins, Florence; Clear, Christian; Ruffoni, Matthew; Sansonetti, Craig
2015-08-01
We present new laboratory spectroscopic measurements to produce atomic data for astrophysically important species: neutral, singly and doubly ionised iron group elements.We use high resolution Fourier Transform Spectrometry (FTS) (resolving power up to 2x106 at 200nm) to measure atomic spectra, giving accurate line wavelengths (to a few parts in 108), atomic energy levels, hyperfine structure splitting and log gfs (accurate to a few %) (Ruffoni et al this meeting). These data are vital for astrophysical spectral analyses for: line identification, spectrum synthesis, elemental abundance determinations [eg 1], and disentangling of blends etc. It is not possible to theoretically calculate these atomic data to the accuracy needed for modern astrophysics applications.At Imperial College we have a unique visible-VUV FT spectrometer with short wavelength cut-off of 135nm. We supplement FTS data at shorter wavelengths with spectra recorded on the NIST 10.7m grating spectrograph (with phosphor image or photographic plates) and at longer wavelengths in the IR we use the NIST IR FT spectrometer.An elemental spectrum may contain thousands of spectral lines from the IR to VUV. We use these wavelengths to correct known atomic energy levels, and search for new atomic levels. The result is a classified linelist and accurate atomic energy levels.We present progress on iron group element atomic energy levels and wavelengths for V I and V II [2,3], Co III [4], Cr I, Mn I and Mn II, and Ni II.This work is supported by STFC(UK), The Leverhulme Trust, The Royal Society and NASA.References[1] Bergemann M, Pickering JC & Gehren T,“NLTE analysis of Co I/Co II lines in spectra of cool stars with new laboratory hyperfine splitting constants",MNRAS 401(2) 1334 (2010)[2] Thorne AP, Pickering JC & Semeniuk J,“The spectrum and term analysis of V II”, ApJS 207,13 (2013)[3] Thorne AP, Pickering JC & Semeniuk J,“The spectrum and term analysis of V I",ApJS 192,11 (2011)[4] Smillie DG, Pickering JC, Nave G & Smith PL,“The Spectrum and Term Analysis of Co III Measured using Fourier Transform and Grating Spectroscopy”,ApJS submitted
Coating and functionalization of high density ion track structures by atomic layer deposition
NASA Astrophysics Data System (ADS)
Mättö, Laura; Szilágyi, Imre M.; Laitinen, Mikko; Ritala, Mikko; Leskelä, Markku; Sajavaara, Timo
2016-10-01
In this study flexible TiO2 coated porous Kapton membranes are presented having electron multiplication properties. 800 nm crossing pores were fabricated into 50 μm thick Kapton membranes using ion track technology and chemical etching. Consecutively, 50 nm TiO2 films were deposited into the pores of the Kapton membranes by atomic layer deposition using Ti(iOPr)4 and water as precursors at 250 °C. The TiO2 films and coated membranes were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray reflectometry (XRR). Au metal electrode fabrication onto both sides of the coated foils was achieved by electron beam evaporation. The electron multipliers were obtained by joining two coated membranes separated by a conductive spacer. The results show that electron multiplication can be achieved using ALD-coated flexible ion track polymer foils.
Atom chip microscopy: A novel probe for strongly correlated materials
NASA Astrophysics Data System (ADS)
Kasch, Brian; Naides, Matthew; Turner, Richard; Ray, Ushnish; Lev, Benjamin
2010-03-01
Atom chip technology---substrates supporting micron-sized current-carrying wires that create magnetic microtraps near surfaces for thermal or degenerate gases of neutral atoms---will enable single-shot, large area detection of magnetic flux below the 10-7 flux quantum level. By harnessing the extreme sensitivity of Bose-Einstein condensates (BECs) to external perturbations, cryogenic atom chips could provide a magnetic flux detection capability that surpasses all other techniques by a factor of 10^2--10^3. We describe the merits of atom chip microscopy, our Rb BEC and atom chip apparatus, and prospects for imaging strongly correlated condensed matter materials.
Thom, Joseph; Wilpers, Guido; Riis, Erling; Sinclair, Alastair G
2013-08-12
We demonstrate a system for fast and agile digital control of laser phase, amplitude and frequency for applications in coherent atomic systems. The full versatility of a direct digital synthesis radiofrequency source is faithfully transferred to laser radiation via acousto-optic modulation. Optical beatnotes are used to measure phase steps up to 2π, which are accurately implemented with a resolution of ≤ 10 mrad. By linearizing the optical modulation process, amplitude-shaped pulses of durations ranging from 500 ns to 500 ms, in excellent agreement with the programmed functional form, are demonstrated. Pulse durations are limited only by the 30 ns rise time of the modulation process, and a measured extinction ratio of > 5 × 10(11) is achieved. The system presented here was developed specifically for controlling the quantum state of trapped ions with sequences of multiple laser pulses, including composite and bichromatic pulses. The demonstrated techniques are widely applicable to other atomic systems ranging across quantum information processing, frequency metrology, atom interferometry, and single-photon generation.
Line splitting and modified atomic decay of atoms coupled with N quantized cavity modes
NASA Astrophysics Data System (ADS)
Zhu, Yifu
1992-05-01
We study the interaction of a two-level atom with N non-degenerate quantized cavity modes including dissipations from atomic decay and cavity damps. In the strong coupling regime, the absorption or emission spectrum of weakly excited atom-cavity system possesses N + 1 spectral peaks whose linewidths are the weighted averages of atomic and cavity linewidths. The coupled system shows subnatural (supernatural) atomic decay behavior if the photon loss rates from the N cavity modes are smaller (larger) than the atomic decay rate. If N cavity modes are degenerate, they can be treated effectively as a single mode. In addition, we present numerical calculations for N = 2 to characterize the system evolution from the weak coupling to strong coupling limits.
Teleportation of atomic and photonic states in low-Q cavity QED
NASA Astrophysics Data System (ADS)
Peng, Zhao-Hui; Zou, Jian; Liu, Xiao-Juan; Kuang, Le-Man
2012-11-01
We propose two alternative teleportation protocols in low-Q cavity QED. Through the input-output process of photons, we can generate atom-photon entangled states as the quantum channel. Then we propose to teleport single-atom (two-atom entangled) state using coherent photonic states, and to teleport single photonic state with the assistance of three-level atom. The distinct feature of our protocols is that we can teleport both atomic and photonic states via the input-output process of photons in the low-Q cavity. Furthermore, as our protocols work in low-Q cavities and only involve virtual excitation of atoms, they are insensitive to both cavity decay and atomic spontaneous emission, and may be feasible with current technology.
NASA Astrophysics Data System (ADS)
Vanfleteren, Diederik; Van Neck, Dimitri; Bultinck, Patrick; Ayers, Paul W.; Waroquier, Michel
2010-12-01
A double-atom partitioning of the molecular one-electron density matrix is used to describe atoms and bonds. All calculations are performed in Hilbert space. The concept of atomic weight functions (familiar from Hirshfeld analysis of the electron density) is extended to atomic weight matrices. These are constructed to be orthogonal projection operators on atomic subspaces, which has significant advantages in the interpretation of the bond contributions. In close analogy to the iterative Hirshfeld procedure, self-consistency is built in at the level of atomic charges and occupancies. The method is applied to a test set of about 67 molecules, representing various types of chemical binding. A close correlation is observed between the atomic charges and the Hirshfeld-I atomic charges.
NASA Astrophysics Data System (ADS)
Savin, Daniel Wolf; Ciccarino, Christopher
2017-06-01
Meteors passing through Earth’s atmosphere and space vehicles returning to Earth from beyond orbit enter the atmosphere at hypersonic velocities (greater than Mach 5). The resulting shock front generates a high temperature reactive plasma around the meteor or vehicle (with temperatures greater than 10,000 K). This intense heat is transferred to the entering object by radiative and convective processes. Modeling the processes a meteor undergoes as it passes through the atmosphere and designing vehicles to withstand these conditions requires an accurate understanding of the underlying non-equilibrium high temperature chemistry. Nitrogen chemistry is particularly important given the abundance of nitrogen in Earth's atmosphere. Line emission by atomic nitrogen is a major source of radiative heating during atomspheric entry. Our ability to accurately calculate this heating is hindered by uncertainties in the electron-impact ionization (EII) rate coefficient for atomic nitrogen.Here we present new EII calculations for atomic nitrogen. The atom is treated as a 69 level system, incorporating Rydberg values up to n=20. Level-specific cross sections are from published B-Spline R-Matrix-with-Pseudostates results for the first three levels and binary-encounter Bethe (BEB) calculations that we have carried out for the remaining 59 levels. These cross section data have been convolved into level-specific rate coefficients and fit with the commonly-used Arrhenius-Kooij formula for ease of use in hypersonic chemical models. The rate coefficient data can be readily scaled by the relevant atomic nitrogen partition function which varies in time and space around the meteor or reentry vehicle. Providing data up to n=20 also enables modelers to account for the density-dependent lowering of the continuum.
Graf, Peter A.; Billups, Stephen
2017-07-24
Computational materials design has suffered from a lack of algorithms formulated in terms of experimentally accessible variables. Here we formulate the problem of (ternary) alloy optimization at the level of choice of atoms and their composition that is normal for synthesists. Mathematically, this is a mixed integer problem where a candidate solution consists of a choice of three elements, and how much of each of them to use. This space has the natural structure of a set of equilateral triangles. We solve this problem by introducing a novel version of the DIRECT algorithm that (1) operates on equilateral triangles insteadmore » of rectangles and (2) works across multiple triangles. We demonstrate on a test case that the algorithm is both robust and efficient. Lastly, we offer an explanation of the efficacy of DIRECT -- specifically, its balance of global and local search -- by showing that 'potentially optimal rectangles' of the original algorithm are akin to the Pareto front of the 'multi-component optimization' of global and local search.« less
Heavy Metals Toxicity and the Environment
Tchounwou, Paul B; Yedjou, Clement G; Patlolla, Anita K; Sutton, Dwayne J
2013-01-01
Heavy metals are naturally occurring elements that have a high atomic weight and a density at least 5 times greater than that of water. Their multiple industrial, domestic, agricultural, medical and technological applications have led to their wide distribution in the environment; raising concerns over their potential effects on human health and the environment. Their toxicity depends on several factors including the dose, route of exposure, and chemical species, as well as the age, gender, genetics, and nutritional status of exposed individuals. Because of their high degree of toxicity, arsenic, cadmium, chromium, lead, and mercury rank among the priority metals that are of public health significance. These metallic elements are considered systemic toxicants that are known to induce multiple organ damage, even at lower levels of exposure. They are also classified as human carcinogens (known or probable) according to the U.S. Environmental Protection Agency, and the International Agency for Research on Cancer. This review provides an analysis of their environmental occurrence, production and use, potential for human exposure, and molecular mechanisms of toxicity, genotoxicity, and carcinogenicity. PMID:22945569
Yang, Changwon; Kim, Eunae; Pak, Youngshang
2015-01-01
Houghton (HG) base pairing plays a central role in the DNA binding of proteins and small ligands. Probing detailed transition mechanism from Watson–Crick (WC) to HG base pair (bp) formation in duplex DNAs is of fundamental importance in terms of revealing intrinsic functions of double helical DNAs beyond their sequence determined functions. We investigated a free energy landscape of a free B-DNA with an adenosine–thymine (A–T) rich sequence to probe its conformational transition pathways from WC to HG base pairing. The free energy landscape was computed with a state-of-art two-dimensional umbrella molecular dynamics simulation at the all-atom level. The present simulation showed that in an isolated duplex DNA, the spontaneous transition from WC to HG bp takes place via multiple pathways. Notably, base flipping into the major and minor grooves was found to play an important role in forming these multiple transition pathways. This finding suggests that naked B-DNA under normal conditions has an inherent ability to form HG bps via spontaneous base opening events. PMID:26250116
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graf, Peter A.; Billups, Stephen
Computational materials design has suffered from a lack of algorithms formulated in terms of experimentally accessible variables. Here we formulate the problem of (ternary) alloy optimization at the level of choice of atoms and their composition that is normal for synthesists. Mathematically, this is a mixed integer problem where a candidate solution consists of a choice of three elements, and how much of each of them to use. This space has the natural structure of a set of equilateral triangles. We solve this problem by introducing a novel version of the DIRECT algorithm that (1) operates on equilateral triangles insteadmore » of rectangles and (2) works across multiple triangles. We demonstrate on a test case that the algorithm is both robust and efficient. Lastly, we offer an explanation of the efficacy of DIRECT -- specifically, its balance of global and local search -- by showing that 'potentially optimal rectangles' of the original algorithm are akin to the Pareto front of the 'multi-component optimization' of global and local search.« less
The effect of electromagnetically induced transparency in a potassium nanocell
NASA Astrophysics Data System (ADS)
Sargsyan, A.; Amiryan, A.; Leroy, C.; Vartanyan, T. A.; Sarkisyan, D.
2017-07-01
The effect of electromagnetically induced transparency (EIT) has been experimentally implemented for the first time for the (4 S 1/2-4 P 1/2-4 S 1/2) Λ-system of potassium atom levels in a nanocell with a 770-nm-thick column of atomic vapor. It is shown that, at such a small thickness of the vapor column, the EIT resonance can be observed only when the coupling-laser frequency is in exact resonance with the frequency of the corresponding atomic transition. The EIT resonance disappears even if the coupling-laser frequency differs slightly (by 50 MHz) from that of the corresponding atomic transition, which is due to the high thermal velocity of K atoms. The EIT resonance and related velocity selective optical pumping resonances caused by optical pumping (formed by the coupling) can be simultaneously recorded because of the small ( 462 MHz) hyperfine splitting of the lower 4 S 1/2 level.
NASA Astrophysics Data System (ADS)
Bommier, Véronique
2017-11-01
Context. In previous papers of this series, we presented a formalism able to account for both statistical equilibrium of a multilevel atom and coherent and incoherent scatterings (partial redistribution). Aims: This paper provides theoretical expressions of the redistribution function for the two-term atom. This redistribution function includes both coherent (RII) and incoherent (RIII) scattering contributions with their branching ratios. Methods: The expressions were derived by applying the formalism outlined above. The statistical equilibrium equation for the atomic density matrix is first formally solved in the case of the two-term atom with unpolarized and infinitely sharp lower levels. Then the redistribution function is derived by substituting this solution for the expression of the emissivity. Results: Expressions are provided for both magnetic and non-magnetic cases. Atomic fine structure is taken into account. Expressions are also separately provided under zero and non-zero hyperfine structure. Conclusions: Redistribution functions are widely used in radiative transfer codes. In our formulation, collisional transitions between Zeeman sublevels within an atomic level (depolarizing collisions effect) are taken into account when possible (I.e., in the non-magnetic case). However, the need for a formal solution of the statistical equilibrium as a preliminary step prevents us from taking into account collisional transfers between the levels of the upper term. Accounting for these collisional transfers could be done via a numerical solution of the statistical equilibrium equation system.
A collisional-radiative model for low-pressure weakly magnetized Ar plasmas
NASA Astrophysics Data System (ADS)
Zhu, Xi-Ming; Tsankov, Tsanko; Czarnetzki, Uwe; Marchuk, Oleksandr
2016-09-01
Collisional-radiative (CR) models are widely investigated in plasma physics for describing the kinetics of reactive species and for optical emission spectroscopy. This work reports a new Ar CR model used in low-pressure (0.01-10 Pa) weakly magnetized (<0.1 Tesla) plasmas, including ECR, helicon, and NLD discharges. In this model 108 realistic levels are individually studied, i.e. 51 lowest levels of the Ar atom and 57 lowest levels of the Ar ion. We abandon the concept of an ``effective level'' usually adopted in previous models for glow discharges. Only in this way the model can correctly predict the non-equilibrium population distribution of close energy levels. In addition to studying atomic metastable and radiative levels, this model describes the kinetic processes of ionic metastable and radiative levels in detail for the first time. This is important for investigation of plasma-surface interaction and for optical diagnostics using atomic and ionic line-ratios. This model could also be used for studying Ar impurities in tokamaks and astrophysical plasmas.
NASA Astrophysics Data System (ADS)
Kale, Y. B.; Tiwari, V. B.; Mishra, S. R.; Singh, S.; Rawat, H. S.
2016-12-01
We report electromagnetically induced absorption (EIA) and transparency (EIT) resonances of sub-natural linewidth in degenerate two level systems (DTLSs) of metastable 84Kr (84Kr*) and 83Kr (83Kr*) atoms. Using the spectrally narrow EIA signals obtained corresponding to the closed hyperfine transition 4p55s[3/2]2(F=13/2) to 4p55p[5/2]3(F‧ = 15 / 2) in 83Kr* atom, we have measured the Landé g-factor (gF) for the lower hyperfine level involved in this transition by application of small values of magnetic field of few Gauss.
A Bibliography of Basic Books on Atomic Energy. Update.
ERIC Educational Resources Information Center
Atomic Energy Commission, Washington, DC. Office of Information Services.
This booklet, part of the United States Atomic Energy Commission's series of information booklets, lists selected commerically published books for the general public on atomic energy and closely related subjects. It includes annotated bibliographies for children (grade level indicated) and adults. The books are arranged by subject, alphabetized by…
Stark effect on an excited hydrogen atom
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barratt, C.
1983-07-01
The method of degenerate perturbation theory is used to study the dipolar nature of an excited hydrogen atom in an external electric field. The dependence of the atoms perturbed energy levels on the principal and magnetic quantum numbers, n and m, is investigated, along with the perturbed wave functions.
Atomic Structure and Properties of Extended Defects in Silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buczko, R.; Chisholm, M.F.; Kaplan, T.
1998-10-15
The Z-contrast technique represents a new approach to high-resolution electron microscopy allowing for the first time incoherent imaging of materials on the atomic scale. The key advantages of the technique, an intrinsically higher resolution limit and directly interpretable, compositionally sensitive imaging, allow a new level of insight into the atomic configurations of extended defects in silicon. This experimental technique has been combined with theoretical calculations (a combination of first principles, tight binding, and classical methods) to extend this level of insight by obtaining the energetic and electronic structure of the defects.
Jorgensen, William L; Tirado-Rives, Julian
2005-05-10
An overview is provided on the development and status of potential energy functions that are used in atomic-level statistical mechanics and molecular dynamics simulations of water and of organic and biomolecular systems. Some topics that are considered are the form of force fields, their parameterization and performance, simulations of organic liquids, computation of free energies of hydration, universal extension for organic molecules, and choice of atomic charges. The discussion of water models covers some history, performance issues, and special topics such as nuclear quantum effects.
Local electronic effects and irradiation resistance in high-entropy alloys
Egami, Takeshi; Stocks, George Malcolm; Nicholson, Don; ...
2015-08-14
High-entropy alloys are multicomponent solid solutions in which various elements with different chemistries and sizes occupy the same crystallographic lattice sites. Thus, none of the atoms perfectly fit the lattice site, giving rise to considerable local lattice distortions and atomic-level stresses. These characteristics can be beneficial for performance under both radiation and in a high-temperature environment, making them attractive candidates as nuclear materials. We discuss electronic origin of the atomic-level stresses based upon first-principles calculations using a density functional theory approach.
2010-06-01
Demonstration of an area-enclosing guided-atom interferometer for rotation sensing, Phys. Rev. Lett. 99, 173201 (2007). 4. Heralded Single- Magnon Quantum...excitations are quantized spin waves ( magnons ), such that transitions between its energy levels ( magnon number states) correspond to highly directional...polarization storage in the form of a single collective-spin excitation ( magnon ) that is shared between two spatially overlapped atomic ensembles
Slightly anharmonic systems in quantum optics
NASA Technical Reports Server (NTRS)
Klimov, Andrey B.; Chumakov, Sergey M.
1995-01-01
We consider an arbitrary atomic system (n-level atom or many such atoms) interacting with a strong resonant quantum field. The approximate evolution operator for a quantum field case can be produced from the atomic evolution operator in an external classical field by a 'quantization prescription', passing the operator arguments to Wigner D-functions. Many important phenomena arising from the quantum nature of the field can be described by such a way.
Pressure atomizer having multiple orifices and turbulent generation feature
VanBrocklin, Paul G.; Geiger, Gail E.; Moran, Donald James; Fournier, Stephane
2002-01-01
A pressure atomizer includes a silicon plate having a top surface and a bottom surface. A portion of the top surface defines a turbulent chamber. The turbulent chamber is peripherally bounded by the top surface of the plate. The turbulent chamber is recessed a predetermined depth relative to the top surface. The silicon plate further defines at least one flow orifice. Each flow orifice extends from the bottom surface of the silicon plate to intersect with and open into the turbulent chamber. Each flow orifice is in fluid communication with the turbulent chamber.
Ubiquity of quantum zero-point fluctuations in dislocation glide
NASA Astrophysics Data System (ADS)
Landeiro Dos Reis, Marie; Choudhury, Anshuman; Proville, Laurent
2017-03-01
Modeling the dislocation glide through atomic scale simulations in Al, Cu, and Ni and in solid solution alloys Al(Mg) and Cu(Ag), we show that in the course of the plastic deformation the variation of the crystal zero-point energy (ZPE) and the dislocation potential energy barriers are of opposite sign. The multiplicity of situations where we have observed the same trend allows us to conclude that quantum fluctuations, giving rise to the crystal ZPE, make easier the dislocation glide in most materials, even those constituted of atoms heavier than H and He.
Pressurized feed-injection spray-forming apparatus
Berry, R.A.; Fincke, J.R.; McHugh, K.M.
1995-08-29
A spray apparatus and method are disclosed for injecting a heated, pressurized liquid in a first predetermined direction into a pressurized gas flow that is flowing in a second predetermined direction, to provide for atomizing and admixing the liquid with the gas to form a two-phase mixture. A valve is also disposed within the injected liquid conduit to provide for a pulsed injection of the liquid and timed deposit of the atomized gas phase. Preferred embodiments include multiple liquid feed ports and reservoirs to provide for multiphase mixtures of metals, ceramics, and polymers. 22 figs.
Pressurized feed-injection spray-forming apparatus
Berry, Ray A.; Fincke, James R.; McHugh, Kevin M.
1995-01-01
A spray apparatus and method for injecting a heated, pressurized liquid in a first predetermined direction into a pressurized gas flow that is flowing in a second predetermined direction, to provide for atomizing and admixing the liquid with the gas to form a two-phase mixture. A valve is also disposed within the injected liquid conduit to provide for a pulsed injection of the liquid and timed deposit of the atomized gas phase. Preferred embodiments include multiple liquid feed ports and reservoirs to provide for multiphase mixtures of metals, ceramics, and polymers.
Generation of entanglement and its decay in a noisy environment
NASA Astrophysics Data System (ADS)
Huang, Jiehui
Entanglement plays a central role in distinguishing quantum mechanics from classical physics. Due to its fantastic properties and many potential applications in quantum information science, entanglement is attracting more and more attention. This thesis focuses on the generation of entanglement and its decay in a noisy environment. In the first experimental scheme to entangle two thermal fields, an atomic ensemble, composed of many identical four-level atoms, is employed. In the first Raman scattering, this atomic ensemble emits write signal photons after the pumping by a weak write pulse, accompanied by the transfer from one lower level to the other for some atoms. Similarly, the atomic ensemble emits read signal photons after the driving by a strong read pulse, and the ensemble turns back to its ground state after the second Raman scattering. The coherence between the two lower atomic levels plays a key role in establishing the quantum correlation between two emission fields, which is verified through the violation of Cauchy-Schwarz inequality. In particular, the controllable time delay between the two emission fields actually means the storage time of photonic information in this system, which sheds light on some potential applications, such as quantum memory. In the second experimental scheme for the generation of spatially separated multiphoton entanglement, two or more identical optical cavities are aligned along a bee-line, and a four-level atom runs through these cavities sequentially. By appropriately adjusting the passage time of the atom in each cavity or the Rabi frequency of the classical pumping laser, a photon can be generated via the interaction between the excited atom and the cavity modes. This adiabatic passage model is an effective method to map atomic coherence to photonic state in cavity QED, thus all photons in different cavities quantum-mechanically correlate with the moving atom. When a final detection is made on this atom, a generalized n-photon GHZ entangled state will be generated with certainty. Environment-induced disentanglement is another important topic in quantum optics. Based on the Peres-Horodecki criterion for separability of bipartite states, we develop the principal minor method for the verification of two-qubit entanglement. Among the fifteen principal minors (seven effective ones) of a given two-qubit state's partial transpose, if the minimum one is negative, the two-qubit state is entangled, otherwise it is separable. By applying this method to a two-qubit system under amplitude and phase dampings, we have derived the necessary and sufficient conditions for the entanglement sudden death of an initially entangled two-qubit state. Keywords: entanglement generation, atomic ensemble, two-qubit, multiphoton entanglement, cavity QED, entanglement sudden death (ESD), amplitude damping, phase damping, principal minor.
NASA Astrophysics Data System (ADS)
Zhou, Hai-Tao; Che, Shao-Na; Han, Yu-Hong; Wang, Dan
2018-05-01
In a Λ-type three-level atomic system coupled by an off-resonant standing-wave, the reflected four-wave mixing (FWM) spectrum is studied. It shows that the maximum reflection efficiency occurs when both of the coupling and probe fields are tuned off resonances from the atomic transitions. The essence of enhanced reflection is that the nonlinear efficiency of the FWM based on coherent atoms is improved due to the significant reduction of phase mismatch. The theoretical analysis shows good agreement with the experimental results. Furthermore, the influence of the atomic number density on the coupling frequency detuning of the optimum reflection efficiency and the linewidth are also investigated.
NASA Astrophysics Data System (ADS)
Obada, A.-S. F.; Ahmed, M. M. A.; Farouk, Ahmed M.
2018-04-01
In this paper, we propose a new transition scheme (Double Λ) for the interaction between a five-level atom and an electromagnetic field and study its dynamics in the presence of a cross Kerr-like medium in the exact-resonance case. The wave function is derived when the atom is initially prepared in its upper most state, and the field is initially prepared in the coherent state. We studied the atomic population inversion, the coherence degree by studying the second-order correlation function, Cauchy-Schwartz inequality (CSI) and the relation with P-function. Finally, we investigate the effect of Kerr-like medium on the evolution of Husimi Q-function of the considered system.
Adiabatic Quantum Computing via the Rydberg Blockade
NASA Astrophysics Data System (ADS)
Keating, Tyler; Goyal, Krittika; Deutsch, Ivan
2012-06-01
We study an architecture for implementing adiabatic quantum computation with trapped neutral atoms. Ground state atoms are dressed by laser fields in a manner conditional on the Rydberg blockade mechanism, thereby providing the requisite entangling interactions. As a benchmark we study the performance of a Quadratic Unconstrained Binary Optimization (QUBO) problem whose solution is found in the ground state spin configuration of an Ising-like model. We model a realistic architecture, including the effects of magnetic level structure, with qubits encoded into the clock states of ^133Cs, effective B-fields implemented through microwaves and light shifts, and atom-atom coupling achieved by excitation to a high-lying Rydberg level. Including the fundamental effects of photon scattering we find a high fidelity for the two-qubit implementation.
Energy level diagrams for black hole orbits
NASA Astrophysics Data System (ADS)
Levin, Janna
2009-12-01
A spinning black hole with a much smaller black hole companion forms a fundamental gravitational system, like a colossal classical analog to an atom. In an appealing if imperfect analogy with atomic physics, this gravitational atom can be understood through a discrete spectrum of periodic orbits. Exploiting a correspondence between the set of periodic orbits and the set of rational numbers, we are able to construct periodic tables of orbits and energy level diagrams of the accessible states around black holes. We also present a closed-form expression for the rational q, thereby quantifying zoom-whirl behavior in terms of spin, energy and angular momentum. The black hole atom is not just a theoretical construct, but corresponds to extant astrophysical systems detectable by future gravitational wave observatories.
NASA Astrophysics Data System (ADS)
Stefanska, D.; Ruczkowski, J.; Elantkowska, M.; Furmann, B.
2018-04-01
In this work new experimental results concerning the hyperfine structure (hfs) for the even-parity level system of the holmium atom (Ho I) were obtained; additionally, hfs data obtained recently as a by-product in investigations of the odd-parity level system were summarized. In the present work the values of the magnetic dipole and the electric quadrupole hfs constants A and B were determined for 24 even-parity levels, for 14 of them for the first time. On the basis of these results, as well as on available literature data, a parametric study of the fine structure and the hyperfine structure for the even-parity configurations of atomic holmium was performed. A multi-configuration fit of 7 configurations was carried out, taking into account second-order of the perturbation theory. For unknown electronic levels predicted values of the level energies and hfs constants are given, which can facilitate further experimental investigations.
2006-10-31
microwave signal processing components, and micro-fluidic devices. The projected involved the preparation, surface mounting, and characterization of...Guisinger, R. Basu, and M. C. Hersam, “Atomic-level characterization and control of free radical surface chemistry using scanning tunneling microscopy...Basu, and M. C. Hersam, “Atomic level characterization and control of organosilicon surface chemistry using scanning tunneling microscopy,” presented
Computational techniques in tribology and material science at the atomic level
NASA Technical Reports Server (NTRS)
Ferrante, J.; Bozzolo, G. H.
1992-01-01
Computations in tribology and material science at the atomic level present considerable difficulties. Computational techniques ranging from first-principles to semi-empirical and their limitations are discussed. Example calculations of metallic surface energies using semi-empirical techniques are presented. Finally, application of the methods to calculation of adhesion and friction are presented.
Demonstration of Double EIT Using Coupled Harmonic Oscillators and RLC Circuits
ERIC Educational Resources Information Center
Harden, Joshua; Joshi, Amitabh; Serna, Juan D.
2011-01-01
Single and double electromagnetically induced transparencies (EIT) in a medium, consisting of four-level atoms in the inverted-Y configuration, are discussed using mechanical and electrical analogies. A three-coupled spring-mass system subject to damping and driven by an external force is used to represent the four-level atom mechanically. The…
NASA Astrophysics Data System (ADS)
Jamil, Rabia; Ali, Abu Bakar; Abbas, Muqaddar; Badshah, Fazal; Qamar, Sajid
2017-08-01
The Hartman effect is revisited using a Gaussian beam incident on a one-dimensional photonic crystal (1DPC) having a defect layer doped with four-level atoms. It is considered that each atom of the defect layer interacts with three driving fields, whereas a Gaussian beam of width w is used as a probe light to study Hartman effect. The atom-field interaction inside the defect layer exhibits electromagnetically induced transparency (EIT). The 1DPC acts as positive index material (PIM) and negative index material (NIM) corresponding to the normal and anomalous dispersion of the defect layer, respectively, via control of the phase associated with the driving fields and probe detuning. The positive and negative Hartman effects are noticed for PIM and NIM, respectively, via control of the relative phase corresponding to the driving fields and probe detuning. The advantage of using four-level EIT system is that a much smaller absorption of the transmitted beam occurs as compared to three-level EIT system corresponding to the anomalous dispersion, leading to negative Hartman effect.
Alkali (Li, K and Na) and alkali-earth (Be, Ca and Mg) adatoms on SiC single layer
NASA Astrophysics Data System (ADS)
Baierle, Rogério J.; Rupp, Caroline J.; Anversa, Jonas
2018-03-01
First-principles calculations within the density functional theory (DFT) have been addressed to study the energetic stability, and electronic properties of alkali and alkali-earth atoms adsorbed on a silicon carbide (SiC) single layer. We observe that all atoms are most stable (higher binding energy) on the top of a Si atom, which moves out of the plane (in the opposite direction to the adsorbed atom). Alkali atoms adsorbed give raise to two spin unpaired electronic levels inside the band gap leading the SiC single layer to exhibit n-type semiconductor properties. For alkaline atoms adsorbed there is a deep occupied spin paired electronic level inside the band gap. These finding suggest that the adsorption of alkaline and alkali-earth atoms on SiC layer is a powerful feature to functionalize two dimensional SiC structures, which can be used to produce new electronic, magnetic and optical devices as well for hydrogen and oxygen evolution reaction (HER and OER, respectively). Furthermore, we observe that the adsorption of H2 is ruled by dispersive forces (van der Waals interactions) while the O2 molecule is strongly adsorbed on the functionalized system.
Analytic solution and pulse area theorem for three-level atoms
NASA Astrophysics Data System (ADS)
Shchedrin, Gavriil; O'Brien, Chris; Rostovtsev, Yuri; Scully, Marlan O.
2015-12-01
We report an analytic solution for a three-level atom driven by arbitrary time-dependent electromagnetic pulses. In particular, we consider far-detuned driving pulses and show an excellent match between our analytic result and the numerical simulations. We use our solution to derive a pulse area theorem for three-level V and Λ systems without making the rotating wave approximation. Formulated as an energy conservation law, this pulse area theorem can be used to understand pulse propagation through three-level media.
New energy levels of atomic niobium (Nb I) discovered by laser-spectroscopic investigations
NASA Astrophysics Data System (ADS)
Kröger, S.; Windholz, L.; Başar, Gü.; Başar, Gö.
2018-06-01
We report the discovery of 9 previously unknown energy levels of the atomic niobium, all having even parity. Two levels have energies below 19,500 cm-1 and angular momentum J = 3/2, while the energies of the others are located between 39,700 and 43,420 cm-1. The levels were discovered by laser excitation of several unclassified spectral lines in the wavelength range between 554 nm and 650 nm and detection of laser-induced fluorescence with a monochromator.
NASA Astrophysics Data System (ADS)
Azarov, V. I.; Kramida, A.; Vokhmentsev, M. Ya.
2018-04-01
The article describes a Java program that can be used in a user-friendly way to visually identify spectral lines observed in complex spectra with theoretically predicted transitions between atomic or molecular energy levels. The program arranges various information about spectral lines and energy levels in such a way that line identification and determination of positions of experimentally observed energy levels become much easier tasks that can be solved fast and efficiently.