Science.gov

Sample records for multiple binding modes

  1. Three-Dimensional Structures Reveal Multiple ADP/ATP Binding Modes

    SciTech Connect

    C Simmons; C Magee; D Smith; L Lauman; J Chaput; J Allen

    2011-12-31

    The creation of synthetic enzymes with predefined functions represents a major challenge in future synthetic biology applications. Here, we describe six structures of de novo proteins that have been determined using protein crystallography to address how simple enzymes perform catalysis. Three structures are of a protein, DX, selected for its stability and ability to tightly bind ATP. Despite the addition of ATP to the crystallization conditions, the presence of a bound but distorted ATP was found only under excess ATP conditions, with ADP being present under equimolar conditions or when crystallized for a prolonged period of time. A bound ADP cofactor was evident when Asp was substituted for Val at residue 65, but ATP in a linear configuration is present when Phe was substituted for Tyr at residue 43. These new structures complement previously determined structures of DX and the protein with the Phe 43 to Tyr substitution [Simmons, C. R., et al. (2009) ACS Chem. Biol. 4, 649-658] and together demonstrate the multiple ADP/ATP binding modes from which a model emerges in which the DX protein binds ATP in a configuration that represents a transitional state for the catalysis of ATP to ADP through a slow, metal-free reaction capable of multiple turnovers. This unusual observation suggests that design-free methods can be used to generate novel protein scaffolds that are tailor-made for catalysis.

  2. On the detection of multiple-binding modes of ligands to proteins, from biological, structural, and modeling data

    NASA Astrophysics Data System (ADS)

    Lewis, Paul J.; de Jonge, Marc; Daeyaert, Frits; Koymans, Luc; Vinkers, Maarten; Heeres, Jan; Janssen, Paul A. J.; Arnold, Eddy; Das, Kalyan; Clark, Art D., Jr.; Hughes, Stephen H.; Boyer, Paul L.; de Béthune, Marie-Pierre; Pauwels, Rudi; Andries, Koen; Kukla, Mike; Ludovici, Donald; De Corte, Bart; Kavash, Robert; Ho, Chih

    2003-02-01

    There are several indications that a given compound or a set of related compounds can bind in different modes to a specific binding site of a protein. This is especially evident from X-ray crystallographic structures of ligand-protein complexes. The availability of multiple binding modes of a ligand in a binding site may present an advantage in drug design when simultaneously optimizing several criteria. In the case of the design of anti-HIV compounds we observed that the more active compounds that are also resilient against mutation of the non-nucleoside binding site of HIV1-reverse transcriptase make use of more binding modes than the less active and resilient compounds.

  3. Multiple binding modes of substrate to the catalytic RNA subunit of RNase P from Escherichia coli.

    PubMed Central

    Pomeranz Krummel, D A; Altman, S

    1999-01-01

    M1 RNA that contained 4'-thiouridine was photochemically cross-linked to different substrates and to a product of the reaction it governs. The locations of the cross-links in these photochemically induced complexes were identified. The cross-links indicated that different substrates share some contacts but have distinct binding modes to M1 RNA. The binding of some substrates also results in a substrate-dependent conformational change in the enzymatic RNA, as evidenced by the appearance of an M1 RNA intramolecular cross-link. The identification of the cross-links between M1 RNA and product indicate that they are shared with only one of the three cross-linked E-S complexes that were identified, an indication of noncompetitive inhibition by the product. We also examined whether the cross-linked complexes between M1 RNA and substrate(s) or product are altered in the presence of the enzyme's protein cofactor (C5 protein) and in the presence of different concentrations of divalent metal ions. C5 protein enhanced the yield of certain M1 RNA-substrate cross-linked complexes for both wild-type M1 RNA and a deletion mutant of M1 RNA (delta[273-281]), but not for the M1 RNA-product complex. High concentrations of Mg2+ increased the yield of all M1 RNA-substrate complexes but not the M1 RNA-product complex. PMID:10445877

  4. Cross-class metallo-β-lactamase inhibition by bisthiazolidines reveals multiple binding modes

    PubMed Central

    Hinchliffe, Philip; González, Mariano M.; Mojica, Maria F.; González, Javier M.; Castillo, Valerie; Saiz, Cecilia; Kosmopoulou, Magda; Tooke, Catherine L.; Llarrull, Leticia I.; Mahler, Graciela; Bonomo, Robert A.; Vila, Alejandro J.; Spencer, James

    2016-01-01

    Metallo-β-lactamases (MBLs) hydrolyze almost all β-lactam antibiotics and are unaffected by clinically available β-lactamase inhibitors (βLIs). Active-site architecture divides MBLs into three classes (B1, B2, and B3), complicating development of βLIs effective against all enzymes. Bisthiazolidines (BTZs) are carboxylate-containing, bicyclic compounds, considered as penicillin analogs with an additional free thiol. Here, we show both l- and d-BTZ enantiomers are micromolar competitive βLIs of all MBL classes in vitro, with Kis of 6–15 µM or 36–84 µM for subclass B1 MBLs (IMP-1 and BcII, respectively), and 10–12 µM for the B3 enzyme L1. Against the B2 MBL Sfh-I, the l-BTZ enantiomers exhibit 100-fold lower Kis (0.26–0.36 µM) than d-BTZs (26–29 µM). Importantly, cell-based time-kill assays show BTZs restore β-lactam susceptibility of Escherichia coli-producing MBLs (IMP-1, Sfh-1, BcII, and GOB-18) and, significantly, an extensively drug-resistant Stenotrophomonas maltophilia clinical isolate expressing L1. BTZs therefore inhibit the full range of MBLs and potentiate β-lactam activity against producer pathogens. X-ray crystal structures reveal insights into diverse BTZ binding modes, varying with orientation of the carboxylate and thiol moieties. BTZs bind the di-zinc centers of B1 (IMP-1; BcII) and B3 (L1) MBLs via the free thiol, but orient differently depending upon stereochemistry. In contrast, the l-BTZ carboxylate dominates interactions with the monozinc B2 MBL Sfh-I, with the thiol uninvolved. d-BTZ complexes most closely resemble β-lactam binding to B1 MBLs, but feature an unprecedented disruption of the D120–zinc interaction. Cross-class MBL inhibition therefore arises from the unexpected versatility of BTZ binding. PMID:27303030

  5. Multiple Binding Modes between HNF4α and the LXXLL Motifs of PGC-1α Lead to Full Activation*

    PubMed Central

    Rha, Geun Bae; Wu, Guangteng; Shoelson, Steven E.; Chi, Young-In

    2009-01-01

    Hepatocyte nuclear factor 4α (HNF4α) is a novel nuclear receptor that participates in a hierarchical network of transcription factors regulating the development and physiology of such vital organs as the liver, pancreas, and kidney. Among the various transcriptional coregulators with which HNF4α interacts, peroxisome proliferation-activated receptor γ (PPARγ) coactivator 1α (PGC-1α) represents a novel coactivator whose activation is unusually robust and whose binding mode appears to be distinct from that of canonical coactivators such as NCoA/SRC/p160 family members. To elucidate the potentially unique molecular mechanism of PGC-1α recruitment, we have determined the crystal structure of HNF4α in complex with a fragment of PGC-1α containing all three of its LXXLL motifs. Despite the presence of all three LXXLL motifs available for interactions, only one is bound at the canonical binding site, with no additional contacts observed between the two proteins. However, a close inspection of the electron density map indicates that the bound LXXLL motif is not a selected one but an averaged structure of more than one LXXLL motif. Further biochemical and functional studies show that the individual LXXLL motifs can bind but drive only minimal transactivation. Only when more than one LXXLL motif is involved can significant transcriptional activity be measured, and full activation requires all three LXXLL motifs. These findings led us to propose a model wherein each LXXLL motif has an additive effect, and the multiple binding modes by HNF4α toward the LXXLL motifs of PGC-1α could account for the apparent robust activation by providing a flexible mechanism for combinatorial recruitment of additional coactivators and mediators. PMID:19846556

  6. Multiple Binding Modes between HNF4[alpha] and the LXXLL Motifs of PGC-1[alpha] Lead to Full Activation

    SciTech Connect

    Rha, Geun Bae; Wu, Guangteng; Shoelson, Steven E.; Chi, Young-In

    2010-04-15

    Hepatocyte nuclear factor 4{alpha} (HNF4{alpha}) is a novel nuclear receptor that participates in a hierarchical network of transcription factors regulating the development and physiology of such vital organs as the liver, pancreas, and kidney. Among the various transcriptional coregulators with which HNF4{alpha} interacts, peroxisome proliferation-activated receptor {gamma} (PPAR{gamma}) coactivator 1{alpha} (PGC-1{alpha}) represents a novel coactivator whose activation is unusually robust and whose binding mode appears to be distinct from that of canonical coactivators such as NCoA/SRC/p160 family members. To elucidate the potentially unique molecular mechanism of PGC-1{alpha} recruitment, we have determined the crystal structure of HNF4{alpha} in complex with a fragment of PGC-1{alpha} containing all three of its LXXLL motifs. Despite the presence of all three LXXLL motifs available for interactions, only one is bound at the canonical binding site, with no additional contacts observed between the two proteins. However, a close inspection of the electron density map indicates that the bound LXXLL motif is not a selected one but an averaged structure of more than one LXXLL motif. Further biochemical and functional studies show that the individual LXXLL motifs can bind but drive only minimal transactivation. Only when more than one LXXLL motif is involved can significant transcriptional activity be measured, and full activation requires all three LXXLL motifs. These findings led us to propose a model wherein each LXXLL motif has an additive effect, and the multiple binding modes by HNF4{alpha} toward the LXXLL motifs of PGC-1{alpha} could account for the apparent robust activation by providing a flexible mechanism for combinatorial recruitment of additional coactivators and mediators.

  7. Interconvertible geometric isomers of Plasmodium falciparum dihydroorotate dehydrogenase inhibitors exhibit multiple binding modes.

    PubMed

    McConkey, Glenn A; Bedingfield, Paul T P; Burrell, David R; Chambers, Nicholas C; Cunningham, Fraser; Prior, Timothy J; Fishwick, Colin W G; Boa, Andrew N

    2017-08-15

    Two new tricyclic β-aminoacrylate derivatives (2e and 3e) have been found to be inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) with Ki 0.037 and 0.15μM respectively. (1)H and (13)C NMR spectroscopic data show that these compounds undergo ready cis-trans isomerisation at room temperature in polar solvents. In silico docking studies indicate that for both molecules there is neither conformation nor double bond configuration which bind preferentially to PfDHODH. This flexibility is favourable for inhibitors of this channel that require extensive positioning to reach their binding site. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Multiple DNA-binding modes for the ETS family transcription factor PU.1.

    PubMed

    Esaki, Shingo; Evich, Marina G; Erlitzki, Noa; Germann, Markus W; Poon, Gregory M K

    2017-09-29

    The eponymous DNA-binding domain of ETS (E26 transformation-specific) transcription factors binds a single sequence-specific site as a monomer over a single helical turn. Following our previous observation by titration calorimetry that the ETS member PU.1 dimerizes sequentially at a single sequence-specific DNA-binding site to form a 2:1 complex, we have carried out an extensive spectroscopic and biochemical characterization of site-specific PU.1 ETS complexes. Whereas 10 bp of DNA was sufficient to support PU.1 binding as a monomer, additional flanking bases were required to invoke sequential dimerization of the bound protein. NMR spectroscopy revealed a marked loss of signal intensity in the 2:1 complex, and mutational analysis implicated the distal surface away from the bound DNA as the dimerization interface. Hydroxyl radical DNA footprinting indicated that the site-specifically bound PU.1 dimers occupied an extended DNA interface downstream from the 5'-GGAA-3' core consensus relative to its 1:1 counterpart, thus explaining the apparent site size requirement for sequential dimerization. The site-specifically bound PU.1 dimer resisted competition from nonspecific DNA and showed affinities similar to other functionally significant PU.1 interactions. As sequential dimerization did not occur with the ETS domain of Ets-1, a close structural homolog of PU.1, 2:1 complex formation may represent an alternative autoinhibitory mechanism in the ETS family at the protein-DNA level. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. New insights from molecular dynamic simulation studies of the multiple binding modes of a ligand with G-quadruplex DNA.

    PubMed

    Hou, Jin-Qiang; Chen, Shuo-Bin; Tan, Jia-Heng; Luo, Hai-Bin; Li, Ding; Gu, Lian-Quan; Huang, Zhi-Shu

    2012-12-01

    G-quadruplexes are higher-order DNA and RNA structures formed from guanine-rich sequences. These structures have recently emerged as a new class of potential molecular targets for anticancer drugs. An understanding of the three-dimensional interactions between small molecular ligands and their G-quadruplex targets in solution is crucial for rational drug design and the effective optimization of G-quadruplex ligands. Thus far, rational ligand design has been focused mainly on the G-quartet platform. It should be noted that small molecules can also bind to loop nucleotides, as observed in crystallography studies. Hence, it would be interesting to elucidate the mechanism underlying how ligands in distinct binding modes influence the flexibility of G-quadruplex. In the present study, based on a crystal structure analysis, the models of a tetra-substituted naphthalene diimide ligand bound to a telomeric G-quadruplex with different modes were built and simulated with a molecular dynamics simulation method. Based on a series of computational analyses, the structures, dynamics, and interactions of ligand-quadruplex complexes were studied. Our results suggest that the binding of the ligand to the loop is viable in aqueous solutions but dependent on the particular arrangement of the loop. The binding of the ligand to the loop enhances the flexibility of the G-quadruplex, while the binding of the ligand simultaneously to both the quartet and the loop diminishes its flexibility. These results add to our understanding of the effect of a ligand with different binding modes on G-quadruplex flexibility. Such an understanding will aid in the rational design of more selective and effective G-quadruplex binding ligands.

  10. Multiple Modes of Binding Enhance the Affinity of DC-SIGN for High-Mannose N-Linked Glycans Found on Viral Glycoproteins

    SciTech Connect

    Feinberg, H.; Castelli, R.; Drickamer, K.; Seeberger, P.H.; Weis, W.I.; /Stanford U., Med. School /Zurich, ETH /Imperial Coll., London

    2007-07-09

    The dendritic cell surface receptor DC-SIGN and the closely related endothelial cell receptor DC-SIGNR specifically recognize high mannose N-linked carbohydrates on viral pathogens. Previous studies have shown that these receptors bind the outer trimannose branch Man{alpha}1-3[Man{alpha}1-6]Man{alpha} present in high mannose structures. Although the trimannoside binds to DC-SIGN or DC-SIGNR more strongly than mannose, additional affinity enhancements are observed in the presence of one or more Man{alpha}1-2Man{alpha} moieties on the nonreducing termini of oligomannose structures. The molecular basis of this enhancement has been investigated by determining crystal structures of DC-SIGN bound to a synthetic six-mannose fragment of a high mannose N-linked oligosaccharide, Man{alpha}1-2Man{alpha}1-3[Man{alpha}1-2Man{alpha}1-6]Man{alpha}1-6Man and to the disaccharide Man{alpha}1-2Man. The structures reveal mixtures of two binding modes in each case. Each mode features typical C-type lectin binding at the principal Ca{sup 2+}-binding site by one mannose residue. In addition, other sugar residues form contacts unique to each binding mode. These results suggest that the affinity enhancement displayed toward oligosaccharides decorated with the Man{alpha}1-2Man{alpha} structure is due in part to multiple binding modes at the primary Ca{sup 2+} site, which provide both additional contacts and a statistical (entropic) enhancement of binding.

  11. Mixed Mode Matrix Multiplication

    SciTech Connect

    Meng-Shiou Wu; Srinivas Aluru; Ricky A. Kendall

    2004-09-30

    In modern clustering environments where the memory hierarchy has many layers (distributed memory, shared memory layer, cache,...), an important question is how to fully utilize all available resources and identify the most dominant layer in certain computations. When combining algorithms on all layers together, what would be the best method to get the best performance out of all the resources we have? Mixed mode programming model that uses thread programming on the shared memory layer and message passing programming on the distributed memory layer is a method that many researchers are using to utilize the memory resources. In this paper, they take an algorithmic approach that uses matrix multiplication as a tool to show how cache algorithms affect the performance of both shared memory and distributed memory algorithms. They show that with good underlying cache algorithm, overall performance is stable. When underlying cache algorithm is bad, superlinear speedup may occur, and an increasing number of threads may also improve performance.

  12. Rhodopsin TM6 Can Interact with Two Separate and Distinct Sites on Arrestin: Evidence for Structural Plasticity and Multiple Docking Modes in Arrestin–Rhodopsin Binding

    PubMed Central

    2015-01-01

    Various studies have implicated the concave surface of arrestin in the binding of the cytosolic surface of rhodopsin. However, specific sites of contact between the two proteins have not previously been defined in detail. Here, we report that arrestin shares part of the same binding site on rhodopsin as does the transducin Gα subunit C-terminal tail, suggesting binding of both proteins to rhodopsin may share some similar underlying mechanisms. We also identify two areas of contact between the proteins near this region. Both sites lie in the arrestin N-domain, one in the so-called “finger” loop (residues 67–79) and the other in the 160 loop (residues 155–165). We mapped these sites using a novel tryptophan-induced quenching method, in which we introduced Trp residues into arrestin and measured their ability to quench the fluorescence of bimane probes attached to cysteine residues on TM6 of rhodopsin (T242C and T243C). The involvement of finger loop binding to rhodopsin was expected, but the evidence of the arrestin 160 loop contacting rhodopsin was not. Remarkably, our data indicate one site on rhodopsin can interact with multiple structurally separate sites on arrestin that are almost 30 Å apart. Although this observation at first seems paradoxical, in fact, it provides strong support for recent hypotheses that structural plasticity and conformational changes are involved in the arrestin–rhodopsin binding interface and that the two proteins may be able to interact through multiple docking modes, with arrestin binding to both monomeric and dimeric rhodopsin. PMID:24724832

  13. Structure of the Human Angiotensin II Type 1 (AT1) Receptor Bound to Angiotensin II from Multiple Chemoselective Photoprobe Contacts Reveals a Unique Peptide Binding Mode*

    PubMed Central

    Fillion, Dany; Cabana, Jérôme; Guillemette, Gaétan; Leduc, Richard; Lavigne, Pierre; Escher, Emanuel

    2013-01-01

    Breakthroughs in G protein-coupled receptor structure determination based on crystallography have been mainly obtained from receptors occupied in their transmembrane domain core by low molecular weight ligands, and we have only recently begun to elucidate how the extracellular surface of G protein-coupled receptors (GPCRs) allows for the binding of larger peptide molecules. In the present study, we used a unique chemoselective photoaffinity labeling strategy, the methionine proximity assay, to directly identify at physiological conditions a total of 38 discrete ligand/receptor contact residues that form the extracellular peptide-binding site of an activated GPCR, the angiotensin II type 1 receptor. This experimental data set was used in homology modeling to guide the positioning of the angiotensin II (AngII) peptide within several GPCR crystal structure templates. We found that the CXC chemokine receptor type 4 accommodated the results better than the other templates evaluated; ligand/receptor contact residues were spatially grouped into defined interaction clusters with AngII. In the resulting receptor structure, a β-hairpin fold in extracellular loop 2 in conjunction with two extracellular disulfide bridges appeared to open and shape the entrance of the ligand-binding site. The bound AngII adopted a somewhat vertical binding mode, allowing concomitant contacts across the extracellular surface and deep within the transmembrane domain core of the receptor. We propose that such a dualistic nature of GPCR interaction could be well suited for diffusible linear peptide ligands and a common feature of other peptidergic class A GPCRs. PMID:23386604

  14. Structure of the human angiotensin II type 1 (AT1) receptor bound to angiotensin II from multiple chemoselective photoprobe contacts reveals a unique peptide binding mode.

    PubMed

    Fillion, Dany; Cabana, Jérôme; Guillemette, Gaétan; Leduc, Richard; Lavigne, Pierre; Escher, Emanuel

    2013-03-22

    Breakthroughs in G protein-coupled receptor structure determination based on crystallography have been mainly obtained from receptors occupied in their transmembrane domain core by low molecular weight ligands, and we have only recently begun to elucidate how the extracellular surface of G protein-coupled receptors (GPCRs) allows for the binding of larger peptide molecules. In the present study, we used a unique chemoselective photoaffinity labeling strategy, the methionine proximity assay, to directly identify at physiological conditions a total of 38 discrete ligand/receptor contact residues that form the extracellular peptide-binding site of an activated GPCR, the angiotensin II type 1 receptor. This experimental data set was used in homology modeling to guide the positioning of the angiotensin II (AngII) peptide within several GPCR crystal structure templates. We found that the CXC chemokine receptor type 4 accommodated the results better than the other templates evaluated; ligand/receptor contact residues were spatially grouped into defined interaction clusters with AngII. In the resulting receptor structure, a β-hairpin fold in extracellular loop 2 in conjunction with two extracellular disulfide bridges appeared to open and shape the entrance of the ligand-binding site. The bound AngII adopted a somewhat vertical binding mode, allowing concomitant contacts across the extracellular surface and deep within the transmembrane domain core of the receptor. We propose that such a dualistic nature of GPCR interaction could be well suited for diffusible linear peptide ligands and a common feature of other peptidergic class A GPCRs.

  15. Cooperative binding: a multiple personality.

    PubMed

    Martini, Johannes W R; Diambra, Luis; Habeck, Michael

    2016-06-01

    Cooperative binding has been described in many publications and has been related to or defined by several different properties of the binding behavior of the ligand to the target molecule. In addition to the commonly used Hill coefficient, other characteristics such as a sigmoidal shape of the overall titration curve in a linear plot, a change of ligand affinity of the other binding sites when a site of the target molecule becomes occupied, or complex roots of the binding polynomial have been used to define or to quantify cooperative binding. In this work, we analyze how the different properties are related in the most general model for binding curves based on the grand canonical partition function and present several examples which highlight differences between the cooperativity characterizing properties which are discussed. Our results mainly show that among the presented definitions there are not two which fully coincide. Moreover, this work poses the question whether it can make sense to distinguish between positive and negative cooperativity based on the macroscopic binding isotherm only. This article shall emphasize that scientists who investigate cooperative effects in biological systems could help avoiding misunderstandings by stating clearly which kind of cooperativity they discuss.

  16. Landscape of protein–small ligand binding modes

    PubMed Central

    Kinoshita, Kengo

    2016-01-01

    Abstract Elucidating the mechanisms of specific small‐molecule (ligand) recognition by proteins is a long‐standing conundrum. While the structures of these molecules, proteins and ligands, have been extensively studied, protein–ligand interactions, or binding modes, have not been comprehensively analyzed. Although methods for assessing similarities of binding site structures have been extensively developed, the methods for the computational treatment of binding modes have not been well established. Here, we developed a computational method for encoding the information about binding modes as graphs, and assessing their similarities. An all‐against‐all comparison of 20,040 protein–ligand complexes provided the landscape of the protein–ligand binding modes and its relationships with protein‐ and chemical spaces. While similar proteins in the same SCOP Family tend to bind relatively similar ligands with similar binding modes, the correlation between ligand and binding similarities was not very high (R 2 = 0.443). We found many pairs with novel relationships, in which two evolutionally distant proteins recognize dissimilar ligands by similar binding modes (757,474 pairs out of 200,790,780 pairs were categorized into this relationship, in our dataset). In addition, there were an abundance of pairs of homologous proteins binding to similar ligands with different binding modes (68,217 pairs). Our results showed that many interesting relationships between protein–ligand complexes are still hidden in the structure database, and our new method for assessing binding mode similarities is effective to find them. PMID:27327045

  17. When Does Chemical Elaboration Induce a Ligand To Change Its Binding Mode?

    PubMed

    Malhotra, Shipra; Karanicolas, John

    2017-01-12

    Traditional hit-to-lead optimization assumes that upon elaboration of chemical structure, the ligand retains its binding mode relative to the receptor. Here, we build a large-scale collection of related ligand pairs solved in complex with the same protein partner: we find that for 41 of 297 pairs (14%), the binding mode changes upon elaboration of the smaller ligand. While certain ligand physiochemical properties predispose changes in binding mode, particularly those properties that define fragments, simple structure-based modeling proves far more effective for identifying substitutions that alter the binding mode. Some ligand pairs change binding mode because the added substituent would irreconcilably conflict with the receptor in the original pose, whereas others change because the added substituent enables new, stronger interactions that are available only in a different pose. Scaffolds that can engage their target using alternate poses may enable productive structure-based optimization along multiple divergent pathways.

  18. The central distribution of a corticotropin-releasing factor (CRF)-binding protein predicts multiple sites and modes of interaction with CRF.

    PubMed Central

    Potter, E; Behan, D P; Linton, E A; Lowry, P J; Sawchenko, P E; Vale, W W

    1992-01-01

    In recent studies to clone and characterize genes coding for the corticotropin-releasing factor-binding protein (CRF-BP), analysis of the tissue distribution of the CRF-BP gene indicated a high level of expression in the rat brain. We have now characterized by immunohistochemical and hybridization histochemical means the cellular localization of CRF-BP protein and mRNA expression, respectively. Results from both approaches converged to indicate that CRF-BP is expressed predominantly in the cerebral cortex, including all major archi-, paleo-, and neocortical fields. Other prominent sites of mRNA and protein expression include subcortical limbic system structures (amygdala, bed nucleus of the stria terminalis), sensory relays associated with the auditory, olfactory, vestibular, and trigeminal systems, severe raphe nuclei, and a number of cell groups in the brainstem reticular core. Expression in the hypothalamus appears largely limited to the ventral premammillary and dorsomedial nuclei; only isolated CRF-BP-stained cells are apparent in neurosecretory cell groups. Dual immunostaining for CRF and CRF-BP revealed a partial colocalization in some of these regions. In addition, prominent CRF-BP-stained terminal fields have been identified in association with CRF-expressing cell groups in circumscribed hypothalamic and limbic structures. In the anterior pituitary, CRF-BP mRNA and immunoreactivity were colocalized with corticotropin-immunoreactivity in a majority of corticotropes. Thus, CRF-BP could serve to modify the actions of CRF by intra- and intercellular mechanisms, in CRF-related pathways in the central nervous system and pituitary. Images PMID:1315056

  19. Analysis of Nidogen-1/Laminin γ1 Interaction by Cross-Linking, Mass Spectrometry, and Computational Modeling Reveals Multiple Binding Modes

    PubMed Central

    Lössl, Philip; Kölbel, Knut; Tänzler, Dirk; Nannemann, David; Ihling, Christian H.; Keller, Manuel V.; Schneider, Marian; Zaucke, Frank; Meiler, Jens; Sinz, Andrea

    2014-01-01

    We describe the detailed structural investigation of nidogen-1/laminin γ1 complexes using full-length nidogen-1 and a number of laminin γ1 variants. The interactions of nidogen-1 with laminin variants γ1 LEb2–4, γ1 LEb2–4 N836D, γ1 short arm, and γ1 short arm N836D were investigated by applying a combination of (photo-)chemical cross-linking, high-resolution mass spectrometry, and computational modeling. In addition, surface plasmon resonance and ELISA studies were used to determine kinetic constants of the nidogen-1/laminin γ1 interaction. Two complementary cross-linking strategies were pursued to analyze solution structures of laminin γ1 variants and nidogen-1. The majority of distance information was obtained with the homobifunctional amine-reactive cross-linker bis(sulfosuccinimidyl)glutarate. In a second approach, UV-induced cross-linking was performed after incorporation of the diazirine-containing unnatural amino acids photo-leucine and photo-methionine into laminin γ1 LEb2–4, laminin γ1 short arm, and nidogen-1. Our results indicate that Asn-836 within laminin γ1 LEb3 domain is not essential for complex formation. Cross-links between laminin γ1 short arm and nidogen-1 were found in all protein regions, evidencing several additional contact regions apart from the known interaction site. Computational modeling based on the cross-linking constraints indicates the existence of a conformational ensemble of both the individual proteins and the nidogen-1/laminin γ1 complex. This finding implies different modes of interaction resulting in several distinct protein-protein interfaces. PMID:25387007

  20. Analysis of nidogen-1/laminin γ1 interaction by cross-linking, mass spectrometry, and computational modeling reveals multiple binding modes.

    PubMed

    Lössl, Philip; Kölbel, Knut; Tänzler, Dirk; Nannemann, David; Ihling, Christian H; Keller, Manuel V; Schneider, Marian; Zaucke, Frank; Meiler, Jens; Sinz, Andrea

    2014-01-01

    We describe the detailed structural investigation of nidogen-1/laminin γ1 complexes using full-length nidogen-1 and a number of laminin γ1 variants. The interactions of nidogen-1 with laminin variants γ1 LEb2-4, γ1 LEb2-4 N836D, γ1 short arm, and γ1 short arm N836D were investigated by applying a combination of (photo-)chemical cross-linking, high-resolution mass spectrometry, and computational modeling. In addition, surface plasmon resonance and ELISA studies were used to determine kinetic constants of the nidogen-1/laminin γ1 interaction. Two complementary cross-linking strategies were pursued to analyze solution structures of laminin γ1 variants and nidogen-1. The majority of distance information was obtained with the homobifunctional amine-reactive cross-linker bis(sulfosuccinimidyl)glutarate. In a second approach, UV-induced cross-linking was performed after incorporation of the diazirine-containing unnatural amino acids photo-leucine and photo-methionine into laminin γ1 LEb2-4, laminin γ1 short arm, and nidogen-1. Our results indicate that Asn-836 within laminin γ1 LEb3 domain is not essential for complex formation. Cross-links between laminin γ1 short arm and nidogen-1 were found in all protein regions, evidencing several additional contact regions apart from the known interaction site. Computational modeling based on the cross-linking constraints indicates the existence of a conformational ensemble of both the individual proteins and the nidogen-1/laminin γ1 complex. This finding implies different modes of interaction resulting in several distinct protein-protein interfaces.

  1. DNA synthesis determines the binding mode of the human mitochondrial single-stranded DNA-binding protein

    PubMed Central

    Morin, José A.; Cerrón, Fernando; Jarillo, Javier; Beltran-Heredia, Elena; Ciesielski, Grzegorz L.; Arias-Gonzalez, J. Ricardo

    2017-01-01

    Abstract Single-stranded DNA-binding proteins (SSBs) play a key role in genome maintenance, binding and organizing single-stranded DNA (ssDNA) intermediates. Multimeric SSBs, such as the human mitochondrial SSB (HmtSSB), present multiple sites to interact with ssDNA, which has been shown in vitro to enable them to bind a variable number of single-stranded nucleotides depending on the salt and protein concentration. It has long been suggested that different binding modes might be used selectively for different functions. To study this possibility, we used optical tweezers to determine and compare the structure and energetics of long, individual HmtSSB–DNA complexes assembled on preformed ssDNA and on ssDNA generated gradually during ‘in situ’ DNA synthesis. We show that HmtSSB binds to preformed ssDNA in two major modes, depending on salt and protein concentration. However, when protein binding was coupled to strand-displacement DNA synthesis, only one of the two binding modes was observed under all experimental conditions. Our results reveal a key role for the gradual generation of ssDNA in modulating the binding mode of a multimeric SSB protein and consequently, in generating the appropriate nucleoprotein structure for DNA synthetic reactions required for genome maintenance. PMID:28486639

  2. DNA synthesis determines the binding mode of the human mitochondrial single-stranded DNA-binding protein.

    PubMed

    Morin, José A; Cerrón, Fernando; Jarillo, Javier; Beltran-Heredia, Elena; Ciesielski, Grzegorz L; Arias-Gonzalez, J Ricardo; Kaguni, Laurie S; Cao, Francisco J; Ibarra, Borja

    2017-07-07

    Single-stranded DNA-binding proteins (SSBs) play a key role in genome maintenance, binding and organizing single-stranded DNA (ssDNA) intermediates. Multimeric SSBs, such as the human mitochondrial SSB (HmtSSB), present multiple sites to interact with ssDNA, which has been shown in vitro to enable them to bind a variable number of single-stranded nucleotides depending on the salt and protein concentration. It has long been suggested that different binding modes might be used selectively for different functions. To study this possibility, we used optical tweezers to determine and compare the structure and energetics of long, individual HmtSSB-DNA complexes assembled on preformed ssDNA and on ssDNA generated gradually during 'in situ' DNA synthesis. We show that HmtSSB binds to preformed ssDNA in two major modes, depending on salt and protein concentration. However, when protein binding was coupled to strand-displacement DNA synthesis, only one of the two binding modes was observed under all experimental conditions. Our results reveal a key role for the gradual generation of ssDNA in modulating the binding mode of a multimeric SSB protein and consequently, in generating the appropriate nucleoprotein structure for DNA synthetic reactions required for genome maintenance. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Binding mode and affinity studies of DNA-binding agents using topoisomerase I DNA unwinding assay.

    PubMed

    McKnight, Ruel E; Gleason, Aaron B; Keyes, James A; Sahabi, Sadia

    2007-02-15

    A topoisomerase I DNA unwinding assay has been used to determine the relative DNA-binding affinities of a model pair of homologous naphthalene diimides. Binding affinity data were corroborated using calorimetric (ITC) and spectrophotometric (titration and T(m)) studies, with substituent size playing a significant role in binding. The assay was also used to investigate the mode of binding adopted by several known DNA-binding agents, including SYBR Green and PicoGreen. Some of the compounds exhibited unexpected binding modes.

  4. Inhibiting multiple mode vibration in controlled flexible systems

    NASA Technical Reports Server (NTRS)

    Hyde, James M.; Chang, Kenneth W.; Seering, Warren P.

    1991-01-01

    Viewgraphs on inhibiting multiple mode vibration in controlled flexible systems are presented. Topics covered include: input pre-shaping background; developing multiple-mode shapers; Middeck Active Control Experiment (MACE) test article; and tests and results.

  5. Multiple Mode Actuation of a Turbulent Jet

    NASA Technical Reports Server (NTRS)

    Pack, LaTunia G.; Seifert, Avi

    2001-01-01

    The effects of multiple mode periodic excitation on the evolution of a circular turbulent jet were studied experimentally. A short, wide-angle diffuser was attached to the jet exit. Streamwise and cross-stream excitations were introduced at the junction between the jet exit and the diffuser inlet on opposing sides of the jet. The introduction of high amplitude, periodic excitation in the streamwise direction enhances the mixing and promotes attachment of the jet shear-layer to the diffuser wall. Cross-stream excitation applied over a fraction of the jet circumference can deflect the jet away from the excitation slot. The two modes of excitation were combined using identical frequencies and varying the relative phase between the two actuators in search of an optimal response. It is shown that, for low and moderate periodic momentum input levels, the jet deflection angles depend strongly on the relative phase between the two actuators. Optimum performance is achieved when the phase difference is pi +/- pi/6. The lower effectiveness of the equal phase excitation is attributed to the generation of an azimuthally symmetric mode that does not produce the required non-axisymmetric vectoring. For high excitation levels, identical phase becomes more effective, while phase sensitivity decreases. An important finding was that with proper phase tuning, two unsteady actuators can be combined to obtain a non-linear response greater than the superposition of the individual effects.

  6. Fluoroquinolone-gyrase-DNA complexes: two modes of drug binding.

    PubMed

    Mustaev, Arkady; Malik, Muhammad; Zhao, Xilin; Kurepina, Natalia; Luan, Gan; Oppegard, Lisa M; Hiasa, Hiroshi; Marks, Kevin R; Kerns, Robert J; Berger, James M; Drlica, Karl

    2014-05-02

    DNA gyrase and topoisomerase IV control bacterial DNA topology by breaking DNA, passing duplex DNA through the break, and then resealing the break. This process is subject to reversible corruption by fluoroquinolones, antibacterials that form drug-enzyme-DNA complexes in which the DNA is broken. The complexes, called cleaved complexes because of the presence of DNA breaks, have been crystallized and found to have the fluoroquinolone C-7 ring system facing the GyrB/ParE subunits. As expected from x-ray crystallography, a thiol-reactive, C-7-modified chloroacetyl derivative of ciprofloxacin (Cip-AcCl) formed cross-linked cleaved complexes with mutant GyrB-Cys(466) gyrase as evidenced by resistance to reversal by both EDTA and thermal treatments. Surprisingly, cross-linking was also readily seen with complexes formed by mutant GyrA-G81C gyrase, thereby revealing a novel drug-gyrase interaction not observed in crystal structures. The cross-link between fluoroquinolone and GyrA-G81C gyrase correlated with exceptional bacteriostatic activity for Cip-AcCl with a quinolone-resistant GyrA-G81C variant of Escherichia coli and its Mycobacterium smegmatis equivalent (GyrA-G89C). Cip-AcCl-mediated, irreversible inhibition of DNA replication provided further evidence for a GyrA-drug cross-link. Collectively these data establish the existence of interactions between the fluoroquinolone C-7 ring and both GyrA and GyrB. Because the GyrA-Gly(81) and GyrB-Glu(466) residues are far apart (17 Å) in the crystal structure of cleaved complexes, two modes of quinolone binding must exist. The presence of two binding modes raises the possibility that multiple quinolone-enzyme-DNA complexes can form, a discovery that opens new avenues for exploring and exploiting relationships between drug structure and activity with type II DNA topoisomerases.

  7. Cooperative binding modes of Cu(II) in prion protein

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Chisnell, Robin; Lu, Wenchang; Bernholc, Jerry

    2007-03-01

    The misfolding of the prion protein, PrP, is responsible for a group of neurodegenerative diseases including mad cow disease and Creutzfeldt-Jakob disease. It is known that the PrP can efficiently bind copper ions; four high-affinity binding sites located in the octarepeat region of PrP are now well known. Recent experiments suggest that at low copper concentrations new binding modes, in which one copper ion is shared between two or more binding sites, are possible. Using our hybrid Thomas-Fermi/DFT computational scheme, which is well suited for simulations of biomolecules in solution, we investigate the geometries and energetics of two, three and four binding sites cooperatively binding one copper ion. These geometries are then used as inputs for classical molecular dynamics simulations. We find that copper binding affects the secondary structure of the PrP and that it stabilizes the unstructured (unfolded) part of the protein.

  8. Predicting bioactive conformations and binding modes of macrocycles

    NASA Astrophysics Data System (ADS)

    Anighoro, Andrew; de la Vega de León, Antonio; Bajorath, Jürgen

    2016-10-01

    Macrocyclic compounds experience increasing interest in drug discovery. It is often thought that these large and chemically complex molecules provide promising candidates to address difficult targets and interfere with protein-protein interactions. From a computational viewpoint, these molecules are difficult to treat. For example, flexible docking of macrocyclic compounds is hindered by the limited ability of current docking approaches to optimize conformations of extended ring systems for pose prediction. Herein, we report predictions of bioactive conformations of macrocycles using conformational search and binding modes using docking. Conformational ensembles generated using specialized search technique of about 70 % of the tested macrocycles contained accurate bioactive conformations. However, these conformations were difficult to identify on the basis of conformational energies. Moreover, docking calculations with limited ligand flexibility starting from individual low energy conformations rarely yielded highly accurate binding modes. In about 40 % of the test cases, binding modes were approximated with reasonable accuracy. However, when conformational ensembles were subjected to rigid body docking, an increase in meaningful binding mode predictions to more than 50 % of the test cases was observed. Electrostatic effects did not contribute to these predictions in a positive or negative manner. Rather, achieving shape complementarity at macrocycle-target interfaces was a decisive factor. In summary, a combined computational protocol using pre-computed conformational ensembles of macrocycles as a starting point for docking shows promise in modeling binding modes of macrocyclic compounds.

  9. Structure-based Understanding of Binding Affinity and Mode ...

    EPA Pesticide Factsheets

    The flexible hydrophobic ligand binding pocket (LBP) of estrogen receptor α (ERα) allows the binding of a wide variety of endocrine disruptors. Upon ligand binding, the LBP reshapes around the contours of the ligand and stabilizes the complex by complementary hydrophobic interactions and specific hydrogen bonds with the ligand. Here we present a framework for quantitative analysis of the steric and electronic features of the human ERα-ligand complex using three dimensional (3D) protein-ligand interaction description combined with 3D-QSAR approach. An empirical hydrophobicity density field is applied to account for hydrophobic contacts of ligand within the LBP. The obtained 3D-QSAR model revealed that hydrophobic contacts primarily determine binding affinity and govern binding mode with hydrogen bonds. Several residues of the LBP appear to be quite flexible and adopt a spectrum of conformations in various ERα-ligand complexes, in particular His524. The 3D-QSAR was combined with molecular docking based on three receptor conformations to accommodate receptor flexibility. The model indicates that the dynamic character of the LBP allows accommodation and stable binding of structurally diverse ligands, and proper representation of the protein flexibility is critical for reasonable description of binding of the ligands. Our results provide a quantitative and mechanistic understanding of binding affinity and mode of ERα agonists and antagonists that may be applicab

  10. How To Deal with Multiple Binding Poses in Alchemical Relative Protein–Ligand Binding Free Energy Calculations

    PubMed Central

    2016-01-01

    Recent advances in improved force fields and sampling methods have made it possible for the accurate calculation of protein–ligand binding free energies. Alchemical free energy perturbation (FEP) using an explicit solvent model is one of the most rigorous methods to calculate relative binding free energies. However, for cases where there are high energy barriers separating the relevant conformations that are important for ligand binding, the calculated free energy may depend on the initial conformation used in the simulation due to the lack of complete sampling of all the important regions in phase space. This is particularly true for ligands with multiple possible binding modes separated by high energy barriers, making it difficult to sample all relevant binding modes even with modern enhanced sampling methods. In this paper, we apply a previously developed method that provides a corrected binding free energy for ligands with multiple binding modes by combining the free energy results from multiple alchemical FEP calculations starting from all enumerated poses, and the results are compared with Glide docking and MM-GBSA calculations. From these calculations, the dominant ligand binding mode can also be predicted. We apply this method to a series of ligands that bind to c-Jun N-terminal kinase-1 (JNK1) and obtain improved free energy results. The dominant ligand binding modes predicted by this method agree with the available crystallography, while both Glide docking and MM-GBSA calculations incorrectly predict the binding modes for some ligands. The method also helps separate the force field error from the ligand sampling error, such that deviations in the predicted binding free energy from the experimental values likely indicate possible inaccuracies in the force field. An error in the force field for a subset of the ligands studied was identified using this method, and improved free energy results were obtained by correcting the partial charges assigned to the

  11. How to deal with multiple binding poses in alchemical relative protein-ligand binding free energy calculations.

    PubMed

    Kaus, Joseph W; Harder, Edward; Lin, Teng; Abel, Robert; McCammon, J Andrew; Wang, Lingle

    2015-06-09

    Recent advances in improved force fields and sampling methods have made it possible for the accurate calculation of protein–ligand binding free energies. Alchemical free energy perturbation (FEP) using an explicit solvent model is one of the most rigorous methods to calculate relative binding free energies. However, for cases where there are high energy barriers separating the relevant conformations that are important for ligand binding, the calculated free energy may depend on the initial conformation used in the simulation due to the lack of complete sampling of all the important regions in phase space. This is particularly true for ligands with multiple possible binding modes separated by high energy barriers, making it difficult to sample all relevant binding modes even with modern enhanced sampling methods. In this paper, we apply a previously developed method that provides a corrected binding free energy for ligands with multiple binding modes by combining the free energy results from multiple alchemical FEP calculations starting from all enumerated poses, and the results are compared with Glide docking and MM-GBSA calculations. From these calculations, the dominant ligand binding mode can also be predicted. We apply this method to a series of ligands that bind to c-Jun N-terminal kinase-1 (JNK1) and obtain improved free energy results. The dominant ligand binding modes predicted by this method agree with the available crystallography, while both Glide docking and MM-GBSA calculations incorrectly predict the binding modes for some ligands. The method also helps separate the force field error from the ligand sampling error, such that deviations in the predicted binding free energy from the experimental values likely indicate possible inaccuracies in the force field. An error in the force field for a subset of the ligands studied was identified using this method, and improved free energy results were obtained by correcting the partial charges assigned to the

  12. Detection and characterization of nonspecific, sparsely-populated binding modes in the early stages of complexation

    PubMed Central

    Cardone, A.; Bornstein, A.; Pant, H. C.; Brady, M.; Sriram, R.; Hassan, S. A.

    2015-01-01

    A method is proposed to study protein-ligand binding in a system governed by specific and non-specific interactions. Strong associations lead to narrow distributions in the proteins configuration space; weak and ultra-weak associations lead instead to broader distributions, a manifestation of non-specific, sparsely-populated binding modes with multiple interfaces. The method is based on the notion that a discrete set of preferential first-encounter modes are metastable states from which stable (pre-relaxation) complexes at equilibrium evolve. The method can be used to explore alternative pathways of complexation with statistical significance and can be integrated into a general algorithm to study protein interaction networks. The method is applied to a peptide-protein complex. The peptide adopts several low-population conformers and binds in a variety of modes with a broad range of affinities. The system is thus well suited to analyze general features of binding, including conformational selection, multiplicity of binding modes, and nonspecific interactions, and to illustrate how the method can be applied to study these problems systematically. The equilibrium distributions can be used to generate biasing functions for simulations of multiprotein systems from which bulk thermodynamic quantities can be calculated. PMID:25782918

  13. Active control of multiple resistive wall modes

    NASA Astrophysics Data System (ADS)

    Brunsell, P. R.; Yadikin, D.; Gregoratto, D.; Paccagnella, R.; Liu, Y. Q.; Bolzonella, T.; Cecconello, M.; Drake, J. R.; Kuldkepp, M.; Manduchi, G.; Marchiori, G.; Marrelli, L.; Martin, P.; Menmuir, S.; Ortolani, S.; Rachlew, E.; Spizzo, G.; Zanca, P.

    2005-12-01

    A two-dimensional array of saddle coils at Mc poloidal and Nc toroidal positions is used on the EXTRAP T2R reversed-field pinch (Brunsell P R et al 2001 Plasma Phys. Control. Fusion 43 1457) to study active control of resistive wall modes (RWMs). Spontaneous growth of several RWMs with poloidal mode number m = 1 and different toroidal mode number n is observed experimentally, in agreement with linear MHD modelling. The measured plasma response to a controlled coil field and the plasma response computed using the linear circular cylinder MHD model are in quantitive agreement. Feedback control introduces a linear coupling of modes with toroidal mode numbers n, n' that fulfil the condition |n - n'| = Nc. Pairs of coupled unstable RWMs are present in feedback experiments with an array of Mc × Nc = 4 × 16 coils. Using intelligent shell feedback, the coupled modes are generally not controlled even though the field is suppressed at the active coils. A better suppression of coupled modes may be achieved in the case of rotating modes by using the mode control feedback scheme with individually set complex gains. In feedback with a larger array of Mc × Nc = 4 × 32 coils, the coupling effect largely disappears, and with this array, the main internal RWMs n = -11, -10, +5, +6 are all simultaneously suppressed throughout the discharge (7 8 wall times). With feedback there is a two-fold extension of the pulse length, compared to discharges without feedback.

  14. Multiple Modes of Inquiry in Earth Science

    ERIC Educational Resources Information Center

    Kastens, Kim A.; Rivet, Ann

    2008-01-01

    To help teachers enrich their students' understanding of inquiry in Earth science, this article describes six modes of inquiry used by practicing geoscientists (Earth scientists). Each mode of inquiry is illustrated by using examples of seminal or pioneering research and provides pointers to investigations that enable students to experience these…

  15. Multiple Modes of Inquiry in Earth Science

    ERIC Educational Resources Information Center

    Kastens, Kim A.; Rivet, Ann

    2008-01-01

    To help teachers enrich their students' understanding of inquiry in Earth science, this article describes six modes of inquiry used by practicing geoscientists (Earth scientists). Each mode of inquiry is illustrated by using examples of seminal or pioneering research and provides pointers to investigations that enable students to experience these…

  16. Observation of Protein Structural Vibrational Mode Sensitivity to Ligand Binding

    NASA Astrophysics Data System (ADS)

    Niessen, Katherine; Xu, Mengyang; Snell, Edward; Markelz, Andrea

    2014-03-01

    We report the first measurements of the dependence of large-scale protein intramolecular vibrational modes on ligand binding. These collective vibrational modes in the terahertz (THz) frequency range (5-100 cm-1) are of great interest due to their predicted relation to protein function. Our technique, Crystals Anisotropy Terahertz Microscopy (CATM), allows for room temperature, table-top measurements of the optically active intramolecular modes. CATM measurements have revealed surprisingly narrowband features. CATM measurements are performed on single crystals of chicken egg-white lysozyme (CEWL) as well as CEWL bound to tri-N-acetylglucosamine (CEWL-3NAG) inhibitor. We find narrow band resonances that dramatically shift with binding. Quasiharmonic calculations are performed on CEWL and CEWL-3NAG proteins with CHARMM using normal mode analysis. The expected CATM response of the crystals is then calculated by summing over all protein orientations within the unit cell. We will compare the CATM measurements with the calculated results and discuss the changes which arise with protein-ligand binding. This work is supported by NSF grant MRI 2 grant DBI2959989.

  17. Carboxylate binding modes in zinc proteins: a theoretical study.

    PubMed

    Ryde, U

    1999-11-01

    The relative energies of different coordination modes (bidentate, monodentate, syn, and anti) of a carboxylate group bound to a zinc ion have been studied by the density functional method B3LYP with large basis sets on realistic models of the active site of several zinc proteins. In positively charged four-coordinate complexes, the mono- and bidentate coordination modes have almost the same energy (within 10 kJ/mol). However, if there are negatively charged ligands other than the carboxylate group, the monodentate binding mode is favored. In general, the energy difference between monodentate and bidentate coordination is small, 4-24 kJ/mol, and it is determined more by hydrogen-bond interactions with other ligands or second-sphere groups than by the zinc-carboxylate interaction. Similarly, the activation energy for the conversion between the two coordination modes is small, approximately 6 kJ/mol, indicating a very flat Zn-O potential surface. The energy difference between syn and anti binding modes of the monodentate carboxylate group is larger, 70-100 kJ/mol, but this figure again strongly depends on interactions with second-sphere molecules. Our results also indicate that the pK(a) of the zinc-bound water ligand in carboxypeptidase and thermolysin is 8-9.

  18. Probing the binding mode of psoralen to calf thymus DNA.

    PubMed

    Zhou, Xiaoyue; Zhang, Guowen; Wang, Langhong

    2014-06-01

    The binding properties between psoralen (PSO) and calf thymus DNA (ctDNA) were predicted by molecular docking, and then determined with the use of UV-vis absorption, fluorescence, circular dichroism (CD) and Fourier transform infrared (FT-IR) spectroscopy, coupled with DNA melting and viscosity measurements. The data matrix obtained from UV-vis spectra was resolved by multivariate curve resolution-alternating least squares (MCR-ALS) approach. The pure spectra and the equilibrium concentration profiles for PSO, ctDNA and PSO-ctDNA complex extracted from the highly overlapping composite response were obtained simultaneously to evaluate the PSO-ctDNA interaction. The intercalation mode of PSO binding to ctDNA was supported by the results from the melting studies, viscosity measurements, iodide quenching and fluorescence polarization experiments, competitive binding investigations and CD analysis. The molecular docking prediction showed that the specific binding most likely occurred between PSO and adenine bases of ctDNA. FT-IR spectra studies further confirmed that PSO preferentially bound to adenine bases, and this binding decreased right-handed helicity of ctDNA and enhanced the degree of base stacking with the preservation of native B-conformation. The calculated thermodynamic parameters indicated that hydrogen bonds and van der Waals forces played a major role in the binding process.

  19. Predicting the binding modes and sites of metabolism of xenobiotics.

    PubMed

    Mukherjee, Goutam; Lal Gupta, Pancham; Jayaram, B

    2015-07-01

    Metabolism studies are an essential integral part of ADMET profiling of drug candidates to evaluate their safety and efficacy. Cytochrome P-450 (CYP) metabolizes a wide variety of xenobiotics/drugs. The binding modes of these compounds with CYP and their intrinsic reactivities decide the metabolic products. We report here a novel computational protocol, which comprises docking of ligands to heme-containing CYPs and prediction of binding energies through a newly developed scoring function, followed by analyses of the docked structures and molecular orbitals of the ligand molecules, for predicting the sites of metabolism (SOM) of ligands. The calculated binding free energies of 121 heme-containing protein-ligand docked complexes yielded a correlation coefficient of 0.84 against experiment. Molecular orbital analyses of the resultant top three unique poses of the docked complexes provided a success rate of 87% in identifying the experimentally known sites of metabolism of the xenobiotics. The SOM prediction methodology is freely accessible at .

  20. Binding Mode Prediction of Evodiamine within Vanilloid Receptor TRPV1

    PubMed Central

    Wang, Zhanli; Sun, Lidan; Yu, Hui; Zhang, Yanhui; Gong, Wuzhuang; Jin, Hongwei; Zhang, Liangren; Liang, Huaping

    2012-01-01

    Accurate assessment of the potential binding mode of drugs is crucial to computer-aided drug design paradigms. It has been reported that evodiamine acts as an agonist of the vanilloid receptor Transient receptor potential vanilloid-1 (TRPV1). However, the precise interaction between evodiamine and TRPV1 was still not fully understood. In this perspective, the homology models of TRPV1 were generated using the crystal structure of the voltage-dependent shaker family K+ channel as a template. We then performed docking and molecular dynamics simulation to gain a better understanding of the probable binding modes of evodiamine within the TRPV1 binding pocket. There are no significant interspecies differences in evodiamine binding in rat, human and rabbit TRPV1 models. Pharmacophore modeling further provided confidence for the validity of the docking studies. This study is the first to shed light on the structural determinants required for the interaction between TRPV1 and evodiamine, and gives new suggestions for the rational design of novel TRPV1 ligands. PMID:22942745

  1. Binding of ethidium to the nucleosome core particle. 2. Internal and external binding modes

    SciTech Connect

    McMurray, C.T.; Small, E.W.; van Holde, K.E. )

    1991-06-11

    The authors have previously reported that the binding of ethidium bromide to the nucleosome core particle results in a stepwise dissociation of the structure which involves the initial release of one copy each of H2A and H2B. In this report, they have examined the absorbance and fluorescence properties of intercalated and outside bound forms of ethidium bromide. From these properties, they have measured the extent of external, electrostatic binding of the dye versus internal, intercalation binding to the core particle, free from contribution by linker DNA. They have established that dissociation is induced by the intercalation mode of binding to DNA within the core particle DNA, and not by binding to the histones or by nonintercalative binding to DNA. The covalent binding of ({sup 3}H)-8-azidoethidium to the core particle clearly shows that < 1.0 adduct is formed per histone octamer over a wide range of input ratios. Simultaneously, analyses of steady-state fluorescence enhancement and fluorescence lifetime data from bound ethidium complexes demonstrate extensive intercalation binding. Combined analyses from steady-state fluorescence intensity with equilibrium dialysis or fluorescence lifetime data revealed that dissociation began when {approximately}14 ethidium molecules are bound by intercalation to each core particle and < 1.0 nonintercalated ion pair was formed per core particle.

  2. The Unique Binding Mode of Laulimalide to Two Tubulin Protofilaments.

    PubMed

    Churchill, Cassandra D M; Klobukowski, Mariusz; Tuszynski, Jack A

    2015-08-01

    Laulimalide, a cancer chemotherapeutic in preclinical development, has a unique binding site located on two adjacent β-tubulin units between tubulin protofilaments of a microtubule. Our extended protein model more accurately mimics the microtubule environment, and together with a 135 ns molecular dynamics simulation, identifies a new binding mode for laulimalide, which differs from the modes presented in work using smaller protein models. The new laulimalide-residue interactions that are computationally revealed explain the contacts observed via independent mass shift perturbation experiments. The inclusion of explicit solvent shows that many laulimalide-tubulin interactions are water mediated. The new contacts between the drug and the microtubule structure not only improve our understanding of laulimalide binding but also will be essential for efficient derivatization and optimization of this prospective cancer chemotherapy agent. Observed changes in secondary protein structure implicate the S7-H9 loop (M-loop) and H1'-S2 loop in the mechanism by which laulimalide stabilizes microtubules to exert its cytotoxic effects.

  3. Multiple movement modes by large herbivores at multiple spatiotemporal scales

    PubMed Central

    Fryxell, John M.; Hazell, Megan; Börger, Luca; Dalziel, Ben D.; Haydon, Daniel T.; Morales, Juan M.; McIntosh, Therese; Rosatte, Rick C.

    2008-01-01

    Recent theory suggests that animals should switch facultatively among canonical movement modes as a complex function of internal state, landscape characteristics, motion capacity, and navigational capacity. We tested the generality of this paradigm for free-ranging elk (Cervus elaphus) over 5 orders of magnitude in time (minutes to years) and space (meters to 100 km). At the coarsest spatiotemporal scale, elk shifted from a dispersive to a home-ranging phase over the course of 1–3 years after introduction into a novel environment. At intermediate spatiotemporal scales, elk continued to alternate between movement modes. During the dispersive phase, elk alternated between encamped and exploratory modes, possibly linked to changes in motivational goals from foraging to social bonding. During the home-ranging phase, elk movements were characterized by a complex interplay between attraction to preferred habitat types and memory of previous movements across the home-range. At the finest temporal and spatial scale, elk used area-restricted search while browsing, interspersed with less sinuous paths when not browsing. Encountering a patch of high-quality food plants triggered the switch from one mode to the next, creating biphasic movement dynamics that were reinforced by local resource heterogeneity. These patterns suggest that multiphasic structure is fundamental to the movement patterns of elk at all temporal and spatial scales tested. PMID:19060190

  4. Structural system reliability under multiple failure modes

    NASA Technical Reports Server (NTRS)

    Mahadevan, S.; Chamis, C. C.

    1993-01-01

    This paper describes a computational method for system reliability estimation of propulsion structures. The failure domain of the entire structural system is computed through the union of failure regions for various critical system failure modes. The effect of non-critical progressive damage is incorporated through structural reanalysis, resulting in the construction of several linear segments to approximately cover the system failure domain. An adaptive damage imposition scheme is outlined for the sake of computational efficiency. The proposed method is used to construct the system survival cdf (cumulative distribution function) of a two-rotor system.

  5. Collective modes in multiband superfluids and superconductors: Multiple dynamical classes

    SciTech Connect

    Ota, Yukihiro; Machida, Masahiko; Koyama, Tomio; Aoki, Hideo

    2011-02-01

    One important way to characterize the states having a gauge symmetry spontaneously broken over multibands is to look at their collective excitation modes. We find that a three-band system has multiple Leggett modes with significantly different masses, which can be classified into different dynamical classes according to whether multiple interband Josephson currents add or cancel. This provides a way to dynamically characterize multiband superconductivity while the pairing symmetry is a static property.

  6. Detection and quantitative analysis of two independent binding modes of a small ligand responsible for DC-SIGN clustering.

    PubMed

    Guzzi, C; Alfarano, P; Sutkeviciute, I; Sattin, S; Ribeiro-Viana, R; Fieschi, F; Bernardi, A; Weiser, J; Rojo, J; Angulo, J; Nieto, P M

    2016-01-07

    DC-SIGN (dendritic cell-specific ICAM-3 grabbing non-integrin) is a C-type lectin receptor (CLR) present, mainly in dendritic cells (DCs), as one of the major pattern recognition receptors (PRRs). This receptor has a relevant role in viral infection processes. Recent approaches aiming to block DC-SIGN have been presented as attractive anti-HIV strategies. DC-SIGN binds mannose or fucose-containing carbohydrates from viral proteins such as the HIV envelope glycoprotein gp120. We have previously demonstrated that multivalent dendrons bearing multiple copies of glycomimetic ligands were able to inhibit DC-SIGN-dependent HIV infection in cervical explant models. Optimization of glycomimetic ligands requires detailed characterization and analysis of their binding modes because they notably influence binding affinities. In a previous study we characterized the binding mode of DC-SIGN with ligand 1, which shows a single binding mode as demonstrated by NMR and X-ray crystallography. In this work we report the binding studies of DC-SIGN with pseudotrisaccharide 2, which has a larger affinity. Their binding was analysed by TR-NOESY and STD NMR experiments, combined with the CORCEMA-ST protocol and molecular modelling. These studies demonstrate that in solution the complex cannot be explained by a single binding mode. We describe the ensemble of ligand bound modes that best fit the experimental data and explain the higher inhibition values found for ligand 2.

  7. Predicting MHC-II binding affinity using multiple instance regression

    PubMed Central

    EL-Manzalawy, Yasser; Dobbs, Drena; Honavar, Vasant

    2011-01-01

    Reliably predicting the ability of antigen peptides to bind to major histocompatibility complex class II (MHC-II) molecules is an essential step in developing new vaccines. Uncovering the amino acid sequence correlates of the binding affinity of MHC-II binding peptides is important for understanding pathogenesis and immune response. The task of predicting MHC-II binding peptides is complicated by the significant variability in their length. Most existing computational methods for predicting MHC-II binding peptides focus on identifying a nine amino acids core region in each binding peptide. We formulate the problems of qualitatively and quantitatively predicting flexible length MHC-II peptides as multiple instance learning and multiple instance regression problems, respectively. Based on this formulation, we introduce MHCMIR, a novel method for predicting MHC-II binding affinity using multiple instance regression. We present results of experiments using several benchmark datasets that show that MHCMIR is competitive with the state-of-the-art methods for predicting MHC-II binding peptides. An online web server that implements the MHCMIR method for MHC-II binding affinity prediction is freely accessible at http://ailab.cs.iastate.edu/mhcmir. PMID:20855923

  8. Simultaneous demultiplexing and steering of multiple orbital angular momentum modes

    PubMed Central

    Li, Shuhui; Wang, Jian

    2015-01-01

    We present a simple scheme to perform simultaneous demultiplexing and steering of multiple orbital angular momentum (OAM) modes using a single complex phase mask. By designing the phase mask, the propagation directions of demultiplexed beams can be arbitrarily steered. System experiments using orthogonal frequency-division multiplexing 32-ary quadrature amplitude modulation (OFDM-32QAM) signals over two OAM modes are carried out by using a two-mode complex phase mask. Moreover, demultiplexing of sixteen OAM modes and arbitrary demultiplexed beam steering are also demonstrated in the experiment. PMID:26503167

  9. Structural Analysis of an Evolved Transketolase Reveals Divergent Binding Modes.

    PubMed

    Affaticati, Pierre E; Dai, Shao-Bo; Payongsri, Panwajee; Hailes, Helen C; Tittmann, Kai; Dalby, Paul A

    2016-10-21

    The S385Y/D469T/R520Q variant of E. coli transketolase was evolved previously with three successive smart libraries, each guided by different structural, bioinformatical or computational methods. Substrate-walking progressively shifted the target acceptor substrate from phosphorylated aldehydes, towards a non-phosphorylated polar aldehyde, a non-polar aliphatic aldehyde, and finally a non-polar aromatic aldehyde. Kinetic evaluations on three benzaldehyde derivatives, suggested that their active-site binding was differentially sensitive to the S385Y mutation. Docking into mutants generated in silico from the wild-type crystal structure was not wholly satisfactory, as errors accumulated with successive mutations, and hampered further smart-library designs. Here we report the crystal structure of the S385Y/D469T/R520Q variant, and molecular docking of three substrates. This now supports our original hypothesis that directed-evolution had generated an evolutionary intermediate with divergent binding modes for the three aromatic aldehydes tested. The new active site contained two binding pockets supporting π-π stacking interactions, sterically separated by the D469T mutation. While 3-formylbenzoic acid (3-FBA) preferred one pocket, and 4-FBA the other, the less well-accepted substrate 3-hydroxybenzaldehyde (3-HBA) was caught in limbo with equal preference for the two pockets. This work highlights the value of obtaining crystal structures of evolved enzyme variants, for continued and reliable use of smart library strategies.

  10. Structural Analysis of an Evolved Transketolase Reveals Divergent Binding Modes

    PubMed Central

    Affaticati, Pierre E.; Dai, Shao-Bo; Payongsri, Panwajee; Hailes, Helen C.; Tittmann, Kai; Dalby, Paul A.

    2016-01-01

    The S385Y/D469T/R520Q variant of E. coli transketolase was evolved previously with three successive smart libraries, each guided by different structural, bioinformatical or computational methods. Substrate-walking progressively shifted the target acceptor substrate from phosphorylated aldehydes, towards a non-phosphorylated polar aldehyde, a non-polar aliphatic aldehyde, and finally a non-polar aromatic aldehyde. Kinetic evaluations on three benzaldehyde derivatives, suggested that their active-site binding was differentially sensitive to the S385Y mutation. Docking into mutants generated in silico from the wild-type crystal structure was not wholly satisfactory, as errors accumulated with successive mutations, and hampered further smart-library designs. Here we report the crystal structure of the S385Y/D469T/R520Q variant, and molecular docking of three substrates. This now supports our original hypothesis that directed-evolution had generated an evolutionary intermediate with divergent binding modes for the three aromatic aldehydes tested. The new active site contained two binding pockets supporting π-π stacking interactions, sterically separated by the D469T mutation. While 3-formylbenzoic acid (3-FBA) preferred one pocket, and 4-FBA the other, the less well-accepted substrate 3-hydroxybenzaldehyde (3-HBA) was caught in limbo with equal preference for the two pockets. This work highlights the value of obtaining crystal structures of evolved enzyme variants, for continued and reliable use of smart library strategies. PMID:27767080

  11. Nonspecific DNA Binding and Bending by HUαβ: Interfaces of the Three Binding Modes Characterized by Salt Dependent Thermodynamics

    PubMed Central

    Koh, Junseock; Shkel, Irina; Saecker, Ruth M.; Record, M. Thomas

    2011-01-01

    Previous ITC and FRET studies demonstrated that Escherichia coli HUαβ binds nonspecifically to duplex DNA in three different binding modes: a tighter-binding 34 bp mode which interacts with DNA in large (>34 bp) gaps between bound proteins, reversibly bending it 140° and thereby increasing its flexibility, and two weaker, modestly cooperative small-site-size modes (10 bp, 6 bp) useful for filling gaps between bound proteins shorter than 34 bp. Here we use ITC to determine the thermodynamics of these binding modes as a function of salt concentration, and deduce that DNA in the 34 bp mode is bent around but not wrapped on the body of HU, in contrast to specific binding of IHF. Analyses of binding isotherms (8, 15, 34 bp DNA) and initial binding heats (34, 38, 160 bp DNA) reveal that all three modes have similar log-log salt concentration derivatives of the binding constants (Ski) even though their binding site sizes differ greatly; most probable values of Ski on 34 bp or larger DNA are − 7.5 ± 0.5. From the similarity of Ski values, we conclude that binding interfaces of all three modes involve the same region of the arms and saddle of HU. All modes are entropy-driven, as expected for nonspecific binding driven by the polyelectrolyte effect. The bent-DNA 34 bp mode is most endothermic, presumably because of the cost of HU-induced DNA bending, while the 6 bp mode is modestly exothermic at all salt concentrations examined. Structural models consistent with the observed Ski values are proposed. PMID:21513716

  12. Multiple ion temperature gradient driven modes in transport barriers

    NASA Astrophysics Data System (ADS)

    Han, M. K.; Wang, Zheng-Xiong; Dong, J. Q.; Du, Huarong

    2017-04-01

    The ion temperature gradient (ITG) modes in transport barriers (TBs) of tokamak plasmas are numerically studied with a code solving gyrokinetic integral eigenvalue equations in toroidal configurations. It is found that multiple ITG modes with conventional and unconventional ballooning mode structures can be excited simultaneously in TBs with steep gradients of ion temperature and density. The characteristics of the modes, including the dependence of the mode frequencies, growth rate and structure on plasma parameters, are systematically investigated. Unconventional modes with large mode-number l (where l denotes a certain parity and peak number in ballooning space) dominate in the large {{k}θ}{ρs} region ({{k}θ}{ρs}≥slant 1.2 ), while the conventional mode with l=0 dominates in the medium {{k}θ}{ρs} region (0.4≤slant {{k}θ}{ρs}<1.2 ), and unconventional modes with small mode-number l dominate in the small {{k}θ}{ρs} region ({{k}θ}{ρs}<0.4 ). Thus, the {{k}θ}{ρs} spectra of these conventional and unconventional modes at steep gradients are qualitatively different from those of the conventional ITG modes at small or medium gradients, in which the growth rate of the only ITG mode with l=0 reaches maximum at the medium value {{k}θ}{ρs}=0.6 . Through scanning ion temperature gradient {{\\varepsilon}T\\text{i}} and density gradient {{\\varepsilon}n} separately, it is proven that the synergetic effect of {{\\varepsilon}T\\text{i}} and {{\\varepsilon}n} , rather than {{\\varepsilon}T\\text{i}} alone, drives the unconventional ITG modes in TBs. Moreover, it is found that the critical value of {{\\varepsilon}n} for driving the unconventional ITG modes with large l number increases with increasing {{k}θ}{ρs} . In addition, the effects of magnetic shear on conventional and unconventional ITG modes in the high confinement regime (H-mode) are analyzed in detail, and compared with equivalent effects on conventional modes in the low and intermediate gradient

  13. Polypharmacology within CXCR4: Multiple binding sites and allosteric behavior

    NASA Astrophysics Data System (ADS)

    Planesas, Jesús M.; Pérez-Nueno, Violeta I.; Borrell, José I.; Teixidó, Jordi

    2014-10-01

    CXCR4 is a promiscuous receptor, which binds multiple diverse ligands. As usual in promiscuous proteins, CXCR4 has a large binding site, with multiple subsites, and high flexibility. Hence, it is not surprising that it is involved in the phenomenon of allosteric modulation. However, incomplete knowledge of allosteric ligand-binding sites has hampered an in-depth molecular understanding of how these inhibitors work. For example, it is known that lipidated fragments of intracellular GPCR loops, so called pepducins, such as pepducin ATI-2341, modulate CXCR4 activity using an agonist allosteric mechanism. Nevertheless, there are also examples of small organic molecules, such as AMD11070 and GSK812397, which may act as antagonist allosteric modulators. Here, we give new insights into this issue by proposing the binding interactions between the CXCR4 receptor and the above-mentioned allosteric modulators. We propose that CXCR4 has minimum two topographically different allosteric binding sites. One allosteric site would be in the intracellular loop 1 (ICL1) where pepducin ATI-2341 would bind to CXCR4, and the second one, in the extracellular side of CXCR4 in a subsite into the main orthosteric binding pocket, delimited by extracellular loops n° 1, 2, and the N-terminal end, where antagonists AMD11070 and GSK812397 would bind. Prediction of allosteric interactions between CXCR4 and pepducin ATI-2341 were studied first by rotational blind docking to determine the main binding region and a subsequent refinement of the best pose was performed using flexible docking methods and molecular dynamics. For the antagonists AMD11070 and GSK812397, the entire CXCR4 protein surface was explored by blind docking to define the binding region. A second docking analysis by subsites of the identified binding region was performed to refine the allosteric interactions. Finally, we identified the binding residues that appear to be essential for CXCR4 (agonists and antagonists) allosteric

  14. The combination of sequence-specific and nonspecific DNA-binding modes of transcription factor SATB1.

    PubMed

    Yamasaki, Kazuhiko; Yamasaki, Tomoko

    2016-10-01

    Transcription factor SATB1 (special AT-rich sequence binding protein 1) contains multiple DNA-binding domains (DBDs), i.e. two CUT-domain repeats (CUTr1 and CUTr2 from the N-terminus) and a homeodomain, and binds to the matrix attachment region (MAR) of DNA. Although CUTr1 and the homeodomain, but not CUTr2, are known to contribute to DNA binding, different research groups have not reached a consensus on which DBD is responsible for recognition of the target sequence in MAR, 5'-TAATA-3'. Here, we used isothermal titration calorimetry to demonstrate that CUTr1 has binding specificity to this motif, whereas the homeodomain shows affinity for a variety of DNAs without specificity. In line with nonspecific DNA-binding properties of the homeodomain, a mutation of the invariant Asn at position 51 of the homeodomain (typically in contact with the A base in a sequence-specific binding mode) did not affect the binding affinity significantly. The NMR analyses and computational modeling of the homeodomain, however, revealed the tertiary structure and DNA-binding mode that are typical of homeodomains capable of sequence-specific binding. We believe that the lack of highly conserved basic residues in the helix relevant to the base recognition loosens its fitting into the DNA groove and impairs the specific binding. The two DBDs, when fused in tandem, showed strong binding to DNA containing the 5'-TAATA-3' motif with an affinity constant >10(8) M(-1) and retained nonspecific binding activity. The combination of the sequence-specific and nonspecific DNA-binding modes of SATB1 should be advantageous in a search for target loci during transcriptional regulation. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  15. Equilibrium absorptive partitioning theory between multiple aerosol particle modes

    NASA Astrophysics Data System (ADS)

    Crooks, Matthew; Connolly, Paul; Topping, David; McFiggans, Gordon

    2016-10-01

    An existing equilibrium absorptive partitioning model for calculating the equilibrium gas and particle concentrations of multiple semi-volatile organics within a bulk aerosol is extended to allow for multiple involatile aerosol modes of different sizes and chemical compositions. In the bulk aerosol problem, the partitioning coefficient determines the fraction of the total concentration of semi-volatile material that is in the condensed phase of the aerosol. This work modifies this definition for multiple polydisperse aerosol modes to account for multiple condensed concentrations, one for each semi-volatile on each involatile aerosol mode. The pivotal assumption in this work is that each aerosol mode contains an involatile constituent, thus overcoming the potential problem of smaller particles evaporating completely and then condensing on the larger particles to create a monodisperse aerosol at equilibrium. A parameterisation is proposed in which the coupled non-linear system of equations is approximated by a simpler set of equations obtained by setting the organic mole fraction in the partitioning coefficient to be the same across all modes. By perturbing the condensed masses about this approximate solution a correction term is derived that accounts for many of the removed complexities. This method offers a greatly increased efficiency in calculating the solution without significant loss in accuracy, thus making it suitable for inclusion in large-scale models.

  16. Multiprocessor system with multiple concurrent modes of execution

    DOEpatents

    Ahn, Daniel; Ceze, Luis H.; Chen, Dong Chen; Gara, Alan; Heidelberger, Philip; Ohmacht, Martin

    2016-11-22

    A multiprocessor system supports multiple concurrent modes of speculative execution. Speculation identification numbers (IDs) are allocated to speculative threads from a pool of available numbers. The pool is divided into domains, with each domain being assigned to a mode of speculation. Modes of speculation include TM, TLS, and rollback. Allocation of the IDs is carried out with respect to a central state table and using hardware pointers. The IDs are used for writing different versions of speculative results in different ways of a set in a cache memory.

  17. Multiprocessor system with multiple concurrent modes of execution

    DOEpatents

    Ahn, Daniel; Ceze, Luis H; Chen, Dong; Gara, Alan; Heidelberger, Philip; Ohmacht, Martin

    2013-12-31

    A multiprocessor system supports multiple concurrent modes of speculative execution. Speculation identification numbers (IDs) are allocated to speculative threads from a pool of available numbers. The pool is divided into domains, with each domain being assigned to a mode of speculation. Modes of speculation include TM, TLS, and rollback. Allocation of the IDs is carried out with respect to a central state table and using hardware pointers. The IDs are used for writing different versions of speculative results in different ways of a set in a cache memory.

  18. Effects of Multiple Resistive Walls and Mode Coupling on Mode Locking in RFPs

    NASA Astrophysics Data System (ADS)

    Guo, S. C.; Chu, M. S.

    2001-10-01

    Locked dynamo modes give rise to a serious deterioration of confinement at the plasma edge during the high current phase of reversed field pinches (RFP) operations. This is caused by the large braking torque exerted by the eddy currents on the resistive vacuum vessel on the dynamo modes1. The torque is strong enough to reduce the rotation frequency to an extremely small value. These tearing modes are then readily stopped (wall-locked) by a small external fixed error field. Several RFP devices are equipped with one or two thin (or thick) shells outside the vessel. This can, in principle, alleviate the locked mode problem. The present work presents a systematic calculation of the braking torques of multiple resistive walls (including both thin and thick shells) on a rotating tearing mode. The evolution of the frequency and the amplitude of a single representative tearing mode under the effect of multiple resistive walls is investigated. Numerical examples are provided for the modified RFX and other relevant devices. Generalization to the case of multiple(three) coupled modes and in the presence of externally applied helical rotating magnetic field2 will also be presented. 1. R. Fitzpatrick, S.C. Guo, D. J. Den Hartog and C. C. Hegna; Phys. of Plasmas, 6(10) 3878 (1999). 2. S. C. Guo and M. S. Chu; Phys. of Plasmas, 8(7) 3342 (2001).

  19. Broadband multiple responses of surface modes in quasicrystalline plasmonic structure

    PubMed Central

    Yuan, Haiming; Jiang, Xiangqian; Huang, Feng; Sun, Xiudong

    2016-01-01

    We numerically study the multiple excitation of surface modes in 2D photonic quasicrystal/metal/substrate structure. An improved rigorous coupled wave analysis method that can handle the quasicrystalline structure is presented. The quasicrystalline lattice, which refers to Penrose tiling in this paper, is generated by the cut-and-project method. The normal incidence spectrum presents a broadband multiple responses property. We find that the phase matching condition determines the excitation frequency for a given incident angle, while the depth of the reflection valley depends on the incident polarization. The modes will split into several sub-modes at oblique incidence, which give rise to the appearance of more responses on the spectrum. PMID:27492782

  20. Multiple Surface Plasmon Modes for Gold/Silver Alloy Nanorods

    SciTech Connect

    Bok, Hye-Mi; Shuford, Kevin L; Kim, Sungwan; Kim, Seong Kyu; Park, Sungho

    2009-01-01

    Alloy nanorods consisting of bimetallic gold and silver are synthesized by employing the electrochemical codeposition of Au/Ag alloy materials into the pores of anodized aluminum oxide templates. This paper presents the variation of localized surface plasmon resonance (LSPR) modes of the Au{sub x}/Ag{sub 1-x} alloy nanorods as a function of relative compositions of Au and Ag. Transverse and multiple longitudinal modes were observed when the length was longer than ca. 300 nm. For a given length, the transverse LSPR mode systematically blue-shifted as the Ag portion increased, while there was little variation in peak positions of the longitudinal LSPR modes. The optical properties of the Au{sub x}/Ag{sub 1-x} alloy nanorods were calculated using the discrete dipole approximation and showed a good agreement with the experimental measurements.

  1. Multiple intersection properties of optical resonance modes in metallic metamaterials

    NASA Astrophysics Data System (ADS)

    Tokuda, Yasunori; Sakaguchi, Koichiro; Yamaguchi, Yuki; Takano, Keisuke

    2017-03-01

    Unusual behavior of Fabry-Perot-like waveguide resonance modes is presented for a quasi-dielectric metamaterial that consists of two metallic sub-wavelength cut-through slit-array slabs separated by an air-gap region. Simulations based on the finite-difference time-domain method were conducted. The unique optical properties were interpreted in terms of multiple intersection of the resonance modes. Depending on the intersection conditions of the optical modes, furthermore, a variety of crossing characteristics, i.e., fade-out crossing with/without an isolated loop, anticrossing with/without intensity reduction, and anticrossing with/without frequency repulsion, were identified for the air-gap dependence of the transmission spectra. These findings, which were obtained by careful observation of the properties of this type of metamaterial, present a novel and interesting aspect of the behavior of the optical resonance modes.

  2. Charging system with galvanic isolation and multiple operating modes

    DOEpatents

    Kajouke, Lateef A.; Perisic, Milun; Ransom, Ray M.

    2013-01-08

    Systems and methods are provided for operating a charging system with galvanic isolation adapted for multiple operating modes. A vehicle charging system comprises a DC interface, an AC interface, a first conversion module coupled to the DC interface, and a second conversion module coupled to the AC interface. An isolation module is coupled between the first conversion module and the second conversion module. The isolation module comprises a transformer and a switching element coupled between the transformer and the second conversion module. The transformer and the switching element are cooperatively configured for a plurality of operating modes, wherein each operating mode of the plurality of operating modes corresponds to a respective turns ratio of the transformer.

  3. Multiple ligand simultaneous docking: orchestrated dancing of ligands in binding sites of protein.

    PubMed

    Li, Huameng; Li, Chenglong

    2010-07-30

    Present docking methodologies simulate only one single ligand at a time during docking process. In reality, the molecular recognition process always involves multiple molecular species. Typical protein-ligand interactions are, for example, substrate and cofactor in catalytic cycle; metal ion coordination together with ligand(s); and ligand binding with water molecules. To simulate the real molecular binding processes, we propose a novel multiple ligand simultaneous docking (MLSD) strategy, which can deal with all the above processes, vastly improving docking sampling and binding free energy scoring. The work also compares two search strategies: Lamarckian genetic algorithm and particle swarm optimization, which have respective advantages depending on the specific systems. The methodology proves robust through systematic testing against several diverse model systems: E. coli purine nucleoside phosphorylase (PNP) complex with two substrates, SHP2NSH2 complex with two peptides and Bcl-xL complex with ABT-737 fragments. In all cases, the final correct docking poses and relative binding free energies were obtained. In PNP case, the simulations also capture the binding intermediates and reveal the binding dynamics during the recognition processes, which are consistent with the proposed enzymatic mechanism. In the other two cases, conventional single-ligand docking fails due to energetic and dynamic coupling among ligands, whereas MLSD results in the correct binding modes. These three cases also represent potential applications in the areas of exploring enzymatic mechanism, interpreting noisy X-ray crystallographic maps, and aiding fragment-based drug design, respectively.

  4. Unusual DNA binding modes for metal anticancer complexes

    PubMed Central

    Pizarro, Ana M.; Sadler, Peter J.

    2010-01-01

    DNA is believed to be the primary target for many metal-based drugs. For example, platinum-based anticancer drugs can form specific lesions on DNA that induce apoptosis. New platinum drugs can be designed that have novel modes of interaction with DNA, such as the trinuclear platinum complex BBR3464. Also it is possible to design inert platinum(IV) pro-drugs which are non-toxic in the dark, but lethal when irradiated with certain wavelengths of light. This gives rise to novel DNA lesions which are not as readily repaired as those induced by cisplatin, and provides the basis for a new type of photoactivated chemotherapy. Finally, newly emerging ruthenium(II) organometallic complexes not only bind to DNA coordinatively, but also by H-bonding and hydrophibic interactions triggered by the introduction of extended arene rings into their versatile structures. Intriguingly osmium (the heavier congener of ruthenium) reacts differently with DNA but can also give rise to highly cytotoxic organometallic complexes. PMID:19344743

  5. ELK1 uses different DNA binding modes to regulate functionally distinct classes of target genes.

    PubMed

    Odrowaz, Zaneta; Sharrocks, Andrew D

    2012-01-01

    Eukaryotic transcription factors are grouped into families and, due to their similar DNA binding domains, often have the potential to bind to the same genomic regions. This can lead to redundancy at the level of DNA binding, and mechanisms are required to generate specific functional outcomes that enable distinct gene expression programmes to be controlled by a particular transcription factor. Here we used ChIP-seq to uncover two distinct binding modes for the ETS transcription factor ELK1. In one mode, other ETS transcription factors can bind regulatory regions in a redundant fashion; in the second, ELK1 binds in a unique fashion to another set of genomic targets. Each binding mode is associated with different binding site features and also distinct regulatory outcomes. Furthermore, the type of binding mode also determines the control of functionally distinct subclasses of genes and hence the phenotypic response elicited. This is demonstrated for the unique binding mode where a novel role for ELK1 in controlling cell migration is revealed. We have therefore uncovered an unexpected link between the type of binding mode employed by a transcription factor, the subsequent gene regulatory mechanisms used, and the functional categories of target genes controlled.

  6. Reusable Launch Vehicle Control in Multiple Time Scale Sliding Modes

    NASA Technical Reports Server (NTRS)

    Shtessel, Yuri

    1999-01-01

    A reusable launch vehicle control problem during ascent is addressed via multiple-time scaled continuous sliding mode control. The proposed sliding mode controller utilizes a two-loop structure and provides robust, de-coupled tracking of both orientation angle command profiles and angular rate command profiles in the presence of bounded external disturbances and plant uncertainties. Sliding mode control causes the angular rate and orientation angle tracking error dynamics to be constrained to linear, de-coupled, homogeneous, and vector valued differential equations with desired eigenvalues placement. The dual-time scale sliding mode controller was designed for the X-33 technology demonstration sub-orbital launch vehicle in the launch mode. 6DOF simulation results show that the designed controller provides robust, accurate, de-coupled tracking of the orientation angle command profiles in presence of external disturbances and vehicle inertia uncertainties. It creates possibility to operate the X-33 vehicle in an aircraft-like mode with reduced pre-launch adjustment of the control system.

  7. A multiple work mode YAG laser in derma surgery

    NASA Astrophysics Data System (ADS)

    Sa, Yu; Zhang, Guizhong; Ye, Zhisheng; Yu, Lin

    2006-06-01

    It has been very common that a pulse laser is used in derma surgery based on the theory of "Selective Photothermolysis". This method has also been accepted as the best way to treat the pigments by the medical textbook. A kind of double-pulsed laser which gets the name by two pulse output at one pumping process is developed for derma surgery lately, and this kind of laser has been proved more effective and safe than single-pulse laser. We also develop a multiple work mode YAG laser including two double-pulsed modes at 1064nm and 532nm, two single-pulsed modes at 1064nm and 532nm, and one free-running mode at 1064nm. Considering availability, security and reliability of the laser as a surgery machine, some important subsystems of the laser are optimized carefully, such as Q-switch driver, wavelength-switching system, power supply, and control system etc. At last we get a prototype laser which can run for longer than 30 minutes continuously, and output Max10 pulse per second (pps) with Max800mJ energy at 1064nm double Q-Switch mode, or Max400mJ at 532nm. Using double pulse mode of the laser we do some removal experiments of tattoos and other pigments, and obtain good effect.

  8. Reusable Launch Vehicle Control in Multiple Time Scale Sliding Modes

    NASA Technical Reports Server (NTRS)

    Shtessel, Yuri

    1999-01-01

    A reusable launch vehicle control problem during ascent is addressed via multiple-time scaled continuous sliding mode control. The proposed sliding mode controller utilizes a two-loop structure and provides robust, de-coupled tracking of both orientation angle command profiles and angular rate command profiles in the presence of bounded external disturbances and plant uncertainties. Sliding mode control causes the angular rate and orientation angle tracking error dynamics to be constrained to linear, de-coupled, homogeneous, and vector valued differential equations with desired eigenvalues placement. The dual-time scale sliding mode controller was designed for the X-33 technology demonstration sub-orbital launch vehicle in the launch mode. 6DOF simulation results show that the designed controller provides robust, accurate, de-coupled tracking of the orientation angle command profiles in presence of external disturbances and vehicle inertia uncertainties. It creates possibility to operate the X-33 vehicle in an aircraft-like mode with reduced pre-launch adjustment of the control system.

  9. Acyl-CoA binding proteins: multiplicity and function.

    PubMed

    Gossett, R E; Frolov, A A; Roths, J B; Behnke, W D; Kier, A B; Schroeder, F

    1996-09-01

    The physiological role of long-chain fatty acyl-CoA is thought to be primarily in intermediary metabolism of fatty acids. However, recent data show that nM to microM levels of these lipophilic molecules are potent regulators of cell functions in vitro. Although long-chain fatty acyl-CoA are present at several hundred microM concentration in the cell, very little long-chain fatty acyl-CoA actually exists as free or unbound molecules, but rather is bound with high affinity to membrane lipids and/or proteins. Recently, there is growing awareness that cytosol contains nonenzymatic proteins also capable of binding long-chain fatty acyl-CoA with high affinity. Although the identity of the cytosolic long-chain fatty acyl-CoA binding protein(s) has been the subject of some controversy, there is growing evidence that several diverse nonenzymatic cytosolic proteins will bind long-chain fatty acyl-CoA. Not only does acyl-CoA binding protein specifically bind medium and long-chain fatty acyl-CoA (LCFA-CoA), but ubiquitous proteins with multiple ligand specificities such as the fatty acid binding proteins and sterol carrier protein-2 also bind LCFA-CoA with high affinity. The potential of these acyl-CoA binding proteins to influence the level of free LCFA-CoA and thereby the amount of LCFA-CoA bound to regulatory sites in proteins and enzymes is only now being examined in detail. The purpose of this article is to explore the identity, nature, function, and pathobiology of these fascinating newly discovered long-chain fatty acyl-CoA binding proteins. The relative contributions of these three different protein families to LCFA-CoA utilization and/or regulation of cellular activities are the focus of new directions in this field.

  10. Multiplicity counting from fission chamber signals in the current mode

    NASA Astrophysics Data System (ADS)

    Pázsit, I.; Pál, L.; Nagy, L.

    2016-12-01

    In nuclear safeguards, estimation of sample parameters using neutron-based non-destructive assay methods is traditionally based on multiplicity counting with thermal neutron detectors in the pulse mode. These methods in general require multi-channel analysers and various dead time correction methods. This paper proposes and elaborates on an alternative method, which is based on fast neutron measurements with fission chambers in the current mode. A theory of "multiplicity counting" with fission chambers is developed by incorporating Böhnel's concept of superfission [1] into a master equation formalism, developed recently by the present authors for the statistical theory of fission chamber signals [2,3]. Explicit expressions are derived for the first three central auto- and cross moments (cumulants) of the signals of up to three detectors. These constitute the generalisation of the traditional Campbell relationships for the case when the incoming events represent a compound Poisson distribution. Because now the expressions contain the factorial moments of the compound source, they contain the same information as the singles, doubles and triples rates of traditional multiplicity counting. The results show that in addition to the detector efficiency, the detector pulse shape also enters the formulas; hence, the method requires a more involved calibration than the traditional method of multiplicity counting. However, the method has some advantages by not needing dead time corrections, as well as having a simpler and more efficient data processing procedure, in particular for cross-correlations between different detectors, than the traditional multiplicity counting methods.

  11. Estrophilin immunoreactivity versus estrogen receptor binding activity in meningiomas: evidence for multiple estrogen binding sites

    SciTech Connect

    Lesch, K.P.; Schott, W.; Gross, S.

    1987-09-01

    The existence of estrogen receptors in human meningiomas has long been a controversial issue. This may be explained, in part, by apparent heterogeneity of estrogen binding sites in meningioma tissue. In this study, estrogen receptors were determined in 58 meningiomas with an enzyme immunoassay using monoclonal antibodies against human estrogen receptor protein (estrophilin) and with a sensitive radioligand binding assay using /sup 125/I-labeled estradiol (/sup 125/I-estradiol) as radioligand. Low levels of estrophilin immunoreactivity were found in tumors from 62% of patients, whereas radioligand binding activity was demonstrated in about 46% of the meningiomas examined. In eight (14%) tissue samples multiple binding sites for estradiol were observed. The immunoreactive binding sites correspond to the classical, high affinity estrogen receptors: the Kd for /sup 125/I-estradiol binding to the receptor was approximately 0.2 nM and the binding was specific for estrogens. The second, low affinity class of binding sites considerably influenced measurement of the classical receptor even at low ligand concentrations. The epidemiological and clinical data from patients with meningiomas, and the existence of specific estrogen receptors confirmed by immunochemical detection, may be important factors in a theory of oncogenesis.

  12. Reusable Launch Vehicle Control In Multiple Time Scale Sliding Modes

    NASA Technical Reports Server (NTRS)

    Shtessel, Yuri; Hall, Charles; Jackson, Mark

    2000-01-01

    A reusable launch vehicle control problem during ascent is addressed via multiple-time scaled continuous sliding mode control. The proposed sliding mode controller utilizes a two-loop structure and provides robust, de-coupled tracking of both orientation angle command profiles and angular rate command profiles in the presence of bounded external disturbances and plant uncertainties. Sliding mode control causes the angular rate and orientation angle tracking error dynamics to be constrained to linear, de-coupled, homogeneous, and vector valued differential equations with desired eigenvalues placement. Overall stability of a two-loop control system is addressed. An optimal control allocation algorithm is designed that allocates torque commands into end-effector deflection commands, which are executed by the actuators. The dual-time scale sliding mode controller was designed for the X-33 technology demonstration sub-orbital launch vehicle in the launch mode. Simulation results show that the designed controller provides robust, accurate, de-coupled tracking of the orientation angle command profiles in presence of external disturbances and vehicle inertia uncertainties. This is a significant advancement in performance over that achieved with linear, gain scheduled control systems currently being used for launch vehicles.

  13. Tearing mode instability in a multiple current sheet system

    NASA Technical Reports Server (NTRS)

    Yan, M.; Otto, A.; Muzzell, D.; Lee, L. C.

    1994-01-01

    The tearing mode and magnetic reconnection are studied for multiple current sheet systems by two-dimensional magnetohydrodynamic (MHD) simulations. Both the linear and nonlinear evolution of this process are anaylsed for laminar perturbations. The results illustrate the existence of a linear regime with a symmetric and antisymmetric mode and agree with previous analytic results (Otto and Birk, 1992). The nonlinear evolution shows a number of interesting new features and may explain some properties in corresponding studies of turbulent reconnection. For wavelengths larger than twice the current sheet separation the evolution of antisymmetric modes leads to an entire reconfiguration of the magnetic field and converts a major portion of the magnetic energy into kinetic energy. Antisymmetric modes with smaller wavelengths and symmetric modes are found to saturate. The influence of the value of the resistivity on the reconnection rate decreases in the nonlinear evolution, and the ratio of current sheet separation to wavelength seems to be of major importance. A comparion of the dynamics of periodic current sheets with the evolution of only two current sheets indicates that some of the results for the periodic system also apply to the evolution of only two interacting current sheets. The results are discussed with respect to observations of large-scale plasma and magnetic field reconfigurations in the magnetosheath and near the Earth's bow shock.

  14. Dystrophin contains multiple independent membrane-binding domains.

    PubMed

    Zhao, Junling; Kodippili, Kasun; Yue, Yongping; Hakim, Chady H; Wasala, Lakmini; Pan, Xiufang; Zhang, Keqing; Yang, Nora N; Duan, Dongsheng; Lai, Yi

    2016-09-01

    Dystrophin is a large sub-sarcolemmal protein. Its absence leads to Duchenne muscular dystrophy (DMD). Binding to the sarcolemma is essential for dystrophin to protect muscle from contraction-induced injury. It has long been thought that membrane binding of dystrophin depends on its cysteine-rich (CR) domain. Here, we provide in vivo evidence suggesting that dystrophin contains three additional membrane-binding domains including spectrin-like repeats (R)1-3, R10-12 and C-terminus (CT). To systematically study dystrophin membrane binding, we split full-length dystrophin into ten fragments and examined subcellular localizations of each fragment by adeno-associated virus-mediated gene transfer. In skeletal muscle, R1-3, CR domain and CT were exclusively localized at the sarcolemma. R10-12 showed both cytosolic and sarcolemmal localization. Importantly, the CR-independent membrane binding was conserved in murine and canine muscles. A critical function of the CR-mediated membrane interaction is the assembly of the dystrophin-associated glycoprotein complex (DGC). While R1-3 and R10-12 did not restore the DGC, surprisingly, CT alone was sufficient to establish the DGC at the sarcolemma. Additional studies suggest that R1-3 and CT also bind to the sarcolemma in the heart, though relatively weak. Taken together, our study provides the first conclusive in vivo evidence that dystrophin contains multiple independent membrane-binding domains. These structurally and functionally distinctive membrane-binding domains provide a molecular framework for dystrophin to function as a shock absorber and signaling hub. Our results not only shed critical light on dystrophin biology and DMD pathogenesis, but also provide a foundation for rationally engineering minimized dystrophins for DMD gene therapy.

  15. Creating BHb-imprinted magnetic nanoparticles with multiple binding sites.

    PubMed

    Li, Yanxia; Chen, Yiting; Huang, Lu; Lou, BenYong; Chen, Guonan

    2017-01-16

    A kind of protein imprinted over magnetic Fe3O4@Au multifunctional nanoparticles (NPs) with multiple binding sites was synthesized and investigated. Magnetic Fe3O4@Au NPs as carrier materials were modified with 4-mercaptophenylboronic acid (MPBA) and mercaptopropionic acid (MPA) to introduce boronic acids and carboxyl groups. Using Bovine Hemoglobin (BHb) as a template, a polydopamine(PDA)-based molecular imprinted film was fabricated to produce a kind of magnetic molecularly imprinted nanoparticle (MMIP), possessing multiple binding sites with benzene-diol, amino groups, boronic acids and carboxyl groups. The MMIPs exhibited an excellent imprinting effect and adsorption capacity (89.65± 0.38 mg g(-1)) toward the template protein. The results show that the MMIPs reached saturated adsorption at 0.5 mg mL(-1) within 90 min. The synthesized MMIPs are suitable for the removal and enrichment of the template protein in proteomics. The strategy of multiple binding sites paves the way for the preparation of functional nanomaterials in molecular imprinting techniques.

  16. Multiple Modes of Ryanodine Receptor 2 Inhibition by Flecainide

    PubMed Central

    Mehra, D.; Imtiaz, M. S.; van Helden, D. F.; Knollmann, B. C.

    2014-01-01

    Catecholaminergic polymorphic ventricular tachycardia (CPVT) causes sudden cardiac death due to mutations in cardiac ryanodine receptors (RyR2), calsequestrin, or calmodulin. Flecainide, a class I antiarrhythmic drug, inhibits Na+ and RyR2 channels and prevents CPVT. The purpose of this study is to identify inhibitory mechanisms of flecainide on RyR2. RyR2 were isolated from sheep heart, incorporated into lipid bilayers, and investigated by single-channel recording under various activating conditions, including the presence of cytoplasmic ATP (2 mM) and a range of cytoplasmic [Ca2+], [Mg2+], pH, and [caffeine]. Flecainide applied to either the cytoplasmic or luminal sides of the membrane inhibited RyR2 by two distinct modes: 1) a fast block consisting of brief substate and closed events with a mean duration of ∼1 ms, and 2) a slow block consisting of closed events with a mean duration of ∼1 second. Both inhibition modes were alleviated by increasing cytoplasmic pH from 7.4 to 9.5 but were unaffected by luminal pH. The slow block was potentiated in RyR2 channels that had relatively low open probability, whereas the fast block was unaffected by RyR2 activation. These results show that these two modes are independent mechanisms for RyR2 inhibition, both having a cytoplasmic site of action. The slow mode is a closed-channel block, whereas the fast mode blocks RyR2 in the open state. At diastolic cytoplasmic [Ca2+] (100 nM), flecainide possesses an additional inhibitory mechanism that reduces RyR2 burst duration. Hence, multiple modes of action underlie RyR2 inhibition by flecainide. PMID:25274603

  17. Long-range optical binding in a hollow-core photonic crystal fiber using higher order modes

    NASA Astrophysics Data System (ADS)

    Bykov, Dmitry S.; Zeltner, Richard; Euser, Tijmen G.; Xie, Shangran; Russell, Philip St. J.

    2016-09-01

    We report long-range optical binding of multiple polystyrene nanoparticles (100-600 nm in diameter) at fixed interparticle distances that match multiples of the half-beat-lengths between the lowest order modes of a hollow-core photonic crystal fiber. Analysis suggests that each nanoparticle converts the incoming optical mode into a superposition of co-propagating modes, within the beat pattern of which further particles can become trapped. Strikingly, the entire particle arrangement can be moved over a distance of several cm, without changing the inter-particle spacing, by altering the ratio of backward-to-forward optical power. Potential applications are in multi-dimensional nanoparticle-based quantum optomechanical systems.

  18. Multiple binding sites for transcriptional repressors can produce regular bursting and enhance noise suppression

    NASA Astrophysics Data System (ADS)

    Lengyel, Iván M.; Morelli, Luis G.

    2017-04-01

    Cells may control fluctuations in protein levels by means of negative autoregulation, where transcription factors bind DNA sites to repress their own production. Theoretical studies have assumed a single binding site for the repressor, while in most species it is found that multiple binding sites are arranged in clusters. We study a stochastic description of negative autoregulation with multiple binding sites for the repressor. We find that increasing the number of binding sites induces regular bursting of gene products. By tuning the threshold for repression, we show that multiple binding sites can also suppress fluctuations. Our results highlight possible roles for the presence of multiple binding sites of negative autoregulators.

  19. Multiple binding sites for transcriptional repressors can produce regular bursting and enhance noise suppression.

    PubMed

    Lengyel, Iván M; Morelli, Luis G

    2017-04-01

    Cells may control fluctuations in protein levels by means of negative autoregulation, where transcription factors bind DNA sites to repress their own production. Theoretical studies have assumed a single binding site for the repressor, while in most species it is found that multiple binding sites are arranged in clusters. We study a stochastic description of negative autoregulation with multiple binding sites for the repressor. We find that increasing the number of binding sites induces regular bursting of gene products. By tuning the threshold for repression, we show that multiple binding sites can also suppress fluctuations. Our results highlight possible roles for the presence of multiple binding sites of negative autoregulators.

  20. Multiple modes of chromatin remodeling by Forkhead box proteins.

    PubMed

    Lalmansingh, Avin S; Karmakar, Sudipan; Jin, Yetao; Nagaich, Akhilesh K

    2012-07-01

    Forkhead box (FOX) proteins represent a large family of transcriptional regulators unified by their DNA binding domain (DBD) known as a 'forkhead' or 'winged helix' domain. Over 40 FOX genes have been identified in the mammalian genome. FOX proteins share significant sequence similarities in the DBD which allow them to bind to a consensus DNA response element. However, their modes of action are quite diverse as they regulate gene expression by acting as pioneer factors, transcription factors, or both. This review focuses on the mechanisms of chromatin remodeling with an emphasis on three sub-classes-FOXA, FOXO, and FOXP members. FOXA proteins serve as pioneer factors to open up local chromatin structure and thereby increase accessibility of chromatin to factors regulating transcription. FOXP proteins, in contrast, function as classic transcription factors to recruit a variety of chromatin modifying enzymes to regulate gene expression. FOXO proteins represent a hybrid subclass having dual roles as pioneering factors and transcription factors. A subset of FOX proteins interacts with condensed mitotic chromatin and may function as 'bookmarking' agents to maintain transcriptional competence at specific genomic sites. The overall diversity in chromatin remodeling function by FOX proteins is related to unique structural motifs present within the DBD flanking regions that govern selective interactions with core histones and/or chromatin coregulatory proteins. This article is part of a Special Issue entitled: Chromatin in time and space.

  1. Accuracy of binding mode prediction with a cascadic stochastic tunneling method.

    PubMed

    Fischer, Bernhard; Basili, Serena; Merlitz, Holger; Wenzel, Wolfgang

    2007-07-01

    We investigate the accuracy of the binding modes predicted for 83 complexes of the high-resolution subset of the ASTEX/CCDC receptor-ligand database using the atomistic FlexScreen approach with a simple forcefield-based scoring function. The median RMS deviation between experimental and predicted binding mode was just 0.83 A. Over 80% of the ligands dock within 2 A of the experimental binding mode, for 60 complexes the docking protocol locates the correct binding mode in all of ten independent simulations. Most docking failures arise because (a) the experimental structure clashed in our forcefield and is thus unattainable in the docking process or (b) because the ligand is stabilized by crystal water. 2007 Wiley-Liss, Inc.

  2. Theoretical studies on binding modes of copper-based nucleases with DNA.

    PubMed

    Liu, Chunmei; Zhu, Yanyan; Tang, Mingsheng

    2016-03-01

    In the present work, molecular simulations were performed for the purpose of predicting the binding modes of four types of copper nucleases (a total 33 compounds) with DNA. Our docking results accurately predicted the groove binding and electrostatic interaction for some copper nucleases with B-DNA. The intercalation modes were also reproduced by "gap DNA". The obtained results demonstrated that the ligand size, length, functional groups and chelate ring size bound to the copper center could influence the binding affinities of copper nucleases. The binding affinities obtained from the docking calculations herein also replicated results found using MM-PBSA approach. The predicted DNA binding modes of copper nucleases with DNA will ultimately help us to better understand the interaction of copper compounds with DNA.

  3. Digital Real-Time Multiple Channel Multiple Mode Neutron Flux Estimation on FPGA-based Device

    NASA Astrophysics Data System (ADS)

    Thevenin, Mathieu; Barbot, Loïc; Corre, Gwénolé; Woo, Romuald; Destouches, Christophe; Normand, Stéphane

    2016-02-01

    This paper presents a complete custom full-digital instrumentation device that was designed for real-time neutron flux estimation, especially for nuclear reactor in-core measurement using subminiature Fission Chambers (FCs). Entire fully functional small-footprint design (about 1714 LUTs) is implemented on FPGA. It enables real-time acquisition and analysis of multiple channels neutron's flux both in counting mode and Campbelling mode. Experimental results obtained from this brand new device are consistent with simulation results and show good agreement within good uncertainty. This device paves the way for new applications perspectives in real-time nuclear reactor monitoring.

  4. Vibrational study on the cobalt binding mode of Carnosine

    NASA Astrophysics Data System (ADS)

    Torreggiani, Armida; Taddei, Paola; Tinti, Anna; Fini, Giancarlo

    2002-10-01

    The Co(II)- L-Carnosine (Carnos) system was investigated at different pH and metal/ligand molar ratios by Raman and IR spectroscopy. Raman spectra present some marker bands yielding information on the ability of the Co(II)/Carnos system to bind molecular oxygen and to identify the metal co-ordination site of the imidazole ring (N π or N τ atom) of Carnos. The existence of different oxygenated species is greatly affected by pH and the structure of the predominant complexes depends on the available nitrogen atoms. Under basic conditions, binuclear complexes binding molecular oxygen are the predominant species and two forms (monobridged and dibridged) were identified by the Raman νO-O band (750-850 cm -1). Decreasing pH to 7, the species present in the system are less able to bind oxygen. Hydrogen peroxide and a Co(III) chelate not binding O 2, were formed with a significant conversion of peroxo into superoxo complexes. A slight excess of Carnos does not enhance metal chelation. In slightly acidic conditions, the formation of H 2O 2 and superoxo species is more enhanced than at pH 7 and another Co(III) chelate is probably formed.

  5. Crimean-Congo hemorrhagic fever virus nucleocapsid protein has dual RNA binding modes.

    PubMed

    Jeeva, Subbiah; Pador, Sean; Voss, Brittany; Ganaie, Safder Saieed; Mir, Mohammad Ayoub

    2017-01-01

    Crimean Congo hemorrhagic fever, a zoonotic viral disease, has high mortality rate in humans. There is currently no vaccine for Crimean Congo hemorrhagic fever virus (CCHFV) and chemical interventions are limited. The three negative sense genomic RNA segments of CCHFV are specifically encapsidated by the nucleocapsid protein into three ribonucleocapsids, which serve as templates for the viral RNA dependent RNA polymerase. Here we demonstrate that CCHFV nucleocapsid protein has two distinct binding modes for double and single strand RNA. In the double strand RNA binding mode, the nucleocapsid protein preferentially binds to the vRNA panhandle formed by the base pairing of complementary nucleotides at the 5' and 3' termini of viral genome. The CCHFV nucleocapsid protein does not have RNA helix unwinding activity and hence does not melt the duplex vRNA panhandle after binding. In the single strand RNA binding mode, the nucleocapsid protein does not discriminate between viral and non-viral RNA molecules. Binding of both vRNA panhandle and single strand RNA induce a conformational change in the nucleocapsid protein. Nucleocapsid protein remains in a unique conformational state due to simultaneously binding of structurally distinct vRNA panhandle and single strand RNA substrates. Although the role of dual RNA binding modes in the virus replication cycle is unknown, their involvement in the packaging of viral genome and regulation of CCHFV replication in conjunction with RdRp and host derived RNA regulators is highly likely.

  6. Molecular level studies on binding modes of labeling molecules with polyalanine peptides

    NASA Astrophysics Data System (ADS)

    Mao, Xiaobo; Wang, Chenxuan; Ma, Xiaojing; Zhang, Min; Liu, Lei; Zhang, Lan; Niu, Lin; Zeng, Qindao; Yang, Yanlian; Wang, Chen

    2011-04-01

    In this work, the binding modes of typical labeling molecules (thioflavin T (ThT), Congo red (CR) and copper(ii) phthalocyanine tetrasulfonic acid tetrasodium salt (PcCu(SO3Na)4)) on pentaalanine, which is a model peptide segment of amyloidpeptides, have been resolved at the molecular level by using scanning tunneling microscopy (STM). In the STM images, ThT molecules are predominantly adsorbed parallel to the peptide strands and two binding modes could be identified. It was found that ThT molecules are preferentially binding on top of the peptide strand, and the mode of intercalated between neighboring peptides also exists. The parallel binding mode of CR molecules can be observed with pentaalaninepeptides. Besides the binding modes of labeling molecules, the CR and PcCu(SO3Na)4 display different adsorption affinity with the pentaalaninepeptides. The results could be beneficial for obtaining molecular level insight of the interactions between labeling molecules and peptides.In this work, the binding modes of typical labeling molecules (thioflavin T (ThT), Congo red (CR) and copper(ii) phthalocyanine tetrasulfonic acid tetrasodium salt (PcCu(SO3Na)4)) on pentaalanine, which is a model peptide segment of amyloidpeptides, have been resolved at the molecular level by using scanning tunneling microscopy (STM). In the STM images, ThT molecules are predominantly adsorbed parallel to the peptide strands and two binding modes could be identified. It was found that ThT molecules are preferentially binding on top of the peptide strand, and the mode of intercalated between neighboring peptides also exists. The parallel binding mode of CR molecules can be observed with pentaalaninepeptides. Besides the binding modes of labeling molecules, the CR and PcCu(SO3Na)4 display different adsorption affinity with the pentaalaninepeptides. The results could be beneficial for obtaining molecular level insight of the interactions between labeling molecules and peptides. Electronic

  7. Substitution of tryptophan 89 with tyrosine switches the DNA binding mode of PC4.

    PubMed

    Huang, Jinguang; Zhao, Yanxiang; Liu, Huaian; Huang, Dan; Cheng, Xiankun; Zhao, Wensheng; Taylor, Ian A; Liu, Junfeng; Peng, You-Liang

    2015-03-05

    PC4, a well-known general transcription cofactor, has multiple functions in transcription and DNA repair. Residue W89, is engaged in stacking interactions with DNA in PC4, but substituted by tyrosine in some PC4 orthologous proteins. In order to understand the consequences and reveal the molecular details of this substitution we have determined the crystal structures of the PC4 orthologue MoSub1 and a PC4 W89Y mutant in complex with DNA. In the structure of MoSub1-DNA complex, Y74 interacts directly with a single nucleotide of oligo DNA. By comparison, the equivalent residue, W89 in wild type PC4 interacts with two nucleotides and the base of the second nucleotide has distinct orientation relative to that of the first one. A hydrophobic patch around W89 that favours interaction with two nucleotides is not formed in the PC4 W89Y mutant. Therefore, the change of the surface hydrophobicity around residue 89 results in a difference between the modes of DNA interaction. These results indicate that the conserved Y74 in MoSub1 or W89 in PC4, are not only key residues in making specific interactions with DNA but also required to determine the DNA binding mode of PC4 proteins.

  8. Nicotinamide mononucleotide adenylyltransferase displays alternate binding modes for nicotinamide nucleotides

    PubMed Central

    Pfoh, Roland; Pai, Emil F.; Saridakis, Vivian

    2015-01-01

    Nicotinamide mononucleotide adenylyltransferase (NMNAT) catalyzes the biosynthesis of NAD+ and NaAD+. The crystal structure of NMNAT from Methanobacterium thermoautotrophicum complexed with NAD+ and SO4 2− revealed the active-site residues involved in binding and catalysis. Site-directed mutagenesis was used to further characterize the roles played by several of these residues. Arg11 and Arg136 were implicated in binding the phosphate groups of the ATP substrate. Both of these residues were mutated to lysine individually. Arg47 does not interact with either NMN or ATP substrates directly, but was deemed to play a role in binding as it is proximal to Arg11 and Arg136. Arg47 was mutated to lysine and glutamic acid. Surprisingly, when expressed in Escherichia coli all of these NMNAT mutants trapped a molecule of NADP+ in their active sites. This NADP+ was bound in a conformation that was quite different from that displayed by NAD+ in the native enzyme complex. When NADP+ was co-crystallized with wild-type NMNAT, the same structural arrangement was observed. These studies revealed a different conformation of NADP+ in the active site of NMNAT, indicating plasticity of the active site. PMID:26457427

  9. Application of Binding Free Energy Calculations to Prediction of Binding Modes and Affinities of MDM2 and MDMX Inhibitors

    PubMed Central

    Lee, Hui Sun; Jo, Sunhwan; Lim, Hyun-Suk; Im, Wonpil

    2012-01-01

    Molecular docking is widely used to obtain binding modes and binding affinities of a molecule to a given target protein. Despite considerable efforts, however, prediction of both properties by docking remains challenging mainly due to protein’s structural flexibility and inaccuracy of scoring functions. Here, an integrated approach has been developed to improve the accuracy of binding mode and affinity prediction, and tested for small molecule MDM2 and MDMX antagonists. In this approach, initial candidate models selected from docking are subjected to equilibration MD simulations to further filter the models. Free energy perturbation molecular dynamics (FEP/MD) simulations are then applied to the filtered ligand models to enhance the ability in predicting the near-native ligand conformation. The calculated binding free energies for MDM2 complexes are overestimated compared to experimental measurements mainly due to the difficulties in sampling highly flexible apo-MDM2. Nonetheless, the FEP/MD binding free energy calculations are more promising for discriminating binders from nonbinders than docking scores. In particular, the comparison between the MDM2 and MDMX results suggests that apo-MDMX has lower flexibility than apo-MDM2. In addition, the FEP/MD calculations provide detailed information on the different energetic contributions to ligand binding, leading to a better understanding of the sensitivity and specificity of protein-ligand interactions. PMID:22731511

  10. Multiple periodicities in the solar magnetic field - Possible origin in a multiple-mode solar dynamo

    NASA Technical Reports Server (NTRS)

    Boyer, D. W.; Levy, E. H.

    1992-01-01

    The solar magnetic field is generated in an oscillatory mode with a 22 yr full period and gives rise to the 11 yr sunspot cycle. However, analyses of contemporary solar records, as well as other surrogate indicators of solar activity, suggest the presence also of longer term periodicities in the solar magnetic cycle. This paper suggests that the solar dynamo can operate in a multiply periodic state, with several periodicites being generated simultaneously at different depths in the convection zone. A simple two-layer model of the solar convection zone is used to illustrate the physical mechanism of spatially localized, multiple-periodicity-mode dynamo regeneration. The two layers are characterized by differences in their respective turbulent magnetic diffusivities. Although the magnetic modes interact with one another, each mode is produced large in one layer or the other, and has an oscillation period approximately equal to the time characteristic of magnetic diffusion across the layer. The observed complicated periodicity pattern in the solar magnetic field could be a combination of two (or more) dynamo modes generated in this manner. The calculations are carried out using a differential rotation model consistent with recent helioseismological measurements, illustrating the challenge to dynamo theory raised by those observational results.

  11. Comparison and correlation of binding mode of ATP in the kinase domains of Hexokinase family

    PubMed Central

    Kumar, Yellapu Nanda; Kumar, Pasupuleti Santhosh; Sowjenya, Gopal; Rao, Valasani Koteswara; Yeswanth, Sthanikam; Prasad, Uppu Venkateswara; Pradeepkiran, Jangampalli Adi; Sarma, PVGK; Bhaskar, Matcha

    2012-01-01

    Hexokinases (HKs) are the enzymes that catalyses the ATP dependent phosphorylation of Hexose sugars to Hexose-6-Phosphate (Hex-6-P). There exist four different forms of HKs namely HK-I, HK-II, HK-III and HK-IV and all of them share a common ATP binding site core surrounded by more variable sequence that determine substrate affinities. Although they share a common binding site but they differ in their kinetic functions, hence the present study is aimed to analyze the binding mode of ATP. The analysis revealed that the four ATP binding domains are showing 13 identical, 7 similar and 6 dissimilar residues with similar structural conformation. Molecular docking of ATP into the kinase domains using Molecular Operating Environment (MOE) soft ware tool clearly showed the variation in the binding mode of ATP with variable docking scores. This probably explains the variable phosphorylation rates among hexokinases family. PMID:22829728

  12. Determination of the drug-DNA binding modes using fluorescence-based assays.

    PubMed

    Williams, Alicia K; Dasilva, Sofia Cheliout; Bhatta, Ankit; Rawal, Baibhav; Liu, Melinda; Korobkova, Ekaterina A

    2012-03-15

    Therapeutic drugs and environmental pollutants may exhibit high reactivity toward DNA bases and backbone. Understanding the mechanisms of drug-DNA binding is crucial for predicting their potential genotoxicity. We developed a fluorescence analytical method for the determination of the preferential binding mode for drug-DNA interactions. Two nucleic acid dyes were employed in the method: TO-PRO-3 iodide (TP3) and 4',6-diamidino-2-phenylindole (DAPI). TP3 binds DNA by intercalation, whereas DAPI exhibits minor groove binding. Both dyes exhibit significant fluorescence magnification on binding to DNA. We evaluated the DNA binding constant, K(b), for each dye. We also performed fluorescence quenching experiments with 11 molecules of various structures and measured a C(50) value for each compound. We determined preferential binding modes for the aforementioned molecules and found that they bound to DNA consistently, as indicated by other studies. The values of the likelihood of DNA intercalation were correlated with the partition coefficients of the molecules. In addition, we performed nuclear magnetic resonance (NMR) studies of the interactions with calf thymus DNA for the three molecules. The results were consistent with the fluorescence method described above. Thus, we conclude that the fluorescence method we developed provides a reliable determination of the likelihoods of the two different DNA binding modes.

  13. High-resolution specificity from DNA sequencing highlights alternative modes of Lac repressor binding.

    PubMed

    Zuo, Zheng; Stormo, Gary D

    2014-11-01

    Knowing the specificity of transcription factors is critical to understanding regulatory networks in cells. The lac repressor-operator system has been studied for many years, but not with high-throughput methods capable of determining specificity comprehensively. Details of its binding interaction and its selection of an asymmetric binding site have been controversial. We employed a new method to accurately determine relative binding affinities to thousands of sequences simultaneously, requiring only sequencing of bound and unbound fractions. An analysis of 2560 different DNA sequence variants, including both base changes and variations in operator length, provides a detailed view of lac repressor sequence specificity. We find that the protein can bind with nearly equal affinities to operators of three different lengths, but the sequence preference changes depending on the length, demonstrating alternative modes of interaction between the protein and DNA. The wild-type operator has an odd length, causing the two monomers to bind in alternative modes, making the asymmetric operator the preferred binding site. We tested two other members of the LacI/GalR protein family and find that neither can bind with high affinity to sites with alternative lengths or shows evidence of alternative binding modes. A further comparison with known and predicted motifs suggests that the lac repressor may be unique in this ability and that this may contribute to its selection.

  14. Characterization of the modes of binding between human sweet taste receptor and low-molecular-weight sweet compounds.

    PubMed

    Masuda, Katsuyoshi; Koizumi, Ayako; Nakajima, Ken-ichiro; Tanaka, Takaharu; Abe, Keiko; Misaka, Takumi; Ishiguro, Masaji

    2012-01-01

    One of the most distinctive features of human sweet taste perception is its broad tuning to chemically diverse compounds ranging from low-molecular-weight sweeteners to sweet-tasting proteins. Many reports suggest that the human sweet taste receptor (hT1R2-hT1R3), a heteromeric complex composed of T1R2 and T1R3 subunits belonging to the class C G protein-coupled receptor family, has multiple binding sites for these sweeteners. However, it remains unclear how the same receptor recognizes such diverse structures. Here we aim to characterize the modes of binding between hT1R2-hT1R3 and low-molecular-weight sweet compounds by functional analysis of a series of site-directed mutants and by molecular modeling-based docking simulation at the binding pocket formed on the large extracellular amino-terminal domain (ATD) of hT1R2. We successfully determined the amino acid residues responsible for binding to sweeteners in the cleft of hT1R2 ATD. Our results suggest that individual ligands have sets of specific residues for binding in correspondence with the chemical structures and other residues responsible for interacting with multiple ligands.

  15. Distinct modes of SMAD2 chromatin binding and remodeling shape the transcriptional response to NODAL/Activin signaling

    PubMed Central

    Coda, Davide M; Gaarenstroom, Tessa; East, Philip; Patel, Harshil; Miller, Daniel S J; Lobley, Anna; Matthews, Nik; Stewart, Aengus; Hill, Caroline S

    2017-01-01

    NODAL/Activin signaling orchestrates key processes during embryonic development via SMAD2. How SMAD2 activates programs of gene expression that are modulated over time however, is not known. Here we delineate the sequence of events that occur from SMAD2 binding to transcriptional activation, and the mechanisms underlying them. NODAL/Activin signaling induces dramatic chromatin landscape changes, and a dynamic transcriptional network regulated by SMAD2, acting via multiple mechanisms. Crucially we have discovered two modes of SMAD2 binding. SMAD2 can bind pre-acetylated nucleosome-depleted sites. However, it also binds to unacetylated, closed chromatin, independently of pioneer factors, where it induces nucleosome displacement and histone acetylation. For a subset of genes, this requires SMARCA4. We find that long term modulation of the transcriptional responses requires continued NODAL/Activin signaling. Thus SMAD2 binding does not linearly equate with transcriptional kinetics, and our data suggest that SMAD2 recruits multiple co-factors during sustained signaling to shape the downstream transcriptional program. DOI: http://dx.doi.org/10.7554/eLife.22474.001 PMID:28191871

  16. Characterization of the Modes of Binding between Human Sweet Taste Receptor and Low-Molecular-Weight Sweet Compounds

    PubMed Central

    Nakajima, Ken-ichiro; Tanaka, Takaharu; Abe, Keiko; Misaka, Takumi; Ishiguro, Masaji

    2012-01-01

    One of the most distinctive features of human sweet taste perception is its broad tuning to chemically diverse compounds ranging from low-molecular-weight sweeteners to sweet-tasting proteins. Many reports suggest that the human sweet taste receptor (hT1R2–hT1R3), a heteromeric complex composed of T1R2 and T1R3 subunits belonging to the class C G protein–coupled receptor family, has multiple binding sites for these sweeteners. However, it remains unclear how the same receptor recognizes such diverse structures. Here we aim to characterize the modes of binding between hT1R2–hT1R3 and low-molecular-weight sweet compounds by functional analysis of a series of site-directed mutants and by molecular modeling–based docking simulation at the binding pocket formed on the large extracellular amino-terminal domain (ATD) of hT1R2. We successfully determined the amino acid residues responsible for binding to sweeteners in the cleft of hT1R2 ATD. Our results suggest that individual ligands have sets of specific residues for binding in correspondence with the chemical structures and other residues responsible for interacting with multiple ligands. PMID:22536376

  17. Effects of driving mode on the performance of multiple-chamber piezoelectric pumps with multiple actuators

    NASA Astrophysics Data System (ADS)

    Zhang, Zhonghua; Kan, Junwu; Wang, Shuyun; Wang, Hongyun; Ma, Jijie; Jiang, Yonghua

    2015-09-01

    Due to the limited output capability of piezoelectric diaphragm pumps, the driving voltage is frequently increased to obtain the desired output. However, the excessive voltage application may lead to a large deformation in the piezoelectric ceramics, which could cause it to breakdown or become damaged. Therefore, increasing the number of chambers to obtain the desired output is proposed. Using a check-valve quintuple-chamber pump with quintuple piezoelectric actuators, the characteristics of the pump under different driving modes are investigated through experiments. By changing the number and connection mode of working actuators, pump performances in terms of flow rate and backpressure are tested at a voltage of 150 V with a frequency range of 60 Hz -400 Hz. Experiment results indicate that the properties of the multiple-chamber pump change significantly with distinct working chambers even though the number of pumping chambers is the same. Pump performance declines as the distance between the working actuators increases. Moreover, pump performance declines dramatically when the working piezoelectric actuator closest to the outlet is involved. The maximum backpressures of the pump with triple, quadruple, and quintuple actuators are increased by 39%, 83%, and 128%, respectively, compared with the pump with double working actuators; the corresponding maximum flow rates of the pumps are simply increased by 25.9%, 49.2%, and 67.8%, respectively. The proposed research offers practical guidance for the effective utilization of the multiple-chamber pumps under different driving modes.

  18. A computational analysis of binding modes and conformation changes of MDM2 induced by p53 and inhibitor bindings

    NASA Astrophysics Data System (ADS)

    Chen, Jianzhong; Wang, Jinan; Zhu, Weiliang; Li, Guohui

    2013-11-01

    Molecular dynamics (MD) simulations followed by principal component analysis were performed to study the conformational change of MDM2 induced by p53 and two inhibitor (P4 and MI63a) bindings. The results show that the hydrophobic cleft of MDM2 is very flexible and adaptive to different structural binding partners. The cleft tends to become wider and more stable as MDM2 binds to the three binding partners, while unbound MDM2 shows a narrower and pretty flexible cleft, which agrees with recent experimental data and theoretical studies. It was also found that the binding of P4 and p53 stabilizes the motion of the loop L2 linking the helix α2 and β strand (β3), but the presence of MI63a makes the motion of L2 disordered. In addition, the binding free energies of the three partners to MDM2 were calculated using molecular mechanics generalized Born surface area to explain the binding modes of these three partners to MDM2. This study will be helpful not only for better understanding the functional, concerted motion of MDM2, but also for the rational design of potent anticancer drugs targeting the p53-MDM2 interaction.

  19. Protein Interacting with C-kinase 1 (PICK1) Binding Promiscuity Relies on Unconventional PSD-95/Discs-Large/ZO-1 Homology (PDZ) Binding Modes for Nonclass II PDZ Ligands*

    PubMed Central

    Erlendsson, Simon; Rathje, Mette; Heidarsson, Pétur O.; Poulsen, Flemming M.; Madsen, Kenneth L.; Teilum, Kaare; Gether, Ulrik

    2014-01-01

    PDZ domain proteins control multiple cellular functions by governing assembly of protein complexes. It remains unknown why individual PDZ domains can bind the extreme C terminus of very diverse binding partners and maintain selectivity. By employing NMR spectroscopy, together with molecular modeling, mutational analysis, and fluorescent polarization binding experiments, we identify here three structural mechanisms explaining why the PDZ domain of PICK1 selectively binds >30 receptors, transporters, and kinases. Class II ligands, including the dopamine transporter, adopt a canonical binding mode with promiscuity obtained via differential packing in the binding groove. Class I ligands, such as protein kinase Cα, depend on residues upstream from the canonical binding sequence that are likely to interact with flexible loop residues of the PDZ domain. Finally, we obtain evidence that the unconventional ligand ASIC1a has a dual binding mode involving a canonical insertion and a noncanonical internal insertion with the two C-terminal residues forming interactions outside the groove. Together with an evolutionary analysis, the data show how unconventional binding modes might evolve for a protein recognition domain to expand the repertoire of functionally important interactions. PMID:25023278

  20. Design of eight-mode polarization-maintaining few-mode fiber for multiple-input multiple-output-free spatial division multiplexing.

    PubMed

    Wang, Lixian; LaRochelle, Sophie

    2015-12-15

    We propose a polarization-maintaining few-mode fiber (FMF) that features an elliptical ring shaped core with a high refractive index contrast ∼0.03 between the core and the cladding. This fiber design alleviates the usual trade-off between the number of guided modes and the achievable birefringence that is usually observed in conventional elliptical-core FMFs. Through numerical simulations, we show that this fiber design can support up to 10 guided vector modes over the entire C band while providing large birefringence. Except for the two fundamental modes, the eight higher-order vector modes are all separated from their adjacent modes by effective index differences >10⁻⁴, which is the typical birefringence value of single-mode polarization maintaining fibers. The designed fiber targets applications in spatial division multiplexing of optical channels, without multiple-input-multiple-output (MIMO) digital signal processing, for short-reach optical interconnects.

  1. Prediction of the binding mode of N2-phenylguanine derivative inhibitors to herpes simplex virus type 1 thymidine kinase

    NASA Astrophysics Data System (ADS)

    Gaudio, Anderson Coser; Takahata, Yuji; Richards, William Graham

    1998-01-01

    The probable binding mode of the herpes simplex virus thymidine kinase (HSV1 TK) N2-[substituted]-phenylguanine inhibitors is proposed. A computational experiment was designed to check some qualitative binding parameters and to calculate the interaction binding energies of alternative binding modes of N2-phenylguanines. The known binding modes of the HSV1 TK natural substrate deoxythymidine and one of its competitive inhibitors ganciclovir were used as templates. Both the qualitative and quantitative parts of the computational experiment indicated that the N2-phenylguanine derivatives bind to the HSV1 TK active site in the deoxythymidine-like binding mode. An experimental observation that N2-phenylguanosine derivatives are not phosphorylated during the interaction with the HSV1 TK gives support to the proposed binding mode.

  2. Real-time multi-mode neutron multiplicity counter

    DOEpatents

    Rowland, Mark S; Alvarez, Raymond A

    2013-02-26

    Embodiments are directed to a digital data acquisition method that collects data regarding nuclear fission at high rates and performs real-time preprocessing of large volumes of data into directly useable forms for use in a system that performs non-destructive assaying of nuclear material and assemblies for mass and multiplication of special nuclear material (SNM). Pulses from a multi-detector array are fed in parallel to individual inputs that are tied to individual bits in a digital word. Data is collected by loading a word at the individual bit level in parallel, to reduce the latency associated with current shift-register systems. The word is read at regular intervals, all bits simultaneously, with no manipulation. The word is passed to a number of storage locations for subsequent processing, thereby removing the front-end problem of pulse pileup. The word is used simultaneously in several internal processing schemes that assemble the data in a number of more directly useable forms. The detector includes a multi-mode counter that executes a number of different count algorithms in parallel to determine different attributes of the count data.

  3. Yeast ribonuclease III uses a network of multiple hydrogen bonds for RNA binding and cleavage.

    PubMed

    Lavoie, Mathieu; Abou Elela, Sherif

    2008-08-19

    Members of the bacterial RNase III family recognize a variety of short structured RNAs with few common features. It is not clear how this group of enzymes supports high cleavage fidelity while maintaining a broad base of substrates. Here we show that the yeast orthologue of RNase III (Rnt1p) uses a network of 2'-OH-dependent interactions to recognize substrates with different structures. We designed a series of bipartite substrates permitting the distinction between binding and cleavage defects. Each substrate was engineered to carry a single or multiple 2'- O-methyl or 2'-fluoro ribonucleotide substitutions to prevent the formation of hydrogen bonds with a specific nucleotide or group of nucleotides. Interestingly, introduction of 2'- O-methyl ribonucleotides near the cleavage site increased the rate of catalysis, indicating that 2'-OH are not required for cleavage. Substitution of nucleotides in known Rnt1p binding site with 2'- O-methyl ribonucleotides inhibited cleavage while single 2'-fluoro ribonucleotide substitutions did not. This indicates that while no single 2'-OH is essential for Rnt1p cleavage, small changes in the substrate structure are not tolerated. Strikingly, several nucleotide substitutions greatly increased the substrate dissociation constant with little or no effect on the Michaelis-Menten constant or rate of catalysis. Together, the results indicate that Rnt1p uses a network of nucleotide interactions to identify its substrate and support two distinct modes of binding. One mode is primarily mediated by the dsRNA binding domain and leads to the formation of stable RNA/protein complex, while the other requires the presence of the nuclease and N-terminal domains and leads to RNA cleavage.

  4. Binding Mode Selection Determines the Action of Ecstasy Homologs at Monoamine Transporters

    PubMed Central

    Sandtner, Walter; Stockner, Thomas; Hasenhuetl, Peter S.; Partilla, John S.; Seddik, Amir; Zhang, Yuan-Wei; Cao, Jianjing; Holy, Marion; Steinkellner, Thomas; Rudnick, Gary; Baumann, Michael H.; Ecker, Gerhard F.; Newman, Amy Hauck

    2016-01-01

    Determining the structural elements that define substrates and inhibitors at the monoamine transporters is critical to elucidating the mechanisms underlying these disparate functions. In this study, we addressed this question directly by generating a series of N-substituted 3,4-methylenedioxyamphetamine analogs that differ only in the number of methyl substituents on the terminal amine group. Starting with 3,4-methylenedioxy-N-methylamphetamine, 3,4-methylenedioxy-N,N-dimethylamphetamine (MDDMA) and 3,4-methylenedioxy-N,N,N-trimethylamphetamine (MDTMA) were prepared. We evaluated the functional activities of the compounds at all three monoamine transporters in native brain tissue and cells expressing the transporters. In addition, we used ligand docking to generate models of the respective protein-ligand complexes, which allowed us to relate the experimental findings to available structural information. Our results suggest that the 3,4-methylenedioxyamphetamine analogs bind at the monoamine transporter orthosteric binding site by adopting one of two mutually exclusive binding modes. 3,4-methylenedioxyamphetamine and 3,4-methylenedioxy-N-methylamphetamine adopt a high-affinity binding mode consistent with a transportable substrate, whereas MDDMA and MDTMA adopt a low-affinity binding mode consistent with an inhibitor, in which the ligand orientation is inverted. Importantly, MDDMA can alternate between both binding modes, whereas MDTMA exclusively binds to the low-affinity mode. Our experimental results are consistent with the idea that the initial orientation of bound ligands is critical for subsequent interactions that lead to transporter conformational changes and substrate translocation. PMID:26519222

  5. Structure-Based Understanding of Binding Affinity and Mode of Estrogen Receptor α Agonists and Antagonists

    PubMed Central

    Barron, Mace G.

    2017-01-01

    The flexible hydrophobic ligand binding pocket (LBP) of estrogen receptor α (ERα) allows the binding of a wide variety of endocrine disruptors. Upon ligand binding, the LBP reshapes around the contours of the ligand and stabilizes the complex by complementary hydrophobic interactions and specific hydrogen bonds with the ligand. Here we present a framework for quantitative analysis of the steric and electronic features of the human ERα-ligand complex using three dimensional (3D) protein-ligand interaction description combined with 3D-QSAR approach. An empirical hydrophobicity density field is applied to account for hydrophobic contacts of ligand within the LBP. The obtained 3D-QSAR model revealed that hydrophobic contacts primarily determine binding affinity and govern binding mode with hydrogen bonds. Several residues of the LBP appear to be quite flexible and adopt a spectrum of conformations in various ERα-ligand complexes, in particular His524. The 3D-QSAR was combined with molecular docking based on three receptor conformations to accommodate receptor flexibility. The model indicates that the dynamic character of the LBP allows accommodation and stable binding of structurally diverse ligands, and proper representation of the protein flexibility is critical for reasonable description of binding of the ligands. Our results provide a quantitative and mechanistic understanding of binding affinity and mode of ERα agonists and antagonists that may be applicable to other nuclear receptors. PMID:28061508

  6. Insight into the Binding Mode of Agonists of the Nicotinic Acetylcholine Receptor from Calculated Electron Densities

    PubMed Central

    Beck, Michael E; Gutbrod, Oliver; Matthiesen, Svend

    2015-01-01

    Insect nicotinic acetylcholine receptors (nAChRs) are among the most prominent and most economically important insecticide targets. Thus, an understanding of the modes of binding of respective agonists is important for the design of specific compounds with favorable vertebrate profiles. In the case of nAChRs, the lack of available high-resolution X-ray structures leaves theoretical considerations as the only viable option. Starting from classical homology and docking approaches, binding mode hypotheses are created for five agonists of the nAChR, covering insecticides in the main group 4 of the Insecticide Resistance Action Committee (IRAC) mode of action (MoA) classification, namely, neonicotinoids, nicotine, sulfoxaflor, and butenolides. To better understand these binding modes, the topologies of calculated electron densities of small-model systems are analyzed in the framework of the quantum theory of atoms in molecules. The theoretically obtained modes of binding are very much in line with the biology-driven IRAC MoA classification of the investigated ligands. PMID:26175091

  7. Insight into the Binding Mode of Agonists of the Nicotinic Acetylcholine Receptor from Calculated Electron Densities.

    PubMed

    Beck, Michael E; Gutbrod, Oliver; Matthiesen, Svend

    2015-07-15

    Insect nicotinic acetylcholine receptors (nAChRs) are among the most prominent and most economically important insecticide targets. Thus, an understanding of the modes of binding of respective agonists is important for the design of specific compounds with favorable vertebrate profiles. In the case of nAChRs, the lack of available high-resolution X-ray structures leaves theoretical considerations as the only viable option. Starting from classical homology and docking approaches, binding mode hypotheses are created for five agonists of the nAChR, covering insecticides in the main group 4 of the Insecticide Resistance Action Committee (IRAC) mode of action (MoA) classification, namely, neonicotinoids, nicotine, sulfoxaflor, and butenolides. To better understand these binding modes, the topologies of calculated electron densities of small-model systems are analyzed in the framework of the quantum theory of atoms in molecules. The theoretically obtained modes of binding are very much in line with the biology-driven IRAC MoA classification of the investigated ligands.

  8. The structure and binding mode of citrate in the stabilization of gold nanoparticles.

    PubMed

    Al-Johani, Hind; Abou-Hamad, Edy; Jedidi, Abdesslem; Widdifield, Cory M; Viger-Gravel, Jasmine; Sangaru, Shiv Shankar; Gajan, David; Anjum, Dalaver H; Ould-Chikh, Samy; Hedhili, Mohamed Nejib; Gurinov, Andrei; Kelly, Michael J; El Eter, Mohamad; Cavallo, Luigi; Emsley, Lyndon; Basset, Jean-Marie

    2017-09-01

    Elucidating the binding mode of carboxylate-containing ligands to gold nanoparticles (AuNPs) is crucial to understand their stabilizing role. A detailed picture of the three-dimensional structure and coordination modes of citrate, acetate, succinate and glutarate to AuNPs is obtained by (13)C and (23)Na solid-state NMR in combination with computational modelling and electron microscopy. The binding between the carboxylates and the AuNP surface is found to occur in three different modes. These three modes are simultaneously present at low citrate to gold ratios, while a monocarboxylate monodentate (1κO(1)) mode is favoured at high citrate:gold ratios. The surface AuNP atoms are found to be predominantly in the zero oxidation state after citrate coordination, although trace amounts of Au(δ)(+) are observed. (23)Na NMR experiments show that Na(+) ions are present near the gold surface, indicating that carboxylate binding occurs as a 2e(-) L-type interaction for each oxygen atom involved. This approach has broad potential to probe the binding of a variety of ligands to metal nanoparticles.

  9. The structure and binding mode of citrate in the stabilization of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Al-Johani, Hind; Abou-Hamad, Edy; Jedidi, Abdesslem; Widdifield, Cory M.; Viger-Gravel, Jasmine; Sangaru, Shiv Shankar; Gajan, David; Anjum, Dalaver H.; Ould-Chikh, Samy; Hedhili, Mohamed Nejib; Gurinov, Andrei; Kelly, Michael J.; El Eter, Mohamad; Cavallo, Luigi; Emsley, Lyndon; Basset, Jean-Marie

    2017-09-01

    Elucidating the binding mode of carboxylate-containing ligands to gold nanoparticles (AuNPs) is crucial to understand their stabilizing role. A detailed picture of the three-dimensional structure and coordination modes of citrate, acetate, succinate and glutarate to AuNPs is obtained by 13C and 23Na solid-state NMR in combination with computational modelling and electron microscopy. The binding between the carboxylates and the AuNP surface is found to occur in three different modes. These three modes are simultaneously present at low citrate to gold ratios, while a monocarboxylate monodentate (1κO1) mode is favoured at high citrate:gold ratios. The surface AuNP atoms are found to be predominantly in the zero oxidation state after citrate coordination, although trace amounts of Auδ+ are observed. 23Na NMR experiments show that Na+ ions are present near the gold surface, indicating that carboxylate binding occurs as a 2e- L-type interaction for each oxygen atom involved. This approach has broad potential to probe the binding of a variety of ligands to metal nanoparticles.

  10. Rigorous Treatment of Multi-species Multi-mode Ligand-Receptor Interactions in 3D-QSAR: CoMFA Analysis of Thyroxine Analogs Binding to Transthyretin

    PubMed Central

    Natesan, Senthil; Wang, Tiansheng; Lukacova, Viera; Bartus, Vladimir; Khandelwal, Akash; Balaz, Stefan

    2011-01-01

    For a rigorous analysis of the receptor-ligand binding, speciation of the ligands caused by ionization, tautomerism, covalent hydration, and dynamic stereoisomerism needs to be considered. Each species may bind in several orientations or conformations (modes), especially for flexible ligands and receptors. A thermodynamic description of the multi-species (MS), multi-mode (MM) binding events shows that the overall association constant is equal to the weighted sum of the sums of microscopic association constants of individual modes for each species, with the weights given by the unbound fractions of individual species. This expression is a prerequisite for a precise quantitative characterization of the ligand-receptor interactions in both structure-based and ligand-based structure-activity analyses. We have implemented the MS-MM correlation expression into the Comparative Molecular Field Analysis (CoMFA), which deduces a map of the binding site from structures and binding affinities of a ligand set, in the absence of experimental structural information on the receptor. The MS-MM CoMFA approach was applied to published data for binding to transthyretin of 28 thyroxine analogs, each forming up to four ionization species under physiological conditions. The published X-ray structures of several analogs, exhibiting multiple binding modes, served as templates for the MS-MM superposition of thyroxine analogs. Additional modes were generated for compounds with flexible alkyl substituents, to identify bound conformations. The results demonstrate that the MS-MM modification improved predictive abilities of the CoMFA models, even for the standard procedure with MS-MM selected species and modes. The predicted prevalences of individual modes and the generated receptor site model are in reasonable agreement with the available X-ray data. The calibrated model can help in the design of inhibitors of transthyretin amyloid fibril formation. PMID:21476521

  11. Molecular analysis of the binding mode of Toll/interleukin-1 receptor (TIR) domain proteins during TLR2 signaling.

    PubMed

    Nada, Masatoshi; Ohnishi, Hidenori; Tochio, Hidehito; Kato, Zenichiro; Kimura, Takeshi; Kubota, Kazuo; Yamamoto, Takahiro; Kamatari, Yuji O; Tsutsumi, Naotaka; Shirakawa, Masahiro; Kondo, Naomi

    2012-10-01

    Toll-like receptor (TLR) signaling is initiated by the binding of various adaptor proteins through ligand-induced oligomerization of the Toll/interleukin-1 receptor (TIR) domains of the TLRs. TLR2, which recognizes peptidoglycans, lipoproteins or lipopeptides derived from Gram-positive bacteria, is known to use the TIR domain-containing adaptor proteins myeloid differentiating factor 88 (MyD88) and MyD88 adaptor-like (Mal). Molecular analyses of the binding specificity of MyD88, Mal, and TLR2 are important for understanding the initial defenses mounted against Gram-positive bacterial infections such as Streptococcus pneumoniae. However, the detailed molecular mechanisms involved in the multiple interactions of these TIR domains remain unclear. Our study demonstrates that the TIR domain proteins MyD88, Mal, TLR1, and TLR2 directly bind to each other in vitro. We have also identified two binding interfaces of the MyD88 TIR domain for the TLR2 TIR domain. A residue at these interfaces has recently been found to be mutated in innate immune deficiency patients. These novel insights into the binding mode of TIR proteins will contribute to elucidation of the mechanisms underlying innate immune deficiency diseases, and to future structural studies of hetero-oligomeric TIR-TIR complexes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Non-peptide ligand binding to the formyl peptide receptor FPR2--A comparison to peptide ligand binding modes.

    PubMed

    Stepniewski, Tomasz M; Filipek, Slawomir

    2015-07-15

    Ligands of the FPR2 receptor initiate many signaling pathways including activation of phospholipase C, protein kinase C, the mitogen-activated protein kinase, and phosphatidylinositol 3-kinase/protein kinase B pathway. The possible actions include also calcium flux, superoxide generation, as well as migration and proliferation of monocytes. FPR2 activation may induce a pro- and anti-inflammatory effect depending on the ligand type. It is also found that this receptor is involved in tumor growth. Most of currently known FPR2 ligands are agonists since they were designed based on N-formyl peptides, which are natural agonists of formyl receptors. Since the non-peptide drugs are indispensable for effective treatment strategies, we performed a docking study of such ligands employing a generated dual template homology model of the FPR2 receptor. The study revealed different binding modes of particular classes of these drugs. Based on the obtained docking poses we proposed a detailed location of three hydrophobic pockets in orthosteric binding site of FPR2. Our model emphasizes the importance of aromatic stacking, especially with regard to residues His102(3.29) and Phe257(6.51), for binding of FPR2 ligands. We also identified other residues important for non-peptide ligand binding in the binding site of FPR2. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Mode of binding of the antithyroid drug propylthiouracil to mammalian haem peroxidases

    PubMed Central

    Singh, R. P.; Singh, A.; Kushwaha, G. S; Singh, A. K.; Kaur, P.; Sharma, S.; Singh, T. P.

    2015-01-01

    The mammalian haem peroxidase superfamily consists of myeloperoxidase (MPO), lactoperoxidase (LPO), eosinophil peroxidase (EPO) and thyroid peroxidase (TPO). These enzymes catalyze a number of oxidative reactions of inorganic substrates such as Cl−, Br−, I− and SCN− as well as of various organic aromatic compounds. To date, only structures of MPO and LPO are known. The substrate-binding sites in these enzymes are located on the distal haem side. Propylthiouracil (PTU) is a potent antithyroid drug that acts by inhibiting the function of TPO. It has also been shown to inhibit the action of LPO. However, its mode of binding to mammalian haem peroxidases is not yet known. In order to determine the mode of its binding to peroxidases, the structure of the complex of LPO with PTU has been determined. It showed that PTU binds to LPO in the substrate-binding site on the distal haem side. The IC50 values for the inhibition of LPO and TPO by PTU are 47 and 30 µM, respectively. A comparision of the residues surrounding the substrate-binding site on the distal haem side in LPO with those in TPO showed that all of the residues were identical except for Ala114 (LPO numbering scheme), which is replaced by Thr205 (TPO numbering scheme) in TPO. A threonine residue in place of alanine in the substrate-binding site may affect the affinity of PTU for peroxidases. PMID:25760705

  14. Structural Basis for p53 Lys120-Acetylation-Dependent DNA-Binding Mode.

    PubMed

    Vainer, Radion; Cohen, Sarit; Shahar, Anat; Zarivach, Raz; Arbely, Eyal

    2016-07-31

    Normal cellular homeostasis depends on tight regulation of gene expression, which requires the modulation of transcription factors' DNA-binding specificity. That said, the mechanisms that allow transcription factors to distinguish between closely related response elements following different cellular signals are not fully understood. In the tumor suppressor protein p53, acetylation of loop L1 residue Lys120 within the DNA-binding domain has been shown to promote the transcription of proapoptotic genes such as bax. Here, we report the crystal structures of Lys120-acetylated p53 DNA-binding domain in complex with a consensus response element and with the natural BAX response element. Our structural analyses reveal that Lys120 acetylation expands the conformational space of loop L1 in the DNA-bound state. Loop L1 flexibility is known to increase p53's DNA-binding specificity, and Lys120-acetylation-dependent conformational changes in loop L1 enable the formation of sequence-dependent DNA-binding modes for p53. Furthermore, binding to the natural BAX response element is accompanied by global conformational changes, deformation of the DNA helical structure, and formation of an asymmetric tetrameric complex. Based on these findings, we suggest a model for p53's Lys120 acetylation-dependent DNA-binding mode. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. THz time scale structural rearrangements and binding modes in lysozyme-ligand interactions.

    PubMed

    Woods, K N

    2014-03-01

    Predicting the conformational changes in proteins that are relevant for substrate binding is an ongoing challenge in the aim of elucidating the functional states of proteins. The motions that are induced by protein-ligand interactions are governed by the protein global modes. Our measurements indicate that the detected changes in the global backbone motion of the enzyme upon binding reflect a shift from the large-scale collective dominant mode in the unbound state towards a functional twisting deformation that assists in closing the binding cleft. Correlated motion in lysozyme has been implicated in enzyme function in previous studies, but detailed characterization of the internal fluctuations that enable the protein to explore the ensemble of conformations that ultimately foster large-scale conformational change is yet unknown. For this reason, we use THz spectroscopy to investigate the picosecond time scale binding modes and collective structural rearrangements that take place in hen egg white lysozyme (HEWL) when bound by the inhibitor (NAG)3. These protein thermal motions correspond to fluctuations that have a role in both selecting and sampling from the available protein intrinsic conformations that communicate function. Hence, investigation of these fast, collective modes may provide knowledge about the mechanism leading to the preferred binding process in HEWL-(NAG)3. Specifically, in this work we find that the picosecond time scale hydrogen-bonding rearrangements taking place in the protein hydration shell with binding modify the packing density within the hydrophobic core on a local level. These localized, intramolecular contact variations within the protein core appear to facilitate the large cooperative movements within the interfacial region separating the α- and β- domain that mediate binding. The THz time-scale fluctuations identified in the protein-ligand system may also reveal a molecular mechanism for substrate recognition.

  16. Investigation of the binding modes between AIE-active molecules and dsDNA by single molecule force spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Ma, Ke; Hu, Ting; Jiang, Bo; Xu, Bin; Tian, Wenjing; Sun, Jing Zhi; Zhang, Wenke

    2015-05-01

    AIE (aggregation-induced emission)-active molecules hold promise for the labeling of biomolecules as well as living cells. The study of the binding modes of such molecules to biomolecules, such as nucleic acids and proteins, will shed light on a deeper understanding of the mechanisms of molecular interactions and eventually facilitate the design/preparation of new AIE-active bioprobes. Herein, we studied the binding modes of double-stranded DNA (dsDNA) with two types of synthetic AIE-active molecules, namely, tetraphenylethene-derived dicationic compounds (cis-TPEDPy and trans-TPEDPy) and anthracene-derived dicationic compounds (DSAI and DSABr-C6) using single molecule force spectroscopy (SMFS) and circular dichroism (CD) spectroscopy. The experimental data indicate that DSAI can strongly intercalate into DNA base pairs, while DSABr-C6 is unable to intercalate into DNA due to the steric hindrance of the alkyl side chains. Cis-TPEDPy and trans-TPEDPy can also intercalate into DNA base pairs, but the binding shows strong ionic strength dependence. Multiple binding modes of TPEDPy with dsDNA have been discussed. In addition, the electrostatic interaction enhanced intercalation of cis-TPEDPy with dsDNA has also been revealed.AIE (aggregation-induced emission)-active molecules hold promise for the labeling of biomolecules as well as living cells. The study of the binding modes of such molecules to biomolecules, such as nucleic acids and proteins, will shed light on a deeper understanding of the mechanisms of molecular interactions and eventually facilitate the design/preparation of new AIE-active bioprobes. Herein, we studied the binding modes of double-stranded DNA (dsDNA) with two types of synthetic AIE-active molecules, namely, tetraphenylethene-derived dicationic compounds (cis-TPEDPy and trans-TPEDPy) and anthracene-derived dicationic compounds (DSAI and DSABr-C6) using single molecule force spectroscopy (SMFS) and circular dichroism (CD) spectroscopy. The

  17. The binding modes of carbazole derivatives with telomere G-quadruplex

    NASA Astrophysics Data System (ADS)

    Zhang, Xiu-feng; Zhang, Hui-juan; Xiang, Jun-feng; Li, Qian; Yang, Qian-fan; Shang, Qian; Zhang, Yan-xia; Tang, Ya-lin

    2010-10-01

    It is reported that carbazole derivatives can stabilize G-quadruplex DNA structure formed by human telomeric sequence, and therefore, they have the potential to serve as anti-cancer agents. In this present study, in order to further explore the binding mode between carbazole derivatives and G-quadruplex formed by human telomeric sequence, two carbazole iodides (BMVEC, MVEC) molecules were synthesized and used to investigate the interaction with the human telomeric parallel and antiparallel G-quadruplex structures by NMR, CD and molecular modeling study. Interestingly, it is the pivotal the cationic charge pendant groups of pyridinium rings of carbazole that plays an essential role in the stabilizing and binding mode of the human telomeric sequences G-quadruplex structure. It was found that BMVEC with two cationic charge pendant groups of pyridinium rings of 9-ethylcarbazole cannot only stabilize parallel G-quadruple of Hum6 by groove binding and G-tetrad stacking modes and antiparallel G-quadruplex of Hum22 by groove binding, but also induce the formation of mixed G-quadruplex of Hum22. While MVEC with one cationic charge pendant groups of pyridinium ring only can bind with the parallel G-quadruplex of Hum6 by the stacking onto the G4 G-tetrad and could not interact with the G-quadruplex of Hum22.

  18. DNA interaction with DAPI fluorescent dye: Force spectroscopy decouples two different binding modes.

    PubMed

    Reis, L A; Rocha, M S

    2017-05-01

    In this work, we use force spectroscopy to investigate the interaction between the DAPI fluorescent dye and the λ-DNA molecule under high (174 mM) and low (34 mM) ionic strengths. Firstly, we have measured the changes on the mechanical properties (persistence and contour lengths) of the DNA-DAPI complexes as a function of the dye concentration in the sample. Then, we use recently developed models in order to connect the behavior of both mechanical properties to the physical chemistry of the interaction. Such analysis has allowed us to identify and to decouple two main binding modes, determining the relevant physicochemical (binding) parameters for each of these modes: minor groove binding, which saturates at very low DAPI concentrations ( CT ∼ 0.50 μM) and presents equilibrium binding constants of the order of ∼10(7) M(-1) for the two ionic strengths studied; and intercalation, which starts to play a significant role only after the saturation of the first mode, presenting much smaller equilibrium binding constants (∼10(5) M(-1) ).

  19. Study on wall locking of multiple tearing modes in reversed field pinch plasmas

    NASA Astrophysics Data System (ADS)

    Guo, S. C.; Chu, M. S.

    2004-08-01

    The nonlinear interactions between multiple unstable tearing modes and the resistive wall in reversed field pinch plasmas are studied. The nonlinear interactions include the nonlinear electromagnetic interaction between multiple modes, the effect of the eddy currents induced in the resistive wall by the magnetic perturbations of the multiple modes, and the effect of the angular momentum transport due to the viscous diffusion in the plasma. A set of fully time-dependent equations describing the dynamics of the three tearing modes (dynamo modes) has been employed and solved numerically by using the finite element method. Both the time-dependent and the steady state solutions are obtained. It is found that the multiple modes enhance the braking effect of the resistive wall. The "locking threshold" predicted in the case of multiple modes is much smaller than that of the case of the single mode (as far as the same mode is concerned). The formation of the "slinky mode" is clearly demonstrated. The relation of two existing thresholds: "wall locking" and "phase locking" is also discussed. Comparison is made between the time-dependent solution and the steady state solution for two examples, in which the mode amplitudes grow linearly with time. The validity of the steady state assumption, in particular, for the calculation of the viscous torque is discussed. Numerical analysis is applied to the reversed field experiment [F. Gnesotto, P. Sonato, W. R. Baker et al., Fusion Eng. Des. 25, 335 (1995)].

  20. Modulation of activation-loop phosphorylation by JAK inhibitors is binding mode dependent

    PubMed Central

    Bonenfant, Débora; Rubert, Joëlle; Vangrevelinghe, Eric; Scheufler, Clemens; Marque, Fanny; Régnier, Catherine H.; De Pover, Alain; Ryckelynck, Hugues; Bhagwat, Neha; Koppikar, Priya; Goel, Aviva; Wyder, Lorenza; Tavares, Gisele; Baffert, Fabienne; Pissot-Soldermann, Carole; Manley, Paul W.; Gaul, Christoph; Voshol, Hans; Levine, Ross L.; Sellers, William R.; Hofmann, Francesco; Radimerski, Thomas

    2016-01-01

    JAK inhibitors are being developed for the treatment of rheumatoid arthritis, psoriasis, myeloproliferative neoplasms and leukemias. Most of these drugs target the ATP-binding pocket and stabilize the active conformation of the JAK kinases. This type-I binding mode leads to an increase in JAK activation-loop phosphorylation, despite blockade of kinase function. Here we report that stabilizing the inactive state via type-II inhibition acts in the opposite manner, leading to a loss of activation-loop phosphorylation. We used X-ray crystallography to corroborate the binding mode and report for the first time the crystal structure of the JAK2 kinase domain in an inactive conformation. Importantly, JAK inhibitor-induced activation-loop phosphorylation requires receptor interaction, as well as intact kinase and pseudokinase domains. Hence, depending on the respective conformation stabilized by a JAK inhibitor, hyperphosphorylation of the activation-loop may or may not be elicited. PMID:22684457

  1. 78 FR 52970 - Certain Multiple Mode Outdoor Grills and Parts Thereof; Notice of Receipt of Complaint...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-27

    ... COMMISSION Certain Multiple Mode Outdoor Grills and Parts Thereof; Notice of Receipt of Complaint... complaint entitled Certain Multiple Mode Outdoor Grills and Parts Thereof, DN 2974; the Commission is... can be accessed on the Commission's Electronic Document Information System (EDIS) at EDIS \\1\\,...

  2. Reassessment of the Unique Mode of Binding between Angiotensin II Type 1 Receptor and Their Blockers

    PubMed Central

    Matsuo, Yoshino; Saku, Keijiro; Karnik, Sadashiva S.

    2013-01-01

    While the molecular structures of angiotensin II (Ang II) type 1 (AT1) receptor blockers (ARBs) are very similar, they are also slightly different. Although each ARB has been shown to exhibit a unique mode of binding to AT1 receptor, different positions of the AT1 receptor have been analyzed and computational modeling has been performed using different crystal structures for the receptor as a template and different kinds of software. Therefore, we systematically analyzed the critical positions of the AT1 receptor, Tyr113, Tyr184, Lys199, His256 and Gln257 using a mutagenesis study, and subsequently performed computational modeling of the binding of ARBs to AT1 receptor using CXCR4 receptor as a new template and a single version of software. The interactions between Tyr113 in the AT1 receptor and the hydroxyl group of olmesartan, between Lys199 and carboxyl or tetrazole groups, and between His256 or Gln257 and the tetrazole group were studied. The common structure, a tetrazole group, of most ARBs similarly bind to Lys199, His256 and Gln257 of AT1 receptor. Lys199 in the AT1 receptor binds to the carboxyl group of EXP3174, candesartan and azilsartan, whereas oxygen in the amidecarbonyl group of valsartan may bind to Lys199. The benzimidazole portion of telmisartan may bind to a lipophilic pocket that includes Tyr113. On the other hand, the n-butyl group of irbesartan may bind to Tyr113. In conclusion, we confirmed that the slightly different structures of ARBs may be critical for binding to AT1 receptor and for the formation of unique modes of binding. PMID:24260317

  3. Orientational binding modes of reporters in a viral-nanoparticle lateral flow assay.

    PubMed

    Kim, Jinsu; Poling-Skutvik, Ryan; Trabuco, João R C; Kourentzi, Katerina; Willson, Richard C; Conrad, Jacinta C

    2016-12-19

    Using microscopy and image analysis, we characterize binding of filamentous viral nanoparticles to a fibrous affinity matrix as models for reporter capture in a lateral flow assay (LFA). M13 bacteriophage (M13) displaying an in vivo-biotinylated peptide (AviTag) genetically fused to the M13 tail protein p3 are functionalized with fluorescent labels. We functionalize glass fiber LFA membranes with antibodies to M13, which primarily capture M13 on the major p8 coat proteins, or with avidin, which captures M13 at the biotin-functionalized tail, and compare orientational modes of reporter capture for the side- versus tip-binding recognition interactions. The number of captured M13 is greater for side-binding than for tip-binding, as expected from the number of recognition groups. Whereas two-thirds of side-bound M13 captured by an anti-M13 antibody bind immediately after colliding with the membrane, tip-bound M13 prominently exhibit three additional orientational modes that require M13 to reorient to enable binding. These results are consistent with the idea that the elongated M13 shape couples with the complex flow field in an open and disordered fibrous LFA membrane to enhance capture.

  4. The binding modes and binding affinities of epipodophyllotoxin derivatives with human topoisomerase IIα.

    PubMed

    Naik, Pradeep Kumar; Dubey, Abhishek; Soni, Komal; Kumar, Rishay; Singh, Harvinder

    2010-12-01

    Epipodophyllotoxin derivatives have important therapeutic value in the treatment of human cancers. These drugs kill cells by inhibiting the ability of topoisomerase II (TP II) to ligate nucleic acids that it cleaves during the double-stranded DNA passage reaction. The 3D structure of human TP IIα was modeled by homology modeling. A virtual library consisting of 143 epipodophyllotoxin derivatives has been developed. Their molecular interactions and binding affinities with modeled human TP IIα have been studied using the docking and Bimolecular Association with Energetics (eMBrAcE) developed by Schrödinger. Structure activity relationship models were developed between the experimental activity expressed in terms of percentage of intracellular covalent TP II-DNA complexes (log PCPDCF) of these compounds and molecular descriptors like docking score and free energy of binding. For both the cases the r2 was in the range of 0.624-0.800 indicating good data fit and r2(cv) was in the range of 0.606-774 indicating that the predictive capabilities of the models were acceptable. Low levels of root mean square error for the majority of inhibitors establish the docking and eMBrAcE based prediction model as an efficient tool for generating more potent and specific inhibitors of human TP IIα by testing rationally designed lead compounds based on epipodophyllotoxin derivatization. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Multi-Mode Binding of Cellobiohydrolase Cel7A from Trichoderma reesei to Cellulose

    PubMed Central

    Jalak, Jürgen; Väljamäe, Priit

    2014-01-01

    Enzymatic hydrolysis of recalcitrant polysaccharides like cellulose takes place on the solid-liquid interface. Therefore the adsorption of enzymes to the solid surface is a pre-requisite for catalysis. Here we used enzymatic activity measurements with fluorescent model-substrate 4-methyl-umbelliferyl-β-D-lactoside for sensitive monitoring of the binding of cellobiohydrolase TrCel7A from Trichoderma reesei to bacterial cellulose (BC). The binding at low nanomolar free TrCel7A concentrations was exclusively active site mediated and was consistent with Langmuir's one binding site model with Kd and Amax values of 2.9 nM and 126 nmol/g BC, respectively. This is the strongest binding observed with non-complexed cellulases and apparently represents the productive binding of TrCel7A to cellulose chain ends on the hydrophobic face of BC microfibril. With increasing free TrCel7A concentrations the isotherm gradually deviated from the Langmuir's one binding site model. This was caused by the increasing contribution of lower affinity binding modes that included both active site mediated binding and non-productive binding with active site free from cellulose chain. The binding of TrCel7A to BC was found to be only partially reversible. Furthermore, the isotherm was dependent on the concentration of BC with more efficient binding observed at lower BC concentrations. The phenomenon can be ascribed to the BC concentration dependent aggregation of BC microfibrils with concomitant reduction of specific surface area. PMID:25265511

  6. Multiple relaxation modes in associative polymer networks with varying connectivity

    NASA Astrophysics Data System (ADS)

    Bohdan, M.; Sprakel, J.; van der Gucht, J.

    2016-09-01

    The dynamics and mechanics of networks depend sensitively on their spatial connectivity. To explore the effect of connectivity on local network dynamics, we prepare transient polymer networks in which we systematically cut connecting bonds. We do this by creating networks formed from hydrophobically modified difunctionalized polyethylene glycol chains. These form physical gels, consisting of flowerlike micelles that are transiently cross-linked by connecting bridges. By introducing monofunctionalized chains, we can systematically reduce the number of bonds between micelles and thus lower the network connectivity, which strongly reduces the network elasticity and relaxation time. Dynamic light scattering reveals a complex relaxation dynamics that are not apparent in bulk rheology. We observe three distinct relaxation modes. First we find a fast diffusive mode that does not depend on the number of bridges and is attributed to the diffusion of micelles within a cage formed by neighboring micelles. A second, intermediate mode depends strongly on network connectivity but surprisingly is independent of the scattering vector q . We attribute this viscoelastic mode to fluctuations in local connectivity of the network. The third, slowest mode is also diffusive and is attributed to the diffusion of micelle clusters through the viscoelastic matrix. These results shed light on the microscopic dynamics in weakly interconnected transient networks.

  7. Azimuthal Directivity of Fan Tones Containing Multiple Modes

    NASA Technical Reports Server (NTRS)

    Heidelberg, Laurence J.; Sutliff, Daniel L.; Nallasamy, M.

    1997-01-01

    The directivity of fan tone noise is generally measured and plotted in the sideline or flyover plane and it is assumed that this curve is the same for all azimuthal angles. When two or more circumferential (m-order) modes of the same tone are present in the fan duct, an interference pattern develops in the azimuthal direction both in the duct and in the farfield. In this investigation two m-order modes of similar power were generated in a large low speed fan. Farfield measurements and a finite element propagation code both show substantial variations in the azimuthal direction. Induct mode measurement were made and used as input to the code. Although these tests may represent a worst case scenario, the validity of the current practice of assuming axisymmetry should be questioned.

  8. Theoretical prediction of binding modes and hot sequences for allopsoralen DNA interaction

    NASA Astrophysics Data System (ADS)

    Méndez, Patricia Saenz; Guedes, Rita C.; dos Santos, Daniel J. V. A.; Eriksson, Leif A.

    2007-12-01

    Molecular docking studies of two duplex DNA sequences as target fragments and allopsoralen as ligand were performed. The calculated interaction energies showed that the ligand can be docked into the minor groove as well as become intercalated. However, unlike psoralen, allopsoralen preferred binding mode for non-poly-TA sequences is minor groove binding. Calculated energies for intercalation between different base pairs suggest that the predicted sequence selectivity for allopsoralen is analogous to that observed for psoralen. Intercalation is favored in 5'-TpA sites in poly-TA sequences.

  9. An intermolecular binding mechanism involving multiple LysM domains mediates carbohydrate recognition by an endopeptidase

    SciTech Connect

    Wong, Jaslyn E. M. M.; Midtgaard, Søren Roi; Gysel, Kira; Thygesen, Mikkel B.; Sørensen, Kasper K.; Jensen, Knud J.; Stougaard, Jens; Thirup, Søren; Blaise, Mickaël

    2015-03-01

    The crystal and solution structures of the T. thermophilus NlpC/P60 d, l-endopeptidase as well as the co-crystal structure of its N-terminal LysM domains bound to chitohexaose allow a proposal to be made regarding how the enzyme recognizes peptidoglycan. LysM domains, which are frequently present as repetitive entities in both bacterial and plant proteins, are known to interact with carbohydrates containing N-acetylglucosamine (GlcNAc) moieties, such as chitin and peptidoglycan. In bacteria, the functional significance of the involvement of multiple LysM domains in substrate binding has so far lacked support from high-resolution structures of ligand-bound complexes. Here, a structural study of the Thermus thermophilus NlpC/P60 endopeptidase containing two LysM domains is presented. The crystal structure and small-angle X-ray scattering solution studies of this endopeptidase revealed the presence of a homodimer. The structure of the two LysM domains co-crystallized with N-acetyl-chitohexaose revealed a new intermolecular binding mode that may explain the differential interaction between LysM domains and short or long chitin oligomers. By combining the structural information with the three-dimensional model of peptidoglycan, a model suggesting how protein dimerization enhances the recognition of peptidoglycan is proposed.

  10. An intermolecular binding mechanism involving multiple LysM domains mediates carbohydrate recognition by an endopeptidase.

    PubMed

    Wong, Jaslyn E M M; Midtgaard, Søren Roi; Gysel, Kira; Thygesen, Mikkel B; Sørensen, Kasper K; Jensen, Knud J; Stougaard, Jens; Thirup, Søren; Blaise, Mickaël

    2015-03-01

    LysM domains, which are frequently present as repetitive entities in both bacterial and plant proteins, are known to interact with carbohydrates containing N-acetylglucosamine (GlcNAc) moieties, such as chitin and peptidoglycan. In bacteria, the functional significance of the involvement of multiple LysM domains in substrate binding has so far lacked support from high-resolution structures of ligand-bound complexes. Here, a structural study of the Thermus thermophilus NlpC/P60 endopeptidase containing two LysM domains is presented. The crystal structure and small-angle X-ray scattering solution studies of this endopeptidase revealed the presence of a homodimer. The structure of the two LysM domains co-crystallized with N-acetyl-chitohexaose revealed a new intermolecular binding mode that may explain the differential interaction between LysM domains and short or long chitin oligomers. By combining the structural information with the three-dimensional model of peptidoglycan, a model suggesting how protein dimerization enhances the recognition of peptidoglycan is proposed.

  11. An intermolecular binding mechanism involving multiple LysM domains mediates carbohydrate recognition by an endopeptidase

    PubMed Central

    Wong, Jaslyn E. M. M.; Midtgaard, Søren Roi; Gysel, Kira; Thygesen, Mikkel B.; Sørensen, Kasper K.; Jensen, Knud J.; Stougaard, Jens; Thirup, Søren; Blaise, Mickaël

    2015-01-01

    LysM domains, which are frequently present as repetitive entities in both bacterial and plant proteins, are known to interact with carbohydrates containing N-acetylglucosamine (GlcNAc) moieties, such as chitin and peptidoglycan. In bacteria, the functional significance of the involvement of multiple LysM domains in substrate binding has so far lacked support from high-resolution structures of ligand-bound complexes. Here, a structural study of the Thermus thermophilus NlpC/P60 endopeptidase containing two LysM domains is presented. The crystal structure and small-angle X-ray scattering solution studies of this endopeptidase revealed the presence of a homodimer. The structure of the two LysM domains co-crystallized with N-acetyl-chitohexaose revealed a new intermolecular binding mode that may explain the differential interaction between LysM domains and short or long chitin oligomers. By combining the structural information with the three-dimensional model of peptidoglycan, a model suggesting how protein dimerization enhances the recognition of peptidoglycan is proposed. PMID:25760608

  12. Deciphering the groove binding modes of tau-fluvalinate and flumethrin with calf thymus DNA

    NASA Astrophysics Data System (ADS)

    Tao, Mo; Zhang, Guowen; Pan, Junhui; Xiong, Chunhong

    2016-02-01

    Tau-fluvalinate (TFL) and flumethrin (FL), widely used in agriculture and a class of synthetic pyrethroid pesticides with a similar structure, may cause a potential security risk. Herein, the modes of binding in vitro of TFL and FL with calf thymus DNA (ctDNA) were characterized by fluorescence, UV-vis absorption, circular dichroism (CD) and Fourier transform infrared (FT-IR) spectroscopy with the aid of viscosity measurements, melting analyses and molecular docking studies. The fluorescence titration indicated that both TFL and FL bound to ctDNA forming complexes through hydrogen bonding and van der Waals forces. The binding constants of TFL and FL with ctDNA were in the range of 104 L mol- 1, and FL exhibited a higher binding propensity than TFL. The iodide quenching effect, single/double-stranded DNA effects, and ctDNA melting and viscosity measurements demonstrated that the binding of both TFL and FL to ctDNA was groove mode. The FT-IR analyses suggested the A-T region of the minor groove of ctDNA as the preferential binding for TFL and FL, which was confirmed by the displacement assays with Hoechst 33258 probe, and the molecular docking visualized the specific binding. The changes in CD spectra indicated that both FL and TFL induced the perturbation on the base stacking and helicity of B-DNA, but the disturbance caused by FL was more obvious. Gel electrophoresis analyses indicated that both TFL and FL did not cause significant DNA cleavage. This study provides novel insights into the binding properties of TFL/FL with ctDNA and its toxic mechanisms.

  13. Binding modes of thioflavin T molecules to prion peptide assemblies identified by using scanning tunneling microscopy.

    PubMed

    Mao, Xiaobo; Guo, Yuanyuan; Wang, Chenxuan; Zhang, Min; Ma, Xiaojing; Liu, Lei; Niu, Lin; Zeng, Qingdao; Yang, Yanlian; Wang, Chen

    2011-06-15

    The widely used method to monitor the aggregation process of amyloid peptide is thioflavin T (ThT) assay, while the detailed molecular mechanism is still not clear. In this work, we report here the direct identification of the binding modes of ThT molecules with the prion peptide GNNQQNY by using scanning tunneling microscopy (STM). The assembly structures of GNNQQNY were first observed by STM on a graphite surface, and the introduction of ThT molecules to the surface facilitated the STM observations of the adsorption conformations of ThT with peptide strands. ThT molecules are apt to adsorb on the peptide assembly with β-sheet structure and oriented parallel with the peptide strands adopting four different binding modes. This effort could benefit the understanding of the mechanisms of the interactions between labeling species or inhibitory ligands and amyloid peptides, which is keenly needed for developing diagnostic and therapeutic approaches.

  14. 2,4-Diaminopyrimidine MK2 inhibitors. Part I: Observation of an unexpected inhibitor binding mode

    SciTech Connect

    Argiriadi, Maria A.; Ericsson, Anna M.; Harris, Christopher M.; Banach, David L.; Borhani, David W.; Calderwood, David J.; Demers, Megan D.; DiMauro, Jennifer; Dixon, Richard W.; Hardman, Jennifer; Kwak, Silvia; Li, Biqin; Mankovich, John A.; Marcotte, Douglas; Mullen, Kelly D.; Ni, Baofu; Pietras, M.; Sadhukhan, Ramkrishna; Sousa, Silvino; Tomlinson, Medha J.; Wang, L.; Xiang, T.; Talanian, R.V.

    2010-09-17

    MK2 is a Ser/Thr kinase of significant interest as an anti-inflammatory drug discovery target. Here we describe the development of in vitro tools for the identification and characterization of MK2 inhibitors, including validation of inhibitor interactions with the crystallography construct and determination of the unique binding mode of 2,4-diaminopyrimidine inhibitors in the MK2 active site.

  15. Novel Drosophila receptor that binds multiple growth factors

    SciTech Connect

    Rosner, M.R.; Thompson, K.L.; Garcia, V.; Decker, S.J.

    1986-05-01

    The authors have recently reported the identification of a novel growth factor receptor from Drosophila cell cultures that has dual binding specificity for both insulin and epidermal growth factor (EGF). This 100 kDa protein is also antigenically related to the cytoplasmic region of the mammalian EGF receptor-tyrosine kinase. They now report that this protein binds to mammalian nerve growth factor and human transforming growth factor alpha as well as insulin and EGF with apparent dissociation constants ranging from 10/sup -6/ to 10/sup -8/ M. The 100 kDa protein can be affinity-labeled with these /sup 125/I-labeled growth factors after immunoprecipitation with anti-EGF receptor antiserum. These four growth factors appear to share a common binding site, as evidenced by their ability to block affinity labelling by /sup 125/I-insulin. No significant binding to the 100 kDa protein was observed with platelet-derived growth factor, transforming growth factor beta, or glucagon. The 100 kDa Drosophila protein has a unique ligand-binding spectrum with no direct counterpart in mammalian cells and may represent an evolutionary precursor of the mammalian receptors for these growth factors.

  16. Change of the binding mode of the DNA/proflavine system induced by ethanol.

    PubMed

    García, Begoña; Leal, José M; Ruiz, Rebeca; Biver, Tarita; Secco, Fernando; Venturini, M

    2010-07-01

    The equilibria and kinetics of the binding of proflavine to poly(dG-dC).poly(dG-dC) and poly(dA-dT).poly(dA-dT) were investigated in ethanol/water mixtures using spectrophotometric, circular dichroism, viscometric, and T-jump methods. All methods concur in showing that two modes of interaction are operative: intercalation and surface binding. The latter mode is favored by increasing ethanol and/or the proflavine content. Both static and kinetic experiments show that, concerning the poly(dG-dC).poly(dG-dC)/proflavine system, intercalation largely prevails up to 20% EtOH. For higher EtOH levels surface binding becomes dominant. Concerning the poly(dA-dT).poly(dA-dT)/proflavine system, melting experiments show that addition of proflavine stabilizes the double stranded structure, but the effect is reduced in the presence of EtOH. The DeltaH degrees and DeltaS degrees values of the melting process, measured at different concentrations of added proflavine, are linearly correlated, revealing the presence of the enthalpy-entropy compensation phenomenon (EEC). The nonmonotonicity of the "entropic term" of the EEC reveals the transition between the two binding modes. T-jump experiments show two relaxation effects, but at the highest levels of EtOH (>25%) the kinetic curves become monophasic, confirming the prevalence of the surface complex. A branched mechanism is proposed where diffusion controlled formation of a precursor complex occurs in the early stage of the binding process. This evolves toward the surface and/or the intercalated complex according to two rate-determining parallel steps. CD spectra suggest that, in the surface complex, proflavine is bound to DNA in the form of an aggregate.

  17. Molecular Dynamics Insights into Polyamine-DNA Binding Modes: Implications for Cross-Link Selectivity.

    PubMed

    Bignon, Emmanuelle; Chan, Chen-Hui; Morell, Christophe; Monari, Antonio; Ravanat, Jean-Luc; Dumont, Elise

    2017-08-16

    Biogenic polyamines, which play a role in DNA condensation and stabilization, are ubiquitous and are found at millimolar concentration in the nucleus of eukaryotic cells. The interaction modes of three polyamines-putrescine (Put), spermine (Spm), and spermidine (Spd)-with a self-complementary 16 base pair (bp) duplex, are investigated by all-atom explicit-solvent molecular dynamics. The length of the amine aliphatic chain leads to a change of the interaction mode from minor groove binding to major groove binding. Through all-atom dynamics, noncovalent interactions that stabilize the polyamine-DNA complex and prefigure the reactivity, leading to the low-barrier formation of deleterious DNA-polyamine cross-links, after one-electron oxidation of a guanine nucleobase, are unraveled. The binding strength is quantified from the obtained trajectories by molecular mechanics generalized Born surface area post-processing (MM-GBSA). The values of binding free energies provide the same affinity order, Putbinding modes and carbon-nitrogen distances along the series of polyamines illustrate the selectivity towards deleterious DNA-polyamine cross-link formation through the extraction of average approaching distances between the C8 atom of guanines and the ammonium group. These results imply that the formation of DNA-polyamine cross-links involves deprotonation of the guanine radical cation to attack the polyamines, which must be positively charged to lie in the vicinity of the B-helix. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Computational determination of the binding mode of α-conotoxin to nicotinic acetylcholine receptor

    NASA Astrophysics Data System (ADS)

    Tabassum, Nargis; Yu, Rilei; Jiang, Tao

    2016-12-01

    Conotoxins belong to the large families of disulfide-rich peptide toxins from cone snail venom, and can act on a broad spectrum of ion channels and receptors. They are classified into different subtypes based on their targets. The α-conotoxins selectively inhibit the current of the nicotinic acetylcholine receptors. Because of their unique selectivity towards distinct nAChR subtypes, α-conotoxins become valuable tools in nAChR study. In addition to the X-ray structures of α-conotoxins in complex with acetylcholine-binding protein, a homolog of the nAChR ligand-binding domain, the high-resolution crystal structures of the extracellular domain of the α1 and α9 subunits are also obtained. Such structures not only revealed the details of the configuration of nAChR, but also provided higher sequence identity templates for modeling the binding modes of α-conotoxins to nAChR. This mini-review summarizes recent modeling studies for the determination of the binding modes of α-conotoxins to nAChR. As there are not crystal structures of the nAChR in complex with conotoxins, computational modeling in combination of mutagenesis data is expected to reveal the molecular recognition mechanisms that govern the interactions between α-conotoxins and nAChR at molecular level. An accurate determination of the binding modes of α-conotoxins on AChRs allows rational design of α-conotoxin analogues with improved potency or selectivity to nAChRs.

  19. Proposed Mode of Binding and Action of Positive Allosteric Modulators at Opioid Receptors

    PubMed Central

    2016-01-01

    Available crystal structures of opioid receptors provide a high-resolution picture of ligand binding at the primary (“orthosteric”) site, that is, the site targeted by endogenous ligands. Recently, positive allosteric modulators of opioid receptors have also been discovered, but their modes of binding and action remain unknown. Here, we use a metadynamics-based strategy to efficiently sample the binding process of a recently discovered positive allosteric modulator of the δ-opioid receptor, BMS-986187, in the presence of the orthosteric agonist SNC-80, and with the receptor embedded in an explicit lipid–water environment. The dynamics of BMS-986187 were enhanced by biasing the potential acting on the ligand–receptor distance and ligand–receptor interaction contacts. Representative lowest-energy structures from the reconstructed free-energy landscape revealed two alternative ligand binding poses at an allosteric site delineated by transmembrane (TM) helices TM1, TM2, and TM7, with some participation of TM6. Mutations of amino acid residues at these proposed allosteric sites were found to either affect the binding of BMS-986187 or its ability to modulate the affinity and/or efficacy of SNC-80. Taken together, these combined experimental and computational studies provide the first atomic-level insight into the modulation of opioid receptor binding and signaling by allosteric modulators. PMID:26841170

  20. Comprehensive 3D-QSAR and binding mode of BACE-1 inhibitors using R-group search and molecular docking.

    PubMed

    Huang, Dandan; Liu, Yonglan; Shi, Bozhi; Li, Yueting; Wang, Guixue; Liang, Guizhao

    2013-09-01

    The β-enzyme (BACE), which takes an active part in the processing of amyloid precursor protein, thereby leads to the production of amyloid-β (Aβ) in the brain, is a major therapeutic target against Alzheimer's disease. The present study is aimed at studying 3D-QSAR of BACE-1 inhibitors and their binding mode. We build a 3D-QSAR model involving 99 training BACE-1 inhibitors based on Topomer CoMFA, and 26 molecules are employed to validate the external predictive power of the model obtained. The multiple correlation coefficients of fitting modeling, leave one out cross validation, and external validation are 0.966, 0.767 and 0.784, respectively. Topomer search is used as a tool for virtual screening in lead-like compounds of ZINC databases (2012); as a result, we successfully design 30 new molecules with higher activity than that of all training and test inhibitors. Besides, Surflex-dock is employed to explore binding mode of the inhibitors studied when acting with BACE-1 enzyme. The result shows that the inhibitors closely interact with the key sites related to ASP93, THR133, GLN134, ASP289, GLY291, THR292, THR293, ASN294, ARG296 and SER386 of BACE-1.

  1. Pulsed squeezed light: Simultaneous squeezing of multiple modes

    SciTech Connect

    Wasilewski, Wojciech; Lvovsky, A. I.; Banaszek, Konrad; Radzewicz, Czeslaw

    2006-06-15

    We analyze the spectral properties of squeezed light produced by means of pulsed, single-pass degenerate parametric down-conversion. The multimode output of this process can be decomposed into characteristic modes undergoing independent squeezing evolution akin to the Schmidt decomposition of the biphoton spectrum. The main features of this decomposition can be understood using a simple analytical model developed in the perturbative regime. In the strong pumping regime, for which the perturbative approach is not valid, we present a numerical analysis, specializing to the case of one-dimensional propagation in a beta-barium borate waveguide. Characterization of the squeezing modes provides us with an insight necessary for optimizing homodyne detection of squeezing. For a weak parametric process, efficient squeezing is found in a broad range of local oscillator modes, whereas the intense generation regime places much more stringent conditions on the local oscillator. We point out that without meeting these conditions, the detected squeezing can actually diminish with the increasing pumping strength, and we expose physical reasons behind this inefficiency.

  2. Polyomavirus Large T Antigen Binds Cooperatively to Its Multiple Binding Sites in the Viral Origin of DNA Replication

    PubMed Central

    Peng, Yu-Cai; Acheson, Nicholas H.

    1998-01-01

    Polyomavirus large T antigen binds to multiple 5′-G(A/G)GGC-3′ pentanucleotide sequences in sites 1/2, A, B, and C within and adjacent to the origin of viral DNA replication on the polyomavirus genome. We asked whether the binding of large T antigen to one of these sites could influence binding to other sites. We discovered that binding to origin DNA is substantially stronger at pH 6 to 7 than at pH 7.4 to 7.8, a range often used in DNA binding assays. Large T antigen-DNA complexes formed at pH 6 to 7 were stable, but a fraction of these complexes dissociated at pH 7.6 and above upon dilution or during electrophoresis. Increased binding at low pH is therefore due at least in part to increased stability of protein-DNA complexes, and binding at higher pH values is reversible. Binding to fragments of origin DNA in which one or more sites were deleted or inactivated by point mutations was measured by nitrocellulose filter binding and DNase I footprinting. The results showed that large T antigen binds cooperatively to its four binding sites in viral DNA, suggesting that the binding of this protein to one of these sites stabilizes its binding to other sites via protein-protein contacts. Sites A, B, and C may therefore augment DNA replication by facilitating the binding of large T antigen to site 1/2 at the replication origin. ATP stabilized large T antigen-DNA complexes against dissociation in the presence, but not the absence, of site 1/2, and ATP specifically enhanced protection against DNase I digestion in the central 10 to 12 bp of site 1/2, at which hexamers are believed to form and begin unwinding DNA. We propose that large T antigen molecules bound to these multiple sites on origin DNA interact with each other to form a compact protein-DNA complex and, furthermore, that ATP stimulates their assembly into hexamers at site 1/2 by a “handover” mechanism mediated by these protein-protein contacts. PMID:9696829

  3. Distinct binding mode of multikinase inhibitor lenvatinib revealed by biochemical characterization.

    PubMed

    Okamoto, Kiyoshi; Ikemori-Kawada, Megumi; Jestel, Anja; von König, Konstanze; Funahashi, Yasuhiro; Matsushima, Tomohiro; Tsuruoka, Akihiko; Inoue, Atsushi; Matsui, Junji

    2015-01-08

    Lenvatinib is an oral multikinase inhibitor that selectively inhibits vascular endothelial growth factor (VEGF) receptors 1 to 3 and other proangiogenic and oncogenic pathway-related receptor tyrosine kinases. To elucidate the origin of the potency of lenvatinib in VEGF receptor 2 (VEGFR2) inhibition, we conducted a kinetic interaction analysis of lenvatinib with VEGFR2 and X-ray analysis of the crystal structure of VEGFR2-lenvatinib complexes. Kinetic analysis revealed that lenvatinib had a rapid association rate constant and a relatively slow dissociation rate constant in complex with VEGFR2. Co-crystal structure analysis demonstrated that lenvatinib binds at its ATP mimetic quinoline moiety to the ATP binding site and to the neighboring region via a cyclopropane ring, adopting an Asp-Phe-Gly (DFG)-"in" conformation. These results suggest that lenvatinib is very distinct in its binding mode of interaction compared to the several approved VEGFR2 kinase inhibitors.

  4. Interaction of coumarin with calf thymus DNA: deciphering the mode of binding by in vitro studies.

    PubMed

    Sarwar, Tarique; Rehman, Sayeed Ur; Husain, Mohammed Amir; Ishqi, Hassan Mubarak; Tabish, Mohammad

    2015-02-01

    DNA is the major target for a wide range of therapeutic substances. Thus, there has been considerable interest in the binding studies of small molecules with DNA. Interaction between small molecules and DNA provides a structural guideline in rational drug designing and in the synthesis of new and improved drugs with enhanced selective activity and greater clinical efficacy. Plant derived polyphenolic compounds have a large number of biological and pharmacological properties. Coumarin is a polyphenolic compound which has been extensively studied for its diverse pharmacological properties. However, its mode of interaction with DNA has not been elucidated. In the present study, we have attempted to ascertain the mode of binding of coumarin with calf thymus DNA (Ct-DNA) through various biophysical techniques. Analysis of UV-visible absorbance spectra and fluorescence spectra indicates the formation of complex between coumarin and Ct-DNA. Several other experiments such as effect of ionic strength, iodide induced quenching, competitive binding assay with ethidium bromide, acridine orange and Hoechst 33258 reflected that coumarin possibly binds to the minor groove of the Ct-DNA. These observations were further supported by CD spectral analysis, viscosity measurements, DNA melting studies and in silico molecular docking.

  5. The Multiple Carbohydrate Binding Specificities of Helicobacter pylori

    NASA Astrophysics Data System (ADS)

    Teneberg, Susann

    Persistent colonization of the human stomach by Helicobacter pylori is a risk factor for the development of peptic ulcer disease and gastric cancer. Adhesion of microbes to the target tissue is an important determinant for successful initiation, establishment and maintenance of infection, and a variety of different candidate carbohydrate receptors for H. pylori have been identified. Here the different the binding specifities, and their potential role in adhesion to human gastric epithelium are described. Finally, recent findings on the roles of sialic acid binding SabA adhesin in interactions with human neutrophils and erythrocytes are discussed.

  6. A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants

    NASA Technical Reports Server (NTRS)

    Yang, Tianbao; Poovaiah, B. W.

    2002-01-01

    We reported earlier that the tobacco early ethylene-responsive gene NtER1 encodes a calmodulin-binding protein (Yang, T., and Poovaiah, B. W. (2000) J. Biol. Chem. 275, 38467-38473). Here we demonstrate that there is one NtER1 homolog as well as five related genes in Arabidopsis. These six genes are rapidly and differentially induced by environmental signals such as temperature extremes, UVB, salt, and wounding; hormones such as ethylene and abscisic acid; and signal molecules such as methyl jasmonate, H(2)O(2), and salicylic acid. Hence, they were designated as AtSR1-6 (Arabidopsis thaliana signal-responsive genes). Ca(2+)/calmodulin binds to all AtSRs, and their calmodulin-binding regions are located on a conserved basic amphiphilic alpha-helical motif in the C terminus. AtSR1 targets the nucleus and specifically recognizes a novel 6-bp CGCG box (A/C/G)CGCG(G/T/C). The multiple CGCG cis-elements are found in promoters of genes such as those involved in ethylene signaling, abscisic acid signaling, and light signal perception. The DNA-binding domain in AtSR1 is located on the N-terminal 146 bp where all AtSR1-related proteins share high similarity but have no similarity to other known DNA-binding proteins. The calmodulin-binding nuclear proteins isolated from wounded leaves exhibit specific CGCG box DNA binding activities. These results suggest that the AtSR gene family encodes a family of calmodulin-binding/DNA-binding proteins involved in multiple signal transduction pathways in plants.

  7. A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants

    NASA Technical Reports Server (NTRS)

    Yang, Tianbao; Poovaiah, B. W.

    2002-01-01

    We reported earlier that the tobacco early ethylene-responsive gene NtER1 encodes a calmodulin-binding protein (Yang, T., and Poovaiah, B. W. (2000) J. Biol. Chem. 275, 38467-38473). Here we demonstrate that there is one NtER1 homolog as well as five related genes in Arabidopsis. These six genes are rapidly and differentially induced by environmental signals such as temperature extremes, UVB, salt, and wounding; hormones such as ethylene and abscisic acid; and signal molecules such as methyl jasmonate, H(2)O(2), and salicylic acid. Hence, they were designated as AtSR1-6 (Arabidopsis thaliana signal-responsive genes). Ca(2+)/calmodulin binds to all AtSRs, and their calmodulin-binding regions are located on a conserved basic amphiphilic alpha-helical motif in the C terminus. AtSR1 targets the nucleus and specifically recognizes a novel 6-bp CGCG box (A/C/G)CGCG(G/T/C). The multiple CGCG cis-elements are found in promoters of genes such as those involved in ethylene signaling, abscisic acid signaling, and light signal perception. The DNA-binding domain in AtSR1 is located on the N-terminal 146 bp where all AtSR1-related proteins share high similarity but have no similarity to other known DNA-binding proteins. The calmodulin-binding nuclear proteins isolated from wounded leaves exhibit specific CGCG box DNA binding activities. These results suggest that the AtSR gene family encodes a family of calmodulin-binding/DNA-binding proteins involved in multiple signal transduction pathways in plants.

  8. Multiple fatty acid binding to albumin in human blood plasma.

    PubMed

    Brodersen, R; Andersen, S; Vorum, H; Nielsen, S U; Pedersen, A O

    1990-04-30

    Binding equilibria of long-chain fatty acids to human serum albumin, in serum or plasma, were studied by a dialysis exchange rate technique. Palmitate was added to citrated plasma in vitro and it was observed that between six and ten palmitate molecules were bound to albumin with nearly equal affinity. Observations in vivo gave similar results in the following series: (a) in two volunteers with increased fatty acid concentrations after fasting, exercise, and a cold shower: (b) in three male volunteers in whom high concentrations of non-esterified fatty acids, up to 4.6 mM, were induced by intravenous administration of a preparation of lecithin/glycocholate mixed micelles, and (c) in 81 patients with diabetes mellitus, type I. The binding pattern of palmitate in serum or plasma is essentially different from that observed with palmitate added to buffered solutions of pure albumin when two molecules are tightly bound and about four additional molecules with lower affinity. The differences may partly be explained by the presence of chloride ions in blood plasma, reducing the affinity for binding of the first two fatty acid molecules, and partly by facilitated binding of several molecules of mixed fatty acids, as found in plasma.

  9. Investigation of microwave photonic filter based on multiple longitudinal modes fiber laser source

    NASA Astrophysics Data System (ADS)

    Cao, Yuan; Li, Feng; Feng, Xinhuan; Lu, Chao; Guan, Bai-ou; Wai, P. K. A.

    2015-06-01

    We theoretically study the transfer function of a finite impulse response microwave photonic filter (FIR-MPF) system using a multi-wavelength fiber laser source by considering multiple longitudinal modes in each wavelength. The full response function with the response from longitudinal mode taps is obtained. We also discussed the influence of the longitudinal mode envelope and mode spacing on the performance of FIR-MPF. The response function of the longitudinal mode taps is fully discussed and the contribution is compared with the response of the carrier suppression factor for double sideband (DSB) modulation. The multiple longitudinal modes structure in the wavelength taps can be utilized to engineer the response of the FIR-MPF such that desirable features such as high side lode suppression ratio can be realized. The analysis provides a guideline for designing incoherent FIR-MPF systems.

  10. Measuring atmospheric dispersion with WLRS in multiple wavelength mode

    NASA Technical Reports Server (NTRS)

    Schreiber, Ulrich; Haufe, K. H.; Dassing, Reiner

    1993-01-01

    The WLRS (Wettzell Laser Ranging System) allows the simultaneous tracking of satellites on two different wavelengths. These are the fundamental frequency of Nd:YAG at 1.064 microns and the second harmonic at 532 nm. Range measurements to the satellite LAGEOS were carried out with different experimental set-ups, after developing a detector unit based on a silicon avalanche photodiode in Geiger mode, which is sufficiently sensitive in the infrared domain. An approach towards a quantitative interpretation of the data is suggested and discussed briefly.

  11. Concentric core optical fiber with multiple-mode signal transmission

    DOEpatents

    Muhs, J.D.

    1997-05-06

    A concentric core optical fiber provides for the simultaneous but independent transmission of signals over a single optical fiber. The concentric optical fiber is constructed of a single-mode or multimode inner optical fiber defined by a core and a cladding of a lower index of refraction than the core and an outer optical fiber defined by additional cladding concentrically disposed around the cladding and of an index of refraction lower than the first mentioned cladding whereby the latter functions as the core of the outer optical fiber. By employing such an optical fiber construction with a single-mode inner core or optical fiber, highly sensitive interferometric and stable less sensitive amplitude based sensors can be placed along the same length of a concentric core optical fiber. Also, by employing the concentric core optical fiber secure telecommunications can be achieved via the inner optical fiber since an intrusion of the concentric optical fiber will first cause a variation in the light being transmitted through the outer optical fiber and this variation of light being used to trigger a suitable alarm indicative of the intrusion. 3 figs.

  12. Concentric core optical fiber with multiple-mode signal transmission

    DOEpatents

    Muhs, Jeffrey D.

    1997-01-01

    A concentric core optical fiber provides for the simultaneous but independent transmission of signals over a single optical fiber. The concentric optical fiber is constructed of a single-mode or multimode inner optical fiber defined by a core and a cladding of a lower index of refraction than the core and an outer optical fiber defined by additional cladding concentrically disposed around the cladding and of an index of refraction lower than the first mentioned cladding whereby the latter functions as the core of the outer optical fiber. By employing such an optical fiber construction with a single-mode inner core or optical fiber, highly sensitive interferometric and stable less sensitive amplitude based sensors can be placed along the same length of a concentric core optical fiber. Also, by employing the concentric core optical fiber secure telecommunications can be achieved via the inner optical fiber since an intrusion of the concentric optical fiber will first cause a variation in the light being transmitted through the outer optical fiber and this variation of light being used to trigger a suitable alarm indicative of the intrusion.

  13. The binding mode of an E-64 analog to the active site of cathepsin B.

    PubMed

    Feng, M H; Chan, S L; Xiang, Y; Huber, C P; Lim, C

    1996-11-01

    Two binding modes of the isobutyl-NH-Eps-Leu-Pro inhibitor to cathepsin B have been proposed. Molecular docking using an empirical force field was carried out to distinguish between the two modes. The search began with manual docking, followed by random perturbations of the docking conformation and cycles of Monte Carlo minimization. Finally, molecular dynamics was carried out for the most favorable docking conformations. The present calculations predict that the isobutyl-NH-Eps-Leu-Pro inhibitor preferentially binds to the S' rather than the S subsites of cathepsin B. The S' binding mode prediction is supported by the X-ray crystal structure of cathepsin B bound to a closely related ethyl-O-Eps-Ile-Pro inhibitor, which was found to bind in the S'subsite with the C-terminal epoxy ring carbon making a covalent bond to the sulfur atom of Cys29. This agreement, in turn, validates our docking strategy. Furthermore, the calculations provide evidence that the dominant contribution to the total stabilization energy of the enzyme-inhibitor complex stems from the strong electrostatic interaction between the negatively charged C-terminal carboxylate group of the ligand and the positively charged imidazolium rings of His110 and His111. The latter are stabilized and held in an optimal orientation for interactions with the C-terminal end of the ligand through a salt bridge between the side chains of His110 and Asp22. By comparison with the crystal structure, some insight into the specificity of the epoxyldipeptide family towards cathepsin B inhibition has been extracted. Both the characteristics of the enzyme (e.g. subsite size and hydrophobicity) as well as the nature of the inhibitor influence the selectivity of an inhibitor towards an enzyme.

  14. Binding modes of zaragozic acid A to human squalene synthase and staphylococcal dehydrosqualene synthase.

    PubMed

    Liu, Chia-I; Jeng, Wen-Yih; Chang, Wei-Jung; Ko, Tzu-Ping; Wang, Andrew H-J

    2012-05-25

    Zaragozic acids (ZAs) belong to a family of fungal metabolites with nanomolar inhibitory activity toward squalene synthase (SQS). The enzyme catalyzes the committed step of sterol synthesis and has attracted attention as a potential target for antilipogenic and antiinfective therapies. Here, we have determined the structure of ZA-A complexed with human SQS. ZA-A binding induces a local conformational change in the substrate binding site, and its C-6 acyl group also extends over to the cofactor binding cavity. In addition, ZA-A effectively inhibits a homologous bacterial enzyme, dehydrosqualene synthase (CrtM), which synthesizes the precursor of staphyloxanthin in Staphylococcus aureus to cope with oxidative stress. Size reduction at Tyr(248) in CrtM further increases the ZA-A binding affinity, and it reveals a similar overall inhibitor binding mode to that of human SQS/ZA-A except for the C-6 acyl group. These structures pave the way for further improving selectivity and development of a new generation of anticholesterolemic and antimicrobial inhibitors.

  15. Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Liu, Kai; Watanabe, Etsurou; Kokubo, Hironori

    2017-02-01

    The binding mode prediction is of great importance to structure-based drug design. The discrimination of various binding poses of ligand generated by docking is a great challenge not only to docking score functions but also to the relatively expensive free energy calculation methods. Here we systematically analyzed the stability of various ligand poses under molecular dynamics (MD) simulation. First, a data set of 120 complexes was built based on the typical physicochemical properties of drug-like ligands. Three potential binding poses (one correct pose and two decoys) were selected for each ligand from self-docking in addition to the experimental pose. Then, five independent MD simulations for each pose were performed with different initial velocities for the statistical analysis. Finally, the stabilities of ligand poses under MD were evaluated and compared with the native one from crystal structure. We found that about 94% of the native poses were maintained stable during the simulations, which suggests that MD simulations are accurate enough to judge most experimental binding poses as stable properly. Interestingly, incorrect decoy poses were maintained much less and 38-44% of decoys could be excluded just by performing equilibrium MD simulations, though 56-62% of decoys were stable. The computationally-heavy binding free energy calculation can be performed only for these survived poses.

  16. Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Liu, Kai; Watanabe, Etsurou; Kokubo, Hironori

    2017-01-01

    The binding mode prediction is of great importance to structure-based drug design. The discrimination of various binding poses of ligand generated by docking is a great challenge not only to docking score functions but also to the relatively expensive free energy calculation methods. Here we systematically analyzed the stability of various ligand poses under molecular dynamics (MD) simulation. First, a data set of 120 complexes was built based on the typical physicochemical properties of drug-like ligands. Three potential binding poses (one correct pose and two decoys) were selected for each ligand from self-docking in addition to the experimental pose. Then, five independent MD simulations for each pose were performed with different initial velocities for the statistical analysis. Finally, the stabilities of ligand poses under MD were evaluated and compared with the native one from crystal structure. We found that about 94% of the native poses were maintained stable during the simulations, which suggests that MD simulations are accurate enough to judge most experimental binding poses as stable properly. Interestingly, incorrect decoy poses were maintained much less and 38-44% of decoys could be excluded just by performing equilibrium MD simulations, though 56-62% of decoys were stable. The computationally-heavy binding free energy calculation can be performed only for these survived poses.

  17. Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator

    SciTech Connect

    Yi Xu; Xiao Yunfeng; Liu Yongchun; Li Beibei; Chen Youling; Li Yan; Gong Qihuang

    2011-02-15

    We theoretically investigate the mode-splitting phenomenon in a high-Q whispering-gallery-mode (WGM) microresonator coupled to multiple subwavelength Rayleigh scatterers. It is shown that the phase factors of the WGMs play the central role in such a system. Unlike the single-scatterer case, these phase factors in a multiscatterer system significantly influence both the modal coupling strength and the scattering-induced loss of a pair of counterpropagating WGMs. We scrutinize the condition for observing the splitting of transmission spectra. The mechanism can be used for highly sensitive biosensing, and the size of nanoparticles that can be detected is extended down to tens of nanometers.

  18. Multiple approaches to assess pectin binding to galectin-3.

    PubMed

    Zhang, Tao; Zheng, Yi; Zhao, Dongyang; Yan, Jingmin; Sun, Chongliang; Zhou, Yifa; Tai, Guihua

    2016-10-01

    Although several approaches have been used to evaluate binding of carbohydrates to lectins, results are not always comparable, especially with larger polysaccharides. Here, we quantitatively assessed and compared binding of pectin-derived polysaccharides to galectin-3 (Gal-3) using five methods: surface plasmon resonance (SPR), bio-layer interferometry (BLI), fluorescence polarization (FP), competitive fluorescence-linked immunosorbance (cFLISA), and the well-known cell-based hemagglutination assay (G3H). Our studies revealed that whereas Gal-3-pectin binding parameters determined by SPR and BLI were comparable and correlated with inhibitory potencies from the G3H assay, results using FP and cFLISA assays were highly variable and depended greatly on the probe and mass of the polysaccharide. In the cFLISA assay, for example, pectins showed no inhibition when using the DTAF-labeled asialofetuin probe, but did when using a DTAF-labeled pectin probe. And the FP approach with the DTAF-lactose probe did not work on polysaccharides and large galactan chains, although it did work well with smaller galactans. Nevertheless, even though results derived from all of these methods are in general agreement, derived KD, IC50, and MIC values do differ. Our results reflect the variability using various techniques and therefore will be useful to investigators who are developing pectin-derived Gal-3 antagonists as anti-cancer agents.

  19. The HSP90 binding mode of a radicicol-like E-oxime from docking, binding free energy estimations, and NMR 15N chemical shifts

    PubMed Central

    Spichty, Martin; Taly, Antoine; Hagn, Franz; Kessler, Horst; Barluenga, Sofia; Winssinger, Nicolas; Karplus, Martin

    2009-01-01

    We determine the binding mode of a macrocyclic radicicol-like oxime to yeast HSP90 by combining computer simulations and experimental measurements. We sample the macrocyclic scaffold of the unbound ligand by parallel tempering simulations and dock the most populated conformations to yeast HSP90. Docking poses are then evaluated by the use of binding free energy estimations with the linear interaction energy method. Comparison of QM/MM-calculated NMR chemical shifts with experimental shift data for a selective subset of back-bone 15N provides an additional evaluation criteria. As a last test we check the binding modes against available structure-activity-relationships. We find that the most likely binding mode of the oxime to yeast HSP90 is very similar to the known structure of the radicicol-HSP90 complex. PMID:19482409

  20. Mutational analysis of Mycobacterium tuberculosis lysine ɛ-aminotransferase and inhibitor co-crystal structures, reveals distinct binding modes.

    PubMed

    Tripathi, Sarvind Mani; Agarwal, Aparna; Ramachandran, Ravishankar

    Lysine ɛ-aminotransferase (LAT) converts lysine to α-aminoadipate-δ-semialdehyde in a PLP-mediated reaction. We mutated active-site T330, N328 and E243, and structurally rationalized their properties. T330A and T330S mutants cannot bind PLP and are inactive. N328A although inactive, binds to PLP. E243A retains activity, but binds α-ketoglutarate in a different conformation. We had earlier identified 2-aminomethyl piperidine derivative as a LAT inhibitor. The co-crystal structure reveals that it mimics binding of C5 substrates and exhibits two binding modes. E243, that shields R422 in the apo enzyme, exhibits conformational changes to permit the binding of the inhibitor in one of the binding modes. Structure-based analysis of bound water in the active site suggests optimization strategies for synthesis of improved inhibitors.

  1. Enhancing The Mode Conversion Efficiency In JET Plasmas With Multiple Mode Conversion Layers

    NASA Astrophysics Data System (ADS)

    Van Eester, D.; Lerche, E.; Johnson, T.; Hellsten, T.; Ongena, J.; Mayoral, M.-L.; Frigione, D.; Sozzi, C.; Calabro, G.; Lennholm, M.; Beaumont, P.; Blackman, T.; Brennan, D.; Brett, A.; Cecconello, M.; Coffey, I.; Coyne, A.; Crombe, K.; Czarnecka, A.; Felton, R.; Johnson, M. Gatu; Giroud, C.; Gorini, G.; Hellesen, C.; Jacquet, P.; Kazakov, Y.; Kiptily, V.; Knipe, S.; Krasilnikov, A.; Lin, Y.; Maslov, M.; Monakhov, I.; Noble, C.; Nocente, M.; Pangioni, L.; Proverbio, I.; Stamp, M.; Studholme, W.; Tardocchi, M.; Versloot, T. W.; Vdovin, V.; Whitehurst, A.; Wooldridge, E.; Zoita, V.

    2011-12-01

    The constructive interference effect described by Fuchs et al. [1] shows that the mode conversion and thereby the overall heating efficiency can be enhanced significantly when an integer number of fast wave wavelengths can be folded in between the high field side fast wave cutoff and the ion-ion hybrid layer(s) at which the ion Bernstein or ion cyclotron waves are excited. This effect was already experimentally identified in (3He)-D plasmas [2] and was recently tested in (3He)-H JET plasmas. The latter is an `inverted' scenario, which differs significantly from the (3He)-D scenarios since the mode-conversion layer is positioned between the low field side edge of the plasma and the ion-cyclotron layer of the minority 3He ions (whereas the order in which a wave entering the plasma from the low field side encounters these layers is inverted in a `regular' scenario), and because much lower 3He concentrations are needed to achieve the mode-conversion heating regime. The presence of small amounts of 4He and D in the discharges gave rise to an additional mode conversion layer on top of the expected one associated with 3He-H, which made the interpretation of the results more complex but also more interesting: Three different regimes could be distinguished as a function of X[3He], and the differing dynamics at the various concentrations could be traced back to the presence of these two mode conversion layers and their associated fast wave cutoffs. Whereas (1-D and 2-D) numerical modeling yields quantitative information on the RF absorptivity, recent analytical work by Kazakov [3] permits to grasp the dominant underlying wave interaction physics.

  2. A complement to the modern crystallographer's toolbox: caged gadolinium complexes with versatile binding modes.

    PubMed

    Stelter, Meike; Molina, Rafael; Jeudy, Sandra; Kahn, Richard; Abergel, Chantal; Hermoso, Juan A

    2014-06-01

    A set of seven caged gadolinium complexes were used as vectors for introducing the chelated Gd(3+) ion into protein crystals in order to provide strong anomalous scattering for de novo phasing. The complexes contained multidentate ligand molecules with different functional groups to provide a panel of possible interactions with the protein. An exhaustive crystallographic analysis showed them to be nondisruptive to the diffraction quality of the prepared derivative crystals, and as many as 50% of the derivatives allowed the determination of accurate phases, leading to high-quality experimental electron-density maps. At least two successful derivatives were identified for all tested proteins. Structure refinement showed that the complexes bind to the protein surface or solvent-accessible cavities, involving hydrogen bonds, electrostatic and CH-π interactions, explaining their versatile binding modes. Their high phasing power, complementary binding modes and ease of use make them highly suitable as a heavy-atom screen for high-throughput de novo structure determination, in combination with the SAD method. They can also provide a reliable tool for the development of new methods such as serial femtosecond crystallography.

  3. In-silico identification of the binding mode of synthesized adamantyl derivatives inside cholinesterase enzymes

    PubMed Central

    Al-Aboudi, Amal; Al-Qawasmeh, Raed A; Shahwan, Alaa; Mahmood, Uzma; Khalid, Asaad; Ul-Haq, Zaheer

    2015-01-01

    Aim: To investigate the binding mode of synthesized adamantly derivatives inside of cholinesterase enzymes using molecular docking simulations. Methods: A series of hybrid compounds containing adamantane and hydrazide moieties was designed and synthesized. Their inhibitory activities against acetylcholinesterase (AChE) and (butyrylcholinesterase) BChE were assessed in vitro. The binding mode of the compounds inside cholinesterase enzymes was investigated using Surflex-Dock package of Sybyl7.3 software. Results: A total of 26 adamantyl derivatives were synthesized. Among them, adamantane-1-carboxylic acid hydrazide had an almost equal inhibitory activity towards both enzymes, whereas 10 other compounds exhibited moderate inhibitory activity against BChE. The molecular docking studies demonstrated that hydrophobic interactions between the compounds and their surrounding residues in the active site played predominant roles, while hydrophilic interactions were also found. When the compounds were docked inside each enzyme, they exhibited stronger interactions with BChE over AChE, possibly due to the larger active site of BChE. The binding affinities of the compounds for BChE and AChE estimated were in agreement with the experimental data. Conclusion: The new adamantly derivatives selectively inhibit BChE with respect to AChE, thus making them good candidates for testing the hypothesis that BChE inhibitors would be more efficient and better tolerated than AChE inhibitors in the treatment of Alzheimer's disease. PMID:25937631

  4. Understanding TRPV1 activation by ligands: Insights from the binding modes of capsaicin and resiniferatoxin

    PubMed Central

    Elokely, Khaled; Velisetty, Phanindra; Delemotte, Lucie; Palovcak, Eugene; Klein, Michael L.; Rohacs, Tibor; Carnevale, Vincenzo

    2016-01-01

    The transient receptor potential cation channel subfamily V member 1 (TRPV1) or vanilloid receptor 1 is a nonselective cation channel that is involved in the detection and transduction of nociceptive stimuli. Inflammation and nerve damage result in the up-regulation of TRPV1 transcription, and, therefore, modulators of TRPV1 channels are potentially useful in the treatment of inflammatory and neuropathic pain. Understanding the binding modes of known ligands would significantly contribute to the success of TRPV1 modulator drug design programs. The recent cryo-electron microscopy structure of TRPV1 only provides a coarse characterization of the location of capsaicin (CAPS) and resiniferatoxin (RTX). Herein, we use the information contained in the experimental electron density maps to accurately determine the binding mode of CAPS and RTX and experimentally validate the computational results by mutagenesis. On the basis of these results, we perform a detailed analysis of TRPV1–ligand interactions, characterizing the protein ligand contacts and the role of individual water molecules. Importantly, our results provide a rational explanation and suggestion of TRPV1 ligand modifications that should improve binding affinity. PMID:26719417

  5. Binding mode of dihydroquinazolinones with lysozyme and its antifungal activity against Aspergillus species.

    PubMed

    Hemalatha, K; Madhumitha, G; Ravi, Lokesh; Khanna, V Gopiesh; Al-Dhabi, Naif Abdullah; Arasu, Mariadhas Valan

    2016-08-01

    Aspergillosis is one of the infectious fungal diseases affecting mainly the immunocompromised patients. The scarcity of the antifungal targets has identified the importance of N-myristoyl transferase (NMT) in the regulation of fungal pathway. The dihydroquinazolinone molecules were designed on the basis of fragments responsible for binding with the target enzyme. The aryl halide, 1(a-g), aryl boronic acid and potassium carbonate were heated together in water and dioxane mixture to yield new CC bond formation in dihydroquinazolinone. The bis(triphenylphosphine)palladium(II) dichloride was used as catalyst for the CC bond formation. The synthesized series were screened for their in vitro antifungal activity against Aspergillus niger and Aspergillus fumigatus. The binding interactions of the active compound with lysozyme were explored using multiple spectroscopic studies. Molecular docking study of dihydroquinazolinones with the enzyme revealed the information regarding various binding forces involved in the interaction.

  6. Mutational mapping of the transmembrane binding site of the G-protein coupled receptor TGR5 and binding mode prediction of TGR5 agonists.

    PubMed

    Gertzen, Christoph G W; Spomer, Lina; Smits, Sander H J; Häussinger, Dieter; Keitel, Verena; Gohlke, Holger

    2015-11-02

    TGR5 (Gpbar-1, M-Bar) is a class A G-protein coupled bile acid-sensing receptor predominately expressed in brain, liver and gastrointestinal tract, and a promising drug target for the treatment of metabolic disorders. Due to the lack of a crystal structure of TGR5, the development of TGR5 agonists has been guided by ligand-based approaches so far. Three binding mode models of bile acid derivatives have been presented recently. However, they differ from one another in terms of overall orientation or with respect to the location and interactions of the cholane scaffold, or cannot explain all results from mutagenesis experiments. Here, we present an extended binding mode model based on an iterative and integrated computational and biological approach. An alignment of 68 TGR5 agonists based on this binding mode leads to a significant and good structure-based 3D QSAR model, which constitutes the most comprehensive structure-based 3D-QSAR study of TGR5 agonists undertaken so far and suggests that the binding mode model is a close representation of the "true" binding mode. The binding mode model is further substantiated in that effects predicted for eight mutations in the binding site agree with experimental analyses on the impact of these TGR5 variants on receptor activity. In the binding mode, the hydrophobic cholane scaffold of taurolithocholate orients towards the interior of the orthosteric binding site such that rings A and B are in contact with TM5 and TM6, the taurine side chain orients towards the extracellular opening of the binding site and forms a salt bridge with R79(EL1), and the 3-hydroxyl group forms hydrogen bonds with E169(5.44) and Y240(6.51). The binding mode thus differs in important aspects from the ones recently presented. These results are highly relevant for the development of novel, more potent agonists of TGR5 and should be a valuable starting point for the development of TGR5 antagonists, which could show antiproliferative effects in tumor

  7. Multiple modes of meaning-making in a science center

    NASA Astrophysics Data System (ADS)

    Rahm, Jrene

    2004-03-01

    In this paper, I address some of the unique challenges of studies of learning in museums through a microanalytic case study of meaning-making among a group of youth and a curator. Through an examination of youths' forms of participation in one exhibit, I illustrate local meaning making achieved through multiple modalities - by doing, talking, and the manipulation of the exhibit. In turn, I show how multiple on-going dialogues come to interact and constitute talk and action at the science exhibit underlining the idiosyncratic nature of meaning-making. While the dialogue examined in this paper may be considered as a rather unremarkable event in terms of learning, it underlines that the study of meaning-making entails a focus on more than mere conversations in situ in that verbal and nonverbal interactions need to be considered simultaneously. Furthermore, the analysis suggests that museums may be best seen as one among many resources for science literacy development whose impact can only be understood through an assessment of learning trajectories over time and across space. Suggestions are made for museum design and future studies of learning in consideration of the issues raised.

  8. Simultaneous generation of multiple orbital angular momentum (OAM) modes using a single phase-only element.

    PubMed

    Zhu, Long; Wang, Jian

    2015-10-05

    Based on the conventional iterative algorithm, we present a pattern search assisted iterative (PSI) algorithm to simultaneously generate multiple orbital angular momentum (OAM) modes using a single phase-only element. The PSI algorithm shows a favorable operation performance for generating 100 randomly spaced OAM modes and 50 evenly spaced OAM modes with high diffraction efficiency (>93%), low relative root-mean-square error (R-RMSE) and low standard deviation. Moreover, we can also manipulate the relative power distribution of the generated OAM modes simply by setting the initial weight coefficients in the PSI algorithm.

  9. Emergence of multiple synchronization modes in hydrodynamically-coupled cilia

    NASA Astrophysics Data System (ADS)

    Guo, Hanliang; Kanso, Eva

    2016-11-01

    Motile cilia and flagella exhibit different phase coordinations. For example, closely swimming spermatozoa are observed to synchronize together; bi-flagellates Chlamydomonas regulate the flagella in a "breast-stroke" fashion; cilia on the surface of Paramecium beat in a fixed phase lag in an orchestrated wave like fashion. Experimental evidence suggests that phase coordinations can be achieved solely via hydrodynamical interactions. However, the exact mechanisms behind it remain illusive. Here, adapting a "geometric switch" model, we observe different synchronization modes in pairs of hydrodynamically-coupled cilia by changing physical parameters such as the strength of the cilia internal motor and the separation distance between cilia. Interestingly, we find regions in the parameter space where the coupled cilia reach stable phase coordinations and regions where the phase coordinations are sensitive to perturbations. We also find that leaning into the fluid reduces the sensitivity to perturbations, and produces stable phase coordination that is neither in-phase nor anti-phase, which could explain the origin of metachronal waves in large cilia populations.

  10. Rigorous Incorporation of Tautomers, Ionization Species, and Different Binding Modes into Ligand-Based and Receptor-Based 3D-QSAR Methods

    PubMed Central

    Natesan, Senthil; Balaz, Stefan

    2013-01-01

    Speciation of drug candidates and receptors caused by ionization, tautomerism, and/or covalent hydration complicates ligand- and receptor-based predictions of binding affinities by 3-dimensional structure-activity relationships (3D-QSAR). The speciation problem is exacerbated by tendency of tautomers to bind in multiple conformations or orientations (modes) in the same binding site. New forms of the 3D-QSAR correlation equations, capable of capturing this complexity, can be developed using the time hierarchy of all steps that lie behind the monitored biological process – binding, enzyme inhibition or receptor activity. In most cases, reversible interconversions of individual ligand and receptor species can be treated as quickly established equilibria because they are finished in a small fraction of the exposure time that is used to determine biological effects. The speciation equilibria are satisfactorily approximated by invariant fractions of individual ligand and receptor species for buffered experimental or in vivo conditions. For such situations, the observed drug-receptor association constant of a ligand is expressed as the sum of products, for each ligand and receptor species pair, of the association microconstant and the fractions of involved species. For multiple binding modes, each microconstant is expressed as the sum of microconstants of individual modes. This master equation leads to new 3D-QSAR correlation equations integrating the results of all molecular simulations or calculations, which are run for each ligand-receptor species pair separately. The multispecies, multimode 3D-QSAR approach is illustrated by a ligand-based correlation of transthyretin binding of thyroxine analogs and by a receptor-based correlation of inhibition of MK2 by benzothiophenes and pyrrolopyrimidines. PMID:23170882

  11. Distinct pose of discodermolide in taxol binding pocket drives a complementary mode of microtubule stabilization.

    PubMed

    Khrapunovich-Baine, Marina; Menon, Vilas; Verdier-Pinard, Pascal; Smith, Amos B; Angeletti, Ruth Hogue; Fiser, Andras; Horwitz, Susan Band; Xiao, Hui

    2009-12-15

    The microtubule cytoskeleton has proven to be an effective target for cancer therapeutics. One class of drugs, known as microtubule stabilizing agents (MSAs), binds to microtubule polymers and stabilizes them against depolymerization. The prototype of this group of drugs, Taxol, is an effective chemotherapeutic agent used extensively in the treatment of human ovarian, breast, and lung carcinomas. Although electron crystallography and photoaffinity labeling experiments determined that the binding site for Taxol is in a hydrophobic pocket in beta-tubulin, little was known about the effects of this drug on the conformation of the entire microtubule. A recent study from our laboratory utilizing hydrogen-deuterium exchange (HDX) in concert with various mass spectrometry (MS) techniques has provided new information on the structure of microtubules upon Taxol binding. In the current study we apply this technique to determine the binding mode and the conformational effects on chicken erythrocyte tubulin (CET) of another MSA, discodermolide, whose synthetic analogues may have potential use in the clinic. We confirmed that, like Taxol, discodermolide binds to the taxane binding pocket in beta-tubulin. However, as opposed to Taxol, which has major interactions with the M-loop, discodermolide orients itself away from this loop and toward the N-terminal H1-S2 loop. Additionally, discodermolide stabilizes microtubules mainly via its effects on interdimer contacts, specifically on the alpha-tubulin side, and to a lesser extent on interprotofilament contacts between adjacent beta-tubulin subunits. Also, our results indicate complementary stabilizing effects of Taxol and discodermolide on the microtubules, which may explain the synergy observed between the two drugs in vivo.

  12. Molecular Modeling Approaches to Study the Binding Mode on Tubulin of Microtubule Destabilizing and Stabilizing Agents

    NASA Astrophysics Data System (ADS)

    Botta, Maurizio; Forli, Stefano; Magnani, Matteo; Manetti, Fabrizio

    Tubulin targeting agents constitute an important class of anticancer drugs. By acting either as microtubule stabilizers or destabilizers, they disrupt microtubule dynamics, thus inducing mitotic arrest and, ultimately, cell death by apoptosis. Three different binding sites, whose exact location on tubulin has been experimentally detected, have been identified so far for antimitotic compound targeting microtubules, namely the taxoid, the colchicine and the vinka alkaloid binding site. A number of ligand- and structure-based molecular modeling studies in this field has been reported over the years, aimed at elucidating the binding modes of both stabilizing and destabilizing agent, as well as the molecular features responsible for their efficacious interaction with tubulin. Such studies are described in this review, focusing on information provided by different modeling approaches on the structural determinants of antitubulin agents and the interactions with the binding pockets on tubulin emerged as fundamental for antitumor activity.To describe molecular modeling approaches applied to date to molecules known to bind microtubules, this paper has been divided into two main parts: microtubule destabilizing (Part 1) and stabilizing (Part 2) agents. The first part includes structure-based and ligand-based approaches to study molecules targeting colchicine (1.1) and vinca alkaloid (1.2) binding sites, respectively. In the second part, the studies performed on microtubule-stabilizing antimitotic agents (MSAA) are described. Starting from the first representative compound of this class, paclitaxel, molecular modeling studies (quantitative structure-activity relationships - QSAR - and structure-based approaches), performed on natural compounds acting with the same mechanism of action and temptative common pharmacophoric hypotheses for all of these compounds, are reported.

  13. Ocean Acidification Has Multiple Modes of Action on Bivalve Larvae

    PubMed Central

    Waldbusser, George G.; Hales, Burke; Langdon, Chris J.; Haley, Brian A.; Schrader, Paul; Brunner, Elizabeth L.; Gray, Matthew W.; Miller, Cale A.; Gimenez, Iria; Hutchinson, Greg

    2015-01-01

    Ocean acidification (OA) is altering the chemistry of the world’s oceans at rates unparalleled in the past roughly 1 million years. Understanding the impacts of this rapid change in baseline carbonate chemistry on marine organisms needs a precise, mechanistic understanding of physiological responses to carbonate chemistry. Recent experimental work has shown shell development and growth in some bivalve larvae, have direct sensitivities to calcium carbonate saturation state that is not modulated through organismal acid-base chemistry. To understand different modes of action of OA on bivalve larvae, we experimentally tested how pH, PCO2, and saturation state independently affect shell growth and development, respiration rate, and initiation of feeding in Mytilus californianus embryos and larvae. We found, as documented in other bivalve larvae, that shell development and growth were affected by aragonite saturation state, and not by pH or PCO2. Respiration rate was elevated under very low pH (~7.4) with no change between pH of ~ 8.3 to ~7.8. Initiation of feeding appeared to be most sensitive to PCO2, and possibly minor response to pH under elevated PCO2. Although different components of physiology responded to different carbonate system variables, the inability to normally develop a shell due to lower saturation state precludes pH or PCO2 effects later in the life history. However, saturation state effects during early shell development will carry-over to later stages, where pH or PCO2 effects can compound OA effects on bivalve larvae. Our findings suggest OA may be a multi-stressor unto itself. Shell development and growth of the native mussel, M. californianus, was indistinguishable from the Mediterranean mussel, Mytilus galloprovincialis, collected from the southern U.S. Pacific coast, an area not subjected to seasonal upwelling. The concordance in responses suggests a fundamental OA bottleneck during development of the first shell material affected only by

  14. Global model of whistler mode chorus from multiple satellite observations

    NASA Astrophysics Data System (ADS)

    Meredith, Nigel; Horne, Richard; Sicard-Piet, Angelica; Boscher, Daniel; Yearby, Keith; Li, Wen; Thorne, Richard

    2013-04-01

    Gyroresonant wave particle interactions with whistler mode chorus play a fundamental role in the dynamics of the Earth's radiation belts and inner magnetosphere, affecting both the acceleration and loss of radiation belt electrons. Knowledge of the variability of chorus wave power as a function of both spatial location and geomagnetic activity, required for the computation of pitch angle and energy diffusion rates, is thus a critical input for global radiation belt models. Here we present a global model of lower band (0.1fce < f < 0.5fce) and upper band (0.5fce < f < fce) chorus, where fce is the local electron gyrofrequency, using plasma wave data from DE1, CRRES, Cluster 1, Double Star TC1 and THEMIS, extending the coverage and improving the statistics of existing models. The chorus emissions extend from the plasmapause out to L* = 10 and are found to be largely substorm dependent with the largest intensities being seen during active conditions. Equatorial lower band chorus is strongest during active conditions with peak intensities of the order 2000 pT2 in the region 4 < L* < 9 between 2300 and 1200 MLT. Equatorial upper band chorus is both weaker and less extensive with peak intensities of the order a few hundred pT2 during active conditions between 2300 and 1100 MLT from L* = 3 to L* = 7. Moving away from the equator mid-latitude chorus is strongest in the lower band during active conditions with peak intensities of the order 2000 pT2 in the region 4 < L* < 9 but is restricted to the dayside between 0700 and 1400 MLT. The results suggest that including wave particle interactions beyond geostationary orbit could be very important for global radiation belt models.

  15. Ocean Acidification Has Multiple Modes of Action on Bivalve Larvae.

    PubMed

    Waldbusser, George G; Hales, Burke; Langdon, Chris J; Haley, Brian A; Schrader, Paul; Brunner, Elizabeth L; Gray, Matthew W; Miller, Cale A; Gimenez, Iria; Hutchinson, Greg

    2015-01-01

    Ocean acidification (OA) is altering the chemistry of the world's oceans at rates unparalleled in the past roughly 1 million years. Understanding the impacts of this rapid change in baseline carbonate chemistry on marine organisms needs a precise, mechanistic understanding of physiological responses to carbonate chemistry. Recent experimental work has shown shell development and growth in some bivalve larvae, have direct sensitivities to calcium carbonate saturation state that is not modulated through organismal acid-base chemistry. To understand different modes of action of OA on bivalve larvae, we experimentally tested how pH, PCO2, and saturation state independently affect shell growth and development, respiration rate, and initiation of feeding in Mytilus californianus embryos and larvae. We found, as documented in other bivalve larvae, that shell development and growth were affected by aragonite saturation state, and not by pH or PCO2. Respiration rate was elevated under very low pH (~7.4) with no change between pH of ~ 8.3 to ~7.8. Initiation of feeding appeared to be most sensitive to PCO2, and possibly minor response to pH under elevated PCO2. Although different components of physiology responded to different carbonate system variables, the inability to normally develop a shell due to lower saturation state precludes pH or PCO2 effects later in the life history. However, saturation state effects during early shell development will carry-over to later stages, where pH or PCO2 effects can compound OA effects on bivalve larvae. Our findings suggest OA may be a multi-stressor unto itself. Shell development and growth of the native mussel, M. californianus, was indistinguishable from the Mediterranean mussel, Mytilus galloprovincialis, collected from the southern U.S. Pacific coast, an area not subjected to seasonal upwelling. The concordance in responses suggests a fundamental OA bottleneck during development of the first shell material affected only by

  16. Mapping inhibitor binding modes on an active cysteine protease via nuclear magnetic resonance spectroscopy.

    PubMed

    Lee, Gregory M; Balouch, Eaman; Goetz, David H; Lazic, Ana; McKerrow, James H; Craik, Charles S

    2012-12-18

    Cruzain is a member of the papain/cathepsin L family of cysteine proteases, and the major cysteine protease of the protozoan Trypanosoma cruzi, the causative agent of Chagas disease. We report an autoinduction methodology that provides soluble cruzain in high yields (>30 mg/L in minimal medium). These increased yields provide sufficient quantities of active enzyme for use in nuclear magnetic resonance (NMR)-based ligand mapping. Using circular dichroism and NMR spectroscopy, we also examined the solution-state structural dynamics of the enzyme in complex with a covalently bound vinyl sulfone inhibitor (K777). We report the backbone amide and side chain carbon chemical shift assignments of cruzain in complex with K777. These resonance assignments were used to identify and map residues located in the substrate binding pocket, including the catalytic Cys25 and His162. Selective [(15)N]Cys, [(15)N]His, and [(13)C]Met labeling was performed to quickly assess cruzain-ligand interactions for a set of eight low-molecular weight compounds exhibiting micromolar binding or inhibition. Chemical shift perturbation mapping verified that six of the eight compounds bind to cruzain at the active site. Three different binding modes were delineated for the compounds, namely, covalent, noncovalent, and noninteracting. These results provide examples of how NMR spectroscopy can be used to screen compounds for fast evaluation of enzyme-inhibitor interactions to facilitate lead compound identification and subsequent structural studies.

  17. Exploring the DNA binding mode of transition metal based biologically active compounds

    NASA Astrophysics Data System (ADS)

    Raman, N.; Sobha, S.

    2012-01-01

    Few novel 4-aminoantipyrine derived Schiff bases and their metal complexes were synthesized and characterized. Their structural features and other properties were deduced from the elemental analysis, magnetic susceptibility and molar conductivity as well as from mass, IR, UV-vis, 1H NMR and EPR spectral studies. The binding of the complexes with CT-DNA was analyzed by electronic absorption spectroscopy, viscosity measurement, and cyclic voltammetry. The interaction of the metal complexes with DNA was also studied by molecular modeling with special reference to docking. The experimental and docking results revealed that the complexes have the ability of interaction with DNA of minor groove binding mode. The intrinsic binding constants ( Kb) of the complexes with CT-DNA were found out which show that they are minor groove binders. Gel electrophoresis assay demonstrated the ability of the complexes to cleave the pUC19 DNA in the presence of AH 2 (ascorbic acid). Moreover, the oxidative cleavage studies using distamycin revealed the minor groove binding for the newly synthesized 4-aminoantipyrine derived Schiff bases and their metal complexes. Evaluation of antibacterial activity of the complexes against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus epidermidis, and Klebsiella pneumoniae exhibited that the complexes have potent biocidal activity than the free ligands.

  18. Exploring the DNA binding mode of transition metal based biologically active compounds.

    PubMed

    Raman, N; Sobha, S

    2012-01-01

    Few novel 4-aminoantipyrine derived Schiff bases and their metal complexes were synthesized and characterized. Their structural features and other properties were deduced from the elemental analysis, magnetic susceptibility and molar conductivity as well as from mass, IR, UV-vis, (1)H NMR and EPR spectral studies. The binding of the complexes with CT-DNA was analyzed by electronic absorption spectroscopy, viscosity measurement, and cyclic voltammetry. The interaction of the metal complexes with DNA was also studied by molecular modeling with special reference to docking. The experimental and docking results revealed that the complexes have the ability of interaction with DNA of minor groove binding mode. The intrinsic binding constants (K(b)) of the complexes with CT-DNA were found out which show that they are minor groove binders. Gel electrophoresis assay demonstrated the ability of the complexes to cleave the pUC19 DNA in the presence of AH(2) (ascorbic acid). Moreover, the oxidative cleavage studies using distamycin revealed the minor groove binding for the newly synthesized 4-aminoantipyrine derived Schiff bases and their metal complexes. Evaluation of antibacterial activity of the complexes against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus epidermidis, and Klebsiella pneumoniae exhibited that the complexes have potent biocidal activity than the free ligands.

  19. Deciphering the intercalative binding modes of benzoyl peroxide with calf thymus DNA.

    PubMed

    Xia, Kaixin; Zhang, Guowen; Gong, Deming

    2017-01-24

    The binding of benzoyl peroxide (BPO), a flour brightener, with calf thymus DNA (ctDNA) was predicted by molecular simulation, and this were confirmed using multi-spectroscopic techniques and a chemometrics algorithm. The molecular docking result showed that BPO could insert into the base pairs of ctDNA, and the adenine bases were the preferential binding sites which were validated by the analysis of Fourier transform infrared spectra. The mode of binding of BPO with ctDNA was an intercalation as supported by the results from ctDNA melting and viscosity measurements, iodide quenching effects and competitive binding investigations. The circular dichroism and DNA cleavage assays indicated that BPO induced a conformational change from B-like DNA structure towards to A-like form, but did not lead to significant damage in the DNA. The complexation was driven mainly by hydrogen bonds and hydrophobic interactions. Moreover, the ultraviolet-visible (UV-vis) spectroscopic data matrix was resolved by a multivariate curve resolution-alternating least-squares algorithm. The equilibrium concentration profiles for the components (BPO, ctDNA and BPO-ctDNA complex) were extracted from the highly overlapping composite response to quantitatively monitor the BPO-ctDNA interaction. This study has provided insights into the mechanism of the interaction of BPO with ctDNA and potential hazards of the food additive.

  20. Distinct ETA Receptor Binding Mode of Macitentan As Determined by Site Directed Mutagenesis

    PubMed Central

    Gatfield, John; Mueller Grandjean, Celia; Bur, Daniel; Bolli, Martin H.; Nayler, Oliver

    2014-01-01

    The competitive endothelin receptor antagonists (ERA) bosentan and ambrisentan, which have long been approved for the treatment of pulmonary arterial hypertension, are characterized by very short (1 min) occupancy half-lives at the ETA receptor. The novel ERA macitentan, displays a 20-fold increased receptor occupancy half-life, causing insurmountable antagonism of ET-1-induced signaling in pulmonary arterial smooth muscle cells. We show here that the slow ETA receptor dissociation rate of macitentan was shared with a set of structural analogs, whereas compounds structurally related to bosentan displayed fast dissociation kinetics. NMR analysis showed that macitentan adopts a compact structure in aqueous solution and molecular modeling suggests that this conformation tightly fits into a well-defined ETA receptor binding pocket. In contrast the structurally different and negatively charged bosentan-type molecules only partially filled this pocket and expanded into an extended endothelin binding site. To further investigate these different ETA receptor-antagonist interaction modes, we performed functional studies using ETA receptor variants harboring amino acid point mutations in the presumed ERA interaction site. Three ETA receptor residues significantly and differentially affected ERA activity: Mutation R326Q did not affect the antagonist activity of macitentan, however the potencies of bosentan and ambrisentan were significantly reduced; mutation L322A rendered macitentan less potent, whereas bosentan and ambrisentan were unaffected; mutation I355A significantly reduced bosentan potency, but not ambrisentan and macitentan potencies. This suggests that – in contrast to bosentan and ambrisentan - macitentan-ETA receptor binding is not dependent on strong charge-charge interactions, but depends predominantly on hydrophobic interactions. This different binding mode could be the reason for macitentan's sustained target occupancy and insurmountable antagonism. PMID

  1. A novel hypothesis for the binding mode of HERG channel blockers

    SciTech Connect

    Choe, Han . E-mail: hchoe@amc.seoul.kr; Nah, Kwang Hoon; Lee, Soo Nam; Lee, Han Sam; Lee, Hui Sun; Jo, Su Hyun; Leem, Chae Hun; Jang, Yeon Jin

    2006-05-26

    We present a new docking model for HERG channel blockade. Our new model suggests three key interactions such that (1) a protonated nitrogen of the channel blocker forms a hydrogen bond with the carbonyl oxygen of HERG residue T623; (2) an aromatic moiety of the channel blocker makes a {pi}-{pi} interaction with the aromatic ring of HERG residue Y652; and (3) a hydrophobic group of the channel blocker forms a hydrophobic interaction with the benzene ring of HERG residue F656. The previous model assumes two interactions such that (1) a protonated nitrogen of the channel blocker forms a cation-{pi} interaction with the aromatic ring of HERG residue Y652; and (2) a hydrophobic group of the channel blocker forms a hydrophobic interaction with the benzene ring of HERG residue F656. To test these models, we classified 69 known HERG channel blockers into eight binding types based on their plausible binding modes, and further categorized them into two groups based on the number of interactions our model would predict with the HERG channel (two or three). We then compared the pIC{sub 5} value distributions between these two groups. If the old hypothesis is correct, the distributions should not differ between the two groups (i.e., both groups show only two binding interactions). If our novel hypothesis is correct, the distributions should differ between Groups 1 and 2. Consistent with our hypothesis, the two groups differed with regard to pIC{sub 5}, and the group having more predicted interactions with the HERG channel had a higher mean pIC{sub 5} value. Although additional work will be required to further validate our hypothesis, this improved understanding of the HERG channel blocker binding mode may help promote the development of in silico predictions methods for identifying potential HERG channel blockers.

  2. Dynamics in the DNA recognition by DAPI: exploration of the various binding modes.

    PubMed

    Banerjee, Debapriya; Pal, Samir Kumar

    2008-01-24

    Two distinct modes of interaction of the fluorescent probe 4',6-diamidino-2-phenylindole (DAPI), depending on the sequence of DNA, have been reported in the literature. In the present study, the dynamics of solvation has been utilized to explore the binding interaction of DAPI to DNA oligomers of different sequences. Picosecond-resolved fluorescence and polarization-gated anisotropy have been used to characterize the binding of DAPI to the different oligomers. In the double-stranded dodecamer of sequence CGCGAATTCGCG (oligo1), the solvation relaxation dynamics of the probe reveals time constants of 0.130 ns (75%) and 2.35 ns (25%). Independent exploration of the minor-groove environment of oligo1 using another well-known minor-groove binder Hoechst 33258 (H258) shows similar timescales, further confirming minor-groove binding of DAPI to oligo1. In the double-stranded dodecamer (oligo2) having the sequence GCGCGCGCGCGC, where intercalation has been reported in the literature, no solvation is observed in our experimental window. DAPI bound to oligo2 shows quenching of fluorescence compared to that of DAPI in a buffer. The quenching of fluorescence of DAPI intercalated in DNA is also borne out by the appearance of a fast component of 30 ps in the fluorescence lifetime, revealing electron transfer to DAPI from GC base pairs, between which it intercalates. In addition to this, the excited-state lifetime of the probe in the DAPI-DNA complex also shows a time constant similar to that of the dye in a buffer, indicating that the excited-state photoprocesses associated with the free dye is also operative in this binding mode, consistent with the binding geometry of the DAPI in the DNA. The dynamics of DAPI in calf thymus DNA having a random sequence of base pairs is similar to that associated with the DNA minor groove. Our studies clearly explore the structure-dynamics correlation of the DAPI-DNA complex in the two distinct modes of interaction of DAPI with DNA.

  3. Structural investigations into the binding mode of novel neolignans Cmp10 and Cmp19 microtubule stabilizers by in silico molecular docking, molecular dynamics, and binding free energy calculations.

    PubMed

    Tripathi, Shubhandra; Kumar, Akhil; Kumar, B Sathish; Negi, Arvind S; Sharma, Ashok

    2016-06-01

    Microtubule stabilizers provide an important mode of treatment via mitotic cell arrest of cancer cells. Recently, we reported two novel neolignans derivatives Cmp10 and Cmp19 showing anticancer activity and working as microtubule stabilizers at micromolar concentrations. In this study, we have explored the binding site, mode of binding, and stabilization by two novel microtubule stabilizers Cmp10 and Cmp19 using in silico molecular docking, molecular dynamics (MD) simulation, and binding free energy calculations. Molecular docking studies were performed to explore the β-tubulin binding site of Cmp10 and Cmp19. Further, MD simulations were used to probe the β-tubulin stabilization mechanism by Cmp10 and Cmp19. Binding affinity was also compared for Cmp10 and Cmp19 using binding free energy calculations. Our docking results revealed that both the compounds bind at Ptxl binding site in β-tubulin. MD simulation studies showed that Cmp10 and Cmp19 binding stabilizes M-loop (Phe272-Val288) residues of β-tubulin and prevent its dynamics, leading to a better packing between α and β subunits from adjacent tubulin dimers. In addition, His229, Ser280 and Gln281, and Arg278, Thr276, and Ser232 were found to be the key amino acid residues forming H-bonds with Cmp10 and Cmp19, respectively. Consequently, binding free energy calculations indicated that Cmp10 (-113.655 kJ/mol) had better binding compared to Cmp19 (-95.216 kJ/mol). This study provides useful insight for better understanding of the binding mechanism of Cmp10 and Cmp19 and will be helpful in designing novel microtubule stabilizers.

  4. A human TATA binding protein-related protein with altered DNA binding specificity inhibits transcription from multiple promoters and activators.

    PubMed

    Moore, P A; Ozer, J; Salunek, M; Jan, G; Zerby, D; Campbell, S; Lieberman, P M

    1999-11-01

    The TATA binding protein (TBP) plays a central role in eukaryotic and archael transcription initiation. We describe the isolation of a novel 23-kDa human protein that displays 41% identity to TBP and is expressed in most human tissue. Recombinant TBP-related protein (TRP) displayed barely detectable binding to consensus TATA box sequences but bound with slightly higher affinities to nonconsensus TATA sequences. TRP did not substitute for TBP in transcription reactions in vitro. However, addition of TRP potently inhibited basal and activated transcription from multiple promoters in vitro and in vivo. General transcription factors TFIIA and TFIIB bound glutathione S-transferase-TRP in solution but failed to stimulate TRP binding to DNA. Preincubation of TRP with TFIIA inhibited TBP-TFIIA-DNA complex formation and addition of TFIIA overcame TRP-mediated transcription repression. TRP transcriptional repression activity was specifically reduced by mutations in TRP that disrupt the TFIIA binding surface but not by mutations that disrupt the TFIIB or DNA binding surface of TRP. These results suggest that TFIIA is a primary target of TRP transcription inhibition and that TRP may modulate transcription by a novel mechanism involving the partial mimicry of TBP functions.

  5. Insights into the binding mode of sulphamates and sulphamides to hCA II: crystallographic studies and binding free energy calculations.

    PubMed

    De Simone, Giuseppina; Langella, Emma; Esposito, Davide; Supuran, Claudiu T; Monti, Simona Maria; Winum, Jean-Yves; Alterio, Vincenzo

    2017-12-01

    Sulphamate and sulphamide derivatives have been largely investigated as carbonic anhydrase inhibitors (CAIs) by means of different experimental techniques. However, the structural determinants responsible for their different binding mode to the enzyme active site were not clearly defined so far. In this paper, we report the X-ray crystal structure of hCA II in complex with a sulphamate inhibitor incorporating a nitroimidazole moiety. The comparison with the structure of hCA II in complex with its sulphamide analogue revealed that the two inhibitors adopt a completely different binding mode within the hCA II active site. Starting from these results, we performed a theoretical study on sulphamate and sulphamide derivatives, demonstrating that electrostatic interactions with residues within the enzyme active site play a key role in determining their binding conformation. These findings open new perspectives in the design of effective CAIs using the sulphamate and sulphamide zinc binding groups as lead compounds.

  6. Terminal sliding mode fuzzy control based on multiple sliding surfaces for nonlinear ship autopilot systems

    NASA Astrophysics Data System (ADS)

    Yuan, Lei; Wu, Han-Song

    2010-12-01

    A terminal sliding mode fuzzy control based on multiple sliding surfaces was proposed for ship course tracking steering, which takes account of rudder characteristics and parameter uncertainty. In order to solve the problem, the controller was designed by employing the universal approximation property of fuzzy logic system, the advantage of Nussbaum function, and using multiple sliding mode control algorithm based on the recursive technique. In the last step of designing, a nonsingular terminal sliding mode was utilized to drive the last state of the system to converge in a finite period of time, and high-order sliding mode control law was designed to eliminate the chattering and make the system robust. The simulation results showed that the controller designed here could track a desired course fast and accurately. It also exhibited strong robustness peculiarly to system, and had better adaptive ability than traditional PID control algorithms.

  7. High-speed multiple-mode mass-sensing resolves dynamic nanoscale mass distributions

    PubMed Central

    Olcum, Selim; Cermak, Nathan; Wasserman, Steven C.; Manalis, Scott R.

    2015-01-01

    Simultaneously measuring multiple eigenmode frequencies of nanomechanical resonators can determine the position and mass of surface-adsorbed proteins, and could ultimately reveal the mass tomography of nanoscale analytes. However, existing measurement techniques are slow (<1 Hz bandwidth), limiting throughput and preventing use with resonators generating fast transient signals. Here we develop a general platform for independently and simultaneously oscillating multiple modes of mechanical resonators, enabling frequency measurements that can precisely track fast transient signals within a user-defined bandwidth that exceeds 500 Hz. We use this enhanced bandwidth to resolve signals from multiple nanoparticles flowing simultaneously through a suspended nanochannel resonator and show that four resonant modes are sufficient for determining their individual position and mass with an accuracy near 150 nm and 40 attograms throughout their 150-ms transit. We envision that our method can be readily extended to other systems to increase bandwidth, number of modes, or number of resonators. PMID:25963304

  8. A Third Mode of DNA Binding: Phosphate Clamps by a Polynuclear Platinum Complex

    SciTech Connect

    Komeda,S.; Moulaei, T.; Kruger Woods, K.; Chikuma, M.; Farrell, N.; Williams, L.

    2006-01-01

    We describe a 1.2 {angstrom} X-ray structure of a double-stranded B-DNA dodecamer (the Dickerson Dodecamer, DDD, [d(CGCGAATTCGCG)]{sub 2}) associated with a cytotoxic platinum(II) complex, [{l_brace}trans-Pt(NH{sub 3}){sub 2}(NH{sub 2})(CH{sub 2}){sub 6}(NH{sub 3}{sup +}){r_brace}{sub 2}-{mu}-{l_brace}trans-Pt(NH{sub 3}){sub 2}(NH{sub 2}(CH{sub 2}){sub 6}NH{sub 2}){sub 2}{r_brace}] (TriplatinNC). TriplatinNC is a multifunctional DNA ligand, with three cationic Pt(II) centers, and directional hydrogen bonding functionalities, linked by flexible hydrophobic segments, but without the potential for covalent interaction. TriplatinNC does not intercalate nor does it bind in either groove. Instead, it binds to phosphate oxygen atoms and thus associates with the backbone. The three square-planar tetra-am(m)ine Pt(II) coordination units form bidentate N-O-N complexes with OP atoms, in a motif we call the Phosphate Clamp. The geometry is conserved among the 8 observed phosphate clamps in this structure. The interaction appears to prefer O2P over O1P atoms (frequency of interaction is O2P > O1P, base and sugar oxygens > N). The high repetition and geometric regularity of the motif suggests that this type of Pt(II) center can be developed as a modular nucleic acid binding device with general utility. TriplatinNC extends along the phosphate backbone, in a mode of binding we call 'Backbone Tracking' and spans the minor groove in a mode of binding we call 'Groove Spanning'. Electrostatic forces appear to induce modest DNA bending into the major groove. This bending may be related to the direct coordination of a sodium cation by a DNA base, with unprecedented inner-shell (direct) coordination of penta-hydrated sodium at the O6 atom of a guanine.

  9. DNA binding mode of novel tetradentate amino acid based 2-hydroxybenzylidene-4-aminoantipyrine complexes

    NASA Astrophysics Data System (ADS)

    Raman, N.; Sobha, S.; Selvaganapathy, M.; Mahalakshmi, R.

    2012-10-01

    Few transition metal complexes of tetradentate N2O2 donor Schiff base ligands containing 2-hydroxybenzylidene-4-aminoantipyrine and amino acids (alanine/valine) abbreviated to KHL1/KHL2 have been synthesized. All the metal complexes have been fully characterized with the help of elemental analyses, molecular weights, molar conductance values, magnetic moments and spectroscopic data. The Schiff bases KHL1/KHL2 are found to act as tetradentate ligands using N2O2 donor set of atoms leading to a square-planar geometry for the complexes around the metal ions. The binding behaviors of the complexes to calf thymus DNA have been investigated by absorption spectra, viscosity measurements and cyclic voltammetry. The DNA binding constants reveal that all these complexes interact with DNA through minor groove binding mode. The studies on mechanism of photocleavage reveal that singlet oxygen (1O2) and superoxide anion radical (O2rad -) may play an important role in the photocleavage. The Schiff bases and their metal complexes have been screened for their in vitro antibacterial activities against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus epidermidis, Klebsiella pneumoniae and antifungal activities against Aspergillus niger, Fusarium solani, Culvularia lunata, Rhizoctonia bataicola and Candida albicans by MIC method.

  10. Studies of the binding mode of TXNHCH2COOH with calf thymus DNA by spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Ataci, Nese; Arsu, Nergis

    2016-12-01

    In this study, a thioxanthone derivative named 2-(9-oxo-9H-thioxanthen-2ylamino) acetic acid (TX-NHCH2COOH) was used to investigate small molecule and DNA binding interactions. Absorption and fluorescence emission spectroscopy were used and melting studies were used to explain the binding mode of TXNHCH2COOH-DNA. Intrinsic binding constant Kb TXNHCH2COOH was found 6 × 105 M- 1from UV-Vis absorption spectroscopy. Fluorescence emmision intensity increased by adding ct-DNA to the TXNHCH2COOH and KI quenching experiments resulted with low Ksv value. Additionally, 3.7 °C increase for Tm was observed. The observed quenching of EB and ct-DNA complex and increase viscosity values of ct-DNA by addition of TXNHCH2COOH was determined. All those results indicate that TXNHCH2COOH can intercalate into DNA base pairs. Fluorescence microscopy helped to display imaging of the TXNHCH2COOH-DNA solution.

  11. Dynamic Binding Mode of a Synaptotagmin-1-SNARE Complex in Solution

    PubMed Central

    Brewer, Kyle D.; Bacaj, Taulant; Cavalli, Andrea; Camilloni, Carlo; Swarbrick, James D.; Liu, Jin; Zhou, Amy; Zhou, Peng; Barlow, Nicholas; Xu, Junjie; Seven, Alpay B.; Prinslow, Eric A.; Voleti, Rashmi; Häussinger, Daniel; Bonvin, Alexandre M.J.J.; Tomchick, Diana R.; Vendruscolo, Michele; Graham, Bim; Südhof, Thomas C.; Rizo, Josep

    2015-01-01

    SUMMARY Rapid neurotransmitter release depends on the Ca2+-sensor Synaptotagmin-1 and the SNARE complex formed by synaptobrevin, syntaxin-1 and SNAP-25. How Synaptotagmin-1 triggers release remains unclear, in part because elucidating high-resolution structures of Synaptotagmin-1-SNARE complexes has been challenging. An NMR approach based on lanthanide-induced pseudocontact shifts now reveals a dynamic binding mode where basic residues in the concave side of the Synaptotagmin-1 C2B domain β-sandwich interact with a polyacidic region of the SNARE complex formed by syntaxin-1 and SNAP-25. The physiological relevance of this dynamic structural model is supported by mutations in basic residues of Synaptotagmin-1 that markedly impair SNARE-complex binding in vitro and Synaptotagmin-1 function in neurons. Mutations with milder effects on binding have correspondingly milder effects on Synaptotagmin-1 function. Our results support a model whereby their dynamic interaction facilitates cooperation between synaptotagmin-1 and the SNAREs in inducing membrane fusion. PMID:26030874

  12. A novel cofactor-binding mode in bacterial IMP dehydrogenases explains inhibitor selectivity

    DOE PAGES

    Makowska-Grzyska, Magdalena; Kim, Youngchang; Maltseva, Natalia; ...

    2015-01-09

    The steadily rising frequency of emerging diseases and antibiotic resistance creates an urgent need for new drugs and targets. Inosine 5'-monophosphate dehydrogenase (IMP dehydrogenase or IMPDH) is a promising target for the development of new antimicrobial agents. IMPDH catalyzes the oxidation of IMP to XMP with the concomitant reduction of NAD+, which is the pivotal step in the biosynthesis of guanine nucleotides. Potent inhibitors of bacterial IMPDHs have been identified that bind in a structurally distinct pocket that is absent in eukaryotic IMPDHs. The physiological role of this pocket was not understood. Here, we report the structures of complexes withmore » different classes of inhibitors of Bacillus anthracis, Campylobacter jejuni, and Clostridium perfringens IMPDHs. These structures in combination with inhibition studies provide important insights into the interactions that modulate selectivity and potency. We also present two structures of the Vibrio cholerae IMPDH in complex with IMP/NAD+ and XMP/NAD+. In both structures, the cofactor assumes a dramatically different conformation than reported previously for eukaryotic IMPDHs and other dehydrogenases, with the major change observed for the position of the NAD+ adenosine moiety. More importantly, this new NAD+-binding site involves the same pocket that is utilized by the inhibitors. Thus, the bacterial IMPDH-specific NAD+-binding mode helps to rationalize the conformation adopted by several classes of prokaryotic IMPDH inhibitors. As a result, these findings offer a potential strategy for further ligand optimization.« less

  13. Normal Modes for Dynamic Motions of a Topoisomerase II enzyme upon DNA-Binding and Bending

    NASA Astrophysics Data System (ADS)

    Mentes, Ahmet

    We have used Molecular Dynamics (MD) simulation methods and two analytical approaches (the Gaussian Network Model (GNM) and Anisotropic Network Model (ANM)) to investigate the internal dynamic motions of the S. cerevisiae Topoisomerase (TopoII) during the first step of its catalytic cycle. At the initial state of the first step of its catalytic cycle, the protein and a 34 bp straight-DNA structure have no interaction. At the final state of the cycle, we have the bended-DNA/TopoII complex where the protein binds to DNA and, at this stage, the protein binds and bends the DNA, just before the DNA cleavage by TopoII. Normal mode analysis is used to characterize the functional flexibility of the protein, especially the C-gate domain closing/opening during the DNA binding/bending process and before DNA cleavage. Because of its clinical importance, our study might be helpful to better understand the next steps of its catalytic cycle and may provide new insight into the dynamics and structure of other TopoII-DNA complexes.

  14. Tau proteins: the molecular structure and mode of binding on microtubules

    PubMed Central

    1988-01-01

    Tau is a family of closely related proteins (55,000-62,000 mol wt) which are contained in the nerve cells and copolymerize with tubulin to induce the formation of microtubules in vitro. All information so far has indicated that tau is closely apposed to the microtubule lattice, and there was no indication of domains projecting from the microtubule polymer lattice. We have studied the molecular structure of the tau factor and its mode of binding on microtubules using the quick-freeze, deep-etch method (QF.DE) and low angle rotary shadowing technique. Phosphocellulose column-purified tubulin from porcine brain was polymerized with tau and the centrifuged pellets were processed by QF.DE. We observed periodic armlike elements (18.7 +/- 4.8 nm long) projecting from the microtubule surface. Most of the projections appeared to cross-link adjacent microtubules. We measured the longitudinal periodicity of tau projections on the microtubules and found it to match the 6-dimer pattern better than the 12-dimer pattern. The stoichiometry of tau versus tubulin in preparations of tau saturated microtubules was 1:approximately 5.0 (molar ratio). Tau molecules adsorbed on mica took on rodlike forms (56.1 +/- 14.1 nm long). Although both tau and MAP1 are contained in axons, competitive binding studies demonstrated that the binding sites of tau and MAP1A on the microtubule surfaces are most distinct, although they may partially overlap. PMID:3139677

  15. A novel cofactor-binding mode in bacterial IMP dehydrogenases explains inhibitor selectivity.

    PubMed

    Makowska-Grzyska, Magdalena; Kim, Youngchang; Maltseva, Natalia; Osipiuk, Jerzy; Gu, Minyi; Zhang, Minjia; Mandapati, Kavitha; Gollapalli, Deviprasad R; Gorla, Suresh Kumar; Hedstrom, Lizbeth; Joachimiak, Andrzej

    2015-02-27

    The steadily rising frequency of emerging diseases and antibiotic resistance creates an urgent need for new drugs and targets. Inosine 5'-monophosphate dehydrogenase (IMP dehydrogenase or IMPDH) is a promising target for the development of new antimicrobial agents. IMPDH catalyzes the oxidation of IMP to XMP with the concomitant reduction of NAD(+), which is the pivotal step in the biosynthesis of guanine nucleotides. Potent inhibitors of bacterial IMPDHs have been identified that bind in a structurally distinct pocket that is absent in eukaryotic IMPDHs. The physiological role of this pocket was not understood. Here, we report the structures of complexes with different classes of inhibitors of Bacillus anthracis, Campylobacter jejuni, and Clostridium perfringens IMPDHs. These structures in combination with inhibition studies provide important insights into the interactions that modulate selectivity and potency. We also present two structures of the Vibrio cholerae IMPDH in complex with IMP/NAD(+) and XMP/NAD(+). In both structures, the cofactor assumes a dramatically different conformation than reported previously for eukaryotic IMPDHs and other dehydrogenases, with the major change observed for the position of the NAD(+) adenosine moiety. More importantly, this new NAD(+)-binding site involves the same pocket that is utilized by the inhibitors. Thus, the bacterial IMPDH-specific NAD(+)-binding mode helps to rationalize the conformation adopted by several classes of prokaryotic IMPDH inhibitors. These findings offer a potential strategy for further ligand optimization. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. A Novel Cofactor-binding Mode in Bacterial IMP Dehydrogenases Explains Inhibitor Selectivity*

    PubMed Central

    Makowska-Grzyska, Magdalena; Kim, Youngchang; Maltseva, Natalia; Osipiuk, Jerzy; Gu, Minyi; Zhang, Minjia; Mandapati, Kavitha; Gollapalli, Deviprasad R.; Gorla, Suresh Kumar; Hedstrom, Lizbeth; Joachimiak, Andrzej

    2015-01-01

    The steadily rising frequency of emerging diseases and antibiotic resistance creates an urgent need for new drugs and targets. Inosine 5′-monophosphate dehydrogenase (IMP dehydrogenase or IMPDH) is a promising target for the development of new antimicrobial agents. IMPDH catalyzes the oxidation of IMP to XMP with the concomitant reduction of NAD+, which is the pivotal step in the biosynthesis of guanine nucleotides. Potent inhibitors of bacterial IMPDHs have been identified that bind in a structurally distinct pocket that is absent in eukaryotic IMPDHs. The physiological role of this pocket was not understood. Here, we report the structures of complexes with different classes of inhibitors of Bacillus anthracis, Campylobacter jejuni, and Clostridium perfringens IMPDHs. These structures in combination with inhibition studies provide important insights into the interactions that modulate selectivity and potency. We also present two structures of the Vibrio cholerae IMPDH in complex with IMP/NAD+ and XMP/NAD+. In both structures, the cofactor assumes a dramatically different conformation than reported previously for eukaryotic IMPDHs and other dehydrogenases, with the major change observed for the position of the NAD+ adenosine moiety. More importantly, this new NAD+-binding site involves the same pocket that is utilized by the inhibitors. Thus, the bacterial IMPDH-specific NAD+-binding mode helps to rationalize the conformation adopted by several classes of prokaryotic IMPDH inhibitors. These findings offer a potential strategy for further ligand optimization. PMID:25572472

  17. A hybrid deconvolution approach to separate acoustic sources in multiple motion modes.

    PubMed

    Mo, Pinxi; Jiang, Weikang

    2017-07-01

    Motion mode is defined as a characteristic motion that a group of sources follow. If there are multiple groups of sources moving in the corresponding multiple motion modes, the beamforming map for a certain group of sources will be contaminated by the leakages from the other groups of sources. The original beamforming or deconvolution approaches fail to interpret the acoustic maps, as the source leakages may be mistaken for actual sources. A hybrid deconvolution approach is proposed to restrain the source leakages, so as to separate the acoustic sources in multiple motion modes. This approach simultaneously considers all the sources in the potential motion modes, and introduces equivalent sources in the corresponding motion modes to represent the sources. The equivalence between the actual sources and the equivalent sources leads to the construction of an expanded linear matrix equation. The sources in the respective motion modes are simultaneously extracted by solving the equation. The approach is shown effective by two numerical simulations and a practical experiment on two counter-rotating sources and one static source.

  18. Multiple Majorana zero modes in atomic Fermi double wires with spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Wang, Liang-Liang; Gong, Ming; Liu, W.-M.

    2017-08-01

    Majorana zero modes, quasiparticles with non-Abelian statistics, have gained increasing interest for their fundamental role as building blocks in topological quantum computation. Previous studies have mainly focused on two well-separated Majorana zero modes, which could form two degenerate states serving as one nonlocal qubit for fault-tolerant quantum memory. However, creating and manipulating multiple Majorana zero modes, which could encode more qubits, remain an ongoing research topic. Here we report that multiple Majorana zero modes can exist in atomic Fermi double wires with spin-orbit coupling and perpendicular Zeeman field. This system belongs to the topological BDI class, thus all the topological superfluids are classified by integer numbers. Especially, diverse topological superfluids can be formed in a trap, where the zero energy modes can be found at the interfaces between different topological superfluids. The structure of these zero energy modes in the trap can be engineered by the trapping potential as well as other system parameters. This system would be a significant step towards utilization of Majorana zero modes in quantum computation.

  19. Development of optimal design theory for series multiple tuned mass dampers considering stroke and multiple structural modes

    NASA Astrophysics Data System (ADS)

    Wang, J. F.; Lin, C. C.

    2016-09-01

    A tuned mass damper (TMD) system generates structural control forces through large motions of mass units. Therefore, it may not be functional if the stroke capacity of its spring and damper components are insufficient. This paper focuses on a novel mass-damper system, the series multiple tuned mass damper (SMTMD) system, which consists of multiple interconnected TMDs, of which only the first is connected to the primary structure. The main purpose of this paper is to compare the control effectiveness and TMD stroke of SMTMDs with those of a conventional TMD device. In addition, the ability of the studied SMTMD to suppress multiple structural modes is also investigated. First, the optimal design theory for an SMTMD installed on an arbitrary floor of a multi-storey building is developed. To optimize the SMTMD parameters, two performance indices are established by combining multiple modal responses of the primary structure. The developed theory is demonstrated analytically by using a three-story building. The results show that the SMTMD with a higher number of TMD units places lower demands on the TMD stroke and is more adaptive in controlling multiple structural modes of the primary structure.

  20. Binding modes and dynamics of distamycin A with several A-T-rich oligomers by two-dimensional NMR

    SciTech Connect

    Pelton, J.G.

    1990-01-01

    Nuclear Overhauser effect spectroscopy has been used to identify the binding modes and to probe the dynamics of distamycin A in complexes with d(CGCGAATTCGCG){sub 2}, d(CGCAAATTGGC):d(GCCAATTTGCG), and d(CGCAAATTTGCG){sub 2}. Distamycin A binds to the minor-groove of the AATT segment of the d(CGCGAATTCGCG){sub 2} duplex. The binding site is characterized by drug-DNA van der Waals contacts, three-center hydrogen bonds, and stacking of sugar O4{prime} atoms over each of the drug pyrrole rings. The drugs are in close contact with the DNA and one another. Distamycin A binds in one-drug and symmetric two-drug binding modes with d(CGCAAATTTGCG){sub 2}. Energy refinement suggests that electrostatic interactions, intermolecular hydrogen bonds, and stacking interactions contribute to stabilization of these complexes. 80 refs., 38 figs., 14 tabs.

  1. Cytotoxic protein from the mushroom Coprinus comatus possesses a unique mode for glycan binding and specificity.

    PubMed

    Zhang, Peilan; Li, Kunhua; Yang, Guang; Xia, Changqing; Polston, Jane E; Li, Gengnan; Li, Shiwu; Lin, Zhao; Yang, Li-Jun; Bruner, Steven D; Ding, Yousong

    2017-08-22

    Glycans possess significant chemical diversity; glycan binding proteins (GBPs) recognize specific glycans to translate their structures to functions in various physiological and pathological processes. Therefore, the discovery and characterization of novel GBPs and characterization of glycan-GBP interactions are significant to provide potential targets for therapeutic intervention of many diseases. Here, we report the biochemical, functional, and structural characterization of a 130-amino-acid protein, Y3, from the mushroom Coprinus comatus Biochemical studies of recombinant Y3 from a yeast expression system demonstrated the protein is a unique GBP. Additionally, we show that Y3 exhibits selective and potent cytotoxicity toward human T-cell leukemia Jurkat cells compared with a panel of cancer cell lines via inducing caspase-dependent apoptosis. Screening of a glycan array demonstrated GalNAcβ1-4(Fucα1-3)GlcNAc (LDNF) as a specific Y3-binding ligand. To provide a structural basis for function, the crystal structure was solved to a resolution of 1.2 Å, revealing a single-domain αβα-sandwich motif. Two monomers were dimerized to form a large 10-stranded, antiparallel β-sheet flanked by α-helices on each side, representing a unique oligomerization mode among GBPs. A large glycan binding pocket extends into the dimeric interface, and docking of LDNF identified key residues for glycan interactions. Disruption of residues predicted to be involved in LDNF/Y3 interactions resulted in the significant loss of binding to Jurkat T-cells and severely impaired their cytotoxicity. Collectively, these results demonstrate Y3 to be a GBP with selective cytotoxicity toward human T-cell leukemia cells and indicate its potential use in cancer diagnosis and treatment.

  2. Identification of a potent synthetic FXR agonist with an unexpected mode of binding and activation

    SciTech Connect

    Soisson, Stephen M.; Parthasarathy, Gopalakrishnan; Adams, Alan D.; Sahoo, Soumya; Sitlani, Ayesha; Sparrow, Carl; Cui, Jisong; Becker, Joseph W.

    2008-07-08

    The farnesoid X receptor (FXR), a member of the nuclear hormone receptor family, plays important roles in the regulation of bile acid and cholesterol homeostasis, glucose metabolism, and insulin sensitivity. There is intense interest in understanding the mechanisms of FXR regulation and in developing pharmaceutically suitable synthetic FXR ligands that might be used to treat metabolic syndrome. We report here the identification of a potent FXR agonist (MFA-1) and the elucidation of the structure of this ligand in ternary complex with the human receptor and a coactivator peptide fragment using x-ray crystallography at 1.9-{angstrom} resolution. The steroid ring system of MFA-1 binds with its D ring-facing helix 12 (AF-2) in a manner reminiscent of hormone binding to classical steroid hormone receptors and the reverse of the pose adopted by naturally occurring bile acids when bound to FXR. This binding mode appears to be driven by the presence of a carboxylate on MFA-1 that is situated to make a salt-bridge interaction with an arginine residue in the FXR-binding pocket that is normally used to neutralize bound bile acids. Receptor activation by MFA-1 differs from that by bile acids in that it relies on direct interactions between the ligand and residues in helices 11 and 12 and only indirectly involves a protonated histidine that is part of the activation trigger. The structure of the FXR:MFA-1 complex differs significantly from that of the complex with a structurally distinct agonist, fexaramine, highlighting the inherent plasticity of the receptor.

  3. Nanohole Arrays of Mixed Designs and Microwriting for Simultaneous and Multiple Protein Binding Studies

    PubMed Central

    Ji, Jin; Yang, Jiun-Chan; Larson, Dale N.

    2009-01-01

    We demonstrate using nanohole arrays of mixed designs and a microwriting process based on dip-pen nanolithography to monitor multiple, different protein binding events simultaneously in real time based on the intensity of Extraordinary Optical Transmission of nanohole arrays. The microwriting process and small footprint of the individual nanohole arrays enabled us to observe different binding events located only 16μm apart, achieving high spatial resolution. We also present a novel concept that incorporates nanohole arrays of different designs to improve confidence and accuracy of binding studies. For proof of concept, two types of nanohole arrays, designed to exhibit opposite responses to protein bindings, were fabricated on one transducer. Initial studies indicate that the mixed designs could help to screen out artifacts such as protein intrinsic signals, providing improved accuracy of binding interpretation. PMID:19297143

  4. Multiple-soliton dynamic patterns in a graphene mode-locked fiber laser.

    PubMed

    Meng, Yichang; Zhang, Shumin; Li, Xingliang; Li, Hongfei; Du, Juan; Hao, Yanping

    2012-03-12

    Multiple-soliton dynamic patterns have been observed experimentally in an erbium-doped fiber ring laser with graphene as a saturable absorber. Under relatively low pumping power we have obtained disordered multiple-solitons, bunched solitons and high order harmonic mode locking by adjusting the orientation of the polarization controllers. With increased pumping power, we have also observed flow of solitons. We have experimentally investigated in detail the conditions under which these patterns form.

  5. Benzimidazole inhibitors of the protein kinase CHK2: clarification of the binding mode by flexible side chain docking and protein-ligand crystallography.

    PubMed

    Matijssen, Cornelis; Silva-Santisteban, M Cris; Westwood, Isaac M; Siddique, Samerene; Choi, Vanessa; Sheldrake, Peter; van Montfort, Rob L M; Blagg, Julian

    2012-11-15

    Two closely related binding modes have previously been proposed for the ATP-competitive benzimidazole class of checkpoint kinase 2 (CHK2) inhibitors; however, neither binding mode is entirely consistent with the reported SAR. Unconstrained rigid docking of benzimidazole ligands into representative CHK2 protein crystal structures reveals an alternative binding mode involving a water-mediated interaction with the hinge region; docking which incorporates protein side chain flexibility for selected residues in the ATP binding site resulted in a refinement of the water-mediated hinge binding mode that is consistent with observed SAR. The flexible docking results are in good agreement with the crystal structures of four exemplar benzimidazole ligands bound to CHK2 which unambiguously confirmed the binding mode of these inhibitors, including the water-mediated interaction with the hinge region, and which is significantly different from binding modes previously postulated in the literature.

  6. Benzimidazole inhibitors of the protein kinase CHK2: Clarification of the binding mode by flexible side chain docking and protein–ligand crystallography

    PubMed Central

    Matijssen, Cornelis; Silva-Santisteban, M. Cris; Westwood, Isaac M.; Siddique, Samerene; Choi, Vanessa; Sheldrake, Peter; van Montfort, Rob L.M.; Blagg, Julian

    2012-01-01

    Two closely related binding modes have previously been proposed for the ATP-competitive benzimidazole class of checkpoint kinase 2 (CHK2) inhibitors; however, neither binding mode is entirely consistent with the reported SAR. Unconstrained rigid docking of benzimidazole ligands into representative CHK2 protein crystal structures reveals an alternative binding mode involving a water-mediated interaction with the hinge region; docking which incorporates protein side chain flexibility for selected residues in the ATP binding site resulted in a refinement of the water-mediated hinge binding mode that is consistent with observed SAR. The flexible docking results are in good agreement with the crystal structures of four exemplar benzimidazole ligands bound to CHK2 which unambiguously confirmed the binding mode of these inhibitors, including the water-mediated interaction with the hinge region, and which is significantly different from binding modes previously postulated in the literature. PMID:23058106

  7. Binding Mode of Acetylated Histones to Bromodomains: Variations on a Common Motif.

    PubMed

    Marchand, Jean-Rémy; Caflisch, Amedeo

    2015-08-01

    Bromodomains, epigenetic readers that recognize acetylated lysine residues in histone tails, are potential drug targets in cancer and inflammation. Herein we review the crystal structures of human bromodomains in complex with histone tails and analyze the main interaction motifs. The histone backbone is extended and occupies, in one of the two possible orientations, the bromodomain surface groove lined by the ZA and BC loops. The acetyl-lysine side chain is buried in the cavity between the four helices of the bromodomain, and its oxygen atom accepts hydrogen bonds from a structural water molecule and a conserved asparagine residue in the BC loop. In stark contrast to this common binding motif, a large variety of ancillary interactions emerge from our analysis. In 10 of 26 structures, a basic side chain (up to five residues up- or downstream in sequence with respect to the acetyl-lysine) interacts with the carbonyl groups of the C-terminal turn of helix αB. Furthermore, the complexes reveal many heterogeneous backbone hydrogen bonds (direct or water-bridged). These interactions contribute unselectively to the binding of acetylated histone tails to bromodomains, which provides further evidence that specific recognition is modulated by combinations of multiple histone modifications and multiple modules of the proteins involved in transcription.

  8. Binding mode of the breakthrough inhibitor AZD9291 to epidermal growth factor receptor revealed.

    PubMed

    Yosaatmadja, Yuliana; Silva, Shevan; Dickson, James M; Patterson, Adam V; Smaill, Jeff B; Flanagan, Jack U; McKeage, Mark J; Squire, Christopher J

    2015-12-01

    The discovery of genetic drivers of lung cancer in patient sub-groups has led to their use as predictive biomarkers and as targets for selective drug therapy. Some of the most important lung cancer drivers are mutations in the EGFR gene, for example, the exon 19 deletions and the L858R variant that confer sensitivity to the front line drugs erlotinib and gefitinib; the acquired T790M variants confer drug resistance and a poor prognosis. A challenge then in targeting EGFR is to produce drugs that inhibit both sensitising variants and resistance variants, leaving wild type protein in healthy cells unaffected. One such agent is AstraZeneca's "breakthrough" AZD9291 molecule that shows a 200-fold selectivity for T790M/L858R over wild type EGFR. Our X-ray crystal structure reveals the binding mode of AZD9291 to the kinase domain of wild type EGFR. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Binding.

    ERIC Educational Resources Information Center

    Rebsamen, Werner

    1981-01-01

    Categorizes contemporary methods of binding printed materials in terms of physical preservation--hand binding (archival restoration), edition binding (paperback, hardcover), publication binding (magazines), textbook binding (sidesewn), single-sheet binding (loose-leaf, mechanical), and library binding (oversewn, sidesewn). Seven references are…

  10. Constructing Standards: A Study of Nurses Negotiating with Multiple Modes of Knowledge

    ERIC Educational Resources Information Center

    Nes, Sturle; Moen, Anne

    2010-01-01

    Purpose: The aim of the paper is to explore how multiple modes of knowledge play out in the consolidation of nursing procedures in construction of "local universality". The paper seeks to explore processes where nurses negotiate universal procedures that are to become local standards in a hospital. Design/methodology/approach: The paper…

  11. Mode of bindings of zinc oxide nanoparticles to myoglobin and horseradish peroxidase: A spectroscopic investigations

    NASA Astrophysics Data System (ADS)

    Mandal, Gopa; Bhattacharya, Sudeshna; Ganguly, Tapan

    2011-07-01

    The interactions between two heme proteins myoglobin (HMb) and horseradish peroxidase (HRP) with zinc oxide (ZnO) nanoparticles are investigated by using UV-vis absorption, steady state fluorescence, synchronous fluorescence, time-resolved fluorescence, FT-IR, atomic force microscopy (AFM) and circular dichroism (CD) techniques under physiological condition of pH˜7.4. The presence of mainly static mode in fluorescence quenching mechanism of HMb and HRP by ZnO nanoparticle indicates the possibility of formation of ground state complex. The processes of bindings of ZnO nanoparticles with the two proteins are spontaneous molecular interaction procedures. In both cases hydrogen bonding plays a major role. The circular dichroism (CD) spectra reveal that a helicity of the proteins is reduced by increasing ZnO nanoparticle concentration although the α-helical structures of HMb and HRP retain their identity. On binding to the ZnO nanoparticles the secondary structure of HRP molecules (or HMb molecules) remains unchanged while there is a substantial change in the environment of the tyrosin active site in case of HRP molecules and tryptophan active site in case of HMb molecules. Tapping mode atomic force microscopy (AFM) was applied for the investigation the structure of HRP adsorbed in the environment of nanoparticles on the silicon and on the bare silicon. HRP molecules adsorb and aggregate on the mica with ZnO nanoparticle. The aggregation indicates an attractive interaction among the adsorbed molecules. The molecules are randomly distributed on the bare silicon wafer. The adsorption of HRP in the environment of ZnO nanoparticle changes drastically the domains due to a strong interaction between HRP and ZnO nanoparticles. Similar situation is observed in case of HMb molecules. These findings demonstrate the efficacy of biomedical applications of ZnO nanoparticles as well as in elucidating their mechanisms of action as drugs in both human and plant systems.

  12. PSMA-targeted SPECT agents: mode of binding effect on in vitro performance.

    PubMed

    Nedrow-Byers, Jessie R; Moore, Adam L; Ganguly, Tanushree; Hopkins, Mark R; Fulton, Melody D; Benny, Paul D; Berkman, Clifford E

    2013-03-01

    The enzyme-biomarker prostate-specific membrane antigen (PSMA) is an active target for imaging and therapeutic applications for prostate cancer. The internalization of PSMA has been shown to vary with inhibitors' mode of binding: irreversible, slowly reversible, and reversible. In the present study, PSMA-targeted clickable derivatives of an irreversible phosphoramidate inhibitor DBCO-PEG(4) -CTT-54 (IC(50) = 1.0 nM) and a slowly reversible phosphate inhibitor, DBCO-PEG(4) -CTT-54.2 (IC(50) = 6.6 nM) were clicked to (99m) Tc(CO)(3) -DPA-azide to assemble a PSMA-targeted SPECT agent. The selectivity, percent uptake, and internalization of these PSMA-targeted SPECT agents were evaluated in PSMA-positive and PSMA-negative cells. In vitro studies demonstrated that PSMA-targeted SPECT agents exhibited selective cellular uptake in the PSMA-positive LNCaP cells compared to PSMA-negative PC3 cells. More importantly, it was found that (99m) Tc(CO)(3) -DPA-DBCO-PEG(4) -CTT-54 based on an irreversible PSMA inhibitor core, exhibited greater uptake and internalization than (99m) Tc(CO)(3) -DPA-DBCO-PEG(4) -CTT-54.2 constructed from a slowly reversible PSMA inhibitor core. We have demonstrated that a PSMA-targeted SPECT agent can be assembled efficiently using copper-less click chemistry. In addition, we demonstrated that mode of binding has an effect on internalization and percent uptake of PSMA-targeted SPECT agents; with the irreversible targeting agent demonstrating superior uptake and internalization in PSMA+ cells. The approach demonstrated in this work now supports a modular approach for the assembly of PSMA-targeted imaging and therapeutic agents. Copyright © 2012 Wiley Periodicals, Inc.

  13. PSMA-targeted SPECT agents: Mode of Binding effect on in vitro Performance

    PubMed Central

    Nedrow-Byers, Jessie R.; Moore, Adam L.; Ganguly, Tanushree; Hopkins, Mark R.; Fulton, Melody D.; Benny, Paul; Berkman, Clifford E.

    2012-01-01

    BACKGROUND The enzyme-biomarker prostate-specific membrane antigen (PSMA) is an active target for imaging and therapeutic applications for prostate cancer. The internalization of PSMA has been shown to vary with inhibitors’ mode of binding: irreversible, slowly reversible and reversible. METHODS In the present study, PSMA-targeted clickable derivatives of an irreversible phosphoramidate inhibitor DBCO-PEG4-CTT-54 (IC50 = 1.0 nM) and a slowly reversible phosphate inhibitor, DBCO-PEG4-CTT-54.2 (IC50 = 6.6 nM) were clicked to 99mTc(CO)3-DPA-azide to assemble a PSMA-targeted SPECT agent. The selectivity, percent uptake, and internalization of these PSMA-targeted SPECT agents were evaluated in PSMA-positive and PSMA-negative cells. RESULTS In vitro studies demonstrated that PSMA-targeted SPECT agents exhibited selective cellular uptake in the PSMA-positive LNCaP cells compared to PSMA-negative PC3 cells. More importantly, it was found that 99mTc(CO)3-DPA-DBCO-PEG4-CTT-54 based on an irreversible PSMA inhibitor core, exhibited greater uptake and internalization than 99mTc(CO)3-DPA-DBCO-PEG4-CTT-54.2 constructed from a slowly-reversible PSMA inhibitor core. CONCLUSIONS We have demonstrated that a PSMA-targeted SPECT agent can be assembled efficiently using copper-less click chemistry. In addition, we demonstrated that mode of binding has an effect on internalization and percent uptake of PSMA-targeted SPECT agents; with the irreversible targeting agent demonstrating superior uptake and internalization in PSMA+ cells. The approach demonstrated in this work now supports a modular approach for the assembly of PSMA-targeted imaging and therapeutic agents. PMID:22911263

  14. A new mode of DNA binding distinguishes Capicua from other HMG-box factors and explains its mutation patterns in cancer

    PubMed Central

    Forés, Marta; Samper, Núria; Barbacid, Mariano

    2017-01-01

    HMG-box proteins, including Sox/SRY (Sox) and TCF/LEF1 (TCF) family members, bind DNA via their HMG-box. This binding, however, is relatively weak and both Sox and TCF factors employ distinct mechanisms for enhancing their affinity and specificity for DNA. Here we report that Capicua (CIC), an HMG-box transcriptional repressor involved in Ras/MAPK signaling and cancer progression, employs an additional distinct mode of DNA binding that enables selective recognition of its targets. We find that, contrary to previous assumptions, the HMG-box of CIC does not bind DNA alone but instead requires a distant motif (referred to as C1) present at the C-terminus of all CIC proteins. The HMG-box and C1 domains are both necessary for binding specific TGAATGAA-like sites, do not function via dimerization, and are active in the absence of cofactors, suggesting that they form a bipartite structure for sequence-specific binding to DNA. We demonstrate that this binding mechanism operates throughout Drosophila development and in human cells, ensuring specific regulation of multiple CIC targets. It thus appears that HMG-box proteins generally depend on auxiliary DNA binding mechanisms for regulating their appropriate genomic targets, but that each sub-family has evolved unique strategies for this purpose. Finally, the key role of C1 in DNA binding also explains the fact that this domain is a hotspot for inactivating mutations in oligodendroglioma and other tumors, while being preserved in oncogenic CIC-DUX4 fusion chimeras associated to Ewing-like sarcomas. PMID:28278156

  15. Phthalocyanine tetrasulfonates bind to multiple sites on natively-folded prion protein.

    PubMed

    Dee, Derek R; Gupta, Amar Nath; Anikovskiy, Max; Sosova, Iveta; Grandi, Elena; Rivera, Laura; Vincent, Abhilash; Brigley, Angela M; Petersen, Nils O; Woodside, Michael T

    2012-06-01

    The phthalocyanine tetrasulfonates (PcTS), a class of cyclic tetrapyrroles, bind to the mammalian prion protein, PrP. Remarkably, they can act as anti-scrapie agents to prevent the formation and spread of infectious, misfolded PrP. While the effects of phthalocyanines on the diseased state have been investigated, the interaction between PcTS and PrP has not yet been extensively characterized. Here we use multiple, complementary assays (surface plasmon resonance, isothermal titration calorimetry, fluorescence correlation spectroscopy, and tryptophan fluorescence quenching) to characterize the binding of PcTS to natively-folded hamster PrP(90-232), in order to determine binding constants, ligand stoichiometry, influence of buffer ionic strength, and the effects of chelated metal ions. We found that binding strength depends strongly on chelated metal ions, with Al(3+)-PcTS binding the weakest and free-base PcTS the strongest of the three types tested (Al(3+), Zn(2+), and free-base). Buffer ionic strength also affected the binding, with K(d) increasing along with salt concentration. The binding isotherms indicated the presence of at least two different binding sites with micromolar affinities and a total stoichiometry of ~4-5 PcTS molecules per PrP molecule.

  16. The Mode of Hedgehog Binding to Ihog Homologues is Not Conserved Across Different Phyla

    SciTech Connect

    McLellan, J.; Zheng, X; Hauk, G; Ghirlando, R; Beachy, P; Leahy, D

    2008-01-01

    Hedgehog (Hh) proteins specify tissue pattern in metazoan embryos by forming gradients that emanate from discrete sites of expression and elicit concentration-dependent cellular differentiation or proliferation responses1, 2. Cellular responses to Hh and the movement of Hh through tissues are both precisely regulated, and abnormal Hh signalling has been implicated in human birth defects and cancer3, 4, 5, 6, 7. Hh signalling is mediated by its amino-terminal domain (HhN), which is dually lipidated and secreted as part of a multivalent lipoprotein particle8, 9, 10. Reception of the HhN signal is modulated by several cell-surface proteins on responding cells, including Patched (Ptc), Smoothened (Smo), Ihog (known as CDO or CDON in mammals) and the vertebrate-specific proteins Hip (also known as Hhip) and Gas1 (ref. 11). Drosophila Ihog and its vertebrate homologues CDO and BOC contain multiple immunoglobulin and fibronectin type III (FNIII) repeats, and the first FNIII repeat of Ihog binds Drosophila HhN in a heparin-dependent manner12, 13. Surprisingly, pull-down experiments suggest that a mammalian Sonic hedgehog N-terminal domain (ShhN) binds a non-orthologous FNIII repeat of CDO12, 14. Here we report biochemical, biophysical and X-ray structural studies of a complex between ShhN and the third FNIII repeat of CDO. We show that the ShhN-CDO interaction is completely unlike the HhN-Ihog interaction and requires calcium, which binds at a previously undetected site on ShhN. This site is conserved in nearly all Hh proteins and is a hotspot for mediating interactions between ShhN and CDO, Ptc, Hip and Gas1. Mutations in vertebrate Hh proteins causing holoprosencephaly and brachydactyly type A1 map to this calcium-binding site and disrupt interactions with these partners.

  17. A Novel Approach to Beam Steering Using Arrays Composed of Multiple Unique Radiating Modes

    NASA Astrophysics Data System (ADS)

    Labadie, Nathan Richard

    Phased array antennas have found wide application in both radar and wireless communications systems particularly as implementation costs continue to decrease. The primary advantages of electronically scanned arrays are speed of beam scan and versatility of beamforming compared to mechanically scanned fixed beam antennas. These benefits come at the cost of a few well known design issues including element pattern rolloff and mutual coupling between elements. Our primary contribution to the field of research is the demonstration of significant improvement in phased array scan performance using multiple unique radiating modes. In short, orthogonal radiating modes have minimal coupling by definition and can also be generated with reduced rolloff at wide scan angles. In this dissertation, we present a combination of analysis, full-wave electromagnetic simulation and measured data to support our claims. The novel folded ring resonator (FRR) antenna is introduced as a wideband and multi-band element embedded in a grounded dielectric substrate. Multiple radiating modes of a small ground plane excited by a four element FRR array were also investigated. A novel hemispherical null steering antenna composed of two collocated radiating elements, each supporting a unique radiating mode, is presented in the context of an anti-jam GPS receiver application. Both the antenna aperture and active feed network were fabricated and measured showing excellent agreement with analytical and simulated data. The concept of using an antenna supporting multiple radiating modes for beam steering is also explored. A 16 element hybrid linear phased array was fabricated and measured demonstrating significantly improved scan range and scanned gain compared to a conventional phased array. This idea is expanded to 2 dimensional scanning arrays by analysis and simulation of a hybrid phased array composed of novel multiple mode monopole on patch antenna sub-arrays. Finally, we fabricated and

  18. Pharmacophore modeling, comprehensive 3D-QSAR, and binding mode analysis of TGR5 agonists.

    PubMed

    Sindhu, Thangaraj; Srinivasan, Pappu

    2017-04-01

    Takeda G-protein-coupled receptor 5 (TGR5) is emerging as an important and promising target for the development of anti-diabetic drugs. Pharmacophore modeling and atom-based 3D-QSAR studies were carried out on a new series of 5-phenoxy-1,3-dimethyl-1H-pyrazole-4-carboxamides as highly potent agonists of TGR5. The generated best six featured pharmacophore model AAHHRR consists of two hydrogen bond acceptors (A): two hydrophobic groups (H) and two aromatic rings (R). The constructed 3D-QSAR model acquired excellent correlation coefficient value (R(2 )=( )0.9018), exhibited good predictive power (Q(2 )=( )0.8494) and high Fisher ratio (F = 61.2). The pharmacophore model was validated through Guner-Henry (GH) scoring method. The GH value of 0.5743 indicated that the AAHHRR model was statistically valuable and reliable in the identification of TGR5 agonists. Furthermore, the combined approach of molecular docking and binding free energy calculations were carried out for the 5-phenoxy-1,3-dimethyl-1H-pyrazole-4-carboxamides to explore the binding mode and interaction pattern. The generated contour maps revealed the important structural insights for the activity of the compounds. The results obtained from this study could be helpful in the development of novel and more potent agonists of TGR5.

  19. Substrate binding mode and reaction mechanism of undecaprenyl pyrophosphate synthase deduced from crystallographic studies

    PubMed Central

    Chang, Sing-Yang; Ko, Tzu-Ping; Chen, Annie P.-C.; Wang, Andrew H.-J.; Liang, Po-Huang

    2004-01-01

    Undecaprenyl pyrophosphate synthase (UPPs) catalyzes eight consecutive condensation reactions of farnesyl pyrophosphate (FPP) with isopentenyl pyrophosphate (IPP) to form a 55-carbon long-chain product. We previously reported the crystal structure of the apo-enzyme from Escherichia coli and the structure of UPPs in complex with sulfate ions (resembling pyrophosphate of substrate), Mg2+, and two Triton molecules (product-like). In the present study, FPP substrate was soaked into the UPPs crystals, and the complex structure was solved. Based on the crystal structure, the pyrophosphate head group of FPP is bound to the backbone NHs of Gly29 and Arg30 as well as the side chains of Asn28, Arg30, and Arg39 through hydrogen bonds. His43 is close to the C2 carbon of FPP and may stabilize the farnesyl cation intermediate during catalysis. The hydrocarbon moiety of FPP is bound with hydrophobic amino acids including Leu85, Leu88, and Phe89, located on the α3 helix. The binding mode of FPP in cis-type UPPs is apparently different from that of trans-type and many other prenyltransferases which utilize Asprich motifs for substrate binding via Mg2+. The new structure provides a plausible mechanism for the catalysis of UPPs. PMID:15044730

  20. A novel cofactor-binding mode in bacterial IMP dehydrogenases explains inhibitor selectivity

    SciTech Connect

    Makowska-Grzyska, Magdalena; Kim, Youngchang; Maltseva, Natalia; Osipiuk, Jerzy; Gu, Minyi; Zhang, Minjia; Mandapati, Kavitha; Gollapalli, Deviprasad R.; Gorla, Suresh Kumar; Hedstrom, Lizbeth; Joachimiak, Andrzej

    2015-01-09

    The steadily rising frequency of emerging diseases and antibiotic resistance creates an urgent need for new drugs and targets. Inosine 5'-monophosphate dehydrogenase (IMP dehydrogenase or IMPDH) is a promising target for the development of new antimicrobial agents. IMPDH catalyzes the oxidation of IMP to XMP with the concomitant reduction of NAD+, which is the pivotal step in the biosynthesis of guanine nucleotides. Potent inhibitors of bacterial IMPDHs have been identified that bind in a structurally distinct pocket that is absent in eukaryotic IMPDHs. The physiological role of this pocket was not understood. Here, we report the structures of complexes with different classes of inhibitors of Bacillus anthracis, Campylobacter jejuni, and Clostridium perfringens IMPDHs. These structures in combination with inhibition studies provide important insights into the interactions that modulate selectivity and potency. We also present two structures of the Vibrio cholerae IMPDH in complex with IMP/NAD+ and XMP/NAD+. In both structures, the cofactor assumes a dramatically different conformation than reported previously for eukaryotic IMPDHs and other dehydrogenases, with the major change observed for the position of the NAD+ adenosine moiety. More importantly, this new NAD+-binding site involves the same pocket that is utilized by the inhibitors. Thus, the bacterial IMPDH-specific NAD+-binding mode helps to rationalize the conformation adopted by several classes of prokaryotic IMPDH inhibitors. As a result, these findings offer a potential strategy for further ligand optimization.

  1. Alternative modes of client binding enable functional plasticity of Hsp70

    NASA Astrophysics Data System (ADS)

    Mashaghi, Alireza; Bezrukavnikov, Sergey; Minde, David P.; Wentink, Anne S.; Kityk, Roman; Zachmann-Brand, Beate; Mayer, Matthias P.; Kramer, Günter; Bukau, Bernd; Tans, Sander J.

    2016-11-01

    The Hsp70 system is a central hub of chaperone activity in all domains of life. Hsp70 performs a plethora of tasks, including folding assistance, protection against aggregation, protein trafficking, and enzyme activity regulation, and interacts with non-folded chains, as well as near-native, misfolded, and aggregated proteins. Hsp70 is thought to achieve its many physiological roles by binding peptide segments that extend from these different protein conformers within a groove that can be covered by an ATP-driven helical lid. However, it has been difficult to test directly how Hsp70 interacts with protein substrates in different stages of folding and how it affects their structure. Moreover, recent indications of diverse lid conformations in Hsp70-substrate complexes raise the possibility of additional interaction mechanisms. Addressing these issues is technically challenging, given the conformational dynamics of both chaperone and client, the transient nature of their interaction, and the involvement of co-chaperones and the ATP hydrolysis cycle. Here, using optical tweezers, we show that the bacterial Hsp70 homologue (DnaK) binds and stabilizes not only extended peptide segments, but also partially folded and near-native protein structures. The Hsp70 lid and groove act synergistically when stabilizing folded structures: stabilization is abolished when the lid is truncated and less efficient when the groove is mutated. The diversity of binding modes has important consequences: Hsp70 can both stabilize and destabilize folded structures, in a nucleotide-regulated manner; like Hsp90 and GroEL, Hsp70 can affect the late stages of protein folding; and Hsp70 can suppress aggregation by protecting partially folded structures as well as unfolded protein chains. Overall, these findings in the DnaK system indicate an extension of the Hsp70 canonical model that potentially affects a wide range of physiological roles of the Hsp70 system.

  2. MBSTAR: multiple instance learning for predicting specific functional binding sites in microRNA targets

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Sanghamitra; Ghosh, Dip; Mitra, Ramkrishna; Zhao, Zhongming

    2015-01-01

    MicroRNA (miRNA) regulates gene expression by binding to specific sites in the 3'untranslated regions of its target genes. Machine learning based miRNA target prediction algorithms first extract a set of features from potential binding sites (PBSs) in the mRNA and then train a classifier to distinguish targets from non-targets. However, they do not consider whether the PBSs are functional or not, and consequently result in high false positive rates. This substantially affects the follow up functional validation by experiments. We present a novel machine learning based approach, MBSTAR (Multiple instance learning of Binding Sites of miRNA TARgets), for accurate prediction of true or functional miRNA binding sites. Multiple instance learning framework is adopted to handle the lack of information about the actual binding sites in the target mRNAs. Biologically validated 9531 interacting and 973 non-interacting miRNA-mRNA pairs are identified from Tarbase 6.0 and confirmed with PAR-CLIP dataset. It is found that MBSTAR achieves the highest number of binding sites overlapping with PAR-CLIP with maximum F-Score of 0.337. Compared to the other methods, MBSTAR also predicts target mRNAs with highest accuracy. The tool and genome wide predictions are available at http://www.isical.ac.in/~bioinfo_miu/MBStar30.htm.

  3. Binding modes of noncompetitive GABA-channel blockers revisited using engineered affinity-labeling reactions combined with new docking studies.

    PubMed

    Charon, Sébastien; Taly, Antoine; Rodrigo, Jordi; Perret, Philippe; Goeldner, Maurice

    2011-04-13

    The binding modes of noncompetitive GABA(A)-channel blockers were re-examined taking into account the recent description of the 3D structure of prokaryotic pentameric ligand-gated ion channels, which provided access to new mammalian or insect GABA receptor models, emphasizing their transmembrane portion. Two putative binding modes were deciphered for this class of compounds, including the insecticide fipronil, located nearby either the intra- or the extracellular part of the membrane, respectively. These results are in full agreement with previously described affinity-labeling reactions performed with GABA(A) noncompetitive blockers (Perret et al. J. Biol. Chem.1999, 274, 25350-25354).

  4. Comparing Binding Modes of Analogous Fragments Using NMR in Fragment-Based Drug Design: Application to PRDX5

    PubMed Central

    Guichou, Jean-François; Cala, Olivier; Krimm, Isabelle

    2014-01-01

    Fragment-based drug design is one of the most promising approaches for discovering novel and potent inhibitors against therapeutic targets. The first step of the process consists of identifying fragments that bind the protein target. The determination of the fragment binding mode plays a major role in the selection of the fragment hits that will be processed into drug-like compounds. Comparing the binding modes of analogous fragments is a critical task, not only to identify specific interactions between the protein target and the fragment, but also to verify whether the binding mode is conserved or differs according to the fragment modification. While X-ray crystallography is the technique of choice, NMR methods are helpful when this fails. We show here how the ligand-observed saturation transfer difference (STD) experiment and the protein-observed 15N-HSQC experiment, two popular NMR screening experiments, can be used to compare the binding modes of analogous fragments. We discuss the application and limitations of these approaches based on STD-epitope mapping, chemical shift perturbation (CSP) calculation and comparative CSP sign analysis, using the human peroxiredoxin 5 as a protein model. PMID:25025339

  5. A computational analysis of the binding mode of closantel as inhibitor of the Onchocerca volvulus chitinase: insights on macrofilaricidal drug design

    NASA Astrophysics Data System (ADS)

    Segura-Cabrera, Aldo; Bocanegra-García, Virgilio; Lizarazo-Ortega, Cristian; Guo, Xianwu; Correa-Basurto, José; Rodríguez-Pérez, Mario A.

    2011-12-01

    Onchocerciasis is a leading cause of blindness with at least 37 million people infected and more than 120 million people at risk of contracting the disease; most (99%) of this population, threatened by infection, live in Africa. The drug of choice for mass treatment is the microfilaricidal Mectizan® (ivermectin); it does not kill the adult stages of the parasite at the standard dose which is a single annual dose aimed at disease control. However, multiple treatments a year with ivermectin have effects on adult worms. The discovery of new therapeutic targets and drugs directed towards the killing of the adult parasites are thus urgently needed. The chitinase of filarial nematodes is a new drug target due to its essential function in the metabolism and molting of the parasite. Closantel is a potent and specific inhibitor of chitinase of Onchocerca volvulus (OvCHT1) and other filarial chitinases. However, the binding mode and specificity of closantel towards OvCHT1 remain unknown. In the absence of a crystallographic structure of OvCHT1, we developed a homology model of OvCHT1 using the currently available X-ray structures of human chitinases as templates. Energy minimization and molecular dynamics (MD) simulation of the model led to a high quality of 3D structure of OvCHIT1. A flexible docking study using closantel as the ligand on the binding site of OvCHIT1 and human chitinases was performed and demonstrated the differences in the closantel binding mode between OvCHIT1 and human chitinase. Furthermore, molecular dynamics simulations and free-energy calculation were employed to determine and compare the detailed binding mode of closantel with OvCHT1 and the structure of human chitinase. This comparative study allowed identification of structural features and properties responsible for differences in the computationally predicted closantel binding modes. The homology model and the closantel binding mode reported herein might help guide the rational development of

  6. A computational analysis of the binding mode of closantel as inhibitor of the Onchocerca volvulus chitinase: insights on macrofilaricidal drug design.

    PubMed

    Segura-Cabrera, Aldo; Bocanegra-García, Virgilio; Lizarazo-Ortega, Cristian; Guo, Xianwu; Correa-Basurto, José; Rodríguez-Pérez, Mario A

    2011-12-01

    Onchocerciasis is a leading cause of blindness with at least 37 million people infected and more than 120 million people at risk of contracting the disease; most (99%) of this population, threatened by infection, live in Africa. The drug of choice for mass treatment is the microfilaricidal Mectizan(®) (ivermectin); it does not kill the adult stages of the parasite at the standard dose which is a single annual dose aimed at disease control. However, multiple treatments a year with ivermectin have effects on adult worms. The discovery of new therapeutic targets and drugs directed towards the killing of the adult parasites are thus urgently needed. The chitinase of filarial nematodes is a new drug target due to its essential function in the metabolism and molting of the parasite. Closantel is a potent and specific inhibitor of chitinase of Onchocerca volvulus (OvCHT1) and other filarial chitinases. However, the binding mode and specificity of closantel towards OvCHT1 remain unknown. In the absence of a crystallographic structure of OvCHT1, we developed a homology model of OvCHT1 using the currently available X-ray structures of human chitinases as templates. Energy minimization and molecular dynamics (MD) simulation of the model led to a high quality of 3D structure of OvCHIT1. A flexible docking study using closantel as the ligand on the binding site of OvCHIT1 and human chitinases was performed and demonstrated the differences in the closantel binding mode between OvCHIT1 and human chitinase. Furthermore, molecular dynamics simulations and free-energy calculation were employed to determine and compare the detailed binding mode of closantel with OvCHT1 and the structure of human chitinase. This comparative study allowed identification of structural features and properties responsible for differences in the computationally predicted closantel binding modes. The homology model and the closantel binding mode reported herein might help guide the rational development of

  7. Interaction of 6 Mercaptopurine with Calf Thymus DNA – Deciphering the Binding Mode and Photoinduced DNA Damage

    PubMed Central

    Rehman, Sayeed Ur; Yaseen, Zahid; Husain, Mohammed Amir; Sarwar, Tarique; Ishqi, Hassan Mubarak; Tabish, Mohammad

    2014-01-01

    DNA is one of the major intracellular targets for a wide range of anticancer and antibiotic drugs. Elucidating the binding between small molecules and DNA provides great help in understanding drug-DNA interactions and in designing of new and promising drugs for clinical use. The ability of small molecules to bind and interfere with DNA replication and transcription provides further insight into how the drugs control the expression of genes. Interaction of an antimetabolite anticancer drug 6mercaptopurine (6MP) with calf thymus DNA was studied using various approaches like UV-visible spectroscopy, fluorescence spectroscopy, CD, viscosity and molecular docking. UV-visible spectroscopy confirmed 6MP-DNA interaction. Steady state fluorescence experiments revealed a moderate binding constant of 7.48×103 M−1 which was consistent with an external binding mode. Competitive displacement assays further confirmed a non-intercalative binding mode of 6MP which was further confirmed by CD and viscosity experiments. Molecular docking further revealed the minimum energy conformation (−119.67 kJ/mole) of the complex formed between DNA and 6MP. Hence, the biophysical techniques and in-silico molecular docking approaches confirmed the groove binding/electrostatic mode of interaction between 6MP and DNA. Further, photo induced generation of ROS by 6MP was studied spectrophotometrically and DNA damage was assessed by plasmid nicking and comet assay. There was a significant increase in ROS generation and consequent DNA damage in the presence of light. PMID:24718609

  8. Zinc-induced oligomerization of zinc α2 glycoprotein reveals multiple fatty acid-binding sites.

    PubMed

    Zahid, Henna; Miah, Layeque; Lau, Andy M; Brochard, Lea; Hati, Debolina; Bui, Tam T T; Drake, Alex F; Gor, Jayesh; Perkins, Stephen J; McDermott, Lindsay C

    2016-01-01

    Zinc α2 glycoprotein (ZAG) is an adipokine with a class I MHC protein fold and is associated with obesity and diabetes. Although its intrinsic ligand remains unknown, ZAG binds the dansylated C11 fatty acid 11-(dansylamino)undecanoic acid (DAUDA) in the groove between the α1 and α2 domains. The surface of ZAG has approximately 15 weak zinc-binding sites deemed responsible for precipitation from human plasma. In the present study the functional significance of these metal sites was investigated. Analytical ultracentrifugation (AUC) and CD showed that zinc, but not other divalent metals, causes ZAG to oligomerize in solution. Thus ZAG dimers and trimers were observed in the presence of 1 and 2 mM zinc. Molecular modelling of X-ray scattering curves and sedimentation coefficients indicated a progressive stacking of ZAG monomers, suggesting that the ZAG groove may be occluded in these. Using fluorescence-detected sedimentation velocity, these ZAG-zinc oligomers were again observed in the presence of the fluorescent boron dipyrromethene fatty acid C16-BODIPY (4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-hexadecanoic acid). Fluorescence spectroscopy confirmed that ZAG binds C16-BODIPY. ZAG binding to C16-BODIPY, but not to DAUDA, was reduced by increased zinc concentrations. We conclude that the lipid-binding groove in ZAG contains at least two distinct fatty acid-binding sites for DAUDA and C16-BODIPY, similar to the multiple lipid binding seen in the structurally related immune protein CD1c. In addition, because high concentrations of zinc occur in the pancreas, the perturbation of these multiple lipid-binding sites by zinc may be significant in Type 2 diabetes where dysregulation of ZAG and zinc homoeostasis occurs.

  9. Multiple opioid receptor binding in dissociated intact guinea pig brain cells

    SciTech Connect

    Tam, S.W.; James, D.W.

    1986-03-05

    Dissociated intact guinea pig brain cells were prepared by the method of Rogers and El-Fakahany. Over 95% of these cells are viable as demonstrated by their exclusion of the dye trypan blue. Opioid receptor binding assays were performed in a modified Kreb-Ringers physiological buffer. The following radiolabeled ligands and conditions were used to selectively labeled multiple opioid receptors: mu binding, 1 nM (/sup 3/H)naloxone + 20 nM DADLE + 300 nM U50,488H; kappa binding, 4 nM (-)-(/sup 3/H)-EKC + 100 nM DAGO + 500 nM DADLE; delta binding, 2 nM (/sup 3/H)-DADLE + 100 nM DAGO + 300 nM U50,488H; sigma binding, 4 nM (+)-(/sup 3/H)SKF 10,047. The intact brain cells in physiological buffer demonstrated specific binding for mu, kappa, delta, and sigma receptors. The relative binding potency of naloxone for each of the receptor types is arbitrarily set at 1.

  10. Single-longitudinal-mode erbium-doped fiber laser with multiple linear cavity

    NASA Astrophysics Data System (ADS)

    Feng, Suchun; Xu, Ou; Lu, Shaohua; Ren, Wenhua; Jian, Shuisheng

    2008-12-01

    An improved stable single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser with multiple-linear short cavity is demonstrated. Three fiber Bragg gratings (FBGs) with the same parameters directly written in a homemade photosensitive EDF (PEDF) in a single step are used as the wavelength-selective and mode-selective component in a 14 cm long linear laser cavity. The optical signal-to-noise ratio (OSNR) is over 50 dB. The amplitude variation in nearly one hour is less than 0.3 dB. The proposed laser has the advantages such as simple fabrication and compact all-optical fiber configuration.

  11. Free-standing protein films for dynamic mode detection of cations binding

    NASA Astrophysics Data System (ADS)

    Saya, Daisuke; Coleman, Anthony W.; Lazar, Adina N.; Bergaud, Christian; Nicu, Liviu

    2005-09-01

    This letter reports on the investigation of the mechano-chemical effect of cross-linked dried free-standing alpha-lactalbumin (α-lactalbumin) thin films induced by different cation, calcium, magnesium, and potassium binding. The protein membranes were fabricated by drying droplets of an α-lactalbumin solution on top of silicon through-wafer holes obtained by deep reactive ion etching. Then the membranes were consecutively exposed to solutions of the cations in HEPES buffer solution while their resonant frequencies were measured by full-field surface stroboscopic white light interferometry. Tests on more than 30 free-standing protein films showed more significant conformational changes of the α-lactalbumin after immersion in a calcium solution than those observed after immersion in magnesium and potassium solutions. These results demonstrate, the real potential of free-standing protein films to be used as resonant biosensors for multiple cation detection.

  12. Optical modes within III-nitride multiple quantum well microdisk cavities

    NASA Astrophysics Data System (ADS)

    Mair, R. A.; Zeng, K. C.; Lin, J. Y.; Jiang, H. X.; Zhang, B.; Dai, L.; Botchkarev, A.; Kim, W.; Morkoç, H.; Khan, M. A.

    1998-03-01

    Optical resonance modes have been observed in optically pumped microdisk cavities fabricated from 50 Å/50 Å GaN/AlxGa1-xN(x˜0.07) and 45 Å/45 Å InxGa1-xN/GaN(x˜0.15) multiple quantum well structures. Microdisks, approximately 9 μm in diameter and regularly spaced every 50 μm, were formed by an ion beam etch process. Individual disks were pumped at 300 and 10 K with 290 nm laser pulses focused to a spot size much smaller than the disk diameter. Optical modes corresponding to (i) the radial mode type with a spacing of 49-51 meV (both TE and TM) and (ii) the Whispering Gallery mode with a spacing of 15-16 meV were observed in the GaN microdisk cavities. The spacings of these modes are consistent with those expected for modes within a resonant cavity of cylindrical symmetry, refractive index, and dimensions of the microdisks under investigation. The GaN-based microdisk cavity is compared with its GaAs counterpart and implications regarding future GaN-based microdisk lasers are discussed.

  13. The mode of binding ACMA-DNA relies on the base-pair nature.

    PubMed

    Busto, Natalia; García, Begoña; Leal, José M; Secco, Fernando; Venturini, Marcella

    2012-04-07

    A thermodynamic and kinetic study on the mode of binding of 9-amino-6-chloro-2-methoxi-acridine (ACMA) to poly(dA-dT)·poly(dA-dT) and poly(dG-dC)·poly(dG-dC) has been undertaken at pH = 7.0 and I = 0.1 M. The spectrophotometric, kinetic (T-jump), circular dichroism, viscometric and calorimetric information gathered point to formation of a fully intercalated ACMA complex with poly(dA-dT)·poly(dA-dT) and another one only partially intercalated (7%) with poly(dG-dC)·poly(dG-dC). The ACMA affinity with the A-T bases was higher than with the G-C bases. The two polynucleotide sequences give rise to external complexes when the ACMA concentration is raised, namely, the electrostatic complex poly(dA-dT)·poly(dA-dT)-ACMA and the major groove binding complex poly(dG-dC)·poly(dG-dC)-ACMA. A considerable quenching effect of the ACMA fluorescence is observed with poly(dA-dT)·poly(dA-dT), ascribable to face-to-face location in the intercalated A-T-ACMA base-pairs. The even stronger effect observed in the presence of poly(dG-dC)·poly(dG-dC) is related to the guanine residue from on- and off-slot ACMA positions.

  14. Characterization of the bisintercalative DNA binding mode of a bifunctional platinum–acridine agent

    PubMed Central

    Choudhury, Jayati Roy; Bierbach, Ulrich

    2005-01-01

    The DNA interactions of PT-BIS(ACRAMTU) ([Pt(en)(ACRAMTU)2](NO3)4; ACRAMTU = 1-[2-(acridin-9-ylamino)ethyl]-1,3-dimethylthiourea, en = ethylenediamine), a bifunctional platinum–acridine conjugate, have been studied in native and synthetic double-stranded DNAs and model duplexes using various biophysical techniques. These include ethidium-DNA fluorescence quenching and thermal melting experiments, circular dichroism (CD) spectroscopy and plasmid unwinding assays. In addition, the binding mode was studied in a short octamer by NMR spectroscopy in conjunction with molecular modeling. In alternating copolymers, PT-BIS(ACRAMTU) shows a distinct preference for poly(dA-dT)2, which is ∼3-fold higher than that of ACRAMTU. In the ligand-oligomer complex, d(GCTATAGC)2·PT-BIS(ACRAMTU) (complex I*), PT-BIS(ACRAMTU) increases the thermal stability of the B-form host duplex by ΔTm > 30 K (CD and UV melting experiments). The agent unwinds pSP73 plasmid DNA by 44(±2)° per bound molecule, indicating bisintercalative binding. A 2-D NMR study unequivocally demonstrates that PT-BIS(ACRAMTU)'s chromophores deeply bisintercalate into the 5′-TA/TA base pair steps in I*, while the platinum linker lies in the minor groove. An AMBER model reflecting the NMR results shows that bracketing of the central AT base pairs in a classical nearest neighbor excluded fashion is feasible. PT-BIS(ACRAMTU) inhibits DNA hydrolysis by BstZ17 I at the enzyme's restriction site, GTA↓TAC. Possible consequences for other relevant DNA–protein interactions, such as those involved in TATA-box-mediated transcription initiation and the utility of the platinum-intercalator technology for the design of sequence-specific agents are discussed. PMID:16192574

  15. New insight into the binding modes of TNP-AMP to human liver fructose-1,6-bisphosphatase

    NASA Astrophysics Data System (ADS)

    Han, Xinya; Huang, Yunyuan; Zhang, Rui; Xiao, San; Zhu, Shuaihuan; Qin, Nian; Hong, Zongqin; Wei, Lin; Feng, Jiangtao; Ren, Yanliang; Feng, Lingling; Wan, Jian

    2016-08-01

    Human liver fructose-1,6-bisphosphatase (FBPase) contains two binding sites, a substrate fructose-1,6-bisphosphate (FBP) active site and an adenosine monophosphate (AMP) allosteric site. The FBP active site works by stabilizing the FBPase, and the allosteric site impairs the activity of FBPase through its binding of a nonsubstrate molecule. The fluorescent AMP analogue, 2‧,3‧-O-(2,4,6-trinitrophenyl)adenosine 5‧-monophosphate (TNP-AMP) has been used as a fluorescent probe as it is able to competitively inhibit AMP binding to the AMP allosteric site and, therefore, could be used for exploring the binding modes of inhibitors targeted on the allosteric site. In this study, we have re-examined the binding modes of TNP-AMP to FBPase. However, our present enzyme kinetic assays show that AMP and FBP both can reduce the fluorescence from the bound TNP-AMP through competition for FBPase, suggesting that TNP-AMP binds not only to the AMP allosteric site but also to the FBP active site. Mutagenesis assays of K274L (located in the FBP active site) show that the residue K274 is very important for TNP-AMP to bind to the active site of FBPase. The results further prove that TNP-AMP is able to bind individually to the both sites. Our present study provides a new insight into the binding mechanism of TNP-AMP to the FBPase. The TNP-AMP fluorescent probe can be used to exam the binding site of an inhibitor (the active site or the allosteric site) using FBPase saturated by AMP and FBP, respectively, or the K247L mutant FBPase.

  16. One Scaffold, Three Binding Modes: Novel and Selective Pteridine Reductase 1 Inhibitors Derived from Fragment Hits Discovered by Virtual Screening†

    PubMed Central

    2009-01-01

    The enzyme pteridine reductase 1 (PTR1) is a potential target for new compounds to treat human African trypanosomiasis. A virtual screening campaign for fragments inhibiting PTR1 was carried out. Two novel chemical series were identified containing aminobenzothiazole and aminobenzimidazole scaffolds, respectively. One of the hits (2-amino-6-chloro-benzimidazole) was subjected to crystal structure analysis and a high resolution crystal structure in complex with PTR1 was obtained, confirming the predicted binding mode. However, the crystal structures of two analogues (2-amino-benzimidazole and 1-(3,4-dichloro-benzyl)-2-amino-benzimidazole) in complex with PTR1 revealed two alternative binding modes. In these complexes, previously unobserved protein movements and water-mediated protein−ligand contacts occurred, which prohibited a correct prediction of the binding modes. On the basis of the alternative binding mode of 1-(3,4-dichloro-benzyl)-2-amino-benzimidazole, derivatives were designed and selective PTR1 inhibitors with low nanomolar potency and favorable physicochemical properties were obtained. PMID:19527033

  17. Docking studies on DNA-ligand interactions: building and application of a protocol to identify the binding mode.

    PubMed

    Ricci, Clarisse G; Netz, Paulo A

    2009-08-01

    Despite DNA being an important target for several drugs, most of the docking programs are validated only for proteins and their ligands. In this paper, we used AutoDock 4.0 to perform self-dockings and cross dockings between two DNA ligands (a minor groove binder and an intercalator) and four distinct receptors: 1) crystallographic DNA without intercalation gap; 2) crystallographic DNA with intercalation gap; 3) canonical B-DNA; and 4) modified B-DNA with intercalation gap. Besides being efficient in self-dockings, AutoDock is capable of correctly identifying two of the main DNA binding modes with the condition that the target possesses an artificial intercalation gap. Therefore, we suggest a default protocol to identify DNA binding modes which uses a modified canonical DNA (with gap) as receptor. This protocol was applied to dock two different Troger bases to DNA and the predicted binding modes agree with those suggested, yet not established, by experimental data. We also applied the protocol to dock aflatoxin B(1) exo-8,9-epoxide, and the results are in complete agreement with experimental data from the literature. We propose that this approach can be used to investigate other ligands whose binding mode to DNA remains unknown, yielding a suitable starting point for further theoretical studies such as molecular dynamics simulations.

  18. Probing the Pairing Interaction and Multiple Bardasis-Schrieffer Modes Using Raman Spectroscopy

    SciTech Connect

    Maiti, S.; Maier, T. A.; Böhm, T.; Hackl, R.; Hirschfeld, P. J.

    2016-12-15

    In unconventional superconductors, understanding the form of the pairing interaction is the primary goal. In this regard, Raman spectroscopy is a very useful tool, as it identifies the ground state and also the subleading pairing channels by probing collective modes. We propose a general theory for a multiband Raman response and identify new features in the spectrum that can provide a robust test for a pairing theory. We also identify multiple Bardasis-Schrieffer type collective modes and connect the weights of these modes to the subleading gap structures within a microscopic pairing theory. Furthermore, while our conclusions are completely general, we apply our approach to interpret the specific case of B 1 g Raman scattering in hole-doped BaFe 2 As 2 .

  19. Probing the Pairing Interaction and Multiple Bardasis-Schrieffer Modes Using Raman Spectroscopy

    DOE PAGES

    Maiti, S.; Maier, T. A.; Böhm, T.; ...

    2016-12-15

    In unconventional superconductors, understanding the form of the pairing interaction is the primary goal. In this regard, Raman spectroscopy is a very useful tool, as it identifies the ground state and also the subleading pairing channels by probing collective modes. We propose a general theory for a multiband Raman response and identify new features in the spectrum that can provide a robust test for a pairing theory. We also identify multiple Bardasis-Schrieffer type collective modes and connect the weights of these modes to the subleading gap structures within a microscopic pairing theory. Furthermore, while our conclusions are completely general, wemore » apply our approach to interpret the specific case of B 1 g Raman scattering in hole-doped BaFe 2 As 2 .« less

  20. Probing the Pairing Interaction and Multiple Bardasis-Schrieffer Modes Using Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Maiti, S.; Maier, T. A.; Böhm, T.; Hackl, R.; Hirschfeld, P. J.

    2016-12-01

    In unconventional superconductors, understanding the form of the pairing interaction is the primary goal. In this regard, Raman spectroscopy is a very useful tool, as it identifies the ground state and also the subleading pairing channels by probing collective modes. Here, we propose a general theory for a multiband Raman response and identify new features in the spectrum that can provide a robust test for a pairing theory. We identify multiple Bardasis-Schrieffer type collective modes and connect the weights of these modes to the subleading gap structures within a microscopic pairing theory. While our conclusions are completely general, we apply our approach to interpret the specific case of B1 g Raman scattering in hole-doped BaFe2 As2 .

  1. Multiple-mode large deflection random response of beams with nonlinear damping subjected to acoustic excitation

    NASA Technical Reports Server (NTRS)

    Prasad, C. B.; Mei, Chuh

    1987-01-01

    Multiple-mode nonlinear analysis is carried out for beams subjected to acoustic excitation. Effects of both nonlinear damping and large-deflection are included in the analysis in an attempt to explain the experimental phenomena of aircraft panels excited at high sound pressure levels; that is the broadening of the strain response peaks and the increase of modal frequency. An amplitude dependent nonlinear damping model is used in the anlaysis to study the effects and interactions of multiple modes, nonlinear stiffness and nonlinear damping on the random response of beams. Mean square maximum deflection, mean square maximum strain, and spectral density function of maximum strain for simple supported and clamped beams are obtained. It is shown analytically that nonlinear damping contributes significantly to the broadening of the response peak and to the mean square deflection and strain.

  2. Non-Geiger mode single photon detector with multiple amplification and gain control mechanisms

    SciTech Connect

    Nawar Rahman, Samia Hall, David; Lo, Yu-Hwa

    2014-05-07

    A new type of single photon detector, Multiple Amplification Gain with Internal Control (MAGIC), is proposed and analyzed using Monte Carlo simulations based on a physical model of the device. The MAGIC detector has two coupled amplification mechanisms, avalanche multiplication and bipolar gain, and the net gain is regulated by a built-in feedback mechanism. Compared to conventional Geiger mode single photon avalanche detectors (SPADs), the MAGIC detector produces a much greater single photon detection efficiency of nearly 100%, low bit-error-ratio for single photon signals, and a large dynamic range. All these properties are highly desirable for applications that require single photon sensitivity and are absent for conventional Geiger-mode SPADs.

  3. The impact of embedding multiple modes of representation on student construction of chemistry knowledge

    NASA Astrophysics Data System (ADS)

    McDermott, Mark Andrew

    2009-12-01

    This study was designed to examine the impact of embedding multiple modes of representing science information on student conceptual understanding in science. Multiple representations refer to utilizing charts, graphs, diagrams, and other types of representations to communicate scientific information. This study investigated the impact of encouraging students to embed or integrate the multiple modes with text in end of unit writing-to-learn activities. A quasi-experimental design with four separate sites consisting of intact chemistry classes taught by different teachers at each site was utilized. At each site, approximately half of the classes were designated treatment classes and students in these classes participated in activities designed to encourage strategies to embed multiple modes within text in student writing. The control classes did not participate in these activities. All classes participated in identical end of unit writing tasks in which they were required to use at least one mode other than text, followed by identical end of unit assessments. This progression was then repeated for a second consecutive unit of study. Analysis of quantitative data indicated that in several cases, treatment classes significantly outperformed control classes both on measures of embeddedness in writing and on end of unit assessment measures. In addition, analysis at the level of individual students indicated significant positive correlations in many cases between measures of student embeddedness in writing and student performance on end of unit assessments. Three factors emerged as critical in increasing the likelihood of benefit for students from these types of activities. First, the level of teacher implementation and emphasis on the embeddedness lessons was linked to the possibility of conceptual benefit. Secondly, students participating in two consecutive lessons appeared to receive greater benefit during the second unit, inferring a cumulative benefit. Finally

  4. Single-stranded DNA-binding proteins: multiple domains for multiple functions.

    PubMed

    Dickey, Thayne H; Altschuler, Sarah E; Wuttke, Deborah S

    2013-07-02

    The recognition of single-stranded DNA (ssDNA) is integral to myriad cellular functions. In eukaryotes, ssDNA is present stably at the ends of chromosomes and at some promoter elements. Furthermore, it is formed transiently by several cellular processes including telomere synthesis, transcription, and DNA replication, recombination, and repair. To coordinate these diverse activities, a variety of proteins have evolved to bind ssDNA in a manner specific to their function. Here, we review the recognition of ssDNA through the analysis of high-resolution structures of proteins in complex with ssDNA. This functionally diverse set of proteins arises from a limited set of structural motifs that can be modified and arranged to achieve distinct activities, including a range of ligand specificities. We also investigate the ways in which these domains interact in the context of large multidomain proteins/complexes. These comparisons reveal the structural features that define the range of functions exhibited by these proteins.

  5. Discovery of a Potent BTK Inhibitor with a Novel Binding Mode by Using Parallel Selections with a DNA-Encoded Chemical Library.

    PubMed

    Cuozzo, John W; Centrella, Paolo A; Gikunju, Diana; Habeshian, Sevan; Hupp, Christopher D; Keefe, Anthony D; Sigel, Eric A; Soutter, Holly H; Thomson, Heather A; Zhang, Ying; Clark, Matthew A

    2017-05-04

    We have identified and characterized novel potent inhibitors of Bruton's tyrosine kinase (BTK) from a single DNA-encoded library of over 110 million compounds by using multiple parallel selection conditions, including variation in target concentration and addition of known binders to provide competition information. Distinct binding profiles were observed by comparing enrichments of library building block combinations under these conditions; one enriched only at high concentrations of BTK and was competitive with ATP, and another enriched at both high and low concentrations of BTK and was not competitive with ATP. A compound representing the latter profile showed low nanomolar potency in biochemical and cellular BTK assays. Results from kinetic mechanism of action studies were consistent with the selection profiles. Analysis of the co-crystal structure of the most potent compound demonstrated a novel binding mode that revealed a new pocket in BTK. Our results demonstrate that profile-based selection strategies using DNA-encoded libraries form the basis of a new methodology to rapidly identify small molecule inhibitors with novel binding modes to clinically relevant targets. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Excitation of surface plasmon polariton modes with multiple nitrogen vacancy centers in single nanodiamonds

    NASA Astrophysics Data System (ADS)

    Kumar, Shailesh; Lausen, Jens L.; Garcia-Ortiz, Cesar E.; Andersen, Sebastian K. H.; Roberts, Alexander S.; Radko, Ilya P.; Smith, Cameron L. C.; Kristensen, Anders; Bozhevolnyi, Sergey I.

    2016-02-01

    Nitrogen-vacancy (NV) centers in diamonds are interesting due to their remarkable characteristics that are well suited to applications in quantum-information processing and magnetic field sensing, as well as representing stable fluorescent sources. Multiple NV centers in nanodiamonds (NDs) are especially useful as biological fluorophores due to their chemical neutrality, brightness and room-temperature photostability. Furthermore, NDs containing multiple NV centers also have potential in high-precision magnetic field and temperature sensing. Coupling NV centers to propagating surface plasmon polariton (SPP) modes gives a base for lab-on-a-chip sensing devices, allows enhanced fluorescence emission and collection which can further enhance the precision of NV-based sensors. Here, we investigate coupling of multiple NV centers in individual NDs to the SPP modes supported by silver surfaces protected by thin dielectric layers and by gold V-grooves (VGs) produced via the self-terminated silicon etching. In the first case, we concentrate on monitoring differences in fluorescence spectra obtained from a source ND, which is illuminated by a pump laser, and from a scattering ND illuminated only by the fluorescence-excited SPP radiation. In the second case, we observe changes in the average NV lifetime when the same ND is characterized outside and inside a VG. Fluorescence emission from the VG terminations is also observed, which confirms the NV coupling to the VG-supported SPP modes.

  7. 8-Thioalkyl-adenosine derivatives inhibit Listeria monocytogenes NAD kinase through a novel binding mode.

    PubMed

    Paoletti, Julie; Assairi, Liliane; Gelin, Muriel; Huteau, Valérie; Nahori, Marie-Anne; Dussurget, Olivier; Labesse, Gilles; Pochet, Sylvie

    2016-11-29

    Increased resistance of pathogens to existing antibiotics necessitates the search for novel targets to develop potent antimicrobials. Biosynthetic pathways of several cofactors important for bacterial growth, such as nicotinamide adenine dinucleotide phosphate (NADP), have been proposed as a promising source of antibiotic targets. Nicotinamide adenine dinucleotide kinases (NADK; EC 2.7.1.23) are attractive for inhibitor development, since they catalyze the phosphorylation of NAD to NADP, which is an essential step of NADP metabolism. We previously synthesized diadenosine derivatives that inhibited NADK from two human pathogens, Listeria monocytogenes and Staphylococcus aureus, in the micromolar range. They behave as NAD mimics with the 5',5'-diphosphate group substituted by a 8,5' thioglycolic bridge. In an attempt to improve inhibitory potency, we designed new NAD mimics based on a single adenosine moiety harboring a larger derivatization attached to the C8 position and a small group at the 5' position. Here we report the synthesis of a series of 8-thioalkyl-adenosine derivatives containing various aryl and heteroaryl moieties and their evaluation as inhibitors of L. monocytogenes NADK1, S. aureus NADK and their human counterpart. Novel, sub-micromolar inhibitors of LmNADK1 were identified. Surprisingly, most LmNADK1 inhibitors demonstrated a high selectivity index against the close staphylococcal ortholog and the human NADK. Structural characterization of enzyme-inhibitor complexes revealed the original binding mode of these novel NAD mimics.

  8. Ruthenium complexes of substituted hydrazine: new solution- and solid-state binding modes.

    PubMed

    Dabb, Serin L; Messerle, Barbara A; Otting, Gottfried; Wagler, Jörg; Willis, Anthony

    2008-01-01

    The methylhydrazine complex [Ru(NH(2)NHMe)(PyP)(2)]Cl(BPh(4)) (PyP=1-[2-(diphenylphosphino)ethyl]pyrazole) was synthesised by addition of methylhydrazine to the bimetallic complex [Ru(mu-Cl)(PyP)(2)](2)(BPh(4))(2). The methylhydrazine ligand of the ruthenium complex has two different binding modes: side-on (eta(2)-) when the complex is in the solid state and end-on (eta(1)-) when the complex is in solution. The solid-state structure of [Ru(PyP)(2)(NH(2)NHMe)]Cl(BPh(4)) was determined by X-ray crystallography. 2D NMR spectroscopic experiments with (15)N at natural abundance confirmed that in solution the methylhydrazine is bound to the metal centre by only the -NH(2) group and the ruthenium complex retains an octahedral conformation. Hydrazine complexes [RuCl(PyP)(2)(eta(1)-NH(2)NRR')]OSO(2)CF(3) (in which R=H, R'=Ph, R=R'=Me and NRR'=NC(5)H(10)) were formed in situ by the addition of phenylhydrazine, 1,1-dimethylhydrazine and N-aminopiperidine, respectively, to a solution of the bimetallic complex [Ru(mu-Cl)(PyP)(2)](2)(OSO(2)CF(3))(2) in dichloromethane. These substituted hydrazine complexes of ruthenium were shown to exist in an equilibrium mixture with the bimetallic starting material.

  9. Structural basis of constitutive activity and a unique nucleotide binding mode of human Pim-1 kinase.

    PubMed

    Qian, Kevin C; Wang, Lian; Hickey, Eugene R; Studts, Joey; Barringer, Kevin; Peng, Charline; Kronkaitis, Anthony; Li, Jun; White, Andre; Mische, Sheenah; Farmer, Bennett

    2005-02-18

    Pim-1 kinase is a member of a distinct class of serine/threonine kinases consisting of Pim-1, Pim-2, and Pim-3. Pim kinases are highly homologous to one another and share a unique consensus hinge region sequence, ER-PXPX, with its two proline residues separated by a non-conserved residue, but they (Pim kinases) have <30% sequence identity with other kinases. Pim-1 has been implicated in both cytokine-induced signal transduction and the development of lymphoid malignancies. We have determined the crystal structures of apo Pim-1 kinase and its AMP-PNP (5'-adenylyl-beta,gamma-imidodiphosphate) complex to 2.1-angstroms resolutions. The structures reveal the following. 1) The kinase adopts a constitutively active conformation, and extensive hydrophobic and hydrogen bond interactions between the activation loop and the catalytic loop might be the structural basis for maintaining such a conformation. 2) The hinge region has a novel architecture and hydrogen-bonding pattern, which not only expand the ATP pocket but also serve to establish unambiguously the alignment of the Pim-1 hinge region with that of other kinases. 3) The binding mode of AMP-PNP to Pim-1 kinase is unique and does not involve a critical hinge region hydrogen bond interaction. Analysis of the reported Pim-1 kinase-domain structures leads to a hypothesis as to how Pim kinase activity might be regulated in vivo.

  10. Tetramerization and interdomain flexibility of the replication initiation controller YabA enables simultaneous binding to multiple partners

    PubMed Central

    Felicori, Liza; Jameson, Katie H.; Roblin, Pierre; Fogg, Mark J.; Garcia-Garcia, Transito; Ventroux, Magali; Cherrier, Mickaël V.; Bazin, Alexandre; Noirot, Philippe; Wilkinson, Anthony J.; Molina, Franck; Terradot, Laurent; Noirot-Gros, Marie-Françoise

    2016-01-01

    YabA negatively regulates initiation of DNA replication in low-GC Gram-positive bacteria. The protein exerts its control through interactions with the initiator protein DnaA and the sliding clamp DnaN. Here, we combined X-ray crystallography, X-ray scattering (SAXS), modeling and biophysical approaches, with in vivo experimental data to gain insight into YabA function. The crystal structure of the N-terminal domain (NTD) of YabA solved at 2.7 Å resolution reveals an extended α-helix that contributes to an intermolecular four-helix bundle. Homology modeling and biochemical analysis indicates that the C-terminal domain (CTD) of YabA is a small Zn-binding domain. Multi-angle light scattering and SAXS demonstrate that YabA is a tetramer in which the CTDs are independent and connected to the N-terminal four-helix bundle via flexible linkers. While YabA can simultaneously interact with both DnaA and DnaN, we found that an isolated CTD can bind to either DnaA or DnaN, individually. Site-directed mutagenesis and yeast-two hybrid assays identified DnaA and DnaN binding sites on the YabA CTD that partially overlap and point to a mutually exclusive mode of interaction. Our study defines YabA as a novel structural hub and explains how the protein tetramer uses independent CTDs to bind multiple partners to orchestrate replication initiation in the bacterial cell. PMID:26615189

  11. Tetramerization and interdomain flexibility of the replication initiation controller YabA enables simultaneous binding to multiple partners.

    PubMed

    Felicori, Liza; Jameson, Katie H; Roblin, Pierre; Fogg, Mark J; Garcia-Garcia, Transito; Ventroux, Magali; Cherrier, Mickaël V; Bazin, Alexandre; Noirot, Philippe; Wilkinson, Anthony J; Molina, Franck; Terradot, Laurent; Noirot-Gros, Marie-Françoise

    2016-01-08

    YabA negatively regulates initiation of DNA replication in low-GC Gram-positive bacteria. The protein exerts its control through interactions with the initiator protein DnaA and the sliding clamp DnaN. Here, we combined X-ray crystallography, X-ray scattering (SAXS), modeling and biophysical approaches, with in vivo experimental data to gain insight into YabA function. The crystal structure of the N-terminal domain (NTD) of YabA solved at 2.7 Å resolution reveals an extended α-helix that contributes to an intermolecular four-helix bundle. Homology modeling and biochemical analysis indicates that the C-terminal domain (CTD) of YabA is a small Zn-binding domain. Multi-angle light scattering and SAXS demonstrate that YabA is a tetramer in which the CTDs are independent and connected to the N-terminal four-helix bundle via flexible linkers. While YabA can simultaneously interact with both DnaA and DnaN, we found that an isolated CTD can bind to either DnaA or DnaN, individually. Site-directed mutagenesis and yeast-two hybrid assays identified DnaA and DnaN binding sites on the YabA CTD that partially overlap and point to a mutually exclusive mode of interaction. Our study defines YabA as a novel structural hub and explains how the protein tetramer uses independent CTDs to bind multiple partners to orchestrate replication initiation in the bacterial cell. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Myelin Basic Protein and a Multiple Sclerosis-related MBP-peptide Bind to Oligonucleotides

    PubMed Central

    Rozenblum, Guido Tomás; Kaufman, Tomás; Vitullo, Alfredo Daniel

    2014-01-01

    Aptamer ligands for myelin basic protein (MBP) were obtained using the systematic evolution of ligand by exponential enrichment (SELEX) method. Two clones were isolated from a pool of oligonucleotides and tested for MBP targeting. Using purified MBP, we demonstrated the binding activity of the aptamers and we also showed the affinity of MBP for oligonucleotides of specific length. Moreover, one selected aptamer competitively inhibited the binding of an MBP-specific antibody to MBP and the aptamer was found more sensitive than a commercial antibody. In addition, we showed the ability of the aptamer to detect myelin-rich regions in paraffin-embedded mouse brain tissue. Therefore, the MBP-binding activity of the selected oligonucleotide may prove useful as a tool for life science and medical research for myelin detection and might be a good lead for testing it in autoimmune diseases such as multiple sclerosis. PMID:25202925

  13. Trust-Based Service Composition and Binding for Tactical Networks with Multiple Objectives

    DTIC Science & Technology

    2013-12-01

    optimization ( MOO ) problem, minimizing the service cost, while maximizing the quality of service (QoS) and quality of information (QoI). The MOO ...consider in this paper. We formulate the problem of service composition and binding as a multi-objective optimization ( MOO ) problem for maximizing...problem for tactical networks with multiple objectives. We develop an Integer Linear Programming (ILP) solution technique to solve this MOO problem. The

  14. Regulation of the Hsp90-binding immunophilin, cyclophilin 40, is mediated by multiple sites for GA-binding protein (GABP)

    PubMed Central

    Kumar, Premlata; Ward, Bryan K.; Minchin, Rodney F.; Ratajczak, Thomas

    2001-01-01

    Within steroid receptor heterocomplexes the large tetratricopeptide repeat-containing immunophilins, cyclophilin 40 (CyP40), FKBP51, and FKBP52, target a common interaction site in heat shock protein 90 (Hsp90) and act coordinately with Hsp90 to modulate receptor activity. The reversible nature of the interaction between the immunophilins and Hsp90 suggests that relative cellular abundance might be a key determinant of the immunophilin component within steroid receptor complexes. To investigate CyP40 gene regulation, we have isolated a 5-kilobase (kb) 5′-flanking region of the human gene and demonstrated that a ∼50 base pair (bp) sequence adjacent to the transcription start site is essential for CyP40 basal expression. Three tandemly arranged Ets sites within this critical region were identified as binding elements for the multimeric Ets-related transcription factor, GA binding protein (GABP). Functional studies of this proximal promoter sequence, in combination with mutational analysis, confirmed these sites to be crucial for basal promoter function. Furthermore, overexpression of both GABPα and GABPβ subunits in Cos1 cells resulted in increased endogenous CyP40 mRNA levels. Significantly, a parallel increase in FKBP52 mRNA expression was not observed, highlighting an important difference in the mode of regulation of the CyP40 and FKBP52 genes. Our results identify GABP as a key regulator of CyP40 expression. GABP is a common target of mitogen and stress-activated pathways and may integrate these diverse extracellular signals to regulate CyP40 gene expression. PMID:11525247

  15. Crystal structure and RNA-binding properties of an Hfq homolog from the deep-branching Aquificae: conservation of the lateral RNA-binding mode.

    PubMed

    Stanek, Kimberly A; Patterson-West, Jennifer; Randolph, Peter S; Mura, Cameron

    2017-04-01

    The host factor Hfq, as the bacterial branch of the Sm family, is an RNA-binding protein involved in the post-transcriptional regulation of mRNA expression and turnover. Hfq facilitates pairing between small regulatory RNAs (sRNAs) and their corresponding mRNA targets by binding both RNAs and bringing them into close proximity. Hfq homologs self-assemble into homo-hexameric rings with at least two distinct surfaces that bind RNA. Recently, another binding site, dubbed the `lateral rim', has been implicated in sRNA·mRNA annealing; the RNA-binding properties of this site appear to be rather subtle, and its degree of evolutionary conservation is unknown. An Hfq homolog has been identified in the phylogenetically deep-branching thermophile Aquifex aeolicus (Aae), but little is known about the structure and function of Hfq from basal bacterial lineages such as the Aquificae. Therefore, Aae Hfq was cloned, overexpressed, purified, crystallized and biochemically characterized. Structures of Aae Hfq were determined in space groups P1 and P6, both to 1.5 Å resolution, and nanomolar-scale binding affinities for uridine- and adenosine-rich RNAs were discovered. Co-crystallization with U6 RNA reveals that the outer rim of the Aae Hfq hexamer features a well defined binding pocket that is selective for uracil. This Aae Hfq structure, combined with biochemical and biophysical characterization of the homolog, reveals deep evolutionary conservation of the lateral RNA-binding mode, and lays a foundation for further studies of Hfq-associated RNA biology in ancient bacterial phyla.

  16. A Highly Tilted Binding Mode by a Self-Reactive T Cell Receptor Results in Altered Engagement of Peptide and MHC

    SciTech Connect

    D Sethi; D Schubert; A Anders; A Heroux; D Bonsor; C Thomas; E Sundberg; J Pyrdol; K Wucherpfennig

    2011-12-31

    Self-reactive T cells that escape elimination in the thymus can cause autoimmune pathology, and it is therefore important to understand the structural mechanisms of self-antigen recognition. We report the crystal structure of a T cell receptor (TCR) from a patient with relapsing-remitting multiple sclerosis that engages its self-peptide-major histocompatibility complex (pMHC) ligand in an unusual manner. The TCR is bound in a highly tilted orientation that prevents interaction of the TCR-{alpha} chain with the MHC class II {beta} chain helix. In this structure, only a single germline-encoded TCR loop engages the MHC protein, whereas in most other TCR-pMHC structures all four germline-encoded TCR loops bind to the MHC helices. The tilted binding mode also prevents peptide contacts by the short complementarity-determining region (CDR) 3{beta} loop, and interactions that contribute to peptide side chain specificity are focused on the CDR3{alpha} loop. This structure is the first example in which only a single germline-encoded TCR loop contacts the MHC helices. Furthermore, the reduced interaction surface with the peptide may facilitate TCR cross-reactivity. The structural alterations in the trimolecular complex are distinct from previously characterized self-reactive TCRs, indicating that there are multiple unusual ways for self-reactive TCRs to bind their pMHC ligand.

  17. A highly tilted binding mode by a self-reactive T cell receptor results in altered engagement of peptide and MHC

    SciTech Connect

    Sethi, D.K.; Heroux, A.; Schubert, D. A.; Anders, A.-K.; Bonsor, D. A.; Thomas, C. P.; Sundberg, E. J.; Pyrdol, J.; Wucherpfennig, K. W.

    2011-01-17

    Self-reactive T cells that escape elimination in the thymus can cause autoimmune pathology, and it is therefore important to understand the structural mechanisms of self-antigen recognition. We report the crystal structure of a T cell receptor (TCR) from a patient with relapsing-remitting multiple sclerosis that engages its self-peptide-major histocompatibility complex (pMHC) ligand in an unusual manner. The TCR is bound in a highly tilted orientation that prevents interaction of the TCR-{alpha} chain with the MHC class II {beta} chain helix. In this structure, only a single germline-encoded TCR loop engages the MHC protein, whereas in most other TCR-pMHC structures all four germline-encoded TCR loops bind to the MHC helices. The tilted binding mode also prevents peptide contacts by the short complementarity-determining region (CDR) 3{beta} loop, and interactions that contribute to peptide side chain specificity are focused on the CDR3{alpha} loop. This structure is the first example in which only a single germline-encoded TCR loop contacts the MHC helices. Furthermore, the reduced interaction surface with the peptide may facilitate TCR cross-reactivity. The structural alterations in the trimolecular complex are distinct from previously characterized self-reactive TCRs, indicating that there are multiple unusual ways for self-reactive TCRs to bind their pMHC ligand.

  18. Quantitative lid dynamics of MDM2 reveals differential ligand binding modes of the p53-binding cleft.

    PubMed

    Showalter, Scott A; Bruschweiler-Li, Lei; Johnson, Eric; Zhang, Fengli; Brüschweiler, Rafael

    2008-05-21

    The oncoprotein MDM2 regulates the activity and stability of the tumor suppressor p53 through protein-protein interaction involving their N-terminal domains. The N-terminal lid of MDM2 has been implicated in p53 regulation; however, due to its flexible nature, limited data are available concerning its role in ligand binding. The quantitative dynamics study using NMR reported here shows, for the first time, that the lid in apo-MDM2 slowly interconverts between a "closed" state that is associated with the p53-binding cleft and an "open" state that is highly flexible. Our results reveal that apo-MDM2 predominantly populates the closed state, whereas the p53-bound MDM2 exclusively populates the open state. Unlike p53 binding, the small molecule MDM2 antagonist nutlin-3 binds to the cleft essentially without perturbing the closed lid state. The lid dynamics thereby represents a signature for the experimental and virtual screening of therapeutic antagonists that target the p53-MDM2 interaction.

  19. Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process

    PubMed Central

    Reshetnikov, Roman V.; Sponer, Jiri; Rassokhina, Olga I.; Kopylov, Alexei M.; Tsvetkov, Philipp O.; Makarov, Alexander A.; Golovin, Andrey V.

    2011-01-01

    A combination of explicit solvent molecular dynamics simulation (30 simulations reaching 4 µs in total), hybrid quantum mechanics/molecular mechanics approach and isothermal titration calorimetry was used to investigate the atomistic picture of ion binding to 15-mer thrombin-binding quadruplex DNA (G-DNA) aptamer. Binding of ions to G-DNA is complex multiple pathway process, which is strongly affected by the type of the cation. The individual ion-binding events are substantially modulated by the connecting loops of the aptamer, which play several roles. They stabilize the molecule during time periods when the bound ions are not present, they modulate the route of the ion into the stem and they also stabilize the internal ions by closing the gates through which the ions enter the quadruplex. Using our extensive simulations, we for the first time observed full spontaneous exchange of internal cation between quadruplex molecule and bulk solvent at atomistic resolution. The simulation suggests that expulsion of the internally bound ion is correlated with initial binding of the incoming ion. The incoming ion then readily replaces the bound ion while minimizing any destabilization of the solute molecule during the exchange. PMID:21893589

  20. Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process.

    PubMed

    Reshetnikov, Roman V; Sponer, Jiri; Rassokhina, Olga I; Kopylov, Alexei M; Tsvetkov, Philipp O; Makarov, Alexander A; Golovin, Andrey V

    2011-12-01

    A combination of explicit solvent molecular dynamics simulation (30 simulations reaching 4 µs in total), hybrid quantum mechanics/molecular mechanics approach and isothermal titration calorimetry was used to investigate the atomistic picture of ion binding to 15-mer thrombin-binding quadruplex DNA (G-DNA) aptamer. Binding of ions to G-DNA is complex multiple pathway process, which is strongly affected by the type of the cation. The individual ion-binding events are substantially modulated by the connecting loops of the aptamer, which play several roles. They stabilize the molecule during time periods when the bound ions are not present, they modulate the route of the ion into the stem and they also stabilize the internal ions by closing the gates through which the ions enter the quadruplex. Using our extensive simulations, we for the first time observed full spontaneous exchange of internal cation between quadruplex molecule and bulk solvent at atomistic resolution. The simulation suggests that expulsion of the internally bound ion is correlated with initial binding of the incoming ion. The incoming ion then readily replaces the bound ion while minimizing any destabilization of the solute molecule during the exchange.

  1. Multiple modes of peptide recognition by the PTB domain of the cell fate determinant Numb

    PubMed Central

    Zwahlen, Catherine; Li, Shun-Cheng; Kay, Lewis E.; Pawson, Tony; Forman-Kay, Julie D.

    2000-01-01

    The phosphotyrosine-binding (PTB) domain of the cell fate determinant Numb is involved in the formation of multiple protein complexes in vivo and can bind a diverse array of peptide sequences in vitro. To investigate the structural basis for the promiscuous nature of this protein module, we have determined its solution structure by NMR in a complex with a peptide containing an NMSF sequence derived from the Numb-associated kinase (Nak). The Nak peptide was found to adopt a significantly different structure from that of a GPpY sequence-containing peptide previously determined. In contrast to the helical turn adopted by the GPpY peptide, the Nak peptide forms a β–turn at the NMSF site followed by another turn near the C–terminus. The Numb PTB domain appears to recognize peptides that differ in both primary and secondary structures by engaging various amounts of the binding surface of the protein. Our results suggest a mechanism through which a single PTB domain might interact with multiple distinct target proteins to control a complex biological process such as asymmetric cell division. PMID:10747019

  2. Effects of multiple ligand binding on kinetic isotope effects in PQQ-dependent methanol dehydrogenase.

    PubMed

    Hothi, Parvinder; Basran, Jaswir; Sutcliffe, Michael J; Scrutton, Nigel S

    2003-04-08

    The reaction of PQQ-dependent methanol dehydrogenase (MDH) from Methylophilus methylotrophus has been studied by steady-state and stopped-flow kinetic methods, with particular reference to multiple ligand binding and the kinetic isotope effect (KIE) for PQQ reduction. Phenazine ethosulfate (PES; an artificial electron acceptor) and cyanide (a suppressant of endogenous activity), but not ammonium (an activator of MDH), compete for binding at the catalytic methanol-binding site. Cyanide does not activate turnover in M. methylotrophus MDH, as reported previously for the Paracoccus denitrificans enzyme. Activity is dependent on activation by ammonium but is inhibited at high ammonium concentrations. PES and methanol also influence the stimulatory and inhibitory effects of ammonium through competitive binding. Reaction profiles as a function of ammonium and PES concentration differ between methanol and deuterated methanol, owing to force constant effects on the binding of methanol to the stimulatory and inhibitory ammonium binding sites. Differential binding gives rise to unusual KIEs for PQQ reduction as a function of ammonium and PES concentration. The observed KIEs at different ligand concentrations are independent of temperature, consistent with their origin in differential binding affinities of protiated and deuterated substrate at the ammonium binding sites. Stopped-flow studies indicate that enzyme oxidation is not rate-limiting at low ammonium concentrations (<4 mM) during steady-state turnover. At higher ammonium concentrations (>20 mM), the low effective concentration of PES in the active site owing to the competitive binding of ammonium lowers the second-order rate constant for enzyme oxidation, and the oxidative half-reaction becomes more rate limiting. A sequential stopped-flow method is reported that has enabled, for the first time, a detailed study of the reductive half-reaction of MDH and comparison with steady-state data. The limiting rate of PQQ

  3. Interactions of multiple predators with different foraging modes in an aquatic food web.

    PubMed

    Carey, Michael P; Wahl, David H

    2010-02-01

    Top predators can have different foraging modes that may alter their interactions and effects on food webs. Interactions between predators may be non-additive resulting from facilitation or interference, whereas their combined effects on a shared prey may result in emergent effects that are risk enhanced or risk reduced. To test the importance of multiple predators with different foraging modes, we examined the interaction between a cruising predator (largemouth bass, Micropterus salmoides) and an ambush predator (muskellunge, Esox masquinongy) foraging on a shared prey (bluegill sunfish, Lepomis macrochirus) with strong anti-predator defense behaviors. Additive and substitution designs were used to compare individual to combined predator treatments in experimental ponds. The multiple predator interaction facilitated growth of the cruising predator in the combined predator treatments, whereas predator species had substitutable effects on the growth of the ambush predator. The combined predator treatments created an emergent effect on the prey; however, the direction was dependent on the experimental design. The additive design found a risk-reducing effect, whereas the substitution design found a risk-enhancing effect for prey fish. Indirect effects from the predators weakly extended to lower trophic levels (i.e., zooplankton community). Our results highlight the need to consider differences in foraging mode of top predators, interactions between predators, and emergent effects on prey to understand food webs.

  4. Multiple-mode Lamb wave scattering simulations using 3D elastodynamic finite integration technique.

    PubMed

    Leckey, Cara A C; Rogge, Matthew D; Miller, Corey A; Hinders, Mark K

    2012-02-01

    We have implemented three-dimensional (3D) elastodynamic finite integration technique (EFIT) simulations to model Lamb wave scattering for two flaw-types in an aircraft-grade aluminum plate, a rounded rectangle flat-bottom hole and a disbond of the same shape. The plate thickness and flaws explored in this work include frequency-thickness regions where several Lamb wave modes exist and sometimes overlap in phase and/or group velocity. For the case of the flat-bottom hole the depth was incrementally increased to explore progressive changes in multiple-mode Lamb wave scattering due to the damage. The flat-bottom hole simulation results have been compared to experimental data and are shown to provide key insight for this well-defined experimental case by explaining unexpected results in experimental waveforms. For the rounded rectangle disbond flaw, which would be difficult to implement experimentally, we found that Lamb wave behavior differed significantly from the flat-bottom hole flaw. Most of the literature in this field is restricted to low frequency-thickness regions due to difficulties in interpreting data when multiple modes exist. We found that benchmarked 3D EFIT simulations can yield an understanding of scattering behavior for these higher frequency-thickness regions and in cases that would be difficult to set up experimentally. Additionally, our results show that 2D simulations would not have been sufficient for modeling the complicated scattering that occurred. Published by Elsevier B.V.

  5. Properties of a novel linear sulfur response mode in a multiple flame photometric detector.

    PubMed

    Clark, Adrian G; Thurbide, Kevin B

    2014-01-24

    A new linear sulfur response mode was established in the multiple flame photometric detector (mFPD) by monitoring HSO* emission in the red spectral region above 600nm. Optimal conditions for this mode were found by using a 750nm interference filter and oxygen flows to the worker flames of this device that were about 10mL/min larger than those used for monitoring quadratic S2* emission. By employing these parameters, this mode provided a linear response over about 4 orders of magnitude, with a detection limit near 5.8×10(-11)gS/s and a selectivity of sulfur over carbon of about 3.5×10(3). Specifically, the minimum detectable masses for 10 different sulfur analytes investigated ranged from 0.4 to 3.6ng for peak half-widths spanning 4-6s. The response toward ten different sulfur compounds was examined and produced an average reproducibility of 1.7% RSD (n=10) and an average equimolarity value of 1.0±0.1. In contrast to this, a conventional single flame S2* mode comparatively yielded respective values of 6.7% RSD (n=10) and 1.1±0.4. HSO* emission in the mFPD was also found to be relatively much less affected by response quenching due to hydrocarbons compared to a conventional single flame S2* emission mode. Results indicate that this new alternative linear mFPD response mode could be beneficial for sulfur monitoring applications.

  6. Multiple Modes of Cell Death Discovered in a Prokaryotic (Cyanobacterial) Endosymbiont.

    PubMed

    Zheng, Weiwen; Rasmussen, Ulla; Zheng, Siping; Bao, Xiaodong; Chen, Bin; Gao, Yuan; Guan, Xiong; Larsson, John; Bergman, Birgitta

    2013-01-01

    Programmed cell death (PCD) is a genetically-based cell death mechanism with vital roles in eukaryotes. Although there is limited consensus on similar death mode programs in prokaryotes, emerging evidence suggest that PCD events are operative. Here we present cell death events in a cyanobacterium living endophytically in the fern Azolla microphylla, suggestive of PCD. This symbiosis is characterized by some unique traits such as a synchronized development, a vertical transfer of the cyanobacterium between plant generations, and a highly eroding cyanobacterial genome. A combination of methods was used to identify cell death modes in the cyanobacterium. Light- and electron microscopy analyses showed that the proportion of cells undergoing cell death peaked at 53.6% (average 20%) of the total cell population, depending on the cell type and host developmental stage. Biochemical markers used for early and late programmed cell death events related to apoptosis (Annexin V-EGFP and TUNEL staining assays), together with visualization of cytoskeleton alterations (FITC-phalloidin staining), showed that all cyanobacterial cell categories were affected by cell death. Transmission electron microscopy revealed four modes of cell death: apoptotic-like, autophagic-like, necrotic-like and autolytic-like. Abiotic stresses further enhanced cell death in a dose and time dependent manner. The data also suggest that dynamic changes in the peptidoglycan cell wall layer and in the cytoskeleton distribution patterns may act as markers for the various cell death modes. The presence of a metacaspase homolog (domain p20) further suggests that the death modes are genetically programmed. It is therefore concluded that multiple, likely genetically programmed, cell death modes exist in cyanobacteria, a finding that may be connected with the evolution of cell death in the plant kingdom.

  7. Selective Monocationic Inhibitors of Neuronal Nitric Oxide Synthase. Binding Mode Insights from Molecular Dynamics Simulations

    PubMed Central

    Huang, He; Ji, Haitao; Li, Huiying; Jing, Qing; Labby, Kristin Jansen; Martásek, Pavel; Roman, Linda J.; Poulos, Thomas L.; Silverman, Richard B.

    2012-01-01

    The reduction of pathophysiologic levels of nitric oxide through inhibition of neuronal nitric oxide synthase (nNOS) has the potential to be therapeutically beneficial in various neurodegenerative diseases. We have developed a series of pyrrolidine-based nNOS inhibitors that exhibit excellent potencies and isoform selectivities (J. Am. Chem. Soc. 2010, 132, 5437). However, there are still important challenges, such as how to decrease the multiple positive charges derived from basic amino groups, which contribute to poor bioavailability, without losing potency and/or selectivity. Here we present an interdisciplinary study combining molecular docking, crystallography, molecular dynamics simulations, synthesis, and enzymology to explore potential pharmacophoric features of nNOS inhibitors and to design potent and selective monocationic nNOS inhibitors. The simulation results indicate that different hydrogen bond patterns, electrostatic interactions, hydrophobic interactions, and a water molecule bridge are key factors for stabilizing ligands and controlling ligand orientation. We find that a heteroatom in the aromatic head or linker chain of the ligand provides additional stability and blocks the substrate binding pocket. Finally, the computational insights are experimentally validated with double-headed pyridine analogs. The compounds reported here are among the most potent and selective monocationic pyrrolidine-based nNOS inhibitors reported to date, and 10 shows improved membrane permeability. PMID:22731813

  8. Structure-Based Understanding of Binding Affinity and Mode of Estrogen Receptor α Agonists and Antagonists

    EPA Science Inventory

    The flexible hydrophobic ligand binding pocket (LBP) of estrogen receptor α (ERα) allows the binding of a wide variety of endocrine disruptors. Upon ligand binding, the LBP reshapes around the contours of the ligand and stabilizes the complex by complementary hydrophobic interact...

  9. Structure-based Understanding of Binding Affinity and Mode of Estrogen Receptor α Agonists and Antagonists.

    EPA Science Inventory

    The flexible hydrophobic ligand binding pocket (LBP) of estrogen receptor α (ERα) allows the binding of a wide variety of endocrine disruptors. Upon ligand binding, the LBP reshapes around the contours of the ligand and stabilizes the complex by complementary hydropho...

  10. Structure and dynamics study of translation initiation factor 1 from Staphylococcus aureus suggests its RNA binding mode.

    PubMed

    Kim, Do-Hee; Kang, Su-Jin; Lee, Ki-Young; Jang, Sun-Bok; Kang, Sung-Min; Lee, Bong-Jin

    2017-01-01

    Translation initiation, the rate-limiting step in the protein synthesis, is tightly regulated. As one of the translation initiation factors, translation initiation factor 1 (IF1) plays crucial roles not only in translation but also in many cellular processes that are important for genomic stability, such as the activity of RNA chaperones. Here, we characterize the RNA interactions and dynamics of IF1 from Staphylococcus aureus Mu50 (IF1Sa) by NMR spectroscopy. First, the NMR-derived solution structure of IF1Sa revealed that IF1Sa adopts an oligonucleotide/oligosaccharide binding (OB)-fold. Structural comparisons showed large deviations in the α-helix and the following loop, which are potential RNA-binding regions of the OB-fold, as well as differences in the electrostatic potential surface among bacterial IF1s. Second, the (15)N NMR relaxation data for IF1Sa indicated the flexible nature of the α-helix and the following loop region of IF1Sa. Third, RNA-binding properties were studied using FP assays and NMR titrations. FP binding assays revealed that IF1Sa binds to RNAs with moderate affinity. In combination with the structural analysis, the NMR titration results revealed the RNA binding sites. Taken together, these results show that IF1Sa binds RNAs with moderate binding affinity via the residues that occupy the large surface area of its β-barrel. These findings suggest that IF1Sa is likely to bind RNA in various conformations rather than only at a specific site and indicate that the flexible RNA binding mode of IF1Sa is necessary for its interaction with various RNA substrates. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Distinct modes of mature and precursor tRNA binding to Escherichia coli RNase P RNA revealed by NAIM analyses.

    PubMed Central

    Heide, C; Busch, S; Feltens, R; Hartmann, R K

    2001-01-01

    We have analyzed by nucleotide analog interference mapping (NAIM) pools of precursor or mature tRNA molecules, carrying a low level of Rp-RMPalphaS (R = A, G, I) or Rp-c7-deaza-RMPalphaS (R = A, G) modifications, to identify functional groups that contribute to the specific interaction with and processing efficiency by Escherichia coli RNase P RNA. The majority of interferences were found in the acceptor stem, T arm, and D arm, including the strongest effects observed at positions G19, G53, A58, and G71. In some cases (interferences at G5, G18, and G71), the affected functional groups are candidates for direct contacts with RNase P RNA. Several modifications disrupt intramolecular tertiary contacts known to stabilize the authentic tRNA fold. Such indirect interference effects were informative as well, because they allowed us to compare the structural constraints required for ptRNA processing versus product binding. Our ptRNA processing and mature tRNA binding NAIM analyses revealed overlapping but nonidentical patterns of interference effects, suggesting that substrate binding and cleavage involves binding modes or conformational states distinct from the binding mode of mature tRNA, the product of the reaction. PMID:11345434

  12. Photonic DNA-Chromophore Nanowire Networks: Harnessing Multiple Supramolecular Assembly Modes

    PubMed Central

    Zhang, Nan; Chu, Xiaozhu; Fathalla, Maher; Jayawickramarajah, Janarthanan

    2013-01-01

    Photonic DNA nanostructures are typically prepared by the assembly of multiple sequences of long DNA strands that are conjugated covalently to various dye molecules. Herein we introduce a non-covalent method for the construction of porphyrin-containing DNA nanowires and their networks that uses the programmed assembly of a single, very short, oligodeoxyribonucleotide sequence. Specifically, our strategy exploits a number of supramolecular binding modalities (including DNA base-pairing, metal-ion coordination, and β-cyclodextrin-adamantane derived host-guest interactions) for simultaneous nanowire assembly and porphyrin incorporation. Furthermore, we also show that the resultant DNA-porphyrin assembly can be further functionalized with a complementary “off-the-shelf” DNA binding dye resulting in photonic structures with broadband absorption and energy transfer capabilities. PMID:23895408

  13. Amyloid tracers detect multiple binding sites in Alzheimer's disease brain tissue.

    PubMed

    Ni, Ruiqing; Gillberg, Per-Göran; Bergfors, Assar; Marutle, Amelia; Nordberg, Agneta

    2013-07-01

    -1 (Ki: 0.2 nM, 70 nM), florbetapir (1.8 nM, 53 nM) and florbetaben (1.0 nM, 65 nM). BF-227 displaced 83% of (3)H-Pittsburgh compound B binding, mainly at a low-affinity site (311 nM), whereas FDDNP only partly displaced (40%). We propose a multiple binding site model for the amyloid tracers (binding sites 1, 2 and 3), where AV-45 (florbetapir), AV-1 (florbetaben), and Pittsburgh compound B, all show nanomolar affinity for the high-affinity site (binding site 1), as visualized by positron emission tomography. BF-227 shows mainly binding to site 3 and FDDNP shows only some binding to site 2. Different amyloid tracers may provide new insight into the pathophysiological mechanisms in the progression of Alzheimer's disease.

  14. Orthogonal matrix factorization enables integrative analysis of multiple RNA binding proteins

    PubMed Central

    Stražar, Martin; Žitnik, Marinka; Zupan, Blaž; Ule, Jernej; Curk, Tomaž

    2016-01-01

    Motivation: RNA binding proteins (RBPs) play important roles in post-transcriptional control of gene expression, including splicing, transport, polyadenylation and RNA stability. To model protein–RNA interactions by considering all available sources of information, it is necessary to integrate the rapidly growing RBP experimental data with the latest genome annotation, gene function, RNA sequence and structure. Such integration is possible by matrix factorization, where current approaches have an undesired tendency to identify only a small number of the strongest patterns with overlapping features. Because protein–RNA interactions are orchestrated by multiple factors, methods that identify discriminative patterns of varying strengths are needed. Results: We have developed an integrative orthogonality-regularized nonnegative matrix factorization (iONMF) to integrate multiple data sources and discover non-overlapping, class-specific RNA binding patterns of varying strengths. The orthogonality constraint halves the effective size of the factor model and outperforms other NMF models in predicting RBP interaction sites on RNA. We have integrated the largest data compendium to date, which includes 31 CLIP experiments on 19 RBPs involved in splicing (such as hnRNPs, U2AF2, ELAVL1, TDP-43 and FUS) and processing of 3’UTR (Ago, IGF2BP). We show that the integration of multiple data sources improves the predictive accuracy of retrieval of RNA binding sites. In our study the key predictive factors of protein–RNA interactions were the position of RNA structure and sequence motifs, RBP co-binding and gene region type. We report on a number of protein-specific patterns, many of which are consistent with experimentally determined properties of RBPs. Availability and implementation: The iONMF implementation and example datasets are available at https://github.com/mstrazar/ionmf. Contact: tomaz.curk@fri.uni-lj.si Supplementary information: Supplementary data are available

  15. Specificity of broad protein interaction surfaces for proteins with multiple binding partners.

    PubMed

    Uchikoga, Nobuyuki; Matsuzaki, Yuri; Ohue, Masahito; Akiyama, Yutaka

    2016-01-01

    Analysis of protein-protein interaction networks has revealed the presence of proteins with multiple interaction ligand proteins, such as hub proteins. For such proteins, multiple ligands would be predicted as interacting partners when predicting all-to-all protein-protein interactions (PPIs). In this work, to obtain a better understanding of PPI mechanisms, we focused on protein interaction surfaces, which differ between protein pairs. We then performed rigid-body docking to obtain information of interfaces of a set of decoy structures, which include many possible interaction surfaces between a certain protein pair. Then, we investigated the specificity of sets of decoy interactions between true binding partners in each case of alpha-chymotrypsin, actin, and cyclin-dependent kinase 2 as test proteins having multiple true binding partners. To observe differences in interaction surfaces of docking decoys, we introduced broad interaction profiles (BIPs), generated by assembling interaction profiles of decoys for each protein pair. After cluster analysis, the specificity of BIPs of true binding partners was observed for each receptor. We used two types of BIPs: those involved in amino acid sequences (BIP-seqs) and those involved in the compositions of interacting amino acid residue pairs (BIP-AAs). The specificity of a BIP was defined as the number of group members including all true binding partners. We found that BIP-AA cases were more specific than BIP-seq cases. These results indicated that the composition of interacting amino acid residue pairs was sufficient for determining the properties of protein interaction surfaces.

  16. Multiple magnetic mode-based Fano resonance in split-ring resonator/disk nanocavities.

    PubMed

    Zhang, Qing; Wen, Xinglin; Li, Guangyuan; Ruan, Qifeng; Wang, Jianfang; Xiong, Qihua

    2013-12-23

    Plasmonic Fano resonance, enabled by the weak interaction between a bright super-radiant and a subradiant resonance mode, not only is fundamentally interesting, but also exhibits potential applications ranging from extraordinary optical transmission to biosensing. Here, we demonstrate strong Fano resonances in split-ring resonators/disk (SRR/D) nanocavities. The high-order magnetic modes are observed in SRRs by polarization-resolved transmission spectroscopy. When a disk is centered within the SRRs, multiple high-order magnetic modes are coupled to a broad electric dipole mode of SRR/D, leading to significant Fano resonance spectral features in near-IR regime. The strength and line shape of the Fano resonances are tuned through varying the SRR split-angle and interparticle distance between SRR and disk. Finite-difference-time-domain (FDTD) simulations are conducted to understand the coupling mechanism, and the results show good agreement with experimental data. Furthermore, the coupled structure gives a sensitivity of ∼282 nm/RIU with a figure of merit ∼4.

  17. Stokes-space analysis of modal dispersion in fibers with multiple mode transmission.

    PubMed

    Antonelli, Cristian; Mecozzi, Antonio; Shtaif, Mark; Winzer, Peter J

    2012-05-21

    Modal dispersion (MD) in a multimode fiber may be considered as a generalized form of polarization mode dispersion (PMD) in single mode fibers. Using this analogy, we extend the formalism developed for PMD to characterize MD in fibers with multiple spatial modes. We introduce a MD vector defined in a D-dimensional extended Stokes space whose square length is the sum of the square group delays of the generalized principal states. For strong mode coupling, the MD vector undertakes a D-dimensional isotropic random walk, so that the distribution of its length is a chi distribution with D degrees of freedom. We also characterize the largest differential group delay, that is the difference between the delays of the fastest and the slowest principal states, and show that it too is very well approximated by a chi distribution, although in general with a smaller number of degrees of freedom. Finally, we study the spectral properties of MD in terms of the frequency autocorrelation functions of the MD vector, of the square modulus of the MD vector, and of the largest differential group delay. The analytical results are supported by extensive numerical simulations.

  18. Improving binding mode and binding affinity predictions of docking by ligand-based search of protein conformations: evaluation in D3R grand challenge 2015

    NASA Astrophysics Data System (ADS)

    Xu, Xianjin; Yan, Chengfei; Zou, Xiaoqin

    2017-08-01

    The growing number of protein-ligand complex structures, particularly the structures of proteins co-bound with different ligands, in the Protein Data Bank helps us tackle two major challenges in molecular docking studies: the protein flexibility and the scoring function. Here, we introduced a systematic strategy by using the information embedded in the known protein-ligand complex structures to improve both binding mode and binding affinity predictions. Specifically, a ligand similarity calculation method was employed to search a receptor structure with a bound ligand sharing high similarity with the query ligand for the docking use. The strategy was applied to the two datasets (HSP90 and MAP4K4) in recent D3R Grand Challenge 2015. In addition, for the HSP90 dataset, a system-specific scoring function (ITScore2_hsp90) was generated by recalibrating our statistical potential-based scoring function (ITScore2) using the known protein-ligand complex structures and the statistical mechanics-based iterative method. For the HSP90 dataset, better performances were achieved for both binding mode and binding affinity predictions comparing with the original ITScore2 and with ensemble docking. For the MAP4K4 dataset, although there were only eight known protein-ligand complex structures, our docking strategy achieved a comparable performance with ensemble docking. Our method for receptor conformational selection and iterative method for the development of system-specific statistical potential-based scoring functions can be easily applied to other protein targets that have a number of protein-ligand complex structures available to improve predictions on binding.

  19. Improving binding mode and binding affinity predictions of docking by ligand-based search of protein conformations: evaluation in D3R grand challenge 2015

    NASA Astrophysics Data System (ADS)

    Xu, Xianjin; Yan, Chengfei; Zou, Xiaoqin

    2017-07-01

    The growing number of protein-ligand complex structures, particularly the structures of proteins co-bound with different ligands, in the Protein Data Bank helps us tackle two major challenges in molecular docking studies: the protein flexibility and the scoring function. Here, we introduced a systematic strategy by using the information embedded in the known protein-ligand complex structures to improve both binding mode and binding affinity predictions. Specifically, a ligand similarity calculation method was employed to search a receptor structure with a bound ligand sharing high similarity with the query ligand for the docking use. The strategy was applied to the two datasets (HSP90 and MAP4K4) in recent D3R Grand Challenge 2015. In addition, for the HSP90 dataset, a system-specific scoring function (ITScore2_hsp90) was generated by recalibrating our statistical potential-based scoring function (ITScore2) using the known protein-ligand complex structures and the statistical mechanics-based iterative method. For the HSP90 dataset, better performances were achieved for both binding mode and binding affinity predictions comparing with the original ITScore2 and with ensemble docking. For the MAP4K4 dataset, although there were only eight known protein-ligand complex structures, our docking strategy achieved a comparable performance with ensemble docking. Our method for receptor conformational selection and iterative method for the development of system-specific statistical potential-based scoring functions can be easily applied to other protein targets that have a number of protein-ligand complex structures available to improve predictions on binding.

  20. Determining the binding mode and binding affinity constant of tyrosine kinase inhibitor PD153035 to DNA using optical tweezers

    SciTech Connect

    Cheng, Chih-Ming; Lee, Yuarn-Jang; Wang, Wei-Ting; Hsu, Chien-Ting; Tsai, Jing-Shin; Wu, Chien-Ming; Ou, Keng-Liang; and others

    2011-01-07

    Research highlights: {yields} PD153035 is a DNA intercalator and intercalation occurs only under very low salt concentration. {yields} The minimum distance between adjacent bound PD153035 {approx} 11 bp. {yields} Binding affinity constant for PD153035 is 1.18({+-}0.09) x 10{sup 4} (1/M). {yields} The change of binding free energy of PD153035-DNA interaction is -5.49 kcal mol{sup -1} at 23 {+-} 0.5 {sup o}C. -- Abstract: Accurately predicting binding affinity constant (K{sub A}) is highly required to determine the binding energetics of the driving forces in drug-DNA interactions. Recently, PD153035, brominated anilinoquinazoline, has been reported to be not only a highly selective inhibitor of epidermal growth factor receptor but also a DNA intercalator. Here, we use a dual-trap optical tweezers to determining K{sub A} for PD153035, where K{sub A} is determined from the changes in B-form contour length (L) of PD153035-DNA complex. Here, L is fitted using a modified wormlike chain model. We found that a noticeable increment in L in 1 mM sodium cacodylate was exhibited. Furthermore, our results showed that K{sub A} = 1.18({+-}0.09) x 10{sup 4} (1/M) at 23 {+-} 0.5 {sup o}C and the minimum distance between adjacent bound PD153035 {approx} 11 bp. We anticipate that by using this approach we can determine the complete thermodynamic profiles due to the presence of DNA intercalators.

  1. Investigation into the superposition of multiple mode shape composed traveling waves

    NASA Astrophysics Data System (ADS)

    Musgrave, Patrick F.; Malladi, V. V. N. Sriram; Tarazaga, Pablo A.

    2017-04-01

    Structural traveling waves have potential applications in numerous areas such as propulsion and skin friction drag reduction. Recent research has shown that via the two-mode excitation method, traveling waves can be generated in both one- and two-dimensional structures via the use of low-profile piezoelectric actuators. Traveling waves on a one-dimensional beam propagate in a single direction, while those on a two-dimensional structure, such as a plate, do not necessarily propagate uniformly across the surface. The propagation patterns can include unidirectional traveling waves with spatial phase shifts, wave fronts moving in opposing directions, or even rotationally moving waves. These propagation patterns depend on the participating modes and vary based on the excitation frequency, thus if multiple frequency traveling waves are generated on a plate, multiple propagation patterns are superimposed. In this study, traveling waves were generated in a plate at two different frequencies. Those frequencies were then simultaneously excited on the plate to generate a propagation pattern containing traveling waves at both frequencies. The superimposed propagation pattern was then analyzed by comparing it with a numerical combination of the individual frequency patterns. The experimentally superimposed traveling waves were found to be a linear combination of the individual frequency waves. In addition, by combining multiple frequency waves, the percentage of the plate containing traveling waves increased.

  2. Position synchronised control of multiple robotic manipulators based on integral sliding mode

    NASA Astrophysics Data System (ADS)

    Zhao, Dongya; Zhu, Quanmin

    2014-03-01

    In this study, a new position synchronised control algorithm is developed for multiple robotic manipulator systems. In the merit of system synchronisation and integral sliding mode control, the proposed approach can stabilise position tracking of each robotic manipulator while coordinating its motion with the other manipulators. With the integral sliding mode, the proposed approach has insensitiveness against the lumped system uncertainty within the entire process of operation. Further, a perturbation estimator is proposed to reduce chattering effect. The corresponding stability analysis is presented to lay a foundation for theoretical understanding to the underlying issues as well as safely operating real systems. An illustrative example is bench tested to validate the effectiveness of the proposed approach.

  3. Simultaneous dispersion measurements of multiple fiber modes using virtual reference interferometry.

    PubMed

    Galle, Michael A; Saini, Simarjeet S; Mohammed, Waleed S; Sillard, Pierre; Qian, Li

    2014-03-24

    We present the simultaneous measurement of first and second order dispersion in short length (< 1 m) few mode fibers (polarization and transverse) using virtual reference interferometry. This technique generates results equivalent to balanced spectral interferometry, without the complexity associated with physical balancing. This is achieved by simulating a virtual reference with a group delay equal to that of the physical interferometer. The amplitude modulation that results from mixing the interferograms, generated in both the unbalanced interferometer and the virtual reference, is equivalent to the first order interference that would be produced by physical balancing. The advantages of the technique include speed, simplicity, convenience and the capability for simultaneous measurement of multiple modes. The theoretical framework is first developed and then verified experimentally.

  4. Quest for the binding mode of malachite green with humic acid

    NASA Astrophysics Data System (ADS)

    Zhang, Hongmei; Yin, Mingxing; Shi, Jinghua; Wang, Yanqing

    2015-02-01

    The association of malachite green (MG) with humic acid (HA) was investigated by using fluorescence, UV-vis spectroscopy and molecular Modelling method. The fluorescence spectral results indicated that the binding between MG and HA occurred by mainly hydrophobic and electrostatic forces with association constants of KA (298 K) = 6.24 × 105 L/mol and KA (310 K) = 10.20 × 105 L/mol. There were more than one binding sites on HA to bind with MG. The binding sites of MG with HA primarily located at the aromatic rings of HA. MG could enter into the hydrophobic cavities of HA to quench the fluorescence of HA. On the contrary, HA binding caused MG to a coplanar conformation with more extended π bond distribution by π-π stacking interactions. The experiment and calculation data both showed that the hydrophobic binding cavities in HA played a key role in its binding with MG.

  5. Structural insights into the unique single-stranded DNA-binding mode of Helicobacter pylori DprA.

    PubMed

    Wang, Wei; Ding, Jingjin; Zhang, Ying; Hu, Yonglin; Wang, Da-Cheng

    2014-03-01

    Natural transformation (NT) in bacteria is a complex process, including binding, uptake, transport and recombination of exogenous DNA into the chromosome, consequently generating genetic diversity and driving evolution. DNA processing protein A (DprA), which is distributed among virtually all bacterial species, is involved in binding to the internalized single-stranded DNA (ssDNA) and promoting the loading of RecA on ssDNA during NTs. Here we present the structures of DNA_processg_A (DprA) domain of the Helicobacter pylori DprA (HpDprA) and its complex with an ssDNA at 2.20 and 1.80 Å resolutions, respectively. The complex structure revealed for the first time how the conserved DprA domain binds to ssDNA. Based on structural comparisons and binding assays, a unique ssDNA-binding mode is proposed: the dimer of HpDprA binds to ssDNA through two small, positively charged binding pockets of the DprA domains with classical Rossmann folds and the key residue Arg52 is re-oriented to 'open' the pocket in order to accommodate one of the bases of ssDNA, thus enabling HpDprA to grasp substrate with high affinity. This mode is consistent with the oligomeric composition of the complex as shown by electrophoretic mobility-shift assays and static light scattering measurements, but differs from the direct polymeric complex of Streptococcus pneumoniae DprA-ssDNA.

  6. Multiple Observing Modes for Wide-field Optical Surveillance of GEO Space

    NASA Astrophysics Data System (ADS)

    McGraw, J.; Zimmer, P.; Ackermann, M.

    2016-09-01

    Very wide field of view optical sensors with silicon detectors are being used in multiple survey modes by J. T. McGraw and Associates to provide persistent, affordable surveillance of GEO space to faint limiting magnitudes. Examples include:

  7. classical staring mode with typical integration times of seconds provided by multiple co-directed sensors to provide a deep mosaic of tens of square degrees per exposure to faint limiting magnitude
  8. b) step-and-stare observations of several second integration time from which a continuous, overlapped, mosaicked image of GEO space can be provided
  9. time-delay and integrate (TDI) imagery obtained by driving the telescope in declination and stepping the telescope in the E-W direction, which produces repeated, overlapping (if desired), synoptic images of GEO space.
  10. With current 350 mm diameter optics, detection limits for concentrated observations (e.g. "neighborhood watch") detection limits of magnitude 18 are achieved, and for uncued survey the detection limits are fainter than magnitude 16. Each of these techniques can employ multiple telescopes to obtain search rates in excess of 1000 square degrees per hour, allowing complete uncued CONUS GEO surveillance to +/- 15 degrees latitude every two nighttime hours. With appropriate placement, sensors could provide complete coverage of GEO to these limiting magnitudes at the same survey rate. At each step of the development of this unique capability we discuss the fundamental underlying physical principals of optics, detectors, search modes and siting that enable this survey, a valuable adjunct to RF, radar, GEODSS and other optical surveys of GEO space.

  11. Dynamic binding of identity and location information: a serial model of multiple identity tracking.

    PubMed

    Oksama, Lauri; Hyönä, Jukka

    2008-06-01

    Tracking of multiple moving objects is commonly assumed to be carried out by a fixed-capacity parallel mechanism. The present study proposes a serial model (MOMIT) to explain performance accuracy in the maintenance of multiple moving objects with distinct identities. A serial refresh mechanism is postulated, which makes recourse to continuous attention switching, a capacity-limited episodic buffer for identity-location bindings, indexed location information stored in the visuospatial short-term memory, and an active role of long-term memory. As identity-location bindings are refreshed serially, a location error is inherent for all other targets except the focally attended one. The magnitude of this location error is a key factor in predicting tracking accuracy. MOMIT's predictions were supported by the data of five experiments: performance accuracy decreased as a function of target set-size, speed, and familiarity. A mathematical version of MOMIT fitted nicely to the observed data with plausible parameter estimates for the binding capacity and refresh time.

  12. Membrane binding mode of intrinsically disordered cytoplasmic domains of T cell receptor signaling subunits depends on lipid composition

    SciTech Connect

    Sigalov, Alexander B.; Hendricks, Gregory M.

    2009-11-13

    Intrinsically disordered cytoplasmic domains of T cell receptor (TCR) signaling subunits including {zeta}{sub cyt} and CD3{epsilon}{sub cyt} all contain one or more copies of an immunoreceptor tyrosine-based activation motif (ITAM), tyrosine residues of which are phosphorylated upon receptor triggering. Membrane binding-induced helical folding of {zeta}{sub cyt} and CD3{epsilon}{sub cyt} ITAMs is thought to control TCR activation. However, the question whether or not lipid binding of {zeta}{sub cyt} and CD3{epsilon}{sub cyt} is necessarily accompanied by a folding transition of ITAMs remains open. In this study, we investigate whether the membrane binding mechanisms of {zeta}{sub cyt} and CD3{epsilon}{sub cyt} depend on the membrane model used. Circular dichroic and fluorescence data indicate that binding of {zeta}{sub cyt} and CD3{epsilon}{sub cyt} to detergent micelles and unstable vesicles is accompanied by a disorder-to-order transition, whereas upon binding to stable vesicles these proteins remain unfolded. Using electron microscopy and dynamic light scattering, we show that upon protein binding, unstable vesicles fuse and rupture. In contrast, stable vesicles remain intact under these conditions. This suggests different membrane binding modes for {zeta}{sub cyt} and CD3{epsilon}{sub cyt} depending on the bilayer stability: (1) coupled binding and folding, and (2) binding without folding. These findings explain the long-standing puzzle in the literature and highlight the importance of the choice of an appropriate membrane model for protein-lipid interactions studies.

  13. Interference fringes in multiple Bragg-Laue mode and mirage fringes from bent crystals.

    PubMed

    Fukamachi, Tomoe; Tohyama, Masahiko; Hirano, Kenji; Yoshizawa, Masami; Negishi, Riichirou; Ju, Dongying; Hirano, Keiichi; Kawamura, Takaaki

    2010-05-01

    Interference fringes are measured in the diffraction from the surface as well as from the lateral surface of an Si single-crystal strip which is deformed in cantilever bending as a function of the tip displacement. The interference fringes are observed only when the bending strain is applied. Both interference fringes change conspicuously by increasing the bending strain. The number of the interference fringes changes, and the positions and heights of the peaks in the fringes change. These variations can be explained by the change of the interference between the beams in multiple Bragg-Laue modes and those of mirage diffraction based on the dynamical theory of diffraction.

  14. Parameterization of Natural Modes of Composite Rotating Conical Shells with Multiple Delamination

    NASA Astrophysics Data System (ADS)

    Dey, Sudip; Karmakar, Amit

    2012-01-01

    This paper describes a comparative study on free vibration of bending stiff, torsion stiff and quasi-isotropic graphite-epoxy composite conical shells with single and multiple delamination. The finite element formulation is based on Mindlin's theory and multi-point constraint algorithm neglecting the Coriolis effect for moderate rotational speeds. Computer codes are developed employing QR iteration method to obtain delaminated natural frequencies under combined effect of twist and rotation. Mode shapes are depicted for a typical laminate configuration. The non-dimensional natural frequencies obtained are the first known results which could serve as reference solutions for future investigators.

  15. Origin of the damage ring pattern in fused silica induced by multiple longitudinal modes laser pulses

    NASA Astrophysics Data System (ADS)

    Chambonneau, M.; Diaz, R.; Grua, P.; Rullier, J.-L.; Duchateau, G.; Natoli, J.-Y.; Lamaignère, L.

    2014-01-01

    Ring patterns surrounding laser damage sites at the exit surface of fused silica are systematically observed when initiated by multiple longitudinal modes nanosecond laser pulses at 1064 nm. The appearance chronology of rings is found to be closely related to the temporal shape of the laser pulses. This supports that the damage morphology originates from the coupling of a laser-supported detonation wave propagating in air with an ablation mechanism in silica. In our experiments, the propagation speed of the detonation wave reaches about 20 km/s and scales as the cube root of the laser intensity, in good agreement with theory.

  16. Mutant p53 proteins bind DNA in a DNA structure-selective mode

    PubMed Central

    Göhler, Thomas; Jäger, Stefan; Warnecke, Gabriele; Yasuda, Hideyo; Kim, Ella; Deppert, Wolfgang

    2005-01-01

    Despite the loss of sequence-specific DNA binding, mutant p53 (mutp53) proteins can induce or repress transcription of mutp53-specific target genes. To date, the molecular basis for transcriptional modulation by mutp53 is not understood, but increasing evidence points to the possibility that specific interactions of mutp53 with DNA play an important role. So far, the lack of a common denominator for mutp53 DNA binding, i.e. the existence of common sequence elements, has hampered further characterization of mutp53 DNA binding. Emanating from our previous discovery that DNA structure is an important determinant of wild-type p53 (wtp53) DNA binding, we analyzed the binding of various mutp53 proteins to oligonucleotides mimicking non-B DNA structures. Using various DNA-binding assays we show that mutp53 proteins bind selectively and with high affinity to non-B DNA. In contrast to sequence-specific and DNA structure-dependent binding of wtp53, mutp53 DNA binding to non-B DNA is solely dependent on the stereo-specific configuration of the DNA, and not on DNA sequence. We propose that DNA structure-selective binding of mutp53 proteins is the basis for the well-documented interaction of mutp53 with MAR elements and for transcriptional activities mediates by mutp53. PMID:15722483

  17. STARD6 on steroids: solution structure, multiple timescale backbone dynamics and ligand binding mechanism

    PubMed Central

    Létourneau, Danny; Bédard, Mikaël; Cabana, Jérôme; Lefebvre, Andrée; LeHoux, Jean-Guy; Lavigne, Pierre

    2016-01-01

    START domain proteins are conserved α/β helix-grip fold that play a role in the non-vesicular and intracellular transport of lipids and sterols. The mechanism and conformational changes permitting the entry of the ligand into their buried binding sites is not well understood. Moreover, their functions and the identification of cognate ligands is still an active area of research. Here, we report the solution structure of STARD6 and the characterization of its backbone dynamics on multiple time-scales through 15N spin-relaxation and amide exchange studies. We reveal for the first time the presence of concerted fluctuations in the Ω1 loop and the C-terminal helix on the microsecond-millisecond time-scale that allows for the opening of the binding site and ligand entry. We also report that STARD6 binds specifically testosterone. Our work represents a milestone for the study of ligand binding mechanism by other START domains and the elucidation of the biological function of STARD6. PMID:27340016

  18. Engineering Factor Xa Inhibitor with Multiple Platelet-Binding Sites Facilitates its Platelet Targeting

    NASA Astrophysics Data System (ADS)

    Zhu, Yuanjun; Li, Ruyi; Lin, Yuan; Shui, Mengyang; Liu, Xiaoyan; Chen, Huan; Wang, Yinye

    2016-07-01

    Targeted delivery of antithrombotic drugs centralizes the effects in the thrombosis site and reduces the hemorrhage side effects in uninjured vessels. We have recently reported that the platelet-targeting factor Xa (FXa) inhibitors, constructed by engineering one Arg-Gly-Asp (RGD) motif into Ancylostoma caninum anticoagulant peptide 5 (AcAP5), can reduce the risk of systemic bleeding than non-targeted AcAP5 in mouse arterial injury model. Increasing the number of platelet-binding sites of FXa inhibitors may facilitate their adhesion to activated platelets, and further lower the bleeding risks. For this purpose, we introduced three RGD motifs into AcAP5 to generate a variant NR4 containing three platelet-binding sites. NR4 reserved its inherent anti-FXa activity. Protein-protein docking showed that all three RGD motifs were capable of binding to platelet receptor αIIbβ3. Molecular dynamics simulation demonstrated that NR4 has more opportunities to interact with αIIbβ3 than single-RGD-containing NR3. Flow cytometry analysis and rat arterial thrombosis model further confirmed that NR4 possesses enhanced platelet targeting activity. Moreover, NR4-treated mice showed a trend toward less tail bleeding time than NR3-treated mice in carotid artery endothelium injury model. Therefore, our data suggest that engineering multiple binding sites in one recombinant protein is a useful tool to improve its platelet-targeting efficiency.

  19. STARD6 on steroids: solution structure, multiple timescale backbone dynamics and ligand binding mechanism

    NASA Astrophysics Data System (ADS)

    Létourneau, Danny; Bédard, Mikaël; Cabana, Jérôme; Lefebvre, Andrée; Lehoux, Jean-Guy; Lavigne, Pierre

    2016-06-01

    START domain proteins are conserved α/β helix-grip fold that play a role in the non-vesicular and intracellular transport of lipids and sterols. The mechanism and conformational changes permitting the entry of the ligand into their buried binding sites is not well understood. Moreover, their functions and the identification of cognate ligands is still an active area of research. Here, we report the solution structure of STARD6 and the characterization of its backbone dynamics on multiple time-scales through 15N spin-relaxation and amide exchange studies. We reveal for the first time the presence of concerted fluctuations in the Ω1 loop and the C-terminal helix on the microsecond-millisecond time-scale that allows for the opening of the binding site and ligand entry. We also report that STARD6 binds specifically testosterone. Our work represents a milestone for the study of ligand binding mechanism by other START domains and the elucidation of the biological function of STARD6.

  20. Multiple binding sites in the nicotinic acetylcholine receptors: An opportunity for polypharmacolgy.

    PubMed

    Iturriaga-Vásquez, Patricio; Alzate-Morales, Jans; Bermudez, Isabel; Varas, Rodrigo; Reyes-Parada, Miguel

    2015-11-01

    For decades, the development of selective compounds has been the main goal for chemists and biologists involved in drug discovery. However, diverse lines of evidence indicate that polypharmacological agents, i.e. those that act simultaneously at various protein targets, might show better profiles than selective ligands, regarding both efficacy and side effects. On the other hand, the availability of the crystal structure of different receptors allows a detailed analysis of the main interactions between drugs and receptors in a specific binding site. Neuronal nicotinic acetylcholine receptors (nAChRs) constitute a large and diverse family of ligand-gated ion channels (LGICs) that, as a product of its modulation, regulate neurotransmitter release, which in turns produce a global neuromodulation of the central nervous system. nAChRs are pentameric protein complexes in such a way that expression of compatible subunits can lead to various receptor assemblies or subtypes. The agonist binding site, located at the extracellular region, exhibits different properties depending on the subunits that conform the receptor. In the last years, it has been recognized that nAChRs could also contain one or more allosteric sites which could bind non-classical nicotinic ligands including several therapeutically useful drugs. The presence of multiple binding sites in nAChRs offers an interesting possibility for the development of novel polypharmacological agents with a wide spectrum of actions.

  21. STARD6 on steroids: solution structure, multiple timescale backbone dynamics and ligand binding mechanism.

    PubMed

    Létourneau, Danny; Bédard, Mikaël; Cabana, Jérôme; Lefebvre, Andrée; LeHoux, Jean-Guy; Lavigne, Pierre

    2016-06-24

    START domain proteins are conserved α/β helix-grip fold that play a role in the non-vesicular and intracellular transport of lipids and sterols. The mechanism and conformational changes permitting the entry of the ligand into their buried binding sites is not well understood. Moreover, their functions and the identification of cognate ligands is still an active area of research. Here, we report the solution structure of STARD6 and the characterization of its backbone dynamics on multiple time-scales through (15)N spin-relaxation and amide exchange studies. We reveal for the first time the presence of concerted fluctuations in the Ω1 loop and the C-terminal helix on the microsecond-millisecond time-scale that allows for the opening of the binding site and ligand entry. We also report that STARD6 binds specifically testosterone. Our work represents a milestone for the study of ligand binding mechanism by other START domains and the elucidation of the biological function of STARD6.

  22. Discovery of a Potent Class of PI3Kα Inhibitors with Unique Binding Mode via Encoded Library Technology (ELT).

    PubMed

    Yang, Hongfang; Medeiros, Patricia F; Raha, Kaushik; Elkins, Patricia; Lind, Kenneth E; Lehr, Ruth; Adams, Nicholas D; Burgess, Joelle L; Schmidt, Stanley J; Knight, Steven D; Auger, Kurt R; Schaber, Michael D; Franklin, G Joseph; Ding, Yun; DeLorey, Jennifer L; Centrella, Paolo A; Mataruse, Sibongile; Skinner, Steven R; Clark, Matthew A; Cuozzo, John W; Evindar, Ghotas

    2015-05-14

    In the search of PI3K p110α wild type and H1047R mutant selective small molecule leads, an encoded library technology (ELT) campaign against the desired target proteins was performed which led to the discovery of a selective chemotype for PI3K isoforms from a three-cycle DNA encoded library. An X-ray crystal structure of a representative inhibitor from this chemotype demonstrated a unique binding mode in the p110α protein.

  23. Pharmacophore-based virtual screening, biological evaluation and binding mode analysis of a novel protease-activated receptor 2 antagonist

    NASA Astrophysics Data System (ADS)

    Cho, Nam-Chul; Seo, Seoung-Hwan; Kim, Dohee; Shin, Ji-Sun; Ju, Jeongmin; Seong, Jihye; Seo, Seon Hee; Lee, Iiyoun; Lee, Kyung-Tae; Kim, Yun Kyung; No, Kyoung Tai; Pae, Ae Nim

    2016-08-01

    Protease-activated receptor 2 (PAR2) is a G protein-coupled receptor, mediating inflammation and pain signaling in neurons, thus it is considered to be a potential therapeutic target for inflammatory diseases. In this study, we performed a ligand-based virtual screening of 1.6 million compounds by employing a common-feature pharmacophore model and two-dimensional similarity search to identify a new PAR2 antagonist. The common-feature pharmacophore model was established based on the biological screening results of our in-house library. The initial virtual screening yielded a total number of 47 hits, and additional biological activity tests including PAR2 antagonism and anti-inflammatory effects resulted in a promising candidate, compound 43, which demonstrated an IC50 value of 8.22 µM against PAR2. In next step, a PAR2 homology model was constructed using the crystal structure of the PAR1 as a template to explore the binding mode of the identified ligands. A molecular docking method was optimized by comparing the binding modes of a known PAR2 agonist GB110 and antagonist GB83, and applied to predict the binding mode of our hit compound 43. In-depth docking analyses revealed that the hydrophobic interaction with Phe2435.39 is crucial for PAR2 ligands to exert antagonistic activity. MD simulation results supported the predicted docking poses that PAR2 antagonist blocked a conformational rearrangement of Na+ allosteric site in contrast to PAR2 agonist that showed Na+ relocation upon GPCR activation. In conclusion, we identified new a PAR2 antagonist together with its binding mode, which provides useful insights for the design and development of PAR2 ligands.

  24. X-ray Crystallographic Studies Reveal That the Incorporation of Spacer Groups in Carbonic Anhydrase Inhibitors Causes Alternate Binding Modes

    SciTech Connect

    Fisher,S.; Govindasamy, L.; Boyle, N.; Agbandje-McKenna, M.; Silverman, D.; Blackburn, G.; McKenna, R.

    2006-01-01

    Human carbonic anhydrases (CAs) are well studied targets for the development of inhibitors for pharmaceutical applications. The crystal structure of human CA II has been determined in complex with two CA inhibitors (CAIs) containing conventional sulfonamide and thiadiazole moieties separated by a -CF{sub 2}- or -CHNH{sub 2}- spacer group. The structures presented here reveal that these spacer groups allow novel binding modes for the thiadiazole moiety compared with conventional CAIs.

  1. Structure, mechanics, and binding mode heterogeneity of LEDGF/p75-DNA nucleoprotein complexes revealed by scanning force microscopy

    NASA Astrophysics Data System (ADS)

    Vanderlinden, Willem; Lipfert, Jan; Demeulemeester, Jonas; Debyser, Zeger; de Feyter, Steven

    2014-04-01

    LEDGF/p75 is a transcriptional coactivator implicated in the pathogenesis of AIDS and leukemia. In these contexts, LEDGF/p75 acts as a cofactor by tethering protein cargo to transcriptionally active regions in the human genome. Our study - based on scanning force microscopy (SFM) imaging - is the first to provide structural information on the interaction of LEDGF/p75 with DNA. Two novel approaches that allow obtaining insights into the DNA conformation inside nucleoprotein complexes revealed (1) that LEDGF/p75 can bind at least in three different binding modes, (2) how DNA topology and protein dimerization affect these binding modes, and (3) geometrical and mechanical aspects of the nucleoprotein complexes. These structural and mechanical details will help us to better understand the cellular mechanisms of LEDGF/p75 as a transcriptional coactivator and as a cofactor in disease.LEDGF/p75 is a transcriptional coactivator implicated in the pathogenesis of AIDS and leukemia. In these contexts, LEDGF/p75 acts as a cofactor by tethering protein cargo to transcriptionally active regions in the human genome. Our study - based on scanning force microscopy (SFM) imaging - is the first to provide structural information on the interaction of LEDGF/p75 with DNA. Two novel approaches that allow obtaining insights into the DNA conformation inside nucleoprotein complexes revealed (1) that LEDGF/p75 can bind at least in three different binding modes, (2) how DNA topology and protein dimerization affect these binding modes, and (3) geometrical and mechanical aspects of the nucleoprotein complexes. These structural and mechanical details will help us to better understand the cellular mechanisms of LEDGF/p75 as a transcriptional coactivator and as a cofactor in disease. Electronic supplementary information (ESI) available: SFM topographs of phage lambda DNA in situ, in the absence and presence of LEDGF/p75; model-independent tests for DNA chain equilibration in 2D; SFM topographs of

  2. Modeling, analysis, and validation of a novel HIV integrase structure provide insights into the binding modes of potent integrase inhibitors.

    PubMed

    Chen, X; Tsiang, M; Yu, F; Hung, M; Jones, G S; Zeynalzadegan, A; Qi, X; Jin, H; Kim, C U; Swaminathan, S; Chen, J M

    2008-07-11

    It has been shown that L-731988, a potent integrase inhibitor, targets a conformation of the integrase enzyme formed when complexed to viral DNA, with the 3'-end dinucleotide already cleaved. It has also been shown that diketo acid inhibitors bind to the strand transfer complex of integrase and are competitive with the host target DNA. However, published X-ray structures of HIV integrase do not include the DNA; thus, there is a need to develop a model representing the strand transfer complex. In this study, we have constructed an active-site model of the HIV-1 integrase complexed with viral DNA using the crystal structure of DNA-bound transposase and have identified a binding mode for inhibitors. This proposed binding mechanism for integrase inhibitors involves interaction with a specific Mg(2+) in the active site, accentuated by a hydrophobic interaction in a cavity formed by a flexible loop upon DNA binding. We further validated the integrase active-site model by selectively mutating key residues predicted to play an important role in the binding of inhibitors. Thus, we have a binding model that is applicable to a wide range of potent integrase inhibitors and is consistent with the available resistant mutation data.

  3. ‘Carba’-carfentanil (trans isomer): a μ opioid receptor (MOR) partial agonist with a distinct binding mode

    PubMed Central

    Weltrowska, Grazyna; Lemieux, Carole; Chung, Nga N.; Guo, Jason J.; Wilkes, Brian C.; Schiller, Peter W.

    2014-01-01

    There is strong evidence to indicate that a positively charged nitrogen of endogenous and exogenous opioid ligands forms a salt bridge with the Asp residue in the third transmembrane helix of opioid receptors. To further examine the role of this electrostatic interaction in opioid receptor binding and activation, we synthesized ‘carba’-analogues of the highly potent μ opioid analgesic carfentanil (3), in which the piperidine nitrogen was replaced with a carbon. The resulting trans isomer (8b) showed reduced, but still significant MOR binding affinity (Kiμ = 95.2 nM) with no MOR versus DOR binding selectivity and was a MOR partial agonist. The cis isomer (8a) was essentially inactive. A MOR docking study indicated that 8b bound to the same binding pocket as parent 3, but its binding mode was somewhat different. A reevaluation of the uncharged morphine derivative N-formylnormorphine (9) indicated that it was a weak MOR antagonist showing no preference for MOR over KOR. Taken together, the results indicate that deletion of the positively charged nitrogen in μ opioid analgesics reduces MOR binding affinity by 2–3 orders of magnitude and may have pronounced effects on the intrinsic efficacy and on the opioid receptor selectivity profile. PMID:25129170

  4. 'Carba'-carfentanil (trans isomer): a μ opioid receptor (MOR) partial agonist with a distinct binding mode.

    PubMed

    Weltrowska, Grazyna; Lemieux, Carole; Chung, Nga N; Guo, Jason J; Wilkes, Brian C; Schiller, Peter W

    2014-09-01

    There is strong evidence to indicate that a positively charged nitrogen of endogenous and exogenous opioid ligands forms a salt bridge with the Asp residue in the third transmembrane helix of opioid receptors. To further examine the role of this electrostatic interaction in opioid receptor binding and activation, we synthesized 'carba'-analogues of the highly potent μ opioid analgesic carfentanil (3), in which the piperidine nitrogen was replaced with a carbon. The resulting trans isomer (8b) showed reduced, but still significant MOR binding affinity (Ki(μ)=95.2nM) with no MOR versus DOR binding selectivity and was a MOR partial agonist. The cis isomer (8a) was essentially inactive. A MOR docking study indicated that 8b bound to the same binding pocket as parent 3, but its binding mode was somewhat different. A re-evaluation of the uncharged morphine derivative N-formylnormorphine (9) indicated that it was a weak MOR antagonist showing no preference for MOR over KOR. Taken together, the results indicate that deletion of the positively charged nitrogen in μ opioid analgesics reduces MOR binding affinity by 2-3 orders of magnitude and may have pronounced effects on the intrinsic efficacy and on the opioid receptor selectivity profile. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. In-silico Investigation of Tubulin Binding Modes of a Series of Novel Antiproliferative Spiroisoxazoline Compounds Using Docking Studies

    PubMed Central

    Abolhasani, Hoda; Zarghi, Afshin; Hamzeh-Mivehroud, Maryam; Alizadeh, Ali Akbar; Shahbazi Mojarrad, Javid; Dastmalchi, Siavoush

    2015-01-01

    Interference with microtubule polymerization results in cell cycle arrest leading to cell death. Colchicine is a well-known microtubule polymerization inhibitor which does so by binding to a specific site on tubulin. A set of 3', 4'-bis (substituted phenyl)-4'H-spiro [indene-2, 5'-isoxazol]-1(3H)-one derivatives with known antiproliferative activities were evaluated for their tubulin binding modes. 3D structures of the derivatives were docked into the colchicine binding site of tubulin using GOLD 5.0 program under flexible ligand and semi-flexible receptor condition. The spiroisoxazoline derivatives bind tubulin in a similar manner to colchicine by establishing at least a hydrogen bonding to Cys241 as well as hydrophobic interactions with Leu255, Ile378 and Lys254 and few other residues at the binding pocket. It can be concluded that the spiroisoxazoline core structure common to the studied derivatives is a suitable scaffold for placing the antitubulin pharmacophoric groups in appropriate spatial positions required for tubulin binding activity. PMID:25561920

  6. Increased Peptide Contacts Govern High Affinity Binding of a Modified TCR Whilst Maintaining a Native pMHC Docking Mode.

    PubMed

    Cole, David K; Sami, Malkit; Scott, Daniel R; Rizkallah, Pierre J; Borbulevych, Oleg Y; Todorov, Penio T; Moysey, Ruth K; Jakobsen, Bent K; Boulter, Jonathan M; Baker, Brian M; Yi Li

    2013-01-01

    Natural T cell receptors (TCRs) generally bind to their cognate pMHC molecules with weak affinity and fast kinetics, limiting their use as therapeutic agents. Using phage display, we have engineered a high affinity version of the A6 wild-type TCR (A6wt), specific for the human leukocyte antigen (HLA-A(∗)0201) complexed with human T cell lymphotropic virus type 111-19 peptide (A2-Tax). Mutations in just 4 residues in the CDR3β loop region of the A6wt TCR were selected that improved binding to A2-Tax by nearly 1000-fold. Biophysical measurements of this mutant TCR (A6c134) demonstrated that the enhanced binding was derived through favorable enthalpy and a slower off-rate. The structure of the free A6c134 TCR and the A6c134/A2-Tax complex revealed a native binding mode, similar to the A6wt/A2-Tax complex. However, concordant with the more favorable binding enthalpy, the A6c134 TCR made increased contacts with the Tax peptide compared with the A6wt/A2-Tax complex, demonstrating a peptide-focused mechanism for the enhanced affinity that directly involved the mutated residues in the A6c134 TCR CDR3β loop. This peptide-focused enhanced TCR binding may represent an important approach for developing antigen specific high affinity TCR reagents for use in T cell based therapies.

  7. Multiple unfolding pathways of leucine binding protein (LBP) probed by single-molecule force spectroscopy (SMFS).

    PubMed

    Kotamarthi, Hema Chandra; Sharma, Riddhi; Narayan, Satya; Ray, Sayoni; Ainavarapu, Sri Rama Koti

    2013-10-02

    Experimental studies on the folding and unfolding of large multi-domain proteins are challenging, given the proteins' complex energy landscapes with multiple intermediates. Here, we report a mechanical unfolding study of a 346-residue, two-domain leucine binding protein (LBP) from the bacterial periplasm. Forced unfolding of LBP is a prerequisite for its translocation across the cytoplasmic membrane into the bacterial periplasm. During the mechanical stretching of LBP, we observe that 38% of the unfolding flux followed a two-state pathway, giving rise to a single unfolding force peak at ~70 pN with an unfolding contour length of 120 nm in constant-velocity single-molecule pulling experiments. The remaining 62% of the unfolding flux followed multiple three-state pathways, with intermediates having unfolding contour lengths in the range ~20-85 nm. These results suggest that the energy landscape of LBP is complex, with multiple intermediate states, and a large fraction of molecules go through intermediate states during the unfolding process. Furthermore, the presence of the ligand leucine increased the unfolding flux through the two-state pathway from 38% to 65%, indicating the influence of ligand binding on the energy landscape. This study suggests that unfolding through parallel pathways might be a general mechanism for the large two-domain proteins that are translocated to the bacterial periplasmic space.

  8. Deciphering the stepwise binding mode of HRG1β to HER3 by surface plasmon resonance and interaction map.

    PubMed

    Peess, Carmen; von Proff, Leopold; Goller, Sabine; Andersson, Karl; Gerg, Michael; Malmqvist, Magnus; Bossenmaier, Birgit; Schräml, Michael

    2015-01-01

    For the development of efficient anti-cancer therapeutics against the HER receptor family it is indispensable to understand the mechanistic model of the HER receptor activation upon ligand binding. Due to its high complexity the binding mode of Heregulin 1 beta (HRG1β) with its receptor HER3 is so far not understood. Analysis of the interaction of HRG1β with surface immobilized HER3 extracellular domain by time-resolved Surface Plasmon Resonance (SPR) was so far not interpretable using any regular analysis method as the interaction was highly complex. Here, we show that Interaction Map (IM) made it possible to shed light on this interaction. IM allowed deciphering the rate limiting kinetic contributions from complex SPR sensorgrams and thereby enabling the extraction of discrete kinetic rate components from the apparently heterogeneous interactions. We could resolve details from the complex avidity-driven binding mode of HRG1β with HER3 by using a combination of SPR and IM data. Our findings contribute to the general understanding that a major conformational change of HER3 during its activation is induced by a complex sequential HRG1β docking mode.

  9. Crystal Structure of Calmodulin Binding Domain of Orai1 in Complex with Ca2+•Calmodulin Displays a Unique Binding Mode*

    PubMed Central

    Liu, Yanshun; Zheng, Xunhai; Mueller, Geoffrey A.; Sobhany, Mack; DeRose, Eugene F.; Zhang, Yingpei; London, Robert E.; Birnbaumer, Lutz

    2012-01-01

    Orai1 is a plasma membrane protein that in its tetrameric form is responsible for calcium influx from the extracellular environment into the cytosol in response to interaction with the Ca2+-depletion sensor STIM1. This is followed by a fast Ca2+·calmodulin (CaM)-dependent inhibition, resulting from CaM binding to an Orai1 region called the calmodulin binding domain (CMBD). The interaction between Orai1 and CaM at the atomic level remains unknown. Here, we report the crystal structure of a CaM·Orai1-CMBD complex showing one CMBD bound to the C-terminal lobe of CaM, differing from other CaM-target protein complexes, in which both N- and C-terminal lobes of CaM (CaM-N and CaM-C) are involved in target binding. Orai1-CMBD binds CaM-C mainly through hydrophobic interactions, primarily involving residue Trp76 of Orai1-CMBD, which interacts with the hydrophobic pocket of CaM-C. However, NMR data, isothermal titration calorimetry data, and pulldown assays indicated that CaM-N and CaM-C both can bind Orai1-CMBD, with CaM-N having ∼4 times weaker affinity than CaM-C. Pulldown assays of a Orai1-CMBD(W76E) mutant, gel filtration chromatography data, and NOE signals indicated that CaM-N and CaM-C can each bind one Orai1-CMBD. Thus our studies support an unusual, extended 1:2 binding mode of CaM to Orai1-CMBDs, and quantify the affinity of Orai1 for CaM. We propose a two-step mechanism for CaM-dependent Orai1 inactivation initiated by binding of the C-lobe of CaM to the CMBD of one Orai1 followed by the binding of the N-lobe of CaM to the CMBD of a neighboring Orai1. PMID:23109337

  10. GFI1B controls its own expression binding to multiple sites

    PubMed Central

    Anguita, Eduardo; Villegas, Ana; Iborra, Francisco; Hernández, Aurora

    2010-01-01

    Background Transcription factors play essential roles in both normal and malignant hematopoiesis. This is the case for the growth factor independent 1b (GFI1B) transcription factor, which is required for erythroid and megakaryocytic differentiation and over-expressed in leukemic patients and cell lines. Design and Methods To investigate GFI1B regulation, we searched for multispecies conserved non-coding elements between GFI1B and neighboring genes. We used a formaldehyde-assisted isolation of regulatory elements (FAIRE) assay and DNase1 hypersensitivity to assess the chromatin conformation of these sites. Next, we analyzed transcription factor binding and histone modifications at the GFI1B locus including the conserved non-coding elements by a chromatin immunoprecipitation assay. Finally, we studied the interaction of the GFI1B promoter and the conserved non-coding elements with the chromatin conformation capture technique and used immunofluorescence to evaluate GFI1B levels in individual cells. Results We localized several conserved non-coding elements containing multiple erythroid specific transcription factor binding sites at the GFI1B locus. In GFI1B-expressing cells a subset of these conserved non-coding elements and the promoter adopt a close spatial conformation, localize with open chromatin sites, harbor chromatin modifications associated with gene activation and bind multiple transcription factors and co-repressors. Conclusions Our findings indicate that GFI1B regulatory elements behave as activators and repressors. Different protein levels within a cell population suggest that cells must activate and repress GFI1B continuously to control its final level. These data are consistent with a model of GFI1B regulation in which GFI1B binds to its own promoter and to the conserved non-coding elements as its levels rise. This would attract repressor complexes that progressively down-regulate the gene. GFI1B expression would decrease until a stage at which the

  11. GFI1B controls its own expression binding to multiple sites.

    PubMed

    Anguita, Eduardo; Villegas, Ana; Iborra, Francisco; Hernández, Aurora

    2010-01-01

    Transcription factors play essential roles in both normal and malignant hematopoiesis. This is the case for the growth factor independent 1b (GFI1B) transcription factor, which is required for erythroid and megakaryocytic differentiation and over-expressed in leukemic patients and cell lines. To investigate GFI1B regulation, we searched for multispecies conserved non-coding elements between GFI1B and neighboring genes. We used a formaldehyde-assisted isolation of regulatory elements (FAIRE) assay and DNase1 hypersensitivity to assess the chromatin conformation of these sites. Next, we analyzed transcription factor binding and histone modifications at the GFI1B locus including the conserved non-coding elements by a chromatin immunoprecipitation assay. Finally, we studied the interaction of the GFI1B promoter and the conserved non-coding elements with the chromatin conformation capture technique and used immunofluorescence to evaluate GFI1B levels in individual cells. We localized several conserved non-coding elements containing multiple erythroid specific transcription factor binding sites at the GFI1B locus. In GFI1B-expressing cells a subset of these conserved non-coding elements and the promoter adopt a close spatial conformation, localize with open chromatin sites, harbor chromatin modifications associated with gene activation and bind multiple transcription factors and co-repressors. Conclusions Our findings indicate that GFI1B regulatory elements behave as activators and repressors. Different protein levels within a cell population suggest that cells must activate and repress GFI1B continuously to control its final level. These data are consistent with a model of GFI1B regulation in which GFI1B binds to its own promoter and to the conserved non-coding elements as its levels rise. This would attract repressor complexes that progressively down-regulate the gene. GFI1B expression would decrease until a stage at which the activating complexes predominate and

  12. Lynx1 and Aβ1-42 bind competitively to multiple nicotinic acetylcholine receptor subtypes.

    PubMed

    Thomsen, Morten S; Arvaniti, Maria; Jensen, Majbrit M; Shulepko, Mikhail A; Dolgikh, Dmitry A; Pinborg, Lars H; Härtig, Wolfgang; Lyukmanova, Ekaterina N; Mikkelsen, Jens D

    2016-10-01

    Lynx1 regulates synaptic plasticity in the brain by regulating nicotinic acetylcholine receptors (nAChRs). It is not known to which extent Lynx1 can bind to endogenous nAChR subunits in the brain or how this interaction is affected by Alzheimer's disease pathology. We apply affinity purification to demonstrate that a water-soluble variant of human Lynx1 (Ws-Lynx1) isolates α3, α4, α5, α6, α7, β2, and β4 nAChR subunits from human and rat cortical extracts, and rat midbrain and olfactory bulb extracts, suggesting that Lynx1 forms complexes with multiple nAChR subtypes in the human and rodent brain. Incubation with Ws-Lynx1 decreases nicotine-mediated extracellular signal-regulated kinase phosphorylation in PC12 cells and striatal neurons, indicating that binding of Ws-Lynx1 is sufficient to inhibit signaling downstream of nAChRs. The effect of nicotine in PC12 cells is independent of α7 or α4β2 nAChRs, suggesting that Lynx1 can affect the function of native non-α7, non-α4β2 nAChR subtypes. We further show that Lynx1 and oligomeric β-amyloid1-42 compete for binding to several nAChR subunits, that Ws-Lynx1 prevents β-amyloid1-42-induced cytotoxicity in cortical neurons, and that cortical Lynx1 levels are decreased in a transgenic mouse model with concomitant β-amyloid and tau pathology. Our data suggest that Lynx1 binds to multiple nAChR subtypes in the brain and that this interaction might have functional and pathophysiological implications in relation to Alzheimer's disease. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Alternative splice variants of the rainbow trout leptin receptor encode multiple circulating leptin-binding proteins.

    PubMed

    Gong, Ningping; Einarsdottir, Ingibjörg E; Johansson, Marcus; Björnsson, Björn Thrandur

    2013-07-01

    In mammals, leptin (Lep) binding proteins (LepBPs) derived from Lep receptor (LepR) gene or protein bind most of the circulating Lep, but to date, information on LepBPs in nonmammalian vertebrate classes is lacking. This study details the characterization of multiple LepBPs in rainbow trout (Oncorhynchus mykiss), an early poikilothermic vertebrate, and presents the complete coding sequences for 3 of them. Size-exclusion chromatography and cross-linking assay identified plasma proteins bound to Lep ranging from 70 to 100 kDa. LepBPs were isolated from plasma by affinity chromatography, and their binding specificity was assessed by a competitive binding assay. A RIA for LepBPs indicates that plasma LepBP levels decline after fasting for 3 weeks. Immunoblotting of LepBPs using antibodies against different LepR epitopes shows that the LepBPs are indeed LepR isoforms. The alternatively spliced LepR transcripts (LepR(S1-3)) that include only the extracellular segment transcribe the 90-kDa LepBP1, the 80-kDa LepBP2, and the 70-kDa LepBP3, respectively. LepR(S1) generally has lower expression than the long-form LepR in most tissues. LepR(S2) is primarily expressed in adipose tissue, whereas LepR(S3) is expressed abundantly in brain and spleen, and moderately in liver and gills. The mRNA levels of hepatic LepR(S3) increase after 2 weeks of fasting. This study demonstrates a mechanism in fish for the generation of LepBPs that differs from that seen in mammals and indicates that the physiologic action of Lep in these poikilothermic vertebrates can be modulated, both centrally and peripherally, by the differentiated, tissue-specific expression of multiple LepBPs.

  14. Investigating the Structural Variability and Binding Modes of the Glioma Targeting NFL-TBS.40-63 Peptide on Tubulin.

    PubMed

    Laurin, Yoann; Savarin, Philippe; Robert, Charles H; Takahashi, Masayuki; Eyer, Joel; Prevost, Chantal; Sacquin-Mora, Sophie

    2015-06-16

    NFL-TBS.40-63 is a 24 amino acid peptide corresponding to the tubulin-binding site located on the light neurofilament subunit, which selectively enters glioblastoma cells, where it disrupts their microtubule network and inhibits their proliferation. We investigated its structural variability and binding modes on a tubulin heterodimer using a combination of NMR experiments, docking, and molecular dynamics (MD) simulations. Our results show that, while lacking a stable structure, the peptide preferentially binds on a specific single site located near the β-tubulin C-terminal end, thus giving us precious hints regarding the mechanism of action of the NFL-TBS.40-63 peptide's antimitotic activity at the molecular level.

  15. Determination of the cationic amphiphilic drug-DNA binding mode and DNA-assisted fluorescence resonance energy transfer amplification

    NASA Astrophysics Data System (ADS)

    Yaseen, Zahid; Banday, Abdul Rouf; Hussain, Mohammed Aamir; Tabish, Mohammad; Kabir-ud-Din

    2014-03-01

    Understanding the mechanism of drug-DNA binding is crucial for predicting the potential genotoxicity of drugs. Agarose gel electrophoresis, absorption, steady state fluorescence, and circular dichroism have been used in exploring the interaction of cationic amphiphilic drugs (CADs) such as amitriptyline hydrochloride (AMT), imipramine hydrochloride (IMP), and promethazine hydrochloride (PMT) with calf thymus or pUC19 DNA. Agarose gel electrophoresis assay, along with absorption and steady state fluorescence studies, reveal interaction between the CADs and DNA. A comparative study of the drugs with respect to the effect of urea, iodide induced quenching, and ethidium bromide (EB) exclusion assay reflects binding of CADs to the DNA primarily in an intercalative fashion. Circular dichroism data also support the intercalative mode of binding. Besides quenching, there is fluorescence exchange energy transfer (FRET) in between CADs and EB using DNA as a template.

  16. Predicting binding modes of reversible peptide-based inhibitors of falcipain-2 consistent with structure-activity relationships.

    PubMed

    Hernández González, Jorge Enrique; Hernández Alvarez, Lilian; Pascutti, Pedro Geraldo; Valiente, Pedro A

    2017-09-01

    Falcipain-2 (FP-2) is a major hemoglobinase of Plasmodium falciparum, considered an important drug target for the development of antimalarials. A previous study reported a novel series of 20 reversible peptide-based inhibitors of FP-2. However, the lack of tridimensional structures of the complexes hinders further optimization strategies to enhance the inhibitory activity of the compounds. Here we report the prediction of the binding modes of the aforementioned inhibitors to FP-2. A computational approach combining previous knowledge on the determinants of binding to the enzyme, docking, and postdocking refinement steps, is employed. The latter steps comprise molecular dynamics simulations and free energy calculations. Remarkably, this approach leads to the identification of near-native ligand conformations when applied to a validation set of protein-ligand structures. Overall, we proposed substrate-like binding modes of the studied compounds fulfilling the structural requirements for FP-2 binding and yielding free energy values that correlated well with the experimental data. Proteins 2017; 85:1666-1683. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Further Insights in the Binding Mode of Selective Inhibitors to Human PDE4D Enzyme Combining Docking and Molecular Dynamics

    PubMed Central

    D'Ursi, Pasqualina; Guariento, Sara; Trombetti, Gabriele; Orro, Alessandro; Cichero, Elena; Milanesi, Luciano; Bruno, Olga

    2016-01-01

    Abstract Alzheimer′s disease has recently emerged as a possible field of application for PDE4D inhibitors (PDE4DIs). The great structure similarity among the various PDE4 isoforms and, furthermore, the lack of the full length crystal structure of the enzyme, impaired the rational design of new selective PDE4DIs. In this paper, with the aim of exploring new insights into the PDE4D binding, we tackled the problem by performing a computational study based on docking simulations combined with molecular dynamics (D‐MD). Our work uniquely identified the binding mode and the key residues involved in the interaction with a number of in‐house catechol iminoether derivatives, acting as PDE4DIs. Moreover, the new binding mode was tested using a series of analogues previously reported by us and it was used to confirm their key structural features to allow PDE4D inhibition. The binding model disclosed within the current computational study may prove to be useful to further advance the design and synthesis of novel, more potent and selective, PDE4D inhibitors. PMID:27546041

  18. The Sec1p/Munc18 protein Vps45p binds its cognate SNARE proteins via two distinct modes

    PubMed Central

    Carpp, Lindsay N.; Ciufo, Leonora F.; Shanks, Scott G.; Boyd, Alan; Bryant, Nia J.

    2006-01-01

    Sec1p/Munc18 (SM) proteins are essential for SNARE-mediated membrane trafficking. The formulation of unifying hypotheses for the function of the SM protein family has been hampered by the observation that two of its members bind their cognate syntaxins (Sxs) in strikingly different ways. The SM protein Vps45p binds its Sx Tlg2p in a manner analogous to that captured by the Sly1p–Sed5p crystal structure, whereby the NH2-terminal peptide of the Sx inserts into a hydrophobic pocket on the outer face of domain I of the SM protein. In this study, we report that although this mode of interaction is critical for the binding of Vps45p to Tlg2p, the SM protein also binds Tlg2p-containing SNARE complexes via a second mode that involves neither the NH2 terminus of Tlg2p nor the region of Vps45p that facilitates this interaction. Our findings point to the possibility that SM proteins interact with their cognate SNARE proteins through distinct mechanisms at different stages in the SNARE assembly/disassembly cycle. PMID:16769821

  19. The Sec1p/Munc18 protein Vps45p binds its cognate SNARE proteins via two distinct modes.

    PubMed

    Carpp, Lindsay N; Ciufo, Leonora F; Shanks, Scott G; Boyd, Alan; Bryant, Nia J

    2006-06-19

    Sec1p/Munc18 (SM) proteins are essential for SNARE-mediated membrane trafficking. The formulation of unifying hypotheses for the function of the SM protein family has been hampered by the observation that two of its members bind their cognate syntaxins (Sxs) in strikingly different ways. The SM protein Vps45p binds its Sx Tlg2p in a manner analogous to that captured by the Sly1p-Sed5p crystal structure, whereby the NH2-terminal peptide of the Sx inserts into a hydrophobic pocket on the outer face of domain I of the SM protein. In this study, we report that although this mode of interaction is critical for the binding of Vps45p to Tlg2p, the SM protein also binds Tlg2p-containing SNARE complexes via a second mode that involves neither the NH2 terminus of Tlg2p nor the region of Vps45p that facilitates this interaction. Our findings point to the possibility that SM proteins interact with their cognate SNARE proteins through distinct mechanisms at different stages in the SNARE assembly/disassembly cycle.

  20. A Study of the Predictive Relationships between Faculty Engagement, Learner Satisfaction and Outcomes in Multiple Learning Delivery Modes

    ERIC Educational Resources Information Center

    Yen, Cherng-Jyh; Abdous, M'hammed

    2012-01-01

    This study assessed the predictive relationships between faculty engagement, learner satisfaction, and outcomes across multiple learning delivery modes (LDMs). Participants were enrolled in courses with the options of three learning delivery modes: face-to-face, satellite broadcasting, and live video-streaming. The predictive relationship between…

  1. A Study of the Predictive Relationships between Faculty Engagement, Learner Satisfaction and Outcomes in Multiple Learning Delivery Modes

    ERIC Educational Resources Information Center

    Yen, Cherng-Jyh; Abdous, M'hammed

    2012-01-01

    This study assessed the predictive relationships between faculty engagement, learner satisfaction, and outcomes across multiple learning delivery modes (LDMs). Participants were enrolled in courses with the options of three learning delivery modes: face-to-face, satellite broadcasting, and live video-streaming. The predictive relationship between…

  2. A Comparison of the Effects of Sequence and Mode Upon the Initial Acquisition, Retention, and Transfer of Elementary Multiplication Concepts.

    ERIC Educational Resources Information Center

    Wood, Carolyn M.

    Two instructional variables, sequence and mode, were operationally defined; two methods of sequencing, deductive and inductive, were used, and two modes, concrete and pictorial. Experimental lesson sequences for instruction in the rules and concepts of multiplication were developed for each combination of levels of the variables. The lesson…

  3. Substrate Binding Mode and Molecular Basis of a Specificity Switch in Oxalate Decarboxylase

    PubMed Central

    2016-01-01

    Oxalate decarboxylase (OxDC) catalyzes the conversion of oxalate into formate and carbon dioxide in a remarkable reaction that requires manganese and dioxygen. Previous studies have shown that replacing an active-site loop segment Ser161-Glu162-Asn163-Ser164 in the N-terminal domain of OxDC with the cognate residues Asp161-Ala162-Ser-163-Asn164 of an evolutionarily related, Mn-dependent oxalate oxidase gives a chimeric variant (DASN) that exhibits significantly increased oxidase activity. The mechanistic basis for this change in activity has now been investigated using membrane inlet mass spectrometry (MIMS) and isotope effect (IE) measurements. Quantitative analysis of the reaction stoichiometry as a function of oxalate concentration, as determined by MIMS, suggests that the increased oxidase activity of the DASN OxDC variant is associated with only a small fraction of the enzyme molecules in solution. In addition, IE measurements show that C–C bond cleavage in the DASN OxDC variant proceeds via the same mechanism as in the wild-type enzyme, even though the Glu162 side chain is absent. Thus, replacement of the loop residues does not modulate the chemistry of the enzyme-bound Mn(II) ion. Taken together, these results raise the possibility that the observed oxidase activity of the DASN OxDC variant arises from an increased level of access of the solvent to the active site during catalysis, implying that the functional role of Glu162 is to control loop conformation. A 2.6 Å resolution X-ray crystal structure of a complex between oxalate and the Co(II)-substituted ΔE162 OxDC variant, in which Glu162 has been deleted from the active site loop, reveals the likely mode by which the substrate coordinates the catalytically active Mn ion prior to C–C bond cleavage. The “end-on” conformation of oxalate observed in the structure is consistent with the previously published V/K IE data and provides an empty coordination site for the dioxygen ligand that is thought to

  4. High-energy mode-locked fiber lasers using multiple transmission filters and a genetic algorithm.

    PubMed

    Fu, Xing; Kutz, J Nathan

    2013-03-11

    We theoretically demonstrate that in a laser cavity mode-locked by nonlinear polarization rotation (NPR) using sets of waveplates and passive polarizer, the energy performance can be significantly increased by incorporating multiple NPR filters. The NPR filters are engineered so as to mitigate the multi-pulsing instability in the laser cavity which is responsible for limiting the single pulse per round trip energy in a myriad of mode-locked cavities. Engineering of the NPR filters for performance is accomplished by implementing a genetic algorithm that is capable of systematically identifying viable and optimal NPR settings in a vast parameter space. Our study shows that five NPR filters can increase the cavity energy by approximately a factor of five, with additional NPRs contributing little or no enhancements beyond this. With the advent and demonstration of electronic controls for waveplates and polarizers, the analysis suggests a general design and engineering principle that can potentially close the order of magnitude energy gap between fiber based mode-locked lasers and their solid state counterparts.

  5. Multiple-mode nonlinear free and forced vibrations of beams using finite element method

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Decha-Umphai, Kamolphan

    1987-01-01

    Multiple-mode nonlinear free and forced vibration of a beam is analyzed by the finite element method. The geometric nonlinearity is investigated. Inplane displacement and inertia (IDI) are also considered in the formulation. Harmonic force matrix is derived and explained. Nonlinear free vibration can be simply treated as a special case of the general forced vibration by setting the harmonic force matrix equal to zero. The effect of the higher modes is more pronouced for the clamped supported beam than the simply supported one. Beams without IDI yield more effect of the higher modes than the one with IDI. The effects of IDI are to reduce nonlinearity. For beams with end supports restrained from axial movement (immovable cases), only the hardening type nonlinearity is observed. However, beams of small slenderness ratio (L/R = 20) with movable end supports, the softening type nonlinearity is found. The concentrated force case yields a more severe response than the uniformly distributed force case. Finite element results are in good agreement with the solution of simple elliptic response, harmonic balance method, and Runge-Kutte method and experiment.

  6. Dynamic control of polarization-inverted modes in three-dimensionally trapped multiple nanogaps

    SciTech Connect

    Tamura, Mamoru; Iida, Takuya

    2015-12-28

    We propose a guiding principle for the dynamic control of polarization-inverted modes in multiple nanogaps for unconventional optical transitions of molecules at arbitrary three-dimensional spatial positions. Based on our developed self-consistent theory for the optical assembly of nanoparticles (NPs), we clarified that spherical silver NPs can be optically trapped and aligned in the light-propagating direction via longitudinally polarized light; they form a rod-like nano-composite with multiple nanogaps. During trapping, there is a possibility that an additional irradiation of linearly polarized far-field light may excite the bonding and anti-bonding dark plasmon modes with low radiative decay rate of several meV via cancellation of inverted polarization. Our finding reveals that not only the steep change in the enhanced intensity of light field but also the phase inversion of light field between the dynamically formed nanogaps will pave the way to the highly sensitive sensors for molecules, the unconventional chemical reactions, and so on.

  7. End-to-End Rate-Distortion Optimized MD Mode Selection for Multiple Description Video Coding

    NASA Astrophysics Data System (ADS)

    Heng, Brian A.; Apostolopoulos, John G.; Lim, Jae S.

    2006-12-01

    Multiple description (MD) video coding can be used to reduce the detrimental effects caused by transmission over lossy packet networks. A number of approaches have been proposed for MD coding, where each provides a different tradeoff between compression efficiency and error resilience. How effectively each method achieves this tradeoff depends on the network conditions as well as on the characteristics of the video itself. This paper proposes an adaptive MD coding approach which adapts to these conditions through the use of adaptive MD mode selection. The encoder in this system is able to accurately estimate the expected end-to-end distortion, accounting for both compression and packet loss-induced distortions, as well as for the bursty nature of channel losses and the effective use of multiple transmission paths. With this model of the expected end-to-end distortion, the encoder selects between MD coding modes in a rate-distortion (R-D) optimized manner to most effectively tradeoff compression efficiency for error resilience. We show how this approach adapts to both the local characteristics of the video and network conditions and demonstrates the resulting gains in performance using an H.264-based adaptive MD video coder.

  8. Selective JAK3 Inhibitors with a Covalent Reversible Binding Mode Targeting a New Induced Fit Binding Pocket.

    PubMed

    Forster, Michael; Chaikuad, Apirat; Bauer, Silke M; Holstein, Julia; Robers, Matthew B; Corona, Cesear R; Gehringer, Matthias; Pfaffenrot, Ellen; Ghoreschi, Kamran; Knapp, Stefan; Laufer, Stefan A

    2016-11-17

    Janus kinases (JAKs) are a family of cytoplasmatic tyrosine kinases that are attractive targets for the development of anti-inflammatory drugs given their roles in cytokine signaling. One question regarding JAKs and their inhibitors that remains under intensive debate is whether JAK inhibitors should be isoform selective. Since JAK3 functions are restricted to immune cells, an isoform-selective inhibitor for JAK3 could be especially valuable to achieve clinically more useful and precise effects. However, the high degree of structural conservation makes isoform-selective targeting a challenging task. Here, we present picomolar inhibitors with unprecedented kinome-wide selectivity for JAK3. Selectivity was achieved by concurrent covalent reversible targeting of a JAK3-specific cysteine residue and a ligand-induced binding pocket. We confirmed that in vitro activity and selectivity translate well into the cellular environment and suggest that our inhibitors are powerful tools to elucidate JAK3-specific functions.

  9. Probing Carbohydrate Product Expulsion from a Processive Cellulase with Multiple Absolute Binding Free Energy Methods*

    PubMed Central

    Bu, Lintao; Beckham, Gregg T.; Shirts, Michael R.; Nimlos, Mark R.; Adney, William S.; Himmel, Michael E.; Crowley, Michael F.

    2011-01-01

    Understanding the enzymatic mechanism that cellulases employ to degrade cellulose is critical to efforts to efficiently utilize plant biomass as a sustainable energy resource. A key component of cellulase action on cellulose is product inhibition from monosaccharide and disaccharides in the product site of cellulase tunnel. The absolute binding free energy of cellobiose and glucose to the product site of the catalytic tunnel of the Family 7 cellobiohydrolase (Cel7A) of Trichoderma reesei (Hypocrea jecorina) was calculated using two different approaches: steered molecular dynamics (SMD) simulations and alchemical free energy perturbation molecular dynamics (FEP/MD) simulations. For the SMD approach, three methods based on Jarzynski's equality were used to construct the potential of mean force from multiple pulling trajectories. The calculated binding free energies, −14.4 kcal/mol using SMD and −11.2 kcal/mol using FEP/MD, are in good qualitative agreement. Analysis of the SMD pulling trajectories suggests that several protein residues (Arg-251, Asp-259, Asp-262, Trp-376, and Tyr-381) play key roles in cellobiose and glucose binding to the catalytic tunnel. Five mutations (R251A, D259A, D262A, W376A, and Y381A) were made computationally to measure the changes in free energy during the product expulsion process. The absolute binding free energies of cellobiose to the catalytic tunnel of these five mutants are −13.1, −6.0, −11.5, −7.5, and −8.8 kcal/mol, respectively. The results demonstrated that all of the mutants tested can lower the binding free energy of cellobiose, which provides potential applications in engineering the enzyme to accelerate the product expulsion process and improve the efficiency of biomass conversion. PMID:21454590

  10. Isolation and characterization of the DNA-binding protein (DBP) of the Autographa californica multiple nucleopolyhedrovirus

    SciTech Connect

    Mikhailov, Victor S. Vanarsdall, Adam L.; Rohrmann, George F.

    2008-01-20

    DNA-binding protein (DBP) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) was expressed as an N-terminal His{sub 6}-tag fusion using a recombinant baculovirus and purified to near homogeneity. Purified DBP formed oligomers that were crosslinked by redox reagents resulting in predominantly protein dimers and tetramers. In gel retardation assays, DBP showed a high affinity for single-stranded oligonucleotides and was able to compete with another baculovirus SSB protein, LEF-3, for binding sites. DBP binding protected ssDNA against hydrolysis by a baculovirus alkaline nuclease AN/LEF-3 complex. Partial proteolysis by trypsin revealed a domain structure of DBP that is required for interaction with DNA and that can be disrupted by thermal treatment. Binding to ssDNA, but not to dsDNA, changed the pattern of proteolytic fragments of DBP indicating adjustments in protein structure upon interaction with ssDNA. DBP was capable of unwinding short DNA duplexes and also promoted the renaturation of long complementary strands of ssDNA into duplexes. The unwinding and renaturation activities of DBP, as well as the DNA binding activity, were sensitive to sulfhydryl reagents and were inhibited by oxidation of thiol groups with diamide or by alkylation with N-ethylmaleimide. A high affinity of DBP for ssDNA and its unwinding and renaturation activities confirmed identification of DBP as a member of the SSB/recombinase family. These activities and a tight association with subnuclear structures suggests that DBP is a component of the virogenic stroma that is involved in the processing of replicative intermediates.

  11. Modeling of Beams’ Multiple-Contact Mode with an Application in the Design of a High-g Threshold Microaccelerometer

    PubMed Central

    Li, Kai; Chen, Wenyuan; Zhang, Weiping

    2011-01-01

    Beam’s multiple-contact mode, characterized by multiple and discrete contact regions, non-uniform stoppers’ heights, irregular contact sequence, seesaw-like effect, indirect interaction between different stoppers, and complex coupling relationship between loads and deformation is studied. A novel analysis method and a novel high speed calculation model are developed for multiple-contact mode under mechanical load and electrostatic load, without limitations on stopper height and distribution, providing the beam has stepped or curved shape. Accurate values of deflection, contact load, contact region and so on are obtained directly, with a subsequent validation by CoventorWare. A new concept design of high-g threshold microaccelerometer based on multiple-contact mode is presented, featuring multiple acceleration thresholds of one sensitive component and consequently small sensor size. PMID:22163897

  12. Improved estimation of ligand macromolecule binding affinities by linear response approach using a combination of multi-mode MD simulation and QM/MM methods

    NASA Astrophysics Data System (ADS)

    Khandelwal, Akash; Balaz, Stefan

    2007-01-01

    Structure-based predictions of binding affinities of ligands binding to proteins by coordination bonds with transition metals, covalent bonds, and bonds involving charge re-distributions are hindered by the absence of proper force fields. This shortcoming affects all methods which use force-field-based molecular simulation data on complex formation for affinity predictions. One of the most frequently used methods in this category is the Linear Response (LR) approach of Åquist, correlating binding affinities with van der Waals and electrostatic energies, as extended by Jorgensen's inclusion of solvent-accessible surface areas. All these terms represent the differences, upon binding, in the ensemble averages of pertinent quantities, obtained from molecular dynamics (MD) or Monte Carlo simulations of the complex and of single components. Here we report a modification of the LR approach by: (1) the replacement of the two energy terms through the single-point QM/MM energy of the time-averaged complex structure from an MD simulation; and (2) a rigorous consideration of multiple modes (mm) of binding. The first extension alleviates the force-field related problems, while the second extension deals with the ligands exhibiting large-scale motions in the course of an MD simulation. The second modification results in the correlation equation that is nonlinear in optimized coefficients, but does not lead to an increase in the number of optimized coefficients. The application of the resulting mm QM/MM LR approach to the inhibition of zinc-dependent gelatinase B (matrix metalloproteinase 9) by 28 hydroxamate ligands indicates a significant improvement of descriptive and predictive abilities.

  13. Noncanonical DNA-binding mode of repressor and its disassembly by antirepressor

    PubMed Central

    Kim, Minsik; Kim, Hee Jung; Son, Sang Hyeon; Yoon, Hye Jin; Lim, Youngbin; Lee, Jong Woo; Seok, Yeong-Jae; Jin, Kyeong Sik; Yu, Yeon Gyu; Kim, Seong Keun; Ryu, Sangryeol; Lee, Hyung Ho

    2016-01-01

    DNA-binding repressors are involved in transcriptional repression in many organisms. Disabling a repressor is a crucial step in activating expression of desired genes. Thus, several mechanisms have been identified for the removal of a stably bound repressor (Rep) from the operator. Here, we describe an uncharacterized mechanism of noncanonical DNA binding and induction by a Rep from the temperate Salmonella phage SPC32H; this mechanism was revealed using the crystal structures of homotetrameric Rep (92–198) and a hetero-octameric complex between the Rep and its antirepressor (Ant). The canonical method of inactivating a repressor is through the competitive binding of the antirepressor to the operator-binding site of the repressor; however, these studies revealed several noncanonical features. First, Ant does not compete for the DNA-binding region of Rep. Instead, the tetrameric Ant binds to the C-terminal domains of two asymmetric Rep dimers. Simultaneously, Ant facilitates the binding of the Rep N-terminal domains to Ant, resulting in the release of two Rep dimers from the bound DNA. Second, the dimer pairs of the N-terminal DNA-binding domains originate from different dimers of a Rep tetramer (trans model). This situation is different from that of other canonical Reps, in which two N-terminal DNA-binding domains from the same dimeric unit form a dimer upon DNA binding (cis model). On the basis of these observations, we propose a noncanonical model for the reversible inactivation of a Rep by an Ant. PMID:27099293

  14. Distinct Z-DNA binding mode of a PKR-like protein kinase containing a Z-DNA binding domain (PKZ)

    PubMed Central

    Kim, Doyoun; Hur, Jeonghwan; Park, Kwangsoo; Bae, Sangsu; Shin, Donghyuk; Ha, Sung Chul; Hwang, Hye-Yeon; Hohng, Sungchul; Lee, Joon-Hwa; Lee, Sangho; Kim, Yang-Gyun; Kim, Kyeong Kyu

    2014-01-01

    Double-stranded ribonucleic acid-activated protein kinase (PKR) downregulates translation as a defense mechanism against viral infection. In fish species, PKZ, a PKR-like protein kinase containing left-handed deoxyribonucleic acid (Z-DNA) binding domains, performs a similar role in the antiviral response. To understand the role of PKZ in Z-DNA recognition and innate immune response, we performed structural and functional studies of the Z-DNA binding domain (Zα) of PKZ from Carassius auratus (caZαPKZ). The 1.7-Å resolution crystal structure of caZαPKZ:Z-DNA revealed that caZαPKZ shares the overall fold with other Zα, but has discrete structural features that differentiate its DNA binding mode from others. Functional analyses of caZαPKZ and its mutants revealed that caZαPKZ mediates the fastest B-to-Z transition of DNA among Zα, and the minimal interaction for Z-DNA recognition is mediated by three backbone phosphates and six residues of caZαPKZ. Structure-based mutagenesis and B-to-Z transition assays confirmed that Lys56 located in the β-wing contributes to its fast B-to-Z transition kinetics. Investigation of the DNA binding kinetics of caZαPKZ further revealed that the B-to-Z transition rate is positively correlated with the association rate constant. Taking these results together, we conclude that the positive charge in the β-wing largely affects fast B-to-Z transition activity by enhancing the DNA binding rate. PMID:24682817

  15. Actinomycin D binding mode reveals the basis for its potent HIV-1 and cancer activity

    NASA Astrophysics Data System (ADS)

    Paramanathan, Thayaparan; Vladescu, Ioana D.; McCauley, Micah J.; Rouzina, Ioulia; Williams, Mark C.

    2011-03-01

    Actinomycin D (ActD) is one of the most studied antibiotics, which has been used as an anti-cancer agent and also shown to inhibit HIV reverse transcription. Initial studies with ActD established that it intercalates double stranded DNA (dsDNA). However, recent studies have shown that ActD binds with even higher affinity to single stranded DNA (ssDNA). In our studies we use optical tweezers to stretch and hold single dsDNA molecule at constant force in the presence of varying ActD concentrations until the binding reaches equilibrium. The change in dsDNA length upon ActD binding measured as a function of time yields the rate of binding in addition to the equilibrium lengthening of DNA. The results suggest extremely slow kinetics, on the order of several minutes and 0.52 +/- 0.06 μ M binding affinity. Holding DNA at constant force while stretching and relaxing suggests that ActD binds to two single strands that are close to each other rather than to pure dsDNA or ssDNA. This suggests that biological activity of ActD that contributes towards the inhibition of cellular replication is due to its ability to bind at DNA bubbles during RNA transcription, thereby stalling the transcription process.

  16. ESCRT-0 assembles as a heterotetrameric complex on membranes and binds multiple ubiquitinylated cargoes simultaneously.

    PubMed

    Mayers, Jonathan R; Fyfe, Ian; Schuh, Amber L; Chapman, Edwin R; Edwardson, J Michael; Audhya, Anjon

    2011-03-18

    The ESCRT machinery consists of multiple protein complexes that collectively participate in the biogenesis of multivesicular endosomes (MVEs). The ESCRT-0 complex is composed of two subunits, Hrs and STAM, both of which can engage ubiquitinylated substrates destined for lysosomal degradation. Here, we conduct a comprehensive analysis of ESCRT-0:ubiquitin interactions using isothermal titration calorimetry and define the affinity of each ubiquitin-binding domain (UBD) within the intact ESCRT-0 complex. Our data demonstrate that ubiquitin binding is non-cooperative between the ESCRT-0 UBDs. Additionally, our findings show that the affinity of the Hrs double ubiquitin interacting motif (DUIM) for ubiquitin is more than 2-fold greater than that of UBDs found in STAM, suggesting that Hrs functions as the major ubiquitin-binding protein in ESCRT-0. In vivo, Hrs and STAM localize to endosomal membranes. To study recombinant ESCRT-0 assembly on lipid bilayers, we used atomic force microscopy. Our data show that ESCRT-0 forms mostly heterodimers and heterotetramers of Hrs and STAM when analyzed in the presence of membranes. Consistent with these findings, hydrodynamic analysis of endogenous ESCRT-0 indicates that it exists largely as a heterotetrameric complex of its two subunits. Based on these data, we present a revised model for ESCRT-0 function in cargo recruitment and concentration at the endosome.

  17. RNA synthesis is associated with multiple TBP-chromatin binding events

    PubMed Central

    Zaidi, Hussain A.; Auble, David T.; Bekiranov, Stefan

    2017-01-01

    Competition ChIP is an experimental method that allows transcription factor (TF) chromatin turnover dynamics to be measured across a genome. We develop and apply a physical model of TF-chromatin competitive binding using chemical reaction rate theory and are able to derive the physical half-life or residence time for TATA-binding protein (TBP) across the yeast genome from competition ChIP data. Using our physical modeling approach where we explicitly include the induction profile of the competitor in the model, we are able to estimate yeast TBP-chromatin residence times as short as 1.3 minutes, demonstrating that competition ChIP is a relatively high temporal-resolution approach. Strikingly, we find a median value of ~5 TBP-chromatin binding events associated with the synthesis of one RNA molecule across Pol II genes, suggesting multiple rounds of pre-initiation complex assembly and disassembly before productive elongation of Pol II is achieved at most genes in the yeast genome. PMID:28051102

  18. Hyperactive antifreeze protein from fish contains multiple ice-binding sites.

    PubMed

    Graham, Laurie A; Marshall, Christopher B; Lin, Feng-Hsu; Campbell, Robert L; Davies, Peter L

    2008-02-19

    Antifreeze proteins (AFPs) are produced to prevent freezing in many fish species that are exposed to icy seawater. There are a number of nonhomologous types of AFPs, diverse in both sequence and structure, which share the function of binding to ice and inhibiting its growth. We recently discovered a hyperactive AFP in the winter flounder and related species that is many-fold more active than other fish AFPs. Like the 3-4-kDa type I AFPs, it is alanine-rich and highly helical, but this 17-kDa protein is considerably larger and forms a dimer. We have sequenced the cDNA encoding this new AFP to gain insight into its structure and evolutionary relationship to the type I AFP family. The gene is clearly homologous to the righteye flounder type I AFP genes. Thus we have designated this protein "hyperactive type I AFP" (hyp-type I). The sequence of hyp-type I AFP supports a structural model in which two extended 195-amino acid alpha-helices form an amphipathic homodimer with a series of linked Ala- and Thr-rich patches on the surface of the dimer, each of which resembles ice-binding sites of type I AFPs. The superior activity of hyp-type I AFP may derive from the large combined surface area of the ice-binding sites, recognition of multiple planes of ice, and protection of the basal plane from ice growth.

  19. The hippocampus supports multiple cognitive processes through relational binding and comparison

    PubMed Central

    Olsen, Rosanna K.; Moses, Sandra N.; Riggs, Lily; Ryan, Jennifer D.

    2012-01-01

    It has been well established that the hippocampus plays a pivotal role in explicit long-term recognition memory. However, findings from amnesia, lesion and recording studies with non-human animals, eye-movement recording studies, and functional neuroimaging have recently converged upon a similar message: the functional reach of the hippocampus extends far beyond explicit recognition memory. Damage to the hippocampus affects performance on a number of cognitive tasks including recognition memory after short and long delays and visual discrimination. Additionally, with the advent of neuroimaging techniques that have fine spatial and temporal resolution, findings have emerged that show the elicitation of hippocampal responses within the first few 100 ms of stimulus/task onset. These responses occur for novel and previously viewed information during a time when perceptual processing is traditionally thought to occur, and long before overt recognition responses are made. We propose that the hippocampus is obligatorily involved in the binding of disparate elements across both space and time, and in the comparison of such relational memory representations. Furthermore, the hippocampus supports relational binding and comparison with or without conscious awareness for the relational representations that are formed, retrieved and/or compared. It is by virtue of these basic binding and comparison functions that the reach of the hippocampus extends beyond long-term recognition memory and underlies task performance in multiple cognitive domains. PMID:22661938

  20. Nucleobindin 1 binds to multiple types of pre-fibrillar amyloid and inhibits fibrillization

    PubMed Central

    Bonito-Oliva, Alessandra; Barbash, Shahar; Sakmar, Thomas P.; Graham, W Vallen

    2017-01-01

    During amyloid fibril formation, amyloidogenic polypeptides misfold and self assemble into soluble pre-fibrillar aggregates, i.e., protofibrils, which elongate and mature into insoluble fibrillar aggregates. An emerging class of chaperones, chaperone-like amyloid binding proteins (CLABPs), has been shown to interfere with aggregation of particular misfolded amyloid peptides or proteins. We have discovered that the calcium-binding protein nuclebindin-1 (NUCB1) is a novel CLABP. We show that NUCB1 inhibits aggregation of islet-amyloid polypeptide associated with type 2 diabetes mellitus, a-synuclein associated with Parkinson’s disease, transthyretin V30M mutant associated with familial amyloid polyneuropathy, and Aβ42 associated with Alzheimer’s disease by stabilizing their respective protofibril intermediates. Kinetic studies employing the modeling software AmyloFit show that NUCB1 affects both primary nucleation and secondary nucleation. We hypothesize that NUCB1 binds to the common cross-β-sheet structure of protofibril aggregates to “cap” and stabilize soluble macromolecular complexes. Transmission electron microscopy and atomic force microscopy were employed to characterize the size, shape and volume distribution of multiple sources of NUCB1-capped protofibrils. Interestingly, NUCB1 prevents Aβ42 protofibril toxicity in a cellular assay. NUCB1-stabilized amyloid protofibrils could be used as immunogens to prepare conformation-specific antibodies and as novel tools to develop screens for anti-protofibril diagnostics and therapeutics. PMID:28220836

  1. The binding mode of human nucleoside diphosphate kinase B to single-strand DNA.

    PubMed

    Agou, F; Raveh, S; Véron, M

    2000-06-01

    In this paper, we studied the interaction of the human isoform B of nucleoside diphosphate kinase (NDP kinase B) with the nuclease hypersensitive element (NHE) present in the promoter element of the c-myc oncogene. The DNA-binding properties of NDP kinase B and other NDP kinases are compared and the nucleotide requirement for binding are discussed. Using quantitative methods, we identified the DNA-binding sites on the protein and we proposed a structural model for a complex of one hexameric NDP kinase B with an oligonucleotide.

  2. dCaP: detecting differential binding events in multiple conditions and proteins

    PubMed Central

    2014-01-01

    Background Current ChIP-seq studies are interested in comparing multiple epigenetic profiles across several cell types and tissues simultaneously for studying constitutive and differential regulation. Simultaneous analysis of multiple epigenetic features in many samples can gain substantial power and specificity than analyzing individual features and/or samples separately. Yet there are currently few tools can perform joint inference of constitutive and differential regulation in multi-feature-multi-condition contexts with statistical testing. Existing tools either test regulatory variation for one factor in multiple samples at a time, or for multiple factors in one or two samples. Many of them only identify binary rather than quantitative variation, which are sensitive to threshold choices. Results We propose a novel and powerful method called dCaP for simultaneously detecting constitutive and differential regulation of multiple epigenetic factors in multiple samples. Using simulation, we demonstrate the superior power of dCaP compared to existing methods. We then apply dCaP to two datasets from human and mouse ENCODE projects to demonstrate its utility. We show in the human dataset that the cell-type specific regulatory loci detected by dCaP are significantly enriched near genes with cell-type specific functions and disease relevance. We further show in the mouse dataset that dCaP captures genomic regions showing significant signal variations for TAL1 occupancy between two mouse erythroid cell lines. The novel TAL1 occupancy loci detected only by dCaP are highly enriched with GATA1 occupancy and differential gene expression, while those detected only by other methods are not. Conclusions Here, we developed a novel approach to utilize the cooperative property of proteins to detect differential binding given multivariate ChIP-seq samples to provide better power, aiming for complementing existing approaches and providing new insights in the method development in

  3. dCaP: detecting differential binding events in multiple conditions and proteins.

    PubMed

    Chen, Kuan-Bei; Hardison, Ross; Zhang, Yu

    2014-01-01

    Current ChIP-seq studies are interested in comparing multiple epigenetic profiles across several cell types and tissues simultaneously for studying constitutive and differential regulation. Simultaneous analysis of multiple epigenetic features in many samples can gain substantial power and specificity than analyzing individual features and/or samples separately. Yet there are currently few tools can perform joint inference of constitutive and differential regulation in multi-feature-multi-condition contexts with statistical testing. Existing tools either test regulatory variation for one factor in multiple samples at a time, or for multiple factors in one or two samples. Many of them only identify binary rather than quantitative variation, which are sensitive to threshold choices. We propose a novel and powerful method called dCaP for simultaneously detecting constitutive and differential regulation of multiple epigenetic factors in multiple samples. Using simulation, we demonstrate the superior power of dCaP compared to existing methods. We then apply dCaP to two datasets from human and mouse ENCODE projects to demonstrate its utility. We show in the human dataset that the cell-type specific regulatory loci detected by dCaP are significantly enriched near genes with cell-type specific functions and disease relevance. We further show in the mouse dataset that dCaP captures genomic regions showing significant signal variations for TAL1 occupancy between two mouse erythroid cell lines. The novel TAL1 occupancy loci detected only by dCaP are highly enriched with GATA1 occupancy and differential gene expression, while those detected only by other methods are not. Here, we developed a novel approach to utilize the cooperative property of proteins to detect differential binding given multivariate ChIP-seq samples to provide better power, aiming for complementing existing approaches and providing new insights in the method development in this field.

  4. Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array.

    PubMed

    McKendry, Rachel; Zhang, Jiayun; Arntz, Youri; Strunz, Torsten; Hegner, Martin; Lang, Hans Peter; Baller, Marko K; Certa, Ulrich; Meyer, Ernst; Güntherodt, Hans-Joachim; Gerber, Christoph

    2002-07-23

    We report a microarray of cantilevers to detect multiple unlabeled biomolecules simultaneously at nanomolar concentrations within minutes. Ligand-receptor binding interactions such as DNA hybridization or protein recognition occurring on microfabricated silicon cantilevers generate nanomechanical bending, which is detected optically in situ. Differential measurements including reference cantilevers on an array of eight sensors can sequence-specifically detect unlabeled DNA targets in 80-fold excess of nonmatching DNA as a background and discriminate 3' and 5' overhangs. Our experiments suggest that the nanomechanical motion originates from predominantly steric hindrance effects and depends on the concentration of DNA molecules in solution. We show that cantilever arrays can be used to investigate the thermodynamics of biomolecular interactions mechanically, and we have found that the specificity of the reaction on a cantilever is consistent with solution data. Hence cantilever arrays permit multiple binding assays in parallel and can detect femtomoles of DNA on the cantilever at a DNA concentration in solution of 75 nM.

  5. Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array

    PubMed Central

    McKendry, Rachel; Zhang, Jiayun; Arntz, Youri; Strunz, Torsten; Hegner, Martin; Lang, Hans Peter; Baller, Marko K.; Certa, Ulrich; Meyer, Ernst; Güntherodt, Hans-Joachim; Gerber, Christoph

    2002-01-01

    We report a microarray of cantilevers to detect multiple unlabeled biomolecules simultaneously at nanomolar concentrations within minutes. Ligand-receptor binding interactions such as DNA hybridization or protein recognition occurring on microfabricated silicon cantilevers generate nanomechanical bending, which is detected optically in situ. Differential measurements including reference cantilevers on an array of eight sensors can sequence-specifically detect unlabeled DNA targets in 80-fold excess of nonmatching DNA as a background and discriminate 3′ and 5′ overhangs. Our experiments suggest that the nanomechanical motion originates from predominantly steric hindrance effects and depends on the concentration of DNA molecules in solution. We show that cantilever arrays can be used to investigate the thermodynamics of biomolecular interactions mechanically, and we have found that the specificity of the reaction on a cantilever is consistent with solution data. Hence cantilever arrays permit multiple binding assays in parallel and can detect femtomoles of DNA on the cantilever at a DNA concentration in solution of 75 nM. PMID:12119412

  6. Multiple Adhesive Phenotypes Linked to Rosetting Binding of Erythrocytes in Plasmodium falciparum Malaria

    PubMed Central

    Fernandez, Victor; Treutiger, Carl Johan; Nash, Gerard B.; Wahlgren, Mats

    1998-01-01

    The cerebral form of severe malaria is associated with excessive intravascular sequestration of Plasmodium falciparum-infected erythrocytes (PRBC). Retention and accumulation of PRBC may lead to occlusion of brain microvessels and direct the triggering of acute pathologic changes. Here we report that by selection, cloning, and subcloning, we have identified rare P. falciparum parasites expressing a pan-adhesive phenotype linked to erythrocyte rosetting, a previously identified correlate of cerebral malaria. Rosetting PRBC not only bound uninfected erythrocytes but also formed autoagglutinates, adhered to endothelial cells, and bound to CD36, immunoglobulins, and the blood group A antigen. The linkage of rosetting, autoagglutination, and cytoadherence involved the coexpression on a single PRBC of ligands with multiple specificities and the binding to two or more receptors on erythrocytes and to at least two other cell adhesion molecules, including a new endothelial cell receptor for P. falciparum-infected erythrocytes. Limited proteolysis that differentially cleaved the rosetting ligand PfEMP1 from the PRBC surface abrogated all the binding phenotypes of these parasites, implicating the variant antigen PfEMP1 as a carrier of multiple ligand specificities. The results encourage the further study of pan-adhesion as a potentially important parasite phenotype in the pathogenesis of severe P. falciparum malaria. PMID:9596774

  7. Component mode synthesis and large deflection vibration of complex structures. Volume 3: Multiple-mode nonlinear free and forced vibrations of beams using finite element method

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Shen, Mo-How

    1987-01-01

    Multiple-mode nonlinear forced vibration of a beam was analyzed by the finite element method. Inplane (longitudinal) displacement and inertia (IDI) are considered in the formulation. By combining the finite element method and nonlinear theory, more realistic models of structural response are obtained more easily and faster.

  8. Mean deviation coupling synchronous control for multiple motors via second-order adaptive sliding mode control.

    PubMed

    Li, Lebao; Sun, Lingling; Zhang, Shengzhou

    2016-05-01

    A new mean deviation coupling synchronization control strategy is developed for multiple motor control systems, which can guarantee the synchronization performance of multiple motor control systems and reduce complexity of the control structure with the increasing number of motors. The mean deviation coupling synchronization control architecture combining second-order adaptive sliding mode control (SOASMC) approach is proposed, which can improve synchronization control precision of multiple motor control systems and make speed tracking errors, mean speed errors of each motor and speed synchronization errors converge to zero rapidly. The proposed control scheme is robustness to parameter variations and random external disturbances and can alleviate the chattering phenomena. Moreover, an adaptive law is employed to estimate the unknown bound of uncertainty, which is obtained in the sense of Lyapunov stability theorem to minimize the control effort. Performance comparisons with master-slave control, relative coupling control, ring coupling control, conventional PI control and SMC are investigated on a four-motor synchronization control system. Extensive comparative results are given to shown the good performance of the proposed control scheme.

  9. Fabric Controls on the Failure Mode of Strongly Deformed Metamorphic Rocks with Multiple Anisotropies

    NASA Astrophysics Data System (ADS)

    Agliardi, F.; Zanchetta, S.; Crosta, G. B.; Barberini, V.; Fusi, N.; De Ponti, E.

    2012-12-01

    resolutions (MicroCT: 40-60 μm; medical CT: 625 μm) and micro-structural analysis of thin sections. Investigation results suggest that the failure of strongly deformed metamorphic rocks is controlled by the occurrence of multiple anisotropies related to micro-fabric, not always characterised by clear meso-scale expression, including crenulation folding, shape preferred orientation, intracrystalline deformation microstructure. Different failure modes dominate depending on the geometrical arrangement of both foliation and fold axial surfaces, in turn affecting the values of rock strength and deformability. The results of this study point to the need of accounting for the effects of multiple, geometrically complex anisotropies in setting up realistic models of rock fracturing at different scale and for different geological and engineering applications.

  10. Multiple Ca2+ Binding Sites in the Extracellular Domain of Ca2+-Sensing Receptor Corresponding to Cooperative Ca2+ Response†

    PubMed Central

    Huang, Yun; Zhou, Yubin; Castiblanco, Adriana; Yang, Wei; Brown, Edward M.; Yang, Jenny J.

    2009-01-01

    A small change in the extracellular Ca2+ concentration ([Ca2+]o) integrates cell signaling responses in multiple cellular and tissue networks and functions via activation of Ca2+-sensing receptors (CaSR). Mainly through binding of Ca2+ to the large extracellular domain (ECD) of the dimeric CaSR, intracellular Ca2+ responses are highly cooperative with an apparent Hill coefficient ranging from 2 to 4. We have previously reported the identification of two continuous putative Ca2+-binding sites by grafting CaSR-derived, Ca2+-binding peptides to a scaffold protein, CD2, that does not bind Ca2+. In this paper, we predict more potential non-continuous Ca2+-binding sites in the ECD. We dissect the intact CaSR into three globular subdomains, each of which contains 2 to 3 predicted Ca2+-binding sites. This approach enables us to further understand the mechanisms underlying the binding of multiple metal ions to extended polypeptides derived from within the ECD of the CaSR, which would be anticipated to more closely mimic the structure of the native CaSR ECD. Tb3+-luminescence energy transfer, ANS fluorescence, and NMR studies show biphasic metal-binding components and Ca2+-dependent conformational changes in these subdomains. Removing the predicted Ca2+-binding ligands in site 1 and site 3 abolishes the first binding step and second binding step, respectively. Studies on these subdomains suggest the existence of multiple metal-binding sites and metal-induced conformational changes that might be responsible for switching on/off the CaSR by transition between its open inactive form and closed active form. PMID:19102677

  11. In Silico Investigation of the Neurotensin Receptor 1 Binding Site: Overlapping Binding Modes for Small Molecule Antagonists and the Endogenous Peptide Agonist.

    PubMed

    Lückmann, Michael; Holst, Birgitte; Schwartz, Thue W; Frimurer, Thomas M

    2016-01-01

    The neurotensin receptor 1 (NTSR1) belongs to the family of 7TM, G protein-coupled receptors, and is activated by the 13-amino-acid peptide neurotensin (NTS) that has been shown to play important roles in neurological disorders and the promotion of cancer cells. Recently, a high-resolution x-ray crystal structure of NTSR1 in complex with NTS8-13 has been determined, providing novel insights into peptide ligand recognition by 7TM receptors. SR48692, a potent and selective small molecule antagonist has previously been used extensively as a tool compound to study NTSR1 receptor signaling properties. To investigate the binding mode of SR48692 and other small molecule compounds to NTSR1, we applied an Automated Ligand-guided Backbone Ensemble Receptor Optimization protocol (ALiBERO), taking receptor flexibility and ligand knowledge into account. Structurally overlapping binding poses for SR48692 and NTS8-13 were observed, despite their distinct chemical nature and inverse pharmacological profiles. The optimized models showed significantly improved ligand recognition in a large-scale virtual screening assessment compared to the crystal structure. Our models provide new insights into small molecule ligand binding to NTSR1 and could facilitate the structure-based design of non-peptide ligands for the evaluation of the pharmacological potential of NTSR1 in neurological disorders and cancer. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Multiple GTP-binding proteins regulate vesicular transport from the ER to Golgi membranes

    PubMed Central

    1992-01-01

    Using indirect immunofluorescence we have examined the effects of reagents which inhibit the function of ras-related rab small GTP- binding proteins and heterotrimeric G alpha beta gamma proteins in ER to Golgi transport. Export from the ER was inhibited by an antibody towards rab1B and an NH2-terminal peptide which inhibits ARF function (Balch, W. E., R. A. Kahn, and R. Schwaninger. 1992. J. Biol. Chem. 267:13053-13061), suggesting that both of these small GTP-binding proteins are essential for the transport vesicle formation. Export from the ER was also potently inhibited by mastoparan, a peptide which mimics G protein binding regions of seven transmembrane spanning receptors activating and uncoupling heterotrimeric G proteins from their cognate receptors. Consistent with this result, purified beta gamma subunits inhibited the export of VSV-G from the ER suggesting an initial event in transport vesicle assembly was regulated by a heterotrimeric G protein. In contrast, incubation in the presence of GTP gamma S or AIF(3-5) resulted in the accumulation of transported protein in different populations of punctate pre-Golgi intermediates distributed throughout the cytoplasm of the cell. Finally, a peptide which is believed to antagonize the interaction of rab proteins with putative downstream effector molecules inhibited transport at a later step preceding delivery to the cis Golgi compartment, similar to the site of accumulation of transported protein in the absence of NSF or calcium (Plutner, H., H. W. Davidson, J. Saraste, and W. E. Balch. 1992. J. Cell Biol. 119:1097-1116). These results are consistent with the hypothesis that multiple GTP-binding proteins including a heterotrimeric G protein(s), ARF and rab1 differentially regulate steps in the transport of protein between early compartments of the secretory pathway. The concept that G protein-coupled receptors gate the export of protein from the ER is discussed. PMID:1447289

  13. Structural Studies of an Engineered Zinc Biosensor Reveal an Unanticipated Mode of Zinc Binding

    SciTech Connect

    Telmer,P.; Shilton, B.

    2005-01-01

    Protein engineering was used previously to convert maltose-binding protein (MBP) into a zinc biosensor. Zn{sup 2+} binding by the engineered MBP was thought to require a large conformational change from 'open' to 'closed', similar to that observed when maltose is bound by the wild-type protein. We show that although this re-designed MBP molecule binds Zn{sup 2+} with high affinity as previously reported, it does not adopt a closed conformation in solution as assessed by small-angle X-ray scattering. High-resolution crystallographic studies of the engineered Zn{sup 2+}-binding MBP molecule demonstrate that Zn{sup 2+} is coordinated by residues on the N-terminal lobe only, and therefore Zn{sup 2+} binding does not require the protein to adopt a fully closed conformation. Additional crystallographic studies indicate that this unexpected Zn{sup 2+} binding site can also coordinate Cu{sup 2+} and Ni{sup 2+} with only subtle changes in the overall conformation of the protein. This work illustrates that the energetic barrier to domain closure, which normally functions to maintain MBP in an open concentration in the absence of ligand, is not easily overcome by protein design. A comparison to the mechanism of maltose-induced domain rearrangement is discussed.

  14. Defective binding of the third component of complement (C3) to Streptococcus pneumoniae in multiple myeloma.

    PubMed

    Cheson, B D; Walker, H S; Heath, M E; Gobel, R J; Janatova, J

    1984-04-01

    Patients with multiple myeloma (MM) are at an increased risk for infections with bacteria that require opsonization with complement. Because Streptococcus pneumoniae is the most frequently encountered pathogen in these patients, we investigated the ability of serum from patients with MM to mediate the binding of C3b, the major opsonin of the complement system, to S. pneumoniae. S. pneumoniae types 3, 14, and 25 were chosen for study, since S. pneumoniae type 3 activates primarily the classical complement pathway (CCP), type 25 primarily the alternative complement pathway (ACP), and type 14 both pathways. S. pneumoniae were treated with normal serum or serum from 17 patients with MM, and the bound C3b was quantified with fluorescein-conjugated anti-C3 in a spectrophotofluorometric assay. Despite normal or elevated serum concentrations of C3, total hemolytic complement, and C-reactive protein in all of the MM sera, factor B in 16/17 such sera, and C4 in 14/17 MM sera studied, all 17 sera demonstrated a defect in C3b binding to type 3 (32.7% +/- 6% of normal). In addition, serum from 15/17 patients bound decreased amounts of C3b to types 14 (39.6% +/- 8%) and 25 (52.2% +/- 8%). Mixing normal serum with MM serum restored MM C3b binding activity to all three S. pneumoniae types, suggesting that the defect was related to a deficiency rather than an inhibitor of C3 activation. Although MM patients are unable to produce specific antibodies to bacterial antigens, the addition of anti-S. pneumoniae antibodies to MM serum did not enhance C3b binding to any of the S. pneumoniae types. However, when S. pneumoniae were opsonized in a mixture of MM serum and C3-depleted normal serum, C3b binding was restored to all three S. pneumoniae types, demonstrating that MM C3 functions normally in the presence of other normal serum factors. In the present studies, the MM C3b binding defect appeared to correlate with the incidence of S. pneumoniae infections. Serum from patients with a

  15. Different binding and recognition modes of GL479, a dual agonist of Peroxisome Proliferator-Activated Receptor α/γ.

    PubMed

    dos Santos, Jademilson Celestino; Bernardes, Amanda; Giampietro, Letizia; Ammazzalorso, Alessandra; De Filippis, Barbara; Amoroso, Rosa; Polikarpov, Igor

    2015-09-01

    Peroxisome Proliferator-Activated Receptors (PPARs) are ligand-dependent transcription factors that control various functions in human organism, including the control of glucose and lipid metabolism. PPARγ is a target of TZD agonists, clinically used to improve insulin sensitivity whereas fibrates, PPARα ligands, lower serum triglyceride levels. We report here the structural studies of GL479, a synthetic dual PPARα/γ agonist, designed by a combination of clofibric acid skeleton and a phenyldiazenyl moiety, as bioisosteric replacement of stilbene group, in complex with both PPARα and PPARγ receptors. GL479 was previously reported as a partial agonist of PPARγ and a full agonist of PPARα with high affinity for both PPARs. Our structural studies reveal different binding modes of GL479 to PPARα and PPARγ, which may explain the distinct activation behaviors observed for each receptor. In both cases the ligand interacts with a Tyr located at helix 12 (H12), resulting in the receptor active conformation. In the complex with PPARα, GL479 occupies the same region of the ligand-binding pocket (LBP) observed for other full agonists, whereas GL479 bound to PPARγ displays a new binding mode. Our results indicate a novel region of PPARs LBP that may be explored for the design of partial agonists as well dual PPARα/γ agonists that combine, simultaneously, the therapeutic effects of the treatment of insulin resistance and dyslipidemia. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. High-efficiency multiple-light-source red-green-blue power combiner with optical waveguide mode coupling technique

    NASA Astrophysics Data System (ADS)

    Sakamoto, J.; Katayose, S.; Watanabe, K.; Itoh, M.; Hashimoto, T.

    2017-02-01

    We propose a very low loss multiple-light-source red-green-blue (RGB) power combiner by optical waveguide mode coupling technique. The combiner consists of a two-step circuit that performs both power coupling and wavelength multiplexing for an RBG multiple-light source. The first step of the circuit combines first R, G, and B as the 0th-order mode. The second step combines second R and G by mode conversion from the 0th-order mode to second-order modes using waveguide mode couplers. We used an even mode configuration to avoid asymmetric deformation of the beam due to interference between the modes. By using all of these coupler functions in the two steps, the circuit provides multiplelight-source (RRGGB) power combining. The combiner was fabricated by silica planar lightwave circuit (PLC) technology. The coupler length is about 4.5 mm, including 2.3 mm for the 0th-order coupler and 2 mm for the secondorder coupler. We estimated the coupling loss of both the 0th-order RGB coupler and second-order RG power coupler to be about 1 dB by evaluating the combined power for the 0th-order RGB couplers and the complementary output powers for mode couplers. To the best of our knowledge, this is the first demonstration of a multiple-light-source RRGGB power combiner using multimode coupling. This method enables us to combine a much larger number of light sources using multi-stage coupling for different modes as well. Moreover, the beam shape can be controlled by mode selection.

  17. Alpha-amylase starch binding domains: cooperative effects of binding to starch granules of multiple tandemly arranged domains.

    PubMed

    Guillén, D; Santiago, M; Linares, L; Pérez, R; Morlon, J; Ruiz, B; Sánchez, S; Rodríguez-Sanoja, R

    2007-06-01

    The Lactobacillus amylovorus alpha-amylase starch binding domain (SBD) is a functional domain responsible for binding to insoluble starch. Structurally, this domain is dissimilar from other reported SBDs because it is composed of five identical tandem modules of 91 amino acids each. To understand adsorption phenomena specific to this SBD, the importance of their modular arrangement in relationship to binding ability was investigated. Peptides corresponding to one, two, three, four, or five modules were expressed as His-tagged proteins. Protein binding assays showed an increased capacity of adsorption as a function of the number of modules, suggesting that each unit of the SBD may act in an additive or synergic way to optimize binding to raw starch.

  18. Heralded generation of single photons entangled in multiple temporal modes with controllable waveforms

    NASA Astrophysics Data System (ADS)

    Gogyan, A.; Sisakyan, N.; Akhmedzhanov, R.; Malakyan, Yu

    2014-11-01

    Time-bin entangled single-photons are highly demanded for long distance quantum communication. We propose a heralded source of tunable narrowband single photons entangled in well-separated multiple temporal modes (time bins) with controllable amplitudes. The detection of a single Stokes photon generated in a cold atomic ensemble via Raman scattering of a weak write pulse heralds the preparation of one spin excitation stored within the atomic medium. A train of read laser pulses deterministically converts the atomic excitation into a single anti-Stokes photon delocalized in multi-time-bins. The waveforms of bins are well-controlled by the read pulse parameters. A scheme to measure the phase coherence across all time bins is suggested.

  19. Speed tracking and synchronization of multiple motors using ring coupling control and adaptive sliding mode control.

    PubMed

    Li, Le-Bao; Sun, Ling-Ling; Zhang, Sheng-Zhou; Yang, Qing-Quan

    2015-09-01

    A new control approach for speed tracking and synchronization of multiple motors is developed, by incorporating an adaptive sliding mode control (ASMC) technique into a ring coupling synchronization control structure. This control approach can stabilize speed tracking of each motor and synchronize its motion with other motors' motion so that speed tracking errors and synchronization errors converge to zero. Moreover, an adaptive law is exploited to estimate the unknown bound of uncertainty, which is obtained in the sense of Lyapunov stability theorem to minimize the control effort and attenuate chattering. Performance comparisons with parallel control, relative coupling control and conventional PI control are investigated on a four-motor synchronization control system. Extensive simulation results show the effectiveness of the proposed control scheme.

  20. Using input command pre-shaping to suppress multiple mode vibration

    NASA Technical Reports Server (NTRS)

    Hyde, James M.; Seering, Warren P.

    1990-01-01

    Spacecraft, space-borne robotic systems, and manufacturing equipment often utilize lightweight materials and configurations that give rise to vibration problems. Prior research has led to the development of input command pre-shapers that can significantly reduce residual vibration. These shapers exhibit marked insensitivity to errors in natural frequency estimates and can be combined to minimize vibration at more than one frequency. This paper presents a method for the development of multiple mode input shapers which are simpler to implement than previous designs and produce smaller system response delays. The new technique involves the solution of a group of simultaneous non-linear impulse constraint equations. The resulting shapers were tested on a model of MACE, an MIT/NASA experimental flexible structure.

  1. Multiple Mechanistically Distinct Modes of Endocannabinoid Mobilization at Central Amygdala Glutamatergic Synapses

    PubMed Central

    Ramikie, Teniel S.; Nyilas, Rita; Bluett, Rebecca J.; Gamble-George, Joyonna C.; Hartley, Nolan D.; Mackie, Ken; Watanabe, Masahiko; Katona, István; Patel, Sachin

    2014-01-01

    SUMMARY The central amygdala (CeA) is a key structure at the limbic-motor interface regulating stress-responses and emotional learning. Endocannabinoid (eCB) signaling is heavily implicated in the regulation of stress-response physiology and emotional learning processes; however, the role of eCBs in the modulation of synaptic efficacy in the CeA is not well understood. Here we describe the subcellular localization of CB1 cannabinoid receptors and eCB synthetic machinery at glutamatergic synapses in the CeA and find that CeA neurons exhibit multiple mechanistically and temporally distinct modes of postsynaptic eCB mobilization. These data identify a prominent role for eCBs in the modulation of excitatory drive to CeA neurons and provide insight into the mechanisms by which eCB signaling and exogenous cannabinoids could regulate stress-responses and emotional learning. PMID:24607231

  2. Universal limiting shape of worn profile under multiple-mode fretting conditions: theory and experimental evidence

    PubMed Central

    Dmitriev, Andrey I.; Voll, Lars B.; Psakhie, Sergey G.; Popov, Valentin L.

    2016-01-01

    We consider multiple-mode fretting wear in a frictional contact of elastic bodies subjected to a small-amplitude oscillation, which may include in-plane and out-of-plane translation, torsion and tilting (“periodic rolling”). While the detailed kinetics of wear depends on the particular loading history and wear mechanism, the final worn shape, under some additional conditions, occurs to be universal for all types and loading and wear mechanisms. This universal form is determined solely by the radius of the permanent stick region and the maximum indentation depth during the loading cycle. We provide experimental evidence for the correctness of the theoretically predicted limiting shape. The existence of the universal limiting shape can be used for designing joints which are resistant to fretting wear. PMID:26979092

  3. Driving modes for designing the cornering response of fully electric vehicles with multiple motors

    NASA Astrophysics Data System (ADS)

    De Novellis, Leonardo; Sorniotti, Aldo; Gruber, Patrick

    2015-12-01

    Fully electric vehicles with multiple drivetrains allow a significant variation of the steady-state and transient cornering responses through the individual control of the electric motor drives. As a consequence, alternative driving modes can be created that provide the driver the option to select the preferred dynamic vehicle behavior. This article presents a torque-vectoring control structure based on the combination of feedforward and feedback contributions for the continuous control of vehicle yaw rate. The controller is specifically developed to be easily implementable on real-world vehicles. A novel model-based procedure for the definition of the control objectives is described in detail, together with the automated tuning process of the algorithm. The implemented control functions are demonstrated with experimental vehicle tests. The results show the possibilities of torque-vectoring control in designing the vehicle understeer characteristic.

  4. Universal limiting shape of worn profile under multiple-mode fretting conditions: theory and experimental evidence

    NASA Astrophysics Data System (ADS)

    Dmitriev, Andrey I.; Voll, Lars B.; Psakhie, Sergey G.; Popov, Valentin L.

    2016-03-01

    We consider multiple-mode fretting wear in a frictional contact of elastic bodies subjected to a small-amplitude oscillation, which may include in-plane and out-of-plane translation, torsion and tilting (“periodic rolling”). While the detailed kinetics of wear depends on the particular loading history and wear mechanism, the final worn shape, under some additional conditions, occurs to be universal for all types and loading and wear mechanisms. This universal form is determined solely by the radius of the permanent stick region and the maximum indentation depth during the loading cycle. We provide experimental evidence for the correctness of the theoretically predicted limiting shape. The existence of the universal limiting shape can be used for designing joints which are resistant to fretting wear.

  5. Modeling the Effect of Multiple Matrix Cracking Modes on Cyclic Hysteresis Loops of 2D Woven Ceramic-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2016-08-01

    In this paper, the effect of multiple matrix cracking modes on cyclic loading/unloading hysteresis loops of 2D woven ceramic-matrix composites (CMCs) has been investigated. The interface slip between fibers and the matrix existed in matrix cracking mode 3 and mode 5, in which matrix cracking and interface debonding occurred in longitudinal yarns, are considered as the major reason for hysteresis loops of 2D woven CMCs. The effects of fiber volume content, peak stress, matrix crack spacing, interface properties, matrix cracking mode proportion and interface wear on interface slip and hysteresis loops have been analyzed. The cyclic loading/unloading hysteresis loops of 2D woven SiC/SiC composite corresponding to different peak stresses have been predicted using the present analysis. It was found that the damage parameter, i.e., the proportion of matrix cracking mode 3 in the entire cracking modes of the composite, increases with increasing peak stress.

  6. Sliding-mode control of single input multiple output DC-DC converter

    NASA Astrophysics Data System (ADS)

    Zhang, Libo; Sun, Yihan; Luo, Tiejian; Wan, Qiyang

    2016-10-01

    Various voltage levels are required in the vehicle mounted power system. A conventional solution is to utilize an independent multiple output DC-DC converter whose cost is high and control scheme is complicated. In this paper, we design a novel SIMO DC-DC converter with sliding mode controller. The proposed converter can boost the voltage of a low-voltage input power source to a controllable high-voltage DC bus and middle-voltage output terminals, which endow the converter with characteristics of simple structure, low cost, and convenient control. In addition, the sliding mode control (SMC) technique applied in our converter can enhance the performances of a certain SIMO DC-DC converter topology. The high-voltage DC bus can be regarded as the main power source to the high-voltage facility of the vehicle mounted power system, and the middle-voltage output terminals can supply power to the low-voltage equipment on an automobile. In the respect of control algorithm, it is the first time to propose the SMC-PID (Proportion Integration Differentiation) control algorithm, in which the SMC algorithm is utilized and the PID control is attended to the conventional SMC algorithm. The PID control increases the dynamic ability of the SMC algorithm by establishing the corresponding SMC surface and introducing the attached integral of voltage error, which endow the sliding-control system with excellent dynamic performance. At last, we established the MATLAB/SIMULINK simulation model, tested performance of the system, and built the hardware prototype based on Digital Signal Processor (DSP). Results show that the sliding mode control is able to track a required trajectory, which has robustness against the uncertainties and disturbances.

  7. Sliding-mode control of single input multiple output DC-DC converter.

    PubMed

    Zhang, Libo; Sun, Yihan; Luo, Tiejian; Wan, Qiyang

    2016-10-01

    Various voltage levels are required in the vehicle mounted power system. A conventional solution is to utilize an independent multiple output DC-DC converter whose cost is high and control scheme is complicated. In this paper, we design a novel SIMO DC-DC converter with sliding mode controller. The proposed converter can boost the voltage of a low-voltage input power source to a controllable high-voltage DC bus and middle-voltage output terminals, which endow the converter with characteristics of simple structure, low cost, and convenient control. In addition, the sliding mode control (SMC) technique applied in our converter can enhance the performances of a certain SIMO DC-DC converter topology. The high-voltage DC bus can be regarded as the main power source to the high-voltage facility of the vehicle mounted power system, and the middle-voltage output terminals can supply power to the low-voltage equipment on an automobile. In the respect of control algorithm, it is the first time to propose the SMC-PID (Proportion Integration Differentiation) control algorithm, in which the SMC algorithm is utilized and the PID control is attended to the conventional SMC algorithm. The PID control increases the dynamic ability of the SMC algorithm by establishing the corresponding SMC surface and introducing the attached integral of voltage error, which endow the sliding-control system with excellent dynamic performance. At last, we established the MATLAB/SIMULINK simulation model, tested performance of the system, and built the hardware prototype based on Digital Signal Processor (DSP). Results show that the sliding mode control is able to track a required trajectory, which has robustness against the uncertainties and disturbances.

  8. Probiotics as beneficial microbes in aquaculture: an update on their multiple modes of action: a review.

    PubMed

    Zorriehzahra, Mohammad Jalil; Delshad, Somayeh Torabi; Adel, Milad; Tiwari, Ruchi; Karthik, K; Dhama, Kuldeep; Lazado, Carlo C

    2016-12-01

    Wide and discriminate use of antibiotics has resulted in serious biological and ecological concerns, especially the emergence of antibiotic resistance. Probiotics, known as beneficial microbes, are being proposed as an effective and eco-friendly alternative to antibiotics. They were first applied in aquaculture species more than three decades ago, but considerable attention had been given only in the early 2000s. Probiotics are defined as live or dead, or even a component of the microorganisms that act under different modes of action in conferring beneficial effects to the host or to its environment. Several probiotics have been characterized and applied in fish and a number of them are of host origin. Unlike some disease control alternatives being adapted and proposed in aquaculture where actions are unilateral, the immense potential of probiotics lies on their multiple mechanisms in conferring benefits to the host fish and the rearing environment. The staggering number of probiotics papers in aquaculture highlights the multitude of advantages from these microorganisms and conspicuously position them in the dynamic search for health-promoting alternatives for cultured fish. This paper provides an update on the use of probiotics in finfish aquaculture, particularly focusing on their modes of action. It explores the contemporary understanding of their spatial and nutritional competitiveness, inhibitory metabolites, environmental modification capability, immunomodulatory potential and stress-alleviating mechanism. This timely update affirms the importance of probiotics in fostering sustainable approaches in aquaculture and provides avenues in furthering its research and development.

  9. Chitinase from Autographa californica multiple nucleopolyhedrovirus: rapid purification from Sf-9 medium and mode of action.

    PubMed

    Fukamizo, Tamo; Sato, Hirokazu; Mizuhara, Mamiko; Ohnuma, Takayuki; Gotoh, Takeshi; Hiwatashi, Kazuyuki; Takahashi, Saori

    2011-01-01

    Autographa californica multiple nucleopolyhedrovirus (AcMNPV) chitinase is involved in the final liquefaction of infected host larvae. We purified the chitinase rapidly to homogeneity from Sf-9 cells infected with AcMNPV by a simple procedure using a pepstatin-aminohexyl-Sepharose column. In past studies, a recombinant AcMNPV chitinase was found to exhibit both exo- and endo-chitinase activities by analysis using artificial substrates with a fluorescent probe. In this study, however, we obtained more accurate information on the mode of action of the chitinase by HPLC analysis of the enzymatic products using natural oligosaccharide and polysaccharide substrates. The AcMNPV chitinase hydrolyzed the second β-1,4 glycosidic linkage from the non-reducing end of the chitin oligosaccharide substrates [(GlcNAc)(n), n=4, 5, and 6], producing the β-anomer of (GlcNAc)₂. The mode of action was similar to that of Serratia marcescens chitinase A (SmChiA), the amino acid sequence of which is 60.5% homologous to that of the AcMNPV enzyme. The enzyme also hydrolyzed solid β-chitin, producing only (GlcNAc)₂. The AcMNPV chitinase processively hydrolyzes solid β-chitin in a manner similar to SmChiA. The processive mechanism of the enzyme appears to be advantageous in liquefaction of infected host larvae.

  10. An under-actuated origami gripper with adjustable stiffness joints for multiple grasp modes

    NASA Astrophysics Data System (ADS)

    Firouzeh, Amir; Paik, Jamie

    2017-05-01

    Under-actuated robots offer multiple degrees of freedom without much added complexity to the actuation and control. Utilizing adjustable stiffness joints in these robots allows us to control their stable configurations and their mode of interaction with the environment. In this paper, we present the design of tendon-driven robotic origami (robogami) joints with adjustable stiffness. The proposed designs allow us to place joints along any direction in the plane of the robot and in the normal direction to the plane. The layer-by-layer manufacturing of robogamis facilitates the design and manufacturing of robots with different arrangement of joints for different applications. We use thermally activated shape memory polymer to control the joint stiffness. The manufacturing of the polymer layer is compatible with the layer-by-layer manufacturing process of the robogamis which results in scalable and customizable robots. To demonstrate, we prototyped an under-actuated gripper with three fingers and only one input actuation. The grasp mode of the gripper is set by adjusting the configuration of the locked joints and modulating the stiffness of the active joints. We present a model to estimate the configuration and the contact forces of the gripper at different settings that will assist us in design and control of future generation of under-actuated robogamis.

  11. Multiple p-n junction subwavelength gratings for transmission-mode electro-optic modulators

    PubMed Central

    Lee, Ki Young; Yoon, Jae Woong; Song, Seok Ho; Magnusson, Robert

    2017-01-01

    We propose a free-space electro-optic transmission modulator based on multiple p-n-junction semiconductor subwavelength gratings. The proposed device operates with a high-Q guided-mode resonance undergoing electro-optic resonance shift due to direct electrical control. Using rigorous electrical and optical modeling methods, we theoretically demonstrate a modulation depth of 84%, on-state efficiency 85%, and on-off extinction ratio of 19 dB at 1,550 nm wavelength under electrical control signals within a favorably low bias voltage range from −4 V to +1 V. This functionality operates in the transmission mode and sustainable in the high-speed operation regime up to a 10-GHz-scale modulation bandwidth in principle. The theoretical performance prediction is remarkably advantageous over plasmonic tunable metasurfaces in the power-efficiency and absolute modulation-depth aspects. Therefore, further experimental study is of great interest for creating practical-level metasurface components in various application areas. PMID:28417962

  12. Multiple Modes of Action of the Squamocin in the Midgut Cells of Aedes aegypti Larvae

    PubMed Central

    de Paula, Sérgio Oliveira; Martins, Gustavo Ferreira; Zanuncio, José Cola

    2016-01-01

    Annonaceous acetogenins are botanical compounds with good potential for use as insecticides. In the vector, Aedes aegypti (L.) (Diptera: Culicidae), squamocin (acetogenin) has been reported to be a larvicide and cytotoxic, but the modes of action of this molecule are still poorly understood. This study evaluated the changes in the cell morphology, and in the expression of genes, for autophagy (Atg1 and Atg8), for membrane ion transporter V-ATPase, and for water channel aquaporin-4 (Aqp4) in the midgut of A. aegypti larvae exposed to squamocin from Annona mucosa Jacq. (Annonaceae). Squamocin showed cytotoxic action with changes in the midgut epithelium and digestive cells of A. aegypti larvae, increase in the expression for autophagy gene Atg1 and Atg8, decrease in the expression of V-ATPase, decrease in the expression of Aqp4 gene in LC20 and inhibition of Apq4 genes in the midgut of this vector in LC50. These multiple modes of action for squamocin are described for the first time in insects, and they are important because different sites of action of squamocin from A. mucosa may reduce the possibility of resistance of A. aegypti to this molecule. PMID:27532504

  13. A comprehensive approach to ascertain the binding mode of curcumin with DNA

    NASA Astrophysics Data System (ADS)

    Haris, P.; Mary, Varughese; Aparna, P.; Dileep, K. V.; Sudarsanakumar, C.

    2017-03-01

    Curcumin is a natural phytochemical from the rhizoma of Curcuma longa, the popular Indian spice that exhibits a wide range of pharmacological properties like antioxidant, anticancer, anti-inflammatory, antitumor, and antiviral activities. In the published literatures we can see different studies and arguments on the interaction of curcumin with DNA. The intercalative binding, groove binding and no binding of curcumin with DNA were reported. In this context, we conducted a detailed study to understand the mechanism of recognition of dimethylsulfoxide-solubilized curcumin by DNA. The interaction of curcumin with calf thymus DNA (ctDNA) was confirmed by agarose gel electrophoresis. The nature of binding and energetics of interaction were studied by Isothermal Titration Calorimetry (ITC), Differential Scanning Calorimetry (DSC), UV-visible, fluorescence and melting temperature (Tm) analysis. The experimental data were compared with molecular modeling studies. Our investigation confirmed that dimethylsulfoxide-solubilized curcumin binds in the minor groove of the ctDNA without causing significant structural alteration to the DNA.

  14. Binding modes of decavanadate to myosin and inhibition of the actomyosin ATPase activity.

    PubMed

    Tiago, Teresa; Martel, Paulo; Gutiérrez-Merino, Carlos; Aureliano, Manuel

    2007-04-01

    Decavanadate, a vanadate oligomer, is known to interact with myosin and to inhibit the ATPase activity, but the putative binding sites and the mechanism of inhibition are still to be clarified. We have previously proposed that the decavanadate (V(10)O(28)(6-)) inhibition of the actin-stimulated myosin ATPase activity is non-competitive towards both actin and ATP. A likely explanation for these results is that V(10) binds to the so-called back-door at the end of the Pi-tube opposite to the nucleotide-binding site. In order to further investigate this possibility, we have carried out molecular docking simulations of the V(10) oligomer on three different structures of the myosin motor domain of Dictyostelium discoideum, representing distinct states of the ATPase cycle. The results indicate a clear preference of V(10) to bind at the back-door, but only on the "open" structures where there is access to the phosphate binding-loop. It is suggested that V(10) acts as a "back-door stop" blocking the closure of the 50-kDa cleft necessary to carry out ATP-gamma-phosphate hydrolysis. This provides a simple explanation to the non-competitive behavior of V(10) and spurs the use of the oligomer as a tool to elucidate myosin back-door conformational changes in the process of muscle contraction.

  15. The complex binding mode of the peptide hormone H2 relaxin to its receptor RXFP1

    PubMed Central

    Sethi, Ashish; Bruell, Shoni; Patil, Nitin; Hossain, Mohammed Akhter; Scott, Daniel J.; Petrie, Emma J.; Bathgate, Ross A. D.; Gooley, Paul R.

    2016-01-01

    H2 relaxin activates the relaxin family peptide receptor-1 (RXFP1), a class A G-protein coupled receptor, by a poorly understood mechanism. The ectodomain of RXFP1 comprises an N-terminal LDLa module, essential for activation, tethered to a leucine-rich repeat (LRR) domain by a 32-residue linker. H2 relaxin is hypothesized to bind with high affinity to the LRR domain enabling the LDLa module to bind and activate the transmembrane domain of RXFP1. Here we define a relaxin-binding site on the LDLa-LRR linker, essential for the high affinity of H2 relaxin for the ectodomain of RXFP1, and show that residues within the LDLa-LRR linker are critical for receptor activation. We propose H2 relaxin binds and stabilizes a helical conformation of the LDLa-LRR linker that positions residues of both the linker and the LDLa module to bind the transmembrane domain and activate RXFP1. PMID:27088579

  16. A comprehensive approach to ascertain the binding mode of curcumin with DNA.

    PubMed

    Haris, P; Mary, Varughese; Aparna, P; Dileep, K V; Sudarsanakumar, C

    2017-03-15

    Curcumin is a natural phytochemical from the rhizoma of Curcuma longa, the popular Indian spice that exhibits a wide range of pharmacological properties like antioxidant, anticancer, anti-inflammatory, antitumor, and antiviral activities. In the published literatures we can see different studies and arguments on the interaction of curcumin with DNA. The intercalative binding, groove binding and no binding of curcumin with DNA were reported. In this context, we conducted a detailed study to understand the mechanism of recognition of dimethylsulfoxide-solubilized curcumin by DNA. The interaction of curcumin with calf thymus DNA (ctDNA) was confirmed by agarose gel electrophoresis. The nature of binding and energetics of interaction were studied by Isothermal Titration Calorimetry (ITC), Differential Scanning Calorimetry (DSC), UV-visible, fluorescence and melting temperature (Tm) analysis. The experimental data were compared with molecular modeling studies. Our investigation confirmed that dimethylsulfoxide-solubilized curcumin binds in the minor groove of the ctDNA without causing significant structural alteration to the DNA.

  17. Structure of bacterial transcription factor SpoIIID and evidence for a novel mode of DNA binding.

    PubMed

    Chen, Bin; Himes, Paul; Liu, Yu; Zhang, Yang; Lu, Zhenwei; Liu, Aizhuo; Yan, Honggao; Kroos, Lee

    2014-06-01

    SpoIIID is evolutionarily conserved in endospore-forming bacteria, and it activates or represses many genes during sporulation of Bacillus subtilis. An SpoIIID monomer binds DNA with high affinity and moderate sequence specificity. In addition to a predicted helix-turn-helix motif, SpoIIID has a C-terminal basic region that contributes to DNA binding. The nuclear magnetic resonance (NMR) solution structure of SpoIIID in complex with DNA revealed that SpoIIID does indeed have a helix-turn-helix domain and that it has a novel C-terminal helical extension. Residues in both of these regions interact with DNA, based on the NMR data and on the effects on DNA binding in vitro of SpoIIID with single-alanine substitutions. These data, as well as sequence conservation in SpoIIID binding sites, were used for information-driven docking to model the SpoIIID-DNA complex. The modeling resulted in a single cluster of models in which the recognition helix of the helix-turn-helix domain interacts with the major groove of DNA, as expected. Interestingly, the C-terminal extension, which includes two helices connected by a kink, interacts with the adjacent minor groove of DNA in the models. This predicted novel mode of binding is proposed to explain how a monomer of SpoIIID achieves high-affinity DNA binding. Since SpoIIID is conserved only in endospore-forming bacteria, which include important pathogenic Bacilli and Clostridia, whose ability to sporulate contributes to their environmental persistence, the interaction of the C-terminal extension of SpoIIID with DNA is a potential target for development of sporulation inhibitors.

  18. A productive NADP+ binding mode of ferredoxin-NADP + reductase revealed by protein engineering and crystallographic studies.

    PubMed

    Deng, Z; Aliverti, A; Zanetti, G; Arakaki, A K; Ottado, J; Orellano, E G; Calcaterra, N B; Ceccarelli, E A; Carrillo, N; Karplus, P A

    1999-09-01

    The flavoenzyme ferredoxin-NADP+ reductase (FNR) catalyzes the production of NADPH during photosynthesis. Whereas the structures of FNRs from spinach leaf and a cyanobacterium as well as many of their homologs have been solved, none of these studies has yielded a productive geometry of the flavin-nicotinamide interaction. Here, we show that this failure occurs because nicotinamide binding to wild type FNR involves the energetically unfavorable displacement of the C-terminal Tyr side chain. We used mutants of this residue (Tyr 308) of pea FNR to obtain the structures of productive NADP+ and NADPH complexes. These structures reveal a unique NADP+ binding mode in which the nicotinamide ring is not parallel to the flavin isoalloxazine ring, but lies against it at an angle of approximately 30 degrees, with the C4 atom 3 A from the flavin N5 atom.

  19. Binding mode similarity measures for ranking of docking poses: a case study on the adenosine A2A receptor

    NASA Astrophysics Data System (ADS)

    Anighoro, Andrew; Bajorath, Jürgen

    2016-06-01

    We report an investigation designed to explore alternative approaches for ranking of docking poses in the search for antagonists of the adenosine A2A receptor, an attractive target for structure-based virtual screening. Calculation of 3D similarity of docking poses to crystallographic ligand(s) as well as similarity of receptor-ligand interaction patterns was consistently superior to conventional scoring functions for prioritizing antagonists over decoys. Moreover, the use of crystallographic antagonists and agonists, a core fragment of an antagonist, and a model of an agonist placed into the binding site of an antagonist-bound form of the receptor resulted in a significant early enrichment of antagonists in compound rankings. Taken together, these findings showed that the use of binding modes of agonists and/or antagonists, even if they were only approximate, for similarity assessment of docking poses or comparison of interaction patterns increased the odds of identifying new active compounds over conventional scoring.

  20. Structure of malonic acid-based inhibitors bound to human neutrophil collagenase. A new binding mode explains apparently anomalous data.

    PubMed Central

    Brandstetter, H.; Engh, R. A.; Von Roedern, E. G.; Moroder, L.; Huber, R.; Bode, W.; Grams, F.

    1998-01-01

    Matrix metalloproteinases (MMPs) are a family of zinc endopeptidases, which have been implicated in various disease processes. Various classes of MMP inhibitors, including hydroxamic acids, phosphinic acids, and thiols, have been previously described. Most of these mimic peptides, and most likely bind analogous to the corresponding peptide substrates. Among the hydroxamic acids, malonic acid derivatives have been used as MMP inhibitors, although optimization of their inhibition potency was not successful. Here we report the design of malonic acid-based inhibitors using the X-ray structure of a collagenase/inhibitor complex, which revealed a nonsubstrate-like binding mode. The proposed beta-type turn-like conformation for the improved inhibitors was confirmed by X-ray crystallography. The observation of nonsubstrate-like binding confirms the original strategy for structure-based modeling of improved malonic acid inhibitors, and explains kinetic data that are inconsistent with substrate-like binding. Detailed interactions for the improved inhibitors seen in the crystal structure also suggest possibilities for further modifications in cycles of structure based drug design. Indeed, we have designed nonpeptidic inhibitors with approximately 500-fold improved inhibition based on these structures. PMID:9655333

  1. Conserved ETS domain arginines mediate DNA binding, nuclear localization, and a novel mode of bZIP interaction.

    PubMed

    Listman, James A; Wara-aswapati, Nawarat; Race, JoAnne E; Blystone, Lisa W; Walker-Kopp, Nancy; Yang, Zhiyong; Auron, Philip E

    2005-12-16

    The DNA-binding ETS transcription factor Spi-1/PU.1 is of central importance in determining the myeloid-erythroid developmental switch and is required for monocyte and osteoclast differentiation. Many monocyte genes are dependent upon this factor, including the gene that codes for interleukin-1beta. It has long been known that the conserved ETS DNA-binding domain of Spi-1/PU.1 functionally cooperates via direct association with a diverse collection of DNA-binding proteins, including members of the basic leucine zipper domain (bZIP) family. However, the molecular basis for this interaction has long been elusive. Using a combination of approaches, we have mapped a single residue on the surface of the ETS domain critical for protein tethering by the C/EBPbeta carboxyl-terminal bZIP domain. This residue is also important for nuclear localization and DNA binding. In addition, dependence upon the leucine zipper suggests a novel mode for both protein-DNA interaction and functional cooperativity.

  2. Quest for the binding mode of tetrabromobisphenol A with Calf thymus DNA

    NASA Astrophysics Data System (ADS)

    Wang, Yan-Qing; Zhang, Hong-Mei; Cao, Jian

    2014-10-01

    The binding interaction of tetrabromobisphenol A with Calf thymus DNA was studied by multi-spectroscopic and molecular modeling methods. The UV-vis study revealed that an obvious interaction between tetrabromobisphenol A and Calf thymus DNA happened. The π-π∗ transitions and the electron cloud of tetrabromobisphenol A might be changed by entering the groove of Calf thymus DNA. From the fluorescence spectral and thermodynamics studies, it was concluded that the hydrogen bonds and hydrophobic force played a major role in the binding of tetrabromobisphenol A to Calf thymus DNA. The molecular modeling study showed that the possible sites of tetrabromobisphenol A in the groove of DNA. Circular dichroism study also depicted that tetrabromobisphenol A bond to DNA. These above results would further advance our knowledge on the molecular mechanism of the binding interactions of brominated flame-retardants with nucleic acid.

  3. Characterization of nicotine binding to the rat brain P/sub 2/ preparation: the identification of multiple binding sites which include specific up-regulatory site(s)

    SciTech Connect

    Sloan, J.W.

    1984-01-01

    These studies show that nicotine binds to the rat brain P/sub 2/ preparation by saturable and reversible processes. Multiple binding sites were revealed by the configuration of saturation, kinetic and Scatchard plots. A least squares best fit of Scatchard data using nonlinear curve fitting programs confirmed the presence of a very high affinity site, an up-regulatory site, a high affinity site and one or two low affinity sites. Stereospecificity was demonstrated for the up-regulatory site where (+)-nicotine was more effective and for the high affinity site where (-)-nicotine had a higher affinity. Drugs which selectively up-regulate nicotine binding site(s) have been identified. Further, separate very high and high affinity sites were identified for (-)- and (+)-(/sup 3/H)nicotine, based on evidence that the site density for the (-)-isomer is 10 times greater than that for the (+)-isomer at these sites. Enhanced nicotine binding has been shown to be a statistically significant phenomenon which appears to be a consequence of drugs binding to specific site(s) which up-regulate binding at other site(s). Although Scatchard and Hill plots indicate positive cooperatively, up-regulation more adequately describes the function of these site(s). A separate up-regulatory site is suggested by the following: (1) Drugs vary markedly in their ability to up-regulate binding. (2) Both the affinity and the degree of up-regulation can be altered by structural changes in ligands. (3) Drugs with specificity for up-regulation have been identified. (4) Some drugs enhance binding in a dose-related manner. (5) Competition studies employing cold (-)- and (+)-nicotine against (-)- and (+)-(/sup 3/H)nicotine show that the isomers bind to separate sites which up-regulate binding at the (-)- and (+)-nicotine high affinity sites and in this regard (+)-nicotine is more specific and efficacious than (-)-nicotine.

  4. [Exploration on scientific connotation of compatibility of Zuojin Wan based on "disease-syndromes-formulas-medicines" binding mode].

    PubMed

    Zhao, Ping; Xu, Jun; Zhang, Tiejun; Xu, Haiyu; Niu, Chenjin

    2011-12-01

    "Disease-syndromes-formulas-medicines" binding mode is benefit to reveal the scientific connotation of the compatibility and mechanism of classical prescriptions of traditional Chinese medicine (TCM). In this article, Zuojin Wan was used as a model prescription, with the etiology and pathogenesis of liver-fire invading stomach in TCM, and modern pathological and pharmacological interpretation, the compatibility, nature-flavour, channel tropism, the active substance and pharmacology of Zuojin Wan were explained, in order to reveal the compatibility, nature-flavour and channel tropism of Zuojin Wan, and to provide ideas for the development of modern compound prescription.

  5. Specificity profiling of dual specificity phosphatase vaccinia VH1-related (VHR) reveals two distinct substrate binding modes.

    PubMed

    Luechapanichkul, Rinrada; Chen, Xianwen; Taha, Hashem A; Vyas, Shubham; Guan, Xiaoyan; Freitas, Michael A; Hadad, Christopher M; Pei, Dehua

    2013-03-01

    Vaccinia VH1-related (VHR) is a dual specificity phosphatase that consists of only a single catalytic domain. Although several protein substrates have been identified for VHR, the elements that control the in vivo substrate specificity of this enzyme remain unclear. In this work, the in vitro substrate specificity of VHR was systematically profiled by screening combinatorial peptide libraries. VHR exhibits more stringent substrate specificity than classical protein-tyrosine phosphatases and recognizes two distinct classes of Tyr(P) peptides. The class I substrates are similar to the Tyr(P) motifs derived from the VHR protein substrates, having sequences of (D/E/ϕ)(D/S/N/T/E)(P/I/M/S/A/V)pY(G/A/S/Q) or (D/E/ϕ)(T/S)(D/E)pY(G/A/S/Q) (where ϕ is a hydrophobic amino acid and pY is phosphotyrosine). The class II substrates have the consensus sequence of (V/A)P(I/L/M/V/F)X1-6pY (where X is any amino acid) with V/A preferably at the N terminus of the peptide. Site-directed mutagenesis and molecular modeling studies suggest that the class II peptides bind to VHR in an opposite orientation relative to the canonical binding mode of the class I substrates. In this alternative binding mode, the Tyr(P) side chain binds to the active site pocket, but the N terminus of the peptide interacts with the carboxylate side chain of Asp(164), which normally interacts with the Tyr(P) + 3 residue of a class I substrate. Proteins containing the class II motifs are efficient VHR substrates in vitro, suggesting that VHR may act on a novel class of yet unidentified Tyr(P) proteins in vivo.

  6. Multiple Evolutionary Origins of Ubiquitous Cu2+ and Zn2+ Binding in the S100 Protein Family

    PubMed Central

    Wheeler, Lucas C.; Donor, Micah T.; Prell, James S.

    2016-01-01

    The S100 proteins are a large family of signaling proteins that play critical roles in biology and disease. Many S100 proteins bind Zn2+, Cu2+, and/or Mn2+ as part of their biological functions; however, the evolutionary origins of binding remain obscure. One key question is whether divalent transition metal binding is ancestral, or instead arose independently on multiple lineages. To tackle this question, we combined phylogenetics with biophysical characterization of modern S100 proteins. We demonstrate an earlier origin for established S100 subfamilies than previously believed, and reveal that transition metal binding is widely distributed across the tree. Using isothermal titration calorimetry, we found that Cu2+ and Zn2+ binding are common features of the family: the full breadth of human S100 paralogs—as well as two early-branching S100 proteins found in the tunicate Oikopleura dioica—bind these metals with μM affinity and stoichiometries ranging from 1:1 to 3:1 (metal:protein). While binding is consistent across the tree, structural responses to binding are quite variable. Further, mutational analysis and structural modeling revealed that transition metal binding occurs at different sites in different S100 proteins. This is consistent with multiple origins of transition metal binding over the evolution of this protein family. Our work reveals an evolutionary pattern in which the overall phenotype of binding is a constant feature of S100 proteins, even while the site and mechanism of binding is evolutionarily labile. PMID:27764152

  7. Multiple modes of phase locking between sniffing and whisking during active exploration

    PubMed Central

    Ranade, Sachin; Hangya, Balázs; Kepecs, Adam

    2013-01-01

    Sense organs are often actively controlled by motor processes and such active sensing profoundly shapes the timing of sensory information flow. The temporal coordination between different active sensing processes is less well understood but is essential for multisensory integration, coordination between brain regions, and energetically optimal sampling strategies. Here we studied the coordination between sniffing and whisking, the motor processes in rodents that control the acquisition of smell and touch information, respectively. Sniffing, high frequency respiratory bouts, and whisking, rapid back and forth movements of mystacial whiskers, occur in the same theta frequency range (4-12 Hz) leading to a hypothesis that these sensorimotor rhythms are phase-locked. To test this, we monitored sniffing using a thermocouple in the nasal cavity and whisking with an electromyogram (EMG) of the mystacial pad in rats engaged in an open field reward foraging behavior. During bouts of exploration, sniffing and whisking showed strong one-to-one phase-locking within the theta frequency range (4-12 Hz). Interestingly, we also observed multi-mode phase-locking with multiple whisks within a sniff cycle or multiple sniffs within a whisk cycle – always at the same preferred phase. This specific phase relationship coupled the acquisition phases of the two sensorimotor rhythms, inhalation and whisker protraction. Our results suggest that sniffing and whisking may be under the control of interdependent rhythm generators that dynamically coordinate active acquisition of olfactory and somatosensory information. PMID:23658164

  8. MONKEY: Identifying conserved transcription-factor binding sitesin multiple alignments using a binding site-specific evolutionarymodel

    SciTech Connect

    Moses, Alan M.; Chiang, Derek Y.; Pollard, Daniel A.; Iyer, VenkyN.; Eisen, Michael B.

    2004-10-28

    We introduce a method (MONKEY) to identify conserved transcription-factor binding sites in multispecies alignments. MONKEY employs probabilistic models of factor specificity and binding site evolution, on which basis we compute the likelihood that putative sites are conserved and assign statistical significance to each hit. Using genomes from the genus Saccharomyces, we illustrate how the significance of real sites increases with evolutionary distance and explore the relationship between conservation and function.

  9. Multiple DNA Binding Domains Mediate the Function of the ERCC1-XPF Protein in Nucleotide Excision Repair*

    PubMed Central

    Su, Yan; Orelli, Barbara; Madireddy, Advaitha; Niedernhofer, Laura J.; Schärer, Orlando D.

    2012-01-01

    ERCC1-XPF is a heterodimeric, structure-specific endonuclease that cleaves single-stranded/double-stranded DNA junctions and has roles in nucleotide excision repair (NER), interstrand crosslink (ICL) repair, homologous recombination, and possibly other pathways. In NER, ERCC1-XPF is recruited to DNA lesions by interaction with XPA and incises the DNA 5′ to the lesion. We studied the role of the four C-terminal DNA binding domains in mediating NER activity and cleavage of model substrates. We found that mutations in the helix-hairpin-helix domain of ERCC1 and the nuclease domain of XPF abolished cleavage activity on model substrates. Interestingly, mutations in multiple DNA binding domains were needed to significantly diminish NER activity in vitro and in vivo, suggesting that interactions with proteins in the NER incision complex can compensate for some defects in DNA binding. Mutations in DNA binding domains of ERCC1-XPF render cells more sensitive to the crosslinking agent mitomycin C than to ultraviolet radiation, suggesting that the ICL repair function of ERCC1-XPF requires tighter substrate binding than NER. Our studies show that multiple domains of ERCC1-XPF contribute to substrate binding, and are consistent with models of NER suggesting that multiple weak protein-DNA and protein-protein interactions drive progression through the pathway. Our findings are discussed in the context of structural studies of individual domains of ERCC1-XPF and of its role in multiple DNA repair pathways. PMID:22547097

  10. Hedgehog Pathway Modulation by Multiple Lipid Binding Sites on the Smoothened Effector of Signal Response

    PubMed Central

    Myers, Benjamin R.; Sever, Navdar; Chong, Yong Chun; Kim, James; Belani, Jitendra D.; Rychnovsky, Scott; Bazan, J. Fernando; Beachy, Philip A.

    2014-01-01

    Summary Hedgehog (Hh) signaling during development and in postembryonic tissues requires activation of the 7TM oncoprotein Smoothened (Smo), by mechanisms that may involve endogenous lipidic modulators. Exogenous Smo ligands previously identified include the plant sterol cyclopamine (and its therapeutically useful synthetic mimics) and hydroxylated cholesterol derivatives (oxysterols); Smo is also highly sensitive to cellular sterol levels. The relationships between these effects are unclear because the relevant Smo structural determinants are unknown. We identify the conserved extracellular cysteine rich domain (CRD) as the site of action for oxysterols on Smo, involving residues structurally analogous to those contacting the Wnt lipid adduct in the homologous Frizzled CRD; this modulatory effect is distinct from that of cyclopamine mimics, from Hh-mediated regulation, and from the permissive action of cellular sterol pools. These results imply that Hh pathway activity is sensitive to lipid binding at several Smo sites, suggesting mechanisms for tuning by multiple physiological inputs. PMID:23954590

  11. Multiple Plasmodium falciparum Merozoite Surface Protein 1 Complexes Mediate Merozoite Binding to Human Erythrocytes.

    PubMed

    Lin, Clara S; Uboldi, Alessandro D; Epp, Christian; Bujard, Hermann; Tsuboi, Takafumi; Czabotar, Peter E; Cowman, Alan F

    2016-04-01

    Successful invasion of human erythrocytes byPlasmodium falciparummerozoites is required for infection of the host and parasite survival. The early stages of invasion are mediated via merozoite surface proteins that interact with human erythrocytes. The nature of these interactions are currently not well understood, but it is known that merozoite surface protein 1 (MSP1) is critical for successful erythrocyte invasion. Here we show that the peripheral merozoite surface proteins MSP3, MSP6, MSPDBL1, MSPDBL2, and MSP7 bind directly to MSP1, but independently of each other, to form multiple forms of the MSP1 complex on the parasite surface. These complexes have overlapping functions that interact directly with human erythrocytes. We also show that targeting the p83 fragment of MSP1 using inhibitory antibodies inhibits all forms of MSP1 complexes and disrupts parasite growthin vitro.

  12. DNA binding, DNA cleavage and cytotoxicity studies of a new water soluble copper(II) complex: The effect of ligand shape on the mode of binding

    NASA Astrophysics Data System (ADS)

    Kashanian, Soheila; Khodaei, Mohammad Mehdi; Roshanfekr, Hamideh; Shahabadi, Nahid; Mansouri, Ghobad

    2012-02-01

    The interaction of native calf thymus DNA (CT-DNA) with [Cu(ph 2phen)(phen-dione)Cl]Cl was studied at physiological pH by spectrophotometric, spectrofluorometric, circular dichroism, and viscometric techniques. Considerable hypochromicity and red shift are observed in the UV absorption band of the Cu complex. Binding constants ( Kb) of DNA with the complex were calculated at different temperatures. Thermodynamic parameters, enthalpy and entropy changes were calculated according to Van't Hoff equation, which indicated that reaction is predominantly enthalpically driven. All these results indicate that Cu(II) complex interacts with CT-DNA via intercalative mode. Also, this new complex induced cleavage in pUC18 plasmid DNA as indicated in gel electrophoresis and showed excellent antitumor activity against K562 (human chronic myeloid leukemia) and human T lymphocyte carcinoma-Jurkat cell lines.

  13. Synergistic effects of multiple treatments, and both DNA and RNA direct bindings on, green tea catechins.

    PubMed

    Kuzuhara, Takashi; Tanabe, Akitoshi; Sei, Yoshihisa; Yamaguchi, Kentaro; Suganuma, Masami; Fujiki, Hirota

    2007-08-01

    This article reviews two main topics: (1) the synergistic effects of multiple treatments with green tea catechin and (2) the direct binding of (-)-epigallocatechin gallate (EGCG) to both DNA and RNA molecules. Japanese drink green tea throughout the day, so we studied whether multiple treatments of cells with EGCG would enhance the expression of apoptosis-related genes, such as growth arrest and DNA damage-inducible gene (GADD153) and cyclin-dependent kinase inhibitor gene (p21(waf1)): The results suggest that the synergistic enhancement of both GADD153 and p21(waf1) gene expressions by multiple treatments plays a significant role in human cancer prevention with green tea beverage. Our previous observation-that nucleic acids extracted from catechin-treated cells are colored-allowed us to speculate that catechins directly interact with nucleic acids. Surface plasmon resonance assay (Biacore) indicated that four catechins, EGCG, (-)-epicatechin gallate (ECG), (+)-gallocatechin gallate (GCG), and (+)-catechin gallate (CG), bound to DNA oligomers. Cold spray ionization mass spectrometry (CSI-MS) analysis showed that one to three EGCG molecules bound to single-stranded 18 mers of DNA and RNA. Moreover, one or two molecules of EGCG bound to double-stranded AG:CT oligomers of various nucleotide lengths. Double-stranded DNA (dsDNA) oligomers were detected only as EGCG-bound forms at high temperature, whereas at low temperature both the free and bound forms were detected, suggesting that EGCG protects double-stranded DNA oligomers from double-stranded melting into single-stranded DNA. We assume that catechins accumulate in both double-stranded DNA and RNA molecules through multiple administrations of green tea beverage in in vivo, and that the accumulated green tea catechins play a significant role for human cancer prevention.

  14. PEPTIDE BINDING AS A MODE OF ACTION FOR THE CARCINOGENICITY AND TOXICITY OF ARSENIC

    EPA Science Inventory

    Arsenic exposure leads to tumors in human skin, lung, urinary bladder, kidney and liver. Three likely initial stages of arsenical-macromolecular interaction are (1) binding of trivalent arsenicals to the sulfhydryl groups of peptides and proteins, (2) arsenical-induced generation...

  15. PEPTIDE BINDING AS A MODE OF ACTION FOR THE CARCINOGENICITY AND TOXICITY OF ARSENIC

    EPA Science Inventory

    Arsenic exposure leads to tumors in human skin, lung, urinary bladder, kidney and liver. Three likely initial stages of arsenical-macromolecular interaction are (1) binding of trivalent arsenicals to the sulfhydryl groups of peptides and proteins, (2) arsenical-induced generation...

  16. MtrA of the sodium ion pumping methyltransferase binds cobalamin in a unique mode

    PubMed Central

    Wagner, Tristan; Ermler, Ulrich; Shima, Seigo

    2016-01-01

    In the three domains of life, vitamin B12 (cobalamin) is primarily used in methyltransferase and isomerase reactions. The methyltransferase complex MtrA–H of methanogenic archaea has a key function in energy conservation by catalysing the methyl transfer from methyl-tetrahydromethanopterin to coenzyme M and its coupling with sodium-ion translocation. The cobalamin-binding subunit MtrA is not homologous to any known B12-binding proteins and is proposed as the motor of the sodium-ion pump. Here, we present crystal structures of the soluble domain of the membrane-associated MtrA from Methanocaldococcus jannaschii and the cytoplasmic MtrA homologue/cobalamin complex from Methanothermus fervidus. The MtrA fold corresponds to the Rossmann-type α/β fold, which is also found in many cobalamin-containing proteins. Surprisingly, the cobalamin-binding site of MtrA differed greatly from all the other cobalamin-binding sites. Nevertheless, the hydrogen-bond linkage at the lower axial-ligand site of cobalt was equivalently constructed to that found in other methyltransferases and mutases. A distinct polypeptide segment fixed through the hydrogen-bond linkage in the relaxed Co(III) state might be involved in propagating the energy released upon corrinoid demethylation to the sodium-translocation site by a conformational change. PMID:27324530

  17. Assessing protein-ligand binding modes with computational tools: the case of PDE4B

    NASA Astrophysics Data System (ADS)

    Çifci, Gülşah; Aviyente, Viktorya; Akten, E. Demet; Monard, Gerald

    2017-06-01

    In a first step in the discovery of novel potent inhibitor structures for the PDE4B family with limited side effects, we present a protocol to rank newly designed molecules through the estimation of their IC_{50} values. Our protocol is based on reproducing the linear relationship between the logarithm of experimental IC_{50} values [log(IC_{50})] and their calculated binding free energies (Δ G_binding). From 13 known PDE4B inhibitors, we show here that (1) binding free energies obtained after a docking process by AutoDock are not accurate enough to reproduce this linear relationship; (2) MM-GB/SA post-processing of molecular dynamics (MD) trajectories of the top ranked AutoDock pose improves the linear relationship; (3) by taking into account all representative structures obtained by AutoDock and by averaging MM-GB/SA computations on a series of 40 independent MD trajectories, a linear relationship between log(IC_{50}) and the lowest Δ G_binding is achieved with R^2=0.944.

  18. RANKL employs distinct binding modes to engage RANK and the osteoprotegerin decoy receptor.

    PubMed

    Nelson, Christopher A; Warren, Julia T; Wang, Michael W-H; Teitelbaum, Steven L; Fremont, Daved H

    2012-11-07

    Osteoprotegerin (OPG) and receptor activator of nuclear factor κB (RANK) are members of the tumor necrosis factor receptor (TNFR) superfamily that regulate osteoclast formation and function by competing for RANK ligand (RANKL). RANKL promotes osteoclast development through RANK activation, while OPG inhibits this process by sequestering RANKL. For comparison, we solved crystal structures of RANKL with RANK and RANKL with OPG. Complementary biochemical and functional studies reveal that the monomeric cytokine-binding region of OPG binds RANKL with ∼500-fold higher affinity than RANK and inhibits RANKL-stimulated osteoclastogenesis ∼150 times more effectively, in part because the binding cleft of RANKL makes unique contacts with OPG. Several side chains as well as the C-D and D-E loops of RANKL occupy different orientations when bound to OPG versus RANK. High affinity OPG binding requires a 90s loop Phe residue that is mutated in juvenile Paget's disease. These results suggest cytokine plasticity may help to fine-tune specific tumor necrosis factor (TNF)-family cytokine/receptor pair selectivity.

  19. Multiple ion binding sites in Ih channels of rod photoreceptors from tiger salamanders.

    PubMed

    Wollmuth, L P

    1995-05-01

    The mechanism of ion permeation in K+/Na(+)-permeable Ih channels of tiger salamander rod photoreceptors was investigated using the whole-cell voltage-clamp technique. Ih channels showed features indicative of pores with multiple ion binding sites: in mixtures of K+ and thallium (T1+), the amplitude of the time-dependent current showed an anomalous mole fraction dependence, and K+ permeation was blocked by other permeant ions (with K0.5 values: T1+, 44 microM; Rb+, 220 microM and NH4+, 1100 microM) as well as by essentially impermeant ions (Cs+, 22 microM Ba2+, 9200 microM) which apparently block Ih by binding in the pore. In contrast, Na+ had little blocking action on K+ permeation. The block by all of these ions was sensitive to external K+ with the block by Cs+ being the least sensitive. Na+ was more effective than K+ in reducing the block by T1+, Rb+ and NH4+, but was less effective for the block by Cs+ and Ba2+. The blocking action of Cs+ and Ba2+ was non-competitive, suggesting that they block Ih channels at independent sites. Based on the efficacy of block by the different ions, the degree to which K+ and Na+ antagonize this block and the noncompetitive blocking action of Cs+ and Ba2+, the permeation pathway of Ih channels appears to contain at least three ion binding sites with at least two sites having a higher affinity for K+ over Na+ and another site with a higher affinity for Na+ over K+.

  20. One-dimensional model of a single-mode laser with correlation between additive and multiplicative noises

    NASA Astrophysics Data System (ADS)

    Long, Quan; Cao, Li; Wu, Da-jin; Li, Zai-guang

    1996-02-01

    Recently, Zhu [Phys. Rev. A 47 (1993) 2405] and Jia et al. [Phys. Rev. A 51 (1995) 3196] investigated the statistical properties of a single-mode laser with correlation between additive and multiplicative noises by using a one-dimensional model with a one-dimensional Langevin equation of the single-mode laser derived by Fox et al. [Phys. Rev. A 35 (1987) 1838]. We point out that this one-dimensional model, whose Langevin equation was obtained under the assumption that the noises are uncorrelated, is not always stochastically equivalent to the single-mode cubic laser model when additive and multiplicative noises are correlated. As a modification, a general model which is stochastically equivalent to the cubic model of a single-mode laser driven by correlated noises is derived. Based on this, a different one-dimensional model is given in the case where the former one used by Zhu and Jia et al. is not suitable.

  1. Protein binding of isofluorophate in vivo after coexposure to multiple chemicals.

    PubMed Central

    Vogel, John S; Keating, Garrett A; Buchholz, Bruce A

    2002-01-01

    Full toxicologic profiles of chemical mixtures, including dose-response extrapolations to realistic exposures, is a prohibitive analytical problem, even for a restricted class of chemicals. We present an approach to probing in vivo interactions of pesticide mixtures at relevant low doses using a monitor compound to report the response of biochemical pathways shared by mixture components. We use accelerator mass spectrometry (AMS) to quantify [14C]-diisopropylfluorophosphate as a tracer at attomole levels with 1-5% precision after coexposures to parathion (PTN), permethrin (PER), and pyridostigmine bromide separately and in conjunction. Pyridostigmine shows an overall protective effect against tracer binding in plasma, red blood cells, muscle, and brain that is not explained as competitive protein binding. PTN and PER induce a significant 25-30% increase in the amount of tracer reaching the brain with or without pyridostigmine. The sensitivity of AMS for isotope-labeled tracer compounds can be used to probe the physiologic responses of specific biochemical pathways to multiple compound exposures. PMID:12634135

  2. Multiple DNA binding activities of the novel site-specific recombinase, Piv, from Moraxella lacunata.

    PubMed

    Tobiason, D M; Lenich, A G; Glasgow, A C

    1999-04-02

    The recombinase, Piv, is essential for site-specific DNA inversion of the type IV pilin DNA segment in Moraxella lacunata and Moraxella bovis. Piv shows significant homology with the transposases of the IS110/IS492 family of insertion elements, but, surprisingly, Piv contains none of the conserved amino acid motifs of the lambda Int or Hin/Res families of site-specific recombinases. Therefore, Piv may mediate site-specific recombination by a novel mechanism. To begin to determine how Piv may assemble a synaptic nucleoprotein structure for DNA cleavage and strand exchange, we have characterized the interaction of Piv with the DNA inversion region of M. lacunata. Gel shift and nuclease/chemical protection assays, competition and dissociation rate analyses, and cooperativity studies indicate that Piv binds two distinct recognition sequences. One recognition sequence, found at multiple sites within and outside of the invertible segment, is bound by Piv protomers with high affinity. The second recognition sequence is located at the recombination cross-over sites at the ends of the invertible element; Piv interacts with this sequence as an oligomer with apparent low affinity. A model is proposed for the role of the different Piv binding sites of the M. lacunata inversion region in the formation of an active synaptosome.

  3. Properties of natural and artificial proteins displaying multiple ubiquitin-binding domains.

    PubMed

    Lopitz-Otsoa, Fernando; Rodríguez, Manuel S; Aillet, Fabienne

    2010-02-01

    Ubiquitylation provides a rapid alternative to control the activity of crucial cellular factors through the remodelling of a target protein. Diverse ubiquitin chains are recognized by domains with affinity for UBDs (ubiquitin-binding domains) present in receptor/effector proteins. Interestingly, some proteins contain more than one UBD and the preservation of this structure in many species suggests an evolutionary advantage for this topology. Here, we review some typical proteins that naturally contain more than one UBD and emphasize how such structures contribute to the mechanism they mediate. Characteristics such as higher affinities for polyubiquitin chains and chain-linkage preferences can be replicated by the TUBEs (tandem ubiquitin-binding entities). Furthermore, TUBEs show two additional properties: protection of ubiquitylated substrates from deubiquitylating enzymes and interference with the action of the proteasome. Consequently, TUBEs behave as 'ubiquitin traps' that efficiently capture endogenous ubiquitylated proteins. Interpretations and hypothetical models proposed by different groups to understand the synchronous action of multiple UBDs are discussed herein.

  4. A Compendium of Caenorhabditis elegans RNA Binding Proteins Predicts Extensive Regulation at Multiple Levels

    PubMed Central

    Tamburino, Alex M.; Ryder, Sean P.; Walhout, Albertha J. M.

    2013-01-01

    Gene expression is regulated at multiple levels, including transcription and translation, as well as mRNA and protein stability. Although systems-level functions of transcription factors and microRNAs are rapidly being characterized, few studies have focused on the posttranscriptional gene regulation by RNA binding proteins (RBPs). RBPs are important to many aspects of gene regulation. Thus, it is essential to know which genes encode RBPs, which RBPs regulate which gene(s), and how RBP genes are themselves regulated. Here we provide a comprehensive compendium of RBPs from the nematode Caenorhabditis elegans (wRBP1.0). We predict that as many as 887 (4.4%) of C. elegans genes may encode RBPs ~250 of which likely function in a gene-specific manner. In addition, we find that RBPs, and most notably gene-specific RBPs, are themselves enriched for binding and modification by regulatory proteins, indicating the potential for extensive regulation of RBPs at many different levels. wRBP1.0 will provide a significant contribution toward the comprehensive delineation of posttranscriptional regulatory networks and will provide a resource for further studies regulation by RBPs. PMID:23390605

  5. Transient Protein-Protein Interaction of the SH3-Peptide Complex via Closely Located Multiple Binding Sites

    PubMed Central

    Hahn, Seungsoo; Kim, Dongsup

    2012-01-01

    Protein-protein interactions play an essential role in cellular processes. Certain proteins form stable complexes with their partner proteins, whereas others function by forming transient complexes. The conventional protein-protein interaction model describes an interaction between two proteins under the assumption that a protein binds to its partner protein through a single binding site. In this study, we improved the conventional interaction model by developing a Multiple-Site (MS) model in which a protein binds to its partner protein through closely located multiple binding sites on a surface of the partner protein by transiently docking at each binding site with individual binding free energies. To test this model, we used the protein-protein interaction mediated by Src homology 3 (SH3) domains. SH3 domains recognize their partners via a weak, transient interaction and are therefore promiscuous in nature. Because the MS model requires large amounts of data compared with the conventional interaction model, we used experimental data from the positionally addressable syntheses of peptides on cellulose membranes (SPOT-synthesis) technique. From the analysis of the experimental data, individual binding free energies for each binding site of peptides were extracted. A comparison of the individual binding free energies from the analysis with those from atomistic force fields gave a correlation coefficient of 0.66. Furthermore, application of the MS model to 10 SH3 domains lowers the prediction error by up to 9% compared with the conventional interaction model. This improvement in prediction originates from a more realistic description of complex formation than the conventional interaction model. The results suggested that, in many cases, SH3 domains increased the protein complex population through multiple binding sites of their partner proteins. Our study indicates that the consideration of general complex formation is important for the accurate description of

  6. Multiple omnidirectional defect modes and nonlinear magnetic-field effects in metamaterial photonic superlattices with a polaritonic defect

    NASA Astrophysics Data System (ADS)

    Robles-Uriza, A. X.; Reyes Gómez, F.; Mejía-Salazar, J. R.

    2016-09-01

    We report the existence of multiple omnidirectional defect modes in the zero-nbar gap of photonic stacks, made of alternate layers of conventional dielectric and double-negative metamaterial, with a polaritonic defect layer. In the case of nonlinear magnetic metamaterials, the optical bistability phenomenon leads to switching from negligible to perfect transmission around these defect modes. We hope these findings have potential applications in the design and development of multichannel optical filters, power limiters, optical-diodes and optical-transistors.

  7. The Interplay of Chromatin Landscape and DNA-Binding Context Suggests Distinct Modes of EIN3 Regulation in Arabidopsis thaliana

    PubMed Central

    Zemlyanskaya, Elena V.; Levitsky, Victor G.; Oshchepkov, Dmitry Y.; Grosse, Ivo; Mironova, Victoria V.

    2017-01-01

    The plant hormone ethylene regulates numerous developmental processes and stress responses. Ethylene signaling proceeds via a linear pathway, which activates transcription factor (TF) EIN3, a primary transcriptional regulator of ethylene response. EIN3 influences gene expression upon binding to a specific sequence in gene promoters. This interaction, however, might be considerably affected by additional co-factors. In this work, we perform whole genome bioinformatics study to identify the impact of epigenetic factors in EIN3 functioning. The analysis of publicly available ChIP-Seq data on EIN3 binding in Arabidopsis thaliana showed bimodality of distribution of EIN3 binding regions (EBRs) in gene promoters. Besides a sharp peak in close proximity to transcription start site, which is a common binding region for a wide variety of TFs, we found an additional extended peak in the distal promoter region. We characterized all EBRs with respect to the epigenetic status appealing to previously published genome-wide map of nine chromatin states in A. thaliana. We found that the implicit distal peak was associated with a specific chromatin state (referred to as chromatin state 4 in the primary source), which was just poorly represented in the pronounced proximal peak. Intriguingly, EBRs corresponding to this chromatin state 4 were significantly associated with ethylene response, unlike the others representing the overwhelming majority of EBRs related to the explicit proximal peak. Moreover, we found that specific EIN3 binding sequences predicted with previously described model were enriched in the EBRs mapped to the chromatin state 4, but not to the rest ones. These results allow us to conclude that the interplay of genetic and epigenetic factors might cause the distinct modes of EIN3 regulation. PMID:28119721

  8. Identification, pharmacological evaluation and binding mode analysis of novel chromene and chromane based σ1 receptor ligands.

    PubMed

    Laurini, Erik; Harel, Dipak; Marson, Domenico; Schepmann, Dirk; Schmidt, Thomas J; Pricl, Sabrina; Wünsch, Bernhard

    2014-08-18

    A set of aminoethyl substituted chromenes 3 and chromanes 4, originally developed as antiprotozoal drugs was evaluated as novel types of σ1 receptor ligands. Analysis of SAR showed that chromenes 3 have a higher σ1 affinity than chromanes 4. A distance of four bond lengths between the basic amino moiety and the phenyl ring (3c), an alicyclic N-substituent such as the cyclohexylmethyl moiety (3l), and methylation of the secondary amine to afford a tertiary amine (3n) result in very high σ1 affinity and selectivity over the σ2 subtype. Compounds 3a-n and 4a-e were docked into the putative binding site of the σ1 receptor model and the relevant binding mode was analyzed and scored. Specifically, for the best σ1 ligand 3n, a salt bridge between Asp126 and the protonated amino group, an H-bond between the receptor backbone NH group (Ala122-Glu123) and the methoxy moiety of 3n, a lipophilic protein cavity encasing the chromene ring, and a T-shaped π-π stacking between the indole ring of Trp121 and the phenyl ring of 3n represent the most important ligand/protein stabilizing interactions. The binding pose of 3n was compared with the binding poses of the non-methylated chromene 3c, the saturated chromane 4c, and the N-cyclohexylmethyl derivative 3l. The contribution of the single amino acids to the overall free binding enthalpy was analyzed.

  9. Interaction of the N-(3-Methylpyridin-2-yl)amide Derivatives of Flurbiprofen and Ibuprofen with FAAH: Enantiomeric Selectivity and Binding Mode

    PubMed Central

    Deplano, Alessandro; Smaldone, Giovanni; Pedone, Emilia; Luque, F. Javier; Svensson, Mona; Novellino, Ettore; Congiu, Cenzo; Onnis, Valentina; Catalanotti, Bruno; Fowler, Christopher J.

    2015-01-01

    Background Combined fatty acid amide hydrolase (FAAH) and cyclooxygenase (COX) inhibition is a promising approach for pain-relief. The Flu-AM1 and Ibu-AM5 derivatives of flurbiprofen and ibuprofen retain similar COX-inhibitory properties and are more potent inhibitors of FAAH than the parent compounds. However, little is known as to the nature of their interaction with FAAH, or to the importance of their chirality. This has been explored here. Methodology/Principal Findings FAAH inhibitory activity was measured in rat brain homogenates and in lysates expressing either wild-type or FAAHT488A-mutated enzyme. Molecular modelling was undertaken using both docking and molecular dynamics. The (R)- and (S)-enantiomers of Flu-AM1 inhibited rat FAAH with similar potencies (IC50 values of 0.74 and 0.99 μM, respectively), whereas the (S)-enantiomer of Ibu-AM5 (IC50 0.59 μM) was more potent than the (R)-enantiomer (IC50 5.7 μM). Multiple inhibition experiments indicated that both (R)-Flu-AM1 and (S)-Ibu-AM5 inhibited FAAH in a manner mutually exclusive to carprofen. Computational studies indicated that the binding site for the Flu-AM1 and Ibu-AM5 enantiomers was located between the acyl chain binding channel and the membrane access channel, in a site overlapping the carprofen binding site, and showed a binding mode in line with that proposed for carprofen and other non-covalent ligands. The potency of (R)-Flu-AM1 was lower towards lysates expressing FAAH mutated at the proposed carprofen binding area than in lysates expressing wild-type FAAH. Conclusions/Significance The study provides kinetic and structural evidence that the enantiomers of Flu-AM1 and Ibu-AM5 bind in the substrate channel of FAAH. This information will be useful in aiding the design of novel dual-action FAAH: COX inhibitors. PMID:26565710

  10. Binding mode and potency of N-indolyloxopyridinyl-4-aminopropanyl-based inhibitors targeting Trypanosoma cruzi CYP51

    DOE PAGES

    Vieira, Debora F.; Choi, Jun Yong; Calvet, Claudia M.; ...

    2014-11-13

    Chagas disease is a chronic infection in humans caused by Trypanosoma cruzi and manifested in progressive cardiomyopathy and/or gastrointestinal dysfunction. Limited therapeutic options to prevent and treat Chagas disease put 8 million people infected with T. cruzi worldwide at risk. CYP51, involved in the biosynthesis of the membrane sterol component in eukaryotes, is a promising drug target in T. cruzi. We report the structure–activity relationships (SAR) of an N-arylpiperazine series of N-indolyloxopyridinyl-4-aminopropanyl-based inhibitors designed to probe the impact of substituents in the terminal N-phenyl ring on binding mode, selectivity and potency. Depending on the substituents at C-4, two distinct ringmore » binding modes, buried and solvent-exposed, have been observed by X-ray structure analysis (resolution of 1.95–2.48 Å). Lastly, the 5-chloro-substituted analogs 9 and 10 with no substituent at C-4 demonstrated improved selectivity and potency, suppressing ≥99.8% parasitemia in mice when administered orally at 25 mg/kg, b.i.d., for 4 days.« less

  11. Ultrafast photoelectron migration in dye-sensitized solar cells: Influence of the binding mode and many-body interactions

    NASA Astrophysics Data System (ADS)

    Hermann, G.; Tremblay, J. C.

    2016-11-01

    In the present contribution, the ultrafast photoinduced electron migration dynamics at the interface between an alizarin dye and an anatase TiO2 thin film is investigated from first principles. Comparison between a time-dependent many-electron configuration interaction ansatz and a single active electron approach sheds light on the importance of many-body effects, stemming from uniquely defined initial conditions prior to photoexcitation. Particular emphasis is put on understanding the influence of the binding mode on the migration process. The dynamics is analyzed on the basis of a recently introduced toolset in the form of electron yields, electronic fluxes, and flux densities, to reveal microscopic details of the electron migration mechanism. From the many-body perspective, insight into the nature of electron-electron and hole-hole interactions during the charge transfer process is obtained. The present results reveal that the single active electron approach yields quantitatively and phenomenologically similar results as the many-electron ansatz. Furthermore, the charge migration processes in the dye-TiO2 model clusters with different binding modes exhibit similar mechanistic pathways but on largely different time scales.

  12. Implications of binding mode and active site flexibility for inhibitor potency against the salicylate synthase from Mycobacterium tuberculosis.

    PubMed

    Chi, Gamma; Manos-Turvey, Alexandra; O'Connor, Patrick D; Johnston, Jodie M; Evans, Genevieve L; Baker, Edward N; Payne, Richard J; Lott, J Shaun; Bulloch, Esther M M

    2012-06-19

    MbtI is the salicylate synthase that catalyzes the first committed step in the synthesis of the iron chelating compound mycobactin in Mycobacterium tuberculosis. We previously developed a series of aromatic inhibitors against MbtI based on the reaction intermediate for this enzyme, isochorismate. The most potent of these inhibitors had hydrophobic substituents, ranging in size from a methyl to a phenyl group, appended to the terminal alkene of the enolpyruvyl group. These compounds exhibited low micromolar inhibition constants against MbtI and were at least an order of magnitude more potent than the parental compound for the series, which carries a native enolpyruvyl group. In this study, we sought to understand how the substituted enolpyruvyl group confers greater potency, by determining cocrystal structures of MbtI with six inhibitors from the series. A switch in binding mode at the MbtI active site is observed for inhibitors carrying a substituted enolpyruvyl group, relative to the parental compound. Computational studies suggest that the change in binding mode, and higher potency, is due to the effect of the substituents on the conformational landscape of the core inhibitor structure. The crystal structures and fluorescence-based thermal shift assays indicate that substituents larger than a methyl group are accommodated in the MbtI active site through significant but localized flexibility in the peptide backbone. These findings have implications for the design of improved inhibitors of MbtI, as well as other chorismate-utilizing enzymes from this family.

  13. Direct demonstration of unique mode of natural peptide binding to the type 2 cholecystokinin receptor using photoaffinity labeling.

    PubMed

    Dong, Maoqing; Miller, Laurence J

    2013-08-01

    Direct analysis of mode of peptide docking using intrinsic photoaffinity labeling has provided detailed insights for the molecular basis of cholecystokinin (CCK) interaction with the type 1 CCK receptor. In the current work, this technique has been applied to the closely related type 2 CCK receptor that also binds the natural full agonist peptide, CCK, with high affinity. A series of photolabile CCK analog probes with sites of covalent attachment extending from position 26 through 32 were characterized, with the highest affinity analogs that possessed full biological activity utilized in photoaffinity labeling. The position 29 probe, incorporating a photolabile benzoyl-phenylalanine in that position, was shown to bind with high affinity and to be a full agonist, with potency not different from that of natural CCK, and to covalently label the type 2 CCK receptor in a saturable, specific and efficient manner. Using proteolytic peptide mapping, mutagenesis, and radiochemical Edman degradation sequencing, this probe was shown to establish a covalent bond with type 2 CCK receptor residue Phe¹²⁰ in the first extracellular loop. This was in contrast to its covalent attachment to Glu³⁴⁵ in the third extracellular loop of the type 1 CCK receptor, directly documenting differences in mode of docking this peptide to these receptors.

  14. Binding Mode of CpG Oligodeoxynucleotides to Nanoparticles Regulates Bifurcated Cytokine induction via Toll-like Receptor 9

    NASA Astrophysics Data System (ADS)

    Chinnathambi, Shanmugavel; Chen, Song; Ganesan, Singaravelu; Hanagata, Nobutaka

    2012-07-01

    The interaction of cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs) with Toll-like receptor 9 (TLR9) activates the immune system. Multimeric class A CpG ODNs induce interferon-α (IFN-α) and, to a lesser extent, interleukin-6. By contrast, monomeric class B CpG ODNs induce interleukin-6 but not IFN-α. This difference suggests that the multimerization of CpG ODN molecules is a key factor in IFN-α induction. We multimerized class B CpG ODN2006x3-PD molecules that consist entirely of a phosphodiester backbone onto quantum dot silicon nanoparticles with various binding modes. Herein, we present the binding mode-dependent bifurcation of cytokine induction and discuss its possible mechanism of CpG ODN and TLR9 interaction. Our discoveries also suggest that nanoparticles play roles in not only delivery of CpG ODNs but also control of CpG ODN activity.

  15. Structural characterization of an alternative mode of tigecycline binding to the bacterial ribosome.

    PubMed

    Schedlbauer, Andreas; Kaminishi, Tatsuya; Ochoa-Lizarralde, Borja; Dhimole, Neha; Zhou, Shu; López-Alonso, Jorge P; Connell, Sean R; Fucini, Paola

    2015-05-01

    Although both tetracycline and tigecycline inhibit protein synthesis by sterically hindering the binding of tRNA to the ribosomal A site, tigecycline shows increased efficacy in both in vitro and in vivo activity assays and escapes the most common resistance mechanisms associated with the tetracycline class of antibiotics. These differences in activities are attributed to the tert-butyl-glycylamido side chain found in tigecycline. Our structural analysis by X-ray crystallography shows that tigecycline binds the bacterial 30S ribosomal subunit with its tail in an extended conformation and makes extensive interactions with the 16S rRNA nucleotide C1054. These interactions restrict the mobility of C1054 and contribute to the antimicrobial activity of tigecycline, including its resistance to the ribosomal protection proteins. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. The Tubulin Binding Mode of Microtubule Stabilizing Agents Studied by Electron Crystallography

    NASA Astrophysics Data System (ADS)

    Nettles, James H.; Downing, Kenneth H.

    Since tubulin was discovered in 1967, drug probes have been used to manipulate mechanisms of microtubule polymerization and disassembly. In parallel, advances in optical imagery, electron microscopy, along with both electron and X-ray diffraction have provided ability to "see" the molecular underpinning of these machines. Nanoscale mapping of different tubulin polymers formed in the presence of different drugs and cofactors provide a context for examining the dynamic features relevant to their biological activity. Models built from EM maps have been used to understand the binding of stabilizing drugs such as taxanes and epothilones, to predict more effective molecules, and to explain mutation based resistance. Here, we discuss drug binding in the context of different polymeric forms and propose a trigger mechanism associated with microtubules' dynamic instability.

  17. Batimastat, a potent matrix mealloproteinase inhibitor, exhibits an unexpected mode of binding.

    PubMed Central

    Botos, I; Scapozza, L; Zhang, D; Liotta, L A; Meyer, E F

    1996-01-01

    Matrix metalloproteinase enzymes have been implicated in degenerative processes like tumor cell invasion, metastasis, and arthritis. Specific metalloproteinase inhibitors have been used to block tumor cell proliferation. We have examined the interaction of batimastat (BB-94) with a metalloproteinase [atrolysin C (Ht-d), EC 3.4.24.42] active site at 2.0-angstroms resolution (R = 16.8%). The title structure exhibits an unexpected binding geometry, with the thiophene ring deeply inserted into the primary specificity site. This unprecedented binding geometry dramatizes the significance of the cavernous primary specificity site, pointing the way for the design of a new generation of potential antitumor drugs. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8610113

  18. Multiple Beam Correlation Using Single-Mode Fiber Optics with Application to Interferometric Imaging

    NASA Astrophysics Data System (ADS)

    Shaklan, Stuart Bruce

    A study of the application of single-mode fiber optics to the multiple-beam interferometric recombination problem is presented. In the laboratory, the fibers have been used in wide bandwidth, two-arm, Mach-Zehnder test interferometers as well as a 5-telescope imaging interferometer connected to an all-fiber beam combiner. Based upon these experiments and some theoretical studies it is shown that fiber optics and fiber optic components such as directional couplers provide an excellent alternative to conventional optics such as mirrors, beamsplitters, and relay lenses. The equations describing the measurement of the complex degree of coherence in an interferometer with a single-mode fiber in each arm are derived. The equations reveal an important feature of the fibers: they filter phase fluctuations due to aberrations and turbulence at the input and convert them to intensity fluctuations at the output. This leads to a simplification of the calibration of measured visibilities. The coupling efficiency of light which has passed through a turbulent atmosphere is also studied as a function of fiber parameters and turbulence conditions for both image motion stabilized and non-stabilized cases. For the former case, coupling efficiency remains greater than 50% as long as telescope diameter is no larger than the turbulence coherence length. Beam combination architectures using arrays of directional couplers are fully discussed. Arrays accommodating up to 20 input beams are presented. The arrays require only N detector pixels for N input beams. A scheme of temporal multiplexing of the phase of each beam is used to identify individual fringe pairs. One possible scheme allows wide bandwidths even for large numbers of beams. A 5-telescope interferometer has been constructed and connected to an all-fiber beam combiner. Two extended objects were observed and reconstructed using standard radio astronomy VLBI software. The interferometer and beam combiner had good thermal and

  19. Binding Mode Analysis of Zerumbone to Key Signal Proteins in the Tumor Necrosis Factor Pathway

    PubMed Central

    Fatima, Ayesha; Abdul, Ahmad Bustamam Hj.; Abdullah, Rasedee; Karjiban, Roghayeh Abedi; Lee, Vannajan Sanghiran

    2015-01-01

    Breast cancer is the second most common cancer among women worldwide. Several signaling pathways have been implicated as causative and progression agents. The tumor necrosis factor (TNF) α protein plays a dual role in promoting and inhibiting cancer depending largely on the pathway initiated by the binding of the protein to its receptor. Zerumbone, an active constituent of Zingiber zerumbet, Smith, is known to act on the tumor necrosis factor pathway upregulating tumour necrosis factor related apoptosis inducing ligand (TRAIL) death receptors and inducing apoptosis in cancer cells. Zerumbone is a sesquiterpene that is able to penetrate into the hydrophobic pockets of proteins to exert its inhibiting activity with several proteins. We found a good binding with the tumor necrosis factor, kinase κB (IKKβ) and the Nuclear factor κB (NF-κB) component proteins along the TNF pathway. Our results suggest that zerumbone can exert its apoptotic activities by inhibiting the cytoplasmic proteins. It inhibits the IKKβ kinase that activates the NF-κB and also binds to the NF-κB complex in the TNF pathway. Blocking both proteins can lead to inhibition of cell proliferating proteins to be downregulated and possibly ultimate induction of apoptosis. PMID:25629232

  20. A Novel, ;Double-Clamp; Binding Mode for Human Heme Oxygenase-1 Inhibition

    SciTech Connect

    Rahman, Mona N.; Vlahakis, Jason Z.; Vukomanovic, Dragic; Lee, Wallace; Szarek, Walter A.; Nakatsu, Kanji; Jia, Zongchao

    2012-08-01

    The development of heme oxygenase (HO) inhibitors is critical in dissecting and understanding the HO system and for potential therapeutic applications. We have established a program to design and optimize HO inhibitors using structure-activity relationships in conjunction with X-ray crystallographic analyses. One of our previous complex crystal structures revealed a putative secondary hydrophobic binding pocket which could be exploited for a new design strategy by introducing a functional group that would fit into this potential site. To test this hypothesis and gain further insights into the structural basis of inhibitor binding, we have synthesized and characterized 1-(1H-imidazol-1-yl)-4,4-diphenyl-2-butanone (QC-308). Using a carbon monoxide (CO) formation assay on rat spleen microsomes, the compound was found to be {approx}15 times more potent (IC{sub 50} = 0.27{+-}0.07 {mu}M) than its monophenyl analogue, which is already a potent compound in its own right (QC-65; IC{sub 50} = 4.0{+-}1.8 {mu}M). The crystal structure of hHO-1 with QC-308 revealed that the second phenyl group in the western region of the compound is indeed accommodated by a definitive secondary proximal hydrophobic pocket. Thus, the two phenyl moieties are each stabilized by distinct hydrophobic pockets. This 'double-clamp' binding offers additional inhibitor stabilization and provides a new route for improvement of human heme oxygenase inhibitors.

  1. A Novel, “Double-Clamp” Binding Mode for Human Heme Oxygenase-1 Inhibition

    PubMed Central

    Rahman, Mona N.; Vlahakis, Jason Z.; Vukomanovic, Dragic; Lee, Wallace; Szarek, Walter A.; Nakatsu, Kanji; Jia, Zongchao

    2012-01-01

    The development of heme oxygenase (HO) inhibitors is critical in dissecting and understanding the HO system and for potential therapeutic applications. We have established a program to design and optimize HO inhibitors using structure-activity relationships in conjunction with X-ray crystallographic analyses. One of our previous complex crystal structures revealed a putative secondary hydrophobic binding pocket which could be exploited for a new design strategy by introducing a functional group that would fit into this potential site. To test this hypothesis and gain further insights into the structural basis of inhibitor binding, we have synthesized and characterized 1-(1H-imidazol-1-yl)-4,4-diphenyl-2-butanone (QC-308). Using a carbon monoxide (CO) formation assay on rat spleen microsomes, the compound was found to be ∼15 times more potent (IC50 = 0.27±0.07 µM) than its monophenyl analogue, which is already a potent compound in its own right (QC-65; IC50 = 4.0±1.8 µM). The crystal structure of hHO-1 with QC-308 revealed that the second phenyl group in the western region of the compound is indeed accommodated by a definitive secondary proximal hydrophobic pocket. Thus, the two phenyl moieties are each stabilized by distinct hydrophobic pockets. This “double-clamp” binding offers additional inhibitor stabilization and provides a new route for improvement of human heme oxygenase inhibitors. PMID:22276118

  2. Biomolecular mode of action of metformin in relation to its copper binding properties.

    PubMed

    Repiščák, Peter; Erhardt, Stefan; Rena, Graham; Paterson, Martin J

    2014-02-04

    Metformin (Metf), the most commonly used type 2 diabetes drug, is known to affect the cellular housekeeping of copper. Recently, we discovered that the structurally closely related propanediimidamide (PDI) shows a cellular behavior different from that of Metf. Here we investigate the binding of these compounds to copper, to compare their binding strength. Furthermore, we take a closer look at the electronic properties of these compounds and their copper complexes such as molecular orbital interactions and electrostatic potential surfaces. Our results clearly show that the copper binding energies cannot alone be the cause of the biochemical differentiation between Metf and PDI. We conclude that other factors such as pKa values and hydrophilicity of the compounds play a crucial role in their cellular activity. Metf in contrast to PDI can occur as an anion in aqueous medium at moderate pH, forming much stronger complexes particularly with Cu(II) ions, suggesting that biguanides but not PDI may induce easy oxidation of Cu(I) ions extracted from proteins. The higher hydrophobicity and the lack of planarity of PDI may further differentiate it from biguanides in terms of their molecular recognition characteristics. These different properties could hold the key to metformin's mitochondrial activity because they suggest that the drug could act at least in part as a pro-oxidant of accessible protein-bound Cu(I) ions.

  3. Binding modes of phosphonic acid derivatives adsorbed on TiO2 surfaces: Assignments of experimental IR and NMR spectra based on DFT/PBC calculations

    NASA Astrophysics Data System (ADS)

    Geldof, D.; Tassi, M.; Carleer, R.; Adriaensens, P.; Roevens, A.; Meynen, V.; Blockhuys, F.

    2017-01-01

    A DFT study on the adsorption of a series of phosphonic acids (PAs) on the TiO2 anatase (101) and (001) surfaces was performed. The adsorption energies and geometries of the most stable binding modes were compared to literature data and the effect of the inclusion of dispersion forces in the energy calculations was gauged. As the (101) surface is the most exposed surface of TiO2 anatase, the calculated chemical shifts and vibrational frequencies of PAs adsorbed on this surface were compared to experimental 31P and 17O NMR and IR data in order to assign the two possible binding modes (mono- and bidentate) to peaks and bands in these spectra; due to the corrugated nature of anatase (101) tridentate binding is not possible on this surface. Analysis of the calculated and experimental 31P chemical shifts indicates that both monodentate and bidentate binding modes are present. For the reactive (001) surface, the results of the calculations indicate that both bi- and tridentate binding modes result in stable systems. Due to the particular sensitivity of 17O chemical shifts to hydrogen bonding and solvent effects, the model used is insufficient to assign these spectra at present. Comparison of calculated and experimental IR spectra leads to the conclusion that IR spectroscopy is not suitable for the characterization of the different binding modes of the adsorption complexes.

  4. An Integrated Model of Multiple-Condition ChIP-Seq Data Reveals Predeterminants of Cdx2 Binding

    PubMed Central

    Mazzoni, Esteban O.; Sherwood, Richard I.; Kakumanu, Akshay; Morrison, Carolyn A.; Wichterle, Hynek; Gifford, David K.

    2014-01-01

    Regulatory proteins can bind to different sets of genomic targets in various cell types or conditions. To reliably characterize such condition-specific regulatory binding we introduce MultiGPS, an integrated machine learning approach for the analysis of multiple related ChIP-seq experiments. MultiGPS is based on a generalized Expectation Maximization framework that shares information across multiple experiments for binding event discovery. We demonstrate that our framework enables the simultaneous modeling of sparse condition-specific binding changes, sequence dependence, and replicate-specific noise sources. MultiGPS encourages consistency in reported binding event locations across multiple-condition ChIP-seq datasets and provides accurate estimation of ChIP enrichment levels at each event. MultiGPS's multi-experiment modeling approach thus provides a reliable platform for detecting differential binding enrichment across experimental conditions. We demonstrate the advantages of MultiGPS with an analysis of Cdx2 binding in three distinct developmental contexts. By accurately characterizing condition-specific Cdx2 binding, MultiGPS enables novel insight into the mechanistic basis of Cdx2 site selectivity. Specifically, the condition-specific Cdx2 sites characterized by MultiGPS are highly associated with pre-existing genomic context, suggesting that such sites are pre-determined by cell-specific regulatory architecture. However, MultiGPS-defined condition-independent sites are not predicted by pre-existing regulatory signals, suggesting that Cdx2 can bind to a subset of locations regardless of genomic environment. A summary of this paper appears in the proceedings of the RECOMB 2014 conference, April 2–5. PMID:24675637

  5. Mode of binding of methyl acceptor substrates to the adrenaline-synthesizing enzyme phenylethanolamine N-methyltransferase: implications for catalysis.

    PubMed

    Gee, Christine L; Tyndall, Joel D A; Grunewald, Gary L; Wu, Qian; McLeish, Michael J; Martin, Jennifer L

    2005-12-27

    Here we report three crystal structure complexes of human phenylethanolamine N-methyltransferase (PNMT), one bound with a substrate that incorporates a flexible ethanolamine side chain (p-octopamine), a second bound with a semirigid analogue substrate [cis-(1R,2S)-2-amino-1-tetralol, cis-(1R,2S)-AT], and a third with trans-(1S,2S)-2-amino-1-tetralol [trans-(1S,2S)-AT] that acts as an inhibitor of PNMT rather than a substrate. A water-mediated interaction between the critical beta-hydroxyl of the flexible ethanolamine group of p-octopamine and an acidic residue, Asp267, is likely to play a key role in positioning the side chain correctly for methylation to occur at the amine. A second interaction with Glu219 may play a lesser role. Catalysis likely occurs via deprotonation of the amine through the action of Glu185; mutation of this residue significantly reduced the kcat without affecting the Km. The mode of binding of cis-(1R,2S)-AT supports the notion that this substrate is a conformationally restrained analogue of flexible PNMT substrates, in that it forms interactions with the enzyme similar to those observed for p-octopamine. By contrast, trans-(1S,2S)-AT, an inhibitor rather than a substrate, binds in an orientation that is flipped by 180 degrees compared with cis-(1R,2S)-AT. A consequence of this flipped binding mode is that the interactions between the hydroxyl and Asp267 and Glu219 are lost. However, the amines of inhibitor trans-(1S,2S)-AT and substrate cis-(1R,2S)-AT are both within methyl transfer distance of the cofactor. These results suggest that PNMT catalyzes transfer of methyl to ligand amines only when "anchor" interactions, such as those identified for the beta-hydroxyls of p-octopamine and cis-AT, are present.

  6. Structural Insights into the Distinct Binding Mode of Cyclic Di-AMP with SaCpaA_RCK.

    PubMed

    Chin, Ko-Hsin; Liang, Juin-Ming; Yang, Jauo-Guey; Shih, Min-Shao; Tu, Zhi-Le; Wang, Yu-Chuang; Sun, Xing-Han; Hu, Nien-Jen; Liang, Zhao-Xun; Dow, J Maxwell; Ryan, Robert P; Chou, Shan-Ho

    2015-08-11

    Cyclic di-AMP (c-di-AMP) is a relatively new member of the family of bacterial cyclic dinucleotide second messengers. It has attracted significant attention in recent years because of the abundant roles it plays in a variety of Gram-positive bacteria. The structural features that allow diverse bacterial proteins to bind c-di-AMP are not fully understood. Here we report the biophysical and structural studies of c-di-AMP in complex with a bacterial cation-proton antiporter (CpaA) RCK (regulator of the conductance of K(+)) protein from Staphylococcus aureus (Sa). The crystal structure of the SaCpaA_RCK C-terminal domain (CTD) in complex with c-di-AMP was determined to a resolution of 1.81 Å. This structure revealed two well-liganded water molecules, each interacting with one of the adenine bases by a unique H2Olp-π interaction to stabilize the complex. Sequence blasting using the SaCpaA_RCK primary sequence against the bacterial genome database returned many CpaA analogues, and alignment of these sequences revealed that the active site residues are all well-conserved, indicating a universal c-di-AMP binding mode for CpaA_RCK. A proteoliposome activity assay using the full-length SaCpaA membrane protein indicated that c-di-AMP binding alters its antiporter activity by approximately 40%. A comparison of this structure to all other reported c-di-AMP-receptor complex structures revealed that c-di-AMP binds to receptors in either a "U-shape" or "V-shape" mode. The two adenine rings are stabilized in the inner interaction zone by a variety of CH-π, cation-π, backbone-π, or H2Olp-π interaction, but more commonly in the outer interaction zone by hydrophobic CH-π or π-π interaction. The structures determined to date provide an understanding of the mechanisms by which a single c-di-AMP can interact with a variety of receptor proteins, and how c-di-AMP binds receptor proteins in a special way different from that of c-di-GMP.

  7. Binding mode prediction and MD/MMPBSA-based free energy ranking for agonists of REV-ERBα/NCoR

    NASA Astrophysics Data System (ADS)

    Westermaier, Yvonne; Ruiz-Carmona, Sergio; Theret, Isabelle; Perron-Sierra, Françoise; Poissonnet, Guillaume; Dacquet, Catherine; Boutin, Jean A.; Ducrot, Pierre; Barril, Xavier

    2017-07-01

    The knowledge of the free energy of binding of small molecules to a macromolecular target is crucial in drug design as is the ability to predict the functional consequences of binding. We highlight how a molecular dynamics (MD)-based approach can be used to predict the free energy of small molecules, and to provide priorities for the synthesis and the validation via in vitro tests. Here, we study the dynamics and energetics of the nuclear receptor REV-ERBα with its co-repressor NCoR and 35 novel agonists. Our in silico approach combines molecular docking, molecular dynamics (MD), solvent-accessible surface area (SASA) and molecular mechanics poisson boltzmann surface area (MMPBSA) calculations. While docking yielded initial hints on the binding modes, their stability was assessed by MD. The SASA calculations revealed that the presence of the ligand led to a higher exposure of hydrophobic REV-ERB residues for NCoR recruitment. MMPBSA was very successful in ranking ligands by potency in a retrospective and prospective manner. Particularly, the prospective MMPBSA ranking-based validations for four compounds, three predicted to be active and one weakly active, were confirmed experimentally.

  8. Active site binding modes of inhibitors of Staphylococcus aureus mevalonate diphosphate decarboxylase from docking and molecular dynamics simulations.

    PubMed

    Addo, James K; Skaff, D Andrew; Miziorko, Henry M

    2016-01-01

    Bacterial mevalonate diphosphate decarboxylase (MDD) is an attractive therapeutic target for antibacterial drug development. In this work, we discuss a combined docking and molecular dynamics strategy toward inhibitor binding to bacterial MDD. The docking parameters utilized in this study were first validated with observations for the inhibitors 6-fluoromevalonate diphosphate (FMVAPP) and diphosphoglycolylproline (DPGP) using existing structures for the Staphylococcus epidermidis enzyme. The validated docking protocol was then used to predict structures of the inhibitors bound to Staphylococcus aureus MDD using the unliganded crystal structure of Staphylococcus aureus MDD. We also investigated a possible interactions improvement by combining this docking method with molecular dynamics simulations. Thus, the predicted docking structures were analyzed in a molecular dynamics trajectory to generate dynamic models and reinforce the predicted binding modes. FMVAPP is predicted to make more extensive contacts with S. aureus MDD, forming stable hydrogen bonds with Arg144, Arg193, Lys21, Ser107, and Tyr18, as well as making stable hydrophobic interactions with Tyr18, Trp19, and Met196. The differences in predicted binding are supported by experimentally determined Ki values of 0.23 ± 0.02 and 34 ± 8 μM, for FMVAPP and DPGP, respectively. The structural information coupled with the kinetic characterization obtained from this study should be useful in defining the requirements for inhibition as well as in guiding the selection of active compounds for inhibitor optimization.

  9. Identification of a novel selective PPARγ ligand with a unique binding mode and improved therapeutic profile in vitro

    PubMed Central

    Yi, Wei; Shi, Jingjing; Zhao, Guanguan; Zhou, X. Edward; Suino-Powell, Kelly; Melcher, Karsten; Xu, H. Eric

    2017-01-01

    Thiazolidinediones (TZD) function as potent anti-diabetic drugs through their direct action on the nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ), but their therapeutic benefits are compromised by severe side effects. To address this concern, here we developed a potent “hit” compound, VSP-51, which is a novel selective PPARγ-modulating ligand with improved therapeutic profiles in vitro compared to the multi-billion dollar TZD drug rosiglitazone (Rosi). Unlike Rosi, VSP-51 is a partial agonist of PPARγ with improved insulin sensitivity due to its ability to bind PPARγ with high affinity without stimulating adipocyte differentiation and the expression of adipogenesis-related genes. We have determined the crystal structure of the PPARγ ligand-binding domain (LBD) in complex with VSP-51, which revealed a unique mode of binding for VSP-51 and provides the molecular basis for the discrimination between VSP-51 from TZDs and other ligands such as telmisartan, SR1663 and SR1664. Taken together, our findings demonstrate that: a) VSP-51 can serve as a promising candidate for anti-diabetic drug discovery; and b) provide a rational basis for the development of future pharmacological agents targeting PPARγ with advantages over current TZD drugs. PMID:28128331

  10. Structural and thermodynamic insights into the binding mode of five novel inhibitors of lumazine synthase from Mycobacterium tuberculosis.

    PubMed

    Morgunova, Ekaterina; Illarionov, Boris; Sambaiah, Thota; Haase, Ilka; Bacher, Adelbert; Cushman, Mark; Fischer, Markus; Ladenstein, Rudolf

    2006-10-01

    Recently published genomic investigations of the human pathogen Mycobacterium tuberculosis have revealed that genes coding the proteins involved in riboflavin biosynthesis are essential for the growth of the organism. Because the enzymes involved in cofactor biosynthesis pathways are not present in humans, they appear to be promising candidates for the development of therapeutic drugs. The substituted purinetrione compounds have demonstrated high affinity and specificity to lumazine synthase, which catalyzes the penultimate step of riboflavin biosynthesis in bacteria and plants. The structure of M. tuberculosis lumazine synthase in complex with five different inhibitor compounds is presented, together with studies of the binding reactions by isothermal titration calorimetry. The inhibitors showed the association constants in the micromolar range. The analysis of the structures demonstrated the specific features of the binding of different inhibitors. The comparison of the structures and binding modes of five different inhibitors allows us to propose the ribitylpurinetrione compounds with C4-C5 alkylphosphate chains as most promising leads for further development of therapeutic drugs against M. tuberculosis.

  11. Protein-Ligand Complexes:  Computation of the Relative Free Energy of Different Scaffolds and Binding Modes.

    PubMed

    Michel, Julien; Verdonk, Marcel L; Essex, Jonathan W

    2007-09-01

    A methodology for the calculation of the free energy difference between a pair of molecules of arbitrary topology is proposed. The protocol relies on a dual-topology paradigm, a softening of the intermolecular interactions, and a constraint that prevents the perturbed molecules from drifting away from each other at the end states. The equivalence and the performance of the methodology against a single-topology approach are demonstrated on a pair of harmonic oscillators, the calculation of the relative solvation free energy of ethane and methanol, and the relative binding free energy of two congeneric inhibitors of cyclooxygenase 2. The stability of two alternative binding modes of an inhibitor of cyclin-dependent kinase 2 is then investigated. Finally, the relative binding free energy of two structurally different inhibitors of cyclin-dependent kinase 2 is calculated. The proposed methodology allows the study of a range of problems that are beyond the reach of traditional relative free energy calculation protocols and should prove useful in drug design studies.

  12. Binding mode prediction and MD/MMPBSA-based free energy ranking for agonists of REV-ERBα/NCoR

    NASA Astrophysics Data System (ADS)

    Westermaier, Yvonne; Ruiz-Carmona, Sergio; Theret, Isabelle; Perron-Sierra, Françoise; Poissonnet, Guillaume; Dacquet, Catherine; Boutin, Jean A.; Ducrot, Pierre; Barril, Xavier

    2017-08-01

    The knowledge of the free energy of binding of small molecules to a macromolecular target is crucial in drug design as is the ability to predict the functional consequences of binding. We highlight how a molecular dynamics (MD)-based approach can be used to predict the free energy of small molecules, and to provide priorities for the synthesis and the validation via in vitro tests. Here, we study the dynamics and energetics of the nuclear receptor REV-ERBα with its co-repressor NCoR and 35 novel agonists. Our in silico approach combines molecular docking, molecular dynamics (MD), solvent-accessible surface area (SASA) and molecular mechanics poisson boltzmann surface area (MMPBSA) calculations. While docking yielded initial hints on the binding modes, their stability was assessed by MD. The SASA calculations revealed that the presence of the ligand led to a higher exposure of hydrophobic REV-ERB residues for NCoR recruitment. MMPBSA was very successful in ranking ligands by potency in a retrospective and prospective manner. Particularly, the prospective MMPBSA ranking-based validations for four compounds, three predicted to be active and one weakly active, were confirmed experimentally.

  13. Detailed Analysis of the Binding Mode of Vanilloids to Transient Receptor Potential Vanilloid Type I (TRPV1) by a Mutational and Computational Study

    PubMed Central

    Mori, Yoshikazu; Ogawa, Kazuo; Warabi, Eiji; Yamamoto, Masahiro; Hirokawa, Takatsugu

    2016-01-01

    Transient receptor potential vanilloid type 1 (TRPV1) is a non-selective cation channel and a multimodal sensor protein. Since the precise structure of TRPV1 was obtained by electron cryo-microscopy, the binding mode of representative agonists such as capsaicin and resiniferatoxin (RTX) has been extensively characterized; however, detailed information on the binding mode of other vanilloids remains lacking. In this study, mutational analysis of human TRPV1 was performed, and four agonists (capsaicin, RTX, [6]-shogaol and [6]-gingerol) were used to identify amino acid residues involved in ligand binding and/or modulation of proton sensitivity. The detailed binding mode of each ligand was then simulated by computational analysis. As a result, three amino acids (L518, F591 and L670) were newly identified as being involved in ligand binding and/or modulation of proton sensitivity. In addition, in silico docking simulation and a subsequent mutational study suggested that [6]-gingerol might bind to and activate TRPV1 in a unique manner. These results provide novel insights into the binding mode of various vanilloids to the channel and will be helpful in developing a TRPV1 modulator. PMID:27606946

  14. Multiple ligand simultaneous docking (MLSD): A novel approach to study the effect of inhibitors on substrate binding to PPO.

    PubMed

    Raghavendra, S; Aditya Rao, S J; Kumar, Vadlapudi; Ramesh, C K

    2015-12-01

    Multiple ligand simultaneous docking, a computational approach is used to study the concurrent interactions between substrate and the macromolecule binding together in the presence of an inhibitor. The present investigation deals with the study of the effect of different inhibitors on binding of substrate to the protein Polyphenoloxidase (PPO). The protein was isolated from Mucuna pruriens and confirmed as tyrosinases involved in L-DOPA production. The activity was measured using different inhibitors at different concentrations taking catechol as substrate. A high-throughput binding study was conducted to compare the binding orientations of individual ligands and multiple ligands employing Autodock 4.2. The results of single substrate docking showed a better binding of urea with the binding energy of -3.48 kJ mol(-1) and inter molecular energy of -3.48 kJ mol(-1) while the results of MLSD revealed that ascorbic acid combined with the substrate showed better inhibition with a decreased binding energy of -2.37 kJ mol(-1).

  15. Binding affinity and mode of distamycin A with A/T stretches in double-stranded DNA: importance of the terminal A/T residues.

    PubMed

    Asagi, Mariko; Toyama, Akira; Takeuchi, Hideo

    2010-06-01

    Distamycin A (Dst) is an antibiotic which binds to the minor groove of double-stranded DNA at A/T-rich regions. We have examined the affinity and mode of Dst binding to DNA duplexes containing a conserved A/T core and variable terminal A/T regions by using circular dichroism spectroscopy. The observed circular dichroism spectra were analyzed by singular value decomposition and fitted to a two-step binding model. The result clearly shows a correlation between the affinity for Dst and the preference for Dst-DNA 1:1 binding over 2:1 binding. The A/T stretches that prefer 1:1 binding form high-affinity 1:1 complexes, whereas those preferring 2:1 binding form stable 2:1 complex with low overall affinities. The terminal A/T residues of the Dst binding region play an important role in the stabilization/destabilization of the 1:1 and 2:1 complexes, resulting in a terminal residue-dependent variation of the binding affinity and the binding mode preference. 2010 Elsevier B.V. All rights reserved.

  16. Crystal structure of Trypanosoma cruzi tyrosine aminotransferase: substrate specificity is influenced by cofactor binding mode.

    PubMed Central

    Blankenfeldt, W.; Nowicki, C.; Montemartini-Kalisz, M.; Kalisz, H. M.; Hecht, H. J.

    1999-01-01

    The crystal structure of tyrosine aminotransferase (TAT) from the parasitic protozoan Trypanosoma cruzi, which belongs to the aminotransferase subfamily Igamma, has been determined at 2.5 A resolution with the R-value R = 15.1%. T. cruzi TAT shares less than 15% sequence identity with aminotransferases of subfamily Ialpha but shows only two larger topological differences to the aspartate aminotransferases (AspATs). First, TAT contains a loop protruding from the enzyme surface in the larger cofactor-binding domain, where the AspATs have a kinked alpha-helix. Second, in the smaller substrate-binding domain, TAT has a four-stranded antiparallel beta-sheet instead of the two-stranded beta-sheet in the AspATs. The position of the aromatic ring of the pyridoxal-5'-phosphate cofactor is very similar to the AspATs but the phosphate group, in contrast, is closer to the substrate-binding site with one of its oxygen atoms pointing toward the substrate. Differences in substrate specificities of T. cruzi TAT and subfamily Ialpha aminotransferases can be attributed by modeling of substrate complexes mainly to this different position of the cofactor-phosphate group. Absence of the arginine, which in the AspATs fixes the substrate side-chain carboxylate group by a salt bridge, contributes to the inability of T. cruzi TAT to transaminate acidic amino acids. The preference of TAT for tyrosine is probably related to the ability of Asn17 in TAT to form a hydrogen bond to the tyrosine side-chain hydroxyl group. PMID:10595543

  17. Despite a Conserved Cystine Knot Motif, Different Cyclotides Have Different Membrane Binding Modes

    PubMed Central

    Wang, Conan K.; Colgrave, Michelle L.; Ireland, David C.; Kaas, Quentin; Craik, David J.

    2009-01-01

    Abstract Cyclotides are cyclic proteins produced by plants for defense against pests. Because of their remarkable stability and diverse bioactivities, they have a range of potential therapeutic applications. The bioactivities of cyclotides are believed to be mediated through membrane interactions. To determine the structural basis for the biological activity of the two major subfamilies of cyclotides, we determined the conformation and orientation of kalata B2 (kB2), a Möbius cyclotide, and cycloviolacin O2 (cO2), a bracelet cyclotide, bound to dodecylphosphocholine micelles, using NMR spectroscopy in the presence and absence of 5- and 16-doxylstearate relaxation probes. Analysis of binding curves using the Langmuir isotherm indicated that cO2 and kB2 have association constants of 7.0 × 103 M−1 and 6.0 × 103 M−1, respectively, consistent with the notion that they are bound near the surface, rather than buried deeply within the micelle. This suggestion is supported by the selective broadening of micelle-bound cyclotide NMR signals upon addition of paramagnetic Mn ions. The cyclotides from the different subfamilies exhibited clearly different binding orientations at the micelle surface. Structural analysis of cO2 confirmed that the main element of the secondary structure is a β-hairpin centered in loop 5. A small helical turn is present in loop 3. Analysis of the surface profile of cO2 shows that a hydrophobic patch stretches over loops 2 and 3, in contrast to the hydrophobic patch of kB2, which predominantly involves loops 2 and 5. The different location of the hydrophobic patches in the two cyclotides explains their different binding orientations and provides an insight into the biological activities of cyclotides. PMID:19720036

  18. Structures of 5-Methylthioribose Kinase Reveal Substrate Specificity and Unusual Mode of Nucleotide Binding

    SciTech Connect

    Ku,S.; Yip, P.; Cornell, K.; Riscoe, M.; Behr, J.; Guillerm, G.; Howell, P.

    2007-01-01

    The methionine salvage pathway is ubiquitous in all organisms, but metabolic variations exist between bacteria and mammals. 5-Methylthioribose (MTR) kinase is a key enzyme in methionine salvage in bacteria and the absence of a mammalian homolog suggests that it is a good target for the design of novel antibiotics. The structures of the apo-form of Bacillus subtilis MTR kinase, as well as its ADP, ADP-PO4, AMPPCP, and AMPPCP-MTR complexes have been determined. MTR kinase has a bilobal eukaryotic protein kinase fold but exhibits a number of unique features. The protein lacks the DFG motif typically found at the beginning of the activation loop and instead coordinates magnesium via a DXE motif (Asp{sup 250}-Glu{sup 252}). In addition, the glycine-rich loop of the protein, analogous to the 'Gly triad' in protein kinases, does not interact extensively with the nucleotide. The MTR substrate-binding site consists of Asp{sup 233} of the catalytic HGD motif, a novel twin arginine motif (Arg{sup 340}/Arg{sup 341}), and a semi-conserved W-loop, which appears to regulate MTR binding specificity. No lobe closure is observed for MTR kinase upon substrate binding. This is probably because the enzyme lacks the lobe closure/inducing interactions between the C-lobe of the protein and the ribosyl moiety of the nucleotide that are typically responsible for lobe closure in protein kinases. The current structures suggest that MTR kinase has a dissociative mechanism.

  19. Diverse modes of binding in structures of Leishmania major N-myristoyltransferase with selective inhibitors

    PubMed Central

    Brannigan, James A.; Roberts, Shirley M.; Bell, Andrew S.; Hutton, Jennie A.; Hodgkinson, Michael R.; Tate, Edward W.; Leatherbarrow, Robin J.; Smith, Deborah F.; Wilkinson, Anthony J.

    2014-01-01

    The leishmaniases are a spectrum of global diseases of poverty associated with immune dysfunction and are the cause of high morbidity. Despite the long history of these diseases, no effective vaccine is available and the currently used drugs are variously compromised by moderate efficacy, complex side effects and the emergence of resistance. It is therefore widely accepted that new therapies are needed. N-Myristoyltransferase (NMT) has been validated pre-clinically as a target for the treatment of fungal and parasitic infections. In a previously reported high-throughput screening program, a number of hit compounds with activity against NMT from Leishmania donovani have been identified. Here, high-resolution crystal structures of representative compounds from four hit series in ternary complexes with myristoyl-CoA and NMT from the closely related L. major are reported. The structures reveal that the inhibitors associate with the peptide-binding groove at a site adjacent to the bound myristoyl-CoA and the catalytic α-carboxylate of Leu421. Each inhibitor makes extensive apolar contacts as well as a small number of polar contacts with the protein. Remarkably, the compounds exploit different features of the peptide-binding groove and collectively occupy a substantial volume of this pocket, suggesting that there is potential for the design of chimaeric inhibitors with significantly enhanced binding. Despite the high conservation of the active sites of the parasite and human NMTs, the inhibitors act selectively over the host enzyme. The role of conformational flexibility in the side chain of Tyr217 in conferring selectivity is discussed. PMID:25075346

  20. The Tubulin Binding Mode of MT Stabilizing and Destabilizing Agents Studied by NMR

    NASA Astrophysics Data System (ADS)

    Sánchez-Pedregal, Víctor M.; Griesinger, Christian

    Tubulin is a fascinating molecule that forms the cytoskeleton of the cells and plays an important role in cell division and trafficking of molecules. It polymerizes and depolymerizes in order to fulfill this biological function. This function can be modulated by small molecules that interfere with the polymerization or the depolymerization. In this article, the structural basis of this behavior is reviewed with special attention to the contribution of NMR spectroscopy. Complex structures of small molecules that bind to tubulin and microtubules will be discussed. Many of them have been determined using NMR spectroscopy, which proves to be an important method in tubulin research.

  1. Low nanomolar GABA effects at extrasynaptic α4β1/β3δ GABA(A) receptor subtypes indicate a different binding mode for GABA at these receptors.

    PubMed

    Karim, Nasiara; Wellendorph, Petrine; Absalom, Nathan; Bang, Line Haunstrup; Jensen, Marianne Lerbech; Hansen, Maja Michelle; Lee, Ho Joon; Johnston, Graham A R; Hanrahan, Jane R; Chebib, Mary

    2012-08-15

    Ionotropic GABA(A) receptors are a highly heterogenous population of receptors assembled from a combination of multiple subunits. The aims of this study were to characterize the potency of GABA at human recombinant δ-containing extrasynaptic GABA(A) receptors expressed in Xenopus oocytes using the two-electrode voltage clamp technique, and to investigate, using site-directed mutagenesis, the molecular determinants for GABA potency at α4β3δ GABA(A) receptors. α4/δ-Containing GABA(A) receptors displayed high sensitivity to GABA, with mid-nanomolar concentrations activating α4β1δ (EC₅₀=24 nM) and α4β3δ (EC₅₀=12 nM) receptors. In the majority of oocytes expressing α4β3δ subtypes, GABA produced a biphasic concentration-response curve, and activated the receptor with low and high concentrations (EC₅₀(1)=16 nM; EC₅₀(2)=1.2 μM). At α4β2δ, GABA had low micromolar activity (EC₅₀=1 μM). An analysis of 10 N-terminal singly mutated α4β3δ receptors shows that GABA interacts with amino acids different to those reported for α1β2γ2 GABA(A) receptors. Residues Y205 and R207 of the β3-subunit significantly affected GABA potency, while the residue F71 of the α4- and the residue Y97 of the β3-subunit did not significantly affect GABA potency. Mutating the residue R218 of the δ-subunit, equivalent to the GABA binding residue R207 of the β2-subunit, reduced the potency of GABA by 670-fold, suggesting a novel GABA binding site at the δ-subunit interface. Taken together, GABA may have different binding modes for extrasynaptic δ-containing GABA(A) receptors compared to their synaptic counterparts.

  2. Multiple secondary islands formation in nonlinear evolution of double tearing mode simulations

    NASA Astrophysics Data System (ADS)

    Guo, W.; Ma, J.; Yu, Z.

    2017-03-01

    A new numerical code solving the conservative perturbed resistive magnetohydrodynamic (MHD) model is developed. Numerical tests of the ideal Kelvin-Helmholtz instability and the resistive double tearing mode (DTM) show its capability in solving linear and nonlinear MHD instabilities. The nonlinear DTM evolution in 2D geometry is numerically investigated with low guiding field B z 0 , short half-distance y 0 between the equilibrium current sheets, and small resistivity η. The interaction of islands on the two initial current sheets may generate an unstable flow driven current sheet with a high length-to-thickness aspect ratio (α), and multiple secondary islands can form. In general, the length-to-thickness aspect ratio α and the number of secondary islands increase with decreasing guide field B z 0 , decreasing half-distance y 0 , and increasing Lundquist number of the flow driven current sheet S L although the dependence may be non-monotonic. The reconnection rate dependence on S L , B z 0 , and y 0 is also investigated.

  3. Use of multiple acoustic wave modes for assessment of long bones: Model study

    PubMed Central

    Tatarinov, Alexey; Sarvazyan, Noune; Sarvazyan, Armen

    2010-01-01

    Multiple acoustic wave mode method has been proposed as a new modality in axial bone QUS. The new method is based on measurement of ultrasound velocity at different ratio of wavelength to the bone thickness, and taking into account both bulk and guided waves. It allows assessment of changes in both the material properties related to porosity and mineralization as well as the cortical thickness influenced by resorption from inner layers, which are equally important in diagnostics of osteoporosis and other bone osteopenia. Developed method was validated in model studies using a dual-frequency (100 and 500 kHz) ultrasound device. Three types of bone phantoms for long bones were developed and tested: (1) tubular specimens from polymer materials to model combined changes of material stiffness and cortical wall thickness; (2) layered specimens to model porosity in compact bone progressing from endosteum towards periosteum; (3) animal bone specimens with both cortical and trabecular components. Observed changes of the ultrasound velocity of guided waves at 100 kHz followed gradual changes in the thickness of the intact cortical layer. On the other hand, the bulk velocity at 500 kHz remained nearly constant at the different cortical layer thickness but was affected by the material stiffness. Similar trends were observed in phantoms and in fragments of animal bones. PMID:15982472

  4. Krox20 hindbrain regulation incorporates multiple modes of cooperation between cis-acting elements

    PubMed Central

    Thierion, Elodie; Le Men, Johan; Collombet, Samuel; Torbey, Patrick; Thomas-Chollier, Morgane; Charnay, Patrick

    2017-01-01

    Developmental genes can harbour multiple transcriptional enhancers that act simultaneously or in succession to achieve robust and precise spatiotemporal expression. However, the mechanisms underlying cooperation between cis-acting elements are poorly documented, notably in vertebrates. The mouse gene Krox20 encodes a transcription factor required for the specification of two segments (rhombomeres) of the developing hindbrain. In rhombomere 3, Krox20 is subject to direct positive feedback governed by an autoregulatory enhancer, element A. In contrast, a second enhancer, element C, distant by 70 kb, is active from the initiation of transcription independent of the presence of the KROX20 protein. Here, using both enhancer knock-outs and investigations of chromatin organisation, we show that element C possesses a dual activity: besides its classical enhancer function, it is also permanently required in cis to potentiate the autoregulatory activity of element A, by increasing its chromatin accessibility. This work uncovers a novel, asymmetrical, long-range mode of cooperation between cis-acting elements that might be essential to avoid promiscuous activation of positive autoregulatory elements. PMID:28749941

  5. The most informative spacing test effectively discovers biologically relevant outliers or multiple modes in expression

    PubMed Central

    Wu, Gang; Edmonson, Michael; Liu, Zhifa; Gruber, Tanja; Zhang, Jinghui; Pounds, Stan

    2014-01-01

    Summary: Several outlier and subgroup identification statistics (OASIS) have been proposed to discover transcriptomic features with outliers or multiple modes in expression that are indicative of distinct biological processes or subgroups. Here, we borrow ideas from the OASIS methods in the bioinformatics and statistics literature to develop the ‘most informative spacing test’ (MIST) for unsupervised detection of such transcriptomic features. In an example application involving 14 cases of pediatric acute megakaryoblastic leukemia, MIST more robustly identified features that perfectly discriminate subjects according to gender or the presence of a prognostically relevant fusion-gene than did seven other OASIS methods in the analysis of RNA-seq exon expression, RNA-seq exon junction expression and micorarray exon expression data. MIST was also effective at identifying features related to gender or molecular subtype in an example application involving 157 adult cases of acute myeloid leukemia. Availability: MIST will be freely available in the OASIS R package at http://www.stjuderesearch.org/site/depts/biostats Contact: stanley.pounds@stjude.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24458951

  6. Limiting the costs of mutalism: multiple modes of interaction between yuccas and yucca moths

    PubMed Central

    Addicott, J. F.; Bao, T.

    1999-01-01

    In pollination–seed predation mutualisms between yuccas and yucca moths, conflicts of interest exist for yuccas, because benefits of increased pollination may be outweighed by increased seed consumption. These conflicts raise the problem of what limits seed consumption, and ultimately what limits or regulates moth populations. Although the current hypothesis is that yuccas should selectively abscise flowers with high numbers of yucca-moth eggs, within-inflorescence selective abscission occurs in only one of the three moth–yucca systems that we studied. It occurs only when oviposition directly damages developing ovules, and does not, therefore, provide a general explanation for the resolution of moth–yucca conflicts. Within-locule egg mortality provides an alternative and stronger mechanism for limiting seed damage, and generating density-dependent mortality for yucca-moth populations. However, the most important feature of moth–yucca systems is that they are diverse, encompassing multiple modes of interaction, each with different consequences for limiting and regulating yucca moths.

  7. Multiple antigen peptide dendrimer elicits antibodies for detecting rat and mouse growth hormone binding proteins

    PubMed Central

    Aguilar, Roberto M.; Talamantes, Frank J.; Bustamante, Juan J.; Muñoz, Jesus; Treviño, Lisa R.; Martinez, Andrew O.; Haro, Luis S.

    2009-01-01

    The membrane-bound rat growth hormone receptor (GH-R) and an alternatively spliced isoform, the soluble rat GH binding protein (GH-BP), are comprised of identical N-terminal GH binding domains, however, their C-terminal sequences differ. Immunological reagents are needed to distinguish between the two isoforms in order to understand their respective roles in mediating the actions of GH. Accordingly, a tetravalent multiple antigen peptide (MAP) dendrimer with four identical branches of a C-terminal peptide sequence of the rat GH-BP (GH-BP263-279) was synthesized and used as an immunogen in rabbits. Solid-phase peptide synthesis of four GH-BP263-279 segments onto a tetravalent Lys2-Lys-β-Ala-OH core peptide was carried out using N-(9-fluorenyl)methoxycarbonyl chemistry. The mass of the RP-HPLC purified synthetic product, 8398 Da, determined by ESI-MS, was identical to expected mass. Three anti-rat GH-BP263-279 MAP antisera, BETO-8039, BETO-8040 and BETO-8041, at dilutions of 10-3, recognized both the rat GH-BP263-279 MAP and recombinant mouse GH-BP with ED50s within a range of 5-10 fmol but did not cross-react with BSA in dot blot analyses. BETO-8041 antisera (10-3 dilution) recognized GH-BPs of rat serum and liver having Mrs ranging from 35-130 kDa but did not recognize full-length rat GH-Rs. The antisera also detected recombinant mouse GH-BPs. In summary, the tetravalent rat GH-BP263-279 MAP dendrimer served as an effective immunogenic antigen in eliciting high titer antisera specific for the C-termini of both rat and mouse GH-BPs. The antisera will facilitate studies aimed at improving our understanding of the biology of GH-BPs. PMID:19089805

  8. Modeling androgen receptor flexibility: a binding mode hypothesis of CYP17 inhibitors/antiandrogens for prostate cancer therapy.

    PubMed

    Gianti, Eleonora; Zauhar, Randy J

    2012-10-22

    Prostate Cancer (PCa), a leading cause of cancer death worldwide (www.cancer.gov), is a complex malignancy where a spectrum of targets leads to a diversity of PCa forms. A widely pursued therapeutic target is the Androgen Receptor (AR). As a Steroid Hormone Receptor, AR serves as activator of transcription upon binding to androgens and plays a central role in the development of PCa. AR is a structurally flexible protein, and conformational plasticity of residues in the binding-pocket is a key to its ability to accommodate ligands from various chemical classes. Besides direct modulation of AR activity by antagonists, inhibition of cytochrome CYP17 (17α-hydroxylase/17,20-lyase), essential in androgen biosynthesis, has widely been considered an effective strategy against PCa. Interestingly, Handratta et al. (2005) discovered new, potent inhibitors of CYP17 (C-17 steroid derivatives) with pure AR antagonistic properties. Although the antiandrogenic activity of their lead compound (VN/124-1) has been experimentally proven both in vitro and in vivo, no structural data are currently available to elucidate the molecular determinants responsible for these desirable dual inhibitory properties. We implemented a Structure-based Drug Design (SBDD) approach to generate a valuable hypothesis as to the binding modes of steroidal CYP17 inhibitors/antiandrogens against the AR. To deal with the plasticity of residues buried in the Ligand Binding Domain (LBD), we developed a flexible-receptor Docking protocol based on Induced-Fit (IFD) methodology (www.schrodinger.com/). Our results constitute an ideal starting point for the rational design of next-generation analogues of CYP17 inhibitors/antiandrogens as well as an attractive tool to suggest novel chemical classes of AR antagonists.

  9. In silico characterization of binding mode of CCR8 inhibitor: homology modeling, docking and membrane based MD simulation study.

    PubMed

    Gadhe, Changdev G; Balupuri, Anand; Cho, Seung Joo

    2015-01-01

    Human CC-chemokine receptor 8 (CCR8) is a crucial drug target in asthma that belongs to G-protein-coupled receptor superfamily, which is characterized by seven transmembrane helices. To date, there is no X-ray crystal structure available for CCR8; this hampers active research on the target. Molecular basis of interaction mechanism of antagonist with CCR8 remains unclear. In order to provide binding site information and stable binding mode, we performed modeling, docking and molecular dynamics (MD) simulation of CCR8. Docking study of biaryl-ether-piperidine derivative (13C) was performed inside predefined CCR8 binding site to get the representative conformation of 13C. Further, MD simulations of receptor and complex (13C-CCR8) inside dipalmitoylphosphatidylcholine lipid bilayers were performed to explore the effect of lipids. Results analyses showed that the Gln91, Tyr94, Cys106, Val109, Tyr113, Cys183, Tyr184, Ser185, Lys195, Thr198, Asn199, Met202, Phe254, and Glu286 were conserved in both docking and MD simulations. This indicated possible role of these residues in CCR8 antagonism. However, experimental mutational studies on these identified residues could be effective to confirm their importance in CCR8 antagonism. Furthermore, calculated Coulombic interactions represented the crucial roles of Glu286, Lys195, and Tyr113 in CCR8 antagonism. Important residues identified in this study overlap with the previous non-peptide agonist (LMD-009) binding site. Though, the non-peptide agonist and currently studied inhibitor (13C) share common substructure, but they differ in their effects on CCR8. So, to get more insight into their agonist and antagonist effects, further side-by-side experimental studies on both agonist (LMD-009) and antagonist (13C) are suggested.

  10. Divergent modes of glycan recognition by a new family of carbohydrate-binding modules.

    PubMed

    Gregg, Katie J; Finn, Ron; Abbott, D Wade; Boraston, Alisdair B

    2008-05-02

    The genomes of myonecrotic Clostridium perfringens isolates contain genes encoding a large and fascinating array of highly modular glycoside hydrolase enzymes. Although the catalytic activities of many of these enzymes are somewhat predictable based on their amino acid sequences, the functions of their abundant ancillary modules are not and remain poorly studied. Here, we present the structural and functional analysis of a new family of ancillary carbohydrate-binding modules (CBMs), CBM51, which was previously annotated in data bases as the novel putative CBM domain. The high resolution crystal structures of two CBM51 members, GH95CBM51 and GH98CBM51, from a putative family 95 alpha-fucosidase and from a family 98 blood group A/B antigen-specific endo-beta-galactosidase, respectively, showed them to have highly similar beta-sandwich folds. However, GH95CBM51 was shown by glycan microarray screening, isothermal titration calorimetry, and x-ray crystallography to bind galactose residues, whereas the same analyses of GH98CBM51 revealed specificity for the blood group A/B antigens through non-conserved interactions. Overall, this work identifies a new family of CBMs with many members having apparent specificity for eukaryotic glycans, in keeping with the glycan-rich environment C. perfringens would experience in its host. However, a wider bioinformatic analysis of this CBM family also indicated a large number of members in non-pathogenic environmental bacteria, suggesting a role in the recognition of environmental glycans.

  11. Salmonella Enterica Serovar Typhimurium BipA Exhibits Two Distinct Ribosome Binding Modes

    SciTech Connect

    deLivron, M.; Robinson, V

    2008-01-01

    BipA is a highly conserved prokaryotic GTPase that functions to influence numerous cellular processes in bacteria. In Escherichia coli and Salmonella enterica serovar Typhimurium, BipA has been implicated in controlling bacterial motility, modulating attachment and effacement processes, and upregulating the expression of virulence genes and is also responsible for avoidance of host defense mechanisms. In addition, BipA is thought to be involved in bacterial stress responses, such as those associated with virulence, temperature, and symbiosis. Thus, BipA is necessary for securing bacterial survival and successful invasion of the host. Steady-state kinetic analysis and pelleting assays were used to assess the GTPase and ribosome-binding properties of S. enterica BipA. Under normal bacterial growth, BipA associates with the ribosome in the GTP-bound state. However, using sucrose density gradients, we demonstrate that the association of BipA and the ribosome is altered under stress conditions in bacteria similar to those experienced during virulence. The data show that this differential binding is brought about by the presence of ppGpp, an alarmone that signals the onset of stress-related events in bacteria.

  12. Unique coenzyme binding mode of hyperthermophilic archaeal sn-glycerol-1-phosphate dehydrogenase from Pyrobaculum calidifontis.

    PubMed

    Hayashi, Junji; Yamamoto, Kaori; Yoneda, Kazunari; Ohshima, Toshihisa; Sakuraba, Haruhiko

    2016-12-01

    A gene encoding an sn-glycerol-1-phosphate dehydrogenase (G1PDH) was identified in the hyperthermophilic archaeon Pyrobaculum calidifontis. The gene was overexpressed in Escherichia coli, and its product was purified and characterized. In contrast to conventional G1PDHs, the expressed enzyme showed strong preference for NADH: the reaction rate (Vmax ) with NADPH was only 2.4% of that with NADH. The crystal structure of the enzyme was determined at a resolution of 2.45 Å. The asymmetric unit consisted of one homohexamer. Refinement of the structure and HPLC analysis showed the presence of the bound cofactor NADPH in subunits D, E, and F, even though it was not added in the crystallization procedure. The phosphate group at C2' of the adenine ribose of NADPH is tightly held through the five biased hydrogen bonds with Ser40 and Thr42. In comparison with the known G1PDH structure, the NADPH molecule was observed to be pushed away from the normal coenzyme binding site. Interestingly, the S40A/T42A double mutant enzyme acquired much higher reactivity than the wild-type enzyme with NADPH, which suggests that the biased interactions around the C2'-phosphate group make NADPH binding insufficient for catalysis. Our results provide a unique structural basis for coenzyme preference in NAD(P)-dependent dehydrogenases. Proteins 2016; 84:1786-1796. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. The pKa of butaclamol and the mode of butaclamol binding to central dopamine receptors.

    PubMed

    Chrzanowski, F A; McGrogan, B A; Maryanoff, B E

    1985-03-01

    The pKa values for butaclamol (1), 1,2,3,5,6,10b beta-hexahydro-6 alpha-phenylpyrrolo[2,1-alpha]isoquinoline (2, McN-4612-Y), and 2-tert-butyl-1,3,4,6,7,11b beta-hexahydro-7 beta-phenyl-2H-benzo[alpha]quinolizin-2 alpha-ol (3, McN-4171) were determined to be 7.2, 9.1, and 7.0, respectively. The values for 1 and 3 are anomalous; however, the value for 1 (7.2) is not as low as the one reported in the literature (pKa = 5.9). We also determined pKa values for apomorphine, chlorpromazine, and lidocaine, for reference purposes (7.6, 9.2, and 7.9, respectively). The results indicate that 1 would not be predominantly unprotonated under the physiological conditions of receptor binding, rather it would be about 50% protonated. This fact may contravene a suggested binding model used to map the central dopamine receptor (viz., ref 3).

  14. Comparison and analysis of the structures and binding modes of antifungal SE and CYP51 inhibitors.

    PubMed

    Sun, Bin; Huang, Wanxu; Liu, Min; Lei, Kang

    2017-08-01

    With the abuse of clinical broad-spectrum antimicrobial agents, immunosuppressive agents, chemotherapy drugs, the emergence of pathogenic fungi resistance is more and more frequent. However, there is still no effective treatment for the fungal resistance. Squalenee epoxidase (SE) and 14 α-demethylase (CYP51) are important antifungal drug targets. In order to achieve a deeper insight into the structural characteristics and the action modes of SE and CYP51inhibitors, the homology model of SE (Candida albicans) was constructed using monooxygenase of Pseudomonas aeruginosa as template, and the reliability of model was confirmed by Ramachandran plots and Verify 3D. Subsequently, the molecular superimposition and molecular docking were performed, and the pharmacophore model based on the CYP51 receptor structure was constructed. The results indicate that SE and CYP51 inhibitors have common structural feature with two parts of essential fragments, which are mainly composed of aromatic groups. In addition, the fragment structures of inhibitors are combined in the similar hydrophobic pockets through the hydrophobic forces. The present study provides a deeper perspective to understand the characteristics and docking modes of SE and CYP51 inhibitors. It can be used to guide the optimization and design of SE and CYP51 inhibitors. In addition, it also provides the oretical support for the development of dual target antifungal inhibitors (SE and CYP51), which can help us solve the problem of fungi resistance. Copyright © 2017. Published by Elsevier Inc.

  15. Rigid-flexible coupling dynamic modeling and investigation of a redundantly actuated parallel manipulator with multiple actuation modes

    NASA Astrophysics Data System (ADS)

    Liang, Dong; Song, Yimin; Sun, Tao; Jin, Xueying

    2017-09-01

    A systematic dynamic modeling methodology is presented to develop the rigid-flexible coupling dynamic model (RFDM) of an emerging flexible parallel manipulator with multiple actuation modes. By virtue of assumed mode method, the general dynamic model of an arbitrary flexible body with any number of lumped parameters is derived in an explicit closed form, which possesses the modular characteristic. Then the completely dynamic model of system is formulated based on the flexible multi-body dynamics (FMD) theory and the augmented Lagrangian multipliers method. An approach of combining the Udwadia-Kalaba formulation with the hybrid TR-BDF2 numerical algorithm is proposed to address the nonlinear RFDM. Two simulation cases are performed to investigate the dynamic performance of the manipulator with different actuation modes. The results indicate that the redundant actuation modes can effectively attenuate vibration and guarantee higher dynamic performance compared to the traditional non-redundant actuation modes. Finally, a virtual prototype model is developed to demonstrate the validity of the presented RFDM. The systematic methodology proposed in this study can be conveniently extended for the dynamic modeling and controller design of other planar flexible parallel manipulators, especially the emerging ones with multiple actuation modes.

  16. The Impact of Embedding Multiple Modes of Representation within Writing Tasks on High School Students' Chemistry Understanding

    ERIC Educational Resources Information Center

    McDermott, Mark A.; Hand, Brian

    2013-01-01

    This study investigated the impact on chemistry learning of the degree to which students embedded or integrated multiple modes of representation in end of unit writing-to-learn activities. A multi-case study approach utilizing quasi-experimental methodology involving intact high school chemistry classes taught by two different teachers was…

  17. Teaching Multiple Modes of Representation in Middle-School Science Classrooms: Impact on Student Learning and Multimodal Use

    ERIC Educational Resources Information Center

    Nixon, Ryan S.; Smith, Leigh K.; Wimmer, Jennifer J.

    2015-01-01

    This quasi-experimental study investigated how explicit instruction about multiple modes of representation (MMR) impacted grades 7 (n = 61) and 8 (n = 141) students' learning and multimodal use on end-of-unit assessments. Half of each teacher's (n = 3) students received an intervention consisting of explicit instruction on MMR in science…

  18. Sensitive determination of plasma protein binding of cationic drugs using mixed-mode solid-phase microextraction.

    PubMed

    Peltenburg, Hester; Bosman, Ingrid J; Hermens, Joop L M

    2015-11-10

    Freely dissolved concentrations are considered to be the most relevant concentration in pharmacology and toxicology, as they represent the active concentration available for interaction with its surroundings. Here, a solid-phase microextraction (SPME) coating that combines octadecyl and propylsulfonic acid groups as strong cation exchange sites, known as C18/SCX or "mixed-mode" SPME, is used to measure freely dissolved concentrations of amitriptyline, amphetamine, diazepam and tramadol to different binding matrices, including bovine serum albumin (BSA), human serum albumin (HSA), human plasma and human whole blood. A potential confounding factor in binding studies is that proteins may sorb to the fiber coating leading to incorrect measurement of protein sorption or changes in uptake kinetics to the fiber coating. Sorption of bovine serum albumin (BSA) was observed and quantified using a Lowry assay. BSA binds to the C18/SCX fiber in small amounts, but large changes in uptake kinetics were not observed. All experiments were performed at equilibrium. In addition, however, the effect of depletion and non-equilibrium extraction on the estimation of protein binding affinities was also studied. Binding affinities to BSA and human serum albumin (HSA) were calculated as log KBSA or log KHSA. These values were very similar to reported literature values. Sampling at either equilibrium or non-equilibrium resulted in similar binding affinities. Furthermore, SPME fibers were used to measure freely dissolved concentrations in undiluted human plasma and whole blood. Analysis of SPME extracts could be performed using HPLC-UV or HPLC with fluorescence detection without prior clean-up of the samples. Measured bound fractions in plasma using this SPME approach were comparable to literature reference values. Bound fractions in whole blood were always higher than in plasma, due to red blood cell partitioning. This work shows the potential of SPME as sampling tool for freely dissolved

  19. Multiple-bunch-length operating mode design for a storage ring using hybrid low alpha and harmonic cavity method

    NASA Astrophysics Data System (ADS)

    Gao, Weiwei; Wang, Lin; Li, Heting

    2017-03-01

    In this paper we design a simultaneous three bunch length operating mode at the HLS-II (Hefei Light Source II) storage ring by installing two harmonic cavities and minimizing the momentum compaction factor. The short bunches (2.6 mm) presented in this work will meet the requirement of coherent millimeter-wave and sub-THz radiation experiments, while the long bunches (20 mm) will efficiently increase the total beam current. Therefore, this multiple-bunch-length operating mode allows present synchrotron users and coherent millimeter-wave users (or sub THz users) to carry out their experiments simultaneously. Since the relatively low energy characteristic of HLS-II we achieve the multiple-bunch-length operating mode without multicell superconducting RF cavities, which is technically feasible.

  20. TAF4/4b·TAF12 Displays a Unique Mode of DNA Binding and Is Required for Core Promoter Function of a Subset of Genes*

    PubMed Central

    Gazit, Kfir; Moshonov, Sandra; Elfakess, Rofa; Sharon, Michal; Mengus, Gabrielle; Davidson, Irwin; Dikstein, Rivka

    2009-01-01

    The major core promoter-binding factor in polymerase II transcription machinery is TFIID, a complex consisting of TBP, the TATA box-binding protein, and 13 to 14 TBP-associated factors (TAFs). Previously we found that the histone H2A-like TAF paralogs TAF4 and TAF4b possess DNA-binding activity. Whether TAF4/TAF4b DNA binding directs TFIID to a specific core promoter element or facilitates TFIID binding to established core promoter elements is not known. Here we analyzed the mode of TAF4b·TAF12 DNA binding and show that this complex binds DNA with high affinity. The DNA length required for optimal binding is ∼70 bp. Although the complex displays a weak sequence preference, the nucleotide composition is less important than the length of the DNA for high affinity binding. Comparative expression profiling of wild-type and a DNA-binding mutant of TAF4 revealed common core promoter features in the down-regulated genes that include a TATA-box and an Initiator. Further examination of the PEL98 gene from this group showed diminished Initiator activity and TFIID occupancy in TAF4 DNA-binding mutant cells. These findings suggest that DNA binding by TAF4/4b-TAF12 facilitates the association of TFIID with the core promoter of a subset of genes. PMID:19635797