Science.gov

Sample records for multiple band wireless

  1. Investigation of interference in multiple-input multiple-output wireless transmission at W band for an optical wireless integration system.

    PubMed

    Li, Xinying; Yu, Jianjun; Dong, Ze; Zhang, Junwen; Chi, Nan; Yu, Jianguo

    2013-03-01

    We experimentally investigate the interference in multiple-input multiple-output (MIMO) wireless transmission by adjusting the relative locations of horn antennas (HAs) in a 100 GHz optical wireless integration system, which can deliver a 50 Gb/s polarization-division-multiplexing quadrature-phase-shift-keying signal over 80 km single-mode fiber-28 and a 2×2 MIMO wireless link. For the parallel 2×2 MIMO wireless link, each receiver HA can only get wireless power from the corresponding transmitter HA, while for the crossover ones, the receiver HA can get wireless power from two transmitter HAs. At the wireless receiver, polarization demultiplexing is realized by the constant modulus algorithm (CMA) in the digital-signal-processing part. Compared to the parallel case, wireless interference causes about 2 dB optical signal-to-noise ratio penalty at a bit-error ratio (BER) of 3.8×10(-3) for the crossover cases if similar CMA taps are employed. The increase in CMA tap length can reduce wireless interference and improve BER performance. Furthermore, more CMA taps should be adopted to overcome the severe wireless interference when two pairs of transmitter and receiver HAs have different wireless distances.

  2. Fiber-wireless transmission system of 108  Gb/sdata over 80 km fiber and 2×2multiple-input multiple-output wireless links at 100 GHz W-band frequency.

    PubMed

    Li, Xinying; Dong, Ze; Yu, Jianjun; Chi, Nan; Shao, Yufeng; Chang, G K

    2012-12-15

    We experimentally demonstrate a seamlessly integrated fiber-wireless system that delivers a 108  Gb/s signal through 80 km fiber and 1 m wireless transport over free space at 100 GHz adopting polarization-division-multiplexing quadrature-phase-shift-keying (PDM-QPSK) modulation and heterodyning coherent detection. The X- and Y-polarization components of the optical PDM-QPSK baseband signal are simultaneously upconverted to 100 GHz wireless carrier by optical polarization-diversity heterodyne beating, and then independently transmitted and received by two pairs of transmitter and receiver antennas, which form a 2×2 multiple-input multiple-output wireless link. At the wireless receiver, two-stage downconversion is performed firstly in the analog domain based on balanced mixer and sinusoidal radio frequency signal, and then in the digital domain based on digital signal processing (DSP). Polarization demultiplexing is realized by the constant modulus algorithm in the DSP part at the receiver. The bit-error ratio for the 108  Gb/s PDM-QPSK signal is less than the pre-forward-error-correction threshold of 3.8×10(-3) after both 1 m wireless delivery at 100 GHz and 80 km single-mode fiber-28 transmission. To our knowledge, this is the first demonstration to realize 100  Gb/s signal delivery through both fiber and wireless links at 100 GHz.

  3. Radiation Characterization of an Intra-Oral Wireless Device at Multiple ISM Bands: 433 MHz, 915 MHz, and 2.42 GHz

    PubMed Central

    Huo, Xueliang; Jow, Uei-Ming

    2010-01-01

    Intra-oral wireless devices are becoming more popular for physiological monitoring of the mouth environment and tongue-operated assistive technologies, such as the internal Tongue Drive System (iTDS). Here we present the experimental measurements and simulations of radiation performance of three commercial wireless transmitters operating at 433 MHz, 915 MHz, and 2.42 GHz, in the industrial-scientific-medical band when they were placed inside human mouth. The measurement and simulation results showed similarities in the attenuation patterns of all tested devices and indicated that the maximum attenuation occurs on the back of the head. There were no significant difference of average attenuation pattern between 433 MHz and 915 MHz, while the attenuation of 2.42 GHz was higher in simulations but not in the measurements. PMID:21096348

  4. A Novel Complex-Coefficient In-Band Interference Suppression Algorithm for Cognitive Ultra-Wide Band Wireless Sensors Networks

    PubMed Central

    Xiong, Hailiang; Zhang, Wensheng; Xu, Hongji; Du, Zhengfeng; Tang, Huaibin; Li, Jing

    2017-01-01

    With the rapid development of wireless communication systems and electronic techniques, the limited frequency spectrum resources are shared with various wireless devices, leading to a crowded and challenging coexistence circumstance. Cognitive radio (CR) and ultra-wide band (UWB), as sophisticated wireless techniques, have been considered as significant solutions to solve the harmonious coexistence issues. UWB wireless sensors can share the spectrum with primary user (PU) systems without harmful interference. The in-band interference of UWB systems should be considered because such interference can severely affect the transmissions of UWB wireless systems. In order to solve the in-band interference issues for UWB wireless sensor networks (WSN), a novel in-band narrow band interferences (NBIs) elimination scheme is proposed in this paper. The proposed narrow band interferences suppression scheme is based on a novel complex-coefficient adaptive notch filter unit with a single constrained zero-pole pair. Moreover, in order to reduce the computation complexity of the proposed scheme, an adaptive complex-coefficient iterative method based on two-order Taylor series is designed. To cope with multiple narrow band interferences, a linear cascaded high order adaptive filter and a cyclic cascaded high order matrix adaptive filter (CCHOMAF) interference suppression algorithm based on the basic adaptive notch filter unit are also presented. The theoretical analysis and numerical simulation results indicate that the proposed CCHOMAF algorithm can achieve better performance in terms of average bit error rate for UWB WSNs. The proposed in-band NBIs elimination scheme can significantly improve the reception performance of low-cost and low-power UWB wireless systems. PMID:28587085

  5. Antenna polarization diversity for high-speed polarization multiplexing wireless signal delivery at W-band.

    PubMed

    Li, Xinying; Yu, Jianjun; Chi, Nan; Xiao, Jiangnan

    2014-03-01

    We propose and experimentally demonstrate a novel architecture for a W-band integrated optical wireless system, which adopts a 2×2 multiple-input multiple-output (MIMO) wireless link based on antenna polarization diversity, and can realize 80 km single-mode fiber-28 transmission and 2 m wireless delivery for up to 39 Gbaud polarization-division-multiplexing quadrature-phase-shift-keying (PDM-QPSK) signal at 100 GHz. Classic constant-modulus-algorithm (CMA) equalization is adopted at the receiver to implement polarization demultiplexing. The 2×2 MIMO wireless link adopts one pair of horizontal-polarization (H-polarization) horn antennas (HAs) and one pair of vertical-polarization (V-polarization) HAs. Because the two pairs of HAs are fully isolated, the wireless cross talk can be effectively avoided. Thus, compared to the 2×2 MIMO wireless link at the same antenna polarization, the adoption of antenna polarization diversity cannot only make the HA adjustment easier but can also reduce the required CMA tap number. After removing 20% forward-error-correction overhead, the 39 Gbaud baud rate corresponds to a net bit rate of 130  Gb/s, which, to our best knowledge, is the highest bit rate per PDM channel demonstrated for wireless signal delivery up to now.

  6. Transparent data service with multiple wireless access

    NASA Technical Reports Server (NTRS)

    Dean, Richard A.; Levesque, Allen H.

    1993-01-01

    The rapid introduction of digital wireless networks is an important part of the emerging digital communications scene. The introduction of Digital Cellular, LEO and GEO Satellites, and Personal Communications Services poses both a challenge and an opportunity for the data user. On the one hand wireless access will introduce significant new portable data services such as personal notebooks, paging, E-mail, and fax that will put the information age in the user's pocket. On the other hand the challenge of creating a seamless and transparent environment for the user in multiple access environments and across multiple network connections is formidable. A summary of the issues associated with developing techniques and standards that can support transparent and seamless data services is presented. The introduction of data services into the radio world represents a unique mix of RF channel problems, data protocol issues, and network issues. These problems require that experts from each of these disciplines fuse the individual technologies to support these services.

  7. 40-Gb/s PDM-QPSK signal transmission over 160-m wireless distance at W-band.

    PubMed

    Xiao, Jiangnan; Yu, Jianjun; Li, Xinying; Xu, Yuming; Zhang, Ziran; Chen, Long

    2015-03-15

    We experimentally demonstrate a W-band optical-wireless transmission system over 160-m wireless distance with a bit rate up to 40 Gb/s. The optical-wireless transmission system adopts optical polarization-division-multiplexing (PDM), multiple-input multiple-output (MIMO) reception and antenna polarization diversity. Using this system, we experimentally demonstrate the 2×2 MIMO wireless delivery of 20- and 40-Gb/s PDM quadrature-phase-shift-keying (PDM-QPSK) signals over 640- and 160-m wireless links, respectively. The bit-error ratios (BERs) of these transmission systems are both less than the forward-error-correction (FEC) threshold of 3.8×10-3.

  8. THz photonic wireless links with 16-QAM modulation in the 375-450 GHz band.

    PubMed

    Jia, Shi; Yu, Xianbin; Hu, Hao; Yu, Jinlong; Guan, Pengyu; Da Ros, Francesco; Galili, Michael; Morioka, Toshio; Oxenløwe, Leif K

    2016-10-17

    We propose and experimentally demonstrate THz photonic wireless communication systems with 16-QAM modulation in the 375-450 GHz band. The overall throughput reaches as high as 80 Gbit/s by exploiting four THz channels with 5 Gbaud 16-QAM baseband modulation per channel. We create a coherent optical frequency comb (OFC) for photonic generation of multiple THz carriers based on photo-mixing in a uni-travelling carrier photodiode (UTC-PD). The OFC configuration also allows us to generate reconfigurable THz carriers with low phase noise. The multiple-channel THz radiation is received by using a Schottky mixer based electrical receiver after 0.5 m free-space wireless propagation. 2-channel (40 Gbit/s) and 4-channel (80 Gbit/s) THz photonic wireless links with 16-QAM modulation are reported in this paper, and the bit error rate (BER) performance for all channels in both cases is below the hard decision forward error correction (HD-FEC) threshold of 3.8e-3 with 7% overhead. In addition, we also successfully demonstrate hybrid photonic wireless transmission of 40 Gbit/s 16-QAM signal at carrier frequencies of 400 GHz and 425 GHz over 30 km standard single mode fiber (SSMF) between the optical baseband signal transmitter and the THz wireless transmitter with negligible induced power penalty.

  9. Developing a wireless implantable body sensor network in MICS band.

    PubMed

    Fang, Qiang; Lee, Shuenn-Yuh; Permana, Hans; Ghorbani, Kamran; Cosic, Irena

    2011-07-01

    Through an integration of wireless communication and sensing technologies, the concept of a body sensor network (BSN) was initially proposed in the early decade with the aim to provide an essential technology for wearable, ambulatory, and pervasive health monitoring for elderly people and chronic patients. It has become a hot research area due to big opportunities as well as great challenges it presents. Though the idea of an implantable BSN was proposed in parallel with the on-body sensor network, the development in this area is relatively slow due to the complexity of human body, safety concerns, and some technological bottlenecks such as the design of ultralow-power implantable RF transceiver. This paper describes a new wireless implantable BSN that operates in medical implant communication service (MICS) frequency band. This system innovatively incorporates both sensing and actuation nodes to form a closed-control loop for physiological monitoring and drug delivery for critically ill patients. The sensing node, which is designed using system-on-chip technologies, takes advantage of the newly available ultralow-power Zarlink MICS transceiver for wireless data transmission. Finally, the specific absorption rate distribution of the proposed system was simulated to determine the in vivo electromagnetic field absorption and the power safety limits.

  10. WIRELESS TENSION BAND WIRING FOR OLECRANON FRACTURES. Case Series.

    PubMed

    Roukoz, Sami; Bayoud, Wael

    2016-01-01

    This retrospective study evaluates the results of wireless tension band wire (WTBW) which is a modified technique of tension band wires (TBW) for Mayo type II A and III A olecranon fractures. In this technique the K-wires of the TBW are replaced by a cerclage wire while keeping the figure of eight wiring. We reviewed retrospectively our WTBW cases done between 2000 and 2015 where we replaced the K-wires by a cerclage wire. In this technique no hardware migration is possible. Patients were evaluated clinically, radiographicaly and a DASH score was measured. Seventeen patients were reviewed with a mean age of 58.5 years. The mean follow-up period was 58.5 months. The mean DASH score was 12 with 7 patients having a DASH score of zero. Joint mobility was near normal compared to the other side with loss of a mean of 4º in elbow extension and a mean of 3º in elbow flexion. In comparison with other series, in addition to good results, hardware removal for medical reasons was the lowest in our technique. It was needed in three patients for pain on elbow contact and in one with ulnar nerve irritation. This represents a rate of 23.5%. Undesirable events related to the use of K-wires in standard tension band wiring, such as wire migration, wire protrusion through the skin and wire impingement, are absent in the wireless tension band wiring. The high rate of patient satisfaction, good clinical results as well as low rate of needed hardware removal make this technique preferable for fixing Mayo Type II A olecranon fractures.

  11. Wireless Channel Characterization in the 5 GHz Microwave Landing System Extension Band for Airport Surface Areas

    NASA Technical Reports Server (NTRS)

    Matolak, David W.

    2007-01-01

    In this project final report, entitled "Wireless Channel Characterization in the 5 GHz Microwave Landing System Extension Band for Airport Surface Areas," we provide a detailed description and model representation for the wireless channel in the airport surface environment in this band. In this executive summary, we review report contents, describe the achieved objectives and major findings, and highlight significant conclusions and recommendations.

  12. Investigations into the feasibility of multiple input multiple output techniques within the HF band: Preliminary results

    NASA Astrophysics Data System (ADS)

    Gunashekar, S. D.; Warrington, E. M.; Salous, S.; Feeney, S. M.; Abbasi, N. M.; Bertel, L.; Lemur, D.; Oger, M.

    2009-02-01

    The concept of multiple input multiple output (MIMO) has become a productive area of research in the field of wireless communications with the aim of delivering increased data throughput. However, to date, MIMO research has focused primarily on short-range communications within the VHF, UHF, and SHF bands, and very little research has been conducted toward exploiting MIMO techniques for long-range communications within the HF band. Between September 2007 and September 2008, several experimental campaigns were conducted to investigate the feasibility of applying MIMO techniques within the HF band. The results of measurements over a 255 km path from Durham to Leicester within the United Kingdom are presented in this paper with particular emphasis on the use of heterogeneous antenna arrays at the transmitter and receiver.

  13. An Initial Look at Adjacent Band Interference Between Aeronautical Mobile Telemetry and Long-Term Evolution Wireless Service

    DTIC Science & Technology

    2016-07-04

    LONG-TERM EVOLUTION WIRELESS SERVICE KIP TEMPLE AIR FORCE TEST CENTER EDWARDS AFB, CA 4 July 2016 4 1 2 T W...ADJACENT BAND INTERFERENCE BETWEEN AERONAUTICAL MOBILE TELEMETRY AND LONG-TERM EVOLUTION WIRELESS SERVICE 5a. CONTRACT NUMBER 5b...AT ADJACENT BAND INTERFERENCE BETWEEN AERONAUTICAL MOBILE TELEMETRY AND LONG-TERM EVOLUTION WIRELESS SERVICE Kip Temple Air Force

  14. The formation of multiple adiabatic shear bands

    NASA Astrophysics Data System (ADS)

    Zhou, F.; Wright, T. W.; Ramesh, K. T.

    2006-07-01

    In a previous paper, Zhou et al. [2006. A numerical methodology for investigating adiabatic shear band formation. J. Mech. Phys. Solids, 54, 904-926] developed a numerical method for analyzing one-dimensional deformation of thermoviscoplastic materials. The method uses a second order algorithm for integration along characteristic lines, and computes the plastic flow after complete localization with high resolution and efficiency. We apply this numerical scheme to analyze localization in a thermoviscoplastic material where multiple shear bands are allowed to form at random locations in a large specimen. As a shear band develops, it unloads neighboring regions and interacts with other bands. Beginning with a random distribution of imperfections, which might be imagined as arising qualitatively from the microstructure, we obtain the average spacing of shear bands through calculations and compare our results with previously existing theoretical estimates. It is found that the spacing between nucleating shear bands follows the perturbation theory due to Wright and Ockendon [1996. A scaling law for the effect of inertia on the formation of adiabatic shear bands. Int. J. Plasticity 12, 927-934], whereas the spacing between mature shear bands is closer to that predicted by the momentum diffusion theory of Grady and Kipp [1987. The growth of unstable thermoplastic shear with application to steady-wave shock compression in solids. J. Mech. Phys. Solids 35, 95-119]. Scaling laws for the dependence of band spacing on material parameters differ in many respects from either theory.

  15. Asymmetric acoustic transmission in multiple frequency bands

    SciTech Connect

    Sun, Hong-xiang; Yuan, Shou-qi; Zhang, Shu-yi

    2015-11-23

    We report both experimentally and numerically that the multi-band device of the asymmetric acoustic transmission is realized by placing two periodic gratings with different periods on both sides of two brass plates immersed in water. The asymmetric acoustic transmission can exist in four frequency bands below 1500 kHz, which arises from the interaction between various diffractions from the two gratings and Lamb modes in the brass plates immersed in water. The results indicate that the device has the advantages of multiple band, broader bandwidth, and simpler structure. Our finding should have great potential applications in ultrasonic devices.

  16. Performance of Multiple Pulse Multiple Delay Modulated UWB Signals in a Multiple Access Indoor Wireless Channel

    SciTech Connect

    Nekoogar, F

    2003-06-12

    In this paper, the performance of a two user UWB multiple access (UWB-MA) system based on multiple-pulse multiple-delay (MPMD) modulation scheme in an indoor wireless channel is evaluated by computer simulations. The indoor multipath propagation channel model used in this study is based on the modified statistical Saleh-Valenzuela model proposed by Foerester and Li from Intel. The simulation results indicate that the multipath performance of MPMD modulated signals in a multiple access system outperforms the nonmultipath case as the number of autocorrelation function (ACF) sampling points increases for each user. This is an unusual but important result, since MPMD receiver exploits multipath phenomenon in indoor wireless channels to increase the BER performance, hence the transmission rate in a UWB-MA system.

  17. 160 Gbit/s photonics wireless transmission in the 300-500 GHz band

    NASA Astrophysics Data System (ADS)

    Yu, X.; Jia, S.; Hu, H.; Galili, M.; Morioka, T.; Jepsen, P. U.; Oxenløwe, L. K.

    2016-11-01

    To accommodate the ever increasing wireless traffic in the access networks, considerable efforts have been recently invested in developing photonics-assisted wireless communication systems with very high data rates. Superior to photonic millimeter-wave systems, terahertz (THz) band (300 GHz-10 THz) provides a much larger bandwidth and thus promises an extremely high capacity. However, the capacity potential of THz wireless systems has by no means been achieved yet. Here, we successfully demonstrate 160 Gbit/s wireless transmission by using a single THz emitter and modulating 25 GHz spaced 8 channels (20 Gbps per channel) in the 300-500 GHz band, which is the highest bitrate in the frequency band above 300 GHz, to the best of our knowledge.

  18. Adaptive Code Division Multiple Access Protocol for Wireless Network-on-Chip Architectures

    NASA Astrophysics Data System (ADS)

    Vijayakumaran, Vineeth

    Massive levels of integration following Moore's Law ushered in a paradigm shift in the way on-chip interconnections were designed. With higher and higher number of cores on the same die traditional bus based interconnections are no longer a scalable communication infrastructure. On-chip networks were proposed enabled a scalable plug-and-play mechanism for interconnecting hundreds of cores on the same chip. Wired interconnects between the cores in a traditional Network-on-Chip (NoC) system, becomes a bottleneck with increase in the number of cores thereby increasing the latency and energy to transmit signals over them. Hence, there has been many alternative emerging interconnect technologies proposed, namely, 3D, photonic and multi-band RF interconnects. Although they provide better connectivity, higher speed and higher bandwidth compared to wired interconnects; they also face challenges with heat dissipation and manufacturing difficulties. On-chip wireless interconnects is one other alternative proposed which doesn't need physical interconnection layout as data travels over the wireless medium. They are integrated into a hybrid NOC architecture consisting of both wired and wireless links, which provides higher bandwidth, lower latency, lesser area overhead and reduced energy dissipation in communication. However, as the bandwidth of the wireless channels is limited, an efficient media access control (MAC) scheme is required to enhance the utilization of the available bandwidth. This thesis proposes using a multiple access mechanism such as Code Division Multiple Access (CDMA) to enable multiple transmitter-receiver pairs to send data over the wireless channel simultaneously. It will be shown that such a hybrid wireless NoC with an efficient CDMA based MAC protocol can significantly increase the performance of the system while lowering the energy dissipation in data transfer. In this work it is shown that the wireless NoC with the proposed CDMA based MAC protocol

  19. Cooperative MIMO technology in multiple hops wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Yuan, Lina; Chen, Huajun; Gong, Jing

    2017-03-01

    The limited lifetime is one of the important factors restricted wireless sensor networks (WSNs), when possible, wireless nodes often operate with small batteries, while battery replacement is a very difficult and expensive. So the nodes must work long hours in the case of no battery replacement. Therefore, in WSNs, minimizing energy consumption is an important design consideration, at the same time, the transmission strategies of energy efficiency must be used for data forwarding. This paper, using cooperative multiple input multiple output(MIMO) technology combined with multiple hops technology, has put forward a new transmission model, i.e., the MIMO-MISO(multi-input multi-output)/MIMO-MIMO model. Simulation results demonstrate the proposed MIMO-MISO/MIMO-MIMO to minimize energy consumption of each node every node for multi-hop WSNs, to save a great deal of energy for a larger transmission distance, which makes the life of the entire network be extended.

  20. Experimental characterization of a hybrid fiber-wireless transmission link in the 75 to 110 GHz band

    NASA Astrophysics Data System (ADS)

    Pang, Xiaodan; Yu, Xianbin; Zhao, Ying; Deng, Lei; Zibar, Darko; Tafur Monroy, Idelfonso

    2012-04-01

    We present a detailed experimental investigation of a hybrid optical-fiber wireless communication system operating at the 75 to 110 GHz (W-band) for meeting the emerging demands in short-range wireless applications. Measured W-band wireless channel properties such as channel loss, frequency response, phase noise, and capacity are reported. Our proposed system performs a sextuple frequency up-conversion after 20 km of fiber transmission, followed by a W-band wireless link. A 500 Mbit/s amplitude shift keying signal transmission is experimentally demonstrated for performance analysis purposes.

  1. Stepped Impedance Resonators in Triple Band Bandpass Filter Design for Wireless Communication Systems

    SciTech Connect

    Eroglu, Abdullah

    2010-01-01

    Triple band microstrip tri-section bandpass filter using stepped impedance resonators (SIRs) is designed, simulated, built, and measured using hair pin structure. The complete design procedure is given from analytical stage to implementation stage with details The coupling between SIRs is investigated for the first time in detail by studying their effect on the filter characteristics including bandwidth, and attenuation to optimize the filter perfomance. The simulation of the filler is performed using method of moment based 2.5D planar electromagnetic simulator The filter is then implemented on RO4003 material and measured The simulation, and measured results are compared and found to be my close. The effect of coupling on the filter performance is then investigated using electromagnetic simulator It is shown that the coupling effect between SIRs can be used as a design knob to obtain a bandpass Idler with a better performance jar the desired frequency band using the proposed filter topology The results of this work can used in wireless communication systems where multiple frequency bandy are needed

  2. Multiple walker recognition using wireless distributed pyro-electric sensors

    NASA Astrophysics Data System (ADS)

    Li, Nanxiang; Hao, Qi

    2008-04-01

    This paper presents a wireless distributed pyroelectric sensor system, whose sensing visibilities are modulated by Frensnel lens arrays and coded masks, for multiple human walker recognition. One goal of our research is to make wireless distributed pyroelectric sensor nodes an alternative to the centralized infrared video sensors, with lower cost, lower detectability, lower power consumption and computation, and less privacy infringement. In our previous study, we succeeded in identifying individuals walking along the same path, or just randomly inside a room, with an identification rate higher than 80% for around 10 subjects, only using one wireless sensor node. To improve the identification rate and the number of subjects that can be recognized, one-by-one or simultaneously, we employ multiple sensor nodes to leverage the performance of the distributed sensor system. The fusion of pyroelectric biometrics from multiple nodes is performed at four different levels: sample, feature, score, and decision. The experimental results show that the proposed pyroelectric sensor system has potential to be a reliable biometric system for the verification/identification of a small group of human objects. Its applications include security monitoring, human-machine interfaces, and virtual environments.

  3. Electromagnetic transitions in multiple chiral doublet bands

    NASA Astrophysics Data System (ADS)

    Jia, Hui; Qi, Bin; Wang, Shou-Yu; Wang, Shuo; Liu, Chen

    2016-12-01

    Multiple chiral doublet bands (MχD) in the 80, 130 and 190 mass regions are studied by the model of γ = 90° triaxial rotor coupled with identical symmetric proton-neutron configurations. By selecting a suitable basis, the calculated wave functions are explicitly exhibited to be symmetric under the operator Â, which is defined as rotation by 90° about the 3-axis with the exchange of valance proton and neutron. We found that both M1 and E2 transitions are allowed between levels with different values of A, while they are forbidden between levels with same values of A. Such a selection rule holds true for MχD in different mass regions. Supported by National Natural Science Foundation of China (11675094, 11622540, 11545011, 11405096, 11461141001, U1432119), Shandong Natural Science Foundation (ZR2014AQ012), and Young Scholars Program of Shandong University, Weihai (2015WHWLJH01)

  4. Ku-band multiple beam antenna

    NASA Technical Reports Server (NTRS)

    Chen, C. C.; Franklin, C. F.

    1980-01-01

    The frequency reuse capability is demonstrated for a Ku-band multiple beam antenna which provides contiguous low sidelobe spot beams for point-to-point communications between any two points within the continental United States (CONUS), or regional coverage beams for direct broadcast systems. A spot beam antenna in the 14/21 GHz band which provides contiguous overlapping beams covering CONUS and two discrete beams covering Hawaii and Alaska were designed, developed, and tested. Two reflector antennas are required for providing contiguous coverage of CONUS. Each is comprised of one offset parabolic reflector, one flat polarization diplexer, and two separate planar array feeds. This antenna system provides contiguous spot beam coverage of CONUS, utilizing 15 beams. Also designed, developed and demonstrated was a shaped contoured beam antenna system which provides contiguous four time zone coverage of CONUS from a single offset parabolic reflector incorporating one flat polarization diplexer and two separate planar array feeds. The beams which illuminate the eastern time zone and the mountain time zone are horizontally polarized, while the beams which illuminate the central time zone and the pacific time zone are vertically polarized. Frequency reuse is achieved by amplitude and polarization isolation.

  5. Digital predistortion of 75-110 GHz W-band frequency multiplier for fiber wireless short range access systems.

    PubMed

    Zhao, Ying; Deng, Lei; Pang, Xiaodan; Yu, Xianbin; Zheng, Xiaoping; Zhang, Hanyi; Monroy, Idelfonso Tafur

    2011-12-12

    We present a W-band fiber-wireless transmission system based on a nonlinear frequency multiplier for high-speed wireless short range access applications. By implementing a baseband digital signal predistortion scheme, intensive nonlinear distortions induced in a sextuple frequency multiplier can be effectively pre-compensated. Without using costly W-band components, a transmission system with 26 km fiber and 4 m wireless transmission operating at 99.6 GHz is experimentally validated. Adjacent-channel power ratio (ACPR) improvements for IQ-modulated vector signals are guaranteed and transmission performances for fiber and wireless channels are studied. This W-band predistortion technique is a promising candidate for applications in high capacity wireless-fiber access systems.

  6. An Access Etiquette for Very-Wide Wireless Bands

    DTIC Science & Technology

    1998-01-01

    indicates that the frame has an ongoing resolution round and the station must refrain from requesting a channel. Note that because any two EDSs are within L... EDSs detect the beginning of the frame at the end of last jamming slot sent by any such station for framing purposes. Also note that a station must... EDSs will attempt to reserve data chan- nels starting with the next data channel in the band. This code tells EDSs wishing to request a channel to start

  7. Four-Tap RF Canceller Evaluation for Indoor In-Band Full-Duplex Wireless Operation

    DTIC Science & Technology

    2016-07-24

    settings for In-Band Full-Duplex (IBFD) systems. The signifi- cant multipath effects of realistic environments, such as inside buildings , can severely...this canceller evaluation is an indoor laboratory setting, which is characteristic of many wireless nodes operating inside buildings . In order to...in 2015 IEEE MTT-S International Microwave Symposium, pp. 1–4, May 2015. [3] T. Huusari, Y. S. Choi, P. Liikkanen, D. Korpi, S. Talwar, and M

  8. Watt-level wireless power transmission to multiple compact receivers

    NASA Astrophysics Data System (ADS)

    Garraud, A.; Munzer, D. J.; Althar, M.; Garraud, N.; Arnold, D. P.

    2015-12-01

    This paper reports an electrodynamic wireless power transmission (EWPT) system using a low-frequency (300 Hz) magnetic field to transmit watt-scale power levels to multiple compact receivers. As compared to inductively or resonantly coupled coils, EWPT facilitates transmission to multiple non-interacting receivers with little restriction on their orientation. A single 3.0 cm3 receiver achieves 1.25 W power transmission with 8% efficiency at a distance of 1 cm (350 mW/cm3 power density) from the transmitter. The same prototype achieves 9 mW at a distance of 9 cm. Moreover, we demonstrate simultaneous recharge of two wearable devices, using two receivers located in arbitrary positions and orientations.

  9. Impact of in-band interference on a wake-up radio system in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Lebreton, J. M.; Murad, N. M.; Lorion, R.

    2017-05-01

    The energy efficiency of Wireless Sensor Networks (WSNs) is considerably improved with Wake-up Radio (WuR) systems. However, their resilience to interference is often neglected in the literature. This might be an issue due to the proliferation of wireless devices and the growing field of internet of things. In this paper, we evaluate the impact of in-band interference from wireless devices on a WuR system. The approach proves that WuR systems are still performing well when coexisting with external wireless networks, even if the energy-efficiency is slightly reduced.

  10. 76 FR 67070 - Operation of Wireless Communications Services in the 2.3 GHz Band; Establishment of Rules and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    ... From the Federal Register Online via the Government Publishing Office FEDERAL COMMUNICATIONS...; FCC 10-82] Operation of Wireless Communications Services in the 2.3 GHz Band; Establishment of Rules and Policies for the Digital Audio Radio Satellite Service in the 2310-2360 MHz Frequency Band AGENCY...

  11. 75 FR 45058 - Operation of Wireless Communications Services in the 2.3 GHz Band; Establishment of Rules and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-02

    ... Communications Service (WCS) bands, while safeguarding from harmful interference satellite radio services, which... From the Federal Register Online via the Government Publishing Office FEDERAL COMMUNICATIONS...- 8610; FCC 10-82] Operation of Wireless Communications Services in the 2.3 GHz Band; Establishment of...

  12. Monitoring of physiological parameters from multiple patients using wireless sensor network.

    PubMed

    Yuce, Mehmet R; Ng, Peng Choong; Khan, Jamil Y

    2008-10-01

    This paper presents a wireless sensor network system that has the capability to monitor physiological parameters from multiple patient bodies. The system uses the Medical Implant Communication Service band between the sensor nodes and a remote central control unit (CCU) that behaves as a base station. The CCU communicates with another network standard (the internet or a mobile network) for a long distance data transfer. The proposed system offers mobility to patients and flexibility to medical staff to obtain patient's physiological data on demand basis via Internet. A prototype sensor network including hardware, firmware and software designs has been implemented and tested. The developed system has been optimized for power consumption by having the nodes sleep when there is no communication via a bidirectional communication.

  13. Printed Notched Antenna with Long Meandered Line for Eight-Band LTE/GSM/UMTS Wireless USB Dongle Operation

    NASA Astrophysics Data System (ADS)

    Zhang, Y. H.; Sun, S. C.; Ban, Y. L.; Tang, X. H.

    2016-03-01

    This paper presents a planar notched antenna with a long meandered line for wireless USB dongle applications. The printed notched structure is used as additional resonators to generate multiple bands operation for covering GSM1800/1900/UMTS2100/LTE2300/2500 bands. In addition, with the help of the long meandered line via hole to ground, a lower resonant mode is sufficiently generated at around 770 MHz and forms a wider lower operating bandwidth (LTE700/GSM850/900). Briefly printed on a 0.8 mm thick FR4 dielectric substrate of size 20×70 mm² and electrically connected (via hole) to the ground plane of the USB dongle, the proposed antenna can provide a wide operating bandwidth (3:1 VSWR) of larger than 120 % centered at 2,000 MHz, allowing it to cover 698-960 and 1,710-2,690 MHz bands. The proposed antenna also can be attached to laptop computer by the USB interface. Detailed design considerations of the proposed antenna are described, and obtained experimental and simulation results are also presented and discussed in this paper.

  14. Printed Notched Antenna with Long Meandered Line for Eight-Band LTE/GSM/UMTS Wireless USB Dongle Operation

    NASA Astrophysics Data System (ADS)

    Zhang, Y. H.; Sun, S. C.; Ban, Y. L.; Tang, X. H.

    2016-03-01

    This paper presents a planar notched antenna with a long meandered line for wireless USB dongle applications. The printed notched structure is used as additional resonators to generate multiple bands operation for covering GSM1800/1900/UMTS2100/LTE2300/2500 bands. In addition, with the help of the long meandered line via hole to ground, a lower resonant mode is sufficiently generated at around 770 MHz and forms a wider lower operating bandwidth (LTE700/GSM850/900). Briefly printed on a 0.8 mm thick FR4 dielectric substrate of size 20×70 mm² and electrically connected (via hole) to the ground plane of the USB dongle, the proposed antenna can provide a wide operating bandwidth (3:1 VSWR) of larger than 120 % centered at 2,000 MHz, allowing it to cover 698-960 and 1,710-2,690 MHz bands. The proposed antenna also can be attached to laptop computer by the USB interface. Detailed design considerations of the proposed antenna are described, and obtained experimental and simulation results are also presented and discussed in this paper.

  15. Compact Modules for Wireless Communication Systems in the E-Band (71-76 GHz)

    NASA Astrophysics Data System (ADS)

    Montero-de-Paz, Javier; Oprea, Ion; Rymanov, Vitaly; Babiel, Sebastian; García-Muñoz, Luis Enrique; Lisauskas, Alvydas; Hoefle, Matthias; Jimenez, Álvaro; Cojocari, Oleg; Segovia-Vargas, Daniel; Palandöken, Merih; Tekin, Tolga; Stöhr, Andreas; Carpintero, Guillermo

    2013-04-01

    The millimeter-wave spectrum above 70 GHz provides a cost-effective solution to increase the wireless communications data rates by increasing the carrier wave frequencies. We report on the development of two key components of a wireless transmission system, a high-speed photodiode (HS-PD) and a Schottky Barrier Diode (SBD). Both components operate uncooled, a key issue in the development of compact modules. On the transmitter side, an improved design of the HS-PD allows it to deliver an output RF power exceeding 0 dBm (1 mW). On the receiver side, we present the design process and achieved results on the development of a compact direct envelope detection receiver based on a quasi-optical SDB module. Different resonant (meander dipole) and broadband (Log-Spiral and Log-Periodic) planar antenna solutions are designed, matching the antenna and Schottky diode impedances at high frequency. Impedance matching at baseband is also provided by means of an impedance transition to a 50 Ohm output. From this comparison, we demonstrate the excellent performance of the broadband antennas over the entire E-band by setting up a short-range wireless link transmitting a 1 Gbps data signal.

  16. Evidence for Octupole Correlations in Multiple Chiral Doublet Bands

    NASA Astrophysics Data System (ADS)

    Liu, C.; Wang, S. Y.; Bark, R. A.; Zhang, S. Q.; Meng, J.; Qi, B.; Jones, P.; Wyngaardt, S. M.; Zhao, J.; Xu, C.; Zhou, S.-G.; Wang, S.; Sun, D. P.; Liu, L.; Li, Z. Q.; Zhang, N. B.; Jia, H.; Li, X. Q.; Hua, H.; Chen, Q. B.; Xiao, Z. G.; Li, H. J.; Zhu, L. H.; Bucher, T. D.; Dinoko, T.; Easton, J.; Juhász, K.; Kamblawe, A.; Khaleel, E.; Khumalo, N.; Lawrie, E. A.; Lawrie, J. J.; Majola, S. N. T.; Mullins, S. M.; Murray, S.; Ndayishimye, J.; Negi, D.; Noncolela, S. P.; Ntshangase, S. S.; Nyakó, B. M.; Orce, J. N.; Papka, P.; Sharpey-Schafer, J. F.; Shirinda, O.; Sithole, P.; Stankiewicz, M. A.; Wiedeking, M.

    2016-03-01

    Two pairs of positive-and negative-parity doublet bands together with eight strong electric dipole transitions linking their yrast positive- and negative-parity bands have been identified in 78Br. They are interpreted as multiple chiral doublet bands with octupole correlations, which is supported by the microscopic multidimensionally-constrained covariant density functional theory and triaxial particle rotor model calculations. This observation reports the first example of chiral geometry in octupole soft nuclei.

  17. Real-time 2.5 Gbit/s spatial circuit switching on W-band wireless links

    NASA Astrophysics Data System (ADS)

    Rodríguez, Sebastián; Morales, Álvaro; Gallardo, Omar; Olmos, Juan José Vegas; Monroy, Idelfonso Tafur

    2017-02-01

    A spatial circuit switching system based on a beam steering application for W-band wireless links is proposed and experimentally demonstrated. The system enables two simultaneous transmissions of a 2.5 Gbit/s data signal over a carrier of 81 GHz, while allowing the receiver to dynamically switch between them. The performance of the system is tested with the real-time measurements of the BER, achieving values below the FEC limit for 7% of overhead and serving to prove the viability of wireless spatial circuit switching in the next generation of wireless access networks.

  18. Design of Compact Flower Shape Dual Notched-Band Monopole Antenna for Extended UWB Wireless Applications

    NASA Astrophysics Data System (ADS)

    Sharma, Manish; Awasthi, Y. K.; Singh, Himanshu; Kumar, Raj; Kumari, Sarita

    2016-11-01

    In this letter, a compact monopole antenna for ultra wideband (UWB) applications is proposed with small size of 18×20=360 mm2. Antenna consist of a flower shape radiating patch with a pair of C-shaped slots which offer two notch bands for WiMAX (3.04-3.68 GHz) & WLAN (4.73-5.76 GHz) and two rectangular shaped slots in the ground plane which provides a wide measured usable fractional extended bandwidth of 163 % (2.83-14.0 GHz) with improved VSWR. Moreover, it is also convenient for other wireless application as close range radar, 8-12 GHz in X-band. Measured radiation patterns exhibits nearly omnidirectional in H-plane and dipole like pattern in E-plane across the bandwidth and furthermore exhibits good time domain performance.

  19. Underwater wireless sensor communications in the 2.4 GHz ISM frequency band.

    PubMed

    Lloret, Jaime; Sendra, Sandra; Ardid, Miguel; Rodrigues, Joel J P C

    2012-01-01

    One of the main problems in underwater communications is the low data rate available due to the use of low frequencies. Moreover, there are many problems inherent to the medium such as reflections, refraction, energy dispersion, etc., that greatly degrade communication between devices. In some cases, wireless sensors must be placed quite close to each other in order to take more accurate measurements from the water while having high communication bandwidth. In these cases, while most researchers focus their efforts on increasing the data rate for low frequencies, we propose the use of the 2.4 GHz ISM frequency band in these special cases. In this paper, we show our wireless sensor node deployment and its performance obtained from a real scenario and measures taken for different frequencies, modulations and data transfer rates. The performed tests show the maximum distance between sensors, the number of lost packets and the average round trip time. Based on our measurements, we provide some experimental models of underwater communication in fresh water using EM waves in the 2.4 GHz ISM frequency band. Finally, we compare our communication system proposal with the existing systems. Although our proposal provides short communication distances, it provides high data transfer rates. It can be used for precision monitoring in applications such as contaminated ecosystems or for device communicate at high depth.

  20. Underwater Wireless Sensor Communications in the 2.4 GHz ISM Frequency Band

    PubMed Central

    Lloret, Jaime; Sendra, Sandra; Ardid, Miguel; Rodrigues, Joel J. P. C.

    2012-01-01

    One of the main problems in underwater communications is the low data rate available due to the use of low frequencies. Moreover, there are many problems inherent to the medium such as reflections, refraction, energy dispersion, etc., that greatly degrade communication between devices. In some cases, wireless sensors must be placed quite close to each other in order to take more accurate measurements from the water while having high communication bandwidth. In these cases, while most researchers focus their efforts on increasing the data rate for low frequencies, we propose the use of the 2.4 GHz ISM frequency band in these special cases. In this paper, we show our wireless sensor node deployment and its performance obtained from a real scenario and measures taken for different frequencies, modulations and data transfer rates. The performed tests show the maximum distance between sensors, the number of lost packets and the average round trip time. Based on our measurements, we provide some experimental models of underwater communication in fresh water using EM waves in the 2.4 GHz ISM frequency band. Finally, we compare our communication system proposal with the existing systems. Although our proposal provides short communication distances, it provides high data transfer rates. It can be used for precision monitoring in applications such as contaminated ecosystems or for device communicate at high depth. PMID:22666029

  1. Simulation and Performance evaluation of ZigBee for wireless sensor networks having multiple events occurring simultaneously at a time

    NASA Astrophysics Data System (ADS)

    Dhama, Nitin; Minal, Kaur, Prabhjot; Kumar, Neelu

    2010-11-01

    ZigBee is an emerging standard for Wireless Sensor Networks (WSNs). It targets low distance, low data rate, low power consumption and low cost applications. According to standard nomenclature, it implements a Low Rate-Wireless Personal Area Network (LR-WPAN). ZigBee defines upper layers (network and application) of the ISO protocol reference model. On the contrary, in regards to the physical and data link ones, it relies over another standard, the well accepted IEEE802.15.4, which offers a gross transfer rate of 250 kbps in the 2.4 GHz ISM unlicensed band. Although ZigBee is designed for event-based applications, ZigBee is designed as a low-cost, low-power, low-data rate wireless mesh technology. There are many wireless sensor networks in which it is required to send information to the pan coordinator continuously and simultaneously. Our purpose here in this paper is to test zigbee for such kind of networks where multiple events take place simultaneously. Also we want to see the effect of increasing the number of events in a scenario, so that we can find out its effect.

  2. Possible multiple chiral doublet bands in 107Ag

    NASA Astrophysics Data System (ADS)

    Qi, B.; Jia, H.; Zhang, N. B.; Liu, C.; Wang, S. Y.

    2013-08-01

    Two pairs of nearly degenerate doublet bands in 107Ag are studied via the relativistic mean-field (RMF) theory and the multiparticle plus rotor model (PRM), which suggests these bands as two distinct sets of chiral doublet bands. For the suggested πg9/2-1⊗νh11/22 and πg9/2-1⊗νh11/2d5/2 configurations, the favorable triaxial deformation γ for nuclear chirality can be obtained from the configuration-fixed constrained triaxial RMF calculations. Adopting the PRM, the data available are reproduced very well for the two pairs of doublet bands. Chiral geometry is further conformed by analyzing the angular momentum components. We suggest that two pairs of doublet bands in 107Ag would be another example of multiple chiral doublet bands.

  3. Optical Tunable-Based Transmitter for Multiple Radio Frequency Bands

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung (Inventor); Simons, Rainee N. (Inventor); Wintucky, Edwin G. (Inventor); Freeman, Jon C. (Inventor)

    2016-01-01

    An optical tunable transmitter is used to transmit multiple radio frequency bands on a single beam. More specifically, a tunable laser is configured to generate a plurality of optical wavelengths, and an optical tunable transmitter is configured to modulate each of the plurality of optical wavelengths with a corresponding radio frequency band. The optical tunable transmitter is also configured to encode each of the plurality of modulated optical wavelengths onto a single laser beam for transmission of a plurality of radio frequency bands using the single laser beam.

  4. 78 FR 70237 - Operation of Wireless Communications Services in the 2.3 GHz Band; Establishment of Rules and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-25

    ... From the Federal Register Online via the Government Publishing Office FEDERAL COMMUNICATIONS...-130] Operation of Wireless Communications Services in the 2.3 GHz Band; Establishment of Rules and... Communications Commission. ACTION: Final rule; announcement of effective date. SUMMARY: In this document,...

  5. Estimating Single and Multiple Target Locations Using K-Means Clustering with Radio Tomographic Imaging in Wireless Sensor Networks

    DTIC Science & Technology

    2015-03-26

    ESTIMATING SINGLE AND MULTIPLE TARGET LOCATIONS USING K-MEANS CLUSTERING WITH RADIO TOMOGRAPHIC IMAGING IN WIRELESS SENSOR NETWORKS THESIS Jeffrey K...AND MULTIPLE TARGET LOCATIONS USING K-MEANS CLUSTERING WITH RADIO TOMOGRAPHIC IMAGING IN WIRELESS SENSOR NETWORKS THESIS Presented to the Faculty...SINGLE AND MULTIPLE TARGET LOCATIONS USING K-MEANS CLUSTERING WITH RADIO TOMOGRAPHIC IMAGING IN WIRELESS SENSOR NETWORKS Jeffrey K. Nishida, B.S.E.E

  6. Wireless sensor networks for monitoring physiological signals of multiple patients.

    PubMed

    Dilmaghani, R S; Bobarshad, H; Ghavami, M; Choobkar, S; Wolfe, C

    2011-08-01

    This paper presents the design of a novel wireless sensor network structure to monitor patients with chronic diseases in their own homes through a remote monitoring system of physiological signals. Currently, most of the monitoring systems send patients' data to a hospital with the aid of personal computers (PC) located in the patients' home. Here, we present a new design which eliminates the need for a PC. The proposed remote monitoring system is a wireless sensor network with the nodes of the network installed in the patients' homes. These nodes are then connected to a central node located at a hospital through an Internet connection. The nodes of the proposed wireless sensor network are created by using a combination of ECG sensors, MSP430 microcontrollers, a CC2500 low-power wireless radio, and a network protocol called the SimpliciTI protocol. ECG signals are first sampled by a small portable device which each patient carries. The captured signals are then wirelessly transmitted to an access point located within the patients' home. This connectivity is based on wireless data transmission at 2.4-GHz frequency. The access point is also a small box attached to the Internet through a home asynchronous digital subscriber line router. Afterwards, the data are sent to the hospital via the Internet in real time for analysis and/or storage. The benefits of this remote monitoring are wide ranging: the patients can continue their normal lives, they do not need a PC all of the time, their risk of infection is reduced, costs significantly decrease for the hospital, and clinicians can check data in a short time.

  7. A dual band wireless power and data telemetry for retinal prosthesis.

    PubMed

    Wang, Guoxing; Liu, Wentai; Sivaprakasam, Mohanasankar; Zhou, Mingcui; Weiland, James D; Humayun, Mark S

    2006-01-01

    Inductive coupling is commonly used for wireless power and data transfer in biomedical telemetry systems. The increasing demand on the performance of medical devices requires high data rate and high power efficiency at the same time. If only one radio frequency carrier is used, it is difficult to achieve both high data rate and high power efficiency due to the competing requirements on carrier frequency and system-Q of the power and data transmission. We propose a dual band telemetry system to implement power and data transmission using different frequencies by allocating lower frequency for power transmission and higher frequency for data transmission. However, the magnetic coupling between the power carrier and data carrier will affect the operation of both links. In this paper, this interference is analyzed and design equations are derived, which are used to design coils to maximize the data signal level received at the implant side. A prototype of dual band telemetry for a retinal prosthetic device has been built and experimental results show that both power and data can be transmitted and high data rate can be achieved without compromising the power transmission efficiency.

  8. Distributed Power Allocation for Sink-Centric Clusters in Multiple Sink Wireless Sensor Networks

    PubMed Central

    Cao, Lei; Xu, Chen; Shao, Wei; Zhang, Guoan; Zhou, Hui; Sun, Qiang; Guo, Yuehua

    2010-01-01

    Due to the battery resource constraints, saving energy is a critical issue in wireless sensor networks, particularly in large sensor networks. One possible solution is to deploy multiple sink nodes simultaneously. Another possible solution is to employ an adaptive clustering hierarchy routing scheme. In this paper, we propose a multiple sink cluster wireless sensor networks scheme which combines the two solutions, and propose an efficient transmission power control scheme for a sink-centric cluster routing protocol in multiple sink wireless sensor networks, denoted as MSCWSNs-PC. It is a distributed, scalable, self-organizing, adaptive system, and the sensor nodes do not require knowledge of the global network and their location. All sinks effectively work out a representative view of a monitored region, after which power control is employed to optimize network topology. The simulations demonstrate the advantages of our new protocol. PMID:22294911

  9. Distributed power allocation for sink-centric clusters in multiple sink wireless sensor networks.

    PubMed

    Cao, Lei; Xu, Chen; Shao, Wei; Zhang, Guoan; Zhou, Hui; Sun, Qiang; Guo, Yuehua

    2010-01-01

    Due to the battery resource constraints, saving energy is a critical issue in wireless sensor networks, particularly in large sensor networks. One possible solution is to deploy multiple sink nodes simultaneously. Another possible solution is to employ an adaptive clustering hierarchy routing scheme. In this paper, we propose a multiple sink cluster wireless sensor networks scheme which combines the two solutions, and propose an efficient transmission power control scheme for a sink-centric cluster routing protocol in multiple sink wireless sensor networks, denoted as MSCWSNs-PC. It is a distributed, scalable, self-organizing, adaptive system, and the sensor nodes do not require knowledge of the global network and their location. All sinks effectively work out a representative view of a monitored region, after which power control is employed to optimize network topology. The simulations demonstrate the advantages of our new protocol.

  10. Extracting fingerprint of wireless devices based on phase noise and multiple level wavelet decomposition

    NASA Astrophysics Data System (ADS)

    Zhao, Weichen; Sun, Zhuo; Kong, Song

    2016-10-01

    Wireless devices can be identified by the fingerprint extracted from the signal transmitted, which is useful in wireless communication security and other fields. This paper presents a method that extracts fingerprint based on phase noise of signal and multiple level wavelet decomposition. The phase of signal will be extracted first and then decomposed by multiple level wavelet decomposition. The statistic value of each wavelet coefficient vector is utilized for constructing fingerprint. Besides, the relationship between wavelet decomposition level and recognition accuracy is simulated. And advertised decomposition level is revealed as well. Compared with previous methods, our method is simpler and the accuracy of recognition remains high when Signal Noise Ratio (SNR) is low.

  11. A study of oligoclonal band negative multiple sclerosis.

    PubMed Central

    Zeman, A Z; Kidd, D; McLean, B N; Kelly, M A; Francis, D A; Miller, D H; Kendall, B E; Rudge, P; Thompson, E J; McDonald, W I

    1996-01-01

    OBJECTIVES--To determine whether oligoclonal band (OCB) negative multiple sclerosis is a reliable diagnosis and, if so, whether it has a distinctive prognosis. METHODS--Retrospective and matched prospective comparison of the clinical and laboratory features of patients with clinical definite multiple sclerosis with and without intrathecal synthesis of oligoclonal IgG. RESULTS--Thirty four patients were identified with apparent OCB negative clinically definite multiple sclerosis. The results of oligoclonal banding proved to have been equivocal in 14 of 34; the clinical diagnosis of multiple sclerosis was questionable in 8 of 34. The remaining 12 patients with "true" OCB negative multiple sclerosis were significantly less disabled than matched OCB positive controls. Re-examination of CSF-serum pairs from six OCB negative patients showed that three remained OCB negative while three showed evidence of intrathecal synthesis of OCBs. CONCLUSIONS--OCB negative clinically definite multiple sclerosis is rare and should be diagnosed with caution; in unequivocal cases it seems to have a relatively benign prognosis. PMID:8558146

  12. On Multiple-Input Multiple-Output OFDM with Index Modulation for Next Generation Wireless Networks

    NASA Astrophysics Data System (ADS)

    Basar, Ertugrul

    2016-08-01

    Multiple-input multiple-output orthogonal frequency division multiplexing with index modulation (MIMO-OFDM-IM) is a novel multicarrier transmission technique which has been proposed recently as an alternative to classical MIMO-OFDM. In this scheme, OFDM with index modulation (OFDM-IM) concept is combined with MIMO transmission to take advantage of the benefits of these two techniques. In this paper, we shed light on the implementation and error performance analysis of the MIMO-OFDM-IM scheme for next generation 5G wireless networks. Maximum likelihood (ML), near-ML, simple minimum mean square error (MMSE) and ordered successive interference cancellation (OSIC) based MMSE detectors of MIMO-OFDM-IM are proposed and their theoretical performance is investigated. It has been shown via extensive computer simulations that MIMO-OFDM-IM scheme provides an interesting trade-off between error performance and spectral efficiency as well as it achieves considerably better error performance than classical MIMO-OFDM using different type detectors and under realistic conditions.

  13. Design of a Ku band miniature multiple beam klystron

    SciTech Connect

    Bandyopadhyay, Ayan Kumar Pal, Debasish; Kant, Deepender; Saini, Anil; Saha, Sukalyan; Joshi, Lalit Mohan

    2016-03-09

    The design of a miniature multiple beam klystron (MBK) working in the Ku-band frequency range is presented in this article. Starting from the main design parameters, design of the electron gun, the input and output couplers and radio frequency section (RF-section) are presented. The design methodology using state of the art commercial electromagnetic design tools, analytical formulae as well as noncommercial design tools are briefly presented in this article.

  14. Design of a Ku band miniature multiple beam klystron

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Ayan Kumar; Pal, Debasish; Saini, Anil; Kant, Deepender; Saha, Sukalyan; Joshi, Lalit Mohan

    2016-03-01

    The design of a miniature multiple beam klystron (MBK) working in the Ku-band frequency range is presented in this article. Starting from the main design parameters, design of the electron gun, the input and output couplers and radio frequency section (RF-section) are presented. The design methodology using state of the art commercial electromagnetic design tools, analytical formulae as well as noncommercial design tools are briefly presented in this article.

  15. 47 CFR 27.1250 - Transition of the 2150-2160/62 MHz band from the Broadband Radio Service to the Advanced Wireless...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Advanced Wireless Service (AWS). The rules in this section provide for a transition period during which AWS... 47 Telecommunication 2 2010-10-01 2010-10-01 false Transition of the 2150-2160/62 MHz band from... 2150-2160/62 Mhz Band § 27.1250 Transition of the 2150-2160/62 MHz band from the Broadband Radio...

  16. Low power wireless ultra-wide band transmission of bio-signals

    NASA Astrophysics Data System (ADS)

    Gabrielli, A.; Bastianini, S.; Crepaldi, M.; D'Amen, G.; Demarchi, D.; Lax, I.; Motto Ros, P.; Zoccoli, G.

    2014-12-01

    The paper shows the design of microelectronic circuits composed of an oscillator, a modulator, a transmitter and an antenna. Prototype chips were recently fabricated and tested exploiting commercial 130 nm [1] and 180 nm [2,3] CMOS technologies. Detected signals have been measured using a commercial Ultra-Wide-Band amplifier connected to custom designed filters and a digital demodulator. Preliminary results are summarized along with some waveforms of the transmitted and received signals. A digital Synchronized On-Off Keying (S-OOK) was implemented to exploit the Ultra-Wide-Band transmission. In this way, each transmitted bit is coded with a S-OOK protocol. Wireless transmission capabilities of the system have been also evaluated within a one-meter distance. The chips fit a large variety of applications like spot radiation monitoring, punctual measurements of radiation in High-Energy Physics experiments or, since they have been characterized as low-power components, readout of the system for medical applications. These latter fields are those that we are investigating for in-vivo measurements on small animals. In more detail, if we refer to electromyographic, electrocardiographic or electroencephalographic signals [4], we need to handle very small signal amplitudes, of the order of tens of μV, overwhelmed with a much higher (white) noise. In these cases the front-end of the readout circuit requires a so-called amplifier for instrumentation, here not described, to interface with metal-plate sensor's outputs such those used for electrocardiograms, to normal range of amplitude signals of the order of 1 V. We are also studying these circuits, to be also designed on a microelectronic device, without adding further details since these components are technically well known in the literature [5,6]. The main aim of this research is hence integrating all the described electronic components into a very small, low-powered, microelectronic circuit fully compatible with in

  17. Active implantable medical device EMI assessment for wireless power transfer operating in LF and HF bands

    NASA Astrophysics Data System (ADS)

    Hikage, Takashi; Nojima, Toshio; Fujimoto, Hiroshi

    2016-06-01

    The electromagnetic interference (EMI) imposed on active implantable medical devices by wireless power transfer systems (WPTSs) is discussed based upon results of in vitro experiments. The purpose of this study is to present comprehensive EMI test results gathered from implantable-cardiac pacemakers and implantable cardioverter defibrillators exposed to the electromagnetic field generated by several WPTSs operating in low-frequency (70 kHz-460 kHz) and high-frequency (6.78 MHz) bands. The constructed in vitro experimental test system based upon an Irnich’s flat torso phantom was applied. EMI test experiments are conducted on 14 types of WPTSs including Qi-compliant system and EV-charging WPT system mounted on current production EVs. In addition, a numerical simulation model for active implantable medical device (AIMD) EMI estimation based on the experimental test system is newly proposed. The experimental results demonstrate the risk of WPTSs emitting intermittent signal to affect the correct behavior of AIMDs when operating at very short distances. The proposed numerical simulation model is applicable to obtain basically the EMI characteristics of various types of WPTSs.

  18. Active implantable medical device EMI assessment for wireless power transfer operating in LF and HF bands.

    PubMed

    Hikage, Takashi; Nojima, Toshio; Fujimoto, Hiroshi

    2016-06-21

    The electromagnetic interference (EMI) imposed on active implantable medical devices by wireless power transfer systems (WPTSs) is discussed based upon results of in vitro experiments. The purpose of this study is to present comprehensive EMI test results gathered from implantable-cardiac pacemakers and implantable cardioverter defibrillators exposed to the electromagnetic field generated by several WPTSs operating in low-frequency (70 kHz-460 kHz) and high-frequency (6.78 MHz) bands. The constructed in vitro experimental test system based upon an Irnich's flat torso phantom was applied. EMI test experiments are conducted on 14 types of WPTSs including Qi-compliant system and EV-charging WPT system mounted on current production EVs. In addition, a numerical simulation model for active implantable medical device (AIMD) EMI estimation based on the experimental test system is newly proposed. The experimental results demonstrate the risk of WPTSs emitting intermittent signal to affect the correct behavior of AIMDs when operating at very short distances. The proposed numerical simulation model is applicable to obtain basically the EMI characteristics of various types of WPTSs.

  19. Origin of multiple band gap values in single width nanoribbons

    PubMed Central

    Goyal, Deepika; Kumar, Shailesh; Shukla, Alok; Kumar, Rakesh

    2016-01-01

    Deterministic band gap in quasi-one-dimensional nanoribbons is prerequisite for their integrated functionalities in high performance molecular-electronics based devices. However, multiple band gaps commonly observed in graphene nanoribbons of the same width, fabricated in same slot of experiments, remain unresolved, and raise a critical concern over scalable production of pristine and/or hetero-structure nanoribbons with deterministic properties and functionalities for plethora of applications. Here, we show that a modification in the depth of potential wells in the periodic direction of a supercell on relative shifting of passivating atoms at the edges is the origin of multiple band gap values in nanoribbons of the same width in a crystallographic orientation, although they carry practically the same ground state energy. The results are similar when calculations are extended from planar graphene to buckled silicene nanoribbons. Thus, the findings facilitate tuning of the electronic properties of quasi-one-dimensional materials such as bio-molecular chains, organic and inorganic nanoribbons by performing edge engineering. PMID:27808172

  20. Origin of multiple band gap values in single width nanoribbons

    NASA Astrophysics Data System (ADS)

    Goyal, Deepika; Kumar, Shailesh; Shukla, Alok; Kumar, Rakesh

    2016-11-01

    Deterministic band gap in quasi-one-dimensional nanoribbons is prerequisite for their integrated functionalities in high performance molecular-electronics based devices. However, multiple band gaps commonly observed in graphene nanoribbons of the same width, fabricated in same slot of experiments, remain unresolved, and raise a critical concern over scalable production of pristine and/or hetero-structure nanoribbons with deterministic properties and functionalities for plethora of applications. Here, we show that a modification in the depth of potential wells in the periodic direction of a supercell on relative shifting of passivating atoms at the edges is the origin of multiple band gap values in nanoribbons of the same width in a crystallographic orientation, although they carry practically the same ground state energy. The results are similar when calculations are extended from planar graphene to buckled silicene nanoribbons. Thus, the findings facilitate tuning of the electronic properties of quasi-one-dimensional materials such as bio-molecular chains, organic and inorganic nanoribbons by performing edge engineering.

  1. Ultrahigh-capacity access network architecture for mobile data backhaul using integrated W-band wireless and free-space optical links with OAM multiplexing.

    PubMed

    Fang, Yuan; Yu, Jianjun; Zhang, Junwen; Chi, Nan; Xiao, Jiangnan; Chang, Gee-Kung

    2014-07-15

    In this Letter, we propose and experimentally demonstrate a novel access network architecture using hybrid integrated W-band wireless and free-space optical (FSO) links with orbital angular momentum (OAM) multiplexing. The transmission of a 20 GBd quadrature phase-shift keying signal modulated over 10 OAM modes has been demonstrated over a 0.6 m FSO link and a 0.4 m W-band wireless link at 100 GHz. The experimental results show that the architecture can support future ultrahigh-capacity, converged optical-wireless access networks that require extra bandwidth and system flexibility in mobile data networks.

  2. Towards Mitigating Heterogeneous Wireless Interference in Spectrum Bands with Unlicensed Access

    ERIC Educational Resources Information Center

    Nychis, George P.

    2013-01-01

    In the past two decades, we have seen an unprecedented rise in unlicensed wireless devices and applications of wireless technology. To meet various application constraints, we continually customize the radios and their protocols to the application domain which has led to significant diversity in spectrum use. Unfortunately, this diversity (coupled…

  3. Towards Mitigating Heterogeneous Wireless Interference in Spectrum Bands with Unlicensed Access

    ERIC Educational Resources Information Center

    Nychis, George P.

    2013-01-01

    In the past two decades, we have seen an unprecedented rise in unlicensed wireless devices and applications of wireless technology. To meet various application constraints, we continually customize the radios and their protocols to the application domain which has led to significant diversity in spectrum use. Unfortunately, this diversity (coupled…

  4. Entrained neural oscillations in multiple frequency bands comodulate behavior

    PubMed Central

    Henry, Molly J.; Herrmann, Björn

    2014-01-01

    Our sensory environment is teeming with complex rhythmic structure, to which neural oscillations can become synchronized. Neural synchronization to environmental rhythms (entrainment) is hypothesized to shape human perception, as rhythmic structure acts to temporally organize cortical excitability. In the current human electroencephalography study, we investigated how behavior is influenced by neural oscillatory dynamics when the rhythmic fluctuations in the sensory environment take on a naturalistic degree of complexity. Listeners detected near-threshold gaps in auditory stimuli that were simultaneously modulated in frequency (frequency modulation, 3.1 Hz) and amplitude (amplitude modulation, 5.075 Hz); modulation rates and types were chosen to mimic the complex rhythmic structure of natural speech. Neural oscillations were entrained by both the frequency modulation and amplitude modulation in the stimulation. Critically, listeners’ target-detection accuracy depended on the specific phase–phase relationship between entrained neural oscillations in both the 3.1-Hz and 5.075-Hz frequency bands, with the best performance occurring when the respective troughs in both neural oscillations coincided. Neural-phase effects were specific to the frequency bands entrained by the rhythmic stimulation. Moreover, the degree of behavioral comodulation by neural phase in both frequency bands exceeded the degree of behavioral modulation by either frequency band alone. Our results elucidate how fluctuating excitability, within and across multiple entrained frequency bands, shapes the effective neural processing of environmental stimuli. More generally, the frequency-specific nature of behavioral comodulation effects suggests that environmental rhythms act to reduce the complexity of high-dimensional neural states. PMID:25267634

  5. Entrained neural oscillations in multiple frequency bands comodulate behavior.

    PubMed

    Henry, Molly J; Herrmann, Björn; Obleser, Jonas

    2014-10-14

    Our sensory environment is teeming with complex rhythmic structure, to which neural oscillations can become synchronized. Neural synchronization to environmental rhythms (entrainment) is hypothesized to shape human perception, as rhythmic structure acts to temporally organize cortical excitability. In the current human electroencephalography study, we investigated how behavior is influenced by neural oscillatory dynamics when the rhythmic fluctuations in the sensory environment take on a naturalistic degree of complexity. Listeners detected near-threshold gaps in auditory stimuli that were simultaneously modulated in frequency (frequency modulation, 3.1 Hz) and amplitude (amplitude modulation, 5.075 Hz); modulation rates and types were chosen to mimic the complex rhythmic structure of natural speech. Neural oscillations were entrained by both the frequency modulation and amplitude modulation in the stimulation. Critically, listeners' target-detection accuracy depended on the specific phase-phase relationship between entrained neural oscillations in both the 3.1-Hz and 5.075-Hz frequency bands, with the best performance occurring when the respective troughs in both neural oscillations coincided. Neural-phase effects were specific to the frequency bands entrained by the rhythmic stimulation. Moreover, the degree of behavioral comodulation by neural phase in both frequency bands exceeded the degree of behavioral modulation by either frequency band alone. Our results elucidate how fluctuating excitability, within and across multiple entrained frequency bands, shapes the effective neural processing of environmental stimuli. More generally, the frequency-specific nature of behavioral comodulation effects suggests that environmental rhythms act to reduce the complexity of high-dimensional neural states.

  6. A multiple-source consecutive localization algorithm based on quantized measurement for wireless sensor network

    NASA Astrophysics Data System (ADS)

    Chu, Hao; Wu, Chengdong

    2016-10-01

    The source localization base on wireless sensor network has attracted considerable attention in recent years. However, most of the previous works focus on the accurate measurement or single source localization. The multiple-source localization has extensive application prospect in many fields. The quantized measurement is a low-cost and low energy consumption solution for wireless sensor network. In this paper, we present a novel multiple-source consecutive localization algorithm using the quantized measurement. We first introduce the multiple acoustic sources model and quantized measurement method. Then the maximum likelihood method is used to establish the localization function and the particle swarm optimization is employed to estimate the initial position of the source. Finally the Kalman filter is used to mitigate the random processing noise. Simulation results show that the proposed method owns high localization accuracy.

  7. The optimization based dynamic and cyclic working strategies for rechargeable wireless sensor networks with multiple base stations and wireless energy transfer devices.

    PubMed

    Ding, Xu; Han, Jianghong; Shi, Lei

    2015-03-16

    In this paper, the optimal working schemes for wireless sensor networks with multiple base stations and wireless energy transfer devices are proposed. The wireless energy transfer devices also work as data gatherers while charging sensor nodes. The wireless sensor network is firstly divided into sub networks according to the concept of Voronoi diagram. Then, the entire energy replenishing procedure is split into the pre-normal and normal energy replenishing stages. With the objective of maximizing the sojourn time ratio of the wireless energy transfer device, a continuous time optimization problem for the normal energy replenishing cycle is formed according to constraints with which sensor nodes and wireless energy transfer devices should comply. Later on, the continuous time optimization problem is reshaped into a discrete multi-phased optimization problem, which yields the identical optimality. After linearizing it, we obtain a linear programming problem that can be solved efficiently. The working strategies of both sensor nodes and wireless energy transfer devices in the pre-normal replenishing stage are also discussed in this paper. The intensive simulations exhibit the dynamic and cyclic working schemes for the entire energy replenishing procedure. Additionally, a way of eliminating "bottleneck" sensor nodes is also developed in this paper.

  8. The Optimization Based Dynamic and Cyclic Working Strategies for Rechargeable Wireless Sensor Networks with Multiple Base Stations and Wireless Energy Transfer Devices

    PubMed Central

    Ding, Xu; Han, Jianghong; Shi, Lei

    2015-01-01

    In this paper, the optimal working schemes for wireless sensor networks with multiple base stations and wireless energy transfer devices are proposed. The wireless energy transfer devices also work as data gatherers while charging sensor nodes. The wireless sensor network is firstly divided into sub networks according to the concept of Voronoi diagram. Then, the entire energy replenishing procedure is split into the pre-normal and normal energy replenishing stages. With the objective of maximizing the sojourn time ratio of the wireless energy transfer device, a continuous time optimization problem for the normal energy replenishing cycle is formed according to constraints with which sensor nodes and wireless energy transfer devices should comply. Later on, the continuous time optimization problem is reshaped into a discrete multi-phased optimization problem, which yields the identical optimality. After linearizing it, we obtain a linear programming problem that can be solved efficiently. The working strategies of both sensor nodes and wireless energy transfer devices in the pre-normal replenishing stage are also discussed in this paper. The intensive simulations exhibit the dynamic and cyclic working schemes for the entire energy replenishing procedure. Additionally, a way of eliminating “bottleneck” sensor nodes is also developed in this paper. PMID:25785305

  9. Adaptive Multi-Node Multiple Input and Multiple Output (MIMO) Transmission for Mobile Wireless Multimedia Sensor Networks

    PubMed Central

    Cho, Sunghyun; Choi, Ji-Woong; You, Cheolwoo

    2013-01-01

    Mobile wireless multimedia sensor networks (WMSNs), which consist of mobile sink or sensor nodes and use rich sensing information, require much faster and more reliable wireless links than static wireless sensor networks (WSNs). This paper proposes an adaptive multi-node (MN) multiple input and multiple output (MIMO) transmission to improve the transmission reliability and capacity of mobile sink nodes when they experience spatial correlation. Unlike conventional single-node (SN) MIMO transmission, the proposed scheme considers the use of transmission antennas from more than two sensor nodes. To find an optimal antenna set and a MIMO transmission scheme, a MN MIMO channel model is introduced first, followed by derivation of closed-form ergodic capacity expressions with different MIMO transmission schemes, such as space-time transmit diversity coding and spatial multiplexing. The capacity varies according to the antenna correlation and the path gain from multiple sensor nodes. Based on these statistical results, we propose an adaptive MIMO mode and antenna set switching algorithm that maximizes the ergodic capacity of mobile sink nodes. The ergodic capacity of the proposed scheme is compared with conventional SN MIMO schemes, where the gain increases as the antenna correlation and path gain ratio increase. PMID:24152920

  10. Hybrid antenna arrays with non-uniform Electromagnetic Band Gap lattices for wireless communication networks

    NASA Astrophysics Data System (ADS)

    Mourtzios, Ch.; Siakavara, K.

    2015-08-01

    A method to design hybrid antenna configurations with very low profile, suitable for smart and Multiple Input-Multiple Output antenna systems is proposed. The antennas are incorporated with novel Electromagnetic Band Gap (EBG) surfaces with non-similar cells. These non-uniform EBG surfaces have been properly designed to cause focusing, of the incident waves, thus enhancing the characteristics of operation of antenna elements positioned in close proximity to the surface and also to increase the isolation between them. Theoretical analysis of the reflection mechanism of this type of lattices as well as the prediction of the resulting performance of the antenna is presented. All these considerations are validated with implementation and simulation of the hybrid structures inside the Universal Mobile Telecommunications System frequency band. The results show that increment of the gain and isolation between the antenna elements can be obtained. Moreover, results for the correlation coefficient between the elements, for Gaussian distribution of the incoming waves have been received and the tolerance of the antennas to the variation of the polarization characteristics of the incoming waves has been investigated. A Genetic Algorithm has been constructed and applied to find the proper geometry of the hybrid antennas in order the correlation coefficient to be minimized and get almost independent from the polarization of incident waves.

  11. Real-time dual-band wireless videos in millimeter-wave radio-over-fiber system

    NASA Astrophysics Data System (ADS)

    Cheng, Lin; Liu, Cheng; Dong, Ze; Wang, Jing; Zhu, Ming; Chang, Gee-Kung

    2013-12-01

    A dual-band converged radio-over-fiber (RoF) access system at 60-GHz and 100-GHz millimeter-wave (mm-wave) is proposed. Real-time end-to-end delivery of two channels of independent high-definition (HD) video services simultaneously carried on 60-GHz and 100-GHz radios is demonstrated for the first time. PRBS data transmission with equivalent data rate and format is also tested to characterize the system performance. The analysis of the spectrum from the beating signal indicates the entire 60-GHz band and the W-band can be retrieved without interference. The real-time HD video display and error-free (BER < 10-9) data transmission demonstrate the feasibility of the proposed wireless access system using converged fiber-optic and mm-wave RoF techniques.

  12. A Multiple-Channel Sub-Band Transient Detection System

    SciTech Connect

    David A. Smith

    1998-11-01

    We have developed a unique multiple-channel sub-band transient detection system to record transient electromagnetic signals in carrier-dominated radio environments; the system has been used to make unique observations of weak, transient HF signals. The detection system has made these observations possible through improved sensitivity compared to conventional broadband transient detection systems; the sensitivity improvement is estimated to be at least 20 dB. The increase in sensitivity has been achieved through subdivision of the band of interest (an 18 MHz tunable bandwidth) into eight sub-band independent detection channels, each with a 400 kHz bandwidth and its own criteria. The system generates a system trigger signal when a predetermined number of channels (typically five) trigger within a predetermined window of time (typically 100 ~s). Events are recorded with a broadband data acquisition system sampling at 50 or 100 Msample/s, so despite the fact that the detection system operates on portions of the signal confined to narrow bands, data acquisition is broadband. Between May and September of 1994, the system was used to detect and record over six thousand transient events in the frequency band from 3 to 30 MHz. Approximately 500 of the events have been characterized as paired bursts of radio noise with individual durations of 2 to 10 ps and separations between the bursts of 5 to 160 ps. The paired transients are typically 5 to 40 dB brighter than the background electromagnetic spectrum between carrier signals. We have termed these events SubIonospheric Pulse Pairs (SIPPS) and presently have no explanation as to their source. Our observations of SIPPS resemble observations of TransIonospheric Pulse Pairs (TIPPs) recorded by the Blackboard instrument on the ALEXIS satellite; the source of TIPP events is also unknown. Most of the recorded SIPP events do not exhibit frequency dispersion, implying propagation along a line-of-sight (groundwave) path; but seven of

  13. Moving multiple sinks through wireless sensor networks for lifetime maximization.

    SciTech Connect

    Petrioli, Chiara; Carosi, Alessio; Basagni, Stefano; Phillips, Cynthia Ann

    2008-01-01

    Unattended sensor networks typically watch for some phenomena such as volcanic events, forest fires, pollution, or movements in animal populations. Sensors report to a collection point periodically or when they observe reportable events. When sensors are too far from the collection point to communicate directly, other sensors relay messages for them. If the collection point location is static, sensor nodes that are closer to the collection point relay far more messages than those on the periphery. Assuming all sensor nodes have roughly the same capabilities, those with high relay burden experience battery failure much faster than the rest of the network. However, since their death disconnects the live nodes from the collection point, the whole network is then dead. We consider the problem of moving a set of collectors (sinks) through a wireless sensor network to balance the energy used for relaying messages, maximizing the lifetime of the network. We show how to compute an upper bound on the lifetime for any instance using linear and integer programming. We present a centralized heuristic that produces sink movement schedules that produce network lifetimes within 1.4% of the upper bound for realistic settings. We also present a distributed heuristic that produces lifetimes at most 25:3% below the upper bound. More specifically, we formulate a linear program (LP) that is a relaxation of the scheduling problem. The variables are naturally continuous, but the LP relaxes some constraints. The LP has an exponential number of constraints, but we can satisfy them all by enforcing only a polynomial number using a separation algorithm. This separation algorithm is a p-median facility location problem, which we can solve efficiently in practice for huge instances using integer programming technology. This LP selects a set of good sensor configurations. Given the solution to the LP, we can find a feasible schedule by selecting a subset of these configurations, ordering them

  14. Hybrid digital-analog video transmission in wireless multicast and multiple-input multiple-output system

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Lin, Xiaocheng; Fan, Nianfei; Zhang, Lin

    2016-01-01

    Wireless video multicast has become one of the key technologies in wireless applications. But the main challenge of conventional wireless video multicast, i.e., the cliff effect, remains unsolved. To overcome the cliff effect, a hybrid digital-analog (HDA) video transmission framework based on SoftCast, which transmits the digital bitstream with the quantization residuals, is proposed. With an effective power allocation algorithm and appropriate parameter settings, the residual gains can be maximized; meanwhile, the digital bitstream can assure transmission of a basic video to the multicast receiver group. In the multiple-input multiple-output (MIMO) system, since nonuniform noise interference on different antennas can be regarded as the cliff effect problem, ParCast, which is a variation of SoftCast, is also applied to video transmission to solve it. The HDA scheme with corresponding power allocation algorithms is also applied to improve video performance. Simulations show that the proposed HDA scheme can overcome the cliff effect completely with the transmission of residuals. What is more, it outperforms the compared WSVC scheme by more than 2 dB when transmitting under the same bandwidth, and it can further improve performance by nearly 8 dB in MIMO when compared with the ParCast scheme.

  15. Oligoclonal bands predict multiple sclerosis in children with optic neuritis.

    PubMed

    Heussinger, Nicole; Kontopantelis, Evangelos; Gburek-Augustat, Janina; Jenke, Andreas; Vollrath, Gesa; Korinthenberg, Rudolf; Hofstetter, Peter; Meyer, Sascha; Brecht, Isabel; Kornek, Barbara; Herkenrath, Peter; Schimmel, Mareike; Wenner, Kirsten; Häusler, Martin; Lutz, Soeren; Karenfort, Michael; Blaschek, Astrid; Smitka, Martin; Karch, Stephanie; Piepkorn, Martin; Rostasy, Kevin; Lücke, Thomas; Weber, Peter; Trollmann, Regina; Klepper, Jörg; Häussler, Martin; Hofmann, Regina; Weissert, Robert; Merkenschlager, Andreas; Buttmann, Mathias

    2015-06-01

    We retrospectively evaluated predictors of conversion to multiple sclerosis (MS) in 357 children with isolated optic neuritis (ON) as a first demyelinating event who had a median follow-up of 4.0 years. Multiple Cox proportional-hazards regressions revealed abnormal cranial magnet resonance imaging (cMRI; hazard ratio [HR] = 5.94, 95% confidence interval [CI] = 3.39-10.39, p < 0.001), presence of cerebrospinal fluid immunoglobulin G oligoclonal bands (OCB; HR = 3.69, 95% CI = 2.32-5.86, p < 0.001), and age (HR = 1.08 per year of age, 95% CI = 1.02-1.13, p = 0.003) as independent predictors of conversion, whereas sex and laterality (unilateral vs bilateral) had no influence. Combined cMRI and OCB positivity indicated a 26.84-fold higher HR for developing MS compared to double negativity (95% CI = 12.26-58.74, p < 0.001). Accordingly, cerebrospinal fluid analysis may supplement cMRI to determine the risk of MS in children with isolated ON.

  16. Joint power and multiple access control for wireless mesh network with Rose projection method.

    PubMed

    Tang, Meiqin; Shang, Lili; Xin, Yalin; Liu, Xiaohua; Wei, Xinjiang

    2014-01-01

    This paper investigates the utility maximization problem for the downlink of the multi-interface multichannel wireless mesh network with orthogonal frequency division multiple access. A cross-layer joint power and multiple access control algorithm are proposed. Rosen projection matrix is combined with Solodov projection techniques to build a three-memory gradient Rosen projection method, which is applied to solve this optimization problem. The convergence analysis is given and simulations show that the proposed solution achieves significant throughput compared with existing approaches.

  17. Joint Power and Multiple Access Control for Wireless Mesh Network with Rose Projection Method

    PubMed Central

    Tang, Meiqin; Shang, Lili; Xin, Yalin; Liu, Xiaohua; Wei, Xinjiang

    2014-01-01

    This paper investigates the utility maximization problem for the downlink of the multi-interface multichannel wireless mesh network with orthogonal frequency division multiple access. A cross-layer joint power and multiple access control algorithm are proposed. Rosen projection matrix is combined with Solodov projection techniques to build a three-memory gradient Rosen projection method, which is applied to solve this optimization problem. The convergence analysis is given and simulations show that the proposed solution achieves significant throughput compared with existing approaches. PMID:24883384

  18. Detection of Biological Pathogens Using Multiple Wireless Magnetoelastic Biosensors

    NASA Astrophysics Data System (ADS)

    Shen, Wen

    A number of recent, high-profile incidences of food-borne illness spreading through the food supply and the use of anthrax by terrorists after the September 11, 2001 attacks have demonstrated the need for new technologies that can rapidly detect the presence of biological pathogens. A bevy of biosensors show excellent detection sensitivity and specificity. However, false positive and false negative signals remain one of the primary reasons that many of these newly developed biosensors have not found application in the marketplace. The research described in this dissertation focuses on developing a free-standing magnetoelastic based bio-sensing system using a pulse method. This method allows fast detection, eliminates the bias magnetic field that is necessary in current methods, makes the system more simply and suitable for in-field detection. This system has two pairs of transformer coils, where a measurement sensor and a control sensor can be put in each pair of coils. The control sensor is used to compensate for environmental variables. The effect of pulse power on the performance of the magnetoelastic sensors in the pulse system is studied. The system is found to have excellent stability, good detection repeatability when used with multiple sensors. This research has investigated and demonstrated a multiple sensors approach. Because it will involve the simultaneous measurement of many sensors, it will significantly reduce problems encountered with false positive indications. The positioning and interference of sensors are investigated. By adding a multi-channel structure to the pulse detection system, the effect of sensor interference is minimized. The result of the repeatability test shows that the standard deviation when measuring three 1 mm magnetoelastic sensors is around 500 Hz, which is smaller than the minimum requirement for actual spores/bacteria detection. Magnetoelastic sensors immobilized with JRB7 phages and E2 phages have been used to specifically

  19. Traffic Measurement on Multiple Drive Lanes with Wireless Ultrasonic Sensors

    PubMed Central

    Jeon, Soobin; Kwon, Eil; Jung, Inbum

    2014-01-01

    An automated traffic measuring system for use on multiple drive lanes is proposed in this paper. This system, which uses ultrasonic sensors and a lateral scanning method, is suitable for use on real traffic roads. The proposed system can be easily established and maintained in various roadway environments. In addition, the system can be adjusted to measure traffic volumes according to the size and number of drive lanes. This paper describes the results of an experiment that the lateral scanning method can be easily applied to real traffic roads and provide a low error rate and real-time responses. This system can play an important role in accurately measuring traffic volumes as part of an intelligent transportation system. PMID:25474380

  20. Traffic measurement on multiple drive lanes with wireless ultrasonic sensors.

    PubMed

    Jeon, Soobin; Kwon, Eil; Jung, Inbum

    2014-12-02

    An automated traffic measuring system for use on multiple drive lanes is proposed in this paper. This system, which uses ultrasonic sensors and a lateral scanning method, is suitable for use on real traffic roads. The proposed system can be easily established and maintained in various roadway environments. In addition, the system can be adjusted to measure traffic volumes according to the size and number of drive lanes. This paper describes the results of an experiment that the lateral scanning method can be easily applied to real traffic roads and provide a low error rate and real-time responses. This system can play an important role in accurately measuring traffic volumes as part of an intelligent transportation system.

  1. Adaptive power control for wireless networks using multiple controllers and switching.

    PubMed

    Paul, Ayanendu; Akar, Mehmet; Safonov, Michael G; Mitra, Urbashi

    2005-09-01

    Controlling transmitted power in a wireless network is critical for maintaining quality of service, maximizing channel utilization and minimizing near-far effect for suboptimal receivers. In this paper, a general proportional-integral-derivative (PID) type algorithm for controlling transmitted powers in wireless networks is studied and a systematic way to adapt or tune the parameters of the controller in a distributed fashion is suggested. The proposed algorithm utilizes multiple candidate PID gains. Depending on the prevailing channel conditions, it selects an optimal PID gain from the candidate gain set at each instant and places it in the feedback loop. The algorithm is data driven and can distinguish between stabilizing and destabilizing controller gains as well as rank the stabilizing controllers based on their performance. Simulation results indicate that the proposed scheme performs better than several candidate controllers, including a well known distributed power control (DPC) algorithm.

  2. Evaluation of SAR in a human body model due to wireless power transmission in the 10 MHz band.

    PubMed

    Laakso, Ilkka; Tsuchida, Shogo; Hirata, Akimasa; Kamimura, Yoshitsugu

    2012-08-07

    This study discusses a computational method for calculating the specific absorption rate (SAR) due to a wireless power transmission system in the 10 MHz frequency band. A two-step quasi-static method comprised of the method of moments and the scalar potential finite-difference method are proposed. The applicability of the quasi-static approximation for localized exposure in this frequency band is discussed by comparing the SAR in a lossy dielectric cylinder computed with a full-wave electromagnetic analysis and the quasi-static approximation. From the computational results, the input impedance of the resonant coils was affected by the existence of the cylinder. On the other hand, the magnetic field distribution in free space and considering the cylinder and an impedance matching circuit were in good agreement; the maximum difference in the amplitude of the magnetic field was 4.8%. For a cylinder-coil distance of 10 mm, the difference between the peak 10 g averaged SAR in the cylinder computed with the full-wave electromagnetic method and our quasi-static method was 7.8%. These results suggest that the quasi-static approach is applicable for conducting the dosimetry of wireless power transmission in the 10 MHz band. With our two-step quasi-static method, the SAR in the anatomically based model was computed for different exposure scenarios. From those computations, the allowable input power satisfying the limit of a peak 10 g averaged SAR of 2.0 W kg(-1) was 830 W in the worst case exposure scenario with a coil positioned at a distance of 30 mm from the chest.

  3. Fractal nature of multiple shear bands in severely deformed metallic glass

    SciTech Connect

    Sun, B. A.; Wang, W. H.

    2011-05-16

    We present an analysis of fractal geometry of extensive and complex shear band patterns in a severely deformed metallic glass. We show that the shear band patterns have fractal characteristics, and the fractal dimensions are determined by the stress noise induced by the interaction between shear bands. A theoretical model of the spatial evolution of multiple shear bands is proposed in which the collective shear bands slide is considered as a stochastic process far from thermodynamic equilibrium.

  4. Multiple description distributed image coding with side information for mobile wireless transmission

    NASA Astrophysics Data System (ADS)

    Wu, Min; Song, Daewon; Chen, Chang Wen

    2005-03-01

    Multiple description coding (MDC) is a source coding technique that involves coding the source information into multiple descriptions, and then transmitting them over different channels in packet network or error-prone wireless environment to achieve graceful degradation if parts of descriptions are lost at the receiver. In this paper, we proposed a multiple description distributed wavelet zero tree image coding system for mobile wireless transmission. We provide two innovations to achieve an excellent error resilient capability. First, when MDC is applied to wavelet subband based image coding, it is possible to introduce correlation between the descriptions in each subband. We consider using such a correlation as well as potentially error corrupted description as side information in the decoding to formulate the MDC decoding as a Wyner Ziv decoding problem. If only part of descriptions is lost, however, their correlation information is still available, the proposed Wyner Ziv decoder can recover the description by using the correlation information and the error corrupted description as side information. Secondly, in each description, single bitstream wavelet zero tree coding is very vulnerable to the channel errors. The first bit error may cause the decoder to discard all subsequent bits whether or not the subsequent bits are correctly received. Therefore, we integrate the multiple description scalar quantization (MDSQ) with the multiple wavelet tree image coding method to reduce error propagation. We first group wavelet coefficients into multiple trees according to parent-child relationship and then code them separately by SPIHT algorithm to form multiple bitstreams. Such decomposition is able to reduce error propagation and therefore improve the error correcting capability of Wyner Ziv decoder. Experimental results show that the proposed scheme not only exhibits an excellent error resilient performance but also demonstrates graceful degradation over the packet

  5. Full-duplex bidirectional transmission of 10-Gb/s millimeter-wave QPSK signal in E-band optical wireless link.

    PubMed

    Fang, Yuan; Yu, Jianjun; Chi, Nan; Xiao, Jiangnan

    2014-01-27

    We experimentally demonstrated full-duplex bidirectional transmission of 10-Gb/s millimeter-wave (mm-wave) quadrature phase shift keying (QPSK) signal in E-band (71-76 GHz and 81-86 GHz) optical wireless link. Single-mode fibers (SMF) are connected at both sides of the antenna for uplink and downlink which realize 40-km SMF and 2-m wireless link for bidirectional transmission simultaneously. We utilized multi-level modulation format and coherent detection in such E-band optical wireless link for the first time. Mm-wave QPSK signal is generated by photonic technique to increase spectrum efficiency and received signal is coherently detected to improve receiver sensitivity. After the coherent detection, digital signal processing is utilized to compensate impairments of devices and transmission link.

  6. The cerebrospinal fluid in multiple sclerosis: far beyond the bands.

    PubMed

    Domingues, Renan Barros; Fernandes, Gustavo Bruniera Peres; Leite, Fernando Brunale Vilela de Moura; Tilbery, Charles Peter; Thomaz, Rodrigo Barbosa; Silva, Gisele Sampaio; Mangueira, Cristóvão Luis Pitangueira; Soares, Carlos Augusto Senne

    2017-01-01

    The cerebrospinal fluid analysis has been employed for supporting multiple sclerosis diagnosis and ruling out the differential diagnoses. The most classical findings reflect the inflammatory nature of the disease, including mild pleocytosis, mild protein increase, intrathecal synthesis of immunoglobulin G, and, most typically, the presence of oligoclonal bands. In recent years, new biomarkers have emerged in the context of multiple sclerosis. The search for new biomarkers reflect the need of a better evaluation of disease activity, disease progression, and treatment efficiency. A more refined evaluation of disease and therapy status can contribute to better therapeutic choices, particularly in escalation of therapies. This is very relevant taking into account the availability of a greater number of drugs for multiple sclerosis treatment in recent years. In this review, we critically evaluate the current literature regarding the most important cerebrospinal fluid biomarkers in multiple sclerosis. The determination of biomarkers levels, such as chemokine ligand 13, fetuin A, and mainly light neurofilament has shown promising results in the evaluation of this disease, providing information that along with clinical and neuroimaging data may contribute to better therapeutic decisions. RESUMO A análise do líquido cefalorraquidiano tem sido empregada para avaliação diagnóstica da esclerose múltipla e a exclusão dos diagnósticos diferenciais. Os achados clássicos refletem a natureza inflamatória da doença, incluindo discreta pleocitose, leve hiperproteinorraquia, aumento da síntese intratecal de imunoglobulina G e, mais tipicamente, a presença de bandas oligoclonais. Nos últimos anos, surgiram novos biomarcadores para esclerose múltipla, e esta busca por marcadores reflete a necessidade de melhor avaliar a atividade e a progressão da doença, bem como a eficácia terapêutica. Uma avaliação mais refinada da atividade da doença e da resposta aos

  7. Personalization algorithm for real-time activity recognition using PDA, wireless motion bands, and binary decision tree.

    PubMed

    Pärkkä, Juha; Cluitmans, Luc; Ermes, Miikka

    2010-09-01

    Inactive and sedentary lifestyle is a major problem in many industrialized countries today. Automatic recognition of type of physical activity can be used to show the user the distribution of his daily activities and to motivate him into more active lifestyle. In this study, an automatic activity-recognition system consisting of wireless motion bands and a PDA is evaluated. The system classifies raw sensor data into activity types online. It uses a decision tree classifier, which has low computational cost and low battery consumption. The classifier parameters can be personalized online by performing a short bout of an activity and by telling the system which activity is being performed. Data were collected with seven volunteers during five everyday activities: lying, sitting/standing, walking, running, and cycling. The online system can detect these activities with overall 86.6% accuracy and with 94.0% accuracy after classifier personalization.

  8. Wireless Channel Characterization: Modeling the 5 GHz Microwave Landing System Extension Band for Future Airport Surface Communications

    NASA Technical Reports Server (NTRS)

    Matolak, D. W.; Apaza, Rafael; Foore, Lawrence R.

    2006-01-01

    We describe a recently completed wideband wireless channel characterization project for the 5 GHz Microwave Landing System (MLS) extension band, for airport surface areas. This work included mobile measurements at large and small airports, and fixed point-to-point measurements. Mobile measurements were made via transmission from the air traffic control tower (ATCT), or from an airport field site (AFS), to a receiving ground vehicle on the airport surface. The point-to-point measurements were between ATCT and AFSs. Detailed statistical channel models were developed from all these measurements. Measured quantities include propagation path loss and power delay profiles, from which we obtain delay spreads, frequency domain correlation (coherence bandwidths), fading amplitude statistics, and channel parameter correlations. In this paper we review the project motivation, measurement coordination, and illustrate measurement results. Example channel modeling results for several propagation conditions are also provided, highlighting new findings.

  9. Miniaturized dual-band antenna array with double-negative (DNG) metamaterial for wireless applications

    NASA Astrophysics Data System (ADS)

    Alqadami, Abdulrahman Shueai Mohsen; Jamlos, Mohd Faizal; Soh, Ping Jack; Rahim, Sharul Kamal Abdul; Vandenbosch, Guy A. E.; Narbudowicz, Adam

    2017-01-01

    A miniaturized dual-band antenna array using a negative index metamaterial is presented for WiMAX, LTE, and WLAN applications. This left-handed metamaterial plane is located behind the antenna array, and its unit cell is a combination of split-ring resonator, square electric ring resonator, and rectangular electrical coupled resonator. This enables the achievement of a metamaterial structure exhibiting both negative permittivity and permeability, which results in antenna size miniaturization, efficiency, and gain enhancement. Moreover, the proposed metamaterial antenna has realized dual-band operating frequencies compared to a single frequency for normal antenna. The measured reflection coefficient (S11) shows a 50.25% bandwidth in the lower band (from 2.119 to 3.058 GHz) and 4.27% in the upper band (from 5.058 to 5.276 GHz). Radiation efficiency obtained in the lower and upper band are >95 and 80%, respectively.

  10. Wireless ultra-wide-band transmission prototype ASICs for low-power space and radiation applications

    NASA Astrophysics Data System (ADS)

    Gabrielli, A.; Crepaldi, M.; Demarchi, D.; Motto Ros, P.; Villani, G.

    2014-11-01

    The paper describes the design and the fabrication of a microelectronic circuit composed of a sensor, an oscillator, a modulator, a transmitter and an antenna. The chip embeds a custom radiation sensor, provided by the silicon foundry that has fabricated the prototypes, but in principle the entire system can read a general sensor, as long as a proper interface circuit is used. The natural application for this circuit is radiation monitoring but the low-power budget extends the applications to space where wireless readout circuits can be applied to any type of sensors, even if not radiation sensitive devices.

  11. Massive MIMO for Wireless Sensing With a Coherent Multiple Access Channel

    NASA Astrophysics Data System (ADS)

    Jiang, Feng; Chen, Jie; Swindlehurst, A. Lee; Lopez-Salcedo, Jose A.

    2015-06-01

    We consider the detection and estimation of a zero-mean Gaussian signal in a wireless sensor network with a coherent multiple access channel, when the fusion center (FC) is configured with a large number of antennas and the wireless channels between the sensor nodes and FC experience Rayleigh fading. For the detection problem, we study the Neyman-Pearson (NP) Detector and Energy Detector (ED), and find optimal values for the sensor transmission gains. For the NP detector which requires channel state information (CSI), we show that detection performance remains asymptotically constant with the number of FC antennas if the sensor transmit power decreases proportionally with the increase in the number of antennas. Performance bounds show that the benefit of multiple antennas at the FC disappears as the transmit power grows. The results of the NP detector are also generalized to the linear minimum mean squared error estimator. For the ED which does not require CSI, we derive optimal gains that maximize the deflection coefficient of the detector, and we show that a constant deflection can be asymptotically achieved if the sensor transmit power scales as the inverse square root of the number of FC antennas. Unlike the NP detector, for high sensor power the multi-antenna ED is observed to empirically have significantly better performance than the single-antenna implementation. A number of simulation results are included to validate the analysis.

  12. Implementation of Multiple Host Nodes in Wireless Sensing Node Network System for Landslide Monitoring

    NASA Astrophysics Data System (ADS)

    Abas, Faizulsalihin bin; Takayama, Shigeru

    2015-02-01

    This paper proposes multiple host nodes in Wireless Sensing Node Network System (WSNNS) for landslide monitoring. As landslide disasters damage monitoring system easily, one major demand in landslide monitoring is the flexibility and robustness of the system to evaluate the current situation in the monitored area. For various reasons WSNNS can provide an important contribution to reach that aim. In this system, acceleration sensors and GPS are deployed in sensing nodes. Location information by GPS, enable the system to estimate network topology and enable the system to perceive the location in emergency by monitoring the node mode. Acceleration sensors deployment, capacitate this system to detect slow mass movement that can lead to landslide occurrence. Once deployed, sensing nodes self-organize into an autonomous wireless ad hoc network. The measurement parameter data from sensing nodes is transmitted to Host System via host node and "Cloud" System. The implementation of multiple host nodes in Local Sensing Node Network System (LSNNS), improve risk- management of the WSNNS for real-time monitoring of landslide disaster.

  13. 40 Gb/s W-band (75-110 GHz) 16-QAM radio-over-fiber signal generation and its wireless transmission.

    PubMed

    Kanno, Atsushi; Inagaki, Keizo; Morohashi, Isao; Sakamoto, Takahide; Kuri, Toshiaki; Hosako, Iwao; Kawanishi, Tetsuya; Yoshida, Yuki; Kitayama, Ken-ichi

    2011-12-12

    The generation of a 40-Gb/s 16-QAM radio-over-fiber (RoF) signal and its demodulation of the wireless signal transmitted over free space of 30 mm in W-band (75-110 GHz) is demonstrated. The 16-QAM signal is generated by a coherent polarization synthesis method using a dual-polarization QPSK modulator. A combination of the simple RoF generation and the versatile digital receiver technique is suitable for the proposed coherent optical/wireless seamless network.

  14. Multimodal Wireless Sensor Network-Based Ambient Assisted Living in Real Homes with Multiple Residents

    PubMed Central

    Tunca, Can; Alemdar, Hande; Ertan, Halil; Incel, Ozlem Durmaz; Ersoy, Cem

    2014-01-01

    Human activity recognition and behavior monitoring in a home setting using wireless sensor networks (WSNs) provide a great potential for ambient assisted living (AAL) applications, ranging from health and wellbeing monitoring to resource consumption monitoring. However, due to the limitations of the sensor devices, challenges in wireless communication and the challenges in processing large amounts of sensor data in order to recognize complex human activities, WSN-based AAL systems are not effectively integrated in the home environment. Additionally, given the variety of sensor types and activities, selecting the most suitable set of sensors in the deployment is an important task. In order to investigate and propose solutions to such challenges, we introduce a WSN-based multimodal AAL system compatible for homes with multiple residents. Particularly, we focus on the details of the system architecture, including the challenges of sensor selection, deployment, networking and data collection and provide guidelines for the design and deployment of an effective AAL system. We also present the details of the field study we conducted, using the systems deployed in two different real home environments with multiple residents. With these systems, we are able to collect ambient sensor data from multiple homes. This data can be used to assess the wellbeing of the residents and identify deviations from everyday routines, which may be indicators of health problems. Finally, in order to elaborate on the possible applications of the proposed AAL system and to exemplify directions for processing the collected data, we provide the results of several human activity inference experiments, along with examples on how such results could be interpreted. We believe that the experiences shared in this work will contribute towards accelerating the acceptance of WSN-based AAL systems in the home setting. PMID:24887044

  15. Wireless medical sensor measurements of fatigue in patients with multiple sclerosis.

    PubMed

    Yu, Fei; Bilberg, Arne; Stenager, Egon

    2010-01-01

    This paper presents our experience with developing a portable wireless medical sensor device. We use National Instruments (NI) devices and LabView for measurements studying fatigue of patients suffering multiple sclerosis (MS). Fatigue is a very frequent symptom perceived by MS patients, but the disease mechanism is poorly understood. Many efforts have been made to increase the understanding of this complex phenomenon. It has been found that fatigue might be associated with abnormalities in various anatomical brain areas. Also some secondary factors, not directly related to the disease, such as depression, sleep disorder, severe pain, use of medication and psychological factors might be of importance. However, the relationship with physiological parameters and motion activities in MS patients with fatigue across time are still unknown. Therefore, we hypothesize that we could provide a new assessment of fatigue in MS besides the questionnaires that are currently employed. Furthermore we can discover more secondary factors contributing to fatigue by measuring and monitoring a battery of physiological parameters over an extended time span (e.g. 48 hours) in MS patients without disturbing their normal life behavior. We have developed wireless medical sensor devices and conducted the following, namely Electrocardiograph, body skin temperature, eye movement detection, Electromyograph, motion detection, and muscle strength. In this paper, we describe the technology and design procedures of each measurement and present data from the first two test patients.

  16. Multiple shear band development and related instabilities in granular materials

    NASA Astrophysics Data System (ADS)

    Gajo, A.; Bigoni, D.; Wood, D. Muir

    2004-12-01

    A new, small-strain constitutive model, incorporating elastoplastic coupling to describe developing elastic anisotropy, and density as a state variable to capture compaction and dilation, is proposed to simulate the behaviour of granular materials, in particular sand. This developing elastic anisotropy is related to grain reorientation and is shown to be crucial to obtain localisation during strain hardening, as experiments exhibit. Post-localisation analysis is also performed under simplificative assumptions, which evinces a number of features, including softening induced by localisation, size effects and snap-back, all phenomena found in qualitative and quantitative agreement with experiments. No prior model of granular material deformation correctly captures all these behaviours. The post-localisation analysis has revealed a new form of material instability in granular materials, consisting of a saturation mechanism, in which shear bands just formed unload, permitting new bands to form. This phenomenon shares similarities with the mechanics of phase transformation in metal strips and results in a stress oscillation during increasing deformation. The investigation of this mechanism of localised deformation reveals that loose and dense sands behave in qualitatively different ways. In particular, saturation is not persistent in dense sand; rather, after several shear bands form and saturate, this process is terminated by the formation of a differently inclined shear band occurring in the material transformed by previous strain localisation. In this case, the resulting 'global' stress-strain curve exhibits a few stress oscillations followed by a strong softening. On the other hand, band saturation is found to be a persistent phenomenon in loose sand, yielding a continuing stress oscillation. This provides a consistent description of specific experimental results.

  17. Multi-band asymmetric acoustic transmission in a bended waveguide with multiple mechanisms

    NASA Astrophysics Data System (ADS)

    Huang, Yu-lei; Sun, Hong-xiang; Xia, Jian-ping; Yuan, Shou-qi; Ding, Xin-lei

    2016-07-01

    We report the realization of a multi-band device of the asymmetric acoustic transmission by placing a phononic crystal inside a bended waveguide immersed in water, as determined both experimentally and numerically. The asymmetric acoustic transmission exists in three frequency bands below 500 kHz induced by multiple mechanisms. Besides the band gap of the phononic crystal, we also introduce the deaf mode and interaction between the phononic crystal and waveguide. More importantly, this asymmetric transmission can be systematically controlled by mechanically rotating the square rods of the phononic crystal. The device has the advantages of multiple band, broader bandwidth, and adjustable property, showing promising applications in ultrasonic devices.

  18. Tracking and Recognition of Multiple Human Targets Moving in a Wireless Pyroelectric Infrared Sensor Network

    PubMed Central

    Xiong, Ji; Li, Fangmin; Zhao, Ning; Jiang, Na

    2014-01-01

    With characteristics of low-cost and easy deployment, the distributed wireless pyroelectric infrared sensor network has attracted extensive interest, which aims to make it an alternate infrared video sensor in thermal biometric applications for tracking and identifying human targets. In these applications, effectively processing signals collected from sensors and extracting the features of different human targets has become crucial. This paper proposes the application of empirical mode decomposition and the Hilbert-Huang transform to extract features of moving human targets both in the time domain and the frequency domain. Moreover, the support vector machine is selected as the classifier. The experimental results demonstrate that by using this method the identification rates of multiple moving human targets are around 90%. PMID:24759117

  19. Dual band multi frequency rectangular patch microstrip antenna with flyswatter shaped slot for wireless systems

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Dheeraj; Saraswat, Shriti; Gulati, Gitansh; Shekhar, Snehanshu; Joshi, Kanika; Sharma, Komal

    2016-03-01

    In this paper a dual band planar antenna has been proposed for IEEE 802.16 Wi-MAX /IEEE 802.11 WLAN/4.9 GHz public safety applications. The antenna comprises a frequency bandwidth of 560MHz (3.37GHz-3.93GHz) for WLAN and WiMAX and 372MHz (4.82GHz-5.192GHz) for 4.9 GHz public safety applications and Radio astronomy services (4.8-4.94 GHz). The proposed antenna constitutes of a single microstrip patch reactively loaded with three identical steps positioned in a zig-zag manner towards the radiating edges of the patch. The coaxially fed patch antenna characteristics (radiation pattern, antenna gain, antenna directivity, current distribution, S11) have been investigated. The antenna design is primarily focused on achieving a dual band operation.

  20. Dual band multi frequency rectangular patch microstrip antenna with flyswatter shaped slot for wireless systems

    SciTech Connect

    Bhardwaj, Dheeraj; Saraswat, Shriti Gulati, Gitansh Shekhar, Snehanshu Joshi, Kanika; Sharma, Komal

    2016-03-09

    In this paper a dual band planar antenna has been proposed for IEEE 802.16 Wi-MAX /IEEE 802.11 WLAN/4.9 GHz public safety applications. The antenna comprises a frequency bandwidth of 560MHz (3.37GHz-3.93GHz) for WLAN and WiMAX and 372MHz (4.82GHz-5.192GHz) for 4.9 GHz public safety applications and Radio astronomy services (4.8-4.94 GHz). The proposed antenna constitutes of a single microstrip patch reactively loaded with three identical steps positioned in a zig-zag manner towards the radiating edges of the patch. The coaxially fed patch antenna characteristics (radiation pattern, antenna gain, antenna directivity, current distribution, S{sub 11}) have been investigated. The antenna design is primarily focused on achieving a dual band operation.

  1. Practical Performance Analysis for Multiple Information Fusion Based Scalable Localization System Using Wireless Sensor Networks.

    PubMed

    Zhao, Yubin; Li, Xiaofan; Zhang, Sha; Meng, Tianhui; Zhang, Yiwen

    2016-08-23

    In practical localization system design, researchers need to consider several aspects to make the positioning efficiently and effectively, e.g., the available auxiliary information, sensing devices, equipment deployment and the environment. Then, these practical concerns turn out to be the technical problems, e.g., the sequential position state propagation, the target-anchor geometry effect, the Non-line-of-sight (NLOS) identification and the related prior information. It is necessary to construct an efficient framework that can exploit multiple available information and guide the system design. In this paper, we propose a scalable method to analyze system performance based on the Cramér-Rao lower bound (CRLB), which can fuse all of the information adaptively. Firstly, we use an abstract function to represent all of the wireless localization system model. Then, the unknown vector of the CRLB consists of two parts: the first part is the estimated vector, and the second part is the auxiliary vector, which helps improve the estimation accuracy. Accordingly, the Fisher information matrix is divided into two parts: the state matrix and the auxiliary matrix. Unlike the theoretical analysis, our CRLB can be a practical fundamental limit to denote the system that fuses multiple information in the complicated environment, e.g., recursive Bayesian estimation based on the hidden Markov model, the map matching method and the NLOS identification and mitigation methods. Thus, the theoretical results are approaching the real case more. In addition, our method is more adaptable than other CRLBs when considering more unknown important factors. We use the proposed method to analyze the wireless sensor network-based indoor localization system. The influence of the hybrid LOS/NLOS channels, the building layout information and the relative height differences between the target and anchors are analyzed. It is demonstrated that our method exploits all of the available information for

  2. Practical Performance Analysis for Multiple Information Fusion Based Scalable Localization System Using Wireless Sensor Networks

    PubMed Central

    Zhao, Yubin; Li, Xiaofan; Zhang, Sha; Meng, Tianhui; Zhang, Yiwen

    2016-01-01

    In practical localization system design, researchers need to consider several aspects to make the positioning efficiently and effectively, e.g., the available auxiliary information, sensing devices, equipment deployment and the environment. Then, these practical concerns turn out to be the technical problems, e.g., the sequential position state propagation, the target-anchor geometry effect, the Non-line-of-sight (NLOS) identification and the related prior information. It is necessary to construct an efficient framework that can exploit multiple available information and guide the system design. In this paper, we propose a scalable method to analyze system performance based on the Cramér–Rao lower bound (CRLB), which can fuse all of the information adaptively. Firstly, we use an abstract function to represent all of the wireless localization system model. Then, the unknown vector of the CRLB consists of two parts: the first part is the estimated vector, and the second part is the auxiliary vector, which helps improve the estimation accuracy. Accordingly, the Fisher information matrix is divided into two parts: the state matrix and the auxiliary matrix. Unlike the theoretical analysis, our CRLB can be a practical fundamental limit to denote the system that fuses multiple information in the complicated environment, e.g., recursive Bayesian estimation based on the hidden Markov model, the map matching method and the NLOS identification and mitigation methods. Thus, the theoretical results are approaching the real case more. In addition, our method is more adaptable than other CRLBs when considering more unknown important factors. We use the proposed method to analyze the wireless sensor network-based indoor localization system. The influence of the hybrid LOS/NLOS channels, the building layout information and the relative height differences between the target and anchors are analyzed. It is demonstrated that our method exploits all of the available information for

  3. Ultra Wide Band Multiple Access Performance Using TH-PPM and DS-BPSK Modulations

    DTIC Science & Technology

    2003-03-01

    communications for In- ternet applications is gaining popularity. Current technologies such as IEEE 802.11, Bluetooth , and the European HiperLAN...schemes, heterodyning provides frequency translation for typical narrow band radios or wireless communication schemes such as Bluetooth and IEEE...Systems/Area Radius of Area Spatial Capacity IEEE802.11b 11 Mbps 3 100 meters 1,000 b s·m2 Bluetooth 1 Mbps 10 10 meters 30,000 b s·m2 IEEE802.11a 54

  4. Circularly polarized triple band glass shaped monopole patch antenna with metallic reflector for bluetooth & wireless applications

    NASA Astrophysics Data System (ADS)

    Jangid, K. G.; Choudhary, N.; Jain, P.; Sharma, B. R.; Saini, J. S.; Kulhar, V. S.; Bhatnagar, D.

    2016-03-01

    This paper presents the design and performance of strip line fed glass shaped monopole patch antenna having with overall size 30mm × 30 mm × 1.59 mm. In the patch; an eight shaped slot and in the ground plane an eight shaped ring are introduced. A metallic ground plane is also introduced at appropriate location beneath the ground plane. The proposed antenna is simulated by applying CST Microwave Studio simulator. Antenna provides circularly polarized radiations, triple broad impedance bandwidth of 203MHz (2.306GHz to 2.510GHz), 42MHz (2.685GHz to 2.757GHz) & GHz (3.63 GHz to 6.05 GHz), high flat gain (close to 5dBi) and good radiation properties in the desired frequency range. This antenna may be a very useful tool for 2.45GHz Bluetooth communication band as well as for 2.4GHz/5.2 GHz /5.8 GHz WLAN bands & 3.7GHz/5.5 GHz Wi-Max bands.

  5. Circularly polarized triple band glass shaped monopole patch antenna with metallic reflector for bluetooth & wireless applications

    SciTech Connect

    Jangid, K. G.; Kulhar, V. S.; Choudhary, N.; Jain, P.; Sharma, B. R.; Saini, J. S.; Bhatnagar, D.

    2016-03-09

    This paper presents the design and performance of strip line fed glass shaped monopole patch antenna having with overall size 30mm × 30 mm × 1.59 mm. In the patch; an eight shaped slot and in the ground plane an eight shaped ring are introduced. A metallic ground plane is also introduced at appropriate location beneath the ground plane. The proposed antenna is simulated by applying CST Microwave Studio simulator. Antenna provides circularly polarized radiations, triple broad impedance bandwidth of 203MHz (2.306GHz to 2.510GHz), 42MHz (2.685GHz to 2.757GHz) & GHz (3.63 GHz to 6.05 GHz), high flat gain (close to 5dBi) and good radiation properties in the desired frequency range. This antenna may be a very useful tool for 2.45GHz Bluetooth communication band as well as for 2.4GHz/5.2 GHz /5.8 GHz WLAN bands & 3.7GHz/5.5 GHz Wi-Max bands.

  6. Impact of High Power Interference Sources in Planning and Deployment of Wireless Sensor Networks and Devices in the 2.4 GHz Frequency Band in Heterogeneous Environments

    PubMed Central

    Iturri, Peio López; Nazábal, Juan Antonio; Azpilicueta, Leire; Rodriguez, Pablo; Beruete, Miguel; Fernández-Valdivielso, Carlos; Falcone, Francisco

    2012-01-01

    In this work, the impact of radiofrequency radiation leakage from microwave ovens and its effect on 802.15.4 ZigBee-compliant wireless sensor networks operating in the 2.4 GHz Industrial Scientific Medical (ISM) band is analyzed. By means of a novel radioplanning approach, based on electromagnetic field simulation of a microwave oven and determination of equivalent radiation sources applied to an in-house developed 3D ray launching algorithm, estimation of the microwave oven's power leakage is obtained for the complete volume of an indoor scenario. The magnitude and the variable nature of the interference is analyzed and the impact in the radio link quality in operating wireless sensors is estimated and compared with radio channel measurements as well as packet measurements. The measurement results reveal the importance of selecting an adequate 802.15.4 channel, as well as the Wireless Sensor Network deployment strategy within this type of environment, in order to optimize energy consumption and increase the overall network performance. The proposed method enables one to estimate potential interference effects in devices operating within the 2.4 GHz band in the complete scenario, prior to wireless sensor network deployment, which can aid in achieving the most optimal network topology. PMID:23202228

  7. Impact of high power interference sources in planning and deployment of wireless sensor networks and devices in the 2.4 GHz frequency band in heterogeneous environments.

    PubMed

    Iturri, Peio López; Nazábal, Juan Antonio; Azpilicueta, Leire; Rodriguez, Pablo; Beruete, Miguel; Fernández-Valdivielso, Carlos; Falcone, Francisco

    2012-11-12

    In this work, the impact of radiofrequency radiation leakage from microwave ovens and its effect on 802.15.4 ZigBee-compliant wireless sensor networks operating in the 2.4 GHz Industrial Scientific Medical (ISM) band is analyzed. By means of a novel radioplanning approach, based on electromagnetic field simulation of a microwave oven and determination of equivalent radiation sources applied to an in-house developed 3D ray launching algorithm, estimation of the microwave oven’s power leakage is obtained for the complete volume of an indoor scenario. The magnitude and the variable nature of the interference is analyzed and the impact in the radio link quality in operating wireless sensors is estimated and compared with radio channel measurements as well as packet measurements. The measurement results reveal the importance of selecting an adequate 802.15.4 channel, as well as the Wireless Sensor Network deployment strategy within this type of environment, in order to optimize energy consumption and increase the overall network performance. The proposed method enables one to estimate potential interference effects in devices operating within the 2.4 GHz band in the complete scenario, prior to wireless sensor network deployment, which can aid in achieving the most optimal network topology.

  8. Efficient Aggregation of Multiple Classes of Information in Wireless Sensor Networks

    PubMed Central

    Qiu, Xiaoling; Liu, Haiping; Li, Deshi; Yick, Jennifer; Ghosal, Dipak; Mukherjee, Biswanath

    2009-01-01

    Congestion in a Wireless Sensor Network (WSN) can lead to buffer overflow, resource waste and delay or loss of critical information from the sensors. In this paper, we propose the Priority-based Coverage-aware Congestion Control (PCC) algorithm which is distributed, priority-distinct, and fair. PCC provides higher priority to packets with event information in which the sink is more interested. PCC employs a queue scheduler that can selectively drop any packet in the queue. PCC gives fair chance to all sensors to send packets to the sink, irrespective of their specific locations, and therefore enhances the coverage fidelity of the WSN. Based on a detailed simulation analysis, we show that PCC can efficiently relieve congestion and significantly improve the system performance based on multiple metrics such as event throughput and coverage fidelity. We generalize PCC to address data collection in a WSN in which the sensor nodes have multiple sensing devices and can generate multiple types of information. We propose a Pricing System that can under congestion effectively collect different types of data generated by the sensor nodes according to values that are placed on different information by the sink. Simulation analysis show that our Pricing System can achieve higher event throughput for packets with higher priority and achieve fairness among different categories. Moreover, given a fixed system capacity, our proposed Pricing System can collect more information of the type valued by the sink. PMID:22408495

  9. From band tailing to impurity-band formation and discussion of localization in doped semiconductors: A multiple-scattering approach

    NASA Astrophysics Data System (ADS)

    Serre, J.; Ghazali, A.

    1983-10-01

    Klauder's best multiple-scattering approximation which allows the use of a realistic interaction potential and in which electron-electron interactions may be incorporated is shown to constitute a sound basis for the study of the electronic structure of doped semiconductors. The implementation of this formalism requires the solution of a self-consistent set of nonlinear integral equations. This has been done numerically over a large impurity-concentration range. We have thus shown that as the concentration decreases, the band tail gradually splits off from the main band, giving an impurity band. Spectral-density analysis allows one to distinguish between localized and extended states. Compensation effects have also been analyzed. Finally, our results are discussed and compared with various experiments.

  10. Optimization of high-definition video coding and hybrid fiber-wireless transmission in the 60 GHz band.

    PubMed

    Lebedev, Alexander; Pham, Tien Thang; Beltrán, Marta; Yu, Xianbin; Ukhanova, Anna; Llorente, Roberto; Monroy, Idelfonso Tafur; Forchhammer, Søren

    2011-12-12

    The paper addresses the problem of distribution of high-definition video over fiber-wireless networks. The physical layer architecture with the low complexity envelope detection solution is investigated. We present both experimental studies and simulation of high quality high-definition compressed video transmission over 60 GHz fiber-wireless link. Using advanced video coding we satisfy low complexity and low delay constraints, meanwhile preserving the superb video quality after significantly extended wireless distance.

  11. A Temporal Credential-Based Mutual Authentication with Multiple-Password Scheme for Wireless Sensor Networks.

    PubMed

    Liu, Xin; Zhang, Ruisheng; Liu, Qidong

    2017-01-01

    Wireless sensor networks (WSNs), which consist of a large number of sensor nodes, have become among the most important technologies in numerous fields, such as environmental monitoring, military surveillance, control systems in nuclear reactors, vehicle safety systems, and medical monitoring. The most serious drawback for the widespread application of WSNs is the lack of security. Given the resource limitation of WSNs, traditional security schemes are unsuitable. Approaches toward withstanding related attacks with small overhead have thus recently been studied by many researchers. Numerous studies have focused on the authentication scheme for WSNs, but most of these works cannot achieve the security performance and overhead perfectly. Nam et al. proposed a two-factor authentication scheme with lightweight sensor computation for WSNs. In this paper, we review this scheme, emphasize its drawbacks, and propose a temporal credential-based mutual authentication with a multiple-password scheme for WSNs. Our scheme uses multiple passwords to achieve three-factor security performance and generate a session key between user and sensor nodes. The security analysis phase shows that our scheme can withstand related attacks, including a lost password threat, and the comparison phase shows that our scheme involves a relatively small overhead. In the comparison of the overhead phase, the result indicates that more than 95% of the overhead is composed of communication and not computation overhead. Therefore, the result motivates us to pay further attention to communication overhead than computation overhead in future research.

  12. An Energy Efficient Distance-Aware Routing Algorithm with Multiple Mobile Sinks for Wireless Sensor Networks

    PubMed Central

    Wang, Jin; Li, Bin; Xia, Feng; Kim, Chang-Seob; Kim, Jeong-Uk

    2014-01-01

    Traffic patterns in wireless sensor networks (WSNs) usually follow a many-to-one model. Sensor nodes close to static sinks will deplete their limited energy more rapidly than other sensors, since they will have more data to forward during multihop transmission. This will cause network partition, isolated nodes and much shortened network lifetime. Thus, how to balance energy consumption for sensor nodes is an important research issue. In recent years, exploiting sink mobility technology in WSNs has attracted much research attention because it can not only improve energy efficiency, but prolong network lifetime. In this paper, we propose an energy efficient distance-aware routing algorithm with multiple mobile sink for WSNs, where sink nodes will move with a certain speed along the network boundary to collect monitored data. We study the influence of multiple mobile sink nodes on energy consumption and network lifetime, and we mainly focus on the selection of mobile sink node number and the selection of parking positions, as well as their impact on performance metrics above. We can see that both mobile sink node number and the selection of parking position have important influence on network performance. Simulation results show that our proposed routing algorithm has better performance than traditional routing ones in terms of energy consumption. PMID:25196015

  13. An energy efficient distance-aware routing algorithm with multiple mobile sinks for wireless sensor networks.

    PubMed

    Wang, Jin; Li, Bin; Xia, Feng; Kim, Chang-Seob; Kim, Jeong-Uk

    2014-08-18

    Traffic patterns in wireless sensor networks (WSNs) usually follow a many-to-one model. Sensor nodes close to static sinks will deplete their limited energy more rapidly than other sensors, since they will have more data to forward during multihop transmission. This will cause network partition, isolated nodes and much shortened network lifetime. Thus, how to balance energy consumption for sensor nodes is an important research issue. In recent years, exploiting sink mobility technology in WSNs has attracted much research attention because it can not only improve energy efficiency, but prolong network lifetime. In this paper, we propose an energy efficient distance-aware routing algorithm with multiple mobile sink for WSNs, where sink nodes will move with a certain speed along the network boundary to collect monitored data. We study the influence of multiple mobile sink nodes on energy consumption and network lifetime, and we mainly focus on the selection of mobile sink node number and the selection of parking positions, as well as their impact on performance metrics above. We can see that both mobile sink node number and the selection of parking position have important influence on network performance. Simulation results show that our proposed routing algorithm has better performance than traditional routing ones in terms of energy consumption.

  14. Multiple Two-Way Time Message Exchange (TTME) Time Synchronization for Bridge Monitoring Wireless Sensor Networks

    PubMed Central

    Shi, Fanrong; Tuo, Xianguo; Yang, Simon X.; Li, Huailiang; Shi, Rui

    2017-01-01

    Wireless sensor networks (WSNs) have been widely used to collect valuable information in Structural Health Monitoring (SHM) of bridges, using various sensors, such as temperature, vibration and strain sensors. Since multiple sensors are distributed on the bridge, accurate time synchronization is very important for multi-sensor data fusion and information processing. Based on shape of the bridge, a spanning tree is employed to build linear topology WSNs and achieve time synchronization in this paper. Two-way time message exchange (TTME) and maximum likelihood estimation (MLE) are employed for clock offset estimation. Multiple TTMEs are proposed to obtain a subset of TTME observations. The time out restriction and retry mechanism are employed to avoid the estimation errors that are caused by continuous clock offset and software latencies. The simulation results show that the proposed algorithm could avoid the estimation errors caused by clock drift and minimize the estimation error due to the large random variable delay jitter. The proposed algorithm is an accurate and low complexity time synchronization algorithm for bridge health monitoring. PMID:28471418

  15. A Temporal Credential-Based Mutual Authentication with Multiple-Password Scheme for Wireless Sensor Networks

    PubMed Central

    Zhang, Ruisheng; Liu, Qidong

    2017-01-01

    Wireless sensor networks (WSNs), which consist of a large number of sensor nodes, have become among the most important technologies in numerous fields, such as environmental monitoring, military surveillance, control systems in nuclear reactors, vehicle safety systems, and medical monitoring. The most serious drawback for the widespread application of WSNs is the lack of security. Given the resource limitation of WSNs, traditional security schemes are unsuitable. Approaches toward withstanding related attacks with small overhead have thus recently been studied by many researchers. Numerous studies have focused on the authentication scheme for WSNs, but most of these works cannot achieve the security performance and overhead perfectly. Nam et al. proposed a two-factor authentication scheme with lightweight sensor computation for WSNs. In this paper, we review this scheme, emphasize its drawbacks, and propose a temporal credential-based mutual authentication with a multiple-password scheme for WSNs. Our scheme uses multiple passwords to achieve three-factor security performance and generate a session key between user and sensor nodes. The security analysis phase shows that our scheme can withstand related attacks, including a lost password threat, and the comparison phase shows that our scheme involves a relatively small overhead. In the comparison of the overhead phase, the result indicates that more than 95% of the overhead is composed of communication and not computation overhead. Therefore, the result motivates us to pay further attention to communication overhead than computation overhead in future research. PMID:28135288

  16. Multiple Two-Way Time Message Exchange (TTME) Time Synchronization for Bridge Monitoring Wireless Sensor Networks.

    PubMed

    Shi, Fanrong; Tuo, Xianguo; Yang, Simon X; Li, Huailiang; Shi, Rui

    2017-05-04

    Wireless sensor networks (WSNs) have been widely used to collect valuable information in Structural Health Monitoring (SHM) of bridges, using various sensors, such as temperature, vibration and strain sensors. Since multiple sensors are distributed on the bridge, accurate time synchronization is very important for multi-sensor data fusion and information processing. Based on shape of the bridge, a spanning tree is employed to build linear topology WSNs and achieve time synchronization in this paper. Two-way time message exchange (TTME) and maximum likelihood estimation (MLE) are employed for clock offset estimation. Multiple TTMEs are proposed to obtain a subset of TTME observations. The time out restriction and retry mechanism are employed to avoid the estimation errors that are caused by continuous clock offset and software latencies. The simulation results show that the proposed algorithm could avoid the estimation errors caused by clock drift and minimize the estimation error due to the large random variable delay jitter. The proposed algorithm is an accurate and low complexity time synchronization algorithm for bridge health monitoring.

  17. Functional integration between brain regions at rest occurs in multiple-frequency bands.

    PubMed

    Gohel, Suril R; Biswal, Bharat B

    2015-02-01

    Studies of resting-state fMRI have shown that blood oxygen level dependent (BOLD) signals giving rise to temporal correlation across voxels (or regions) are dominated by low-frequency fluctuations in the range of ∼ 0.01-0.1 Hz. These low-frequency fluctuations have been further divided into multiple distinct frequency bands (slow-5 and -4) based on earlier neurophysiological studies, though low sampling frequency of fMRI (∼ 0.5 Hz) has substantially limited the exploration of other known frequency bands of neurophysiological origins (slow-3, -2, and -1). In this study, we used resting-state fMRI data acquired from 21 healthy subjects at a higher sampling frequency of 1.5 Hz to assess the presence of resting-state functional connectivity (RSFC) across multiple frequency bands: slow-5 to slow-1. The effect of different frequency bands on spatial extent and connectivity strength for known resting-state networks (RSNs) was also evaluated. RSNs were derived using independent component analysis and seed-based correlation. Commonly known RSNs, such as the default mode, the fronto-parietal, the dorsal attention, and the visual networks, were consistently observed at multiple frequency bands. Significant inter-hemispheric connectivity was observed between each seed and its contra lateral brain region across all frequency bands, though overall spatial extent of seed-based correlation maps decreased in slow-2 and slow-1 frequency bands. These results suggest that functional integration between brain regions at rest occurs over multiple frequency bands and RSFC is a multiband phenomenon. These results also suggest that further investigation of BOLD signal in multiple frequency bands for related cognitive processes should be undertaken.

  18. A Robust Indoor Autonomous Positioning System Using Particle Filter Based on ISM Band Wireless Communications

    NASA Astrophysics Data System (ADS)

    Ikeda, Takeshi; Kawamoto, Mitsuru; Sashima, Akio; Suzuki, Keiji; Kurumatani, Koichi

    In the field of the ubiquitous computing, positioning systems which can provide users' location information have paid attention as an important technical element which can be applied to various services, for example, indoor navigation services, evacuation services, market research services, guidance services, and so on. A lot of researchers have proposed various outdoor and indoor positioning systems. In this paper, we deal with indoor positioning systems. Many conventional indoor positioning systems use expensive infrastructures, because the propagated times of radio waves are used to measure users' positions with high accuracy. In this paper, we propose an indoor autonomous positioning system using radio signal strengths (RSSs) based on ISM band communications. In order to estimate users' positions, the proposed system utilizes a particle filter that is one of the Monte Carlo methods. Because the RSS information is used in the proposed system, the equipments configuring the system are not expensive compared with the conventional indoor positioning systems and it can be installed easily. Moreover, because the particle filter is used to estimate user's position, even if the RSS fluctuates due to, for example, multi-paths, the system can carry out position estimation robustly. We install the proposed system in one floor of a building and carry out some experiments in order to verify the validity of the proposed system. As a result, we confirmed that the average of the estimation errors of the proposed system was about 1.8 m, where the result is enough accuracy for achieving the services mentioned above.

  19. Numerical investigation of multiple shear bands in collapsing Thick-Walled Cylinders

    NASA Astrophysics Data System (ADS)

    Lovinger, Zev; Rittel, Daniel; Rosenberg, Zvi

    2011-06-01

    The ability to simulate evolution of shear bands in TWC experiments is a powerful tool for studying the complex problem of multiple adiabatic shear bands' formation and propagation. We carry out 2D numerical simulations to reproduce experimental results of multiple shear bands in cylindrical specimens collapsed by electro-magnetic driving forces. In order to simulate the shear bands we use a shear failure model which incorporates a positive feedback mechanism. Alternatively, we use for the Johnson-Cook strength model an enhanced thermal softening term, reaching similar behavior. We present a detailed study of the numerical model, exploring its ability to properly reproduce the evolution of the multiple shear-bands. The influence of initial perturbations, mesh size and pressure history on the initiation and final stages is investigated. Analyzing the shear band distribution, we use an empirical distribution function (ECDF) to reach a quantitative measure to compare simulation and experimental results. Finally, we compare the experimental shear band distribution to our simulations' results, showing good agreement.

  20. Demonstration of Space Optical Transmitter Development for Multiple High Frequency Bands

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung; Simons, Rainee; Wintucky, Edwin; Freeman, Jon

    2013-01-01

    As the demand for multiple radio frequency carrier bands continues to grow in space communication systems, the design of a cost-effective compact optical transmitter that is capable of transmitting selective multiple RF bands is of great interest, particularly for NASA Space Communications Network Programs. This paper presents experimental results that demonstrate the feasibility of a concept based on an optical wavelength division multiplexing (WDM) technique that enables multiple microwave bands with different modulation formats and bandwidths to be combined and transmitted all in one unit, resulting in many benefits to space communication systems including reduced size, weight and complexity with corresponding savings in cost. Experimental results will be presented including the individual received RF signal power spectra for the L, C, X, Ku, Ka, and Q frequency bands, and measurements of the phase noise associated with each RF frequency. Also to be presented is a swept RF frequency power spectrum showing simultaneous multiple RF frequency bands transmission. The RF frequency bands in this experiment are among those most commonly used in NASA space environment communications.

  1. Demonstration of space optical transmitter development for multiple high-frequency bands

    NASA Astrophysics Data System (ADS)

    Nguyen, Hung; Simons, Rainee; Wintucky, Edwin; Freeman, Jon

    2013-05-01

    As the demand for multiple radio frequency carrier bands continues to grow in space communication systems, the design of a cost-effective compact optical transmitter that is capable of transmitting selective multiple RF bands is of great interest, particularly for NASA Space Communications Network Programs. This paper presents experimental results that demonstrate the feasibility of a concept based on an optical wavelength division multiplexing (WDM) technique that enables multiple microwave bands with different modulation formats and bandwidths to be combined and transmitted all in one unit, resulting in many benefits to space communication systems including reduced size, weight and complexity with corresponding savings in cost. Experimental results will be presented including the individual received RF signal power spectra for the L, C, X, Ku, Ka, and Q frequency bands, and measurements of the phase noise associated with each RF frequency. Also to be presented is a swept RF frequency power spectrum showing simultaneous multiple RF frequency bands transmission. The RF frequency bands in this experiment are among those most commonly used in NASA space environment communications.

  2. Discrete Particle Swarm Optimization Routing Protocol for Wireless Sensor Networks with Multiple Mobile Sinks

    PubMed Central

    Yang, Jin; Liu, Fagui; Cao, Jianneng; Wang, Liangming

    2016-01-01

    Mobile sinks can achieve load-balancing and energy-consumption balancing across the wireless sensor networks (WSNs). However, the frequent change of the paths between source nodes and the sinks caused by sink mobility introduces significant overhead in terms of energy and packet delays. To enhance network performance of WSNs with mobile sinks (MWSNs), we present an efficient routing strategy, which is formulated as an optimization problem and employs the particle swarm optimization algorithm (PSO) to build the optimal routing paths. However, the conventional PSO is insufficient to solve discrete routing optimization problems. Therefore, a novel greedy discrete particle swarm optimization with memory (GMDPSO) is put forward to address this problem. In the GMDPSO, particle’s position and velocity of traditional PSO are redefined under discrete MWSNs scenario. Particle updating rule is also reconsidered based on the subnetwork topology of MWSNs. Besides, by improving the greedy forwarding routing, a greedy search strategy is designed to drive particles to find a better position quickly. Furthermore, searching history is memorized to accelerate convergence. Simulation results demonstrate that our new protocol significantly improves the robustness and adapts to rapid topological changes with multiple mobile sinks, while efficiently reducing the communication overhead and the energy consumption. PMID:27428971

  3. Multiple power-saving MSSs scheduling methods for IEEE802.16e broadband wireless networks.

    PubMed

    Huang, Shih-Chang

    2014-01-01

    This work proposes two enhanced multiple mobile subscriber stations (MSSs) power-saving scheduling methods for IEEE802.16e broadband wireless networks. The proposed methods are designed for the Unsolicited Grant Service (UGS) of IEEE802.16e. To reduce the active periods of all power-saving MSSs, the base station (BS) allocates each MSS fewest possible transmission frames to retrieve its data from the BS. The BS interlaces the active periods of each MSS to increase the amount of scheduled MSSs and splits the overflowing transmission frames to maximize the bandwidth utilization. Simulation results reveal that interlacing the active periods of MSSs can increase the number of scheduled MSSs to more than four times of that in the Direct scheduling method. The bandwidth utilization can thus be improved by 60%-70%. Splitting the overflowing transmission frames can improve bandwidth utilization by more than 10% over that achieved using the method of interlacing active periods, with a sacrifice of only 1% of the sleep periods in the interlacing active period method.

  4. A prospective randomised study of local anaesthetic injection after multiple rubber band ligation of haemorrhoids.

    PubMed

    Gokalp, Avni; Baskonus, Ilyas; Maralcan, Gokturk

    2003-01-01

    One hundred and forty-two patients with second and third degree internal haemorrhoids were randomised to rubber band ligation only (n = 72) or rubber band ligation + local anaesthetic injection (n = 70). Pain was assessed by the patients at intervals of 6 hours and 1, 2, 3 and 4 days after banding. Other symptoms, complications, analgesic requirements and patient satisfaction were also recorded for 10 days following the treatment. There was a significant reduction in pain at 60 minutes and 6 hours after the procedure in the rubber band ligation plus local anaesthetic injection patients compared with the rubber band ligation only group (P < 0.05), but there was no reduction in pain when local anaesthetic was used compared with rubber band ligation only on days 1, 2, 3 and 4 days after ligation. On day 10 after banding, there was no difference between the two groups with respect to symptoms such as nausea, feeling of heaviness and/or tenesmus, fainting; complications, analgesic consumption or overall patient satisfaction. Bupivacaine injection after multiple rubber band ligation may be useful in reducing pain during the first 6 hours of the postbanding period.

  5. Modeling the Multiple-Antenna Wireless Channel Using Maximum Entropy Methods

    NASA Astrophysics Data System (ADS)

    Guillaud, M.; Debbah, M.; Moustakas, A. L.

    2007-11-01

    Analytical descriptions of the statistics of wireless channel models are desirable tools for communication systems engineering. When multiple antennas are available at the transmit and/or the receive side (the Multiple-Input Multiple-Output, or MIMO, case), the statistics of the matrix H representing the gains between the antennas of a transmit and a receive antenna array, and in particular the correlation between its coefficients, are known to be of paramount importance for the design of such systems. However these characteristics depend on the operating environment, since the electromagnetic propagation paths are dictated by the surroundings of the antenna arrays, and little knowledge about these is available at the time of system design. An approach using the Maximum Entropy principle to derive probability density functions for the channel matrix, based on various degrees of knowledge about the environment, is presented. The general idea is to apply the maximum entropy principle to obtain the distribution of each parameter of interest (e.g. correlation), and then to marginalize them out to obtain the full channel distribution. It was shown in previous works, using sophisticated integrals from statistical physics, that by using the full spatial correlation matrix E{vec(H)vec(H)H} as the intermediate modeling parameter, this method can yield surprisingly concise channel descriptions. In this case, the joint probability density function is shown to be merely a function of the Frobenius norm of the channel matrix |H|F. In the present paper, we investigate the case where information about the average covariance matrix is available (e.g. through measurements). The maximum entropy distribution of the covariance is derived under this constraint. Furthermore, we consider also the doubly correlated case, where the intermediate modeling parameters are chosen as the transmit- and receive-side channel covariance matrices (respectively E{HHH} and E{HHH}). We compare the

  6. Multiple access capacity trade-offs for a Ka-band personal access satellite system

    NASA Technical Reports Server (NTRS)

    Dessouky, Khaled; Motamedi, Masoud

    1990-01-01

    System capability is critical to the economic viability of a personal satellite communication system. Ka band has significant potential to support a high capacity multiple access system because of the availability of bandwidth. System design tradeoffs are performed and multiple access schemes are compared with the design goal of achieving the highest capacity and efficiency. Conclusions regarding the efficiency of the different schemes and the achievable capacities are given.

  7. Lipoinjection and Multiple Internal Cuts for Congenital Constriction Bands: A New Treatment Approach.

    PubMed

    Castro-Govea, Yanko; Vela-Martinez, Amin; Treviño-Garcia, Luis Alberto

    2017-04-01

    Traditional treatment for a congenital constriction band of the limb involves multiple Z-plasties and W-plasties. We propose an alternative surgical procedure for the treatment of congenital constriction bands that obviates the need for Z-plasties and eliminates the constriction band. We present the case of a 36-year-old woman with a congenital constriction band of the leg. Using a minimally invasive approach, the skin segment that included the band was dissected from the deep tissues. Afterwards, multiple slices were performed on the internal surface of the fibrous ring. This and lipoinjection were used to reverse the depression that characterizes the "hourglass sign" and homogenize the skin surface. Results have remained stable in a follow-up period of 18 months. This surgical alternative can be considered as an option for the treatment of congenital constriction bands. It is a safe, reproducible procedure that does not cause additional scars and has good functional and aesthetic results. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  8. Construction of a wireless communication contact closure system for liquid chromatography with multiple parallel mass spectrometers and other detectors.

    PubMed

    Byrdwell, William Craig

    2014-10-01

    A contact closure system was constructed that uses two contact closure sender boards that communicate wirelessly to four contact closure receiver boards to distribute start signals from two or three liquid chromatographs to 14 instruments, pumps, detectors, or other components. Default high, closed low, TTL logic (5-volt) start signals from two autosamplers are converted to simple contacts by powered relay boards that are then connected to two 16-channel wireless contact closure sender boards. The contact closure signals from the two sender boards are transmitted wirelessly to two pairs of eight-channel receiver boards (total of 32 contact signals) that distribute the start signal to 14 switches that allow selection of which start signal is sent to which instrument, pump, or detector. The contact closure system is used for quadruple parallel mass spectrometry experiments in which four mass spectrometers, using three different atmospheric pressure ionization modes, plus a UV detector, an evaporative light-scattering detector, a corona charged aerosol detector, and two syringe pumps supplying electrolyte, are all synchronized to start simultaneously. A wide variety of liquid chromatography-mass spectrometry experiments using multiple liquid chromatographs and mass spectrometers simultaneously, LCx/MSy, including column-switching experiments, can be reconfigured simply by toggling switches.

  9. Analysis and Testing of Mobile Wireless Networks

    NASA Technical Reports Server (NTRS)

    Alena, Richard; Evenson, Darin; Rundquist, Victor; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Wireless networks are being used to connect mobile computing elements in more applications as the technology matures. There are now many products (such as 802.11 and 802.11b) which ran in the ISM frequency band and comply with wireless network standards. They are being used increasingly to link mobile Intranet into Wired networks. Standard methods of analyzing and testing their performance and compatibility are needed to determine the limits of the technology. This paper presents analytical and experimental methods of determining network throughput, range and coverage, and interference sources. Both radio frequency (BE) domain and network domain analysis have been applied to determine wireless network throughput and range in the outdoor environment- Comparison of field test data taken under optimal conditions, with performance predicted from RF analysis, yielded quantitative results applicable to future designs. Layering multiple wireless network- sooners can increase performance. Wireless network components can be set to different radio frequency-hopping sequences or spreading functions, allowing more than one sooner to coexist. Therefore, we ran multiple 802.11-compliant systems concurrently in the same geographical area to determine interference effects and scalability, The results can be used to design of more robust networks which have multiple layers of wireless data communication paths and provide increased throughput overall.

  10. Flow Banding in Volcanic Rocks: A Record of Multiplicative Magma Deformation

    NASA Astrophysics Data System (ADS)

    Gonnermann, H. M.; Manga, M.

    2004-12-01

    Banding in obsidian from Big Glass Mountain (BGM), Medicine Lake volcano, California and Mayor Island (MI), New Zealand provide a record with a 1/wavenumber power-spectral density and multifractal characteristics. The samples are compositionally homogeneous, with banding defined by variable microlite content (BGM) or vesicularity (MI). In both samples banding formation is well explained by continuous deformational reworking of magma and a concurrent change in crystallinity (vesicularity) that is a small random multiple of the total amount already present. Banding formation therefore represents a multiplicative process. We complement our spectral and multifractal analysis with several null-hypothesis test and propose repeated brittle deformation, concurrent development of textural heterogeneity (microlite content or vesicularity), reannealing, and viscous deformation as a viable process for the formation of flow banding in these samples. A brittle deformational component in a simple flow geometry, for example during magma ascent in the volcanic conduit, provides a suitable mechanism for (1) the spatial redistribution of textural heterogeneity over a broad range of length scales; (2) enhanced open-system magma degassing via a temporary network of highly permeable cracks and fractures; and (3) the development of spatially variable microlite content (vesicularity) through variable degassing of magma located at different proximities to cracks and fractures.

  11. A robust SEM auto-focus algorithm using multiple band-pass filters

    NASA Astrophysics Data System (ADS)

    Harada, Minoru; Obara, Kenji; Nakamae, Koji

    2017-01-01

    An auto-focus algorithm using multiple band-pass filters for a scanning electron microscope (SEM) is proposed. To acquire sharp images of various kinds of defects by SEM defect observation in semiconductor manufacturing, the auto-focus process must be robust. A method for designing a band-pass filter for calculating the ‘focus measure’ (a key parameter of the auto-focus process) is proposed. To achieve an optimal specific frequency response for various images, multiple band-pass filters are introduced. As for the proposed method, two series of focus measures are calculated by using multiple band-pass filters independently, and it is selected according to reliability of the series of focus measures. The signal-to-noise ratio of an image for acceptable auto-focus precision is determined by simulation using pseudo images. In an experiment using the proposed method with real images, the success rate of auto focus is improved from 79.4% to 95.6%.

  12. 100 Gbit/s hybrid optical fiber-wireless link in the W-band (75-110 GHz).

    PubMed

    Pang, Xiaodan; Caballero, Antonio; Dogadaev, Anton; Arlunno, Valeria; Borkowski, Robert; Pedersen, Jesper S; Deng, Lei; Karinou, Fotini; Roubeau, Fabien; Zibar, Darko; Yu, Xianbin; Monroy, Idelfonso Tafur

    2011-12-05

    We experimentally demonstrate an 100 Gbit/s hybrid optical fiber-wireless link by employing photonic heterodyning up-conversion of optical 12.5 Gbaud polarization multiplexed 16-QAM baseband signal with two free running lasers. Bit-error-rate performance below the FEC limit is successfully achieved for air transmission distances up to 120 cm.

  13. 78 FR 9605 - Operation of Wireless Communications Services in the 2.3 GHz Band; Establishment of Rules and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-11

    ...) and aeronautical mobile telemetry (AMT) operations in adjacent bands and the deep space network (DSN...) adjacent to the AMT spectrum; Prohibited WCS mobile and portable devices from transmitting in all portions... adjacent-band AMT receivers that operate in the 2360- 2395 MHz band. Therefore, the Order...

  14. Self-Organized Link State Aware Routing for Multiple Mobile Agents in Wireless Network

    NASA Astrophysics Data System (ADS)

    Oda, Akihiro; Nishi, Hiroaki

    Recently, the importance of data sharing structures in autonomous distributed networks has been increasing. A wireless sensor network is used for managing distributed data. This type of distributed network requires effective information exchanging methods for data sharing. To reduce the traffic of broadcasted messages, reduction of the amount of redundant information is indispensable. In order to reduce packet loss in mobile ad-hoc networks, QoS-sensitive routing algorithm have been frequently discussed. The topology of a wireless network is likely to change frequently according to the movement of mobile nodes, radio disturbance, or fading due to the continuous changes in the environment. Therefore, a packet routing algorithm should guarantee QoS by using some quality indicators of the wireless network. In this paper, a novel information exchanging algorithm developed using a hash function and a Boolean operation is proposed. This algorithm achieves efficient information exchanges by reducing the overhead of broadcasting messages, and it can guarantee QoS in a wireless network environment. It can be applied to a routing algorithm in a mobile ad-hoc network. In the proposed routing algorithm, a routing table is constructed by using the received signal strength indicator (RSSI), and the neighborhood information is periodically broadcasted depending on this table. The proposed hash-based routing entry management by using an extended MAC address can eliminate the overhead of message flooding. An analysis of the collision of hash values contributes to the determination of the length of the hash values, which is minimally required. Based on the verification of a mathematical theory, an optimum hash function for determining the length of hash values can be given. Simulations are carried out to evaluate the effectiveness of the proposed algorithm and to validate the theory in a general wireless network routing algorithm.

  15. Automated Registration of Images from Multiple Bands of Resourcesat-2 Liss-4 camera

    NASA Astrophysics Data System (ADS)

    Radhadevi, P. V.; Solanki, S. S.; Jyothi, M. V.; Varadan, G.

    2014-11-01

    Continuous and automated co-registration and geo-tagging of images from multiple bands of Liss-4 camera is one of the interesting challenges of Resourcesat-2 data processing. Three arrays of the Liss-4 camera are physically separated in the focal plane in alongtrack direction. Thus, same line on the ground will be imaged by extreme bands with a time interval of as much as 2.1 seconds. During this time, the satellite would have covered a distance of about 14 km on the ground and the earth would have rotated through an angle of 30". A yaw steering is done to compensate the earth rotation effects, thus ensuring a first level registration between the bands. But this will not do a perfect co-registration because of the attitude fluctuations, satellite movement, terrain topography, PSM steering and small variations in the angular placement of the CCD lines (from the pre-launch values) in the focal plane. This paper describes an algorithm based on the viewing geometry of the satellite to do an automatic band to band registration of Liss-4 MX image of Resourcesat-2 in Level 1A. The algorithm is using the principles of photogrammetric collinearity equations. The model employs an orbit trajectory and attitude fitting with polynomials. Then, a direct geo-referencing with a global DEM with which every pixel in the middle band is mapped to a particular position on the surface of the earth with the given attitude. Attitude is estimated by interpolating measurement data obtained from star sensors and gyros, which are sampled at low frequency. When the sampling rate of attitude information is low compared to the frequency of jitter or micro-vibration, images processed by geometric correction suffer from distortion. Therefore, a set of conjugate points are identified between the bands to perform a relative attitude error estimation and correction which will ensure the internal accuracy and co-registration of bands. Accurate calculation of the exterior orientation parameters with

  16. Multi-bands photoconductive response in AlGaN/GaN multiple quantum wells

    SciTech Connect

    Chen, G.; Rong, X.; Xu, F. J.; Tang, N.; Wang, X. Q. Shen, B.; Fu, K.; Zhang, B. S.; Hashimoto, H.; Yoshikawa, A.; Ge, W. K.

    2014-04-28

    Based on the optical transitions among the quantum-confined electronic states in the conduction band, we have fabricated multi-bands AlGaN/GaN quantum well infrared photodetectors. Crack-free AlGaN/GaN multiple quantum wells (MQWs) with atomically sharp interfaces have been achieved by inserting an AlN interlayer, which releases most of the tensile strain in the MQWs grown on the GaN underlayer. With significant reduction of dark current by using thick AlGaN barriers, photoconductive responses are demonstrated due to intersubband transition in multiple regions with center wavelengths of 1.3, 2.3, and 4 μm, which shows potential applications on near infrared detection.

  17. Multiple band gaps of phononic crystals with quasi-Sierpinski carpet unit cells

    NASA Astrophysics Data System (ADS)

    Huang, Jiankun; Shi, Zhifei; Huang, Weixin

    2017-07-01

    This work investigated the dispersion curves of phononic crystals with quasi-Sierpinski carpet unit cells via improved plane wave expansion method. The position vector derivative method was applied to generate Sierpinski and quasi-Sierpinski carpet unit cells. Wave dispersion mechanisms of fractal phononic crystals were investigated by calculating the vibration modes of unit cells. The results show that (quasi-)fractal phononic crystals are benefit for obtaining multiple and wider band gaps, especially for the second stage case. For quasi-Sierpinski carpet unit cells, the multiple band gap feature becomes much more obvious due to the increase of the filling fraction. Numerical analysis of a finite quasi-fractal phononic crystal indicated the potential application of phononic crystals with quasi-Sierpinski carpet unit cells.

  18. Performance of an adaptive coding scheme in a fixed wireless cellular system working in millimeter-wave bands

    NASA Astrophysics Data System (ADS)

    Farahvash, Shayan; Akhavan, Koorosh; Kavehrad, Mohsen

    1999-12-01

    This paper presents a solution to problem of providing bit- error rate performance guarantees in a fixed millimeter-wave wireless system, such as local multi-point distribution system in line-of-sight or nearly line-of-sight applications. The basic concept is to take advantage of slow-fading behavior of fixed wireless channel by changing the transmission code rate. Rate compatible punctured convolutional codes are used to implement adaptive coding. Cochannel interference analysis is carried out for downlink direction; from base station to subscriber premises. Cochannel interference is treated as a noise-like random process with a power equal to the sum of the power from finite number of interfering base stations. Two different cellular architectures based on using single or dual polarizations are investigated. Average spectral efficiency of the proposed adaptive rate system is found to be at least 3 times larger than a fixed rate system with similar outage requirements.

  19. A 400G optical wireless integration delivery system.

    PubMed

    Li, Xinying; Yu, Jianjun; Zhang, Junwen; Dong, Ze; Li, Fan; Chi, Nan

    2013-08-12

    We experimentally demonstrate a record 400G optical wireless integration system simultaneously delivering 2 × 112 Gb/s two-channel polarization-division-multiplexing 16-ary quadrature amplitude modulation (PDM-16QAM) signal at 37.5 GHz wireless carrier and 2 × 108 Gb/s two-channel PDM quadrature phase shift keying (PDM-QPSK) signal at 100 GHz wireless carrier, adopting two millimeter-wave (mm-wave) frequency bands, two orthogonal antenna polarizations, multiple-input multiple-output (MIMO), photonic mm-wave generation and advanced digital signal processing (DSP). In the case of no fiber transmission, the bit error ratios (BERs) for both the 112 Gb/s PDM-16QAM signal after 1.5 m wireless delivery at 37.5 GHz and the 108 Gb/s PDM-QPSK signal after 0.7 m wireless delivery at 100 GHz are below the pre-forward-error-correction (pre-FEC) threshold of 3.8 × 10(-3). To our knowledge, this is the first demonstration of a 400G optical wireless integration system in mm-wave frequency bands and also a capacity record of wireless delivery.

  20. A Wireless Sensor Network for Growth Environment Measurement and Multi-Band Optical Sensing to Diagnose Tree Vigor

    PubMed Central

    Kameoka, Shinichi; Isoda, Shuhei; Hashimoto, Atsushi; Ito, Ryoei; Miyamoto, Satoru; Wada, Genki; Watanabe, Naoki; Yamakami, Takashi; Suzuki, Ken; Kameoka, Takaharu

    2017-01-01

    We have tried to develop the guidance system for farmers to cultivate using various phenological indices. As the sensing part of this system, we deployed a new Wireless Sensor Network (WSN). This system uses the 920 MHz radio wave based on the Wireless Smart Utility Network that enables long-range wireless communication. In addition, the data acquired by the WSN were standardized for the advanced web service interoperability. By using these standardized data, we can create a web service that offers various kinds of phenological indices as secondary information to the farmers in the field. We have also established the field management system using thermal image, fluorescent and X-ray fluorescent methods, which enable the nondestructive, chemical-free, simple, and rapid measurement of fruits or trees. We can get the information about the transpiration of plants through a thermal image. The fluorescence sensor gives us information, such as nitrate balance index (NBI), that shows the nitrate balance inside the leaf, chlorophyll content, flavonol content and anthocyanin content. These methods allow one to quickly check the health of trees and find ways to improve the tree vigor of weak ones. Furthermore, the fluorescent x-ray sensor has the possibility to quantify the loss of minerals necessary for fruit growth. PMID:28448452

  1. Visualization of microtubule growth in living platelets reveals a dynamic marginal band with multiple microtubules

    PubMed Central

    Patel-Hett, Sunita; Richardson, Jennifer L.; Schulze, Harald; Drabek, Ksenija; Isaac, Natasha A.; Hoffmeister, Karin; Shivdasani, Ramesh A.; Bulinski, J. Chloë; Galjart, Niels; Hartwig, John H.

    2008-01-01

    The marginal band of microtubules maintains the discoid shape of resting blood platelets. Although studies of platelet microtubule coil structure conclude that it is composed of a single microtubule, no investigations of its dynamics exist. In contrast to previous studies, permeabilized platelets incubated with GTP-rhodamine-tubulin revealed tubulin incorporation at 7.9 (± 1.9) points throughout the coil, and anti-EB1 antibodies stained 8.7 (± 2.0) sites, indicative of multiple free microtubules. To pursue this result, we expressed the microtubule plus-end marker EB3-GFP in megakaryocytes and examined its behavior in living platelets released from these cells. Time-lapse microscopy of EB3-GFP in resting platelets revealed multiple assembly sites within the coil and a bidirectional pattern of assembly. Consistent with these findings, tyrosinated tubulin, a marker of newly assembled microtubules, localized to resting platelet microtubule coils. These results suggest that the resting platelet marginal band contains multiple highly dynamic microtubules of mixed polarity. Analysis of microtubule coil diameters in newly formed resting platelets indicates that microtubule coil shrinkage occurs with aging. In addition, activated EB3-GFP–expressing platelets exhibited a dramatic increase in polymerizing microtubules, which travel outward and into filopodia. Thus, the dynamic microtubules associated with the marginal band likely function during both resting and activated platelet states. PMID:18230754

  2. Simulations of Radar Bright Band at Multiple Frequencies and Its Comparisons with Airborne Radar Measurements

    NASA Astrophysics Data System (ADS)

    Liao, L.; Meneghini, R.

    2010-12-01

    The melting layer, often observed by the radar as a layer of enhanced radar reflectivity (the so-called radar bright band), is an important meteorological process. An understanding of the microphysical properties of the melting hydrometeors and their electric scattering and propagation effects is of great importance in accurately estimating parameters of the precipitation from spaceborne radar and radiometers, such as TRMM PR and TMI and future GPM DPR and GMI. However, one of the most difficult problems in the study of the radar signature of the melting layer is the determination of the effective dielectric constants of melting hydrometeors. Although a number of mixing formulas are available to compute the effective dielectric constants of dry and melting snow, their results vary to a great extent when the particles are partially melted. Furthermore, it is physically unclear as to how to select among these various formulas. In this study, we first derive the effective dielectric constants of uniformly mixed snow and water particles at X-, Ku-, Ka- and W-bands from their internal electric fields by using a high-resolution computational model in which the particles are precisely described not only by shape but also by particle composition. The stratified-sphere scattering model, a sphere composed of multiple layers, is then employed to compute scattering parameters for non-uniformly melting hydrometeors whose fractional water content is prescribed as a function of the radius of the sphere. In conjunction with a melting layer model that describes the melting fractions and fall velocities of hydrometeors as a function of the distance below the 0C isotherm, the radar bright-band profiles are simulated for air- or space-borne radars operating at X-, Ku-, Ka- and W-bands. These simulated profiles will then be compared with the simultaneous measurements of the bright band made by the NICT (then the Communications Research Lab. of Japan) X- and Ka-band airborne radar

  3. Polydactylous Transverse Erythronychia: Report of a Patient with Multiple Horizontal Red Bands Affecting the Fingernails.

    PubMed

    Chang, Carina; Beutler, Bryce D; Cohen, Philip R

    2017-06-01

    Redness of the nail plate-erythronychia-is a common condition involving one or multiple digits. It may affect the entire nail or present as longitudinal red bands that extend from the proximal nail fold to the distal tip of the nail plate. Rarely, red bands may traverse the nail bed horizontally. Although erythronychia is often idiopathic, it has also been associated with amyloidosis, Darier's disease, lichen planus, and various other cutaneous conditions. We describe the clinical features of a 64-year-old Caucasian man who presented with transverse and longitudinal erythronychia affecting his fingernails. In addition, we review the classification of erythronychia and summarize the acute and chronic conditions that have been associated with this clinical finding. The features of a man with polydactylous transverse and longitudinal erythronychia are presented. In addition, PubMed was used to search the following terms: erythronychia, longitudinal erythronychia, red lunulae, and subungual. All papers were reviewed, and relevant articles, along with their references, were evaluated. Informed consent was obtained from the patient for being included in the study. A 64-year-old Caucasian man with a past medical history significant for testicular cancer and pulmonary embolism presented with multiple horizontal pink-red bands affecting his fingernails. The discoloration was most prominent in the region distal to the lunula. In addition, the nails of the fifth digit of his left hand and third digit of his right hand featured longitudinal red bands extending from the distal curvature of the lunula to the free edge of the nail plate. A diagnosis of polydactylous longitudinal and transverse erythronychia, based on the clinical presentation, was established. Our patient's red bands were asymptomatic and he was not concerned about the cosmetic appearance of his nails; therefore, no additional investigation or treatment was required. Polydactylous transverse erythronychia is a

  4. Autonomous management of a recursive area hierarchy for large scale wireless sensor networks using multiple parents

    SciTech Connect

    Cree, Johnathan Vee; Delgado-Frias, Jose

    2016-03-01

    Large scale wireless sensor networks have been proposed for applications ranging from anomaly detection in an environment to vehicle tracking. Many of these applications require the networks to be distributed across a large geographic area while supporting three to five year network lifetimes. In order to support these requirements large scale wireless sensor networks of duty-cycled devices need a method of efficient and effective autonomous configuration/maintenance. This method should gracefully handle the synchronization tasks duty-cycled networks. Further, an effective configuration solution needs to recognize that in-network data aggregation and analysis presents significant benefits to wireless sensor network and should configure the network in a way such that said higher level functions benefit from the logically imposed structure. NOA, the proposed configuration and maintenance protocol, provides a multi-parent hierarchical logical structure for the network that reduces the synchronization workload. It also provides higher level functions with significant inherent benefits such as but not limited to: removing network divisions that are created by single-parent hierarchies, guarantees for when data will be compared in the hierarchy, and redundancies for communication as well as in-network data aggregation/analysis/storage.

  5. Bio-WiTel: A Low Power Integrated Wireless Telemetry System for Healthcare Applications in 401-406 MHz Band of MedRadio Spectrum.

    PubMed

    Srivastava, Abhishek; Sankar, Nithin; Chatterjee, Baibhab; Das, Devarshi; Ahmad, Meraj; Kukkundoor, Rakesh; Saraf, Vivek; Jayachandran, Ananthpadmanabhan; Sharma, Dinesh; Baghini, Maryam

    2016-12-14

    This paper presents a low power integrated wireless telemetry system (Bio-WiTel) for healthcare applications in 401- 406 MHz frequency band of Medical Device RadioCommunication (MedRadio) spectrum. In this work, necessary design considerations for telemetry system for short range (upto 3 m) communication of bio-signals are presented. These considerations greatly help in taking important design decisions, which eventually lead to a simple, low power, robust and reliable wireless system implementation. Transmitter (TX) and receiver (RX) of Bio-WiTel system have been fabricated in 180 nm mixed mode CMOS technology. While radiating -18 dBm output power to a 50 antenna, the packaged TX IC consumes 250 μW power in 100% on state from 1 V supply whereas the RX IC consumes 990 μW power from 1.8 V supply with a sensitivity of -75 dBm. Measurement results show that TX fulfils the spectral mask requirement at a maximum data rate of 72 kbps. The measured bit error rate of RX is less than 10-4 for a data rate of 200 kbps. The proposed Bio-WiTel system is tested successfully in home and hospital environments for the communication of electrocardiogram (ECG) and photoplethysmogram (PPG) signals at a data rate of 57.6 kbps with a measured BER of < 10-4 for a maximum distance of 3 m.

  6. Molecular approach to find target(s) for oligoclonal bands in multiple sclerosis

    PubMed Central

    Rand, K.; Houck, H.; Denslow, N.; Heilman, K.

    1998-01-01

    OBJECTIVES—Oligoclonal bands are a characteristic finding in the CSF of patients with multiple sclerosis, yet their target antigen(s) remain unknown. The objective was to determine whether a filamentous phage peptide library could be employed to allow the oligoclonal bands to select their own target epitopes.
METHODS—CSF IgG antibody from 14 patients with multiple sclerosis and 14 controls was used to select individual phage clones from a bacteriophage library containing≈4 × 107 different hexamers expressed on its surface pIII protein. The amino acid sequence selected was deduced by sequencing the DNA of the genetically engineered insert.
RESULTS—In general, after three rounds of selection, CSF from both patients with multiple sclerosis and controls selected one to two consistent peptide motifs. Five out of 14 patients with multiple sclerosis, and one control, selected the amino acid sequence motif, RRPFF. Given 20 possible amino acids per position, the likelihood of five patients selecting the same linear five amino acid sequence is at most 1.6 × 10-13, corrected for the number of clones sequenced. A GenBank computer search showed that this sequence is found in the Epstein-Barr Virus nuclear antigen (EBNA-1), and a heat shock protein αB crystallin. Human serum antibodies to a synthetic peptide containing RRPFF were virtually exclusively found in patients with prior infection by Epstein-Barr virus. Other studies have suggested a relation between Epstein-Barr virus infection and multiple sclerosis, including nearly 100% Epstein-Barr virus seropositivity among patients with multiple sclerosis and increased concentrations of antibody to EBNA in CSF of patients with multiple sclerosis. By antigen specific immunoblotting, antibodies to the RRPFF motif in the CSF were shown to correspond to a subset of oligoclonal bands in the CSF from the same patient.
CONCLUSION—This study shows that phage epitope display libraries may be used to select amino acid

  7. Multiple Band-Pass Autoregressive Demodulation for Rolling-Element Bearing Fault Diagnosis

    NASA Astrophysics Data System (ADS)

    Altmann, J.; Mathew, J.

    2001-09-01

    This paper presents a novel method to enhance the detection and diagnosis of low-speed rolling-element bearing faults based on discrete wavelet packet analysis (DWPA). The method involves the automatic extraction of wavelet packets containing bearing fault-related features from the discrete wavelet packet analysis representation of machine vibrations. Automated selection of the wavelet packets of interest is achieved via an adaptive network-based fuzzy inference system (ANFIS), which can be implemented on-line. The resultant signal extracted by this technique is essentially an optimal multiple band-pass filter of the high-frequency bearing impact transients. Used in conjunction with the autoregressive (AR) spectrum of the envelope signal, a sensitive diagnosis of the bearing condition can be made. The discrete wavelet packet analysis multiple band-pass filtering of the signal results in a significantly improved signal-to-noise ratio compared to its high-pass counterpart, with an exceptional capacity to exclude contaminating sources of vibration. A more modest increase in the signal-to-noise ratio is achieved when compared to digital band-pass filtering, with the filter range adjusted to obtain the best possible isolation of the bearing transients.

  8. Optimized Sharable-Slot Allocation Using Multiple Channels to Reduce Data-Gathering Delay in Wireless Sensor Networks

    PubMed Central

    Van Vinh, Phan; Oh, Hoon

    2016-01-01

    The demand for event-driven real-time applications for timely and reliable data acquisition is growing in industrial sectors. However, it is challenging to satisfy the requirements since constraints such as limited available energy and bandwidth are inherent in a wireless sensor network. To deal with timely delivery, one desirable approach is to improve network throughput so that more real-time applications with tighter time constraints can be satisfied in any given network. To deal with reliable delivery, the use of a carrier sense multiple access mechanism for data transmission is preferred, along with the use of a sharable slot within which multiple nodes compete to send data. Thus, we present a method of using multiple channels and a way to optimize the size of the sharable slot. The proposed channel-slot–scheduling algorithm tries to optimize the size of a sharable slot when multiple channels are used. The algorithm also deals with situations where nodes generate multiple data packets in each round of a data-gathering period. It is shown through simulation that our approach greatly outperforms others on some selected metrics. PMID:27070619

  9. 2  ×  2 multiple-input multiple-output optical-wireless integration system based on optical independent-sideband modulation enabled by an in-phase/quadrature modulator.

    PubMed

    Li, Xinying; Yu, Jianjun

    2016-07-01

    We propose a novel and simple 2×2 multiple-input multiple-output (MIMO) optical-wireless integration system, in which optical independent-sideband modulation enabled by an in-phase/quadrature (I/Q) modulator, instead of optical polarization multiplexing, is used to assist the simultaneous generation of two wireless millimeter-wave (mm-wave) signals. Software-based digital signal processing is used to generate the driving signal for the I/Q modulator, the output of which is two independent single-sideband optical vector signals located at two sides of a large central optical carrier. Based on our proposed 2×2 MIMO optical-wireless integration system, we experimentally demonstrate the simultaneous generation and 2×2 MIMO wireless delivery of two independent 40-GHz quadrature-phase-shift-keying (QPSK) wireless mm-wave signals. Each 40-GHz QPSK wireless mm-wave signal can carry up to 4-Gbaud transmitter data with a bit-error ratio less than the hard-decision forward-error-correction threshold of 3.8×10-3.

  10. A Wireless Sensor Enabled by Wireless Power

    PubMed Central

    Lee, Da-Sheng; Liu, Yu-Hong; Lin, Chii-Ruey

    2012-01-01

    Through harvesting energy by wireless charging and delivering data by wireless communication, this study proposes the concept of a wireless sensor enabled by wireless power (WPWS) and reports the fabrication of a prototype for functional tests. One WPWS node consists of wireless power module and sensor module with different chip-type sensors. Its main feature is the dual antenna structure. Following RFID system architecture, a power harvesting antenna was designed to gather power from a standard reader working in the 915 MHz band. Referring to the Modbus protocol, the other wireless communication antenna was integrated on a node to send sensor data in parallel. The dual antenna structure integrates both the advantages of an RFID system and a wireless sensor. Using a standard UHF RFID reader, WPWS can be enabled in a distributed area with a diameter up to 4 m. Working status is similar to that of a passive tag, except that a tag can only be queried statically, while the WPWS can send dynamic data from the sensors. The function is the same as a wireless sensor node. Different WPWSs equipped with temperature and humidity, optical and airflow velocity sensors are tested in this study. All sensors can send back detection data within 8 s. The accuracy is within 8% deviation compared with laboratory equipment. A wireless sensor network enabled by wireless power should be a totally wireless sensor network using WPWS. However, distributed WPWSs only can form a star topology, the simplest topology for constructing a sensor network. Because of shielding effects, it is difficult to apply other complex topologies. Despite this limitation, WPWS still can be used to extend sensor network applications in hazardous environments. Further research is needed to improve WPWS to realize a totally wireless sensor network. PMID:23443370

  11. A wireless sensor enabled by wireless power.

    PubMed

    Lee, Da-Sheng; Liu, Yu-Hong; Lin, Chii-Ruey

    2012-11-22

    Through harvesting energy by wireless charging and delivering data by wireless communication, this study proposes the concept of a wireless sensor enabled by wireless power (WPWS) and reports the fabrication of a prototype for functional tests. One WPWS node consists of wireless power module and sensor module with different chip-type sensors. Its main feature is the dual antenna structure. Following RFID system architecture, a power harvesting antenna was designed to gather power from a standard reader working in the 915 MHz band. Referring to the Modbus protocol, the other wireless communication antenna was integrated on a node to send sensor data in parallel. The dual antenna structure integrates both the advantages of an RFID system and a wireless sensor. Using a standard UHF RFID reader, WPWS can be enabled in a distributed area with a diameter up to 4 m. Working status is similar to that of a passive tag, except that a tag can only be queried statically, while the WPWS can send dynamic data from the sensors. The function is the same as a wireless sensor node. Different WPWSs equipped with temperature and humidity, optical and airflow velocity sensors are tested in this study. All sensors can send back detection data within 8 s. The accuracy is within 8% deviation compared with laboratory equipment. A wireless sensor network enabled by wireless power should be a totally wireless sensor network using WPWS. However, distributed WPWSs only can form a star topology, the simplest topology for constructing a sensor network. Because of shielding effects, it is difficult to apply other complex topologies. Despite this limitation, WPWS still can be used to extend sensor network applications in hazardous environments. Further research is needed to improve WPWS to realize a totally wireless sensor network.

  12. Traffic Regulation on Wireless 802.11 Networks Using Multiple Queue Technique

    NASA Astrophysics Data System (ADS)

    Dhanal, Radhika J.; Patil, G. A.

    2010-11-01

    WLAN technologies are becoming increasingly popular and are platform for many future applications. IEEE 802.11 Wireless LAN (WLAN) is an excellent solution for the broadband wireless networking. This paper presents a simple approach to enhance the performance of real time (RT) and non-real time (NRT) services over the 802.11 WLAN by using some special queues. This requires the system to first identify the type of service and then use the appropriate scheduling algorithm. The admission control algorithm is used first to determine the admission of particular station. Deficit round robin algorithm is used to set the priorities to RT and NRT packets in order to increase the QoS of WLAN. So we can combine both these algorithms by implementing them one after another. The proposed scheme can improve Voice/Data/Video services through simple software upgrades by reducing the delay, jitter and increasing the throughput. Through simulation, we show that the proposed scheme can give better QoS than existing schemes.

  13. Spectrally efficient localized carrier distribution scheme for multiple-user DFT-S OFDM RoF- PON wireless access systems.

    PubMed

    Tao, Li; Yu, Jianjun; Yang, Qi; Luo, Ming; He, Zhixue; Shao, Yufeng; Zhang, Junwen; Chi, Nan

    2012-12-31

    We propose a modified localized carrier distribution scheme based on multi-tone generation to generate 60 GHz mm-wave for different wireless users and it improves the carrier utilization efficiency by 33.3%. The principle of multiple-user discrete Fourier transform spread optical orthogonal frequency-division multiplexing (DFT-S OFDM) Radio-over-fiber (RoF) system is presented. This multiple-user system is applicable to passive optical network (PON). Then we demonstrate a 8 x 4.65 Gb/s multiple-user DFT-S OFDM RoF-PON wireless access system over 40 km fiber link and 60 GHz wireless link using two localized carrier distribution scheme with different spectral efficiency. Compared to conventional OFDM, 2.3 dB reduction of receiver power using DFT-S OFDM modulation scheme and the calculated BER performance for 8 wireless users clearly demonstrates the feasibility of this spectrally efficient multiple-user RoF-PON scheme.

  14. Utilization of multi-band OFDM modulation to increase traffic rate of phosphor-LED wireless VLC.

    PubMed

    Yeh, Chien-Hung; Chen, Hsing-Yu; Chow, Chi-Wai; Liu, Yen-Liang

    2015-01-26

    To increase the traffic rate in phosphor-LED visible light communication (VLC), a multi-band orthogonal frequency division multiplexed (OFDM) modulation is first proposed and demonstrated. In the measurement, we do not utilize optical blue filter to increase modulation bandwidth of phosphor-LED in the VLC system. In this proposed scheme, different bands of OFDM signals are applied to different LED chips in a LED lamp, this can avoid the power fading and nonlinearity issue by applying the same OFDM signal to all the LED chips in a LED lamp. Here, the maximum increase percentages of traffic rates are 41.1%, 17.8% and 17.8% under received illuminations of 200, 500 and 1000 Lux, respectively, when the proposed three-band OFDM modulation is used in the VLC system. In addition, the analysis and verification by experiments are also performed.

  15. Contextually sensitive power changes across multiple frequency bands underpin cognitive control.

    PubMed

    Cooper, Patrick S; Darriba, Álvaro; Karayanidis, Frini; Barceló, Francisco

    2016-05-15

    Flexible control of cognition bestows a remarkable adaptability to a broad range of contexts. While cognitive control is known to rely on frontoparietal neural architecture to achieve this flexibility, the neural mechanisms that allow such adaptability to context are poorly understood. In the current study, we quantified contextual demands on the cognitive control system via a priori estimation of information across three tasks varying in difficulty (oddball, go/nogo, and switch tasks) and compared neural responses across these different contexts. We report evidence of the involvement of multiple frequency bands during preparation and implementation of cognitive control. Specifically, a common frontoparietal delta and a central alpha process corresponded to rule implementation and motor response respectively. Interestingly, we found evidence of a frontal theta signature that was sensitive to increasing amounts of information and a posterior parietal alpha process only seen during anticipatory rule updating. Importantly, these neural signatures of context processing match proposed frontal hierarchies of control and together provide novel evidence of a complex interplay of multiple frequency bands underpinning flexible, contextually sensitive cognition. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Statistical mechanical analysis of the Kronecker channel model for multiple-input multiple-output wireless communication

    NASA Astrophysics Data System (ADS)

    Hatabu, Atsushi; Takeda, Koujin; Kabashima, Yoshiyuki

    2009-12-01

    The Kronecker channel model of wireless communication is analyzed using statistical mechanics methods. In the model, spatial proximities among transmission/reception antennas are taken into account as certain correlation matrices, which generally yield nontrivial dependence among symbols to be estimated. This prevents accurate assessment of the communication performance by naively using a previously developed analytical scheme based on a matrix integration formula. In order to resolve this difficulty, we develop a formalism that can formally handle the correlations in Kronecker models based on the known scheme. Unfortunately, direct application of the developed scheme is, in general, practically difficult. However, the formalism is still useful, indicating that the effect of the correlations generally increase after the fourth order with respect to correlation strength. Therefore, the known analytical scheme offers a good approximation in performance evaluation when the correlation strength is sufficiently small. For a class of specific correlation, we show that the performance analysis can be mapped to the problem of one-dimensional spin systems in random fields, which can be investigated without approximation by the belief propagation algorithm.

  17. An Interference-Aware Traffic-Priority-Based Link Scheduling Algorithm for Interference Mitigation in Multiple Wireless Body Area Networks

    PubMed Central

    Le, Thien T. T.; Moh, Sangman

    2016-01-01

    Currently, wireless body area networks (WBANs) are effectively used for health monitoring services. However, in cases where WBANs are densely deployed, interference among WBANs can cause serious degradation of network performance and reliability. Inter-WBAN interference can be reduced by scheduling the communication links of interfering WBANs. In this paper, we propose an interference-aware traffic-priority-based link scheduling (ITLS) algorithm to overcome inter-WBAN interference in densely deployed WBANs. First, we model a network with multiple WBANs as an interference graph where node-level interference and traffic priority are taken into account. Second, we formulate link scheduling for multiple WBANs as an optimization model where the objective is to maximize the throughput of the entire network while ensuring the traffic priority of sensor nodes. Finally, we propose the ITLS algorithm for multiple WBANs on the basis of the optimization model. High spatial reuse is also achieved in the proposed ITLS algorithm. The proposed ITLS achieves high spatial reuse while considering traffic priority, packet length, and the number of interfered sensor nodes. Our simulation results show that the proposed ITLS significantly increases spatial reuse and network throughput with lower delay by mitigating inter-WBAN interference. PMID:27999385

  18. 78 FR 77029 - Wireless Telecommunications Bureau Seeks Comment on a Proposal To License the 600 MHz Band Using...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-20

    ...In this document, the Commission seeks comment on an alternative proposal submitted by the Competitive Carriers Association (CCA), to adopt a new geographic area size called Partial Economic Areas to license the 600 MHz Band and seeks comment on the specific boundaries proposed by CCA, which would enable smaller and rural carriers to bid on portions of Economic areas to obtain more efficiently......

  19. Wireless Low-Power Integrated Basal-Body-Temperature Detection Systems Using Teeth Antennas in the MedRadio Band.

    PubMed

    Yang, Chin-Lung; Zheng, Gou-Tsun

    2015-11-20

    This study proposes using wireless low power thermal sensors for basal-body-temperature detection using frequency modulated telemetry devices. A long-term monitoring sensor requires low-power circuits including a sampling circuit and oscillator. Moreover, temperature compensated technologies are necessary because the modulated frequency might have additional frequency deviations caused by the varying temperature. The temperature compensated oscillator is composed of a ring oscillator and a controlled-steering current source with temperature compensation, so the output frequency of the oscillator does not drift with temperature variations. The chip is fabricated in a standard Taiwan Semiconductor Manufacturing Company (TSMC) 0.18-μm complementary metal oxide semiconductor (CMOS) process, and the chip area is 0.9 mm². The power consumption of the sampling amplifier is 128 µW. The power consumption of the voltage controlled oscillator (VCO) core is less than 40 µW, and the output is -3.04 dBm with a buffer stage. The output voltage of the bandgap reference circuit is 1 V. For temperature measurements, the maximum error is 0.18 °C with a standard deviation of ±0.061 °C, which is superior to the required specification of 0.1 °C.

  20. Wireless Low-Power Integrated Basal-Body-Temperature Detection Systems Using Teeth Antennas in the MedRadio Band

    PubMed Central

    Yang, Chin-Lung; Zheng, Gou-Tsun

    2015-01-01

    This study proposes using wireless low power thermal sensors for basal-body-temperature detection using frequency modulated telemetry devices. A long-term monitoring sensor requires low-power circuits including a sampling circuit and oscillator. Moreover, temperature compensated technologies are necessary because the modulated frequency might have additional frequency deviations caused by the varying temperature. The temperature compensated oscillator is composed of a ring oscillator and a controlled-steering current source with temperature compensation, so the output frequency of the oscillator does not drift with temperature variations. The chip is fabricated in a standard Taiwan Semiconductor Manufacturing Company (TSMC) 0.18-μm complementary metal oxide semiconductor (CMOS) process, and the chip area is 0.9 mm2. The power consumption of the sampling amplifier is 128 µW. The power consumption of the voltage controlled oscillator (VCO) core is less than 40 µW, and the output is −3.04 dBm with a buffer stage. The output voltage of the bandgap reference circuit is 1 V. For temperature measurements, the maximum error is 0.18 °C with a standard deviation of ±0.061 °C, which is superior to the required specification of 0.1 °C. PMID:26610508

  1. Wide-band/angle Blazed Surfaces using Multiple Coupled Blazing Resonances

    PubMed Central

    Memarian, Mohammad; Li, Xiaoqiang; Morimoto, Yasuo; Itoh, Tatsuo

    2017-01-01

    Blazed gratings can reflect an oblique incident wave back in the path of incidence, unlike mirrors and metal plates that only reflect specular waves. Perfect blazing (and zero specular scattering) is a type of Wood’s anomaly that has been observed when a resonance condition occurs in the unit-cell of the blazed grating. Such elusive anomalies have been studied thus far as individual perfect blazing points. In this work, we present reflective blazed surfaces that, by design, have multiple coupled blazing resonances per cell. This enables an unprecedented way of tailoring the blazing operation, for widening and/or controlling of blazing bandwidth and incident angle range of operation. The surface can thus achieve blazing at multiple wavelengths, each corresponding to different incident wavenumbers. The multiple blazing resonances are combined similar to the case of coupled resonator filters, forming a blazing passband between the incident wave and the first grating order. Blazed gratings with single and multi-pole blazing passbands are fabricated and measured showing increase in the bandwidth of blazing/specular-reflection-rejection, demonstrated here at X-band for convenience. If translated to appropriate frequencies, such technique can impact various applications such as Littrow cavities and lasers, spectroscopy, radar, and frequency scanned antenna reflectors. PMID:28211506

  2. Wide-band/angle Blazed Surfaces using Multiple Coupled Blazing Resonances

    NASA Astrophysics Data System (ADS)

    Memarian, Mohammad; Li, Xiaoqiang; Morimoto, Yasuo; Itoh, Tatsuo

    2017-02-01

    Blazed gratings can reflect an oblique incident wave back in the path of incidence, unlike mirrors and metal plates that only reflect specular waves. Perfect blazing (and zero specular scattering) is a type of Wood’s anomaly that has been observed when a resonance condition occurs in the unit-cell of the blazed grating. Such elusive anomalies have been studied thus far as individual perfect blazing points. In this work, we present reflective blazed surfaces that, by design, have multiple coupled blazing resonances per cell. This enables an unprecedented way of tailoring the blazing operation, for widening and/or controlling of blazing bandwidth and incident angle range of operation. The surface can thus achieve blazing at multiple wavelengths, each corresponding to different incident wavenumbers. The multiple blazing resonances are combined similar to the case of coupled resonator filters, forming a blazing passband between the incident wave and the first grating order. Blazed gratings with single and multi-pole blazing passbands are fabricated and measured showing increase in the bandwidth of blazing/specular-reflection-rejection, demonstrated here at X-band for convenience. If translated to appropriate frequencies, such technique can impact various applications such as Littrow cavities and lasers, spectroscopy, radar, and frequency scanned antenna reflectors.

  3. Energy-Efficient Heterogeneous Wireless Sensor Deployment with Multiple Objectives for Structural Health Monitoring

    PubMed Central

    Liu, Chengyin; Jiang, Zhaoshuo; Wang, Fei; Chen, Hui

    2016-01-01

    Heterogeneous wireless sensor networks (HWSNs) are widely adopted in structural health monitoring systems due to their potential for implementing sophisticated algorithms by integrating a diverse set of devices and improving a network’s sensing performance. However, deploying such a HWSN is still in a challenge due to the heterogeneous nature of the data and the energy constraints of the network. To respond to these challenges, an optimal deployment framework in terms of both modal information quality and energy consumption is proposed in this study. This framework generates a multi-objective function aimed at maximizing the quality of the modal information identified from heterogeneous data while minimizing the consumption of energy within the network at the same time. Particle swarm optimization algorithm is then implemented to seek solutions to the function effectively. After laying out the proposed sensor-optimization framework, a methodology is present to determine the clustering of the sensors to further conserve energy. Finally, a numerical verification is performed on a four-span pre-stressed reinforced concrete box-girder bridge. Results show that a set of strategically positioned heterogeneous sensors can maintain a balanced trade-off between the modal information accuracy and energy consumption. It is also observed that an appropriate cluster-tree network topology can further achieve energy saving in HWSNs. PMID:27827975

  4. Energy-Efficient Heterogeneous Wireless Sensor Deployment with Multiple Objectives for Structural Health Monitoring.

    PubMed

    Liu, Chengyin; Jiang, Zhaoshuo; Wang, Fei; Chen, Hui

    2016-11-06

    Heterogeneous wireless sensor networks (HWSNs) are widely adopted in structural health monitoring systems due to their potential for implementing sophisticated algorithms by integrating a diverse set of devices and improving a network's sensing performance. However, deploying such a HWSN is still in a challenge due to the heterogeneous nature of the data and the energy constraints of the network. To respond to these challenges, an optimal deployment framework in terms of both modal information quality and energy consumption is proposed in this study. This framework generates a multi-objective function aimed at maximizing the quality of the modal information identified from heterogeneous data while minimizing the consumption of energy within the network at the same time. Particle swarm optimization algorithm is then implemented to seek solutions to the function effectively. After laying out the proposed sensor-optimization framework, a methodology is present to determine the clustering of the sensors to further conserve energy. Finally, a numerical verification is performed on a four-span pre-stressed reinforced concrete box-girder bridge. Results show that a set of strategically positioned heterogeneous sensors can maintain a balanced trade-off between the modal information accuracy and energy consumption. It is also observed that an appropriate cluster-tree network topology can further achieve energy saving in HWSNs.

  5. Modeling and Simulation of a Novel Relay Node Based Secure Routing Protocol Using Multiple Mobile Sink for Wireless Sensor Networks

    PubMed Central

    Perumal, Madhumathy; Dhandapani, Sivakumar

    2015-01-01

    Data gathering and optimal path selection for wireless sensor networks (WSN) using existing protocols result in collision. Increase in collision further increases the possibility of packet drop. Thus there is a necessity to eliminate collision during data aggregation. Increasing the efficiency is the need of the hour with maximum security. This paper is an effort to come up with a reliable and energy efficient WSN routing and secure protocol with minimum delay. This technique is named as relay node based secure routing protocol for multiple mobile sink (RSRPMS). This protocol finds the rendezvous point for optimal transmission of data using a “splitting tree” technique in tree-shaped network topology and then to determine all the subsequent positions of a sink the “Biased Random Walk” model is used. In case of an event, the sink gathers the data from all sources, when they are in the sensing range of rendezvous point. Otherwise relay node is selected from its neighbor to transfer packets from rendezvous point to sink. A symmetric key cryptography is used for secure transmission. The proposed relay node based secure routing protocol for multiple mobile sink (RSRPMS) is experimented and simulation results are compared with Intelligent Agent-Based Routing (IAR) protocol to prove that there is increase in the network lifetime compared with other routing protocols. PMID:26495426

  6. Modeling and Simulation of a Novel Relay Node Based Secure Routing Protocol Using Multiple Mobile Sink for Wireless Sensor Networks.

    PubMed

    Perumal, Madhumathy; Dhandapani, Sivakumar

    2015-01-01

    Data gathering and optimal path selection for wireless sensor networks (WSN) using existing protocols result in collision. Increase in collision further increases the possibility of packet drop. Thus there is a necessity to eliminate collision during data aggregation. Increasing the efficiency is the need of the hour with maximum security. This paper is an effort to come up with a reliable and energy efficient WSN routing and secure protocol with minimum delay. This technique is named as relay node based secure routing protocol for multiple mobile sink (RSRPMS). This protocol finds the rendezvous point for optimal transmission of data using a "splitting tree" technique in tree-shaped network topology and then to determine all the subsequent positions of a sink the "Biased Random Walk" model is used. In case of an event, the sink gathers the data from all sources, when they are in the sensing range of rendezvous point. Otherwise relay node is selected from its neighbor to transfer packets from rendezvous point to sink. A symmetric key cryptography is used for secure transmission. The proposed relay node based secure routing protocol for multiple mobile sink (RSRPMS) is experimented and simulation results are compared with Intelligent Agent-Based Routing (IAR) protocol to prove that there is increase in the network lifetime compared with other routing protocols.

  7. Carrier multiplication in semiconductor nanocrystals: theoretical screening of candidate materials based on band-structure effects.

    PubMed

    Luo, Jun-Wei; Franceschetti, Alberto; Zunger, Alex

    2008-10-01

    Direct carrier multiplication (DCM) occurs when a highly excited electron-hole pair decays by transferring its excess energy to the electrons rather than to the lattice, possibly exciting additional electron-hole pairs. Atomistic electronic structure calculations have shown that DCM can be induced by electron-hole Coulomb interactions, in an impact-ionization-like process whose rate is proportional to the density of biexciton states rho XX. Here we introduce a DCM "figure of merit" R2(E) which is proportional to the ratio between the biexciton density of states rhoXX and the single-exciton density of states rhoX, restricted to single-exciton and biexciton states that are coupled by Coulomb interactions. Using R2(E), we consider GaAs, InAs, InP, GaSb, InSb, CdSe, Ge, Si, and PbSe nanocrystals of different sizes. Although DCM can be affected by both quantum-confinement effects (reflecting the underly electronic structure of the confined dot-interior states) and surface effects, here we are interested to isolate the former. To this end the nanocrystal energy levels are obtained from the corresponding bulk band structure via the truncated crystal approximation. We find that PbSe, Si, GaAs, CdSe, and InP nanocrystals have larger DCM figure of merit than the other nanocrystals. Our calculations suggest that high DCM efficiency requires high degeneracy of the corresponding bulk band-edge states. Interestingly, by considering band structure effects we find that as the dot size increases the DCM critical energy E0 (the energy at which R2(E) becomes >or=1) is reduced, suggesting improved DCM. However, whether the normalized E0/epsilong increases or decreases as the dot size increases depends on dot material.

  8. Intensity distribution based space and time division multiple access technique for hybrid-LOS indoor optical wireless communication

    NASA Astrophysics Data System (ADS)

    Miyamoto, Shinichi; Kawamoto, Kenji; Sampei, Seiichi

    2010-02-01

    This paper proposes a space division and time division multiple access (SD/TDMA) technique based on intensity distributions for hybrid line-of-sight (hybrid-LOS) indoor optical wireless communication system. At first, a novel signal discrimination scheme for the spatially multiplexed optical signals is proposed and it is applied to a space division multiple access (SDMA) in hybrid-LOS system. In the proposed scheme, multiple terminals simultaneously transmit their optical signals to access point (AP) using on-off-keying (OOK) modulation, and the spatially multiplexed optical signals are received by a photodetectors array (PD-array), where multiple PDs are disposed to observe the spatial intensity distribution of optical signals. Because the terminals transmit their data using OOK modulation, the spatial intensity distribution observed by the AP equipped with PD-array is subject to the data transmitted from individual terminals, and the AP can identify the terminals transmitting the optical signal by determining the transmitted intensity distribution. Of course, the transmitted intensity distributions are not orthogonal signal and the discriminability of transmitted intensity distributions is much related to the differences of intensity distributions. This implies that the number of terminals that can simultaneously access to the AP will be limited and it is determined by the differences of the candidate intensity distributions. In order to enhance the discriminability of the transmitted intensity distributions, the proposed signal discrimination scheme is further applied to the SD/TDMA. In the SD/TDMA, the discriminability required to enable SDMA is ensured by introducing a scheduling algorithm in which terminals with higher discriminatory of transmitted intensity distributions are allocated to the same time slot. Numerical results show that SD/TDMA using proposed signal discrimination scheme increases the throughput and the number of terminals that can access to

  9. Learning Multiple Band-Pass Filters for Sleep Stage Estimation: Towards Care Support for Aged Persons

    NASA Astrophysics Data System (ADS)

    Takadama, Keiki; Hirose, Kazuyuki; Matsushima, Hiroyasu; Hattori, Kiyohiko; Nakajima, Nobuo

    This paper proposes the sleep stage estimation method that can provide an accurate estimation for each person without connecting any devices to human's body. In particular, our method learns the appropriate multiple band-pass filters to extract the specific wave pattern of heartbeat, which is required to estimate the sleep stage. For an accurate estimation, this paper employs Learning Classifier System (LCS) as the data-mining techniques and extends it to estimate the sleep stage. Extensive experiments on five subjects in mixed health confirm the following implications: (1) the proposed method can provide more accurate sleep stage estimation than the conventional method, and (2) the sleep stage estimation calculated by the proposed method is robust regardless of the physical condition of the subject.

  10. Experimental verification of a high performed multiple-band metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenya; Wang, Saisai

    2017-05-01

    In this paper, a thin-film metamaterial absorber with multiple-band is experimental verified and calculated analysis. Two absorption peaks higher than 99% and 98% are obtained at normal incidence. The resonance of the local surface plasma (LSP) mode and the internal surface plasmon (ISP) mode lead to the two high absorption peaks. The impedance matched condition is obtained behind two high absorption peaks. Measured results indicate that high absorption performed can be observed with different dielectric layer combinations (Al2O3-ZnSe, Al2O3-Al2O3, and ZnSe-ZnSe), which indicates that the designed metamaterial absorber is insensitive to the dielectric layer combination. High absorption performed is obtained under both TE and TM configurations at various incident angles.

  11. Multiple-band reflective polarization converter using U-shaped metamaterial

    SciTech Connect

    Huang, Xiaojun; Yang, Dong; Yang, Helin

    2014-03-14

    A multiple-band metamaterial reflective polarization converter (RPC) is proposed, which is composed of the dielectric substrate sandwiched with U-shaped metallic patterns and continuous metal film. The proposed U-shaped metamaterial RPC (UMM-RPC) can convert a linearly polarized wave to its cross polarized wave at the three resonant frequencies, which also can convert the linearly polarized wave to circularly polarized wave at other three resonant frequencies. Furthermore, the proposed UMM-RPC can maintain the same conversional direction at the three resonant frequencies when incident on a circularly polarized wave. The simulated and measured results are in agreement in the entire frequency range, and the polarization conversion ratio is over 90% for both linear and circular polarizations. The surface current distributions of the UMM-RPC are discussed to look into the physical mechanism. The proposed UMM-RPC has simple geometry but more operating frequency bands compared to the previous designs and can be used in applications such as antenna radome, remote sensors, and radiometer.

  12. The frequency of CSF oligoclonal banding in multiple sclerosis increases with latitude.

    PubMed

    Lechner-Scott, J; Spencer, B; de Malmanche, T; Attia, J; Fitzgerald, M; Trojano, M; Grand'Maison, F; Gomez, J Antonio C; Izquierdo, G; Duquette, P; Girard, M; Grammond, P; Oreja-Guevara, C; Hupperts, R; Bergamaschi, R; Boz, C; Giuliani, G; van Pesch, V; Iuliano, G; Fiol, M; Cristiano, E; Verheul, F; Saladino, M Laura; Slee, M; Barnett, M; Deri, N; Flechter, S; Vella, N; Shaw, C; Herbert, J; Moore, F; Petkovska-Boskova, T; Jokubaitis, V; Butzkueven, H

    2012-07-01

    With the advent of MRI scanning, the value of lumbar puncture to assess oligoclonal band (OCB) status-for the diagnosis of multiple sclerosis (MS) is increasingly uncertain. One major issue is that the reported frequency of cerebrospinal fluid (CSF)-restricted oligoclonal banding for the diagnosis of MS varies considerably in different studies. In addition, the relationship between OCB positivity and disease outcome remains uncertain, as reported studies are generally too small to assess comparative disability outcomes with sufficient power. In order to further investigate variation of OCB positivity in patients with MS, we utilized MSBase, a longitudinal, Web-based collaborative MS outcomes registry following clinical cohorts in several continents and latitudes. We also assessed whether OCB positivity affects long-term disability outcome. A total of 13,242 patient records were obtained from 37 MS specialist centres in 19 different countries. OCB status was documented in 4481 (34%) patients and 80% of these were OCB positive. The presence of OCB was associated with degree of latitude (p = 0.02). Furthermore, the outcome of patients negative for CSF-specific OCB was significantly better in comparison to the OCB positive patients, as assessed by Expanded Disability Status Scale change (p < 0.001). The results of this study indicate that latitude could explain some of the inconsistencies in OCB status reported in different populations. The study confirms that OCB positivity in MS is associated with a worse long-term prognosis.

  13. Band structures in a two-dimensional phononic crystal with rotational multiple scatterers

    NASA Astrophysics Data System (ADS)

    Song, Ailing; Wang, Xiaopeng; Chen, Tianning; Wan, Lele

    2017-03-01

    In this paper, the acoustic wave propagation in a two-dimensional phononic crystal composed of rotational multiple scatterers is investigated. The dispersion relationships, the transmission spectra and the acoustic modes are calculated by using finite element method. In contrast to the system composed of square tubes, there exist a low-frequency resonant bandgap and two wide Bragg bandgaps in the proposed structure, and the transmission spectra coincide with band structures. Specially, the first bandgap is based on locally resonant mechanism, and the simulation results agree well with the results of electrical circuit analogy. Additionally, increasing the rotation angle can remarkably influence the band structures due to the transfer of sound pressure between the internal and external cavities in low-order modes, and the redistribution of sound pressure in high-order modes. Wider bandgaps are obtained in arrays composed of finite unit cells with different rotation angles. The analysis results provide a good reference for tuning and obtaining wide bandgaps, and hence exploring the potential applications of the proposed phononic crystal in low-frequency noise insulation.

  14. Magnetotransport of multiple-band nearly antiferromagnetic metals due to hot-spot scattering

    DOE PAGES

    Koshelev, A. E.

    2016-09-30

    Multiple-band electronic structure and proximity to antiferromagnetic (AF) instability are the key properties of iron-based superconductors. In this paper, we explore the influence of scattering by the AF spin fluctuations on transport of multiple-band metals above the magnetic transition. A salient feature of scattering on the AF fluctuations is that it is strongly enhanced at the Fermi surface locations where the nesting is perfect (“hot spots” or “hot lines”). We review derivation of the collision integral for the Boltzmann equation due to AF-fluctuations scattering. In the paramagnetic state, the enhanced scattering rate near the hot lines leads to anomalous behaviormore » of electronic transport in magnetic field. We explore this behavior by analytically solving the Boltzmann transport equation with approximate transition rates. This approach accounts for return scattering events and is more accurate than the relaxation-time approximation. The magnetic-field dependences are characterized by two very different field scales: the lower scale is set by the hot-spot width and the higher scale is set by the total scattering amplitude. A conventional magnetotransport behavior is limited to magnetic fields below the lower scale. In the wide range in-between these two scales, the longitudinal conductivity has linear dependence on the magnetic field and the Hall conductivity has quadratic dependence. The linear dependence of the diagonal component reflects growth of the Fermi-surface area affected by the hot spots proportional to the magnetic field. Finally, we discuss applicability of this theoretical framework for describing of anomalous magnetotransport properties in different iron pnictides and chalcogenides in the paramagnetic state.« less

  15. Magnetotransport of multiple-band nearly antiferromagnetic metals due to hot-spot scattering

    SciTech Connect

    Koshelev, A. E.

    2016-09-30

    Multiple-band electronic structure and proximity to antiferromagnetic (AF) instability are the key properties of iron-based superconductors. In this paper, we explore the influence of scattering by the AF spin fluctuations on transport of multiple-band metals above the magnetic transition. A salient feature of scattering on the AF fluctuations is that it is strongly enhanced at the Fermi surface locations where the nesting is perfect (“hot spots” or “hot lines”). We review derivation of the collision integral for the Boltzmann equation due to AF-fluctuations scattering. In the paramagnetic state, the enhanced scattering rate near the hot lines leads to anomalous behavior of electronic transport in magnetic field. We explore this behavior by analytically solving the Boltzmann transport equation with approximate transition rates. This approach accounts for return scattering events and is more accurate than the relaxation-time approximation. The magnetic-field dependences are characterized by two very different field scales: the lower scale is set by the hot-spot width and the higher scale is set by the total scattering amplitude. A conventional magnetotransport behavior is limited to magnetic fields below the lower scale. In the wide range in-between these two scales, the longitudinal conductivity has linear dependence on the magnetic field and the Hall conductivity has quadratic dependence. The linear dependence of the diagonal component reflects growth of the Fermi-surface area affected by the hot spots proportional to the magnetic field. Finally, we discuss applicability of this theoretical framework for describing of anomalous magnetotransport properties in different iron pnictides and chalcogenides in the paramagnetic state.

  16. Magnetotransport of multiple-band nearly antiferromagnetic metals due to hot-spot scattering

    NASA Astrophysics Data System (ADS)

    Koshelev, A. E.

    2016-09-01

    Multiple-band electronic structure and proximity to antiferromagnetic (AF) instability are the key properties of iron-based superconductors. We explore the influence of scattering by the AF spin fluctuations on transport of multiple-band metals above the magnetic transition. A salient feature of scattering on the AF fluctuations is that it is strongly enhanced at the Fermi surface locations where the nesting is perfect ("hot spots" or "hot lines"). We review derivation of the collision integral for the Boltzmann equation due to AF-fluctuations scattering. In the paramagnetic state, the enhanced scattering rate near the hot lines leads to anomalous behavior of electronic transport in magnetic field. We explore this behavior by analytically solving the Boltzmann transport equation with approximate transition rates. This approach accounts for return scattering events and is more accurate than the relaxation-time approximation. The magnetic-field dependences are characterized by two very different field scales: the lower scale is set by the hot-spot width and the higher scale is set by the total scattering amplitude. A conventional magnetotransport behavior is limited to magnetic fields below the lower scale. In the wide range in-between these two scales, the longitudinal conductivity has linear dependence on the magnetic field and the Hall conductivity has quadratic dependence. The linear dependence of the diagonal component reflects growth of the Fermi-surface area affected by the hot spots proportional to the magnetic field. We discuss applicability of this theoretical framework for describing of anomalous magnetotransport properties in different iron pnictides and chalcogenides in the paramagnetic state.

  17. Bandgaps and band offsets in strain-compensated InGaAs/InGaAsP multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Ma, Chunsheng; Jin, Zhi; Tian, Fengshou; Yang, Ningguo; Yang, Shuren; Liu, Shiyong

    1998-08-01

    In terms of the parameter interpolation principle, calculations are performed for bandgaps and band offsets in strain-compensated InzGa1-zAs/InxGa1-xAsyP1-y multiple quantum well structures on InP. Relations between strains and material compositions in InzGa1-zAs wells and InxGa1-xAsyP1-y barriers are analyzed, and relative ranges of strains are evaluated. Bandgaps of InzGa1-zAs wells and InxGa1-xAsyP1-y barriers for heavy- and light-holes are studied, and relative ranges of bandgaps are estimated. Dependence of band offsets of conduction band and valence band for heavy- and light-holes on strain compensation between InzGa1-zAs wells and InxGa1-xAsyP1-y barriers is investigated, and variation of band offsets versus strain compensation is discussed. The computed results show that strains, bandgaps and band offsets are functions of material compositions, strain compensation changes the band offsets, and hence modifies the band structures and improves the features of strain- compensated multiple quantum well optoelectronic devices.

  18. Embedding multiple watermarks in the DFT domain using low- and high-frequency bands

    NASA Astrophysics Data System (ADS)

    Ganic, Emir; Dexter, Scott D.; Eskicioglu, Ahmet M.

    2005-03-01

    Although semi-blind and blind watermarking schemes based on Discrete Cosine Transform (DCT) or Discrete Wavelet Transform (DWT) are robust to a number of attacks, they fail in the presence of geometric attacks such as rotation, scaling, and translation. The Discrete Fourier Transform (DFT) of a real image is conjugate symmetric, resulting in a symmetric DFT spectrum. Because of this property, the popularity of DFT-based watermarking has increased in the last few years. In a recent paper, we generalized a circular watermarking idea to embed multiple watermarks in lower and higher frequencies. Nevertheless, a circular watermark is visible in the DFT domain, providing a potential hacker with valuable information about the location of the watermark. In this paper, our focus is on embedding multiple watermarks that are not visible in the DFT domain. Using several frequency bands increases the overall robustness of the proposed watermarking scheme. Specifically, our experiments show that the watermark embedded in lower frequencies is robust to one set of attacks, and the watermark embedded in higher frequencies is robust to a different set of attacks.

  19. Apparatus and method supporting wireless access to multiple security layers in an industrial control and automation system or other system

    SciTech Connect

    Chen, Yu-Gene T.

    2013-04-16

    A method includes receiving a message at a first wireless node. The first wireless node is associated with a first wired network, and the first wired network is associated with a first security layer. The method also includes transmitting the message over the first wired network when at least one destination of the message is located in the first security layer. The method further includes wirelessly transmitting the message for delivery to a second wireless node when at least one destination of the message is located in a second security layer. The second wireless node is associated with a second wired network, and the second wired network is associated with the second security layer. The first and second security layers may be associated with different security paradigms and/or different security domains. Also, the message could be associated with destinations in the first and second security layers.

  20. Design of pulse waveform for waveform division multiple access UWB wireless communication system.

    PubMed

    Yin, Zhendong; Wang, Zhirui; Liu, Xiaohui; Wu, Zhilu

    2014-01-01

    A new multiple access scheme, Waveform Division Multiple Access (WDMA) based on the orthogonal wavelet function, is presented. After studying the correlation properties of different categories of single wavelet functions, the one with the best correlation property will be chosen as the foundation for combined waveform. In the communication system, each user is assigned to different combined orthogonal waveform. Demonstrated by simulation, combined waveform is more suitable than single wavelet function to be a communication medium in WDMA system. Due to the excellent orthogonality, the bit error rate (BER) of multiuser with combined waveforms is so close to that of single user in a synchronous system. That is to say, the multiple access interference (MAI) is almost eliminated. Furthermore, even in an asynchronous system without multiuser detection after matched filters, the result is still pretty ideal and satisfactory by using the third combination mode that will be mentioned in the study.

  1. Defining Multiple Characteristic Raman Bands of α-Amino Acids as Biomarkers for Planetary Missions Using a Statistical Method

    NASA Astrophysics Data System (ADS)

    Rolfe, S. M.; Patel, M. R.; Gilmour, I.; Olsson-Francis, K.; Ringrose, T. J.

    2016-06-01

    Biomarker molecules, such as amino acids, are key to discovering whether life exists elsewhere in the Solar System. Raman spectroscopy, a technique capable of detecting biomarkers, will be on board future planetary missions including the ExoMars rover. Generally, the position of the strongest band in the spectra of amino acids is reported as the identifying band. However, for an unknown sample, it is desirable to define multiple characteristic bands for molecules to avoid any ambiguous identification. To date, there has been no definition of multiple characteristic bands for amino acids of interest to astrobiology. This study examined l-alanine, l-aspartic acid, l-cysteine, l-glutamine and glycine and defined several Raman bands per molecule for reference as characteristic identifiers. Per amino acid, 240 spectra were recorded and compared using established statistical tests including ANOVA. The number of characteristic bands defined were 10, 12, 12, 14 and 19 for l-alanine (strongest intensity band: 832 cm-1), l-aspartic acid (938 cm-1), l-cysteine (679 cm-1), l-glutamine (1090 cm-1) and glycine (875 cm-1), respectively. The intensity of bands differed by up to six times when several points on the crystal sample were rotated through 360 °; to reduce this effect when defining characteristic bands for other molecules, we find that spectra should be recorded at a statistically significant number of points per sample to remove the effect of sample rotation. It is crucial that sets of characteristic Raman bands are defined for biomarkers that are targets for future planetary missions to ensure a positive identification can be made.

  2. Defining Multiple Characteristic Raman Bands of α-Amino Acids as Biomarkers for Planetary Missions Using a Statistical Method.

    PubMed

    Rolfe, S M; Patel, M R; Gilmour, I; Olsson-Francis, K; Ringrose, T J

    2016-06-01

    Biomarker molecules, such as amino acids, are key to discovering whether life exists elsewhere in the Solar System. Raman spectroscopy, a technique capable of detecting biomarkers, will be on board future planetary missions including the ExoMars rover. Generally, the position of the strongest band in the spectra of amino acids is reported as the identifying band. However, for an unknown sample, it is desirable to define multiple characteristic bands for molecules to avoid any ambiguous identification. To date, there has been no definition of multiple characteristic bands for amino acids of interest to astrobiology. This study examined L-alanine, L-aspartic acid, L-cysteine, L-glutamine and glycine and defined several Raman bands per molecule for reference as characteristic identifiers. Per amino acid, 240 spectra were recorded and compared using established statistical tests including ANOVA. The number of characteristic bands defined were 10, 12, 12, 14 and 19 for L-alanine (strongest intensity band: 832 cm(-1)), L-aspartic acid (938 cm(-1)), L-cysteine (679 cm(-1)), L-glutamine (1090 cm(-1)) and glycine (875 cm(-1)), respectively. The intensity of bands differed by up to six times when several points on the crystal sample were rotated through 360 °; to reduce this effect when defining characteristic bands for other molecules, we find that spectra should be recorded at a statistically significant number of points per sample to remove the effect of sample rotation. It is crucial that sets of characteristic Raman bands are defined for biomarkers that are targets for future planetary missions to ensure a positive identification can be made.

  3. Multiple views of the October 2003 Cedar Fires captured by the High Performance Wireless Research and Education Network

    NASA Astrophysics Data System (ADS)

    Morikawa, E.; Nayak, A.; Vernon, F.; Braun, H.; Matthews, J.

    2004-12-01

    Late October 2003 brought devastating fires to the entire Southern California region. The NSF-funded High Performance Wireless Research and Education Network (HPWREN - http://hpwren.ucsd.edu/) cameras captured the development and progress of the Cedar fire in San Diego County. Cameras on Mt. Laguna, Mt. Woodson, Ramona Airport, and North Peak, recording one frame every 12 seconds, allowed for a time-lapse composite showing the fire's formation and progress from its beginnings on October 26th, to October 30th. The time-lapse camera footage depicts gushing smoke formations during the day, and bright orange walls of fire at night. The final video includes time synchronized views from multiple cameras, and an animated map highlighting the progress of the fire over time, and a directional indicator for each of the displaying cameras. The video is narrated by the California Department of Forestry and Fire Protection Fire Captain Ron Serabia (retd.) who was working then as a Air Tactical Group Supervisor with the aerial assault on the Cedar Fire Sunday October 26, 2004. The movie will be made available for download from the Scripps Institution of Oceanography Visualization Center Visual Objects library (supported by the OptIPuter project) at http://www.siovizcenter.ucsd.edu.

  4. Burst packet loss concealment using multiple codebooks and comfort noise for CELP-type speech coders in wireless sensor networks.

    PubMed

    Park, Nam In; Kim, Hong Kook; Jung, Min A; Lee, Seong Ro; Choi, Seung Ho

    2011-01-01

    In this paper, a packet loss concealment (PLC) algorithm for CELP-type speech coders is proposed in order to improve the quality of decoded speech under burst packet loss conditions in a wireless sensor network. Conventional receiver-based PLC algorithms in the G.729 speech codec are usually based on speech correlation to reconstruct the decoded speech of lost frames by using parameter information obtained from the previous correctly received frames. However, this approach has difficulty in reconstructing voice onset signals since the parameters such as pitch, linear predictive coding coefficient, and adaptive/fixed codebooks of the previous frames are mostly related to silence frames. Thus, in order to reconstruct speech signals in the voice onset intervals, we propose a multiple codebook-based approach that includes a traditional adaptive codebook and a new random codebook composed of comfort noise. The proposed PLC algorithm is designed as a PLC algorithm for G.729 and its performance is then compared with that of the PLC algorithm currently employed in G.729 via a perceptual evaluation of speech quality, a waveform comparison, and a preference test under different random and burst packet loss conditions. It is shown from the experiments that the proposed PLC algorithm provides significantly better speech quality than the PLC algorithm employed in G.729 under all the test conditions.

  5. A reconfigurable multi-mode multi-band transmitter with integrated frequency synthesizer for short-range wireless communication

    NASA Astrophysics Data System (ADS)

    Nan, Qi; Fan, Chen; Lingwei, Zhang; Xiaoman, Wang; Baoyong, Chi

    2013-09-01

    A reconfigurable multi-mode direct-conversion transmitter (TX) with integrated frequency synthesizer (FS) is presented. The TX as well as the FS is designed with a flexible architecture and frequency plan, which helps to support all the 433/868/915 MHz ISM band signals, with the reconfigurable bandwidth from 250 kHz to 2 MHz. In order to save power and chip area, only one 1.8 GHz VCO is adopted to cover the whole frequency range. All the operation modes can be regulated in real time by configuring the integrated register-bank through an SPI interface. Implemented in 180 nm CMOS, the FS achieves a frequency coverage of 320-460 MHz and 620-920 MHz. The lowest phase noise can be -107 dBc/Hz at a 100 kHz offset and -126 dBc/Hz at a 1 MHz offset. The transmitter features a + 10.2 dBm peak output power with a +9.5 dBm 1-dB-compression point and 250 kHz/500 kHz/1 MHz/2 MHz reconfigurable signal bandwidth.

  6. Multichannel neural recording with a 128 Mbps UWB wireless transmitter for implantable brain-machine interfaces.

    PubMed

    Ando, H; Takizawa, K; Yoshida, T; Matsushita, K; Hirata, M; Suzuki, T

    2015-01-01

    To realize a low-invasive and high accuracy BMI (Brain-machine interface) system, we have already developed a fully-implantable wireless BMI system which consists of ECoG neural electrode arrays, neural recording ASICs, a Wi-Fi based wireless data transmitter and a wireless power receiver with a rechargeable battery. For accurate estimation of movement intentions, it is important for a BMI system to have a large number of recording channels. In this paper, we report a new multi-channel BMI system which is able to record up to 4096-ch ECoG data by multiple connections of 64-ch ASICs and time division multiplexing of recorded data. This system has an ultra-wide-band (UWB) wireless unit for transmitting the recorded neural signals to outside the body. By preliminary experiments with a human body equivalent liquid phantom, we confirmed 4096-ch UWB wireless data transmission at 128 Mbps mode below 20 mm distance.

  7. Genes with a spike expression are clustered in chromosome (sub)bands and spike (sub)bands have a powerful prognostic value in patients with multiple myeloma

    PubMed Central

    Kassambara, Alboukadel; Hose, Dirk; Moreaux, Jérôme; Walker, Brian A.; Protopopov, Alexei; Reme, Thierry; Pellestor, Franck; Pantesco, Véronique; Jauch, Anna; Morgan, Gareth; Goldschmidt, Hartmut; Klein, Bernard

    2012-01-01

    Background Genetic abnormalities are common in patients with multiple myeloma, and may deregulate gene products involved in tumor survival, proliferation, metabolism and drug resistance. In particular, translocations may result in a high expression of targeted genes (termed spike expression) in tumor cells. We identified spike genes in multiple myeloma cells of patients with newly-diagnosed myeloma and investigated their prognostic value. Design and Methods Genes with a spike expression in multiple myeloma cells were picked up using box plot probe set signal distribution and two selection filters. Results In a cohort of 206 newly diagnosed patients with multiple myeloma, 2587 genes/expressed sequence tags with a spike expression were identified. Some spike genes were associated with some transcription factors such as MAF or MMSET and with known recurrent translocations as expected. Spike genes were not associated with increased DNA copy number and for a majority of them, involved unknown mechanisms. Of spiked genes, 36.7% clustered significantly in 149 out of 862 documented chromosome (sub)bands, of which 53 had prognostic value (35 bad, 18 good). Their prognostic value was summarized with a spike band score that delineated 23.8% of patients with a poor median overall survival (27.4 months versus not reached, P<0.001) using the training cohort of 206 patients. The spike band score was independent of other gene expression profiling-based risk scores, t(4;14), or del17p in an independent validation cohort of 345 patients. Conclusions We present a new approach to identify spike genes and their relationship to patients’ survival. PMID:22102711

  8. Distinct oligoclonal band antibodies in multiple sclerosis recognize ubiquitous self-proteins.

    PubMed

    Brändle, Simone M; Obermeier, Birgit; Senel, Makbule; Bruder, Jessica; Mentele, Reinhard; Khademi, Mohsen; Olsson, Tomas; Tumani, Hayrettin; Kristoferitsch, Wolfgang; Lottspeich, Friedrich; Wekerle, Hartmut; Hohlfeld, Reinhard; Dornmair, Klaus

    2016-07-12

    Oligoclonal Ig bands (OCBs) of the cerebrospinal fluid are a hallmark of multiple sclerosis (MS), a disabling inflammatory disease of the central nervous system (CNS). OCBs are locally produced by clonally expanded antigen-experienced B cells and therefore are believed to hold an important clue to the pathogenesis. However, their target antigens have remained unknown, mainly because it was thus far not possible to isolate distinct OCBs against a background of polyclonal antibodies. To overcome this obstacle, we copurified disulfide-linked Ig heavy and light chains from distinct OCBs for concurrent analysis by mass spectrometry and aligned patient-specific peptides to corresponding transcriptome databases. This method revealed the full-length sequences of matching chains from distinct OCBs, allowing for antigen searches using recombinant OCB antibodies. As validation, we demonstrate that an OCB antibody from a patient with an infectious CNS disorder, neuroborreliosis, recognized a Borrelia protein. Next, we produced six recombinant antibodies from four MS patients and identified three different autoantigens. All of them are conformational epitopes of ubiquitous intracellular proteins not specific to brain tissue. Our findings indicate that the B-cell response in MS is heterogeneous and partly directed against intracellular autoantigens released during tissue destruction. In addition to helping elucidate the role of B cells in MS, our approach allows the identification of target antigens of OCB antibodies in other neuroinflammatory diseases and the production of therapeutic antibodies in infectious CNS diseases.

  9. Distinct oligoclonal band antibodies in multiple sclerosis recognize ubiquitous self-proteins

    PubMed Central

    Brändle, Simone M.; Obermeier, Birgit; Senel, Makbule; Bruder, Jessica; Mentele, Reinhard; Khademi, Mohsen; Olsson, Tomas; Tumani, Hayrettin; Kristoferitsch, Wolfgang; Lottspeich, Friedrich; Wekerle, Hartmut; Hohlfeld, Reinhard; Dornmair, Klaus

    2016-01-01

    Oligoclonal Ig bands (OCBs) of the cerebrospinal fluid are a hallmark of multiple sclerosis (MS), a disabling inflammatory disease of the central nervous system (CNS). OCBs are locally produced by clonally expanded antigen-experienced B cells and therefore are believed to hold an important clue to the pathogenesis. However, their target antigens have remained unknown, mainly because it was thus far not possible to isolate distinct OCBs against a background of polyclonal antibodies. To overcome this obstacle, we copurified disulfide-linked Ig heavy and light chains from distinct OCBs for concurrent analysis by mass spectrometry and aligned patient-specific peptides to corresponding transcriptome databases. This method revealed the full-length sequences of matching chains from distinct OCBs, allowing for antigen searches using recombinant OCB antibodies. As validation, we demonstrate that an OCB antibody from a patient with an infectious CNS disorder, neuroborreliosis, recognized a Borrelia protein. Next, we produced six recombinant antibodies from four MS patients and identified three different autoantigens. All of them are conformational epitopes of ubiquitous intracellular proteins not specific to brain tissue. Our findings indicate that the B-cell response in MS is heterogeneous and partly directed against intracellular autoantigens released during tissue destruction. In addition to helping elucidate the role of B cells in MS, our approach allows the identification of target antigens of OCB antibodies in other neuroinflammatory diseases and the production of therapeutic antibodies in infectious CNS diseases. PMID:27325759

  10. On using multiple routing metrics with destination sequenced distance vector protocol for MultiHop wireless ad hoc networks

    NASA Astrophysics Data System (ADS)

    Mehic, M.; Fazio, P.; Voznak, M.; Partila, P.; Komosny, D.; Tovarek, J.; Chmelikova, Z.

    2016-05-01

    A mobile ad hoc network is a collection of mobile nodes which communicate without a fixed backbone or centralized infrastructure. Due to the frequent mobility of nodes, routes connecting two distant nodes may change. Therefore, it is not possible to establish a priori fixed paths for message delivery through the network. Because of its importance, routing is the most studied problem in mobile ad hoc networks. In addition, if the Quality of Service (QoS) is demanded, one must guarantee the QoS not only over a single hop but over an entire wireless multi-hop path which may not be a trivial task. In turns, this requires the propagation of QoS information within the network. The key to the support of QoS reporting is QoS routing, which provides path QoS information at each source. To support QoS for real-time traffic one needs to know not only minimum delay on the path to the destination but also the bandwidth available on it. Therefore, throughput, end-to-end delay, and routing overhead are traditional performance metrics used to evaluate the performance of routing protocol. To obtain additional information about the link, most of quality-link metrics are based on calculation of the lost probabilities of links by broadcasting probe packets. In this paper, we address the problem of including multiple routing metrics in existing routing packets that are broadcasted through the network. We evaluate the efficiency of such approach with modified version of DSDV routing protocols in ns-3 simulator.

  11. On Deployment of Multiple Base Stations for Energy-Efficient Communication in Wireless Sensor Networks

    DOE PAGES

    Lin, Yunyue; Wu, Qishi; Cai, Xiaoshan; ...

    2010-01-01

    Data transmission from sensor nodes to a base station or a sink node often incurs significant energy consumption, which critically affects network lifetime. We generalize and solve the problem of deploying multiple base stations to maximize network lifetime in terms of two different metrics under one-hop and multihop communication models. In the one-hop communication model, the sensors far away from base stations always deplete their energy much faster than others. We propose an optimal solution and a heuristic approach based on the minimal enclosing circle algorithm to deploy a base station at the geometric center of each cluster. In themore » multihop communication model, both base station location and data routing mechanism need to be considered in maximizing network lifetime. We propose an iterative algorithm based on rigorous mathematical derivations and use linear programming to compute the optimal routing paths for data transmission. Simulation results show the distinguished performance of the proposed deployment algorithms in maximizing network lifetime.« less

  12. Molecular genotyping of human Ureaplasma species based on multiple-banded antigen (MBA) gene sequences.

    PubMed

    Kong, F; Ma, Z; James, G; Gordon, S; Gilbert, G L

    2000-09-01

    Ureaplasma urealyticum has been divided into 14 serovars. Recently, subdivision of U. urealyticum into two species has been proposed: U. parvum (previously U. urealyticum parvo biovar), comprising four serovars (1, 3, 6, 14) and U. urealyticum (previously U. urealyticum T-960 biovar), 10 serovars (2, 4, 5, 7-13). The multiple-banded antigen (MBA) genes of these species contain both species and serovar/subtype specific sequences. Based on whole sequences of the 5'-ends of MBA genes of U. parvum serovars and partial sequences of the 5'-ends of MBA genes of U. urealyticum serovars, we previously divided each of these species into three MBA genotypes. To further elucidate the relationships between serovars, we sequenced the whole 5'-ends of MBA genes of all 10 U. urealyticum serovars and partial repetitive regions of these genes from all serovars of U. parvum and U. urealyticum. For the first time, all four serovars of U. parvum were clearly differentiated from each other. In addition, the 10 serovars of U. urealyticum were divided into five MBA genotypes, as follows: MBA genotype A comprises serovars 2, 5, 8; MBA genotype B, serovar 10 only; MBA genotype C, serovars 4, 12, 13; MBA genotype D, serovar 9 only; and MBA genotype E comprises serovars 7 and 11. There were no sequence differences between members within each MBA genotype. Further work is required to identify other genes or other regions of the MBA genes that may be used to differentiate U. urealyticum serovars within MBA genotypes A, C and E. A better understanding of the molecular basis of serotype differentiation will help to improve subtyping methods for use in studies of the pathogenesis and epidemiology of these organisms.

  13. Clinical significance of the appearance of abnormal protein band in patients with multiple myeloma.

    PubMed

    Jo, Jae-Cheol; Yoon, Dok Hyun; Kim, Shin; Lee, Kyoungmin; Kang, Eun Hee; Jang, Seongsoo; Park, Chan-Jeoung; Chi, Hyun-Sook; Huh, Jooryung; Park, Chan-Sik; Suh, Cheolwon

    2014-03-01

    Multiple myeloma (MM) is characterized by clonal expansion of malignant bone marrow cells producing a unique monoclonal immunoglobulin. The appearance of abnormal protein band (APB) in MM has been reported during follow-up. We aimed to evaluate the clinical characteristics and outcomes of patients with APB in a single center cohort. A total of 377 consecutive MM patients were treated at the Asan Medical Center between January 2002 and December 2012. We compared clinical characteristics and survival outcome between those with and without APB. Of the 377 patients, 34 (9 %) experienced APB. They comprised 18.2 % (27/148) of patients treated with autologous stem cell transplantation (ASCT) and 3.1 % (7/229) of those not receiving ASCT. APB occurred after a median of 7.9 months (range, 2.2-95.7 months) from diagnosis. Immunoglobulin isotypes at diagnosis were as follows: IgG (n = 10), IgA (n = 8), IgD (n = 5), free κ (n = 4), and free λ (n = 7). Nine patients experienced a second APB. With a median follow-up of 54.1 months, the median overall survival (OS) has not been reached in patients with APB and was 38.3 months in patients without (P < 0.001). Multivariate analysis indicated that the development of APB was a significant favorable prognostic factor for OS (hazard ratio 0.21; 95 % confidence interval 0.08-0.52). Serum β₂-microglobulin, albumin, creatinine, and ASCT were also independent prognostic factors for OS. Further investigation is required to establish the mechanisms underlying APB in MM.

  14. Development of an X-Band 50 MW Multiple Beam Klystron

    NASA Astrophysics Data System (ADS)

    Song, Liqun; Ferguson, Patrick; Ives, R. Lawrence; Miram, George; Marsden, David; Mizuhara, Max

    2003-12-01

    Calabazas Creek Research, Inc. is developing an X-band 50 MW multiple beam klystron (MBK) on a DOE SBIR Phase II grant. The electrical design and preliminary mechanical design were completed on the Phase I. This MBK consists of eight discrete klystron circuits driven by eight electron beams located symmetrically on a circle with a radius of 6.3 cm. Each beam operates at 190 kV and 66 A. The eight beam electron gun is in development on a DOE SBIR Phase II grant. Each circuit consists of an input cavity, two gain cavities, three penultimate cavities, and a three cavity output circuit operating in the PI/2 mode. Ring resonators were initially proposed for the complete circuit; however, low beam — wave interaction resulted in the necessity to use discrete cavities for all eight circuits. The input cavities are coupled via hybrid waveguides to ensure constant drive power amplitude and phase. The output circuits can either be combined using compact waveguide twists driving a TE01 high power window or combined into a TM04 mode converter driving the same TE01 window. The gain and efficiency for a single circuit has been optimized using KLSC, a 2 1/2D large signal klystron code. Simulations for a single circuit predict an efficiency of 53% for a single output cavity and 55% for the three cavity output resonator. The total RF output power for this MBK is 55 MW. During the Phase II emphasis will be given to cost reduction techniques resulting in a robust — high efficient — long life high power amplifier.

  15. Association of Genetic Markers with CSF Oligoclonal Bands in Multiple Sclerosis Patients

    PubMed Central

    Esposito, Federica; Lucenti, Ausiliatrice; Harbo, Hanne F.; Goris, An; Kockum, Ingrid; Oturai, Annette Bang; Celius, Elisabeth Gulowsen; Mero, Inger L.; Dubois, Bénédicte; Olsson, Tomas; Søndergaard, Helle Bach; Cusi, Daniele; Lupoli, Sara; Andreassen, Bettina Kulle; Myhr, Kjell-Morten; Guerini, Franca R.; Comi, Giancarlo

    2013-01-01

    Objective to explore the association between genetic markers and Oligoclonal Bands (OCB) in the Cerebro Spinal Fluid (CSF) of Italian Multiple Sclerosis patients. Methods We genotyped 1115 Italian patients for HLA-DRB1*15 and HLA-A*02. In a subset of 925 patients we tested association with 52 non-HLA SNPs associated with MS susceptibility and we calculated a weighted Genetic Risk Score. Finally, we performed a Genome Wide Association Study (GWAS) with OCB status on a subset of 562 patients. The best associated SNPs of the Italian GWAS were replicated in silico in Scandinavian and Belgian populations, and meta-analyzed. Results HLA-DRB1*15 is associated with OCB+: p = 0.03, Odds Ratio (OR) = 1.6, 95% Confidence Limits (CL) = 1.1–2.4. None of the 52 non-HLA MS susceptibility loci was associated with OCB, except one SNP (rs2546890) near IL12B gene (OR: 1.45; 1.09–1.92). The weighted Genetic Risk Score mean was significantly (p = 0.0008) higher in OCB+ (7.668) than in OCB− (7.412) patients. After meta-analysis on the three datasets (Italian, Scandinavian and Belgian) for the best associated signals resulted from the Italian GWAS, the strongest signal was a SNP (rs9320598) on chromosome 6q (p = 9.4×10−7) outside the HLA region (65 Mb). Discussion genetic factors predispose to the development of OCB. PMID:23785401

  16. Internal right ventricular band for multiple ventricular septal defects in a neonate undergoing arterial switch and aortic arch repair.

    PubMed

    Carroll, William W; Shirali, Girish S; Bradley, Scott M

    2011-01-01

    A neonate presented with d-transposition of the great arteries, aortic arch hypoplasia, aortic coarctation, and multiple ventricular septal defects. During the arterial switch procedure and the aortic arch repair, a fenestrated Gore-Tex disk (W.L. Gore & Assoc, Flagstaff, AZ) was sewn into the right ventricular outflow tract to restrict pulmonary blood flow. The internal right ventricular band successfully controlled the pulmonary blood flow, maintaining a systemic oxygen saturation of 88% to 92%, and allowing growth from 3.5 to 10.5 kg. At 8 months of age, the internal band in the patient was removed, and the ventricular septal defects were successfully closed.

  17. Band width and multiple-angle valence-state mapping of diamond

    SciTech Connect

    Jimenez, I.; Terminello, L.J.; Sutherland, D.G.J.

    1997-04-01

    The band width may be considered the single most important parameter characterizing the electronic structure of a solid. The ratio of band width and Coulomb repulsion determines how correlated or delocalized an electron system is. Some of the most interesting solids straddle the boundary between localized and delocalized, e.g. the high-temperature superconductors. The bulk of the band calculations available today is based on local density functional (DF) theory. Even though the Kohn-Sham eigenvalues from that theory do not represent the outcome of a band-mapping experiment, they are remarkably similar to the bands mapped via photoemission. Strictly speaking, one should use an excited state calculation that takes the solid`s many-body screening response to the hole created in photoemission into account. Diamond is a useful prototype semiconductor because of its low atomic number and large band width, which has made it a long-time favorite for testing band theory. Yet, the two experimental values of the band width of diamond have error bars of {+-}1 eV and differ by 3.2 eV. To obtain an accurate valence band width for diamond, the authors use a band-mapping method that collects momentum distributions instead of the usual energy distributions. This method has undergone extensive experimental and theoretical tests in determining the band width of lithium fluoride. An efficient, imaging photoelectron spectrometer is coupled with a state-of-the-art undulator beam line at the Advanced Light Source to allow collection of a large number of data sets. Since it takes only a few seconds to take a picture of the photoelectrons emitted into a 84{degrees} cone, the authors can use photon energies as high as 350 eV where the cross section for photoemission from the valence band is already quite low, but the emitted photoelectrons behave free-electron-like. This make its much easier to locate the origin of the inter-band transitions in momentum space.

  18. Speech recognition for multiple bands: Implications for the Speech Intelligibility Index.

    PubMed

    Humes, Larry E; Kidd, Gary R

    2016-09-01

    The Speech Intelligibility Index (SII) assumes additivity of the importance of acoustically independent bands of speech. To further evaluate this assumption, open-set speech recognition was measured for words and sentences, in quiet and in noise, when the speech stimuli were presented to the listener in selected frequency bands. The filter passbands were constructed from various combinations of 20 bands having equivalent (0.05) importance in the SII framework. This permitted the construction of a variety of equal-SII band patterns that were then evaluated by nine different groups of young adults with normal hearing. For monosyllabic words, a similar dependence on band pattern was observed for SII values of 0.4, 0.5, and 0.6 in both quiet and noise conditions. Specifically, band patterns concentrated toward the lower and upper frequency range tended to yield significantly lower scores than those more evenly sampling a broader frequency range. For all stimuli and test conditions, equal SII values did not yield equal performance. Because the spectral distortions of speech evaluated here may not commonly occur in everyday listening conditions, this finding does not necessarily represent a serious deficit for the application of the SII. These findings, however, challenge the band-independence assumption of the theory underlying the SII.

  19. Multiple-Scattering Approach to the Formation of the Impurity Band in Semiconductors

    NASA Astrophysics Data System (ADS)

    Ghazali, A.; Serre, J.

    1982-03-01

    The electronic structure of doped semiconductors is studied by using the best approximation of Klauder's impurity-scattering theory which yields a wave-vector- and energy-dependent self-energy Σ(k-->,E). An approximation is used for electron correlation effects. It is shown that as the impurity concentration is decreased, the conduction-band tail progressively splits off, giving an impurity band. The link between the formation of the latter and the general theory of bifurcation is outlined.

  20. Multiple-band perfect absorbers based on the combination of Fabry-Perot resonance and the gap plasmon resonance

    NASA Astrophysics Data System (ADS)

    Zhai, Yusheng; Chen, Guangdian; Xu, Ji; Qi, Zhiyang; Li, Xiaohua; Wang, Qilong

    2017-09-01

    To realize multiple-band perfect absorption, a novel nanostructure consisting of subwavelength periodic metallic grating and a thick metallic substrate, separated by a thin dielectric spacer(MGDM), is proposed in this paper. Compared with the structures without the dielectric spacer, the designed MGDM nanostructure not only possesses the absorption peaks caused by the Fabry-Perot resonance in the grating slits, but also possesses additional absorption peaks. Numerical simulation results show that the additional absorption peaks are caused by the gap plasmon resonance in the dielectric spacer. Besides, the influence of structural parameters on the absorption properties of MGDM are also thoroughly investigated. The combination of Fabry-Perot resonance and the gap plasmon resonance in the proposed MGDM provide another route for designing multiple-band perfect absorber nanostructures, which have an extensive applications in photo-detecting, photo-conversion or photo-harvesting.

  1. A numerical study of multiple adiabatic shear bands evolution in a 304LSS thick-walled cylinder

    NASA Astrophysics Data System (ADS)

    Liu, Mingtao; Hu, Haibo; Fan, Cheng; Tang, Tiegang

    2017-01-01

    The self-organization of multiple shear bands in a 304L stainless steel(304LSS) thick-walled cylinder (TWC) was numerically studied. The microstructures of material lead to the non-uniform distribution of the local yield stress, which play a key role in the formation of spontaneous shear localization. We introduced a probability factor satisfied the Gaussian distribution into the macroscopic constitutive relationship to describe the non-uniformity of local yield stress. Using the probability factor, the initiation and propagation of multiple shear bands in TWC were numerically replicated in our 2D FEM simulation. Experimental results in the literature indicated that the machined surface at the internal boundary of a 304L stainless steel cylinder provides a work-hardened layer (about 20˜30μm) which has significantly different microstructures from the base material. The work-hardened layer leads to the phenomenon that most shear bands propagate along a given direction, clockwise or counterclockwise. In our simulation, periodical single direction spiral perturbations were applied to describe the grain orientation in the work-hardened layer, and the single direction spiral pattern of shear bands was successfully replicated.

  2. A Comprehensive Analysis of the Correlations between Resting-State Oscillations in Multiple-Frequency Bands and Big Five Traits.

    PubMed

    Ikeda, Shigeyuki; Takeuchi, Hikaru; Taki, Yasuyuki; Nouchi, Rui; Yokoyama, Ryoichi; Kotozaki, Yuka; Nakagawa, Seishu; Sekiguchi, Atsushi; Iizuka, Kunio; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Miyauchi, Carlos Makoto; Sakaki, Kohei; Nozawa, Takayuki; Yokota, Susumu; Magistro, Daniele; Kawashima, Ryuta

    2017-01-01

    Recently, the association between human personality traits and resting-state brain activity has gained interest in neuroimaging studies. However, it remains unclear if Big Five personality traits are represented in frequency bands (~0.25 Hz) of resting-state functional magnetic resonance imaging (fMRI) activity. Based on earlier neurophysiological studies, we investigated the correlation between the five personality traits assessed by the NEO Five-Factor Inventory (NEO-FFI), and the fractional amplitude of low-frequency fluctuation (fALFF) at four distinct frequency bands (slow-5 (0.01-0.027 Hz), slow-4 (0.027-0.073 Hz), slow-3 (0.073-0.198 Hz) and slow-2 (0.198-0.25 Hz)). We enrolled 835 young subjects and calculated the correlations of resting-state fMRI signals using a multiple regression analysis. We found a significant and consistent correlation between fALFF and the personality trait of extraversion at all frequency bands. Furthermore, significant correlations were detected in distinct brain regions for each frequency band. This finding supports the frequency-specific spatial representations of personality traits as previously suggested. In conclusion, our data highlight an association between human personality traits and fALFF at four distinct frequency bands.

  3. Construction of a wireless communication contact closure system for liquid chromatography with multiple parallel mass spectrometers and other detectors

    USDA-ARS?s Scientific Manuscript database

    A contact closure system has been constructed and implemented that utilizes two contact closure sender boards that communicate wirelessly to four contact closure receiver boards to distribute start signals from two or three liquid chromatographs to fourteen instruments, pumps, detectors, or other co...

  4. Brain alterations in low-frequency fluctuations across multiple bands in obsessive compulsive disorder.

    PubMed

    Giménez, Mònica; Guinea-Izquierdo, Andrés; Villalta-Gil, Victoria; Martínez-Zalacaín, Ignacio; Segalàs, Cinto; Subirà, Marta; Real, Eva; Pujol, Jesús; Harrison, Ben J; Haro, Josep Maria; Sato, Joao R; Hoexter, Marcelo Q; Cardoner, Narcís; Alonso, Pino; Menchón, José Manuel; Soriano-Mas, Carles

    2016-10-22

    The extent of functional abnormalities in frontal-subcortical circuits in obsessive-compulsive disorder (OCD) is still unclear. Although neuroimaging studies, in general, and resting-state functional Magnetic Resonance Imaging (rs-fMRI), in particular, have provided relevant information regarding such alterations, rs-fMRI studies have been typically limited to the analysis of between-region functional connectivity alterations at low-frequency signal fluctuations (i.e., <0.08 Hz). Conversely, the local attributes of Blood Oxygen Level Dependent (BOLD) signal across different frequency bands have been seldom studied, although they may provide valuable information. Here, we evaluated local alterations in low-frequency fluctuations across different oscillation bands in OCD. Sixty-five OCD patients and 50 healthy controls underwent an rs-fMRI assessment. Alterations in the fractional amplitude of low-frequency fluctuations (fALFF) were evaluated, voxel-wise, across four different bands (from 0.01 Hz to 0.25 Hz). OCD patients showed decreased fALFF values in medial orbitofrontal regions and increased fALFF values in the dorsal-medial prefrontal cortex (DMPFC) at frequency bands <0.08 Hz. This pattern was reversed at higher frequencies, where increased fALFF values also appeared in medial temporal lobe structures and medial thalamus. Clinical variables (i.e., symptom-specific severities) were associated with fALFF values across the different frequency bands. Our findings provide novel evidence about the nature and regional distribution of functional alterations in OCD, which should contribute to refine neurobiological models of the disorder. We suggest that the evaluation of the local attributes of BOLD signal across different frequency bands may be a sensitive approach to further characterize brain functional alterations in psychiatric disorders.

  5. Wireless Technologies in Support of ISS Experimentation and Operations

    NASA Technical Reports Server (NTRS)

    Wagner, Raymond; Fink, Patrick

    2012-01-01

    Presentation reviews: (1) Wireless Communications (a) Internal (b) External (2) RFID (Radio Frequency Identification) (a) Existing and R&D (3) Wireless Sensor Networks (a) Existing and R&D (4) Ultra-Wide Band (UWB) (a) R&D

  6. Wireless hippocampal neural recording via a multiple input RF receiver to construct place-specific firing fields.

    PubMed

    Lee, Seung Bae; Manns, Joseph R; Ghovanloo, Maysam

    2012-01-01

    This paper reports scientifically meaningful in vivo experiments using a 32-channel wireless neural recording system (WINeR). The WINeR system is divided into transmitter (Tx) and receiver (Rx) parts. On the Tx side, we had WINeR-6, a system-on-a-chip (SoC) that operated based on time division multiplexing (TDM) of pulse width modulated (PWM) samples. The chip was fabricated in a 0.5-µm CMOS process, occupying 4.9 × 3.3 mm(2) and consuming 15 mW from ±1.5V supplies. The Rx used two antennas with separate pathways to down-convert the RF signal from a large area. A time-to-digital converter (TDC) in an FPGA converted the PWM pulses into digitized samples. In order to further increase the wireless coverage area and eliminate blind spots within a large experimental arena, two receivers were synchronized. The WINeR system was used to record epileptic activities from a rat that was injected with tetanus toxin (TT) in the dorsal hippocampus. In a different in vivo experiment, place-specific firing fields of place cells, which are parts of the hippocampal-dependent memory, were mapped from a series of behavioral experiments from a rat running in a circular track. Results from the same animal were compared against a commercial hard-wired recording system to evaluate the quality of the wireless recordings.

  7. Using multiple-polarization L-band radar to monitor marsh burn recovery

    USGS Publications Warehouse

    Ramsey, Elijah W.; Nelson, G.A.; Sapkota, S.K.; Laine, S.C.; Verdi, J.; Rrasznay, S.

    1999-01-01

    Aircraft L-band VV-, HH-, and VH-polarizations were examined as tools for monitoring burn recovery in a coastal marsh. Significant relationships were observed between time-since-burn (difference between burn and image collection dates; 550-900 days after burn) and returns related to all polarizations. As marsh burn recovery progressed, VV returns decreased while HH and VH returns increased. Radar returns extracted from control sites adjacent to each burn-simulated nonburn marsh and were not individually or in combination significantly related to the timesince-burn. Normalized by the control data, VH-polarization explained up to 83% of the total variations. Overall, the L-band multipolarization radars estimated time-since-burn within ??59 to ??92 days. ?? 1999 IEEE.

  8. Frequency spacing of multiple spontaneous otoacoustic emissions shows relation to critical bands: a large-scale cumulative study.

    PubMed

    Braun, M

    1997-12-01

    Multiple spontaneous otoacoustic emissions (SOAEs), recorded in one ear, are not randomly spaced on the frequency scale. Extent and origin of spacing order, however, are not clear. Therefore, the raw data of all human SOAE surveys were pooled, and the intervals of all possible emission pairs in each ear were in total outlined according to size on a distribution diagram (n = 5245, for intervals up to 2/3 octave). Prevalence was increased for intervals between the benchmarks of 1 and 2 critical bands (CB). This CB-2CB range was further characterized by preference of intervals with low-order frequency ratios like 5:4 or 6:5, whereas outside CB 2CB there were no such effects. The results are discussed in the context of current knowledge of the origin of critical bands. Experiments are proposed that test the hypothesis of an influence of the olivocochlear efferents on SOAE spacing.

  9. Skin hydration by spectroscopic imaging using multiple near-infrared bands

    NASA Astrophysics Data System (ADS)

    Attas, E. Michael; Sowa, Michael G.; Posthumus, Trevor B.; Schattka, Bernhard J.; Mantsch, Henry H.; Zhang, Shuliang L.

    2002-03-01

    Near-infrared spectroscopic methods have been developed to determine the degree of hydration of human skin in vivo. Reflectance spectroscopic imaging was used to investigate the distribution of skin moisture as a function of location. A human study in a clinical setting has generated quantitative data showing the effects of a drying agent and a moisturizer on delineated regions of the forearms of eight volunteers. Two digital imaging systems equipped with liquid-crystal tunable filters were used to collect stacks of monochromatic images at 10-nm intervals over the wavelength bands 650-1050 nm and 960-1700 nm. Images generated from measurements of water absorption-band areas at three different near-IR wavelengths (970, 1200, and 1450 nm) showed obvious differences in the apparent distribution of water in skin. Changes resulting from the skin treatments were much more evident in the 1200-nm and 1450-nm images than in the 970-nm ones. The variable sensitivity of the method at different wavelengths has been interpreted as being the result of different penetration depths of the infrared light used in the reflectance studies. Ex-vivo experiments with pigskin have provided evidence supporting the relationship between wavelength and penetration depth. Combining the hydration results from several near-IR water bands allows additional information on hydration depth to be obtained.

  10. Polarization-independent dual-band perfect absorber utilizing multiple magnetic resonances.

    PubMed

    Yoo, Young Joon; Kim, Young Joo; Van Tuong, Pham; Rhee, Joo Yull; Kim, Ki Won; Jang, Won Ho; Kim, Y H; Cheong, H; Lee, Youngpak

    2013-12-30

    We propose a dual-band metamaterial perfect absorber at microwave frequencies. Using a planar metamaterial, which consists of periodic metallic donut-shape meta-atoms at the front separated from the metallic plane at the back by a dielectric layer, we demonstrate the multi-plasmonic high-frequency perfect absorptions induced by the third-harmonic as well as the fundamental magnetic resonances. The origin of the induced multi-plasmonic perfect absorption was elucidated. It was also found that the perfect absorptions at dual peaks are persistent with varying polarization.

  11. Economic comparison of FDMA and TDMA options for communications by Ka-band multiple beam satellites

    NASA Technical Reports Server (NTRS)

    Stevens, G. H.

    1984-01-01

    An assessment is made of the feasibility of providing low data rate service to small earth stations by satellite at Ka-band. Technological as well as economic factors are considered. The results of NASA-sponsored contractual studies are compared and results of internal NASA studies are presented. Several FDMA and TDMA scenarios are critically examined with the objective of establishing the relative utility of such systems to end users. It is shown that FDMA has no advantage over TDMA in a multibeam scenario for 56 Kbs of data by voice, video, or the equivalent. For the same assumptions, significant weight and power advantages are realized in the space segment using TDMA.

  12. Proportional Increase Multiplicative Decrease (PIMD) Wireless Scheduler: An Efficient Scheduler for IEEE 802.11e HCF

    NASA Astrophysics Data System (ADS)

    Hussain, Arshad; Qaiser, Shaban

    In this paper, we propose a new wireless scheduling algorithm for the IEEE 802.11e HCF. The algorithm grants the mobile stations variable time for the upstream data flow in proportion to the queue size of the transmission buffer. At the same time, it retrieves half of the extra time allocated in previous cycle from those flows whose requirement has stopped. Hence, the system achieves stability by preventing the ping-pong phenomena. The algorithm is computationally simple, and as compared to the other algorithms, it gives bounded delays and jitter to the real-time applications under heavy load conditions.

  13. A satellite mobile communication system based on Band-Limited Quasi-Synchronous Code Division Multiple Access (BLQS-CDMA)

    NASA Technical Reports Server (NTRS)

    Degaudenzi, R.; Elia, C.; Viola, R.

    1990-01-01

    Discussed here is a new approach to code division multiple access applied to a mobile system for voice (and data) services based on Band Limited Quasi Synchronous Code Division Multiple Access (BLQS-CDMA). The system requires users to be chip synchronized to reduce the contribution of self-interference and to make use of voice activation in order to increase the satellite power efficiency. In order to achieve spectral efficiency, Nyquist chip pulse shaping is used with no detection performance impairment. The synchronization problems are solved in the forward link by distributing a master code, whereas carrier forced activation and closed loop control techniques have been adopted in the return link. System performance sensitivity to nonlinear amplification and timing/frequency synchronization errors are analyzed.

  14. Planar UWB Filter with Multiple Notched Band and Stopband with Improved Rejection Level

    NASA Astrophysics Data System (ADS)

    Ghazali, Abu Nasar; Pal, Srikanta

    2015-05-01

    Analysis and realization of a microstrip-based planar ultra-wideband (UWB) filter with integrated multiple notch elimination property and simultaneously extended upper stopband is proposed. Initially, a UWB filter based on back-to-back microstrip-to-CPW technology is designed. Later, multiple spiral defected ground structures (DGS) are embedded to obtain multiple passband notches. Further, double equilateral U (DEU)-type DGS are used to improve upon the rejection level in upper stopband. The multiple passband notches are results of embedded spiral-shaped DGS (SDGS), while extended upper stopband is the outcome of suppressed higher-order spurious harmonics. The flexible dual-attenuation poles of DEU-shaped DGS suppress the stopband harmonics and widen the stopband. An approximate lumped equivalent circuit model of the proposed filter is modelled. The filter is compact and its layout measures 25.26 mm × 11.01 mm. The measured result is in good agreement with the full-wave electromagnetic (EM) simulation and circuit simulation.

  15. Terabit Wireless Communication Challenges

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.

    2012-01-01

    This presentation briefly discusses a research effort on Terabit Wireless communication systems for possible space applications. Recently, terahertz (THz) technology (300-3000 GHz frequency) has attracted a great deal of interest from academia and industry. This is due to a number of interesting features of THz waves, including the nearly unlimited bandwidths available, and the non-ionizing radiation nature which does not damage human tissues and DNA with minimum health threat. Also, as millimeter-wave communication systems mature, the focus of research is, naturally, moving to the THz range. Many scientists regard THz as the last great frontier of the electromagnetic spectrum, but finding new applications outside the traditional niches of radio astronomy, Earth and planetary remote sensing, and molecular spectroscopy particularly in biomedical imaging and wireless communications has been relatively slow. Radiologists find this area of study so attractive because t-rays are non-ionizing, which suggests no harm is done to tissue or DNA. They also offer the possibility of performing spectroscopic measurements over a very wide frequency range, and can even capture signatures from liquids and solids. According to Shannon theory, the broad bandwidth of the THz frequency bands can be used for terabit-per-second (Tb/s) wireless communication systems. This enables several new applications, such as cell phones with 360 degrees autostereoscopic displays, optic-fiber replacement, and wireless Tb/s file transferring. Although THz technology could satisfy the demand for an extremely high data rate, a number of technical challenges need to be overcome before its development. This presentation provides an overview the state-of-the- art in THz wireless communication and the technical challenges for an emerging application in Terabit wireless systems. The main issue for THz wave propagation is the high atmospheric attenuation, which is dominated by water vapor absorption in the THz

  16. Response to ``non-muffin-tin band theories of the multiple-scattering type''

    NASA Astrophysics Data System (ADS)

    Brown, R. G.; Ciftan, M.

    1985-07-01

    We respond to the preceding Comment by J. S. Faulkner by examining the convergence properties of functions used to represent solutions to Schrödinger's equation in the context of Green's-function band theory. Such evidence as exists on the subject is reviewed. The conclusion drawn is that the data presented in his comment are sufficient to conclude that ``a large fraction of the errors caused by ignoring the non-muffin-tin parts of a potential can be eliminated by the simple expedient of including the nondiagonal parts of the scattering matrix.'' However, the data presented do not warrant the conclusion that our theory is incorrect through the neglect or incorrect treatment of the ``near field'' or in any other manner. This is a question that must ultimately be resolved algebraically, but the data so far presented do not seem to be inconsistent with our theory being exact.

  17. Dynamic Multiple-Threshold Call Admission Control Based on Optimized Genetic Algorithm in Wireless/Mobile Networks

    NASA Astrophysics Data System (ADS)

    Wang, Shengling; Cui, Yong; Koodli, Rajeev; Hou, Yibin; Huang, Zhangqin

    Due to the dynamics of topology and resources, Call Admission Control (CAC) plays a significant role for increasing resource utilization ratio and guaranteeing users' QoS requirements in wireless/mobile networks. In this paper, a dynamic multi-threshold CAC scheme is proposed to serve multi-class service in a wireless/mobile network. The thresholds are renewed at the beginning of each time interval to react to the changing mobility rate and network load. To find suitable thresholds, a reward-penalty model is designed, which provides different priorities between different service classes and call types through different reward/penalty policies according to network load and average call arrival rate. To speed up the running time of CAC, an Optimized Genetic Algorithm (OGA) is presented, whose components such as encoding, population initialization, fitness function and mutation etc., are all optimized in terms of the traits of the CAC problem. The simulation demonstrates that the proposed CAC scheme outperforms the similar schemes, which means the optimization is realized. Finally, the simulation shows the efficiency of OGA.

  18. Band-edge absorption coefficients from photoluminescence in semiconductor multiple quantum wells

    NASA Technical Reports Server (NTRS)

    Kost, Alan; Zou, Yao; Dapkus, P. D.; Garmire, Elsa; Lee, H. C.

    1989-01-01

    A novel approach to determining absorption coefficients in thin films using luminescence is described. The technique avoids many of the difficulties typically encountered in measurements of thin samples, Fabry-Perot effects, for example, and can be applied to a variety of materials. The absorption edge for GaAs/AlGaAs multiple quantum well structures, with quantum well widths ranging from 54 to 193 A is examined. Urbach (1953) parameters and excitonic linewidths are tabulated.

  19. An orthogonal wavelet division multiple-access processor architecture for LTE-advanced wireless/radio-over-fiber systems over heterogeneous networks

    NASA Astrophysics Data System (ADS)

    Mahapatra, Chinmaya; Leung, Victor CM; Stouraitis, Thanos

    2014-12-01

    The increase in internet traffic, number of users, and availability of mobile devices poses a challenge to wireless technologies. In long-term evolution (LTE) advanced system, heterogeneous networks (HetNet) using centralized coordinated multipoint (CoMP) transmitting radio over optical fibers (LTE A-ROF) have provided a feasible way of satisfying user demands. In this paper, an orthogonal wavelet division multiple-access (OWDMA) processor architecture is proposed, which is shown to be better suited to LTE advanced systems as compared to orthogonal frequency division multiple access (OFDMA) as in LTE systems 3GPP rel.8 (3GPP, http://www.3gpp.org/DynaReport/36300.htm). ROF systems are a viable alternative to satisfy large data demands; hence, the performance in ROF systems is also evaluated. To validate the architecture, the circuit is designed and synthesized on a Xilinx vertex-6 field-programmable gate array (FPGA). The synthesis results show that the circuit performs with a clock period as short as 7.036 ns (i.e., a maximum clock frequency of 142.13 MHz) for transform size of 512. A pipelined version of the architecture reduces the power consumption by approximately 89%. We compare our architecture with similar available architectures for resource utilization and timing and provide performance comparison with OFDMA systems for various quality metrics of communication systems. The OWDMA architecture is found to perform better than OFDMA for bit error rate (BER) performance versus signal-to-noise ratio (SNR) in wireless channel as well as ROF media. It also gives higher throughput and mitigates the bad effect of peak-to-average-power ratio (PAPR).

  20. Space-division-multiplexed transmission of 3x3 multiple-input multiple-output wireless signals over conventional graded-index multimode fiber.

    PubMed

    Lei, Yi; Li, Jianqiang; Fan, Yuting; Yu, Dawei; Fu, Songnian; Yin, Feifei; Dai, Yitang; Xu, Kun

    2016-12-12

    In this paper, we experimentally demonstrate space-division-multiplexed (SDM) transmission of IEEE 802.11ac-compliant 3-spatial-stream WLAN signals over 3 spatial modes of conventional 50um graded-index (GI) multimode fiber (MMF) employing non-mode-selective 3D-waveguide photonic lantern. Two kinds of scenarios, including fiber-only transmission and fiber-wireless hybrid transmission, were investigated by measuring error vector magnitude (EVM) performance for each stream and condition number (CN) of the channel matrix. The experimental results show that, SDM-based MMF link could offer a CN< 20dB well-conditioned MIMO channel over up to 1km fiber length within 0-6GHz, achieving as low as 2.38%, 2.97% and 2.11% EVM performance for 1km MMF link at 2.4GHz, 5.8GHz, and 200m MMF link followed by 1m air distance at 2.7GHz, respectively. These results indicate the possibility to distribute wireless MIMO signals over existing in-building commercially-available MMFs with enormous cost-saving.

  1. Six-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure

    NASA Astrophysics Data System (ADS)

    Wang, Ben-Xin; Wang, Gui-Zhen; Sang, Tian; Wang, Ling-Ling

    2017-01-01

    This paper reports on a numerical study of the six-band metamaterial absorber composed of two alternating stack of metallic-dielectric layers on top of a continuous metallic plane. Six obvious resonance peaks with high absorption performance (average larger than 99.37%) are realized. The first, third, fifth, and the second, fourth, sixth resonance absorption bands are attributed to the multiple-order responses (i.e., the 1-, 3- and 5-order responses) of the bottom- and top-layer of the structure, respectively, and thus the absorption mechanism of six-band absorber is due to the combination of two sets of the multiple-order resonances of these two layers. Besides, the size changes of the metallic layers have the ability to tune the frequencies of the six-band absorber. Employing the results, we also present a six-band polarization tunable absorber through varying the sizes of the structure in two orthogonal polarization directions. Moreover, nine-band terahertz absorber can be achieved by using a three-layer stacked structure. Simulation results indicate that the absorber possesses nine distinct resonance bands, and average absorptivities of them are larger than 94.03%. The six-band or nine-band absorbers obtained here have potential applications in many optoelectronic and engineering technology areas.

  2. Six-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure

    PubMed Central

    Wang, Ben-Xin; Wang, Gui-Zhen; Sang, Tian; Wang, Ling-Ling

    2017-01-01

    This paper reports on a numerical study of the six-band metamaterial absorber composed of two alternating stack of metallic-dielectric layers on top of a continuous metallic plane. Six obvious resonance peaks with high absorption performance (average larger than 99.37%) are realized. The first, third, fifth, and the second, fourth, sixth resonance absorption bands are attributed to the multiple-order responses (i.e., the 1-, 3- and 5-order responses) of the bottom- and top-layer of the structure, respectively, and thus the absorption mechanism of six-band absorber is due to the combination of two sets of the multiple-order resonances of these two layers. Besides, the size changes of the metallic layers have the ability to tune the frequencies of the six-band absorber. Employing the results, we also present a six-band polarization tunable absorber through varying the sizes of the structure in two orthogonal polarization directions. Moreover, nine-band terahertz absorber can be achieved by using a three-layer stacked structure. Simulation results indicate that the absorber possesses nine distinct resonance bands, and average absorptivities of them are larger than 94.03%. The six-band or nine-band absorbers obtained here have potential applications in many optoelectronic and engineering technology areas. PMID:28120897

  3. Joint source/channel coding for prioritized wireless transmission of multiple 3-D regions of interest in 3-D medical imaging data.

    PubMed

    Sanchez, V

    2013-02-01

    This paper presents a 3-D medical image coding method featuring two major improvements to previous work on 3-D region of interest (RoI) coding for telemedicine applications. Namely, 1) a data prioritization scheme that allows coding of multiple 3-D-RoIs; and 2) a joint/source channel coding scheme that allows prioritized transmission of multiple 3-D-RoIs over wireless channels. The method, which is based on the 3-D integer wavelet transform and embedded block coding with optimized truncation with 3-D context modeling, generates scalable and error-resilient bit streams with 3-D-RoI decoding capabilities. Coding of multiple 3-D-RoIs is attained by prioritizing the wavelet-transformed data according to a Gaussian mixed distribution, whereas error resiliency is attained by employing the error correction capabilities of rate-compatible punctured turbo codes. The robustness of the proposed method is evaluated for transmission of real 3-D medical images over Rayleigh-fading channels with a priori knowledge of the channel condition. Evaluation results show that the proposed coding method provides a superior performance compared to equal error protection and unequal error protection techniques.

  4. Tunable band-stop plasmonic waveguide filter with symmetrical multiple-teeth-shaped structure.

    PubMed

    Wang, Hongqing; Yang, Junbo; Zhang, Jingjing; Huang, Jie; Wu, Wenjun; Chen, Dingbo; Xiao, Gongli

    2016-03-15

    A nanometeric plasmonic filter with a symmetrical multiple-teeth-shaped structure is investigated theoretically and numerically. A tunable wide bandgap is achievable by adjusting the depth and number of teeth. This phenomenon can be attributed to the interference superposition of the reflected and transmitted waves from each tooth. Moreover, the effects of varying the number of identical teeth are also discussed. It is found that the bandgap width increases continuously with the increasing number of teeth. The finite difference time domain method is used to simulate and compute the coupling of surface plasmon polariton waves with different structures in this Letter. The plasmonic waveguide filter that we propose here may have meaningful applications in ultra-fine spectrum analysis and high-density nanoplasmonic integration circuits.

  5. Multiple homonuclear band-selective decoupling NMR: Fast and unambiguous determination of diastereomeric excess.

    PubMed

    Rachineni, Kavitha; Kakita, Veera Mohana Rao; Hosur, Ramakrishna V

    2017-07-20

    Discrimination and quantification of chiral stereoisomers have been studied by different analytical methods, and NMR has emerged as a powerful one with the advancements in pure-shift NMR methods. In the present manuscript, an al-F1F2-MHOBS-DIAG NMR method for the quantification of diastereomeric excess ratio (dr) has been proposed and demonstrated, using hesperidin and naringin mixtures. This method enables simultaneous quantification of dr at multiple resonances, in a single experiment, and it takes only 10 min to record. The present method uses spectral aliasing and thus demands only very few indirect dwell increments. Further, the measured dr values are very reliable, because we consider several spins for the quantification. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Portable Integrated Wireless Device Threat Assessment to Aircraft Radio Systems

    NASA Technical Reports Server (NTRS)

    Salud, Maria Theresa P.; Williams, Reuben A. (Technical Monitor)

    2004-01-01

    An assessment was conducted on multiple wireless local area network (WLAN) devices using the three wireless standards for spurious radiated emissions to determine their threat to aircraft radio navigation systems. The measurement process, data and analysis are provided for devices tested using IEEE 802.11a, IEEE 802.11b, and Bluetooth as well as data from portable laptops/tablet PCs and PDAs (grouping known as PEDs). A comparison was made between wireless LAN devices and portable electronic devices. Spurious radiated emissions were investigated in the radio frequency bands for the following aircraft systems: Instrument Landing System Localizer and Glideslope, Very High Frequency (VHF) Communication, VHF Omnidirectional Range, Traffic Collision Avoidance System, Air Traffic Control Radar Beacon System, Microwave Landing System and Global Positioning System. Since several of the contiguous navigation systems were grouped under one encompassing measurement frequency band, there were five measurement frequency bands where spurious radiated emissions data were collected for the PEDs and WLAN devices. The report also provides a comparison between emissions data and regulatory emission limit.

  7. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression

    USGS Publications Warehouse

    Kokaly, R.F.; Clark, R.N.

    1999-01-01

    We develop a new method for estimating the biochemistry of plant material using spectroscopy. Normalized band depths calculated from the continuum-removed reflectance spectra of dried and ground leaves were used to estimate their concentrations of nitrogen, lignin, and cellulose. Stepwise multiple linear regression was used to select wavelengths in the broad absorption features centered at 1.73 ??m, 2.10 ??m, and 2.30 ??m that were highly correlated with the chemistry of samples from eastern U.S. forests. Band depths of absorption features at these wavelengths were found to also be highly correlated with the chemistry of four other sites. A subset of data from the eastern U.S. forest sites was used to derive linear equations that were applied to the remaining data to successfully estimate their nitrogen, lignin, and cellulose concentrations. Correlations were highest for nitrogen (R2 from 0.75 to 0.94). The consistent results indicate the possibility of establishing a single equation capable of estimating the chemical concentrations in a wide variety of species from the reflectance spectra of dried leaves. The extension of this method to remote sensing was investigated. The effects of leaf water content, sensor signal-to-noise and bandpass, atmospheric effects, and background soil exposure were examined. Leaf water was found to be the greatest challenge to extending this empirical method to the analysis of fresh whole leaves and complete vegetation canopies. The influence of leaf water on reflectance spectra must be removed to within 10%. Other effects were reduced by continuum removal and normalization of band depths. If the effects of leaf water can be compensated for, it might be possible to extend this method to remote sensing data acquired by imaging spectrometers to give estimates of nitrogen, lignin, and cellulose concentrations over large areas for use in ecosystem studies.We develop a new method for estimating the biochemistry of plant material using

  8. A guide to wireless networking by light

    NASA Astrophysics Data System (ADS)

    Haas, Harald; Chen, Cheng; O'Brien, Dominic

    2017-09-01

    The lack of wireless spectrum in the radio frequency bands has led to a rapid growth in research in wireless networking using light, known as LiFi (light fidelity). In this paper an overview of the subsystems, challenges and techniques required to achieve this is presented.

  9. Improvement of thermoelectric performance of single-wall carbon nanotubes by heavy doping: Effect of one-dimensional band multiplicity

    NASA Astrophysics Data System (ADS)

    Hayashi, Daisuke; Nakai, Yusuke; Kyakuno, Haruka; Yamamoto, Takahiro; Miyata, Yasumitsu; Yanagi, Kazuhiro; Maniwa, Yutaka

    2016-12-01

    Doped single-wall carbon nanotube (SWCNT) films were prepared and their Seebeck coefficient (S) and electrical resistivity (ρ) were investigated as functions of carrier density. For heavy doping, a second maximum of S (S = 35 µV/K) was discovered, with its corresponding power factor, P = 85 µW/(m·K2), 6 times that of the first maximum for lightly doped films. Calculations for zigzag SWCNTs suggest that the thermoelectric performance can be effectively improved by controlling the multiplicity of the one-dimensional band and tuning the carrier density. This provides a new strategy for achieving higher performance at a lower cost than using high-purity semiconducting SWCNTs.

  10. Multiple sclerosis patients lacking oligoclonal bands in the cerebrospinal fluid have less global and regional brain atrophy.

    PubMed

    Ferreira, Daniel; Voevodskaya, Olga; Imrell, Kerstin; Stawiarz, Leszek; Spulber, Gabriela; Wahlund, Lars-Olof; Hillert, Jan; Westman, Eric; Karrenbauer, Virginija Danylaité

    2014-09-15

    To investigate whether multiple sclerosis (MS) patients with and without cerebrospinal fluid (CSF) oligoclonal immunoglobulin G bands (OCB) differ in brain atrophy. Twenty-eight OCB-negative and thirty-five OCB-positive patients were included. Larger volumes of total CSF and white matter (WM) lesions; smaller gray matter (GM) volume in the basal ganglia, diencephalon, cerebellum, and hippocampus; and smaller WM volume in corpus callosum, periventricular-deep WM, brainstem, and cerebellum, were observed in OCB-positives. OCB-negative patients, known to differ genetically from OCB-positives, are characterized by less global and regional brain atrophy. This finding supports the notion that OCB-negative MS patients may represent a clinically relevant MS subgroup. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Superfluid Density and Flux-Flow Resistivity Measurements of Multiple-Band Superconductor β-PdBi2

    NASA Astrophysics Data System (ADS)

    Okada, Tatsunori; Imai, Yoshinori; Maeda, Atsutaka

    β -PdBi2 (Tcmax = 5 . 4 K) is a newcomer of the multiple-band superconductors, revealed by the specific heat and the upper critical field measurements, and the angle-resolved photoemission spectroscopy. In addition, authors of ref. observed the spin-polarized band dispersion and proposed that β-PdBi2 is a candidate of topological superconductor. However, there is less information on superconducting properties so far. In order to clarify the superconducting gap function, we measured the temperature (T) and magnetic field (B) dependence of microwave complex conductivity of β-PdBi2 single crystals. We found that the superfluid density exhibits the thermally activated T dependence, manifesting the absence of nodes in the superconducting gaps. We also found that the flux-flow resistivity increased with B with downward-convex shape. Based on some theories, we considered that such a behavior originated from the backflow of supercurrents around vortices reflecting rather small Ginzburg-Landau parameter (κ ~= 5). This work was supported by the JSPS KAKENHI (Grant Numbers 15K17697 and 26-9315), and the JSPS Research Fellowship for Young Scientists.

  12. Why do we need to place Multi-band Single and Multiple Pass POLinSAR Monitoring Platforms into Space?

    NASA Astrophysics Data System (ADS)

    Boerner, W.-M.

    2003-04-01

    The ESA POLinSAR Workshop on "Applications of SAR Polarimetry and Polarimetric SAR Interferometry" is arranged at the ideal time for developing this urgently required technology for environmental stress-change and local- to-global conflict monitoring in air and specifically in space. In this overview, reasons are provided on why we do need to place multi-modal, multi-band single and multiple pass POLinSAR monitoring platforms into space. The questions "on what POLinSAR monitoring can provide that POL-SAR and IN-SAR by themselves cannot accomplish" is assessed; whereupon facts and justifications on placing POL-IN-BISAR satellite clusters into space are presented. Reasons for this technology becoming a basic requirement for current, near-future and much more so for future all-day&night year-round monitoring of the terrestrial covers are analyzed in view of the un-abating and uncontrollable terrestrial population explosion. The pertinent questions on how to reduce the exorbitant cost for initiating this "home- globe security protection" technology are also broached, and the expected benefits are laid out in detail. The pertinent National and International airborne and space borne multi-modal, multi-band SAR remote sensing and security conflict surveillance support agencies are herewith invited for co-sponsoring our proposal, which is timely and POLinSAR platforms are urgently required to be placed into space.

  13. Views of wireless network systems.

    SciTech Connect

    Young, William Frederick; Duggan, David Patrick

    2003-10-01

    Wireless networking is becoming a common element of industrial, corporate, and home networks. Commercial wireless network systems have become reliable, while the cost of these solutions has become more affordable than equivalent wired network solutions. The security risks of wireless systems are higher than wired and have not been studied in depth. This report starts to bring together information on wireless architectures and their connection to wired networks. We detail information contained on the many different views of a wireless network system. The method of using multiple views of a system to assist in the determination of vulnerabilities comes from the Information Design Assurance Red Team (IDART{trademark}) Methodology of system analysis developed at Sandia National Laboratories.

  14. Secondary initiation of multiple bands of cumulonimbus over southern Britain. II: Dynamics of secondary initiation

    NASA Astrophysics Data System (ADS)

    Marsham, J. H.; Parker, D. J.

    2006-04-01

    The Convective Storm Initiation Project (CSIP) pilot field programme took place in the summer of 2004 in southern England. During this field campaign a case of a cold-pool outflow initiating an arc of convection downwind of the generating storm (the 'primary storm') was observed. Three further arcs were initiated further downwind of this first arc. These arcs all later gave significant rainfall over south-east England. Results from the modelling studies described in this paper show that gravity waves, generated by the 'primary storm', may have been responsible for initiating the further three arcs of convective showers that were observed.The modelled primary storm generates waves with a range of vertical wavelengths. These are separated by dispersion, with the higher-order modes (with the largest vertical wavelengths) travelling fastest (approximately 30 m s-1). The fastest two modes suppressed convection and later modes increased boundary-layer depth and so initiated convection. The multiple peaks (from non-hydrostatic effects) in the third mode may have been responsible for the two main arcs observed and the fourth mode may have been responsible for the third arc. The amplitude of the modelled waves at low levels was much larger downwind of the primary storm than upwind and only initiated convection there, which agrees with the observations of the arcs forming downwind of the primary storm. This asymmetry appears to be caused by the moving-wave source and asymmetric wave trapping. Finally we discuss the implications for numerical weather prediction (NWP). Reducing the resolution of the model, and varying the magnitude of the wind speed used, shows that a non-hydrostatic high-resolution (≃1 km) NWP model should be able to capture such wave processes, if the generating storm is forecast or analysed correctly.

  15. Wireless and simultaneous detections of multiple bio-molecules in a single sensor using Love wave biosensor.

    PubMed

    Oh, Haekwan; Fu, Chen; Kim, Kunnyun; Lee, Keekeun

    2014-11-17

    A Love wave-based biosensor with a 440 MHz center frequency was developed for the simultaneous detection of two different analytes of Cartilage Oligomeric Matrix Protein (COMP) and rabbit immunoglobulin G (IgG) in a single sensor. The developed biosensor consists of one-port surface acoustic wave (SAW) reflective delay lines on a 41° YX LiNbO3 piezoelectric substrate, a poly(methyl methacrylate) (PMMA) waveguide layer, and two different sensitive films. The Love wave biosensor was wirelessly characterized using two antennas and a network analyzer. The binding of the analytes to the sensitive layers induced a large change in the time positions of the original reflection peaks mainly due to the mass loading effect. The assessed time shifts in the reflection peaks were matched well with the predicted values from coupling of mode (COM) modeling. The sensitivities evaluated from the sensitive films were ~15 deg/µg/mL for the rabbit IgG and ~1.8 deg/ng/mL for COMP.

  16. Channel models for wireless body area networks.

    PubMed

    Takizawa, Kenichi; Aoyagi, Akahiro; Takada, Jun-Ichi; Katayama, Norihiko; Yekeh, Kamya; Takehiko, Yazdandoost; Kohno, Kobayashi Ryuji

    2008-01-01

    Wireless patient monitoring using wearable sensors is a promising application. This paper provides stochastic channel models for wireless body area network (WBAN) on the human body. Parameters of the channel models are extracted from measured channel transfer functions (CTFs) in a hospital room. Measured frequency bands are selected so as to include permissible bands for WBAN; ultra wideband (UWB), the industry, science and medical (ISM) bands, and wireless medical telemetry system (WMTS) bands. As channel models, both a path loss model and a power delay profile (PDP) model are considered. But, even though path loss models are derived for the all frequency bands, PDP model is only for the UWB band due to the highly frequency selectiveness of UWB channels. The parameters extracted from the measurement results are summarized for each channel model.

  17. Design of multi-band microstrip polygonal contour filter for microwaves

    NASA Astrophysics Data System (ADS)

    Gavriloaia, Bogdan; Vizireanu, Radu; Fratu, Octavian; Halunga, Simona; Barca, Cristian; Mara, Constantin

    2016-12-01

    The rapid growth of wireless communications requires a new generation of multifunction devices operating simultaneously under multiple communication standards, in several bands, small, robust and low cost. Microstrip technology can provide these features. An original topological structure is presented in this paper. It integrates several microstrip lines and lumped components in an asymmetric network, and has three ports. A lot of resonance frequencies occur as a result of combination between normal and degenerate propagation modes. Dual-band and three-bands can be selected, depending on the ports used. The originality of this work is to investigate a pentagonal pattern microstrip and introduces two types of perturbations given by two capacitors and a microstrip line section between the corners of the pentagon. The electric field patterns and insertion loss are calculated and provide the possibility of implementing microstrip and larger flexibility for choosing different frequency bands for wireless applications.

  18. 78 FR 48621 - Service Rules for Advanced Wireless Services in the 2000-2020 MHz and 2180-2200 MHz Bands, etc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-09

    ... From the Federal Register Online via the Government Publishing Office FEDERAL COMMUNICATIONS... 2180-2200 MHz Bands, etc. AGENCY: Federal Communications Commission. ACTION: Final rule; announcement... terrestrial rights by modifying the MSS operators' licenses pursuant to section 316 of the Communications...

  19. 78 FR 8229 - Service Rules for Advanced Wireless Services in the 2000-2020 MHz and 2180-2200 MHz Bands, etc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-05

    ... NPRM, which consisted of a Notice of Proposed Rulemaking and Notice of Inquiry. In the AWS-4 NPRM, the... (i.e., non-variable) duplex spacing. The AWS-4 band will therefore consist of two paired 10 + 10... technologies, such as Long Term Evolution (``LTE''), to meet higher data rates and wider bandwidths...

  20. Wireless Acoustic Measurement System

    NASA Technical Reports Server (NTRS)

    Anderson, Paul D.; Dorland, Wade D.

    2005-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in "Predicting Rocket or Jet Noise in Real Time" (SSC-00215-1), which appears elsewhere in this issue of NASA Tech Briefs. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro-ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that

  1. Wireless Acoustic Measurement System

    NASA Technical Reports Server (NTRS)

    Anderson, Paul D.; Dorland, Wade D.; Jolly, Ronald L.

    2007-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/ Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in the article on page 8. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro- ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that provides an intuitive graphical user interface through which an operator at the control server

  2. Recurrence network analysis of multiple local field potential bands from the orofacial portion of primary motor cortex

    PubMed Central

    Subramaniyam, Narayan Puthanmadam; Hyttinen, Jari; Hatsopoulos, Nicholas G.; Ross, Callum F.; Takahashi, Kazutaka

    2016-01-01

    Local field potentials (LFPs), which have been considered as aggregate signals that reflect activities of a large number of neurons in the cerebral cortex, have been observed to mediate gross functional activities of a relatively small volume of the brain tissues. Historically there have been several frequency bands observed and defined across various brain areas. However, detailed analysis, either spectral analysis or any dynamical analysis of LFPs particularly in the orofacial part of the primary motor cortex (MIo) has not been done before. Here, we recorded LFPs from MIo using an electrode array from a non-human primate during feeding behavior. Then we performed spectral analysis during the whole feeding sequences and to characterize temporal evolution of spectrum around the time of swallow cycles. The spectrogram over the β range showed dynamical change in its power around the swallow cycle onsets. We then characterized dynamical behaviors of LFPs over multiple bands, α, β, low γ, and high γ using two measures from the recurrence network (RN) method, network transitivity, T and average path length L. Temporal profile of T in α and β indicated that there was a sudden change in the dynamical properties around the swallow cycle onsets, while temporal profile of L indicated that a range of −200 to −150 ms and 200ms to the swallow cycle onsets exhibited large changes both in α and β ranges. Therefore, to further understand the involvement of cortical oscillation to behavior, particularly swallowing, the combination of traditional spectral methods and various dynamical methods such as RN method would be essential. PMID:26737498

  3. Multiple scattering effects on the Linear Depolarization Ratio (LDR) measured during CaPE by a Ka-band air-borne radar

    NASA Technical Reports Server (NTRS)

    Iguchi, Toshio; Meneghini, Robert

    1993-01-01

    Air-borne radar measurements of thunderstorms were made as part of the CaPE (Convection and Precipitation/Electrification) experiment in Florida in July 1991. The radar has two channels, X-band (10 GHz) and Ka-band (34.5 GHz), and is capable of measuring cross-polarized returns as well as co-polarized returns. In stratiform rain, the cross-polarized components can be observed only at the bright band region and from the surface reflection. The linear depolarization ratios (LDR's) measured at X-band and Ka-band at the bright band are nearly equal. In convective rain, however, the LDR in Ka-band often exceeds the X-band LDR by several dB, and sometimes by more than 10 dB, reaching LDR values of up to -5 dB over heavy convective rain. For randomly oriented hydrometeors, such high LDR values cannot be explained by single scattering from non-spherical scattering particles alone. Because the LDR by single backscatter depends weakly on the wavelength, the difference between the Ka-band and X-band LDR's suggests that multiple scattering effects prevail in the Ka-band LDR. In order to test this inference, the magnitude of the cross-polarized component created by double scattering was calculated using the parameters of the airborne radar, which for both frequencies has beamwidths of 5.1 degrees and pulse widths of 0.5 microsecond. Uniform rain beyond the range of 3 km is assumed.

  4. Multiple Converged Conduction Bands in K2Bi8Se13: A Promising Thermoelectric Material with Extremely Low Thermal Conductivity.

    PubMed

    Pei, Yanling; Chang, Cheng; Wang, Zhe; Yin, Meijie; Wu, Minghui; Tan, Gangjian; Wu, Haijun; Chen, Yuexing; Zheng, Lei; Gong, Shengkai; Zhu, Tiejun; Zhao, Xinbing; Huang, Li; He, Jiaqing; Kanatzidis, Mercouri G; Zhao, Li-Dong

    2016-12-21

    We report that K2Bi8Se13 exhibits multiple conduction bands that lie close in energy and can be activated through doping, leading to a highly enhanced Seebeck coefficient and a high power factor with elevated temperature. Meanwhile, the large unit cell, complex low symmetry crystal structure, and nondirectional bonding lead to the very low lattice thermal conductivity of K2Bi8Se13, ranging between 0.42 and 0.20 W m(-1) K(-1) in the temperature interval 300-873 K. Experimentally, we further support the low thermal conductivity of K2Bi8Se13 using phonon velocity measurements; the results show a low average phonon velocity (1605 ms(-1)), small Young's modulus (37.1 GPa), large Grüneisen parameter (1.71), and low Debye temperature (154 K). A detailed investigation of the microstructure and defects was carried out using electron diffraction and transmission microscopy which reveal the presence of a K2.5Bi8.5Se14 minor phase intergrown along the side of the K2Bi8Se13 phase. The combination of enhanced power factor and low thermal conductivity results in a high ZT value of ∼1.3 at 873 K in electron doped K2Bi8Se13 material.

  5. Detection of intrathecal immunoglobulin G synthesis by capillary isoelectric focusing immunoassay in oligoclonal band negative multiple sclerosis.

    PubMed

    Halbgebauer, Steffen; Huss, André; Buttmann, Mathias; Steinacker, Petra; Oeckl, Patrick; Brecht, Isabel; Weishaupt, Andreas; Tumani, Hayrettin; Otto, Markus

    2016-05-01

    Oligoclonal immunoglobulin G bands (OCBs) restricted to the cerebrospinal fluid indicate intrathecal inflammation. Using isoelectric focusing and immunoblotting, they are detected in about 95 % of patients with clinically definite multiple sclerosis (MS). To elucidate whether in the remaining 5 % OCBs are truly absent or alternatively missed due to insufficient sensitivity of the routine measurement, we employed a new, highly sensitive nanoscale method for OCB detection. Capillary isoelectric focusing followed by immunological detection served to analyze OCBs in 33 well-characterized OCB-negative and 10 OCB-positive MS patients as well as in 100 OCB-negative control patients with non-inflammatory neurological diseases and 30 OCB-positive control patients with inflammatory neurological diseases. We detected intrathecal immunoglobulin G production in 10 out of 33 MS patients (30 %), initially diagnosed as being OCB-negative, and in all 10 OCB-positive MS patients, but in only 3 out of 100 non-inflammatory neurological controls (3 %) and in 29 of 30 inflammatory neurological controls (97 %). At least about one-third of MS patients without intrathecal immunoglobulin G synthesis according to standard methods are OCB-positive. Advanced methods for OCB detection may increase the analytical sensitivity for detecting OCB in patients with MS who are OCB-negative according to current routine methods.

  6. A first generation cytogenetic ideogram for the Florida manatee (Trichechus manatus latirostris) based on multiple chromosome banding techniques

    USGS Publications Warehouse

    Gray, B.A.; Zori, Roberto T.; McGuire, P.M.; Bonde, R.K.

    2002-01-01

    Detailed chromosome studies were conducted for the Florida manatee (Trichechus manatus latirostris) utilizing primary chromosome banding techniques (G- and Q-banding). Digital microscopic imaging methods were employed and a standard G-banded karyotype was constructed for both sexes. Based on chromosome banding patterns and measurements obtained in these studies, a standard karyotype and ideogram are proposed. Characterization of additional cytogenetic features of this species by supplemental chromosome banding techniques, C-banding (constitutive heterochromatin), Ag-NOR staining (nucleolar organizer regions), and DA/DAPI staining, was also performed. These studies provide detailed cytogenetic data for T. manatus latirostris, which could enhance future genetic mapping projects and interspecific and intraspecific genomic comparisons by techniques such as zoo-FISH.

  7. System and method for time synchronization in a wireless network

    DOEpatents

    Gonia, Patrick S.; Kolavennu, Soumitri N.; Mahasenan, Arun V.; Budampati, Ramakrishna S.

    2010-03-30

    A system includes multiple wireless nodes forming a cluster in a wireless network, where each wireless node is configured to communicate and exchange data wirelessly based on a clock. One of the wireless nodes is configured to operate as a cluster master. Each of the other wireless nodes is configured to (i) receive time synchronization information from a parent node, (ii) adjust its clock based on the received time synchronization information, and (iii) broadcast time synchronization information based on the time synchronization information received by that wireless node. The time synchronization information received by each of the other wireless nodes is based on time synchronization information provided by the cluster master so that the other wireless nodes substantially synchronize their clocks with the clock of the cluster master.

  8. Wireless Communications

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A technology utilization project led to the commercial adaptation of a Space Shuttle Orbiter wireless infrared voice communications system. The technology was adapted to a LAN system by Wilton Industries, one of the participants. Because the system is cable-free, installation charges are saved, and it can be used where cable is impractical. Resultant products include the IRplex 6000. Transceivers can be located anywhere and can include mobile receivers. The system provides wireless LAN coverage up to 44,000 square feet. applications include stock exchange communications, trade shows, emergency communications, etc.

  9. Dimensional crossover in topological matter: Evolution of the multiple Dirac point in the layered system to the flat band on the surface

    NASA Astrophysics Data System (ADS)

    Heikkilä, T. T.; Volovik, G. E.

    2011-03-01

    We consider the dimensional crossover in the topological matter, which involves the transformation of different types of topologically protected zeroes in the fermionic spectrum. In the considered case, the multiple Dirac (Fermi) point in quasi 2-dimensional system evolves into the flat band on the surface of the 3-dimensional system when the number of atomic layers increases. This is accompanied by formation of the spiral nodal lines in the bulk. We also discuss the topological quantum phase transition at which the surface flat band shrinks and changes its chirality, while the nodal spiral changes its helicity.

  10. Strong Landau-quantization effects in high-magnetic-field superconductivity of a two-dimensional multiple-band metal near the Lifshitz transition

    DOE PAGES

    Song, Kok Wee; Koshelev, Alexei E.

    2017-05-04

    We investigate the onset of superconductivity in a magnetic field for a clean two-dimensional multiple-band superconductor in the vicinity of the Lifshitz transition when one of the bands is very shallow. Due to the small number of carriers in this band, the quasiclassical Werthamer-Helfand approximation breaks down and Landau quantization has to be taken into account. We found that the transition temperature TC2(H) has giant oscillations and is resonantly enhanced at the magnetic fields corresponding to the matching of the chemical potential with the Landau levels in the shallow band. This enhancement is especially pronounced for the lowest Landau level.more » As a consequence, the reentrant superconducting regions in the temperature-field phase diagram emerge at low temperatures near the magnetic fields at which the shallow-band Landau levels cross the chemical potential. The specific behavior depends on the relative strength of the intraband and interband pairing interactions and the reentrance is most pronounced in the purely interband coupling scenario. The reentrant behavior is suppressed by the Zeeman spin splitting in the shallow band; the separated regions disappear already for very small spin-splitting factors. On the other hand, the reentrance is restored in the resonance cases when the spin-splitting energy exactly matches the separation between the Landau levels. As a result, the predicted behavior may be realized in the gate-tuned FeSe monolayer.« less

  11. Strong Landau-quantization effects in high-magnetic-field superconductivity of a two-dimensional multiple-band metal near the Lifshitz transition

    NASA Astrophysics Data System (ADS)

    Song, Kok Wee; Koshelev, Alexei E.

    2017-05-01

    We investigate the onset of superconductivity in a magnetic field for a clean two-dimensional multiple-band superconductor in the vicinity of the Lifshitz transition when one of the bands is very shallow. Due to the small number of carriers in this band, the quasiclassical Werthamer-Helfand approximation breaks down and Landau quantization has to be taken into account. We found that the transition temperature TC 2(H ) has giant oscillations and is resonantly enhanced at the magnetic fields corresponding to the matching of the chemical potential with the Landau levels in the shallow band. This enhancement is especially pronounced for the lowest Landau level. As a consequence, the reentrant superconducting regions in the temperature-field phase diagram emerge at low temperatures near the magnetic fields at which the shallow-band Landau levels cross the chemical potential. The specific behavior depends on the relative strength of the intraband and interband pairing interactions and the reentrance is most pronounced in the purely interband coupling scenario. The reentrant behavior is suppressed by the Zeeman spin splitting in the shallow band; the separated regions disappear already for very small spin-splitting factors. On the other hand, the reentrance is restored in the resonance cases when the spin-splitting energy exactly matches the separation between the Landau levels. The predicted behavior may be realized in the gate-tuned FeSe monolayer.

  12. New Methods and Models in Wireless Networks: Multigraphs--Games--Mechanism Design

    ERIC Educational Resources Information Center

    Tran, Dung Trung

    2010-01-01

    The recent evolution of wireless technology makes wireless devices ever more powerful and intelligent. One trend is that wireless devices are becoming more inexpensive and more diverse. As a result, new technologies make it possible to equip wireless nodes with several radio transmitters/receivers. Each radio may support multiple channels which…

  13. New Methods and Models in Wireless Networks: Multigraphs--Games--Mechanism Design

    ERIC Educational Resources Information Center

    Tran, Dung Trung

    2010-01-01

    The recent evolution of wireless technology makes wireless devices ever more powerful and intelligent. One trend is that wireless devices are becoming more inexpensive and more diverse. As a result, new technologies make it possible to equip wireless nodes with several radio transmitters/receivers. Each radio may support multiple channels which…

  14. Amplitude of Low-Frequency Fluctuations in Multiple-Frequency Bands in Acute Mild Traumatic Brain Injury.

    PubMed

    Zhan, Jie; Gao, Lei; Zhou, Fuqing; Bai, Lijun; Kuang, Hongmei; He, Laichang; Zeng, Xianjun; Gong, Honghan

    2016-01-01

    Functional disconnectivity during the resting state has been observed in mild traumatic brain injury (mTBI) patients during the acute stage. However, it remains largely unknown whether the abnormalities are related to specific frequency bands of the low-frequency oscillations (LFO). Here, we used the amplitude of low-frequency fluctuations (ALFF) to examine the amplitudes of LFO in different frequency bands (slow-5: 0.01-0.027 Hz; slow-4: 0.027-0.073 Hz; and typical: 0.01-0.08 Hz) in patients with acute mTBI. A total of 24 acute mTBI patients and 24 age-, sex-, and education-matched healthy controls participated in this study. In the typical band, acute mTBI patients showed lower standardized ALFF in the right middle frontal gyrus and higher standardized ALFF in the right lingual/fusiform gyrus and left middle occipital gyrus. Further analyses showed that the difference between groups was concentrated in a narrower (slow-4) frequency band. In the slow-5 band, mTBI patients only exhibited higher standardized ALFF in the occipital areas. No significant correlation between the mini-mental state examination score and the standardized ALFF value was found in any brain region in the three frequency bands. Finally, no significant interaction between frequency bands and groups was found in any brain region. We concluded that the abnormality of spontaneous brain activity in acute mTBI patients existed in the frontal lobe as well as in distributed brain regions associated with integrative, sensory, and emotional roles, and the abnormal spontaneous neuronal activity in different brain regions could be better detected by the slow-4 band. These findings might contribute to a better understanding of local neural psychopathology of acute mTBI. Future studies should take the frequency bands into account when measuring intrinsic brain activity of mTBI patients.

  15. Wireless Technician

    ERIC Educational Resources Information Center

    Tech Directions, 2011

    2011-01-01

    One of the hottest areas in technology is invisible. Wireless communications allow people to transmit voice messages, data, and other signals through the air without physically connecting senders to receivers with cables or wires. And the technology is spreading at lightning speed. Cellular phones, personal digital assistants, and wireless…

  16. Wireless Technician

    ERIC Educational Resources Information Center

    Tech Directions, 2011

    2011-01-01

    One of the hottest areas in technology is invisible. Wireless communications allow people to transmit voice messages, data, and other signals through the air without physically connecting senders to receivers with cables or wires. And the technology is spreading at lightning speed. Cellular phones, personal digital assistants, and wireless…

  17. Wireless Tots

    ERIC Educational Resources Information Center

    Scott, Lee-Allison

    2003-01-01

    The first wireless technology program for preschoolers was implemented in January at the Primrose School at Bentwater in Atlanta, Georgia, a new corporate school operated by Primrose School Franchising Co. The new school serves as a testing and training facility for groundbreaking educational approaches, including emerging innovations in…

  18. Wireless Protection.

    ERIC Educational Resources Information Center

    Conforti, Fred

    2003-01-01

    Discusses wireless access-control equipment in the school and university setting, particularly the integrated reader lock at the door with a panel interface module at the control panel. Describes its benefits, how it works, and its reliability and security. (EV)

  19. Wireless Seismometer for Venus

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Scardelletti, Maximilian C.; Taylor, Brandt; Beard, Steve; Clougherty, Brian; Meredith, Roger D.; Beheim, Glenn M.; Kiefer, Walter S.; Hunter, Gary W.

    2014-01-01

    Measuring the seismic activity of Venus is critical to understanding its composition and interior dynamics. Because Venus has an average surface temperature of 462 C and the challenge of providing cooling to multiple seismometers, a high temperature, wireless sensor using a wide bandgap semiconductor is an attractive option. This paper presents progress towards a seismometer sensor with wireless capabilities for Venus applications. A variation in inductance of a coil caused by a 1 cm movement of a ferrite probe held in the coil and attached to a balanced leaf-spring seismometer causes a variation of 80 MHz in the transmitted signal from the oscillator sensor system at 420 C, which correlates to a 10 kHz mm sensitivity when the ferrite probe is located at the optimum location in the coil.

  20. The Role of the Multiple Banded Antigen of Ureaplasma parvum in Intra-Amniotic Infection: Major Virulence Factor or Decoy?

    PubMed Central

    Dando, Samantha J.; Nitsos, Ilias; Kallapur, Suhas G.; Newnham, John P.; Polglase, Graeme R.; Pillow, J. Jane; Jobe, Alan H.; Timms, Peter; Knox, Christine L.

    2012-01-01

    The multiple banded antigen (MBA) is a predicted virulence factor of Ureaplasma species. Antigenic variation of the MBA is a potential mechanism by which ureaplasmas avoid immune recognition and cause chronic infections of the upper genital tract of pregnant women. We tested whether the MBA is involved in the pathogenesis of intra-amniotic infection and chorioamnionitis by injecting virulent or avirulent-derived ureaplasma clones (expressing single MBA variants) into the amniotic fluid of pregnant sheep. At 55 days of gestation pregnant ewes (n = 20) received intra-amniotic injections of virulent-derived or avirulent-derived U. parvum serovar 6 strains (2×104 CFU), or 10B medium (n = 5). Amniotic fluid was collected every two weeks post-infection and fetal tissues were collected at the time of surgical delivery of the fetus (140 days of gestation). Whilst chronic colonisation was established in the amniotic fluid of animals infected with avirulent-derived and virulent-derived ureaplasmas, the severity of chorioamnionitis and fetal inflammation was not different between these groups (p>0.05). MBA size variants (32–170 kDa) were generated in vivo in amniotic fluid samples from both the avirulent and virulent groups, whereas in vitro antibody selection experiments led to the emergence of MBA-negative escape variants in both strains. Anti-ureaplasma IgG antibodies were detected in the maternal serum of animals from the avirulent (40%) and virulent (55%) groups, and these antibodies correlated with increased IL-1β, IL-6 and IL-8 expression in chorioamnion tissue (p<0.05). We demonstrate that ureaplasmas are capable of MBA phase variation in vitro; however, ureaplasmas undergo MBA size variation in vivo, to potentially prevent eradication by the immune response. Size variation of the MBA did not correlate with the severity of chorioamnionitis. Nonetheless, the correlation between a maternal humoral response and the expression of chorioamnion cytokines is a

  1. Ureaplasma parvum Serovar 3 Multiple Banded Antigen Size Variation after Chronic Intra-Amniotic Infection/Colonization

    PubMed Central

    Robinson, James W.; Dando, Samantha J.; Nitsos, Ilias; Newnham, John; Polglase, Graeme R.; Kallapur, Suhas G.; Pillow, J. Jane; Kramer, Boris W.; Jobe, Alan H.; Payton, Diane; Knox, Christine L.

    2013-01-01

    Ureaplasma species are the microorganisms most frequently associated with adverse pregnancy outcomes. The multiple banded antigen (MBA), a surface-exposed lipoprotein, is a key virulence factor of ureaplasmas. The MBA demonstrates size variation, which we have shown previously to be correlated with the severity of chorioamnion inflammation. We aimed to investigate U. parvum serovar 3 pathogenesis in vivo, using a sheep model, by investigating: MBA variation after long term (chronic) and short term (acute) durations of in utero ureaplasma infections, and the severity of chorioamnionitis and inflammation in other fetal tissues. Inocula of 2×107 colony-forming-units (CFU) of U. parvum serovar 3 (Up) or media controls (C) were injected intra-amniotically into pregnant ewes at one of three time points: day 55 (69d Up, n = 8; C69, n = 4); day 117 (7d Up, n = 8; C7, n = 2); and day 121 (3d Up, n = 8; C3, n = 2) of gestation (term = 145–150d). At day 124, preterm fetuses were delivered surgically. Samples of chorioamnion, fetal lung, and umbilical cord were: (i) snap frozen for subsequent ureaplasma culture, and (ii) fixed, embedded, sectioned and stained by haematoxylin and eosin stain for histological analysis. Selected fetal lung clinical ureaplasma isolates were cloned and filtered to obtain cultures from a single CFU. Passage 1 and clone 2 ureaplasma cultures were tested by western blot to demonstrate MBA variation. In acute durations of ureaplasma infection no MBA variants (3d Up) or very few MBA variants (7d Up) were present when compared to the original inoculum. However, numerous MBA size variants were generated in vivo (alike within contiguous tissues, amniotic fluid and fetal lung, but different variants were present within chorioamnion), during chronic, 69d exposure to ureaplasma infection. For the first time we have shown that the degree of ureaplasma MBA variation in vivo increased with the duration of gestation. PMID:23638142

  2. An intermediate-band-assisted avalanche multiplication in InAs/InGaAs quantum dots-in-well infrared photodetector

    NASA Astrophysics Data System (ADS)

    Lin, L.; Zhen, H. L.; Zhou, X. H.; Li, N.; Lu, W.; Liu, F. Q.

    2011-02-01

    The avalanche multiplication of photocurrent in InAs/InGaAs quantum dot infrared photodetectors (QDIPs) has been observed in the temperature range from 20 to 80 K. The avalanche onset voltage Vth, being larger than 1.2 V at T <55 K, is reduced to less than 0.8 V at T >60 K. This singularity of Vth indicates that intermediate-band-assisted avalanche multiplication is achieved in our dots-in-well structure, which benefits from the abrupt change of the electron occupation of the intermediate band at a temperature of approximately 55 K. The remarkable reduction of Vth for QDIP is a useful enhancement in the infrared detector's performance.

  3. Evolutionary games in wireless networks.

    PubMed

    Tembine, Hamidou; Altman, Eitan; El-Azouzi, Rachid; Hayel, Yezekael

    2010-06-01

    We consider a noncooperative interaction among a large population of mobiles that interfere with each other through many local interactions. The first objective of this paper is to extend the evolutionary game framework to allow an arbitrary number of mobiles that are involved in a local interaction. We allow for interactions between mobiles that are not necessarily reciprocal. We study 1) multiple-access control in a slotted Aloha-based wireless network and 2) power control in wideband code-division multiple-access wireless networks. We define and characterize the equilibrium (called evolutionarily stable strategy) for these games and study the influence of wireless channels and pricing on the evolution of dynamics and the equilibrium.

  4. Band lineup in GaAs(1-x)Sbx/GaAs strained-layer multiple quantum wells grown by molecular-beam epitaxy

    NASA Technical Reports Server (NTRS)

    Ji, G.; Agarwala, S.; Huang, D.; Chyi, J.; Morkoc, H.

    1988-01-01

    GaAs(1-x)Sbx/GaAs strained-layer multiple quantum wells have been grown by molecular-beam epitaxy and characterized by room-temperature photoreflectance (PR). The PR spectra denote that high-quality layers can be grown in the GaAs(1-x)Sbx/GaAs system. The method for determining the band offset Q(vh) is discussed in this strained-layer system.

  5. Electromyography Activation of the Lower Limb Muscles Adopting Physioball and Elastic Band to Stabilize Knee Joint During Multiple Sets With Submaximal Loads.

    PubMed

    Paz, Gabriel Andrade; DeFreitas, Jason; de Freitas Maia, Marianna; Silva, Jurandir; Lima, Vicente; Miranda, Humberto

    2016-09-26

    Crossover design. Excessive valgus and varus force which affected the knee joint during dynamic tasks has been often associated to lower extremity injuries. Strategies to increase the resistance against these asymmetries, such as, the use of a physioball between the knees or elastic bands around the knees are often applied in rehabilitation and conditioning programs. The purpose of this study was to investigate the effect of performing leg press (LP) 45° using a physioball and elastic band over multiple sets with submaximal loads on electromyographic (EMG) amplitude and fatigue indices. Eighteen trained females volunteered (age: 24.4 ± 2.1 years; height: 168.1 ± 4 cm; body mass: 65.1 ± 4.4 kg) participated in this study. The 10-RM loads were determined for the LP. Then, three experimental protocols in a randomized crossover design over three non-consecutive days: control protocol - The participants performed 4 LP sets; physioball between knees- 4 LP sets were performed with the physioball between the knees; elastic band - 4 LP sets were performed with the elastic band involving the knees. Ten repetitions were performed during each set with 70% of 10-RM loads; EMG spectral indices (CRMS and Cf5) was collected from the biceps femoris (BF), vastus lateralis (VL), vastus medialis obliquus (VMO), and rectus femoris (RF) muscles. Higher levels of CRMS and Cf5 were noted for RF, VL, and VM muscles using the physioball and elastic band when compared to control protocol, respectively. CRMS index of BF muscle was significantly higher using physioball and elastic band protocol versus control condition, respectively. Therefore, both physioball and elastic band can be adopted during LP with the goal to reduce excessive varus and valgus forces, respectively, even performing consecutive sets with submaximal loads. Furthermore, this may be an interesting alternative to increasing quadriceps activation and improving the knee joint stabilization.

  6. Wireless Emergency Alerts

    MedlinePlus

    ... Us Main Content Frequently Asked Questions: Wireless Emergency Alerts This section contains answers to a list of frequently asked questions about Wireless Emergency Alerts (WEAs). Why are Wireless Emergency Alerts (WEA) important ...

  7. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays

    PubMed Central

    Yin, Xiang; Long, Chang; Li, Junhao; Zhu, Hua; Chen, Lin; Guan, Jianguo; Li, Xun

    2015-01-01

    Microwave absorbers have important applications in various areas including stealth, camouflage, and antenna. Here, we have designed an ultra-broadband light absorber by integrating two different-sized tapered hyperbolic metamaterial (HMM) waveguides, each of which has wide but different absorption bands due to broadband slow-light response, into a unit cell. Both the numerical and experimental results demonstrate that in such a design strategy, the low absorption bands between high absorption bands with a single-sized tapered HMM waveguide array can be effectively eliminated, resulting in a largely expanded absorption bandwidth ranging from 2.3 to 40 GHz. The presented ultra-broadband light absorber is also insensitive to polarization and robust against incident angle. Our results offer a further step in developing practical artificial electromagnetic absorbers, which will impact a broad range of applications at microwave frequencies. PMID:26477740

  8. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays

    NASA Astrophysics Data System (ADS)

    Yin, Xiang; Long, Chang; Li, Junhao; Zhu, Hua; Chen, Lin; Guan, Jianguo; Li, Xun

    2015-10-01

    Microwave absorbers have important applications in various areas including stealth, camouflage, and antenna. Here, we have designed an ultra-broadband light absorber by integrating two different-sized tapered hyperbolic metamaterial (HMM) waveguides, each of which has wide but different absorption bands due to broadband slow-light response, into a unit cell. Both the numerical and experimental results demonstrate that in such a design strategy, the low absorption bands between high absorption bands with a single-sized tapered HMM waveguide array can be effectively eliminated, resulting in a largely expanded absorption bandwidth ranging from 2.3 to 40 GHz. The presented ultra-broadband light absorber is also insensitive to polarization and robust against incident angle. Our results offer a further step in developing practical artificial electromagnetic absorbers, which will impact a broad range of applications at microwave frequencies.

  9. Multicolor banding detects a complex three chromosome, seven breakpoint unbalanced rearrangement in an ICSI-derived fetus with multiple abnormalities.

    PubMed

    Seller, Mary J; Bint, Susan; Kavalier, Fred; Brown, Richard N; Ogilvie, Caroline Mackie

    2006-05-15

    We describe a fetus from an intracytoplasmic sperm injection (ICSI) pregnancy with severe facial clefts, receding jaw, preauricular skin tags, postaxial hexadactyly, bi-lobed right lung, supernumerary cranial bone, and dilated lateral ventricles of the brain. Using a combination of G-banding, fluorescence in situ hybridization (FISH), whole chromosome paints (WCPs), subtelomere probes, and multicolor banding (MCB), the karyotype was found to include a de novo unbalanced highly complex chromosome rearrangement (hCCR) involving chromosomes 3, 12, and 15 with seven breakpoints, and including monosomy for two separate regions of chromosome 12.

  10. Wireless Cybersecurity

    DTIC Science & Technology

    2013-04-01

    circularly symmetric. We have investigated extensions to arbitrary Quadrature Amplitude Modulation ( QAM ) scheme. Notice that QPSK is a very special case...of QAM in that all constellation points are evenly distributed on a scaled unit circle whereas general QAM modulations do not have the constant modulo...operations in which secured wireless networks play an indispensable role. This project led to one PhD dissertation, one pending patent application , two

  11. On the Implementation of Iterative Detection in Real-World MIMO Wireless Systems

    DTIC Science & Technology

    2003-12-01

    multiple - input multiple - output ( MIMO ) wireless systems can achieve...addresses the use of iterative detection in real-world multiple - input multiple - output ( MIMO ) wireless systems, which are theoretically capable of achieving...search LLR log-likelihood ratio MAP maximum a posteriori MIMO multiple - input multiple - output ML maximum likelihood MLM-ITS multilevel mapping ITS

  12. A reprogrammable receiver architecture for wireless signal interception

    NASA Astrophysics Data System (ADS)

    Yao, Timothy S.

    2003-09-01

    In this paper, a re-programmable receiver architecture, based on software-defined-radio concept, for wireless signal interception is presented. The radio-frequency (RF) signal that the receiver would like to intercept may come from a terrestrial cellular network or communication satellites, which their carrier frequency are in the range from 800 MHz (civilian mobile) to 15 GHz (Ku band). To intercept signals from such a wide range of frequency in these variant communication systems, the traditional way is to deploy multiple receivers to scan and detect the desired signal. This traditional approach is obviously unattractive due to the cost, efficiency, and accuracy. Instead, we propose a universal receiver, which is software-driven and re-configurable, to intercept signals of interest. The software-defined-radio based receiver first intercepts RF energy of wide spectrum (25MHz) through antenna, performs zero-IF down conversion (homodyne architecture) to baseband, and digital channelizes the baseband signal. The channelization module is a bank of high performance digital filters. The bandwidth of the filter bank is programmable according to the wireless communication protocol under watch. In the baseband processing, high-performance digital signal processors carry out the detection process and microprocessors handle the communication protocols. The baseband processing is also re-configurable for different wireless standards and protocol. The advantages of the software-defined-radio architecture over traditional RF receiver make it a favorable technology for the communication signal interception and surveillance.

  13. Stenting of the ductus arteriosus and banding of the pulmonary arteries: basis for various surgical strategies in newborns with multiple left heart obstructive lesions

    PubMed Central

    Michel-Behnke, I; Akintuerk, H; Marquardt, I; Mueller, M; Thul, J; Bauer, J; Hagel, K J; Kreuder, J; Vogt, P; Schranz, D

    2003-01-01

    Objective: To present an institutional experience with stent placement in the arterial duct combined with bilateral banding of the pulmonary artery branches as a basis for various surgical strategies in newborns with hypoplastic left heart obstructive lesions. Design: Observational study. Setting: Paediatric heart centre in a university hospital. Patients: 20 newborns with various forms of left heart obstructive lesions and duct dependent systemic blood flow. Interventions: Patients underwent percutaneous ductal stenting and surgical bilateral pulmonary artery banding. Atrial septotomy by balloon dilatation was performed as required, in one premature baby by the transhepatic approach. Main outcome measures: Survival; numbers of and reasons for palliative and corrective cardiac surgery. Results: One patient died immediately after percutaneous ductal stenting. One patient died in connection with the surgical approach of bilateral pulmonary banding. Stent and ductal patency were achieved for up to 331 days. Two patients underwent heart transplantation and two patients died on the waiting list. Ten patients had a palliative one stage procedure with reconstruction of the aortic arch and bidirectional cavopulmonary connection at the age of 3.5–6 months. There was one death. One patient is still awaiting this approach. Two patients received biventricular repair. In one, biventricular repair will soon be provided. Conclusions: Stenting the arterial duct combined with bilateral pulmonary artery banding in newborns with hypoplastic left heart or multiple left heart obstructive lesions allows a broad variation of surgical strategies depending on morphological findings, postnatal clinical conditions, and potential ventricular growth. PMID:12748222

  14. Design and Analysis of a Triple Stop-band Filter Using Ratioed Periodical Defected Microstrip Structure

    NASA Astrophysics Data System (ADS)

    Jiang, Tao; Wang, Yanyan; Li, Yingsong

    2017-07-01

    In this paper, a triple stop-band filter with a ratioed periodical defected microstrip structure is proposed for wireless communication applications. The proposed ratioed periodical defected microstrip structures are spiral slots, which are embedded into a 50 Ω microstrip line to obtain multiple stop-bands. The performance of the proposed triple stop-band filter is investigated numerically and experimentally. Moreover, the equivalent circuit model of the proposed filter is also established and discussed. The results are given to verify that the proposed triple stop-band filter has three stop bands at 3.3 GHz, 5.2 GHz, 6.8 GHz to reject the unwanted signals, which is promising for integrating into UWB communication systems to efficiently prevent the potential interferences from unexpected narrowband signals such as WiMAX, WLAN and RFID communication systems.

  15. Analysis, Design, and Optimization of Matched-Impedance Wide-Band Amplifiers With Multiple Feedback Loops Using 0.18 μm Complementary Metal Oxide Semiconductor Technology

    NASA Astrophysics Data System (ADS)

    Lin, Yo-Sheng; Lee, Tai-Hsing

    2004-10-01

    The realization of matched-impedance wide-band amplifier fabricated by 0.18 μm complementary metal oxide semiconductor (CMOS) process is reported. The technique of multiple feedback loops was used in the amplifier for terminal impedance matching and wide bandwidth simultaneously. The experimental results show that 3-dB bandwidth of 3 GHz and a gain of 10.7 dB with in-band input/output return loss more than 10 dB are obtained. These values agree well with those predicted from the analytic expressions derived for voltage gain, trans-impedance gain, bandwidth, and input/output return loss and impedance. In addition, the use of source capacitive peaking technique can improve the intrinsic over-damped characteristic of this amplifier.

  16. Generation of multiple spectral bands in a diode-pumped self-mode-locked Nd:YAP laser

    NASA Astrophysics Data System (ADS)

    Huang, Y. J.; Tzeng, Y. S.; Cho, H. H.; Chen, Y. F.; Chen, W. D.; Zhang, G.; Chen, T. C.

    2016-02-01

    A single- and multispectral-band diode end-pumped self-mode-locked Nd:YAP laser is originally demonstrated with an intracavity etalon to properly control the gain-to-loss ratios among the intermanifold lines on the 4F3/2  →  4I11/2 transition level. With a pulse repetition rate of 5.07 GHz, the shortest pulse durations under the single-spectral-band operation are achieved to be 11.1 ps at 1073 nm, 10.9 ps at 1080 nm, and 15.1 ps at 1084 nm, respectively. Moreover, the temporal overlapping of the multispectral-band pulses is experimentally found to lead to the generation of an intensity fringe pattern in the autocorrelation trace with the optical-beat frequency reaching several terahertz. A simple mathematical model is developed to elucidate the formation of a train of optical-beat pulses.

  17. Chromosome banding in Amphibia. XVII. First demonstration of multiple sex chromosomes in amphibians: Eleutherodactylus maussi (Anura, leptodactylidae).

    PubMed

    Schmid, M; Steinlein, C; Feichtinger, W

    1992-03-01

    A cytogenetic study performed on a population of the South American leptodactylid frog Eleutherodactylus maussi revealed multiple sex chromosomes of the X1X1X2X2 female/X1X2Y male (= XXAA female/XXAY male) type. The diploid chromosome number is 2n = 36 in all females and 2n = 35 in most males. The multiple sex chromosomes originated by a centric fusion between the original Y chromosome and a large autosome. In male meiosis the X1X2Y (= XXAY) multiple sex chromosomes form a classical trivalent configuration. E. maussi is the first species discovered in the class Amphibia that is distinguished by a system of multiple sex chromosomes. Only one single male was found in the population with 2n = 36 chromosomes and lacking the Y-autosomal fusion. This karyotype (XYAA male) is interpreted as the ancestral condition, preceding the occurrence of the Y-autosome fusion.

  18. Multi-service small-cell cloud wired/wireless access network based on tunable optical frequency comb

    NASA Astrophysics Data System (ADS)

    Xiang, Yu; Zhou, Kun; Yang, Liu; Pan, Lei; Liao, Zhen-wan; Zhang, Qiang

    2015-11-01

    In this paper, we demonstrate a novel multi-service wired/wireless integrated access architecture of cloud radio access network (C-RAN) based on radio-over-fiber passive optical network (RoF-PON) system, which utilizes scalable multiple- frequency millimeter-wave (MF-MMW) generation based on tunable optical frequency comb (TOFC). In the baseband unit (BBU) pool, the generated optical comb lines are modulated into wired, RoF and WiFi/WiMAX signals, respectively. The multi-frequency RoF signals are generated by beating the optical comb line pairs in the small cell. The WiFi/WiMAX signals are demodulated after passing through the band pass filter (BPF) and band stop filter (BSF), respectively, whereas the wired signal can be received directly. The feasibility and scalability of the proposed multi-service wired/wireless integrated C-RAN are confirmed by the simulations.

  19. CSF oligoclonal banding

    MedlinePlus

    ... system. Oligoclonal bands may be a sign of multiple sclerosis. How the Test is Performed A sample of ... Performed This test helps support the diagnosis of multiple sclerosis (MS). However, it does not confirm the diagnosis. ...

  20. Compact Ultra Wide Band Microstrip Bandpass Filter Based on Multiple-Mode Resonator and Modified Complementary Split Ring Resonator

    PubMed Central

    Marcotegui, J. Antonio; Illescas, Jesús Miguel; Estevez, Aritz

    2013-01-01

    A new class of broadband microstrip filters for Ultra Wide Band (UWB) applications is proposed. In the design, different stages of parallel-coupled microstrip line and other stages with a Modified Complementary Split Ring Resonator (MCSRR)—a concept proposed here for the first time—are adjusted to obtain the desired response with broadband, sharp rejection, low insertion loss, and low return loss. Full wave simulation results as well as measurement results from fabricated prototypes are presented, showing good agreement. The proposed technique offers a new alternative to implement low-cost high-performance filter devices, applicable to a wide range of communication systems. PMID:24319366

  1. Compact ultra wide band microstrip bandpass filter based on multiple-mode resonator and modified complementary split ring resonator.

    PubMed

    Marcotegui, J Antonio; Illescas, Jesús Miguel; Estevez, Aritz; Falcone, Francisco

    2013-01-01

    A new class of broadband microstrip filters for Ultra Wide Band (UWB) applications is proposed. In the design, different stages of parallel-coupled microstrip line and other stages with a Modified Complementary Split Ring Resonator (MCSRR)-a concept proposed here for the first time-are adjusted to obtain the desired response with broadband, sharp rejection, low insertion loss, and low return loss. Full wave simulation results as well as measurement results from fabricated prototypes are presented, showing good agreement. The proposed technique offers a new alternative to implement low-cost high-performance filter devices, applicable to a wide range of communication systems.

  2. Wireless Josephson amplifier

    SciTech Connect

    Narla, A.; Sliwa, K. M.; Hatridge, M.; Shankar, S.; Frunzio, L.; Schoelkopf, R. J.; Devoret, M. H.

    2014-06-09

    Josephson junction parametric amplifiers are playing a crucial role in the readout chain in superconducting quantum information experiments. However, their integration with current 3D cavity implementations poses the problem of transitioning between waveguide, coax cables, and planar circuits. Moreover, Josephson amplifiers require auxiliary microwave components, like directional couplers and/or hybrids, that are sources of spurious losses and impedance mismatches that limit measurement efficiency and amplifier tunability. We have developed a wireless architecture for these parametric amplifiers that eliminates superfluous microwave components and interconnects. This greatly simplifies their assembly and integration into experiments. We present an experimental realization of such a device operating in the 9–11 GHz band with about 100 MHz of amplitude gain-bandwidth product, on par with devices mounted in conventional sample holders. The simpler impedance environment presented to the amplifier also results in increased amplifier tunability.

  3. Wireless Josephson amplifier

    NASA Astrophysics Data System (ADS)

    Narla, A.; Sliwa, K. M.; Hatridge, M.; Shankar, S.; Frunzio, L.; Schoelkopf, R. J.; Devoret, M. H.

    2014-06-01

    Josephson junction parametric amplifiers are playing a crucial role in the readout chain in superconducting quantum information experiments. However, their integration with current 3D cavity implementations poses the problem of transitioning between waveguide, coax cables, and planar circuits. Moreover, Josephson amplifiers require auxiliary microwave components, like directional couplers and/or hybrids, that are sources of spurious losses and impedance mismatches that limit measurement efficiency and amplifier tunability. We have developed a wireless architecture for these parametric amplifiers that eliminates superfluous microwave components and interconnects. This greatly simplifies their assembly and integration into experiments. We present an experimental realization of such a device operating in the 9-11 GHz band with about 100 MHz of amplitude gain-bandwidth product, on par with devices mounted in conventional sample holders. The simpler impedance environment presented to the amplifier also results in increased amplifier tunability.

  4. 47 CFR 90.1319 - Policies governing the use of the 3650-3700 MHz band.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Wireless Broadband Services in the 3650-3700 MHz Band § 90.1319 Policies governing the use of the 3650-3700 MHz band. (a) Channels in this band... identifying the locations of registered stations will be available at http://wireless.fcc.gov/uls....

  5. Full-Duplex DOCSIS/WirelessDOCSIS Fiber Radio Network Employing Packaged AFPMs as Optical/Electrical Transducers

    NASA Astrophysics Data System (ADS)

    Liu, Chin-Pang; Polo, Valentín; van Dijk, Frédéric; Pfrommer, Holger; Ángel Piqueras, Miguel; Herrera, Javier; Martínez, Alejandro; Karlsson, Stefan; Kjebon, Olle; Schatz, Richard; Enard, Alain; Yu, Yichuan; Tsegaye, Tedros; Chuang, Chin-Hsiu; Seeds, Alwyn J.; Martí, Javier

    2007-03-01

    A hybrid fiber radio access network architecture for simultaneous wireline and wireless transmissions of Data-Over-Cable Service Interface Specification (DOCSIS) signals is presented. An all-optical harmonic up-conversion technique using a dual-drive Mach Zehnder modulator provides the downstream optical signal modulated not only at the intermediate frequency in the 600- to 900-MHz band for wireline transmission but also at the up-converted frequency in the 5.45- to 5.75-GHz band for wireless transmission. An InGaAsP/InGaAsP multiple-quantum-well asymmetric Fabry Pérot modulator/detector has been designed, fabricated, and packaged and has been employed in the base station (BS) as an optical/electrical transducer, simultaneously providing the functions of optical intensity modulation and photodetection. At the BS, the DOCSIS signals are recovered at the wireline and wireless frequencies for the respective feeding of a cable access network or a fixed wireless access network in a highly flexible approach. Full-duplex operation has been demonstrated for both access types in an indoor laboratory environment. In a subsequent small-scale field trial, real-life Internet traffic provided by a local community antenna television system operator has been transported over the present hybrid fiber radio access network architecture, and simultaneous transmission of both DOCSIS and digital television signals has also been performed.

  6. Analysis and interpretation of short tandem repeat microvariants and three-banded allele patterns using multiple allele detection systems.

    PubMed

    Crouse, C A; Rogers, S; Amiott, E; Gibson, S; Masibay, A

    1999-01-01

    The Palm Beach County Sheriffs Office (PBSO) Crime Laboratory and the Alabama Department of Forensic Sciences (ADFS) have validated and implemented analysis of short tandem repeat (STR) sequences on casework using silver staining kit and SYBR Green I detection systems and are presently validating fluorescently tagged STR alleles using the Hitachi FMBIO 100 instrument. Concurrently, the Broward County Sheriff's Office (BSO) Crime Laboratory is validating the ABI Prism310 Genetic Analyzer capillary electrophoresis STR detection system (ABI CE310) from Perkin Elmer Applied BioSystems. During the course of analyzing over 10,000 individuals for the STR loci CSF1PO, TPOX and THO1 (CTT) using silver staining for allele detection, 42 samples demonstrated alleles that were "off ladder," contained three-banded patterns at a single locus, or exhibited an apparent THO1 "9.3,10" allele pattern. PBSO, ADFS and BSO Crime Laboratories have collaborated on the verification of the allele patterns observed in these 42 samples using the following allele detection systems: (1) manual silver staining, (2) SYBR Green I staining, and/or (3) fluorescently tagged amplified products separated by polyacrylamide gel electrophoresis or capillary electrophoresis followed by laser detection. Regardless of the CTT allele detection system utilized, concordant results were obtained for 41 of the 42 samples. The only exception was a sample in which a wide band within the THO1 locus was identified as a THO1 "9.3, 10" genotype by silver staining kit and SYBR Green I staining but was verified to be a THO1 "9.3" homozygote by all other allele detection systems. Manual allele detection could readily identify microvariants, as a visual assessment of stained gels clearly shows that alleles do not migrate coincident with well-characterized allele size standards. As would be predicted, however, the manual detection systems did not provide adequate resolution to approximate the basepair size for off

  7. Transparent graphene microstrip filters for wireless communications

    NASA Astrophysics Data System (ADS)

    Wang, Jinchen; Guan, Yifei; Yu, Hua; Li, Na; Wang, Shuopei; Shen, Cheng; Dai, Zhijiang; Gan, Decheng; Yang, Rong; He, Songbai; Zhang, Guangyu

    2017-08-01

    A microstrip is an indispensable component for wireless communication circuits. With the development of 5G technology, optically transparent microstrip filters urgently need to be developed. In this work, we have theoretically and experimentally demonstrated the immense potential of graphene microstrips for transparent wireless communication circuits in the 5G era. Both wideband and dual-band transparent graphene microstrip filters have shown more than 80% optical transmissivity in the region from 250 nm to 2000 nm with good frequency responses. S and C band microwave signals can transmit along the graphene microstrip lines effectively while coupling excitations produce relatively large insertion losses. Our results show that transparent microstrips designed with high-quality graphene will largely scale down the size of the wireless devices and thus play an irreplaceable role in the 5G era.

  8. Strain induced variations in band offsets and built-in electric fields in InGaN/GaN multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Dong, L.; Mantese, J. V.; Avrutin, V.; Özgür, Ü.; Morkoç, H.; Alpay, S. P.

    2013-07-01

    The band structure, quantum confinement of charge carriers, and their localization affect the optoelectronic properties of compound semiconductor heterostructures and multiple quantum wells (MQWs). We present here the results of a systematic first-principles based density functional theory (DFT) investigation of the dependence of the valence band offsets and band bending in polar and non-polar strain-free and in-plane strained heteroepitaxial InxGa1-xN(InGaN)/GaN multilayers on the In composition and misfit strain. The results indicate that for non-polar m-plane configurations with [12¯10]InGaN//[12¯10]GaN and [0001]InGaN//[0001]GaN epitaxial alignments, the valence band offset changes linearly from 0 to 0.57 eV as the In composition is varied from 0 (GaN) to 1 (InN). These offsets are relatively insensitive to the misfit strain between InGaN and GaN. On the other hand, for polar c-plane strain-free heterostructures with [101¯0]InGaN//[101¯0]GaN and [12¯10]InGaN//[12¯10]GaN epitaxial alignments, the valence band offset increases nonlinearly from 0 eV (GaN) to 0.90 eV (InN). This is significantly reduced beyond x ≥ 0.5 by the effect of the equi-biaxial misfit strain. Thus, our results affirm that a combination of mechanical boundary conditions, epitaxial orientation, and variation in In concentration can be used as design parameters to rapidly tailor the band offsets in InGaN/GaN MQWs. Typically, calculations of the built-in electric field in complex semiconductor structures often must rely upon sequential optimization via repeated ab initio simulations. Here, we develop a formalism that augments such first-principles computations by including an electrostatic analysis (ESA) using Maxwell and Poisson's relations, thereby converting laborious DFT calculations into finite difference equations that can be rapidly solved. We use these tools to determine the bound sheet charges and built-in electric fields in polar epitaxial InGaN/GaN MQWs on c-plane Ga

  9. Wireless Multiplexed Surface Acoustic Wave Sensors Project

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.

    2014-01-01

    Wireless Surface Acoustic Wave (SAW) Sensor is a new technology for obtaining multiple, real-time measurements under extreme environmental conditions. This project plans to develop a wireless multiplexed sensor system that uses SAW sensors, with no batteries or semiconductors, that are passive and rugged, can operate down to cryogenic temperatures and up to hundreds of degrees C, and can be used to sense a wide variety of parameters over reasonable distances (meters).

  10. Third Generation Wireless Phone Threat Assessment for Aircraft Communication and Navigation Radios

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Koppen, Sandra V.; Smith, Laura J.; Williams, Reuben A.; Salud, Maria Theresa P.

    2005-01-01

    Radiated emissions in aircraft communication and navigation bands are measured from third generation (3G) wireless mobile phones. The two wireless technologies considered are the latest available to general consumers in the US. The measurements are conducted using reverberation chambers. The results are compared against baseline emissions from laptop computers and personal digital assistant devices that are currently allowed to operate on aircraft. Using existing interference path loss data and receivers interference threshold, a risk assessment is performed for several aircraft communication and navigation radio systems. In addition, cumulative interference effects of multiple similar devices are conservatively estimated or bounded. The effects are computed by summing the interference power from individual devices that is scaled according to the interference path loss at its location.

  11. A Wireless Ultrasonic Guided Wave Structural Health Monitoring System for Aircraft Wing Inspection

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Qian, T.; Popovic, Z.; Zane, R.; Mei, G.; Walsh, C.; Paing, T.; Kwan, C.

    2007-03-01

    A wireless, in-situ ultrasonic guided wave structural health monitoring (SHM) system was developed and tested for aircraft wing inspection. It applies small, low cost and light weight piezoelectric (PZT) disc transducer network bonded to the surface of a structure, and an embedded miniature diagnosis device that can generate 350 kHz, 70 V peak-to-peak tone-burst signal; collect, amplify and digitize multiple channel ultrasonic signals; and process the data on-board and transfer them wirelessly to a ground station. The whole system could be powered by an X-band microwave rectenna that converts illuminating microwave energy into DC. The data collected with this device are almost identical with those collected through a direct-wire connection.

  12. 77 FR 64446 - Wireless Microphones Proceeding

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ... station users, which currently operate in the TV broadcast spectrum on an unlicensed basis, to operate on... affect use of wireless microphones, including the TV White Spaces proceeding \\3\\ and the Incentive... (adopted Sept. 28, 2012) (Incentive Auctions NPRM). \\3\\ Unlicensed Operation in the TV Broadcast Bands, ET...

  13. A Priority-Based Adaptive MAC Protocol for Wireless Body Area Networks

    PubMed Central

    Bhandari, Sabin; Moh, Sangman

    2016-01-01

    In wireless body area networks (WBANs), various sensors and actuators are placed on/inside the human body and connected wirelessly. WBANs have specific requirements for healthcare and medical applications, hence, standard protocols like the IEEE 802.15.4 cannot fulfill all the requirements. Consequently, many medium access control (MAC) protocols, mostly derived from the IEEE 802.15.4 superframe structure, have been studied. Nevertheless, they do not support a differentiated quality of service (QoS) for the various forms of traffic coexisting in a WBAN. In particular, a QoS-aware MAC protocol is essential for WBANs operating in the unlicensed Industrial, Scientific, and Medical (ISM) bands, because different wireless services like Bluetooth, WiFi, and Zigbee may coexist there and cause severe interference. In this paper, we propose a priority-based adaptive MAC (PA-MAC) protocol for WBANs in unlicensed bands, which allocates time slots dynamically, based on the traffic priority. Further, multiple channels are effectively utilized to reduce access delays in a WBAN, in the presence of coexisting systems. Our performance evaluation results show that the proposed PA-MAC outperforms the IEEE 802.15.4 MAC and the conventional priority-based MAC in terms of the average transmission time, throughput, energy consumption, and data collision ratio. PMID:26999162

  14. A Priority-Based Adaptive MAC Protocol for Wireless Body Area Networks.

    PubMed

    Bhandari, Sabin; Moh, Sangman

    2016-03-18

    In wireless body area networks (WBANs), various sensors and actuators are placed on/inside the human body and connected wirelessly. WBANs have specific requirements for healthcare and medical applications, hence, standard protocols like the IEEE 802.15.4 cannot fulfill all the requirements. Consequently, many medium access control (MAC) protocols, mostly derived from the IEEE 802.15.4 superframe structure, have been studied. Nevertheless, they do not support a differentiated quality of service (QoS) for the various forms of traffic coexisting in a WBAN. In particular, a QoS-aware MAC protocol is essential for WBANs operating in the unlicensed Industrial, Scientific, and Medical (ISM) bands, because different wireless services like Bluetooth, WiFi, and Zigbee may coexist there and cause severe interference. In this paper, we propose a priority-based adaptive MAC (PA-MAC) protocol for WBANs in unlicensed bands, which allocates time slots dynamically, based on the traffic priority. Further, multiple channels are effectively utilized to reduce access delays in a WBAN, in the presence of coexisting systems. Our performance evaluation results show that the proposed PA-MAC outperforms the IEEE 802.15.4 MAC and the conventional priority-based MAC in terms of the average transmission time, throughput, energy consumption, and data collision ratio.

  15. Design and Fabrication of Monolithically-Integrated Laterally-Arrayed Multiple Band Gap Solar Cells using Composition-Graded Alloy Nanowires for Spectrum-Splitting Photovoltaic Systems

    NASA Astrophysics Data System (ADS)

    Caselli, Derek

    This dissertation aims to demonstrate a new approach to fabricating solar cells for spectrum-splitting photovoltaic systems with the potential to reduce their cost and complexity of manufacturing, called Monolithically Integrated Laterally Arrayed Multiple Band gap (MILAMB) solar cells. Single crystal semiconductor alloy nanowire (NW) ensembles are grown with the alloy composition and band gap changing continuously across a broad range over the surface of a single substrate in a single, inexpensive growth step by the Dual-Gradient Method. The nanowire ensembles then serve as the absorbing materials in a set of solar cells for spectrum-splitting photovoltaic systems. Preliminary design and simulation studies based on Anderson's model band line-ups were undertaken for CdPbS and InGaN alloys. Systems of six subcells obtained efficiencies in the 32-38% range for CdPbS and 34-40% for InGaN at 1-240 suns, though both materials systems require significant development before these results could be achieved experimentally. For an experimental demonstration, CdSSe was selected due to its availability. Proof-of-concept CdSSe nanowire ensemble solar cells with two subcells were fabricated simultaneously on one substrate. I-V characterization under 1 sun AM1.5G conditions yielded open-circuit voltages (Voc) up to 307 and 173 mV and short-circuit current densities (Jsc) up to 0.091 and 0.974 mA/cm2 for the CdS- and CdSe-rich cells, respectively. Similar thin film cells were also fabricated for comparison. The nanowire cells showed substantially higher Voc than the film cells, which was attributed to higher material quality in the CdSSe absorber. I-V measurements were also conducted with optical filters to simulate a simple form of spectrum-splitting. The CdS-rich cells showed uniformly higher Voc and fill factor (FF) than the CdSe-rich cells, as expected due to their larger band gaps. This suggested higher power density was produced by the CdS-rich cells on the single

  16. The Wireless War Dance.

    ERIC Educational Resources Information Center

    Moriarty, Laura Joyce

    2001-01-01

    Discusses the use of wireless technology on college campuses. Explores why colleges may want to use the technology, when they should begin to take it seriously, the culture pushing the change, and how schools should approach wireless technology. (EV)

  17. Visible Light Wireless Communication for Audio Signals

    NASA Astrophysics Data System (ADS)

    Vibin, A. M.; Prince, Shanthi

    2011-10-01

    In the current century there is an increased demand for broad band wireless access for satisfying different customer needs. These applications requires large amount of frequency resources for its efficient implementation. Radio Frequency techniques, which dominate the current wireless technology, have the limitation of available frequency spectrum that can be used. Researchers identified Optical Wireless Communication as a potential candidate for solving this problem. Studies shows that white light can also be used as a carrier for wireless communication and this area is generally known as Visible Light Communication. The provision of voice data and visual communications to users by using optical wireless has become a key area of research and product development. This paper discusses a novel method for transmission of voice in real time so that the system can be used for both communication and illumination simultaneously. A prototype of the system is implemented successfully and performance analyses are carried out based on the experimental results. SNR and BER calculations for the designed system is done theoretically and simulated. The developed system is having the advantages of very high band width, no interference with adjacent rooms as walls are opaque, no license is required as it doesn't cause electromagnetic interference and communication simultaneously with illumination.

  18. NASA Lunar Base Wireless System Propagation Analysis

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.; Upanavage, Matthew; Sham, Catherine C.

    2007-01-01

    There have been many radio wave propagation studies using both experimental and theoretical techniques over the recent years. However, most of studies have been in support of commercial cellular phone wireless applications. The signal frequencies are mostly at the commercial cellular and Personal Communications Service bands. The antenna configurations are mostly one on a high tower and one near the ground to simulate communications between a cellular base station and a mobile unit. There are great interests in wireless communication and sensor systems for NASA lunar missions because of the emerging importance of establishing permanent lunar human exploration bases. Because of the specific lunar terrain geometries and RF frequencies of interest to the NASA missions, much of the published literature for the commercial cellular and PCS bands of 900 and 1800 MHz may not be directly applicable to the lunar base wireless system and environment. There are various communication and sensor configurations required to support all elements of a lunar base. For example, the communications between astronauts, between astronauts and the lunar vehicles, between lunar vehicles and satellites on the lunar orbits. There are also various wireless sensor systems among scientific, experimental sensors and data collection ground stations. This presentation illustrates the propagation analysis of the lunar wireless communication and sensor systems taking into account the three dimensional terrain multipath effects. It is observed that the propagation characteristics are significantly affected by the presence of the lunar terrain. The obtained results indicate the lunar surface material, terrain geometry and antenna location are the important factors affecting the propagation characteristics of the lunar wireless systems. The path loss can be much more severe than the free space propagation and is greatly affected by the antenna height, surface material and operating frequency. The

  19. Community Wireless Networks

    ERIC Educational Resources Information Center

    Feld, Harold

    2005-01-01

    With increasing frequency, communities are seeing the arrival of a new class of noncommercial broadband providers: community wireless networks (CWNs). Utilizing the same wireless technologies that many colleges and universities have used to create wireless networks on campus, CWNs are creating broadband access for free or at costs well below…

  20. Community Wireless Networks

    ERIC Educational Resources Information Center

    Feld, Harold

    2005-01-01

    With increasing frequency, communities are seeing the arrival of a new class of noncommercial broadband providers: community wireless networks (CWNs). Utilizing the same wireless technologies that many colleges and universities have used to create wireless networks on campus, CWNs are creating broadband access for free or at costs well below…

  1. Lateral band-gap control of InGaAsP multiple quantum wells by laser-assisted metalorganic molecular beam epitaxy for a multiwavelength laser array

    NASA Astrophysics Data System (ADS)

    Iga, Ryuzo; Yamada, Takeshi; Sugiura, Hideo

    1994-02-01

    Multiple asymmetric quantum wells made up of InGaAsP and InAsP layers were fabricated using laser irradiation. They were formed in different irradiated areas during InGaAsP quantum well growth by Ar-ion laser assisted metalorganic molecular beam epitaxy (MOMBE). It was observed that during MOMBE the band gap of InGaAsP MQW was modified. Photoluminescence wavelengths of the MAQWs were studied to observe the variations in the bandgap with a delay in the starting time of laser irradiation. The photoluminescence of the MAQWs ranged from 1.3 to 1.5 micrometer and the PL intensity of the MAQWs in four different areas were all similar. This phenomena enabled the fabrication of multiwavelength laser array on a substrate in a single step growth.

  2. Wireless energy transfer: Dielectric lens antennas for beam shaping in wireless power-transfer applications

    NASA Astrophysics Data System (ADS)

    Gonçalves, Ricardo; Carvalho, Nuno B.; Pinho, Pedro

    2017-02-01

    In the current contest of wireless systems, the last frontier remains the cut of the power cord. In that sense, the interest over wireless energy transfer technologies in the past years has grown exponentially. However, there are still many challenges to be overcome in order to enable wireless energy transfer full potential. One of the focus in the development of such systems is the design of very-high-gain, highly efficient, antennas that can compensate for the propagation loss of radio signals over the air. In this paper, we explore the design and manufacturing process of dielectric lenses, fabricated using a professional-grade desktop 3D printer. Lens antennas are used in order to increase beam efficiency and therefore maximize the efficiency of a wireless power-transfer system operating at microwave frequencies in the Ku band. Measurements of two fabricated prototypes showcase a large directivity, as predicted with simulations. xml:lang="fr"

  3. The Severity of Chorioamnionitis in Pregnant Sheep Is Associated with In Vivo Variation of the Surface-Exposed Multiple-Banded Antigen/Gene of Ureaplasma parvum1

    PubMed Central

    Knox, Christine L.; Dando, Samantha J.; Nitsos, Ilias; Kallapur, Suhas G.; Jobe, Alan H.; Payton, Diane; Moss, Timothy J.M.; Newnham, John P.

    2010-01-01

    Ureaplasma species are the bacteria most frequently isolated from human amniotic fluid in asymptomatic pregnancies and placental infections. Ureaplasma parvum serovars 3 and 6 are the most prevalent serovars isolated from men and women. We hypothesized that the effects on the fetus and chorioamnion of chronic ureaplasma infection in amniotic fluid are dependent on the serovar, dose, and variation of the ureaplasma multiple-banded antigen (MBA) and mba gene. We injected high- or low-dose U. parvum serovar 3, serovar 6, or vehicle intra-amniotically into pregnant ewes at 55 days of gestation (term = 150 days) and examined the chorioamnion, amniotic fluid, and fetal lung tissue of animals delivered by cesarean section at 125 days of gestation. Variation of the multiple banded antigen/mba generated by serovar 3 and serovar 6 ureaplasmas in vivo were compared by PCR assay and Western blot. Ureaplasma inoculums demonstrated only one (serovar 3) or two (serovar 6) MBA variants in vitro, but numerous antigenic variants were generated in vivo: serovar 6 passage 1 amniotic fluid cultures contained more MBA size variants than serovar 3 (P = 0.005), and ureaplasma titers were inversely related to the number of variants (P = 0.025). The severity of chorioamnionitis varied between animals. Low numbers of mba size variants (five or fewer) within amniotic fluid were associated with severe inflammation, whereas the chorioamnion from animals with nine or more mba variants showed little or no inflammation. These differences in chorioamnion inflammation may explain why not all women with in utero Ureaplasma spp. experience adverse pregnancy outcomes. PMID:20519696

  4. A Reliable Wireless Control System for Tomato Hydroponics.

    PubMed

    Ibayashi, Hirofumi; Kaneda, Yukimasa; Imahara, Jungo; Oishi, Naoki; Kuroda, Masahiro; Mineno, Hiroshi

    2016-05-05

    Agricultural systems using advanced information and communication (ICT) technology can produce high-quality crops in a stable environment while decreasing the need for manual labor. The system collects a wide variety of environmental data and provides the precise cultivation control needed to produce high value-added crops; however, there are the problems of packet transmission errors in wireless sensor networks or system failure due to having the equipment in a hot and humid environment. In this paper, we propose a reliable wireless control system for hydroponic tomato cultivation using the 400 MHz wireless band and the IEEE 802.15.6 standard. The 400 MHz band, which is lower than the 2.4 GHz band, has good obstacle diffraction, and zero-data-loss communication is realized using the guaranteed time-slot method supported by the IEEE 802.15.6 standard. In addition, this system has fault tolerance and a self-healing function to recover from faults such as packet transmission failures due to deterioration of the wireless communication quality. In our basic experiments, the 400 MHz band wireless communication was not affected by the plants' growth, and the packet error rate was less than that of the 2.4 GHz band. In summary, we achieved a real-time hydroponic liquid supply control with no data loss by applying a 400 MHz band WSN to hydroponic tomato cultivation.

  5. A Reliable Wireless Control System for Tomato Hydroponics

    PubMed Central

    Ibayashi, Hirofumi; Kaneda, Yukimasa; Imahara, Jungo; Oishi, Naoki; Kuroda, Masahiro; Mineno, Hiroshi

    2016-01-01

    Agricultural systems using advanced information and communication (ICT) technology can produce high-quality crops in a stable environment while decreasing the need for manual labor. The system collects a wide variety of environmental data and provides the precise cultivation control needed to produce high value-added crops; however, there are the problems of packet transmission errors in wireless sensor networks or system failure due to having the equipment in a hot and humid environment. In this paper, we propose a reliable wireless control system for hydroponic tomato cultivation using the 400 MHz wireless band and the IEEE 802.15.6 standard. The 400 MHz band, which is lower than the 2.4 GHz band, has good obstacle diffraction, and zero-data-loss communication is realized using the guaranteed time-slot method supported by the IEEE 802.15.6 standard. In addition, this system has fault tolerance and a self-healing function to recover from faults such as packet transmission failures due to deterioration of the wireless communication quality. In our basic experiments, the 400 MHz band wireless communication was not affected by the plants’ growth, and the packet error rate was less than that of the 2.4 GHz band. In summary, we achieved a real-time hydroponic liquid supply control with no data loss by applying a 400 MHz band WSN to hydroponic tomato cultivation. PMID:27164105

  6. Advanced heterostructure transistor technologies for wireless communications

    NASA Astrophysics Data System (ADS)

    Wang, N.-L. Larry; Lin, Barry; Chau, Frank H.-F.; Jackson, Gordon; Chen, Zhengming; Lee, C. P.

    1999-08-01

    Wireless communication has enjoyed tremendous growth in the last five years. Most of the market is below the 3 GHz. Recently, millimeter wave frequency band was also opened up to commercial applications, such as the Local Multipoint Distribution System. The rapid growth of the market demands cost effective RF circuitry with ever better performance. Thus, the heterostructure transistors are pursued to meeting the market needs. This article will first analyze the technical demand on RF transistor circuitry for wireless application. Existing and emerging transistor technologies will be discussed for its strength. A general comparison will be made.

  7. Wireless adiabatic power transfer

    SciTech Connect

    Rangelov, A.A.; Suchowski, H.; Silberberg, Y.; Vitanov, N.V.

    2011-03-15

    Research Highlights: > Efficient and robust mid-range wireless energy transfer between two coils. > The adiabatic energy transfer is analogous to adiabatic passage in quantum optics. > Wireless energy transfer is insensitive to any resonant constraints. > Wireless energy transfer is insensitive to noise in the neighborhood of the coils. - Abstract: We propose a technique for efficient mid-range wireless power transfer between two coils, by adapting the process of adiabatic passage for a coherently driven two-state quantum system to the realm of wireless energy transfer. The proposed technique is shown to be robust to noise, resonant constraints, and other interferences that exist in the neighborhood of the coils.

  8. Multiple Baseline SAR Tomography's Performance Analysis in Forest 3-D Structure Mapping with long term ALOS L band repeat pass InSAR data

    NASA Astrophysics Data System (ADS)

    Lin, Q.; Zebker, H. A.

    2013-12-01

    Acquiring accurate measurement of three-dimensional structure of forest globally , is key to improve quantitative understanding of the state and dynamics of ecosystems, particularly global carbon cycle. Moreover, forest contains a large portion of Earth's renewable natural resources. All these require an accurate, timely and cost-effective global forest vertical structure mapping. Synthetic Aperture Radar Interferometry (InSAR) remote sensing is widely acknowledged as a powerful tool to accomplish this task. Within the last decade, a number of experimental demonstrations of 3-D InSAR techniques have suggested the possibility of remotely sensing global 3-D vegetation structure. Among all the 3-D InSAR techniques, Multiple Baseline SAR Tomography( MB Tomo-SAR) is a very promising one. Multiple baseline SAR tomography exploits InSAR images acquired from different baselines and form a synthetic aperture in the vertical direction in order to retrieval vertical structure. Though theoretical predictions and several laboratory experiments show great reconstruction results, applying the method in real world condition still face a lot of challenges, including low acquisition number, irregular sample distribution, atmospheric phase noise and time decorrelation effect. In this article, we use L band ALOS spaceborne SAR data in Hawaii area to test the performance of MB TomoSAR . In the process, advanced Fourier beamforming method, atmospheric phase screen removal algorithm and time decorrelation effect are all applied. In addition, we also utilize the Landsat vegetation index and the result with other 3-D reconstruction methods as comparison to validate its performance.

  9. Investigation of in-band transmission of both spectral amplitude coding/optical code division multiple-access and wavelength division multiplexing signals

    NASA Astrophysics Data System (ADS)

    Ashour, Isaac A. M.; Shaari, Sahbudin; Shalaby, Hossam M. H.; Menon, P. Susthitha

    2011-06-01

    The transmission of both optical code division multiple-access (OCDMA) and wavelength division multiplexing (WDM) users on the same band is investigated. Code pulses of spectral amplitude coding (SAC)/optical code division multiple-access (CDMA) are overlaid onto a multichannel WDM system. Notch filters are utilized in order to suppress the WDM interference signals for detection of optical broadband CDMA signals. Modified quadratic congruence (MQC) codes are used as the signature codes for the SAC/OCDMA system. The proposed system is simulated and its performance in terms of both the bit-error rate and Q-factor are determined. In addition, eavesdropper probability of error-free code detection is evaluated. Our results are compared to traditional nonhybrid systems. It is concluded that the proposed hybrid scheme still achieves acceptable performance. In addition, it provides enhanced data confidentiality as compared to the scheme with SAC/OCDMA only. It is also shown that the performance of the proposed system is limited by the interference of the WDM signals. Furthermore, the simulation illustrates the tradeoff between the performance and confidentiality for authorized users.

  10. 47 CFR 27.1230 - Conversion of the 2500-2690 MHz band.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Broadband Radio Service and Educational Broadband Service... 2500-2690 MHz band. BRS and EBS licensees in the 2500-2690 MHz band on the pre-transition A-I...

  11. Distribution of multiband THz wireless signals over fiber

    NASA Astrophysics Data System (ADS)

    Shams, Haymen; Gonzalez-Guerrero, Luis; Fice, Martyn; Yang, Zhen; Renaud, Cyril; Seeds, Alywn

    2017-01-01

    Terahertz wireless communication is receiving great interest from researchers and industries, thanks to the new spectral windows between 0.1 and 1 THz offering opportunities for ultra-high-data-rate wireless transmission. Wavelength division multiplexing for wireless-over-fiber is foreseen as an enabling technique to support connection between base stations and a central station. This paper reviews architectures for photonic distribution and generation of multiband signals for sub- THz wireless communications, giving rates up to 100 Gb/s (20 Gb/s per band) using the full spectrum between 220 GHz and 280 GHz for downlink wireless transmission, and 10 Gb/s for uplink using on-off keying.

  12. Wireless fabric patch sensors for wearable healthcare.

    PubMed

    Yoo, Hoi-Jun; Yoo, Jerald; Yan, Long

    2010-01-01

    Two novel wireless fabric patch sensors are introduced for low energy wearable healthcare. The first is a wirelessly powered patch sensor that can be attached to a patient to capture electrocardiogram (ECG) while consuming only 12 microW. By using fabric circuit board technology, the band-aid like sensor is implemented. The second wearable cardiac heathcare sensor, fabricated in the form of 4-layer compact smart poultice type including flexible battery, can extend to monitor bio-impedance together with ECG signals at 16 different sites of the heart with 25 reconfigurable electrodes. It also provides cm-range inductive coupled remote system start-up and duty-cycled data transmission using body as communication channel for a low energy wireless interconnectivity. Both sensors exploit dry fabric electrodes to minimize skin irritation during clinical long term operation.

  13. Wireless sap flow measurement system

    NASA Astrophysics Data System (ADS)

    Kuo, C.; Davis, T. W.; Tseng, C.; Cheng, C.; Liang, X.; Yu, P.

    2010-12-01

    This study exhibits a measurement system for wireless sensor networks to measure sap flow in multiple locations simultaneously. Transpiration is a major component of the land-surface system because it is indicative of the water movement between the soil and the air. Sap flow can be used to approximate transpiration. In forests, transpiration cannot be represented by the sap flow from a single tree. Multi-location sap flow measurements are required to show the heterogeneity caused by different trees or soil conditions. Traditional multi-location measurements require manpower and capital for data collection and instrument maintenance. Fortunately, multi-location measurements can be achieved by using the new technology of wireless sensor networks. With multi-hop communication protocol, data can be forwarded to the base station via multiple sensor nodes. This communication protocol can provide reliable data collection with the least power consumption. This study encountered two major problems. The first problem was signal amplification. The Crossbow IRIS mote was selected as the sensor node that receives the temperature data of the sap flow probe (thermocouple) through a MDA300 data acquisition board. However, the wireless sensor node could not directly receive any data from the thermocouples since the least significant bit value of the MDA300, 0.6 mV, is much higher than the voltage signal generated. Thus, the signal from the thermocouple must be amplified to exceed this threshold. The second problem is power management. A specific heat differential is required for the thermal dissipation method of measuring sap flow. Thus, an adjustable DC power supply is necessary for calibrating the heater's temperature settings. A circuit was designed to combine the signal amplifier and power regulator. The regulator has been designed to also provide power to the IRIS mote to extend battery life. This design enables wireless sap flow measurements in the forest. With the

  14. 47 CFR 15.216 - Disclosure requirements for wireless microphones and other low power auxiliary stations capable...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Disclosure requirements for wireless... wireless microphones and other low power auxiliary stations capable of operating in the core TV bands. (a... capable of operating in the core TV bands (channels 2-51, excluding channel 37) is subject to...

  15. Wireless actuation with functional acoustic surfaces

    NASA Astrophysics Data System (ADS)

    Qiu, T.; Palagi, S.; Mark, A. G.; Melde, K.; Adams, F.; Fischer, P.

    2016-11-01

    Miniaturization calls for micro-actuators that can be powered wirelessly and addressed individually. Here, we develop functional surfaces consisting of arrays of acoustically resonant micro-cavities, and we demonstrate their application as two-dimensional wireless actuators. When remotely powered by an acoustic field, the surfaces provide highly directional propulsive forces in fluids through acoustic streaming. A maximal force of ˜0.45 mN is measured on a 4 × 4 mm2 functional surface. The response of the surfaces with bubbles of different sizes is characterized experimentally. This shows a marked peak around the micro-bubbles' resonance frequency, as estimated by both an analytical model and numerical simulations. The strong frequency dependence can be exploited to address different surfaces with different acoustic frequencies, thus achieving wireless actuation with multiple degrees of freedom. The use of the functional surfaces as wireless ready-to-attach actuators is demonstrated by implementing a wireless and bidirectional miniaturized rotary motor, which is 2.6 × 2.6 × 5 mm3 in size and generates a stall torque of ˜0.5 mN.mm. The adoption of micro-structured surfaces as wireless actuators opens new possibilities in the development of miniaturized devices and tools for fluidic environments that are accessible by low intensity ultrasound fields.

  16. Wireless data transmission for high energy physics applications

    NASA Astrophysics Data System (ADS)

    Dittmeier, Sebastian; Brenner, Richard; Dancila, Dragos; Dehos, Cedric; De Lurgio, Patrick; Djurcic, Zelimir; Drake, Gary; Gonzalez Gimenez, Jose Luis; Gustafsson, Leif; Kim, Do-Won; Locci, Elizabeth; Pfeiffer, Ullrich; Röhrich, Dieter; Rydberg, Anders; Schöning, André; Siligaris, Alexandre; Soltveit, Hans Kristian; Ullaland, Kjetil; Vincent, Pierre; Rodriguez Vazquez, Pedro; Wiedner, Dirk; Yang, Shiming

    2017-08-01

    Silicon tracking detectors operated at high luminosity collider experiments pose a challenge for current and future readout systems regarding bandwidth, radiation, space and power constraints. With the latest developments in wireless communications, wireless readout systems might be an attractive alternative to commonly used wired optical and copper based readout architectures. The WADAPT group (Wireless Allowing Data and Power Transmission) has been formed to study the feasibility of wireless data transmission for future tracking detectors. These proceedings cover current developments focused on communication in the 60 GHz band. This frequency band offers a high bandwidth, a small form factor and an already mature technology. Motivation for wireless data transmission for high energy physics application and the developments towards a demonstrator prototype are summarized. Feasibility studies concerning the construction and operation of a wireless transceiver system have been performed. Data transmission tests with a transceiver prototype operating at even higher frequencies in the 240 GHz band are described. Data transmission at rates up to 10 Gb/s have been obtained successfully using binary phase shift keying.

  17. Multiplicity

    DTIC Science & Technology

    1991-04-01

    practice as a "[descent] into that inner circle of the Inferno where the damned endlessly degate multiplicity for sentencing." United States v. Barnard...select the charges to be brought in a particular case"). 19 Brown v. Ohio, 432 U.S. 161, 165 (1977). 20 Whalen v. United States, 445 U.S. at 689. 21...parte Lange, 8-5 U.S. (19 Wall.) 163 (1874). Cf. Brown v. Ohio, 432 U.S. at 165 ("once the legislature has acted courts may not impose more than one

  18. ASTRONOMY: Researchers Get Spectrum Bands.

    PubMed

    Taubes, G

    2000-06-23

    Radio astronomers have been in danger of losing a precious band of the electromagnetic spectrum--the millimeter wavelengths, which promise insight into subjects as diverse as the origins of life and the birth of stars--to the burgeoning telecommunications industry, as millimeter wavelengths also look promising for transmitting high-bandwidth wireless information over relatively short distances. Earlier this month, however, astronomers won an international agreement that guarantees critical wavelengths safe for research.

  19. Wireless Mesh Networks

    NASA Astrophysics Data System (ADS)

    Ishmael, Johnathan; Race, Nicholas

    Wireless Mesh Networks have emerged as an important technology in building next-generation networks. They are seen to have a range of benefits over traditional wired and wireless networks including low deployment costs, high scalability and resiliency to faults. Moreover, Wireless Mesh Networks (WMNs) are often described as being autonomic with self-* (healing and configuration) properties and their popularity has grown both as a research platform and as a commercially exploitable technology.

  20. Wireless microphone communication system telephonics P/N 484D000-1

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The wireless microphone is a lightweight, portable, wireless voice communications device for use by the crew of the space shuttle orbiter. The wireless microphone allows the crew to have normal hands-free voice communication while they are performing various mission activities. The unit is designed to transmit at 455 or 500 kilohertz and employs narrow band FM modulation. Two orthogonally placed antennas are used to insure good reception at the receiver.

  1. Ureaplasma Species Multiple Banded Antigen (MBA) Variation Is Associated with the Severity of Inflammation In vivo and In vitro in Human Placentae.

    PubMed

    Sweeney, Emma L; Kallapur, Suhas G; Meawad, Simone; Gisslen, Tate; Stephenson, Sally-Anne; Jobe, Alan H; Knox, Christine L

    2017-01-01

    Background: The multiple banded antigen (MBA), a surface-exposed lipoprotein, is a proposed virulence factor of Ureaplasma spp. We previously demonstrated that the number of Ureaplasma parvum MBA size variants in amniotic fluid was inversely proportional to the severity of chorioamnionitis in experimentally infected pregnant sheep. However, the effect of ureaplasma MBA size variation on inflammation in human pregnancies has not been reported. Methods: Ureaplasmas isolated from the chorioamnion of pregnant women from a previous study (n = 42) were speciated/serotyped and MBA size variation was demonstrated by PCR and western blot. Results were correlated with the severity of chorioamnionitis and cord blood cytokines. In vitro, THP-1-derived macrophages were exposed to recombinant-MBA proteins of differing sizes and NF-κB activation and cytokine responses were determined. Results: MBA size variation was identified in 21/32 (65.6%) clinical isolates (in 10 clinical isolates MBA size variation was unable to be determined). Any size variation (increase/decrease) of the MBA (regardless of Ureaplasma species or serovar) was associated with mild or absent chorioamnionitis (P = 0.023) and lower concentrations of cord blood cytokines IL-8 (P = 0.04) and G-CSF (P = 0.008). In vitro, recombinant-MBA variants elicited different cytokine responses and altered expression of NF-κB p65. Conclusion: This study demonstrates that size variation of the ureaplasma MBA protein modulates the host immune response in vivo and in vitro.

  2. Ureaplasma Species Multiple Banded Antigen (MBA) Variation Is Associated with the Severity of Inflammation In vivo and In vitro in Human Placentae

    PubMed Central

    Sweeney, Emma L.; Kallapur, Suhas G.; Meawad, Simone; Gisslen, Tate; Stephenson, Sally-Anne; Jobe, Alan H.; Knox, Christine L.

    2017-01-01

    Background: The multiple banded antigen (MBA), a surface-exposed lipoprotein, is a proposed virulence factor of Ureaplasma spp. We previously demonstrated that the number of Ureaplasma parvum MBA size variants in amniotic fluid was inversely proportional to the severity of chorioamnionitis in experimentally infected pregnant sheep. However, the effect of ureaplasma MBA size variation on inflammation in human pregnancies has not been reported. Methods: Ureaplasmas isolated from the chorioamnion of pregnant women from a previous study (n = 42) were speciated/serotyped and MBA size variation was demonstrated by PCR and western blot. Results were correlated with the severity of chorioamnionitis and cord blood cytokines. In vitro, THP-1-derived macrophages were exposed to recombinant-MBA proteins of differing sizes and NF-κB activation and cytokine responses were determined. Results: MBA size variation was identified in 21/32 (65.6%) clinical isolates (in 10 clinical isolates MBA size variation was unable to be determined). Any size variation (increase/decrease) of the MBA (regardless of Ureaplasma species or serovar) was associated with mild or absent chorioamnionitis (P = 0.023) and lower concentrations of cord blood cytokines IL-8 (P = 0.04) and G-CSF (P = 0.008). In vitro, recombinant-MBA variants elicited different cytokine responses and altered expression of NF-κB p65. Conclusion: This study demonstrates that size variation of the ureaplasma MBA protein modulates the host immune response in vivo and in vitro. PMID:28451522

  3. Real-time electroholography using a multiple-graphics processing unit cluster system with a single spatial light modulator and the InfiniBand network

    NASA Astrophysics Data System (ADS)

    Niwase, Hiroaki; Takada, Naoki; Araki, Hiromitsu; Maeda, Yuki; Fujiwara, Masato; Nakayama, Hirotaka; Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2016-09-01

    Parallel calculations of large-pixel-count computer-generated holograms (CGHs) are suitable for multiple-graphics processing unit (multi-GPU) cluster systems. However, it is not easy for a multi-GPU cluster system to accomplish fast CGH calculations when CGH transfers between PCs are required. In these cases, the CGH transfer between the PCs becomes a bottleneck. Usually, this problem occurs only in multi-GPU cluster systems with a single spatial light modulator. To overcome this problem, we propose a simple method using the InfiniBand network. The computational speed of the proposed method using 13 GPUs (NVIDIA GeForce GTX TITAN X) was more than 3000 times faster than that of a CPU (Intel Core i7 4770) when the number of three-dimensional (3-D) object points exceeded 20,480. In practice, we achieved ˜40 tera floating point operations per second (TFLOPS) when the number of 3-D object points exceeded 40,960. Our proposed method was able to reconstruct a real-time movie of a 3-D object comprising 95,949 points.

  4. A new risk variant for multiple sclerosis at the immunoglobulin heavy chain locus associates with intrathecal IgG, IgM index and oligoclonal bands.

    PubMed

    Delgado-García, Mercedes; Matesanz, Fuencisla; Alcina, Antonio; Fedetz, María; García-Sánchez, María Isabel; Ruiz-Peña, Juan Luis; Fernández, Óscar; Pinto Medel, María Jesús; Leyva, Laura; Arnal, Carmen; Delgado, Concepción; López Guerrero, José Antonio; González-Pérez, Antonio; Sáez, María E; Villar, Luisa María; Álvarez-Cermeño, José Carlos; Picón, Carmen; Arroyo, Rafael; Varadé, Jezabel; Urcelay, Elena; Izquierdo, Guillermo; Lucas, Miguel

    2015-08-01

    Recent findings have shown a correlation between the intrathecal IgG index and variants at the immunoglobulin heavy chain (IGHC) locus in patients with multiple sclerosis (MS). The objective of this paper is to analyse the association of the locus with MS susceptibility and its relationship with intrathecal immunoglobulin (Ig) parameters. We genotyped the rs11621145 variant, located at the IGHC locus, in 2726 patients with MS and 2133 healthy controls. Associations of intrathecal IgG and IgM indexes with rs11621145 were analysed by linear regression analysis in 538 MS patients. We found that rs11621145 showed statistically significant evidence for association with susceptibility to MS (odds ratio = 0.69, p = 1.053E-09), though validation of this result in additional cohorts would be desirable. We confirmed the association between the IgG index and the rs11621145 (p = 6.85E-07, Beta = 0.207). Furthermore, rs11621145 was inversely correlated with IgM index (p = 7.24E-04, Beta = -0.277), and therefore marks a decreased likelihood of presenting IgM oligoclonal bands (odds ratio = 0.38, p = 2.35E-06). Our results suggest that the polymorphism of the IGHC locus could be altering the switching of the Ig isotype in B cells and it may be interfering with T-dependent and T-independent antibody responses. © The Author(s), 2014.

  5. Wireless security in mobile health.

    PubMed

    Osunmuyiwa, Olufolabi; Ulusoy, Ali Hakan

    2012-12-01

    Mobile health (m-health) is an extremely broad term that embraces mobile communication in the health sector and data packaging. The four broad categories of wireless networks are wireless personal area network, wireless metropolitan area network, wireless wide area network, and wireless local area network. Wireless local area network is the most notable of the wireless networking tools obtainable in the health sector. Transfer of delicate and critical information on radio frequencies should be secure, and the right to use must be meticulous. This article covers the business opportunities in m-health, threats faced by wireless networks in hospitals, and methods of mitigating these threats.

  6. Evaluation of a 433 MHz band body sensor network for biomedical applications.

    PubMed

    Kim, Saim; Brendle, Christian; Lee, Hyun-Young; Walter, Marian; Gloeggler, Sigrid; Krueger, Stefan; Leonhardt, Steffen

    2013-01-14

    Body sensor networks (BSN) are an important research topic due to various advantages over conventional measurement equipment. One main advantage is the feasibility to deploy a BSN system for 24/7 health monitoring applications. The requirements for such an application are miniaturization of the network nodes and the use of wireless data transmission technologies to ensure wearability and ease of use. Therefore, the reliability of such a system depends on the quality of the wireless data transmission. At present, most BSNs use ZigBee or other IEEE 802.15.4 based transmission technologies. Here, we evaluated the performance of a wireless transmission system of a novel BSN for biomedical applications in the 433MHz ISM band, called Integrated Posture and Activity NEtwork by Medit Aachen (IPANEMA) BSN. The 433MHz ISM band is used mostly by implanted sensors and thus allows easy integration of such into the BSN. Multiple measurement scenarios have been assessed, including varying antenna orientations, transmission distances and the number of network participants. The mean packet loss rate (PLR) was 0.63% for a single slave, which is comparable to IEEE 802.15.4 BSNs in the proximity of Bluetooth or WiFi networks. Secondly, an enhanced version is evaluated during on-body measurements with five slaves. The mean PLR results show a comparable good performance for measurements on a treadmill (2.5%), an outdoor track (3.4%) and in a climate chamber (1.5%).

  7. Evaluation of a 433 MHz Band Body Sensor Network for Biomedical Applications

    PubMed Central

    Kim, Saim; Brendle, Christian; Lee, Hyun-Young; Walter, Marian; Gloeggler, Sigrid; Krueger, Stefan; Leonhardt, Steffen

    2013-01-01

    Body sensor networks (BSN) are an important research topic due to various advantages over conventional measurement equipment. One main advantage is the feasibility to deploy a BSN system for 24/7 health monitoring applications. The requirements for such an application are miniaturization of the network nodes and the use of wireless data transmission technologies to ensure wearability and ease of use. Therefore, the reliability of such a system depends on the quality of the wireless data transmission. At present, most BSNs use ZigBee or other IEEE 802.15.4 based transmission technologies. Here, we evaluated the performance of a wireless transmission system of a novel BSN for biomedical applications in the 433 MHz ISM band, called Integrated Posture and Activity NEtwork by Medit Aachen (IPANEMA) BSN. The 433 MHz ISM band is used mostly by implanted sensors and thus allows easy integration of such into the BSN. Multiple measurement scenarios have been assessed, including varying antenna orientations, transmission distances and the number of network participants. The mean packet loss rate (PLR) was 0.63% for a single slave, which is comparable to IEEE 802.15.4 BSNs in the proximity of Bluetooth or WiFi networks. Secondly, an enhanced version is evaluated during on-body measurements with five slaves. The mean PLR results show a comparable good performance for measurements on a treadmill (2.5%), an outdoor track (3.4%) and in a climate chamber (1.5%). PMID:23344383

  8. Realization of band gap shrinkage to the spectral characteristics of high-luminous-efficiency 658 nm AlGaInP/GaInP multiple quantum well lasers at room temperatures

    NASA Astrophysics Data System (ADS)

    Chackrabarti, Santosh; Zargar, Rayees A.; Bansal, Jyoti; Zaker, Tho-alfiqar A.; Hafiz, A. K.

    2016-08-01

    The temperature dependent spectral shifts in 658 nm AlGaInP multiple quantum well (MQW) red laser diodes due to band gap narrowing at room temperatures (5 °Csbnd 45 °C) is reported. The density of states effective mass approximation and the conduction band effective mass approximation are employed to formulate the carrier concentrations. The spectral shift mechanism is explored with a threshold current density of 42.28 kA/cm2 and a good characteristic temperature of 149 K. The photoluminescence (PL) peak intensity shifts towards the higher wavelength(red shift) and the full width at half maximum (FWHM) increases with the increase in temperature. The band gap narrowing value determined by a simple formula amounts to 67.4 meV and displays N1/3 dependence at higher densities. The carrier density dependence conveys that the red shift of the spectral emission is due to band gap narrowing.

  9. OIT Wireless Telemetry for Industrial Applications

    SciTech Connect

    Manges, WW

    2002-09-03

    networks to operate cooperatively in an environment that includes wireless LANs, wireless headsets, RF heating, wireless crane controls and many other users of the electromagnetic spectrum will probably be the most important issue we can address. A network of units (Figure 1) has been developed that demonstrates the feasibility of direct-sequence spread spectrum wireless sensor networking for industrial environments. The hardware consists of a group of reprogrammable transceivers that can act as sensor nodes or network nodes or both. These units and the team that built them are the heart of a test bed development system that has been used successfully in demonstrations at various industrial sites. As previously reported, these units have been successfully tested at a paper mill. More recently, these units were utilized in a permanent installation at a steel mill. Both of these applications demonstrated the ease with which a new network could be installed, and the reality that DSSS units can operate successfully in plants where narrow band transmitters had previously caused interference with plant operations.

  10. Listening to Brain Microcircuits for Interfacing With External World-Progress in Wireless Implantable Microelectronic Neuroengineering Devices: Experimental systems are described for electrical recording in the brain using multiple microelectrodes and short range implantable or wearable broadcasting units.

    PubMed

    Nurmikko, Arto V; Donoghue, John P; Hochberg, Leigh R; Patterson, William R; Song, Yoon-Kyu; Bull, Christopher W; Borton, David A; Laiwalla, Farah; Park, Sunmee; Ming, Yin; Aceros, Juan

    2010-01-01

    Acquiring neural signals at high spatial and temporal resolution directly from brain microcircuits and decoding their activity to interpret commands and/or prior planning activity, such as motion of an arm or a leg, is a prime goal of modern neurotechnology. Its practical aims include assistive devices for subjects whose normal neural information pathways are not functioning due to physical damage or disease. On the fundamental side, researchers are striving to decipher the code of multiple neural microcircuits which collectively make up nature's amazing computing machine, the brain. By implanting biocompatible neural sensor probes directly into the brain, in the form of microelectrode arrays, it is now possible to extract information from interacting populations of neural cells with spatial and temporal resolution at the single cell level. With parallel advances in application of statistical and mathematical techniques tools for deciphering the neural code, extracted populations or correlated neurons, significant understanding has been achieved of those brain commands that control, e.g., the motion of an arm in a primate (monkey or a human subject). These developments are accelerating the work on neural prosthetics where brain derived signals may be employed to bypass, e.g., an injured spinal cord. One key element in achieving the goals for practical and versatile neural prostheses is the development of fully implantable wireless microelectronic "brain-interfaces" within the body, a point of special emphasis of this paper.

  11. A method to accurately quantitate intensities of (32)P-DNA bands when multiple bands appear in a single lane of a gel is used to study dNTP insertion opposite a benzo[a]pyrene-dG adduct by Sulfolobus DNA polymerases Dpo4 and Dbh.

    PubMed

    Sholder, Gabriel; Loechler, Edward L

    2015-01-01

    Quantitating relative (32)P-band intensity in gels is desired, e.g., to study primer-extension kinetics of DNA polymerases (DNAPs). Following imaging, multiple (32)P-bands are often present in lanes. Though individual bands appear by eye to be simple and well-resolved, scanning reveals they are actually skewed-Gaussian in shape and neighboring bands are overlapping, which complicates quantitation, because slower migrating bands often have considerable contributions from the trailing edges of faster migrating bands. A method is described to accurately quantitate adjacent (32)P-bands, which relies on having a standard: a simple skewed-Gaussian curve from an analogous pure, single-component band (e.g., primer alone). This single-component scan/curve is superimposed on its corresponding band in an experimentally determined scan/curve containing multiple bands (e.g., generated in a primer-extension reaction); intensity exceeding the single-component scan/curve is attributed to other components (e.g., insertion products). Relative areas/intensities are determined via pixel analysis, from which relative molarity of components is computed. Common software is used. Commonly used alternative methods (e.g., drawing boxes around bands) are shown to be less accurate. Our method was used to study kinetics of dNTP primer-extension opposite a benzo[a]pyrene-N(2)-dG-adduct with four DNAPs, including Sulfolobus solfataricus Dpo4 and Sulfolobus acidocaldarius Dbh. Vmax/Km is similar for correct dCTP insertion with Dpo4 and Dbh. Compared to Dpo4, Dbh misinsertion is slower for dATP (∼20-fold), dGTP (∼110-fold) and dTTP (∼6-fold), due to decreases in Vmax. These findings provide support that Dbh is in the same Y-Family DNAP class as eukaryotic DNAP κ and bacterial DNAP IV, which accurately bypass N(2)-dG adducts, as well as establish the scan-method described herein as an accurate method to quantitate relative intensity of overlapping bands in a single lane, whether generated

  12. Warming Up to Wireless

    ERIC Educational Resources Information Center

    Milner, Jacob

    2005-01-01

    In districts big and small across the U.S., students, teachers, and administrators alike have come to appreciate the benefits of wireless technology. Because the technology delivers Internet signals on airborne radio frequencies, wireless networking allows users of all portable devices to move freely on a school's campus and stay connected to the…

  13. Warming Up to Wireless

    ERIC Educational Resources Information Center

    Milner, Jacob

    2005-01-01

    In districts big and small across the U.S., students, teachers, and administrators alike have come to appreciate the benefits of wireless technology. Because the technology delivers Internet signals on airborne radio frequencies, wireless networking allows users of all portable devices to move freely on a school's campus and stay connected to the…

  14. Debate: Wired versus Wireless.

    ERIC Educational Resources Information Center

    Meeks, Glenn; Nair, Prakash

    2000-01-01

    Debates the issue of investing in wiring schools for desktop computer networks versus using laptops and wireless networks. Included are cost considerations and the value of technology for learning. Suggestions include using wireless networks for existing schools, hardwiring computers for new construction, and not using computers for elementary…

  15. Feasibility studies for a wireless 60 GHz tracking detector readout

    NASA Astrophysics Data System (ADS)

    Dittmeier, S.; Schöning, A.; Soltveit, H. K.; Wiedner, D.

    2016-09-01

    The amount of data produced by highly granular silicon tracking detectors in high energy physics experiments poses a major challenge to readout systems. At high collision rates, e.g. at LHC experiments, only a small fraction of data can be read out with currently used technologies. To cope with the requirements of future or upgraded experiments new data transfer techniques are required which offer high data rates at low power and low material budget. Wireless technologies operating in the 60 GHz band or at higher frequencies offer high data rates and are thus a promising upcoming alternative to conventional data transmission via electrical cables or optical fibers. Using wireless technology, the amount of cables and connectors in detectors can be significantly reduced. Tracking detectors profit most from a reduced material budget as fewer secondary particle interactions (multiple Coulomb scattering, energy loss, etc.) improve the tracking performance in general. We present feasibility studies regarding the integration of the wireless technology at 60 GHz into a silicon tracking detector. We use spare silicon strip modules of the ATLAS experiment as test samples which are measured to be opaque in the 60 GHz range. The reduction of cross talk between links and the attenuation of reflections is studied. An estimate of the maximum achievable link density is given. It is shown that wireless links can be placed as close as 2 cm next to each other for a layer distance of 10 cm by exploiting one or several of the following measures: highly directive antennas, absorbers like graphite foam, linear polarization and frequency channeling. Combining these measures, a data rate area density of up to 11 Tb/(s·m2) seems feasible. In addition, two types of silicon sensors are tested under mm-wave irradiation in order to determine the influence of 60 GHz data transmission on the detector performance: an ATLAS silicon strip sensor module and an HV-MAPS prototype for the Mu3e

  16. Wireless communication with chaos.

    PubMed

    Ren, Hai-Peng; Baptista, Murilo S; Grebogi, Celso

    2013-05-03

    The modern world fully relies on wireless communication. Because of intrinsic physical constraints of the wireless physical media (multipath, damping, and filtering), signals carrying information are strongly modified, preventing information from being transmitted with a high bit rate. We show that, though a chaotic signal is strongly modified by the wireless physical media, its Lyapunov exponents remain unaltered, suggesting that the information transmitted is not modified by the channel. For some particular chaotic signals, we have indeed proved that the dynamic description of both the transmitted and the received signals is identical and shown that the capacity of the chaos-based wireless channel is unaffected by the multipath propagation of the physical media. These physical properties of chaotic signals warrant an effective chaos-based wireless communication system.

  17. Multimedia wireless networking

    NASA Astrophysics Data System (ADS)

    Jain, Rajeev; Alwan, Abeer; Gerla, Mario; Kleinrock, Leonard; Villasenor, John D.; Belzer, Ben; Boring, Walter; Molloy, Stephen; Nazareth, Sean; Siqueira, Marcio; Short, Joel; Tsai, Jack

    1996-03-01

    Current wireless network systems (e.g. metropolitan cellular) are constrained by fixed bandwidth allocations and support only a narrow range of services (voice and low bit-rate data). To overcome these constraints and advance the state of the art in wireless multimedia communications, we are developing variable-rate video and speech compression algorithms, and wireless node architectures that will enable peer-to-peer multimedia networking even with very low bandwidth. To support this objective, each wireless node must support new applications (for multimedia), advances in networking and source coding to support multimedia under limited bandwidth conditions (wireless), advances in physical layer design to support robust, low power, high packet throughput links, low power DSP for multimedia compression, and an architectural strategy to integrate these components into an efficient node. The algorithms and architectures to support this functionality are presented here, together with some preliminary results on network performance.

  18. Wireless Interconnects for Intra-chip & Inter-chip Transmission

    NASA Astrophysics Data System (ADS)

    Narde, Rounak Singh

    With the emergence of Internet of Things and information revolution, the demand of high performance computing systems is increasing. The copper interconnects inside the computing chips have evolved into a sophisticated network of interconnects known as Network on Chip (NoC) comprising of routers, switches, repeaters, just like computer networks. When network on chip is implemented on a large scale like in Multicore Multichip (MCMC) systems for High Performance Computing (HPC) systems, length of interconnects increases and so are the problems like power dissipation, interconnect delays, clock synchronization and electrical noise. In this thesis, wireless interconnects are chosen as the substitute for wired copper interconnects. Wireless interconnects offer easy integration with CMOS fabrication and chip packaging. Using wireless interconnects working at unlicensed mm-wave band (57-64GHz), high data rate of Gbps can be achieved. This thesis presents study of transmission between zigzag antennas as wireless interconnects for Multichip multicores (MCMC) systems and 3D IC. For MCMC systems, a four-chips 16-cores model is analyzed with only four wireless interconnects in three configurations with different antenna orientations and locations. Return loss and transmission coefficients are simulated in ANSYS HFSS. Moreover, wireless interconnects are designed, fabricated and tested on a 6'' silicon wafer with resistivity of 55O-cm using a basic standard CMOS process. Wireless interconnect are designed to work at 30GHz using ANSYS HFSS. The fabricated antennas are resonating around 20GHz with a return loss of less than -10dB. The transmission coefficients between antenna pair within a 20mm x 20mm silicon die is found to be varying between -45dB to -55dB. Furthermore, wireless interconnect approach is extended for 3D IC. Wireless interconnects are implemented as zigzag antenna. This thesis extends the work of analyzing the wireless interconnects in 3D IC with different

  19. Transport Protocols for Wireless Mesh Networks

    NASA Astrophysics Data System (ADS)

    Eddie Law, K. L.

    Transmission control protocol (TCP) provides reliable connection-oriented services between any two end systems on the Internet. With TCP congestion control algorithm, multiple TCP connections can share network and link resources simultaneously. These TCP congestion control mechanisms have been operating effectively in wired networks. However, performance of TCP connections degrades rapidly in wireless and lossy networks. To sustain the throughput performance of TCP connections in wireless networks, design modifications may be required accordingly in the TCP flow control algorithm, and potentially, in association with other protocols in other layers for proper adaptations. In this chapter, we explain the limitations of the latest TCP congestion control algorithm, and then review some popular designs for TCP connections to operate effectively in wireless mesh network infrastructure.

  20. Photonics for wireless communications

    NASA Astrophysics Data System (ADS)

    Paul, Dilip K.

    1995-09-01

    The problem of optimum signal transmission/reception is addressed under a wireless acoustics data communications framework. The ocean waveguide can be modeled as an inhomogeneous dispersive medium with a frequency- dependent Green's function. An FDM-type reception scheme with non- overlapping acoustic subchannels is proposed. This methodology exploits the optimal propagation frequencies along specific ducts and paths in the ocean waveguide. The parallel data transmission system used frequency division multiplexed (FDM) channels to avoid equalization techniques which introduce higher-order computational complexity to the receiver. Multicarrier modulation (MCM) ameliorates the effects of multipaths, and allows operation at multiples of the single-carrier transmission rate. The long symbol time used in multicarrier modulation increases the system margins against noise, intersymbol interference (ISI) and fast fades. Network topology issues are considered to determine optimum network architectures for underwater acoustic LAN's. A central network topology supported by a blind adaptive equalization (BAE) transmission technique is proposed as superior to a distributed topology in terms of power, bandwidth efficiency, setup simplicity, and elimination of overhead bits for short data packet exchange. Included is an investigation on the factors controlling the system's power efficiency.

  1. Wireless quantified reflex device

    NASA Astrophysics Data System (ADS)

    Lemoyne, Robert Charles

    The deep tendon reflex is a fundamental aspect of a neurological examination. The two major parameters of the tendon reflex are response and latency, which are presently evaluated qualitatively during a neurological examination. The reflex loop is capable of providing insight for the status and therapy response of both upper and lower motor neuron syndromes. Attempts have been made to ascertain reflex response and latency, however these systems are relatively complex, resource intensive, with issues of consistent and reliable accuracy. The solution presented is a wireless quantified reflex device using tandem three dimensional wireless accelerometers to obtain response based on acceleration waveform amplitude and latency derived from temporal acceleration waveform disparity. Three specific aims have been established for the proposed wireless quantified reflex device: 1. Demonstrate the wireless quantified reflex device is reliably capable of ascertaining quantified reflex response and latency using a quantified input. 2. Evaluate the precision of the device using an artificial reflex system. 3.Conduct a longitudinal study respective of subjects with healthy patellar tendon reflexes, using the wireless quantified reflex evaluation device to obtain quantified reflex response and latency. Aim 1 has led to the steady evolution of the wireless quantified reflex device from a singular two dimensional wireless accelerometer capable of measuring reflex response to a tandem three dimensional wireless accelerometer capable of reliably measuring reflex response and latency. The hypothesis for aim 1 is that a reflex quantification device can be established for reliably measuring reflex response and latency for the patellar tendon reflex, comprised of an integrated system of wireless three dimensional MEMS accelerometers. Aim 2 further emphasized the reliability of the wireless quantified reflex device by evaluating an artificial reflex system. The hypothesis for aim 2 is that

  2. Communications interface for wireless communications headset

    NASA Technical Reports Server (NTRS)

    Seibert, Marc A. (Inventor); Culotta, Jr., Anthony Joseph (Inventor)

    2004-01-01

    A universal interface adapter circuit interfaces, for example, a wireless communications headset with any type of communications system, including those that require push-to-talk (PTT) signaling. The interface adapter is comprised of several main components, including an RF signaling receiver, a microcontroller and associated circuitry for decoding and processing the received signals, and programmable impedance matching and line interfacing circuitry for interfacing a wireless communications headset system base to a communications system. A signaling transmitter, which is preferably portable (e.g., handheld), is employed by the wireless headset user to send signals to the signaling receiver. In an embodiment of the invention directed specifically to push-to-talk (PTT) signaling, the wireless headset user presses a button on the signaling transmitter when they wish to speak. This sends a signal to the microcontroller which decodes the signal and recognizes the signal as being a PTT request. In response, the microcontroller generates a control signal that closes a switch to complete a voice connection between the headset system base and the communications system so that the user can communicate with the communications system. With this arrangement, the wireless headset can be interfaced to any communications system that requires PTT signaling, without modification of the headset device. In addition, the interface adapter can also be configured to respond to or deliver any other types of signals, such as dual-tone-multiple-frequency (DTMF) tones, and on/off hook signals. The present invention is also scalable, and permits multiple wireless users to operate independently in the same environment through use of a plurality of the interface adapters.

  3. A wireless laser displacement sensor node for structural health monitoring.

    PubMed

    Park, Hyo Seon; Kim, Jong Moon; Choi, Se Woon; Kim, Yousok

    2013-09-30

    This study describes a wireless laser displacement sensor node that measures displacement as a representative damage index for structural health monitoring (SHM). The proposed measurement system consists of a laser displacement sensor (LDS) and a customized wireless sensor node. Wireless communication is enabled by a sensor node that consists of a sensor module, a code division multiple access (CDMA) communication module, a processor, and a power module. An LDS with a long measurement distance is chosen to increase field applicability. For a wireless sensor node driven by a battery, we use a power control module with a low-power processor, which facilitates switching between the sleep and active modes, thus maximizing the power consumption efficiency during non-measurement and non-transfer periods. The CDMA mode is also used to overcome the limitation of communication distance, which is a challenge for wireless sensor networks and wireless communication. To evaluate the reliability and field applicability of the proposed wireless displacement measurement system, the system is tested onsite to obtain the required vertical displacement measurements during the construction of mega-trusses and an edge truss, which are the primary structural members in a large-scale irregular building currently under construction. The measurement values confirm the validity of the proposed wireless displacement measurement system and its potential for use in safety evaluations of structural elements.

  4. A Wireless Laser Displacement Sensor Node for Structural Health Monitoring

    PubMed Central

    Park, Hyo Seon; Kim, Jong Moon; Choi, Se Woon; Kim, Yousok

    2013-01-01

    This study describes a wireless laser displacement sensor node that measures displacement as a representative damage index for structural health monitoring (SHM). The proposed measurement system consists of a laser displacement sensor (LDS) and a customized wireless sensor node. Wireless communication is enabled by a sensor node that consists of a sensor module, a code division multiple access (CDMA) communication module, a processor, and a power module. An LDS with a long measurement distance is chosen to increase field applicability. For a wireless sensor node driven by a battery, we use a power control module with a low-power processor, which facilitates switching between the sleep and active modes, thus maximizing the power consumption efficiency during non-measurement and non-transfer periods. The CDMA mode is also used to overcome the limitation of communication distance, which is a challenge for wireless sensor networks and wireless communication. To evaluate the reliability and field applicability of the proposed wireless displacement measurement system, the system is tested onsite to obtain the required vertical displacement measurements during the construction of mega-trusses and an edge truss, which are the primary structural members in a large-scale irregular building currently under construction. The measurement values confirm the validity of the proposed wireless displacement measurement system and its potential for use in safety evaluations of structural elements. PMID:24084114

  5. Self-powered wireless disposable sensor for welfare application.

    PubMed

    Douseki, Takakuni; Tanaka, Ami

    2013-01-01

    A self-powered urinary incontinence sensor consisting of a flexible urine-activated battery and a wireless transmitter has been developed as an application for wireless biosensor networks. The flexible urine-activated battery is embedded in a disposal diaper and makes possible both the sensing of urine leakage and self-powered operation. An intermittent power-supply circuit that uses an electric double-layer capacitor (EDLC) with a small internal resistance suppresses the supply voltage drop due to the large internal resistance of the battery. This circuit supplies the power to a wireless transmitter. A 315-MHz-band wireless transmitter performs low-power operation. To verify the effectiveness of the circuit scheme, we fabricated a prototype sensor system. When 80 cc of urine is poured onto the diaper, the battery outputs a voltage of 1 V; and the sensor can transmit an ID signal over a distance of 5 m.

  6. Wireless nanosensor network system

    NASA Astrophysics Data System (ADS)

    Oh, Sechang; Kwon, Hyukjun; Kegley, Lauren; Yoon, Hargsoon; Varadan, Vijay K.

    2009-03-01

    Many types of wireless modules are being developed to enhance wireless performance with low power consumption, compact size, high data rates, and wide range coverage. However trade-offs must be taken into consideration in order to satisfy all aspects of wireless performance. For example, in order to increase the data rate and wide range coverage, power consumption should be sacrificed. To overcome these drawbacks, the paper presents a wireless client module which offers low power consumption along with a wireless receiver module that has the strength to provide high data rates and wide range coverage. Adopting Zigbee protocol in the wireless client module, the power consumption performance is enhanced so that it plays a part of the mobile device. On the other hand, the wireless receiver module, as adopting Zigbee and Wi-Fi protocol, provides high data rate, wide range coverage, and easy connection to the existing Internet network so that it plays a part of the portable device. This module demonstrates monitoring of gait analysis. The results show that the sensing data being measured can be monitored in any remote place with access to the Internet network.

  7. Development of fast wireless detection system for fixed offshore platform

    NASA Astrophysics Data System (ADS)

    Li, Zhigang; Yu, Yan; Jiao, Dong; Wang, Jie; Li, Zhirui; Ou, Jinping

    2011-04-01

    -performance computation unit, wireless transceiver unit, mobile power unit and embedded data analysis software, can totally control multi-wireless collection nodes, receive and analyze data, parameter identification. Data is transmitted at the 2.4GHz wireless communication channel, every sensing data channel in charge of data transmission is in a stable frequency band, control channel responsible for the control of power parameters is in a public frequency band. The test is initially conducted for the designed system, experimental results show that the system has good application prospects and practical value with fast arrangement, high sampling rate, high resolution, capacity of low frequency detection.

  8. 76 FR 6789 - Unlicensed Operation in the TV Broadcast Bands

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-08

    ... Global LLC, Neustar Inc., Spectrum Bridge Inc., Telcordia Technologies, and WSdb LLC--as TV bands device... introduction of this new class of broadband wireless devices in the TV spectrum. DATES: Amended proposals must... Global LLC, Neustar Inc., Spectrum Bridge Inc., Telcordia Technologies, and WSdb LLC--as TV bands...

  9. Wireless Sensor Networks: Monitoring and Control

    SciTech Connect

    Hastbacka, Mildred; Ponoum, Ratcharit; Bouza, Antonio

    2013-05-31

    The article discusses wireless sensor technologies for building energy monitoring and control. This article, also, addresses wireless sensor networks as well as benefits and challenges of using wireless sensors. The energy savings and market potential of wireless sensors are reviewed.

  10. Band heterotopia.

    PubMed

    Alam, M S; Naila, N

    2010-01-01

    Band heterotopias are one of the rarest groups of congenital disorder that result in variable degree of structural abnormality of brain parenchyma. Band of heterotopic neurons result from a congenital or acquired deficiency of the neuronal migration. MRI is the examination of choice for demonstrating these abnormalities because of the superb gray vs. white matter differentiation, detail of cortical anatomy and ease of multiplanar imaging. We report a case of band heterotopia that showed a bilateral band of gray matter in deep white matter best demonstrated on T2 Wt. and FLAIR images.

  11. Optical frequency upconversion technique for transmission of wireless MIMO-type signals over optical fiber.

    PubMed

    Shaddad, R Q; Mohammad, A B; Al-Gailani, S A; Al-Hetar, A M

    2014-01-01

    The optical fiber is well adapted to pass multiple wireless signals having different carrier frequencies by using radio-over-fiber (ROF) technique. However, multiple wireless signals which have the same carrier frequency cannot propagate over a single optical fiber, such as wireless multi-input multi-output (MIMO) signals feeding multiple antennas in the fiber wireless (FiWi) system. A novel optical frequency upconversion (OFU) technique is proposed to solve this problem. In this paper, the novel OFU approach is used to transmit three wireless MIMO signals over a 20 km standard single mode fiber (SMF). The OFU technique exploits one optical source to produce multiple wavelengths by delivering it to a LiNbO3 external optical modulator. The wireless MIMO signals are then modulated by LiNbO3 optical intensity modulators separately using the generated optical carriers from the OFU process. These modulators use the optical single-sideband with carrier (OSSB+C) modulation scheme to optimize the system performance against the fiber dispersion effect. Each wireless MIMO signal is with a 2.4 GHz or 5 GHz carrier frequency, 1 Gb/s data rate, and 16-quadrature amplitude modulation (QAM). The crosstalk between the wireless MIMO signals is highly suppressed, since each wireless MIMO signal is carried on a specific optical wavelength.

  12. Optical Frequency Upconversion Technique for Transmission of Wireless MIMO-Type Signals over Optical Fiber

    PubMed Central

    Shaddad, R. Q.; Mohammad, A. B.; Al-Gailani, S. A.; Al-Hetar, A. M.

    2014-01-01

    The optical fiber is well adapted to pass multiple wireless signals having different carrier frequencies by using radio-over-fiber (ROF) technique. However, multiple wireless signals which have the same carrier frequency cannot propagate over a single optical fiber, such as wireless multi-input multi-output (MIMO) signals feeding multiple antennas in the fiber wireless (FiWi) system. A novel optical frequency upconversion (OFU) technique is proposed to solve this problem. In this paper, the novel OFU approach is used to transmit three wireless MIMO signals over a 20 km standard single mode fiber (SMF). The OFU technique exploits one optical source to produce multiple wavelengths by delivering it to a LiNbO3 external optical modulator. The wireless MIMO signals are then modulated by LiNbO3 optical intensity modulators separately using the generated optical carriers from the OFU process. These modulators use the optical single-sideband with carrier (OSSB+C) modulation scheme to optimize the system performance against the fiber dispersion effect. Each wireless MIMO signal is with a 2.4 GHz or 5 GHz carrier frequency, 1 Gb/s data rate, and 16-quadrature amplitude modulation (QAM). The crosstalk between the wireless MIMO signals is highly suppressed, since each wireless MIMO signal is carried on a specific optical wavelength. PMID:24772009

  13. Full-band Monte Carlo simulation of high-energy carrier transport in single photon avalanche diodes with multiplication layers made of InP, InAlAs, and GaAs

    NASA Astrophysics Data System (ADS)

    Dolgos, Denis; Meier, Hektor; Schenk, Andreas; Witzigmann, Bernd

    2012-05-01

    We investigate the high-energy charge dynamics of electrons and holes in the multiplication process of single photon avalanche diodes. The technologically important multiplication layer materials InP and In0.52Al0.48As, used in near infrared photon detectors, are analyzed and compared with GaAs. We use the full-band Monte Carlo technique to solve the Boltzmann transport equation which improves the state-of-the-art treatment of high-field carrier transport in the multiplication process. As a result of the computationally efficient treatment of the scattering rates and the parallel central processing unit power of modern computer clusters, the full-band Monte Carlo calculation of the breakdown characteristics has become feasible. The breakdown probability features a steeper rise versus the reverse bias for smaller multiplication layer widths for InP, In0.52Al0.48As, and GaAs. Both the time to avalanche breakdown and jitter decrease with shrinking size of the multiplication region for the three examined III-V semiconductors.

  14. Wireless Networks: New Meaning to Ubiquitous Computing.

    ERIC Educational Resources Information Center

    Drew, Wilfred, Jr.

    2003-01-01

    Discusses the use of wireless technology in academic libraries. Topics include wireless networks; standards (IEEE 802.11); wired versus wireless; why libraries implement wireless technology; wireless local area networks (WLANs); WLAN security; examples of wireless use at Indiana State University and Morrisville College (New York); and useful…

  15. Wireless Networks: New Meaning to Ubiquitous Computing.

    ERIC Educational Resources Information Center

    Drew, Wilfred, Jr.

    2003-01-01

    Discusses the use of wireless technology in academic libraries. Topics include wireless networks; standards (IEEE 802.11); wired versus wireless; why libraries implement wireless technology; wireless local area networks (WLANs); WLAN security; examples of wireless use at Indiana State University and Morrisville College (New York); and useful…

  16. [Temperature and humidity monitoring system of imaging equipment room based on wireless network].

    PubMed

    Zhou, Xuejun; Yu, Kaijun

    2011-05-01

    This paper presents a wireless temperature and humidity control system for hospital's video room. The system realizes one to multiple communication using wireless communication module CC1020 and SHT11 as sensors, and then sets up the communication between system and the central station with serial communication controller MSCOMM. The system uses VISUAL C++ programming to realize the video room temperature and humidity alarm control. It is wireless, efficacious and manpower-efficient.

  17. Massive Access Control Aided by Knowledge-Extraction for Co-Existing Periodic and Random Services over Wireless Clinical Networks.

    PubMed

    Du, Qinghe; Zhao, Weidong; Li, Weimin; Zhang, Xuelin; Sun, Bo; Song, Houbing; Ren, Pinyi; Sun, Li; Wang, Yichen

    2016-07-01

    The prosperity of e-health is boosted by fast development of medical devices with wireless communications capability such as wearable devices, tiny sensors, monitoring equipments, etc., which are randomly distributed in clinic environments. The drastically-increasing population of such devices imposes new challenges on the limited wireless resources. To relieve this problem, key knowledge needs to be extracted from massive connection attempts dispersed in the air towards efficient access control. In this paper, a hybrid periodic-random massive access (HPRMA) scheme for wireless clinical networks employing ultra-narrow band (UNB) techniques is proposed. In particular, the proposed scheme towards accommodating a large population of devices include the following new features. On one hand, it can dynamically adjust the resource allocated for coexisting periodic and random services based on the traffic load learned from signal collision status. On the other hand, the resource allocation within periodic services is thoroughly designed to simultaneously align with the timing requests of differentiated services. Abundant simulation results are also presented to demonstrate the superiority of the proposed HPRMA scheme over baseline schemes including time-division multiple access (TDMA) and random access approach, in terms of channel utilization efficiency, packet drop ratio, etc., for the support of massive devices' services.

  18. LiFi: transforming fibre into wireless

    NASA Astrophysics Data System (ADS)

    Yin, Liang; Islim, Mohamed Sufyan; Haas, Harald

    2017-01-01

    Light-fidelity (LiFi) uses energy-efficient light-emitting diodes (LEDs) for high-speed wireless communication, and it has a great potential to be integrated with fibre communication for future gigabit networks. However, by making fibre communication wireless, multiuser interference arises. Traditional methods use orthogonal multiple access (OMA) for interference avoidance. In this paper, multiuser interference is exploited with the use of non-orthogonal multiple access (NOMA) relying on successive interference cancellation (SIC). The residual interference due to imperfect SIC in practical scenarios is characterized with a proportional model. Results show that NOMA offers 5 -10 dB gain on the equivalent signal-to-interference-plus-noise ratio (SINR) over OMA. The bit error rate (BER) performance of direct current optical orthogonal frequency division multiplexing (DCO-OFDM) is shown to be significantly improved when SIC is used.

  19. A Wireless World: Charles County Public Schools Makes Wireless Universal

    ERIC Educational Resources Information Center

    Hoffman, Richard

    2007-01-01

    Wireless connectivity in schools is all the rage, and many school systems have at least gotten their feet wet with a wireless lab or a few portable laptop carts. But Bijaya Devkota, the chief information officer of Charles County Public Schools, has done what many school systems only dream of--implemented universal wireless access throughout his…

  20. Wireless sensor network for streetlight monitoring and control

    NASA Astrophysics Data System (ADS)

    Huang, Xin-Ming; Ma, Jing; Leblanc, Lawrence E.

    2004-08-01

    Wireless sensor network has attracted considerable research attention as the world becomes more information oriented. This technology provides an opportunity of innovations in traditional industries. Management and control of streetlight system is a labor-intensive high-cost task for public facility operations. This paper applies wireless sensor network technology in streetlight monitoring and control. Wireless sensor networks are employed to replace traditional physical patrol maintenance and manual switching on every lamp in the street or along the highway at the aim of reducing the maintenance and management expense. Active control is used to preserve energy cost while ensuring public safety. A proof-of-concept network architecture operated at 900 MHz industrial, scientific, and medical (ISM) band is designed for a two-way wireless telemetry system in streetlight remote control and monitoring. The radio architecture, multi-hop protocol and system interface are discussed in detail. MOTES sensor nodes are used in simulation and experimental tests. Simulation results show that the sensor network approach provides an efficient solution to monitor and control lighting infrastructures through wireless links. The unique application in this paper addresses an immediate need in streetlight control and monitoring, the architecture developed in this research could also serve as a platform for many other applications and researches in wireless sensor network.

  1. Hardware Emulation of Wireless Communication Fading Channels

    DTIC Science & Technology

    2011-01-01

    vol. 19, no. 6 , pp. 1009-1018, Jun. 2001. [9] B. E. Baddour and N. C. Beaulieu, “Accurate simulation of multiple cross- correlated Rician fading...Rayleigh fading waveforms,” IEEE Trans. Commun., vol. 6 , no. 6 , pp. 256-258, Nov. 2002. [18] Y. R. Zheng and C. Xiao, “ Simulation models with correct...waveforms in the baseband equivalent channel due to the bandlimited nature of wireless systems [ 6 ]. Software-based channel simulators usually employ

  2. Terahertz (THz) Wireless Systems for Space Applications

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.; deSilva, Kanishka B.; Jih, Cindy T.

    2013-01-01

    NASA has been leading the Terahertz (THz) technology development for the sensors and instruments in astronomy in the past 20 years. THz technologies are expanding into much broader applications in recent years. Due to the vast available multiple gigahertz (GHz) broad bandwidths, THz radios offer the possibility for wireless transmission of high data rates. Multi-Gigabits per second (MGbps) broadband wireless access based on THz waves are closer to reality. The THz signal high atmosphere attenuation could significantly decrease the communication ranges and transmittable data rates for the ground systems. Contrary to the THz applications on the ground, the space applications in the atmosphere free environment do not suffer the atmosphere attenuation. The manufacturing technologies for the THz electronic components are advancing and maturing. There is great potential for the NASA future high data wireless applications in environments with difficult cabling and size/weight constraints. In this study, the THz wireless systems for potential space applications were investigated. The applicability of THz systems for space applications was analyzed. The link analysis indicates that MGbps data rates are achievable with compact sized high gain antennas.

  3. Information Theoretic Comparison of MIMO Wireless Communication Receivers in the Presence of Interference

    DTIC Science & Technology

    2004-12-20

    input multiple - output ( MIMO ) wireless communication provides a number of advantages over traditional single- input single- output (SISO) approaches...Performance Comparison 0 0 0 007)))o MIT Lincoln Laboratory mimoNTI-2 bliss MIMO Communication Multiple - Input Multiple - Output Complicated Multipath...difficult environments MIMO Communication - Ignore the possibility of jamming or Multiple - Input Multiple -

  4. Wireless Network Security Using Randomness

    DTIC Science & Technology

    2012-06-19

    REPORT WIRELESS NETWORK SECURITY USING RANDOMNESS 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: The present invention provides systems and methods for... securing communications in a wireless network by utilizing the inherent randomness of propagation errors to enable legitimate users to dynamically...Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS Patent, security , wireless networks, randomness Sheng Xiao, Weibo Gong

  5. Measurements on wireless transmission of ECG signals

    NASA Astrophysics Data System (ADS)

    Gabrielli, A.; Lax, I.

    2016-12-01

    The scope of this research is to design an electronic prototype, an operative system as a proof of concept, to transmit and receive biological parameters, in particular electrocardiogram signals, through dedicated wireless circuits. The apparatus features microelectronics chips that were developed for more general biomedical applications, here adapted to deal with cardiac signals. The paper mainly focuses on the electronic aspects, as in this study we do not face medical or clinical aspects of the system. The transmitter circuit uses a commercial instrumentation amplifier and the receiver has been equipped with wide-band amplifiers along with made-in-the-lab band-pass filters centered at the carrier. We have been able to mount the entire system prototype into a preliminary data acquisition chain that reads out the electrocardiogram signal. The prototype allows acquiring the waveform, converting it to a digital pattern and open the transmission through a series of high-frequency packets exploiting the Ultra Wide Band protocol. The sensor value is embedded in the transmission through the rate of the digital packets. In fact, these are sent wireless at a specific packet-frequency that depends on the sensor amplitude and are detected into a receiver circuit that recovers the information.

  6. Wireless Data-Acquisition System for Testing Rocket Engines

    NASA Technical Reports Server (NTRS)

    Lin, Chujen; Lonske, Ben; Hou, Yalin; Xu, Yingjiu; Gang, Mei

    2007-01-01

    A prototype wireless data-acquisition system has been developed as a potential replacement for a wired data-acquisition system heretofore used in testing rocket engines. The traditional use of wires to connect sensors, signal-conditioning circuits, and data acquisition circuitry is time-consuming and prone to error, especially when, as is often the case, many sensors are used in a test. The system includes one master and multiple slave nodes. The master node communicates with a computer via an Ethernet connection. The slave nodes are powered by rechargeable batteries and are packaged in weatherproof enclosures. The master unit and each of the slave units are equipped with a time-modulated ultra-wide-band (TMUWB) radio transceiver, which spreads its RF energy over several gigahertz by transmitting extremely low-power and super-narrow pulses. In this prototype system, each slave node can be connected to as many as six sensors: two sensors can be connected directly to analog-to-digital converters (ADCs) in the slave node and four sensors can be connected indirectly to the ADCs via signal conditioners. The maximum sampling rate for streaming data from any given sensor is about 5 kHz. The bandwidth of one channel of the TM-UWB radio communication system is sufficient to accommodate streaming of data from five slave nodes when they are fully loaded with data collected through all possible sensor connections. TM-UWB radios have a much higher spatial capacity than traditional sinusoidal wave-based radios. Hence, this TM-UWB wireless data-acquisition can be scaled to cover denser sensor setups for rocket engine test stands. Another advantage of TM-UWB radios is that it will not interfere with existing wireless transmission. The maximum radio-communication range between the master node and a slave node for this prototype system is about 50 ft (15 m) when the master and slave transceivers are equipped with small dipole antennas. The range can be increased by changing to

  7. Wireless cardiac action potential transmission with ultrasonically inserted silicon microprobes

    NASA Astrophysics Data System (ADS)

    Shen, C. J.; Ramkumar, A.; Lal, A.; Gilmour, R. F., Jr.

    2011-05-01

    This paper reports on the integration of ultrasonically inserted horn-shaped cardiac probes with wireless transmission of 3D cardiac action potential measurement for applications in ex vivo preparations such as monitoring the onset of ventricular fibrillation. Ultrasonically inserted silicon horn probes permit reduced penetration force during insertion, allowing silicon, a brittle material, to penetrate cardiac tissue. The probes also allow recording from multiple sites that are lithographically defined. An application-specific integrated circuit has been designed with a 40 dB amplifying stage and a frequency modulating oscillator at 95 MHz to wirelessly transmit the recorded action potentials. This ultrasonically inserted microprobe wireless system demonstrates the initial results in wireless monitoring of 3D action potential propagation, and the extraction of parameters of interest including the action potential duration and diastolic interval.

  8. Error resilient interactive video streaming over wireless networks

    NASA Astrophysics Data System (ADS)

    Hadjinicolaou, Marios G.; Psannis, Kostas E.; Ishibashi, Yutaka

    2007-09-01

    This paper presents an efficient approach for supporting wireless video full interactive services. One of the main goals of wireless video multicast services is to provide priority including dedicated bandwidth, controlled jitter (required by some real-time and interactive traffic), and improved loss characteristics. The proposed method is based on storing multiple differently encoded versions of the normal/interactive video streams at the server. The corresponding video streams are obtained by encoding the original uncompressed video file as a sequence of I-P(I) frames and I-P(M) frames using different GOP (Group Of Pictures) pattern. Mechanisms for controlling the normal/interactive request are also presented and their effectiveness is assessed through extensive simulations. Wireless normal/interactive video services are supported with considerably reduced additional delay and acceptable visual quality at the wireless client-end.

  9. Ubiquitous map-image access through wireless overlay networks

    NASA Astrophysics Data System (ADS)

    Cai, Jianfei; Huang, Haijie; Ni, Zefeng; Chen, Chang Wen

    2004-10-01

    With the availability of various wireless link-layer technologies, such as Bluetooth, WLAN and GPRS, in one wireless device, ubiquitous communications can be realized through managing vertical handoff in the environment of wireless overlay networks. In this paper, we propose a vertical handoff management system based on mobile IPv6, which can automatically manage the multiple network interfaces on the mobile device, and make decisions on network interface selection according to the current situation. Moreover, we apply our proposed vertical handoff management with JPEG-2000 codec to the wireless application of map image access. The developed system is able to provide seamless communications, as well as fast retrieve any interested map region with any block size, in different resolutions and different color representations directly from the compressed bitstream.

  10. 47 CFR 15.216 - Disclosure requirements for wireless microphones and other low power auxiliary stations capable...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... microphones and other low power auxiliary stations capable of operating in the core TV bands. 15.216 Section... wireless microphones and other low power auxiliary stations capable of operating in the core TV bands. (a... capable of operating in the core TV bands (channels 2-51, excluding channel 37) is subject to the...

  11. 47 CFR 15.216 - Disclosure requirements for wireless microphones and other low power auxiliary stations capable...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... microphones and other low power auxiliary stations capable of operating in the core TV bands. 15.216 Section... wireless microphones and other low power auxiliary stations capable of operating in the core TV bands. (a... capable of operating in the core TV bands (channels 2-51, excluding channel 37) is subject to the...

  12. 47 CFR 15.216 - Disclosure requirements for wireless microphones and other low power auxiliary stations capable...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... microphones and other low power auxiliary stations capable of operating in the core TV bands. 15.216 Section... wireless microphones and other low power auxiliary stations capable of operating in the core TV bands. (a... capable of operating in the core TV bands (channels 2-51, excluding channel 37) is subject to the...

  13. 47 CFR 15.216 - Disclosure requirements for wireless microphones and other low power auxiliary stations capable...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... microphones and other low power auxiliary stations capable of operating in the core TV bands. 15.216 Section... wireless microphones and other low power auxiliary stations capable of operating in the core TV bands. (a... capable of operating in the core TV bands (channels 2-51, excluding channel 37) is subject to the...

  14. 47 CFR 27.1300 - 600 MHz band subject to competitive bidding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false 600 MHz band subject to competitive bidding. 27.1300 Section 27.1300 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES 600 MHz Band § 27.1300 600 MHz band subject...

  15. Wireless physical layer security

    NASA Astrophysics Data System (ADS)

    Poor, H. Vincent; Schaefer, Rafael F.

    2017-01-01

    Security in wireless networks has traditionally been considered to be an issue to be addressed separately from the physical radio transmission aspects of wireless systems. However, with the emergence of new networking architectures that are not amenable to traditional methods of secure communication such as data encryption, there has been an increase in interest in the potential of the physical properties of the radio channel itself to provide communications security. Information theory provides a natural framework for the study of this issue, and there has been considerable recent research devoted to using this framework to develop a greater understanding of the fundamental ability of the so-called physical layer to provide security in wireless networks. Moreover, this approach is also suggestive in many cases of coding techniques that can approach fundamental limits in practice and of techniques for other security tasks such as authentication. This paper provides an overview of these developments.

  16. Wireless physical layer security

    PubMed Central

    Schaefer, Rafael F.

    2017-01-01

    Security in wireless networks has traditionally been considered to be an issue to be addressed separately from the physical radio transmission aspects of wireless systems. However, with the emergence of new networking architectures that are not amenable to traditional methods of secure communication such as data encryption, there has been an increase in interest in the potential of the physical properties of the radio channel itself to provide communications security. Information theory provides a natural framework for the study of this issue, and there has been considerable recent research devoted to using this framework to develop a greater understanding of the fundamental ability of the so-called physical layer to provide security in wireless networks. Moreover, this approach is also suggestive in many cases of coding techniques that can approach fundamental limits in practice and of techniques for other security tasks such as authentication. This paper provides an overview of these developments. PMID:28028211

  17. Wireless physical layer security.

    PubMed

    Poor, H Vincent; Schaefer, Rafael F

    2017-01-03

    Security in wireless networks has traditionally been considered to be an issue to be addressed separately from the physical radio transmission aspects of wireless systems. However, with the emergence of new networking architectures that are not amenable to traditional methods of secure communication such as data encryption, there has been an increase in interest in the potential of the physical properties of the radio channel itself to provide communications security. Information theory provides a natural framework for the study of this issue, and there has been considerable recent research devoted to using this framework to develop a greater understanding of the fundamental ability of the so-called physical layer to provide security in wireless networks. Moreover, this approach is also suggestive in many cases of coding techniques that can approach fundamental limits in practice and of techniques for other security tasks such as authentication. This paper provides an overview of these developments.

  18. Wireless Phone Threat Assessment for Aircraft Communication and Navigation Radios

    NASA Technical Reports Server (NTRS)

    Nguyens, T. X.; Koppen, S. V.; Smith, L. J.; Williams, R. A.; Salud, M. T.

    2005-01-01

    Emissions in aircraft communication and navigation bands are measured for the latest generation of wireless phones. The two wireless technologies considered, GSM/GPRS and CDMA2000, are the latest available to general consumers in the U.S. A base-station simulator is used to control the phones. The measurements are conducted using reverberation chambers, and the results are compared against FCC and aircraft installed equipment emission limits. The results are also compared against baseline emissions from laptop computers and personal digital assistant devices that are currently allowed to operate on aircraft.

  19. Millimeter-Wave Wireless LAN and Its Extension toward 5G Heterogeneous Networks

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Kei; Mohamed, Ehab Mahmoud; Kusano, Hideyuki; Mizukami, Makoto; Miyamoto, Shinichi; Rezagah, Roya E.; Takinami, Koji; Takahashi, Kazuaki; Shirakata, Naganori; Peng, Hailan; Yamamoto, Toshiaki; Nanba, Shinobu

    Millimeter-wave (mmw) frequency bands, especially 60 GHz unlicensed band, are considered as a promising solution for gigabit short range wireless communication systems. IEEE standard 802.11ad, also known as WiGig, is standardized for the usage of the 60 GHz unlicensed band for wireless local area networks (WLANs). By using this mmw WLAN, multi-Gbps rate can be achieved to support bandwidth-intensive multimedia applications. Exhaustive search along with beamforming (BF) is usually used to overcome 60 GHz channel propagation loss and accomplish data transmissions in such mmw WLANs. Because of its short range transmission with a high susceptibility to path blocking, multiple number of mmw access points (APs) should be used to fully cover a typical target environment for future high capacity multi-Gbps WLANs. Therefore, coordination among mmw APs is highly needed to overcome packet collisions resulting from un-coordinated exhaustive search BF and to increase the total capacity of mmw WLANs. In this paper, we firstly give the current status of mmw WLANs with our developed WiGig AP prototype. Then, we highlight the great need for coordinated transmissions among mmw APs as a key enabler for future high capacity mmw WLANs. Two different types of coordinated mmw WLAN architecture are introduced. One is the distributed antenna type architecture to realize centralized coordination, while the other is an autonomous coordination with the assistance of legacy Wi-Fi signaling. Moreover, two heterogeneous network (HetNet) architectures are also introduced to efficiently extend the coordinated mmw WLANs to be used for future 5th Generation (5G) cellular networks.

  20. Wireless Visual Sensor Network Resource Allocation using Cross-Layer Optimization

    DTIC Science & Technology

    2009-01-01

    channel coding. 2. RESOURCE ALLOCATION USING CROSS - LAYER OPTIMIZATION This work considers a wireless visual sensor network that...SUBJECT TERMS Cross - layer , visual sensor network , Code Division Multiple Access (CDMA), resource allocation, H.265, spread spectrum, joint source- channel ...DATES COVERED (From - To) January 2008 – August 2008 4. TITLE AND SUBTITLE WIRELESS VISUAL SENSOR NETWORK RESOURCE ALLOCATION USING CROSS -

  1. 47 CFR 27.1222 - Operations in the 2568-2572 and 2614-2618 bands.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Broadband Radio Service and Educational... operations in the 2568-2572 and 2614-2618 MHz bands shall be secondary to adjacent-channel...

  2. Heterogeneous wireless/wireline optical access networks with the R-EAT as backend component

    NASA Astrophysics Data System (ADS)

    Hagedorn, Klaus; Gindera, Ralf; Stohr, Andreas; Jager, Dieter

    2004-09-01

    A heterogeneous wireless/wireline optical transmission link using a reflection type electroabsorption transceiver (R-EAT) is presented. Simultaneous transmission of full-duplex broadband wireless LAN (WLAN) channels and 1Gb/s base band data is experimentally demonstrated. The system link employs sub-carrier multiplexing (SCM) and two optical channels for full duplex transmission of various analog WLAN channels and downlink digital base band data. The developed link architecture is suitable for simultaneous transmission of broadband wireline and wireless signals, it enables the coexistence and interoperability between wireline and wireless access technologies. The developed R-EAT component employed in this wireline/wireless access system, features "single-chip-component" base stations in access networks with star type topology where only a single optical fiber is used for bidirectional optical transmission. The R-EAT can be used within the optical C-band (1530- 1560nm) and is suitable for (D)WDM networks. Bit error rate measurements demonstrate the capabilities of the R-EAT for 1Gb/s base band transmission. The analog performance for WLAN transmission is characterised by a spurious free dynamic range (SFDR) of more than 75dB and 90dB for uplink and downlink transmission, respectively. The link gain for uplink and downlink transmission is -42dB and -37dB, respectively. The demonstrates the analog performances of the R-EAT for being used in wireless access networks such as W-LAN.

  3. Wireless sensor platform

    DOEpatents

    Joshi, Pooran C.; Killough, Stephen M.; Kuruganti, Phani Teja

    2017-08-08

    A wireless sensor platform and methods of manufacture are provided. The platform involves providing a plurality of wireless sensors, where each of the sensors is fabricated on flexible substrates using printing techniques and low temperature curing. Each of the sensors can include planar sensor elements and planar antennas defined using the printing and curing. Further, each of the sensors can include a communications system configured to encode the data from the sensors into a spread spectrum code sequence that is transmitted to a central computer(s) for use in monitoring an area associated with the sensors.

  4. Wireless Testbed Bonsai

    DTIC Science & Technology

    2006-02-01

    wireless sensor device network, and a about 200 Stargate nodes higher-tier multi-hop peer- to-peer 802.11b wireless network. Leading up to the full ExScal...deployment, we conducted spatial scaling tests on our higher-tier protocols on a 7 × 7 grid of Stargates nodes 45m and with 90m separations respectively...onW and its scaled version W̃ . III. EXPERIMENTAL SETUP Description of Kansei testbed. A stargate is a single board linux-based computer [7]. It uses a

  5. A receiver diversity technique for ensuring high reliability of wireless vital data gathering in hospital rooms.

    PubMed

    Hara, Shinsuke; Sugano, Hiroto; Inoue, Tadayuki; Tsujioka, Tetsuo; Nakajima, Shigeyoshi; Nakamura, Hajime; Takeuchi, Kazuhide

    2010-01-01

    Sensing and wireless technologies have made remarkable advance recently, so wireless vital sensors for medical use, which are light-weight but accurate, have been commercially available. However, because of the low reliability of the wireless data transmission, sensed vital data are often lost in the wireless channel and this is a fatal drawback of the devices for continuous monitoring of patients in hospitals. This paper investigates the effect of using multiple receivers (receiver diversity technique) on the improvement of data loss rate for wireless vital data gathering. Experiments with a wireless vital sensor in hospital rooms reveal that putting receivers to higher positions such as ceiling is advantageous and the use of three receivers can sufficiently improve the data loss rate as compared with the use of a single receiver.

  6. Applying an intelligent and automated emissions measurement system to characterize the RF environment for supporting wireless technologies

    SciTech Connect

    Keebler, P. F.; Phipps, K. O.

    2006-07-01

    The use of wireless technologies in commercial and industrial facilities has grown significantly in the past several years. New applications of wireless technologies with increasing frequency and varying radiated power are being developed everyday. Wireless application specialists and end users have already identified several sources of electromagnetic interference (EMI) in these facilities. Interference has been reported between wireless devices and between these devices and other types of electronic equipment either using frequencies in the unlicensed wireless spectrum or equipment that may generate undesired man-made noise in this spectrum. Facilities that are not using the wireless band should verify the spectral quality of that band and the electromagnetic compatibility (EMC) integrity of safety-related power and signal cables before installing wireless technologies. With the introduction of new wireless devices in the same electromagnetic space where analog and digital I and C systems and cables must co-exist, the ability of facility managers to manage their spectra will dictate the degree of interference between wireless devices and other electronic equipment. Because of the unknowns associated with interference with analog and digital I and C systems in the wireless band, nuclear power plants have been slow to introduce wireless technologies in plant areas. With the application of newly developed advanced radiated emissions measurement systems that can record, process, and analyze radiated and conducted emissions in a cost-effective manner, facility managers can more reliably characterize potential locations for wireless technologies, including potential coupling effects with safety-related power and signal cables, with increased confidence that the risks associated with creating an interference can be significantly reduced. This paper will present an effective philosophy already being used in other mission-critical applications for managing EMC, an

  7. Distributed joint source-channel coding in wireless sensor networks.

    PubMed

    Zhu, Xuqi; Liu, Yu; Zhang, Lin

    2009-01-01

    Considering the fact that sensors are energy-limited and the wireless channel conditions in wireless sensor networks, there is an urgent need for a low-complexity coding method with high compression ratio and noise-resisted features. This paper reviews the progress made in distributed joint source-channel coding which can address this issue. The main existing deployments, from the theory to practice, of distributed joint source-channel coding over the independent channels, the multiple access channels and the broadcast channels are introduced, respectively. To this end, we also present a practical scheme for compressing multiple correlated sources over the independent channels. The simulation results demonstrate the desired efficiency.

  8. W/V-Band Terrestrial Link Experiment (WTLE)

    NASA Image and Video Library

    2016-01-20

    NASA Glenn researchers Jacki Houts, James Nessel and Michael Zemba perform a final inspection of the W/V-Band Terrestrial Link Experiment (WTLE) before it was transported to Albuquerque, New Mexico for testing. The experiment hardware includes a transmitter, which has been placed on the crest of the Sandia Mountains and a receiver (shown) placed at a research facility of the University of New Mexico. The wireless link spans 23km and will be used to study the effects of the atmosphere on high data-rate wireless communication links at 72 and 84 GHz. The goal of the experiment is to study these frequency bands for satellite communications.

  9. Review of optical multiple-input-multiple-output techniques in multimode fiber

    NASA Astrophysics Data System (ADS)

    Amphawan, Angela

    2011-10-01

    The success of optical multiple-input-multiple output (MIMO) systems in wireless communications has motivated interesting investigations of MIMO in optical fiber communications. This paper reviews various optical MIMO techniques in multimode fiber.

  10. Prestress-force monitoring of PSC girder bridges using wireless impedance sensor nodes

    NASA Astrophysics Data System (ADS)

    Park, Jae-Hyung; Lee, So-Young; Hong, Dong-Soo; Kim, Jeong-Tae

    2010-04-01

    In this study, a technique using wireless impedance sensor node and interface washer is proposed to monitor prestressforce in PSC girder bridges. In order to achieve the goal, the following approaches are implemented. Firstly, a wireless impedance sensor node is designed for automated and cost-efficient prestress-force monitoring. Secondly, an impedance-based algorithm is embedded in the wireless impedance sensor node for autonomous prestress-force monitoring. Thirdly, a prestress-force monitoring technique using an interface washer is proposed to overcome limitations of the wireless impedance sensor node such as measureable frequency ranges with narrow band. Finally, the feasibility and applicability of the proposed technique are evaluated in a lab-scaled PSC girder model for which several prestress-loss scenarios are experimentally monitored by the wireless impedance sensor node.

  11. Wireless Sensors Network (Sensornet)

    NASA Technical Reports Server (NTRS)

    Perotti, J.

    2003-01-01

    The Wireless Sensor Network System presented in this paper provides a flexible reconfigurable architecture that could be used in a broad range of applications. It also provides a sensor network with increased reliability; decreased maintainability costs, and assured data availability by autonomously and automatically reconfiguring to overcome communication interferences.

  12. Building the Wireless Campus

    ERIC Educational Resources Information Center

    Gerraughty, James F.; Shanafelt, Michael E.

    2005-01-01

    This prototype is a continuation of a series of wireless prototypes which began in August 2001 and was reported on again in August 2002. This is the final year of this prototype. This continuation allowed Saint Francis University's Center of Excellence for Remote and Medically Under-Served Areas (CERMUSA) to refine the existing WLAN for the Saint…

  13. Investigating Wireless Power Transfer

    ERIC Educational Resources Information Center

    St. John, Stuart A.

    Understanding Physics is a great end in itself, but is also crucial to keep pace with developments in modern technology. Wireless power transfer, known to many only as a means to charge electric toothbrushes, will soon be commonplace in charging phones, electric cars and implanted medical devices. This article outlines how to produce and use a…

  14. Insecurity of Wireless Networks

    SciTech Connect

    Sheldon, Frederick T; Weber, John Mark; Yoo, Seong-Moo; Pan, W. David

    2012-01-01

    Wireless is a powerful core technology enabling our global digital infrastructure. Wi-Fi networks are susceptible to attacks on Wired Equivalency Privacy, Wi-Fi Protected Access (WPA), and WPA2. These attack signatures can be profiled into a system that defends against such attacks on the basis of their inherent characteristics. Wi-Fi is the standard protocol for wireless networks used extensively in US critical infrastructures. Since the Wired Equivalency Privacy (WEP) security protocol was broken, the Wi-Fi Protected Access (WPA) protocol has been considered the secure alternative compatible with hardware developed for WEP. However, in November 2008, researchers developed an attack on WPA, allowing forgery of Address Resolution Protocol (ARP) packets. Subsequent enhancements have enabled ARP poisoning, cryptosystem denial of service, and man-in-the-middle attacks. Open source systems and methods (OSSM) have long been used to secure networks against such attacks. This article reviews OSSMs and the results of experimental attacks on WPA. These experiments re-created current attacks in a laboratory setting, recording both wired and wireless traffic. The article discusses methods of intrusion detection and prevention in the context of cyber physical protection of critical Internet infrastructure. The basis for this research is a specialized (and undoubtedly incomplete) taxonomy of Wi-Fi attacks and their adaptations to existing countermeasures and protocol revisions. Ultimately, this article aims to provide a clearer picture of how and why wireless protection protocols and encryption must achieve a more scientific basis for detecting and preventing such attacks.

  15. Wireless ferroelectric resonating sensor.

    PubMed

    Viikari, Ville; Seppa, Heikki; Mattila, Tomi; Alastalo, Ari

    2010-04-01

    This paper presents a passive wireless resonating sensor that is based on a ferroelectric varactor. The sensor replies with its data at an intermodulation frequency when a reader device illuminates it at 2 closely located frequencies. The paper derives a theoretical equation for the response of such a sensor, verifies the theory by simulations, and demonstrates a temperature sensor based on a ferroelectric varactor.

  16. A simple wavelength-locking scheme of a tunable three-electrode distributed Bragg reflector laser for multiple ITU channel application in C band

    NASA Astrophysics Data System (ADS)

    Ye, Nan; Liu, Yang; Zhao, Ling-Juan

    2010-11-01

    In this paper, a simple wavelength-locking scheme for a tunable distributed Bragg reflector laser is presented. A 1*2 wide band fiber coupler as the function of beam splitter forms two optical paths with evenly separated power, one for wavelength monitoring and the other for power reference. For wavelength monitoring, two single mode fiber collimators- one as a transmitter and the other as a receiver-form a collimated light path for laser beam and a highly stable air-paced Etalon inserted between them is used as an optical frequency discriminator to lock the laser wavelengths to several ITU channels maintain 100GHz or 0.8 nm channel spacing in C band. Meanwhile, a photodetector connected with receiving collimator by a FC/PC connector turns the optical signal into electronic signal. For power reference, one of the coupler output pots is directly connected with a similar photodetector. Then wavelength shifting signal proportional to the power differences between two optical paths could be feed backed to the phase region or DBR region for stabilizing the laser output wavelength.

  17. MEMS sensors and wireless telemetry for distributed systems

    NASA Astrophysics Data System (ADS)

    Britton, Charles L.; Warmack, R. J.; Smith, S. F.; Oden, Patrick I.; Brown, G. M.; Bryan, W. L.; Clonts, Lloyd G.; Duncan, Michael G.; Emery, Mike S.; Ericson, M. N.; Hu, Z.; Jones, Robert L.; Moore, Michael R.; Moore, J. A.; Rochelle, Jim M.; Threatt, Timothy D.; Thundat, Thomas G.; Turner, G. W.; Wintenberg, Alan L.

    1998-07-01

    Selectively coated cantilevers are being developed at ORNL for chemical and biological sensing. The sensitivity can exceed that of other electro-mechanical devices as parts- per-trillion detection can be demonstrated for certain species. We are now proceeding to develop systems that employ electrically readable microcantilevers in a standard MEMS process and standard CMOS processes. One of our primary areas of interest is chemical sensing for environmental applications. Towards this end, we are presently developing electronic readout of a mercury-sensitive coated cantilever. In order to field arrays of distributed sensors, a wireless network for data reporting is needed. For this, we are developing on-chip spread-spectrum encoding and modulation circuitry to improve the robustness and security of sensor data in typical interference- and multipath-impaired environments. We have also provided for a selection of distinct spreading codes to serve groups of sensors in a common environment by the application of code-division multiple-access techniques. Most of the RF circuity we have designed and fabricated in 0.5 micrometers CMOS has been tested and verified operational to above 1 GHz. Our initial intended operation is for use in the 915 MHz Industrial, Scientific, and Medical band. This paper presents measured data on the microcantilever-based mercury detector. We will also present design data and measurements of the RF telemetry chip.

  18. MEMS sensors and wireless telemetry for distributed systems

    SciTech Connect

    Britton, C.L. Jr.; Warmack, R.J.; Smith, S.F.

    1998-02-01

    Selectively coated cantilevers are being developed at ORNL for chemical and biological sensing. The sensitivity can exceed that of other electro-mechanical devices as parts-per-trillion detection can be demonstrated for certain species. The authors are now proceeding to develop systems that employ electrically readable microcantilevers in a standard MEMS process and standard CMOS processes. One of their primary areas of interest is chemical sensing for environmental applications. Towards this end, they are presently developing electronic readout of a mercury-sensitive coated cantilever. In order to field arrays of distributed sensors, a wireless network for data reporting is needed. For this, the authors are developing on-chip spread-spectrum encoding and modulation circuitry to improve the robustness and security of sensor data in typical interference- and multipath-impaired environments. They have also provided for a selection of distinct spreading codes to serve groups of sensors in a common environment by the application of code-division multiple-access techniques. Most of the RF circuitry they have designed and fabricated in 0.5 {micro}m CMOS has been tested and verified operational to above 1 GHz. The initial intended operation is for use in the 915 MHz Industrial, Scientific, and Medical (ISM) band. This paper presents measured data on the microcantilever-based mercury detector. They also present design data and measurements of the RF telemetry chip.

  19. Lifting Scheme DWT Implementation in a Wireless Vision Sensor Network

    NASA Astrophysics Data System (ADS)

    Ong, Jia Jan; Ang, L.-M.; Seng, K. P.

    This paper presents the practical implementation of a Wireless Visual Sensor Network (WVSN) with DWT processing on the visual nodes. WVSN consists of visual nodes that capture video and transmit to the base-station without processing. Limitation of network bandwidth restrains the implementation of real time video streaming from remote visual nodes through wireless communication. Three layers of DWT filters are implemented to process the captured image from the camera. With having all the wavelet coefficients produced, it is possible just to transmit the low frequency band coefficients and obtain an approximate image at the base-station. This will reduce the amount of power required in transmission. When necessary, transmitting all the wavelet coefficients will produce the full detail of image, which is similar to the image captured at the visual nodes. The visual node combines the CMOS camera, Xilinx Spartan-3L FPGA and wireless ZigBee® network that uses the Ember EM250 chip.

  20. Low-profile wireless passive resonators for sensing

    DOEpatents

    Gong, Xun; An, Linan

    2017-04-04

    A resonator for sensing a physical or an environmental parameter includes a support having a top surface that provides a ground plane, and a polymer-derived ceramic (PDC) element positioned on the top surface including a PDC layer, and a metal patch on the PDC layer. The metal patch is electrically isolated from all surrounding structure, and the resonator has a resonant frequency that changes as a function of the physical or environmental parameter. A system for wirelessly sensing a physical or environmental parameter includes at least one resonator and a wireless RF reader located remotely from the resonator for transmitting a wide-band RF interrogation signal that excites the resonator. The wireless RF reader detects a sensing signal retransmitted by the resonator and includes a processor for determining the physical or environmental parameter at the location of the resonator from the sensing signal.

  1. Band Together!

    ERIC Educational Resources Information Center

    Olson, Cathy Applefeld

    2011-01-01

    After nearly a decade as band director at St. James High School in St. James, Missouri, Derek Limback knows that the key to building a successful program is putting the program itself above everything else. Limback strives to augment not only his students' musical prowess, but also their leadership skills. Key to his philosophy is instilling a…

  2. High Temperature, Wireless Seismometer Sensor for Venus

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Scardelletti, Maximilian C.; Taylor, Brandt; Beard, Steve; Meredith, Roger D.; Beheim, Glenn M.; Hunter Gary W.; Kiefer, Walter S.

    2012-01-01

    Space agency mission plans state the need to measure the seismic activity on Venus. Because of the high temperature on Venus (462? C average surface temperature) and the difficulty in placing and wiring multiple sensors using robots, a high temperature, wireless sensor using a wide bandgap semiconductor is an attractive option. This paper presents the description and proof of concept measurements of a high temperature, wireless seismometer sensor for Venus. A variation in inductance of a coil caused by the movement of an aluminum probe held in the coil and attached to a balanced leaf-spring seismometer causes a variation of 700 Hz in the transmitted signal from the oscillator/sensor system at 426? C. This result indicates that the concept may be used on Venus.

  3. NASA Bluetooth Wireless Communications

    NASA Technical Reports Server (NTRS)

    Miller, Robert D.

    2007-01-01

    NASA has been interested in wireless communications for many years, especially when the crew size of the International Space Station (ISS) was reduced to two members. NASA began a study to find ways to improve crew efficiency to make sure the ISS could be maintained with limited crew capacity and still be a valuable research testbed in Low-Earth Orbit (LEO). Currently the ISS audio system requires astronauts to be tethered to the audio system, specifically a device called the Audio Terminal Unit (ATU). Wireless communications would remove the tether and allow astronauts to freely float from experiment to experiment without having to worry about moving and reconnecting the associated cabling or finding the space equivalent of an extension cord. A wireless communication system would also improve safety and reduce system susceptibility to Electromagnetic Interference (EMI). Safety would be improved because a crewmember could quickly escape a fire while maintaining communications with the ground and other crewmembers at any location. In addition, it would allow the crew to overcome the volume limitations of the ISS ATU. This is especially important to the Portable Breathing Apparatus (PBA). The next generation of space vehicles and habitats also demand wireless attention. Orion will carry up to six crewmembers in a relatively small cabin. Yet, wireless could become a driving factor to reduce launch weight and increase habitable volume. Six crewmembers, each tethered to a panel, could result in a wiring mess even in nominal operations. In addition to Orion, research is being conducted to determine if Bluetooth is appropriate for Lunar Habitat applications.

  4. A Data Gathering Scheme in Wireless Sensor Networks Based on Synchronization of Chaotic Spiking Oscillator Networks

    SciTech Connect

    Nakano, Hidehiro; Utani, Akihide; Miyauchi, Arata; Yamamoto, Hisao

    2011-04-19

    This paper studies chaos-based data gathering scheme in multiple sink wireless sensor networks. In the proposed scheme, each wireless sensor node has a simple chaotic oscillator. The oscillators generate spike signals with chaotic interspike intervals, and are impulsively coupled by the signals via wireless communication. Each wireless sensor node transmits and receives sensor information only in the timing of the couplings. The proposed scheme can exhibit various chaos synchronous phenomena and their breakdown phenomena, and can effectively gather sensor information with the significantly small number of transmissions and receptions compared with the conventional scheme. Also, the proposed scheme can flexibly adapt various wireless sensor networks not only with a single sink node but also with multiple sink nodes. This paper introduces our previous works. Through simulation experiments, we show effectiveness of the proposed scheme and discuss its development potential.

  5. Per-point and per-field contextual classification of multipolarization and multiple incidence angle aircraft L-band radar data

    NASA Technical Reports Server (NTRS)

    Hoffer, Roger M.; Hussin, Yousif Ali

    1989-01-01

    Multipolarized aircraft L-band radar data are classified using two different image classification algorithms: (1) a per-point classifier, and (2) a contextual, or per-field, classifier. Due to the distinct variations in radar backscatter as a function of incidence angle, the data are stratified into three incidence-angle groupings, and training and test data are defined for each stratum. A low-pass digital mean filter with varied window size (i.e., 3x3, 5x5, and 7x7 pixels) is applied to the data prior to the classification. A predominately forested area in northern Florida was the study site. The results obtained by using these image classifiers are then presented and discussed.

  6. A 350-nm-band GaN/AlGaN multiple-quantum-well laser diode on bulk GaN

    SciTech Connect

    Aoki, Yuta Kuwabara, Masakazu; Yamashita, Yoji; Takagi, Yasufumi; Sugiyama, Atsushi; Yoshida, Harumasa

    2015-10-12

    We have demonstrated the pulsed operation of a 350-nm-band ultraviolet laser diode with a vertical current path. The laser structure was grown on a (0001)-face bulk GaN substrate. The lasing wavelength was 356.6 nm and the peak output power reached to 10 mW from the one side of uncoated facets under pulsed current operation with a pulse duration of 10 ns and a repetition frequency of 5 kHz at room temperature. The GaN substrate is expected to provide a cleaved facet configuration leading to an excellent far-field pattern as well as an advantageous thermal management solution of the devices relative to sapphire substrates. The far-field pattern of actual device on GaN substrate has been improved dramatically compared with distorted one on that of sapphire substrates.

  7. Design of an HF-Band RFID System with Multiple Readers and Passive Tags for Indoor Mobile Robot Self-Localization.

    PubMed

    Mi, Jian; Takahashi, Yasutake

    2016-07-29

    Radio frequency identification (RFID) technology has already been explored for efficient self-localization of indoor mobile robots. A mobile robot equipped with RFID readers detects passive RFID tags installed on the floor in order to locate itself. The Monte-Carlo localization (MCL) method enables the localization of a mobile robot equipped with an RFID system with reasonable accuracy, sufficient robustness and low computational cost. The arrangements of RFID readers and tags and the size of antennas are important design parameters for realizing accurate and robust self-localization using a low-cost RFID system. The design of a likelihood model of RFID tag detection is also crucial for the accurate self-localization. This paper presents a novel design and arrangement of RFID readers and tags for indoor mobile robot self-localization. First, by considering small-sized and large-sized antennas of an RFID reader, we show how the design of the likelihood model affects the accuracy of self-localization. We also design a novel likelihood model by taking into consideration the characteristics of the communication range of an RFID system with a large antenna. Second, we propose a novel arrangement of RFID tags with eight RFID readers, which results in the RFID system configuration requiring much fewer readers and tags while retaining reasonable accuracy of self-localization. We verify the performances of MCL-based self-localization realized using the high-frequency (HF)-band RFID system with eight RFID readers and a lower density of RFID tags installed on the floor based on MCL in simulated and real environments. The results of simulations and real environment experiments demonstrate that our proposed low-cost HF-band RFID system realizes accurate and robust self-localization of an indoor mobile robot.

  8. Design of an HF-Band RFID System with Multiple Readers and Passive Tags for Indoor Mobile Robot Self-Localization

    PubMed Central

    Mi, Jian; Takahashi, Yasutake

    2016-01-01

    Radio frequency identification (RFID) technology has already been explored for efficient self-localization of indoor mobile robots. A mobile robot equipped with RFID readers detects passive RFID tags installed on the floor in order to locate itself. The Monte-Carlo localization (MCL) method enables the localization of a mobile robot equipped with an RFID system with reasonable accuracy, sufficient robustness and low computational cost. The arrangements of RFID readers and tags and the size of antennas are important design parameters for realizing accurate and robust self-localization using a low-cost RFID system. The design of a likelihood model of RFID tag detection is also crucial for the accurate self-localization. This paper presents a novel design and arrangement of RFID readers and tags for indoor mobile robot self-localization. First, by considering small-sized and large-sized antennas of an RFID reader, we show how the design of the likelihood model affects the accuracy of self-localization. We also design a novel likelihood model by taking into consideration the characteristics of the communication range of an RFID system with a large antenna. Second, we propose a novel arrangement of RFID tags with eight RFID readers, which results in the RFID system configuration requiring much fewer readers and tags while retaining reasonable accuracy of self-localization. We verify the performances of MCL-based self-localization realized using the high-frequency (HF)-band RFID system with eight RFID readers and a lower density of RFID tags installed on the floor based on MCL in simulated and real environments. The results of simulations and real environment experiments demonstrate that our proposed low-cost HF-band RFID system realizes accurate and robust self-localization of an indoor mobile robot. PMID:27483279

  9. Coherent optical communication using polarization multiple-input-multiple-output

    NASA Astrophysics Data System (ADS)

    Han, Yan; Li, Guifang

    2005-09-01

    Polarization-division multiplexed (PDM) optical signals can potentially be demultiplexed by coherent detection and digital signal processing without using optical dynamic polarization control at the receiver. In this paper, we show that optical communications using PDM is analogous to wireless communications using multiple-input-multiple-output (MIMO) antennae and thus algorithms for channel estimation in wireless MIMO can be ready applied to optical polarization MIMO (PMIMO). Combined with frequency offset and phase estimation algorithms, simulations show that PDM quadrature phase-shift keying signals can be coherently detected by the proposed scheme using commercial semiconductor lasers while no optical phase locking and polarization control are required. This analogy further suggests the potential application of space-time coding in wireless communications to optical polarization MIMO systems and relates the problem of polarization-mode dispersion in fiber transmission to the multi-path propagation in wireless communications.

  10. Coherent optical communication using polarization multiple-input-multiple-output.

    PubMed

    Han, Yan; Li, Guifang

    2005-09-19

    Polarization-division multiplexed (PDM) optical signals can potentially be demultiplexed by coherent detection and digital signal processing without using optical dynamic polarization control at the receiver. In this paper, we show that optical communications using PDM is analogous to wireless communications using multiple-input-multiple-output (MIMO) antennae and thus algorithms for channel estimation in wireless MIMO can be ready applied to optical polarization MIMO (PMIMO). Combined with frequency offset and phase estimation algorithms, simulations show that PDM quadrature phase-shift keying signals can be coherently detected by the proposed scheme using commercial semiconductor lasers while no optical phase locking and polarization control are required. This analogy further suggests the potential application of space-time coding in wireless communications to optical polarization MIMO systems and relates the problem of polarization-mode dispersion in fiber transmission to the multi-path propagation in wireless communications.

  11. A Sensible Approach to Wireless Networking.

    ERIC Educational Resources Information Center

    Ahmed, S. Faruq

    2002-01-01

    Discusses radio frequency (R.F.) wireless technology, including industry standards, range (coverage) and throughput (data rate), wireless compared to wired networks, and considerations before embarking on a large-scale wireless project. (EV)

  12. A Sensible Approach to Wireless Networking.

    ERIC Educational Resources Information Center

    Ahmed, S. Faruq

    2002-01-01

    Discusses radio frequency (R.F.) wireless technology, including industry standards, range (coverage) and throughput (data rate), wireless compared to wired networks, and considerations before embarking on a large-scale wireless project. (EV)

  13. Wireless local area network security.

    PubMed

    Bergeron, Bryan P

    2004-01-01

    Wireless local area networks (WLANs) are increasingly popular in clinical settings because they facilitate the use of wireless PDAs, laptops, and other pervasive computing devices at the point of care. However, because of the relative immaturity of wireless network technology and evolving standards, WLANs, if improperly configured, can present significant security risks. Understanding the security limitations of the technology and available fixes can help minimize the risks of clinical data loss and maintain compliance with HIPAA guidelines.

  14. Advanced Wireless Integrated Navy Network

    DTIC Science & Technology

    2005-03-01

    Basing visualization of wireless technologies, Ad Hoc networks , network protocols, real-time resource allocation, Ultra Wideband (UWB) communications...4.1 TIP #1: Distributed MIMO UWB sensor networks incorporating software radio 67 4.2 TIP #2: Close-in UWB wireless with applications to Sea- Basing 68...4.3 TIP #3: Secure Ad Hoc Networks 73 4.4 TIP #4: Integration of Close-in UWB wireless with ESM crane for Sea Basing applications 75 5. FINANCIAL REPORT

  15. Wireless Sensor Network Optimization: Multi-Objective Paradigm

    PubMed Central

    Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad

    2015-01-01

    Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks. PMID:26205271

  16. Wireless Sensor Network Optimization: Multi-Objective Paradigm.

    PubMed

    Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad

    2015-07-20

    Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks.

  17. Photonics aided ultra-wideband W-band signal generation and air space transmission

    NASA Astrophysics Data System (ADS)

    Li, Xinying; Yu, Jianjun

    2016-02-01

    We achieve several field trial demonstrations of ultra-wideband W-band millimeter-wave (mm-wave) signal generation and its long-distance air space transmission based on some enabling technologies and advanced devices. First, we demonstrated photonics generation and up to 1.7-km wireless delivery of 20-Gb/s polarization division multiplexing quadrature phase shift keying (PDM-QPSK) signal at W-band, adopting both optical and antenna polarization multiplexing. Then, we demonstrated photonics generation and up to 300-m wireless delivery of 80-Gb/s PDM-QPSK signal at W-band, adopting both optical and antenna polarization multiplexing as well as multi-band multiplexing. We also demonstrated photonics generation and up to 100-m wireless delivery of 100-Gb/s QPSK signal at W-band, adopting antenna polarization multiplexing.

  18. Yeast artificial chromosome and radiation hybrid map of loci in chromosome band 8p22, a common region of allelic loss in multiple human cancers

    SciTech Connect

    Bookstein, R.; Levy, A.; MacGrogan, D.

    1994-11-15

    Polymorphic alleles at loci such as LPL (lipoprotein lipase) and MSR (macrophage scavenger receptor) in chromosome band 8p22 are frequently lost during the genesis of several types of human cancer, including colorectal, non-small cell lung, hepatocellular, and prostatic carcinomas. A physical map of 31 published or novel probes and sequence-tagged sites in this genetic region was constructed using a radiation hybrid panel and the CEPH (Centre d`Etude du Polymorphisme Humain) yeast artificial chromosome (YAC) library. Thirty-six overlapping YACs defined a physical order for the following polymorphic markers: tel-D8S26-D8S511-D8S549-MSR-D8S254-D8S233-D8S261-D8S21-LPL-D8S2580 cen. These maps unify small consensus regions of allelic loss on chromosome 8p defined by restriction fragment length polymorphisms with more informative PCR-based polymorphisms and widely available YAC mapping resources. 31 refs., 1 fig., 4 tabs.

  19. Familial ainhum: a case report of multiple toe involvement in a father and son, staging of ainhum with insight into different types of constricting bands.

    PubMed

    Priya, Bt; Suganthy, Rajakumari R; Manimegalai, M; Krishnaveni, A

    2015-01-01

    Ainhum, also known as dactylolysis spontanea, is a painful constriction of the base of the fifth toe, frequently followed by spontaneous amputation a few years later. The disease is often symmetrical on both the feet, but, occasionally, other toes are also affected and rarely the distal phalanx of the fifth finger. Pseudoainhum is a similar condition that occurs as a secondary event resulting from certain hereditary and nonhereditary diseases that lead to annular constriction of digits. We hereby present a case of familial ainhum in father and son with multiple toes affected, autoamputation, and more involvement of fourth toe than the fifth toe, which is a very rare finding.

  20. Wearable wireless photoplethysmography sensors

    NASA Astrophysics Data System (ADS)

    Spigulis, Janis; Erts, Renars; Nikiforovs, Vladimirs; Kviesis-Kipge, Edgars

    2008-04-01

    Wearable health monitoring sensors may support early detection of abnormal conditions and prevention of their consequences. Recent designs of three wireless photoplethysmography monitoring devices embedded in hat, glove and sock, and connected to PC or mobile phone by means of the Bluetooth technology, are described. First results of distant monitoring of heart rate and pulse wave transit time using the newly developed devices are presented.

  1. Adapting Future Wireless Technologies

    DTIC Science & Technology

    2002-01-01

    technologies & integrating them into the GIG, and treating Army wireless systems in a merged context of "Network Operations" comprising converged voice and...Objective Force C4ISR must be able to support: • The evolution from circuit-switched to packet-switched communications. • Highly mobile, ad-hoc... convergence of radio functions with information management systems will provide the enabling technology to build network-centric operations capability into

  2. Wireless Computing Architecture

    DTIC Science & Technology

    2009-07-01

    mechanisms are relevant to a broad spectrum of applications , but are particularly important to data broadcast in wireless distributed computing...significantly improve applications where reliable data broadcast is required. For example, unmanned aerial vehicles (UAVs) may use Rainbow to distribute ...68-74. 8. Dean, J., Ghemawat, S., “ MapReduce : simplified data processing on large clusters ”, Communications of the ACM, 51, 1, 2008, pp. 107-113

  3. Wireless LAN Extension

    DTIC Science & Technology

    2003-03-01

    Networks, WIFI (802.11b), Access Point 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18. SECURITY CLASSIFICATION OF THIS...to hackers trying to access sensitive information or spoil the operation of the network. It is easier to do a Denial of Service (DOS) attack for...because essentially it is a name that identifies a wireless network. Hackers commonly know each manufacturer’s default settings. As such, it is

  4. Laparoscopic gastric banding

    MedlinePlus

    ... adjustable gastric banding; Bariatric surgery - laparoscopic gastric banding; Obesity - gastric banding; Weight loss - gastric banding ... gastric banding is not a "quick fix" for obesity. It will greatly change your lifestyle. You must ...

  5. Contemporary, emerging, and ratified wireless security standards: an update for the networked dental office.

    PubMed

    Mupparapu, Muralidhar

    2006-02-15

    Wireless networking is not new to contemporary dental offices around the country. Wireless routers and network cards have made access to patient records within the office handy and, thereby, saving valuable chair side time and increasing productivity. As is the case with any rapidly developing technology, wireless technology also changes with the same rate. Unless, the users of the wireless networking understand the implications of these changes and keep themselves updated periodically, the office network will become obsolete very quickly. This update of the emerging security protocols and pertaining to ratified wireless 802.11 standards will be timely for the contemporary dentist whose office is wirelessly networked. This article brings the practicing dentist up-to-date on the newer versions and standards in wireless networking that are changing at a fast pace. The introduction of newer 802.11 standards like super G, Super AG, Multiple Input Multiple Output (MIMO), and pre-n are changing the pace of adaptation of this technology. Like any other rapidly transforming technology, information pertaining to wireless networking should be a priority for the contemporary dentist, an eventual end-user in order to be a well-informed and techno-savvy consumer.

  6. Engineering chiral density waves and topological band structures by multiple-Q superpositions of collinear up-up-down-down orders

    NASA Astrophysics Data System (ADS)

    Hayami, Satoru; Ozawa, Ryo; Motome, Yukitoshi

    2016-07-01

    Magnetic orders characterized by multiple ordering vectors harbor noncollinear and noncoplanar spin textures and can be a source of unusual electronic properties through the spin Berry phase mechanism. We theoretically show that such multiple-Q states are stabilized in itinerant magnets in the form of superpositions of collinear up-up-down-down (UUDD) spin states, which accompany the density waves of vector and scalar chirality. The result is drawn by examining the ground state of the Kondo lattice model with classical localized moments, especially when the Fermi surface is tuned to be partially nested by the symmetry-related commensurate vectors. We unveil the instability toward a double-Q UUDD state with vector chirality density waves on the square lattice and a triple-Q UUDD state with scalar chirality density waves on the triangular lattice, using the perturbative theory and variational calculations. The former double-Q state is also confirmed by large-scale Langevin dynamics simulations. We also show that, for a sufficiently large exchange coupling, the chirality density waves can induce rich nontrivial topology of electronic structures, such as the massless Dirac semimetal, Chern insulator with quantized topological Hall response, and peculiar edge states which depend on the phase of chirality density waves at the edges.

  7. [A wireless mobile monitoring system based on bluetooth technology].

    PubMed

    Sun, Shou-jun; Wu, Kai; Wu, Xiao-Ming

    2006-09-01

    This paper presents a wireless mobile monitoring system based on Bluetooth technology. This system realizes the remote mobile monitoring of multiple physiological parameters, and has the characters of easy use, low cost, good reliability and strong capability of anti-jamming.

  8. Wireless Distribution Systems To Support Medical Response to Disasters

    PubMed Central

    Arisoylu, Mustafa; Mishra, Rajesh; Rao, Ramesh; Lenert, Leslie A.

    2005-01-01

    We discuss the design of multi-hop access networks with multiple gateways that supports medical response to disasters. We examine and implement protocols to ensure high bandwidth, robust, self-healing and secure wireless multi-hop access networks for extreme conditions. Address management, path setup, gateway discovery and selection protocols are described. Future directions and plans are also considered. PMID:16779171

  9. From early wireless to Everest.

    PubMed

    Allen, A

    1998-01-01

    Medical information has been transmitted using wireless technologies for almost 80 years. A "wired wireless" electronic stethoscope was developed by the U.S. Army Signal Corps in the early 1920's, for potential use in ship-to-shore transmission of cardiac sounds. [Winters SR. Diagnosis by wireless. Scientific American June 11, 1921, p. 465] Today, wireless is used in a wide range of medical applications and at sites from transoceanic air flights to offshore oil platforms to Mt. Everest. 'Wireless LANs' are often used in medical environments. Typically, nurses and physicians in a hospital or clinic use hand-held "wireless thin client" pen computers that exchange patient information and images with the hospital server. Numerous companies, such as Fujitsu (article below) and Cruise Technologies (www.cruisetech.com) manufacture handheld pen-entry computers. One company, LXE, integrates radio-frequency (RF) enhanced hand-held computers specifically designed for production use within a wireless LAN (www.lxe.com). Other companies (Proxim, Symbol, and others) supply the wireless RF LAN infrastructure for the enterprise. Unfortunately, there have been problems with widespread deployment of wireless LANs. Perhaps the biggest impediment has been the lack of standards. Although an international standard (IEEE 802.11) was adopted in 1997, most wireless LAN products still are not compatible with the equipment of competing companies. A problem with the current standard for LAN adapters is that throughput is limited to 3 Mbps--compared to at least 10 Mbps, and often 100 Mbps, in a hard-wired Ethernet LAN. An II Mbps standard is due out in the next year or so, but it will be at least 2 years before standards-compliant products are available. This story profiles some of the ways that wireless is being used to overcome gaps in terrestrial and within-enterprise communication.

  10. 75 FR 75813 - Unlicensed Operation in the TV Broadcast Bands

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-06

    ... Communications Commission. ACTION: Final rule. SUMMARY: This document finalizes rules to make the unused spectrum in the TV bands available for unlicensed broadband wireless devices. This particular spectrum has... structures. Access to this spectrum could enable more powerful public Internet connections--super Wi-Fi...

  11. The mechanisms of the evolution of a Mei-Yu frontal rain band revealed from multiple Doppler/Polarimetric radar observation in the torrential rain event on June 11, 2012

    NASA Astrophysics Data System (ADS)

    Wang, T. C.; Liou, Y.; Ke, C.

    2013-12-01

    On June 11 , 2012, a Mei-Yu front was approaching northern Taiwan, a line echo with wave pattern appeared when this east-west oriented rain band was about 100 km north to the northern tip of Taiwan island. Meanwhile the strong low level southwest wind was detected to the west coast of the island. The leading edge was moving southeastward in a speed of 22km/hr. Within 3 hours this rain band evolved into a bow shape before it cast the landfall. Once it reached the north coast, the system was slowing down to a speed of 14km/hr. After the most intense rainfall near 22LST, the system gradually weaken and became stationary. This system brought over 500mm rainfall to northern Taiwan within 8 hours. The numerical weather predictions were not able to forecast the three stages movement and the extreme rainfall. The purpose of this article is to utilize the Doppler radar network data near northern Taiwan to study the dynamical reasons for the evolution and movement of this torrential rain event. Through a variational multiple Doppler wind synthesis algorithm by Liou et al.2012, the three dimensional winds at different time stages are retrieved. The wind fields will be further applied to the calculation of the perturbation pressure and temperature fields. The changes of the vertical motion and the new cell propagation will be studied in detail The interactions between the low level jet, the Mei-Yu front and the high terrain will also be discussed. A C-band polarimetric radar had observed the whole life cycle of this system, it will provide bounty information to study the micro-physical features associated with the evolution of this intense convective system.

  12. Spectra of circular and linear photogalvanic effect at inter-band excitation in In0.15Ga0.85As/Al0.3Ga0.7As multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Yu, Jinling; Chen, Yonghai; Cheng, Shuying; Lai, Yunfeng

    2013-03-01

    Spectra of circular photogalvanic effect (CPGE) and linear photogalvanic effect (LPGE) for inter-band transition have been experimentally investigated in In0.15Ga0.85As/Al0.3Ga0.7As multiple quantum wells (QWs) at room temperature. The CPGE and LPGE spectra are quite similar during the spectral region corresponding to the transitions 1e1hh (the first valence subband of heavy hole to the first conduction band) and 1e2hh, which is also similar to that of the photoconductivity. Comparing the photocurrent induced by LPGE and CPGE along [1 1 0] and [1 1bar 0] directions, we obtain the anisotropic ratio of the linear photogalvanic tensor χ and circular photogalvanic tensor γ to be χxxz/χyyz=3.6 and γxy/γyx=1.3 (x∥[1 1 0] and y∥[1 1bar 0]), which indicate that the symmetry of the structure belongs to C2v point group and the Rashba spin splitting is the dominant mechanism to induce the k-linear spin splitting of the subband in the In0.15Ga0.85As/Al0.3Ga0.7As QWs. The magnitude of the LPGE is nearly at the same order with that of the CPGE for the investigated spectral region at room temperature.

  13. NASA Fuel Tank Wireless Power and Signal Study

    NASA Technical Reports Server (NTRS)

    Merrill, Garrick

    2015-01-01

    Hydro Technologies has developed a custom electronics and mechanical framework for interfacing with off-the-shelf sensors to achieve through barrier sensing solutions. The core project technology relies on Hydro Technologies Wireless Power and Signal Interface (Wi psi) System for transmitting data and power wirelessly using magnetic fields. To accomplish this, Wi psi uses a multi-frequency local magnetic field to produce magnetic fields capable of carrying data and power through almost any material such as metals, seawater, concrete, and air. It will also work through layers of multiple materials.

  14. Launching a Wireless Laptop Program

    ERIC Educational Resources Information Center

    Grignano, Domenic

    2007-01-01

    In this article, the author, as a technology director for East Rock Magnet School in New Haven, Connecticut, a federal government test site for laptop learning, shares his secrets to a successful implementation of a wireless laptop program: (1) Build a wireless foundation; (2) Do not choose the cheapest model just because of budget; (3) A sturdy…

  15. Unpowered wireless ultrasound tomography system

    NASA Astrophysics Data System (ADS)

    Zahedi, Farshad; Huang, Haiying

    2016-04-01

    In this paper, an unpowered wireless ultrasound tomography system is presented. The system consists of two subsystems; the wireless interrogation unit (WIU) and three wireless nodes installed on the structure. Each node is designed to work in generation and sensing modes, but operates at a specific microwave frequency. Wireless transmission of the ultrasound signals between the WIU and the wireless nodes is achieved by converting ultrasound signals to microwave signals and vice versa, using a microwave carrier signal. In the generation mode, both a carrier signal and an ultrasound modulated microwave signal are transmitted to the sensor nodes. Only the node whose operating frequency matches the carrier signal will receive these signals and demodulate them to recover the original ultrasound signal. In the sensing mode, a microwave carrier signal with two different frequency components matching the operating frequencies of the sensor nodes is broadcasted by the WIU. The sensor nodes, in turn, receive the corresponding carrier signals, modulate it with the ultrasound sensing signal, and wirelessly transmit the modulated signal back to the WIU. The demodulation of the sensing signals is performed in the WIU using a digital signal processing. Implementing a software receiver significantly reduces the complexity and the cost of the WIU. A wireless ultrasound tomography system is realized by interchanging the carrier frequencies so that the wireless transducers can take turn to serve as the actuator and sensors.

  16. Launching a Wireless Laptop Program

    ERIC Educational Resources Information Center

    Grignano, Domenic

    2007-01-01

    In this article, the author, as a technology director for East Rock Magnet School in New Haven, Connecticut, a federal government test site for laptop learning, shares his secrets to a successful implementation of a wireless laptop program: (1) Build a wireless foundation; (2) Do not choose the cheapest model just because of budget; (3) A sturdy…

  17. Some Challenges in Wireless Security

    DTIC Science & Technology

    2007-02-01

    Approved for public release, distribution unlimited This paper is part of the following report: TITLE: Proceedings of the ARO Planning Workshop on Embedded...inference, antenna sensitivity, wormholes " Computation capability " Characteristics of the wireless topology itself Summary * Most popular wireless

  18. Multi-Band-SWIFT

    NASA Astrophysics Data System (ADS)

    Idiyatullin, Djaudat; Corum, Curtis A.; Garwood, Michael

    2015-02-01

    A useful extension to SWIFT (SWeep Imaging with Fourier Transformation) utilizing sidebands of the excitation pulse is introduced. This MRI method, called Multi-Band-SWIFT, achieves much higher bandwidth than standard SWIFT by using multiple segmented excitations (bands) of the field of view. A description of the general idea and variants of the pulse sequence are presented. From simulations and semi-phenomenological theory, estimations of power deposition and signal-to-noise ratio are made. MB-SWIFT and ZTE (zero-TE) sequences are compared based on images of a phantom and human mandible. Multi-Band-SWIFT provides a bridge between SWIFT and ZTE sequences and allows greatly increased excitation and acquisition bandwidths relative to standard SWIFT for the same hardware switching parameters and requires less peak amplitude of the radiofrequency field (or greater flip angle at same peak amplitude) as compared to ZTE. Multi-Band-SWIFT appears to be an attractive extension of SWIFT for certain musculoskeletal and other medical imaging applications, as well as for imaging materials.

  19. Multi-Band-SWIFT.

    PubMed

    Idiyatullin, Djaudat; Corum, Curtis A; Garwood, Michael

    2015-02-01

    A useful extension to SWIFT (SWeep Imaging with Fourier Transformation) utilizing sidebands of the excitation pulse is introduced. This MRI method, called Multi-Band-SWIFT, achieves much higher bandwidth than standard SWIFT by using multiple segmented excitations (bands) of the field of view. A description of the general idea and variants of the pulse sequence are presented. From simulations and semi-phenomenological theory, estimations of power deposition and signal-to-noise ratio are made. MB-SWIFT and ZTE (zero-TE) sequences are compared based on images of a phantom and human mandible. Multi-Band-SWIFT provides a bridge between SWIFT and ZTE sequences and allows greatly increased excitation and acquisition bandwidths relative to standard SWIFT for the same hardware switching parameters and requires less peak amplitude of the radiofrequency field (or greater flip angle at same peak amplitude) as compared to ZTE. Multi-Band-SWIFT appears to be an attractive extension of SWIFT for certain musculoskeletal and other medical imaging applications, as well as for imaging materials.

  20. 47 CFR 27.1132 - Protection of incumbent operations in the 2150-2160/62 MHz band.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., prior to initiating operations from any base or fixed station in the 2110-2180 MHz band, shall follow... (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES 1695-1710 MHz, 1710-1755...

  1. 47 CFR 27.1255 - Relocation Criteria for Broadband Radio Service Licensees in the 2150-2160/62 MHz band.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Broadband Radio... co-channel to the 2150-2160/62 MHz band, must relocate any incumbent BRS system that is within...

  2. 75 FR 8400 - In the Matter of Certain Wireless Communications System Server Software, Wireless Handheld...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-24

    ... COMMISSION In the Matter of Certain Wireless Communications System Server Software, Wireless Handheld Devices... server software, wireless handheld devices and battery packs by reason of infringement of certain claims... importation of certain wireless communications system server software, wireless handheld devices or...

  3. Special surface for power delivery to wireless micro-electro-mechanical systems

    NASA Astrophysics Data System (ADS)

    Martel, Sylvain

    2005-10-01

    This paper reports a special surface suitable to distribute power while providing a high-precision surface where wireless micro-electro-mechanical systems must operate. The surface is made of alternate electrically conducting and narrower insulating bands with dimensions that allow power to be delivered to the wireless systems when in contact with at least two electrically conductive bands. In this study, a first implementation using stainless steel 440C and black granite is analyzed in more detail. The dimensions of both the conducting and insulating bands are described by considering the properties of the materials used and the precision of the micro-mechanical systems that may be affected by features on the surface with dimensions down to the nanometer scale. The effects on the dimensions of the bands due to the total mass of each microsystem, the contact surface area between the microsystems and the powering surface, and the accuracy of the positioning system used, are also taken into account. Minimum widths of the insulating bands and the methods to prevent electrical shorts between a pair of successive bands, created through arcing between the conductive bands and a conductive structure of the wireless units when stationary or transiting through an insulating band, are also evaluated and compared when operating in air or helium atmosphere.

  4. Case for wireless overlay networks

    NASA Astrophysics Data System (ADS)

    Katz, Randy H.; Brewer, Eric A.

    1996-03-01

    Wireless data services, other than those for electronic mail or paging, have thus far been more promising than successful. We believe that future mobile information systems must be built upon heterogeneous wireless overlay networks, extending traditional wired and internetworked processing `islands' to hosts on the move over coverage areas ranging from in-room, in- building, campus, metropolitan, and wide-areas. Unfortunately, network planners continue to think in terms of homogeneous wireless communications systems and technologies. In this paper, we describe a new wireless data networking architecture that integrates diverse wireless technologies into a seamless internetwork. In addition, we describe the applications support services needed to make it possible for applications to continue to operate as mobile hosts roam across such networks. The architecture described herein is being implemented in a testbed at the University of California, Berkeley under joint government/industry sponsorship.

  5. Energy storage management system with distributed wireless sensors

    DOEpatents

    Farmer, Joseph C.; Bandhauer, Todd M.

    2015-12-08

    An energy storage system having a multiple different types of energy storage and conversion devices. Each device is equipped with one or more sensors and RFID tags to communicate sensor information wirelessly to a central electronic management system, which is used to control the operation of each device. Each device can have multiple RFID tags and sensor types. Several energy storage and conversion devices can be combined.

  6. Channel Characterization and Robust Tracking for Diversity Reception over Time-Variant Off-Body Wireless Communication Channels

    NASA Astrophysics Data System (ADS)

    Van Torre, Patrick; Vallozzi, Luigi; Rogier, Hendrik; Moeneclaey, Marc; Verhaevert, Jo

    2010-12-01

    In the 2.45 GHz band, indoor wireless off-body data communication by a moving person can be problematic due to time-variant signal fading and the consequent variation in channel parameters. Off-body communication specifically suffers from the combined effects of fading, shadowing, and path loss due to time-variant multipath propagation in combination with shadowing by the human body. Measurements are performed to analyze the autocorrelation, coherence time, and power spectral density for a person equipped with a wearable receive system moving at different speeds for different configurations and antenna positions. Diversity reception with multiple textile antennas integrated in the clothing provides a means of improving the reliability of the link. For the dynamic channel estimation, a scheme using hard decision feedback after MRC with adaptive low-pass filtering is demonstrated to be successful in providing robust data detection for long data bursts, in the presence of dramatic channel variation.

  7. Wireless Technology in K-12 Education

    ERIC Educational Resources Information Center

    Walery, Darrell

    2004-01-01

    Many schools begin implementing wireless technology slowly by creating wireless "hotspots" on the fly. This is accomplished by putting a wireless access point on a cart along with a set of wireless laptop computers. A teacher can then wheel the cart anywhere in the school that has a network drop, plug the access point in and have an…

  8. Wireless Technology in K-12 Education

    ERIC Educational Resources Information Center

    Walery, Darrell

    2004-01-01

    Many schools begin implementing wireless technology slowly by creating wireless "hotspots" on the fly. This is accomplished by putting a wireless access point on a cart along with a set of wireless laptop computers. A teacher can then wheel the cart anywhere in the school that has a network drop, plug the access point in and have an…

  9. System and method for merging clusters of wireless nodes in a wireless network

    DOEpatents

    Budampati, Ramakrishna S [Maple Grove, MN; Gonia, Patrick S [Maplewood, MN; Kolavennu, Soumitri N [Blaine, MN; Mahasenan, Arun V [Kerala, IN

    2012-05-29

    A system includes a first cluster having multiple first wireless nodes. One first node is configured to act as a first cluster master, and other first nodes are configured to receive time synchronization information provided by the first cluster master. The system also includes a second cluster having one or more second wireless nodes. One second node is configured to act as a second cluster master, and any other second nodes configured to receive time synchronization information provided by the second cluster master. The system further includes a manager configured to merge the clusters into a combined cluster. One of the nodes is configured to act as a single cluster master for the combined cluster, and the other nodes are configured to receive time synchronization information provided by the single cluster master.

  10. Semantic Visualization of Wireless Sensor Networks for Elderly Monitoring

    NASA Astrophysics Data System (ADS)

    Stocklöw, Carsten; Kamieth, Felix

    In the area of Ambient Intelligence, Wireless Sensor Networks are commonly used for user monitoring purposes like health monitoring and user localization. Existing work on visualization of wireless sensor networks focuses mainly on displaying individual nodes and logical, graph-based topologies. This way, the relation to the real-world deployment is lost. This paper presents a novel approach for visualization of wireless sensor networks and interaction with complex services on the nodes. The environment is realized as a 3D model, and multiple nodes, that are worn by a single individual, are grouped together to allow an intuitive interface for end users. We describe application examples and show that our approach allows easier access to network information and functionality by comparing it with existing solutions.

  11. Deployable wireless Fresnel lens

    NASA Technical Reports Server (NTRS)

    Kennedy, Timothy F. (Inventor); Fink, Patrick W. (Inventor); Chu, Andrew W. (Inventor); Lin, Gregory Y. (Inventor)

    2013-01-01

    Apparatus and methods for enhancing the gain of a wireless signal are provided. In at least one specific embodiment, the apparatus can include a screen comprised of one or more electrically conductive regions for reflecting electromagnetic radiation and one or more non-conductive regions for permitting electromagnetic radiation therethrough. The one or more electrically conductive regions can be disposed adjacent to at least one of the one or more non-conductive regions. The apparatus can also include a support member disposed about at least a portion of the screen. The screen can be capable of collapsing by twisting the support member in opposite screw senses to form interleaved concentric sections.

  12. Investigating wireless power transfer

    NASA Astrophysics Data System (ADS)

    St John, Stuart A.

    2017-09-01

    Understanding Physics is a great end in itself, but is also crucial to keep pace with developments in modern technology. Wireless power transfer, known to many only as a means to charge electric toothbrushes, will soon be commonplace in charging phones, electric cars and implanted medical devices. This article outlines how to produce and use a simple set of equipment to both demonstrate and investigate this phenomenon. It presents some initial findings and aims to encourage Physics educators and their students to conduct further research, pushing the bounds of their understanding.

  13. Wireless Headset Communication System

    NASA Technical Reports Server (NTRS)

    Lau, Wilfred K.; Swanson, Richard; Christensen, Kurt K.

    1995-01-01

    System combines features of pagers, walkie-talkies, and cordless telephones. Wireless headset communication system uses digital modulation on spread spectrum to avoid interference among units. Consists of base station, 4 radio/antenna modules, and as many as 16 remote units with headsets. Base station serves as network controller, audio-mixing network, and interface to such outside services as computers, telephone networks, and other base stations. Developed for use at Kennedy Space Center, system also useful in industrial maintenance, emergency operations, construction, and airport operations. Also, digital capabilities exploited; by adding bar-code readers for use in taking inventories.

  14. Wireless Chemical Sensing Method

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Oglesby, Donald M. (Inventor); Taylor, Bryant D. (Inventor)

    2017-01-01

    A wireless chemical sensor includes an electrical conductor and a material separated therefrom by an electric insulator. The electrical conductor is an unconnected open-circuit shaped for storage of an electric field and a magnetic field. In the presence of a time-varying magnetic field, the first electrical conductor resonates to generate harmonic electric and magnetic field responses. The material is positioned at a location lying within at least one of the electric and magnetic field responses so-generated. The material changes in electrical conductivity in the presence of a chemical-of-interest.

  15. Wireless Headset Communication System

    NASA Technical Reports Server (NTRS)

    Lau, Wilfred K.; Swanson, Richard; Christensen, Kurt K.

    1995-01-01

    System combines features of pagers, walkie-talkies, and cordless telephones. Wireless headset communication system uses digital modulation on spread spectrum to avoid interference among units. Consists of base station, 4 radio/antenna modules, and as many as 16 remote units with headsets. Base station serves as network controller, audio-mixing network, and interface to such outside services as computers, telephone networks, and other base stations. Developed for use at Kennedy Space Center, system also useful in industrial maintenance, emergency operations, construction, and airport operations. Also, digital capabilities exploited; by adding bar-code readers for use in taking inventories.

  16. Wireless passive radiation sensor

    DOEpatents

    Pfeifer, Kent B; Rumpf, Arthur N; Yelton, William G; Limmer, Steven J

    2013-12-03

    A novel measurement technique is employed using surface acoustic wave (SAW) devices, passive RF, and radiation-sensitive films to provide a wireless passive radiation sensor that requires no batteries, outside wiring, or regular maintenance. The sensor is small (<1 cm.sup.2), physically robust, and will operate unattended for decades. In addition, the sensor can be insensitive to measurement position and read distance due to a novel self-referencing technique eliminating the need to measure absolute responses that are dependent on RF transmitter location and power.

  17. A Wireless MEMS-Based Inclinometer Sensor Node for Structural Health Monitoring

    PubMed Central

    Ha, Dae Woong; Park, Hyo Seon; Choi, Se Woon; Kim, Yousok

    2013-01-01

    This paper proposes a wireless inclinometer sensor node for structural health monitoring (SHM) that can be applied to civil engineering and building structures subjected to various loadings. The inclinometer used in this study employs a method for calculating the tilt based on the difference between the static acceleration and the acceleration due to gravity, using a micro-electro-mechanical system (MEMS)-based accelerometer. A wireless sensor node was developed through which tilt measurement data are wirelessly transmitted to a monitoring server. This node consists of a slave node that uses a short-distance wireless communication system (RF 2.4 GHz) and a master node that uses a long-distance telecommunication system (code division multiple access—CDMA). The communication distance limitation, which is recognized as an important issue in wireless monitoring systems, has been resolved via these two wireless communication components. The reliability of the proposed wireless inclinometer sensor node was verified experimentally by comparing the values measured by the inclinometer and subsequently transferred to the monitoring server via wired and wireless transfer methods to permit a performance evaluation of the wireless communication sensor nodes. The experimental results indicated that the two systems (wired and wireless transfer systems) yielded almost identical values at a tilt angle greater than 1°, and a uniform difference was observed at a tilt angle less than 0.42° (approximately 0.0032° corresponding to 0.76% of the tilt angle, 0.42°) regardless of the tilt size. This result was deemed to be within the allowable range of measurement error in SHM. Thus, the wireless transfer system proposed in this study was experimentally verified for practical application in a structural health monitoring system. PMID:24287533

  18. A wireless MEMS-based inclinometer sensor node for structural health monitoring.

    PubMed

    Ha, Dae Woong; Park, Hyo Seon; Choi, Se Woon; Kim, Yousok

    2013-11-26

    This paper proposes a wireless inclinometer sensor node for structural health monitoring (SHM) that can be applied to civil engineering and building structures subjected to various loadings. The inclinometer used in this study employs a method for calculating the tilt based on the difference between the static acceleration and the acceleration due to gravity, using a micro-electro-mechanical system (MEMS)-based accelerometer. A wireless sensor node was developed through which tilt measurement data are wirelessly transmitted to a monitoring server. This node consists of a slave node that uses a short-distance wireless communication system (RF 2.4 GHz) and a master node that uses a long-distance telecommunication system (code division multiple access-CDMA). The communication distance limitation, which is recognized as an important issue in wireless monitoring systems, has been resolved via these two wireless communication components. The reliability of the proposed wireless inclinometer sensor node was verified experimentally by comparing the values measured by the inclinometer and subsequently transferred to the monitoring server via wired and wireless transfer methods to permit a performance evaluation of the wireless communication sensor nodes. The experimental results indicated that the two systems (wired and wireless transfer systems) yielded almost identical values at a tilt angle greater than 1°, and a uniform difference was observed at a tilt angle less than 0.42° (approximately 0.0032° corresponding to 0.76% of the tilt angle, 0.42°) regardless of the tilt size. This result was deemed to be within the allowable range of measurement error in SHM. Thus, the wireless transfer system proposed in this study was experimentally verified for practical application in a structural health monitoring system.

  19. Cross-layer optimization of video streaming in single-hop wireless networks

    NASA Astrophysics Data System (ADS)

    Hsu, Cheng-Hsin; Hefeeda, Mohamed

    2009-01-01

    Video streaming over wireless networks is getting very popular because of the high bandwidth and the support of quality of service offered by recent wireless standards, such as IEEE 802.11e. We consider optimizing the quality of video streaming in single-hop wireless networks that are composed of multiple wireless stations. Our optimization problem controls parameters in different layers to optimally allocate the wireless network resources among all stations. We address this problem in two steps. First, we formulate an abstract optimization problem for video streaming in single-hop wireless networks in general. This formulation exposes the important interaction between parameters belonging to different layers in the network stack. Then, we instantiate and solve the general problem for the recent IEEE 802.11e WLANs, which support prioritized traffic classes. We show how the calculated optimal solutions can efficiently be implemented in the distributed mode of the IEEE 802.11e standard. We evaluate our proposed solution using extensive simulations in the OPNET simulator, which captures most features of realistic wireless networks. In addition, to show the practicability of our solution, we have implemented it in the driver of an off-the-shelf wireless adapter that complies with the IEEE 802.11e standard. Our experimental and simulation results show that significant quality improvement in video streams can be achieved using our solution, without incurring any significant communication or computational overhead.

  20. Wireless power transmission for medical applications

    NASA Astrophysics Data System (ADS)

    Payne, Josh; Song, Kyo D.; Yang, Sang Y.; Kim, Jaehwan; Park, Yeonjoon; Choi, Sang H.

    2009-03-01

    We studied the wireless power transmission capabilities of microwave through human skin-tissue. Microwave transmission through simulated human skins was tested with rectenna array as a power receiver located under the simulated human skin tissue. Most of transplanted medical devices and sensors require power to operate autonomously but currently by imbedded battery. Wireless power transmission alleviates the needs of imbedded power source and hard-wire power network. We used human skin-like materials, such as various polyurethanes and pork skin, under X-band microwave exposure. Transmission rate through various polyurethanes under the threshold limit value (TLV) and dielectric constant was measured in this experiment. It is also critical to measure specific absorption rates (SAR) of polyurethanes and transmission rates through polyurethanes as well as pork skin. This paper presents power transmission rates under varying thickness of polyurethanes, and effectiveness and efficiency of rectennas under the TLV of microwave power. In addition, we will discuss milimeter wave thermograph and hazards the absorption characteristics of human skin under 8-13 GHz using the results of polyurethanes and pork skin.

  1. Mobile Robot Positioning with 433-MHz Wireless Motes with Varying Transmission Powers and a Particle Filter

    PubMed Central

    Canedo-Rodriguez, Adrian; Rodriguez, Jose Manuel; Alvarez-Santos, Victor; Iglesias, Roberto; Regueiro, Carlos V.

    2015-01-01

    In wireless positioning systems, the transmitter's power is usually fixed. In this paper, we explore the use of varying transmission powers to increase the performance of a wireless localization system. To this extent, we have designed a robot positioning system based on wireless motes. Our motes use an inexpensive, low-power sub-1-GHz system-on-chip (CC1110) working in the 433-MHz ISM band. Our localization algorithm is based on a particle filter and infers the robot position by: (1) comparing the power received with the expected one; and (2) integrating the robot displacement. We demonstrate that the use of transmitters that vary their transmission power over time improves the performance of the wireless positioning system significantly, with respect to a system that uses fixed power transmitters. This opens the door for applications where the robot can localize itself actively by requesting the transmitters to change their power in real time. PMID:25942641

  2. Mobile Robot Positioning with 433-MHz Wireless Motes with Varying Transmission Powers and a Particle Filter.

    PubMed

    Canedo-Rodriguez, Adrian; Rodriguez, Jose Manuel; Alvarez-Santos, Victor; Iglesias, Roberto; Regueiro, Carlos V

    2015-04-30

    In wireless positioning systems, the transmitter's power is usually fixed. In this paper, we explore the use of varying transmission powers to increase the performance of a wireless localization system. To this extent, we have designed a robot positioning system based on wireless motes. Our motes use an inexpensive, low-power sub-1-GHz system-on-chip (CC1110) working in the 433-MHz ISM band. Our localization algorithm is based on a particle filter and infers the robot position by: (1) comparing the power received with the expected one; and (2) integrating the robot displacement. We demonstrate that the use of transmitters that vary their transmission power over time improves the performance of the wireless positioning system significantly, with respect to a system that uses fixed power transmitters. This opens the door for applications where the robot can localize itself actively by requesting the transmitters to change their power in real time.

  3. Smart programmable wireless microaccelerometers

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.; Subramanian, Hareesh; Varadan, Vasundara V.

    1998-07-01

    The integration of MEMS, SAW devices and required microelectronics and conformal antenna to realize a programmable wireless accelerometer is presented in this paper. This unique combination of technologies results in a novel accelerometer that can be remotely sensed by a microwave system with the advantage of no power requirements at the sensor site. The microaccelerometer presented is simple in construction and easy to manufacture with existing silicon micromachining techniques. Programmable accelerometers can be achieved with splitfinger interdigital transducers (IDTs) as reflecting structures. If IDTs are short circuited or capacitively loaded, the wave propagates without any reflection whereas in an open circuit configuration, the IDTs reflect the incoming SAW signal. The programmable accelerometers can thus be achieved by using an external circuitry on a semiconductor chip using hybrid technology. The relatively small size of the sensor makes it an ideal conformal sensor. The accelerometer finds application as air bag deployment sensors, vibration sensors for noise control, deflection and strain sensors, inertial and dimensional positioning systems, ABS/traction control, smart suspension, active roll stabilization and four wheel steering. The wireless accelerometer is very attractive to study the response of a `dummy' in automobile crash test.

  4. [Remote wireless monitoring].

    PubMed

    Villar-Montini, Alex

    2009-12-01

    The increasing device implantations to treat cardiovascular diseases such as arrhytmias and heart failures, aging of the population, and the growing number of patients with access to new therapies as well as the wider access to health systems are the reasons why the number of new implantations carried out each year is rising. Hence, we should have an equipment that can control these patients at a distance, making the follow-up closer. The answer to this enormous challenge is the remote monitoring of these devices. Biotronik is a pioneer in this task and since 2001 it has been comercializing pacemakers and portable wireless monitors (CardioMessenger). Currently, there are more than 100,000 installed systems. Thanks to the continuous and completely automatized follow-up, as well as the wireless net, the system integrity can be confirmed, and then proceed to adjust the therapies in an optimized manner according to each patient's needs; also take action to prevent the development of some arrhytmias, or even the evolution of a heart failure. Likewise, the system can improve the clynical efficiency of the treatment and help to economize to the Ministry of Healthcare.

  5. Biomonitoring with Wireless Communications

    SciTech Connect

    Budinger, Thomas F.

    2003-03-01

    This review is divided into three sections: technologies for monitoring physiological parameters; biosensors for chemical assays and wireless communications technologies including image transmissions. Applications range from monitoring high risk patients for heart, respiratory activity and falls to sensing levels of physical activity in military, rescue, and sports personnel. The range of measurements include, heart rate, pulse wave form, respiratory rate, blood oxygen, tissue pCO2, exhaled carbon dioxide and physical activity. Other feasible measurements will employ miniature chemical laboratories on silicon or plastic chips. The measurements can be extended to clinical chemical assays ranging from common blood assays to protein or specialized protein measurements (e.g., troponin, creatine, and cytokines such as TNF and IL6). Though the feasibility of using wireless technology to communicate vital signs has been demonstrated 32 years ago (1) it has been only recently that practical and portable devices and communications net works have become generally available for inexpensive deployment of comfortable and affordable devices and systems.

  6. Household wireless electroencephalogram hat

    NASA Astrophysics Data System (ADS)

    Szu, Harold; Hsu, Charles; Moon, Gyu; Yamakawa, Takeshi; Tran, Binh

    2012-06-01

    We applied Compressive Sensing to design an affordable, convenient Brain Machine Interface (BMI) measuring the high spatial density, and real-time process of Electroencephalogram (EEG) brainwaves by a Smartphone. It is useful for therapeutic and mental health monitoring, learning disability biofeedback, handicap interfaces, and war gaming. Its spec is adequate for a biomedical laboratory, without the cables hanging over the head and tethered to a fixed computer terminal. Our improved the intrinsic signal to noise ratio (SNR) by using the non-uniform placement of the measuring electrodes to create the proximity of measurement to the source effect. We computing a spatiotemporal average the larger magnitude of EEG data centers in 0.3 second taking on tethered laboratory data, using fuzzy logic, and computing the inside brainwave sources, by Independent Component Analysis (ICA). Consequently, we can overlay them together by non-uniform electrode distribution enhancing the signal noise ratio and therefore the degree of sparseness by threshold. We overcame the conflicting requirements between a high spatial electrode density and precise temporal resolution (beyond Event Related Potential (ERP) P300 brainwave at 0.3 sec), and Smartphone wireless bottleneck of spatiotemporal throughput rate. Our main contribution in this paper is the quality and the speed of iterative compressed image recovery algorithm based on a Block Sparse Code (Baranuick et al, IEEE/IT 2008). As a result, we achieved real-time wireless dynamic measurement of EEG brainwaves, matching well with traditionally tethered high density EEG.

  7. Wireless Communications in Smart Grid

    NASA Astrophysics Data System (ADS)

    Bojkovic, Zoran; Bakmaz, Bojan

    Communication networks play a crucial role in smart grid, as the intelligence of this complex system is built based on information exchange across the power grid. Wireless communications and networking are among the most economical ways to build the essential part of the scalable communication infrastructure for smart grid. In particular, wireless networks will be deployed widely in the smart grid for automatic meter reading, remote system and customer site monitoring, as well as equipment fault diagnosing. With an increasing interest from both the academic and industrial communities, this chapter systematically investigates recent advances in wireless communication technology for the smart grid.

  8. Radio Relays Improve Wireless Products

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Signal Hill, California-based XCOM Wireless Inc. developed radio frequency micromachine (RF MEMS) relays with a Phase II Small Business Innovation Research (SBIR) contract through NASA?s Jet Propulsion Laboratory. In order to improve satellite communication systems, XCOM produced wireless RF MEMS relays and tunable capacitors that use metal-to-metal contact and have the potential to outperform most semiconductor technologies while using less power. These relays are used in high-frequency test equipment and instrumentation, where increased speed can mean significant cost savings. Applications now also include mainstream wireless applications and greatly improved tactical radios.

  9. Coexistence issues for a 2.4 GHz wireless audio streaming in presence of bluetooth paging and WLAN

    NASA Astrophysics Data System (ADS)

    Pfeiffer, F.; Rashwan, M.; Biebl, E.; Napholz, B.

    2015-11-01

    Nowadays, customers expect to integrate their mobile electronic devices (smartphones and laptops) in a vehicle to form a wireless network. Typically, IEEE 802.11 is used to provide a high-speed wireless local area network (WLAN) and Bluetooth is used for cable replacement applications in a wireless personal area network (PAN). In addition, Daimler uses KLEER as third wireless technology in the unlicensed (UL) 2.4 GHz-ISM-band to transmit full CD-quality digital audio. As Bluetooth, IEEE 802.11 and KLEER are operating in the same frequency band, it has to be ensured that all three technologies can be used simultaneously without interference. In this paper, we focus on the impact of Bluetooth and IEEE 802.11 as interferer in presence of a KLEER audio transmission.

  10. Wireless device monitoring methods, wireless device monitoring systems, and articles of manufacture

    DOEpatents

    McCown, Steven H [Rigby, ID; Derr, Kurt W [Idaho Falls, ID; Rohde, Kenneth W [Idaho Falls, ID

    2012-05-08

    Wireless device monitoring methods, wireless device monitoring systems, and articles of manufacture are described. According to one embodiment, a wireless device monitoring method includes accessing device configuration information of a wireless device present at a secure area, wherein the device configuration information comprises information regarding a configuration of the wireless device, accessing stored information corresponding to the wireless device, wherein the stored information comprises information regarding the configuration of the wireless device, comparing the device configuration information with the stored information, and indicating the wireless device as one of authorized and unauthorized for presence at the secure area using the comparing.

  11. Ultrawide band signal analysis in urban environment

    NASA Astrophysics Data System (ADS)

    Schiavone, Guy A.; Palaniappan, Ravishankar; Tracy, Judd; Wahid, Parveen; Dere, Troy P.

    2002-06-01

    Ultra-wide band (UWB) is a relatively new term used to describe a technology that has been known since the 1960's as carrier free, baseband or impulse technology. The basic concept is to develop, transmit and receive an extremely short duration burst of radio frequency energy-typically a few tens of pico seconds to a few nanoseconds in duration. The resultant waveforms are extremely broadband, so much so that it is often difficult to determine an actual RF center frequency- thus the term carrier free. Since UWB waveforms are of such short time duration, they have some rather unique properties. In communications, for example, UWB pulses can be used to provide extremely high data rate performance in multi-user network applications [1]. For radar applications, these same pulses can provide very fine range resolution and precision distance and/or positioning measurement capabilities. These short duration waveforms are relatively immune to multi-path cancellation effects as observed in mobile and in-building environments. As a consequence, UWB systems are particularly well suited for high-speed, mobile wireless applications. As bandwidth is inversely related to pulse duration, the spectral extent of these waveforms can be made quite large. With proper engineering design, the resultant energy densities (i.e., transmitted watts of power per unit hertz of bandwidth) can be quite low. This low energy density translates into a low probability of detection (LPD) RF signature. An LPD signature is of particular interest for military applications (e.g., for covert communications and radar); however, an LPD signature also produces minimal interference to proximity systems and minimal RF health hazards, significant for both military and commercial applications. In this paper we consider the development of a simulation model to calculate ultra-wide band signal propagation characteristics in urban indoor and outdoor environments. The simulation is accomplished using a hybrid model

  12. A practical monitoring system for the structural safety of mega-trusses using wireless vibrating wire strain gauges.

    PubMed

    Park, Hyo Seon; Lee, Hwan Young; Choi, Se Woon; Kim, Yousok

    2013-12-16

    Sensor technologies have been actively employed in structural health monitoring (SHM) to evaluate structural safety. To provide stable and real-time monitoring, a practical wireless sensor network system (WSNS) based on vibrating wire strain gauges (VWSGs) is proposed and applied to a building under construction. In this WSNS, the data measured from each VWSG are transmitted to the sensor node via a signal line and then transmitted to the master node through a short-range wireless communication module (operating on the Industrial, Scientific, and Medical (ISM) band). The master node also employs a long-range wireless communication module (Code Division Multiple Access-CDMA) to transmit the received data from the sensor node to a server located in a remote area, which enables a manager to examine the measured data in real time without any time or location restrictions. In this study, a total of 48 VWSGs, 14 sensor nodes, and seven master nodes were implemented to measure long-term strain variations of mega-trusses in an irregular large-scale building under construction. Based on strain data collected over a 16-month period, a quantitative evaluation of the construction process was performed to determine the aspects that exhibit the greatest influence on member behavior and to conduct a comparison with numerical simulation results. The effect of temperature stress on the structural elements was also analyzed. From these observations, the feasibility of a long-term WSNS based on VWSGs to evaluate the structural safety of an irregular building under construction was confirmed.

  13. A Practical Monitoring System for the Structural Safety of Mega-Trusses Using Wireless Vibrating Wire Strain Gauges

    PubMed Central

    Park, Hyo Seon; Lee, Hwan Young; Choi, Se Woon; Kim, Yousok

    2013-01-01

    Sensor technologies have been actively employed in structural health monitoring (SHM) to evaluate structural safety. To provide stable and real-time monitoring, a practical wireless sensor network system (WSNS) based on vibrating wire strain gauges (VWSGs) is proposed and applied to a building under construction. In this WSNS, the data measured from each VWSG are transmitted to the sensor node via a signal line and then transmitted to the master node through a short-range wireless communication module (operating on the Industrial, Scientific, and Medical (ISM) band). The master node also employs a long-range wireless communication module (Code Division Multiple Access—CDMA) to transmit the received data from the sensor node to a server located in a remote area, which enables a manager to examine the measured data in real time without any time or location restrictions. In this study, a total of 48 VWSGs, 14 sensor nodes, and seven master nodes were implemented to measure long-term strain variations of mega-trusses in an irregular large-scale building under construction. Based on strain data collected over a 16-month period, a quantitative evaluation of the construction process was performed to determine the aspects that exhibit the greatest influence on member behavior and to conduct a comparison with numerical simulation results. The effect of temperature stress on the structural elements was also analyzed. From these observations, the feasibility of a long-term WSNS based on VWSGs to evaluate the structural safety of an irregular building under construction was confirmed. PMID:24351640

  14. Micromechanics of shear banding

    SciTech Connect

    Gilman, J.J.

    1992-08-01

    Shear-banding is one of many instabilities observed during the plastic flow of solids. It is a consequence of the dislocation mechanism which makes plastic flow fundamentally inhomogeneous, and is exacerbated by local adiabatic heating. Dislocation lines tend to be clustered on sets of neighboring glide planes because they are heterogeneously generated; especially through the Koehler multiple-cross-glide mechanism. Factors that influence their mobilities also play a role. Strain-hardening decreases the mobilities within shear bands thereby tending to spread (delocalize) them. Strain-softening has the inverse effect. This paper reviews the micro-mechanisms of these phenomena. It will be shown that heat production is also a consequence of the heterogeneous nature of the microscopic flow, and that dislocation dipoles play an important role. They are often not directly observable, but their presence may be inferred from changes in thermal conductivity. It is argued that after deformation at low temperatures dipoles are distributed a la Pareto so there are many more small than large ones. Instability at upper yield point, the shapes of shear-band fronts, and mechanism of heat generation are also considered. It is shown that strain-rate acceleration plays a more important role than strain-rate itself in adiabatic instability.

  15. Micromechanics of shear banding

    SciTech Connect

    Gilman, J.J.

    1992-08-01

    Shear-banding is one of many instabilities observed during the plastic flow of solids. It is a consequence of the dislocation mechanism which makes plastic flow fundamentally inhomogeneous, and is exacerbated by local adiabatic heating. Dislocation lines tend to be clustered on sets of neighboring glide planes because they are heterogeneously generated; especially through the Koehler multiple-cross-glide mechanism. Factors that influence their mobilities also play a role. Strain-hardening decreases the mobilities within shear bands thereby tending to spread (delocalize) them. Strain-softening has the inverse effect. This paper reviews the micro-mechanisms of these phenomena. It will be shown that heat production is also a consequence of the heterogeneous nature of the microscopic flow, and that dislocation dipoles play an important role. They are often not directly observable, but their presence may be inferred from changes in thermal conductivity. It is argued that after deformation at low temperatures dipoles are distributed a la Pareto so there are many more small than large ones. Instability at upper yield point, the shapes of shear-band fronts, and mechanism of heat generation are also considered. It is shown that strain-rate acceleration plays a more important role than strain-rate itself in adiabatic instability.

  16. Ultrasonic wireless health monitoring

    NASA Astrophysics Data System (ADS)

    Petit, Lionel; Lefeuvre, Elie; Guyomar, Daniel; Richard, Claude; Guy, Philippe; Yuse, Kaori; Monnier, Thomas

    2006-03-01

    The integration of autonomous wireless elements in health monitoring network increases the reliability by suppressing power supplies and data transmission wiring. Micro-power piezoelectric generators are an attractive alternative to primary batteries which are limited by a finite amount of energy, a limited capacity retention and a short shelf life (few years). Our goal is to implement such an energy harvesting system for powering a single AWT (Autonomous Wireless Transmitter) using our SSH (Synchronized Switch Harvesting) method. Based on a non linear process of the piezoelement voltage, this SSH method optimizes the energy extraction from the mechanical vibrations. This AWT has two main functions : The generation of an identifier code by RF transmission to the central receiver and the Lamb wave generation for the health monitoring of the host structure. A damage index is derived from the variation between the transmitted wave spectrum and a reference spectrum. The same piezoelements are used for the energy harvesting function and the Lamb wave generation, thus reducing mass and cost. A micro-controller drives the energy balance and synchronizes the functions. Such an autonomous transmitter has been evaluated on a 300x50x2 mm 3 composite cantilever beam. Four 33x11x0.3 mm 3 piezoelements are used for the energy harvesting and for the wave lamb generation. A piezoelectric sensor is placed at the free end of the beam to track the transmitted Lamb wave. In this configuration, the needed energy for the RF emission is 0.1 mJ for a 1 byte-information and the Lamb wave emission requires less than 0.1mJ. The AWT can harvested an energy quantity of approximately 20 mJ (for a 1.5 Mpa lateral stress) with a 470 μF storage capacitor. This corresponds to a power density near to 6mW/cm 3. The experimental AWT energy abilities are presented and the damage detection process is discussed. Finally, some envisaged solutions are introduced for the implementation of the required data

  17. Implementation of body area networks based on MICS/WMTS medical bands for healthcare systems.

    PubMed

    Yuce, Mehmet R; Ho, Chee Keong

    2008-01-01

    A multi-hoping sensor network system has been implemented to monitor physiological parameters from multiple patient bodies by means of medical communication standards MICS (Medical Implant Communication Service) and WMTS (Wireless Medical Telemetry Service). Unlike the other medical sensor networks (they usually use 2.4 GHz ISM band), we used the two medical standards occupying the frequency bands that are mainly assigned to medical applications. The prototype system uses the MICS band (402-405 MHz) between the sensor nodes and a remote central control unit (CCU). And WMTS frequencies (608-614MHz) are used between the CCUs and the remote base stations allowing for a much larger range acting as an intermediate node. The sensor nodes in the prototype can measure up to four body signals (i.e. 4-channel) where one is dedicated to a continuous physiological signal such as ECC/EEG. The system includes firmware and software designs that can provide a long distance data transfer through the internet or a mobile network.

  18. Optimization of Planar Monopole Wideband Antenna for Wireless Communication System

    PubMed Central

    Moghavvemi, Mahmoud; Mahadi, Wan Nor Liza

    2016-01-01

    In this paper, a new compact wideband monopole antenna is presented for wireless communication applications. This antenna comprises of a new radiating patch, a new arc-shaped strip, microstrip feed line, and a notched ground plane. The proposed radiating patch is combined with a rectangular and semi-circular patch and is integrated with a partial ground plane to provide a wide impedance bandwidth. The new arc-shaped strip between the radiating patch and microstrip feed line creates an extra surface on the patch, which helps further widen the bandwidth. Inserting one step notch on the ground plane further enhances the bandwidth. The antenna has a compact size of 16×20×1.6mm3. The measured result indicated that the antenna achieves a 127% bandwidth at VSWR≤2, ranging from 4.9GHz to 22.1GHz. Stable radiation patterns with acceptable gain are achieved. Also, a measured bandwidth of 107.7% at VSWR≤1.5 (5.1-17GHz) is obtained, which is suitable for UWB outdoor propagation. This antenna is compatible with a good number of wireless standards, including UWB band, Wimax 5.4 GHz band, MVDDS (12.2–12.7GHz), and close range radar and satellite communication in the X-band (8-12GHz), and Ku band (12-18GHz). PMID:27992466

  19. Optimization of Planar Monopole Wideband Antenna for Wireless Communication System.

    PubMed

    Shakib, Mohammed Nazmus; Moghavvemi, Mahmoud; Mahadi, Wan Nor Liza

    2016-01-01

    In this paper, a new compact wideband monopole antenna is presented for wireless communication applications. This antenna comprises of a new radiating patch, a new arc-shaped strip, microstrip feed line, and a notched ground plane. The proposed radiating patch is combined with a rectangular and semi-circular patch and is integrated with a partial ground plane to provide a wide impedance bandwidth. The new arc-shaped strip between the radiating patch and microstrip feed line creates an extra surface on the patch, which helps further widen the bandwidth. Inserting one step notch on the ground plane further enhances the bandwidth. The antenna has a compact size of 16×20×1.6mm3. The measured result indicated that the antenna achieves a 127% bandwidth at VSWR≤2, ranging from 4.9GHz to 22.1GHz. Stable radiation patterns with acceptable gain are achieved. Also, a measured bandwidth of 107.7% at VSWR≤1.5 (5.1-17GHz) is obtained, which is suitable for UWB outdoor propagation. This antenna is compatible with a good number of wireless standards, including UWB band, Wimax 5.4 GHz band, MVDDS (12.2-12.7GHz), and close range radar and satellite communication in the X-band (8-12GHz), and Ku band (12-18GHz).

  20. Wireless Damage Location Sensing System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Taylor, Bryant Douglas (Inventor)

    2012-01-01

    A wireless damage location sensing system uses a geometric-patterned wireless sensor that resonates in the presence of a time-varying magnetic field to generate a harmonic response that will experience a change when the sensor experiences a change in its geometric pattern. The sensing system also includes a magnetic field response recorder for wirelessly transmitting the time-varying magnetic field and for wirelessly detecting the harmonic response. The sensing system compares the actual harmonic response to a plurality of predetermined harmonic responses. Each predetermined harmonic response is associated with a severing of the sensor at a corresponding known location thereof so that a match between the actual harmonic response and one of the predetermined harmonic responses defines the known location of the severing that is associated therewith.

  1. Towards biodegradable wireless implants.

    PubMed

    Boutry, Clémentine M; Chandrahalim, Hengky; Streit, Patrick; Schinhammer, Michael; Hänzi, Anja C; Hierold, Christofer

    2012-05-28

    A new generation of partially or even fully biodegradable implants is emerging. The idea of using temporary devices is to avoid a second surgery to remove the implant after its period of use, thereby improving considerably the patient's comfort and safety. This paper provides a state-of-the-art overview and an experimental section that describes the key technological challenges for making biodegradable devices. The general considerations for the design and synthesis of biodegradable components are illustrated with radiofrequency-driven resistor-inductor-capacitor (RLC) resonators made of biodegradable metals (Mg, Mg alloy, Fe, Fe alloys) and biodegradable conductive polymer composites (polycaprolactone-polypyrrole, polylactide-polypyrrole). Two concepts for partially/fully biodegradable wireless implants are discussed, the ultimate goal being to obtain a fully biodegradable sensor for in vivo sensing.

  2. Wireless power transfer system

    DOEpatents

    Wu, Hunter; Sealy, Kylee; Gilchrist, Aaron

    2016-02-23

    A system includes a first stage of an inductive power transfer system with an LCL load resonant converter with a switching section, an LCL tuning circuit, and a primary receiver pad. The IPT system includes a second stage with a secondary receiver pad, a secondary resonant circuit, a secondary rectification circuit, and a secondary decoupling converter. The secondary receiver pad connects to the secondary resonant circuit. The secondary resonant circuit connects to the secondary rectification circuit. The secondary rectification circuit connects to the secondary decoupling converter. The second stage connects to a load. The load includes an energy storage element. The second stage and load are located on a vehicle and the first stage is located at a fixed location. The primary receiver pad wirelessly transfers power to the secondary receiver pad across a gap when the vehicle positions the secondary receiver pad with respect to the primary receiver pad.

  3. A novel optical single-sideband frequency translation technique for transmission of wireless MIMO signals over fiber-wireless system

    NASA Astrophysics Data System (ADS)

    Shaddad, Redhwan Q.; Mohammad, Abu Bakar; Al-Hetar, Abdulaziz M.; Al-Gailani, Samir A.

    2013-04-01

    The fiber-wireless (FiWi) access network is a powerful hybrid architecture of optical backhaul and wireless front-end to support high data rates and throughput with minimal time delay. By using radio over fiber (ROF) technique, the optical fiber is well adapted to propagate multiple wireless services having different carrier frequencies. However, multiple wireless signals which have the same carrier frequency cannot propagate over a single optical fiber on the same wavelength, such as multi-input multi-output (MIMO) signals. A novel optical single-sideband frequency translation technique is designed and simulated to solve this problem. 240 Mb/s 802.11n MIMO signals are proposed to transport over FiWi system using the proposed approach at 2.4 GHz and 5.0 GHz carrier frequencies. The crosstalk between MIMO signals with the same carrier frequency is excluded, since each MIMO signal is carried on a specific optical wavelength. Error vector magnitude (EVM) values of -29.83 dB (for 2.4 GHz) and -28.41 dB (for 5.0 GHz) have been achieved for bit error rate (BER) 10-5 in the proposed FiWi system.

  4. Wireless sensor network

    NASA Astrophysics Data System (ADS)

    Perotti, Jose M.; Lucena, Angel R.; Mullenix, Pamela A.; Mata, Carlos T.

    2006-05-01

    Current and future requirements of aerospace sensors and transducers demand the design and development of a new family of sensing devices, with emphasis on reduced weight, power consumption, and physical size. This new generation of sensors and transducers will possess a certain degree of intelligence in order to provide the end user with critical data in a more efficient manner. Communication between networks of traditional or next-generation sensors can be accomplished by a Wireless Sensor Network (WSN) developed by NASA's Instrumentation Branch and ASRC Aerospace Corporation at Kennedy Space Center (KSC), consisting of at least one central station and several remote stations and their associated software. The central station is application-dependent and can be implemented on different computer hardware, including industrial, handheld, or PC-104 single-board computers, on a variety of operating systems: embedded Windows, Linux, VxWorks, etc. The central stations and remote stations share a similar radio frequency (RF) core module hardware that is modular in design. The main components of the remote stations are an RF core module, a sensor interface module, batteries, and a power management module. These modules are stackable, and a common bus provides the flexibility to stack other modules for additional memory, increased processing, etc. WSN can automatically reconfigure to an alternate frequency if interference is encountered during operation. In addition, the base station will autonomously search for a remote station that was perceived to be lost, using relay stations and alternate frequencies. Several wireless remote-station types were developed and tested in the laboratory to support different sensing technologies, such as resistive temperature devices, silicon diodes, strain gauges, pressure transducers, and hydrogen leak detectors.

  5. System and method for progressive band selection for hyperspectral images

    NASA Technical Reports Server (NTRS)

    Fisher, Kevin (Inventor)

    2013-01-01

    Disclosed herein are systems, methods, and non-transitory computer-readable storage media for progressive band selection for hyperspectral images. A system having module configured to control a processor to practice the method calculates a virtual dimensionality of a hyperspectral image having multiple bands to determine a quantity Q of how many bands are needed for a threshold level of information, ranks each band based on a statistical measure, selects Q bands from the multiple bands to generate a subset of bands based on the virtual dimensionality, and generates a reduced image based on the subset of bands. This approach can create reduced datasets of full hyperspectral images tailored for individual applications. The system uses a metric specific to a target application to rank the image bands, and then selects the most useful bands. The number of bands selected can be specified manually or calculated from the hyperspectral image's virtual dimensionality.

  6. Wireless Power Transfer

    SciTech Connect

    2013-07-22

    Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forget to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the

  7. Wireless Power Transfer

    ScienceCinema

    None

    2016-07-12

    Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forget to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the

  8. Wireless Instrumentation Use on Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Sherman, Aaron

    2010-01-01

    This slide presentation reviews the results of a study on the use of wireless instrumentation and sensors on future launch vehicles. The use of wireless technologies would if feasible would allow for fewer wires, and allow for more flexibility. However, it was generally concluded that wireless solutions are not currently ready to replace wired technologies for launch vehicles. The recommendations of the study were to continue to use wired sensors as the primary choice for vehicle instrumentation, and to continue to assess needs and use wireless instrumentation where appropriate. The future work includes support efforts for wireless technologies, and continue to monitor the development of wireless solutions.

  9. Hybrid model for wireless mobility management using IPv6

    NASA Astrophysics Data System (ADS)

    Howie, Douglas P.; Sun, Junzhao; Koivisto, Antti T.

    2001-07-01

    Within the coming decade, there will be a dramatic increase in the availability of inexpensive, computationally powerful mobile devices running applications which use the Internet Protocol (IP) to access multimedia services over broad-band wireless connections. To this end, there has been extensive research and standardization in the areas of Mobile IP and IPv6. The purpose of this paper is to apply this work to the issues involved in designing a mobility model able to adapt to different wireless mobile IP scenarios. We describe the usefulness of this model in the 4th generation mobile multimedia systems to come. This new model has been synthesized through a comparative analysis of current mobile IP models where particular attention has been given to the problems of mobile IP handoff and mobility management and their impact on QoS. By applying a unique perspective to these problems, our model is used to set a roadmap for future mobile IPv6 testbed construction.

  10. Wireless communication link for capsule endoscope at 600 MHz.

    PubMed

    Khaleghi, A; Balasingham, I

    2015-01-01

    Simulation of a wireless communication link for a capsule endoscopy is presented for monitoring of small intestine in humans. The realized communication link includes the transmitting capsule antenna, the outside body receiving antenna and the model of the human body. The capsule antenna is designed for operating at the frequency band of 600 MHz with an impedance bandwidth of 10 MHz and omnidirectional radiation pattern. The quality of the communication link is improved by using directive antenna outside body inside matching layer for electromagnetic wave tuning to the body. The outside body antenna has circular polarization that guaranteeing the communication link for different orientations of the capsule inside intestine. It is shown that the path loss for the capsule in 60 mm from the abdomen surface varies between 37-47 dB in relation to the antenna orientation. This link can establish high data rate wireless communications for capsule endoscopy.

  11. Advanced wireless mobile collaborative sensing network for tactical and strategic missions

    NASA Astrophysics Data System (ADS)

    Xu, Hao

    2017-05-01

    In this paper, an advanced wireless mobile collaborative sensing network will be developed. Through properly combining wireless sensor network, emerging mobile robots and multi-antenna sensing/communication techniques, we could demonstrate superiority of developed sensing network. To be concrete, heterogeneous mobile robots including unmanned aerial vehicle (UAV) and unmanned ground vehicle (UGV) are equipped with multi-model sensors and wireless transceiver antennas. Through real-time collaborative formation control, multiple mobile robots can team the best formation that can provide most accurate sensing results. Also, formatting multiple mobile robots can also construct a multiple-input multiple-output (MIMO) communication system that can provide a reliable and high performance communication network.

  12. Bounds for Eigenvalues of ArrowheadMatrices and Their Applications to HubMatrices andWireless Communications

    DTIC Science & Technology

    2009-01-01

    recent work on the hub matrix theory [9] and its applications to multiple - input and multiple output ( MIMO ) wireless communication systems. A matrix, sayA...applications of these results to hub matrices and wireless communications are discussed. 15. SUBJECT TERMS Matrix Calculus, Signal Processing, MIMO ...makes them sharper. In [9], the hub matrix theory is also applied to the MIMO beamforming problem by comparing k of m transmitting antennas with the

  13. Challenges of CAC in Heterogeneous Wireless Cognitive Networks

    NASA Astrophysics Data System (ADS)

    Wang, Jiazheng; Fu, Xiuhua

    Call admission control (CAC) is known as an effective functionality in ensuring the QoS of wireless networks. The vision of next generation wireless networks has led to the development of new call admission control (CAC) algorithms specifically designed for heterogeneous wireless Cognitive networks. However, there will be a number of challenges created by dynamic spectrum access and scheduling techniques associated with the cognitive systems. In this paper for the first time, we recommend that the CAC policies should be distinguished between primary users and secondary users. The classification of different methods of cac policies in cognitive networks contexts is proposed. Although there have been some researches within the umbrella of Joint CAC and cross-layer optimization for wireless networks, the advent of the cognitive networks adds some additional problems. We present the conceptual models for joint CAC and cross-layer optimization respectively. Also, the benefit of Cognition can only be realized fully if application requirements and traffic flow contexts are determined or inferred in order to know what modes of operation and spectrum bands to use at each point in time. The process model of Cognition involved per-flow-based CAC is presented. Because there may be a number of parameters on different levels affecting a CAC decision and the conditions for accepting or rejecting a call must be computed quickly and frequently, simplicity and practicability are particularly important for designing a feasible CAC algorithm. In a word, a more thorough understanding of CAC in heterogeneous wireless cognitive networks may help one to design better CAC algorithms.

  14. 60-GHz optical/wireless MIMO system integrated with optical subcarrier multiplexing and 2x2 wireless communication.

    PubMed

    Lin, Chi-Hsiang; Lin, Chun-Ting; Huang, Hou-Tzu; Zeng, Wei-Siang; Chiang, Shou-Chih; Chang, Hsi-Yu

    2015-05-04

    This paper proposes a 2x2 MIMO OFDM Radio-over-Fiber scheme based on optical subcarrier multiplexing and 60-GHz MIMO wireless transmission. We also schematically investigated the principle of optical subcarrier multiplexing, which is based on a dual-parallel Mach-Zehnder modulator (DP-MZM). In our simulation result, combining two MIMO OFDM signals to drive DP-MZM gives rise to the PAPR augmentation of less than 0.4 dB, which mitigates nonlinear distortion. Moreover, we applied a Levin-Campello bit-loading algorithm to compensate for the uneven frequency responses in the V-band. The resulting system achieves OFDM signal rates of 61.5-Gbits/s with BER of 10(-3) over 25-km SMF transmission followed by 3-m wireless transmission.

  15. Distributed Joint Source-Channel Coding in Wireless Sensor Networks

    PubMed Central

    Zhu, Xuqi; Liu, Yu; Zhang, Lin

    2009-01-01

    Considering the fact that sensors are energy-limited and the wireless channel conditions in wireless sensor networks, there is an urgent need for a low-complexity coding method with high compression ratio and noise-resisted features. This paper reviews the progress made in distributed joint source-channel coding which can address this issue. The main existing deployments, from the theory to practice, of distributed joint source-channel coding over the independent channels, the multiple access channels and the broadcast channels are introduced, respectively. To this end, we also present a practical scheme for compressing multiple correlated sources over the independent channels. The simulation results demonstrate the desired efficiency. PMID:22408560

  16. Improving the reliability of wireless body area networks.

    PubMed

    Arrobo, Gabriel E; Gitlin, Richard D

    2011-01-01

    In this paper we propose a highly reliable wireless body area network (WBAN) that provides increased throughput and avoids single points of failure. Such networks improve upon current WBANs by taking advantage of a new technology, Cooperative Network Coding (CNC). Using CNC in wireless body area network to support real-time applications is an attractive solution to combat packet loss, reduce latency due to retransmissions, avoid single points of failure, and improve the probability of successful recovery of the information at the destination. In this paper, we have extended Cooperative Network Coding, from its original configuration (one-to-one) to many-to-many as in multiple-input-multiple-output (MIMO) systems. Cooperative Network Coding results in increased throughput and network reliability because of the cooperation of the nodes in transmitting coded combination packets across spatially distinct paths to the information sinks.

  17. Impurity bands and band tails in accumulation and inversion layers

    NASA Astrophysics Data System (ADS)

    Ghazali, A.; Gold, A.; Serre, J.

    The electronic density of states of silicon metal-oxide-semiconductor systems with charged impurities at the interface is calculated. We used Klauder's best multiple scattering approach and found a transition from an impurity band to a band tail at certain impurity concentration N i = Ñi. We studied the dependence of Ñi and of the binding energy EB (for Ni → 0 on the depletion density and found that Ñi and EB decrease by a factor of ten if the depletion density decreases from 10 12to 10 9 cm -2.

  18. Communications device identification methods, communications methods, wireless communications readers, wireless communications systems, and articles of manufacture

    DOEpatents

    Steele, Kerry D [Kennewick, WA; Anderson, Gordon A [Benton City, WA; Gilbert, Ronald W [Morgan Hill, CA

    2011-02-01

    Communications device identification methods, communications methods, wireless communications readers, wireless communications systems, and articles of manufacture are described. In one aspect, a communications device identification method includes providing identification information regarding a group of wireless identification devices within a wireless communications range of a reader, using the provided identification information, selecting one of a plurality of different search procedures for identifying unidentified ones of the wireless identification devices within the wireless communications range, and identifying at least some of the unidentified ones of the wireless identification devices using the selected one of the search procedures.

  19. Design of multilevel heterogeneous ad-hoc wireless networks with UAVs

    NASA Astrophysics Data System (ADS)

    Gu, Daniel L.; Gerla, Mario; Ly, Henry; Xu, Kaixin; Kong, Jiejun; Hong, Xiaoyan

    2001-10-01

    Multi-Layer Ad Hoc Wireless Networks with UAVs is an ideal infrastructure to establish a rapidly deployable wireless communication system any time any where in the world for military applications. In this paper, we review the research we have done so far for our heterogeneous solution. First of all, we proposed the infrastructure of Multi-level Heterogeneous Ad-Hoc Wireless Network with UAVs. Second, we developed a new MAC layer protocol, Centralized Intelligent Channel Assigned Multiple Access (C-ICAMA), for ground mobile backbone nodes to access UAV. Third, we extended HSR (Hierarchical State Routing) to this Multi-Level Heterogeneous Ad-Hoc Wireless Network. Due to the intrinsic limitations of Extended HSR, we extended the Landmark Ad Hoc Routing (LANMAR) as our forth step. Security is a critical issue for mobile ad-hoc wireless networks, especially for military applications. We developed an embedded distributed security protocol and integrated with this heterogeneous hierarchical ad hoc wireless networks in our fifth step. Therefore, the hierarchical multi-layer approach is the most desirable approach to achieve routing scalability in multi-hop wireless networks.

  20. Routing and Scheduling Algorithms for WirelessHART Networks: A Survey

    PubMed Central

    Nobre, Marcelo; Silva, Ivanovitch; Guedes, Luiz Affonso

    2015-01-01

    Wireless communication is a trend nowadays for the industrial environment. A number of different technologies have emerged as solutions satisfying strict industrial requirements (e.g., WirelessHART, ISA100.11a, WIA-PA). As the industrial environment presents a vast range of applications, adopting an adequate solution for each case is vital to obtain good performance of the system. In this context, the routing and scheduling schemes associated with these technologies have a direct impact on important features, like latency and energy consumption. This situation has led to the development of a vast number of routing and scheduling schemes. In the present paper, we focus on the WirelessHART technology, emphasizing its most important routing and scheduling aspects in order to guide both end users and the developers of new algorithms. Furthermore, we provide a detailed literature review of the newest routing and scheduling techniques for WirelessHART, discussing each of their features. These routing algorithms have been evaluated in terms of their objectives, metrics, the usage of the WirelessHART structures and validation method. In addition, the scheduling algorithms were also evaluated by metrics, validation, objectives and, in addition, by multiple superframe support, as well as by the redundancy method used. Moreover, this paper briefly presents some insights into the main WirelessHART simulation modules available, in order to provide viable test platforms for the routing and scheduling algorithms. Finally, some open issues in WirelessHART routing and scheduling algorithms are discussed. PMID:25919371