Sample records for multiple biochemical pathways

  1. Multiple Ion Binding Equilibria, Reaction Kinetics, and Thermodynamics in Dynamic Models of Biochemical Pathways

    PubMed Central

    Vinnakota, Kalyan C.; Wu, Fan; Kushmerick, Martin J.; Beard, Daniel A.

    2009-01-01

    The operation of biochemical systems in vivo and in vitro is strongly influenced by complex interactions between biochemical reactants and ions such as H+, Mg2+, K+, and Ca2+. These are important second messengers in metabolic and signaling pathways that directly influence the kinetics and thermodynamics of biochemical systems. Herein we describe the biophysical theory and computational methods to account for multiple ion binding to biochemical reactants and demonstrate the crucial effects of ion binding on biochemical reaction kinetics and thermodynamics. In simulations of realistic systems, the concentrations of these ions change with time due to dynamic buffering and competitive binding. In turn, the effective thermodynamic properties vary as functions of cation concentrations and important environmental variables such as temperature and overall ionic strength. Physically realistic simulations of biochemical systems require incorporating all of these phenomena into a coherent mathematical description. Several applications to physiological systems are demonstrated based on this coherent simulation framework. PMID:19216922

  2. Construction and engineering of large biochemical pathways via DNA assembler

    PubMed Central

    Shao, Zengyi; Zhao, Huimin

    2015-01-01

    Summary DNA assembler enables rapid construction and engineering of biochemical pathways in a one-step fashion by exploitation of the in vivo homologous recombination mechanism in Saccharomyces cerevisiae. It has many applications in pathway engineering, metabolic engineering, combinatorial biology, and synthetic biology. Here we use two examples including the zeaxanthin biosynthetic pathway and the aureothin biosynthetic gene cluster to describe the key steps in the construction of pathways containing multiple genes using the DNA assembler approach. Methods for construct design, pathway assembly, pathway confirmation, and functional analysis are shown. The protocol for fine genetic modifications such as site-directed mutagenesis for engineering the aureothin gene cluster is also illustrated. PMID:23996442

  3. Identification of novel loci for the generation of reporter mice

    PubMed Central

    Rebecchi, Monica; Levandis, Giovanna

    2017-01-01

    Abstract Deciphering the etiology of complex pathologies at molecular level requires longitudinal studies encompassing multiple biochemical pathways (apoptosis, proliferation, inflammation, oxidative stress). In vivo imaging of current reporter animals enabled the spatio-temporal analysis of specific molecular events, however, the lack of a multiplicity of loci for the generalized and regulated expression of the integrated transgenes hampers the creation of systems for the simultaneous analysis of more than a biochemical pathways at the time. We here developed and tested an in vivo-based methodology for the identification of multiple insertional loci suitable for the generation of reliable reporter mice. The validity of the methodology was tested with the generation of novel mice useful to report on inflammation and oxidative stress. PMID:27899606

  4. Diabetic Neuropathy: Mechanisms to Management

    PubMed Central

    Edwards, James L.; Vincent, Andrea; Cheng, Thomas; Feldman, Eva L.

    2014-01-01

    Neuropathy is the most common and debilitating complication of diabetes and results in pain, decreased motility, and amputation. Diabetic neuropathy encompasses a variety of forms whose impact ranges from discomfort to death. Hyperglycemia induces oxidative stress in diabetic neurons and results in activation of multiple biochemical pathways. These activated pathways are a major source of damage and are potential therapeutic targets in diabetic neuropathy. Though therapies are available to alleviate the symptoms of diabetic neuropathy, few options are available to eliminate the root causes. The immense physical, psychological, and economic cost of diabetic neuropathy underscores the need for causally targeted therapies. This review covers the pathology, epidemiology, biochemical pathways, and prevention of diabetic neuropathy, as well as discusses current symptomatic and causal therapies and novel approaches to identify therapeutic targets. PMID:18616962

  5. Protein binding of isofluorophate in vivo after coexposure to multiple chemicals.

    PubMed Central

    Vogel, John S; Keating, Garrett A; Buchholz, Bruce A

    2002-01-01

    Full toxicologic profiles of chemical mixtures, including dose-response extrapolations to realistic exposures, is a prohibitive analytical problem, even for a restricted class of chemicals. We present an approach to probing in vivo interactions of pesticide mixtures at relevant low doses using a monitor compound to report the response of biochemical pathways shared by mixture components. We use accelerator mass spectrometry (AMS) to quantify [14C]-diisopropylfluorophosphate as a tracer at attomole levels with 1-5% precision after coexposures to parathion (PTN), permethrin (PER), and pyridostigmine bromide separately and in conjunction. Pyridostigmine shows an overall protective effect against tracer binding in plasma, red blood cells, muscle, and brain that is not explained as competitive protein binding. PTN and PER induce a significant 25-30% increase in the amount of tracer reaching the brain with or without pyridostigmine. The sensitivity of AMS for isotope-labeled tracer compounds can be used to probe the physiologic responses of specific biochemical pathways to multiple compound exposures. PMID:12634135

  6. Convergent evolution of caffeine in plants by co-option of exapted ancestral enzymes.

    PubMed

    Huang, Ruiqi; O'Donnell, Andrew J; Barboline, Jessica J; Barkman, Todd J

    2016-09-20

    Convergent evolution is a process that has occurred throughout the tree of life, but the historical genetic and biochemical context promoting the repeated independent origins of a trait is rarely understood. The well-known stimulant caffeine, and its xanthine alkaloid precursors, has evolved multiple times in flowering plant history for various roles in plant defense and pollination. We have shown that convergent caffeine production, surprisingly, has evolved by two previously unknown biochemical pathways in chocolate, citrus, and guaraná plants using either caffeine synthase- or xanthine methyltransferase-like enzymes. However, the pathway and enzyme lineage used by any given plant species is not predictable from phylogenetic relatedness alone. Ancestral sequence resurrection reveals that this convergence was facilitated by co-option of genes maintained over 100 million y for alternative biochemical roles. The ancient enzymes of the Citrus lineage were exapted for reactions currently used for various steps of caffeine biosynthesis and required very few mutations to acquire modern-day enzymatic characteristics, allowing for the evolution of a complete pathway. Future studies aimed at manipulating caffeine content of plants will require the use of different approaches given the metabolic and genetic diversity revealed by this study.

  7. Convergent evolution of caffeine in plants by co-option of exapted ancestral enzymes

    PubMed Central

    Huang, Ruiqi; O’Donnell, Andrew J.; Barboline, Jessica J.; Barkman, Todd J.

    2016-01-01

    Convergent evolution is a process that has occurred throughout the tree of life, but the historical genetic and biochemical context promoting the repeated independent origins of a trait is rarely understood. The well-known stimulant caffeine, and its xanthine alkaloid precursors, has evolved multiple times in flowering plant history for various roles in plant defense and pollination. We have shown that convergent caffeine production, surprisingly, has evolved by two previously unknown biochemical pathways in chocolate, citrus, and guaraná plants using either caffeine synthase- or xanthine methyltransferase-like enzymes. However, the pathway and enzyme lineage used by any given plant species is not predictable from phylogenetic relatedness alone. Ancestral sequence resurrection reveals that this convergence was facilitated by co-option of genes maintained over 100 million y for alternative biochemical roles. The ancient enzymes of the Citrus lineage were exapted for reactions currently used for various steps of caffeine biosynthesis and required very few mutations to acquire modern-day enzymatic characteristics, allowing for the evolution of a complete pathway. Future studies aimed at manipulating caffeine content of plants will require the use of different approaches given the metabolic and genetic diversity revealed by this study. PMID:27638206

  8. High salt diet induces metabolic alterations in multiple biological processes of Dahl salt-sensitive rats.

    PubMed

    Wang, Yanjun; Liu, Xiangyang; Zhang, Chen; Wang, Zhengjun

    2018-06-01

    High salt induced renal disease is a condition resulting from the interactions of genetic and dietary factors causing multiple complications. To understand the metabolic alterations associated with renal disease, we comprehensively analyzed the metabonomic changes induced by high salt intake in Dahl salt-sensitive (SS) rats using GC-MS technology and biochemical analyses. Physiological features, serum chemistry, and histopathological data were obtained as complementary information. Our results showed that high salt (HS) intake for 16 weeks caused significant metabolic alterations in both the renal medulla and cortex involving a variety pathways involved in the metabolism of organic acids, amino acids, fatty acids, and purines. In addition, HS enhanced glycolysis (hexokinase, phosphofructokinase and pyruvate kinase) and amino acid metabolism and suppressed the TCA (citrate synthase and aconitase) cycle. Finally, HS intake caused up-regulation of the pentose phosphate pathway (glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase), the ratio of NADPH/NADP + , NADPH oxidase activity and ROS production, suggesting that increased oxidative stress was associated with an altered PPP pathway. The metabolic pathways identified may serve as potential targets for the treatment of renal damage. Our findings provide comprehensive biochemical details about the metabolic responses to a high salt diet, which may contribute to the understanding of renal disease and salt-induced hypertension in SS rats. Copyright © 2018. Published by Elsevier Inc.

  9. Metabolic pathways as possible therapeutic targets for progressive multiple sclerosis.

    PubMed

    Heidker, Rebecca M; Emerson, Mitchell R; LeVine, Steven M

    2017-08-01

    Unlike relapsing remitting multiple sclerosis, there are very few therapeutic options for patients with progressive forms of multiple sclerosis. While immune mechanisms are key participants in the pathogenesis of relapsing remitting multiple sclerosis, the mechanisms underlying the development of progressive multiple sclerosis are less well understood. Putative mechanisms behind progressive multiple sclerosis have been put forth: insufficient energy production via mitochondrial dysfunction, activated microglia, iron accumulation, oxidative stress, activated astrocytes, Wallerian degeneration, apoptosis, etc . Furthermore, repair processes such as remyelination are incomplete. Experimental therapies that strive to improve metabolism within neurons and glia, e.g. , oligodendrocytes, could act to counter inadequate energy supplies and/or support remyelination. Most experimental approaches have been examined as standalone interventions; however, it is apparent that the biochemical steps being targeted are part of larger pathways, which are further intertwined with other metabolic pathways. Thus, the potential benefits of a tested intervention, or of an established therapy, e.g. , ocrelizumab, could be undermined by constraints on upstream and/or downstream steps. If correct, then this argues for a more comprehensive, multifaceted approach to therapy. Here we review experimental approaches to support neuronal and glial metabolism, and/or promote remyelination, which may have potential to lessen or delay progressive multiple sclerosis.

  10. Training Signaling Pathway Maps to Biochemical Data with Constrained Fuzzy Logic: Quantitative Analysis of Liver Cell Responses to Inflammatory Stimuli

    PubMed Central

    Morris, Melody K.; Saez-Rodriguez, Julio; Clarke, David C.; Sorger, Peter K.; Lauffenburger, Douglas A.

    2011-01-01

    Predictive understanding of cell signaling network operation based on general prior knowledge but consistent with empirical data in a specific environmental context is a current challenge in computational biology. Recent work has demonstrated that Boolean logic can be used to create context-specific network models by training proteomic pathway maps to dedicated biochemical data; however, the Boolean formalism is restricted to characterizing protein species as either fully active or inactive. To advance beyond this limitation, we propose a novel form of fuzzy logic sufficiently flexible to model quantitative data but also sufficiently simple to efficiently construct models by training pathway maps on dedicated experimental measurements. Our new approach, termed constrained fuzzy logic (cFL), converts a prior knowledge network (obtained from literature or interactome databases) into a computable model that describes graded values of protein activation across multiple pathways. We train a cFL-converted network to experimental data describing hepatocytic protein activation by inflammatory cytokines and demonstrate the application of the resultant trained models for three important purposes: (a) generating experimentally testable biological hypotheses concerning pathway crosstalk, (b) establishing capability for quantitative prediction of protein activity, and (c) prediction and understanding of the cytokine release phenotypic response. Our methodology systematically and quantitatively trains a protein pathway map summarizing curated literature to context-specific biochemical data. This process generates a computable model yielding successful prediction of new test data and offering biological insight into complex datasets that are difficult to fully analyze by intuition alone. PMID:21408212

  11. Peroxisomal biogenesis is genetically and biochemically linked to carbohydrate metabolism in Drosophila and mouse

    PubMed Central

    Chao, Yu-Hsin; Giagtzoglou, Nikolaos; Putluri, Nagireddy; Coarfa, Cristian; Donti, Taraka; Faust, Joseph E.; McNew, James A.; Sardiello, Marco; Baes, Myriam; Bellen, Hugo J.

    2017-01-01

    Peroxisome biogenesis disorders (PBD) are a group of multi-system human diseases due to mutations in the PEX genes that are responsible for peroxisome assembly and function. These disorders lead to global defects in peroxisomal function and result in severe brain, liver, bone and kidney disease. In order to study their pathogenesis we undertook a systematic genetic and biochemical study of Drosophila pex16 and pex2 mutants. These mutants are short-lived with defects in locomotion and activity. Moreover these mutants exhibit severe morphologic and functional peroxisomal defects. Using metabolomics we uncovered defects in multiple biochemical pathways including defects outside the canonical specialized lipid pathways performed by peroxisomal enzymes. These included unanticipated changes in metabolites in glycolysis, glycogen metabolism, and the pentose phosphate pathway, carbohydrate metabolic pathways that do not utilize known peroxisomal enzymes. In addition, mutant flies are starvation sensitive and are very sensitive to glucose deprivation exhibiting dramatic shortening of lifespan and hyperactivity on low-sugar food. We use bioinformatic transcriptional profiling to examine gene co-regulation between peroxisomal genes and other metabolic pathways and we observe that the expression of peroxisomal and carbohydrate pathway genes in flies and mouse are tightly correlated. Indeed key steps in carbohydrate metabolism were found to be strongly co-regulated with peroxisomal genes in flies and mice. Moreover mice lacking peroxisomes exhibit defective carbohydrate metabolism at the same key steps in carbohydrate breakdown. Our data indicate an unexpected link between these two metabolic processes and suggest metabolism of carbohydrates could be a new therapeutic target for patients with PBD. PMID:28640802

  12. The underlying pathway structure of biochemical reaction networks

    PubMed Central

    Schilling, Christophe H.; Palsson, Bernhard O.

    1998-01-01

    Bioinformatics is yielding extensive, and in some cases complete, genetic and biochemical information about individual cell types and cellular processes, providing the composition of living cells and the molecular structure of its components. These components together perform integrated cellular functions that now need to be analyzed. In particular, the functional definition of biochemical pathways and their role in the context of the whole cell is lacking. In this study, we show how the mass balance constraints that govern the function of biochemical reaction networks lead to the translation of this problem into the realm of linear algebra. The functional capabilities of biochemical reaction networks, and thus the choices that cells can make, are reflected in the null space of their stoichiometric matrix. The null space is spanned by a finite number of basis vectors. We present an algorithm for the synthesis of a set of basis vectors for spanning the null space of the stoichiometric matrix, in which these basis vectors represent the underlying biochemical pathways that are fundamental to the corresponding biochemical reaction network. In other words, all possible flux distributions achievable by a defined set of biochemical reactions are represented by a linear combination of these basis pathways. These basis pathways thus represent the underlying pathway structure of the defined biochemical reaction network. This development is significant from a fundamental and conceptual standpoint because it yields a holistic definition of biochemical pathways in contrast to definitions that have arisen from the historical development of our knowledge about biochemical processes. Additionally, this new conceptual framework will be important in defining, characterizing, and studying biochemical pathways from the rapidly growing information on cellular function. PMID:9539712

  13. Folate and epigenetic mechanisms in neural tube development and defects.

    PubMed

    Meethal, Sivan Vadakkadath; Hogan, Kirk J; Mayanil, Chandra S; Iskandar, Bermans J

    2013-09-01

    Multiple genetic and epigenetic factors involved in central nervous system (CNS) development influence the incidence of neural tube defects (NTDs). The beneficial effect of periconceptional folic acid on NTD prevention denotes a vital role for the single-carbon biochemical pathway in NTD genesis. Indeed, NTDs are associated with polymorphisms in a diversity of genes that encode folate pathway enzymes. Recent evidence suggests that CNS development and function, and consequently NTDs, are also associated with epigenetic mechanisms, many of which participate in the folate cycle and its input and output pathways. We provide an overview with select examples drawn from the authors' research.

  14. Superior Long-Term Synaptic Memory Induced by Combining Dual Pharmacological Activation of PKA and ERK with an Enhanced Training Protocol

    ERIC Educational Resources Information Center

    Liu, Rong-Yu; Neveu, Curtis; Smolen, Paul; Cleary, Leonard J.; Byrne, John H.

    2017-01-01

    Developing treatment strategies to enhance memory is an important goal of neuroscience research. Activation of multiple biochemical signaling cascades, such as the protein kinase A (PKA) and extracellular signal-regulated kinase (ERK) pathways, is necessary to induce long-term synaptic facilitation (LTF), a correlate of long-term memory (LTM).…

  15. SIMULTANEOUS PRODUCTION OF TWO CAPSULAR POLYSACCHARIDES BY PNEUMOCOCCUS

    PubMed Central

    Austrian, Robert; Bernheimer, Harriet P.; Smith, Evelyn E. B.; Mills, George T.

    1959-01-01

    Study of the capsular genome of pneumococcus has shown that it controls a multiplicity of biochemical reactions essential to the synthesis of capsular polysaccharide. Mutation affecting any one of several biochemical reactions concerned with capsular synthesis may result in loss of capsulation without alteration of other biochemical functions similarly concerned. Mutations affecting the synthesis of uronic acids are an important cause of loss of capsulation and of virulence by strains of pneumococcus Type I and Type III. The capsular genome appears to have a specific location in the total genome of the cell, this locus being occupied by the capsular genome of whatever capsular type is expressed by the cell. Transformation of capsulated or of non-capsulated pneumococci to heterologous capsular type results probably from a genetic exchange followed by the development of a new biosynthetic pathway in the transformed cell. The new capsular genome is transferred to the transformed cell as a single particle of DNA. Binary capsulation results from the simultaneous presence within the pneumococcal cell of two capsular genomes, one mutated, the other normal. Interaction between the biochemical pathways controlled by the two capsular genomes leads to augmentation of the phenotypic expression of the product controlled by one and to partial suppression of the product determined by the other. Knowledge of the biochemical basis of binary capsulation can be used to indicate the presence of uronic acid in the capsular polysaccharide of a pneurnococcal type the composition of the capsule of which is unknown. PMID:13795197

  16. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways

    PubMed Central

    Shao, Zengyi; Zhao, Hua; Zhao, Huimin

    2009-01-01

    The assembly of large recombinant DNA encoding a whole biochemical pathway or genome represents a significant challenge. Here, we report a new method, DNA assembler, which allows the assembly of an entire biochemical pathway in a single step via in vivo homologous recombination in Saccharomyces cerevisiae. We show that DNA assembler can rapidly assemble a functional d-xylose utilization pathway (∼9 kb DNA consisting of three genes), a functional zeaxanthin biosynthesis pathway (∼11 kb DNA consisting of five genes) and a functional combined d-xylose utilization and zeaxanthin biosynthesis pathway (∼19 kb consisting of eight genes) with high efficiencies (70–100%) either on a plasmid or on a yeast chromosome. As this new method only requires simple DNA preparation and one-step yeast transformation, it represents a powerful tool in the construction of biochemical pathways for synthetic biology, metabolic engineering and functional genomics studies. PMID:19074487

  17. The WAVE2 complex regulates actin cytoskeletal reorganization and CRAC-mediated calcium entry during T cell activation.

    PubMed

    Nolz, Jeffrey C; Gomez, Timothy S; Zhu, Peimin; Li, Shuixing; Medeiros, Ricardo B; Shimizu, Yoji; Burkhardt, Janis K; Freedman, Bruce D; Billadeau, Daniel D

    2006-01-10

    The engagement of the T cell receptor results in actin cytoskeletal reorganization at the immune synapse (IS) and the triggering of biochemical signaling cascades leading to gene regulation and, ultimately, cellular activation. Recent studies have identified the WAVE family of proteins as critical mediators of Rac1-induced actin reorganization in other cell types. However, whether these proteins participate in actin reorganization at the IS or signaling pathways in T cells has not been investigated. By using a combination of biochemical, genetic, and cell biology approaches, we provide evidence that WAVE2 is recruited to the IS, is biochemically modified, and is required for actin reorganization and beta-integrin-mediated adhesion after TCR crosslinking. Moreover, we show that WAVE2 regulates calcium entry at a point distal to PLCgamma1 activation and IP(3)-mediated store release. These data reveal a role for WAVE2 in regulating multiple pathways leading to T cell activation. In particular, this work shows that WAVE2 is a key component of the actin regulatory machinery in T cells and that it also participates in linking intracellular calcium store depletion to calcium release-activated calcium (CRAC) channel activation.

  18. Physiological Mechanisms Only Tell Half Story: Multiple Biological Processes are involved in Regulating Freezing Tolerance of Imbibed Lactuca sativa Seeds

    PubMed Central

    Jaganathan, Ganesh K.; Han, Yingying; Li, Weijie; Song, Danping; Song, Xiaoyan; Shen, Mengqi; Zhou, Qiang; Zhang, Chenxue; Liu, Baolin

    2017-01-01

    The physiological mechanisms by which imbibed seeds survive freezing temperatures in their natural environment have been categorized as freezing avoidance by supercooling and freezing tolerance by extracellular freeze-desiccation, but the biochemical and molecular mechanisms conferring seed freezing tolerance is unexplored. In this study, using imbibed Lactuca sativa seeds we show that fast cooled seeds (60 °C h−1) suffered significantly higher membrane damage at temperature between −20 °C and −10 °C than slow cooled (3 °Ch−1) seeds (P < 0.05), presumably explaining viability loss during fast cooling when temperature approaches −20 °C. Total soluble sugars increase in low temperature environment, but did not differ significantly between two cooling rates (P > 0.05). However, both SOD activity and accumulation of free proline were induced significantly after slow cooling to −20 °C compared with fast cooling. RNA-seq demonstrated that multiple pathways were differentially regulated between slow and fast cooling. Real-time verification of some differentially expressed genes (DEGs) revealed that fast cooling caused mRNA level changes of plant hormone and ubiquitionation pathways at higher sub-zero temperature, whilst slow cooling caused mRNA level change of those pathways at lower sub-zero ttemperatures. Thus, we conclude that imbibed seed tolerate low temperature not only by physiological mechanisms but also by biochemical and molecular changes. PMID:28287125

  19. Physiological Mechanisms Only Tell Half Story: Multiple Biological Processes are involved in Regulating Freezing Tolerance of Imbibed Lactuca sativa Seeds.

    PubMed

    Jaganathan, Ganesh K; Han, Yingying; Li, Weijie; Song, Danping; Song, Xiaoyan; Shen, Mengqi; Zhou, Qiang; Zhang, Chenxue; Liu, Baolin

    2017-03-13

    The physiological mechanisms by which imbibed seeds survive freezing temperatures in their natural environment have been categorized as freezing avoidance by supercooling and freezing tolerance by extracellular freeze-desiccation, but the biochemical and molecular mechanisms conferring seed freezing tolerance is unexplored. In this study, using imbibed Lactuca sativa seeds we show that fast cooled seeds (60 °C h -1 ) suffered significantly higher membrane damage at temperature between -20 °C and -10 °C than slow cooled (3 °Ch -1 ) seeds (P < 0.05), presumably explaining viability loss during fast cooling when temperature approaches -20 °C. Total soluble sugars increase in low temperature environment, but did not differ significantly between two cooling rates (P > 0.05). However, both SOD activity and accumulation of free proline were induced significantly after slow cooling to -20 °C compared with fast cooling. RNA-seq demonstrated that multiple pathways were differentially regulated between slow and fast cooling. Real-time verification of some differentially expressed genes (DEGs) revealed that fast cooling caused mRNA level changes of plant hormone and ubiquitionation pathways at higher sub-zero temperature, whilst slow cooling caused mRNA level change of those pathways at lower sub-zero ttemperatures. Thus, we conclude that imbibed seed tolerate low temperature not only by physiological mechanisms but also by biochemical and molecular changes.

  20. Accurate atom-mapping computation for biochemical reactions.

    PubMed

    Latendresse, Mario; Malerich, Jeremiah P; Travers, Mike; Karp, Peter D

    2012-11-26

    The complete atom mapping of a chemical reaction is a bijection of the reactant atoms to the product atoms that specifies the terminus of each reactant atom. Atom mapping of biochemical reactions is useful for many applications of systems biology, in particular for metabolic engineering where synthesizing new biochemical pathways has to take into account for the number of carbon atoms from a source compound that are conserved in the synthesis of a target compound. Rapid, accurate computation of the atom mapping(s) of a biochemical reaction remains elusive despite significant work on this topic. In particular, past researchers did not validate the accuracy of mapping algorithms. We introduce a new method for computing atom mappings called the minimum weighted edit-distance (MWED) metric. The metric is based on bond propensity to react and computes biochemically valid atom mappings for a large percentage of biochemical reactions. MWED models can be formulated efficiently as Mixed-Integer Linear Programs (MILPs). We have demonstrated this approach on 7501 reactions of the MetaCyc database for which 87% of the models could be solved in less than 10 s. For 2.1% of the reactions, we found multiple optimal atom mappings. We show that the error rate is 0.9% (22 reactions) by comparing these atom mappings to 2446 atom mappings of the manually curated Kyoto Encyclopedia of Genes and Genomes (KEGG) RPAIR database. To our knowledge, our computational atom-mapping approach is the most accurate and among the fastest published to date. The atom-mapping data will be available in the MetaCyc database later in 2012; the atom-mapping software will be available within the Pathway Tools software later in 2012.

  1. Simulation studies in biochemical signaling and enzyme reactions

    NASA Astrophysics Data System (ADS)

    Nelatury, Sudarshan R.; Vagula, Mary C.

    2014-06-01

    Biochemical pathways characterize various biochemical reaction schemes that involve a set of species and the manner in which they are connected. Determination of schematics that represent these pathways is an important task in understanding metabolism and signal transduction. Examples of these Pathways are: DNA and protein synthesis, and production of several macro-molecules essential for cell survival. A sustained feedback mechanism arises in gene expression and production of mRNA that lead to protein synthesis if the protein so synthesized serves as a transcription factor and becomes a repressor of the gene expression. The cellular regulations are carried out through biochemical networks consisting of reactions and regulatory proteins. Systems biology is a relatively new area that attempts to describe the biochemical pathways analytically and develop reliable mathematical models for the pathways. A complete understanding of chemical reaction kinetics is prohibitively hard thanks to the nonlinear and highly complex mechanisms that regulate protein formation, but attempting to numerically solve some of the governing differential equations seems to offer significant insight about their biochemical picture. To validate these models, one can perform simple experiments in the lab. This paper introduces fundamental ideas in biochemical signaling and attempts to take first steps into the understanding of biochemical oscillations. Initially, the two-pool model of calcium is used to describe the dynamics behind the oscillations. Later we present some elementary results showing biochemical oscillations arising from solving differential equations of Elowitz and Leibler using MATLAB software.

  2. The Fanconi anemia pathway requires FAA phosphorylation and FAA/FAC nuclear accumulation

    PubMed Central

    Yamashita, Takayuki; Kupfer, Gary M.; Naf, Dieter; Suliman, Ahmed; Joenje, Hans; Asano, Shigetaka; D’Andrea, Alan D.

    1998-01-01

    Fanconi anemia (FA) is an autosomal recessive cancer susceptibility syndrome with at least eight complementation groups (A–H). Two FA genes, corresponding to complementation groups A and C, have been cloned, but the function of the FAA and FAC proteins remains unknown. We have recently shown that the FAA and FAC proteins bind and form a nuclear complex. In the current study, we analyzed the FAA and FAC proteins in normal lymphoblasts and lymphoblasts from multiple FA complementation groups. In contrast to normal controls, FA cells derived from groups A, B, C, E, F, G, and H were defective in the formation of the FAA/FAC protein complex, the phosphorylation of the FAA protein, and the accumulation of the FAA/FAC protein complex in the nucleus. These biochemical events seem to define a signaling pathway required for the maintenance of genomic stability and normal hematopoiesis. Our results support the idea that multiple gene products cooperate in the FA Pathway. PMID:9789045

  3. Redox regulation of the Calvin–Benson cycle: something old, something new

    PubMed Central

    Michelet, Laure; Zaffagnini, Mirko; Morisse, Samuel; Sparla, Francesca; Pérez-Pérez, María Esther; Francia, Francesco; Danon, Antoine; Marchand, Christophe H.; Fermani, Simona; Trost, Paolo; Lemaire, Stéphane D.

    2013-01-01

    Reversible redox post-translational modifications such as oxido-reduction of disulfide bonds, S-nitrosylation, and S-glutathionylation, play a prominent role in the regulation of cell metabolism and signaling in all organisms. These modifications are mainly controlled by members of the thioredoxin and glutaredoxin families. Early studies in photosynthetic organisms have identified the Calvin–Benson cycle, the photosynthetic pathway responsible for carbon assimilation, as a redox regulated process. Indeed, 4 out of 11 enzymes of the cycle were shown to have a low activity in the dark and to be activated in the light through thioredoxin-dependent reduction of regulatory disulfide bonds. The underlying molecular mechanisms were extensively studied at the biochemical and structural level. Unexpectedly, recent biochemical and proteomic studies have suggested that all enzymes of the cycle and several associated regulatory proteins may undergo redox regulation through multiple redox post-translational modifications including glutathionylation and nitrosylation. The aim of this review is to detail the well-established mechanisms of redox regulation of Calvin–Benson cycle enzymes as well as the most recent reports indicating that this pathway is tightly controlled by multiple interconnected redox post-translational modifications. This redox control is likely allowing fine tuning of the Calvin–Benson cycle required for adaptation to varying environmental conditions, especially during responses to biotic and abiotic stresses. PMID:24324475

  4. A review of multi-threat medical countermeasures against chemical warfare and terrorism.

    PubMed

    Cowan, Fred M; Broomfield, Clarence A; Stojiljkovic, Milos P; Smith, William J

    2004-11-01

    The Multi-Threat Medical Countermeasure (MTMC) hypothesis has been proposed with the aim of developing a single countermeasure drug with efficacy against different pathologies caused by multiple classes of chemical warfare agents. Although sites and mechanisms of action and the pathologies caused by different chemical insults vary, common biochemical signaling pathways, molecular mediators, and cellular processes provide targets for MTMC drugs. This article will review the MTMC hypothesis for blister and nerve agents and will expand the scope of the concept to include other chemicals as well as briefly consider biological agents. The article will also consider how common biochemical signaling pathways, molecular mediators, and cellular processes that contribute to clinical pathologies and syndromes may relate to the toxicity of threat agents. Discovery of MTMC provides the opportunity for the integration of diverse researchers and clinicians, and for the exploitation of cutting-edge technologies and drug discovery. The broad-spectrum nature of MTMC can augment military and civil defense to combat chemical warfare and chemical terrorism.

  5. Identification of Genetic Bases of Vibrio fluvialis Species-Specific Biochemical Pathways and Potential Virulence Factors by Comparative Genomic Analysis

    PubMed Central

    Lu, Xin; Liang, Weili; Wang, Yunduan; Xu, Jialiang

    2014-01-01

    Vibrio fluvialis is an important food-borne pathogen that causes diarrheal illness and sometimes extraintestinal infections in humans. In this study, we sequenced the genome of a clinical V. fluvialis strain and determined its phylogenetic relationships with other Vibrio species by comparative genomic analysis. We found that the closest relationship was between V. fluvialis and V. furnissii, followed by those with V. cholerae and V. mimicus. Moreover, based on genome comparisons and gene complementation experiments, we revealed genetic mechanisms of the biochemical tests that differentiate V. fluvialis from closely related species. Importantly, we identified a variety of genes encoding potential virulence factors, including multiple hemolysins, transcriptional regulators, and environmental survival and adaptation apparatuses, and the type VI secretion system, which is indicative of complex regulatory pathways modulating pathogenesis in this organism. The availability of V. fluvialis genome sequences may promote our understanding of pathogenic mechanisms for this emerging pathogen. PMID:24441165

  6. "Which Pathway Am I?" Using a Game Approach to Teach Students about Biochemical Pathways

    ERIC Educational Resources Information Center

    Ooi, Beng Guat; Sanger, Michael J.

    2009-01-01

    This game was designed to provide students with an alternative way to learn biochemical pathways through an interactive approach. In this game, students worked in pairs to help each other identify pathways taped to each other's backs by asking simple "yes or no" questions related to these pathways. This exercise was conducted after the traditional…

  7. Multiscale Modelling of Cancer Progression and Treatment Control: The Role of Intracellular Heterogeneities in Chemotherapy Treatment

    NASA Astrophysics Data System (ADS)

    Chaplain, Mark A. J.; Powathil, Gibin G.

    Cancer is a complex, multiscale process involving interactions at intracellular, intercellular and tissue scales that are in turn susceptible to microenvironmental changes. Each individual cancer cell within a cancer cell mass is unique, with its own internal cellular pathways and biochemical interactions. These interactions contribute to the functional changes at the cellular and tissue scale, creating a heterogenous cancer cell population. Anticancer drugs are effective in controlling cancer growth by inflicting damage to various target molecules and thereby triggering multiple cellular and intracellular pathways, leading to cell death or cell-cycle arrest. One of the major impediments in the chemotherapy treatment of cancer is drug resistance driven by multiple mechanisms, including multi-drug and cell-cycle mediated resistance to chemotherapy drugs. In this article, we discuss two hybrid multiscale modelling approaches, incorporating multiple interactions involved in the sub-cellular, cellular and microenvironmental levels to study the effects of cell-cycle, phase-specific chemotherapy on the growth and progression of cancer cells.

  8. Multiscale Modelling of Cancer Progression and Treatment Control: The Role of Intracellular Heterogeneities in Chemotherapy Treatment

    NASA Astrophysics Data System (ADS)

    Chaplain, Mark A. J.; Powathil, Gibin G.

    2015-04-01

    Cancer is a complex, multiscale process involving interactions at intracellular, intercellular and tissue scales that are in turn susceptible to microenvironmental changes. Each individual cancer cell within a cancer cell mass is unique, with its own internal cellular pathways and biochemical interactions. These interactions contribute to the functional changes at the cellular and tissue scale, creating a heterogenous cancer cell population. Anticancer drugs are effective in controlling cancer growth by inflicting damage to various target molecules and thereby triggering multiple cellular and intracellular pathways, leading to cell death or cell-cycle arrest. One of the major impediments in the chemotherapy treatment of cancer is drug resistance driven by multiple mechanisms, including multi-drug and cell-cycle mediated resistance to chemotherapy drugs. In this article, we discuss two hybrid multiscale modelling approaches, incorporating multiple interactions involved in the sub-cellular, cellular and microenvironmental levels to study the effects of cell-cycle, phase-specific chemotherapy on the growth and progression of cancer cells.

  9. The WAVE2 Complex Regulates Actin Cytoskeletal Reorganization and CRAC-Mediated Calcium Entry during T Cell Activation

    PubMed Central

    Nolz, Jeffrey C.; Gomez, Timothy S.; Zhu, Peimin; Li, Shuixing; Medeiros, Ricardo B.; Shimizu, Yoji; Burkhardt, Janis K.; Freedman, Bruce D.; Billadeau, Daniel D.

    2007-01-01

    Summary Background The engagement of the T cell receptor results in actin cytoskeletal reorganization at the immune synapse (IS) and the triggering of biochemical signaling cascades leading to gene regulation and, ultimately, cellular activation. Recent studies have identified the WAVE family of proteins as critical mediators of Rac1-induced actin reorganization in other cell types. However, whether these proteins participate in actin reorganization at the IS or signaling pathways in T cells has not been investigated. Results By using a combination of biochemical, genetic, and cell biology approaches, we provide evidence that WAVE2 is recruited to the IS, is biochemically modified, and is required for actin reorganization and β-integrin-mediated adhesion after TCR crosslinking. Moreover, we show that WAVE2 regulates calcium entry at a point distal to PLCγ1 activation and IP3-mediated store release. Conclusions These data reveal a role for WAVE2 in regulating multiple pathways leading to T cell activation. In particular, this work shows that WAVE2 is a key component of the actin regulatory machinery in T cells and that it also participates in linking intracellular calcium store depletion to calcium release-activated calcium (CRAC) channel activation. PMID:16401421

  10. Genes and pathways co-associated with the exposure to multiple drugs of abuse, including alcohol, amphetamine/methamphetamine, cocaine, marijuana, morphine, and/or nicotine: a review of proteomics analyses.

    PubMed

    Wang, Ju; Yuan, Wenji; Li, Ming D

    2011-12-01

    Drug addiction is a chronic neuronal disease. In recent years, proteomics technology has been widely used to assess the protein expression in the brain tissues of both animals and humans exposed to addictive drugs. Through this approach, a large number of proteins potentially involved in the etiology of drug addictions have been identified, which provide a valuable resource to study protein function, biochemical pathways, and networks related to the molecular mechanisms underlying drug dependence. In this article, we summarize the recent application of proteomics to profiling protein expression patterns in animal or human brain tissues after the administration of alcohol, amphetamine/methamphetamine, cocaine, marijuana, morphine/heroin/butorphanol, or nicotine. From available reports, we compiled a list of 497 proteins associated with exposure to one or more addictive drugs, with 160 being related to exposure to at least two abused drugs. A number of biochemical pathways and biological processes appear to be enriched among these proteins, including synaptic transmission and signaling pathways related to neuronal functions. The data included in this work provide a summary and extension of the proteomics studies on drug addiction. Furthermore, the proteins and biological processes highlighted here may provide valuable insight into the cellular activities and biological processes in neurons in the development of drug addiction.

  11. Protein Design for Pathway Engineering

    PubMed Central

    Eriksen, Dawn T.; Lian, Jiazhang; Zhao, Huimin

    2013-01-01

    Design and construction of biochemical pathways has increased the complexity of biosynthetically-produced compounds when compared to single enzyme biocatalysis. However, the coordination of multiple enzymes can introduce a complicated set of obstacles to overcome in order to achieve a high titer and yield of the desired compound. Metabolic engineering has made great strides in developing tools to optimize the flux through a target pathway, but the inherent characteristics of a particular enzyme within the pathway can still limit the productivity. Thus, judicious protein design is critical for metabolic and pathway engineering. This review will describe various strategies and examples of applying protein design to pathway engineering to optimize the flux through the pathway. The proteins can be engineered for altered substrate specificity/selectivity, increased catalytic activity, reduced mass transfer limitations through specific protein localization, and reduced substrate/product inhibition. Protein engineering can also be expanded to design biosensors to enable high through-put screening and to customize cell signaling networks. These strategies have successfully engineered pathways for significantly increased productivity of the desired product or in the production of novel compounds. PMID:23558037

  12. Protein design for pathway engineering.

    PubMed

    Eriksen, Dawn T; Lian, Jiazhang; Zhao, Huimin

    2014-02-01

    Design and construction of biochemical pathways has increased the complexity of biosynthetically-produced compounds when compared to single enzyme biocatalysis. However, the coordination of multiple enzymes can introduce a complicated set of obstacles to overcome in order to achieve a high titer and yield of the desired compound. Metabolic engineering has made great strides in developing tools to optimize the flux through a target pathway, but the inherent characteristics of a particular enzyme within the pathway can still limit the productivity. Thus, judicious protein design is critical for metabolic and pathway engineering. This review will describe various strategies and examples of applying protein design to pathway engineering to optimize the flux through the pathway. The proteins can be engineered for altered substrate specificity/selectivity, increased catalytic activity, reduced mass transfer limitations through specific protein localization, and reduced substrate/product inhibition. Protein engineering can also be expanded to design biosensors to enable high through-put screening and to customize cell signaling networks. These strategies have successfully engineered pathways for significantly increased productivity of the desired product or in the production of novel compounds. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Multidimensional biochemical information processing of dynamical patterns

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yoshihiko

    2018-02-01

    Cells receive signaling molecules by receptors and relay information via sensory networks so that they can respond properly depending on the type of signal. Recent studies have shown that cells can extract multidimensional information from dynamical concentration patterns of signaling molecules. We herein study how biochemical systems can process multidimensional information embedded in dynamical patterns. We model the decoding networks by linear response functions, and optimize the functions with the calculus of variations to maximize the mutual information between patterns and output. We find that, when the noise intensity is lower, decoders with different linear response functions, i.e., distinct decoders, can extract much information. However, when the noise intensity is higher, distinct decoders do not provide the maximum amount of information. This indicates that, when transmitting information by dynamical patterns, embedding information in multiple patterns is not optimal when the noise intensity is very large. Furthermore, we explore the biochemical implementations of these decoders using control theory and demonstrate that these decoders can be implemented biochemically through the modification of cascade-type networks, which are prevalent in actual signaling pathways.

  14. Multidimensional biochemical information processing of dynamical patterns.

    PubMed

    Hasegawa, Yoshihiko

    2018-02-01

    Cells receive signaling molecules by receptors and relay information via sensory networks so that they can respond properly depending on the type of signal. Recent studies have shown that cells can extract multidimensional information from dynamical concentration patterns of signaling molecules. We herein study how biochemical systems can process multidimensional information embedded in dynamical patterns. We model the decoding networks by linear response functions, and optimize the functions with the calculus of variations to maximize the mutual information between patterns and output. We find that, when the noise intensity is lower, decoders with different linear response functions, i.e., distinct decoders, can extract much information. However, when the noise intensity is higher, distinct decoders do not provide the maximum amount of information. This indicates that, when transmitting information by dynamical patterns, embedding information in multiple patterns is not optimal when the noise intensity is very large. Furthermore, we explore the biochemical implementations of these decoders using control theory and demonstrate that these decoders can be implemented biochemically through the modification of cascade-type networks, which are prevalent in actual signaling pathways.

  15. Sonic hedgehog pathway activation increases mitochondrial abundance and activity in hippocampal neurons

    PubMed Central

    Yao, Pamela J.; Manor, Uri; Petralia, Ronald S.; Brose, Rebecca D.; Wu, Ryan T. Y.; Ott, Carolyn; Wang, Ya-Xian; Charnoff, Ari; Lippincott-Schwartz, Jennifer; Mattson, Mark P.

    2017-01-01

    Mitochondria are essential organelles whose biogenesis, structure, and function are regulated by many signaling pathways. We present evidence that, in hippocampal neurons, activation of the Sonic hedgehog (Shh) signaling pathway affects multiple aspects of mitochondria. Mitochondrial mass was increased significantly in neurons treated with Shh. Using biochemical and fluorescence imaging analyses, we show that Shh signaling activity reduces mitochondrial fission and promotes mitochondrial elongation, at least in part, via suppression of the mitochondrial fission protein dynamin-like GTPase Drp1. Mitochondria from Shh-treated neurons were more electron-dense, as revealed by electron microscopy, and had higher membrane potential and respiratory activity. We further show that Shh protects neurons against a variety of stresses, including the mitochondrial poison rotenone, amyloid β-peptide, hydrogen peroxide, and high levels of glutamate. Collectively our data suggest a link between Shh pathway activity and the physiological properties of mitochondria in hippocampal neurons. PMID:27932496

  16. Biochemical-Pathway Diversity in Archaebacteria

    DTIC Science & Technology

    1990-08-30

    Classification) (U) Biochemical-pathway diversity in Archaebacteria 12 PERSONAL AUTHOR(S) I Jensen, Roy-A. i3o. TYPE OF REN" RT 12b. Tki~ 0’E D-30-9 4...by block numtb.sj FIEL I ROU I SIGRLJP Archaebacteria , biochemical diversity, prephenate 06 03. 1 dehydratase, aromatic amino acid biosynthesis t...1988 RE10SE: lo assess the extent to which the archaebacteria possess unique biochemical features of aromatic amino acid biosynthesis and regulation and

  17. A defined role for multiple Fanconi anemia gene products in DNA-damage-associated ubiquitination.

    PubMed

    Tan, Winnie; Deans, Andrew J

    2017-06-01

    Fanconi anemia (FA) is an inherited blood disorder that causes bone marrow failure and high predisposition to cancers. The FA pathway guards the cell's genome stability by orchestrating the repair of interstrand cross-linking during the S phase of the cell cycle, preventing the chromosomal instability that is a key event in bone marrow failure syndrome. Central to the FA pathway is loss of monoubiquitinated forms of the Fanconi proteins FANCI and FANCD2, a process that is normally mediated by a "core complex" of seven other Fanconi proteins. Each protein, when mutated, can cause FA. The FA core-complex-catalyzed reaction is critical for signaling DNA cross-link damage such as that induced by chemotherapies. Here, we present a perspective on the current understanding of FANCI and FANCD2 monoubiquitination-mediated DNA repair. Our recent biochemical reconstitution of the monoubiquitination (and deubiquitination) reactions creates a paradigm for understanding FA. Further biochemical analysis will create new opportunities to address the leukemic phenotype of FA patients. Copyright © 2017 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  18. Modulation of inflammation and disease tolerance by DNA damage response pathways.

    PubMed

    Neves-Costa, Ana; Moita, Luis F

    2017-03-01

    The accurate replication and repair of DNA is central to organismal survival. This process is challenged by the many factors that can change genetic information such as replication errors and direct damage to the DNA molecule by chemical and physical agents. DNA damage can also result from microorganism invasion as an integral step of their life cycle or as collateral damage from host defense mechanisms against pathogens. Here we review the complex crosstalk of DNA damage response and immune response pathways that might be evolutionarily connected and argue that DNA damage response pathways can be explored therapeutically to induce disease tolerance through the activation of tissue damage control processes. Such approach may constitute the missing pillar in the treatment of critical illnesses caused by multiple organ failure, such as sepsis and septic shock. © 2016 Federation of European Biochemical Societies.

  19. Cellular compartmentalization of secondary metabolism

    PubMed Central

    Kistler, H. Corby; Broz, Karen

    2015-01-01

    Fungal secondary metabolism is often considered apart from the essential housekeeping functions of the cell. However, there are clear links between fundamental cellular metabolism and the biochemical pathways leading to secondary metabolite synthesis. Besides utilizing key biochemical precursors shared with the most essential processes of the cell (e.g., amino acids, acetyl CoA, NADPH), enzymes for secondary metabolite synthesis are compartmentalized at conserved subcellular sites that position pathway enzymes to use these common biochemical precursors. Co-compartmentalization of secondary metabolism pathway enzymes also may function to channel precursors, promote pathway efficiency and sequester pathway intermediates and products from the rest of the cell. In this review we discuss the compartmentalization of three well-studied fungal secondary metabolite biosynthetic pathways for penicillin G, aflatoxin and deoxynivalenol, and summarize evidence used to infer subcellular localization. We also discuss how these metabolites potentially are trafficked within the cell and may be exported. PMID:25709603

  20. RNA-binding protein GLD-1/quaking genetically interacts with the mir-35 and the let-7 miRNA pathways in Caenorhabditis elegans

    PubMed Central

    Akay, Alper; Craig, Ashley; Lehrbach, Nicolas; Larance, Mark; Pourkarimi, Ehsan; Wright, Jane E.; Lamond, Angus; Miska, Eric; Gartner, Anton

    2013-01-01

    Messenger RNA translation is regulated by RNA-binding proteins and small non-coding RNAs called microRNAs. Even though we know the majority of RNA-binding proteins and microRNAs that regulate messenger RNA expression, evidence of interactions between the two remain elusive. The role of the RNA-binding protein GLD-1 as a translational repressor is well studied during Caenorhabditis elegans germline development and maintenance. Possible functions of GLD-1 during somatic development and the mechanism of how GLD-1 acts as a translational repressor are not known. Its human homologue, quaking (QKI), is essential for embryonic development. Here, we report that the RNA-binding protein GLD-1 in C. elegans affects multiple microRNA pathways and interacts with proteins required for microRNA function. Using genome-wide RNAi screening, we found that nhl-2 and vig-1, two known modulators of miRNA function, genetically interact with GLD-1. gld-1 mutations enhance multiple phenotypes conferred by mir-35 and let-7 family mutants during somatic development. We used stable isotope labelling with amino acids in cell culture to globally analyse the changes in the proteome conferred by let-7 and gld-1 during animal development. We identified the histone mRNA-binding protein CDL-1 to be, in part, responsible for the phenotypes observed in let-7 and gld-1 mutants. The link between GLD-1 and miRNA-mediated gene regulation is further supported by its biochemical interaction with ALG-1, CGH-1 and PAB-1, proteins implicated in miRNA regulation. Overall, we have uncovered genetic and biochemical interactions between GLD-1 and miRNA pathways. PMID:24258276

  1. Developing molecular tools for Chlamydomonas reinhardtii

    NASA Astrophysics Data System (ADS)

    Noor-Mohammadi, Samaneh

    Microalgae have garnered increasing interest over the years for their ability to produce compounds ranging from biofuels to neutraceuticals. A main focus of researchers has been to use microalgae as a natural bioreactor for the production of valuable and complex compounds. Recombinant protein expression in the chloroplasts of green algae has recently become more routine; however, the heterologous expression of multiple proteins or complete biosynthetic pathways remains a significant challenge. To take full advantage of these organisms' natural abilities, sophisticated molecular tools are needed to be able to introduce and functionally express multiple gene biosynthetic pathways in its genome. To achieve the above objective, we have sought to establish a method to construct, integrate and express multigene operons in the chloroplast and nuclear genome of the model microalgae Chlamydomonas reinhardtii. Here we show that a modified DNA Assembler approach can be used to rapidly assemble multiple-gene biosynthetic pathways in yeast and then integrate these assembled pathways at a site-specific location in the chloroplast, or by random integration in the nuclear genome of C. reinhardtii. As a proof of concept, this method was used to successfully integrate and functionally express up to three reporter proteins (AphA6, AadA, and GFP) in the chloroplast of C. reinhardtii and up to three reporter proteins (Ble, AphVIII, and GFP) in its nuclear genome. An analysis of the relative gene expression of the engineered strains showed significant differences in the mRNA expression levels of the reporter genes and thus highlights the importance of proper promoter/untranslated-region selection when constructing a target pathway. In addition, this work focuses on expressing the cofactor regeneration enzyme phosphite dehydrogenase (PTDH) in the chloroplast and nuclear genomes of C. reinhardtii. The PTDH enzyme converts phosphite into phosphate and NAD(P)+ into NAD(P)H. The reduced nicotinamide cofactor NAD(P)H plays a pivotal role in many biochemical oxidation and reduction reactions, thus this enzyme would allow regeneration of NAD(P)H in a microalgae strain over-expressing a NAD(P)H-dependent oxidoreductase. A phosphite dehydrogenase gene was introduced into the chloroplast genome (codon optimized) and nuclear genome of C. reinhardtii by biolistic transformation and electroporation in separate events, respectively. Successful expression of the heterologous protein was confirmed by transcript analysis and protein analysis. In conclusion, this new method represents a useful genetic tool in the construction and integration of complex biochemical pathways into the chloroplast or nuclear genome of microalgae, and this should aid current efforts to engineer algae for recombinant protein expression, biofuels production and production of other desirable natural products.

  2. Influence of the feedback loops in the trp operon of B. subtilis on the system dynamic response and noise amplitude.

    PubMed

    Zamora-Chimal, Criseida; Santillán, Moisés; Rodríguez-González, Jesús

    2012-10-07

    In this paper we introduce a mathematical model for the tryptophan operon regulatory pathway in Bacillus subtilis. This model considers the transcription-attenuation, and the enzyme-inhibition regulatory mechanisms. Special attention is paid to the estimation of all the model parameters from reported experimental data. With the aid of this model we investigate, from a mathematical-modeling point of view, whether the existing multiplicity of regulatory feedback loops is advantageous in some sense, regarding the dynamic response and the biochemical noise in the system. The tryptophan operon dynamic behavior is studied by means of deterministic numeric simulations, while the biochemical noise is analyzed with the aid of stochastic simulations. The model feasibility is tested comparing its stochastic and deterministic results with experimental reports. Our results for the wildtype and for a couple of mutant bacterial strains suggest that the enzyme-inhibition feedback loop, dynamically accelerates the operon response, and plays a major role in the reduction of biochemical noise. Also, the transcription-attenuation feedback loop makes the trp operon sensitive to changes in the endogenous tryptophan level, and increases the amplitude of the biochemical noise. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Ryan Davis | NREL

    Science.gov Websites

    design TEA LCA Biochemical conversion process pathways Algal biomass production and conversion pathways Production," Green Chemistry (2015) Process Design and Economics for the Conversion of Lignocellulosic Production," Applied Energy (2011) Process Design and Economics for Biochemical Conversion of

  4. Integrating computational methods to retrofit enzymes to synthetic pathways.

    PubMed

    Brunk, Elizabeth; Neri, Marilisa; Tavernelli, Ivano; Hatzimanikatis, Vassily; Rothlisberger, Ursula

    2012-02-01

    Microbial production of desired compounds provides an efficient framework for the development of renewable energy resources. To be competitive to traditional chemistry, one requirement is to utilize the full capacity of the microorganism to produce target compounds with high yields and turnover rates. We use integrated computational methods to generate and quantify the performance of novel biosynthetic routes that contain highly optimized catalysts. Engineering a novel reaction pathway entails addressing feasibility on multiple levels, which involves handling the complexity of large-scale biochemical networks while respecting the critical chemical phenomena at the atomistic scale. To pursue this multi-layer challenge, our strategy merges knowledge-based metabolic engineering methods with computational chemistry methods. By bridging multiple disciplines, we provide an integral computational framework that could accelerate the discovery and implementation of novel biosynthetic production routes. Using this approach, we have identified and optimized a novel biosynthetic route for the production of 3HP from pyruvate. Copyright © 2011 Wiley Periodicals, Inc.

  5. Mutations in a signal sequence for the thylakoid membrane identify multiple protein transport pathways and nuclear suppressors

    PubMed Central

    1994-01-01

    The apparatus that permits protein translocation across the internal thylakoid membranes of chloroplasts is completely unknown, even though these membranes have been the subject of extensive biochemical analysis. We have used a genetic approach to characterize the translocation of Chlamydomonas cytochrome f, a chloroplast-encoded protein that spans the thylakoid once. Mutations in the hydrophobic core of the cytochrome f signal sequence inhibit the accumulation of cytochrome f, lead to an accumulation of precursor, and impair the ability of Chlamydomonas cells to grow photosynthetically. One hydrophobic core mutant also reduces the accumulation of other thylakoid membrane proteins, but not those that translocate completely across the membrane. These results suggest that the signal sequence of cytochrome f is required and is involved in one of multiple insertion pathways. Suppressors of two signal peptide mutations describe at least two nuclear genes whose products likely describe the translocation apparatus, and selected second-site chloroplast suppressors further define regions of the cytochrome f signal peptide. PMID:8034740

  6. Viral-induced systemic necrosis in plants involves both programmed cell death and the inhibition of viral multiplication, which are regulated by independent pathways.

    PubMed

    Komatsu, Ken; Hashimoto, Masayoshi; Ozeki, Johji; Yamaji, Yasuyuki; Maejima, Kensaku; Senshu, Hiroko; Himeno, Misako; Okano, Yukari; Kagiwada, Satoshi; Namba, Shigetou

    2010-03-01

    Resistant plants respond rapidly to invading avirulent plant viruses by triggering a hypersensitive response (HR). An HR is accompanied by a restraint of virus multiplication and programmed cell death (PCD), both of which have been observed in systemic necrosis triggered by a successful viral infection. Here, we analyzed signaling pathways underlying the HR in resistance genotype plants and those leading to systemic necrosis. We show that systemic necrosis in Nicotiana benthamiana, induced by Plantago asiatica mosaic virus (PlAMV) infection, was associated with PCD, biochemical features, and gene expression patterns that are characteristic of HR. The induction of necrosis caused by PlAMV infection was dependent on SGT1, RAR1, and the downstream mitogen-activated protein kinase (MAPK) cascade involving MAPKKKalpha and MEK2. However, although SGT1 and RAR1 silencing led to an increased accumulation of PlAMV, silencing of the MAPKKKalpha-MEK2 cascade did not. This observation indicates that viral multiplication is partly restrained even in systemic necrosis induced by viral infection, and that this restraint requires SGT1 and RAR1 but not the MAPKKKalpha-MEK2 cascade. Similarly, although both SGT1 and MAPKKKalpha were essential for the Rx-mediated HR to Potato virus X (PVX), SGT1 but not MAPKKKalpha was involved in the restraint of PVX multiplication. These results suggest that systemic necrosis and HR consist of PCD and a restraint of virus multiplication, and that the latter is induced through unknown pathways independent from the former.

  7. Mammalian O-Mannosylation Pathway: Glycan Structures, Enzymes, and Protein Substrates

    PubMed Central

    2015-01-01

    The mammalian O-mannosylation pathway for protein post-translational modification is intricately involved in modulating cell–matrix interactions in the musculature and nervous system. Defects in enzymes of this biosynthetic pathway are causative for multiple forms of congenital muscular dystophy. The application of advanced genetic and biochemical technologies has resulted in remarkable progress in this field over the past few years, culminating with the publication of three landmark papers in 2013 alone. In this review, we will highlight recent progress focusing on the dramatic expansion of the set of genes known to be involved in O-mannosylation and disease processes, the concurrent acceleration of the rate of O-mannosylation pathway protein functional assignments, the tremendous increase in the number of proteins now known to be modified by O-mannosylation, and the recent progress in protein O-mannose glycan quantification and site assignment. Also, we attempt to highlight key outstanding questions raised by this abundance of new information. PMID:24786756

  8. Factors and pathways involved in capacitation: how are they regulated?

    PubMed Central

    Jin, Shi-Kai; Yang, Wan-Xi

    2017-01-01

    In mammals, fertilization occurs via a comprehensive progression of events. Freshly ejaculated sperm have yet to acquire progressive motility or fertilization ability. They must first undergo a series of biochemical and physiological changes, collectively known as capacitation. Capacitation is a significant prerequisite to fertilization. During the process of capacitation, changes in membrane properties, intracellular ion concentration and the activities of enzymes, together with other protein modifications, induce multiple signaling events and pathways in defined media in vitro or in the female reproductive tract in vivo. These, in turn, stimulate the acrosome reaction and prepare spermatozoa for penetration of the egg zona pellucida prior to fertilization. In the present review, we conclude all mainstream factors and pathways regulate capacitation and highlight their crosstalk. We also summarize the relationship between capacitation and assisted reproductive technology or human disease. In the end, we sum up the open questions and future avenues in this field. PMID:27690295

  9. In vitro DNA SCRaMbLE.

    PubMed

    Wu, Yi; Zhu, Rui-Ying; Mitchell, Leslie A; Ma, Lu; Liu, Rui; Zhao, Meng; Jia, Bin; Xu, Hui; Li, Yun-Xiang; Yang, Zu-Ming; Ma, Yuan; Li, Xia; Liu, Hong; Liu, Duo; Xiao, Wen-Hai; Zhou, Xiao; Li, Bing-Zhi; Yuan, Ying-Jin; Boeke, Jef D

    2018-05-22

    The power of synthetic biology has enabled the expression of heterologous pathways in cells, as well as genome-scale synthesis projects. The complexity of biological networks makes rational de novo design a grand challenge. Introducing features that confer genetic flexibility is a powerful strategy for downstream engineering. Here we develop an in vitro method of DNA library construction based on structural variation to accomplish this goal. The "in vitro SCRaMbLE system" uses Cre recombinase mixed in a test tube with purified DNA encoding multiple loxPsym sites. Using a β-carotene pathway designed for expression in yeast as an example, we demonstrate top-down and bottom-up in vitro SCRaMbLE, enabling optimization of biosynthetic pathway flux via the rearrangement of relevant transcription units. We show that our system provides a straightforward way to correlate phenotype and genotype and is potentially amenable to biochemical optimization in ways that the in vivo system cannot achieve.

  10. Evolution of a flipped pathway creates metabolic innovation in tomato trichomes through BAHD enzyme promiscuity.

    PubMed

    Fan, Pengxiang; Miller, Abigail M; Liu, Xiaoxiao; Jones, A Daniel; Last, Robert L

    2017-12-12

    Plants produce hundreds of thousands of structurally diverse specialized metabolites via multistep biosynthetic networks, including compounds of ecological and therapeutic importance. These pathways are restricted to specific plant groups, and are excellent systems for understanding metabolic evolution. Tomato and other plants in the nightshade family synthesize protective acylated sugars in the tip cells of glandular trichomes on stems and leaves. We describe a metabolic innovation in wild tomato species that contributes to acylsucrose structural diversity. A small number of amino acid changes in two acylsucrose acyltransferases alter their acyl acceptor preferences, resulting in reversal of their order of reaction and increased product diversity. This study demonstrates how small numbers of amino acid changes in multiple pathway enzymes can lead to diversification of specialized metabolites in plants. It also highlights the power of a combined genetic, genomic and in vitro biochemical approach to identify the evolutionary mechanisms leading to metabolic novelty.

  11. Reconstructing biochemical pathways from time course data.

    PubMed

    Srividhya, Jeyaraman; Crampin, Edmund J; McSharry, Patrick E; Schnell, Santiago

    2007-03-01

    Time series data on biochemical reactions reveal transient behavior, away from chemical equilibrium, and contain information on the dynamic interactions among reacting components. However, this information can be difficult to extract using conventional analysis techniques. We present a new method to infer biochemical pathway mechanisms from time course data using a global nonlinear modeling technique to identify the elementary reaction steps which constitute the pathway. The method involves the generation of a complete dictionary of polynomial basis functions based on the law of mass action. Using these basis functions, there are two approaches to model construction, namely the general to specific and the specific to general approach. We demonstrate that our new methodology reconstructs the chemical reaction steps and connectivity of the glycolytic pathway of Lactococcus lactis from time course experimental data.

  12. Decomposition of complex microbial behaviors into resource-based stress responses

    PubMed Central

    Carlson, Ross P.

    2009-01-01

    Motivation: Highly redundant metabolic networks and experimental data from cultures likely adapting simultaneously to multiple stresses can complicate the analysis of cellular behaviors. It is proposed that the explicit consideration of these factors is critical to understanding the competitive basis of microbial strategies. Results: Wide ranging, seemingly unrelated Escherichia coli physiological fluxes can be simply and accurately described as linear combinations of a few ecologically relevant stress adaptations. These strategies were identified by decomposing the central metabolism of E.coli into elementary modes (mathematically defined biochemical pathways) and assessing the resource investment cost–benefit properties for each pathway. The approach capitalizes on the inherent tradeoffs related to investing finite resources like nitrogen into different pathway enzymes when the pathways have varying metabolic efficiencies. The subset of ecologically competitive pathways represented 0.02% of the total permissible pathways. The biological relevance of the assembled strategies was tested against 10 000 randomly constructed pathway subsets. None of the randomly assembled collections were able to describe all of the considered experimental data as accurately as the cost-based subset. The results suggest these metabolic strategies are biologically significant. The current descriptions were compared with linear programming (LP)-based flux descriptions using the Euclidean distance metric. The current study's pathway subset described the experimental fluxes with better accuracy than the LP results without having to test multiple objective functions or constraints and while providing additional ecological insight into microbial behavior. The assembled pathways seem to represent a generalized set of strategies that can describe a wide range of microbial responses and hint at evolutionary processes where a handful of successful metabolic strategies are utilized simultaneously in different combinations to adapt to diverse conditions. Contact: rossc@biofilms.montana.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19008248

  13. A Biochemical Approach to Understanding the Fanconi Anemia Pathway-Regulated Nucleases in Genome Maintenance for Preventing Bone Marrow Failure and Cancer

    DTIC Science & Technology

    2014-04-01

    the Fanconi Anemia Pathway- Regulated Nucleases in Genome Maintenance for Preventing Bone Marrow Failure and Cancer PRINCIPAL INVESTIGATOR...GRANT NUMBER 4. TITLE AND SUBTITLE A Biochemical Approach to Understanding the Fanconi Anemia Pathway-Regulated Nucleases in Genome Maintenance for...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Fanconi anemia is the most prevalent inherited BMF syndromes, caused by mutations in

  14. Genomes of rumen bacteria encode atypical pathways for fermenting hexoses to short-chain fatty acids.

    PubMed

    Hackmann, Timothy J; Ngugi, David Kamanda; Firkins, Jeffrey L; Tao, Junyi

    2017-11-01

    Bacteria have been thought to follow only a few well-recognized biochemical pathways when fermenting glucose or other hexoses. These pathways have been chiseled in the stone of textbooks for decades, with most sources rendering them as they appear in the classic 1986 text by Gottschalk. Still, it is unclear how broadly these pathways apply, given that they were established and delineated biochemically with only a few model organisms. Here, we show that well-recognized pathways often cannot explain fermentation products formed by bacteria. In the most extensive analysis of its kind, we reconstructed pathways for glucose fermentation from genomes of 48 species and subspecies of bacteria from one environment (the rumen). In total, 44% of these bacteria had atypical pathways, including several that are completely unprecedented for bacteria or any organism. In detail, 8% of bacteria had an atypical pathway for acetate formation; 21% of bacteria had an atypical pathway for propionate or succinate formation; 6% of bacteria had an atypical pathway for butyrate formation and 33% of bacteria had an atypical or incomplete Embden-Meyerhof-Parnas pathway. This study shows that reconstruction of metabolic pathways - a common goal of omics studies - could be incorrect if well-recognized pathways are used for reference. Furthermore, it calls for renewed efforts to delineate fermentation pathways biochemically. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Curcumin mediates anticancer effects by modulating multiple cell signaling pathways.

    PubMed

    Kunnumakkara, Ajaikumar B; Bordoloi, Devivasha; Harsha, Choudhary; Banik, Kishore; Gupta, Subash C; Aggarwal, Bharat B

    2017-08-01

    Curcumin, a component of a spice native to India, was first isolated in 1815 by Vogel and Pelletier from the rhizomes of Curcuma longa (turmeric) and, subsequently, the chemical structure of curcumin as diferuloylmethane was reported by Milobedzka et al. [(1910) 43., 2163-2170]. Since then, this polyphenol has been shown to exhibit antioxidant, anti-inflammatory, anticancer, antiviral, antibacterial, and antifungal activities. The current review primarily focuses on the anticancer potential of curcumin through the modulation of multiple cell signaling pathways. Curcumin modulates diverse transcription factors, inflammatory cytokines, enzymes, kinases, growth factors, receptors, and various other proteins with an affinity ranging from the pM to the mM range. Furthermore, curcumin effectively regulates tumor cell growth via modulation of numerous cell signaling pathways and potentiates the effect of chemotherapeutic agents and radiation against cancer. Curcumin can interact with most of the targets that are modulated by FDA-approved drugs for cancer therapy. The focus of this review is to discuss the molecular basis for the anticancer activities of curcumin based on preclinical and clinical findings. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  16. Calculation of biochemical net reactions and pathways by using matrix operations.

    PubMed Central

    Alberty, R A

    1996-01-01

    Pathways for net biochemical reactions can be calculated by using a computer program that solves systems of linear equations. The coefficients in the linear equations are the stoichiometric numbers in the biochemical equations for the system. The solution of the system of linear equations is a vector of the stoichiometric numbers of the reactions in the pathway for the net reaction; this is referred to as the pathway vector. The pathway vector gives the number of times the various reactions have to occur to produce the desired net reaction. Net reactions may involve unknown numbers of ATP, ADP, and Pi molecules. The numbers of ATP, ADP, and Pi in a desired net reaction can be calculated in a two-step process. In the first step, the pathway is calculated by solving the system of linear equations for an abbreviated stoichiometric number matrix without ATP, ADP, Pi, NADred, and NADox. In the second step, the stoichiometric numbers in the desired net reaction, which includes ATP, ADP, Pi, NADred, and NADox, are obtained by multiplying the full stoichiometric number matrix by the calculated pathway vector. PMID:8804633

  17. Analyzing Arabidopsis thaliana root proteome provides insights into the molecular bases of enantioselective imazethapyr toxicity

    PubMed Central

    Qian, Haifeng; Lu, Haiping; Ding, Haiyan; Lavoie, Michel; Li, Yali; Liu, Weiping; Fu, Zhengwei

    2015-01-01

    Imazethapyr (IM) is a widely used chiral herbicide that inhibits the synthesis of branched-chain amino acids (BCAAs). IM is thought to exert its toxic effects on amino acid synthesis mainly through inhibition of acetolactate synthase activity, but little is known about the potential effects of IM on other key biochemical pathways. Here, we exposed the model plant Arabidospsis thaliana to trace S- and R-IM enantiomer concentrations and examined IM toxicity effects on the root proteome using iTRAQ. Conventional analyses of root carbohydrates, organic acids, and enzyme activities were also performed. We discovered several previously unknown key biochemical pathways targeted by IM in Arabidospsis. 1,322 and 987 proteins were differentially expressed in response to R- and S-IM treatments, respectively. Bioinformatics and physiological analyses suggested that IM reduced the BCAA tissue content not only by strongly suppressing BCAA synthesis but also by increasing BCAA catabolism. IM also affected sugar and starch metabolism, changed the composition of root cell walls, increased citrate production and exudation, and affected the microbial community structure of the rhizosphere. The present study shed new light on the multiple toxicity mechanisms of a selective herbicide on a model plant. PMID:26153126

  18. Analyzing Arabidopsis thaliana root proteome provides insights into the molecular bases of enantioselective imazethapyr toxicity

    NASA Astrophysics Data System (ADS)

    Qian, Haifeng; Lu, Haiping; Ding, Haiyan; Lavoie, Michel; Li, Yali; Liu, Weiping; Fu, Zhengwei

    2015-07-01

    Imazethapyr (IM) is a widely used chiral herbicide that inhibits the synthesis of branched-chain amino acids (BCAAs). IM is thought to exert its toxic effects on amino acid synthesis mainly through inhibition of acetolactate synthase activity, but little is known about the potential effects of IM on other key biochemical pathways. Here, we exposed the model plant Arabidospsis thaliana to trace S- and R-IM enantiomer concentrations and examined IM toxicity effects on the root proteome using iTRAQ. Conventional analyses of root carbohydrates, organic acids, and enzyme activities were also performed. We discovered several previously unknown key biochemical pathways targeted by IM in Arabidospsis. 1,322 and 987 proteins were differentially expressed in response to R- and S-IM treatments, respectively. Bioinformatics and physiological analyses suggested that IM reduced the BCAA tissue content not only by strongly suppressing BCAA synthesis but also by increasing BCAA catabolism. IM also affected sugar and starch metabolism, changed the composition of root cell walls, increased citrate production and exudation, and affected the microbial community structure of the rhizosphere. The present study shed new light on the multiple toxicity mechanisms of a selective herbicide on a model plant.

  19. The maize brown midrib2 (bm2) gene encodes a methylenetetrahydrofolate reductase that contributes to lignin accumulation

    PubMed Central

    Tang, Ho Man; Liu, Sanzhen; Hill-Skinner, Sarah; Wu, Wei; Reed, Danielle; Yeh, Cheng-Ting; Nettleton, Dan; Schnable, Patrick S

    2014-01-01

    The midribs of maize brown midrib (bm) mutants exhibit a reddish-brown color associated with reductions in lignin concentration and alterations in lignin composition. Here, we report the mapping, cloning, and functional and biochemical analyses of the bm2 gene. The bm2 gene was mapped to a small region of chromosome 1 that contains a putative methylenetetrahydrofolate reductase (MTHFR) gene, which is down-regulated in bm2 mutant plants. Analyses of multiple Mu-induced bm2-Mu mutant alleles confirmed that this constitutively expressed gene is bm2. Yeast complementation experiments and a previously published biochemical characterization show that the bm2 gene encodes a functional MTHFR. Quantitative RT-PCR analyses demonstrated that the bm2 mutants accumulate substantially reduced levels of bm2 transcript. Alteration of MTHFR function is expected to influence accumulation of the methyl donor S-adenosyl-l-methionine (SAM). Because SAM is consumed by two methyltransferases in the lignin pathway (Ye et al., 1994), the finding that bm2 encodes a functional MTHFR is consistent with its lignin phenotype. Consistent with this functional assignment of bm2, the expression patterns of genes in a variety of SAM-dependent or -related pathways, including lignin biosynthesis, are altered in the bm2 mutant. Biochemical assays confirmed that bm2 mutants accumulate reduced levels of lignin with altered composition compared to wild-type. Hence, this study demonstrates a role for MTHFR in lignin biosynthesis. PMID:24286468

  20. A Method for Finding Metabolic Pathways Using Atomic Group Tracking.

    PubMed

    Huang, Yiran; Zhong, Cheng; Lin, Hai Xiang; Wang, Jianyi

    2017-01-01

    A fundamental computational problem in metabolic engineering is to find pathways between compounds. Pathfinding methods using atom tracking have been widely used to find biochemically relevant pathways. However, these methods require the user to define the atoms to be tracked. This may lead to failing to predict the pathways that do not conserve the user-defined atoms. In this work, we propose a pathfinding method called AGPathFinder to find biochemically relevant metabolic pathways between two given compounds. In AGPathFinder, we find alternative pathways by tracking the movement of atomic groups through metabolic networks and use combined information of reaction thermodynamics and compound similarity to guide the search towards more feasible pathways and better performance. The experimental results show that atomic group tracking enables our method to find pathways without the need of defining the atoms to be tracked, avoid hub metabolites, and obtain biochemically meaningful pathways. Our results also demonstrate that atomic group tracking, when incorporated with combined information of reaction thermodynamics and compound similarity, improves the quality of the found pathways. In most cases, the average compound inclusion accuracy and reaction inclusion accuracy for the top resulting pathways of our method are around 0.90 and 0.70, respectively, which are better than those of the existing methods. Additionally, AGPathFinder provides the information of thermodynamic feasibility and compound similarity for the resulting pathways.

  1. A Method for Finding Metabolic Pathways Using Atomic Group Tracking

    PubMed Central

    Zhong, Cheng; Lin, Hai Xiang; Wang, Jianyi

    2017-01-01

    A fundamental computational problem in metabolic engineering is to find pathways between compounds. Pathfinding methods using atom tracking have been widely used to find biochemically relevant pathways. However, these methods require the user to define the atoms to be tracked. This may lead to failing to predict the pathways that do not conserve the user-defined atoms. In this work, we propose a pathfinding method called AGPathFinder to find biochemically relevant metabolic pathways between two given compounds. In AGPathFinder, we find alternative pathways by tracking the movement of atomic groups through metabolic networks and use combined information of reaction thermodynamics and compound similarity to guide the search towards more feasible pathways and better performance. The experimental results show that atomic group tracking enables our method to find pathways without the need of defining the atoms to be tracked, avoid hub metabolites, and obtain biochemically meaningful pathways. Our results also demonstrate that atomic group tracking, when incorporated with combined information of reaction thermodynamics and compound similarity, improves the quality of the found pathways. In most cases, the average compound inclusion accuracy and reaction inclusion accuracy for the top resulting pathways of our method are around 0.90 and 0.70, respectively, which are better than those of the existing methods. Additionally, AGPathFinder provides the information of thermodynamic feasibility and compound similarity for the resulting pathways. PMID:28068354

  2. Fructose metabolism in the cerebellum.

    PubMed

    Funari, Vincent A; Crandall, James E; Tolan, Dean R

    2007-01-01

    Under normal physiological conditions, the brain utilizes only a small number of carbon sources for energy. Recently, there is growing molecular and biochemical evidence that other carbon sources, including fructose, may play a role in neuro-energetics. Fructose is the number one commercial sweetener in Western civilization with large amounts of fructose being toxic, yet fructose metabolism remains relatively poorly characterized. Fructose is purportedly metabolized via either of two pathways, the fructose-1-phosphate pathway and/or the fructose-6-phosphate pathway. Many early metabolic studies could not clearly discriminate which of these two pathways predominates, nor could they distinguish which cell types in various tissues are capable of fructose metabolism. In addition, the lack of good physiological models, the diet-induced changes in gene expression in many tissues, the involvement of multiple genes in multiple pathways involved in fructose metabolism, and the lack of characterization of some genes involved in fructose metabolism have complicated our understanding of the physiological role of fructose in neuro-energetics. A recent neuro-metabolism study of the cerebellum demonstrated fructose metabolism and co-expression of the genes specific for the fructose 1-phosphate pathway, GLUT5 (glut5) and ketohexokinase (khk), in Purkinje cells suggesting this as an active pathway in specific neurons? Meanwhile, concern over the rapid increase in dietary fructose, particularly among children, has increased awareness about how fructose is metabolized in vivo and what effects a high fructose diet might have. In this regard, establishment of cellular and molecular studies and physiological characterization of the important and/or deleterious roles fructose plays in the brain is critical. This review will discuss the status of fructose metabolism in the brain with special reference to the cerebellum and the physiological roles of the different pathways.

  3. ReactPRED: a tool to predict and analyze biochemical reactions.

    PubMed

    Sivakumar, Tadi Venkata; Giri, Varun; Park, Jin Hwan; Kim, Tae Yong; Bhaduri, Anirban

    2016-11-15

    Biochemical pathways engineering is often used to synthesize or degrade target chemicals. In silico screening of the biochemical transformation space allows predicting feasible reactions, constituting these pathways. Current enabling tools are customized to predict reactions based on pre-defined biochemical transformations or reaction rule sets. Reaction rule sets are usually curated manually and tailored to specific applications. They are not exhaustive. In addition, current systems are incapable of regulating and refining data with an aim to tune specificity and sensitivity. A robust and flexible tool that allows automated reaction rule set creation along with regulated pathway prediction and analyses is a need. ReactPRED aims to address the same. ReactPRED is an open source flexible and customizable tool enabling users to predict biochemical reactions and pathways. The tool allows automated reaction rule creation from a user defined reaction set. Additionally, reaction rule degree and rule tolerance features allow refinement of predicted data. It is available as a flexible graphical user interface and a console application. ReactPRED is available at: https://sourceforge.net/projects/reactpred/ CONTACT: anirban.b@samsung.com or ty76.kim@samsung.comSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Exercise-induced biochemical changes and their potential influence on cancer: a scientific review

    PubMed Central

    Thomas, Robert James; Kenfield, Stacey A; Jimenez, Alfonso

    2017-01-01

    Aim To review and discuss the available international literature regarding the indirect and direct biochemical mechanisms that occur after exercise, which could positively, or negatively, influence oncogenic pathways. Methods The PubMed, MEDLINE, Embase and Cochrane libraries were searched for papers up to July 2016 addressing biochemical changes after exercise with a particular reference to cancer. The three authors independently assessed their appropriateness for inclusion in this review based on their scientific quality and relevance. Results 168 papers were selected and categorised into indirect and direct biochemical pathways. The indirect effects included changes in vitamin D, weight reduction, sunlight exposure and improved mood. The direct effects included insulin-like growth factor, epigenetic effects on gene expression and DNA repair, vasoactive intestinal peptide, oxidative stress and antioxidant pathways, heat shock proteins, testosterone, irisin, immunity, chronic inflammation and prostaglandins, energy metabolism and insulin resistance. Summary Exercise is one of several lifestyle factors known to lower the risk of developing cancer and is associated with lower relapse rates and better survival. This review highlights the numerous biochemical processes, which explain these potential anticancer benefits. PMID:27993842

  5. Hypothalamic digoxin, hemispheric chemical dominance, and oncogenesis: evidence from multiple myeloma.

    PubMed

    Kurup, Ravi Kumar; Kurup, Paramesware Achutha

    2003-12-01

    This study assessed the changes in the isoprenoid pathway and its metabolites digoxin, dolichol, and ubiquinone in multiple myeloma. The isoprenoid pathway and digoxin status were also studied for comparison in individuals of differing hemispheric dominance to find out the rote of cerebral dominance in the genesis of multiple myeloma and neoplasms. The following parameters were assessed: isoprenoid pathway metabolites, tyrosine and tryptophan catabolites, glycoconjugate metabolism, RBC membrane composition, and free radical metabolism--in multiple myeloma, as well as in individuals of differing hemispheric dominance. There was elevation in plasma HMG CoA reductase activity, serum digoxin, and dolichol, and a reduction in RBC membrane Na(+)-K+ ATPase activity, serum ubiquinone, and magnesium levels. Serum tryptophan, serotonin, nicotine, strychnine, and quinolinic acid were elevated, while tyrosine, dopamine, noradrenaline, and morphine were decreased. The total serum glycosaminoglycans and glycosaminoglycan fractions, the activity of GAG degrading enzymes and glycohydrolases, carbohydrate residues of glycoproteins, and serum glycolipids were elevated. The RBC membrane glycosaminoglycans, hexose, and fucose residues of glycoproteins, cholesterol, and phospholipids were reduced. The activity of all free-radical scavenging enzymes, concentration of glutathione, iron binding capacity, and ceruloplasmin decreased significantly, while the concentration of lipid peroxidation products and nitric oxide increased. Hyperdigoxinemia-related altered intracellular Ca++/Mg++ ratios mediated oncogene activation, dolichol-induced altered glycoconjugate metabolism, and ubiquinone deficiency-related mitochondrial dysfunction can contribute to the pathogenesis of multiple myeloma. The biochemical patterns obtained in multiple myeloma are similar to those obtained in left-handed/right hemispheric chemically dominant individuals by the dichotic listening test. But all the patients with multiple myeloma were right-handed/left hemispheric dominant by the dichotic listening test. Hemispheric chemical dominance has no correlation with handedness or the dichotic listening test. Multiple myeloma occurs in right hemispheric chemically dominant individuals and is a reflection of altered brain function.

  6. Competition for vitamin B1 (thiamin) structures numerous ecological interactions.

    PubMed

    Kraft, Clifford E; Angert, Esther R

    2017-06-01

    Thiamin (vitamin B1) is a cofactor required for essential biochemical reactions in all living organisms, yet free thiamin is scarce in the environment. The diversity of biochemical pathways involved in the acquisition, degradation, and synthesis of thiamin indicates that organisms have evolved numerous ecological strategies for meeting this nutritional requirement. In this review we synthesize information from multiple disciplines to show how the complex biochemistry of thiamin influences ecological outcomes of interactions between organisms in environments ranging from the open ocean and the Australian outback to the gastrointestinal tract of animals. We highlight population and ecosystem responses to the availability or absence of thiamin. These include widespread mortality of fishes, birds, and mammals, as well as the thiamin-dependent regulation of ocean productivity. Overall, we portray thiamin biochemistry as the foundation for molecularly mediated ecological interactions that influence survival and abundance of a vast array of organisms.

  7. Biochemical Characterization of β-Amino Acid Incorporation in Fluvirucin B 2 Biosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barajas, Jesus F.; Zargar, Amin; Pang, Bo

    Naturally occurring lactams, such as the polyketide-derived macrolactams, provide a diverse class of natural products that could enhance existing chemically produced lactams. While β-amino acid loading in the fluvirucin B 2 polyketide pathway has been proposed by a previously identified putative biosynthetic gene cluster, biochemical characterization of the complete loading enzymes has not been described. In this paper, we elucidate the complete biosynthetic pathway of the β-amino acid loading pathway in fluvirucin B 2 biosynthesis. We demonstrate the promiscuity of the loading pathway to utilize a range of amino acids and further illustrate the ability to introduce non-native acyl transferasesmore » to selectively transfer β-amino acids onto a PKS loading platform. The results presented here provide a detailed biochemical description of β-amino acid selection and will further aid in future efforts to develop engineered lactam-producing PKS platforms.« less

  8. Biochemical Characterization of β-Amino Acid Incorporation in Fluvirucin B 2 Biosynthesis

    DOE PAGES

    Barajas, Jesus F.; Zargar, Amin; Pang, Bo; ...

    2018-03-30

    Naturally occurring lactams, such as the polyketide-derived macrolactams, provide a diverse class of natural products that could enhance existing chemically produced lactams. While β-amino acid loading in the fluvirucin B 2 polyketide pathway has been proposed by a previously identified putative biosynthetic gene cluster, biochemical characterization of the complete loading enzymes has not been described. In this paper, we elucidate the complete biosynthetic pathway of the β-amino acid loading pathway in fluvirucin B 2 biosynthesis. We demonstrate the promiscuity of the loading pathway to utilize a range of amino acids and further illustrate the ability to introduce non-native acyl transferasesmore » to selectively transfer β-amino acids onto a PKS loading platform. The results presented here provide a detailed biochemical description of β-amino acid selection and will further aid in future efforts to develop engineered lactam-producing PKS platforms.« less

  9. Quantitative trait loci and metabolic pathways

    PubMed Central

    McMullen, M. D.; Byrne, P. F.; Snook, M. E.; Wiseman, B. R.; Lee, E. A.; Widstrom, N. W.; Coe, E. H.

    1998-01-01

    The interpretation of quantitative trait locus (QTL) studies is limited by the lack of information on metabolic pathways leading to most economic traits. Inferences about the roles of the underlying genes with a pathway or the nature of their interaction with other loci are generally not possible. An exception is resistance to the corn earworm Helicoverpa zea (Boddie) in maize (Zea mays L.) because of maysin, a C-glycosyl flavone synthesized in silks via a branch of the well characterized flavonoid pathway. Our results using flavone synthesis as a model QTL system indicate: (i) the importance of regulatory loci as QTLs, (ii) the importance of interconnecting biochemical pathways on product levels, (iii) evidence for “channeling” of intermediates, allowing independent synthesis of related compounds, (iv) the utility of QTL analysis in clarifying the role of specific genes in a biochemical pathway, and (v) identification of a previously unknown locus on chromosome 9S affecting flavone level. A greater understanding of the genetic basis of maysin synthesis and associated corn earworm resistance should lead to improved breeding strategies. More broadly, the insights gained in relating a defined genetic and biochemical pathway affecting a quantitative trait should enhance interpretation of the biological basis of variation for other quantitative traits. PMID:9482823

  10. Multi-membership gene regulation in pathway based microarray analysis

    PubMed Central

    2011-01-01

    Background Gene expression analysis has been intensively researched for more than a decade. Recently, there has been elevated interest in the integration of microarray data analysis with other types of biological knowledge in a holistic analytical approach. We propose a methodology that can be facilitated for pathway based microarray data analysis, based on the observation that a substantial proportion of genes present in biochemical pathway databases are members of a number of distinct pathways. Our methodology aims towards establishing the state of individual pathways, by identifying those truly affected by the experimental conditions based on the behaviour of such genes. For that purpose it considers all the pathways in which a gene participates and the general census of gene expression per pathway. Results We utilise hill climbing, simulated annealing and a genetic algorithm to analyse the consistency of the produced results, through the application of fuzzy adjusted rand indexes and hamming distance. All algorithms produce highly consistent genes to pathways allocations, revealing the contribution of genes to pathway functionality, in agreement with current pathway state visualisation techniques, with the simulated annealing search proving slightly superior in terms of efficiency. Conclusions We show that the expression values of genes, which are members of a number of biochemical pathways or modules, are the net effect of the contribution of each gene to these biochemical processes. We show that by manipulating the pathway and module contribution of such genes to follow underlying trends we can interpret microarray results centred on the behaviour of these genes. PMID:21939531

  11. Multi-membership gene regulation in pathway based microarray analysis.

    PubMed

    Pavlidis, Stelios P; Payne, Annette M; Swift, Stephen M

    2011-09-22

    Gene expression analysis has been intensively researched for more than a decade. Recently, there has been elevated interest in the integration of microarray data analysis with other types of biological knowledge in a holistic analytical approach. We propose a methodology that can be facilitated for pathway based microarray data analysis, based on the observation that a substantial proportion of genes present in biochemical pathway databases are members of a number of distinct pathways. Our methodology aims towards establishing the state of individual pathways, by identifying those truly affected by the experimental conditions based on the behaviour of such genes. For that purpose it considers all the pathways in which a gene participates and the general census of gene expression per pathway. We utilise hill climbing, simulated annealing and a genetic algorithm to analyse the consistency of the produced results, through the application of fuzzy adjusted rand indexes and hamming distance. All algorithms produce highly consistent genes to pathways allocations, revealing the contribution of genes to pathway functionality, in agreement with current pathway state visualisation techniques, with the simulated annealing search proving slightly superior in terms of efficiency. We show that the expression values of genes, which are members of a number of biochemical pathways or modules, are the net effect of the contribution of each gene to these biochemical processes. We show that by manipulating the pathway and module contribution of such genes to follow underlying trends we can interpret microarray results centred on the behaviour of these genes.

  12. An Oral Load of [13C3]Glycerol and Blood NMR Analysis Detect Fatty Acid Esterification, Pentose Phosphate Pathway, and Glycerol Metabolism through the Tricarboxylic Acid Cycle in Human Liver.

    PubMed

    Jin, Eunsook S; Sherry, A Dean; Malloy, Craig R

    2016-09-02

    Drugs and other interventions for high impact hepatic diseases often target biochemical pathways such as gluconeogenesis, lipogenesis, or the metabolic response to oxidative stress. However, traditional liver function tests do not provide quantitative data about these pathways. In this study, we developed a simple method to evaluate these processes by NMR analysis of plasma metabolites. Healthy subjects ingested [U-(13)C3]glycerol, and blood was drawn at multiple times. Each subject completed three visits under differing nutritional states. High resolution (13)C NMR spectra of plasma triacylglycerols and glucose provided new insights into a number of hepatic processes including fatty acid esterification, the pentose phosphate pathway, and gluconeogenesis through the tricarboxylic acid cycle. Fasting stimulated pentose phosphate pathway activity and metabolism of [U-(13)C3]glycerol in the tricarboxylic acid cycle prior to gluconeogenesis or glyceroneogenesis. Fatty acid esterification was transient in the fasted state but continuous under fed conditions. We conclude that a simple NMR analysis of blood metabolites provides an important biomarker of pentose phosphate pathway activity, triacylglycerol synthesis, and flux through anaplerotic pathways in mitochondria of human liver. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Organization of biogeochemical nitrogen pathways with switch-like adjustment in fluctuating soil redox conditions

    PubMed Central

    Lamba, Sanjay; Bera, Soumen; Rashid, Mubasher; Medvinsky, Alexander B.; Acquisti, Claudia; Li, Bai-Lian

    2017-01-01

    Nitrogen is cycled throughout ecosystems by a suite of biogeochemical processes. The high complexity of the nitrogen cycle resides in an intricate interplay between reversible biochemical pathways alternatively and specifically activated in response to diverse environmental cues. Despite aggressive research, how the fundamental nitrogen biochemical processes are assembled and maintained in fluctuating soil redox conditions remains elusive. Here, we address this question using a kinetic modelling approach coupled with dynamical systems theory and microbial genomics. We show that alternative biochemical pathways play a key role in keeping nitrogen conversion and conservation properties invariant in fluctuating environments. Our results indicate that the biochemical network holds inherent adaptive capacity to stabilize ammonium and nitrate availability, and that the bistability in the formation of ammonium is linked to the transient upregulation of the amo-hao mediated nitrification pathway. The bistability is maintained by a pair of complementary subsystems acting as either source or sink type systems in response to soil redox fluctuations. It is further shown how elevated anthropogenic pressure has the potential to break down the stability of the system, altering substantially ammonium and nitrate availability in the soil, with dramatic effects on biodiversity. PMID:28280580

  14. Computational multiscale modeling in protein--ligand docking.

    PubMed

    Taufer, Michela; Armen, Roger; Chen, Jianhan; Teller, Patricia; Brooks, Charles

    2009-01-01

    In biological systems, the binding of small molecule ligands to proteins is a crucial process for almost every aspect of biochemistry and molecular biology. Enzymes are proteins that function by catalyzing specific biochemical reactions that convert reactants into products. Complex organisms are typically composed of cells in which thousands of enzymes participate in complex and interconnected biochemical pathways. Some enzymes serve as sequential steps in specific pathways (such as energy metabolism), while others function to regulate entire pathways and cellular functions [1]. Small molecule ligands can be designed to bind to a specific enzyme and inhibit the biochemical reaction. Inhibiting the activity of key enzymes may result in the entire biochemical pathways being turned on or off [2], [3]. Many small molecule drugs marketed today function in this generic way as enzyme inhibitors. If research identifies a specific enzyme as being crucial to the progress of disease, then this enzyme may be targeted with an inhibitor, which may slow down or reverse the progress of disease. In this way, enzymes are targeted from specific pathogens (e.g., virus, bacteria, fungi) for infectious diseases [4], [5], and human enzymes are targeted for noninfectious diseases such as cardiovascular disease, cancer, diabetes, and neurodegenerative diseases [6].

  15. PATHOPHYSIOLOGY AND THE CARDIORENAL CONNECTION IN HEART FAILURE. CIRCULATING HORMONES: BIOMARKERS OR MEDIATORS

    PubMed Central

    BUGLIONI, ALESSIA; BURNETT, JOHN C.

    2014-01-01

    Heart failure (HF) is a syndrome characterized by a complex pathophysiology which involves multiple organ systems, with the kidney playing a major role. HF can present with reduced ejection fraction (EF), HFrEF, or with preserved EF (HFpEF). The interplay between diverse organ systems contributing to HF is mediated by the activation of counteracting neurohormonal pathways focused to re-establishing hemodynamic homeostasis. During early stages of HF, these biochemical signals, consisting mostly of hormones and neurotransmitters secreted by a variety of cell types, are compensatory and the patient is asymptomatic. However, with disease progression, the attempt to reverse or delay cardiac dysfunction is deleterious, leading to multi-organ congestion, fibrosis and decompensation and finally symptomatic HF. In conclusion, these neurohormonal pathways mediate the evolution of HF and have become a way to monitor HF. Specifically, these mediators have become important in the diagnosis and prognosis of this highly fatal cardiovascular disease. Finally, while these multiple neurohumoral factors serve as important HF biomarkers, they can also be targeted for more effective and curative HF treatments. PMID:25445413

  16. Matt Wecker | NREL

    Science.gov Websites

    acetaldehyde from bacteria. The idea was to short-sheet the ethanol fermentation pathway to produce ; Biochem. (1995) "Fermentation strategies: Acetaldehyde or ethanol?," Process Biochem. (1987

  17. The maize brown midrib2 (bm2) gene encodes a methylenetetrahydrofolate reductase that contributes to lignin accumulation.

    PubMed

    Tang, Ho Man; Liu, Sanzhen; Hill-Skinner, Sarah; Wu, Wei; Reed, Danielle; Yeh, Cheng-Ting; Nettleton, Dan; Schnable, Patrick S

    2014-02-01

    The midribs of maize brown midrib (bm) mutants exhibit a reddish-brown color associated with reductions in lignin concentration and alterations in lignin composition. Here, we report the mapping, cloning, and functional and biochemical analyses of the bm2 gene. The bm2 gene was mapped to a small region of chromosome 1 that contains a putative methylenetetrahydrofolate reductase (MTHFR) gene, which is down-regulated in bm2 mutant plants. Analyses of multiple Mu-induced bm2-Mu mutant alleles confirmed that this constitutively expressed gene is bm2. Yeast complementation experiments and a previously published biochemical characterization show that the bm2 gene encodes a functional MTHFR. Quantitative RT-PCR analyses demonstrated that the bm2 mutants accumulate substantially reduced levels of bm2 transcript. Alteration of MTHFR function is expected to influence accumulation of the methyl donor S-adenosyl-L-methionine (SAM). Because SAM is consumed by two methyltransferases in the lignin pathway (Ye et al., ), the finding that bm2 encodes a functional MTHFR is consistent with its lignin phenotype. Consistent with this functional assignment of bm2, the expression patterns of genes in a variety of SAM-dependent or -related pathways, including lignin biosynthesis, are altered in the bm2 mutant. Biochemical assays confirmed that bm2 mutants accumulate reduced levels of lignin with altered composition compared to wild-type. Hence, this study demonstrates a role for MTHFR in lignin biosynthesis. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  18. Pausing controls branching between productive and non-productive pathways during initial transcription in bacteria.

    PubMed

    Dulin, David; Bauer, David L V; Malinen, Anssi M; Bakermans, Jacob J W; Kaller, Martin; Morichaud, Zakia; Petushkov, Ivan; Depken, Martin; Brodolin, Konstantin; Kulbachinskiy, Andrey; Kapanidis, Achillefs N

    2018-04-16

    Transcription in bacteria is controlled by multiple molecular mechanisms that precisely regulate gene expression. It has been recently shown that initial RNA synthesis by the bacterial RNA polymerase (RNAP) is interrupted by pauses; however, the pausing determinants and the relationship of pausing with productive and abortive RNA synthesis remain poorly understood. Using single-molecule FRET and biochemical analysis, here we show that the pause encountered by RNAP after the synthesis of a 6-nt RNA (ITC6) renders the promoter escape strongly dependent on the NTP concentration. Mechanistically, the paused ITC6 acts as a checkpoint that directs RNAP to one of three competing pathways: productive transcription, abortive RNA release, or a new unscrunching/scrunching pathway. The cyclic unscrunching/scrunching of the promoter generates a long-lived, RNA-bound paused state; the abortive RNA release and DNA unscrunching are thus not as tightly linked as previously thought. Finally, our new model couples the pausing with the abortive and productive outcomes of initial transcription.

  19. Two-dimensional isobutyl acetate production pathways to improve carbon yield

    PubMed Central

    Tashiro, Yohei; Desai, Shuchi H.; Atsumi, Shota

    2015-01-01

    For an economically competitive biological process, achieving high carbon yield of a target chemical is crucial. In biochemical production, pyruvate and acetyl-CoA are primary building blocks. When sugar is used as the sole biosynthetic substrate, acetyl-CoA is commonly generated by pyruvate decarboxylation. However, pyruvate decarboxylation during acetyl-CoA formation limits the theoretical maximum carbon yield (TMCY) by releasing carbon, and in some cases also leads to redox imbalance. To avoid these problems, we describe here the construction of a metabolic pathway that simultaneously utilizes glucose and acetate. Acetate is utilized to produce acetyl-CoA without carbon loss or redox imbalance. We demonstrate the utility of this approach for isobutyl acetate (IBA) production, wherein IBA production with glucose and acetate achieves a higher carbon yield than with either sole carbon source. These results highlight the potential for this multiple carbon source approach to improve the TMCY and balance redox in biosynthetic pathways. PMID:26108471

  20. Diverse exocytic pathways for mast cell mediators.

    PubMed

    Xu, Hao; Bin, Na-Ryum; Sugita, Shuzo

    2018-04-17

    Mast cells play pivotal roles in innate and adaptive immunities but are also culprits in allergy, autoimmunity, and cardiovascular diseases. Mast cells respond to environmental changes by initiating regulated exocytosis/secretion of various biologically active compounds called mediators (e.g. proteases, amines, and cytokines). Many of these mediators are stored in granules/lysosomes and rely on intricate degranulation processes for release. Mast cell stabilizers (e.g. sodium cromoglicate), which prevent such degranulation processes, have therefore been clinically employed to treat asthma and allergic rhinitis. However, it has become increasingly clear that different mast cell diseases often involve multiple mediators that rely on overlapping but distinct mechanisms for release. This review illustrates existing evidence that highlights the diverse exocytic pathways in mast cells. We also discuss strategies to delineate these pathways so as to identify unique molecular components which could serve as new drug targets for more effective and specific treatments against mast cell-related diseases. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  1. Uveal Melanoma: Identifying Immunological and Chemotherapeutic Targets to Treat Metastases.

    PubMed

    Jager, Martine J; Dogrusöz, Mehmet; Woodman, Scott E

    2017-01-01

    Uveal melanoma is an intraocular malignancy that, depending on its size and genetic make-up, may lead to metastases in up to 50% of cases. Currently, no therapy has been proven to improve survival. However, new therapies exploiting immune responses against metastases are being developed. The primary tumor is well characterized: tumors at high risk of developing metastases often contain macrophages and lymphocytes. However, these lymphocytes are often regulatory T cells that may suppress immune response. Currently, immune checkpoint inhibitors have shown marked efficacy in multiple cancers (eg, cutaneous melanoma) but do not yet improve survival in uveal melanoma patients. More knowledge needs to be acquired regarding the function of T cells in uveal melanoma. Other therapeutic options are related to the biochemical pathways. Targeting the RAF-MEK-ERK pathway with small molecule MEK inhibitors abrogates the growth of UM cells harboring GNAQ/GNA11 Q209 mutations, suggesting that these aberrant G-protein oncogenes mediate, at least in part, their effect through this hallmark proliferation pathway. Other pathways are also implicated, such as those involving c-Jun and YAP. Further studies may show how interference in the different pathways may affect survival. Copyright 2017 Asia-Pacific Academy of Ophthalmology.

  2. Metabolic Dysfunction and Peroxisome Proliferator-Activated Receptors (PPAR) in Multiple Sclerosis.

    PubMed

    Ferret-Sena, Véronique; Capela, Carlos; Sena, Armando

    2018-06-01

    Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease of the central nervous system (CNS) probably caused, in most cases, by the interaction of genetic and environmental factors. This review first summarizes some clinical, epidemiological and pathological characteristics of MS. Then, the involvement of biochemical pathways is discussed in the development and repair of the CNS lesions and the immune dysfunction in the disease. Finally, the potential roles of peroxisome proliferator-activated receptors (PPAR) in MS are discussed. It is suggested that metabolic mechanisms modulated by PPAR provide a window to integrate the systemic and neurological events underlying the pathogenesis of the disease. In conclusion, the reviewed data highlight molecular avenues of understanding MS that may open new targets for improved therapies and preventive strategies for the disease.

  3. Cellular Assays for Ferredoxins: A Strategy for Understanding Electron Flow through Protein Carriers That Link Metabolic Pathways.

    PubMed

    Atkinson, Joshua T; Campbell, Ian; Bennett, George N; Silberg, Jonathan J

    2016-12-27

    The ferredoxin (Fd) protein family is a structurally diverse group of iron-sulfur proteins that function as electron carriers, linking biochemical pathways important for energy transduction, nutrient assimilation, and primary metabolism. While considerable biochemical information about individual Fd protein electron carriers and their reactions has been acquired, we cannot yet anticipate the proportion of electrons shuttled between different Fd-partner proteins within cells using biochemical parameters that govern electron flow, such as holo-Fd concentration, midpoint potential (driving force), molecular interactions (affinity and kinetics), conformational changes (allostery), and off-pathway electron leakage (chemical oxidation). Herein, we describe functional and structural gaps in our Fd knowledge within the context of a sequence similarity network and phylogenetic tree, and we propose a strategy for improving our understanding of Fd sequence-function relationships. We suggest comparing the functions of divergent Fds within cells whose growth, or other measurable output, requires electron transfer between defined electron donor and acceptor proteins. By comparing Fd-mediated electron transfer with biochemical parameters that govern electron flow, we posit that models that anticipate energy flow across Fd interactomes can be built. This approach is expected to transform our ability to anticipate Fd control over electron flow in cellular settings, an obstacle to the construction of synthetic electron transfer pathways and rational optimization of existing energy-conserving pathways.

  4. SAR202 Genomes from the Dark Ocean Predict Pathways for the Oxidation of Recalcitrant Dissolved Organic Matter.

    PubMed

    Landry, Zachary; Swan, Brandon K; Herndl, Gerhard J; Stepanauskas, Ramunas; Giovannoni, Stephen J

    2017-04-18

    Deep-ocean regions beyond the reach of sunlight contain an estimated 615 Pg of dissolved organic matter (DOM), much of which persists for thousands of years. It is thought that bacteria oxidize DOM until it is too dilute or refractory to support microbial activity. We analyzed five single-amplified genomes (SAGs) from the abundant SAR202 clade of dark-ocean bacterioplankton and found they encode multiple families of paralogous enzymes involved in carbon catabolism, including several families of oxidative enzymes that we hypothesize participate in the degradation of cyclic alkanes. The five partial genomes encoded 152 flavin mononucleotide/F420-dependent monooxygenases (FMNOs), many of which are predicted to be type II Baeyer-Villiger monooxygenases (BVMOs) that catalyze oxygen insertion into semilabile alicyclic alkanes. The large number of oxidative enzymes, as well as other families of enzymes that appear to play complementary roles in catabolic pathways, suggests that SAR202 might catalyze final steps in the biological oxidation of relatively recalcitrant organic compounds to refractory compounds that persist. IMPORTANCE Carbon in the ocean is massively sequestered in a complex mixture of biologically refractory molecules that accumulate as the chemical end member of biological oxidation and diagenetic change. However, few details are known about the biochemical machinery of carbon sequestration in the deep ocean. Reconstruction of the metabolism of a deep-ocean microbial clade, SAR202, led to postulation of new biochemical pathways that may be the penultimate stages of DOM oxidation to refractory forms that persist. These pathways are tied to a proliferation of oxidative enzymes. This research illuminates dark-ocean biochemistry that is broadly consequential for reconstructing the global carbon cycle. Copyright © 2017 Landry et al.

  5. Pathway collages: personalized multi-pathway diagrams.

    PubMed

    Paley, Suzanne; O'Maille, Paul E; Weaver, Daniel; Karp, Peter D

    2016-12-13

    Metabolic pathway diagrams are a classical way of visualizing a linked cascade of biochemical reactions. However, to understand some biochemical situations, viewing a single pathway is insufficient, whereas viewing the entire metabolic network results in information overload. How do we enable scientists to rapidly construct personalized multi-pathway diagrams that depict a desired collection of interacting pathways that emphasize particular pathway interactions? We define software for constructing personalized multi-pathway diagrams called pathway-collages using a combination of manual and automatic layouts. The user specifies a set of pathways of interest for the collage from a Pathway/Genome Database. Layouts for the individual pathways are generated by the Pathway Tools software, and are sent to a Javascript Pathway Collage application implemented using Cytoscape.js. That application allows the user to re-position pathways; define connections between pathways; change visual style parameters; and paint metabolomics, gene expression, and reaction flux data onto the collage to obtain a desired multi-pathway diagram. We demonstrate the use of pathway collages in two application areas: a metabolomics study of pathogen drug response, and an Escherichia coli metabolic model. Pathway collages enable facile construction of personalized multi-pathway diagrams.

  6. PathFinder: reconstruction and dynamic visualization of metabolic pathways.

    PubMed

    Goesmann, Alexander; Haubrock, Martin; Meyer, Folker; Kalinowski, Jörn; Giegerich, Robert

    2002-01-01

    Beyond methods for a gene-wise annotation and analysis of sequenced genomes new automated methods for functional analysis on a higher level are needed. The identification of realized metabolic pathways provides valuable information on gene expression and regulation. Detection of incomplete pathways helps to improve a constantly evolving genome annotation or discover alternative biochemical pathways. To utilize automated genome analysis on the level of metabolic pathways new methods for the dynamic representation and visualization of pathways are needed. PathFinder is a tool for the dynamic visualization of metabolic pathways based on annotation data. Pathways are represented as directed acyclic graphs, graph layout algorithms accomplish the dynamic drawing and visualization of the metabolic maps. A more detailed analysis of the input data on the level of biochemical pathways helps to identify genes and detect improper parts of annotations. As an Relational Database Management System (RDBMS) based internet application PathFinder reads a list of EC-numbers or a given annotation in EMBL- or Genbank-format and dynamically generates pathway graphs.

  7. Understanding the response to endurance exercise using a systems biology approach: combining blood metabolomics, transcriptomics and miRNomics in horses.

    PubMed

    Mach, Núria; Ramayo-Caldas, Yuliaxis; Clark, Allison; Moroldo, Marco; Robert, Céline; Barrey, Eric; López, Jesús Maria; Le Moyec, Laurence

    2017-02-17

    Endurance exercise in horses requires adaptive processes involving physiological, biochemical, and cognitive-behavioral responses in an attempt to regain homeostasis. We hypothesized that the identification of the relationships between blood metabolome, transcriptome, and miRNome during endurance exercise in horses could provide significant insights into the molecular response to endurance exercise. For this reason, the serum metabolome and whole-blood transcriptome and miRNome data were obtained from ten horses before and after a 160 km endurance competition. We obtained a global regulatory network based on 11 unique metabolites, 263 metabolic genes and 5 miRNAs whose expression was significantly altered at T1 (post- endurance competition) relative to T0 (baseline, pre-endurance competition). This network provided new insights into the cross talk between the distinct molecular pathways (e.g. energy and oxygen sensing, oxidative stress, and inflammation) that were not detectable when analyzing single metabolites or transcripts alone. Single metabolites and transcripts were carrying out multiple roles and thus sharing several biochemical pathways. Using a regulatory impact factor metric analysis, this regulatory network was further confirmed at the transcription factor and miRNA levels. In an extended cohort of 31 independent animals, multiple factor analysis confirmed the strong associations between lactate, methylene derivatives, miR-21-5p, miR-16-5p, let-7 family and genes that coded proteins involved in metabolic reactions primarily related to energy, ubiquitin proteasome and lipopolysaccharide immune responses after the endurance competition. Multiple factor analysis also identified potential biomarkers at T0 for an increased likelihood for failure to finish an endurance competition. To the best of our knowledge, the present study is the first to provide a comprehensive and integrated overview of the metabolome, transcriptome, and miRNome co-regulatory networks that may have a key role in regulating the metabolic and immune response to endurance exercise in horses.

  8. Soya bean Gα proteins with distinct biochemical properties exhibit differential ability to complement Saccharomyces cerevisiae gpa1 mutant.

    PubMed

    Roy Choudhury, Swarup; Wang, Yuqi; Pandey, Sona

    2014-07-01

    Signalling pathways mediated by heterotrimeric G-proteins are common to all eukaryotes. Plants have a limited number of each of the G-protein subunits, with the most elaborate G-protein network discovered so far in soya bean (Glycine max, also known as soybean) which has four Gα, four Gβ and ten Gγ proteins. Biochemical characterization of Gα proteins from plants suggests significant variation in their properties compared with the well-characterized non-plant proteins. Furthermore, the four soya bean Gα (GmGα) proteins exhibit distinct biochemical activities among themselves, but the extent to which such biochemical differences contribute to their in vivo function is also not known. We used the yeast gpa1 mutant which displays constitutive signalling and growth arrest in the pheromone-response pathway as an in vivo model to evaluate the effect of distinct biochemical activities of GmGα proteins. We showed that specific GmGα proteins can be activated during pheromone-dependent receptor-mediated signalling in yeast and they display different strengths towards complementation of yeast gpa1 phenotypes. We also identified amino acids that are responsible for differential complementation abilities of specific Gα proteins. These data establish that specific plant Gα proteins are functional in the receptor-mediated pheromone-response pathway in yeast and that the subtle biochemical differences in their activity are physiologically relevant.

  9. Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome.

    PubMed

    Bowman, John L; Kohchi, Takayuki; Yamato, Katsuyuki T; Jenkins, Jerry; Shu, Shengqiang; Ishizaki, Kimitsune; Yamaoka, Shohei; Nishihama, Ryuichi; Nakamura, Yasukazu; Berger, Frédéric; Adam, Catherine; Aki, Shiori Sugamata; Althoff, Felix; Araki, Takashi; Arteaga-Vazquez, Mario A; Balasubrmanian, Sureshkumar; Barry, Kerrie; Bauer, Diane; Boehm, Christian R; Briginshaw, Liam; Caballero-Perez, Juan; Catarino, Bruno; Chen, Feng; Chiyoda, Shota; Chovatia, Mansi; Davies, Kevin M; Delmans, Mihails; Demura, Taku; Dierschke, Tom; Dolan, Liam; Dorantes-Acosta, Ana E; Eklund, D Magnus; Florent, Stevie N; Flores-Sandoval, Eduardo; Fujiyama, Asao; Fukuzawa, Hideya; Galik, Bence; Grimanelli, Daniel; Grimwood, Jane; Grossniklaus, Ueli; Hamada, Takahiro; Haseloff, Jim; Hetherington, Alexander J; Higo, Asuka; Hirakawa, Yuki; Hundley, Hope N; Ikeda, Yoko; Inoue, Keisuke; Inoue, Shin-Ichiro; Ishida, Sakiko; Jia, Qidong; Kakita, Mitsuru; Kanazawa, Takehiko; Kawai, Yosuke; Kawashima, Tomokazu; Kennedy, Megan; Kinose, Keita; Kinoshita, Toshinori; Kohara, Yuji; Koide, Eri; Komatsu, Kenji; Kopischke, Sarah; Kubo, Minoru; Kyozuka, Junko; Lagercrantz, Ulf; Lin, Shih-Shun; Lindquist, Erika; Lipzen, Anna M; Lu, Chia-Wei; De Luna, Efraín; Martienssen, Robert A; Minamino, Naoki; Mizutani, Masaharu; Mizutani, Miya; Mochizuki, Nobuyoshi; Monte, Isabel; Mosher, Rebecca; Nagasaki, Hideki; Nakagami, Hirofumi; Naramoto, Satoshi; Nishitani, Kazuhiko; Ohtani, Misato; Okamoto, Takashi; Okumura, Masaki; Phillips, Jeremy; Pollak, Bernardo; Reinders, Anke; Rövekamp, Moritz; Sano, Ryosuke; Sawa, Shinichiro; Schmid, Marc W; Shirakawa, Makoto; Solano, Roberto; Spunde, Alexander; Suetsugu, Noriyuki; Sugano, Sumio; Sugiyama, Akifumi; Sun, Rui; Suzuki, Yutaka; Takenaka, Mizuki; Takezawa, Daisuke; Tomogane, Hirokazu; Tsuzuki, Masayuki; Ueda, Takashi; Umeda, Masaaki; Ward, John M; Watanabe, Yuichiro; Yazaki, Kazufumi; Yokoyama, Ryusuke; Yoshitake, Yoshihiro; Yotsui, Izumi; Zachgo, Sabine; Schmutz, Jeremy

    2017-10-05

    The evolution of land flora transformed the terrestrial environment. Land plants evolved from an ancestral charophycean alga from which they inherited developmental, biochemical, and cell biological attributes. Additional biochemical and physiological adaptations to land, and a life cycle with an alternation between multicellular haploid and diploid generations that facilitated efficient dispersal of desiccation tolerant spores, evolved in the ancestral land plant. We analyzed the genome of the liverwort Marchantia polymorpha, a member of a basal land plant lineage. Relative to charophycean algae, land plant genomes are characterized by genes encoding novel biochemical pathways, new phytohormone signaling pathways (notably auxin), expanded repertoires of signaling pathways, and increased diversity in some transcription factor families. Compared with other sequenced land plants, M. polymorpha exhibits low genetic redundancy in most regulatory pathways, with this portion of its genome resembling that predicted for the ancestral land plant. PAPERCLIP. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. Walking the C4 pathway: past, present, and future.

    PubMed

    Furbank, Robert T

    2017-01-01

    The year 2016 marks 50 years since the publication of the seminal paper by Hatch and Slack describing the biochemical pathway we now know as C 4 photosynthesis. This review provides insight into the initial discovery of this pathway, the clues which led Hatch and Slack and others to these definitive experiments, some of the intrigue which surrounds the international activities which led up to the discovery, and personal insights into the future of this research field. While the biochemical understanding of the basic pathways came quickly, the role of the bundle sheath intermediate CO 2 pool was not understood for a number of years, and the nature of C 4 as a biochemical CO 2 pump then linked the unique Kranz anatomy of C 4 plants to their biochemical specialization. Decades of "grind and find biochemistry" and leaf physiology fleshed out the regulation of the pathway and the differences in physiological response to the environment between C 3 and C 4 plants. The more recent advent of plant transformation then high-throughput RNA and DNA sequencing and synthetic biology has allowed us both to carry out biochemical experiments and test hypotheses in planta and to better understand the evolution-driven molecular and genetic changes which occurred in the genomes of plants in the transition from C 3 to C 4 Now we are using this knowledge in attempts to engineer C 4 rice and improve the C 4 engine itself for enhanced food security and to provide novel biofuel feedstocks. The next 50 years of photosynthesis will no doubt be challenging, stimulating, and a drawcard for the best young minds in plant biology. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Walking the C4 pathway: past, present, and future.

    PubMed

    Furbank, Robert T

    2016-07-01

    The year 2016 marks 50 years since the publication of the seminal paper by Hatch and Slack describing the biochemical pathway we now know as C4 photosynthesis. This review provides insight into the initial discovery of this pathway, the clues which led Hatch and Slack and others to these definitive experiments, some of the intrigue which surrounds the international activities which led up to the discovery, and personal insights into the future of this research field. While the biochemical understanding of the basic pathways came quickly, the role of the bundle sheath intermediate CO2 pool was not understood for a number of years, and the nature of C4 as a biochemical CO2 pump then linked the unique Kranz anatomy of C4 plants to their biochemical specialization. Decades of "grind and find biochemistry" and leaf physiology fleshed out the regulation of the pathway and the differences in physiological response to the environment between C3 and C4 plants. The more recent advent of plant transformation then high-throughput RNA and DNA sequencing and synthetic biology has allowed us both to carry out biochemical experiments and test hypotheses in planta and to better understand the evolution-driven molecular and genetic changes which occurred in the genomes of plants in the transition from C3 to C4 Now we are using this knowledge in attempts to engineer C4 rice and improve the C4 engine itself for enhanced food security and to provide novel biofuel feedstocks. The next 50 years of photosynthesis will no doubt be challenging, stimulating, and a drawcard for the best young minds in plant biology. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Simultaneous knockdown of six non-family genes using a single synthetic RNAi fragment in Arabidopsis thaliana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czarnecki, Olaf; Bryan, Anthony C.; Jawdy, Sara S.

    Genetic engineering of plants that results in successful establishment of new biochemical or regulatory pathways requires stable introduction of one or more genes into the plant genome. It might also be necessary to down-regulate or turn off expression of endogenous genes in order to reduce activity of competing pathways. An established way to knockdown gene expression in plants is expressing a hairpin-RNAi construct, eventually leading to degradation of a specifically targeted mRNA. Knockdown of multiple genes that do not share homologous sequences is still challenging and involves either sophisticated cloning strategies to create vectors with different serial expression constructs ormore » multiple transformation events that is often restricted by a lack of available transformation markers. Synthetic RNAi fragments were assembled in yeast carrying homologous sequences to six or seven non-family genes and introduced into pAGRIKOLA. Transformation of Arabidopsis thaliana and subsequent expression analysis of targeted genes proved efficient knockdown of all target genes. In conclusion, we present a simple and cost-effective method to create constructs to simultaneously knockdown multiple non-family genes or genes that do not share sequence homology. The presented method can be applied in plant and animal synthetic biology as well as traditional plant and animal genetic engineering.« less

  13. Simultaneous knockdown of six non-family genes using a single synthetic RNAi fragment in Arabidopsis thaliana

    DOE PAGES

    Czarnecki, Olaf; Bryan, Anthony C.; Jawdy, Sara S.; ...

    2016-02-17

    Genetic engineering of plants that results in successful establishment of new biochemical or regulatory pathways requires stable introduction of one or more genes into the plant genome. It might also be necessary to down-regulate or turn off expression of endogenous genes in order to reduce activity of competing pathways. An established way to knockdown gene expression in plants is expressing a hairpin-RNAi construct, eventually leading to degradation of a specifically targeted mRNA. Knockdown of multiple genes that do not share homologous sequences is still challenging and involves either sophisticated cloning strategies to create vectors with different serial expression constructs ormore » multiple transformation events that is often restricted by a lack of available transformation markers. Synthetic RNAi fragments were assembled in yeast carrying homologous sequences to six or seven non-family genes and introduced into pAGRIKOLA. Transformation of Arabidopsis thaliana and subsequent expression analysis of targeted genes proved efficient knockdown of all target genes. In conclusion, we present a simple and cost-effective method to create constructs to simultaneously knockdown multiple non-family genes or genes that do not share sequence homology. The presented method can be applied in plant and animal synthetic biology as well as traditional plant and animal genetic engineering.« less

  14. A network analysis of cofactor-protein interactions for analyzing associations between human nutrition and diseases

    PubMed Central

    Scott-Boyer, Marie Pier; Lacroix, Sébastien; Scotti, Marco; Morine, Melissa J.; Kaput, Jim; Priami, Corrado

    2016-01-01

    The involvement of vitamins and other micronutrients in intermediary metabolism was elucidated in the mid 1900’s at the level of individual biochemical reactions. Biochemical pathways remain the foundational knowledgebase for understanding how micronutrient adequacy modulates health in all life stages. Current daily recommended intakes were usually established on the basis of the association of a single nutrient to a single, most sensitive adverse effect and thus neglect interdependent and pleiotropic effects of micronutrients on biological systems. Hence, the understanding of the impact of overt or sub-clinical nutrient deficiencies on biological processes remains incomplete. Developing a more complete view of the role of micronutrients and their metabolic products in protein-mediated reactions is of importance. We thus integrated and represented cofactor-protein interaction data from multiple and diverse sources into a multi-layer network representation that links cofactors, cofactor-interacting proteins, biological processes, and diseases. Network representation of this information is a key feature of the present analysis and enables the integration of data from individual biochemical reactions and protein-protein interactions into a systems view, which may guide strategies for targeted nutritional interventions aimed at improving health and preventing diseases. PMID:26777674

  15. Seasonal induction of alternative principal pathway for rose flower scent

    PubMed Central

    Hirata, Hiroshi; Ohnishi, Toshiyuki; Tomida, Kensuke; Ishida, Haruka; Kanda, Momoyo; Sakai, Miwa; Yoshimura, Jin; Suzuki, Hideyuki; Ishikawa, Takamasa; Dohra, Hideo; Watanabe, Naoharu

    2016-01-01

    Ecological adaptations to seasonal changes are often observed in the phenotypic traits of plants and animals, and these adaptations are usually expressed through the production of different biochemical end products. In this study, ecological adaptations are observed in a biochemical pathway without alteration of the end products. We present an alternative principal pathway to the characteristic floral scent compound 2-phenylethanol (2PE) in roses. The new pathway is seasonally induced in summer as a heat adaptation that uses rose phenylpyruvate decarboxylase (RyPPDC) as a novel enzyme. RyPPDC transcript levels and the resulting production of 2PE are increased time-dependently under high temperatures. The novel summer pathway produces levels of 2PE that are several orders of magnitude higher than those produced by the previously known pathway. Our results indicate that the alternative principal pathway identified here is a seasonal adaptation for managing the weakened volatility of summer roses. PMID:26831950

  16. Characterization and detection of a widely distributed gene cluster that predicts anaerobic choline utilization by human gut bacteria.

    PubMed

    Martínez-del Campo, Ana; Bodea, Smaranda; Hamer, Hilary A; Marks, Jonathan A; Haiser, Henry J; Turnbaugh, Peter J; Balskus, Emily P

    2015-04-14

    Elucidation of the molecular mechanisms underlying the human gut microbiota's effects on health and disease has been complicated by difficulties in linking metabolic functions associated with the gut community as a whole to individual microorganisms and activities. Anaerobic microbial choline metabolism, a disease-associated metabolic pathway, exemplifies this challenge, as the specific human gut microorganisms responsible for this transformation have not yet been clearly identified. In this study, we established the link between a bacterial gene cluster, the choline utilization (cut) cluster, and anaerobic choline metabolism in human gut isolates by combining transcriptional, biochemical, bioinformatic, and cultivation-based approaches. Quantitative reverse transcription-PCR analysis and in vitro biochemical characterization of two cut gene products linked the entire cluster to growth on choline and supported a model for this pathway. Analyses of sequenced bacterial genomes revealed that the cut cluster is present in many human gut bacteria, is predictive of choline utilization in sequenced isolates, and is widely but discontinuously distributed across multiple bacterial phyla. Given that bacterial phylogeny is a poor marker for choline utilization, we were prompted to develop a degenerate PCR-based method for detecting the key functional gene choline TMA-lyase (cutC) in genomic and metagenomic DNA. Using this tool, we found that new choline-metabolizing gut isolates universally possessed cutC. We also demonstrated that this gene is widespread in stool metagenomic data sets. Overall, this work represents a crucial step toward understanding anaerobic choline metabolism in the human gut microbiota and underscores the importance of examining this microbial community from a function-oriented perspective. Anaerobic choline utilization is a bacterial metabolic activity that occurs in the human gut and is linked to multiple diseases. While bacterial genes responsible for choline fermentation (the cut gene cluster) have been recently identified, there has been no characterization of these genes in human gut isolates and microbial communities. In this work, we use multiple approaches to demonstrate that the pathway encoded by the cut genes is present and functional in a diverse range of human gut bacteria and is also widespread in stool metagenomes. We also developed a PCR-based strategy to detect a key functional gene (cutC) involved in this pathway and applied it to characterize newly isolated choline-utilizing strains. Both our analyses of the cut gene cluster and this molecular tool will aid efforts to further understand the role of choline metabolism in the human gut microbiota and its link to disease. Copyright © 2015 Martínez-del Campo et al.

  17. Methotrexate Is a JAK/STAT Pathway Inhibitor

    PubMed Central

    Thomas, Sally; Fisher, Katherine H.; Snowden, John A.; Danson, Sarah J.; Brown, Stephen; Zeidler, Martin P.

    2015-01-01

    Background The JAK/STAT pathway transduces signals from multiple cytokines and controls haematopoiesis, immunity and inflammation. In addition, pathological activation is seen in multiple malignancies including the myeloproliferative neoplasms (MPNs). Given this, drug development efforts have targeted the pathway with JAK inhibitors such as ruxolitinib. Although effective, high costs and side effects have limited its adoption. Thus, a need for effective low cost treatments remains. Methods & Findings We used the low-complexity Drosophila melanogaster pathway to screen for small molecules that modulate JAK/STAT signalling. This screen identified methotrexate and the closely related aminopterin as potent suppressors of STAT activation. We show that methotrexate suppresses human JAK/STAT signalling without affecting other phosphorylation-dependent pathways. Furthermore, methotrexate significantly reduces STAT5 phosphorylation in cells expressing JAK2 V617F, a mutation associated with most human MPNs. Methotrexate acts independently of dihydrofolate reductase (DHFR) and is comparable to the JAK1/2 inhibitor ruxolitinib. However, cells treated with methotrexate still retain their ability to respond to physiological levels of the ligand erythropoietin. Conclusions Aminopterin and methotrexate represent the first chemotherapy agents developed and act as competitive inhibitors of DHFR. Methotrexate is also widely used at low doses to treat inflammatory and immune-mediated conditions including rheumatoid arthritis. In this low-dose regime, folate supplements are given to mitigate side effects by bypassing the biochemical requirement for DHFR. Although independent of DHFR, the mechanism-of-action underlying the low-dose effects of methotrexate is unknown. Given that multiple pro-inflammatory cytokines signal through the pathway, we suggest that suppression of the JAK/STAT pathway is likely to be the principal anti-inflammatory and immunosuppressive mechanism-of-action of low-dose methotrexate. In addition, we suggest that patients with JAK/STAT-associated haematological malignancies may benefit from low-dose methotrexate treatments. While the JAK1/2 inhibitor ruxolitinib is effective, a £43,200 annual cost precludes widespread adoption. With an annual methotrexate cost of around £32, our findings represent an important development with significant future potential. PMID:26131691

  18. Exploitation of Nontraditional Corp, Yacon, in Breast Cancer Prevention Using Preclinical Rat Model

    DTIC Science & Technology

    2011-07-01

    liver glucose disposal evident along sorbitol, PPP, and hexosamine pathways. • Gut microbiome : A significant impact of diet on levels of...biochemicals reflecting metabolism of the gut microbiome was evident in plasma and liver and observed for several classes of metabolites. Biochemicals...acid metabolites reflecting activity of the gut microbiome contribute to host metabolic pathways and/or must be metabolized further by the liver

  19. Metabolite fingerprinting of pennycress (Thlaspi arvense L.) embryos to assess active pathways during oil synthesis

    PubMed Central

    Tsogtbaatar, Enkhtuul; Cocuron, Jean-Christophe; Sonera, Marcos Corchado; Alonso, Ana Paula

    2015-01-01

    Pennycress (Thlaspi arvense L.), a plant naturalized to North America, accumulates high levels of erucic acid in its seeds, which makes it a promising biodiesel and industrial crop. The main carbon sinks in pennycress embryos were found to be proteins, fatty acids, and cell wall, which respectively represented 38.5, 33.2, and 27.0% of the biomass at 21 days after pollination. Erucic acid reached a maximum of 36% of the total fatty acids. Together these results indicate that total oil and erucic acid contents could be increased to boost the economic competitiveness of this crop. Understanding the biochemical basis of oil synthesis in pennycress embryos is therefore timely and relevant to guide future breeding and/or metabolic engineering efforts. For this purpose, a combination of metabolomics approaches was conducted to assess the active biochemical pathways during oil synthesis. First, gas chromatography–mass spectrometry (GC-MS) profiling of intracellular metabolites highlighted three main families of compounds: organic acids, amino acids, and sugars/sugar alcohols. Secondly, these intermediates were quantified in developing pennycress embryos by liquid chromatography–tandem mass spectrometry (LC-MS/MS) in multiple reaction monitoring mode. Finally, partitional clustering analysis grouped the intracellular metabolites that shared a similar pattern of accumulation over time into eight clusters. This study underlined that: (i) sucrose might be stored rather than cleaved into hexoses; (ii) glucose and glutamine would be the main sources of carbon and nitrogen, respectively; and (iii) glycolysis, the oxidative pentose phosphate pathway, the tricarboxylic acid cycle, and the Calvin cycle were active in developing pennycress embryos. PMID:25711705

  20. Multiple functions of BCL-2 family proteins.

    PubMed

    Hardwick, J Marie; Soane, Lucian

    2013-02-01

    BCL-2 family proteins are the regulators of apoptosis, but also have other functions. This family of interacting partners includes inhibitors and inducers of cell death. Together they regulate and mediate the process by which mitochondria contribute to cell death known as the intrinsic apoptosis pathway. This pathway is required for normal embryonic development and for preventing cancer. However, before apoptosis is induced, BCL-2 proteins have critical roles in normal cell physiology related to neuronal activity, autophagy, calcium handling, mitochondrial dynamics and energetics, and other processes of normal healthy cells. The relative importance of these physiological functions compared to their apoptosis functions in overall organismal physiology is difficult to decipher. Apoptotic and noncanonical functions of these proteins may be intertwined to link cell growth to cell death. Disentanglement of these functions may require delineation of biochemical activities inherent to the characteristic three-dimensional shape shared by distantly related viral and cellular BCL-2 family members.

  1. Deep epistasis in human metabolism

    NASA Astrophysics Data System (ADS)

    Imielinski, Marcin; Belta, Calin

    2010-06-01

    We extend and apply a method that we have developed for deriving high-order epistatic relationships in large biochemical networks to a published genome-scale model of human metabolism. In our analysis we compute 33 328 reaction sets whose knockout synergistically disables one or more of 43 important metabolic functions. We also design minimal knockouts that remove flux through fumarase, an enzyme that has previously been shown to play an important role in human cancer. Most of these knockout sets employ more than eight mutually buffering reactions, spanning multiple cellular compartments and metabolic subsystems. These reaction sets suggest that human metabolic pathways possess a striking degree of parallelism, inducing "deep" epistasis between diversely annotated genes. Our results prompt specific chemical and genetic perturbation follow-up experiments that could be used to query in vivo pathway redundancy. They also suggest directions for future statistical studies of epistasis in genetic variation data sets.

  2. Multidimensional heuristic process for high-yield production of astaxanthin and fragrance molecules in Escherichia coli.

    PubMed

    Zhang, Congqiang; Seow, Vui Yin; Chen, Xixian; Too, Heng-Phon

    2018-05-11

    Optimization of metabolic pathways consisting of large number of genes is challenging. Multivariate modular methods (MMMs) are currently available solutions, in which reduced regulatory complexities are achieved by grouping multiple genes into modules. However, these methods work well for balancing the inter-modules but not intra-modules. In addition, application of MMMs to the 15-step heterologous route of astaxanthin biosynthesis has met with limited success. Here, we expand the solution space of MMMs and develop a multidimensional heuristic process (MHP). MHP can simultaneously balance different modules by varying promoter strength and coordinating intra-module activities by using ribosome binding sites (RBSs) and enzyme variants. Consequently, MHP increases enantiopure 3S,3'S-astaxanthin production to 184 mg l -1 day -1 or 320 mg l -1 . Similarly, MHP improves the yields of nerolidol and linalool. MHP may be useful for optimizing other complex biochemical pathways.

  3. Characteristic Variations and Similarities in Biochemical, Molecular, and Functional Properties of Glyoxalases across Prokaryotes and Eukaryotes.

    PubMed

    Kaur, Charanpreet; Sharma, Shweta; Hasan, Mohammad Rokebul; Pareek, Ashwani; Singla-Pareek, Sneh L; Sopory, Sudhir K

    2017-03-30

    The glyoxalase system is the ubiquitous pathway for the detoxification of methylglyoxal (MG) in the biological systems. It comprises two enzymes, glyoxalase I (GLYI) and glyoxalase II (GLYII), which act sequentially to convert MG into d-lactate, thereby helping living systems get rid of this otherwise cytotoxic byproduct of metabolism. In addition, a glutathione-independent GLYIII enzyme activity also exists in the biological systems that can directly convert MG to d-lactate. Humans and Escherichia coli possess a single copy of GLYI (encoding either the Ni- or Zn-dependent form) and GLYII genes, which through MG detoxification provide protection against various pathological and disease conditions. By contrast, the plant genome possesses multiple GLYI and GLYII genes with a role in abiotic stress tolerance. Plants possess both Ni 2+ - and Zn 2+ -dependent forms of GLYI, and studies on plant glyoxalases reveal the various unique features of these enzymes distinguishing them from prokaryotic and other eukaryotic glyoxalases. Through this review, we provide an overview of the plant glyoxalase family along with a comparative analysis of glyoxalases across various species, highlighting similarities as well as differences in the biochemical, molecular, and physiological properties of these enzymes. We believe that the evolution of multiple glyoxalases isoforms in plants is an important component of their robust defense strategies.

  4. Metabolomic profiles in individuals with negative affectivity and social inhibition: a population-based study of Type D personality.

    PubMed

    Altmaier, Elisabeth; Emeny, Rebecca T; Krumsiek, Jan; Lacruz, Maria E; Lukaschek, Karoline; Häfner, Sibylle; Kastenmüller, Gabi; Römisch-Margl, Werner; Prehn, Cornelia; Mohney, Robert P; Evans, Anne M; Milburn, Michael V; Illig, Thomas; Adamski, Jerzy; Theis, Fabian; Suhre, Karsten; Ladwig, Karl-Heinz

    2013-08-01

    Individuals with negative affectivity who are inhibited in social situations are characterized as distressed, or Type D, and have an increased risk of cardiovascular disease (CVD). The underlying biomechanisms that link this psychological affect to a pathological state are not well understood. This study applied a metabolomic approach to explore biochemical pathways that may contribute to the Type D personality. Type D personality was determined by the Type D Scale-14. Small molecule biochemicals were measured using two complementary mass-spectrometry based metabolomics platforms. Metabolic profiles of Type D and non-Type D participants within a population-based study in Southern Germany were compared in cross-sectional regression analyses. The PHQ-9 and GAD-7 instruments were also used to assess symptoms of depression and anxiety, respectively, within this metabolomic study. 668 metabolites were identified in the serum of 1502 participants (age 32-77); 386 of these individuals were classified as Type D. While demographic and biomedical characteristics were equally distributed between the groups, a higher level of depression and anxiety was observed in Type D individuals. Significantly lower levels of the tryptophan metabolite kynurenine were associated with Type D (p-value corrected for multiple testing=0.042), while no significant associations could be found for depression and anxiety. A Gaussian graphical model analysis enabled the identification of four potentially interesting metabolite networks that are enriched in metabolites (androsterone sulfate, tyrosine, indoxyl sulfate or caffeine) that associate nominally with Type D personality. This study identified novel biochemical pathways associated with Type D personality and demonstrates that the application of metabolomic approaches in population studies can reveal mechanisms that may contribute to psychological health and disease. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Grassland species differentially regulate proline concentrations under future climate conditions: an integrated biochemical and modelling approach.

    PubMed

    AbdElgawad, Hamada; De Vos, Dirk; Zinta, Gaurav; Domagalska, Malgorzata A; Beemster, Gerrit T S; Asard, Han

    2015-10-01

    Proline (Pro) is a versatile metabolite playing a role in the protection of plants against environmental stresses. To gain a deeper understanding of the regulation of Pro metabolism under predicted future climate conditions, including drought stress, elevated temperature and CO2 , we combined measurements in contrasting grassland species (two grasses and two legumes) at multiple organisational levels, that is, metabolite concentrations, enzyme activities and gene expression. Drought stress (D) activates Pro biosynthesis and represses its catabolism, and elevated temperature (DT) further elevated its content. Elevated CO2 attenuated the DT effect on Pro accumulation. Computational pathway control analysis allowed a mechanistic understanding of the regulatory changes in Pro metabolism. This analysis indicates that the experimentally observed coregulation of multiple enzymes is more effective in modulating Pro concentrations than regulation of a single step. Pyrroline-5-carboxylate synthetase (P5CS) and pyrroline-5-carboxylate reductase (P5CR) play a central role in grasses (Lolium perenne, Poa pratensis), and arginase (ARG), ornithine aminotransferase (OAT) and P5CR play a central role in legumes (Medicago lupulina, Lotus corniculatus). Different strategies in the regulation of Pro concentrations under stress conditions were observed. In grasses the glutamate pathway is activated predominantly, and in the legumes the ornithine pathway, possibly related to differences in N-nutritional status. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  6. Infected cell protein 0 functional domains and their coordination in herpes simplex virus replication

    PubMed Central

    Gu, Haidong

    2016-01-01

    Herpes simplex virus 1 (HSV-1) is a ubiquitous human pathogen that establishes latent infection in ganglia neurons. Its unique life cycle requires a balanced “conquer and compromise” strategy to deal with the host anti-viral defenses. One of HSV-1 α (immediate early) gene products, infected cell protein 0 (ICP0), is a multifunctional protein that interacts with and modulates a wide range of cellular defensive pathways. These pathways may locate in different cell compartments, which then migrate or exchange factors upon stimulation, for the purpose of a concerted and effective defense. ICP0 is able to simultaneously attack multiple host pathways by either degrading key restrictive factors or modifying repressive complexes. This is a viral protein that contains an E3 ubiquitin ligase, translocates among different cell compartments and interacts with major defensive complexes. The multiple functional domains of ICP0 can work independently and at the same time coordinate with each other. Dissecting the functional domains of ICP0 and delineating the coordination of these domains will help us understand HSV-1 pathogenicity as well as host defense mechanisms. This article focuses on describing individual ICP0 domains, their biochemical properties and their implication in HSV-1 infection. By putting individual domain functions back into the picture of host anti-viral defense network, this review seeks to elaborate the complex interactions between HSV-1 and its host. PMID:26870669

  7. Metabolic PathFinding: inferring relevant pathways in biochemical networks.

    PubMed

    Croes, Didier; Couche, Fabian; Wodak, Shoshana J; van Helden, Jacques

    2005-07-01

    Our knowledge of metabolism can be represented as a network comprising several thousands of nodes (compounds and reactions). Several groups applied graph theory to analyse the topological properties of this network and to infer metabolic pathways by path finding. This is, however, not straightforward, with a major problem caused by traversing irrelevant shortcuts through highly connected nodes, which correspond to pool metabolites and co-factors (e.g. H2O, NADP and H+). In this study, we present a web server implementing two simple approaches, which circumvent this problem, thereby improving the relevance of the inferred pathways. In the simplest approach, the shortest path is computed, while filtering out the selection of highly connected compounds. In the second approach, the shortest path is computed on the weighted metabolic graph where each compound is assigned a weight equal to its connectivity in the network. This approach significantly increases the accuracy of the inferred pathways, enabling the correct inference of relatively long pathways (e.g. with as many as eight intermediate reactions). Available options include the calculation of the k-shortest paths between two specified seed nodes (either compounds or reactions). Multiple requests can be submitted in a queue. Results are returned by email, in textual as well as graphical formats (available in http://www.scmbb.ulb.ac.be/pathfinding/).

  8. Single-Molecule Studies of Actin Assembly and Disassembly Factors

    PubMed Central

    Smith, Benjamin A.; Gelles, Jeff; Goode, Bruce L.

    2014-01-01

    The actin cytoskeleton is very dynamic and highly regulated by multiple associated proteins in vivo. Understanding how this system of proteins functions in the processes of actin network assembly and disassembly requires methods to dissect the mechanisms of activity of individual factors and of multiple factors acting in concert. The advent of single-filament and single-molecule fluorescence imaging methods has provided a powerful new approach to discovering actin-regulatory activities and obtaining direct, quantitative insights into the pathways of molecular interactions that regulate actin network architecture and dynamics. Here we describe techniques for acquisition and analysis of single-molecule data, applied to the novel challenges of studying the filament assembly and disassembly activities of actin-associated proteins in vitro. We discuss the advantages of single-molecule analysis in directly visualizing the order of molecular events, measuring the kinetic rates of filament binding and dissociation, and studying the coordination among multiple factors. The methods described here complement traditional biochemical approaches in elucidating actin-regulatory mechanisms in reconstituted filamentous networks. PMID:24630103

  9. Fgfr1 regulates development through the combinatorial use of signaling proteins.

    PubMed

    Brewer, J Richard; Molotkov, Andrei; Mazot, Pierre; Hoch, Renée V; Soriano, Philippe

    2015-09-01

    Fibroblast growth factor (Fgf) signaling governs multiple processes important in development and disease. Many lines of evidence have implicated Erk1/2 signaling induced through Frs2 as the predominant effector pathway downstream from Fgf receptors (Fgfrs), but these receptors can also signal through other mechanisms. To explore the functional significance of the full range of signaling downstream from Fgfrs in mice, we engineered an allelic series of knock-in point mutations designed to disrupt Fgfr1 signaling functions individually and in combination. Analysis of each mutant indicates that Frs2 binding to Fgfr1 has the most pleiotropic functions in development but also that the receptor uses multiple proteins additively in vivo. In addition to Frs2, Crk proteins and Plcγ also contribute to Erk1/2 activation, affecting axis elongation and craniofacial and limb development and providing a biochemical mechanism for additive signaling requirements. Disruption of all known signaling functions diminished Erk1/2 and Plcγ activation but did not recapitulate the peri-implantation Fgfr1-null phenotype. This suggests that Erk1/2-independent signaling pathways are functionally important for Fgf signaling in vivo. © 2015 Brewer et al.; Published by Cold Spring Harbor Laboratory Press.

  10. Regulation of Amino Acid, Nucleotide, and Phosphate Metabolism in Saccharomyces cerevisiae

    PubMed Central

    Ljungdahl, Per O.; Daignan-Fornier, Bertrand

    2012-01-01

    Ever since the beginning of biochemical analysis, yeast has been a pioneering model for studying the regulation of eukaryotic metabolism. During the last three decades, the combination of powerful yeast genetics and genome-wide approaches has led to a more integrated view of metabolic regulation. Multiple layers of regulation, from suprapathway control to individual gene responses, have been discovered. Constitutive and dedicated systems that are critical in sensing of the intra- and extracellular environment have been identified, and there is a growing awareness of their involvement in the highly regulated intracellular compartmentalization of proteins and metabolites. This review focuses on recent developments in the field of amino acid, nucleotide, and phosphate metabolism and provides illustrative examples of how yeast cells combine a variety of mechanisms to achieve coordinated regulation of multiple metabolic pathways. Importantly, common schemes have emerged, which reveal mechanisms conserved among various pathways, such as those involved in metabolite sensing and transcriptional regulation by noncoding RNAs or by metabolic intermediates. Thanks to the remarkable sophistication offered by the yeast experimental system, a picture of the intimate connections between the metabolomic and the transcriptome is becoming clear. PMID:22419079

  11. Activity-based protein profiling for biochemical pathway discovery in cancer

    PubMed Central

    Nomura, Daniel K.; Dix, Melissa M.; Cravatt, Benjamin F.

    2011-01-01

    Large-scale profiling methods have uncovered numerous gene and protein expression changes that correlate with tumorigenesis. However, determining the relevance of these expression changes and which biochemical pathways they affect has been hindered by our incomplete understanding of the proteome and its myriad functions and modes of regulation. Activity-based profiling platforms enable both the discovery of cancer-relevant enzymes and selective pharmacological probes to perturb and characterize these proteins in tumour cells. When integrated with other large-scale profiling methods, activity-based proteomics can provide insight into the metabolic and signalling pathways that support cancer pathogenesis and illuminate new strategies for disease diagnosis and treatment. PMID:20703252

  12. Structured plant metabolomics for the simultaneous exploration of multiple factors.

    PubMed

    Vasilev, Nikolay; Boccard, Julien; Lang, Gerhard; Grömping, Ulrike; Fischer, Rainer; Goepfert, Simon; Rudaz, Serge; Schillberg, Stefan

    2016-11-17

    Multiple factors act simultaneously on plants to establish complex interaction networks involving nutrients, elicitors and metabolites. Metabolomics offers a better understanding of complex biological systems, but evaluating the simultaneous impact of different parameters on metabolic pathways that have many components is a challenging task. We therefore developed a novel approach that combines experimental design, untargeted metabolic profiling based on multiple chromatography systems and ionization modes, and multiblock data analysis, facilitating the systematic analysis of metabolic changes in plants caused by different factors acting at the same time. Using this method, target geraniol compounds produced in transgenic tobacco cell cultures were grouped into clusters based on their response to different factors. We hypothesized that our novel approach may provide more robust data for process optimization in plant cell cultures producing any target secondary metabolite, based on the simultaneous exploration of multiple factors rather than varying one factor each time. The suitability of our approach was verified by confirming several previously reported examples of elicitor-metabolite crosstalk. However, unravelling all factor-metabolite networks remains challenging because it requires the identification of all biochemically significant metabolites in the metabolomics dataset.

  13. Cellular compartmentalization of secondary metabolism

    USDA-ARS?s Scientific Manuscript database

    Fungal secondary metabolism is often considered apart from the essential housekeeping functions of the cell. However, there are clear links between fundamental cellular metabolism and the biochemical pathways leading to secondary metabolite synthesis. Besides utilizing key biochemical precursors sh...

  14. Exact dynamic properties of molecular motors

    NASA Astrophysics Data System (ADS)

    Boon, N. J.; Hoyle, R. B.

    2012-08-01

    Molecular motors play important roles within a biological cell, performing functions such as intracellular transport and gene transcription. Recent experimental work suggests that there are many plausible biochemical mechanisms that molecules such as myosin-V could use to achieve motion. To account for the abundance of possible discrete-stochastic frameworks that can arise when modeling molecular motor walks, a generalized and straightforward graphical method for calculating their dynamic properties is presented. It allows the calculation of the velocity, dispersion, and randomness ratio for any proposed system through analysis of its structure. This article extends work of King and Altman ["A schematic method of deriving the rate laws of enzyme-catalyzed reactions," J. Phys. Chem. 60, 1375-1378 (1956)], 10.1021/j150544a010 on networks of enzymatic reactions by calculating additional dynamic properties for spatially hopping systems. Results for n-state systems are presented: single chain, parallel pathway, divided pathway, and divided pathway with a chain. A novel technique for combining multiple system architectures coupled at a reference state is also demonstrated. Four-state examples illustrate the effectiveness and simplicity of these methods.

  15. Recent advances in understanding hematopoiesis in Fanconi Anemia

    PubMed Central

    Bagby, Grover

    2018-01-01

    Fanconi anemia is an inherited disease characterized by genomic instability, hypersensitivity to DNA cross-linking agents, bone marrow failure, short stature, skeletal abnormalities, and a high relative risk of myeloid leukemia and epithelial malignancies. The 21 Fanconi anemia genes encode proteins involved in multiple nuclear biochemical pathways that effect DNA interstrand crosslink repair. In the past, bone marrow failure was attributed solely to the failure of stem cells to repair DNA. Recently, non-canonical functions of many of the Fanconi anemia proteins have been described, including modulating responses to oxidative stress, viral infection, and inflammation as well as facilitating mitophagic responses and enhancing signals that promote stem cell function and survival. Some of these functions take place in non-nuclear sites and do not depend on the DNA damage response functions of the proteins. Dysfunctions of the canonical and non-canonical pathways that drive stem cell exhaustion and neoplastic clonal selection are reviewed, and the potential therapeutic importance of fully investigating the scope and interdependences of the canonical and non-canonical pathways is emphasized. PMID:29399332

  16. Src regulates sequence-dependent beta-2 adrenergic receptor recycling via cortactin phosphorylation*

    PubMed Central

    Vistein, Rachel; Puthenveedu, Manojkumar A.

    2014-01-01

    The recycling of internalized signaling receptors, which has direct functional consequences, is subject to multiple sequence and biochemical requirements. Why signaling receptors recycle via a specialized pathway, unlike many other proteins that recycle by bulk, is a fundamental unanswered question. Here we show that these specialized pathways allow selective control of signaling receptor recycling by heterologous signaling. Using assays to visualize receptor recycling in living cells, we show that the recycling of the beta-2 adrenergic receptor (B2AR), a prototypic signaling receptor, is regulated by Src family kinases. The target of Src is cortactin, an essential factor for B2AR sorting into specialized recycling microdomains on the endosome. Phosphorylation of a single cortactin residue, Y466, regulates the rate of fission of B2AR recycling vesicles from these microdomains, and, therefore, the rate of delivery of B2AR to the cell surface. Together, our results indicate that actin-stabilized microdomains that mediate signaling receptor recycling can serve as a functional point of convergence for crosstalk between signaling pathways. PMID:25077552

  17. Alterations in metabolic pathways and networks in Alzheimer's disease

    PubMed Central

    Kaddurah-Daouk, R; Zhu, H; Sharma, S; Bogdanov, M; Rozen, S G; Matson, W; Oki, N O; Motsinger-Reif, A A; Churchill, E; Lei, Z; Appleby, D; Kling, M A; Trojanowski, J Q; Doraiswamy, P M; Arnold, S E

    2013-01-01

    The pathogenic mechanisms of Alzheimer's disease (AD) remain largely unknown and clinical trials have not demonstrated significant benefit. Biochemical characterization of AD and its prodromal phase may provide new diagnostic and therapeutic insights. We used targeted metabolomics platform to profile cerebrospinal fluid (CSF) from AD (n=40), mild cognitive impairment (MCI, n=36) and control (n=38) subjects; univariate and multivariate analyses to define between-group differences; and partial least square-discriminant analysis models to classify diagnostic groups using CSF metabolomic profiles. A partial correlation network was built to link metabolic markers, protein markers and disease severity. AD subjects had elevated methionine (MET), 5-hydroxyindoleacetic acid (5-HIAA), vanillylmandelic acid, xanthosine and glutathione versus controls. MCI subjects had elevated 5-HIAA, MET, hypoxanthine and other metabolites versus controls. Metabolite ratios revealed changes within tryptophan, MET and purine pathways. Initial pathway analyses identified steps in several pathways that appear altered in AD and MCI. A partial correlation network showed total tau most directly related to norepinephrine and purine pathways; amyloid-β (Ab42) was related directly to an unidentified metabolite and indirectly to 5-HIAA and MET. These findings indicate that MCI and AD are associated with an overlapping pattern of perturbations in tryptophan, tyrosine, MET and purine pathways, and suggest that profound biochemical alterations are linked to abnormal Ab42 and tau metabolism. Metabolomics provides powerful tools to map interlinked biochemical pathway perturbations and study AD as a disease of network failure. PMID:23571809

  18. Alterations in metabolic pathways and networks in Alzheimer's disease.

    PubMed

    Kaddurah-Daouk, R; Zhu, H; Sharma, S; Bogdanov, M; Rozen, S G; Matson, W; Oki, N O; Motsinger-Reif, A A; Churchill, E; Lei, Z; Appleby, D; Kling, M A; Trojanowski, J Q; Doraiswamy, P M; Arnold, S E

    2013-04-09

    The pathogenic mechanisms of Alzheimer's disease (AD) remain largely unknown and clinical trials have not demonstrated significant benefit. Biochemical characterization of AD and its prodromal phase may provide new diagnostic and therapeutic insights. We used targeted metabolomics platform to profile cerebrospinal fluid (CSF) from AD (n=40), mild cognitive impairment (MCI, n=36) and control (n=38) subjects; univariate and multivariate analyses to define between-group differences; and partial least square-discriminant analysis models to classify diagnostic groups using CSF metabolomic profiles. A partial correlation network was built to link metabolic markers, protein markers and disease severity. AD subjects had elevated methionine (MET), 5-hydroxyindoleacetic acid (5-HIAA), vanillylmandelic acid, xanthosine and glutathione versus controls. MCI subjects had elevated 5-HIAA, MET, hypoxanthine and other metabolites versus controls. Metabolite ratios revealed changes within tryptophan, MET and purine pathways. Initial pathway analyses identified steps in several pathways that appear altered in AD and MCI. A partial correlation network showed total tau most directly related to norepinephrine and purine pathways; amyloid-β (Ab42) was related directly to an unidentified metabolite and indirectly to 5-HIAA and MET. These findings indicate that MCI and AD are associated with an overlapping pattern of perturbations in tryptophan, tyrosine, MET and purine pathways, and suggest that profound biochemical alterations are linked to abnormal Ab42 and tau metabolism. Metabolomics provides powerful tools to map interlinked biochemical pathway perturbations and study AD as a disease of network failure.

  19. A novel curcumin derivative for the treatment of diabetic neuropathy.

    PubMed

    Daugherty, Daniel J; Marquez, Alexandra; Calcutt, Nigel A; Schubert, David

    2018-02-01

    Neuropathy is a common complication of long-term diabetes. Proposed mechanisms of neuronal damage caused by diabetes that are downstream of hyperglycemia and/or loss of insulin signaling include ischemic hypoxia, inflammation and loss of neurotrophic support. The curcumin derivative J147 is a potent neurogenic and neuroprotective drug candidate initially developed for the treatment of neurodegenerative conditions associated with aging that impacts many pathways implicated in the pathogenesis of diabetic neuropathy. Here, we demonstrate efficacy of J147 in ameliorating multiple indices of neuropathy in the streptozotocin-induced mouse model of type 1 diabetes. Diabetes was determined by blood glucose, HbA1c, and insulin levels and efficacy of J147 by behavioral, physiologic, biochemical, proteomic, and transcriptomic assays. Biological efficacy of systemic J147 treatment was confirmed by its capacity to decrease TNFα pathway activation and several other markers of neuroinflammation in the CNS. Chronic oral treatment with J147 protected the sciatic nerve from progressive diabetes-induced slowing of large myelinated fiber conduction velocity while single doses of J147 rapidly and transiently reversed established touch-evoked allodynia. Conduction slowing and allodynia are clinically relevant markers of early diabetic neuropathy and neuropathic pain, respectively. RNA expression profiling suggests that one of the pathways by which J147 imparts its protection against diabetic induced neuropathy may be through activation of the AMP kinase pathway. The diverse biological and therapeutic effects of J147 suggest it as an alternative to the polypharmaceutical approaches required to treat the multiple pathogenic mechanisms that contribute to diabetic neuropathy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Computational Modeling of Fluctuations in Energy and Metabolic Pathways of Methanogenic Archaea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luthey-Schulten, Zaida

    The methanogenic archaea, anaerobic microbes that convert CO2 and H2 and/or other small organic fermentation products into methane, play an unusually large role in the global carbon cycle. As they perform the final step in the anaerobic breakdown of biomass, methanogens are a biogenic source of an estimated one billion tons methane each year. Depending on the location, produced methane can be considered as either a greenhouse gas (agricultural byproduct), sequestered carbon storage (methane hydrate deposits), or a potential energy source (organic wastewater treatment). These microbes therefore represent an important target for biotechnology applications. Computational models of methanogens with predictivemore » power are useful aids in the adaptation of methanogenic systems, but need to connect processes of wide-ranging time and length scales. In this project, we developed several computational methodologies for modeling the dynamic behavior of entire cells that connects stochastic reaction-diffusion dynamics of individual biochemical pathways with genome-scale modeling of metabolic networks. While each of these techniques were in the realm of well-defined computational methods, here we integrated them to develop several entirely new approaches to systems biology. The first scientific aim of the project was to model how noise in a biochemical pathway propagates into cellular phenotypes. Genetic circuits have been optimized by evolution to regulate molecular processes despite stochastic noise, but the effect of such noise on a cellular biochemical networks is currently unknown. An integrated stochastic/systems model of Escherichia coli species was created to analyze how noise in protein expression gives—and therefore noise in metabolic fluxes—gives rise to multiple cellular phenotype in isogenic population. After the initial work developing and validating methods that allow characterization of the heterogeneity in the model organism E. coli, the project shifted toward investigations of the methanogen Methanosarcina acetivorans. By integrating an unprecedented transcriptomics dataset for growth of the methanogen on many substrates with an in silico model, heterogeneity in metabolic pathway usage and methane production were examined. This lent insight into the physiological requirements of the organism under different environmental conditions and uncovered the unique regulatory role that mRNA half-life has in shaping metabolic flux distributions in this organism.« less

  1. Metabolomic strategies to map functions of metabolic pathways

    PubMed Central

    Mulvihill, Melinda M.

    2014-01-01

    Genome sequencing efforts have revealed a strikingly large number of unannotated and uncharacterized genes that fall into metabolic enzymes classes, likely indicating that our current knowledge of biochemical pathways in normal physiology, let alone in disease states, remains largely incomplete. This realization presents a daunting challenge for post-genomic-era scientists in deciphering the biochemical and (patho)physiological roles of these enzymes and their metabolites and metabolic networks. This is further complicated by many recent studies showing a rewiring of normal metabolic networks in disease states to give rise to unique pathophysiological functions of enzymes, metabolites, and metabolic pathways. This review focuses on recent discoveries made using metabolic mapping technologies to uncover novel pathways and metabolite-mediated posttranslational modifications and epigenetic alterations and their impact on physiology and disease. PMID:24918200

  2. Increase in furfural tolerance by combinatorial overexpression of NAD salvage pathway enzymes in engineered isobutanol-producing E. coli.

    PubMed

    Song, Hun-Suk; Jeon, Jong-Min; Kim, Hyun-Joong; Bhatia, Shashi Kant; Sathiyanarayanan, Ganesan; Kim, Junyoung; Won Hong, Ju; Gi Hong, Yoon; Young Choi, Kwon; Kim, Yun-Gon; Kim, Wooseong; Yang, Yung-Hun

    2017-12-01

    To reduce the furfural toxicity for biochemical production in E. coli, a new strategy was successfully applied by supplying NAD(P)H through the nicotine amide salvage pathway. To alleviate the toxicity, nicotinamide salvage pathway genes were overexpressed in recombinant, isobutanol-producing E. coli. Gene expression of pncB and nadE respectively showed increased tolerance to furfural among these pathways. The combined expression of pncB and nadE was the most effective in increasing the tolerance of the cells to toxic aldehydes. By comparing noxE- and fdh-harbouring strains, the form of NADH, rather than NAD + , was the major effector of furfural tolerance. Overall, this study is the application of the salvage pathway to isobutanol production in the presence of furfural, and this system seems to be applicable to alleviate furfural toxicity in the production of other biochemical. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Integrating biological knowledge into variable selection: an empirical Bayes approach with an application in cancer biology

    PubMed Central

    2012-01-01

    Background An important question in the analysis of biochemical data is that of identifying subsets of molecular variables that may jointly influence a biological response. Statistical variable selection methods have been widely used for this purpose. In many settings, it may be important to incorporate ancillary biological information concerning the variables of interest. Pathway and network maps are one example of a source of such information. However, although ancillary information is increasingly available, it is not always clear how it should be used nor how it should be weighted in relation to primary data. Results We put forward an approach in which biological knowledge is incorporated using informative prior distributions over variable subsets, with prior information selected and weighted in an automated, objective manner using an empirical Bayes formulation. We employ continuous, linear models with interaction terms and exploit biochemically-motivated sparsity constraints to permit exact inference. We show an example of priors for pathway- and network-based information and illustrate our proposed method on both synthetic response data and by an application to cancer drug response data. Comparisons are also made to alternative Bayesian and frequentist penalised-likelihood methods for incorporating network-based information. Conclusions The empirical Bayes method proposed here can aid prior elicitation for Bayesian variable selection studies and help to guard against mis-specification of priors. Empirical Bayes, together with the proposed pathway-based priors, results in an approach with a competitive variable selection performance. In addition, the overall procedure is fast, deterministic, and has very few user-set parameters, yet is capable of capturing interplay between molecular players. The approach presented is general and readily applicable in any setting with multiple sources of biological prior knowledge. PMID:22578440

  4. Metabolite fingerprinting of pennycress ( Thlaspi arvense L.) embryos to assess active pathways during oil synthesis

    DOE PAGES

    Tsogtbaatar, Enkhtuul; Cocuron, Jean -Christophe; Sonera, Marcos Corchado; ...

    2015-02-22

    Pennycress ( Thlaspi arvense L.), a plant naturalized to North America, accumulates high levels of erucic acid in its seeds, which makes it a promising biodiesel and industrial crop. The main carbon sinks in pennycress embryos were found to be proteins, fatty acids, and cell wall, which respectively represented 38.5, 33.2, and 27.0% of the biomass at 21 days after pollination. Erucic acid reached a maximum of 36% of the total fatty acids. Together these results indicate that total oil and erucic acid contents could be increased to boost the economic competitiveness of this crop. Understanding the biochemical basis ofmore » oil synthesis in pennycress embryos is therefore timely and relevant to guide future breeding and/or metabolic engineering efforts. For this purpose, a combination of metabolomics approaches was conducted to assess the active biochemical pathways during oil synthesis. First, gas chromatography-mass spectrometry (GC-MS) profiling of intracellular metabolites highlighted three main families of compounds: organic acids, amino acids, and sugars/sugar alcohols. Secondly, these intermediates were quantified in developing pennycress embryos by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in multiple reaction monitoring mode. Finally, partitional clustering analysis grouped the intracellular metabolites that shared a similar pattern of accumulation over time into eight clusters. In conclusion, this study underlined that: (i) sucrose might be stored rather than cleaved into hexoses; (ii) glucose and glutamine would be the main sources of carbon and nitrogen, respectively; and (iii) glycolysis, the oxidative pentose phosphate pathway, the tricarboxylic acid cycle, and the Calvin cycle were active in developing pennycress embryos.« less

  5. Natural health products that inhibit angiogenesis: a potential source for investigational new agents to treat cancer—Part 1

    PubMed Central

    Sagar, S.M.; Yance, D.; Wong, R.K.

    2006-01-01

    An integrative approach for managing a patient with cancer should target the multiple biochemical and physiologic pathways that support tumour development and minimize normal-tissue toxicity. Angiogenesis is a key process in the promotion of cancer. Many natural health products that inhibit angiogenesis also manifest other anticancer activities. The present article focuses on products that have a high degree of anti-angiogenic activity, but it also describes some of the many other actions of these agents that can inhibit tumour progression and reduce the risk of metastasis. Natural health products target molecular pathways other than angiogenesis, including epidermal growth factor receptor, the HER2/neu gene, the cyclooxygenase-2 enzyme, the nuclear factor kappa-B transcription factor, the protein kinases, the Bcl-2 protein, and coagulation pathways. The herbs that are traditionally used for anticancer treatment and that are anti-angiogenic through multiple interdependent processes (including effects on gene expression, signal processing, and enzyme activities) include Artemisia annua (Chinese wormwood), Viscum album (European mistletoe), Curcuma longa (curcumin), Scutellaria baicalensis (Chinese skullcap), resveratrol and proanthocyanidin (grape seed extract), Magnolia officinalis (Chinese magnolia tree), Camellia sinensis (green tea), Ginkgo biloba, quercetin, Poria cocos, Zingiber officinalis (ginger), Panax ginseng, Rabdosia rubescens hora (Rabdosia), and Chinese destagnation herbs. Quality assurance of appropriate extracts is essential prior to embarking upon clinical trials. More data are required on dose–response, appropriate combinations, and potential toxicities. Given the multiple effects of these agents, their future use for cancer therapy probably lies in synergistic combinations. During active cancer therapy, they should generally be evaluated in combination with chemotherapy and radiation. In this role, they act as modifiers of biologic response or as adaptogens, potentially enhancing the efficacy of the conventional therapies. PMID:17576437

  6. Serum Metabolomic Profiling in Acute Alcoholic Hepatitis Identifies Multiple Dysregulated Pathways

    PubMed Central

    Rachakonda, Vikrant; Gabbert, Charles; Raina, Amit; Bell, Lauren N.; Cooper, Sara; Malik, Shahid; Behari, Jaideep

    2014-01-01

    Background and Objectives While animal studies have implicated derangements of global energy homeostasis in the pathogenesis of acute alcoholic hepatitis (AAH), the relevance of these findings to the development of human AAH remains unclear. Using global, unbiased serum metabolomics analysis, we sought to characterize alterations in metabolic pathways associated with severe AAH and identify potential biomarkers for disease prognosis. Methods This prospective, case-control study design included 25 patients with severe AAH and 25 ambulatory patients with alcoholic cirrhosis. Serum samples were collected within 24 hours of the index clinical encounter. Global, unbiased metabolomics profiling was performed. Patients were followed for 180 days after enrollment to determine survival. Results Levels of 234 biochemicals were altered in subjects with severe AAH. Random-forest analysis, principal component analysis, and integrated hierarchical clustering methods demonstrated that metabolomics profiles separated the two cohorts with 100% accuracy. Severe AAH was associated with enhanced triglyceride lipolysis, impaired mitochondrial fatty acid beta oxidation, and upregulated omega oxidation. Low levels of multiple lysolipids and related metabolites suggested decreased plasma membrane remodeling in severe AAH. While most measured bile acids were increased in severe AAH, low deoxycholate and glycodeoxycholate levels indicated intestinal dysbiosis. Several changes in substrate utilization for energy homeostasis were identified in severe AAH, including increased glucose consumption by the pentose phosphate pathway, altered tricarboxylic acid (TCA) cycle activity, and enhanced peptide catabolism. Finally, altered levels of small molecules related to glutathione metabolism and antioxidant vitamin depletion were observed in patients with severe AAH. Univariable logistic regression revealed 15 metabolites associated with 180-day survival in severe AAH. Conclusion Severe AAH is characterized by a distinct metabolic phenotype spanning multiple pathways. Metabolomics profiling revealed a panel of biomarkers for disease prognosis, and future studies are planned to validate these findings in larger cohorts of patients with severe AAH. PMID:25461442

  7. Metabolomic profiling and genomic analysis of wheat aneuploid lines to identify genes controlling biochemical pathways in mature grain.

    PubMed

    Francki, Michael G; Hayton, Sarah; Gummer, Joel P A; Rawlinson, Catherine; Trengove, Robert D

    2016-02-01

    Metabolomics is becoming an increasingly important tool in plant genomics to decipher the function of genes controlling biochemical pathways responsible for trait variation. Although theoretical models can integrate genes and metabolites for trait variation, biological networks require validation using appropriate experimental genetic systems. In this study, we applied an untargeted metabolite analysis to mature grain of wheat homoeologous group 3 ditelosomic lines, selected compounds that showed significant variation between wheat lines Chinese Spring and at least one ditelosomic line, tracked the genes encoding enzymes of their biochemical pathway using the wheat genome survey sequence and determined the genetic components underlying metabolite variation. A total of 412 analytes were resolved in the wheat grain metabolome, and principal component analysis indicated significant differences in metabolite profiles between Chinese Spring and each ditelosomic lines. The grain metabolome identified 55 compounds positively matched against a mass spectral library where the majority showed significant differences between Chinese Spring and at least one ditelosomic line. Trehalose and branched-chain amino acids were selected for detailed investigation, and it was expected that if genes encoding enzymes directly related to their biochemical pathways were located on homoeologous group 3 chromosomes, then corresponding ditelosomic lines would have a significant reduction in metabolites compared with Chinese Spring. Although a proportion showed a reduction, some lines showed significant increases in metabolites, indicating that genes directly and indirectly involved in biosynthetic pathways likely regulate the metabolome. Therefore, this study demonstrated that wheat aneuploid lines are suitable experimental genetic system to validate metabolomics-genomics networks. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  8. Recovering metabolic pathways via optimization.

    PubMed

    Beasley, John E; Planes, Francisco J

    2007-01-01

    A metabolic pathway is a coherent set of enzyme catalysed biochemical reactions by which a living organism transforms an initial (source) compound into a final (target) compound. Some of the different metabolic pathways adopted within organisms have been experimentally determined. In this paper, we show that a number of experimentally determined metabolic pathways can be recovered by a mathematical optimization model.

  9. Plant MetGenMAP: an integrative analysis system for plant systems biology

    USDA-ARS?s Scientific Manuscript database

    We have developed a web-based system, Plant MetGenMAP, which can identify significantly altered biochemical pathways and highly affected biological processes, predict functional roles of pathway genes, and potential pathway-related regulatory motifs from transcript and metabolite profile datasets. P...

  10. New function for Escherichia coli xanthosine phophorylase (xapA): genetic and biochemical evidences on its participation in NAD(+) salvage from nicotinamide.

    PubMed

    Dong, Wei-Ren; Sun, Cen-Cen; Zhu, Guan; Hu, Shi-Hua; Xiang, Li-Xin; Shao, Jian-Zhong

    2014-02-08

    In an effort to reconstitute the NAD(+) synthetic pathway in Escherichia coli (E. coli), we produced a set of gene knockout mutants with deficiencies in previously well-defined NAD(+)de novo and salvage pathways. Unexpectedly, the mutant deficient in NAD(+) de novo and salvage pathway I could grow in M9/nicotinamide medium, which was contradictory to the proposed classic NAD(+) metabolism of E. coli. Such E. coli mutagenesis assay suggested the presence of an undefined machinery to feed nicotinamide into the NAD(+) biosynthesis. We wanted to verify whether xanthosine phophorylase (xapA) contributed to a new NAD(+) salvage pathway from nicotinamide. Additional knockout of xapA further slowed down the bacterial growth in M9/nicotinamide medium, whereas the complementation of xapA restored the growth phenotype. To further validate the new function of xapA, we cloned and expressed E. coli xapA as a recombinant soluble protein. Biochemical assay confirmed that xapA was capable of using nicotinamide as a substrate for nicotinamide riboside formation. Both the genetic and biochemical evidences indicated that xapA could convert nicotinamide to nicotinamide riboside in E. coli, albeit with relatively weak activity, indicating that xapA may contribute to a second NAD(+) salvage pathway from nicotinamide. We speculate that this xapA-mediated NAD(+) salvage pathway might be significant in some bacteria lacking NAD(+) de novo and NAD(+) salvage pathway I or II, to not only use nicotinamide riboside, but also nicotinamide as precursors to synthesize NAD(+). However, this speculation needs to be experimentally tested.

  11. Diversity of bile salts in fish and amphibians: evolution of a complex biochemical pathway.

    PubMed

    Hagey, Lee R; Møller, Peter R; Hofmann, Alan F; Krasowski, Matthew D

    2010-01-01

    Bile salts are the major end metabolites of cholesterol and are also important in lipid and protein digestion, as well as shaping of the gut microflora. Previous studies had demonstrated variation of bile salt structures across vertebrate species. We greatly extend prior surveys of bile salt variation in fish and amphibians, particularly in analysis of the biliary bile salts of Agnatha and Chondrichthyes. While there is significant structural variation of bile salts across all fish orders, bile salt profiles are generally stable within orders of fish and do not correlate with differences in diet. This large data set allowed us to infer evolutionary changes in the bile salt synthetic pathway. The hypothesized ancestral bile salt synthetic pathway, likely exemplified in extant hagfish, is simpler and much shorter than the pathway of most teleost fish and terrestrial vertebrates. Thus, the bile salt synthetic pathway has become longer and more complex throughout vertebrate evolution. Analysis of the evolution of bile salt synthetic pathways provides a rich model system for the molecular evolution of a complex biochemical pathway in vertebrates.

  12. Timing of definitive fixation of major long bone fractures: Can fat embolism syndrome be prevented?

    PubMed

    Blokhuis, Taco J; Pape, Hans-Christoph; Frölke, Jan-Paul

    2017-06-01

    Fat embolism is common in patients with major fractures, but leads to devastating consequences, named fat embolism syndrome (FES) in some. Despite advances in treatment strategies regarding the timing of definitive fixation of major fractures, FES still occurs in patients. In this overview, current literature is reviewed and optimal treatment strategies for patients with multiple traumatic injuries, including major fractures, are discussed. Considering the multifactorial etiology of FES, including mechanical and biochemical pathways, FES cannot be prevented in all patients. However, screening for symptoms of FES should be standard in the pre-operative work-up of these patients, prior to definitive fixation of major fractures. Copyright © 2017. Published by Elsevier Ltd.

  13. Metabolomic strategies to map functions of metabolic pathways.

    PubMed

    Mulvihill, Melinda M; Nomura, Daniel K

    2014-08-01

    Genome sequencing efforts have revealed a strikingly large number of unannotated and uncharacterized genes that fall into metabolic enzymes classes, likely indicating that our current knowledge of biochemical pathways in normal physiology, let alone in disease states, remains largely incomplete. This realization presents a daunting challenge for post-genomic-era scientists in deciphering the biochemical and (patho)physiological roles of these enzymes and their metabolites and metabolic networks. This is further complicated by many recent studies showing a rewiring of normal metabolic networks in disease states to give rise to unique pathophysiological functions of enzymes, metabolites, and metabolic pathways. This review focuses on recent discoveries made using metabolic mapping technologies to uncover novel pathways and metabolite-mediated posttranslational modifications and epigenetic alterations and their impact on physiology and disease. Copyright © 2014 the American Physiological Society.

  14. A limit cycle oscillator model for cycling mood variations of bipolar disorder patients derived from cellular biochemical reaction equations

    NASA Astrophysics Data System (ADS)

    Frank, T. D.

    2013-08-01

    We derive a nonlinear limit cycle model for oscillatory mood variations as observed in patients with cycling bipolar disorder. To this end, we consider two signaling pathways leading to the activation of two enzymes that play a key role for cellular and neural processes. We model pathway cross-talk in terms of an inhibitory impact of the first pathway on the second and an excitatory impact of the second on the first. The model also involves a negative feedback loop (inhibitory self-regulation) for the first pathway and a positive feedback loop (excitatory self-regulation) for the second pathway. We demonstrate that due to the cross-talk the biochemical dynamics is described by an oscillator equation. Under disease-free conditions the oscillatory system exhibits a stable fixed point. The breakdown of the self-inhibition of the first pathway at higher concentration levels is studied by means of a scalar control parameter ξ, where ξ equal to zero refers to intact self-inhibition at all concentration levels. Under certain conditions, stable limit cycle solutions emerge at critical parameter values of ξ larger than zero. These oscillations mimic pathological cycling mood variations that emerge due to a disease-induced bifurcation. Consequently, our modeling analysis supports the notion of bipolar disorder as a dynamical disease. In addition, our study establishes a connection between mechanistic biochemical modeling of bipolar disorder and phenomenological nonlinear oscillator approaches to bipolar disorder suggested in the literature.

  15. Characteristic Variations and Similarities in Biochemical, Molecular, and Functional Properties of Glyoxalases across Prokaryotes and Eukaryotes

    PubMed Central

    Kaur, Charanpreet; Sharma, Shweta; Hasan, Mohammad Rokebul; Pareek, Ashwani; Singla-Pareek, Sneh L.; Sopory, Sudhir K.

    2017-01-01

    The glyoxalase system is the ubiquitous pathway for the detoxification of methylglyoxal (MG) in the biological systems. It comprises two enzymes, glyoxalase I (GLYI) and glyoxalase II (GLYII), which act sequentially to convert MG into d-lactate, thereby helping living systems get rid of this otherwise cytotoxic byproduct of metabolism. In addition, a glutathione-independent GLYIII enzyme activity also exists in the biological systems that can directly convert MG to d-lactate. Humans and Escherichia coli possess a single copy of GLYI (encoding either the Ni- or Zn-dependent form) and GLYII genes, which through MG detoxification provide protection against various pathological and disease conditions. By contrast, the plant genome possesses multiple GLYI and GLYII genes with a role in abiotic stress tolerance. Plants possess both Ni2+- and Zn2+-dependent forms of GLYI, and studies on plant glyoxalases reveal the various unique features of these enzymes distinguishing them from prokaryotic and other eukaryotic glyoxalases. Through this review, we provide an overview of the plant glyoxalase family along with a comparative analysis of glyoxalases across various species, highlighting similarities as well as differences in the biochemical, molecular, and physiological properties of these enzymes. We believe that the evolution of multiple glyoxalases isoforms in plants is an important component of their robust defense strategies. PMID:28358304

  16. Why is intelligence correlated with semen quality?: Biochemical pathways common to sperm and neuron function and their vulnerability to pleiotropic mutations.

    PubMed

    Pierce, Arand; Miller, Geoffrey; Arden, Rosalind; Gottfredson, Linda S

    2009-09-01

    We recently found positive correlations between human general intelligence and three key indices of semen quality, and hypothesized that these correlations arise through a phenotype-wide 'general fitness factor' reflecting overall mutation load. In this addendum we consider some of the biochemical pathways that may act as targets for pleiotropic mutations that disrupt both neuron function and sperm function in parallel. We focus especially on the inter-related roles of polyunsaturated fatty acids, exocytosis and receptor signaling.

  17. Development of a one-pot assay for screening and identification of Mur pathway inhibitors in Mycobacterium tuberculosis

    PubMed Central

    Eniyan, Kandasamy; Kumar, Anuradha; Rayasam, Geetha Vani; Perdih, Andrej; Bajpai, Urmi

    2016-01-01

    The cell wall of Mycobacterium tuberculosis (Mtb) consists of peptidoglycan, arabinogalactan and mycolic acids. The cytoplasmic steps in the peptidoglycan biosynthetic pathway, catalyzed by the Mur (A-F) enzymes, involve the synthesis of UDP-n-acetylmuramyl pentapeptide, a key precursor molecule required for the formation of the peptidoglycan monomeric building blocks. Mur enzymes are indispensable for cell integrity and their lack of counterparts in eukaryotes suggests them to be promising Mtb drug targets. However, the caveat is that most of the current assays utilize a single Mur enzyme, thereby identifying inhibitors against only one of the enzymes. Here, we report development of a one-pot assay that reconstructs the entire Mtb Mur pathway in vitro and has the advantage of eliminating the requirement for nucleotide intermediates in the pathway as substrates. The MurA-MurF enzymes were purified and a one-pot assay was developed through optimization of successive coupled enzyme assays using UDP-n-acetylglucosamine as the initial sugar substrate. The assay is biochemically characterized and optimized for high-throughput screening of molecules that could disrupt multiple targets within the pathway. Furthermore, we have validated the assay by performing it to identify D-Cycloserine and furan-based benzene-derived compounds with known Mur ligase inhibition as inhibitors of Mtb MurE and MurF. PMID:27734910

  18. Response of the JAK-STAT signaling pathway to oxygen deprivation in the red eared slider turtle, Trachemys scripta elegans.

    PubMed

    Bansal, Saumya; Biggar, Kyle K; Krivoruchko, Anastasia; Storey, Kenneth B

    2016-11-15

    The red-eared slider turtle, Trachemys scripta elegans, is a model organism commonly used to study the environmental stress of anoxia. It exhibits multiple biochemical adaptations to ensure its survival during the winter months where quantities of oxygen are largely depleted. We proposed that JAK-STAT signaling would display stress responsive regulation to mediate the survival of the red-eared slider turtle, Trachemys scripta elegans, during anoxic stress. Importantly, the JAK-STAT signaling pathway is involved in transmitting extracellular signals to the nucleus resulting in the expression of select genes that aid cell survival and growth. Immunoblotting was used to compare the relative phosphorylation levels of JAK proteins, STAT proteins, and two of its inhibitors, SOCS and PIAS, in response to anoxia. A clear activation of the JAK-STAT pathway was observed in the liver tissue while no significant changes were found in the skeletal muscle. To further support our findings we also found an increase in mRNA transcripts of downstream targets of STATs, namely bcl-xL and bcl-2, using PCR analysis in the liver tissues. These findings suggest an important role for the JAK-STAT pathway in exhibiting natural anoxia tolerance by the red-eared slider turtle. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Mature neurons dynamically restrict apoptosis via redundant premitochondrial brakes.

    PubMed

    Annis, Ryan P; Swahari, Vijay; Nakamura, Ayumi; Xie, Alison X; Hammond, Scott M; Deshmukh, Mohanish

    2016-12-01

    Apoptotic cell death is critical for the early development of the nervous system, but once the nervous system is established, the apoptotic pathway becomes highly restricted in mature neurons. However, the mechanisms underlying this increased resistance to apoptosis in these mature neurons are not completely understood. We have previously found that members of the miR-29 family of microRNAs (miRNAs) are induced with neuronal maturation and that overexpression of miR-29 was sufficient to restrict apoptosis in neurons. To determine whether endogenous miR-29 alone was responsible for the inhibition of cytochrome c release in mature neurons, we examined the status of the apoptotic pathway in sympathetic neurons deficient for all three miR-29 family members. Unexpectedly, we found that the apoptotic pathway remained largely restricted in miR-29-deficient mature neurons. We therefore probed for additional mechanisms by which mature neurons resist apoptosis. We identify miR-24 as another miRNA that is upregulated in the maturing cerebellum and sympathetic neurons that can act redundantly with miR-29 by targeting a similar repertoire of prodeath BH3-only genes. Overall, our results reveal that mature neurons engage multiple redundant brakes to restrict the apoptotic pathway and ensure their long-term survival. © 2016 Federation of European Biochemical Societies.

  20. Emerging evidence on the role of the Hippo/YAP pathway in liver physiology and cancer.

    PubMed

    Yimlamai, Dean; Fowl, Brendan H; Camargo, Fernando D

    2015-12-01

    The Hippo pathway and its regulatory target, YAP, has recently emerged as an important biochemical signaling pathway that tightly governs epithelial tissue growth. Initially defined in Drosophilia, this pathway has shown remarkable conservation in vertebrate systems with many components of the Hippo/YAP pathway showing biochemical and functional conservation. The liver is particularly sensitive to changes in Hippo/YAP signaling with rapid increases in liver size becoming manifest on the order of days to weeks after perturbation. The first identified direct targets of Hippo/YAP signaling were pro-proliferative and anti-apoptotic gene programs, but recent work has now implicated this pathway in cell fate choice, stem cell maintenance/renewal, epithelial to mesenchymal transition, and oncogenesis. The mechanisms by which Hippo/YAP signaling is changed endogenously are beginning to come to light as well as how this pathway interacts with other signaling pathways, and important details for designing new therapeutic interventions. This review focuses on the known roles for Hippo/YAP signaling in the liver and promising avenues for future study. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  1. Pederin-type pathways of uncultivated bacterial symbionts: analysis of o-methyltransferases and generation of a biosynthetic hybrid.

    PubMed

    Zimmermann, Katrin; Engeser, Marianne; Blunt, John W; Munro, Murray H G; Piel, Jörn

    2009-03-04

    The complex polyketide pederin is a potent antitumor agent isolated from Paederus spp. rove beetles. We have previously isolated a set of genes from a bacterial endosymbiont that are good candidates for pederin biosynthesis. To biochemically study this pathway, we expressed three methyltransferases from the putative pederin pathway and used the partially unmethylated analogue mycalamide A from the marine sponge Mycale hentscheli as test substrate. Analysis by high-resolution MS/MS and NMR revealed that PedO regiospecifically methylates the marine compound to generate the nonnatural hybrid compound 18-O-methylmycalamide A with increased cytotoxicity. To our knowledge, this is the first biochemical evidence that invertebrates can obtain defensive complex polyketides from bacterial symbionts.

  2. Lipidomics of oxidized polyunsaturated fatty acids

    PubMed Central

    Massey, Karen A.; Nicolaou, Anna

    2013-01-01

    Lipid mediators are produced from the oxidation of polyunsaturated fatty acids through enzymatic and free radical-mediated reactions. When subject to oxygenation via cyclooxygenases, lipoxygenases, and cytochrome P450 monooxygenases, polyunsaturated fatty acids give rise to an array of metabolites including eicosanoids, docosanoids, and octadecanoids. These potent bioactive lipids are involved in many biochemical and signaling pathways, with inflammation being of particular importance. Moreover, because they are produced by more than one pathway and substrate, and are present in a variety of biological milieus, their analysis is not always possible with conventional assays. Liquid chromatography coupled to electrospray mass spectrometry offers a versatile and sensitive approach for the analysis of bioactive lipids, allowing specific and accurate quantitation of multiple species present in the same sample. Here we explain the principles of this approach to mediator lipidomics and present detailed protocols for the assay of enzymatically produced oxygenated metabolites of polyunsaturated fatty acids that can be tailored to answer biological questions or facilitate assessment of nutritional and pharmacological interventions. PMID:22940496

  3. An Update on ToxCast™ | Science Inventory | US EPA

    EPA Pesticide Factsheets

    In its first phase, ToxCast™ is profiling over 300 well-characterized chemicals (primarily pesticides) in over 400 HTS endpoints. These endpoints include biochemical assays of protein function, cell-based transcriptional reporter assays, multi-cell interaction assays, transcriptomics on primary cell cultures, and developmental assays in zebrafish embryos. Almost all of the compounds being examined in Phase 1 of ToxCast™ have been tested in traditional toxicology tests, including developmental toxicity, multi-generation studies, and sub-chronic and chronic rodent bioassays Lessons learned to date for ToxCast: Large amounts of quality HTS data can be economically obtained. Large scale data sets will be required to understand potential for biological activity. Value in having multiple assays with overlapping coverage of biological pathways and a variety of methodologies Concentration-response will be important for ultimate interpretation Data transparency will be important for acceptance. Metabolic capabilities and coverage of developmental toxicity pathways will need additional attention. Need to define the gold standard Partnerships are needed to bring critical mass and expertise.

  4. Metabolic engineering approaches for production of biochemicals in food and medicinal plants.

    PubMed

    Wilson, Sarah A; Roberts, Susan C

    2014-04-01

    Historically, plants are a vital source of nutrients and pharmaceuticals. Recent advances in metabolic engineering have made it possible to not only increase the concentration of desired compounds, but also introduce novel biosynthetic pathways to a variety of species, allowing for enhanced nutritional or commercial value. To improve metabolic engineering capabilities, new transformation techniques have been developed to allow for gene specific silencing strategies or stacking of multiple genes within the same region of the chromosome. The 'omics' era has provided a new resource for elucidation of uncharacterized biosynthetic pathways, enabling novel metabolic engineering approaches. These resources are now allowing for advanced metabolic engineering of plant production systems, as well as the synthesis of increasingly complex products in engineered microbial hosts. The status of current metabolic engineering efforts is highlighted for the in vitro production of paclitaxel and the in vivo production of β-carotene in Golden Rice and other food crops. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Molecular and Biochemical Analysis of Chalcone Synthase from Freesia hybrid in Flavonoid Biosynthetic Pathway

    PubMed Central

    Sun, Wei; Meng, Xiangyu; Liang, Lingjie; Jiang, Wangshu; Huang, Yafei; He, Jing; Hu, Haiyan; Almqvist, Jonas; Gao, Xiang; Wang, Li

    2015-01-01

    Chalcone synthase (CHS) catalyzes the first committed step in the flavonoid biosynthetic pathway. In this study, the cDNA (FhCHS1) encoding CHS from Freesia hybrida was successfully isolated and analyzed. Multiple sequence alignments showed that both the conserved CHS active site residues and CHS signature sequence were found in the deduced amino acid sequence of FhCHS1. Meanwhile, crystallographic analysis revealed that protein structure of FhCHS1 is highly similar to that of alfalfa CHS2, and the biochemical analysis results indicated that it has an enzymatic role in naringenin biosynthesis. Moreover, quantitative real-time PCR was performed to detect the transcript levels of FhCHS1 in flowers and different tissues, and patterns of FhCHS1 expression in flowers showed significant correlation to the accumulation patterns of anthocyanin during flower development. To further characterize the functionality of FhCHS1, its ectopic expression in Arabidopsis thaliana tt4 mutants and Petunia hybrida was performed. The results showed that overexpression of FhCHS1 in tt4 mutants fully restored the pigmentation phenotype of the seed coats, cotyledons and hypocotyls, while transgenic petunia expressing FhCHS1 showed flower color alteration from white to pink. In summary, these results suggest that FhCHS1 plays an essential role in the biosynthesis of flavonoid in Freesia hybrida and may be used to modify the components of flavonoids in other plants. PMID:25742495

  6. Molecular and Biochemical Analysis of Chalcone Synthase from Freesia hybrid in flavonoid biosynthetic pathway.

    PubMed

    Sun, Wei; Meng, Xiangyu; Liang, Lingjie; Jiang, Wangshu; Huang, Yafei; He, Jing; Hu, Haiyan; Almqvist, Jonas; Gao, Xiang; Wang, Li

    2015-01-01

    Chalcone synthase (CHS) catalyzes the first committed step in the flavonoid biosynthetic pathway. In this study, the cDNA (FhCHS1) encoding CHS from Freesia hybrida was successfully isolated and analyzed. Multiple sequence alignments showed that both the conserved CHS active site residues and CHS signature sequence were found in the deduced amino acid sequence of FhCHS1. Meanwhile, crystallographic analysis revealed that protein structure of FhCHS1 is highly similar to that of alfalfa CHS2, and the biochemical analysis results indicated that it has an enzymatic role in naringenin biosynthesis. Moreover, quantitative real-time PCR was performed to detect the transcript levels of FhCHS1 in flowers and different tissues, and patterns of FhCHS1 expression in flowers showed significant correlation to the accumulation patterns of anthocyanin during flower development. To further characterize the functionality of FhCHS1, its ectopic expression in Arabidopsis thaliana tt4 mutants and Petunia hybrida was performed. The results showed that overexpression of FhCHS1 in tt4 mutants fully restored the pigmentation phenotype of the seed coats, cotyledons and hypocotyls, while transgenic petunia expressing FhCHS1 showed flower color alteration from white to pink. In summary, these results suggest that FhCHS1 plays an essential role in the biosynthesis of flavonoid in Freesia hybrida and may be used to modify the components of flavonoids in other plants.

  7. Ophthalmic acid is a marker of oxidative stress in plants as in animals.

    PubMed

    Servillo, Luigi; Castaldo, Domenico; Giovane, Alfonso; Casale, Rosario; D'Onofrio, Nunzia; Cautela, Domenico; Balestrieri, Maria Luisa

    2018-04-01

    Ophthalmic acid (OPH), γ-glutamyl-L-2-aminobutyryl-glycine, a tripeptide analogue of glutathione (GSH), has recently captured considerable attention as a biomarker of oxidative stress in animals. The OPH and GSH biosynthesis, as well as some biochemical behaviors, are very similar. Here, we sought to investigate the presence of OPH in plants and its possible relationship with GSH, known to possess multiple functions in the plant development, growth and response to environmental changes. HPLC-ESI-MS/MS analysis was used to examine the occurrence of OPH in leaves from various plant species, and flours from several plant seeds. Different types of oxidative stress, i.e., water, dark, paraquat, and cadmium stress, were induced in rye, barley, oat, and winter wheat leaves to evaluate the effects on the levels of OPH and its metabolic precursors. OPH and its dipeptide precursor, γ-glutamyl-2-aminobutyric acid, were found to occur in phylogenetically distant plants. Interestingly, the levels of OPH were tightly associated with the oxidative stress tested. Levels of OPH precursors, γ-glutamyl-2-aminobutyric acid and 2-aminobutyric acid, the latter efficiently formed in plants via biosynthetic pathways absent in the animal kingdom, were also found to increase during oxidative stress. OPH occurs in plants and its levels are tightly associated with oxidative stress. OPH behaves as an oxidative stress marker and its biogenesis might occur through a biochemical pathway common to many living organisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Kinetics and structural features of dimeric glutamine-dependent bacterial NAD+ synthetases suggest evolutionary adaptation to available metabolites.

    PubMed

    Santos, Adrian Richard Schenberger; Gerhardt, Edileusa Cristina Marques; Moure, Vivian Rotuno; Pedrosa, Fábio Oliveira; Souza, Emanuel Maltempi; Diamanti, Riccardo; Högbom, Martin; Huergo, Luciano Fernandes

    2018-05-11

    NADH (NAD + ) and its reduced form NADH serve as cofactors for a variety of oxidoreductases that participate in many metabolic pathways. NAD + also is used as substrate by ADP-ribosyl transferases and by sirtuins. NAD + biosynthesis is one of the most fundamental biochemical pathways in nature, and the ubiquitous NAD + synthetase (NadE) catalyzes the final step in this biosynthetic route. Two different classes of NadE have been described to date: dimeric single-domain ammonium-dependent NadE NH3 and octameric glutamine-dependent NadE Gln , and the presence of multiple NadE isoforms is relatively common in prokaryotes. Here, we identified a novel dimeric group of NadE Gln in bacteria. Substrate preferences and structural analyses suggested that dimeric NadE Gln enzymes may constitute evolutionary intermediates between dimeric NadE NH3 and octameric NadE Gln The characterization of additional NadE isoforms in the diazotrophic bacterium Azospirillum brasilense along with the determination of intracellular glutamine levels in response to an ammonium shock led us to propose a model in which these different NadE isoforms became active accordingly to the availability of nitrogen. These data may explain the selective pressures that support the coexistence of multiple isoforms of NadE in some prokaryotes. © 2018 Santos et al.

  9. Women with preterm birth have a distinct cervicovaginal metabolome.

    PubMed

    Ghartey, Jeny; Bastek, Jamie A; Brown, Amy G; Anglim, Laura; Elovitz, Michal A

    2015-06-01

    Metabolomics has the potential to reveal novel pathways involved in the pathogenesis of preterm birth (PTB). The objective of this study was to investigate whether the cervicovaginal (CV) metabolome was different in asymptomatic women destined to have a PTB compared with term birth. A nested case-control study was performed using CV fluid collected from a larger prospective cohort. The CV fluid was collected between 20-24 weeks (V1) and 24-28 weeks (V2). The metabolome was compared between women with a spontaneous PTB (n = 10) to women who delivered at term (n = 10). Samples were extracted and prepared for analysis using a standard extraction solvent method. Global biochemical profiles were determined using gas chromatography/mass spectrometry and ultra-performance liquid chromatography/tandem mass spectrometry. An ANOVA was used to detect differences in biochemical compounds between the groups. A false discovery rate was estimated to account for multiple comparisons. A total of 313 biochemicals were identified in CV fluid. Eighty-two biochemicals were different in the CV fluid at V1 in those destined to have a PTB compared with term birth, whereas 48 were different at V2. Amino acid, carbohydrate, and peptide metabolites were distinct between women with and without PTB. These data suggest that the CV space is metabolically active during pregnancy. Changes in the CV metabolome may be observed weeks, if not months, prior to any clinical symptoms. Understanding the CV metabolome may hold promise for unraveling the pathogenesis of PTB and may provide novel biomarkers to identify women most at risk. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Integrating mass spectrometry and genomics for cyanobacterial metabolite discovery

    PubMed Central

    Bertin, Matthew J.; Kleigrewe, Karin; Leão, Tiago F.; Gerwick, Lena

    2016-01-01

    Filamentous marine cyanobacteria produce bioactive natural products with both potential therapeutic value and capacity to be harmful to human health. Genome sequencing has revealed that cyanobacteria have the capacity to produce many more secondary metabolites than have been characterized. The biosynthetic pathways that encode cyanobacterial natural products are mostly uncharacterized, and lack of cyanobacterial genetic tools has largely prevented their heterologous expression. Hence, a combination of cutting edge and traditional techniques has been required to elucidate their secondary metabolite biosynthetic pathways. Here, we review the discovery and refined biochemical understanding of the olefin synthase and fatty acid ACP reductase/aldehyde deformylating oxygenase pathways to hydrocarbons, and the curacin A, jamaicamide A, lyngbyabellin, columbamide, and a trans-acyltransferase macrolactone pathway encoding phormidolide. We integrate into this discussion the use of genomics, mass spectrometric networking, biochemical characterization, and isolation and structure elucidation techniques. PMID:26578313

  11. New function for Escherichia coli xanthosine phophorylase (xapA): genetic and biochemical evidences on its participation in NAD+ salvage from nicotinamide

    PubMed Central

    2014-01-01

    Background In an effort to reconstitute the NAD+ synthetic pathway in Escherichia coli (E. coli), we produced a set of gene knockout mutants with deficiencies in previously well-defined NAD+de novo and salvage pathways. Unexpectedly, the mutant deficient in NAD+de novo and salvage pathway I could grow in M9/nicotinamide medium, which was contradictory to the proposed classic NAD+ metabolism of E. coli. Such E. coli mutagenesis assay suggested the presence of an undefined machinery to feed nicotinamide into the NAD+ biosynthesis. We wanted to verify whether xanthosine phophorylase (xapA) contributed to a new NAD+ salvage pathway from nicotinamide. Results Additional knockout of xapA further slowed down the bacterial growth in M9/nicotinamide medium, whereas the complementation of xapA restored the growth phenotype. To further validate the new function of xapA, we cloned and expressed E. coli xapA as a recombinant soluble protein. Biochemical assay confirmed that xapA was capable of using nicotinamide as a substrate for nicotinamide riboside formation. Conclusions Both the genetic and biochemical evidences indicated that xapA could convert nicotinamide to nicotinamide riboside in E. coli, albeit with relatively weak activity, indicating that xapA may contribute to a second NAD+ salvage pathway from nicotinamide. We speculate that this xapA-mediated NAD+ salvage pathway might be significant in some bacteria lacking NAD+de novo and NAD+ salvage pathway I or II, to not only use nicotinamide riboside, but also nicotinamide as precursors to synthesize NAD+. However, this speculation needs to be experimentally tested. PMID:24506841

  12. FLIP the Switch: Regulation of Apoptosis and Necroptosis by cFLIP

    PubMed Central

    Tsuchiya, Yuichi; Nakabayashi, Osamu; Nakano, Hiroyasu

    2015-01-01

    cFLIP (cellular FLICE-like inhibitory protein) is structurally related to caspase-8 but lacks proteolytic activity due to multiple amino acid substitutions of catalytically important residues. cFLIP protein is evolutionarily conserved and expressed as three functionally different isoforms in humans (cFLIPL, cFLIPS, and cFLIPR). cFLIP controls not only the classical death receptor-mediated extrinsic apoptosis pathway, but also the non-conventional pattern recognition receptor-dependent apoptotic pathway. In addition, cFLIP regulates the formation of the death receptor-independent apoptotic platform named the ripoptosome. Moreover, recent studies have revealed that cFLIP is also involved in a non-apoptotic cell death pathway known as programmed necrosis or necroptosis. These functions of cFLIP are strictly controlled in an isoform-, concentration- and tissue-specific manner, and the ubiquitin-proteasome system plays an important role in regulating the stability of cFLIP. In this review, we summarize the current scientific findings from biochemical analyses, cell biological studies, mathematical modeling, and gene-manipulated mice models to illustrate the critical role of cFLIP as a switch to determine the destiny of cells among survival, apoptosis, and necroptosis. PMID:26694384

  13. Anti-inflammatory function of Withangulatin A by targeted inhibiting COX-2 expression via MAPK and NF-kappaB pathways.

    PubMed

    Sun, Lijuan; Liu, Jianwen; Cui, Daling; Li, Jiyu; Yu, Youjun; Ma, Lei; Hu, Lihong

    2010-02-15

    Withangulatin A (WA), an active component isolated from Physalis angulata L., has been reported to possess anti-tumor and trypanocidal activities in model systems via multiple biochemical mechanisms. The aim of this study is to investigate its anti-inflammatory potential and the possible underlying mechanisms. In the current study, WA significantly suppressed mice T lymphocytes proliferation stimulated with LPS in a dose- and time-dependent manner and inhibited pro-inflammation cytokines (IL-2, IFN-gamma, and IL-6) dramatically. Moreover, WA targeted inhibited COX-2 expression mediated by MAPKs and NF-kappaB nuclear translocation pathways in mice T lymphocytes, and this result was further confirmed by the COX-1/2 luciferase reporter assay. Intriguingly, administration of WA inhibited the extent of mice ear swelling and decreased pro-inflammatory cytokines production in mice blood serum. Based on these evidences, WA influences the mice T lymphocytes function through targeted inhibiting COX-2 expression via MAPKs and NF-kappaB nuclear translocation signaling pathways, and this would make WA a strong candidate for further study as an anti-inflammatory agent. (c) 2009 Wiley-Liss, Inc.

  14. LPS-induced chemokine expression in both MyD88-dependent and -independent manners is regulated by Cot/Tpl2-ERK axis in macrophages.

    PubMed

    Bandow, Kenjiro; Kusuyama, Joji; Shamoto, Mitsuo; Kakimoto, Kyoko; Ohnishi, Tomokazu; Matsuguchi, Tetsuya

    2012-05-21

    LPS signaling is mediated through MyD88-dependent and -independent pathways, activating NF-?B, MAP kinases and IRF3. Cot/Tpl2 is an essential upstream kinase in LPS-mediated activation of ERKs. Here we explore the roles of MyD88 and Cot/Tpl2 in LPS-induced chemokine expression by studying myd88(-/-) and cot/tpl2(-/-) macrophages. Among the nine LPS-responsive chemokines examined, mRNA induction of ccl5, cxcl10, and cxcl13 is mediated through the MyD88-independent pathway. Notably, Cot/Tpl2-ERK signaling axis exerts negative effects on the expression of these three chemokines. In contrast, LPS-induced gene expression of ccl2, ccl7, cxcl2, cxcl3, ccl8, and cxcl9 is mediated in the MyD88-dependent manner. The Cot/Tpl2-ERK axis promotes the expression of the first four and inhibits the expression of the latter two. Thus, LPS induces expression of multiple chemokines through various signaling pathways in macrophages. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  15. Metabolomic Modularity Analysis (MMA) to Quantify Human Liver Perfusion Dynamics.

    PubMed

    Sridharan, Gautham Vivek; Bruinsma, Bote Gosse; Bale, Shyam Sundhar; Swaminathan, Anandh; Saeidi, Nima; Yarmush, Martin L; Uygun, Korkut

    2017-11-13

    Large-scale -omics data are now ubiquitously utilized to capture and interpret global responses to perturbations in biological systems, such as the impact of disease states on cells, tissues, and whole organs. Metabolomics data, in particular, are difficult to interpret for providing physiological insight because predefined biochemical pathways used for analysis are inherently biased and fail to capture more complex network interactions that span multiple canonical pathways. In this study, we introduce a nov-el approach coined Metabolomic Modularity Analysis (MMA) as a graph-based algorithm to systematically identify metabolic modules of reactions enriched with metabolites flagged to be statistically significant. A defining feature of the algorithm is its ability to determine modularity that highlights interactions between reactions mediated by the production and consumption of cofactors and other hub metabolites. As a case study, we evaluated the metabolic dynamics of discarded human livers using time-course metabolomics data and MMA to identify modules that explain the observed physiological changes leading to liver recovery during subnormothermic machine perfusion (SNMP). MMA was performed on a large scale liver-specific human metabolic network that was weighted based on metabolomics data and identified cofactor-mediated modules that would not have been discovered by traditional metabolic pathway analyses.

  16. Conserved and species-specific molecular denominators in mammalian skeletal muscle aging.

    PubMed

    Mercken, Evi M; Capri, Miriam; Carboneau, Bethany A; Conte, Maria; Heidler, Juliana; Santoro, Aurelia; Martin-Montalvo, Alejandro; Gonzalez-Freire, Marta; Khraiwesh, Husam; González-Reyes, José A; Moaddel, Ruin; Zhang, Yongqing; Becker, Kevin G; Villalba, José M; Mattison, Julie A; Wittig, Ilka; Franceschi, Claudio; de Cabo, Rafael

    2017-01-01

    Aging is a complex phenomenon involving functional decline in multiple physiological systems. We undertook a comparative analysis of skeletal muscle from four different species, i.e. mice, rats, rhesus monkeys, and humans, at three different representative stages during their lifespan (young, middle, and old) to identify pathways that modulate function and healthspan. Gene expression profiling and computational analysis revealed that pathway complexity increases from mice to humans, and as mammals age, there is predominantly an upregulation of pathways in all species. Two downregulated pathways, the electron transport chain and oxidative phosphorylation, were common among all four species in response to aging. Quantitative PCR, biochemical analysis, mitochondrial DNA measurements, and electron microscopy revealed a conserved age-dependent decrease in mitochondrial content, and a reduction in oxidative phosphorylation complexes in monkeys and humans. Western blot analysis of key proteins in mitochondrial biogenesis discovered that (i) an imbalance toward mitochondrial fusion occurs in aged skeletal muscle and (ii) mitophagy is not overtly affected, presumably leading to the observed accumulation of abnormally large, damaged mitochondria with age. Select transcript expression analysis uncovered that the skeletal inflammatory profile differentially increases with age, but is most pronounced in humans, while increased oxidative stress (as assessed by protein carbonyl adducts and 4-hydroxynonenal) is common among all species. Expression studies also found that there is unique dysregulation of the nutrient sensing pathways among the different species with age. The identification of conserved pathways indicates common molecular mechanisms intrinsic to health and lifespan, whereas the recognition of species-specific pathways emphasizes the importance of human studies for devising optimal therapeutic modalities to slow the aging process.

  17. Adverse Outcome Pathways: From Definition to Application

    EPA Science Inventory

    A challenge for both human health and ecological toxicologists is the transparent application of mechanistic (e.g., molecular, biochemical, histological) data to risk assessments. The adverse outcome pathway (AOP) is a conceptual framework designed to meet this need. Specifical...

  18. B-cell Ligand Processing Pathways Detected by Large-scale Comparative Analysis

    PubMed Central

    Towfic, Fadi; Gupta, Shakti; Honavar, Vasant; Subramaniam, Shankar

    2012-01-01

    The initiation of B-cell ligand recognition is a critical step for the generation of an immune response against foreign bodies. We sought to identify the biochemical pathways involved in the B-cell ligand recognition cascade and sets of ligands that trigger similar immunological responses. We utilized several comparative approaches to analyze the gene coexpression networks generated from a set of microarray experiments spanning 33 different ligands. First, we compared the degree distributions of the generated networks. Second, we utilized a pairwise network alignment algorithm, BiNA, to align the networks based on the hubs in the networks. Third, we aligned the networks based on a set of KEGG pathways. We summarized our results by constructing a consensus hierarchy of pathways that are involved in B cell ligand recognition. The resulting pathways were further validated through literature for their common physiological responses. Collectively, the results based on our comparative analyses of degree distributions, alignment of hubs, and alignment based on KEGG pathways provide a basis for molecular characterization of the immune response states of B-cells and demonstrate the power of comparative approaches (e.g., gene coexpression network alignment algorithms) in elucidating biochemical pathways involved in complex signaling events in cells. PMID:22917187

  19. Explorations into Chemical Reactions and Biochemical Pathways.

    PubMed

    Gasteiger, Johann

    2016-12-01

    A brief overview of the work in the research group of the present author on extracting knowledge from chemical reaction data is presented. Methods have been developed to calculate physicochemical effects at the reaction site. It is shown that these physicochemical effects can quite favourably be used to derive equations for the calculation of data on gas phase reactions and on reactions in solution such as aqueous acidity of alcohols or carboxylic acids or the hydrolysis of amides. Furthermore, it is shown that these physicochemical effects are quite effective for assigning reactions into reaction classes that correspond to chemical knowledge. Biochemical reactions constitute a particularly interesting and challenging task for increasing our understanding of living species. The BioPath.Database is a rich source of information on biochemical reactions and has been used for a variety of applications of chemical, biological, or medicinal interests. Thus, it was shown that biochemical reactions can be assigned by the physicochemical effects into classes that correspond to the classification of enzymes by the EC numbers. Furthermore, 3D models of reaction intermediates can be used for searching for novel enzyme inhibitors. It was shown in a combined application of chemoinformatics and bioinformatics that essential pathways of diseases can be uncovered. Furthermore, a study showed that bacterial flavor-forming pathways can be discovered. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Herbal Remedies: A Boon for Diabetic Neuropathy.

    PubMed

    Tiwari, Reshu; Siddiqui, Mohd Haris; Mahmood, Tarique; Bagga, Paramdeep; Ahsan, Farogh; Shamim, Arshiya

    2018-03-26

    Diabetic neuropathy is a chronic complication of diabetes mellitus affecting about 50% of patients. Its symptoms include decreased motility and severe pain in peripheral parts. The pathogenesis involved is an abnormality in blood vessels that supply the peripheral nerves, metabolic disorders such as myo-inositol depletion, and increased nonenzymatic glycation. Moreover, oxidative stress in neurons results in activation of multiple biochemical pathways, which results in the generation of free radicals. Apart from available marketed formulations, extensive research is being carried out on herbal-based natural products to control hyperglycemia and its associated complications. This review is focused to provide a summary on diabetic neuropathy covering its etiology, types, and existing work on herbal-based therapies, which include pure compounds isolated from plant materials, plant extracts, and Ayurvedic preparations.

  1. Cellular and molecular mechanisms for the bone response to mechanical loading

    NASA Technical Reports Server (NTRS)

    Bloomfield, S. A.

    2001-01-01

    To define the cellular and molecular mechanisms for the osteogenic response of bone to increased loading, several key steps must be defined: sensing of the mechanical signal by cells in bone, transduction of the mechanical signal to a biochemical one, and transmission of that biochemical signal to effector cells. Osteocytes are likely to serve as sensors of loading, probably via interstitial fluid flow produced during loading. Evidence is presented for the role of integrins, the cell's actin cytoskeleton, G proteins, and various intracellular signaling pathways in transducing that mechanical signal to a biochemical one. Nitric oxide, prostaglandins, and insulin-like growth factors all play important roles in these pathways. There is growing evidence for modulation of these mechanotransduction steps by endocrine factors, particularly parathyroid hormone and estrogen. The efficiency of this process is also impaired in the aged animal, yet what remains undefined is at what step mechanotransduction is affected.

  2. Magnetic resonance microscopy: concepts, challenges, and state-of-the-art.

    PubMed

    Gimi, Barjor

    2006-01-01

    Recent strides in targeted therapy and regenerative medicine have created a need to identify molecules and metabolic pathways implicated in a disease and its treatment. These molecules and pathways must be discerned at the cellular level to meaningfully reveal the biochemical underpinnings of the disease and to identify key molecular targets for therapy. Magnetic resonance (MR) techniques are well suited for molecular and functional imaging because of their noninvasive nature and their versatility in extracting physiological, biochemical, and functional information over time. However, MR is an insensitive technique; MR microscopy seeks to increase detection sensitivity, thereby localizing biochemical and functional information at the level of single cells or small cellular clusters. Here, we discuss some of the challenges facing MR microscopy and the technical and phenomenological strategies used to overcome these challenges. Some of the applications of MR microscopy are highlighted in this chapter.

  3. C. elegans Major Fats Are Stored in Vesicles Distinct from Lysosome-Related Organelles

    PubMed Central

    O’Rourke, Eyleen J.; Soukas, Alexander A.; Carr, Christopher E.; Ruvkun, Gary

    2010-01-01

    SUMMARY Genetic conservation allows ancient features of fat storage endocrine pathways to be explored in C. elegans. Multiple studies have used Nile red or BODIPY-labeled fatty acids to identify regulators of fat mass. When mixed with their food, E. coli bacteria, Nile red, and BODIPY-labeled fatty acids stain multiple spherical cellular structures in the C. elegans major fat storage organ, the intestine. However, here we demonstrate that, in the conditions previously reported, the lysosome-related organelles stained by Nile red and BODIPY-labeled fatty acids are not the C. elegans major fat storage compartment. We show that the major fat stores are contained in a distinct cellular compartment that is not stained by Nile red. Using biochemical assays, we validate oil red O staining as a method to assess major fat stores in C. elegans, allowing for efficient and accurate genetic and functional genomic screens for genes that control fat accumulation at the organismal level. PMID:19883620

  4. Application of synthetic biology for production of chemicals in yeast Saccharomyces cerevisiae.

    PubMed

    Li, Mingji; Borodina, Irina

    2015-02-01

    Synthetic biology and metabolic engineering enable generation of novel cell factories that efficiently convert renewable feedstocks into biofuels, bulk, and fine chemicals, thus creating the basis for biosustainable economy independent on fossil resources. While over a hundred proof-of-concept chemicals have been made in yeast, only a very small fraction of those has reached commercial-scale production so far. The limiting factor is the high research cost associated with the development of a robust cell factory that can produce the desired chemical at high titer, rate, and yield. Synthetic biology has the potential to bring down this cost by improving our ability to predictably engineer biological systems. This review highlights synthetic biology applications for design, assembly, and optimization of non-native biochemical pathways in baker's yeast Saccharomyces cerevisiae We describe computational tools for the prediction of biochemical pathways, molecular biology methods for assembly of DNA parts into pathways, and for introducing the pathways into the host, and finally approaches for optimizing performance of the introduced pathways. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  5. Murine models of atrophy, cachexia, and sarcopenia in skeletal muscle

    PubMed Central

    Romanick, Mark; Brown-Borg, Holly M.

    2013-01-01

    With the extension of life span over the past several decades, the age-related loss of muscle mass and strength that characterizes sarcopenia is becoming more evident and thus, has a more significant impact on society. To determine ways to intervene and delay, or even arrest the physical frailty and dependence that accompany sarcopenia, it is necessary to identify those biochemical pathways that define this process. Animal models that mimic one or more of the physiological pathways involved with this phenomenon are very beneficial in providing an understanding of the cellular processes at work in sarcopenia. The ability to influence pathways through genetic manipulation gives insight into cellular responses and their impact on the physical expression of sarcopenia. This review evaluates several murine models that have the potential to elucidate biochemical processes integral to sarcopenia. Identifying animal models that reflect sarcopenia or its component pathways will enable researchers to better understand those pathways that contribute to age-related skeletal muscle mass loss, and in turn, develop interventions that will prevent, retard, arrest, or reverse this phenomenon. PMID:23523469

  6. Drosophila insulin and target of rapamycin (TOR) pathways regulate GSK3 beta activity to control Myc stability and determine Myc expression in vivo.

    PubMed

    Parisi, Federica; Riccardo, Sara; Daniel, Margaret; Saqcena, Mahesh; Kundu, Nandini; Pession, Annalisa; Grifoni, Daniela; Stocker, Hugo; Tabak, Esteban; Bellosta, Paola

    2011-09-27

    Genetic studies in Drosophila melanogaster reveal an important role for Myc in controlling growth. Similar studies have also shown how components of the insulin and target of rapamycin (TOR) pathways are key regulators of growth. Despite a few suggestions that Myc transcriptional activity lies downstream of these pathways, a molecular mechanism linking these signaling pathways to Myc has not been clearly described. Using biochemical and genetic approaches we tried to identify novel mechanisms that control Myc activity upon activation of insulin and TOR signaling pathways. Our biochemical studies show that insulin induces Myc protein accumulation in Drosophila S2 cells, which correlates with a decrease in the activity of glycogen synthase kinase 3-beta (GSK3β ) a kinase that is responsible for Myc protein degradation. Induction of Myc by insulin is inhibited by the presence of the TOR inhibitor rapamycin, suggesting that insulin-induced Myc protein accumulation depends on the activation of TOR complex 1. Treatment with amino acids that directly activate the TOR pathway results in Myc protein accumulation, which also depends on the ability of S6K kinase to inhibit GSK3β activity. Myc upregulation by insulin and TOR pathways is a mechanism conserved in cells from the wing imaginal disc, where expression of Dp110 and Rheb also induces Myc protein accumulation, while inhibition of insulin and TOR pathways result in the opposite effect. Our functional analysis, aimed at quantifying the relative contribution of Myc to ommatidial growth downstream of insulin and TOR pathways, revealed that Myc activity is necessary to sustain the proliferation of cells from the ommatidia upon Dp110 expression, while its contribution downstream of TOR is significant to control the size of the ommatidia. Our study presents novel evidence that Myc activity acts downstream of insulin and TOR pathways to control growth in Drosophila. At the biochemical level we found that both these pathways converge at GSK3β to control Myc protein stability, while our genetic analysis shows that insulin and TOR pathways have different requirements for Myc activity during development of the eye, suggesting that Myc might be differentially induced by these pathways during growth or proliferation of cells that make up the ommatidia.

  7. Analysis of selected volatile organic compounds in split and nonsplit swiss cheese samples using selected-ion flow tube mass spectrometry (SIFT-MS).

    PubMed

    Castada, Hardy Z; Wick, Cheryl; Taylor, Kaitlyn; Harper, W James

    2014-04-01

    Splits/cracks are recurring product defects that negatively affect the Swiss cheese industry. Investigations to understand the biophysicochemical aspects of these defects, and thus determine preventive measures against their occurrence, are underway. In this study, selected-ion, flow tube mass spectrometry was employed to determine the volatile organic compound (VOC) profiles present in the headspace of split compared with nonsplit cheeses. Two sampling methodologies were employed: split compared with nonsplit cheese vat pair blocks; and comparison of blind, eye, and split segments within cheese blocks. The variability in VOC profiles was examined to evaluate the potential biochemical pathway chemistry differences within and between cheese samples. VOC profile inhomogeneity was most evident in cheeses between factories. Evaluation of biochemical pathways leading to the formation of key VOCs differentiating the split from the blind and eye segments within factories indicated release of additional carbon dioxide by-product. These results suggest a factory-dependent cause of split formation that could develop from varied fermentation pathways in the blind, eye, and split areas within a cheese block. The variability of VOC profiles within and between factories exhibit varied biochemical fermentation pathways that could conceivably be traced back in the making process to identify parameters responsible for split defect. © 2014 Institute of Food Technologists®

  8. THE 5-LIPOXYGENASE PATHWAY IS REQUIRED FOR ACUTE LUNG INJURY FOLLOWING HEMORRHAGIC SHOCK

    PubMed Central

    Eun, John C.; Moore, Ernest E.; Mauchley, David C.; Johnson, Chris A.; Meng, Xianzhong; Banerjee, Anirban; Wohlauer, Max V.; Zarini, Simona; Gijón, Miguel A.; Murphy, Robert C.

    2012-01-01

    The cellular and biochemical mechanisms leading to acute lung injury and subsequent multiple organ failure are only partially understood. In order to study the potential role of eicosanoids, particularly leukotrienes, as possible mediators of acute lung injury, we used a murine experimental model of acute lung injury induced by hemorrhagic shock after blood removal via cardiac puncture. Neutrophil sequestration as shown by immunofluorescence, and protein leakage into the alveolar space, were measured as markers of injury. We used liquid chromatography coupled to tandem mass spectrometry to unequivocally identify several eicosanoids in the bronchoalveolar lavage fluid of experimental animals. MK886, a specific inhibitor of the 5-lipoxygenase pathway, as well as transgenic mice deficient in 5-lipoxygenase, were used to determine the role of this enzymatic pathway in this model. Leukotriene B4 and leukotriene C4 were consistently elevated in shock-treated mice compared to sham-treated mice. MK886 attenuated neutrophil infiltration and protein extravasation induced by hemorrhagic shock. 5-lipoxygenase-deficient mice showed reduced neutrophil infiltration and protein extravasation after shock treatment, indicating greatly reduced lung injury. These results support the hypothesis that 5-lipoxygenase, most likely through the generation of leukotrienes, plays an important role in the pathogenesis of acute lung injury induced by hemorrhagic shock in mice. This pathway could represent a new target for pharmacological intervention to reduce lung damage following severe primary injury. PMID:22392149

  9. Selenium uptake, translocation, assimilation and metabolic fate in plants.

    PubMed

    Sors, T G; Ellis, D R; Salt, D E

    2005-12-01

    The chemical and physical resemblance between selenium (Se) and sulfur (S) establishes that both these elements share common metabolic pathways in plants. The presence of isologous Se and S compounds indicates that these elements compete in biochemical processes that affect uptake, translocation and assimilation throughout plant development. Yet, minor but crucial differences in reactivity and other metabolic interactions infer that some biochemical processes involving Se may be excluded from those relating to S. This review examines the current understanding of physiological and biochemical relationships between S and Se metabolism by highlighting their similarities and differences in relation to uptake, transport and assimilation pathways as observed in Se hyperaccumulator and non-accumulator plant species. The exploitation of genetic resources used in bioengineering strategies of plants is illuminating the function of sulfate transporters and key enzymes of the S assimilatory pathway in relation to Se accumulation and final metabolic fate. These strategies are providing the basic framework by which to resolve questions relating to the essentiality of Se in plants and the mechanisms utilized by Se hyperaccumulators to circumvent toxicity. In addition, such approaches may assist in the future application of genetically engineered Se accumulating plants for environmental renewal and human health objectives.

  10. Cellular Signaling Networks Function as Generalized Wiener-Kolmogorov Filters to Suppress Noise

    NASA Astrophysics Data System (ADS)

    Hinczewski, Michael; Thirumalai, D.

    2014-10-01

    Cellular signaling involves the transmission of environmental information through cascades of stochastic biochemical reactions, inevitably introducing noise that compromises signal fidelity. Each stage of the cascade often takes the form of a kinase-phosphatase push-pull network, a basic unit of signaling pathways whose malfunction is linked with a host of cancers. We show that this ubiquitous enzymatic network motif effectively behaves as a Wiener-Kolmogorov optimal noise filter. Using concepts from umbral calculus, we generalize the linear Wiener-Kolmogorov theory, originally introduced in the context of communication and control engineering, to take nonlinear signal transduction and discrete molecule populations into account. This allows us to derive rigorous constraints for efficient noise reduction in this biochemical system. Our mathematical formalism yields bounds on filter performance in cases important to cellular function—such as ultrasensitive response to stimuli. We highlight features of the system relevant for optimizing filter efficiency, encoded in a single, measurable, dimensionless parameter. Our theory, which describes noise control in a large class of signal transduction networks, is also useful both for the design of synthetic biochemical signaling pathways and the manipulation of pathways through experimental probes such as oscillatory input.

  11. Classification of Chemical Compounds to Support Complex Queries in a Pathway Database

    PubMed Central

    Weidemann, Andreas; Kania, Renate; Peiss, Christian; Rojas, Isabel

    2004-01-01

    Data quality in biological databases has become a topic of great discussion. To provide high quality data and to deal with the vast amount of biochemical data, annotators and curators need to be supported by software that carries out part of their work in an (semi-) automatic manner. The detection of errors and inconsistencies is a part that requires the knowledge of domain experts, thus in most cases it is done manually, making it very expensive and time-consuming. This paper presents two tools to partially support the curation of data on biochemical pathways. The tool enables the automatic classification of chemical compounds based on their respective SMILES strings. Such classification allows the querying and visualization of biochemical reactions at different levels of abstraction, according to the level of detail at which the reaction participants are described. Chemical compounds can be classified in a flexible manner based on different criteria. The support of the process of data curation is provided by facilitating the detection of compounds that are identified as different but that are actually the same. This is also used to identify similar reactions and, in turn, pathways. PMID:18629066

  12. Anaerobic Degradation of Benzene and Polycyclic Aromatic Hydrocarbons.

    PubMed

    Meckenstock, Rainer U; Boll, Matthias; Mouttaki, Housna; Koelschbach, Janina S; Cunha Tarouco, Paola; Weyrauch, Philip; Dong, Xiyang; Himmelberg, Anne M

    2016-01-01

    Aromatic hydrocarbons such as benzene and polycyclic aromatic hydrocarbons (PAHs) are very slowly degraded without molecular oxygen. Here, we review the recent advances in the elucidation of the first known degradation pathways of these environmental hazards. Anaerobic degradation of benzene and PAHs has been successfully documented in the environment by metabolite analysis, compound-specific isotope analysis and microcosm studies. Subsequently, also enrichments and pure cultures were obtained that anaerobically degrade benzene, naphthalene or methylnaphthalene, and even phenanthrene, the largest PAH currently known to be degradable under anoxic conditions. Although such cultures grow very slowly, with doubling times of around 2 weeks, and produce only very little biomass in batch cultures, successful proteogenomic, transcriptomic and biochemical studies revealed novel degradation pathways with exciting biochemical reactions such as for example the carboxylation of naphthalene or the ATP-independent reduction of naphthoyl-coenzyme A. The elucidation of the first anaerobic degradation pathways of naphthalene and methylnaphthalene at the genetic and biochemical level now opens the door to studying the anaerobic metabolism and ecology of anaerobic PAH degraders. This will contribute to assessing the fate of one of the most important contaminant classes in anoxic sediments and aquifers. © 2016 S. Karger AG, Basel.

  13. Bioinformatic and Biochemical Characterizations of C–S Bond Formation and Cleavage Enzymes in the Fungus Neurospora crassa Ergothioneine Biosynthetic Pathway

    PubMed Central

    2015-01-01

    Ergothioneine is a histidine thiol derivative. Its mycobacterial biosynthetic pathway has five steps (EgtA-E catalysis) with two novel reactions: a mononuclear nonheme iron enzyme (EgtB) catalyzed oxidative C–S bond formation and a PLP-mediated C–S lyase (EgtE) reaction. Our bioinformatic and biochemical analyses indicate that the fungus Neurospora crassa has a more concise ergothioneine biosynthetic pathway because its nonheme iron enzyme, Egt1, makes use of cysteine instead of γ-Glu-Cys as the substrate. Such a change of substrate preference eliminates the competition between ergothioneine and glutathione biosyntheses. In addition, we have identified the N. crassa C–S lyase (NCU11365) and reconstituted its activity in vitro, which makes the future ergothioneine production through metabolic engineering feasible. PMID:25275953

  14. Thoughts on the Teaching of Metabolism

    ERIC Educational Resources Information Center

    Metzger, Robert P.

    2006-01-01

    Systems biology, metabolomics, metabolic engineering, and other recent developments in biochemistry suggest that future biochemists will require a detailed familiarity with the compounds and pathways of intermediary metabolism and their biochemical control. The challenge to the biochemistry instructor is the presentation of metabolic pathways in a…

  15. The Molecular Basis of Communication within the Cell.

    ERIC Educational Resources Information Center

    Berridge, Michael J.

    1985-01-01

    Only a few substances serve as signals within cells; this indicates that internal signal pathways are remarkably universal. The variety of physiological and biochemical processes regulated by known messengers is discussed along with chemical structures, pathways, inositol-lipid cycles, and cell growth regulation. (DH)

  16. Biochemical-Pathway Diversity in Archabacteria

    DTIC Science & Technology

    1988-06-28

    8a NAME OF_ FUNDINGISFF0N Gr ... FFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ORGANIZATION (If applicable) Office of Naval Researh ONR... BIOLOGY AND EVOLUTION OF MICROORGANISMS (July 24-28. 1989) in a talk entitled "Evolution of Metabolic Pathways". TRAINING ACTIVITIES: Dr. Raj Bhatnagar, a

  17. Characterizing Strain Variation in Engineered E. coli Using a Multi-Omics-Based Workflow

    DOE PAGES

    Brunk, Elizabeth; George, Kevin W.; Alonso-Gutierrez, Jorge; ...

    2016-05-19

    Understanding the complex interactions that occur between heterologous and native biochemical pathways represents a major challenge in metabolic engineering and synthetic biology. We present a workflow that integrates metabolomics, proteomics, and genome-scale models of Escherichia coli metabolism to study the effects of introducing a heterologous pathway into a microbial host. This workflow incorporates complementary approaches from computational systems biology, metabolic engineering, and synthetic biology; provides molecular insight into how the host organism microenvironment changes due to pathway engineering; and demonstrates how biological mechanisms underlying strain variation can be exploited as an engineering strategy to increase product yield. As a proofmore » of concept, we present the analysis of eight engineered strains producing three biofuels: isopentenol, limonene, and bisabolene. Application of this workflow identified the roles of candidate genes, pathways, and biochemical reactions in observed experimental phenomena and facilitated the construction of a mutant strain with improved productivity. The contributed workflow is available as an open-source tool in the form of iPython notebooks.« less

  18. The fractional diffusion limit of a kinetic model with biochemical pathway

    NASA Astrophysics Data System (ADS)

    Perthame, Benoît; Sun, Weiran; Tang, Min

    2018-06-01

    Kinetic-transport equations that take into account the intracellular pathways are now considered as the correct description of bacterial chemotaxis by run and tumble. Recent mathematical studies have shown their interest and their relations to more standard models. Macroscopic equations of Keller-Segel type have been derived using parabolic scaling. Due to the randomness of receptor methylation or intracellular chemical reactions, noise occurs in the signaling pathways and affects the tumbling rate. Then comes the question to understand the role of an internal noise on the behavior of the full population. In this paper we consider a kinetic model for chemotaxis which includes biochemical pathway with noises. We show that under proper scaling and conditions on the tumbling frequency as well as the form of noise, fractional diffusion can arise in the macroscopic limits of the kinetic equation. This gives a new mathematical theory about how long jumps can be due to the internal noise of the bacteria.

  19. Design principles for enhancing phase sensitivity and suppressing phase fluctuations simultaneously in biochemical oscillatory systems.

    PubMed

    Fei, Chenyi; Cao, Yuansheng; Ouyang, Qi; Tu, Yuhai

    2018-04-12

    Biological systems need to function accurately in the presence of strong noise and at the same time respond sensitively to subtle external cues. Here we study design principles in biochemical oscillatory circuits to achieve these two seemingly incompatible goals. We show that energy dissipation can enhance phase sensitivity linearly by driving the phase-amplitude coupling and increase timing accuracy by suppressing phase diffusion. Two general design principles in the key underlying reaction loop formed by two antiparallel pathways are found to optimize oscillation performance with a given energy budget: balancing the forward-to-backward flux ratio between the two pathways to reduce phase diffusion and maximizing the net flux of the phase-advancing pathway relative to that of the phase-retreating pathway to enhance phase sensitivity. Experimental evidences consistent with these design principles are found in the circadian clock of cyanobacteria. Future experiments to test the predicted dependence of phase sensitivity on energy dissipation are proposed.

  20. SHP2 sails from physiology to pathology.

    PubMed

    Tajan, Mylène; de Rocca Serra, Audrey; Valet, Philippe; Edouard, Thomas; Yart, Armelle

    2015-10-01

    Over the two past decades, mutations of the PTPN11 gene, encoding the ubiquitous protein tyrosine phosphatase SHP2 (SH2 domain-containing tyrosine phosphatase 2), have been identified as the causal factor of several developmental diseases (Noonan syndrome (NS), Noonan syndrome with multiple lentigines (NS-ML), and metachondromatosis), and malignancies (juvenile myelomonocytic leukemia). SHP2 plays essential physiological functions in organism development and homeostasis maintenance by regulating fundamental intracellular signaling pathways in response to a wide range of growth factors and hormones, notably the pleiotropic Ras/Mitogen-Activated Protein Kinase (MAPK) and the Phosphoinositide-3 Kinase (PI3K)/AKT cascades. Analysis of the biochemical impacts of PTPN11 mutations first identified both loss-of-function and gain-of-function mutations, as well as more subtle defects, highlighting the major pathophysiological consequences of SHP2 dysregulation. Then, functional genetic studies provided insights into the molecular dysregulations that link SHP2 mutants to the development of specific traits of the diseases, paving the way for the design of specific therapies for affected patients. In this review, we first provide an overview of SHP2's structure and regulation, then describe its molecular roles, notably its functions in modulating the Ras/MAPK and PI3K/AKT signaling pathways, and its physiological roles in organism development and homeostasis. In the second part, we describe the different PTPN11 mutation-associated pathologies and their clinical manifestations, with particular focus on the biochemical and signaling outcomes of NS and NS-ML-associated mutations, and on the recent advances regarding the pathophysiology of these diseases. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  1. A systemic view on the distribution of diet-derived methanol and hepatic acetone in mice.

    PubMed

    Kistler, Martin; Muntean, Andreea; Höllriegl, Vera; Matuschek, Georg; Zimmermann, Ralf; Hoeschen, Christoph; de Angelis, Martin Hrabě; Rozman, Jan

    2017-12-06

    Volatile organic compounds (VOCs) from breath can successfully be used to diagnose disease-specific pathological alterations in metabolism. However, the exact origin and underlying biochemical pathways that could be mapped to VOC signatures are mainly unknown. There is a knowledge gap regarding the contribution of tissues, organs, the gut microbiome, and exogenous factors to the 'sum signal' from breath samples. Animal models for human disease such as mutant mice provide the possibility to reproduce genetic predisposition to disease, thereby allowing in-depth analysis of metabolic and biochemical functions. We hypothesized that breath VOCs can be traced back to origins and organ-specific metabolic functions by combining breath concentrations with systemic levels detected in different organs and biological media (breath, blood, feces and urine). For this we fed C57Bl/6N mice a grain-based chow or a purified low-fat diet, thereby modifying the emission of methanol in breath whereas acetone levels were unaffected. We then measured headspace concentrations of both VOCs in ex vivo samples of several biological media. Cecum content especially was identified as a likely source of systemic methanol, whereas the liver showed highest acetone concentrations. Our findings are a first step to the systemic mapping of VOC patterns to metabolic functions in mice because differences between VOCs could be traced to different sources in the body. As a future aim, different levels of so-called omics technologies (genomics, proteomics, metabolomics, and breathomics) could be mapped to metabolic pathways in multiple tissues, deepening our understanding of VOC metabolism and possibly leading to early non-invasive biomarkers for human pathologies.

  2. Re-programming tumour cell metabolism to treat cancer: no lone target for lonidamine.

    PubMed

    Bhutia, Yangzom D; Babu, Ellappan; Ganapathy, Vadivel

    2016-06-01

    Tumour cell metabolism is very different from normal cell metabolism; cancer cells re-programme the metabolic pathways that occur in normal cells in such a manner that it optimizes their proliferation, growth and survival. Although this metabolic re-programming obviously operates to the advantage of the tumour, it also offers unique opportunities for effective cancer therapy. Molecules that target the tumour cell-specific metabolic pathways have potential as novel anti-cancer drugs. Lonidamine belongs to this group of molecules and is already in use in some countries for cancer treatment. It has been known for a long time that lonidamine interferes with energy production in tumour cells by inhibiting hexokinase II (HKII), a glycolytic enzyme. However, subsequent studies have uncovered additional pharmacological targets for the drug, which include the electron transport chain and the mitochondrial permeability transition pore, thus expanding the pharmacological effects of the drug on tumour cell metabolism. A study by Nancolas et al. in a recent issue of the Biochemical Journal identifies two additional new targets for lonidamine: the pyruvate transporter in the mitochondria and the H(+)-coupled monocarboxylate transporters in the plasma membrane (PM). It is thus becoming increasingly apparent that the anti-cancer effects of lonidamine do not occur through a single target; the drug works at multiple sites. Irrespective of the molecular targets, what lonidamine does in the end is to undo what the tumour cells have done in terms of re-programming cellular metabolism and mitochondrial function. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  3. Inferring genetic interactions via a nonlinear model and an optimization algorithm.

    PubMed

    Chen, Chung-Ming; Lee, Chih; Chuang, Cheng-Long; Wang, Chia-Chang; Shieh, Grace S

    2010-02-26

    Biochemical pathways are gradually becoming recognized as central to complex human diseases and recently genetic/transcriptional interactions have been shown to be able to predict partial pathways. With the abundant information made available by microarray gene expression data (MGED), nonlinear modeling of these interactions is now feasible. Two of the latest advances in nonlinear modeling used sigmoid models to depict transcriptional interaction of a transcription factor (TF) for a target gene, but do not model cooperative or competitive interactions of several TFs for a target. An S-shape model and an optimization algorithm (GASA) were developed to infer genetic interactions/transcriptional regulation of several genes simultaneously using MGED. GASA consists of a genetic algorithm (GA) and a simulated annealing (SA) algorithm, which is enhanced by a steepest gradient descent algorithm to avoid being trapped in local minimum. Using simulated data with various degrees of noise, we studied how GASA with two model selection criteria and two search spaces performed. Furthermore, GASA was shown to outperform network component analysis, the time series network inference algorithm (TSNI), GA with regular GA (GAGA) and GA with regular SA. Two applications are demonstrated. First, GASA is applied to infer a subnetwork of human T-cell apoptosis. Several of the predicted interactions are supported by the literature. Second, GASA was applied to infer the transcriptional factors of 34 cell cycle regulated targets in S. cerevisiae, and GASA performed better than one of the latest advances in nonlinear modeling, GAGA and TSNI. Moreover, GASA is able to predict multiple transcription factors for certain targets, and these results coincide with experiments confirmed data in YEASTRACT. GASA is shown to infer both genetic interactions and transcriptional regulatory interactions well. In particular, GASA seems able to characterize the nonlinear mechanism of transcriptional regulatory interactions (TIs) in yeast, and may be applied to infer TIs in other organisms. The predicted genetic interactions of a subnetwork of human T-cell apoptosis coincide with existing partial pathways, suggesting the potential of GASA on inferring biochemical pathways.

  4. Enhancer of polycomb coordinates multiple signaling pathways to promote both cyst and germline stem cell differentiation in the Drosophila adult testis

    PubMed Central

    Feng, Lijuan; Shi, Zhen; Chen, Xin

    2017-01-01

    Stem cells reside in a particular microenvironment known as a niche. The interaction between extrinsic cues originating from the niche and intrinsic factors in stem cells determines their identity and activity. Maintenance of stem cell identity and stem cell self-renewal are known to be controlled by chromatin factors. Herein, we use the Drosophila adult testis which has two adult stem cell lineages, the germline stem cell (GSC) lineage and the cyst stem cell (CySC) lineage, to study how chromatin factors regulate stem cell differentiation. We find that the chromatin factor Enhancer of Polycomb [E(Pc)] acts in the CySC lineage to negatively control transcription of genes associated with multiple signaling pathways, including JAK-STAT and EGF, to promote cellular differentiation in the CySC lineage. E(Pc) also has a non-cell-autonomous role in regulating GSC lineage differentiation. When E(Pc) is specifically inactivated in the CySC lineage, defects occur in both germ cell differentiation and maintenance of germline identity. Furthermore, compromising Tip60 histone acetyltransferase activity in the CySC lineage recapitulates loss-of-function phenotypes of E(Pc), suggesting that Tip60 and E(Pc) act together, consistent with published biochemical data. In summary, our results demonstrate that E(Pc) plays a central role in coordinating differentiation between the two adult stem cell lineages in Drosophila testes. PMID:28196077

  5. Anatomy of a nonhost disease resistance response of pea to Fusarium solani: PR gene elicitation via DNase, chitosan and chromatin alterations

    PubMed Central

    Hadwiger, Lee A.

    2015-01-01

    Of the multiplicity of plant pathogens in nature, only a few are virulent on a given plant species. Conversely, plants develop a rapid “nonhost” resistance response to the majority of the pathogens. The anatomy of the nonhost resistance of pea endocarp tissue against a pathogen of bean, Fusarium solani f.sp. phaseoli (Fsph) and the susceptibility of pea to F. solani f sp. pisi (Fspi) has been described cytologically, biochemically and molecular-biologically. Cytological changes have been followed by electron microscope and stain differentiation under white and UV light. The induction of changes in transcription, protein synthesis, expression of pathogenesis-related (PR) genes, and increases in metabolic pathways culminating in low molecular weight, antifungal compounds are described biochemically. Molecular changes initiated by fungal signals to host organelles, primarily to chromatin within host nuclei, are identified according to source of the signal and the mechanisms utilized in activating defense genes. The functions of some PR genes are defined. A hypothesis based on this data is developed to explain both why fungal growth is suppressed in nonhost resistance and why growth can continue in a susceptible reaction. PMID:26124762

  6. Anatomy of a nonhost disease resistance response of pea to Fusarium solani: PR gene elicitation via DNase, chitosan and chromatin alterations.

    PubMed

    Hadwiger, Lee A

    2015-01-01

    Of the multiplicity of plant pathogens in nature, only a few are virulent on a given plant species. Conversely, plants develop a rapid "nonhost" resistance response to the majority of the pathogens. The anatomy of the nonhost resistance of pea endocarp tissue against a pathogen of bean, Fusarium solani f.sp. phaseoli (Fsph) and the susceptibility of pea to F. solani f sp. pisi (Fspi) has been described cytologically, biochemically and molecular-biologically. Cytological changes have been followed by electron microscope and stain differentiation under white and UV light. The induction of changes in transcription, protein synthesis, expression of pathogenesis-related (PR) genes, and increases in metabolic pathways culminating in low molecular weight, antifungal compounds are described biochemically. Molecular changes initiated by fungal signals to host organelles, primarily to chromatin within host nuclei, are identified according to source of the signal and the mechanisms utilized in activating defense genes. The functions of some PR genes are defined. A hypothesis based on this data is developed to explain both why fungal growth is suppressed in nonhost resistance and why growth can continue in a susceptible reaction.

  7. Cuprizone Intoxication Induces Cell Intrinsic Alterations in Oligodendrocyte Metabolism Independent of Copper Chelation.

    PubMed

    Taraboletti, Alexandra; Walker, Tia; Avila, Robin; Huang, He; Caporoso, Joel; Manandhar, Erendra; Leeper, Thomas C; Modarelli, David A; Medicetty, Satish; Shriver, Leah P

    2017-03-14

    Cuprizone intoxication is a common animal model used to test myelin regenerative therapies for the treatment of diseases such as multiple sclerosis. Mice fed this copper chelator develop reversible, region-specific oligodendrocyte loss and demyelination. While the cellular changes influencing the demyelinating process have been explored in this model, there is no consensus about the biochemical mechanisms of toxicity in oligodendrocytes and about whether this damage arises from the chelation of copper in vivo. Here we have identified an oligodendroglial cell line that displays sensitivity to cuprizone toxicity and performed global metabolomic profiling to determine biochemical pathways altered by this treatment. We link these changes with alterations in brain metabolism in mice fed cuprizone for 2 and 6 weeks. We find that cuprizone induces widespread changes in one-carbon and amino acid metabolism as well as alterations in small molecules that are important for energy generation. We used mass spectrometry to examine chemical interactions that are important for copper chelation and toxicity. Our results indicate that cuprizone induces global perturbations in cellular metabolism that may be independent of its copper chelating ability and potentially related to its interactions with pyridoxal 5'-phosphate, a coenzyme essential for amino acid metabolism.

  8. Activation of sorbitol pathway in metabolic syndrome and increased susceptibility to cataract in Wistar-Obese rats

    PubMed Central

    Giridharan, Nappan Veettil

    2012-01-01

    Purpose Obesity is a major public health problem worldwide, and of late, epidemiological studies indicate a preponderance of cataracts under obesity conditions. Although cataract is a multifactorial disorder and various biochemical mechanisms have been proposed, the influence of obesity on cataractogenesis has yet to be investigated. In such a scenario, a suitable animal model that develops cataract following the onset of obesity will be a welcome tool for biomedical research. Therefore, we investigated the molecular and biochemical basis for predisposition to cataract in the obese mutant rat models established in our institute because 15%–20% of these rats develop cataracts spontaneously as they reach 12–15 months of age. Methods We analyzed the major biochemical pathways in the normal lenses of different age groups of our obese mutant rat strains, Wistar/Obese (WNIN/Ob) and WNIN/GR-Ob, the former with euglycemia and the latter with an additional impaired glucose tolerance trait. In addition, sorbitol levels were estimated in the cataractous lenses of the obese rats. Results Except for the polyol pathway, all the principal pathways of the lens remained unaltered. Therefore, sorbitol levels were found to be high in the normal eye lenses of obese rats (WNIN/Ob and WNIN/GR-Ob) compared to their lean controls from three months of age onwards. Between WNIN/Ob and WNIN/GR-Ob, the levels of sorbitol were higher in the latter, suggesting a synergistic effect of impaired glucose tolerance along with obesity in the activation of the sorbitol pathway. Either way, an elevated sorbitol pathway seemed to be the predisposing factor responsible for cataract formation in these mutant rats. Conclusions Activation of the sorbitol pathway indeed enhances the risk of cataract development in conditions such as metabolic syndrome. These rat models thus may be valuable tools for investigating obesity-associated cataract and for developing intervention strategies, based on these findings. PMID:22393276

  9. Activation of sorbitol pathway in metabolic syndrome and increased susceptibility to cataract in Wistar-Obese rats.

    PubMed

    Reddy, Paduru Yadagiri; Giridharan, Nappan Veettil; Reddy, Geereddy Bhanuprakash

    2012-01-01

    Obesity is a major public health problem worldwide, and of late, epidemiological studies indicate a preponderance of cataracts under obesity conditions. Although cataract is a multifactorial disorder and various biochemical mechanisms have been proposed, the influence of obesity on cataractogenesis has yet to be investigated. In such a scenario, a suitable animal model that develops cataract following the onset of obesity will be a welcome tool for biomedical research. Therefore, we investigated the molecular and biochemical basis for predisposition to cataract in the obese mutant rat models established in our institute because 15%-20% of these rats develop cataracts spontaneously as they reach 12-15 months of age. We analyzed the major biochemical pathways in the normal lenses of different age groups of our obese mutant rat strains, Wistar/Obese (WNIN/Ob) and WNIN/GR-Ob, the former with euglycemia and the latter with an additional impaired glucose tolerance trait. In addition, sorbitol levels were estimated in the cataractous lenses of the obese rats. Except for the polyol pathway, all the principal pathways of the lens remained unaltered. Therefore, sorbitol levels were found to be high in the normal eye lenses of obese rats (WNIN/Ob and WNIN/GR-Ob) compared to their lean controls from three months of age onwards. Between WNIN/Ob and WNIN/GR-Ob, the levels of sorbitol were higher in the latter, suggesting a synergistic effect of impaired glucose tolerance along with obesity in the activation of the sorbitol pathway. Either way, an elevated sorbitol pathway seemed to be the predisposing factor responsible for cataract formation in these mutant rats. Activation of the sorbitol pathway indeed enhances the risk of cataract development in conditions such as metabolic syndrome. These rat models thus may be valuable tools for investigating obesity-associated cataract and for developing intervention strategies, based on these findings.

  10. RaMP: A Comprehensive Relational Database of Metabolomics Pathways for Pathway Enrichment Analysis of Genes and Metabolites

    PubMed Central

    Zhang, Bofei; Hu, Senyang; Baskin, Elizabeth; Patt, Andrew; Siddiqui, Jalal K.

    2018-01-01

    The value of metabolomics in translational research is undeniable, and metabolomics data are increasingly generated in large cohorts. The functional interpretation of disease-associated metabolites though is difficult, and the biological mechanisms that underlie cell type or disease-specific metabolomics profiles are oftentimes unknown. To help fully exploit metabolomics data and to aid in its interpretation, analysis of metabolomics data with other complementary omics data, including transcriptomics, is helpful. To facilitate such analyses at a pathway level, we have developed RaMP (Relational database of Metabolomics Pathways), which combines biological pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome, WikiPathways, and the Human Metabolome DataBase (HMDB). To the best of our knowledge, an off-the-shelf, public database that maps genes and metabolites to biochemical/disease pathways and can readily be integrated into other existing software is currently lacking. For consistent and comprehensive analysis, RaMP enables batch and complex queries (e.g., list all metabolites involved in glycolysis and lung cancer), can readily be integrated into pathway analysis tools, and supports pathway overrepresentation analysis given a list of genes and/or metabolites of interest. For usability, we have developed a RaMP R package (https://github.com/Mathelab/RaMP-DB), including a user-friendly RShiny web application, that supports basic simple and batch queries, pathway overrepresentation analysis given a list of genes or metabolites of interest, and network visualization of gene-metabolite relationships. The package also includes the raw database file (mysql dump), thereby providing a stand-alone downloadable framework for public use and integration with other tools. In addition, the Python code needed to recreate the database on another system is also publicly available (https://github.com/Mathelab/RaMP-BackEnd). Updates for databases in RaMP will be checked multiple times a year and RaMP will be updated accordingly. PMID:29470400

  11. RaMP: A Comprehensive Relational Database of Metabolomics Pathways for Pathway Enrichment Analysis of Genes and Metabolites.

    PubMed

    Zhang, Bofei; Hu, Senyang; Baskin, Elizabeth; Patt, Andrew; Siddiqui, Jalal K; Mathé, Ewy A

    2018-02-22

    The value of metabolomics in translational research is undeniable, and metabolomics data are increasingly generated in large cohorts. The functional interpretation of disease-associated metabolites though is difficult, and the biological mechanisms that underlie cell type or disease-specific metabolomics profiles are oftentimes unknown. To help fully exploit metabolomics data and to aid in its interpretation, analysis of metabolomics data with other complementary omics data, including transcriptomics, is helpful. To facilitate such analyses at a pathway level, we have developed RaMP (Relational database of Metabolomics Pathways), which combines biological pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome, WikiPathways, and the Human Metabolome DataBase (HMDB). To the best of our knowledge, an off-the-shelf, public database that maps genes and metabolites to biochemical/disease pathways and can readily be integrated into other existing software is currently lacking. For consistent and comprehensive analysis, RaMP enables batch and complex queries (e.g., list all metabolites involved in glycolysis and lung cancer), can readily be integrated into pathway analysis tools, and supports pathway overrepresentation analysis given a list of genes and/or metabolites of interest. For usability, we have developed a RaMP R package (https://github.com/Mathelab/RaMP-DB), including a user-friendly RShiny web application, that supports basic simple and batch queries, pathway overrepresentation analysis given a list of genes or metabolites of interest, and network visualization of gene-metabolite relationships. The package also includes the raw database file (mysql dump), thereby providing a stand-alone downloadable framework for public use and integration with other tools. In addition, the Python code needed to recreate the database on another system is also publicly available (https://github.com/Mathelab/RaMP-BackEnd). Updates for databases in RaMP will be checked multiple times a year and RaMP will be updated accordingly.

  12. The Role of RUB (related to ubiquitin) Family of Proteins in the Hormone Response. Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callis, Judy

    2013-03-22

    The Rub pathway is a conserved protein modification pathway. RUB (called Rubp1 in budding yeast, Nedd8 in animals and RUB in plants) is a ubiquitin-like 76-amino acid protein. It covalently attaches to protein using an enzymatic machinery analogous to the enzymes that attach ubiquitin to its substrate proteins. However, the nature of the complement of Rub-modified proteins in organisms was not clear. From bioinformatics analyses, one can identify a Rub activating enzymes and Rub conjugating enzymes. However, in many cases, their biochemical properties were not described. In DOE-funded work, we made major advances in our understanding of the Rub pathwaymore » in yeast and plants, work that is applicable to other organisms as well. There is a multi-subunit enzyme called SCF in all eukaryotes. The SCF consists of several subunits that serve as a scaffold (the cullin, SKP and RBX subunits) and one subunit that interacts with the substrate. This cullin protein (called Cdc53p in yeast and CULLIN 1 in plants and animals) was a known Rub target. In this work, we identified additional Rub targets in yeast as the other cullin-like proteins Cul3p and Rtt101p. Additionally we described the conservation of the Rub pathway because plant RUB1 can conjugated to yeast Cdc53p- in yeast. In the model plant Arabidopsis thaliana, we characterized the Rub activating enzymes and showed that they are not biochemically equivalent. We also showed that the Rub pathway is essential in plants and characterized plants with reduced levels of rub proteins. These plants are affected in multiple developmental processes. We discovered that they over-produce ethylene as dark-grown seedlings. We characterized a mutant allele of CULLIN1 in Arabidopsis with impaired interaction with RBX and showed that it is unstable in vivo. We used our knowledge of monitoring protein degradation to map the degradation determinants in a plant transcription factor. Finally, we took a mass spectrometric approach to identify novel Rub targets in plants and identified DDB1a, a subunit of an different ubiquitin ligase as a potential Rub-modified protein. Altogether, these studies have advanced our knowledge of the Rub pathway in all organisms.« less

  13. Oxidative DNA damage background estimated by a system model of base excision repair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokhansanj, B A; Wilson, III, D M

    Human DNA can be damaged by natural metabolism through free radical production. It has been suggested that the equilibrium between innate damage and cellular DNA repair results in an oxidative DNA damage background that potentially contributes to disease and aging. Efforts to quantitatively characterize the human oxidative DNA damage background level based on measuring 8-oxoguanine lesions as a biomarker have led to estimates varying over 3-4 orders of magnitude, depending on the method of measurement. We applied a previously developed and validated quantitative pathway model of human DNA base excision repair, integrating experimentally determined endogenous damage rates and model parametersmore » from multiple sources. Our estimates of at most 100 8-oxoguanine lesions per cell are consistent with the low end of data from biochemical and cell biology experiments, a result robust to model limitations and parameter variation. Our results show the power of quantitative system modeling to interpret composite experimental data and make biologically and physiologically relevant predictions for complex human DNA repair pathway mechanisms and capacity.« less

  14. Pharmacophore based design of some multi-targeted compounds targeted against pathways of diabetic complications.

    PubMed

    Chadha, Navriti; Silakari, Om

    2017-09-01

    Diabetic complications is a complex metabolic disorder developed primarily due to prolonged hyperglycemia in the body. The complexity of the disease state as well as the unifying pathophysiology discussed in the literature reports exhibited that the use of multi-targeted agents with multiple complementary biological activities may offer promising therapy for the intervention of the disease over the single-target drugs. In the present study, novel thiazolidine-2,4-dione analogues were designed as multi-targeted agents implicated against the molecular pathways involved in diabetic complications using knowledge based as well as in-silico approaches such as pharmacophore mapping, molecular docking etc. The hit molecules were duly synthesized and biochemical estimation of these molecules against aldose reductase (ALR2), protein kinase Cβ (PKCβ) and poly (ADP-ribose) polymerase 1 (PARP-1) led to identification of compound 2 that showed good potency against PARP-1 and ALR2 enzymes. These positive results support the progress of a low cost multi-targeted agent with putative roles in diabetic complications. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Mi; Pu, Yunqiao; Yoo, Chang Geun

    The native recalcitrance of plants hinders the biomass conversion process using current biorefinery techniques. Down-regulation of the caffeic acid O-methyltransferase (COMT) gene in the lignin biosynthesis pathway of switchgrass reduced the thermochemical and biochemical conversion recalcitrance of biomass. Due to potential environmental influences on lignin biosynthesis and deposition, studying the consequences of physicochemical changes in field-grown plants without pretreatment is essential to evaluate the performance of lignin-altered plants. In this study, we determined the chemical composition, cellulose crystallinity and the degree of its polymerization, molecular weight of hemicellulose, and cellulose accessibility of cell walls in order to better understand themore » fundamental features of why biomass is recalcitrant to conversion without pretreatment. The most important is to investigate whether traits and features are stable in the dynamics of field environmental effects over multiple years.« less

  16. The Smith-Lemli-Opitz syndrome

    PubMed Central

    Kelley, R.; Hennekam, R.

    2000-01-01

    The Smith-Lemli-Opitz syndrome (SLOS) is one of the archetypical multiple congenital malformation syndromes. The recent discovery of the biochemical cause of SLOS and the subsequent redefinition of SLOS as an inborn error of cholesterol metabolism have led to important new treatment possibilities for affected patients. Moreover, the recent recognition of the important role of cholesterol in vertebrate embryogenesis, especially with regard to the hedgehog embryonic signalling pathway and its effects on the expression of homeobox genes, has provided an explanation for the abnormal morphogenesis in the syndrome. The well known role of cholesterol in the formation of steroid hormones has also provided a possible explanation for the abnormal behavioural characteristics of SLOS.


Keywords: Smith-Lemli-Opitz syndrome; cholesterol metabolism; 7-dehydrocholesterol reductase; clinical history; management PMID:10807690

  17. Novel Medical Strategies Combating Nonmelanoma Skin Cancer

    PubMed Central

    Bhandari, Prasan R; Pai, Varadraj V

    2014-01-01

    The incidence of nonmelanoma skin cancer (NMSC) continues to rise, partly because of aging, the frequency of early childhood sunburns, and sporadic extreme recreational sun exposure. A nonsurgical approach to selected cutaneous malignancy could possibly reduce the cost as well as morbidity of surgical treatment for NMSC. There has been growing interest in isolating compounds that could suppress or reverse the biochemical changes necessary for cutaneous malignancies to progress by pharmacologic intervention. By targeting diverse pathways recognized as important in the pathogenesis of nonmelanoma skin cancers, a combination approach with multiple agents or addition of chemopreventative agents to topical sunscreens may offer the potential for novel and synergistic therapies in treating nonmelanoma skin cancer. This preliminary information will expand to include more therapeutic options for NMSC in the future. PMID:25484380

  18. Transhydrogenase Promotes the Robustness and Evolvability of E. coli Deficient in NADPH Production

    PubMed Central

    Chou, Hsin-Hung; Marx, Christopher J.; Sauer, Uwe

    2015-01-01

    Metabolic networks revolve around few metabolites recognized by diverse enzymes and involved in myriad reactions. Though hub metabolites are considered as stepping stones to facilitate the evolutionary expansion of biochemical pathways, changes in their production or consumption often impair cellular physiology through their system-wide connections. How does metabolism endure perturbations brought immediately by pathway modification and restore hub homeostasis in the long run? To address this question we studied laboratory evolution of pathway-engineered Escherichia coli that underproduces the redox cofactor NADPH on glucose. Literature suggests multiple possibilities to restore NADPH homeostasis. Surprisingly, genetic dissection of isolates from our twelve evolved populations revealed merely two solutions: (1) modulating the expression of membrane-bound transhydrogenase (mTH) in every population; (2) simultaneously consuming glucose with acetate, an unfavored byproduct normally excreted during glucose catabolism, in two subpopulations. Notably, mTH displays broad phylogenetic distribution and has also played a predominant role in laboratory evolution of Methylobacterium extorquens deficient in NADPH production. Convergent evolution of two phylogenetically and metabolically distinct species suggests mTH as a conserved buffering mechanism that promotes the robustness and evolvability of metabolism. Moreover, adaptive diversification via evolving dual substrate consumption highlights the flexibility of physiological systems to exploit ecological opportunities. PMID:25715029

  19. Sphingolipid Signaling and Hematopoietic Malignancies: To the Rheostat and Beyond

    PubMed Central

    Loh, Kenneth C.; Baldwin, Dianna; Saba, Julie D.

    2011-01-01

    Sphingosine-1-phosphate (S1P) is a bioactive lipid with diverse functions including the promotion of cell survival, proliferation, and migration, as well as the regulation of angiogenesis, inflammation, immunity, vascular permeability and nuclear mechanisms that control gene transcription. S1P is derived from metabolism of ceramide, which itself has diverse and generally growth-inhibitory effects through its impact on downstream targets involved in regulation of apoptosis, senescence and cell cycle progression. Regulation of ceramide, S1P and the biochemical steps that modulate the balance and interconversion of these two lipids are major determinants of cell fate, a concept referred to as the “sphingolipid rheostat.” There is abundant evidence that the sphingolipid rheostat plays a role in the origination, progression and drug resistance patterns of hematopoietic malignancies. The pathway has also been exploited to circumvent the problem of chemotherapy resistance in leukemia and lymphoma. Given the broad effects of sphingolipids, targeting multiple steps in the metabolic pathway may provide possible therapeutic avenues. However, new observations have revealed that sphingolipid signaling effects are more complex than previously recognized, requiring a revision of the sphingolipid rheostat model. Here, we summarize recent insights regarding the sphingolipid metabolic pathway and its role in hematopoietic malignancies. PMID:21707493

  20. Assembly and Multiplex Genome Integration of Metabolic Pathways in Yeast Using CasEMBLR.

    PubMed

    Jakočiūnas, Tadas; Jensen, Emil D; Jensen, Michael K; Keasling, Jay D

    2018-01-01

    Genome integration is a vital step for implementing large biochemical pathways to build a stable microbial cell factory. Although traditional strain construction strategies are well established for the model organism Saccharomyces cerevisiae, recent advances in CRISPR/Cas9-mediated genome engineering allow much higher throughput and robustness in terms of strain construction. In this chapter, we describe CasEMBLR, a highly efficient and marker-free genome engineering method for one-step integration of in vivo assembled expression cassettes in multiple genomic sites simultaneously. CasEMBLR capitalizes on the CRISPR/Cas9 technology to generate double-strand breaks in genomic loci, thus prompting native homologous recombination (HR) machinery to integrate exogenously derived homology templates. As proof-of-principle for microbial cell factory development, CasEMBLR was used for one-step assembly and marker-free integration of the carotenoid pathway from 15 exogenously supplied DNA parts into three targeted genomic loci. As a second proof-of-principle, a total of ten DNA parts were assembled and integrated in two genomic loci to construct a tyrosine production strain, and at the same time knocking out two genes. This new method complements and improves the field of genome engineering in S. cerevisiae by providing a more flexible platform for rapid and precise strain building.

  1. Identification of an Mg2+-independent soluble phosphatidate phosphatase in cottonseed (Gossypium hirsutum L.)

    USDA-ARS?s Scientific Manuscript database

    Cotton (Gossypium hirsutum L.) provides a major source of oil for food and feed industries, but little was known about the oil biosynthesis pathway in cottonseed. Towards understanding the biochemical pathway of oil accumulation in cottonseed, this study focused on phosphatidic acid phosphatase (PAP...

  2. Gluconeogenesis: An ancient biochemical pathway with a new twist

    PubMed Central

    Miyamoto, Tetsuya; Amrein, Hubert

    2017-01-01

    ABSTRACT Synthesis of sugars from simple carbon sources is critical for survival of animals under limited nutrient availability. Thus, sugar-synthesizing enzymes should be present across the entire metazoan spectrum. Here, we explore the evolution of glucose and trehalose synthesis using a phylogenetic analysis of enzymes specific for the two pathways. Our analysis reveals that the production of trehalose is the more ancestral biochemical process, found in single cell organisms and primitive metazoans, but also in insects. The gluconeogenic-specific enzyme glucose-6-phosphatase (G6Pase) first appears in Cnidaria, but is also present in Echinodermata, Mollusca and Vertebrata. Intriguingly, some species of nematodes and arthropods possess the genes for both pathways. Moreover, expression data from Drosophila suggests that G6Pase and, hence, gluconeogenesis, initially had a neuronal function. We speculate that in insects—and possibly in some vertebrates—gluconeogenesis may be used as a means of neuronal signaling. PMID:28121487

  3. Gluconeogenesis: An ancient biochemical pathway with a new twist.

    PubMed

    Miyamoto, Tetsuya; Amrein, Hubert

    2017-07-03

    Synthesis of sugars from simple carbon sources is critical for survival of animals under limited nutrient availability. Thus, sugar-synthesizing enzymes should be present across the entire metazoan spectrum. Here, we explore the evolution of glucose and trehalose synthesis using a phylogenetic analysis of enzymes specific for the two pathways. Our analysis reveals that the production of trehalose is the more ancestral biochemical process, found in single cell organisms and primitive metazoans, but also in insects. The gluconeogenic-specific enzyme glucose-6-phosphatase (G6Pase) first appears in Cnidaria, but is also present in Echinodermata, Mollusca and Vertebrata. Intriguingly, some species of nematodes and arthropods possess the genes for both pathways. Moreover, expression data from Drosophila suggests that G6Pase and, hence, gluconeogenesis, initially had a neuronal function. We speculate that in insects-and possibly in some vertebrates-gluconeogenesis may be used as a means of neuronal signaling.

  4. Biochemical Basis of Sestrin Physiological Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Allison; Cho, Chun-Seok; Namkoong, Sim

    Excessive accumulation of reactive oxygen species (ROS) and chronic activation of mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) are well-characterized promoters of aging and age-associated degenerative pathologies. Sestrins, a family of highly conserved stress-inducible proteins, are important negative regulators of both ROS and mTORC1 signaling pathways; however, the mechanistic basis of how Sestrins suppress these pathways remains elusive. In the past couple of years, breakthrough discoveries about Sestrin signaling and its molecular nature have markedly increased our biochemical understanding of Sestrin function. These discoveries have also uncovered new potential therapeutic strategies that may eventually enable us to attenuate agingmore » and age-associated diseases.« less

  5. Gender Performance Differences in Biochemistry

    ERIC Educational Resources Information Center

    Rauschenberger, Matthew M.; Sweeder, Ryan D.

    2010-01-01

    This study examined the historical performance of students at Michigan State University in a two-part biochemistry series Biochem I (n = 5,900) and Biochem II (n = 5,214) for students enrolled from 1997 to 2009. Multiple linear regressions predicted 54.9-87.5% of the variance in student from Biochem I grade and 53.8-76.1% of the variance in…

  6. Renin Angiotensin Aldosterone System (RAAS): its biology and drug targets for treating diabetic nephropathy.

    PubMed

    Zain, Maryam; Awan, Fazli Rabbi

    2014-09-01

    Diabetes mellitus is a multifactorial disorder of hyperglycemia caused by a combination of biochemical, molecular and genetic factors, which leads to the dysfunction of various organs including kidneys. Diabetic nephropathy (DN) is one of the microvascular complications of diabetes that results due to poor glycemic control. Several molecular and biochemical pathways have been implicated in the pathogenesis of DN. Of these, the Renin Angiotensin Aldosterone System (RAAS) is considered as a key pathway. RAAS involves various subsystems which contribute to the development of DN. Mutations in several genes of the RAAS pathway have been associated with the development of DN. These genes or their products present them as therapeutic targets for potent drugs to control or prevent DN, and development of new drugs for targeting the RAAS. Drugs in use for DN are mainly the Angiotensin Converting Enzyme (ACE) inhibitors, Angiotensin Receptors Blockers (ARB) and renin inhibitors which play important roles in reducing DN. Hence, the present review is focused on the pathophysiology and genetic factors for DN by exploring the RAAS pathway and emphasizing the benefits of blocking this pathway to control and prevent DN.

  7. Overcoming resistance to molecularly targeted anticancer therapies: Rational drug combinations based on EGFR and MAPK inhibition for solid tumours and haematologic malignancies.

    PubMed

    Tortora, Giampaolo; Bianco, Roberto; Daniele, Gennaro; Ciardiello, Fortunato; McCubrey, James A; Ricciardi, Maria Rosaria; Ciuffreda, Ludovica; Cognetti, Francesco; Tafuri, Agostino; Milella, Michele

    2007-06-01

    Accumulating evidence suggests that cancer can be envisioned as a "signaling disease", in which alterations in the cellular genome affect the expression and/or function of oncogenes and tumour suppressor genes. This ultimately disrupts the physiologic transmission of biochemical signals that normally regulate cell growth, differentiation and programmed cell death (apoptosis). From a clinical standpoint, signal transduction inhibition as a therapeutic strategy for human malignancies has recently achieved remarkable success. However, as additional drugs move forward into the clinical arena, intrinsic and acquired resistance to "targeted" agents becomes an issue for their clinical utility. One way to overcome resistance to targeted agents is to identify genetic and epigenetic aberrations underlying sensitivity/resistance, thus enabling the selection of patients that will most likely benefit from a specific therapy. Since resistance often ensues as a result of the concomitant activation of multiple, often overlapping, signaling pathways, another possibility is to interfere with multiple, cross-talking pathways involved in growth and survival control in a rational, mechanism-based, fashion. These concepts may be usefully applied, among others, to agents that target two major signal transduction pathways: the one initiated by epidermal growth factor receptor (EGFR) signaling and the one converging on mitogen-activated protein kinase (MAPK) activation. Here, we review the molecular mechanisms of sensitivity/resistance to EGFR inhibitors, as well as the rationale for combining them with other targeted agents, in an attempt to overcome resistance. In the second part of the paper, we review MAPK-targeted agents, focusing on their therapeutic potential in haematologic malignancies, and examine the prospects for combinations of MAPK inhibitors with cytotoxic agents or other signal transduction-targeted agents to obtain synergistic anti-tumour effects.

  8. Overcoming resistance to molecularly targeted anticancer therapies: rational drug combinations based on EGFR and MAPK inhibition for solid tumours and haematologic malignancies

    PubMed Central

    Tortora, Giampaolo; Bianco, Roberto; Daniele, Gennaro; Ciardiello, Fortunato; McCubrey, James A; Ricciardi, Maria Rosaria; Ciuffreda, Ludovica; Cognetti, Francesco; Tafuri, Agostino; Milella, Michele

    2007-01-01

    Accumulating evidence suggests that cancer can be envisioned as a “signaling disease”, in which alterations in the cellular genome affect the expression and/or function of oncogenes and tumour suppressor genes. This ultimately disrupts the physiologic transmission of biochemical signals that normally regulate cell growth, differentiation and programmed cell death (apoptosis). From a clinical standpoint, signal transduction inhibition as a therapeutic strategy for human malignancies has recently achieved remarkable success. However, as additional drugs move forward into the clinical arena, intrinsic and acquired resistance to “targeted” agents becomes an issue for their clinical utility. One way to overcome resistance to targeted agents is to identify genetic and epigenetic aberrations underlying sensitivity/resistance, thus enabling the selection of patients that will most likely benefit from a specific therapy. Since resistance often ensues as a result of the concomitant activation of multiple, often overlapping, signaling pathways, another possibility is to interfere with multiple, cross-talking pathways involved in growth and survival control in a rational, mechanism-based, fashion. These concepts may be usefully applied, among others, to agents that target two major signal transduction pathways: the one initiated by epidermal growth factor receptor (EGFR) signaling and the one converging on mitogen-activated protein kinase (MAPK) activation. Here we review the molecular mechanisms of sensitivity/resistance to EGFR inhibitors, as well as the rationale for combining them with other targeted agents, in an attempt to overcome resistance. In the second part of the paper, we review MAPK-targeted agents, focusing on their therapeutic potential in hematologic malignancies, and examine the prospects for combinations of MAPK inhibitors with cytotoxic agents or other signal transduction-targeted agents to obtain synergistic anti-tumour effects. PMID:17482503

  9. Investigation on biochemical compositional changes during the microbial fermentation process of Fu brick tea by LC-MS based metabolomics.

    PubMed

    Xu, Jie; Hu, Feng-Lin; Wang, Wei; Wan, Xiao-Chun; Bao, Guan-Hu

    2015-11-01

    Fu brick tea (FBT) is a unique post-fermented tea product which is fermented with fungi during the manufacturing process. In this study, we investigated the biochemical compositional changes occurring during the microbial fermentation process (MFP) of FBT based on non-targeted LC-MS, which was a comprehensive and unbiased methodology. Our data analysis took a two-phase approach: (1) comparison of FBT with other tea products using PCA analysis to exhibit the characteristic effect of MFP on the formation of Fu brick tea and (2) comparison of tea samples throughout the MFP of FBT to elucidate the possible key metabolic pathways produced by the fungi. Non-targeted LC-MS analysis clearly distinguished FBT with other tea samples and highlighted some interesting metabolic pathways during the MFP including B ring fission catechin. Our study demonstrated that those fungi had a significant influence on the biochemical profiles in the FBT and consequently contributed to its unique quality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Profile of Circulatory Metabolites in a Relapsing-remitting Animal Model of Multiple Sclerosis using Global Metabolomics

    PubMed Central

    Mangalam, AK; Poisson, LM; Nemutlu, E; Datta, I; Denic, A; Dzeja, P; Rodriguez, M; Rattan, R; Giri, S

    2013-01-01

    Multiple sclerosis (MS) is a chronic inflammatory and demyelinating disease of the CNS. Although, MS is well characterized in terms of the role played by immune cells, cytokines and CNS pathology, nothing is known about the metabolic alterations that occur during the disease process in circulation. Recently, metabolic aberrations have been defined in various disease processes either as contributing to the disease, as potential biomarkers, or as therapeutic targets. Thus in an attempt to define the metabolic alterations that may be associated with MS disease progression, we profiled the plasma metabolites at the chronic phase of disease utilizing relapsing remitting-experimental autoimmune encephalomyelitis (RR-EAE) model in SJL mice. At the chronic phase of the disease (day 45), untargeted global metabolomic profiling of plasma collected from EAE diseased SJL and healthy mice was performed, using a combination of high-throughput liquid-and-gas chromatography with mass spectrometry. A total of 282 metabolites were identified, with significant changes observed in 44 metabolites (32 up-regulated and 12 down-regulated), that mapped to lipid, amino acid, nucleotide and xenobiotic metabolism and distinguished EAE from healthy group (p<0.05, false discovery rate (FDR)<0.23). Mapping the differential metabolite signature to their respective biochemical pathways using the Kyoto Encyclopedia of Genes and Genomics (KEGG) database, we found six major pathways that were significantly altered (containing concerted alterations) or impacted (containing alteration in key junctions). These included bile acid biosynthesis, taurine metabolism, tryptophan and histidine metabolism, linoleic acid and D-arginine metabolism pathways. Overall, this study identified a 44 metabolite signature drawn from various metabolic pathways which correlated well with severity of the EAE disease, suggesting that these metabolic changes could be exploited as (1) biomarkers for EAE/MS progression and (2) to design new treatment paradigms where metabolic interventions could be combined with present and experimental therapeutics to achieve better treatment of MS. PMID:24273690

  11. Construction and completion of flux balance models from pathway databases.

    PubMed

    Latendresse, Mario; Krummenacker, Markus; Trupp, Miles; Karp, Peter D

    2012-02-01

    Flux balance analysis (FBA) is a well-known technique for genome-scale modeling of metabolic flux. Typically, an FBA formulation requires the accurate specification of four sets: biochemical reactions, biomass metabolites, nutrients and secreted metabolites. The development of FBA models can be time consuming and tedious because of the difficulty in assembling completely accurate descriptions of these sets, and in identifying errors in the composition of these sets. For example, the presence of a single non-producible metabolite in the biomass will make the entire model infeasible. Other difficulties in FBA modeling are that model distributions, and predicted fluxes, can be cryptic and difficult to understand. We present a multiple gap-filling method to accelerate the development of FBA models using a new tool, called MetaFlux, based on mixed integer linear programming (MILP). The method suggests corrections to the sets of reactions, biomass metabolites, nutrients and secretions. The method generates FBA models directly from Pathway/Genome Databases. Thus, FBA models developed in this framework are easily queried and visualized using the Pathway Tools software. Predicted fluxes are more easily comprehended by visualizing them on diagrams of individual metabolic pathways or of metabolic maps. MetaFlux can also remove redundant high-flux loops, solve FBA models once they are generated and model the effects of gene knockouts. MetaFlux has been validated through construction of FBA models for Escherichia coli and Homo sapiens. Pathway Tools with MetaFlux is freely available to academic users, and for a fee to commercial users. Download from: biocyc.org/download.shtml. mario.latendresse@sri.com Supplementary data are available at Bioinformatics online.

  12. Therapeutic efficacy of atypical antipsychotic drugs by targeting multiple stress-related metabolic pathways

    PubMed Central

    Cai, H L; Jiang, P; Tan, Q Y; Dang, R L; Tang, M M; Xue, Y; Deng, Y; Zhang, B K; Fang, P F; Xu, P; Xiang, D X; Li, H D; Yao, J K

    2017-01-01

    Schizophrenia (SZ) is considered to be a multifactorial brain disorder with defects involving many biochemical pathways. Patients with SZ show variable responses to current pharmacological treatments of SZ because of the heterogeneity of this disorder. Stress has a significant role in the pathophysiological pathways and therapeutic responses of SZ. Atypical antipsychotic drugs (AAPDs) can modulate the stress response of the hypothalamic–pituitary–adrenal (HPA) axis and exert therapeutic effects on stress by targeting the prefrontal cortex (PFC) and hippocampus. To evaluate the effects of AAPDs (such as clozapine, risperidone and aripiprazole) on stress, we compared neurochemical profile variations in the PFC and hippocampus between rat models of chronic unpredictable mild stress (CUMS) for HPA axis activation and of long-term dexamethasone exposure (LTDE) for HPA axis inhibition, using an ultraperformance liquid chromatography–mass spectrometry (UPLC–MS/MS)-based metabolomic approach and a multicriteria assessment. We identified a number of stress-induced biomarkers comprising creatine, choline, inosine, hypoxanthine, uric acid, allantoic acid, lysophosphatidylcholines (LysoPCs), phosphatidylethanolamines (PEs), corticosterone and progesterone. Specifically, pathway enrichment and correlation analyses suggested that stress induces oxidative damage by disturbing the creatine–phosphocreatine circuit and purine pathway, leading to excessive membrane breakdown. Moreover, our data suggested that the AAPDs tested partially restore stress-induced deficits by increasing the levels of creatine, progesterone and PEs. Thus, the present findings provide a theoretical basis for the hypothesis that a combined therapy using adenosine triphosphate fuel, antioxidants and omega-3 fatty acids as supplements may have synergistic effects on the therapeutic outcome following AAPD treatment. PMID:28509906

  13. Metabolic pathway profiling of mitochondrial respiratory chain mutants in C. elegans

    PubMed Central

    MJ, Falk; Z, Zhang; Rosenjack; Nissim; E, Daikhin; Nissim; MM, Sedensky; M, Yudkoff; PG, Morgan

    2008-01-01

    C. elegans affords a model of primary mitochondrial dysfunction that provides insight into cellular adaptations which accompany mutations in nuclear gene that encode mitochondrial proteins. To this end, we characterized genome-wide expression profiles of C. elegans strains with mutations in nuclear-encoded subunits of respiratory chain complexes. Our goal was to detect concordant changes among clusters of genes that comprise defined metabolic pathways. Results indicate that respiratory chain mutants significantly upregulate a variety of basic cellular metabolic pathways involved in carbohydrate, amino acid, and fatty acid metabolism, as well as cellular defense pathways such as the metabolism of P450 and glutathione. To further confirm and extend expression analysis findings, quantitation of whole worm free amino acid levels was performed in C. elegans mitochondrial mutants for subunits of complexes I, II, and III. Significant differences were seen for 13 of 16 amino acid levels in complex I mutants compared with controls, as well as overarching similarities among profiles of complex I, II, and III mutants compared with controls. The specific pattern of amino acid alterations observed provides novel evidence to suggest that an increase in glutamate-linked transamination reactions caused by the failure of NAD+ dependent oxidation of ketoacids occurs in primary mitochondrial respiratory chain mutants. Recognition of consistent alterations among patterns of nuclear gene expression for multiple biochemical pathways and in quantitative amino acid profiles in a translational genetic model of mitochondrial dysfunction allows insight into the complex pathogenesis underlying primary mitochondrial disease. Such knowledge may enable the development of a metabolomic profiling diagnostic tool applicable to human mitochondrial disease. PMID:18178500

  14. Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology (edited by Gerhard Michal)

    NASA Astrophysics Data System (ADS)

    Voige, Reviewed By William H.

    2000-02-01

    For decades, a wall chart detailing living organisms' metabolic pathways has been a fixture in many classrooms and laboratories where biochemistry is taught. One of the most popular of those charts first appeared 30 years ago. Now its editor, Gerhard Michal, has produced a book that summarizes metabolism (broadly defined) in graphical and textual formats. The book retains the elegance of the chart. Names of molecules are printed in a crisp, easy-to-read font, and structural formulas are shown with exemplary clarity. Color coding serves multiple purposes: to differentiate enzymes, substrates, cofactors, and effector molecules; to indicate in which group or groups of organisms a reaction has been observed; and to distinguish enzymatic reactions from regulatory effects. The primary advantage of presenting this information in book format is immediately apparent. A typical metabolic chart covers about 2 m2; the book has a total surface area nearly 10 times greater. The extra space is used to add explanatory text to the figures and to include many topics not covered by the traditional definition of metabolism. Examples include replication, transcription, translation, reaction mechanisms for proteolytic enzymes, and the role of chaperones in protein folding. Illustrating these topics is not as straightforward as delineating a metabolic pathway, but the author has done an admirable job of designing figures that clarify these and other aspects of biochemistry and complement the accompanying text. A potential deficiency of book format is the inability to clearly show links between different realms of metabolism: carbohydrate and amino acid pathways, for example. The book overcomes this problem in two ways. A diagrammatic overview of metabolism (with references to applicable sections of the book) is printed inside its front cover, and key compounds (pyruvate, for example) have a distinctive green background to provide a visual link between pathways. (The author compares this feature to the hyperlinks in an electronic document.) The book's index is comprehensive and useful. Entries for "phenylketonuria" and "sickle cell anemia", for example, lead to commendably concise summaries of these hereditary diseases (and the relevant metabolic pathway, in the former case). Looking up a specific molecule, however, is less helpful. The listing for fumarate hydratase, a citric acid cycle enzyme, directs the reader to the chapter on special bacterial metabolism but not to the section on the citric acid cycle itself. Literature references are included at the end of each section and are mainly from the 1990s, but they could be more useful. A long section on heme proteins, for example, concludes with eight citations, but their titles are not included, so it is impossible to determine what topic each one addresses. This book will be most useful to those with a good understanding of the fundamentals of biochemistry. Some of the information it presents could easily confuse less experienced readers. For example, it classifies selenocysteine as a standard amino acid in a figure but not in the accompanying text. In the diagram of anaerobic glycolysis, a double-headed arrow for the hexokinase reaction reinforces the frustratingly common student misperception that the phosphoryl group of glucose-6-phosphate can be used to phosphorylate ADP. Biochemical Pathways compiles a large amount of information in a single source. Its good index and clear, concise text and diagrams should make it a reliable way of gaining insight into many biochemical topics. With a price similar to that of most textbooks, it merits a place in the libraries of individuals and academic departments that teach biochemistry.

  15. Target Deconvolution Efforts on Wnt Pathway Screen Reveal Dual Modulation of Oxidative Phosphorylation and SERCA2.

    PubMed

    Casás-Selves, Matias; Zhang, Andrew X; Dowling, James E; Hallén, Stefan; Kawatkar, Aarti; Pace, Nicholas J; Denz, Christopher R; Pontz, Timothy; Garahdaghi, Farzin; Cao, Qing; Sabirsh, Alan; Thakur, Kumar; O'Connell, Nichole; Hu, Jun; Cornella-Taracido, Iván; Weerapana, Eranthie; Zinda, Michael; Goodnow, Robert A; Castaldi, M Paola

    2017-06-21

    Wnt signaling is critical for development, cell proliferation and differentiation, and mutations in this pathway resulting in constitutive signaling have been implicated in various cancers. A pathway screen using a Wnt-dependent reporter identified a chemical series based on a 1,2,3-thiadiazole-5-carboxamide (TDZ) core with sub-micromolar potency. Herein we report a comprehensive mechanism-of-action deconvolution study toward identifying the efficacy target(s) and biological implication of this chemical series involving bottom-up quantitative chemoproteomics, cell biology, and biochemical methods. Through observing the effects of our probes on metabolism and performing confirmatory cellular and biochemical assays, we found that this chemical series inhibits ATP synthesis by uncoupling the mitochondrial potential. Affinity chemoproteomics experiments identified sarco(endo)plasmic reticulum Ca 2+ -dependent ATPase (SERCA2) as a binding partner of the TDZ series, and subsequent validation studies suggest that the TDZ series can act as ionophores through SERCA2 toward Wnt pathway inhibition. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Combining Flux Balance and Energy Balance Analysis for Large-Scale Metabolic Network: Biochemical Circuit Theory for Analysis of Large-Scale Metabolic Networks

    NASA Technical Reports Server (NTRS)

    Beard, Daniel A.; Liang, Shou-Dan; Qian, Hong; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Predicting behavior of large-scale biochemical metabolic networks represents one of the greatest challenges of bioinformatics and computational biology. Approaches, such as flux balance analysis (FBA), that account for the known stoichiometry of the reaction network while avoiding implementation of detailed reaction kinetics are perhaps the most promising tools for the analysis of large complex networks. As a step towards building a complete theory of biochemical circuit analysis, we introduce energy balance analysis (EBA), which compliments the FBA approach by introducing fundamental constraints based on the first and second laws of thermodynamics. Fluxes obtained with EBA are thermodynamically feasible and provide valuable insight into the activation and suppression of biochemical pathways.

  17. Characterization and Detection of a Widely Distributed Gene Cluster That Predicts Anaerobic Choline Utilization by Human Gut Bacteria

    PubMed Central

    Martínez-del Campo, Ana; Bodea, Smaranda; Hamer, Hilary A.; Marks, Jonathan A.; Haiser, Henry J.; Turnbaugh, Peter J.

    2015-01-01

    ABSTRACT Elucidation of the molecular mechanisms underlying the human gut microbiota’s effects on health and disease has been complicated by difficulties in linking metabolic functions associated with the gut community as a whole to individual microorganisms and activities. Anaerobic microbial choline metabolism, a disease-associated metabolic pathway, exemplifies this challenge, as the specific human gut microorganisms responsible for this transformation have not yet been clearly identified. In this study, we established the link between a bacterial gene cluster, the choline utilization (cut) cluster, and anaerobic choline metabolism in human gut isolates by combining transcriptional, biochemical, bioinformatic, and cultivation-based approaches. Quantitative reverse transcription-PCR analysis and in vitro biochemical characterization of two cut gene products linked the entire cluster to growth on choline and supported a model for this pathway. Analyses of sequenced bacterial genomes revealed that the cut cluster is present in many human gut bacteria, is predictive of choline utilization in sequenced isolates, and is widely but discontinuously distributed across multiple bacterial phyla. Given that bacterial phylogeny is a poor marker for choline utilization, we were prompted to develop a degenerate PCR-based method for detecting the key functional gene choline TMA-lyase (cutC) in genomic and metagenomic DNA. Using this tool, we found that new choline-metabolizing gut isolates universally possessed cutC. We also demonstrated that this gene is widespread in stool metagenomic data sets. Overall, this work represents a crucial step toward understanding anaerobic choline metabolism in the human gut microbiota and underscores the importance of examining this microbial community from a function-oriented perspective. PMID:25873372

  18. Biochemical activity and multiple locations of particulate guanylate cyclase in Rhyacophila dorsalis acutidens (Insecta: Trichoptera) provide insights into the cGMP signalling pathway in Malpighian tubules.

    PubMed

    Secca, T; Sciaccaluga, M; Marra, A; Barberini, L; Bicchierai, M C

    2011-04-01

    In insect renal physiology, cGMP and cAMP have important regulatory roles. In Drosophila melanogaster, considered a good model for molecular physiology studies, and in other insects, cGMP and cAMP act as signalling molecules in the Malpighian tubules (MTs). However, many questions related to cyclic nucleotide functions are unsolved in principal cells (PC) and stellate cells (SC), the two cell types that compose the MT. In PC, despite the large body of information available on soluble guanylate cyclase (sGC) in the cGMP pathway, the functional circuit of particulate guanylate cyclase (pGC) remains obscure. In SC, on the other side, the synthesis and physiological role of the cGMP are still unknown. Our biochemical data regarding the presence of cyclic nucleotides in the MTs of Rhyacophila dorsalis acutidens revealed a cGMP level above the 50%, in comparison with the cAMP. The specific activity values for the membrane-bound guanylate cyclase were also recorded, implying that, besides the sGC, pGC is a physiologically relevant source of cGMP in MTs. Cytochemical studies showed ultrastructurally that there was a great deal of pGC on the basolateral membranes of both the principal and stellate cells. In addition, pGC was also detected in the contact zone between the two cell types and in the apical microvillar region of the stellate cells bordering the tubule lumen. The pGC signal is so well represented in PC and, unexpectedly in SC of MTs, that it is possible to hypothesize the existence of still uncharacterized physiological processes regulated by the pGC-cGMP system. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Production of biofuels and biochemicals by in vitro synthetic biosystems: Opportunities and challenges.

    PubMed

    Zhang, Yi-Heng Percival

    2015-11-15

    The largest obstacle to the cost-competitive production of low-value and high-impact biofuels and biochemicals (called biocommodities) is high production costs catalyzed by microbes due to their inherent weaknesses, such as low product yield, slow reaction rate, high separation cost, intolerance to toxic products, and so on. This predominant whole-cell platform suffers from a mismatch between the primary goal of living microbes - cell proliferation and the desired biomanufacturing goal - desired products (not cell mass most times). In vitro synthetic biosystems consist of numerous enzymes as building bricks, enzyme complexes as building modules, and/or (biomimetic) coenzymes, which are assembled into synthetic enzymatic pathways for implementing complicated bioreactions. They emerge as an alternative solution for accomplishing a desired biotransformation without concerns of cell proliferation, complicated cellular regulation, and side-product formation. In addition to the most important advantage - high product yield, in vitro synthetic biosystems feature several other biomanufacturing advantages, such as fast reaction rate, easy product separation, open process control, broad reaction condition, tolerance to toxic substrates or products, and so on. In this perspective review, the general design rules of in vitro synthetic pathways are presented with eight supporting examples: hydrogen, n-butanol, isobutanol, electricity, starch, lactate,1,3-propanediol, and poly-3-hydroxylbutyrate. Also, a detailed economic analysis for enzymatic hydrogen production from carbohydrates is presented to illustrate some advantages of this system and the remaining challenges. Great market potentials will motivate worldwide efforts from multiple disciplines (i.e., chemistry, biology and engineering) to address the remaining obstacles pertaining to cost and stability of enzymes and coenzymes, standardized building parts and modules, biomimetic coenzymes, biosystem optimization, and scale-up, soon. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Multiplatform serum metabolic phenotyping combined with pathway mapping to identify biochemical differences in smokers.

    PubMed

    Kaluarachchi, Manuja R; Boulangé, Claire L; Garcia-Perez, Isabel; Lindon, John C; Minet, Emmanuel F

    2016-10-01

    Determining perturbed biochemical functions associated with tobacco smoking should be helpful for establishing causal relationships between exposure and adverse events. A multiplatform comparison of serum of smokers (n = 55) and never-smokers (n = 57) using nuclear magnetic resonance spectroscopy, UPLC-MS and statistical modeling revealed clustering of the classes, distinguished by metabolic biomarkers. The identified metabolites were subjected to metabolic pathway enrichment, modeling adverse biological events using available databases. Perturbation of metabolites involved in chronic obstructive pulmonary disease, cardiovascular diseases and cancer were identified and discussed. Combining multiplatform metabolic phenotyping with knowledge-based mapping gives mechanistic insights into disease development, which can be applied to next-generation tobacco and nicotine products for comparative risk assessment.

  1. Lego bricks and the octet rule: Molecular models for biochemical pathways with plastic, interlocking toy bricks.

    PubMed

    Lin, Henry J; Lehoang, Jennifer; Kwan, Isabel; Baghaee, Anita; Prasad, Priya; Ha-Chen, Stephanie J; Moss, Tanesha; Woods, Jeremy D

    2018-01-01

    The 8 studs on a 2 × 4 Lego brick conveniently represent the outer shell of electrons for carbon, nitrogen, and oxygen atoms. We used Lego bricks to model these atoms, which are then joined together to form molecules by following the Lewis octet rule. A variety of small biological molecules can be modeled in this way, such as most amino acids, fatty acids, glucose, and various intermediate metabolites. Model building with these familiar toys can be a helpful, hands-on exercise for learning-or re-learning-biochemical pathways. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(1):54-57, 2018. © 2017 The International Union of Biochemistry and Molecular Biology.

  2. Current Status on Biochemistry and Molecular Biology of Microbial Degradation of Nicotine

    PubMed Central

    Gurusamy, Raman; Natarajan, Sakthivel

    2013-01-01

    Bioremediation is one of the most promising methods to clean up polluted environments using highly efficient potent microbes. Microbes with specific enzymes and biochemical pathways are capable of degrading the tobacco alkaloids including highly toxic heterocyclic compound, nicotine. After the metabolic conversion, these nicotinophilic microbes use nicotine as the sole carbon, nitrogen, and energy source for their growth. Various nicotine degradation pathways such as demethylation pathway in fungi, pyridine pathway in Gram-positive bacteria, pyrrolidine pathway, and variant of pyridine and pyrrolidine pathways in Gram-negative bacteria have been reported. In this review, we discussed the nicotine-degrading pathways of microbes and their enzymes and biotechnological applications of nicotine intermediate metabolites. PMID:24470788

  3. An integrated pathway system modeling of Saccharomyces cerevisiae HOG pathway: a Petri net based approach.

    PubMed

    Tomar, Namrata; Choudhury, Olivia; Chakrabarty, Ankush; De, Rajat K

    2013-02-01

    Biochemical networks comprise many diverse components and interactions between them. It has intracellular signaling, metabolic and gene regulatory pathways which are highly integrated and whose responses are elicited by extracellular actions. Previous modeling techniques mostly consider each pathway independently without focusing on the interrelation of these which actually functions as a single system. In this paper, we propose an approach of modeling an integrated pathway using an event-driven modeling tool, i.e., Petri nets (PNs). PNs have the ability to simulate the dynamics of the system with high levels of accuracy. The integrated set of signaling, regulatory and metabolic reactions involved in Saccharomyces cerevisiae's HOG pathway has been collected from the literature. The kinetic parameter values have been used for transition firings. The dynamics of the system has been simulated and the concentrations of major biological species over time have been observed. The phenotypic characteristics of the integrated system have been investigated under two conditions, viz., under the absence and presence of osmotic pressure. The results have been validated favorably with the existing experimental results. We have also compared our study with the study of idFBA (Lee et al., PLoS Comput Biol 4:e1000-e1086, 2008) and pointed out the differences between both studies. We have simulated and monitored concentrations of multiple biological entities over time and also incorporated feedback inhibition by Ptp2 which has not been included in the idFBA study. We have concluded that our study is the first to the best of our knowledge to model signaling, metabolic and regulatory events in an integrated form through PN model framework. This study is useful in computational simulation of system dynamics for integrated pathways as there are growing evidences that the malfunctioning of the interplay among these pathways is associated with disease.

  4. Development of a robust flow cytometry-based pharmacodynamic assay to detect phospho-protein signals for phosphatidylinositol 3-kinase inhibitors in multiple myeloma.

    PubMed

    Li, Congfen; Takahashi, Chikara; Zhang, Liangxuan; Huseni, Mahrukh; Stankovich, Basha; Mashhedi, Haider; Lee, Joanna; French, Dorothy; Anderson, Jeff Eastham; Kim, Doris; Howell, Kathy; Brauer, Matthew J; Kowanetz, Marcin; Yan, Yibing; Humke, Eric; Ebens, Allen; Hampton, Garret; Lackner, Mark R; Hegde, Priti; Jia, Shidong

    2013-03-23

    The phosphatidylinositol 3-kinase (PI3K) pathway plays an important role in multiple myeloma (MM), a blood cancer associated with uncontrolled proliferation of bone marrow plasma cells. This study aimed to develop a robust clinical pharmacodynamic (PD) assay to measure the on-target PD effects of the selective PI3K inhibitor GDC-0941 in MM patients. We conducted an in vitro drug wash-out study to evaluate the feasibility of biochemical approaches in measuring the phosphorylation of S6 ribosomal protein (S6), one of the commonly used PD markers for PI3K pathway inhibition. We then developed a 7-color phospho-specific flow cytometry assay, or phospho flow assay, to measure the phosphorylation state of intracellular S6 in bone marrow aspirate (BMA) and peripheral blood (PB). Integrated mean fluorescence intensity (iMFI) was used to calculate fold changes of phosphorylation. Assay sensitivity was evaluated by comparing phospho flow with Meso Scale Discovery (MSD) and immunohistochemistry (IHC) assays. Finally, a sample handling method was developed to maintain the integrity of phospho signal during sample shipping and storage to ensure clinical application. The phospho flow assay provided single-cell PD monitoring of S6 phosphorylation in tumor and surrogate cells using fixed BMA and PB, assessing pathway modulation in response to GDC-0941 with sensitivity similar to that of MSD assay. The one-shot sample fixation and handling protocol herein demonstrated exceptional preservation of protein phosphorylation. In contrast, the IHC assay was less sensitive in terms of signal quantification while the biochemical approach (MSD) was less suitable to assess PD activities due to the undesirable impact associated with cell isolation on the protein phosphorylation in tumor cells. We developed a robust PD biomarker assay for the clinical evaluation of PI3K inhibitors in MM, allowing one to decipher the PD response in a relevant cell population. To our knowledge, this is the first report of an easily implemented clinical PD assay that incorporates an unbiased one-shot sample handling protocol, all (staining)-in-one (tube) phospho flow staining protocol, and an integrated modified data analysis for PD monitoring of kinase inhibitors in relevant cell populations in BMA and PB. The methods described here ensure a real-time, reliable and reproducible PD readout, which can provide information for dose selection as well as help to identify optimal combinations of targeted agents in early clinical trials.

  5. Development of a robust flow cytometry-based pharmacodynamic assay to detect phospho-protein signals for phosphatidylinositol 3-kinase inhibitors in multiple myeloma

    PubMed Central

    2013-01-01

    Background The phosphatidylinositol 3-kinase (PI3K) pathway plays an important role in multiple myeloma (MM), a blood cancer associated with uncontrolled proliferation of bone marrow plasma cells. This study aimed to develop a robust clinical pharmacodynamic (PD) assay to measure the on-target PD effects of the selective PI3K inhibitor GDC-0941 in MM patients. Methods We conducted an in vitro drug wash-out study to evaluate the feasibility of biochemical approaches in measuring the phosphorylation of S6 ribosomal protein (S6), one of the commonly used PD markers for PI3K pathway inhibition. We then developed a 7-color phospho-specific flow cytometry assay, or phospho flow assay, to measure the phosphorylation state of intracellular S6 in bone marrow aspirate (BMA) and peripheral blood (PB). Integrated mean fluorescence intensity (iMFI) was used to calculate fold changes of phosphorylation. Assay sensitivity was evaluated by comparing phospho flow with Meso Scale Discovery (MSD) and immunohistochemistry (IHC) assays. Finally, a sample handling method was developed to maintain the integrity of phospho signal during sample shipping and storage to ensure clinical application. Results The phospho flow assay provided single-cell PD monitoring of S6 phosphorylation in tumor and surrogate cells using fixed BMA and PB, assessing pathway modulation in response to GDC-0941 with sensitivity similar to that of MSD assay. The one-shot sample fixation and handling protocol herein demonstrated exceptional preservation of protein phosphorylation. In contrast, the IHC assay was less sensitive in terms of signal quantification while the biochemical approach (MSD) was less suitable to assess PD activities due to the undesirable impact associated with cell isolation on the protein phosphorylation in tumor cells. Conclusions We developed a robust PD biomarker assay for the clinical evaluation of PI3K inhibitors in MM, allowing one to decipher the PD response in a relevant cell population. To our knowledge, this is the first report of an easily implemented clinical PD assay that incorporates an unbiased one-shot sample handling protocol, all (staining)-in-one (tube) phospho flow staining protocol, and an integrated modified data analysis for PD monitoring of kinase inhibitors in relevant cell populations in BMA and PB. The methods described here ensure a real-time, reliable and reproducible PD readout, which can provide information for dose selection as well as help to identify optimal combinations of targeted agents in early clinical trials. PMID:23522020

  6. The Application of the Weighted k-Partite Graph Problem to the Multiple Alignment for Metabolic Pathways.

    PubMed

    Chen, Wenbin; Hendrix, William; Samatova, Nagiza F

    2017-12-01

    The problem of aligning multiple metabolic pathways is one of very challenging problems in computational biology. A metabolic pathway consists of three types of entities: reactions, compounds, and enzymes. Based on similarities between enzymes, Tohsato et al. gave an algorithm for aligning multiple metabolic pathways. However, the algorithm given by Tohsato et al. neglects the similarities among reactions, compounds, enzymes, and pathway topology. How to design algorithms for the alignment problem of multiple metabolic pathways based on the similarity of reactions, compounds, and enzymes? It is a difficult computational problem. In this article, we propose an algorithm for the problem of aligning multiple metabolic pathways based on the similarities among reactions, compounds, enzymes, and pathway topology. First, we compute a weight between each pair of like entities in different input pathways based on the entities' similarity score and topological structure using Ay et al.'s methods. We then construct a weighted k-partite graph for the reactions, compounds, and enzymes. We extract a mapping between these entities by solving the maximum-weighted k-partite matching problem by applying a novel heuristic algorithm. By analyzing the alignment results of multiple pathways in different organisms, we show that the alignments found by our algorithm correctly identify common subnetworks among multiple pathways.

  7. Catalytic molecular logic devices by DNAzyme displacement.

    PubMed

    Brown, Carl W; Lakin, Matthew R; Stefanovic, Darko; Graves, Steven W

    2014-05-05

    Chemical reactions catalyzed by DNAzymes offer a route to programmable modification of biomolecules for therapeutic purposes. To this end, we have developed a new type of catalytic DNA-based logic gates in which DNAzyme catalysis is controlled via toehold-mediated strand displacement reactions. We refer to these as DNAzyme displacement gates. The use of toeholds to guide input binding provides a favorable pathway for input recognition, and the innate catalytic activity of DNAzymes allows amplification of nanomolar input concentrations. We demonstrate detection of arbitrary input sequences by rational introduction of mismatched bases into inhibitor strands. Furthermore, we illustrate the applicability of DNAzyme displacement to compute logic functions involving multiple logic gates. This work will enable sophisticated logical control of a range of biochemical modifications, with applications in pathogen detection and autonomous theranostics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Src-like adaptor protein regulates TCR expression on thymocytes by linking the ubiquitin ligase c-Cbl to the TCR complex.

    PubMed

    Myers, Margaret D; Sosinowski, Tomasz; Dragone, Leonard L; White, Carmen; Band, Hamid; Gu, Hua; Weiss, Arthur

    2006-01-01

    The adaptor molecule SLAP and E3 ubiquitin ligase c-Cbl each regulate expression of T cell receptor (TCR)-CD3 on thymocytes. Here we provide genetic and biochemical evidence that both molecules function in the same pathway. TCR-CD3 expression was similar in the absence of SLAP and/or c-Cbl. SLAP and c-Cbl were found to interact, and their expression together downregulated CD3epsilon. This required multiple domains in SLAP and the ring finger of c-Cbl. Furthermore, expression of SLAP and c-Cbl together induced TCRzeta ubiquitination and degradation, preventing the accumulation of fully assembled recycling TCR complexes. These studies indicate that SLAP links the E3 ligase activity of c-Cbl to the TCR, allowing for stage-specific regulation of TCR expression.

  9. Responds of Bone Cells to Microgravity: Ground-Based Research

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Li, Jingbao; Xu, Huiyun; Yang, Pengfei; Xie, Li; Qian, Airong; Zhao, Yong; Shang, Peng

    2015-11-01

    Severe loss of bone occurs due to long-duration spaceflight. Mechanical loading stimulates bone formation, while bone degradation happens under mechanical unloading. Bone remodeling is a dynamic process in which bone formation and bone resorption are tightly coupled. Increased bone resorption and decreased bone formation caused by reduced mechanical loading, generally result in disrupted bone remodeling. Bone remodeling is orchestrated by multiple bone cells including osteoblast, osteocyte, osteoclast and mesenchymal stem cell. It is yet not clear that how these bone cells sense altered gravity, translate physical stimulus into biochemical signals, and then regulate themselves structurally and functionally. In this paper, studies elucidating the bioeffects of microgravity on bone cells (osteoblast, osteocyte, osteoclast, mesenchymal stem cell) using various platforms including spaceflight and ground-based simulated microgravity were summarized. Promising gravity-sensitive signaling pathways and protein molecules were proposed.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garige, Mamatha; Walters, Eric, E-mail: ewalters@howard.edu

    The molecular basis for nutraceutical properties of the polyphenol curcumin (Curcuma longa, Turmeric) is complex, affecting multiple factors that regulate cell signaling and homeostasis. Here, we report the effect of curcumin on cellular and developmental mechanisms in the eukaryotic model, Dictyostelium discoideum. Dictyostelium proliferation was inhibited in the presence of curcumin, which also suppressed the prestarvation marker, discoidin I, members of the yakA-mediated developmental signaling pathway, and expression of the extracellular matrix/cell adhesion proteins (DdCAD and csA). This resulted in delayed chemotaxis, adhesion, and development of the organism. In contrast to the inhibitory effects on developmental genes, curcumin induced gstAmore » gene expression, overall GST activity, and generated production of reactive oxygen species. These studies expand our knowledge of developmental and biochemical signaling influenced by curcumin, and lends greater consideration of GST enzyme function in eukaryotic cell signaling, development, and differentiation.« less

  11. Plant-bacterial pathogen interactions mediated by type III effectors.

    PubMed

    Feng, Feng; Zhou, Jian-Min

    2012-08-01

    Effectors secreted by the bacterial type III system play a central role in the interaction between Gram-negative bacterial pathogens and their host plants. Recent advances in the effector studies have helped cementing several key concepts concerning bacterial pathogenesis, plant immunity, and plant-pathogen co-evolution. Type III effectors use a variety of biochemical mechanisms to target specific host proteins or DNA for pathogenesis. The identifications of their host targets led to the identification of novel components of plant innate immune system. Key modules of plant immune signaling pathways such as immune receptor complexes and MAPK cascades have emerged as a major battle ground for host-pathogen adaptation. These modules are attacked by multiple type III effectors, and some components of these modules have evolved to actively sense the effectors and trigger immunity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. [Fe-S] cluster assembly in the apicoplast and its indispensability in mosquito stages of the malaria parasite.

    PubMed

    Charan, Manish; Choudhary, Hadi Hasan; Singh, Nidhi; Sadik, Mohammad; Siddiqi, Mohammad Imran; Mishra, Satish; Habib, Saman

    2017-08-01

    The relict plastid (apicoplast) of the malaria parasite is the site for important biochemical pathways and is essential for parasite survival. The sulfur mobilization (SUF) pathway of iron-sulfur [Fe-S] cluster assembly in the apicoplast of Plasmodium spp. is of interest due to its absence in the human host suggesting the possibility of antimalarial intervention through apicoplast [Fe-S] biogenesis. We report biochemical characterization of components of the Plasmodium falciparum apicoplast SUF pathway after the first step of SUF. In vitro interaction experiments and in vivo cross-linking showed that apicoplast-encoded PfSufB and apicoplast-targeted PfSufC and PfSufD formed a complex. The PfSufB-C 2 -D complex could function as a scaffold to assemble [4Fe-4S] clusters in vitro and activity of the PfSufC ATPase was enhanced by PfSufD. Two carrier proteins, the NifU-like protein PfNfu and the A-type carrier PfSufA are homodimers, the former mediating transfer of [4Fe-4S] from the scaffold to a model [4Fe-4S] target protein with higher efficiency. Conditional knockout of SufS, the enzyme catalyzing the first step of SUF, by selective excision in the mosquito stages of Plasmodium berghei severely impaired development of sporozoites in oocysts establishing essentiality of the SUF machinery in the vector. Our results delineate steps of the complete apicoplast SUF pathway and demonstrate its critical role in the parasite life cycle. © 2017 Federation of European Biochemical Societies.

  13. Evidence from Biochemical Pathways in Favor of Unfinished Evolution Rather than Intelligent Design

    ERIC Educational Resources Information Center

    Behrman, Edward J.; Marzluf, George A.

    2004-01-01

    An argument is made in favor of imperfect or unfinished evolution based on some metabolic pathways in which it seems that intelligent design would have done better. The case studies noted indicate the absence of highly intelligent design and are not intended as comprehensive collection but as a limited sample of inefficient situations in…

  14. genome-wide association and metabolic pathway analysis of corn earworm resistance in maize

    Treesearch

    Marilyn L. Warburton; Erika D. Womack; Juliet D. Tang; Adam Thrash; J. Spencer Smith; Wenwei Xu; Seth C. Murray; W. Paul Williams

    2018-01-01

    Maize (Zea mays mays L.) is a staple crop of economic, industrial, and food security importance. Damage to the growing ears by corn earworm [Helicoverpa zea (Boddie)] is a major economic burden and increases secondary fungal infections and mycotoxin levels. To identify biochemical pathways associated with native resistance mechanisms, a genome-wide...

  15. Refinement of light-responsive transcript lists using rice oligonucleotide arrays: evaluation of gene-redundancy.

    PubMed

    Jung, Ki-Hong; Dardick, Christopher; Bartley, Laura E; Cao, Peijian; Phetsom, Jirapa; Canlas, Patrick; Seo, Young-Su; Shultz, Michael; Ouyang, Shu; Yuan, Qiaoping; Frank, Bryan C; Ly, Eugene; Zheng, Li; Jia, Yi; Hsia, An-Ping; An, Kyungsook; Chou, Hui-Hsien; Rocke, David; Lee, Geun Cheol; Schnable, Patrick S; An, Gynheung; Buell, C Robin; Ronald, Pamela C

    2008-10-06

    Studies of gene function are often hampered by gene-redundancy, especially in organisms with large genomes such as rice (Oryza sativa). We present an approach for using transcriptomics data to focus functional studies and address redundancy. To this end, we have constructed and validated an inexpensive and publicly available rice oligonucleotide near-whole genome array, called the rice NSF45K array. We generated expression profiles for light- vs. dark-grown rice leaf tissue and validated the biological significance of the data by analyzing sources of variation and confirming expression trends with reverse transcription polymerase chain reaction. We examined trends in the data by evaluating enrichment of gene ontology terms at multiple false discovery rate thresholds. To compare data generated with the NSF45K array with published results, we developed publicly available, web-based tools (www.ricearray.org). The Oligo and EST Anatomy Viewer enables visualization of EST-based expression profiling data for all genes on the array. The Rice Multi-platform Microarray Search Tool facilitates comparison of gene expression profiles across multiple rice microarray platforms. Finally, we incorporated gene expression and biochemical pathway data to reduce the number of candidate gene products putatively participating in the eight steps of the photorespiration pathway from 52 to 10, based on expression levels of putatively functionally redundant genes. We confirmed the efficacy of this method to cope with redundancy by correctly predicting participation in photorespiration of a gene with five paralogs. Applying these methods will accelerate rice functional genomics.

  16. Learning and memory deficits consequent to reduction of the fragile X mental retardation protein result from metabotropic glutamate receptor-mediated inhibition of cAMP signaling in Drosophila.

    PubMed

    Kanellopoulos, Alexandros K; Semelidou, Ourania; Kotini, Andriana G; Anezaki, Maria; Skoulakis, Efthimios M C

    2012-09-19

    Loss of the RNA-binding fragile X protein [fragile X mental retardation protein (FMRP)] results in a spectrum of cognitive deficits, the fragile X syndrome (FXS), while aging individuals with decreased protein levels present with a subset of these symptoms and tremor. The broad range of behavioral deficits likely reflects the ubiquitous distribution and multiple functions of the protein. FMRP loss is expected to affect multiple neuronal proteins and intracellular signaling pathways, whose identity and interactions are essential in understanding and ameliorating FXS symptoms. We used heterozygous mutants and targeted RNA interference-mediated abrogation in Drosophila to uncover molecular pathways affected by FMRP reduction. We present evidence that FMRP loss results in excess metabotropic glutamate receptor (mGluR) activity, attributable at least in part to elevation of the protein in affected neurons. Using high-resolution behavioral, genetic, and biochemical analyses, we present evidence that excess mGluR upon FMRP attenuation is linked to the cAMP decrement reported in patients and models, and underlies olfactory associative learning and memory deficits. Furthermore, our data indicate positive transcriptional regulation of the fly fmr1 gene by cAMP, via protein kinase A, likely through the transcription factor CREB. Because the human Fmr1 gene also contains CREB binding sites, the interaction of mGluR excess and cAMP signaling defects we present suggests novel combinatorial pharmaceutical approaches to symptom amelioration upon FMRP attenuation.

  17. Timescale analysis of rule-based biochemical reaction networks

    PubMed Central

    Klinke, David J.; Finley, Stacey D.

    2012-01-01

    The flow of information within a cell is governed by a series of protein-protein interactions that can be described as a reaction network. Mathematical models of biochemical reaction networks can be constructed by repetitively applying specific rules that define how reactants interact and what new species are formed upon reaction. To aid in understanding the underlying biochemistry, timescale analysis is one method developed to prune the size of the reaction network. In this work, we extend the methods associated with timescale analysis to reaction rules instead of the species contained within the network. To illustrate this approach, we applied timescale analysis to a simple receptor-ligand binding model and a rule-based model of Interleukin-12 (IL-12) signaling in näive CD4+ T cells. The IL-12 signaling pathway includes multiple protein-protein interactions that collectively transmit information; however, the level of mechanistic detail sufficient to capture the observed dynamics has not been justified based upon the available data. The analysis correctly predicted that reactions associated with JAK2 and TYK2 binding to their corresponding receptor exist at a pseudo-equilibrium. In contrast, reactions associated with ligand binding and receptor turnover regulate cellular response to IL-12. An empirical Bayesian approach was used to estimate the uncertainty in the timescales. This approach complements existing rank- and flux-based methods that can be used to interrogate complex reaction networks. Ultimately, timescale analysis of rule-based models is a computational tool that can be used to reveal the biochemical steps that regulate signaling dynamics. PMID:21954150

  18. Laterally confined growth of cells induces nuclear reprogramming in the absence of exogenous biochemical factors.

    PubMed

    Roy, Bibhas; Venkatachalapathy, Saradha; Ratna, Prasuna; Wang, Yejun; Jokhun, Doorgesh Sharma; Nagarajan, Mallika; Shivashankar, G V

    2018-05-22

    Cells in tissues undergo transdifferentiation programs when stimulated by specific mechanical and biochemical signals. While seminal studies have demonstrated that exogenous biochemical factors can reprogram somatic cells into pluripotent stem cells, the critical roles played by mechanical signals in such reprogramming process have not been well documented. In this paper, we show that laterally confined growth of fibroblasts on micropatterned substrates induces nuclear reprogramming with high efficiency in the absence of any exogenous reprogramming factors. We provide compelling evidence on the induction of stem cell-like properties using alkaline phosphatase assays and expression of pluripotent markers. Early onset of reprogramming was accompanied with enhanced nuclear dynamics and changes in chromosome intermingling degrees, potentially facilitating rewiring of the genome. Time-lapse analysis of promoter occupancy by immunoprecipitation of H3K9Ac chromatin fragments revealed that epithelial, proliferative, and reprogramming gene promoters were progressively acetylated, while mesenchymal promoters were deacetylated by 10 days. Consistently, RNA sequencing analysis showed a systematic progression from mesenchymal to stem cell transcriptome, highlighting pathways involving mechanisms underlying nuclear reprogramming. We then demonstrated that these mechanically reprogrammed cells could be maintained as stem cells and can be redifferentiated into multiple lineages with high efficiency. Importantly, we also demonstrate the induction of cancer stemness properties in MCF7 cells grown in such laterally confined conditions. Collectively, our results highlight an important generic property of somatic cells that, when grown in laterally confined conditions, acquire stemness. Such mechanical reprogramming of somatic cells demonstrated here has important implications in tissue regeneration and disease models. Copyright © 2018 the Author(s). Published by PNAS.

  19. Bio-Spectroscopic Imaging Provides Evidence of Hippocampal Zn Deficiency and Decreased Lipid Unsaturation in an Accelerated Ageing Mouse Model.

    PubMed

    Fimognari, Nicholas; Hollings, Ashley; Lam, Virginie; Tidy, Rebecca J; Kewish, Cameron M; Albrecht, Matthew A; Takechi, Ryu; Mamo, John C L; Hackett, Mark J

    2018-06-14

    Western society is facing a health epidemic due to the increasing incidence of dementia in ageing populations, and there are still few effective diagnostic methods, minimal treatment options, and no cure. Ageing is the greatest risk factor for memory loss that occurs during the natural ageing process, as well as being the greatest risk factor for neurodegenerative disease such as Alzheimer's disease. Therefore, greater understanding of the biochemical pathways that drive a healthy ageing brain towards dementia (pathological ageing or Alzheimer's disease), is required to accelerate the development of improved diagnostics and therapies. Unfortunately, many animal models of dementia model chronic amyloid precursor protein over-expression, which although highly relevant to mechanisms of amyloidosis and familial Alzheimer's disease, does not model well dementia during the natural ageing process. A promising animal model reported to model mechanisms of accelerated natural ageing and memory impairments, is the senescence accelerated murine prone strain 8 (SAMP8), which has been adopted by many research group to study the biochemical transitions that occur during brain ageing. A limitation to traditional methods of biochemical characterisation is that many important biochemical and elemental markers (lipid saturation, lactate, transition metals) cannot be imaged at meso- or micro-spatial resolution. Therefore, in this investigation we report the first multi-modal biospectroscopic characterisation of the SAMP8 model, and have identified important biochemical and elemental alterations, and co-localisations, between 4 month old SAMP8 mice and the relevant control (SAMR1) mice. Specifically, we demonstrate direct evidence of altered metabolism and disturbed lipid homeostasis within corpus callosum white matter, in addition to localised hippocampal metal deficiencies, in the accelerated ageing phenotype. Such findings have important implication for future research aimed at elucidating specific biochemical pathways for therapeutic intervention.

  20. Classification and Analysis of Regulatory Pathways Using Graph Property, Biochemical and Physicochemical Property, and Functional Property

    PubMed Central

    Cai, Yu-Dong; Chou, Kuo-Chen

    2011-01-01

    Given a regulatory pathway system consisting of a set of proteins, can we predict which pathway class it belongs to? Such a problem is closely related to the biological function of the pathway in cells and hence is quite fundamental and essential in systems biology and proteomics. This is also an extremely difficult and challenging problem due to its complexity. To address this problem, a novel approach was developed that can be used to predict query pathways among the following six functional categories: (i) “Metabolism”, (ii) “Genetic Information Processing”, (iii) “Environmental Information Processing”, (iv) “Cellular Processes”, (v) “Organismal Systems”, and (vi) “Human Diseases”. The prediction method was established trough the following procedures: (i) according to the general form of pseudo amino acid composition (PseAAC), each of the pathways concerned is formulated as a 5570-D (dimensional) vector; (ii) each of components in the 5570-D vector was derived by a series of feature extractions from the pathway system according to its graphic property, biochemical and physicochemical property, as well as functional property; (iii) the minimum redundancy maximum relevance (mRMR) method was adopted to operate the prediction. A cross-validation by the jackknife test on a benchmark dataset consisting of 146 regulatory pathways indicated that an overall success rate of 78.8% was achieved by our method in identifying query pathways among the above six classes, indicating the outcome is quite promising and encouraging. To the best of our knowledge, the current study represents the first effort in attempting to identity the type of a pathway system or its biological function. It is anticipated that our report may stimulate a series of follow-up investigations in this new and challenging area. PMID:21980418

  1. Gel-free/label-free proteomic, photosynthetic, and biochemical analysis of cowpea (Vigna unguiculata [L.] Walp.) resistance against Cowpea severe mosaic virus (CPSMV).

    PubMed

    Varela, Anna Lidia N; Komatsu, Setsuko; Wang, Xin; Silva, Rodolpho G G; Souza, Pedro Filho N; Lobo, Ana Karla M; Vasconcelos, Ilka M; Silveira, Joaquim A G; Oliveira, Jose T A

    2017-06-23

    Cowpea severe mosaic virus (CPSMV) causes significant losses in cowpea (Vigna unguiculata) production. In this present study biochemical, physiological, and proteomic analysis were done to identify pathways and defense proteins that are altered during the incompatible interaction between the cowpea genotype BRS-Marataoã and CPSMV. The leaf protein extracts from mock- (MI) and CPSMV-inoculated plantlets (V) were evaluated at 2 and 6days post-inoculation (DPI). Data support the assumptions that increases in biochemical (high hydrogen peroxide, antioxidant enzymes, and secondary compounds) and physiological responses (high photosynthesis index and chlorophyll content), confirmed by label-free comparative proteomic approach, in which quantitative changes in proteasome proteins, proteins related to photosynthesis, redox homeostasis, regulation factors/RNA processing proteins were observed may be implicated in the resistance of BRS-Marataoã to CPSMV. This pioneering study provides information for the selection of specific pathways and proteins, altered in this incompatible relationship, which could be chosen as targets for detailed studies to advance our understanding of the molecular, physiological, and biochemistry basis of the resistance mechanism of cowpea and design approachs to engineer plants that are more productive. This is a pioneering study in which an incompatible relationship between a resistant cowpea and Cowpea severe mosaic virus (CPSMV) was conducted to comparatively evaluate proteomic profiles by Gel-free/label-free methodology and some physiological and biochemical parameters to shed light on how a resistant cowpea cultivar deals with the virus attack. Specific proteins and associated pathways were altered in the cowpea plants challenged with CPSMV and will contribute to our knowledge on the biological process tailored by cowpea in response to CPSMV. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Comparative clinical study between the effect of fenofibrate alone and its combination with pentoxifylline on biochemical parameters and liver stiffness in patients with non-alcoholic fatty liver disease.

    PubMed

    El-Haggar, Sahar Mohamed; Mostafa, Tarek Mohamed

    2015-07-01

    Non-alcoholic fatty liver disease is a common health problem associated with increased liver and vascular specific complications. The purpose of this study was to assess and compare the effect of fenofibrate alone or in combination with pentoxifylline on the measured biochemical parameters, inflammatory pathway and liver stiffness in patients with non-alcoholic fatty liver disease. The study design was randomized controlled trial. From July 2013 to June 2014, we recruited 90 non-alcoholic fatty liver patients from the Internal Medicine Department at Tanta University Hospital, Egypt. They were classified randomly into two groups to receive fenofibrate 300 mg daily or fenofibrate 300 mg daily plus pentoxifylline 1200 mg/day in three divided doses for 24 weeks. Fasting blood sample was obtained before and 24 weeks after treatment for biochemical analysis of liver and lipid panels, tumor necrosis factor-alpha, hyaluronic acid, transforming growth factor beta 1, fasting plasma insulin and fasting glucose. Liver stiffness measurement was carried out using fibro-scan. Data were statistically analyzed by paired and unpaired Student's t test. The data obtained suggests that adding pentoxifylline to fenofibrate does not provide a beneficial effect on lipid panel, but has a beneficial effect on indirect biochemical markers of hepatic fibrosis, a direct marker linked to matrix deposition (hyaluronic acid), a cytokine/growth factor linked to liver fibrosis (transforming growth factor beta 1), the inflammatory pathway, insulin resistance and liver stiffness as compared to fenofibrate alone. The combination pentoxifylline plus fenofibrate may represent a new therapeutic strategy for non-alcoholic fatty liver disease as it resulted in more beneficial effects on direct and indirect markers of liver fibrosis, liver stiffness, insulin resistance and inflammatory pathway implicated in NAFLD.

  3. Sig2BioPAX: Java tool for converting flat files to BioPAX Level 3 format.

    PubMed

    Webb, Ryan L; Ma'ayan, Avi

    2011-03-21

    The World Wide Web plays a critical role in enabling molecular, cell, systems and computational biologists to exchange, search, visualize, integrate, and analyze experimental data. Such efforts can be further enhanced through the development of semantic web concepts. The semantic web idea is to enable machines to understand data through the development of protocol free data exchange formats such as Resource Description Framework (RDF) and the Web Ontology Language (OWL). These standards provide formal descriptors of objects, object properties and their relationships within a specific knowledge domain. However, the overhead of converting datasets typically stored in data tables such as Excel, text or PDF into RDF or OWL formats is not trivial for non-specialists and as such produces a barrier to seamless data exchange between researchers, databases and analysis tools. This problem is particularly of importance in the field of network systems biology where biochemical interactions between genes and their protein products are abstracted to networks. For the purpose of converting biochemical interactions into the BioPAX format, which is the leading standard developed by the computational systems biology community, we developed an open-source command line tool that takes as input tabular data describing different types of molecular biochemical interactions. The tool converts such interactions into the BioPAX level 3 OWL format. We used the tool to convert several existing and new mammalian networks of protein interactions, signalling pathways, and transcriptional regulatory networks into BioPAX. Some of these networks were deposited into PathwayCommons, a repository for consolidating and organizing biochemical networks. The software tool Sig2BioPAX is a resource that enables experimental and computational systems biologists to contribute their identified networks and pathways of molecular interactions for integration and reuse with the rest of the research community.

  4. Construction of multiple linear regression models using blood biomarkers for selecting against abdominal fat traits in broilers.

    PubMed

    Dong, J Q; Zhang, X Y; Wang, S Z; Jiang, X F; Zhang, K; Ma, G W; Wu, M Q; Li, H; Zhang, H

    2018-01-01

    Plasma very low-density lipoprotein (VLDL) can be used to select for low body fat or abdominal fat (AF) in broilers, but its correlation with AF is limited. We investigated whether any other biochemical indicator can be used in combination with VLDL for a better selective effect. Nineteen plasma biochemical indicators were measured in male chickens from the Northeast Agricultural University broiler lines divergently selected for AF content (NEAUHLF) in the fed state at 46 and 48 d of age. The average concentration of every parameter for the 2 d was used for statistical analysis. Levels of these 19 plasma biochemical parameters were compared between the lean and fat lines. The phenotypic correlations between these plasma biochemical indicators and AF traits were analyzed. Then, multiple linear regression models were constructed to select the best model used for selecting against AF content. and the heritabilities of plasma indicators contained in the best models were estimated. The results showed that 11 plasma biochemical indicators (triglycerides, total bile acid, total protein, globulin, albumin/globulin, aspartate transaminase, alanine transaminase, gamma-glutamyl transpeptidase, uric acid, creatinine, and VLDL) differed significantly between the lean and fat lines (P < 0.01), and correlated significantly with AF traits (P < 0.05). The best multiple linear regression models based on albumin/globulin, VLDL, triglycerides, globulin, total bile acid, and uric acid, had higher R2 (0.73) than the model based only on VLDL (0.21). The plasma parameters included in the best models had moderate heritability estimates (0.21 ≤ h2 ≤ 0.43). These results indicate that these multiple linear regression models can be used to select for lean broiler chickens. © 2017 Poultry Science Association Inc.

  5. In Vitro Reconstitution of Metabolic Pathways: Insights into Nature’s Chemical Logic

    PubMed Central

    Lowry, Brian; Walsh, Christopher T.

    2015-01-01

    In vitro analysis of metabolic pathways is becoming a powerful method to gain a deeper understanding of Nature’s core biochemical transformations. With astounding advancements in biotechnology, purification of a metabolic pathway’s constitutive enzymatic components is becoming a tractable problem, and such in vitro studies allow scientists to capture the finer details of enzymatic reaction mechanisms, kinetics, and the identity of organic product molecules. In this review, we present eleven metabolic pathways that have been the subject of in vitro reconstitution studies in the literature in recent years. In addition, we have selected and analyzed subset of four case studies within these eleven examples that exemplify remarkable organic chemistry occurring within biology. These examples serves as tangible reminders that Nature’s biochemical routes obey the fundamental principles of organic chemistry, and the chemical mechanisms are reminiscent of those featured in traditional synthetic organic routes. The illustrations of biosynthetic chemistry depicted in this review may inspire the development of biomimetic chemistries via abiotic chemical techniques. PMID:26207083

  6. A thermochemical-biochemical hybrid processing of lignocellulosic biomass for producing fuels and chemicals.

    PubMed

    Shen, Yanwen; Jarboe, Laura; Brown, Robert; Wen, Zhiyou

    2015-12-01

    Thermochemical-biological hybrid processing uses thermochemical decomposition of lignocellulosic biomass to produce a variety of intermediate compounds that can be converted into fuels and chemicals through microbial fermentation. It represents a unique opportunity for biomass conversion as it mitigates some of the deficiencies of conventional biochemical (pretreatment-hydrolysis-fermentation) and thermochemical (pyrolysis or gasification) processing. Thermochemical-biological hybrid processing includes two pathways: (i) pyrolysis/pyrolytic substrate fermentation, and (ii) gasification/syngas fermentation. This paper provides a comprehensive review of these two hybrid processing pathways, including the characteristics of fermentative substrates produced in the thermochemical stage and microbial utilization of these compounds in the fermentation stage. The current challenges of these two biomass conversion pathways include toxicity of the crude pyrolytic substrates, the inhibition of raw syngas contaminants, and the mass-transfer limitations in syngas fermentation. Possible approaches for mitigating substrate toxicities are discussed. The review also provides a summary of the current efforts to commercialize hybrid processing. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. libSRES: a C library for stochastic ranking evolution strategy for parameter estimation.

    PubMed

    Ji, Xinglai; Xu, Ying

    2006-01-01

    Estimation of kinetic parameters in a biochemical pathway or network represents a common problem in systems studies of biological processes. We have implemented a C library, named libSRES, to facilitate a fast implementation of computer software for study of non-linear biochemical pathways. This library implements a (mu, lambda)-ES evolutionary optimization algorithm that uses stochastic ranking as the constraint handling technique. Considering the amount of computing time it might require to solve a parameter-estimation problem, an MPI version of libSRES is provided for parallel implementation, as well as a simple user interface. libSRES is freely available and could be used directly in any C program as a library function. We have extensively tested the performance of libSRES on various pathway parameter-estimation problems and found its performance to be satisfactory. The source code (in C) is free for academic users at http://csbl.bmb.uga.edu/~jix/science/libSRES/

  8. The Conserved ATPase Get3/Arr4 Modulates the Activity of Membrane-Associated Proteins in Saccharomyces cerevisiae

    PubMed Central

    Auld, Kathryn L.; Hitchcock, Amy L.; Doherty, Hugh K.; Frietze, Seth; Huang, Linda S.; Silver, Pamela A.

    2006-01-01

    The regulation of cellular membrane dynamics is crucial for maintaining proper cell growth and division. The Cdc48-Npl4-Ufd1 complex is required for several regulated membrane-associated processes as part of the ubiquitin–proteasome system, including ER-associated degradation and the control of lipid composition in yeast. In this study we report the results of a genetic screen in Saccharomyces cerevisiae for extragenic suppressors of a temperature-sensitive npl4 allele and the subsequent analysis of one suppressor, GET3/ARR4. The GET3 gene encodes an ATPase with homology to the regulatory component of the bacterial arsenic pump. Mutants of GET3 rescue several phenotypes of the npl4 mutant and transcription of GET3 is coregulated with the proteasome, illustrating a functional relationship between GET3 and NPL4 in the ubiquitin–proteasome system. We have further found that Get3 biochemically interacts with the trans-membrane domain proteins Get1/Mdm39 and Get2/Rmd7 and that Δget3 is able to suppress phenotypes of get1 and get2 mutants, including sporulation defects. In combination, our characterization of GET3 genetic and biochemical interactions with NPL4, GET1, and GET2 implicates Get3 in multiple membrane-dependent pathways. PMID:16816426

  9. Monitoring the Formation of Autophagosomal Precursor Structures in Yeast Saccharomyces cerevisiae.

    PubMed

    Gómez-Sánchez, R; Sánchez-Wandelmer, J; Reggiori, F

    2017-01-01

    The budding yeast Saccharomyces cerevisiae is a powerful and versatile model organism for studying multiple aspects of the biology of eukaryotic cells, including the molecular principles underlying autophagy. One of the unique advantages of this unicellular system is its amenability to genetic and biochemical approaches, which had a pivotal role in the discovery and characterization of most of the autophagy-related (Atg) proteins, the central players of autophagy. The relevance of investigating autophagy in this cell model lies in the high conservation of this pathway among eukaryotes, i.e., most of the yeast Atg proteins possess one or more mammalian orthologs. In addition to the experimental advantages, a very large collection of reagents keeps S. cerevisiae in a leading position for the study of the molecular mechanism and regulation of autophagy. In this chapter, we describe fluorescence microscopy and biochemical methods that allow to monitor in vivo the assembly the of Atg machinery, a key step of autophagy. These approaches can be very useful to those researchers that would like to assess the progression of the autophagosomal precursor structure formation under various conditions, in the presence of specific Atg protein mutants or in the absence of other factors. © 2017 Elsevier Inc. All rights reserved.

  10. HTLV-1 Tax Functions as a Ubiquitin E3 Ligase for Direct IKK Activation via Synthesis of Mixed-Linkage Polyubiquitin Chains.

    PubMed

    Wang, Chong; Long, Wenying; Peng, Chao; Hu, Lin; Zhang, Qiong; Wu, Ailing; Zhang, Xiaoqing; Duan, Xiaotao; Wong, Catherine C L; Tanaka, Yuetsu; Xia, Zongping

    2016-04-01

    The HTLV-1 oncoprotein Tax plays a key role in CD4+ T cell transformation by promoting cell proliferation and survival, mainly through permanent activation of the NK-κB pathway and induction of many NF-κB target genes. Elucidating the underlying molecular mechanism is therefore critical in understanding HTLV-1-mediated transformation. Current studies have suggested multiple but controversial mechanisms regarding Tax-induced IKK activation mainly due to blending of primary Tax-induced IKK activation events and secondary IKK activation events induced by cytokines secreted by the primary Tax-induced IKK-NF-κB activation events. We reconstituted Tax-stimulated IKK activation in a cell-free system to dissect the essential cellular components for primary IKK activation by Tax and studied the underlying biochemical mechanism. We found that Tax is a putative E3 ubiquitin ligase, which, together with UbcH2, UhcH5c, or UbcH7, catalyzes the assembly of free mixed-linkage polyubiquitin chains. These free mixed-linkage polyubiquitin chains are then responsible for direct IKK activation by binding to the NEMO subunit of IKK. Our studies revealed the biochemical function of Tax in the process of IKK activation, which utilizes the minimal cellular ubiquitination components for NF-κB activation.

  11. HTLV-1 Tax Functions as a Ubiquitin E3 Ligase for Direct IKK Activation via Synthesis of Mixed-Linkage Polyubiquitin Chains

    PubMed Central

    Wang, Chong; Long, Wenying; Peng, Chao; Hu, Lin; Zhang, Qiong; Wu, Ailing; Zhang, Xiaoqing; Duan, Xiaotao; Wong, Catherine C. L.; Tanaka, Yuetsu; Xia, Zongping

    2016-01-01

    The HTLV-1 oncoprotein Tax plays a key role in CD4+ T cell transformation by promoting cell proliferation and survival, mainly through permanent activation of the NK-κB pathway and induction of many NF-κB target genes. Elucidating the underlying molecular mechanism is therefore critical in understanding HTLV-1-mediated transformation. Current studies have suggested multiple but controversial mechanisms regarding Tax-induced IKK activation mainly due to blending of primary Tax-induced IKK activation events and secondary IKK activation events induced by cytokines secreted by the primary Tax-induced IKK-NF-κB activation events. We reconstituted Tax-stimulated IKK activation in a cell-free system to dissect the essential cellular components for primary IKK activation by Tax and studied the underlying biochemical mechanism. We found that Tax is a putative E3 ubiquitin ligase, which, together with UbcH2, UhcH5c, or UbcH7, catalyzes the assembly of free mixed-linkage polyubiquitin chains. These free mixed-linkage polyubiquitin chains are then responsible for direct IKK activation by binding to the NEMO subunit of IKK. Our studies revealed the biochemical function of Tax in the process of IKK activation, which utilizes the minimal cellular ubiquitination components for NF-κB activation. PMID:27082114

  12. Equine acquired multiple acyl-CoA dehydrogenase deficiency (MADD) in 14 horses associated with ingestion of Maple leaves (Acer pseudoplatanus) covered with European tar spot (Rhytisma acerinum).

    PubMed

    van der Kolk, J H; Wijnberg, I D; Westermann, C M; Dorland, L; de Sain-van der Velden, M G M; Kranenburg, L C; Duran, M; Dijkstra, J A; van der Lugt, J J; Wanders, R J A; Gruys, E

    2010-01-01

    This case-series describes fourteen horses suspected of equine acquired multiple acyl-CoA dehydrogenase deficiency (MADD) also known as atypical myopathy of which seven cases were confirmed biochemically with all horses having had access to leaves of the Maple tree (Acer pseudoplatanus) covered with European tar spot (Rhytisma acerinum). Assessment of organic acids, glycine conjugates, and acylcarnitines in urine was regarded as gold standard in the biochemical diagnosis of equine acquired multiple acyl-CoA dehydrogenase deficiency. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Transport of phosphatidylserine from the endoplasmic reticulum to the site of phosphatidylserine decarboxylase2 in yeast.

    PubMed

    Kannan, Muthukumar; Riekhof, Wayne R; Voelker, Dennis R

    2015-02-01

    Over the past two decades, most of the genes specifying lipid synthesis and metabolism in yeast have been identified and characterized. Several of these biosynthetic genes and their encoded enzymes have provided valuable tools for the genetic and biochemical dissection of interorganelle lipid transport processes in yeast. One such pathway involves the synthesis of phosphatidylserine (PtdSer) in the endoplasmic reticulum (ER), and its non-vesicular transport to the site of phosphatidylserine decarboxylase2 (Psd2p) in membranes of the Golgi and endosomal sorting system. In this review, we summarize the identification and characterization of the yeast phosphatidylserine decarboxylases, and examine their role in studies of the transport-dependent pathways of de novo synthesis of phosphatidylethanolamine (PtdEtn). The emerging picture of the Psd2p-specific transport pathway is one in which the enzyme and its non-catalytic N-terminal domains act as a hub to nucleate the assembly of a multiprotein complex, which facilitates PtdSer transport at membrane contact sites between the ER and Golgi/endosome membranes. After transport to the catalytic site of Psd2p, PtdSer is decarboxylated to form PtdEtn, which is disseminated throughout the cell to support the structural and functional needs of multiple membranes. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Searching whole genome sequences for biochemical identification features of emerging and reemerging pathogenic Corynebacterium species.

    PubMed

    Santos, André S; Ramos, Rommel T; Silva, Artur; Hirata, Raphael; Mattos-Guaraldi, Ana L; Meyer, Roberto; Azevedo, Vasco; Felicori, Liza; Pacheco, Luis G C

    2018-05-11

    Biochemical tests are traditionally used for bacterial identification at the species level in clinical microbiology laboratories. While biochemical profiles are generally efficient for the identification of the most important corynebacterial pathogen Corynebacterium diphtheriae, their ability to differentiate between biovars of this bacterium is still controversial. Besides, the unambiguous identification of emerging human pathogenic species of the genus Corynebacterium may be hampered by highly variable biochemical profiles commonly reported for these species, including Corynebacterium striatum, Corynebacterium amycolatum, Corynebacterium minutissimum, and Corynebacterium xerosis. In order to identify the genomic basis contributing for the biochemical variabilities observed in phenotypic identification methods of these bacteria, we combined a comprehensive literature review with a bioinformatics approach based on reconstruction of six specific biochemical reactions/pathways in 33 recently released whole genome sequences. We used data retrieved from curated databases (MetaCyc, PathoSystems Resource Integration Center (PATRIC), The SEED, TransportDB, UniProtKB) associated with homology searches by BLAST and profile Hidden Markov Models (HMMs) to detect enzymes participating in the various pathways and performed ab initio protein structure modeling and molecular docking to confirm specific results. We found a differential distribution among the various strains of genes that code for some important enzymes, such as beta-phosphoglucomutase and fructokinase, and also for individual components of carbohydrate transport systems, including the fructose-specific phosphoenolpyruvate-dependent sugar phosphotransferase (PTS) and the ribose-specific ATP-binging cassette (ABC) transporter. Horizontal gene transfer plays a role in the biochemical variability of the isolates, as some genes needed for sucrose fermentation were seen to be present in genomic islands. Noteworthy, using profile HMMs, we identified an enzyme with putative alpha-1,6-glycosidase activity only in some specific strains of C. diphtheriae and this may aid to understanding of the differential abilities to utilize glycogen and starch between the biovars.

  15. Pheochromocytoma-paraganglioma: Biochemical and genetic diagnosis.

    PubMed

    Cano Megías, Marta; Rodriguez Puyol, Diego; Fernández Rodríguez, Loreto; Sención Martinez, Gloria Lisette; Martínez Miguel, Patricia

    Pheochromocytomas and paragangliomas are tumours derived from neural crest cells, which can be diagnosed by biochemical measurement of metanephrine and methoxytyramine. Advances in genetic research have identified many genes involved in the pathogenesis of these tumours, suggesting that up to 35-45% may have an underlying germline mutation. These genes have a singular transcriptional signature and can be grouped into 2 clusters (or groups): cluster 1 (VHL and SHDx), involved in angiogenesis and hypoxia pathways; and cluster 2 (MEN2 and NF1), linked to the kinase signalling pathway. In turn, these genes are associated with a characteristic biochemical phenotype (noradrenergic and adrenergic), and clinical features (location, biological behaviour, age of presentation, etc.) in a large number of cases. Early diagnosis of these tumours, accompanied by a correct genetic diagnosis, should eventually become a priority to enable better treatment, early detection of complications, proper screening of family members and related tumours, as well as an improvement in the overall prognosis of these patients. Copyright © 2016 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  16. Identification of biochemical adaptations in hyper- or hypocontractile hearts from phospholamban mutant mice by expression proteomics.

    PubMed

    Pan, Yan; Kislinger, Thomas; Gramolini, Anthony O; Zvaritch, Elena; Kranias, Evangelia G; MacLennan, David H; Emili, Andrew

    2004-02-24

    Phospholamban (PLN) is a critical regulator of cardiac contractility through its binding to and regulation of the activity of the sarco(endo)plasmic reticulum Ca2+ ATPase. To uncover biochemical adaptations associated with extremes of cardiac muscle contractility, we used high-throughput gel-free tandem MS to monitor differences in the relative abundance of membrane proteins in standard microsomal fractions isolated from the hearts of PLN-null mice (PLN-KO) with high contractility and from transgenic mice overexpressing a superinhibitory PLN mutant in a PLN-null background (I40A-KO) with diminished contractility. Significant differential expression was detected for a subset of the 782 proteins identified, including known membrane-associated biomarkers, components of signaling pathways, and previously uninvestigated proteins. Proteins involved in fat and carbohydrate metabolism and proteins linked to G protein-signaling pathways activating protein kinase C were enriched in I40A-KO cardiac muscle, whereas proteins linked to enhanced contractile function were enriched in PLN-KO mutant hearts. These data demonstrate that Ca2+ dysregulation, leading to elevated or depressed cardiac contractility, induces compensatory biochemical responses.

  17. Glucose Metabolism in Legionella pneumophila: Dependence on the Entner-Doudoroff Pathway and Connection with Intracellular Bacterial Growth† ▿

    PubMed Central

    Harada, Eiji; Iida, Ken-Ichiro; Shiota, Susumu; Nakayama, Hiroaki; Yoshida, Shin-Ichi

    2010-01-01

    Glucose metabolism in Legionella pneumophila was studied by focusing on the Entner-Doudoroff (ED) pathway with a combined genetic and biochemical approach. The bacterium utilized exogenous glucose for synthesis of acid-insoluble cell components but manifested no discernible increase in the growth rate. Assays with permeabilized cell preparations revealed the activities of three enzymes involved in the pathway, i.e., glucokinase, phosphogluconate dehydratase, and 2-dehydro-3-deoxy-phosphogluconate aldolase, presumed to be encoded by the glk, edd, and eda genes, respectively. Gene-disrupted mutants for the three genes and the ywtG gene encoding a putative sugar transporter were devoid of the ability to metabolize exogenous glucose, indicating that the pathway is almost exclusively responsible for glucose metabolism and that the ywtG gene product is the glucose transporter. It was also established that these four genes formed part of an operon in which the gene order was edd-glk-eda-ywtG, as predicted by genomic information. Intriguingly, while the mutants exhibited no appreciable change in growth characteristics in vitro, they were defective in multiplication within eukaryotic cells, strongly indicating that the ED pathway must be functional for the intracellular growth of the bacterium to occur. Curiously, while the deficient glucose metabolism of the ywtG mutant was successfully complemented by the ywtG+ gene supplied in trans via plasmid, its defect in intracellular growth was not. However, the latter defect was also manifested in wild-type cells when a plasmid carrying the mutant ywtG gene was introduced. This phenomenon, resembling so-called dominant negativity, awaits further investigation. PMID:20363943

  18. Red blotch disease alters grape berry development and metabolism by interfering with the transcriptional and hormonal regulation of ripening

    PubMed Central

    Blanco-Ulate, Barbara; Hopfer, Helene; Figueroa-Balderas, Rosa; Ye, Zirou; Rivero, Rosa M.; Albacete, Alfonso; Pérez-Alfocea, Francisco; Koyama, Renata; Anderson, Michael M.; Smith, Rhonda J.; Ebeler, Susan E.

    2017-01-01

    Abstract Grapevine red blotch-associated virus (GRBaV) is a major threat to the wine industry in the USA. GRBaV infections (aka red blotch disease) compromise crop yield and berry chemical composition, affecting the flavor and aroma properties of must and wine. In this study, we combined genome-wide transcriptional profiling with targeted metabolite analyses and biochemical assays to characterize the impact of the disease on red-skinned berry ripening and metabolism. Using naturally infected berries collected from two vineyards, we were able to identify consistent berry responses to GRBaV across different environmental and cultural conditions. Specific alterations of both primary and secondary metabolism occurred in GRBaV-infected berries during ripening. Notably, GRBaV infections of post-véraison berries resulted in the induction of primary metabolic pathways normally associated with early berry development (e.g. thylakoid electron transfer and the Calvin cycle), while inhibiting ripening-associated pathways, such as a reduced metabolic flux in the central and peripheral phenylpropanoid pathways. We show that this metabolic reprogramming correlates with perturbations at multiple regulatory levels of berry development. Red blotch caused the abnormal expression of transcription factors (e.g. NACs, MYBs, and AP2-ERFs) and elements of the post-transcriptional machinery that function during red-skinned berry ripening. Abscisic acid, ethylene, and auxin pathways, which control both the initiation of ripening and stress responses, were also compromised. We conclude that GRBaV infections disrupt normal berry development and stress responses by altering transcription factors and hormone networks, which result in the inhibition of ripening pathways involved in the generation of color, flavor, and aroma compounds. PMID:28338755

  19. Red blotch disease alters grape berry development and metabolism by interfering with the transcriptional and hormonal regulation of ripening.

    PubMed

    Blanco-Ulate, Barbara; Hopfer, Helene; Figueroa-Balderas, Rosa; Ye, Zirou; Rivero, Rosa M; Albacete, Alfonso; Pérez-Alfocea, Francisco; Koyama, Renata; Anderson, Michael M; Smith, Rhonda J; Ebeler, Susan E; Cantu, Dario

    2017-02-01

    Grapevine red blotch-associated virus (GRBaV) is a major threat to the wine industry in the USA. GRBaV infections (aka red blotch disease) compromise crop yield and berry chemical composition, affecting the flavor and aroma properties of must and wine. In this study, we combined genome-wide transcriptional profiling with targeted metabolite analyses and biochemical assays to characterize the impact of the disease on red-skinned berry ripening and metabolism. Using naturally infected berries collected from two vineyards, we were able to identify consistent berry responses to GRBaV across different environmental and cultural conditions. Specific alterations of both primary and secondary metabolism occurred in GRBaV-infected berries during ripening. Notably, GRBaV infections of post-véraison berries resulted in the induction of primary metabolic pathways normally associated with early berry development (e.g. thylakoid electron transfer and the Calvin cycle), while inhibiting ripening-associated pathways, such as a reduced metabolic flux in the central and peripheral phenylpropanoid pathways. We show that this metabolic reprogramming correlates with perturbations at multiple regulatory levels of berry development. Red blotch caused the abnormal expression of transcription factors (e.g. NACs, MYBs, and AP2-ERFs) and elements of the post-transcriptional machinery that function during red-skinned berry ripening. Abscisic acid, ethylene, and auxin pathways, which control both the initiation of ripening and stress responses, were also compromised. We conclude that GRBaV infections disrupt normal berry development and stress responses by altering transcription factors and hormone networks, which result in the inhibition of ripening pathways involved in the generation of color, flavor, and aroma compounds. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  20. Tissue Factor Pathway Inhibitor: Multiple Anticoagulant Activities for a Single Protein.

    PubMed

    Mast, Alan E

    2016-01-01

    Tissue factor (TF) pathway inhibitor (TFPI) is an anticoagulant protein that inhibits early phases of the procoagulant response. Alternatively spliced isoforms of TFPI are differentially expressed by endothelial cells and human platelets and plasma. The TFPIβ isoform localizes to the endothelium surface where it is a potent inhibitor of TF-factor VIIa complexes that initiate blood coagulation. The TFPIα isoform is present in platelets. TFPIα contains a stretch of 9 amino acids nearly identical to those found in the B-domain of factor V that are well conserved in mammals. These amino acids provide exosite binding to activated factor V, which allows for TFPIα to inhibit prothrombinase during the initiation phase of blood coagulation. Endogenous inhibition at this point in the coagulation cascade was only recently recognized and has provided a biochemical rationale to explain the pathophysiological mechanisms underlying several clinical disorders. These include the east Texas bleeding disorder that is caused by production of an altered form of factor V with high affinity for TFPI and a paradoxical procoagulant effect of heparins. In addition, these findings have led to ideas for pharmacological targeting of TFPI that may reduce bleeding in hemophilia patients. © 2015 American Heart Association, Inc.

  1. Lyapunov exponents and phase diagrams reveal multi-factorial control over TRAIL-induced apoptosis

    PubMed Central

    Aldridge, Bree B; Gaudet, Suzanne; Lauffenburger, Douglas A; Sorger, Peter K

    2011-01-01

    Receptor-mediated apoptosis proceeds via two pathways: one requiring only a cascade of initiator and effector caspases (type I behavior) and the second requiring an initiator–effector caspase cascade and mitochondrial outer membrane permeabilization (type II behavior). Here, we investigate factors controlling type I versus II phenotypes by performing Lyapunov exponent analysis of an ODE-based model of cell death. The resulting phase diagrams predict that the ratio of XIAP to pro-caspase-3 concentrations plays a key regulatory role: type I behavior predominates when the ratio is low and type II behavior when the ratio is high. Cell-to-cell variability in phenotype is observed when the ratio is close to the type I versus II boundary. By positioning multiple tumor cell lines on the phase diagram we confirm these predictions. We also extend phase space analysis to mutations affecting the rate of caspase-3 ubiquitylation by XIAP, predicting and showing that such mutations abolish all-or-none control over activation of effector caspases. Thus, phase diagrams derived from Lyapunov exponent analysis represent a means to study multi-factorial control over a complex biochemical pathway. PMID:22108795

  2. Interactions of C4 subtype metabolic activities and transport in maize are revealed through the characterization of DCT2 mutants

    USDA-ARS?s Scientific Manuscript database

    C4 photosynthesis is an elaborate set of metabolic pathways that utilize specialized anatomical and biochemical adaptations to concentrate CO2 around RuBisCO. The activities of the C4 pathways are coordinated between two specialized leaf cell types, mesophyll (M) and bundle sheath (BS), and rely hea...

  3. BIOCHEMICAL AND GENETIC CHARACTERIZATION OF AN EARLY STEP IN A NOVEL PATHWAY FOR THE BIOSYNTHESIS OF AROMATIC AMINO ACIDS AND P-AMINOBENZOIC ACID IN THE ARCHAEON METHANOCOCCUS MARIPALUDIS

    EPA Science Inventory

    Methanococcus maripaludis is a strictly anaerobic, methane-producing archaeon and facultative autotroph capable of biosynthesizing all the amino acids and vitamins required for growth. In this work, the novel 6-deoxy-5-ketofructose-1-phosphate (DKFP) pathway for the biosynthesis ...

  4. Chemical modulation of glycerolipid signaling and metabolic pathways

    PubMed Central

    Scott, Sarah A.; Mathews, Thomas P.; Ivanova, Pavlina T.; Lindsley, Craig W.; Brown, H. Alex

    2014-01-01

    Thirty years ago, glycerolipids captured the attention of biochemical researchers as novel cellular signaling entities. We now recognize that these biomolecules occupy signaling nodes critical to a number of physiological and pathological processes. Thus, glycerolipid-metabolizing enzymes present attractive targets for new therapies. A number of fields—ranging from neuroscience and cancer to diabetes and obesity—have elucidated the signaling properties of glycerolipids. The biochemical literature teems with newly emerging small molecule inhibitors capable of manipulating glycerolipid metabolism and signaling. This ever-expanding pool of chemical modulators appears daunting to those interested in exploiting glycerolipid-signaling pathways in their model system of choice. This review distills the current body of literature surrounding glycerolipid metabolism into a more approachable format, facilitating the application of small molecule inhibitors to novel systems. PMID:24440821

  5. Characterization of Changes in Gene Expression and Biochemical Pathways at Low Levels of Benzene Exposure

    PubMed Central

    Thomas, Reuben; Hubbard, Alan E.; McHale, Cliona M.; Zhang, Luoping; Rappaport, Stephen M.; Lan, Qing; Rothman, Nathaniel; Vermeulen, Roel; Guyton, Kathryn Z.; Jinot, Jennifer; Sonawane, Babasaheb R.; Smith, Martyn T.

    2014-01-01

    Benzene, a ubiquitous environmental pollutant, causes acute myeloid leukemia (AML). Recently, through transcriptome profiling of peripheral blood mononuclear cells (PBMC), we reported dose-dependent effects of benzene exposure on gene expression and biochemical pathways in 83 workers exposed across four airborne concentration ranges (from <1 ppm to >10 ppm) compared with 42 subjects with non-workplace ambient exposure levels. Here, we further characterize these dose-dependent effects with continuous benzene exposure in all 125 study subjects. We estimated air benzene exposure levels in the 42 environmentally-exposed subjects from their unmetabolized urinary benzene levels. We used a novel non-parametric, data-adaptive model selection method to estimate the change with dose in the expression of each gene. We describe non-parametric approaches to model pathway responses and used these to estimate the dose responses of the AML pathway and 4 other pathways of interest. The response patterns of majority of genes as captured by mean estimates of the first and second principal components of the dose-response for the five pathways and the profiles of 6 AML pathway response-representative genes (identified by clustering) exhibited similar apparent supra-linear responses. Responses at or below 0.1 ppm benzene were observed for altered expression of AML pathway genes and CYP2E1. Together, these data show that benzene alters disease-relevant pathways and genes in a dose-dependent manner, with effects apparent at doses as low as 100 ppb in air. Studies with extensive exposure assessment of subjects exposed in the low-dose range between 10 ppb and 1 ppm are needed to confirm these findings. PMID:24786086

  6. Insights into the TOR-S6K signaling pathway in maize (Zea mays L.). pathway activation by effector-receptor interaction.

    PubMed

    Garrocho-Villegas, Verónica; Aguilar C, Raúl; Sánchez de Jiménez, Estela

    2013-12-23

    The primordial TOR pathway, known to control growth and cell proliferation, has still not been fully described for plants. Nevertheless, in maize, an insulin-like growth factor (ZmIGF) peptide has been reported to stimulate this pathway. This research provides further insight into the TOR pathway in maize, using a biochemical approach in cultures of fast-growing (FG) and slow-growing (SG) calli, as a model system. Our results revealed that addition of either ZmIGF or insulin to SG calli stimulated DNA synthesis and increased the growth rate through cell proliferation and increased the rate of ribosomal protein (RP) synthesis by the selective mobilization of RP mRNAs into polysomes. Furthermore, analysis of the phosphorylation status of the main TOR and S6K kinases from the TOR pathway revealed stimulation by ZmIGF or insulin, whereas rapamycin inhibited its activation. Remarkably, a putative maize insulin-like receptor was recognized by a human insulin receptor antibody, as demonstrated by immunoprecipitation from membrane protein extracts of maize callus. Furthermore, competition experiments between ZmIGF and insulin for the receptor site on maize protoplasts suggested structural recognition of the putative receptor by either effector. These data were confirmed by confocal immunolocalization within the cell membrane of callus cells. Taken together, these data indicate that cell growth and cell proliferation in maize depend on the activation of the TOR-S6K pathway through the interaction of an insulin-like growth factor and its receptor. This evidence suggests that higher plants as well as metazoans have conserved this biochemical pathway to regulate their growth, supporting the conclusion that it is a highly evolved conserved pathway.

  7. Harnessing Intracellular Biochemical Pathways for In Vitro Synthesis of Designer Tellurium Nanorods.

    PubMed

    Xiong, Ling-Hong; Cui, Ran; Zhang, Zhi-Ling; Tu, Jia-Wei; Shi, Yun-Bo; Pang, Dai-Wen

    2015-10-28

    Synthesizing nanomaterials of desired properties is a big challenge, which requires extremely harsh conditions and/or use of toxic materials. More recently developed in vivo methods have brought a different set of problems such as separation and purification of nanomaterials made in vivo. Here, a novel approach that harnesses cellular pathways for in vitro synthesis of high-quality tellurium nanorods with tunable lengths and optical properties is reported. It is first demonstrated that in vivo biochemical pathways could be used to synthesize Te nanorods via the intracellular reduction of TeO3(2-) in living Staphylococcus aureus cells. The pathways to set up a quasi-biological system for Te precursor formation are then utilized, which could further synthesize Te nanorods in vitro. This allows to successfully synthesize in vitro, under routine laboratory conditions, Te nanorods with uniform and tunable lengths, ranging from about 10 to 200 nm, and controllable optical properties with high molar extinction coefficients. The approach here should open new avenues for controllable, facile, and efficient synthesis of designer nanomaterials for diverse industrial and biomedical applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The Recycling Endosome of Madin-Darby Canine Kidney Cells Is a Mildly Acidic Compartment Rich in Raft Components

    PubMed Central

    Gagescu, Raluca; Demaurex, Nicolas; Parton, Robert G.; Hunziker, Walter; Huber, Lukas A.; Gruenberg, Jean

    2000-01-01

    We present a biochemical and morphological characterization of recycling endosomes containing the transferrin receptor in the epithelial Madin-Darby canine kidney cell line. We find that recycling endosomes are enriched in molecules known to regulate transferrin recycling but lack proteins involved in early endosome membrane dynamics, indicating that recycling endosomes are distinct from conventional early endosomes. We also find that recycling endosomes are less acidic than early endosomes because they lack a functional vacuolar ATPase. Furthermore, we show that recycling endosomes can be reached by apically internalized tracers, confirming that the apical endocytic pathway intersects the transferrin pathway. Strikingly, recycling endosomes are enriched in the raft lipids sphingomyelin and cholesterol as well as in the raft-associated proteins caveolin-1 and flotillin-1. These observations may suggest that a lipid-based sorting mechanism operates along the Madin-Darby canine kidney recycling pathway, contributing to the maintenance of cell polarity. Altogether, our data indicate that recycling endosomes and early endosomes differ functionally and biochemically and thus that different molecular mechanisms regulate protein sorting and membrane traffic at each step of the receptor recycling pathway. PMID:10930469

  9. Molecular Pathways

    PubMed Central

    Lok, Benjamin H.; Powell, Simon N.

    2012-01-01

    The Rad52 protein was largely ignored in humans and other mammals when the mouse knockout revealed a largely “no-effect” phenotype. However, using synthetic lethal approaches to investigate context dependent function, new studies have shown that Rad52 plays a key survival role in cells lacking the function of the BRCA1-BRCA2 pathway of homologous recombination. Biochemical studies also showed significant differences between yeast and human Rad52, in which yeast Rad52 can promote strand invasion of RPA-coated single-stranded DNA in the presence of Rad51, but human Rad52 cannot. This results in the paradox of how is human Rad52 providing Rad51 function: presumably there is something missing in the biochemical assays that exists in-vivo, but the nature of this missing factor is currently unknown. Recent studies have suggested that Rad52 provides back-up Rad51 function for all members of the BRCA1-BRCA2 pathway, suggesting that Rad52 may be a target for therapy in BRCA pathway deficient cancers. Screening for ways to inhibit Rad52 would potentially provide a complementary strategy for targeting BRCA-deficient cancers in addition to PARP inhibitors. PMID:23071261

  10. Writing and compiling code into biochemistry.

    PubMed

    Shea, Adam; Fett, Brian; Riedel, Marc D; Parhi, Keshab

    2010-01-01

    This paper presents a methodology for translating iterative arithmetic computation, specified as high-level programming constructs, into biochemical reactions. From an input/output specification, we generate biochemical reactions that produce output quantities of proteins as a function of input quantities performing operations such as addition, subtraction, and scalar multiplication. Iterative constructs such as "while" loops and "for" loops are implemented by transferring quantities between protein types, based on a clocking mechanism. Synthesis first is performed at a conceptual level, in terms of abstract biochemical reactions - a task analogous to high-level program compilation. Then the results are mapped onto specific biochemical reactions selected from libraries - a task analogous to machine language compilation. We demonstrate our approach through the compilation of a variety of standard iterative functions: multiplication, exponentiation, discrete logarithms, raising to a power, and linear transforms on time series. The designs are validated through transient stochastic simulation of the chemical kinetics. We are exploring DNA-based computation via strand displacement as a possible experimental chassis.

  11. Two distinct arsenite-resistant variants of Leishmania amazonensis take different routes to achieve resistance as revealed by comparative transcriptomics.

    PubMed

    Lin, Yi-Chun; Hsu, Ju-Yu; Shu, Jui-Hsu; Chi, Yi; Chiang, Su-Chi; Lee, Sho Tone

    2008-11-01

    Genome-wide search for the genes involved in arsenite resistance in two distinct variants A and A' of Leishmania amazonensis revealed that the two variants used two different mechanisms to achieve resistance, even though these two variants were derived from the same clone and selected against arsenite under the same conditions. In variant A, the variant with DNA amplification, the biochemical pathways for detoxification of oxidative stress, the energy generation system to support the biochemical and physiological needs of the variant for DNA and protein synthesis and the arsenite translocating system to dispose arsenite are among the primary biochemical events that are upregulated under the arsenite stress to gain resistance. In variant A', the variant without DNA amplification, the upregulation of aquaglyceroporin (AQP) gene and the high level of resistance to arsenate point to the direction that the resistance gained by the variant is due to arsenate which is probably oxidized from arsenite in the arsenite solution used for selection and the maintenance of the cell culture. As a result of the AQP upregulation for arsenite disposal, a different set of biochemical pathways for detoxification of oxidative stress, energy generation and cellular signaling are upregulated to sustain the growth of the variant to gain resistance to arsenate. From current evidences, reactive oxygen species (ROS) overproduced by the parasite soon after exposure to arsenite appear to play an instrumental role in both variants to initiate the subsequent biochemical events that allow the same clone of L. amazonensis to take two totally different routes to diverge into two different variants.

  12. Microfluidics meets metabolomics to reveal the impact of Campylobacter jejuni infection on biochemical pathways.

    PubMed

    Mortensen, Ninell P; Mercier, Kelly A; McRitchie, Susan; Cavallo, Tammy B; Pathmasiri, Wimal; Stewart, Delisha; Sumner, Susan J

    2016-06-01

    Microfluidic devices that are currently being used in pharmaceutical research also have a significant potential for utilization in investigating exposure to infectious agents. We have established a microfluidic device cultured with Caco-2 cells, and utilized metabolomics to investigate the biochemical responses to the bacterial pathogen Campylobacter jejuni. In the microfluidic devices, Caco-2 cells polarize at day 5, are uniform, have defined brush borders and tight junctions, and form a mucus layer. Metabolomics analysis of cell culture media collected from both Caco-2 cell culture systems demonstrated a more metabolic homogenous biochemical profile in the media collected from microfluidic devices, compared with media collected from transwells. GeneGo pathway mapping indicated that aminoacyl-tRNA biosynthesis was perturbed by fluid flow, suggesting that fluid dynamics and shear stress impacts the cells translational quality control. Both microfluidic device and transwell culturing systems were used to investigate the impact of Campylobacter jejuni infection on biochemical processes. Caco-2 cells cultured in either system were infected at day 5 with C. jejuni 81-176 for 48 h. Metabolomics analysis clearly differentiated C. jejuni 81-176 infected and non-infected medias collected from the microfluidic devices, and demonstrated that C. jejuni 81-176 infection in microfluidic devices impacts branched-chain amino acid metabolism, glycolysis, and gluconeogenesis. In contrast, no distinction was seen in the biochemical profiles of infected versus non-infected media collected from cells cultured in transwells. Microfluidic culturing conditions demonstrated a more metabolically homogenous cell population, and present the opportunity for studying host-pathogen interactions for extended periods of time.

  13. Microfluidics Meets Metabolomics to Reveal the Impact of Campylobacter jejuni Infection on Biochemical Pathways

    PubMed Central

    Mortensen, Ninell P.; Mercier, Kelly A.; McRitchie, Susan; Cavallo, Tammy B.; Pathmasiri, Wimal; Stewart, Delisha; Sumner, Susan J.

    2016-01-01

    Microfluidic devices that are currently being used in pharmaceutical research also have a significant potential for utilization in investigating exposure to infectious agents. We have established a microfluidic device cultured with Caco-2 cells, and utilized metabolomics to investigate the biochemical responses to the bacterial pathogen Campylobacter jejuni. In the microfluidic devices, Caco-2 cells polarize at day 5, are uniform, have defined brush borders and tight junctions, and form a mucus layer. Metabolomics analysis of cell culture media collected from both Caco-2 cell culture systems demonstrated a more metabolic homogenous biochemical profile in the media collected from microfluidic devices, compared with media collected from transwells. GeneGo pathway mapping indicated that aminoacyl-tRNA biosynthesis was perturbed by fluid flow, suggesting that fluid dynamics and shear stress impacts the cells translational quality control. Both microfluidic device and transwell culturing systems were used to investigate the impact of Campylobacter jejuni infection on biochemical processes. Caco-2 cells cultured in either system were infected at day 5 with C. jejuni 81-176 for 48 hours. Metabolomics analysis clearly differentiated C. jejuni 81-176 infected and non-infected medias collected from the microfluidic devices, and demonstrated that C. jejuni 81-176 infection in microfluidic devices impacts branched-chain amino acid metabolism, glycolysis, and gluconeogenesis. In contrast, no distinction was seen in the biochemical profiles of infected versus non-infected media collected from cells cultured in transwells. Microfluidic culturing conditions demonstrated a more metabolically homogenous cell population, and present the opportunity for studying host-pathogen interactions for extended periods of time. PMID:27231016

  14. Metabologenomics of Phaeochromocytoma and Paraganglioma: An Integrated Approach for Personalised Biochemical and Genetic Testing

    PubMed Central

    Eisenhofer, Graeme; Klink, Barbara; Richter, Susan; Lenders, Jacques WM; Robledo, Mercedes

    2017-01-01

    The tremendous advances over the past two decades in both clinical genetics and biochemical testing of chromaffin cell tumours have led to new considerations about how these aspects of laboratory medicine can be integrated to improve diagnosis and management of affected patients. With germline mutations in 15 genes now identified to be responsible for over a third of all cases of phaeochromocytomas and paragangliomas, these tumours are recognised to have one of the richest hereditary backgrounds among all neoplasms. Depending on the mutation, tumours show distinct differences in metabolic pathways that relate to or even directly impact clinical presentation. At the same time, there has been improved understanding about how catecholamines are synthesised, stored, secreted and metabolised by chromaffin cell tumours. Although the tumours may not always secrete catecholamines it has become clear that almost all continuously produce and metabolise catecholamines. This has not only fuelled changes in laboratory medicine, but has also assisted in recognition of genotype-biochemical phenotype relationships important for diagnostics and clinical care. In particular, differences in catecholamine and energy pathway metabolomes can guide genetic testing, assist with test interpretation and provide predictions about the nature, behaviour and imaging characteristics of the tumours. Conversely, results of genetic testing are important for guiding how routine biochemical testing should be employed and interpreted in surveillance programmes for at-risk patients. In these ways there are emerging needs for modern laboratory medicine to seamlessly integrate biochemical and genetic testing into the diagnosis and management of patients with chromaffin cell tumours. PMID:29332973

  15. Enhancing a Pathway-Genome Database (PGDB) to capture subcellular localization of metabolites and enzymes: the nucleotide-sugar biosynthetic pathways of Populus trichocarpa.

    PubMed

    Nag, Ambarish; Karpinets, Tatiana V; Chang, Christopher H; Bar-Peled, Maor

    2012-01-01

    Understanding how cellular metabolism works and is regulated requires that the underlying biochemical pathways be adequately represented and integrated with large metabolomic data sets to establish a robust network model. Genetically engineering energy crops to be less recalcitrant to saccharification requires detailed knowledge of plant polysaccharide structures and a thorough understanding of the metabolic pathways involved in forming and regulating cell-wall synthesis. Nucleotide-sugars are building blocks for synthesis of cell wall polysaccharides. The biosynthesis of nucleotide-sugars is catalyzed by a multitude of enzymes that reside in different subcellular organelles, and precise representation of these pathways requires accurate capture of this biological compartmentalization. The lack of simple localization cues in genomic sequence data and annotations however leads to missing compartmentalization information for eukaryotes in automatically generated databases, such as the Pathway-Genome Databases (PGDBs) of the SRI Pathway Tools software that drives much biochemical knowledge representation on the internet. In this report, we provide an informal mechanism using the existing Pathway Tools framework to integrate protein and metabolite sub-cellular localization data with the existing representation of the nucleotide-sugar metabolic pathways in a prototype PGDB for Populus trichocarpa. The enhanced pathway representations have been successfully used to map SNP abundance data to individual nucleotide-sugar biosynthetic genes in the PGDB. The manually curated pathway representations are more conducive to the construction of a computational platform that will allow the simulation of natural and engineered nucleotide-sugar precursor fluxes into specific recalcitrant polysaccharide(s). Database URL: The curated Populus PGDB is available in the BESC public portal at http://cricket.ornl.gov/cgi-bin/beocyc_home.cgi and the nucleotide-sugar biosynthetic pathways can be directly accessed at http://cricket.ornl.gov:1555/PTR/new-image?object=SUGAR-NUCLEOTIDES.

  16. Enhancing a Pathway-Genome Database (PGDB) to capture subcellular localization of metabolites and enzymes: the nucleotide-sugar biosynthetic pathways of Populus trichocarpa

    PubMed Central

    Nag, Ambarish; Karpinets, Tatiana V.; Chang, Christopher H.; Bar-Peled, Maor

    2012-01-01

    Understanding how cellular metabolism works and is regulated requires that the underlying biochemical pathways be adequately represented and integrated with large metabolomic data sets to establish a robust network model. Genetically engineering energy crops to be less recalcitrant to saccharification requires detailed knowledge of plant polysaccharide structures and a thorough understanding of the metabolic pathways involved in forming and regulating cell-wall synthesis. Nucleotide-sugars are building blocks for synthesis of cell wall polysaccharides. The biosynthesis of nucleotide-sugars is catalyzed by a multitude of enzymes that reside in different subcellular organelles, and precise representation of these pathways requires accurate capture of this biological compartmentalization. The lack of simple localization cues in genomic sequence data and annotations however leads to missing compartmentalization information for eukaryotes in automatically generated databases, such as the Pathway-Genome Databases (PGDBs) of the SRI Pathway Tools software that drives much biochemical knowledge representation on the internet. In this report, we provide an informal mechanism using the existing Pathway Tools framework to integrate protein and metabolite sub-cellular localization data with the existing representation of the nucleotide-sugar metabolic pathways in a prototype PGDB for Populus trichocarpa. The enhanced pathway representations have been successfully used to map SNP abundance data to individual nucleotide-sugar biosynthetic genes in the PGDB. The manually curated pathway representations are more conducive to the construction of a computational platform that will allow the simulation of natural and engineered nucleotide-sugar precursor fluxes into specific recalcitrant polysaccharide(s). Database URL: The curated Populus PGDB is available in the BESC public portal at http://cricket.ornl.gov/cgi-bin/beocyc_home.cgi and the nucleotide-sugar biosynthetic pathways can be directly accessed at http://cricket.ornl.gov:1555/PTR/new-image?object=SUGAR-NUCLEOTIDES. PMID:22465851

  17. Novel histone deacetylase inhibitor AR-42 exhibits antitumor activity in pancreatic cancer cells by affecting multiple biochemical pathways.

    PubMed

    Chen, Yi-Jin; Wang, Wen-Hung; Wu, Wan-Yu; Hsu, Chia-Chi; Wei, Ling-Rung; Wang, Sheng-Fan; Hsu, Ya-Wen; Liaw, Chih-Chuang; Tsai, Wan-Chi

    2017-01-01

    Pancreatic cancer is one of the most lethal types of cancer with a 5-year survival rate of ~5%. Histone deacetylases (HDACs) participate in many cellular processes, including carcinogenesis, and pharmacological inhibition of HDACs has emerged as a potential therapeutic strategy. In this study, we explored antitumor activity of the novel HDAC inhibitor AR-42 in pancreatic cancer. Human pancreatic cancer cell lines BxPC-3 and PANC-1 were used in this study. Real-time PCR, RT-PCR, and western blotting were employed to investigate expression of specific genes and proteins, respectively. Translocation of apoptosis-inducing factor was investigated by immunofluorescence and subcellular fractionation. The number of apoptotic cells, cell cycle stages, and reactive oxygen species (ROS) generation levels were determined by flow cytometry. Cell invasiveness was examined by the Matrigel invasion assay. Efficacy of AR-42 in vivo was evaluated by utilizing BxPC-3 xenograft mouse model. AR-42 inhibited pancreatic cancer cell proliferation by causing G2/M cell cycle arrest via regulating expression levels of genes and proteins involved in cell cycle. AR-42 also induced ROS generation and DNA damage, triggering apoptosis of pancreatic cancer cells via both caspase-3-dependent and caspase-3-independent pathways. In addition, AR-42 increased expression levels of negative regulators of p53 (miR-125b, miR-30d, and miR33), which could contribute to lower expression level of mutant p53 in pancreatic cancer cells. Cell invasion assay showed that AR-42 reduced cancer cell aggressiveness and significantly diminished BxPC-3 xenograft tumor growth in vivo. AR-42, a novel HDAC inhibitor, inhibited pancreatic cancer cells by regulating p53 expression, inducing cell cycle arrest, particularly at the G2/M stage, and activating multiple apoptosis pathways. Additionally, AR-42 inhibited cell invasiveness and potently suppressed pancreatic cancer tumors in vivo. We conclude that by virtue of its multiple mechanisms of action, AR-42 possesses a considerable potential as an antitumor agent in pancreatic cancer.

  18. A systematic petri net approach for multiple-scale modeling and simulation of biochemical processes.

    PubMed

    Chen, Ming; Hu, Minjie; Hofestädt, Ralf

    2011-06-01

    A method to exploit hybrid Petri nets for modeling and simulating biochemical processes in a systematic way was introduced. Both molecular biology and biochemical engineering aspects are manipulated. With discrete and continuous elements, the hybrid Petri nets can easily handle biochemical factors such as metabolites concentration and kinetic behaviors. It is possible to translate both molecular biological behavior and biochemical processes workflow into hybrid Petri nets in a natural manner. As an example, penicillin production bioprocess is modeled to illustrate the concepts of the methodology. Results of the dynamic of production parameters in the bioprocess were simulated and observed diagrammatically. Current problems and post-genomic perspectives were also discussed.

  19. A longitudinal analysis of the effects of age on the blood plasma metabolome in the common marmoset, Callithrix jacchus

    PubMed Central

    Hoffman, Jessica M.; Tran, ViLinh; Wachtman, Lynn M.; Green, Cara L.; Jones, Dean P.; Promislow, Daniel E.L.

    2016-01-01

    Primates tend to be long-lived for their size with humans being the longest lived of all primates. There are compelling reasons to understand the underlying age-related processes that shape human lifespan. But the very fact of our long lifespan that makes it so compelling, also makes it especially difficult to study. Thus, in studies of aging, researchers have turned to non-human primate models, including chimpanzees, baboons, and rhesus macaques. More recently, the common marmoset, Callithrix jacchus, has been recognized as a particularly valuable model in studies of aging, given its small size, ease of housing in captivity, and relatively short lifespan. However, little is known about the physiological changes that occur as marmosets age. To begin to fill in this gap, we utilized high sensitivity metabolomics to define the longitudinal biochemical changes associated with age in the common marmoset. We measured 2104 metabolites from blood plasma at three separate time points over a 17-month period, and we completed both a cross-sectional and longitudinal analysis of the metabolome. We discovered hundreds of metabolites associated with age and body weight in both male and female animals. Our longitudinal analysis identified age-associated metabolic pathways that were not found in our cross-sectional analysis. Pathways enriched for age-associated metabolites included tryptophan, nucleotide, and xenobiotic metabolism, suggesting these biochemical pathways might play an important role in the basic mechanisms of aging in primates. Moreover, we found that many metabolic pathways associated with age were sex specific. Our work illustrates the power of longitudinal approaches, even in a short time frame, to discover novel biochemical changes that occur with age. PMID:26805607

  20. Silicon Regulates Potential Genes Involved in Major Physiological Processes in Plants to Combat Stress

    PubMed Central

    Manivannan, Abinaya; Ahn, Yul-Kuyn

    2017-01-01

    Silicon (Si), the quasi-essential element occurs as the second most abundant element in the earth's crust. Biological importance of Si in plant kingdom has become inevitable particularly under stressed environment. In general, plants are classified as high, medium, and low silicon accumulators based on the ability of roots to absorb Si. The uptake of Si directly influence the positive effects attributed to the plant but Si supplementation proves to mitigate stress and recover plant growth even in low accumulating plants like tomato. The application of Si in soil as well as soil-less cultivation systems have resulted in the enhancement of quantitative and qualitative traits of plants even under stressed environment. Silicon possesses several mechanisms to regulate the physiological, biochemical, and antioxidant metabolism in plants to combat abiotic and biotic stresses. Nevertheless, very few reports are available on the aspect of Si-mediated molecular regulation of genes with potential role in stress tolerance. The recent advancements in the era of genomics and transcriptomics have opened an avenue for the determination of molecular rationale associated with the Si amendment to the stress alleviation in plants. Therefore, the present endeavor has attempted to describe the recent discoveries related to the regulation of vital genes involved in photosynthesis, transcription regulation, defense, water transport, polyamine synthesis, and housekeeping genes during abiotic and biotic stress alleviation by Si. Furthermore, an overview of Si-mediated modulation of multiple genes involved in stress response pathways such as phenylpropanoid pathway, jasmonic acid pathway, ABA-dependent or independent regulatory pathway have been discussed in this review. PMID:28824681

  1. Computer-Aided Resolution of an Experimental Paradox in Bacterial Chemotaxis

    PubMed Central

    Abouhamad, Walid N.; Bray, Dennis; Schuster, Martin; Boesch, Kristin C.; Silversmith, Ruth E.; Bourret, Robert B.

    1998-01-01

    Escherichia coli responds to its environment by means of a network of intracellular reactions which process signals from membrane-bound receptors and relay them to the flagellar motors. Although characterization of the reactions in the chemotaxis signaling pathway is sufficiently complete to construct computer simulations that predict the phenotypes of mutant strains with a high degree of accuracy, two previous experimental investigations of the activity remaining upon genetic deletion of multiple signaling components yielded several contradictory results (M. P. Conley, A. J. Wolfe, D. F. Blair, and H. C. Berg, J. Bacteriol. 171:5190–5193, 1989; J. D. Liu and J. S. Parkinson, Proc. Natl. Acad. Sci. USA 86:8703–8707, 1989). For example, “building up” the pathway by adding back CheA and CheY to a gutted strain lacking chemotaxis genes resulted in counterclockwise flagellar rotation whereas “breaking down” the pathway by deleting chemotaxis genes except cheA and cheY resulted in alternating episodes of clockwise and counterclockwise flagellar rotation. Our computer simulation predicts that trace amounts of CheZ expressed in the gutted strain could account for this difference. We tested this explanation experimentally by constructing a mutant containing a new deletion of the che genes that cannot express CheZ and verified that the behavior of strains built up from the new deletion does in fact conform to both the phenotypes observed for breakdown strains and computer-generated predictions. Our findings consolidate the present view of the chemotaxis signaling pathway and highlight the utility of molecularly based computer models in the analysis of complex biochemical networks. PMID:9683468

  2. Genetic and Environmental Pathways in Type 1 Diabetes Complication

    DTIC Science & Technology

    2008-06-01

    obese diabetic mice. Biochem Biophys Res Commun 2002. 294:592-596. 4. Beyan H, Goodier MR, Nawroly NS, Hawa MI, Bustin SA, Ogunkolade WB, Londei M...peroxidation in patients with hyperglycemic crisis . Diabetes 2004. 53:2079-2086. 14 In our second quarterly scientific progress report (09/01/07 – 11...cells induced to differentiate into insulin-positive cells. Biochem Biophys Res Commun . 2007;357(2):414-20. 44. Takahashi K, Tanabe K, Ohnuki M, Narita

  3. Biochemical analysis of force-sensitive responses using a large-scale cell stretch device.

    PubMed

    Renner, Derrick J; Ewald, Makena L; Kim, Timothy; Yamada, Soichiro

    2017-09-03

    Physical force has emerged as a key regulator of tissue homeostasis, and plays an important role in embryogenesis, tissue regeneration, and disease progression. Currently, the details of protein interactions under elevated physical stress are largely missing, therefore, preventing the fundamental, molecular understanding of mechano-transduction. This is in part due to the difficulty isolating large quantities of cell lysates exposed to force-bearing conditions for biochemical analysis. We designed a simple, easy-to-fabricate, large-scale cell stretch device for the analysis of force-sensitive cell responses. Using proximal biotinylation (BioID) analysis or phospho-specific antibodies, we detected force-sensitive biochemical changes in cells exposed to prolonged cyclic substrate stretch. For example, using promiscuous biotin ligase BirA* tagged α-catenin, the biotinylation of myosin IIA increased with stretch, suggesting the close proximity of myosin IIA to α-catenin under a force bearing condition. Furthermore, using phospho-specific antibodies, Akt phosphorylation was reduced upon stretch while Src phosphorylation was unchanged. Interestingly, phosphorylation of GSK3β, a downstream effector of Akt pathway, was also reduced with stretch, while the phosphorylation of other Akt effectors was unchanged. These data suggest that the Akt-GSK3β pathway is force-sensitive. This simple cell stretch device enables biochemical analysis of force-sensitive responses and has potential to uncover molecules underlying mechano-transduction.

  4. Formation of peptides from amino acids by single or multiple additions of ATP to suspensions of nucleoproteinoid microparticles

    NASA Technical Reports Server (NTRS)

    Nakashima, T.; Fox, S. W.

    1981-01-01

    The synthesis of peptides from individual amino acids or pairs of amino acids and ATP in the presence of catalysis by nucleoproteinoid microparticles is investigated. Experiments were performed with suspensions formed from the condensation of lysine-rich and acidic proteinoids with polyadenylic acid, to which were added glycine, phenylalanine, proline, lysine or glycine-phenylalanine mixtures, and ATP either at once or serially. Peptide yields are found to be greatest for equal amounts of acidic and basic proteinoids. The addition of imidazole is found to alter the preference of glycine-phenylalanine mixtures to form mixed heteropeptides rather than homopeptides. A rapid ATP decay in the peptide synthesis reaction is observed, and a greater yield is obtained for repeated small additions than for a single addition of ATP. The experimental system has properties similar to modern cells, and represents an organizational unit ready for the evolution of associated biochemical pathways.

  5. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    PubMed

    Galluzzi, Lorenzo; Vitale, Ilio; Aaronson, Stuart A; Abrams, John M; Adam, Dieter; Agostinis, Patrizia; Alnemri, Emad S; Altucci, Lucia; Amelio, Ivano; Andrews, David W; Annicchiarico-Petruzzelli, Margherita; Antonov, Alexey V; Arama, Eli; Baehrecke, Eric H; Barlev, Nickolai A; Bazan, Nicolas G; Bernassola, Francesca; Bertrand, Mathieu J M; Bianchi, Katiuscia; Blagosklonny, Mikhail V; Blomgren, Klas; Borner, Christoph; Boya, Patricia; Brenner, Catherine; Campanella, Michelangelo; Candi, Eleonora; Carmona-Gutierrez, Didac; Cecconi, Francesco; Chan, Francis K-M; Chandel, Navdeep S; Cheng, Emily H; Chipuk, Jerry E; Cidlowski, John A; Ciechanover, Aaron; Cohen, Gerald M; Conrad, Marcus; Cubillos-Ruiz, Juan R; Czabotar, Peter E; D'Angiolella, Vincenzo; Dawson, Ted M; Dawson, Valina L; De Laurenzi, Vincenzo; De Maria, Ruggero; Debatin, Klaus-Michael; DeBerardinis, Ralph J; Deshmukh, Mohanish; Di Daniele, Nicola; Di Virgilio, Francesco; Dixit, Vishva M; Dixon, Scott J; Duckett, Colin S; Dynlacht, Brian D; El-Deiry, Wafik S; Elrod, John W; Fimia, Gian Maria; Fulda, Simone; García-Sáez, Ana J; Garg, Abhishek D; Garrido, Carmen; Gavathiotis, Evripidis; Golstein, Pierre; Gottlieb, Eyal; Green, Douglas R; Greene, Lloyd A; Gronemeyer, Hinrich; Gross, Atan; Hajnoczky, Gyorgy; Hardwick, J Marie; Harris, Isaac S; Hengartner, Michael O; Hetz, Claudio; Ichijo, Hidenori; Jäättelä, Marja; Joseph, Bertrand; Jost, Philipp J; Juin, Philippe P; Kaiser, William J; Karin, Michael; Kaufmann, Thomas; Kepp, Oliver; Kimchi, Adi; Kitsis, Richard N; Klionsky, Daniel J; Knight, Richard A; Kumar, Sharad; Lee, Sam W; Lemasters, John J; Levine, Beth; Linkermann, Andreas; Lipton, Stuart A; Lockshin, Richard A; López-Otín, Carlos; Lowe, Scott W; Luedde, Tom; Lugli, Enrico; MacFarlane, Marion; Madeo, Frank; Malewicz, Michal; Malorni, Walter; Manic, Gwenola; Marine, Jean-Christophe; Martin, Seamus J; Martinou, Jean-Claude; Medema, Jan Paul; Mehlen, Patrick; Meier, Pascal; Melino, Sonia; Miao, Edward A; Molkentin, Jeffery D; Moll, Ute M; Muñoz-Pinedo, Cristina; Nagata, Shigekazu; Nuñez, Gabriel; Oberst, Andrew; Oren, Moshe; Overholtzer, Michael; Pagano, Michele; Panaretakis, Theocharis; Pasparakis, Manolis; Penninger, Josef M; Pereira, David M; Pervaiz, Shazib; Peter, Marcus E; Piacentini, Mauro; Pinton, Paolo; Prehn, Jochen H M; Puthalakath, Hamsa; Rabinovich, Gabriel A; Rehm, Markus; Rizzuto, Rosario; Rodrigues, Cecilia M P; Rubinsztein, David C; Rudel, Thomas; Ryan, Kevin M; Sayan, Emre; Scorrano, Luca; Shao, Feng; Shi, Yufang; Silke, John; Simon, Hans-Uwe; Sistigu, Antonella; Stockwell, Brent R; Strasser, Andreas; Szabadkai, Gyorgy; Tait, Stephen W G; Tang, Daolin; Tavernarakis, Nektarios; Thorburn, Andrew; Tsujimoto, Yoshihide; Turk, Boris; Vanden Berghe, Tom; Vandenabeele, Peter; Vander Heiden, Matthew G; Villunger, Andreas; Virgin, Herbert W; Vousden, Karen H; Vucic, Domagoj; Wagner, Erwin F; Walczak, Henning; Wallach, David; Wang, Ying; Wells, James A; Wood, Will; Yuan, Junying; Zakeri, Zahra; Zhivotovsky, Boris; Zitvogel, Laurence; Melino, Gerry; Kroemer, Guido

    2018-03-01

    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.

  6. Study of traits and recalcitrance reduction of field-grown COMT down-regulated switchgrass

    DOE PAGES

    Li, Mi; Pu, Yunqiao; Yoo, Chang Geun; ...

    2017-01-03

    The native recalcitrance of plants hinders the biomass conversion process using current biorefinery techniques. Down-regulation of the caffeic acid O-methyltransferase (COMT) gene in the lignin biosynthesis pathway of switchgrass reduced the thermochemical and biochemical conversion recalcitrance of biomass. Due to potential environmental influences on lignin biosynthesis and deposition, studying the consequences of physicochemical changes in field-grown plants without pretreatment is essential to evaluate the performance of lignin-altered plants. In this study, we determined the chemical composition, cellulose crystallinity and the degree of its polymerization, molecular weight of hemicellulose, and cellulose accessibility of cell walls in order to better understand themore » fundamental features of why biomass is recalcitrant to conversion without pretreatment. The most important is to investigate whether traits and features are stable in the dynamics of field environmental effects over multiple years.« less

  7. Natural Iminosugar (+)-Lentiginosine Inhibits ATPase and Chaperone Activity of Hsp90

    PubMed Central

    Dal Piaz, Fabrizio; Vassallo, Antonio; Chini, Maria Giovanna; Cordero, Franca M.; Cardona, Francesca; Pisano, Claudio; Bifulco, Giuseppe; De Tommasi, Nunziatina; Brandi, Alberto

    2012-01-01

    Heat shock protein 90 (Hsp90) is a significant target in the development of rational cancer therapy due to its role at the crossroads of multiple signaling pathways associated with cell proliferation and cell viability. The relevance of Hsp90 as a therapeutic target for numerous diseases states has prompted the identification and optimization of novel Hsp90 inhibitors as an emerging therapeutic strategy. We performed a screening aimed to identify novel Hsp90 inhibitors among several natural compounds and we focused on the iminosugar (+)-lentiginosine, a natural amyloglucosidases inhibitor, for its peculiar bioactivity profile. Characterization of Hsp90 inhibition was performed using a panel of chemical and biological approaches, including limited proteolysis, biochemical and cellular assays. Our result suggested that the middle domain of Hsp90, as opposed to its ATP-binding pocket, is a promising binding site for new classes of Hsp90 inhibitors with multi-target anti-cancer potential. PMID:22916240

  8. Hydrogen peroxide contributes to the ultraviolet-B (280-315 nm) induced oxidative stress of plant leaves through multiple pathways.

    PubMed

    Czégény, Gyula; Wu, Min; Dér, András; Eriksson, Leif A; Strid, Åke; Hideg, Éva

    2014-06-27

    Solar UV-B (280-315 nm) radiation is a developmental signal in plants but may also cause oxidative stress when combined with other environmental factors. Using computer modeling and in solution experiments we show that UV-B is capable of photosensitizing hydroxyl radical production from hydrogen peroxide. We present evidence that the oxidative effect of UV-B in leaves is at least twofold: (i) it increases cellular hydrogen peroxide concentrations, to a larger extent in pyridoxine antioxidant mutant pdx1.3-1 Arabidopsis and; (ii) is capable of a partial photo-conversion of both 'natural' and 'extra' hydrogen peroxide to hydroxyl radicals. As stress conditions other than UV can increase cellular hydrogen peroxide levels, synergistic deleterious effects of various stresses may be expected already under ambient solar UV-B. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  9. Emerging drugs for the treatment of wound healing.

    PubMed

    Zielins, Elizabeth R; Brett, Elizabeth A; Luan, Anna; Hu, Michael S; Walmsley, Graham G; Paik, Kevin; Senarath-Yapa, Kshemendra; Atashroo, David A; Wearda, Taylor; Lorenz, H Peter; Wan, Derrick C; Longaker, Michael T

    2015-06-01

    Wound healing can be characterized as underhealing, as in the setting of chronic wounds, or overhealing, occurring with hypertrophic scar formation after burn injury. Topical therapies targeting specific biochemical and molecular pathways represent a promising avenue for improving and, in some cases normalizing, the healing process. A brief overview of both normal and pathological wound healing has been provided, along with a review of the current clinical guidelines and treatment modalities for chronic wounds, burn wounds and scar formation. Next, the major avenues for wound healing drugs, along with drugs currently in development, are discussed. Finally, potential challenges to further drug development, and future research directions are discussed. The large body of research concerning wound healing pathophysiology has provided multiple targets for topical therapies. Growth factor therapies with the ability to be targeted for localized release in the wound microenvironment are most promising, particularly when they modulate processes in the proliferative phase of wound healing.

  10. PathwayAccess: CellDesigner plugins for pathway databases.

    PubMed

    Van Hemert, John L; Dickerson, Julie A

    2010-09-15

    CellDesigner provides a user-friendly interface for graphical biochemical pathway description. Many pathway databases are not directly exportable to CellDesigner models. PathwayAccess is an extensible suite of CellDesigner plugins, which connect CellDesigner directly to pathway databases using respective Java application programming interfaces. The process is streamlined for creating new PathwayAccess plugins for specific pathway databases. Three PathwayAccess plugins, MetNetAccess, BioCycAccess and ReactomeAccess, directly connect CellDesigner to the pathway databases MetNetDB, BioCyc and Reactome. PathwayAccess plugins enable CellDesigner users to expose pathway data to analytical CellDesigner functions, curate their pathway databases and visually integrate pathway data from different databases using standard Systems Biology Markup Language and Systems Biology Graphical Notation. Implemented in Java, PathwayAccess plugins run with CellDesigner version 4.0.1 and were tested on Ubuntu Linux, Windows XP and 7, and MacOSX. Source code, binaries, documentation and video walkthroughs are freely available at http://vrac.iastate.edu/~jlv.

  11. MetaMapp: mapping and visualizing metabolomic data by integrating information from biochemical pathways and chemical and mass spectral similarity

    PubMed Central

    2012-01-01

    Background Exposure to environmental tobacco smoke (ETS) leads to higher rates of pulmonary diseases and infections in children. To study the biochemical changes that may precede lung diseases, metabolomic effects on fetal and maternal lungs and plasma from rats exposed to ETS were compared to filtered air control animals. Genome- reconstructed metabolic pathways may be used to map and interpret dysregulation in metabolic networks. However, mass spectrometry-based non-targeted metabolomics datasets often comprise many metabolites for which links to enzymatic reactions have not yet been reported. Hence, network visualizations that rely on current biochemical databases are incomplete and also fail to visualize novel, structurally unidentified metabolites. Results We present a novel approach to integrate biochemical pathway and chemical relationships to map all detected metabolites in network graphs (MetaMapp) using KEGG reactant pair database, Tanimoto chemical and NIST mass spectral similarity scores. In fetal and maternal lungs, and in maternal blood plasma from pregnant rats exposed to environmental tobacco smoke (ETS), 459 unique metabolites comprising 179 structurally identified compounds were detected by gas chromatography time of flight mass spectrometry (GC-TOF MS) and BinBase data processing. MetaMapp graphs in Cytoscape showed much clearer metabolic modularity and complete content visualization compared to conventional biochemical mapping approaches. Cytoscape visualization of differential statistics results using these graphs showed that overall, fetal lung metabolism was more impaired than lungs and blood metabolism in dams. Fetuses from ETS-exposed dams expressed lower lipid and nucleotide levels and higher amounts of energy metabolism intermediates than control animals, indicating lower biosynthetic rates of metabolites for cell division, structural proteins and lipids that are critical for in lung development. Conclusions MetaMapp graphs efficiently visualizes mass spectrometry based metabolomics datasets as network graphs in Cytoscape, and highlights metabolic alterations that can be associated with higher rate of pulmonary diseases and infections in children prenatally exposed to ETS. The MetaMapp scripts can be accessed at http://metamapp.fiehnlab.ucdavis.edu. PMID:22591066

  12. Hierarchical modularization of biochemical pathways using fuzzy-c means clustering.

    PubMed

    de Luis Balaguer, Maria A; Williams, Cranos M

    2014-08-01

    Biological systems that are representative of regulatory, metabolic, or signaling pathways can be highly complex. Mathematical models that describe such systems inherit this complexity. As a result, these models can often fail to provide a path toward the intuitive comprehension of these systems. More coarse information that allows a perceptive insight of the system is sometimes needed in combination with the model to understand control hierarchies or lower level functional relationships. In this paper, we present a method to identify relationships between components of dynamic models of biochemical pathways that reside in different functional groups. We find primary relationships and secondary relationships. The secondary relationships reveal connections that are present in the system, which current techniques that only identify primary relationships are unable to show. We also identify how relationships between components dynamically change over time. This results in a method that provides the hierarchy of the relationships among components, which can help us to understand the low level functional structure of the system and to elucidate potential hierarchical control. As a proof of concept, we apply the algorithm to the epidermal growth factor signal transduction pathway, and to the C3 photosynthesis pathway. We identify primary relationships among components that are in agreement with previous computational decomposition studies, and identify secondary relationships that uncover connections among components that current computational approaches were unable to reveal.

  13. Exploring the combinatorial space of complete pathways to chemicals.

    PubMed

    Wang, Lin; Ng, Chiam Yu; Dash, Satyakam; Maranas, Costas D

    2018-04-06

    Computational pathway design tools often face the challenges of balancing the stoichiometry of co-metabolites and cofactors, and dealing with reaction rule utilization in a single workflow. To this end, we provide an overview of two complementary stoichiometry-based pathway design tools optStoic and novoStoic developed in our group to tackle these challenges. optStoic is designed to determine the stoichiometry of overall conversion first which optimizes a performance criterion (e.g. high carbon/energy efficiency) and ensures a comprehensive search of co-metabolites and cofactors. The procedure then identifies the minimum number of intervening reactions to connect the source and sink metabolites. We also further the pathway design procedure by expanding the search space to include both known and hypothetical reactions, represented by reaction rules, in a new tool termed novoStoic. Reaction rules are derived based on a mixed-integer linear programming (MILP) compatible reaction operator, which allow us to explore natural promiscuous enzymes, engineer candidate enzymes that are not already promiscuous as well as design de novo enzymes. The identified biochemical reaction rules then guide novoStoic to design routes that expand the currently known biotransformation space using a single MILP modeling procedure. We demonstrate the use of the two computational tools in pathway elucidation by designing novel synthetic routes for isobutanol. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  14. A mathematical model for regulating monomer composition of the microbially synthesized polyhydroxyalkanoate copolymers.

    PubMed

    Xu, Jun; Guo, Baohua; Zhang, Zengmin; Wu, Qiong; Zhou, Quan; Chen, Jinchun; Chen, Guoqiang; Li, Guodong

    2005-06-30

    A mathematical model is proposed for predicting the copolymer composition of the microbially synthesized polyhydroxyalkanoate (PHA) copolymers. Based on the biochemical reactions involved in the precursor formation and polymerization pathways, the model correlates the copolymer composition with the cultivation conditions, the enzyme levels and selectivity, and the metabolic pathways. It suggests the following points: (1) in the case of a sole carbon source, the copolymer composition depends mainly on the topology of the metabolic pathways and the selectivity of both the enzymes involved in the precursor formation and the polymerization route; (2) the copolymer composition can be varied in a wide range via alteration of the flux ratio of different types of monomers channeled from two or more independent and simultaneous pathways; (3) the enzymes which should be over-expressed or inhibited to obtain the desired copolymer composition can be predicted. For example, inhibition of the beta-oxidation pathway will increase the content of the monomer units with longer chain length. To test the model, various experiments were envisaged by varying cultivation time, concentration and chain length of the sole carbon source, and molar ratio of the cosubstrates. The predictions from the model agree well with the experimental results. Therefore, the proposed model will be useful in predicting the PHA copolymer composition under different biochemical reaction conditions. In other words, it can provide a guide for the synthesis of desired PHA copolymers.

  15. Prediction and Biochemical Demonstration of a Catabolic Pathway for the Osmoprotectant Proline Betaine

    PubMed Central

    Kumar, Ritesh; Zhao, Suwen; Vetting, Matthew W.; Wood, B. McKay; Sakai, Ayano; Cho, Kyuil; Solbiati, José; Almo, Steven C.; Sweedler, Jonathan V.; Jacobson, Matthew P.; Gerlt, John A.; Cronan, John E.

    2014-01-01

    ABSTRACT Through the use of genetic, enzymatic, metabolomic, and structural analyses, we have discovered the catabolic pathway for proline betaine, an osmoprotectant, in Paracoccus denitrificans and Rhodobacter sphaeroides. Genetic and enzymatic analyses showed that several of the key enzymes of the hydroxyproline betaine degradation pathway also function in proline betaine degradation. Metabolomic analyses detected each of the metabolic intermediates of the pathway. The proline betaine catabolic pathway was repressed by osmotic stress and cold stress, and a regulatory transcription factor was identified. We also report crystal structure complexes of the P. denitrificans HpbD hydroxyproline betaine epimerase/proline betaine racemase with l-proline betaine and cis-hydroxyproline betaine. PMID:24520058

  16. Pathway Design, Engineering, and Optimization.

    PubMed

    Garcia-Ruiz, Eva; HamediRad, Mohammad; Zhao, Huimin

    The microbial metabolic versatility found in nature has inspired scientists to create microorganisms capable of producing value-added compounds. Many endeavors have been made to transfer and/or combine pathways, existing or even engineered enzymes with new function to tractable microorganisms to generate new metabolic routes for drug, biofuel, and specialty chemical production. However, the success of these pathways can be impeded by different complications from an inherent failure of the pathway to cell perturbations. Pursuing ways to overcome these shortcomings, a wide variety of strategies have been developed. This chapter will review the computational algorithms and experimental tools used to design efficient metabolic routes, and construct and optimize biochemical pathways to produce chemicals of high interest.

  17. Modular decomposition of metabolic reaction networks based on flux analysis and pathway projection.

    PubMed

    Yoon, Jeongah; Si, Yaguang; Nolan, Ryan; Lee, Kyongbum

    2007-09-15

    The rational decomposition of biochemical networks into sub-structures has emerged as a useful approach to study the design of these complex systems. A biochemical network is characterized by an inhomogeneous connectivity distribution, which gives rise to several organizational features, including modularity. To what extent the connectivity-based modules reflect the functional organization of the network remains to be further explored. In this work, we examine the influence of physiological perturbations on the modular organization of cellular metabolism. Modules were characterized for two model systems, liver and adipocyte primary metabolism, by applying an algorithm for top-down partition of directed graphs with non-uniform edge weights. The weights were set by the engagement of the corresponding reactions as expressed by the flux distribution. For the base case of the fasted rat liver, three modules were found, carrying out the following biochemical transformations: ketone body production, glucose synthesis and transamination. This basic organization was further modified when different flux distributions were applied that describe the liver's metabolic response to whole body inflammation. For the fully mature adipocyte, only a single module was observed, integrating all of the major pathways needed for lipid storage. Weaker levels of integration between the pathways were found for the early stages of adipocyte differentiation. Our results underscore the inhomogeneous distribution of both connectivity and connection strengths, and suggest that global activity data such as the flux distribution can be used to study the organizational flexibility of cellular metabolism. Supplementary data are available at Bioinformatics online.

  18. The pomegranate (Punica granatum L.) genome and the genomics of punicalagin biosynthesis.

    PubMed

    Qin, Gaihua; Xu, Chunyan; Ming, Ray; Tang, Haibao; Guyot, Romain; Kramer, Elena M; Hu, Yudong; Yi, Xingkai; Qi, Yongjie; Xu, Xiangyang; Gao, Zhenghui; Pan, Haifa; Jian, Jianbo; Tian, Yinping; Yue, Zhen; Xu, Yiliu

    2017-09-01

    Pomegranate (Punica granatum L.) is a perennial fruit crop grown since ancient times that has been planted worldwide and is known for its functional metabolites, particularly punicalagins. We have sequenced and assembled the pomegranate genome with 328 Mb anchored into nine pseudo-chromosomes and annotated 29 229 gene models. A Myrtales lineage-specific whole-genome duplication event was detected that occurred in the common ancestor before the divergence of pomegranate and Eucalyptus. Repetitive sequences accounted for 46.1% of the assembled genome. We found that the integument development gene INNER NO OUTER (INO) was under positive selection and potentially contributed to the development of the fleshy outer layer of the seed coat, an edible part of pomegranate fruit. The genes encoding the enzymes for synthesis and degradation of lignin, hemicelluloses and cellulose were also differentially expressed between soft- and hard-seeded varieties, reflecting differences in their accumulation in cultivars differing in seed hardness. Candidate genes for punicalagin biosynthesis were identified and their expression patterns indicated that gallic acid synthesis in tissues could follow different biochemical pathways. The genome sequence of pomegranate provides a valuable resource for the dissection of many biological and biochemical traits and also provides important insights for the acceleration of breeding. Elucidation of the biochemical pathway(s) involved in punicalagin biosynthesis could assist breeding efforts to increase production of this bioactive compound. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  19. Biochemical Fractionation and Stable Isotope Dilution Liquid Chromatography-mass Spectrometry for Targeted and Microdomain-specific Protein Quantification in Human Postmortem Brain Tissue*

    PubMed Central

    MacDonald, Matthew L.; Ciccimaro, Eugene; Prakash, Amol; Banerjee, Anamika; Seeholzer, Steven H.; Blair, Ian A.; Hahn, Chang-Gyu

    2012-01-01

    Synaptic architecture and its adaptive changes require numerous molecular events that are both highly ordered and complex. A majority of neuropsychiatric illnesses are complex trait disorders, in which multiple etiologic factors converge at the synapse via many signaling pathways. Investigating the protein composition of synaptic microdomains from human patient brain tissues will yield valuable insights into the interactions of risk genes in many disorders. These types of studies in postmortem tissues have been limited by the lack of proper study paradigms. Thus, it is necessary not only to develop strategies to quantify protein and post-translational modifications at the synapse, but also to rigorously validate them for use in postmortem human brain tissues. In this study we describe the development of a liquid chromatography-selected reaction monitoring method, using a stable isotope-labeled neuronal proteome standard prepared from the brain tissue of a stable isotope-labeled mouse, for the multiplexed quantification of target synaptic proteins in mammalian samples. Additionally, we report the use of this method to validate a biochemical approach for the preparation of synaptic microdomain enrichments from human postmortem prefrontal cortex. Our data demonstrate that a targeted mass spectrometry approach with a true neuronal proteome standard facilitates accurate and precise quantification of over 100 synaptic proteins in mammalian samples, with the potential to quantify over 1000 proteins. Using this method, we found that protein enrichments in subcellular fractions prepared from human postmortem brain tissue were strikingly similar to those prepared from fresh mouse brain tissue. These findings demonstrate that biochemical fractionation methods paired with targeted proteomic strategies can be used in human brain tissues, with important implications for the study of neuropsychiatric disease. PMID:22942359

  20. Investigating Biochemical and Developmental Dependencies of Lignification with a Click-Compatible Monolignol Analog in Arabidopsis thaliana Stems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandey, Jyotsna L.; Kiemle, Sarah N.; Richard, Tom L.

    Lignin is a key structural component of plant cell walls that provides rigidity, strength, and resistance against microbial attacks. This hydrophobic polymer also serves a crucial role in water transport. Despite its abundance and essential functions, several aspects of lignin biosynthesis and deposition remain cryptic. Lignin precursors are known to be synthesized in the cytoplasm by complex biosynthetic pathways, after which they are transported to the apoplastic space, where they are polymerized via free radical coupling reactions into polymeric lignin. However, the lignin deposition process and the factors controlling it are unclear. In this study, the biochemical and developmental dependenciesmore » of lignification were investigated using a click-compatible monolignol analog, 3-O-propargylcaffeyl alcohol (3-OPC), which can incorporate into both in vitro polymerized lignin and Arabidopsis thaliana tissues. Fluorescence labeling of 3-OPC using click chemistry followed by confocal fluorescence microscopy enabled the detection and imaging of 3-OPC incorporation patterns. These patterns were consistent with endogenous lignification observed in different developmental stages of Arabidopsis stems. However, the concentration of supplied monolignols influenced where lignification occurred at the subcellular level, with low concentrations being deposited in cell corners and middle lamellae and high concentrations also being deposited in secondary walls. Experimental inhibition of multiple lignification factors confirmed that 3-OPC incorporation proceeds via a free radical coupling mechanism involving peroxidases/laccases and reactive oxygen species (ROS). Finally, the presence of peroxide-producing enzymes determined which cell walls lignified: adding exogenous peroxide and peroxidase caused cells that do not naturally lignify in Arabidopsis stems to lignify. In conclusion, 3-OPC accurately mimics natural lignification patterns in different developmental stages of Arabidopsis stems and allows for the dissection of key biochemical and enzymatic factors controlling lignification.« less

  1. Investigating Biochemical and Developmental Dependencies of Lignification with a Click-Compatible Monolignol Analog in Arabidopsis thaliana Stems

    PubMed Central

    Pandey, Jyotsna L.; Kiemle, Sarah N.; Richard, Tom L.; Zhu, Yimin; Cosgrove, Daniel J.; Anderson, Charles T.

    2016-01-01

    Lignin is a key structural component of plant cell walls that provides rigidity, strength, and resistance against microbial attacks. This hydrophobic polymer also serves a crucial role in water transport. Despite its abundance and essential functions, several aspects of lignin biosynthesis and deposition remain cryptic. Lignin precursors are known to be synthesized in the cytoplasm by complex biosynthetic pathways, after which they are transported to the apoplastic space, where they are polymerized via free radical coupling reactions into polymeric lignin. However, the lignin deposition process and the factors controlling it are unclear. In this study, the biochemical and developmental dependencies of lignification were investigated using a click-compatible monolignol analog, 3-O-propargylcaffeyl alcohol (3-OPC), which can incorporate into both in vitro polymerized lignin and Arabidopsis thaliana tissues. Fluorescence labeling of 3-OPC using click chemistry followed by confocal fluorescence microscopy enabled the detection and imaging of 3-OPC incorporation patterns. These patterns were consistent with endogenous lignification observed in different developmental stages of Arabidopsis stems. However, the concentration of supplied monolignols influenced where lignification occurred at the subcellular level, with low concentrations being deposited in cell corners and middle lamellae and high concentrations also being deposited in secondary walls. Experimental inhibition of multiple lignification factors confirmed that 3-OPC incorporation proceeds via a free radical coupling mechanism involving peroxidases/laccases and reactive oxygen species (ROS). Finally, the presence of peroxide-producing enzymes determined which cell walls lignified: adding exogenous peroxide and peroxidase caused cells that do not naturally lignify in Arabidopsis stems to lignify. In summary, 3-OPC accurately mimics natural lignification patterns in different developmental stages of Arabidopsis stems and allows for the dissection of key biochemical and enzymatic factors controlling lignification. PMID:27630649

  2. Investigating Biochemical and Developmental Dependencies of Lignification with a Click-Compatible Monolignol Analog in Arabidopsis thaliana Stems

    DOE PAGES

    Pandey, Jyotsna L.; Kiemle, Sarah N.; Richard, Tom L.; ...

    2016-08-31

    Lignin is a key structural component of plant cell walls that provides rigidity, strength, and resistance against microbial attacks. This hydrophobic polymer also serves a crucial role in water transport. Despite its abundance and essential functions, several aspects of lignin biosynthesis and deposition remain cryptic. Lignin precursors are known to be synthesized in the cytoplasm by complex biosynthetic pathways, after which they are transported to the apoplastic space, where they are polymerized via free radical coupling reactions into polymeric lignin. However, the lignin deposition process and the factors controlling it are unclear. In this study, the biochemical and developmental dependenciesmore » of lignification were investigated using a click-compatible monolignol analog, 3-O-propargylcaffeyl alcohol (3-OPC), which can incorporate into both in vitro polymerized lignin and Arabidopsis thaliana tissues. Fluorescence labeling of 3-OPC using click chemistry followed by confocal fluorescence microscopy enabled the detection and imaging of 3-OPC incorporation patterns. These patterns were consistent with endogenous lignification observed in different developmental stages of Arabidopsis stems. However, the concentration of supplied monolignols influenced where lignification occurred at the subcellular level, with low concentrations being deposited in cell corners and middle lamellae and high concentrations also being deposited in secondary walls. Experimental inhibition of multiple lignification factors confirmed that 3-OPC incorporation proceeds via a free radical coupling mechanism involving peroxidases/laccases and reactive oxygen species (ROS). Finally, the presence of peroxide-producing enzymes determined which cell walls lignified: adding exogenous peroxide and peroxidase caused cells that do not naturally lignify in Arabidopsis stems to lignify. In conclusion, 3-OPC accurately mimics natural lignification patterns in different developmental stages of Arabidopsis stems and allows for the dissection of key biochemical and enzymatic factors controlling lignification.« less

  3. Abscisic Acid–Responsive Guard Cell Metabolomes of Arabidopsis Wild-Type and gpa1 G-Protein Mutants[C][W

    PubMed Central

    Jin, Xiaofen; Wang, Rui-Sheng; Zhu, Mengmeng; Jeon, Byeong Wook; Albert, Reka; Chen, Sixue; Assmann, Sarah M.

    2013-01-01

    Individual metabolites have been implicated in abscisic acid (ABA) signaling in guard cells, but a metabolite profile of this specialized cell type is lacking. We used liquid chromatography–multiple reaction monitoring mass spectrometry for targeted analysis of 85 signaling-related metabolites in Arabidopsis thaliana guard cell protoplasts over a time course of ABA treatment. The analysis utilized ∼350 million guard cell protoplasts from ∼30,000 plants of the Arabidopsis Columbia accession (Col) wild type and the heterotrimeric G-protein α subunit mutant, gpa1, which has ABA-hyposensitive stomata. These metabolomes revealed coordinated regulation of signaling metabolites in unrelated biochemical pathways. Metabolites clustered into different temporal modules in Col versus gpa1, with fewer metabolites showing ABA-altered profiles in gpa1. Ca2+-mobilizing agents sphingosine-1-phosphate and cyclic adenosine diphosphate ribose exhibited weaker ABA-stimulated increases in gpa1. Hormone metabolites were responsive to ABA, with generally greater responsiveness in Col than in gpa1. Most hormones also showed different ABA responses in guard cell versus mesophyll cell metabolomes. These findings suggest that ABA functions upstream to regulate other hormones, and are also consistent with G proteins modulating multiple hormonal signaling pathways. In particular, indole-3-acetic acid levels declined after ABA treatment in Col but not gpa1 guard cells. Consistent with this observation, the auxin antagonist α-(phenyl ethyl-2-one)-indole-3-acetic acid enhanced ABA-regulated stomatal movement and restored partial ABA sensitivity to gpa1. PMID:24368793

  4. Proteins from Multiple Metabolic Pathways Associate with Starch Biosynthetic Enzymes in High Molecular Weight Complexes: A Model for Regulation of Carbon Allocation in Maize Amyloplasts1[C][W][OA

    PubMed Central

    Hennen-Bierwagen, Tracie A.; Lin, Qiaohui; Grimaud, Florent; Planchot, Véronique; Keeling, Peter L.; James, Martha G.; Myers, Alan M.

    2009-01-01

    Starch biosynthetic enzymes from maize (Zea mays) and wheat (Triticum aestivum) amyloplasts exist in cell extracts in high molecular weight complexes; however, the nature of those assemblies remains to be defined. This study tested the interdependence of the maize enzymes starch synthase IIa (SSIIa), SSIII, starch branching enzyme IIb (SBEIIb), and SBEIIa for assembly into multisubunit complexes. Mutations that eliminated any one of those proteins also prevented the others from assembling into a high molecular mass form of approximately 670 kD, so that SSIII, SSIIa, SBEIIa, and SBEIIb most likely all exist together in the same complex. SSIIa, SBEIIb, and SBEIIa, but not SSIII, were also interdependent for assembly into a complex of approximately 300 kD. SSIII, SSIIa, SBEIIa, and SBEIIb copurified through successive chromatography steps, and SBEIIa, SBEIIb, and SSIIa coimmunoprecipitated with SSIII in a phosphorylation-dependent manner. SBEIIa and SBEIIb also were retained on an affinity column bearing a specific conserved fragment of SSIII located outside of the SS catalytic domain. Additional proteins that copurified with SSIII in multiple biochemical methods included the two known isoforms of pyruvate orthophosphate dikinase (PPDK), large and small subunits of ADP-glucose pyrophosphorylase, and the sucrose synthase isoform SUS-SH1. PPDK and SUS-SH1 required SSIII, SSIIa, SBEIIa, and SBEIIb for assembly into the 670-kD complex. These complexes may function in global regulation of carbon partitioning between metabolic pathways in developing seeds. PMID:19168640

  5. Molecular Dynamics Simulations of the Human Glucose Transporter GLUT1

    PubMed Central

    Park, Min-Sun

    2015-01-01

    Glucose transporters (GLUTs) provide a pathway for glucose transport across membranes. Human GLUTs are implicated in devastating diseases such as heart disease, hyper- and hypo-glycemia, type 2 diabetes and caner. The human GLUT1 has been recently crystalized in the inward-facing open conformation. However, there is no other structural information for other conformations. The X-ray structures of E. coli Xylose permease (XylE), a glucose transporter homolog, are available in multiple conformations with and without the substrates D-xylose and D-glucose. XylE has high sequence homology to human GLUT1 and key residues in the sugar-binding pocket are conserved. Here we construct a homology model for human GLUT1 based on the available XylE crystal structure in the partially occluded outward-facing conformation. A long unbiased all atom molecular dynamics simulation starting from the model can capture a new fully opened outward-facing conformation. Our investigation of molecular interactions at the interface between the transmembrane (TM) domains and the intracellular helices (ICH) domain in the outward- and inward-facing conformation supports that the ICH domain likely stabilizes the outward-facing conformation in GLUT1. Furthermore, inducing a conformational transition, our simulations manifest a global asymmetric rocker switch motion and detailed molecular interactions between the substrate and residues through the water-filled selective pore along a pathway from the extracellular to the intracellular side. The results presented here are consistent with previously published biochemical, mutagenesis and functional studies. Together, this study shed light on the structure and functional relationships of GLUT1 in multiple conformational states. PMID:25919356

  6. Preliminary study on Emodin alleviating alpha-naphthylisothiocyanate-induced intrahepatic cholestasis by regulation of liver farnesoid X receptor pathway.

    PubMed

    Ding, Yan; Xiong, Xiao-Li; Zhou, Li-Shan; Yan, Su-Qi; Qin, Huan; Li, Hua-Rong; Zhang, Ling-Ling; Chen, Peng; Yao, Cong; Jiang, Zhi-Xia; Zhao, Lei

    2016-12-01

    The aim of this study is to investigate Emodin on alleviating intrahepatic cholestasis by regulation of liver farnesoid X receptor (FXR) pathway. Cell and animal models of intrahepatic cholestatis were established. Biochemical tests and histomorphology were performed. The messenger RNA (mRNA) and protein expression of FXR, small heterodimer partner (SHP), uridine diphosphate glucuronosyltransferase 2 family polypeptide B4 (UGT2B4), and bile salt export pump (BSEP) was detected. As a result, compared with the model group, the serum levels of biochemical test were significantly lower in the Emodin group (P <0.01). The histopathological changes were remitted significantly by Emodin treatment. In the model group, the mRNA and protein expression of FXR, SHP, UGT2B4, and BSEP was significantly lower than in the normal group in cell models (P <0.05). With Emodin intervention, the expression of FXR, SHP, UGT2B4, and BSEP was notably increased (P <0.05). In conclusion, Emodin plays a protective role in intrahepatic cholestasis by promoting FXR signal pathways. © The Author(s) 2016.

  7. Integrated metabolomics and proteomics highlight altered nicotinamide and polyamine pathways in lung adenocarcinoma

    PubMed Central

    Fahrmann, Johannes F.; Grapov, Dmitry; Wanichthanarak, Kwanjeera; DeFelice, Brian C.; Salemi, Michelle R.; Rom, William N.; Gandara, David R.; Phinney, Brett S.; Fiehn, Oliver; Pass, Harvey

    2017-01-01

    Abstract Lung cancer is the leading cause of cancer mortality in the United States with non-small cell lung cancer adenocarcinoma being the most common histological type. Early perturbations in cellular metabolism are a hallmark of cancer, but the extent of these changes in early stage lung adenocarcinoma remains largely unknown. In the current study, an integrated metabolomics and proteomics approach was utilized to characterize the biochemical and molecular alterations between malignant and matched control tissue from 27 subjects diagnosed with early stage lung adenocarcinoma. Differential analysis identified 71 metabolites and 1102 proteins that delineated tumor from control tissue. Integrated results indicated four major metabolic changes in early stage adenocarcinoma (1): increased glycosylation and glutaminolysis (2); elevated Nrf2 activation (3); increase in nicotinic and nicotinamide salvaging pathways and (4) elevated polyamine biosynthesis linked to differential regulation of the s-adenosylmethionine/nicotinamide methyl-donor pathway. Genomic data from publicly available databases were included to strengthen proteomic findings. Our findings provide insight into the biochemical and molecular biological reprogramming that may accompany early stage lung tumorigenesis and highlight potential therapeutic targets. PMID:28049629

  8. Identification of the First Riboflavin Catabolic Gene Cluster Isolated from Microbacterium maritypicum G10*

    PubMed Central

    Xu, Hui; Chakrabarty, Yindrila; Philmus, Benjamin; Mehta, Angad P.; Bhandari, Dhananjay; Hohmann, Hans-Peter; Begley, Tadhg P.

    2016-01-01

    Riboflavin is a common cofactor, and its biosynthetic pathway is well characterized. However, its catabolic pathway, despite intriguing hints in a few distinct organisms, has never been established. This article describes the isolation of a Microbacterium maritypicum riboflavin catabolic strain, and the cloning of the riboflavin catabolic genes. RcaA, RcaB, RcaD, and RcaE were overexpressed and biochemically characterized as riboflavin kinase, riboflavin reductase, ribokinase, and riboflavin hydrolase, respectively. Based on these activities, a pathway for riboflavin catabolism is proposed. PMID:27590337

  9. The JAK/STAT pathway in obesity and diabetes.

    PubMed

    Gurzov, Esteban N; Stanley, William J; Pappas, Evan G; Thomas, Helen E; Gough, Daniel J

    2016-08-01

    Diabetes mellitus are complex, multi-organ metabolic pathologies characterized by hyperglycemia. Emerging evidence shows that the highly conserved and potent JAK/STAT signaling pathway is required for normal homeostasis, and, when dysregulated, contributes to the development of obesity and diabetes. In this review, we analyze the role of JAK/STAT activation in the brain, liver, muscle, fat and pancreas, and how this affects the course of the disease. We also consider the therapeutic implications of targeting the JAK/STAT pathway in treatment of obesity and diabetes. © 2016 Federation of European Biochemical Societies.

  10. Viroid Pathogenicity: One Process, Many Faces

    PubMed Central

    Owens, Robert A.; Hammond, Rosemarie W.

    2009-01-01

    Despite the non-coding nature of their small RNA genomes, the visible symptoms of viroid infection resemble those associated with many plant virus diseases. Recent evidence indicates that viroid-derived small RNAs acting through host RNA silencing pathways play a key role in viroid pathogenicity. Host responses to viroid infection are complex, involving signaling cascades containing host-encoded protein kinases and crosstalk between hormonal and defense-signaling pathways. Studies of viroid-host interaction in the context of entire biochemical or developmental pathways are just beginning, and many working hypotheses have yet to be critically tested. PMID:21994551

  11. Detecting breakdown points in metabolic networks.

    PubMed

    Tagore, Somnath; De, Rajat K

    2011-12-14

    A complex network of biochemical reactions present in an organism generates various biological moieties necessary for its survival. It is seen that biological systems are robust to genetic and environmental changes at all levels of organization. Functions of various organisms are sustained against mutational changes by using alternative pathways. It is also seen that if any one of the paths for production of the same metabolite is hampered, an alternate path tries to overcome this defect and helps in combating the damage. Certain physical, chemical or genetic change in any of the precursor substrate of a biochemical reaction may damage the production of the ultimate product. We employ a quantitative approach for simulating this phenomena of causing a physical change in the biochemical reactions by performing external perturbations to 12 metabolic pathways under carbohydrate metabolism in Saccharomyces cerevisae as well as 14 metabolic pathways under carbohydrate metabolism in Homo sapiens. Here, we investigate the relationship between structure and degree of compatibility of metabolites against external perturbations, i.e., robustness. Robustness can also be further used to identify the extent to which a metabolic pathway can resist a mutation event. Biological networks with a certain connectivity distribution may be very resilient to a particular attack but not to another. The goal of this work is to determine the exact boundary of network breakdown due to both random and targeted attack, thereby analyzing its robustness. We also find that compared to various non-standard models, metabolic networks are exceptionally robust. Here, we report the use of a 'Resilience-based' score for enumerating the concept of 'network-breakdown'. We also use this approach for analyzing metabolite essentiality providing insight into cellular robustness that can be further used for future drug development. We have investigated the behavior of metabolic pathways under carbohydrate metabolism in S. cerevisae and H. sapiens against random and targeted attack. Both random as well as targeted resilience were calculated by formulating a measure, that we termed as 'Resilience score'. Datasets of metabolites were collected for 12 metabolic pathways belonging to carbohydrate metabolism in S. cerevisae and 14 metabolic pathways belonging to carbohydrate metabolism in H. sapiens from Kyoto Encyclopedia for Genes and Genomes (KEGG). Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Targeting the Hippo signalling pathway for cancer treatment.

    PubMed

    Nakatani, Keisuke; Maehama, Tomohiko; Nishio, Miki; Goto, Hiroki; Kato, Wakako; Omori, Hirofumi; Miyachi, Yosuke; Togashi, Hideru; Shimono, Yohei; Suzuki, Akira

    2017-03-01

    The Hippo signalling pathway monitors cell-cell contact and external factors that shape tissue structure. In mice, tumourigenesis and developmental abnormalities are common consequences of dysregulated Hippo signalling. Expression of Hippo pathway components is also frequently altered in human tumours and correlates with poor prognosis and reduced patient survival. Thus, the Hippo pathway is an attractive anti-cancer target. Here, we provide an overview of the function and regulation of Hippo signalling components and summarize progress to date on the development of agents able to regulate Hippo signalling for cancer therapy. © The Authors 2016. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  13. The Brain In Vivo Expresses the 2′,3′-cAMP-Adenosine Pathway

    PubMed Central

    Verrier, Jonathan D.; Jackson, Travis C.; Bansal, Rashmi; Kochanek, Patrick M.; Puccio, Ava M.; Okonkwo, David O.; Jackson, Edwin K.

    2012-01-01

    Although multiple biochemical pathways produce adenosine, studies suggest that the 2′,3′-cAMP-adenosine pathway (2′,3′-cAMP → 2′-AMP/3′-AMP → adenosine) contributes to adenosine production in some cells/tissues/organs. To determine whether the 2′,3′-cAMP-adenosine pathway exists in vivo in the brain, we delivered to the brain (gray matter and white matter separately) via the inflow perfusate of a microdialysis probe either 2′,3′-cAMP, 3′,5′-cAMP, 2′-AMP, 3′-AMP, or 5′-AMP and measured the recovered metabolites in the microdialysis outflow perfusate with mass spectrometry. In both gray and white matter, 2′,3′-cAMP increased 2′-AMP, 3′-AMP and adenosine, and 3′,5′-cAMP increased 5′-AMP and adenosine. In both brain regions, 2′-AMP, 3-AMP and 5′-AMP were converted to adenosine. Microdialysis experiments in 2′,3′-cyclic nucleotide-3′-phosphodiesterase (CNPase) wild-type mice demonstrated that traumatic brain injury (TBI; controlled cortical impact model) activated the brain 2,3′-cAMP-adenosine pathway; similar experiments in CNPase knockout mice indicated that CNPase was involved in the metabolism of endogenous 2′,3′-cAMP to 2′-AMP and to adenosine. In CSF from TBI patients, 2′,3′-cAMP was significantly increased in the initial 12 hours after injury and strongly correlated with CSF levels of 2′-AMP, 3′-AMP, adenosine and inosine. We conclude that in vivo, 2′,3′-cAMP is converted to 2′-AMP/3′-AMP, and these AMPs are metabolized to adenosine. This pathway exists endogenously in both mice and humans. PMID:22360621

  14. Deterministic modelling and stochastic simulation of biochemical pathways using MATLAB.

    PubMed

    Ullah, M; Schmidt, H; Cho, K H; Wolkenhauer, O

    2006-03-01

    The analysis of complex biochemical networks is conducted in two popular conceptual frameworks for modelling. The deterministic approach requires the solution of ordinary differential equations (ODEs, reaction rate equations) with concentrations as continuous state variables. The stochastic approach involves the simulation of differential-difference equations (chemical master equations, CMEs) with probabilities as variables. This is to generate counts of molecules for chemical species as realisations of random variables drawn from the probability distribution described by the CMEs. Although there are numerous tools available, many of them free, the modelling and simulation environment MATLAB is widely used in the physical and engineering sciences. We describe a collection of MATLAB functions to construct and solve ODEs for deterministic simulation and to implement realisations of CMEs for stochastic simulation using advanced MATLAB coding (Release 14). The program was successfully applied to pathway models from the literature for both cases. The results were compared to implementations using alternative tools for dynamic modelling and simulation of biochemical networks. The aim is to provide a concise set of MATLAB functions that encourage the experimentation with systems biology models. All the script files are available from www.sbi.uni-rostock.de/ publications_matlab-paper.html.

  15. Involvement of β-carbonic anhydrase (β-CA) genes in bacterial genomic islands and horizontal transfer to protists.

    PubMed

    Zolfaghari Emameh, Reza; Barker, Harlan R; Hytönen, Vesa P; Parkkila, Seppo

    2018-05-25

    Genomic islands (GIs) are a type of mobile genetic element (MGE) that are present in bacterial chromosomes. They consist of a cluster of genes which produce proteins that contribute to a variety of functions, including, but not limited to, regulation of cell metabolism, anti-microbial resistance, pathogenicity, virulence, and resistance to heavy metals. The genes carried in MGEs can be used as a trait reservoir in times of adversity. Transfer of genes using MGEs, occurring outside of reproduction, is called horizontal gene transfer (HGT). Previous literature has shown that numerous HGT events have occurred through endosymbiosis between prokaryotes and eukaryotes.Beta carbonic anhydrase (β-CA) enzymes play a critical role in the biochemical pathways of many prokaryotes and eukaryotes. We have previously suggested horizontal transfer of β-CA genes from plasmids of some prokaryotic endosymbionts to their protozoan hosts. In this study, we set out to identify β-CA genes that might have transferred between prokaryotic and protist species through HGT in GIs. Therefore, we investigated prokaryotic chromosomes containing β-CA-encoding GIs and utilized multiple bioinformatics tools to reveal the distinct movements of β-CA genes among a wide variety of organisms. Our results identify the presence of β-CA genes in GIs of several medically and industrially relevant bacterial species, and phylogenetic analyses reveal multiple cases of likely horizontal transfer of β-CA genes from GIs of ancestral prokaryotes to protists. IMPORTANCE The evolutionary process is mediated by mobile genetic elements (MGEs), such as genomic islands (GIs). A gene or set of genes in the GIs are exchanged between and within various species through horizontal gene transfer (HGT). Based on the crucial role that GIs can play in bacterial survival and proliferation, they were introduced as the environmental- and pathogen-associated factors. Carbonic anhydrases (CAs) are involved in many critical biochemical pathways, such as regulation of pH homeostasis and electrolyte transfer. Among the six evolutionary families of CAs, β-CA gene sequences are present in many bacterial species, which can be horizontally transferred to protists during evolution. This study shows for the first time the involvement of bacterial β-CA gene sequences in the GIs, and suggests their horizontal transfer to protists during evolution. Copyright © 2018 American Society for Microbiology.

  16. Effects of synthetic cohesin-containing scaffold protein architecture on binding dockerin-enzyme fusions on the surface of Lactococcus lactis.

    PubMed

    Wieczorek, Andrew S; Martin, Vincent J J

    2012-12-15

    The microbial synthesis of fuels, commodity chemicals, and bioactive compounds necessitates the assemblage of multiple enzyme activities to carry out sequential chemical reactions, often via substrate channeling by means of multi-domain or multi-enzyme complexes. Engineering the controlled incorporation of enzymes in recombinant protein complexes is therefore of interest. The cellulosome of Clostridium thermocellum is an extracellular enzyme complex that efficiently hydrolyzes crystalline cellulose. Enzymes interact with protein scaffolds via type 1 dockerin/cohesin interactions, while scaffolds in turn bind surface anchor proteins by means of type 2 dockerin/cohesin interactions, which demonstrate a different binding specificity than their type 1 counterparts. Recombinant chimeric scaffold proteins containing cohesins of different specificity allow binding of multiple enzymes to specific sites within an engineered complex. We report the successful display of engineered chimeric scaffold proteins containing both type 1 and type 2 cohesins on the surface of Lactococcus lactis cells. The chimeric scaffold proteins were able to form complexes with the Escherichia coli β-glucuronidase fused to either type 1 or type 2 dockerin, and differences in binding efficiencies were correlated with scaffold architecture. We used E. coli β-galactosidase, also fused to type 1 or type 2 dockerins, to demonstrate the targeted incorporation of two enzymes into the complexes. The simultaneous binding of enzyme pairs each containing a different dockerin resulted in bi-enzymatic complexes tethered to the cell surface. The sequential binding of the two enzymes yielded insights into parameters affecting assembly of the complex such as protein size and position within the scaffold. The spatial organization of enzymes into complexes is an important strategy for increasing the efficiency of biochemical pathways. In this study, chimeric protein scaffolds consisting of type 1 and type 2 cohesins anchored on the surface of L. lactis allowed for the controlled positioning of dockerin-fused reporter enzymes onto the scaffolds. By binding single enzymes or enzyme pairs to the scaffolds, our data also suggest that the size and relative positions of enzymes can affect the catalytic profiles of the resulting complexes. These insights will be of great value as we engineer more advanced scaffold-guided protein complexes to optimize biochemical pathways.

  17. Comparative life cycle assessment of lignocellulosic ethanol production: biochemical versus thermochemical conversion.

    PubMed

    Mu, Dongyan; Seager, Thomas; Rao, P Suresh; Zhao, Fu

    2010-10-01

    Lignocellulosic biomass can be converted into ethanol through either biochemical or thermochemical conversion processes. Biochemical conversion involves hydrolysis and fermentation while thermochemical conversion involves gasification and catalytic synthesis. Even though these routes produce comparable amounts of ethanol and have similar energy efficiency at the plant level, little is known about their relative environmental performance from a life cycle perspective. Especially, the indirect impacts, i.e. emissions and resource consumption associated with the production of various process inputs, are largely neglected in previous studies. This article compiles material and energy flow data from process simulation models to develop life cycle inventory and compares the fossil fuel consumption, greenhouse gas emissions, and water consumption of both biomass-to-ethanol production processes. The results are presented in terms of contributions from feedstock, direct, indirect, and co-product credits for four representative biomass feedstocks i.e., wood chips, corn stover, waste paper, and wheat straw. To explore the potentials of the two conversion pathways, different technological scenarios are modeled, including current, 2012 and 2020 technology targets, as well as different production/co-production configurations. The modeling results suggest that biochemical conversion has slightly better performance on greenhouse gas emission and fossil fuel consumption, but that thermochemical conversion has significantly less direct, indirect, and life cycle water consumption. Also, if the thermochemical plant operates as a biorefinery with mixed alcohol co-products separated for chemicals, it has the potential to achieve better performance than biochemical pathway across all environmental impact categories considered due to higher co-product credits associated with chemicals being displaced. The results from this work serve as a starting point for developing full life cycle assessment model that facilitates effective decision-making regarding lignocellulosic ethanol production.

  18. Comparative Life Cycle Assessment of Lignocellulosic Ethanol Production: Biochemical Versus Thermochemical Conversion

    NASA Astrophysics Data System (ADS)

    Mu, Dongyan; Seager, Thomas; Rao, P. Suresh; Zhao, Fu

    2010-10-01

    Lignocellulosic biomass can be converted into ethanol through either biochemical or thermochemical conversion processes. Biochemical conversion involves hydrolysis and fermentation while thermochemical conversion involves gasification and catalytic synthesis. Even though these routes produce comparable amounts of ethanol and have similar energy efficiency at the plant level, little is known about their relative environmental performance from a life cycle perspective. Especially, the indirect impacts, i.e. emissions and resource consumption associated with the production of various process inputs, are largely neglected in previous studies. This article compiles material and energy flow data from process simulation models to develop life cycle inventory and compares the fossil fuel consumption, greenhouse gas emissions, and water consumption of both biomass-to-ethanol production processes. The results are presented in terms of contributions from feedstock, direct, indirect, and co-product credits for four representative biomass feedstocks i.e., wood chips, corn stover, waste paper, and wheat straw. To explore the potentials of the two conversion pathways, different technological scenarios are modeled, including current, 2012 and 2020 technology targets, as well as different production/co-production configurations. The modeling results suggest that biochemical conversion has slightly better performance on greenhouse gas emission and fossil fuel consumption, but that thermochemical conversion has significantly less direct, indirect, and life cycle water consumption. Also, if the thermochemical plant operates as a biorefinery with mixed alcohol co-products separated for chemicals, it has the potential to achieve better performance than biochemical pathway across all environmental impact categories considered due to higher co-product credits associated with chemicals being displaced. The results from this work serve as a starting point for developing full life cycle assessment model that facilitates effective decision-making regarding lignocellulosic ethanol production.

  19. The Absence of a Mature Cell Wall Sacculus in Stable Listeria monocytogenes L-Form Cells Is Independent of Peptidoglycan Synthesis.

    PubMed

    Studer, Patrick; Borisova, Marina; Schneider, Alexander; Ayala, Juan A; Mayer, Christoph; Schuppler, Markus; Loessner, Martin J; Briers, Yves

    2016-01-01

    L-forms are cell wall-deficient variants of otherwise walled bacteria that maintain the ability to survive and proliferate in absence of the surrounding peptidoglycan sacculus. While transient or unstable L-forms can revert to the walled state and may still rely on residual peptidoglycan synthesis for multiplication, stable L-forms cannot revert to the walled form and are believed to propagate in the complete absence of peptidoglycan. L-forms are increasingly studied as a fundamental biological model system for cell wall synthesis. Here, we show that a stable L-form of the intracellular pathogen Listeria monocytogenes features a surprisingly intact peptidoglycan synthesis pathway including glycosyl transfer, in spite of the accumulation of multiple mutations during prolonged passage in the cell wall-deficient state. Microscopic and biochemical analysis revealed the presence of peptidoglycan precursors and functional glycosyl transferases, resulting in the formation of peptidoglycan polymers but without the synthesis of a mature cell wall sacculus. In conclusion, we found that stable, non-reverting L-forms, which do not require active PG synthesis for proliferation, may still continue to produce aberrant peptidoglycan.

  20. Transition model for ricin-aptamer interactions with multiple pathways and energy barriers

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Xu, Bingqian

    2014-02-01

    We develop a transition model to interpret single-molecule ricin-aptamer interactions with multiple unbinding pathways and energy barriers measured by atomic force microscopy dynamic force spectroscopy. Molecular simulations establish the relationship between binding conformations and the corresponding unbinding pathways. Each unbinding pathway follows a Bell-Evans multiple-barrier model. Markov-type transition matrices are developed to analyze the redistribution of unbinding events among the pathways under different loading rates. Our study provides detailed information about complex behaviors in ricin-aptamer unbinding events.

  1. A Synthetic Alternative to Canonical One-Carbon Metabolism.

    PubMed

    Bouzon, Madeleine; Perret, Alain; Loreau, Olivier; Delmas, Valérie; Perchat, Nadia; Weissenbach, Jean; Taran, Frédéric; Marlière, Philippe

    2017-08-18

    One-carbon metabolism is an ubiquitous metabolic pathway that encompasses the reactions transferring formyl-, hydroxymethyl- and methyl-groups bound to tetrahydrofolate for the synthesis of purine nucleotides, thymidylate, methionine and dehydropantoate, the precursor of coenzyme A. An alternative cyclic pathway was designed that substitutes 4-hydroxy-2-oxobutanoic acid (HOB), a compound absent from known metabolism, for the amino acids serine and glycine as one-carbon donors. It involves two novel reactions, the transamination of l-homoserine and the transfer of a one-carbon unit from HOB to tetrahydrofolate releasing pyruvate as coproduct. Since canonical reactions regenerate l-homoserine from pyruvate by carboxylation and subsequent reduction, every one-carbon moiety made available for anabolic reactions originates from CO 2 . The HOB-dependent pathway was established in an Escherichia coli auxotroph selected for prototrophy using long-term cultivation protocols. Genetic, metabolic and biochemical evidence support the emergence of a functional HOB-dependent one-carbon pathway achieved with the recruitment of the two enzymes l-homoserine transaminase and HOB-hydroxymethyltransferase and of HOB as an essential metabolic intermediate. Escherichia coli biochemical reprogramming was achieved by minimally altering canonical metabolism and leveraging on natural selection mechanisms, thereby launching the resulting strain on an evolutionary trajectory diverging from all known extant species.

  2. The Molecular Ecophysiology of Programmed Cell Death in Marine Phytoplankton

    NASA Astrophysics Data System (ADS)

    Bidle, Kay D.

    2015-01-01

    Planktonic, prokaryotic, and eukaryotic photoautotrophs (phytoplankton) share a diverse and ancient evolutionary history, during which time they have played key roles in regulating marine food webs, biogeochemical cycles, and Earth's climate. Because phytoplankton represent the basis of marine ecosystems, the manner in which they die critically determines the flow and fate of photosynthetically fixed organic matter (and associated elements), ultimately constraining upper-ocean biogeochemistry. Programmed cell death (PCD) and associated pathway genes, which are triggered by a variety of nutrient stressors and are employed by parasitic viruses, play an integral role in determining the cell fate of diverse photoautotrophs in the modern ocean. Indeed, these multifaceted death pathways continue to shape the success and evolutionary trajectory of diverse phytoplankton lineages at sea. Research over the past two decades has employed physiological, biochemical, and genetic techniques to provide a novel, comprehensive, mechanistic understanding of the factors controlling this key process. Here, I discuss the current understanding of the genetics, activation, and regulation of PCD pathways in marine model systems; how PCD evolved in unicellular photoautotrophs; how it mechanistically interfaces with viral infection pathways; how stress signals are sensed and transduced into cellular responses; and how novel molecular and biochemical tools are revealing the impact of PCD genes on the fate of natural phytoplankton assemblages.

  3. An Inductive Logic Programming Approach to Validate Hexose Binding Biochemical Knowledge.

    PubMed

    Nassif, Houssam; Al-Ali, Hassan; Khuri, Sawsan; Keirouz, Walid; Page, David

    2010-01-01

    Hexoses are simple sugars that play a key role in many cellular pathways, and in the regulation of development and disease mechanisms. Current protein-sugar computational models are based, at least partially, on prior biochemical findings and knowledge. They incorporate different parts of these findings in predictive black-box models. We investigate the empirical support for biochemical findings by comparing Inductive Logic Programming (ILP) induced rules to actual biochemical results. We mine the Protein Data Bank for a representative data set of hexose binding sites, non-hexose binding sites and surface grooves. We build an ILP model of hexose-binding sites and evaluate our results against several baseline machine learning classifiers. Our method achieves an accuracy similar to that of other black-box classifiers while providing insight into the discriminating process. In addition, it confirms wet-lab findings and reveals a previously unreported Trp-Glu amino acids dependency.

  4. Cyclophosphamide's addition in relapsed/refractory multiple myeloma patients with biochemical progression during lenalidomide-dexamethasone treatment.

    PubMed

    Cesini, Laura; Siniscalchi, Agostina; Grammatico, Sara; Andriani, Alessandro; Fiorini, Alessia; De Rosa, Luca; Za, Tommaso; Rago, Angela; Caravita, Tommaso; Petrucci, Maria Teresa

    2018-05-02

    The aim of this study was to evaluate the addition of cyclophosphamide in relapsed-refractory multiple myeloma patients (RRMM) who experienced biochemical relapse or progression without CRAB, during treatment with lenalidomide and dexamethasone (Rd), to slow down the progression in active relapse. This analysis included 31 patients with RRMM treated with Rd who received cyclophosphamide (CRd) at biochemical relapse. The CRd regimen was continued until disease progression. The median number of CRd cycles administered was 8 (range: 1-35). A response was observed in 9 (29%) patients. After a median observation time of 11 months, the median overall survival (OS) from the beginning of CRd was 17.7 months. The median progression-free survival (PFS) from the beginning of CRd was 13.1 months. The addition of cyclophosphamide delays the progression in patients who present a biochemical relapse during Rd treatment. The response rate and the duration of PFS obtained with minimal toxicities and low costs induced us to setting up a randomized clinical trial. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells

    PubMed Central

    Ren, Zhen; Chen, Si; Qing, Tao; Xuan, Jiekun; Couch, Letha; Yu, Dianke; Ning, Baitang; Shi, Leming; Guo, Lei

    2017-01-01

    Leflunomide, used for the treatment of rheumatoid arthritis, has been reported to cause severe liver problems and liver failure; however, the underlying mechanisms are not clear. In this study, we used multiple approaches including genomic analysis to investigate and characterize the possible molecular mechanisms of the cytotoxicity of leflunomide in hepatic cells. We found that leflunomide caused endoplasmic reticulum (ER) stress and activated an unfolded protein response, as evidenced by increased expression of related genes including CHOP and GADD34; and elevated protein levels of typical ER stress markers including CHOP, ATF-4, p-eIF2α, and spliced XBP1. The secretion of Gaussia luciferase was suppressed in cells treated with leflunomide in an ER stress reporter assay. Inhibition of ER stress with an ER stress inhibitor 4-phenylbutyrate, and knockdown of ATF-4 and CHOP genes partially protected cells upon leflunomide exposure. In addition, both genomic and biochemical analyses revealed that JNK and ERK1/2 of MAPK signaling pathways were activated, and both contributed to the leflunomide-induced cytotoxicity. Inhibiting JNK activation using a JNK inhibitor attenuated the ER stress and cytotoxicity of leflunomide, whereas inhibiting ERK1/2 using an ERK1/2 inhibitor or ERK1/2 siRNA increased the adverse effect caused by leflunomide, suggesting opposite roles for the two pathways. In summary, our data indicate that both ER stress and the activation of JNK and ERK1/2 contribute to leflunomide-induced cytotoxicity. PMID:28988120

  6. Stem cell death and survival in heart regeneration and repair.

    PubMed

    Abdelwahid, Eltyeb; Kalvelyte, Audrone; Stulpinas, Aurimas; de Carvalho, Katherine Athayde Teixeira; Guarita-Souza, Luiz Cesar; Foldes, Gabor

    2016-03-01

    Cardiovascular diseases are major causes of mortality and morbidity. Cardiomyocyte apoptosis disrupts cardiac function and leads to cardiac decompensation and terminal heart failure. Delineating the regulatory signaling pathways that orchestrate cell survival in the heart has significant therapeutic implications. Cardiac tissue has limited capacity to regenerate and repair. Stem cell therapy is a successful approach for repairing and regenerating ischemic cardiac tissue; however, transplanted cells display very high death percentage, a problem that affects success of tissue regeneration. Stem cells display multipotency or pluripotency and undergo self-renewal, however these events are negatively influenced by upregulation of cell death machinery that induces the significant decrease in survival and differentiation signals upon cardiovascular injury. While efforts to identify cell types and molecular pathways that promote cardiac tissue regeneration have been productive, studies that focus on blocking the extensive cell death after transplantation are limited. The control of cell death includes multiple networks rather than one crucial pathway, which underlies the challenge of identifying the interaction between various cellular and biochemical components. This review is aimed at exploiting the molecular mechanisms by which stem cells resist death signals to develop into mature and healthy cardiac cells. Specifically, we focus on a number of factors that control death and survival of stem cells upon transplantation and ultimately affect cardiac regeneration. We also discuss potential survival enhancing strategies and how they could be meaningful in the design of targeted therapies that improve cardiac function.

  7. Functional Selectivity and Antidepressant Activity of Serotonin 1A Receptor Ligands

    PubMed Central

    Chilmonczyk, Zdzisław; Bojarski, Andrzej Jacek; Pilc, Andrzej; Sylte, Ingebrigt

    2015-01-01

    Serotonin (5-HT) is a monoamine neurotransmitter that plays an important role in physiological functions. 5-HT has been implicated in sleep, feeding, sexual behavior, temperature regulation, pain, and cognition as well as in pathological states including disorders connected to mood, anxiety, psychosis and pain. 5-HT1A receptors have for a long time been considered as an interesting target for the action of antidepressant drugs. It was postulated that postsynaptic 5-HT1A agonists could form a new class of antidepressant drugs, and mixed 5-HT1A receptor ligands/serotonin transporter (SERT) inhibitors seem to possess an interesting pharmacological profile. It should, however, be noted that 5-HT1A receptors can activate several different biochemical pathways and signal through both G protein-dependent and G protein-independent pathways. The variables that affect the multiplicity of 5-HT1A receptor signaling pathways would thus result from the summation of effects specific to the host cell milieu. Moreover, receptor trafficking appears different at pre- and postsynaptic sites. It should also be noted that the 5-HT1A receptor cooperates with other signal transduction systems (like the 5-HT1B or 5-HT2A/2B/2C receptors, the GABAergic and the glutaminergic systems), which also contribute to its antidepressant and/or anxiolytic activity. Thus identifying brain specific molecular targets for 5-HT1A receptor ligands may result in a better targeting, raising a hope for more effective medicines for various pathologies. PMID:26262615

  8. An Alternative Mechanism for the Methylation of Phosphoethanolamine Catalyzed by Plasmodium falciparum Phosphoethanolamine Methyltransferase*♦

    PubMed Central

    Saen-oon, Suwipa; Lee, Soon Goo; Jez, Joseph M.; Guallar, Victor

    2014-01-01

    The phosphobase methylation pathway catalyzed by the phosphoethanolamine methyltransferase in Plasmodium falciparum (PfPMT), the malaria parasite, offers an attractive target for anti-parasitic drug development. PfPMT methylates phosphoethanolamine (pEA) to phosphocholine for use in membrane biogenesis. Quantum mechanics and molecular mechanics (QM/MM) calculations tested the proposed reaction mechanism for methylation of pEA involving the previously identified Tyr-19–His-132 dyad, which indicated an energetically unfavorable mechanism. Instead, the QM/MM calculations suggested an alternative mechanism involving Asp-128. The reaction coordinate involves the stepwise transfer of a proton to Asp-128 via a bridging water molecule followed by a typical Sn2-type methyl transfer from S-adenosylmethionine to pEA. Functional analysis of the D128A, D128E, D128Q, and D128N PfPMT mutants shows a loss of activity with pEA but not with the final substrate of the methylation pathway. X-ray crystal structures of the PfPMT-D128A mutant in complex with S-adenosylhomocysteine and either pEA or phosphocholine reveal how mutation of Asp-128 disrupts a hydrogen bond network in the active site. The combined QM/MM, biochemical, and structural studies identify a key role for Asp-128 in the initial step of the phosphobase methylation pathway in Plasmodium and provide molecular insight on the evolution of multiple activities in the active site of the PMT. PMID:25288796

  9. Intracellular signaling by phospholipase D as a therapeutic target.

    PubMed

    Steed, P M; Chow, A H

    2001-09-01

    The pharmaceutical industry has recently focused on intracellular signaling as a means to integrate the multiple facets of complex disease states, such as inflammation, because these pathways respond to numerous extracellular signals and coordinate a collection of cell responses contributing to pathology. One critical aspect of intracellular signaling is regulation of key cell functions by lipid mediators, in particular the generation of a key mediator, phosphatidic acid (PA) via the hydrolysis of phosphatidylcholine by phospholipase D (PLD). Research in this field has intensified, due in part to the recent cloning and partial characterization of the two PLD isoforms in mammalian cells, and this work has contributed significantly to our understanding of events downstream of PA generation. It is these effector functions of PLD activity that make this pathway attractive as a therapeutic target while the biochemical properties of the PLD isozymes make them amenable to small molecule intervention. Recent studies indicate that PA, and its immediate metabolites diacylglycerol and lyso-PA, affect numerous cellular pathways including ligand-mediated secretion, cytoskeletal reorganisations, respiratory burst, prostaglandin release, cell migration, cytokine release, and mitogenesis. This review summarises the data implicating signaling via PLD in these cell functions, obtained from: (i) molecular analyses of PLD/effector interactions, (ii) correlation between PA production and cell responses, (iii) experimental manipulation of PA levels, (iv) inhibition of PLD regulators, and (v) direct inhibition of PA production. The utility of targeting PLD signaling for the treatment of acute/chronic inflammation and other indications is discussed in light of these data.

  10. An alternative mechanism for the methylation of phosphoethanolamine catalyzed by Plasmodium falciparum phosphoethanolamine methyltransferase

    DOE PAGES

    Saen-oon, Suwipa; Lee, Soon Goo; Jez, Joseph M.; ...

    2014-10-06

    Here, the phosphobase methylation pathway catalyzed by the phosphoethanolamine methyltransferase in Plasmodium falciparum (PfPMT), the malaria parasite, offers an attractive target for anti-parasitic drug development. PfPMT methylates phosphoethanolamine (pEA) to phosphocholine for use in membrane biogenesis. Quantum mechanics and molecular mechanics (QM/MM) calculations tested the proposed reaction mechanism for methylation of pEA involving the previously identified Tyr-19–His-132 dyad, which indicated an energetically unfavorable mechanism. Instead, the QM/MM calculations suggested an alternative mechanism involving Asp-128. The reaction coordinate involves the stepwise transfer of a proton to Asp-128 via a bridging water molecule followed by a typical S n2-type methyl transfer frommore » S-adenosylmethionine to pEA. Functional analysis of the D128A, D128E, D128Q, and D128N PfPMT mutants shows a loss of activity with pEA but not with the final substrate of the methylation pathway. X-ray crystal structures of the PfPMT-D128A mutant in complex with S-adenosylhomocysteine and either pEA or phosphocholine reveal how mutation of Asp-128 disrupts a hydrogen bond network in the active site. The combined QM/MM, biochemical, and structural studies identify a key role for Asp-128 in the initial step of the phosphobase methylation pathway in Plasmodium and provide molecular insight on the evolution of multiple activities in the active site of the PMT.« less

  11. Stem cell death and survival in heart regeneration and repair

    PubMed Central

    Kalvelyte, Audrone; Stulpinas, Aurimas; de Carvalho, Katherine Athayde Teixeira; Guarita-Souza, Luiz Cesar; Foldes, Gabor

    2016-01-01

    Cardiovascular diseases are major causes of mortality and morbidity. Cardiomyocyte apoptosis disrupts cardiac function and leads to cardiac decompensation and terminal heart failure. Delineating the regulatory signaling pathways that orchestrate cell survival in the heart has significant therapeutic implications. Cardiac tissue has limited capacity to regenerate and repair. Stem cell therapy is a successful approach for repairing and regenerating ischemic cardiac tissue; however, transplanted cells display very high death percentage, a problem that affects success of tissue regeneration. Stem cells display multipotency or pluripotency and undergo self-renewal, however these events are negatively influenced by upregulation of cell death machinery that induces the significant decrease in survival and differentiation signals upon cardiovascular injury. While efforts to identify cell types and molecular pathways that promote cardiac tissue regeneration have been productive, studies that focus on blocking the extensive cell death after transplantation are limited. The control of cell death includes multiple networks rather than one crucial pathway, which underlies the challenge of identifying the interaction between various cellular and biochemical components. This review is aimed at exploiting the molecular mechanisms by which stem cells resist death signals to develop into mature and healthy cardiac cells. Specifically, we focus on a number of factors that control death and survival of stem cells upon transplantation and ultimately affect cardiac regeneration. We also discuss potential survival enhancing strategies and how they could be meaningful in the design of targeted therapies that improve cardiac function. PMID:26687129

  12. Essential functions of the Williams-Beuren syndrome-associated TFII-I genes in embryonic development.

    PubMed

    Enkhmandakh, Badam; Makeyev, Aleksandr V; Erdenechimeg, Lkhamsuren; Ruddle, Frank H; Chimge, Nyam-Osor; Tussie-Luna, Maria Isabel; Roy, Ananda L; Bayarsaihan, Dashzeveg

    2009-01-06

    GTF2I and GTF2IRD1 encoding the multifunctional transcription factors TFII-I and BEN are clustered at the 7q11.23 region hemizygously deleted in Williams-Beuren syndrome (WBS), a complex multisystemic neurodevelopmental disorder. Although the biochemical properties of TFII-I family transcription factors have been studied in depth, little is known about the specialized contributions of these factors in pathways required for proper embryonic development. Here, we show that homozygous loss of either Gtf2ird1 or Gtf2i function results in multiple phenotypic manifestations, including embryonic lethality; brain hemorrhage; and vasculogenic, craniofacial, and neural tube defects in mice. Further analyses suggest that embryonic lethality may be attributable to defects in yolk sac vasculogenesis and angiogenesis. Microarray data indicate that the Gtf2ird1 homozygous phenotype is mainly caused by an impairment of the genes involved in the TGFbetaRII/Alk1/Smad5 signal transduction pathway. The effect of Gtf2i inactivation on this pathway is less prominent, but downregulation of the endothelial growth factor receptor-2 gene, resulting in the deterioration of vascular signaling, most likely exacerbates the severity of the Gtf2i mutant phenotype. A subset of Gtf2ird1 and Gtf2i heterozygotes displayed microcephaly, retarded growth, and skeletal and craniofacial defects, therefore showing that haploinsufficiency of TFII-I proteins causes various developmental anomalies that are often associated with WBS.

  13. An alternative mechanism for the methylation of phosphoethanolamine catalyzed by Plasmodium falciparum phosphoethanolamine methyltransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saen-oon, Suwipa; Lee, Soon Goo; Jez, Joseph M.

    Here, the phosphobase methylation pathway catalyzed by the phosphoethanolamine methyltransferase in Plasmodium falciparum (PfPMT), the malaria parasite, offers an attractive target for anti-parasitic drug development. PfPMT methylates phosphoethanolamine (pEA) to phosphocholine for use in membrane biogenesis. Quantum mechanics and molecular mechanics (QM/MM) calculations tested the proposed reaction mechanism for methylation of pEA involving the previously identified Tyr-19–His-132 dyad, which indicated an energetically unfavorable mechanism. Instead, the QM/MM calculations suggested an alternative mechanism involving Asp-128. The reaction coordinate involves the stepwise transfer of a proton to Asp-128 via a bridging water molecule followed by a typical S n2-type methyl transfer frommore » S-adenosylmethionine to pEA. Functional analysis of the D128A, D128E, D128Q, and D128N PfPMT mutants shows a loss of activity with pEA but not with the final substrate of the methylation pathway. X-ray crystal structures of the PfPMT-D128A mutant in complex with S-adenosylhomocysteine and either pEA or phosphocholine reveal how mutation of Asp-128 disrupts a hydrogen bond network in the active site. The combined QM/MM, biochemical, and structural studies identify a key role for Asp-128 in the initial step of the phosphobase methylation pathway in Plasmodium and provide molecular insight on the evolution of multiple activities in the active site of the PMT.« less

  14. AKAP200 promotes Notch stability by protecting it from Cbl/lysosome-mediated degradation in Drosophila melanogaster.

    PubMed

    Bala Tannan, Neeta; Collu, Giovanna; Humphries, Ashley C; Serysheva, Ekatherina; Weber, Ursula; Mlodzik, Marek

    2018-01-01

    AKAP200 is a Drosophila melanogaster member of the "A Kinase Associated Protein" family of scaffolding proteins, known for their role in the spatial and temporal regulation of Protein Kinase A (PKA) in multiple signaling contexts. Here, we demonstrate an unexpected function of AKAP200 in promoting Notch protein stability. In Drosophila, AKAP200 loss-of-function (LOF) mutants show phenotypes that resemble Notch LOF defects, including eye patterning and sensory organ specification defects. Through genetic interactions, we demonstrate that AKAP200 interacts positively with Notch in both the eye and the thorax. We further show that AKAP200 is part of a physical complex with Notch. Biochemical studies reveal that AKAP200 stabilizes endogenous Notch protein, and that it limits ubiquitination of Notch. Specifically, our genetic and biochemical evidence indicates that AKAP200 protects Notch from the E3-ubiquitin ligase Cbl, which targets Notch to the lysosomal pathway. Indeed, we demonstrate that the effect of AKAP200 on Notch levels depends on the lysosome. Interestingly, this function of AKAP200 is fully independent of its role in PKA signaling and independent of its ability to bind PKA. Taken together, our data indicate that AKAP200 is a novel tissue specific posttranslational regulator of Notch, maintaining high Notch protein levels and thus promoting Notch signaling.

  15. Biochemical and Pharmacological Characterizations of ESI-09 Based EPAC Inhibitors: Defining the ESI-09 “Therapeutic Window”

    PubMed Central

    Zhu, Yingmin; Chen, Haijun; Boulton, Stephen; Mei, Fang; Ye, Na; Melacini, Giuseppe; Zhou, Jia; Cheng, Xiaodong

    2015-01-01

    The cAMP signaling cascade is one of the most frequently targeted pathways for the development of pharmaceutics. A plethora of recent genetic and pharmacological studies suggest that exchange proteins directly activated by cAMP (EPACs) are implicated in multiple pathologies. Selective EPAC inhibitors have been recently developed. One specific inhibitor, ESI-09, has been shown to block EPAC activity and functions, as well as to recapitulate genetic phenotypes of EPAC knockout mice when applied in vivo. However, a recent study raised concern that ESI-09 might act as a non-specific protein denaturant. Herein, we present a detailed biochemical and pharmacological characterization, as well as a structure-activity relationship (SAR) analysis of ESI-09. Our studies show that ESI-09 dose-dependently inhibits activity of both EPAC1 and EPAC2 with apparent IC50 values well below the concentrations shown to induce “protein denaturation”. Moreover, the ESI-09's action towards EPAC proteins is highly sensitive to minor modifications of the 3-chlorophenyl moiety. Taken together, these results demonstrate that ESI-09 indeed acts as an EPAC specific antagonist and does not significantly destabilize/denature proteins at pharmacological effective concentrations. This conclusion is further supported by NMR data showing that ESI-09 induces residue-dependent chemical shift changes at low concentrations, while preserving well dispersed peaks. PMID:25791905

  16. Cloning, expression and biochemical characterization of one Epsilon-class (GST-3) and ten Delta-class (GST-1) glutathione S-transferases from Drosophila melanogaster, and identification of additional nine members of the Epsilon class.

    PubMed Central

    Sawicki, Rafał; Singh, Sharda P; Mondal, Ashis K; Benes, Helen; Zimniak, Piotr

    2003-01-01

    From the fruitfly, Drosophila melanogaster, ten members of the cluster of Delta-class glutathione S-transferases (GSTs; formerly denoted as Class I GSTs) and one member of the Epsilon-class cluster (formerly GST-3) have been cloned, expressed in Escherichia coli, and their catalytic properties have been determined. In addition, nine more members of the Epsilon cluster have been identified through bioinformatic analysis but not further characterized. Of the 11 expressed enzymes, seven accepted the lipid peroxidation product 4-hydroxynonenal as substrate, and nine were active in glutathione conjugation of 1-chloro-2,4-dinitrobenzene. Since the enzymically active proteins included the gene products of DmGSTD3 and DmGSTD7 which were previously deemed to be pseudogenes, we investigated them further and determined that both genes are transcribed in Drosophila. Thus our present results indicate that DmGSTD3 and DmGSTD7 are probably functional genes. The existence and multiplicity of insect GSTs capable of conjugating 4-hydroxynonenal, in some cases with catalytic efficiencies approaching those of mammalian GSTs highly specialized for this function, indicates that metabolism of products of lipid peroxidation is a highly conserved biochemical pathway with probable detoxification as well as regulatory functions. PMID:12443531

  17. Biochemical and pharmacological characterizations of ESI-09 based EPAC inhibitors: defining the ESI-09 "therapeutic window".

    PubMed

    Zhu, Yingmin; Chen, Haijun; Boulton, Stephen; Mei, Fang; Ye, Na; Melacini, Giuseppe; Zhou, Jia; Cheng, Xiaodong

    2015-03-20

    The cAMP signaling cascade is one of the most frequently targeted pathways for the development of pharmaceutics. A plethora of recent genetic and pharmacological studies suggest that exchange proteins directly activated by cAMP (EPACs) are implicated in multiple pathologies. Selective EPAC inhibitors have been recently developed. One specific inhibitor, ESI-09, has been shown to block EPAC activity and functions, as well as to recapitulate genetic phenotypes of EPAC knockout mice when applied in vivo. However, a recent study raised concern that ESI-09 might act as a non-specific protein denaturant. Herein, we present a detailed biochemical and pharmacological characterization, as well as a structure-activity relationship (SAR) analysis of ESI-09. Our studies show that ESI-09 dose-dependently inhibits activity of both EPAC1 and EPAC2 with apparent IC50 values well below the concentrations shown to induce "protein denaturation". Moreover, the ESI-09's action towards EPAC proteins is highly sensitive to minor modifications of the 3-chlorophenyl moiety. Taken together, these results demonstrate that ESI-09 indeed acts as an EPAC specific antagonist and does not significantly destabilize/denature proteins at pharmacological effective concentrations. This conclusion is further supported by NMR data showing that ESI-09 induces residue-dependent chemical shift changes at low concentrations, while preserving well dispersed peaks.

  18. Evolution of amino acid metabolism inferred through cladistic analysis.

    PubMed

    Cunchillos, Chomin; Lecointre, Guillaume

    2003-11-28

    Because free amino acids were most probably available in primitive abiotic environments, their metabolism is likely to have provided some of the very first metabolic pathways of life. What were the first enzymatic reactions to emerge? A cladistic analysis of metabolic pathways of the 16 aliphatic amino acids and 2 portions of the Krebs cycle was performed using four criteria of homology. The analysis is not based on sequence comparisons but, rather, on coding similarities in enzyme properties. The properties used are shared specific enzymatic activity, shared enzymatic function without substrate specificity, shared coenzymes, and shared functional family. The tree shows that the earliest pathways to emerge are not portions of the Krebs cycle but metabolisms of aspartate, asparagine, glutamate, and glutamine. The views of Horowitz (Horowitz, N. H. (1945) Proc. Natl. Acad. Sci. U. S. A. 31, 153-157) and Cordón (Cordón, F. (1990) Tratado Evolucionista de Biologia, Aguilar, Madrid, Spain), according to which the upstream reactions in the catabolic pathways and the downstream reactions in the anabolic pathways are the earliest in evolution, are globally corroborated; however, with some exceptions. These are due to later opportunistic connections of pathways (actually already suggested by these authors). Earliest enzymatic functions are mostly catabolic; they were deaminations, transaminations, and decarboxylations. From the consensus tree we extracted four time spans for amino acid metabolism development. For some amino acids catabolism and biosynthesis occurred at the same time (Asp, Glu, Lys, Leu, Ala, Val, Ile, Pro, Arg). For others ultimate reactions that use amino acids as a substrate or as a product are distinct in time, with catabolism preceding anabolism for Asn, Gln, and Cys and anabolism preceding catabolism for Ser, Met, and Thr. Cladistic analysis of the structure of biochemical pathways makes hypotheses in biochemical evolution explicit and parsimonious.

  19. Programmed Cell Death During Caenorhabditis elegans Development

    PubMed Central

    Conradt, Barbara; Wu, Yi-Chun; Xue, Ding

    2016-01-01

    Programmed cell death is an integral component of Caenorhabditis elegans development. Genetic and reverse genetic studies in C. elegans have led to the identification of many genes and conserved cell death pathways that are important for the specification of which cells should live or die, the activation of the suicide program, and the dismantling and removal of dying cells. Molecular, cell biological, and biochemical studies have revealed the underlying mechanisms that control these three phases of programmed cell death. In particular, the interplay of transcriptional regulatory cascades and networks involving multiple transcriptional regulators is crucial in activating the expression of the key death-inducing gene egl-1 and, in some cases, the ced-3 gene in cells destined to die. A protein interaction cascade involving EGL-1, CED-9, CED-4, and CED-3 results in the activation of the key cell death protease CED-3, which is tightly controlled by multiple positive and negative regulators. The activation of the CED-3 caspase then initiates the cell disassembly process by cleaving and activating or inactivating crucial CED-3 substrates; leading to activation of multiple cell death execution events, including nuclear DNA fragmentation, mitochondrial elimination, phosphatidylserine externalization, inactivation of survival signals, and clearance of apoptotic cells. Further studies of programmed cell death in C. elegans will continue to advance our understanding of how programmed cell death is regulated, activated, and executed in general. PMID:27516615

  20. The Synthesis of Proteins-A Simple Experiment To Show the Procedures and Problems of Using Radioisotopes in Biochemical Studies

    NASA Astrophysics Data System (ADS)

    Hawcroft, David M.

    1996-11-01

    Courses of organic chemistry frequently include studies of biochemistry and hence of biochemical techniques. Radioisotopes have played a major role in the understanding of metabolic pathways, transport, enzyme activity and other processes. The experiment described in this paper uses simple techniques to illustrate the procedures involved in working with radioisotopes when following a simplified metabolic pathway. Safety considerations are discussed and a list of safety rules is provided, but the experiment itself uses very low levels of a weak beta-emitting isotope (tritium). Plant material is suggested to reduce legal, financial and emotive problems, but the techniques are applicable to all soft-tissued material. The problems involved in data interpretation in radioisotope experiments resulting from radiation quenching are resolved by simple correction calculations, and the merits of using radioisotopes shown by a calculation of the low mass of material being measured. Suggestions for further experiments are given.

  1. Biochemical and structural characterization of Klebsiella pneumoniae oxamate amidohydrolase in the uric acid degradation pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hicks, Katherine A.; Ealick, Steven E.

    HpxW from the ubiquitous pathogenKlebsiella pneumoniaeis involved in a novel uric acid degradation pathway downstream from the formation of oxalurate. Specifically, HpxW is an oxamate amidohydrolase which catalyzes the conversion of oxamate to oxalate and is a member of the Ntn-hydrolase superfamily. HpxW is autoprocessed from an inactive precursor to form a heterodimer, resulting in a 35.5 kDa α subunit and a 20 kDa β subunit. Here, the structure of HpxW is presented and the substrate complex is modeled. In addition, the steady-state kinetics of this enzyme and two active-site variants were characterized. These structural and biochemical studies provide furthermore » insight into this class of enzymes and allow a mechanism for catalysis consistent with other members of the Ntn-hydrolase superfamily to be proposed.« less

  2. Beyond Tracking: Multiple Pathways to College, Career, and Civic Participation

    ERIC Educational Resources Information Center

    Oakes, Jeannie, Ed.; Saunders, Marisa, Ed.

    2008-01-01

    "Beyond Tracking" responds to the a sobering assessment of American high schools by delineating and promoting an innovative and well-defined notion of multiple pathways. The book's authors clearly distinguish their use of the term "multiple pathways" from any updated version of the tracking system that marked so many American high schools during…

  3. Drug Target Validation Methods in Malaria - Protein Interference Assay (PIA) as a Tool for Highly Specific Drug Target Validation.

    PubMed

    Meissner, Kamila A; Lunev, Sergey; Wang, Yuan-Ze; Linzke, Marleen; de Assis Batista, Fernando; Wrenger, Carsten; Groves, Matthew R

    2017-01-01

    The validation of drug targets in malaria and other human diseases remains a highly difficult and laborious process. In the vast majority of cases, highly specific small molecule tools to inhibit a proteins function in vivo are simply not available. Additionally, the use of genetic tools in the analysis of malarial pathways is challenging. These issues result in difficulties in specifically modulating a hypothetical drug target's function in vivo. The current "toolbox" of various methods and techniques to identify a protein's function in vivo remains very limited and there is a pressing need for expansion. New approaches are urgently required to support target validation in the drug discovery process. Oligomerisation is the natural assembly of multiple copies of a single protein into one object and this self-assembly is present in more than half of all protein structures. Thus, oligomerisation plays a central role in the generation of functional biomolecules. A key feature of oligomerisation is that the oligomeric interfaces between the individual parts of the final assembly are highly specific. However, these interfaces have not yet been systematically explored or exploited to dissect biochemical pathways in vivo. This mini review will describe the current state of the antimalarial toolset as well as the potentially druggable malarial pathways. A specific focus is drawn to the initial efforts to exploit oligomerisation surfaces in drug target validation. As alternative to the conventional methods, Protein Interference Assay (PIA) can be used for specific distortion of the target protein function and pathway assessment in vivo. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Cerebral Artery Signal Transduction Mechanisms: Developmental Changes in Dynamics and Ca2+ Sensitivity

    PubMed Central

    Longo, Lawrence D.; Goyal, Ravi

    2012-01-01

    As compared to the adult, the developing fetus and newborn infant are at much greater risk for dysregulation of cerebral blood flow (CBF), with complications such as intraventricular and germinal matrix hemorrhage with resultant neurologic sequelae. To minimize this dysregulation and its consequences presents a major challenge. Although in many respects the fundamental signal transduction mechanisms that regulate relaxation and contraction pathways, and thus cerebrovascular tone and CBF in the immature organism are similar to those of the adult, the individual elements, pathways, and roles differ greatly. Here, we review aspects of these maturational changes of relaxation/contraction mechanisms in terms of both electro-mechanical and pharmaco-mechanical coupling, their biochemical pathways and signaling networks. In contrast to the adult cerebrovasculature, in addition to attenuated structure with differences in multiple cytoskeletal elements, developing cerebrovasculature of fetus and newborn differs in many respects, such as a strikingly increased sensitivity to [Ca2+]i and requirement for extracellular Ca2+ for contraction. In essence, the immature cerebrovasculature demonstrates both “hyper-relaxation” and “hypo-contraction”. A challenge is to unravel the manner in which these mechanisms are integrated, particularly in terms of both Ca2+-dependent and Ca2+-independent pathways to increase Ca2+ sensitivity. Gaining an appreciation of these significant age-related differences in signal mechanisms also will be critical to understanding more completely the vulnerability of the developing cerebral vasculature to hypoxia and other stresses. Of vital importance, a more complete understanding of these mechanisms promises hope for improved strategies for therapeutic intervention and clinical management of intensive care of the premature newborn. PMID:24063382

  5. A Non-photosynthetic Diatom Reveals Early Steps of Reductive Evolution in Plastids.

    PubMed

    Kamikawa, Ryoma; Moog, Daniel; Zauner, Stefan; Tanifuji, Goro; Ishida, Ken-Ichiro; Miyashita, Hideaki; Mayama, Shigeki; Hashimoto, Tetsuo; Maier, Uwe G; Archibald, John M; Inagaki, Yuji

    2017-09-01

    Nonphotosynthetic plastids retain important biological functions and are indispensable for cell viability. However, the detailed processes underlying the loss of plastidal functions other than photosynthesis remain to be fully understood. In this study, we used transcriptomics, subcellular localization, and phylogenetic analyses to characterize the biochemical complexity of the nonphotosynthetic plastids of the apochlorotic diatom Nitzschia sp. NIES-3581. We found that these plastids have lost isopentenyl pyrophosphate biosynthesis and ribulose-1,5-bisphosphate carboxylase/oxygenase-based carbon fixation but have retained various proteins for other metabolic pathways, including amino acid biosynthesis, and a portion of the Calvin-Benson cycle comprised only of glycolysis/gluconeogenesis and the reductive pentose phosphate pathway (rPPP). While most genes for plastid proteins involved in these reactions appear to be phylogenetically related to plastid-targeted proteins found in photosynthetic relatives, we also identified a gene that most likely originated from a cytosolic protein gene. Based on organellar metabolic reconstructions of Nitzschia sp. NIES-3581 and the presence/absence of plastid sugar phosphate transporters, we propose that plastid proteins for glycolysis, gluconeogenesis, and rPPP are retained even after the loss of photosynthesis because they feed indispensable substrates to the amino acid biosynthesis pathways of the plastid. Given the correlated retention of the enzymes for plastid glycolysis, gluconeogenesis, and rPPP and those for plastid amino acid biosynthesis pathways in distantly related nonphotosynthetic plastids and cyanobacteria, we suggest that this substrate-level link with plastid amino acid biosynthesis is a key constraint against loss of the plastid glycolysis/gluconeogenesis and rPPP proteins in multiple independent lineages of nonphotosynthetic algae/plants. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Multiple oxygen entry pathways in globin proteins revealed by intrinsic pathway identification method

    NASA Astrophysics Data System (ADS)

    Takayanagi, Masayoshi; Kurisaki, Ikuo; Nagaoka, Masataka

    2015-12-01

    Each subunit of human hemoglobin (HbA) stores an oxygen molecule (O2) in the binding site (BS) cavity near the heme group. The BS is buried in the interior of the subunit so that there is a debate over the O2 entry pathways from solvent to the BS; histidine gate or multiple pathways. To elucidate the O2 entry pathways, we executed ensemble molecular dynamics (MD) simulations of T-state tetramer HbA in high concentration O2 solvent to simulate spontaneous O2 entry from solvent into the BS. By analyzing 128 independent 8 ns MD trajectories by intrinsic pathway identification by clustering (IPIC) method, we found 141 and 425 O2 entry events into the BS of the α and β subunits, respectively. In both subunits, we found that multiple O2 entry pathways through inside cavities play a significant role for O2 entry process of HbA. The rate constants of O2 entry estimated from the MD trajectories correspond to the experimentally observed values. In addition, by analyzing monomer myoglobin, we verified that the high O2 concentration condition can reproduce the ratios of each multiple pathway in the one-tenth lower O2 concentration condition. These indicate the validity of the multiple pathways obtained in our MD simulations.

  7. Changes in the Metabolome in Response to Low-Dose Exposure to Environmental Chemicals Used in Personal Care Products during Different Windows of Susceptibility.

    PubMed

    Houten, Sander M; Chen, Jia; Belpoggi, Fiorella; Manservisi, Fabiana; Sánchez-Guijo, Alberto; Wudy, Stefan A; Teitelbaum, Susan L

    2016-01-01

    The consequences of ubiquitous exposure to environmental chemicals remain poorly defined. Non-targeted metabolomic profiling is an emerging method to identify biomarkers of the physiological response to such exposures. We investigated the effect of three commonly used ingredients in personal care products, diethyl phthalate (DEP), methylparaben (MPB) and triclosan (TCS), on the blood metabolome of female Sprague-Dawley rats. Animals were treated with low levels of these chemicals comparable to human exposures during prepubertal and pubertal windows as well as chronically from birth to adulthood. Non-targeted metabolomic profiling revealed that most of the variation in the metabolites was associated with developmental stage. The low-dose exposure to DEP, MPB and TCS had a relatively small, but detectable impact on the metabolome. Multiple metabolites that were affected by chemical exposure belonged to the same biochemical pathways including phenol sulfonation and metabolism of pyruvate, lyso-plasmalogens, unsaturated fatty acids and serotonin. Changes in phenol sulfonation and pyruvate metabolism were most pronounced in rats exposed to DEP during the prepubertal period. Our metabolomics analysis demonstrates that human level exposure to personal care product ingredients has detectable effects on the rat metabolome. We highlight specific pathways such as sulfonation that warrant further study.

  8. Poxvirus-induced alteration of arachidonate metabolism.

    PubMed Central

    Palumbo, G J; Glasgow, W C; Buller, R M

    1993-01-01

    Recent evidence suggests that orthopoxviruses have an obligate requirement for arachidonic acid metabolites during replication in vivo and in vitro. Our report indicates that a virus family (Poxviridae) possesses multiple genes that function to regulate arachidonate metabolism. Analyses of BS-C-1 cells infected with cowpox virus or vaccinia virus detected enhanced arachidonate product formation from both the cyclooxygenase (specifically prostaglandins E2 and F2 alpha) and lipoxygenase (specifically 15-hydroxyeicosatetraenoic acid and 12-hydroxyeicosatetraenoic acid) pathways. In contrast, human parainfluenza type 3 or herpes simplex virus type 1 infections did not increase arachidonate metabolism. Results were consistent with a virus early-gene product either directly mediating or inducing a host factor that mediated the up-regulation of arachidonate metabolism, although vaccinia growth factor was not responsible. In addition, the cowpox virus 38-kDa protein-encoding gene, which is associated with inhibition of an inflammatory response, correlated with inhibition of formation of a product biochemically characteristic of (14R,15S)-dihydroxyeicosatetraenoic acid. We propose that orthopoxvirus-induced up-regulation of arachidonic acid metabolism during infection renders the infected cells susceptible to generation of inflammatory mediators from both the cyclooxygenase and the lipoxygenase pathways, and poxviruses, therefore, possess at least one gene (38K) that can alter the lipoxygenase-metabolite spectrum. PMID:8383332

  9. Arabidopsis thaliana GH3.5 acyl acid amido synthetase mediates metabolic crosstalk in auxin and salicylic acid homeostasis

    PubMed Central

    Westfall, Corey S.; Sherp, Ashley M.; Zubieta, Chloe; Alvarez, Sophie; Schraft, Evelyn; Marcellin, Romain; Ramirez, Loren; Jez, Joseph M.

    2016-01-01

    In Arabidopsis thaliana, the acyl acid amido synthetase Gretchen Hagen 3.5 (AtGH3.5) conjugates both indole-3-acetic acid (IAA) and salicylic acid (SA) to modulate auxin and pathogen response pathways. To understand the molecular basis for the activity of AtGH3.5, we determined the X-ray crystal structure of the enzyme in complex with IAA and AMP. Biochemical analysis demonstrates that the substrate preference of AtGH3.5 is wider than originally described and includes the natural auxin phenylacetic acid (PAA) and the potential SA precursor benzoic acid (BA). Residues that determine IAA versus BA substrate preference were identified. The dual functionality of AtGH3.5 is unique to this enzyme although multiple IAA-conjugating GH3 proteins share nearly identical acyl acid binding sites. In planta analysis of IAA, PAA, SA, and BA and their respective aspartyl conjugates were determined in wild-type and overexpressing lines of A. thaliana. This study suggests that AtGH3.5 conjugates auxins (i.e., IAA and PAA) and benzoates (i.e., SA and BA) to mediate crosstalk between different metabolic pathways, broadening the potential roles for GH3 acyl acid amido synthetases in plants. PMID:27849615

  10. Changes in the Metabolome in Response to Low-Dose Exposure to Environmental Chemicals Used in Personal Care Products during Different Windows of Susceptibility

    PubMed Central

    Chen, Jia; Belpoggi, Fiorella; Manservisi, Fabiana; Sánchez-Guijo, Alberto; Wudy, Stefan A.; Teitelbaum, Susan L.

    2016-01-01

    The consequences of ubiquitous exposure to environmental chemicals remain poorly defined. Non-targeted metabolomic profiling is an emerging method to identify biomarkers of the physiological response to such exposures. We investigated the effect of three commonly used ingredients in personal care products, diethyl phthalate (DEP), methylparaben (MPB) and triclosan (TCS), on the blood metabolome of female Sprague-Dawley rats. Animals were treated with low levels of these chemicals comparable to human exposures during prepubertal and pubertal windows as well as chronically from birth to adulthood. Non-targeted metabolomic profiling revealed that most of the variation in the metabolites was associated with developmental stage. The low-dose exposure to DEP, MPB and TCS had a relatively small, but detectable impact on the metabolome. Multiple metabolites that were affected by chemical exposure belonged to the same biochemical pathways including phenol sulfonation and metabolism of pyruvate, lyso-plasmalogens, unsaturated fatty acids and serotonin. Changes in phenol sulfonation and pyruvate metabolism were most pronounced in rats exposed to DEP during the prepubertal period. Our metabolomics analysis demonstrates that human level exposure to personal care product ingredients has detectable effects on the rat metabolome. We highlight specific pathways such as sulfonation that warrant further study. PMID:27467775

  11. Elucidation and chemical modulation of sulfolipid-1 biosynthesis in Mycobacterium tuberculosis.

    PubMed

    Seeliger, Jessica C; Holsclaw, Cynthia M; Schelle, Michael W; Botyanszki, Zsofia; Gilmore, Sarah A; Tully, Sarah E; Niederweis, Michael; Cravatt, Benjamin F; Leary, Julie A; Bertozzi, Carolyn R

    2012-03-09

    Mycobacterium tuberculosis possesses unique cell-surface lipids that have been implicated in virulence. One of the most abundant is sulfolipid-1 (SL-1), a tetraacyl-sulfotrehalose glycolipid. Although the early steps in SL-1 biosynthesis are known, the machinery underlying the final acylation reactions is not understood. We provide genetic and biochemical evidence for the activities of two proteins, Chp1 and Sap (corresponding to gene loci rv3822 and rv3821), that complete this pathway. The membrane-associated acyltransferase Chp1 accepts a synthetic diacyl sulfolipid and transfers an acyl group regioselectively from one donor substrate molecule to a second acceptor molecule in two successive reactions to yield a tetraacylated product. Chp1 is fully active in vitro, but in M. tuberculosis, its function is potentiated by the previously identified sulfolipid transporter MmpL8. We also show that the integral membrane protein Sap and MmpL8 are both essential for sulfolipid transport. Finally, the lipase inhibitor tetrahydrolipstatin disrupts Chp1 activity in M. tuberculosis, suggesting an avenue for perturbing SL-1 biosynthesis in vivo. These data complete the SL-1 biosynthetic pathway and corroborate a model in which lipid biosynthesis and transmembrane transport are coupled at the membrane-cytosol interface through the activity of multiple proteins, possibly as a macromolecular complex.

  12. A novel family of cyclic oligopeptides derived from ribosomal peptide synthesis of an in planta-induced gene, gigA, in Epichloë endophytes of grasses.

    PubMed

    Johnson, Richard D; Lane, Geoffrey A; Koulman, Albert; Cao, Mingshu; Fraser, Karl; Fleetwood, Damien J; Voisey, Christine R; Dyer, Jolon M; Pratt, Jennifer; Christensen, Michael; Simpson, Wayne R; Bryan, Gregory T; Johnson, Linda J

    2015-12-01

    Fungal endophytes belonging to the genus Epichloë form associations with temperate grasses belonging to the sub-family Poöideae that range from mutualistic through to pathogenic. We previously identified a novel endophyte gene (designated gigA for grass induced gene) that is one of the most abundantly expressed fungal transcripts in endophyte-infected grasses and which is distributed and highly expressed in a wide range of Epichloë grass associations. Molecular and biochemical analyses indicate that gigA encodes a small secreted protein containing an imperfect 27 amino acid repeat that includes a kexin protease cleavage site. Kexin processing of GigA liberates within the plant multiple related products, named here as epichloëcyclins, which we have demonstrated by MS/MS to be cyclic peptidic in nature. Gene deletion of gigA leads to the elimination of all epichloëcyclins with no conspicuous phenotypic impact on the host grass, suggesting a possible bioactive role. This is a further example of a ribosomal peptide synthetic (RiPS) pathway operating within the Ascomycetes, and is the first description of such a pathway from a mutualistic symbiotic fungus from this Phylum. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Novel method to load multiple genes onto a mammalian artificial chromosome.

    PubMed

    Tóth, Anna; Fodor, Katalin; Praznovszky, Tünde; Tubak, Vilmos; Udvardy, Andor; Hadlaczky, Gyula; Katona, Robert L

    2014-01-01

    Mammalian artificial chromosomes are natural chromosome-based vectors that may carry a vast amount of genetic material in terms of both size and number. They are reasonably stable and segregate well in both mitosis and meiosis. A platform artificial chromosome expression system (ACEs) was earlier described with multiple loading sites for a modified lambda-integrase enzyme. It has been shown that this ACEs is suitable for high-level industrial protein production and the treatment of a mouse model for a devastating human disorder, Krabbe's disease. ACEs-treated mutant mice carrying a therapeutic gene lived more than four times longer than untreated counterparts. This novel gene therapy method is called combined mammalian artificial chromosome-stem cell therapy. At present, this method suffers from the limitation that a new selection marker gene should be present for each therapeutic gene loaded onto the ACEs. Complex diseases require the cooperative action of several genes for treatment, but only a limited number of selection marker genes are available and there is also a risk of serious side-effects caused by the unwanted expression of these marker genes in mammalian cells, organs and organisms. We describe here a novel method to load multiple genes onto the ACEs by using only two selectable marker genes. These markers may be removed from the ACEs before therapeutic application. This novel technology could revolutionize gene therapeutic applications targeting the treatment of complex disorders and cancers. It could also speed up cell therapy by allowing researchers to engineer a chromosome with a predetermined set of genetic factors to differentiate adult stem cells, embryonic stem cells and induced pluripotent stem (iPS) cells into cell types of therapeutic value. It is also a suitable tool for the investigation of complex biochemical pathways in basic science by producing an ACEs with several genes from a signal transduction pathway of interest.

  14. The Fanconi anemia DNA repair pathway: structural and functional insights into a complex disorder.

    PubMed

    Walden, Helen; Deans, Andrew J

    2014-01-01

    Mutations in any of at least sixteen FANC genes (FANCA-Q) cause Fanconi anemia, a disorder characterized by sensitivity to DNA interstrand crosslinking agents. The clinical features of cytopenia, developmental defects, and tumor predisposition are similar in each group, suggesting that the gene products participate in a common pathway. The Fanconi anemia DNA repair pathway consists of an anchor complex that recognizes damage caused by interstrand crosslinks, a multisubunit ubiquitin ligase that monoubiquitinates two substrates, and several downstream repair proteins including nucleases and homologous recombination enzymes. We review progress in the use of structural and biochemical approaches to understanding how each FANC protein functions in this pathway.

  15. Chromophore absorbance change quantification in tissue during low-level light therapy

    NASA Astrophysics Data System (ADS)

    Huynh, Daniel; Chung, Christine; Qian, Li; Lilge, Lothar

    2012-03-01

    Low Level Light Therapy (LLLT) has been implicated to stimulate tissue, promoting healing and reducing pain. One of the potential pathways stimulated by LLLT relates to the electron transport chain, where photon quantum energy can induce a change in the biochemical reactions within the cell. The aim of this study is to assess the feasibility to exploit light additionally as a diagnostic tool to determine tissue physiological states, particularly in quantifying the changes in redox states of Cytochrome C as a result of induced LLLT biochemical reactions.

  16. Dynamic regulation of genetic pathways and targets during aging in Caenorhabditis elegans.

    PubMed

    He, Kan; Zhou, Tao; Shao, Jiaofang; Ren, Xiaoliang; Zhao, Zhongying; Liu, Dahai

    2014-03-01

    Numerous genetic targets and some individual pathways associated with aging have been identified using the worm model. However, less is known about the genetic mechanisms of aging in genome wide, particularly at the level of multiple pathways as well as the regulatory networks during aging. Here, we employed the gene expression datasets of three time points during aging in Caenorhabditis elegans (C. elegans) and performed the approach of gene set enrichment analysis (GSEA) on each dataset between adjacent stages. As a result, multiple genetic pathways and targets were identified as significantly down- or up-regulated. Among them, 5 truly aging-dependent signaling pathways including MAPK signaling pathway, mTOR signaling pathway, Wnt signaling pathway, TGF-beta signaling pathway and ErbB signaling pathway as well as 12 significantly associated genes were identified with dynamic expression pattern during aging. On the other hand, the continued declines in the regulation of several metabolic pathways have been demonstrated to display age-related changes. Furthermore, the reconstructed regulatory networks based on three of aging related Chromatin immunoprecipitation experiments followed by sequencing (ChIP-seq) datasets and the expression matrices of 154 involved genes in above signaling pathways provide new insights into aging at the multiple pathways level. The combination of multiple genetic pathways and targets needs to be taken into consideration in future studies of aging, in which the dynamic regulation would be uncovered.

  17. The Fanconi anaemia pathway: new players and new functions.

    PubMed

    Ceccaldi, Raphael; Sarangi, Prabha; D'Andrea, Alan D

    2016-06-01

    The Fanconi anaemia pathway repairs DNA interstrand crosslinks (ICLs) in the genome. Our understanding of this complex pathway is still evolving, as new components continue to be identified and new biochemical systems are used to elucidate the molecular steps of repair. The Fanconi anaemia pathway uses components of other known DNA repair processes to achieve proper repair of ICLs. Moreover, Fanconi anaemia proteins have functions in genome maintenance beyond their canonical roles of repairing ICLs. Such functions include the stabilization of replication forks and the regulation of cytokinesis. Thus, Fanconi anaemia proteins are emerging as master regulators of genomic integrity that coordinate several repair processes. Here, we summarize our current understanding of the functions of the Fanconi anaemia pathway in ICL repair, together with an overview of its connections with other repair pathways and its emerging roles in genome maintenance.

  18. Multiple pathways from three types of sugar receptor sites to metabotropic transduction pathways of the blowfly: study by the whole cell-clamp experiments.

    PubMed

    Kan, Hideko; Kataoka-Shirasugi, Naoko; Amakawa, Taisaku

    2011-09-01

    Multiple pathways from three types of multiple receptor sites to three types of metabotropic signal transduction pathways were investigated in the whole cell-clamp experiments using isolated labellar sugar receptor neurons (cells) of the adult blowfly, Phormia regina. First, the concentration-response curves of three types of sweet taste components specialized to multiple receptor sites were obtained: sucrose for the pyranose sites (P-sites), fructose for the furanose sites (F-sites), and l-valine for the alkyl sites (R-sites). Next, the effects of inhibitors such as 2', 5'-dideoxyadenosine on adenylyl cyclase in the cAMP pathway, LY 83583 on guanylyl cyclase in the cGMP pathway, and U-73122 on phospholipase C in the IP₃ pathway were examined. The results showed that all of the inhibitors affected each specific target in the second-messenger transduction pathways. The obtained results verified that the P-site corresponded to the cAMP, the F-site to the cGMP, and the R-site to the IP₃ transduction pathway, and that these three signal pathways did not have crossing points. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Substrate biochemistry control on the pathways for the formation of soil organic matter

    NASA Astrophysics Data System (ADS)

    Almeida, L. F.; Hurtarte, L. C.; Souza, I. F.; Barros, E. M.; Vergutz, L.; Silva, I. R.

    2017-12-01

    Linking plant litter biochemistry, its decomposition and soil organic matter (SOM) formation is not straightforward. To address this issue, we evaluated the decomposition of four biochemical fractions operationally defined as i) hot-water extractable (HWE), ii) total solvent (acetone) extractable (TSE), iii) acid-base (HNO3-KOH) unhydrolyzable cellulosic fraction (CF), and iv) acid(H2SO4) unhydrolyzable (AUR) and the transfer of C from these fractions to SOM. Each biochemical fraction was Soxhlet-extracted from isotopically labeled (13C) leaves, twigs, bark and roots of eucalypt plants (120 days old). The molecular composition of each fraction was inferred from thermochemolysis with tertamethylammonium (TMAH), followed by gas chromatography coupled o mass spectrometry (GC-MS). For the incubation, we collected soil samples from the topsoil (0-20 cm) of a sandy-clay loam, kaolinitic Typic Hapludox (Haplic Ferralsol). Four plant organs and four biochemical fractions were arranged into a (4 4) + 1 factorial scheme, including one control treatment (soil only). The samples were incubated at 80% of their water-holding capacity and kept under controlled temperature (25 ºC). The decomposition of the biochemical fractions was monitored by determining the CO2 concentration into the headspace of the vials. Finished the incubation, soil samples were submitted to density followed by particle-size fractionation. HWE and CF was decomposed at faster rates than TSE and AUR throughout the incubation. The soil fraction <53 µm retained a significantly higher proportion of the initial input of HWE (32%) and AUR (31%) than TSE (19%) or CF (15%). Light fraction organic matter (LFOM) with density <1.8 g cm-3, retained a significant proportion of AUR (37%) and TSE (32%) while CF was mostly lost as CO2 (79%). Selective preservation of organic materials (e.g., long-chain lipids) within AUR and TSE fractions appears to be a significant pathway for SOM formation. A microbial-driven pathway cannot be ruled out for any biochemical fraction, but seems more relevant for HWE and CF. In short-term, substrate biochemistry exerts a strong influence on the conversion of eucalypt litter fractions into either CO2 or SOM. Such results warrant the relevance of field-based study to link plant litter biochemistry and SOM formation in long-term.

  20. Tipping the balance of RNA stability by 3' editing of the transcriptome.

    PubMed

    Chung, Christina Z; Seidl, Lauren E; Mann, Mitchell R; Heinemann, Ilka U

    2017-11-01

    The regulation of active microRNAs (miRNAs) and maturation of messenger RNAs (mRNAs) that are competent for translation is a crucial point in the control of all cellular processes, with established roles in development and differentiation. Terminal nucleotidyltransferases (TNTases) are potent regulators of RNA metabolism. TNTases promote the addition of single or multiple nucleotides to an RNA transcript that can rapidly alter transcript stability. The well-known polyadenylation promotes transcript stability while the newly discovered but ubiquitious 3'-end polyuridylation marks RNA for degradation. Monoadenylation and uridylation are essential control mechanisms balancing mRNA and miRNA homeostasis. This review discusses the multiple functions of non-canonical TNTases, focusing on their substrate range, biological functions, and evolution. TNTases directly control mRNA and miRNA levels, with diverse roles in transcriptome stabilization, maturation, silencing, or degradation. We will summarize the current state of knowledge on non-canonical nucleotidyltransferases and their function in regulating miRNA and mRNA metabolism. We will review the discovery of uridylation as an RNA degradation pathway and discuss the evolution of nucleotidyltransferases along with their use in RNA labeling and future applications as therapeutic targets. The biochemically and evolutionarily highly related adenylyl- and uridylyltransferases play antagonizing roles in the cell. In general, RNA adenylation promotes stability, while uridylation marks RNA for degradation. Uridylyltransferases evolved from adenylyltransferases in multiple independent evolutionary events by the insertion of a histidine residue into the active site, altering nucleotide, but not RNA specificity. Understanding the mechanisms regulating RNA stability in the cell and controlling the transcriptome is essential for efforts aiming to influence cellular fate. Selectively enhancing or reducing RNA stability allows for alterations in the transcriptome, proteome, and downstream cellular processes. Genetic, biochemical, and clinical data suggest TNTases are potent targets for chemotherapeutics and have been exploited for RNA labeling applications. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Quantitative RT-PCR Comparison of the Urea and Nitric Oxide Cycle Gene Transcripts in Adult Human Tissues

    PubMed Central

    Neill, Meaghan Anne; Aschner, Judy; Barr, Frederick; Summar, Marshall L.

    2009-01-01

    The urea cycle and nitric oxide cycle play significant roles in complex biochemical and physiologic reactions. These cycles have distinct biochemical goals including the clearance of waste nitrogen; the production of the intermediates ornithine, citrulline, and arginine for the urea cycle; and the production of nitric oxide for the nitric oxide pathway. Despite their disparate functions, the two pathways share two enzymes, argininosuccinic acid synthase and argininosuccinic acid lyase, and a transporter, citrin. Studying the gene expression of these enzymes is paramount in understanding these complex biochemical pathways. Here, we examine the expression of genes involved in the urea cycle and the nitric oxide cycle in a panel of eleven different tissue samples obtained from individual adults without known inborn errors of metabolism. In this study, the pattern of co-expressed enzymes provides a global view of the metabolic activity of the urea and nitric oxide cycles in human tissues. Our results show that these transcripts are differentially expressed in different tissues. The pattern of co-expressed enzymes provides a global view of the metabolic activity of the urea and nitric oxide cycles in human tissues. Using the co-expression profiles, we discovered that the combination of expression of enzyme transcripts as detected in our study, might serve to fulfill specific physiologic function(s) in tissue including urea production/nitrogen removal, arginine/citrulline production, nitric oxide production, and ornithine production. Our study reveals the importance of studying not only the expression profile of an enzyme of interest, but also studying the expression profiles of the other enzymes involved in a particular pathway so as to better understand the context of expression. The tissue patterns we observed highlight the variety of important functions they conduct and provide insight into many of the clinical observations from their disruption. PMID:19345634

  2. An algorithm for modularization of MAPK and calcium signaling pathways: comparative analysis among different species.

    PubMed

    Nayak, Losiana; De, Rajat K

    2007-12-01

    Signaling pathways are large complex biochemical networks. It is difficult to analyze the underlying mechanism of such networks as a whole. In the present article, we have proposed an algorithm for modularization of signal transduction pathways. Unlike studying a signaling pathway as a whole, this enables one to study the individual modules (less complex smaller units) easily and hence to study the entire pathway better. A comparative study of modules belonging to different species (for the same signaling pathway) has been made, which gives an overall idea about development of the signaling pathways over the taken set of species of calcium and MAPK signaling pathways. The superior performance, in terms of biological significance, of the proposed algorithm over an existing community finding algorithm of Newman [Newman MEJ. Modularity and community structure in networks. Proc Natl Acad Sci USA 2006;103(23):8577-82] has been demonstrated using the aforesaid pathways of H. sapiens.

  3. Modeling biochemical pathways in the gene ontology

    DOE PAGES

    Hill, David P.; D’Eustachio, Peter; Berardini, Tanya Z.; ...

    2016-09-01

    The concept of a biological pathway, an ordered sequence of molecular transformations, is used to collect and represent molecular knowledge for a broad span of organismal biology. Representations of biomedical pathways typically are rich but idiosyncratic presentations of organized knowledge about individual pathways. Meanwhile, biomedical ontologies and associated annotation files are powerful tools that organize molecular information in a logically rigorous form to support computational analysis. The Gene Ontology (GO), representing Molecular Functions, Biological Processes and Cellular Components, incorporates many aspects of biological pathways within its ontological representations. Here we present a methodology for extending and refining the classes inmore » the GO for more comprehensive, consistent and integrated representation of pathways, leveraging knowledge embedded in current pathway representations such as those in the Reactome Knowledgebase and MetaCyc. With carbohydrate metabolic pathways as a use case, we discuss how our representation supports the integration of variant pathway classes into a unified ontological structure that can be used for data comparison and analysis.« less

  4. Extended Kalman Filter for Estimation of Parameters in Nonlinear State-Space Models of Biochemical Networks

    PubMed Central

    Sun, Xiaodian; Jin, Li; Xiong, Momiao

    2008-01-01

    It is system dynamics that determines the function of cells, tissues and organisms. To develop mathematical models and estimate their parameters are an essential issue for studying dynamic behaviors of biological systems which include metabolic networks, genetic regulatory networks and signal transduction pathways, under perturbation of external stimuli. In general, biological dynamic systems are partially observed. Therefore, a natural way to model dynamic biological systems is to employ nonlinear state-space equations. Although statistical methods for parameter estimation of linear models in biological dynamic systems have been developed intensively in the recent years, the estimation of both states and parameters of nonlinear dynamic systems remains a challenging task. In this report, we apply extended Kalman Filter (EKF) to the estimation of both states and parameters of nonlinear state-space models. To evaluate the performance of the EKF for parameter estimation, we apply the EKF to a simulation dataset and two real datasets: JAK-STAT signal transduction pathway and Ras/Raf/MEK/ERK signaling transduction pathways datasets. The preliminary results show that EKF can accurately estimate the parameters and predict states in nonlinear state-space equations for modeling dynamic biochemical networks. PMID:19018286

  5. Regulation of the protein kinase activity of Shaggy(Zeste-white3) by components of the wingless pathway in Drosophila cells and embryos.

    PubMed

    Ruel, L; Stambolic, V; Ali, A; Manoukian, A S; Woodgett, J R

    1999-07-30

    The protein-serine kinase Shaggy(Zeste-white3) (Sgg(Zw3)) is the Drosophila homolog of mammalian glycogen synthase kinase-3 and has been genetically implicated in signal transduction pathways necessary for the establishment of patterning. Sgg(Zw3) is a putative component of the Wingless (Wg) pathway, and epistasis analyses suggest that Sgg(Zw3) function is repressed by Wg signaling. Here, we have investigated the biochemical consequences of Wg signaling with respect to the Sgg(Zw3) protein kinase in two types of Drosophila cell lines and in embryos. Our results demonstrate that Sgg(Zw3) activity is inhibited following exposure of cells to Wg protein and by expression of downstream components of Wg signaling, Drosophila frizzled 2 and dishevelled. Wg-dependent inactivation of Sgg(Zw3) is accompanied by serine phosphorylation. We also show that the level of Sgg(Zw3) activity regulates the stability of Armadillo protein and modulates the level of phosphorylation of D-Axin and Armadillo. Together, these results provide direct biochemical evidence in support of the genetic model of Wg signaling and provide a model for dissecting the molecular interactions between the signaling proteins.

  6. Glycoprotein Ib activation by thrombin stimulates the energy metabolism in human platelets

    PubMed Central

    Corona de la Peña, Norma; Gutiérrez-Aguilar, Manuel; Hernández-Reséndiz, Ileana; Marín-Hernández, Álvaro

    2017-01-01

    Thrombin-induced platelet activation requires substantial amounts of ATP. However, the specific contribution of each ATP-generating pathway i.e., oxidative phosphorylation (OxPhos) versus glycolysis and the biochemical mechanisms involved in the thrombin-induced activation of energy metabolism remain unclear. Here we report an integral analysis on the role of both energy pathways in human platelets activated by several agonists, and the signal transducing mechanisms associated with such activation. We found that thrombin, Trap-6, arachidonic acid, collagen, A23187, epinephrine and ADP significantly increased glycolytic flux (3–38 times vs. non-activated platelets) whereas ristocetin was ineffective. OxPhos (33 times) and mitochondrial transmembrane potential (88%) were increased only by thrombin. OxPhos was the main source of ATP in thrombin-activated platelets, whereas in platelets activated by any of the other agonists, glycolysis was the principal ATP supplier. In order to establish the biochemical mechanisms involved in the thrombin-induced OxPhos activation in platelets, several signaling pathways associated with mitochondrial activation were analyzed. Wortmannin and LY294002 (PI3K/Akt pathway inhibitors), ristocetin and heparin (GPIb inhibitors) as well as resveratrol, ATP (calcium-release inhibitors) and PP1 (Tyr-phosphorylation inhibitor) prevented the thrombin-induced platelet activation. These results suggest that thrombin activates OxPhos and glycolysis through GPIb-dependent signaling involving PI3K and Akt activation, calcium mobilization and protein phosphorylation. PMID:28817667

  7. Remnants of an ancient pathway to L-phenylalanine and L-tyrosine in enteric bacteria: Evolutionary implications and biotechnological impact. [Escherichia coli; Salmonella typhimurium; Neurospora crassa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonner, C.A.; Fischer, R.S.; Ahmad, S.

    The pathway construction for biosynthesis of aromatic amino acids in Escherichia coli is atypical of the phylogenetic subdivision of gram-negative bacteria to which it belongs. Related organisms possess second pathways to phenylalanine and tyrosine which depend upon the expression of a monofunctional chorismate mutase (CM-F) and cyclohexadienyl dehydratase (CDT). Some enteric bacteria, unlike E. coli, possess either CM-F or CDT. These essentially cryptic remnants of an ancestral pathway can be a latent source of biochemical potential under certain conditions. As one example of advantageous biochemical potential, the presence of CM-F in Salmonella typhimurium increases the capacity for prephenate accumulation inmore » a tyrA auxotroph. We report the finding that a significant fraction of the latter prephenate is transaminated to L-arogenate. The tyrA19 mutant is now the organism of choice for isolation of L-arogenate, uncomplicated by the presence of other cyclohexadienyl products coaccumulated by a Neurospora crassa mutant that had previously served as the prime biological source of L-arogenate. Prephenate aminotransferase activity was not conferred by a discrete enzyme, but rather was found to be synonymous with the combined activities of aspartate aminotransferase (aspC), aromatic aminotransferase (tyrB), and branched-chain aminotransferase (ilvE).« less

  8. Dietary grape seed proanthocyanidin extract regulates metabolic disturbance in rat liver exposed to lead associated with PPARα signaling pathway.

    PubMed

    Yang, Daqian; Jiang, Huijie; Lu, Jingjing; Lv, Yueying; Baiyun, Ruiqi; Li, Siyu; Liu, Biying; Lv, Zhanjun; Zhang, Zhigang

    2018-06-01

    Lead, a pervasive environmental hazard worldwide, causes a wide range of physiological and biochemical destruction, including metabolic dysfunction. Grape seed proanthocyanidin extract (GSPE) is a natural production with potential metabolic regulation in liver. This study was performed to investigate the protective role of GSPE against lead-induced metabolic dysfunction in liver and elucidate the potential molecular mechanism of this event. Wistar rats received GSPE (200 mg/kg) daily with or without lead acetate (PbA, 0.5 g/L) exposure for 56 d. According to biochemical and histopathologic analysis, GSPE attenuated lead-induced metabolic dysfunction, oxidative stress, and liver dysfunction. Liver gene expression profiling was assessed by RNA sequencing and validated by qRT-PCR. Expression of some genes in peroxisome proliferator-activated receptor alpha (PPARα) signaling pathway was significantly suppressed in PbA group and revived in PbA + GSPE group, which was manifested by Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis and validated by western blot analysis. This study supports that dietary GSPE ameliorates lead-induced fatty acids metabolic disturbance in rat liver associated with PPARα signaling pathway, and suggests that dietary GSPE may be a protector against lead-induced metabolic dysfunction and liver injury, providing a novel therapy to protect liver against lead exposure. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Pathway of Glycine Betaine Biosynthesis in Aspergillus fumigatus

    PubMed Central

    Lambou, Karine; Pennati, Andrea; Valsecchi, Isabel; Tada, Rui; Sherman, Stephen; Sato, Hajime; Beau, Remi

    2013-01-01

    The choline oxidase (CHOA) and betaine aldehyde dehydrogenase (BADH) genes identified in Aspergillus fumigatus are present as a cluster specific for fungal genomes. Biochemical and molecular analyses of this cluster showed that it has very specific biochemical and functional features that make it unique and different from its plant and bacterial homologs. A. fumigatus ChoAp catalyzed the oxidation of choline to glycine betaine with betaine aldehyde as an intermediate and reduced molecular oxygen to hydrogen peroxide using FAD as a cofactor. A. fumigatus Badhp oxidized betaine aldehyde to glycine betaine with reduction of NAD+ to NADH. Analysis of the AfchoAΔ::HPH and AfbadAΔ::HPH single mutants and the AfchoAΔAfbadAΔ::HPH double mutant showed that AfChoAp is essential for the use of choline as the sole nitrogen, carbon, or carbon and nitrogen source during the germination process. AfChoAp and AfBadAp were localized in the cytosol of germinating conidia and mycelia but were absent from resting conidia. Characterization of the mutant phenotypes showed that glycine betaine in A. fumigatus functions exclusively as a metabolic intermediate in the catabolism of choline and not as a stress protectant. This study in A. fumigatus is the first molecular, cellular, and biochemical characterization of the glycine betaine biosynthetic pathway in the fungal kingdom. PMID:23563483

  10. Pathway of glycine betaine biosynthesis in Aspergillus fumigatus.

    PubMed

    Lambou, Karine; Pennati, Andrea; Valsecchi, Isabel; Tada, Rui; Sherman, Stephen; Sato, Hajime; Beau, Remi; Gadda, Giovanni; Latgé, Jean-Paul

    2013-06-01

    The choline oxidase (CHOA) and betaine aldehyde dehydrogenase (BADH) genes identified in Aspergillus fumigatus are present as a cluster specific for fungal genomes. Biochemical and molecular analyses of this cluster showed that it has very specific biochemical and functional features that make it unique and different from its plant and bacterial homologs. A. fumigatus ChoAp catalyzed the oxidation of choline to glycine betaine with betaine aldehyde as an intermediate and reduced molecular oxygen to hydrogen peroxide using FAD as a cofactor. A. fumigatus Badhp oxidized betaine aldehyde to glycine betaine with reduction of NAD(+) to NADH. Analysis of the AfchoAΔ::HPH and AfbadAΔ::HPH single mutants and the AfchoAΔAfbadAΔ::HPH double mutant showed that AfChoAp is essential for the use of choline as the sole nitrogen, carbon, or carbon and nitrogen source during the germination process. AfChoAp and AfBadAp were localized in the cytosol of germinating conidia and mycelia but were absent from resting conidia. Characterization of the mutant phenotypes showed that glycine betaine in A. fumigatus functions exclusively as a metabolic intermediate in the catabolism of choline and not as a stress protectant. This study in A. fumigatus is the first molecular, cellular, and biochemical characterization of the glycine betaine biosynthetic pathway in the fungal kingdom.

  11. Characterizing autism spectrum disorders by key biochemical pathways.

    PubMed

    Subramanian, Megha; Timmerman, Christina K; Schwartz, Joshua L; Pham, Daniel L; Meffert, Mollie K

    2015-01-01

    The genetic and phenotypic heterogeneity of autism spectrum disorders (ASD) presents a substantial challenge for diagnosis, classification, research, and treatment. Investigations into the underlying molecular etiology of ASD have often yielded mixed and at times opposing findings. Defining the molecular and biochemical underpinnings of heterogeneity in ASD is crucial to our understanding of the pathophysiological development of the disorder, and has the potential to assist in diagnosis and the rational design of clinical trials. In this review, we propose that genetically diverse forms of ASD may be usefully parsed into entities resulting from converse patterns of growth regulation at the molecular level, which lead to the correlates of general synaptic and neural overgrowth or undergrowth. Abnormal brain growth during development is a characteristic feature that has been observed both in children with autism and in mouse models of autism. We review evidence from syndromic and non-syndromic ASD to suggest that entities currently classified as autism may fundamentally differ by underlying pro- or anti-growth abnormalities in key biochemical pathways, giving rise to either excessive or reduced synaptic connectivity in affected brain regions. We posit that this classification strategy has the potential not only to aid research efforts, but also to ultimately facilitate early diagnosis and direct appropriate therapeutic interventions.

  12. MetaMapR: pathway independent metabolomic network analysis incorporating unknowns.

    PubMed

    Grapov, Dmitry; Wanichthanarak, Kwanjeera; Fiehn, Oliver

    2015-08-15

    Metabolic network mapping is a widely used approach for integration of metabolomic experimental results with biological domain knowledge. However, current approaches can be limited by biochemical domain or pathway knowledge which results in sparse disconnected graphs for real world metabolomic experiments. MetaMapR integrates enzymatic transformations with metabolite structural similarity, mass spectral similarity and empirical associations to generate richly connected metabolic networks. This open source, web-based or desktop software, written in the R programming language, leverages KEGG and PubChem databases to derive associations between metabolites even in cases where biochemical domain or molecular annotations are unknown. Network calculation is enhanced through an interface to the Chemical Translation System, which allows metabolite identifier translation between >200 common biochemical databases. Analysis results are presented as interactive visualizations or can be exported as high-quality graphics and numerical tables which can be imported into common network analysis and visualization tools. Freely available at http://dgrapov.github.io/MetaMapR/. Requires R and a modern web browser. Installation instructions, tutorials and application examples are available at http://dgrapov.github.io/MetaMapR/. ofiehn@ucdavis.edu. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Characterizing autism spectrum disorders by key biochemical pathways

    PubMed Central

    Subramanian, Megha; Timmerman, Christina K.; Schwartz, Joshua L.; Pham, Daniel L.; Meffert, Mollie K.

    2015-01-01

    The genetic and phenotypic heterogeneity of autism spectrum disorders (ASD) presents a substantial challenge for diagnosis, classification, research, and treatment. Investigations into the underlying molecular etiology of ASD have often yielded mixed and at times opposing findings. Defining the molecular and biochemical underpinnings of heterogeneity in ASD is crucial to our understanding of the pathophysiological development of the disorder, and has the potential to assist in diagnosis and the rational design of clinical trials. In this review, we propose that genetically diverse forms of ASD may be usefully parsed into entities resulting from converse patterns of growth regulation at the molecular level, which lead to the correlates of general synaptic and neural overgrowth or undergrowth. Abnormal brain growth during development is a characteristic feature that has been observed both in children with autism and in mouse models of autism. We review evidence from syndromic and non-syndromic ASD to suggest that entities currently classified as autism may fundamentally differ by underlying pro- or anti-growth abnormalities in key biochemical pathways, giving rise to either excessive or reduced synaptic connectivity in affected brain regions. We posit that this classification strategy has the potential not only to aid research efforts, but also to ultimately facilitate early diagnosis and direct appropriate therapeutic interventions. PMID:26483618

  14. Fully Bayesian Analysis of High-throughput Targeted Metabolomics Assays

    EPA Science Inventory

    High-throughput metabolomic assays that allow simultaneous targeted screening of hundreds of metabolites have recently become available in kit form. Such assays provide a window into understanding changes to biochemical pathways due to chemical exposure or disease, and are usefu...

  15. Litchi chinensis as a Functional Food and a Source of Antitumor Compounds: An Overview and a Description of Biochemical Pathways.

    PubMed

    Emanuele, Sonia; Lauricella, Marianna; Calvaruso, Giuseppe; D'Anneo, Antonella; Giuliano, Michela

    2017-09-08

    Litchi is a tasty fruit that is commercially grown for food consumption and nutritional benefits in various parts of the world. Due to its biological activities, the fruit is becoming increasingly known and deserves attention not only for its edible part, the pulp, but also for its peel and seed that contain beneficial substances with antioxidant, cancer preventive, antimicrobial, and anti-inflammatory functions. Although literature demonstrates the biological activity of Litchi components in reducing tumor cell viability in in vitro or in vivo models, data about the biochemical mechanisms responsible for these effects are quite fragmentary. This review specifically describes, in a comprehensive analysis, the antitumor properties of the different parts of Litchi and highlights the main biochemical mechanisms involved.

  16. Linear analysis near a steady-state of biochemical networks: control analysis, correlation metrics and circuit theory.

    PubMed

    Heuett, William J; Beard, Daniel A; Qian, Hong

    2008-05-15

    Several approaches, including metabolic control analysis (MCA), flux balance analysis (FBA), correlation metric construction (CMC), and biochemical circuit theory (BCT), have been developed for the quantitative analysis of complex biochemical networks. Here, we present a comprehensive theory of linear analysis for nonequilibrium steady-state (NESS) biochemical reaction networks that unites these disparate approaches in a common mathematical framework and thermodynamic basis. In this theory a number of relationships between key matrices are introduced: the matrix A obtained in the standard, linear-dynamic-stability analysis of the steady-state can be decomposed as A = SRT where R and S are directly related to the elasticity-coefficient matrix for the fluxes and chemical potentials in MCA, respectively; the control-coefficients for the fluxes and chemical potentials can be written in terms of RTBS and STBS respectively where matrix B is the inverse of A; the matrix S is precisely the stoichiometric matrix in FBA; and the matrix eAt plays a central role in CMC. One key finding that emerges from this analysis is that the well-known summation theorems in MCA take different forms depending on whether metabolic steady-state is maintained by flux injection or concentration clamping. We demonstrate that if rate-limiting steps exist in a biochemical pathway, they are the steps with smallest biochemical conductances and largest flux control-coefficients. We hypothesize that biochemical networks for cellular signaling have a different strategy for minimizing energy waste and being efficient than do biochemical networks for biosynthesis. We also discuss the intimate relationship between MCA and biochemical systems analysis (BSA).

  17. Hypothalamic digoxin, hemispheric chemical dominance and sarcoidosis.

    PubMed

    Ravi Kumar, A; Kurup, Parameswara Achutha

    2004-06-01

    The isoprenoid pathway produces three key metabolites: endogenous digoxin (membrane sodium-potassium ATPase inhibitor, immunomodulator and regulator of neurotransmitter/amino acid transport), dolichol (regulates N-glycosylation of proteins) and ubiquinone (free radical scavenger). The role of the isoprenoid pathway in the pathogenesis of sarcoidosis in relation to hemispheric dominance was studied. The isoprenoid pathway-related cascade was assessed in patients with systemic sarcoidosis with pulmonary involvement. The pathway was also assessed in patients with right hemispheric, left hemispheric and bihemispheric dominance for comparison to find out the role of hemispheric dominance in the pathogenesis of sarcoidosis. In patients with sarcoidosis there was elevated digoxin synthesis, increased dolichol and glycoconjugate levels and low ubiquinone and elevated free radical levels. There was also an increase in tryptophan catabolites and a reduction in tyrosine catabolites. There was an increase in the cholesterol:phospholipid ratio and a reduction in the glycoconjugate level of red blood cell (RBC) membrane in this group of patients. The same biochemical patterns were obtained in individuals with right hemispheric dominance. In individuals with left hemispheric dominance the patterns were reversed. Endogenous digoxin, by activating the calcineurin signal transduction pathway of T cells, can contribute to immune activation in sarcoidosis. An altered glycoconjugate metabolism can lead to the generation of endogenous self-glycoprotein antigens in the lung as well as other tissues. Increased free radical generation can also lead to immune activation. The role of a dysfunctional isoprenoid pathway and endogenous digoxin in the pathogenesis of sarcoidosis in relation to right hemispheric chemical dominance is discussed. All the patients with sarcoidosis were right-handed/left hemispheric dominant according to the dichotic listening test, but their biochemical patterns were suggestive of right hemispheric chemical dominance. Hemispheric chemical dominance has no correlation with handedness or the dichotic listening test.

  18. Identifying positive selection candidate loci for high-altitude adaptation in Andean populations

    PubMed Central

    2009-01-01

    High-altitude environments (>2,500 m) provide scientists with a natural laboratory to study the physiological and genetic effects of low ambient oxygen tension on human populations. One approach to understanding how life at high altitude has affected human metabolism is to survey genome-wide datasets for signatures of natural selection. In this work, we report on a study to identify selection-nominated candidate genes involved in adaptation to hypoxia in one highland group, Andeans from the South American Altiplano. We analysed dense microarray genotype data using four test statistics that detect departures from neutrality. Using a candidate gene, single nucleotide polymorphism-based approach, we identified genes exhibiting preliminary evidence of recent genetic adaptation in this population. These included genes that are part of the hypoxia-inducible transcription factor (HIF) pathway, a biochemical pathway involved in oxygen homeostasis, as well as three other genomic regions previously not known to be associated with high-altitude phenotypes. In addition to identifying selection-nominated candidate genes, we also tested whether the HIF pathway shows evidence of natural selection. Our results indicate that the genes of this biochemical pathway as a group show no evidence of having evolved in response to hypoxia in Andeans. Results from particular HIF-targeted genes, however, suggest that genes in this pathway could play a role in Andean adaptation to high altitude, even if the pathway as a whole does not show higher relative rates of evolution. These data suggest a genetic role in high-altitude adaptation and provide a basis for genotype/phenotype association studies that are necessary to confirm the role of putative natural selection candidate genes and gene regions in adaptation to altitude. PMID:20038496

  19. A Graphical User Interface for a Method to Infer Kinetics and Network Architecture (MIKANA)

    PubMed Central

    Mourão, Márcio A.; Srividhya, Jeyaraman; McSharry, Patrick E.; Crampin, Edmund J.; Schnell, Santiago

    2011-01-01

    One of the main challenges in the biomedical sciences is the determination of reaction mechanisms that constitute a biochemical pathway. During the last decades, advances have been made in building complex diagrams showing the static interactions of proteins. The challenge for systems biologists is to build realistic models of the dynamical behavior of reactants, intermediates and products. For this purpose, several methods have been recently proposed to deduce the reaction mechanisms or to estimate the kinetic parameters of the elementary reactions that constitute the pathway. One such method is MIKANA: Method to Infer Kinetics And Network Architecture. MIKANA is a computational method to infer both reaction mechanisms and estimate the kinetic parameters of biochemical pathways from time course data. To make it available to the scientific community, we developed a Graphical User Interface (GUI) for MIKANA. Among other features, the GUI validates and processes an input time course data, displays the inferred reactions, generates the differential equations for the chemical species in the pathway and plots the prediction curves on top of the input time course data. We also added a new feature to MIKANA that allows the user to exclude a priori known reactions from the inferred mechanism. This addition improves the performance of the method. In this article, we illustrate the GUI for MIKANA with three examples: an irreversible Michaelis–Menten reaction mechanism; the interaction map of chemical species of the muscle glycolytic pathway; and the glycolytic pathway of Lactococcus lactis. We also describe the code and methods in sufficient detail to allow researchers to further develop the code or reproduce the experiments described. The code for MIKANA is open source, free for academic and non-academic use and is available for download (Information S1). PMID:22096591

  20. A graphical user interface for a method to infer kinetics and network architecture (MIKANA).

    PubMed

    Mourão, Márcio A; Srividhya, Jeyaraman; McSharry, Patrick E; Crampin, Edmund J; Schnell, Santiago

    2011-01-01

    One of the main challenges in the biomedical sciences is the determination of reaction mechanisms that constitute a biochemical pathway. During the last decades, advances have been made in building complex diagrams showing the static interactions of proteins. The challenge for systems biologists is to build realistic models of the dynamical behavior of reactants, intermediates and products. For this purpose, several methods have been recently proposed to deduce the reaction mechanisms or to estimate the kinetic parameters of the elementary reactions that constitute the pathway. One such method is MIKANA: Method to Infer Kinetics And Network Architecture. MIKANA is a computational method to infer both reaction mechanisms and estimate the kinetic parameters of biochemical pathways from time course data. To make it available to the scientific community, we developed a Graphical User Interface (GUI) for MIKANA. Among other features, the GUI validates and processes an input time course data, displays the inferred reactions, generates the differential equations for the chemical species in the pathway and plots the prediction curves on top of the input time course data. We also added a new feature to MIKANA that allows the user to exclude a priori known reactions from the inferred mechanism. This addition improves the performance of the method. In this article, we illustrate the GUI for MIKANA with three examples: an irreversible Michaelis-Menten reaction mechanism; the interaction map of chemical species of the muscle glycolytic pathway; and the glycolytic pathway of Lactococcus lactis. We also describe the code and methods in sufficient detail to allow researchers to further develop the code or reproduce the experiments described. The code for MIKANA is open source, free for academic and non-academic use and is available for download (Information S1).

  1. Investigation of Proposed Ladderane Biosynthetic Genes from Anammox Bacteria by Heterologous Expression in E. coli

    DOE PAGES

    Javidpour, Pouya; Deutsch, Samuel; Mutalik, Vivek K.; ...

    2016-03-14

    Ladderanes are hydrocarbon chains with three or five linearly concatenated cyclobutane rings that are uniquely produced as membrane lipid components by anammox (anaerobic ammonia-oxidizing) bacteria. By virtue of their angle and torsional strain, ladderanes are unusually energetic compounds, and if produced biochemically by engineered microbes, could serve as renewable, high-energy-density jet fuel components. The biochemistry and genetics underlying the ladderane biosynthetic pathway are unknown, however, previous studies have identified a pool of 34 candidate genes from the anammox bacterium, Kuenenia stuttgartiensis, some or all of which may be involved with ladderane fatty acid biosynthesis. The goal of the present studymore » was to establish a systematic means of testing the candidate genes from K. stuttgartiensis for involvement in ladderane biosynthesis through heterologous expression in E. coli under anaerobic conditions. This study describes an efficient means of assembly of synthesized, codon-optimized candidate ladderane biosynthesis genes in synthetic operons that allows for changes to regulatory element sequences, as well as modular assembly of multiple operons for simultaneous heterologous expression in E. coli (or potentially other microbial hosts). We also describe in vivo functional tests of putative anammox homologs of the phytoene desaturase CrtI, which plays an important role in the hypothesized ladderane pathway, and a method for soluble purification of one of these enzymes. This study is, to our knowledge, the first experimental effort focusing on the role of specific anammox genes in the production of ladderanes, and lays the foundation for future efforts toward determination of the ladderane biosynthetic pathway. Our substantial, but far from comprehensive, efforts at elucidating the ladderane biosynthetic pathway were not successful. We invite the scientific community to take advantage of the considerable synthetic biology resources and experimental results developed in this study to elucidate the biosynthetic pathway that produces unique and intriguing ladderane lipids.« less

  2. Investigation of Proposed Ladderane Biosynthetic Genes from Anammox Bacteria by Heterologous Expression in E. coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Javidpour, Pouya; Deutsch, Samuel; Mutalik, Vivek K.

    Ladderanes are hydrocarbon chains with three or five linearly concatenated cyclobutane rings that are uniquely produced as membrane lipid components by anammox (anaerobic ammonia-oxidizing) bacteria. By virtue of their angle and torsional strain, ladderanes are unusually energetic compounds, and if produced biochemically by engineered microbes, could serve as renewable, high-energy-density jet fuel components. The biochemistry and genetics underlying the ladderane biosynthetic pathway are unknown, however, previous studies have identified a pool of 34 candidate genes from the anammox bacterium, Kuenenia stuttgartiensis, some or all of which may be involved with ladderane fatty acid biosynthesis. The goal of the present studymore » was to establish a systematic means of testing the candidate genes from K. stuttgartiensis for involvement in ladderane biosynthesis through heterologous expression in E. coli under anaerobic conditions. This study describes an efficient means of assembly of synthesized, codon-optimized candidate ladderane biosynthesis genes in synthetic operons that allows for changes to regulatory element sequences, as well as modular assembly of multiple operons for simultaneous heterologous expression in E. coli (or potentially other microbial hosts). We also describe in vivo functional tests of putative anammox homologs of the phytoene desaturase CrtI, which plays an important role in the hypothesized ladderane pathway, and a method for soluble purification of one of these enzymes. This study is, to our knowledge, the first experimental effort focusing on the role of specific anammox genes in the production of ladderanes, and lays the foundation for future efforts toward determination of the ladderane biosynthetic pathway. Our substantial, but far from comprehensive, efforts at elucidating the ladderane biosynthetic pathway were not successful. We invite the scientific community to take advantage of the considerable synthetic biology resources and experimental results developed in this study to elucidate the biosynthetic pathway that produces unique and intriguing ladderane lipids.« less

  3. Investigation of Proposed Ladderane Biosynthetic Genes from Anammox Bacteria by Heterologous Expression in E. coli

    PubMed Central

    Javidpour, Pouya; Deutsch, Samuel; Mutalik, Vivek K.; Hillson, Nathan J.; Petzold, Christopher J.; Keasling, Jay D.; Beller, Harry R.

    2016-01-01

    Ladderanes are hydrocarbon chains with three or five linearly concatenated cyclobutane rings that are uniquely produced as membrane lipid components by anammox (anaerobic ammonia-oxidizing) bacteria. By virtue of their angle and torsional strain, ladderanes are unusually energetic compounds, and if produced biochemically by engineered microbes, could serve as renewable, high-energy-density jet fuel components. The biochemistry and genetics underlying the ladderane biosynthetic pathway are unknown, however, previous studies have identified a pool of 34 candidate genes from the anammox bacterium, Kuenenia stuttgartiensis, some or all of which may be involved with ladderane fatty acid biosynthesis. The goal of the present study was to establish a systematic means of testing the candidate genes from K. stuttgartiensis for involvement in ladderane biosynthesis through heterologous expression in E. coli under anaerobic conditions. This study describes an efficient means of assembly of synthesized, codon-optimized candidate ladderane biosynthesis genes in synthetic operons that allows for changes to regulatory element sequences, as well as modular assembly of multiple operons for simultaneous heterologous expression in E. coli (or potentially other microbial hosts). We also describe in vivo functional tests of putative anammox homologs of the phytoene desaturase CrtI, which plays an important role in the hypothesized ladderane pathway, and a method for soluble purification of one of these enzymes. This study is, to our knowledge, the first experimental effort focusing on the role of specific anammox genes in the production of ladderanes, and lays the foundation for future efforts toward determination of the ladderane biosynthetic pathway. Our substantial, but far from comprehensive, efforts at elucidating the ladderane biosynthetic pathway were not successful. We invite the scientific community to take advantage of the considerable synthetic biology resources and experimental results developed in this study to elucidate the biosynthetic pathway that produces unique and intriguing ladderane lipids. PMID:26975050

  4. Combining position-specific 13C labeling with compound-specific isotope analysis: first steps towards soil fluxomics

    NASA Astrophysics Data System (ADS)

    Dippold, Michaela; Kuzyakov, Yakov

    2015-04-01

    Understanding the soil organic matter (SOM) dynamics is one of the most important challenges in soil science. Transformation of low molecular weight organic substances (LMWOS) is a key step in biogeochemical cycles because 1) all high molecular substances pass this stage during their decomposition and 2) only LMWOS will be taken up by microorganisms. Previous studies on LMWOS were focused on determining net fluxes through the LMWOS pool, but they rarely identified transformations. As LMWOS are the preferred C and energy source for microorganisms, the transformations of LMWOS are dominated by biochemical pathways of the soil microorganisms. Thus, understanding fluxes and transformations in soils requires a detailed knowledge on the biochemical pathways and its controlling factors. Tracing C fate in soil by isotopes became on of the most applied and promising biogeochemistry tools. Up to now, studies on LMWOS were nearly exclusively based on uniformly labeled organic substances i.e. all C atoms in the molecules were labeled with 13C or 14C. However, this classical approach did not allow the differentiation between use of intact initial substances in any process, or whether they were transformed to metabolites. The novel tool of position-specific labeling enables to trace molecule atoms separately and thus to determine the cleavage of molecules - a prerequisite for metabolic tracing. Position-specific labeling of LMWOS and quantification of 13CO2 and 13C in bulk soil enabled following the basic metabolic pathways of soil microorganisms. However, only the combination of position-specific 13C labeling with compound-specific isotope analysis of microbial biomarkers and metabolites allowed 1) tracing specific anabolic pathways in diverse microbial communities in soils and 2) identification of specific pathways of individual functional microbial groups. So, these are the prerequisites for soil fluxomics. Our studies combining position-specific labeled glucose with amino sugar 13C analysis showed that oxidizing catabolic pathways and anabolic pathways, i.e. building-up new cellular compounds, occurred in soils simultaneously. This involved an intensive C recycling within the microorganisms that was observed not only for cytosolic compounds but also for cell wall polymers. Fungal metabolism and fluxes were slower than bacterial intracellular C recycling and turnover. Furthermore, position-specific labeling of glutamate and subsequent 13C analysis of microbial phospholipid fatty acids (PLFA) revealed starvation pathways, which were only active in specific microbial groups in soils. These studies revealed that position-specific labeling enables the reconstruction of metabolic pathways of LMWOS within diverse microbial communities in complex media such as soil. Processes occurring simultaneously in soil i.e. 1) within individual, reversible metabolic pathways and 2) in various microbial groups could be traced by position-specific labeling in soils in situ. Tracing these pathways and understanding their regulating factors are crucial for soil C fluxomics, the extremely complex network of transformations towards mineralization versus the formation of microbial biomass compounds. Quantitative models to assess microbial group specific metabolic networks can be generated and parameterized by this approach. The submolecular knowledge of transformation steps and biochemical pathways in soils and their regulating factors is essential for understanding C cycling and long-term C storage in soils.

  5. Clinical Metabolomics: The New Metabolic Window for Inborn Errors of Metabolism Investigations in the Post-Genomic Era

    PubMed Central

    Tebani, Abdellah; Abily-Donval, Lenaig; Afonso, Carlos; Marret, Stéphane; Bekri, Soumeya

    2016-01-01

    Inborn errors of metabolism (IEM) represent a group of about 500 rare genetic diseases with an overall estimated incidence of 1/2500. The diversity of metabolic pathways involved explains the difficulties in establishing their diagnosis. However, early diagnosis is usually mandatory for successful treatment. Given the considerable clinical overlap between some inborn errors, biochemical and molecular tests are crucial in making a diagnosis. Conventional biological diagnosis procedures are based on a time-consuming series of sequential and segmented biochemical tests. The rise of “omic” technologies offers holistic views of the basic molecules that build a biological system at different levels. Metabolomics is the most recent “omic” technology based on biochemical characterization of metabolites and their changes related to genetic and environmental factors. This review addresses the principles underlying metabolomics technologies that allow them to comprehensively assess an individual biochemical profile and their reported applications for IEM investigations in the precision medicine era. PMID:27447622

  6. Pleiotropy Analysis of Quantitative Traits at Gene Level by Multivariate Functional Linear Models

    PubMed Central

    Wang, Yifan; Liu, Aiyi; Mills, James L.; Boehnke, Michael; Wilson, Alexander F.; Bailey-Wilson, Joan E.; Xiong, Momiao; Wu, Colin O.; Fan, Ruzong

    2015-01-01

    In genetics, pleiotropy describes the genetic effect of a single gene on multiple phenotypic traits. A common approach is to analyze the phenotypic traits separately using univariate analyses and combine the test results through multiple comparisons. This approach may lead to low power. Multivariate functional linear models are developed to connect genetic variant data to multiple quantitative traits adjusting for covariates for a unified analysis. Three types of approximate F-distribution tests based on Pillai–Bartlett trace, Hotelling–Lawley trace, and Wilks’s Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants in one genetic region. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and optimal sequence kernel association test (SKAT-O). Extensive simulations were performed to evaluate the false positive rates and power performance of the proposed models and tests. We show that the approximate F-distribution tests control the type I error rates very well. Overall, simultaneous analysis of multiple traits can increase power performance compared to an individual test of each trait. The proposed methods were applied to analyze (1) four lipid traits in eight European cohorts, and (2) three biochemical traits in the Trinity Students Study. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and SKAT-O for the three biochemical traits. The approximate F-distribution tests of the proposed functional linear models are more sensitive than those of the traditional multivariate linear models that in turn are more sensitive than SKAT-O in the univariate case. The analysis of the four lipid traits and the three biochemical traits detects more association than SKAT-O in the univariate case. PMID:25809955

  7. Pleiotropy analysis of quantitative traits at gene level by multivariate functional linear models.

    PubMed

    Wang, Yifan; Liu, Aiyi; Mills, James L; Boehnke, Michael; Wilson, Alexander F; Bailey-Wilson, Joan E; Xiong, Momiao; Wu, Colin O; Fan, Ruzong

    2015-05-01

    In genetics, pleiotropy describes the genetic effect of a single gene on multiple phenotypic traits. A common approach is to analyze the phenotypic traits separately using univariate analyses and combine the test results through multiple comparisons. This approach may lead to low power. Multivariate functional linear models are developed to connect genetic variant data to multiple quantitative traits adjusting for covariates for a unified analysis. Three types of approximate F-distribution tests based on Pillai-Bartlett trace, Hotelling-Lawley trace, and Wilks's Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants in one genetic region. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and optimal sequence kernel association test (SKAT-O). Extensive simulations were performed to evaluate the false positive rates and power performance of the proposed models and tests. We show that the approximate F-distribution tests control the type I error rates very well. Overall, simultaneous analysis of multiple traits can increase power performance compared to an individual test of each trait. The proposed methods were applied to analyze (1) four lipid traits in eight European cohorts, and (2) three biochemical traits in the Trinity Students Study. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and SKAT-O for the three biochemical traits. The approximate F-distribution tests of the proposed functional linear models are more sensitive than those of the traditional multivariate linear models that in turn are more sensitive than SKAT-O in the univariate case. The analysis of the four lipid traits and the three biochemical traits detects more association than SKAT-O in the univariate case. © 2015 WILEY PERIODICALS, INC.

  8. 49 CFR 234.306 - Multiple dispatching or maintaining railroads with respect to the same highway-rail or pathway...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... respect to the same highway-rail or pathway grade crossing; appointment of responsible railroad. 234.306... Conditions at Highway-Rail and Pathway Grade Crossings § 234.306 Multiple dispatching or maintaining railroads with respect to the same highway-rail or pathway grade crossing; appointment of responsible...

  9. 49 CFR 234.306 - Multiple dispatching or maintaining railroads with respect to the same highway-rail or pathway...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... respect to the same highway-rail or pathway grade crossing; appointment of responsible railroad. 234.306... Conditions at Highway-Rail and Pathway Grade Crossings § 234.306 Multiple dispatching or maintaining railroads with respect to the same highway-rail or pathway grade crossing; appointment of responsible...

  10. 49 CFR 234.306 - Multiple dispatching or maintaining railroads with respect to the same highway-rail or pathway...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... respect to the same highway-rail or pathway grade crossing; appointment of responsible railroad. 234.306... Conditions at Highway-Rail and Pathway Grade Crossings § 234.306 Multiple dispatching or maintaining railroads with respect to the same highway-rail or pathway grade crossing; appointment of responsible...

  11. Realizing the promise of AOPs: A stakeholder-driven roadmap to the future

    EPA Science Inventory

    The adverse outcome pathway (AOP) framework was developed to serve as a knowledge assembly and communication tool to facilitate translation of mechanistic (e.g., molecular, biochemical, histological) data into adverse apical outcomes meaningful to chemical risk assessment. Althou...

  12. Molecular and Biochemical Basis for Stress-Induced Accumulation of Free and Bound p-Coumaraldehyde in Cucumber1[W][OA

    PubMed Central

    Varbanova, Marina; Porter, Katie; Lu, Fachuang; Ralph, John; Hammerschmidt, Ray; Jones, A. Daniel; Day, Brad

    2011-01-01

    To elucidate the genetic and biochemical regulation of elicitor-induced p-coumaraldehyde accumulation in plants, we undertook a multifaceted approach to characterize the metabolic flux through the phenylpropanoid pathway via the characterization and chemical analysis of the metabolites in the p-coumaryl, coniferyl, and sinapyl alcohol branches of this pathway. Here, we report the identification and characterization of four cinnamyl alcohol dehydrogenases (CADs) from cucumber (Cucumis sativus) with low activity toward p-coumaraldehyde yet exhibiting significant activity toward other phenylpropanoid hydroxycinnamaldehydes. As part of this analysis, we identified and characterized the activity of a hydroxycinnamoyl-coenzyme A:shikimate hydroxycinnamoyl transferase (HCT) capable of utilizing shikimate and p-coumaroyl-coenzyme A to generate p-coumaroyl shikimate. Following pectinase treatment of cucumber, we observed the rapid accumulation of p-coumaraldehyde, likely the result of low aldehyde reductase activity (i.e. alcohol dehydrogenase in the reverse reaction) of CsCAD enzymes on p-coumaraldehyde. In parallel, we noted a concomitant reduction in the activity of CsHCT. Taken together, our findings support the hypothesis that the up-regulation of the phenylpropanoid pathway upon abiotic stress greatly enhances the overall p-coumaryl alcohol branch of the pathway. The data presented here point to a role for CsHCT (as well as, presumably, p-coumarate 3-hydroxylase) as a control point in the regulation of the coniferyl and sinapyl alcohol branches of this pathway. This mechanism represents a potentially evolutionarily conserved process to efficiently and quickly respond to biotic and abiotic stresses in cucurbit plants, resulting in the rapid lignification of affected tissues. PMID:21940999

  13. Distinguishing Signatures of Multipathway Conformational Transitions

    NASA Astrophysics Data System (ADS)

    Pierse, Christopher A.; Dudko, Olga K.

    2017-02-01

    The folding and binding of biomolecules into functional conformations are thought to be commonly mediated by multiple pathways rather than a unique route. Yet even in experiments where one can "see" individual conformational transitions, their stochastic nature generally precludes one from determining whether the transitions occurred through one or multiple pathways. We establish model-free, observable signatures in the response of macromolecules to force that unambiguously identify multiple pathways—even when the pathways themselves cannot be resolved. The unified analytical description reveals that, through multiple pathways, the response of molecules to external forces can be shaped in diverse ways, resulting in a rich design space for a tailored biological function already at the single-molecule level.

  14. The History of Parkinson's Disease: Early Clinical Descriptions and Neurological Therapies

    PubMed Central

    Goetz, Christopher G.

    2011-01-01

    Although components of possible Parkinson's disease can be found in very early documents, the first clear medical description was written in 1817 by James Parkinson. In the mid-1800s, Jean-Martin Charcot was particularly influential in refining and expanding this early description and in disseminating information internationally about Parkinson's disease. He separated Parkinson's disease from multiple sclerosis and other disorders characterized by tremor, and he recognized cases that later would likely be classified among the Parkinsonism-plus syndromes. Early treatments of Parkinson's disease were based on empirical observation, and anticholinergic drugs were used as early as the nineteenth century. The discovery of dopaminergic deficits in Parkinson's disease and the synthetic pathway of dopamine led to the first human trials of levodopa. Further historically important anatomical, biochemical, and physiological studies identified additional pharmacological and neurosurgical targets for Parkinson's disease and allow modern clinicians to offer an array of therapies aimed at improving function in this still incurable disease. PMID:22229124

  15. Activity-Based Protein Profiling of Organophosphorus and Thiocarbamate Pesticides Reveals Multiple Serine Hydrolase Targets in Mouse Brain

    PubMed Central

    NOMURA, DANIEL K.; CASIDA, JOHN E.

    2010-01-01

    Organophosphorus (OP) and thiocarbamate (TC) agrochemicals are used worldwide as insecticides, herbicides, and fungicides, but their safety assessment in terms of potential off-targets remains incomplete. In this study, we used a chemoproteomic platform, termed activity-based protein profiling, to broadly define serine hydrolase targets in mouse brain of a panel of 29 OP and TC pesticides. Among the secondary targets identified, enzymes involved in degradation of endocannabinoid signaling lipids, monoacylglycerol lipase and fatty acid amide hydrolase, were inhibited by several OP and TC pesticides. Blockade of these two enzymes led to elevations in brain endocannabinoid levels and dysregulated brain arachidonate metabolism. Other secondary targets include enzymes thought to also play important roles in the nervous system and unannotated proteins. This study reveals a multitude of secondary targets for OP and TC pesticides and underscores the utility of chemoproteomic platforms in gaining insights into biochemical pathways that are perturbed by these toxicants. PMID:21341672

  16. Multiple roles for membrane-associated protein trafficking and signaling in gravitropism

    PubMed Central

    Strohm, Allison K.; Baldwin, Katherine L.; Masson, Patrick H.

    2012-01-01

    Gravitropism is a process that allows plant organs to guide their growth relative to the gravity vector. It requires them to sense changes in their orientation and generate a biochemical signal that they transmit to the tissues that drive organ curvature. Trafficking between the plasma membrane and endosomal compartments is important for all of these phases of the gravitropic response. The sedimentation of starch-filled organelles called amyloplasts plays a key role in sensing reorientation, and vacuolar integrity is required for amyloplast sedimentation in shoots. Other proteins associated with the vesicle trafficking pathway contribute to early gravity signal transduction independently of amyloplast sedimentation in both roots and hypocotyls. Phosphatidylinositol signaling, which starts at the plasma membrane and later affects the localization of auxin efflux facilitators, is a likely second messenger in the signal transduction phase of gravitropism. Finally, membrane-localized auxin influx and efflux facilitators contribute to a differential auxin gradient across the gravistimulated organs, which directs root curvature. PMID:23248632

  17. Tumor-derived exosomes in cancer progression and treatment failure

    PubMed Central

    Shen, Bo; Feng, Jifeng

    2015-01-01

    Exosomes have diameter within the range of 30-100nm and spherical to cup-shaped nanoparticles with specific surface molecular characteristics, such as CD9 and CD63. These vesicles are present in nearly all human body fluids, including blood plasma/serum, saliva, breast milk, cerebrospinal fluid, urine, semen, and particularly enriched in tumor microenvironment. Exosomes contain multiple proteins, DNA, mRNA, miRNA, long non-coding RNA, and even genetic materials of viruses/prions. These materials are biochemically and functionally distinct and can be transferred to a recipient cell where they regulate protein expression and signaling pathways. Recently, exosomes are demonstrated to have a close relationship with tumor development and metastasis. Exosomes influence therapeutic effect in cancer patients. In this review, we describe the biogenesis, composition, and function of exosomes. The mechanism on how tumor-derived exosomes contribute to cancer progression and clinical treatment failure is also described, with special focus on their potential applications in cancer therapy. PMID:26452221

  18. p110α and p110β isoforms of PI3K signaling: are they two sides of the same coin?

    PubMed

    Singh, Paramjeet; Dar, Mohd Saleem; Dar, Mohd Jamal

    2016-09-01

    Class-1 phosphatidylinositol-3-kinases (PI3Ks) are activated by a variety of extracellular stimuli and have been implicated in a wide range of cellular processes. p110α and p110β are the two most studied isoforms of the class-1A PI3K signaling pathway. Although these two isoforms are ubiquitously expressed and play multiple redundant roles, they also have distinct functions within the cell. More recently, p110α and p110β isoforms have been shown to translocate into the nucleus and play a role in DNA replication and repair, and in cell cycle progression. In the following Review article, we discuss the overlapping and unique roles of p110α and p110β isoforms with a particular focus on their structure, expression analysis, subcellular localization, and signaling contributions in various cell types and model organisms. © 2016 Federation of European Biochemical Societies.

  19. Heterogeneous Family of Cyclomodulins: Smart Weapons That Allow Bacteria to Hijack the Eukaryotic Cell Cycle and Promote Infections

    PubMed Central

    El-Aouar Filho, Rachid A.; Nicolas, Aurélie; De Paula Castro, Thiago L.; Deplanche, Martine; De Carvalho Azevedo, Vasco A.; Goossens, Pierre L.; Taieb, Frédéric; Lina, Gerard; Le Loir, Yves; Berkova, Nadia

    2017-01-01

    Some bacterial pathogens modulate signaling pathways of eukaryotic cells in order to subvert the host response for their own benefit, leading to successful colonization and invasion. Pathogenic bacteria produce multiple compounds that generate favorable conditions to their survival and growth during infection in eukaryotic hosts. Many bacterial toxins can alter the cell cycle progression of host cells, impairing essential cellular functions and impeding host cell division. This review summarizes current knowledge regarding cyclomodulins, a heterogeneous family of bacterial effectors that induce eukaryotic cell cycle alterations. We discuss the mechanisms of actions of cyclomodulins according to their biochemical properties, providing examples of various cyclomodulins such as cycle inhibiting factor, γ-glutamyltranspeptidase, cytolethal distending toxins, shiga toxin, subtilase toxin, anthrax toxin, cholera toxin, adenylate cyclase toxins, vacuolating cytotoxin, cytotoxic necrotizing factor, Panton-Valentine leukocidin, phenol soluble modulins, and mycolactone. Special attention is paid to the benefit provided by cyclomodulins to bacteria during colonization of the host. PMID:28589102

  20. Akt/GSK3 signaling in the action of psychotropic drugs.

    PubMed

    Beaulieu, Jean-Martin; Gainetdinov, Raul R; Caron, Marc G

    2009-01-01

    Psychotropic drugs acting on monoamine neurotransmission are major pharmacological treatments for neuropsychiatric conditions such as schizophrenia, depression, bipolar disorder, Tourette syndrome, ADHD, and Alzheimer disease. Independent lines of research involving biochemical and behavioral approaches in normal and/or genetically modified mice provide converging evidence for an involvement of the signaling molecules Akt and glycogen synthase kinase-3 (GSK3) in the regulation of behavior by dopamine and serotonin (5-HT). These signaling molecules have also received attention for their role in the actions of psychoactive drugs such as antidepressants, antipsychotics, lithium, and other mood stabilizers. Furthermore, investigations of the mechanism by which D2 dopamine receptors regulate Akt/GSK3 signaling strongly support the physiological relevance of a new modality of G protein-coupled receptor (GPCR) signaling involving the multifunctional scaffolding protein beta-arrestin 2. Elucidation of the contribution of multiple signaling pathways to the action of psychotropic drugs may provide a better biological understanding of psychiatric disorders and lead to more efficient therapeutics.

  1. Nitric Oxide Homeostasis in Neurodegenerative Diseases.

    PubMed

    Hannibal, Luciana

    2016-01-01

    The role of nitric oxide in the pathogenesis and progression of neurodegenerative illnesses such as Parkinson's and Alzheimer's diseases has become prominent over the years. Increased activity of the enzymes that produce reactive oxygen species, decreased activity of antioxidant enzymes and imbalances in glutathione pools mediate and mark the neurodegenerative process. Much of the oxidative damage of proteins is brought about by the overproduction of nitric oxide by nitric oxide synthases (NOS) and its subsequent reactivity with reactive oxygen species. Proteomic methods have advanced the field tremendously, by facilitating the quantitative assessment of differential expression patterns and oxidative modifications of proteins and alongside, mapping their non-canonical functions. As a signaling molecule involved in multiple biochemical pathways, the level of nitric oxide is subject to tight regulation. All three NOS isoforms display aberrant patterns of expression in Alzheimer's disease, altering intracellular signaling and routing oxidative stress in directions that are uncompounded. This review discusses the prime factors that control nitric oxide biosynthesis, reactivity footprints and ensuing effects in the development of neurodegenerative diseases.

  2. Multiple roles for membrane-associated protein trafficking and signaling in gravitropism.

    PubMed

    Strohm, Allison K; Baldwin, Katherine L; Masson, Patrick H

    2012-01-01

    Gravitropism is a process that allows plant organs to guide their growth relative to the gravity vector. It requires them to sense changes in their orientation and generate a biochemical signal that they transmit to the tissues that drive organ curvature. Trafficking between the plasma membrane and endosomal compartments is important for all of these phases of the gravitropic response. The sedimentation of starch-filled organelles called amyloplasts plays a key role in sensing reorientation, and vacuolar integrity is required for amyloplast sedimentation in shoots. Other proteins associated with the vesicle trafficking pathway contribute to early gravity signal transduction independently of amyloplast sedimentation in both roots and hypocotyls. Phosphatidylinositol signaling, which starts at the plasma membrane and later affects the localization of auxin efflux facilitators, is a likely second messenger in the signal transduction phase of gravitropism. Finally, membrane-localized auxin influx and efflux facilitators contribute to a differential auxin gradient across the gravistimulated organs, which directs root curvature.

  3. Multiple Phosphatases Regulate Carbon Source-Dependent Germination and Primary Metabolism in Aspergillus nidulans

    PubMed Central

    de Assis, Leandro José; Ries, Laure Nicolas Annick; Savoldi, Marcela; Dinamarco, Taisa Magnani; Goldman, Gustavo Henrique; Brown, Neil Andrew

    2015-01-01

    Aspergillus nidulans is an important mold and a model system for the study of fungal cell biology. In addition, invasive A. nidulans pulmonary infections are common in humans with chronic granulomatous disease. The morphological and biochemical transition from dormant conidia into active, growing, filamentous hyphae requires the coordination of numerous biosynthetic, developmental, and metabolic processes. The present study exhibited the diversity of roles performed by seven phosphatases in regulating cell cycle, development, and metabolism in response to glucose and alternative carbon sources. The identified phosphatases highlighted the importance of several signaling pathways regulating filamentous growth, the action of the pyruvate dehydrogenase complex as a metabolic switch controlling carbon usage, and the identification of the key function performed by the α-ketoglutarate dehydrogenase during germination. These novel insights into the fundamental roles of numerous phosphatases in germination and carbon sensing have provided new avenues of research into the identification of inhibitors of fungal germination, with implications for the food, feed, and pharmaceutical industries. PMID:25762568

  4. Small molecule inhibition of apicomplexan FtsH1 disrupts plastid biogenesis in human pathogens.

    PubMed

    Amberg-Johnson, Katherine; Hari, Sanjay B; Ganesan, Suresh M; Lorenzi, Hernan A; Sauer, Robert T; Niles, Jacquin C; Yeh, Ellen

    2017-08-18

    The malaria parasite Plasmodium falciparum and related apicomplexan pathogens contain an essential plastid organelle, the apicoplast, which is a key anti-parasitic target. Derived from secondary endosymbiosis, the apicoplast depends on novel, but largely cryptic, mechanisms for protein/lipid import and organelle inheritance during parasite replication. These critical biogenesis pathways present untapped opportunities to discover new parasite-specific drug targets. We used an innovative screen to identify actinonin as having a novel mechanism-of-action inhibiting apicoplast biogenesis. Resistant mutation, chemical-genetic interaction, and biochemical inhibition demonstrate that the unexpected target of actinonin in P. falciparum and Toxoplasma gondii is FtsH1, a homolog of a bacterial membrane AAA+ metalloprotease. Pf FtsH1 is the first novel factor required for apicoplast biogenesis identified in a phenotypic screen. Our findings demonstrate that FtsH1 is a novel and, importantly, druggable antimalarial target. Development of FtsH1 inhibitors will have significant advantages with improved drug kinetics and multistage efficacy against multiple human parasites.

  5. Concordant Chemical Reaction Networks and the Species-Reaction Graph

    PubMed Central

    Shinar, Guy; Feinberg, Martin

    2015-01-01

    In a recent paper it was shown that, for chemical reaction networks possessing a subtle structural property called concordance, dynamical behavior of a very circumscribed (and largely stable) kind is enforced, so long as the kinetics lies within the very broad and natural weakly monotonic class. In particular, multiple equilibria are precluded, as are degenerate positive equilibria. Moreover, under certain circumstances, also related to concordance, all real eigenvalues associated with a positive equilibrium are negative. Although concordance of a reaction network can be decided by readily available computational means, we show here that, when a nondegenerate network’s Species-Reaction Graph satisfies certain mild conditions, concordance and its dynamical consequences are ensured. These conditions are weaker than earlier ones invoked to establish kinetic system injectivity, which, in turn, is just one ramification of network concordance. Because the Species-Reaction Graph resembles pathway depictions often drawn by biochemists, results here expand the possibility of inferring significant dynamical information directly from standard biochemical reaction diagrams. PMID:22940368

  6. Lysophosphatidic acid as a lipid mediator with multiple biological actions.

    PubMed

    Aikawa, Shizu; Hashimoto, Takafumi; Kano, Kuniyuki; Aoki, Junken

    2015-02-01

    Lysophosphatidic acid (LPA) is one of the simplest glycerophospholipids with one fatty acid chain and a phosphate group as a polar head. Although LPA had been viewed just as a metabolic intermediate in de novo lipid synthetic pathways, it has recently been paid much attention as a lipid mediator. LPA exerts many kinds of cellular processes, such as cell proliferation and smooth muscle contraction, through cognate G protein-coupled receptors. Because lipids are not coded by the genome directly, it is difficult to know their patho- and physiological roles. However, recent studies have identified several key factors mediating the biological roles of LPA, such as receptors and producing enzymes. In addition, studies of transgenic and gene knockout animals for these LPA-related genes, have revealed the biological significance of LPA. In this review we will summarize recent advances in the studies of LPA production and its roles in both physiological and pathological conditions. © The Authors 2014. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  7. Recent Advances in CRISPR-Cas9 Genome Editing Technology for Biological and Biomedical Investigations.

    PubMed

    Singh, Vijai; Gohil, Nisarg; Ramírez García, Robert; Braddick, Darren; Fofié, Christian Kuete

    2018-01-01

    The Type II CRISPR-Cas9 system is a simple, efficient, and versatile tool for targeted genome editing in a wide range of organisms and cell types. It continues to gain more scientific interest and has established itself as an extremely powerful technology within our synthetic biology toolkit. It works upon a targeted site and generates a double strand breaks that become repaired by either the NHEJ or the HDR pathway, modifying or permanently replacing the genomic target sequences of interest. These can include viral targets, single-mutation genetic diseases, and multiple-site corrections for wide scale disease states, offering the potential to manage and cure some of mankind's most persistent biomedical menaces. Here, we present the developing progress and future potential of CRISPR-Cas9 in biological and biomedical investigations, toward numerous therapeutic, biomedical, and biotechnological applications, as well as some of the challenges within. J. Cell. Biochem. 119: 81-94, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. A Review of Use of Enantiomers in Homeopathy

    PubMed Central

    Kuzeff, R. M.

    2012-01-01

    This paper reviews publications of laboratory experiments using pairs of enantiomers in homeopathy. Many molecules in nature have geometry which enables them to exist as nonsuperimposable mirror images or enantiomers. Modulation of toxicity of such molecules provides possibility for therapeutics, since they target multiple points in biochemical pathways. It was hypothesized that toxicity of a chemical agent could be counteracted by a homeopathic preparation of the enantiomer of the chemical agent (patents applied for: PCT/AU2003/000219-PCT/AU2008/001611). A diverse body of data, including controlled laboratory studies, supports the conclusion that toxicity of optical isomers may be inhibited by homeopathic enantiomer preparations. These data were obtained with minimal or no pretesting to determine optimal test solutions. Inhibition of the excitotoxic neurotransmitter L-glutamic acid with homeopathic preparations of D-glutamic acid indicates the latter may be of use for amelioration of symptoms of disturbances of mood. Similarly, homeopathic preparation of (+)-nicotine may be of use for inhibition of effects of nicotine in tobacco. PMID:23724294

  9. Tumor-derived exosomes in cancer progression and treatment failure.

    PubMed

    Yu, Shaorong; Cao, Haixia; Shen, Bo; Feng, Jifeng

    2015-11-10

    Exosomes have diameter within the range of 30-100 nm and spherical to cup-shaped nanoparticles with specific surface molecular characteristics, such as CD9 and CD63. These vesicles are present in nearly all human body fluids, including blood plasma/serum, saliva, breast milk, cerebrospinal fluid, urine, semen, and particularly enriched in tumor microenvironment. Exosomes contain multiple proteins, DNA, mRNA, miRNA, long non-coding RNA, and even genetic materials of viruses/prions. These materials are biochemically and functionally distinct and can be transferred to a recipient cell where they regulate protein expression and signaling pathways. Recently, exosomes are demonstrated to have a close relationship with tumor development and metastasis. Exosomes influence therapeutic effect in cancer patients. In this review, we describe the biogenesis, composition, and function of exosomes. The mechanism on how tumor-derived exosomes contribute to cancer progression and clinical treatment failure is also described, with special focus on their potential applications in cancer therapy.

  10. Biological technologies for the remediation of co-contaminated soil.

    PubMed

    Ye, Shujing; Zeng, Guangming; Wu, Haipeng; Zhang, Chang; Dai, Juan; Liang, Jie; Yu, Jiangfang; Ren, Xiaoya; Yi, Huan; Cheng, Min; Zhang, Chen

    2017-12-01

    Compound contamination in soil, caused by unreasonable waste disposal, has attracted increasing attention on a global scale, particularly since multiple heavy metals and/or organic pollutants are entering natural ecosystem through human activities, causing an enormous threat. The remediation of co-contaminated soil is more complicated and difficult than that of single contamination, due to the disparate remediation pathways utilized for different types of pollutants. Several modern remediation technologies have been developed for the treatment of co-contaminated soil. Biological remediation technologies, as the eco-friendly methods, have received widespread concern due to soil improvement besides remediation. This review summarizes the application of biological technologies, which contains microbial technologies (function microbial remediation and composting or compost addition), biochar, phytoremediation technologies, genetic engineering technologies and biochemical technologies, for the remediation of co-contaminated soil with heavy metals and organic pollutants. Mechanisms of these technologies and their remediation efficiencies are also reviewed. Based on this study, this review also identifies the future research required in this field.

  11. Skeletal muscle expresses the extracellular cyclic AMP–adenosine pathway

    PubMed Central

    Chiavegatti, T; Costa, V L; Araújo, M S; Godinho, R O

    2007-01-01

    Background and purpose: cAMP is a key intracellular signalling molecule that regulates multiple processes of the vertebrate skeletal muscle. We have shown that cAMP can be actively pumped out from the skeletal muscle cell. Since in other tissues, cAMP efflux had been associated with extracellular generation of adenosine, in the present study we have assessed the fate of interstitial cAMP and the existence of an extracellular cAMP-adenosine signalling pathway in skeletal muscle. Experimental approach: cAMP efflux and/or its extracellular degradation were analysed by incubating rat cultured skeletal muscle with exogenous cAMP, forskolin or isoprenaline. cAMP and its metabolites were quantified by radioassay or HPLC, respectively. Key results: Incubation of cells with exogenous cAMP was followed by interstitial accumulation of 5′-AMP and adenosine, a phenomenon inhibited by selective inhibitors of ecto-phosphodiesterase (DPSPX) and ecto-nucleotidase (AMPCP). Activation of adenylyl cyclase (AC) in cultured cells with forskolin or isoprenaline increased cAMP efflux and extracellular generation of 5′-AMP and adenosine. Extracellular cAMP-adenosine pathway was also observed after direct and receptor-dependent stimulation of AC in rat extensor muscle ex vivo. These events were attenuated by probenecid, an inhibitor of ATP binding cassette family transporters. Conclusions and implications: Our results show the existence of an extracellular biochemical cascade that converts cAMP into adenosine. The functional relevance of this extracellular signalling system may involve a feedback modulation of cellular response initiated by several G protein-coupled receptor ligands, amplifying cAMP influence to a paracrine mode, through its metabolite, adenosine. PMID:18157164

  12. Microbial catabolic activities are naturally selected by metabolic energy harvest rate.

    PubMed

    González-Cabaleiro, Rebeca; Ofiţeru, Irina D; Lema, Juan M; Rodríguez, Jorge

    2015-12-01

    The fundamental trade-off between yield and rate of energy harvest per unit of substrate has been largely discussed as a main characteristic for microbial established cooperation or competition. In this study, this point is addressed by developing a generalized model that simulates competition between existing and not experimentally reported microbial catabolic activities defined only based on well-known biochemical pathways. No specific microbial physiological adaptations are considered, growth yield is calculated coupled to catabolism energetics and a common maximum biomass-specific catabolism rate (expressed as electron transfer rate) is assumed for all microbial groups. Under this approach, successful microbial metabolisms are predicted in line with experimental observations under the hypothesis of maximum energy harvest rate. Two microbial ecosystems, typically found in wastewater treatment plants, are simulated, namely: (i) the anaerobic fermentation of glucose and (ii) the oxidation and reduction of nitrogen under aerobic autotrophic (nitrification) and anoxic heterotrophic and autotrophic (denitrification) conditions. The experimentally observed cross feeding in glucose fermentation, through multiple intermediate fermentation pathways, towards ultimately methane and carbon dioxide is predicted. Analogously, two-stage nitrification (by ammonium and nitrite oxidizers) is predicted as prevailing over nitrification in one stage. Conversely, denitrification is predicted in one stage (by denitrifiers) as well as anammox (anaerobic ammonium oxidation). The model results suggest that these observations are a direct consequence of the different energy yields per electron transferred at the different steps of the pathways. Overall, our results theoretically support the hypothesis that successful microbial catabolic activities are selected by an overall maximum energy harvest rate.

  13. Metabolomic Profiling of the Malaria Box Reveals Antimalarial Target Pathways

    PubMed Central

    Allman, Erik L.; Painter, Heather J.; Samra, Jasmeet; Carrasquilla, Manuela

    2016-01-01

    The threat of widespread drug resistance to frontline antimalarials has renewed the urgency for identifying inexpensive chemotherapeutic compounds that are effective against Plasmodium falciparum, the parasite species responsible for the greatest number of malaria-related deaths worldwide. To aid in the fight against malaria, a recent extensive screening campaign has generated thousands of lead compounds with low micromolar activity against blood stage parasites. A subset of these leads has been compiled by the Medicines for Malaria Venture (MMV) into a collection of structurally diverse compounds known as the MMV Malaria Box. Currently, little is known regarding the activity of these Malaria Box compounds on parasite metabolism during intraerythrocytic development, and a majority of the targets for these drugs have yet to be defined. Here we interrogated the in vitro metabolic effects of 189 drugs (including 169 of the drug-like compounds from the Malaria Box) using ultra-high-performance liquid chromatography–mass spectrometry (UHPLC-MS). The resulting metabolic fingerprints provide information on the parasite biochemical pathways affected by pharmacologic intervention and offer a critical blueprint for selecting and advancing lead compounds as next-generation antimalarial drugs. Our results reveal several major classes of metabolic disruption, which allow us to predict the mode of action (MoA) for many of the Malaria Box compounds. We anticipate that future combination therapies will be greatly informed by these results, allowing for the selection of appropriate drug combinations that simultaneously target multiple metabolic pathways, with the aim of eliminating malaria and forestalling the expansion of drug-resistant parasites in the field. PMID:27572391

  14. Identification and Metabolite Profiling of Chemical Activators of Lipid Accumulation in Green Algae1[OPEN

    PubMed Central

    2017-01-01

    Microalgae are proposed as feedstock organisms useful for producing biofuels and coproducts. However, several limitations must be overcome before algae-based production is economically feasible. Among these is the ability to induce lipid accumulation and storage without affecting biomass yield. To overcome this barrier, a chemical genetics approach was employed in which 43,783 compounds were screened against Chlamydomonas reinhardtii, and 243 compounds were identified that increase triacylglyceride (TAG) accumulation without terminating growth. Identified compounds were classified by structural similarity, and 15 were selected for secondary analyses addressing impacts on growth fitness, photosynthetic pigments, and total cellular protein and starch concentrations. TAG accumulation was verified using gas chromatography-mass spectrometry quantification of total fatty acids, and targeted TAG and galactolipid measurements were performed using liquid chromatography-multiple reaction monitoring/mass spectrometry. These results demonstrated that TAG accumulation does not necessarily proceed at the expense of galactolipid. Untargeted metabolite profiling provided important insights into pathway shifts due to five different compound treatments and verified the anabolic state of the cells with regard to the oxidative pentose phosphate pathway, Calvin cycle, tricarboxylic acid cycle, and amino acid biosynthetic pathways. Metabolite patterns were distinct from nitrogen starvation and other abiotic stresses commonly used to induce oil accumulation in algae. The efficacy of these compounds also was demonstrated in three other algal species. These lipid-inducing compounds offer a valuable set of tools for delving into the biochemical mechanisms of lipid accumulation in algae and a direct means to improve algal oil content independent of the severe growth limitations associated with nutrient deprivation. PMID:28652262

  15. Transcriptomic characterization of temperature stress responses in larval zebrafish.

    PubMed

    Long, Yong; Li, Linchun; Li, Qing; He, Xiaozhen; Cui, Zongbin

    2012-01-01

    Temperature influences nearly all biochemical, physiological and life history activities of fish, but the molecular mechanisms underlying the temperature acclimation remains largely unknown. Previous studies have identified many temperature-regulated genes in adult tissues; however, the transcriptional responses of fish larvae to temperature stress are not well understood. In this study, we characterized the transcriptional responses in larval zebrafish exposed to cold or heat stress using microarray analysis. In comparison with genes expressed in the control at 28 °C, a total of 2680 genes were found to be affected in 96 hpf larvae exposed to cold (16 °C) or heat (34 °C) for 2 and 48h and most of these genes were expressed in a temperature-specific and temporally regulated manner. Bioinformatic analysis identified multiple temperature-regulated biological processes and pathways. Biological processes overrepresented among the earliest genes induced by temperature stress include regulation of transcription, nucleosome assembly, chromatin organization and protein folding. However, processes such as RNA processing, cellular metal ion homeostasis and protein transport and were enriched in genes up-regulated under cold exposure for 48 h. Pathways such as mTOR signalling, p53 signalling and circadian rhythm were enriched among cold-induced genes, while adipocytokine signalling, protein export and arginine and praline metabolism were enriched among heat-induced genes. Although most of these biological processes and pathways were specifically regulated by cold or heat, common responses to both cold and heat stresses were also found. Thus, these findings provide new interesting clues for elucidation of mechanisms underlying the temperature acclimation in fish.

  16. EVALUATION OF A DNA PROBE TEST KIT FOR DETECTION OF SALMONELLAE IN BIOSOLIDS

    EPA Science Inventory

    Aims: Current United States regulations (40 CFR 503) for "Class A" biosolids requires use of multiple-tube fermentation techniques for fecal coliform or multiple tube enrichment techniques for Salmonella spp. followed by isolation and biochemical and serological confirmation. T...

  17. Examining the architecture of cellular computing through a comparative study with a computer

    PubMed Central

    Wang, Degeng; Gribskov, Michael

    2005-01-01

    The computer and the cell both use information embedded in simple coding, the binary software code and the quadruple genomic code, respectively, to support system operations. A comparative examination of their system architecture as well as their information storage and utilization schemes is performed. On top of the code, both systems display a modular, multi-layered architecture, which, in the case of a computer, arises from human engineering efforts through a combination of hardware implementation and software abstraction. Using the computer as a reference system, a simplistic mapping of the architectural components between the two is easily detected. This comparison also reveals that a cell abolishes the software–hardware barrier through genomic encoding for the constituents of the biochemical network, a cell's ‘hardware’ equivalent to the computer central processing unit (CPU). The information loading (gene expression) process acts as a major determinant of the encoded constituent's abundance, which, in turn, often determines the ‘bandwidth’ of a biochemical pathway. Cellular processes are implemented in biochemical pathways in parallel manners. In a computer, on the other hand, the software provides only instructions and data for the CPU. A process represents just sequentially ordered actions by the CPU and only virtual parallelism can be implemented through CPU time-sharing. Whereas process management in a computer may simply mean job scheduling, coordinating pathway bandwidth through the gene expression machinery represents a major process management scheme in a cell. In summary, a cell can be viewed as a super-parallel computer, which computes through controlled hardware composition. While we have, at best, a very fragmented understanding of cellular operation, we have a thorough understanding of the computer throughout the engineering process. The potential utilization of this knowledge to the benefit of systems biology is discussed. PMID:16849179

  18. Biochemical quantitation of the eIF5A hypusination in Arabidopsis thaliana uncovers ABA-dependent regulation

    PubMed Central

    Belda-Palazón, Borja; Nohales, María A.; Rambla, José L.; Aceña, José L.; Delgado, Oscar; Fustero, Santos; Martínez, M. Carmen; Granell, Antonio; Carbonell, Juan; Ferrando, Alejandro

    2014-01-01

    The eukaryotic translation elongation factor eIF5A is the only protein known to contain the unusual amino acid hypusine which is essential for its biological activity. This post-translational modification is achieved by the sequential action of the enzymes deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH). The crucial molecular function of eIF5A during translation has been recently elucidated in yeast and it is expected to be fully conserved in every eukaryotic cell, however the functional description of this pathway in plants is still sparse. The genetic approaches with transgenic plants for either eIF5A overexpression or antisense have revealed some activities related to the control of cell death processes but the molecular details remain to be characterized. One important aspect of fully understanding this pathway is the biochemical description of the hypusine modification system. Here we have used recombinant eIF5A proteins either modified by hypusination or non-modified to establish a bi-dimensional electrophoresis (2D-E) profile for the three eIF5A protein isoforms and their hypusinated or unmodified proteoforms present in Arabidopsis thaliana. The combined use of the recombinant 2D-E profile together with 2D-E/western blot analysis from whole plant extracts has provided a quantitative approach to measure the hypusination status of eIF5A. We have used this information to demonstrate that treatment with the hormone abscisic acid produces an alteration of the hypusine modification system in Arabidopsis thaliana. Overall this study presents the first biochemical description of the post-translational modification of eIF5A by hypusination which will be functionally relevant for future studies related to the characterization of this pathway in Arabidopsis thaliana. PMID:24904603

  19. Examining the architecture of cellular computing through a comparative study with a computer.

    PubMed

    Wang, Degeng; Gribskov, Michael

    2005-06-22

    The computer and the cell both use information embedded in simple coding, the binary software code and the quadruple genomic code, respectively, to support system operations. A comparative examination of their system architecture as well as their information storage and utilization schemes is performed. On top of the code, both systems display a modular, multi-layered architecture, which, in the case of a computer, arises from human engineering efforts through a combination of hardware implementation and software abstraction. Using the computer as a reference system, a simplistic mapping of the architectural components between the two is easily detected. This comparison also reveals that a cell abolishes the software-hardware barrier through genomic encoding for the constituents of the biochemical network, a cell's "hardware" equivalent to the computer central processing unit (CPU). The information loading (gene expression) process acts as a major determinant of the encoded constituent's abundance, which, in turn, often determines the "bandwidth" of a biochemical pathway. Cellular processes are implemented in biochemical pathways in parallel manners. In a computer, on the other hand, the software provides only instructions and data for the CPU. A process represents just sequentially ordered actions by the CPU and only virtual parallelism can be implemented through CPU time-sharing. Whereas process management in a computer may simply mean job scheduling, coordinating pathway bandwidth through the gene expression machinery represents a major process management scheme in a cell. In summary, a cell can be viewed as a super-parallel computer, which computes through controlled hardware composition. While we have, at best, a very fragmented understanding of cellular operation, we have a thorough understanding of the computer throughout the engineering process. The potential utilization of this knowledge to the benefit of systems biology is discussed.

  20. Biodegradation of RDX and MNX with Rhodococcus sp. Strain DN22: New Insights into the Degradation Pathway

    DTIC Science & Technology

    2010-11-15

    denitrosation of MNX by DN22 did not involve direct participation of either oxygen or water, but both played major roles in subsequent secondary chemical and... secondary reactions and products distributions would pro- vide new insights into the degradation pathway of RDX and thus help in the development of...not involve direct participation of either oxygen or water, but both played major roles in subsequent secondary chemical and biochemical reactions of

  1. Clustering and optimal arrangement of enzymes in reaction-diffusion systems.

    PubMed

    Buchner, Alexander; Tostevin, Filipe; Gerland, Ulrich

    2013-05-17

    Enzymes within biochemical pathways are often colocalized, yet the consequences of specific spatial enzyme arrangements remain poorly understood. We study the impact of enzyme arrangement on reaction efficiency within a reaction-diffusion model. The optimal arrangement transitions from a cluster to a distributed profile as a single parameter, which controls the probability of reaction versus diffusive loss of pathway intermediates, is varied. We introduce the concept of enzyme exposure to explain how this transition arises from the stochastic nature of molecular reactions and diffusion.

  2. Current status of the use of modalities in wound care: electrical stimulation and ultrasound therapy.

    PubMed

    Ennis, William J; Lee, Claudia; Plummer, Malgorzata; Meneses, Patricio

    2011-01-01

    Wound healing is a complex pathway that requires cells, an appropriate biochemical environment (i.e., cytokines, chemokines), an extracellular matrix, perfusion, and the application of both macrostrain and microstrain. The process is both biochemically complex and energy dependent. Healing can be assisted in difficult cases through the use of physical modalities. In the current literature, there is much debate over which treatment modality, dosage level, and timing is optimal. The mechanism of action for both electrical stimulation and ultrasound are reviewed along with possible clinical applications for the plastic surgeon.

  3. Systematic biochemical characterization of the SAM domains in Eph receptor family from Mus Musculus.

    PubMed

    Wang, Yue; Li, Qingxia; Zheng, Yunhua; Li, Gang; Liu, Wei

    2016-05-13

    The Eph receptor family is the largest subfamily of receptor tyrosine kinases and well-known for their pivotal roles in axon guidance, synaptogenesis, artery/venous differentiation and tumorigenesis, etc. Activation of the Eph receptor needs multimerization of the receptors. The intracellular C-terminal SAM domain of Eph receptor was reported to mediate self-association of Eph receptors via the homo SAM-SAM interaction. In this study, we systematically expressed and purified the SAM domain proteins of all fourteen Eph receptors of Mus musculus in Escherichia coli. The FPLC (fast protein liquid chromatography) results showed the recombinant SAM domains were highly homogeneous. Using CD (circular dichroism) spectrometry, we found that the secondary structure of all the SAM domains was typically alpha helical folded and remarkably similar. The thermo-stability tests showed that they were quite stable in solution. SEC-MALS (size exclusion chromatography coupled with multiple angle light scattering) results illustrated 200 μM Eph SAM domains behaved as good monomers in the size-exclusion chromatography. More importantly, DLS (dynamic light scattering) results revealed the overwhelming majority of SAM domains was not multimerized in solution either at 200 μM or 2000 μM protein concentration, which indicating the SAM domain alone was not sufficient to mediate the polymerization of Eph receptor. In summary, our studies provided the systematic biochemical characterizations of the Eph receptor SAM domains and implied their roles in Eph receptor mediated signaling pathways. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Flavonoid engineering of flax potentiate its biotechnological application.

    PubMed

    Zuk, Magdalena; Kulma, Anna; Dymińska, Lucyna; Szołtysek, Katarzyna; Prescha, Anna; Hanuza, Jerzy; Szopa, Jan

    2011-01-28

    Flavonoids are a group of secondary plant metabolites important for plant growth and development. They show also a protective effect against colon and breast cancer, diabetes, hypercholesterolemic atherosclerosis, lupus nephritis, and immune and inflammatory reactions. Thus, overproduction of these compounds in flax by genetic engineering method might potentiate biotechnological application of these plant products. Flax plants of third generation overexpressing key genes of flavonoid pathway cultivated in field were used as plant material throughout this study. The biochemical properties of seed, oil and seedcake extracts and fibre from natural and transgenic flax plants were compared. The data obtained suggests that the introduced genes were stably inherited and expressed through plant generations. Overproduction of flavonoid compounds resulted in increase of fatty acids accumulation in oil from transgenic seeds due to protection from oxidation offered during synthesis and seed maturation. The biochemical analysis of seedcake extracts from seeds of transgenic flax revealed significant increase in flavonoids (kaempferol), phenolic acids (coumaric, ferulic, synapic acids) and lignan content. Fibres, another product of flax plant showed increase in the level of catechine and acetylvanillone and decrease in phenolic acids upon flax modification.Biochemical analysis results were confirmed using IR spectroscopy. The integral intensities of IR bands have been used for identification of the component of phenylpropanoid pathway in oil, seedcake extract and fibre from control and transgenic flax. It was shown that levels of flavonoids, phenolic acids and lignans in oil and seedcake extract was higher in transgenic flax products compared to control. An FT-IR study of fibres confirmed the biochemical data and revealed that the arrangement of the cellulose polymer in the transgenic fibres differs from the control; in particular a significant decrease in the number of hydrogen bonds was detected. All analysed products from generated transgenic plants were enriched with antioxidant compounds derived from phenylopropanoid pathway Thus the products provide valuable source of flavonoids, phenolic acids and lignan for biomedical application. The compounds composition and quantity from transgenic plants was confirmed by IR spectroscopy. Thus the infrared spectroscopy appeared to be suitable method for characterization of flax products.

  5. Flavonoid engineering of flax potentiate its biotechnological application

    PubMed Central

    2011-01-01

    Background Flavonoids are a group of secondary plant metabolites important for plant growth and development. They show also a protective effect against colon and breast cancer, diabetes, hypercholesterolemic atherosclerosis, lupus nephritis, and immune and inflammatory reactions. Thus, overproduction of these compounds in flax by genetic engineering method might potentiate biotechnological application of these plant products. Results Flax plants of third generation overexpressing key genes of flavonoid pathway cultivated in field were used as plant material throughout this study. The biochemical properties of seed, oil and seedcake extracts and fibre from natural and transgenic flax plants were compared. The data obtained suggests that the introduced genes were stably inherited and expressed through plant generations. Overproduction of flavonoid compounds resulted in increase of fatty acids accumulation in oil from transgenic seeds due to protection from oxidation offered during synthesis and seed maturation. The biochemical analysis of seedcake extracts from seeds of transgenic flax revealed significant increase in flavonoids (kaempferol), phenolic acids (coumaric, ferulic, synapic acids) and lignan content. Fibres, another product of flax plant showed increase in the level of catechine and acetylvanillone and decrease in phenolic acids upon flax modification. Biochemical analysis results were confirmed using IR spectroscopy. The integral intensities of IR bands have been used for identification of the component of phenylpropanoid pathway in oil, seedcake extract and fibre from control and transgenic flax. It was shown that levels of flavonoids, phenolic acids and lignans in oil and seedcake extract was higher in transgenic flax products compared to control. An FT-IR study of fibres confirmed the biochemical data and revealed that the arrangement of the cellulose polymer in the transgenic fibres differs from the control; in particular a significant decrease in the number of hydrogen bonds was detected. Conclusions All analysed products from generated transgenic plants were enriched with antioxidant compounds derived from phenylopropanoid pathway Thus the products provide valuable source of flavonoids, phenolic acids and lignan for biomedical application. The compounds composition and quantity from transgenic plants was confirmed by IR spectroscopy. Thus the infrared spectroscopy appeared to be suitable method for characterization of flax products. PMID:21276227

  6. The art and design of genetic screens: maize

    USDA-ARS?s Scientific Manuscript database

    Maize (Zea mays) is an excellent model for basic research. Genetic screens have informed our understanding of developmental processes, meiosis, epigenetics and biochemical pathways--not only in maize but also in other cereal crops. We discuss the forward and reverse genetic screens that are possible...

  7. How Living Things Obtain Energy: A Simpler Explanation.

    ERIC Educational Resources Information Center

    Igelsrud, Donald E.

    1989-01-01

    Examines five basic reactions which describe the biochemical pathways for living things obtaining energy. Shows the reactions that occur in respiration after glycolysis, the dehydrogenation reaction, decarboxylation, and two kinds of make-ready reactions which prepare molecules for further dehydrogenation and decarboxylation. Diagrams are…

  8. Gene Polymorphism Studies in a Teaching Laboratory

    ERIC Educational Resources Information Center

    Shultz, Jeffry

    2009-01-01

    I present a laboratory procedure for illustrating transcription, post-transcriptional modification, gene conservation, and comparative genetics for use in undergraduate biology education. Students are individually assigned genes in a targeted biochemical pathway, for which they design and test polymerase chain reaction (PCR) primers. In this…

  9. MODELS FOR LEACHING OF PESTICIDES IN SOILS AND GROUNDWATER

    EPA Science Inventory

    Models are developed which describe leaching of pesticides in the root zone and the intermediate vadose zone, and flushing of residual solute mass in the aquifer. Pollutants' loss pathways in the soil, such as volatilization, crop uptake, and biochemical decay, are emphasized, a...

  10. Teaching Intermediary Metabolism Linearly Doesn't Work

    ERIC Educational Resources Information Center

    Glew, Robert H.; Brass, Eric

    2005-01-01

    Despite the fact that knowledge of the major biochemical metabolic pathways is essential to understanding the pathophysiology, clinical presentation, and management of many human diseases, there is disagreement among medical educators regarding the relevance of intermediary metabolism to the practicing physician and the expectations for medical…

  11. IR and Raman studies of oil and seedcake extracts from natural and genetically modified flax seeds

    NASA Astrophysics Data System (ADS)

    Żuk, M.; Dymińska, L.; Kulma, A.; Boba, A.; Prescha, A.; Szopa, J.; Mączka, M.; Zając, A.; Szołtysek, K.; Hanuza, J.

    2011-03-01

    Flax plant of the third generation (F3) overexpressing key genes of flavonoid pathway cultivated in field in 2008 season was used as the plant material throughout this study. The biochemical properties of seed, oil and seedcake extracts from natural and transgenic flax plants were compared. Overproduction of flavonoids (kaempferol), phenolic acids (coumaric, ferulic/synapic) and lignan-secoisolariciresinol diglucoside (SDG) in oil and extracts from transgenic seeds has been revealed providing a valuable source of these compounds for biotechnological application. The changes in fatty acids composition and increase in their stability against oxidation along three plant generations were also detected. The analysis of oil and seedcake extracts was performed using Raman and IR spectroscopy. The wavenumbers and integral intensities of Raman and IR bands were used to identify the components of phenylpropanoid pathway in oil and seedcake extracts from control and transgenic flax seeds. The spectroscopic data were compared to those obtained from biochemical analysis.

  12. Linear analysis near a steady-state of biochemical networks: Control analysis, correlation metrics and circuit theory

    PubMed Central

    Heuett, William J; Beard, Daniel A; Qian, Hong

    2008-01-01

    Background Several approaches, including metabolic control analysis (MCA), flux balance analysis (FBA), correlation metric construction (CMC), and biochemical circuit theory (BCT), have been developed for the quantitative analysis of complex biochemical networks. Here, we present a comprehensive theory of linear analysis for nonequilibrium steady-state (NESS) biochemical reaction networks that unites these disparate approaches in a common mathematical framework and thermodynamic basis. Results In this theory a number of relationships between key matrices are introduced: the matrix A obtained in the standard, linear-dynamic-stability analysis of the steady-state can be decomposed as A = SRT where R and S are directly related to the elasticity-coefficient matrix for the fluxes and chemical potentials in MCA, respectively; the control-coefficients for the fluxes and chemical potentials can be written in terms of RTBS and STBS respectively where matrix B is the inverse of A; the matrix S is precisely the stoichiometric matrix in FBA; and the matrix eAt plays a central role in CMC. Conclusion One key finding that emerges from this analysis is that the well-known summation theorems in MCA take different forms depending on whether metabolic steady-state is maintained by flux injection or concentration clamping. We demonstrate that if rate-limiting steps exist in a biochemical pathway, they are the steps with smallest biochemical conductances and largest flux control-coefficients. We hypothesize that biochemical networks for cellular signaling have a different strategy for minimizing energy waste and being efficient than do biochemical networks for biosynthesis. We also discuss the intimate relationship between MCA and biochemical systems analysis (BSA). PMID:18482450

  13. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway

    PubMed Central

    Stincone, Anna; Prigione, Alessandro; Cramer, Thorsten; Wamelink, Mirjam M. C.; Campbell, Kate; Cheung, Eric; Olin-Sandoval, Viridiana; Grüning, Nana-Maria; Krüger, Antje; Alam, Mohammad Tauqeer; Keller, Markus A.; Breitenbach, Michael; Brindle, Kevin M.; Rabinowitz, Joshua D.; Ralser, Markus

    2015-01-01

    The pentose phosphate pathway (PPP) is a fundamental component of cellular metabolism. The PPP is important to maintain carbon homoeostasis, to provide precursors for nucleotide and amino acid biosynthesis, to provide reducing molecules for anabolism, and to defeat oxidative stress. The PPP shares reactions with the Entner–Doudoroff pathway and Calvin cycle and divides into an oxidative and non-oxidative branch. The oxidative branch is highly active in most eukaryotes and converts glucose 6-phosphate into carbon dioxide, ribulose 5-phosphate and NADPH. The latter function is critical to maintain redox balance under stress situations, when cells proliferate rapidly, in ageing, and for the ‘Warburg effect’ of cancer cells. The non-oxidative branch instead is virtually ubiquitous, and metabolizes the glycolytic intermediates fructose 6-phosphate and glyceraldehyde 3-phosphate as well as sedoheptulose sugars, yielding ribose 5-phosphate for the synthesis of nucleic acids and sugar phosphate precursors for the synthesis of amino acids. Whereas the oxidative PPP is considered unidirectional, the non-oxidative branch can supply glycolysis with intermediates derived from ribose 5-phosphate and vice versa, depending on the biochemical demand. These functions require dynamic regulation of the PPP pathway that is achieved through hierarchical interactions between transcriptome, proteome and metabolome. Consequently, the biochemistry and regulation of this pathway, while still unresolved in many cases, are archetypal for the dynamics of the metabolic network of the cell. In this comprehensive article we review seminal work that led to the discovery and description of the pathway that date back now for 80 years, and address recent results about genetic and metabolic mechanisms that regulate its activity. These biochemical principles are discussed in the context of PPP deficiencies causing metabolic disease and the role of this pathway in biotechnology, bacterial and parasite infections, neurons, stem cell potency and cancer metabolism. PMID:25243985

  14. Analyzing the genes related to Alzheimer's disease via a network and pathway-based approach.

    PubMed

    Hu, Yan-Shi; Xin, Juncai; Hu, Ying; Zhang, Lei; Wang, Ju

    2017-04-27

    Our understanding of the molecular mechanisms underlying Alzheimer's disease (AD) remains incomplete. Previous studies have revealed that genetic factors provide a significant contribution to the pathogenesis and development of AD. In the past years, numerous genes implicated in this disease have been identified via genetic association studies on candidate genes or at the genome-wide level. However, in many cases, the roles of these genes and their interactions in AD are still unclear. A comprehensive and systematic analysis focusing on the biological function and interactions of these genes in the context of AD will therefore provide valuable insights to understand the molecular features of the disease. In this study, we collected genes potentially associated with AD by screening publications on genetic association studies deposited in PubMed. The major biological themes linked with these genes were then revealed by function and biochemical pathway enrichment analysis, and the relation between the pathways was explored by pathway crosstalk analysis. Furthermore, the network features of these AD-related genes were analyzed in the context of human interactome and an AD-specific network was inferred using the Steiner minimal tree algorithm. We compiled 430 human genes reported to be associated with AD from 823 publications. Biological theme analysis indicated that the biological processes and biochemical pathways related to neurodevelopment, metabolism, cell growth and/or survival, and immunology were enriched in these genes. Pathway crosstalk analysis then revealed that the significantly enriched pathways could be grouped into three interlinked modules-neuronal and metabolic module, cell growth/survival and neuroendocrine pathway module, and immune response-related module-indicating an AD-specific immune-endocrine-neuronal regulatory network. Furthermore, an AD-specific protein network was inferred and novel genes potentially associated with AD were identified. By means of network and pathway-based methodology, we explored the pathogenetic mechanism underlying AD at a systems biology level. Results from our work could provide valuable clues for understanding the molecular mechanism underlying AD. In addition, the framework proposed in this study could be used to investigate the pathological molecular network and genes relevant to other complex diseases or phenotypes.

  15. Modular and Stochastic Approaches to Molecular Pathway Models of ATM, TGF beta, and WNT Signaling

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; O'Neill, Peter; Ponomarev, Artem; Carra, Claudio; Whalen, Mary; Pluth, Janice M.

    2009-01-01

    Deterministic pathway models that describe the biochemical interactions of a group of related proteins, their complexes, activation through kinase, etc. are often the basis for many systems biology models. Low dose radiation effects present a unique set of challenges to these models including the importance of stochastic effects due to the nature of radiation tracks and small number of molecules activated, and the search for infrequent events that contribute to cancer risks. We have been studying models of the ATM, TGF -Smad and WNT signaling pathways with the goal of applying pathway models to the investigation of low dose radiation cancer risks. Modeling challenges include introduction of stochastic models of radiation tracks, their relationships to more than one substrate species that perturb pathways, and the identification of a representative set of enzymes that act on the dominant substrates. Because several pathways are activated concurrently by radiation the development of modular pathway approach is of interest.

  16. Single-molecule chemo-mechanical unfolding reveals multiple transition state barriers in a small single-domain protein

    NASA Astrophysics Data System (ADS)

    Guinn, Emily J.; Jagannathan, Bharat; Marqusee, Susan

    2015-04-01

    A fundamental question in protein folding is whether proteins fold through one or multiple trajectories. While most experiments indicate a single pathway, simulations suggest proteins can fold through many parallel pathways. Here, we use a combination of chemical denaturant, mechanical force and site-directed mutations to demonstrate the presence of multiple unfolding pathways in a simple, two-state folding protein. We show that these multiple pathways have structurally different transition states, and that seemingly small changes in protein sequence and environment can strongly modulate the flux between the pathways. These results suggest that in vivo, the crowded cellular environment could strongly influence the mechanisms of protein folding and unfolding. Our study resolves the apparent dichotomy between experimental and theoretical studies, and highlights the advantage of using a multipronged approach to reveal the complexities of a protein's free-energy landscape.

  17. Metabolomics for undergraduates: Identification and pathway assignment of mitochondrial metabolites.

    PubMed

    Marques, Ana Patrícia; Serralheiro, Maria Luisa; Ferreira, António E N; Freire, Ana Ponces; Cordeiro, Carlos; Silva, Marta Sousa

    2016-01-01

    Metabolomics is a key discipline in systems biology, together with genomics, transcriptomics, and proteomics. In this omics cascade, the metabolome represents the biochemical products that arise from cellular processes and is often regarded as the final response of a biological system to environmental or genetic changes. The overall screening approach to identify all the metabolites in a given biological system is called metabolic fingerprinting. Using high-resolution and high-mass accuracy mass spectrometry, large metabolome coverage, sensitivity, and specificity can be attained. Although the theoretical concepts of this methodology are usually provided in life-science programs, hands-on laboratory experiments are not usually accessible to undergraduate students. Even if the instruments are available, there are not simple laboratory protocols created specifically for teaching metabolomics. We designed a straightforward hands-on laboratory experiment to introduce students to this methodology, relating it to biochemical knowledge through metabolic pathway mapping of the identified metabolites. This study focuses on mitochondrial metabolomics since mitochondria have a well-known, medium-sized cellular sub-metabolome. These features facilitate both data processing and pathway mapping. In this experiment, students isolate mitochondria from potatoes, extract the metabolites, and analyze them by high-resolution mass spectrometry (using an FT-ICR mass spectrometer). The resulting mass list is submitted to an online program for metabolite identification, and compounds associated with mitochondrial pathways can be highlighted in a metabolic network map. © 2015 The International Union of Biochemistry and Molecular Biology.

  18. Phylogenetic analysis of genes involved in mycosporine-like amino acid biosynthesis in symbiotic dinoflagellates.

    PubMed

    Rosic, Nedeljka N

    2012-04-01

    Mycosporine-like amino acids (MAAs) are multifunctional secondary metabolites involved in photoprotection in many marine organisms. As well as having broad ultraviolet (UV) absorption spectra (310-362 nm), these biological sunscreens are also involved in the prevention of oxidative stress. More than 20 different MAAs have been discovered so far, characterized by distinctive chemical structures and a broad ecological distribution. Additionally, UV-screening MAA metabolites have been investigated and used in biotechnology and cosmetics. The biosynthesis of MAAs has been suggested to occur via either the shikimate or pentose phosphate pathways. Despite their wide distribution in marine and freshwater species and also the commercial application in cosmetic products, there are still a number of uncertainties regarding the genetic, biochemical, and evolutionary origin of MAAs. Here, using a transcriptome-mining approach, we identify the gene counterparts from the shikimate or pentose phosphate pathway involved in MAA biosynthesis within the sequences of the reef-building coral symbiotic dinoflagellates (genus Symbiodinium). We also report the highly similar sequences of genes from the proposed MAA biosynthetic pathway involved in the metabolism of 4-deoxygadusol (direct MAA precursor) in various Symbiodinium strains confirming their algal origin and conserved nature. Finally, we reveal the separate identity of two O-methyltransferase genes, possibly involved in MAA biosynthesis, as well as nonribosomal peptide synthetase and adenosine triphosphate grasp homologs in symbiotic dinoflagellates. This study provides a biochemical and phylogenetic overview of the genes from the proposed MAA biosynthetic pathway with a focus on coral endosymbionts.

  19. How Embryophytic is the Biosynthesis of Phenylpropanoids and their Derivatives in Streptophyte Algae?

    PubMed

    de Vries, Jan; de Vries, Sophie; Slamovits, Claudio H; Rose, Laura E; Archibald, John M

    2017-05-01

    The origin of land plants from algae is a long-standing question in evolutionary biology. It is becoming increasingly clear that many characters that were once assumed to be 'embryophyte specific' can in fact be found in their closest algal relatives, the streptophyte algae. One such case is the phenylpropanoid pathway. While biochemical data indicate that streptophyte algae harbor lignin-like components, the phenylpropanoid core pathway, which serves as the backbone of lignin biosynthesis, has been proposed to have arisen at the base of the land plants. Here we revisit this hypothesis using a wealth of new sequence data from streptophyte algae. Tracing the biochemical pathway towards lignin biogenesis, we show that most of the genes required for phenylpropanoid synthesis and the precursors for lignin production were already present in streptophyte algae. Nevertheless, phylogenetic analyses and protein structure predictions of one of the key enzyme classes in lignin production, cinnamyl alcohol dehydrogenase (CAD), suggest that CADs of streptophyte algae are more similar to sinapyl alcohol dehydrogenases (SADs). This suggests that the end-products of the pathway leading to lignin biosynthesis in streptophyte algae may facilitate the production of lignin-like compounds and defense molecules. We hypothesize that streptophyte algae already possessed the genetic toolkit from which the capacity to produce lignin later evolved in vascular plants. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Comprehensive analyses of genomes, transcriptomes and metabolites of neem tree

    PubMed Central

    Rangiah, Kannan; Mahesh, HB; Rajamani, Anantharamanan; Shirke, Meghana D.; Russiachand, Heikham; Loganathan, Ramya Malarini; Shankara Lingu, Chandana; Siddappa, Shilpa; Ramamurthy, Aishwarya; Sathyanarayana, BN

    2015-01-01

    Neem (Azadirachta indica A. Juss) is one of the most versatile tropical evergreen tree species known in India since the Vedic period (1500 BC–600 BC). Neem tree is a rich source of limonoids, having a wide spectrum of activity against insect pests and microbial pathogens. Complex tetranortriterpenoids such as azadirachtin, salanin and nimbin are the major active principles isolated from neem seed. Absolutely nothing is known about the biochemical pathways of these metabolites in neem tree. To identify genes and pathways in neem, we sequenced neem genomes and transcriptomes using next generation sequencing technologies. Assembly of Illumina and 454 sequencing reads resulted in 267 Mb, which accounts for 70% of estimated size of neem genome. We predicted 44,495 genes in the neem genome, of which 32,278 genes were expressed in neem tissues. Neem genome consists about 32.5% (87 Mb) of repetitive DNA elements. Neem tree is phylogenetically related to citrus, Citrus sinensis. Comparative analysis anchored 62% (161 Mb) of assembled neem genomic contigs onto citrus chromomes. Ultrahigh performance liquid chromatography-mass spectrometry-selected reaction monitoring (UHPLC-MS/SRM) method was used to quantify azadirachtin, nimbin, and salanin from neem tissues. Weighted Correlation Network Analysis (WCGNA) of expressed genes and metabolites resulted in identification of possible candidate genes involved in azadirachtin biosynthesis pathway. This study provides genomic, transcriptomic and quantity of top three neem metabolites resource, which will accelerate basic research in neem to understand biochemical pathways. PMID:26290780

  1. Metabolic profiling reveals reprogramming of lipid metabolic pathways in treatment of polycystic ovary syndrome with 3-iodothyronamine.

    PubMed

    Selen Alpergin, Ebru S; Bolandnazar, Zeinab; Sabatini, Martina; Rogowski, Michael; Chiellini, Grazia; Zucchi, Riccardo; Assadi-Porter, Fariba M

    2017-01-01

    Complex diseases such as polycystic ovary syndrome (PCOS) are associated with intricate pathophysiological, hormonal, and metabolic feedbacks that make their early diagnosis challenging, thus increasing the prevalence risks for obesity, cardiovascular, and fatty liver diseases. To explore the crosstalk between endocrine and lipid metabolic pathways, we administered 3-iodothyronamine (T1AM), a natural analog of thyroid hormone, in a mouse model of PCOS and analyzed plasma and tissue extracts using multidisciplinary omics and biochemical approaches. T1AM administration induces a profound tissue-specific antilipogenic effect in liver and muscle by lowering gene expression of key regulators of lipid metabolism, PTP1B and PLIN2, significantly increasing metabolites (glucogenic, amino acids, carnitine, and citrate) levels, while enhancing protection against oxidative stress. In contrast, T1AM has an opposing effect on the regulation of estrogenic pathways in the ovary by upregulating STAR, CYP11A1, and CYP17A1. Biochemical measurements provide further evidence of significant reduction in liver cholesterol and triglycerides in post-T1AM treatment. Our results shed light onto tissue-specific metabolic vs. hormonal pathway interactions, thus illuminating the intricacies within the pathophysiology of PCOS This study opens up new avenues to design drugs for targeted therapeutics to improve quality of life in complex metabolic diseases. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  2. Models of initial training and pathways to registration: a selective review of policy in professional regulation.

    PubMed

    Fealy, Gerard M; Carney, Marie; Drennan, Jonathan; Treacy, Margaret; Burke, Jacqueline; O'Connell, Dympna; Howley, Breeda; Clancy, Alison; McHugh, Aine; Patton, Declan; Sheerin, Fintan

    2009-09-01

    To provide a synthesis of literature on international policy concerning professional regulation in nursing and midwifery, with reference to routes of entry into training and pathways to licensure. Internationally, there is evidence of multiple points of entry into initial training, multiple divisions of the professional register and multiple pathways to licensure. Policy documents and commentary articles concerned with models of initial training and pathways to licensure were reviewed. Item selection, quality appraisal and data extraction were undertaken and documentary analysis was performed on all retrieved texts. Case studies of five Western countries indicate no single uniform system of routes of entry into initial training and no overall consensus regarding the optimal model of initial training. Multiple regulatory systems, with multiple routes of entry into initial training and multiple pathways to licensure pose challenges, in terms of achieving commonly-agreed understandings of practice competence. The variety of models of initial training present nursing managers with challenges in the recruitment and deployment of personnel trained in many different jurisdictions. Nursing managers need to consider the potential for considerable variation in competency repertoires among nurses trained in generic and specialist initial training models.

  3. Adverse outcome pathways linked to population models as a methodology for investigating effects of chemical stressors

    EPA Science Inventory

    In addressing the complexity and toxicity of chemical contaminants in Great Lakes ecosystems, we describe an approach to link chemically induced alterations in molecular and biochemical endpoints to adverse outcomes in whole organisms and populations. Analysis of population impac...

  4. Saikrishna Mukkamala | NREL

    Science.gov Websites

    Saikrishna Mukkamala Saikrishna Mukkamala Researcher IV-Chemical Engineering Saikrishna.Mukkamala thermochemical, biochemical pathways Bio product and fuel characterization Education M.S. Chemical Engineering , University of Maine B.S. Chemical Engineering, JNTU-India Featured Publications S. Mukkamala, M.C. Wheeler

  5. Ionomics: Genes and QTLs controlling heavy metal uptake in perennial grasses grown on phytoxic soil

    USDA-ARS?s Scientific Manuscript database

    Perennial grasses occupy diverse soils throughout the world, including many sites contaminated with heavy metals. Uncovering the genetic architecture of QTLs controlling mineral homoeostasis is critical for understanding the biochemical pathways that determine the elemental profiles of perennial pl...

  6. PULMONARY GENE EXPRESSION PROFILES OF SPONTANEOUSLY HYPERTENSIVE RATS EXPOSED TO ENVIRONMENTAL TOBACCO SMOKE (ETS)

    EPA Science Inventory

    Global gene expression profile analysis can be utilized to derive molecular footprints to understand biochemical

    pathways implicated in the origin and progression of disease. Functional genomics efforts with tissue-specific focused

    genearray appears to be the most...

  7. Genetic and Biochemical Evidence That Haploinsufficiency of the Nf1 Tumor Suppressor Gene Modulates Melanocyte and Mast Cell Fates in Vivo

    PubMed Central

    Ingram, David A.; Yang, Feng-Chun; Travers, Jeffrey B.; Wenning, Mary Jo; Hiatt, Kelly; New, Sheryl; Hood, Antoinette; Shannon, Kevin; Williams, David A.; Clapp, D. Wade

    2000-01-01

    Neurofibromatosis type 1 (NF1) is a common autosomal-dominant disorder characterized by cutaneous neurofibromas infiltrated with large numbers of mast cells, melanocyte hyperplasia, and a predisposition to develop malignant neoplasms. NF1 encodes a GTPase activating protein (GAP) for Ras. Consistent with Knudson's “two hit” model of tumor suppressor genes, leukemias and malignant solid tumors in NF1 patients frequently demonstrate somatic loss of the normal NF1 allele. However, the phenotypic and biochemical consequences of heterozygous inactivation of Nf1 are largely unknown. Recently neurofibromin, the protein encoded by NF1, was shown to negatively regulate Ras activity in Nf1−/− murine myeloid hematopoietic cells in vitro through the c-kit receptor tyrosine kinase (dominant white spotting, W). Since the W and Nf1 locus appear to function along a common developmental pathway, we generated mice with mutations at both loci to examine potential interactions in vivo. Here, we show that haploinsufficiency at Nf1 perturbs cell fates in mast cells in vivo, and partially rescues coat color and mast cell defects in W41 mice. Haploinsufficiency at Nf1 also increased mast cell proliferation, survival, and colony formation in response to Steel factor, the ligand for c-kit. Furthermore, haploinsufficiency was associated with enhanced Ras–mitogen-activated protein kinase activity, a major downstream effector of Ras, via wild-type and mutant (W41) c-kit receptors. These observations identify a novel interaction between c-kit and neurofibromin in vivo, and offer experimental evidence that haploinsufficiency of Nf1 alters both cellular and biochemical phenotypes in two cell lineages that are affected in individuals with NF1. Collectively, these data support the emerging concept that heterozygous inactivation of tumor suppressor genes may have profound biological effects in multiple cell types. PMID:10620616

  8. Genetic and biochemical evidence that haploinsufficiency of the Nf1 tumor suppressor gene modulates melanocyte and mast cell fates in vivo.

    PubMed

    Ingram, D A; Yang, F C; Travers, J B; Wenning, M J; Hiatt, K; New, S; Hood, A; Shannon, K; Williams, D A; Clapp, D W

    2000-01-03

    Neurofibromatosis type 1 (NF1) is a common autosomal-dominant disorder characterized by cutaneous neurofibromas infiltrated with large numbers of mast cells, melanocyte hyperplasia, and a predisposition to develop malignant neoplasms. NF1 encodes a GTPase activating protein (GAP) for Ras. Consistent with Knudson's "two hit" model of tumor suppressor genes, leukemias and malignant solid tumors in NF1 patients frequently demonstrate somatic loss of the normal NF1 allele. However, the phenotypic and biochemical consequences of heterozygous inactivation of Nf1 are largely unknown. Recently neurofibromin, the protein encoded by NF1, was shown to negatively regulate Ras activity in Nf1-/- murine myeloid hematopoietic cells in vitro through the c-kit receptor tyrosine kinase (dominant white spotting, W). Since the W and Nf1 locus appear to function along a common developmental pathway, we generated mice with mutations at both loci to examine potential interactions in vivo. Here, we show that haploinsufficiency at Nf1 perturbs cell fates in mast cells in vivo, and partially rescues coat color and mast cell defects in W(41) mice. Haploinsufficiency at Nf1 also increased mast cell proliferation, survival, and colony formation in response to Steel factor, the ligand for c-kit. Furthermore, haploinsufficiency was associated with enhanced Ras-mitogen-activated protein kinase activity, a major downstream effector of Ras, via wild-type and mutant (W(41)) c-kit receptors. These observations identify a novel interaction between c-kit and neurofibromin in vivo, and offer experimental evidence that haploinsufficiency of Nf1 alters both cellular and biochemical phenotypes in two cell lineages that are affected in individuals with NF1. Collectively, these data support the emerging concept that heterozygous inactivation of tumor suppressor genes may have profound biological effects in multiple cell types.

  9. Photosynthetic strategies of two Mojave Desert shrubs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleinkopf, G.E.; Hartsock, T.L.; Wallace, A.

    1980-01-01

    Photosynthetic production of two Mojave Desert shrubs was measured under natural growing conditions. Measurements of photosynthesis, transpiration, resistances to water vapor flux, soil moisture potential, and tissue water potential were made. Atriplex canescens (Pursh) Nutt., a member of the C/sub 4/ biochemical carbon dioxide fixation group was highly competitive in growth rate and production during conditions of adequate soil moisture. As soil moisture conditions declined to minus 40 bars, the net photosynthetic rate of Atriplex decreased to zero. However, the C/sub 3/ shrub species Larrea tridentata (Sesse and Moc. ex DC.) Cov. was able to maintain positive net photosynthetic productionmore » during conditions of high temperature and extreme low soil moisture through the major part of the season. The comparative advantages of the C/sub 4/ versus the C/sub 3/ pathway of carbon fixation was lost between these two species as the soil moisture potential declined to minus 40 bars. Desert plants have diffferent strategies for survival, one of the strategies being the C/sub 4/ biochemical carbon fixation pathway. However, many of the plants are members of the C/sub 3/ group. In this instance, the C/sub 4/ fixation pathway does not confer an added advantage to the productivity of the species in the Mojave Desert. Species distribution based on comparative photosynthetic production is discussed« less

  10. Tryptophan 2,3-Dioxygenfase and Indoleamine 2,3-Dioxygenase 1 Make Separate, Tissue-Specific Contributions to Basal and Inflammation-Induced Kynurenine Pathway Metabolism in Mice

    PubMed Central

    Larkin, Paul B.; Sathyasaikumar, Korrapati V.; Notarangelo, Francesca M.; Funakoshi, Hiroshi; Nakamura, Toshikazu; Schwarcz, Robert; Muchowski, Paul J.

    2018-01-01

    In mammals, the majority of the essential amino acid tryptophan is degraded via the kynurenine pathway (KP). Several KP metabolites play distinct physiological roles, often linked to immune system functions, and may also be causally involved in human diseases including neurodegenerative disorders, schizophrenia and cancer. Pharmacological manipulation of the KP has therefore become an active area of drug development. To target the pathway effectively, it is important to understand how specific KP enzymes control levels of the bioactive metabolites in vivo. Here, we conducted a comprehensive biochemical characterization of mice with a targeted deletion of either tryptophan 2,3-dioxygenase (TDO) or indoleamine 2,3-dioxygenase (IDO), the two initial rate-limiting enzymes of the KP. These enzymes catalyze the same reaction, but differ in biochemical characteristics and expression patterns. We measured KP metabolite levels and enzyme activities and expression in several tissues in basal and immune-stimulated conditions. Although our study revealed several unexpected downstream effects on KP metabolism in both knockout mice, the results were essentially consistent with TDO-mediated control of basal KP metabolism and a role of IDO in phenomena involving stimulation of the immune system. PMID:27392942

  11. Suppression of fat deposition in broiler chickens by (-)-hydroxycitric acid supplementation: A proteomics perspective

    PubMed Central

    Peng, Mengling; Han, Jing; Li, Longlong; Ma, Haitian

    2016-01-01

    (-)-Hydroxycitric acid (HCA) suppresses fatty acid synthesis in animals, but its biochemical mechanism in poultry is unclear. This study identified the key proteins associated with fat metabolism and elucidated the biochemical mechanism of (-)-HCA in broiler chickens. Four groups (n = 30 each) received a diet supplemented with 0, 1000, 2000 or 3000 mg/kg (-)-HCA for 4 weeks. Of the differentially expressed liver proteins, 40 and 26 were identified in the mitochondrial and cytoplasm respectively. Pyruvate dehydrogenase E1 components (PDHA1 and PDHB), dihydrolipoyl dehydrogenase (DLD), aconitase (ACO2), a-ketoglutarate dehydrogenase complex (DLST), enoyl-CoA hydratase (ECHS1) and phosphoglycerate kinase (PGK) were upregulated, while NADP-dependent malic enzyme (ME1) was downregulated. Biological network analysis showed that the identified proteins were involved in glycometabolism and lipid metabolism, whereas PDHA1, PDHB, ECHS1, and ME1 were identified in the canonical pathway by Ingenuity Pathway Analysis. The data indicated that (-)-HCA inhibited fatty acid synthesis by reducing the acetyl-CoA supply, via promotion of the tricarboxylic acid cycle (upregulation of PDHA1, PDHB, ACO2, and DLST expression) and inhibition of ME1 expression. Moreover, (-)-HCA promoted fatty acid beta-oxidation by upregulating ECHS1 expression. These results reflect a biochemically relevant mechanism of fat reduction by (-)-HCA in broiler chickens. PMID:27586962

  12. ATLAS of Biochemistry: A Repository of All Possible Biochemical Reactions for Synthetic Biology and Metabolic Engineering Studies.

    PubMed

    Hadadi, Noushin; Hafner, Jasmin; Shajkofci, Adrian; Zisaki, Aikaterini; Hatzimanikatis, Vassily

    2016-10-21

    Because the complexity of metabolism cannot be intuitively understood or analyzed, computational methods are indispensable for studying biochemistry and deepening our understanding of cellular metabolism to promote new discoveries. We used the computational framework BNICE.ch along with cheminformatic tools to assemble the whole theoretical reactome from the known metabolome through expansion of the known biochemistry presented in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. We constructed the ATLAS of Biochemistry, a database of all theoretical biochemical reactions based on known biochemical principles and compounds. ATLAS includes more than 130 000 hypothetical enzymatic reactions that connect two or more KEGG metabolites through novel enzymatic reactions that have never been reported to occur in living organisms. Moreover, ATLAS reactions integrate 42% of KEGG metabolites that are not currently present in any KEGG reaction into one or more novel enzymatic reactions. The generated repository of information is organized in a Web-based database ( http://lcsb-databases.epfl.ch/atlas/ ) that allows the user to search for all possible routes from any substrate compound to any product. The resulting pathways involve known and novel enzymatic steps that may indicate unidentified enzymatic activities and provide potential targets for protein engineering. Our approach of introducing novel biochemistry into pathway design and associated databases will be important for synthetic biology and metabolic engineering.

  13. Phospholipid biosynthesis in Candida albicans: regulation by the precursors inositol and choline.

    PubMed Central

    Klig, L S; Friedli, L; Schmid, E

    1990-01-01

    Phospholipid metabolism in the pathogenic fungus Candida albicans was examined. The phospholipid biosynthetic pathways of C. albicans were elucidated and were shown to be similar to those of Saccharomyces cerevisiae. However, marked differences were seen between these two fungi in the regulation of the pathways in response to exogenously provided precursors inositol and choline. In S. cerevisiae, the biosynthesis of phosphatidylcholine via methylation of phosphatidylethanolamine appears to be regulated in response to inositol and choline; provision of choline alone does not repress the activity of this pathway (G. M. Carman and S. A. Henry, Annu. Rev. Biochem. 58:636-669, 1989). The same pathway in C. albicans responds to the exogenous provision of choline. Possible explanations for the observed differences in regulation are discussed. Images PMID:2198258

  14. Extending double modulation: combinatorial rules for identifying the modulations necessary for determining elasticities in metabolic pathways.

    PubMed

    Giersch, C; Cornish-Bowden, A

    1996-10-07

    The double modulation method for determining the elasticities of pathway enzymes, originally devised by Kacser & Burns (Biochem. Soc. Trans. 7, 1149-1160, 1979), is extended to pathways of complex topological structure, including branching and feedback loops. An explicit system of linear equations for the unknown elasticities is derived. The constraints imposed on this linear system imply that modulations of more than one enzyme are not necessarily independent. Simple combinatorial rules are described for identifying without using any algebra the set of independent modulations that allow the determination of the elasticities of any enzyme. By repeated application, the minimum numbers of modulations required to determine the elasticities of all enzymes of a given pathway can be determined. The procedure is illustrated with numerous examples.

  15. Lithium modulates the muscarinic facilitation of synaptic plasticity and theta-gamma coupling in the hippocampal-prefrontal pathway.

    PubMed

    Ruggiero, Rafael N; Rossignoli, Matheus T; Lopes-Aguiar, Cleiton; Leite, João P; Bueno-Junior, Lezio S; Romcy-Pereira, Rodrigo N

    2018-06-01

    Mood disorders are associated to functional unbalance in mesolimbic and frontal cortical circuits. As a commonly used mood stabilizer, lithium acts through multiple biochemical pathways, including those activated by muscarinic cholinergic receptors crucial for hippocampal-prefrontal communication. Therefore, here we investigated the effects of lithium on prefrontal cortex responses under cholinergic drive. Lithium-treated rats were anesthetized with urethane and implanted with a ventricular cannula for muscarinic activation, a recording electrode in the medial prefrontal cortex (mPFC), and a stimulating electrode in the intermediate hippocampal CA1. Either of two forms of synaptic plasticity, long-term potentiation (LTP) or depression (LTD), were induced during pilocarpine effects, which were monitored in real time through local field potentials. We found that lithium attenuates the muscarinic potentiation of cortical LTP (<20 min) but enhances the muscarinic potentiation of LTD maintenance (>80 min). Moreover, lithium treatment promoted significant cross-frequency coupling between CA1 theta (3-5 Hz) and mPFC low-gamma (30-55 Hz) oscillations. Interestingly, lithium by itself did not affect any of these measures. Thus, lithium pretreatment and muscarinic activation synergistically modulate the hippocampal-prefrontal connectivity. Because these alterations varied with time, oscillatory parameters, and type of synaptic plasticity, our study suggests that lithium influences prefrontal-related circuits through intricate dynamics, informing future experiments on mood disorders. Copyright © 2018. Published by Elsevier Inc.

  16. Mucopolysaccharidosis type I: current knowledge on its pathophysiological mechanisms.

    PubMed

    Campos, Derbis; Monaga, Madelyn

    2012-06-01

    Mucopolysaccharidosis type I is one of the most frequent lysosomal storage diseases. It has a high morbidity and mortality, causing in many cases severe neurological and somatic damage in the first years of life. Although the clinical phenotypes have been described for decades, and the enzymatic deficiency and many of the mutations that cause this disease are well known, the underlying pathophysiological mechanisms that lead to its development are not completely understood. In this review we describe and discuss the different pathogenic mechanisms currently proposed for this disease regarding its neurological damage. Deficiency in the lysosomal degradation of heparan sulfate and dermatan sulfate, as well as its primary accumulation, may disrupt a variety of physiological and biochemical processes: the intracellular and extracellular homeostasis of these macromolecules, the pathways related to gangliosides metabolism, mechanisms related to the activation of inflammation, receptor-mediated signaling, oxidative stress and permeability of the lysosomal membrane, as well as alterations in intracellular ionic homeostasis and the endosomal pathway. Many of the pathogenic mechanisms proposed for mucopolysaccharidosis type I are also present in other lysosomal storage diseases with neurological implications. Results from the use of methods that allow the analysis of multiple genes and proteins, in both patients and animal models, will shed light on the role of each of these mechanisms and their combination in the development of different phenotypes due to the same deficiency.

  17. Biochemistry and biology: heart-to-heart to investigate cardiac progenitor cells.

    PubMed

    Chimenti, Isotta; Forte, Elvira; Angelini, Francesco; Messina, Elisa; Giacomello, Alessandro

    2013-02-01

    Cardiac regenerative medicine is a rapidly evolving field, with promising future developments for effective personalized treatments. Several stem/progenitor cells are candidates for cardiac cell therapy, and emerging evidence suggests how multiple metabolic and biochemical pathways strictly regulate their fate and renewal. In this review, we will explore a selection of areas of common interest for biology and biochemistry concerning stem/progenitor cells, and in particular cardiac progenitor cells. Numerous regulatory mechanisms have been identified that link stem cell signaling and functions to the modulation of metabolic pathways, and vice versa. Pharmacological treatments and culture requirements may be exploited to modulate stem cell pluripotency and self-renewal, possibly boosting their regenerative potential for cell therapy. Mitochondria and their many related metabolites and messengers, such as oxygen, ROS, calcium and glucose, have a crucial role in regulating stem cell fate and the balance of their functions, together with many metabolic enzymes. Furthermore, protein biochemistry and proteomics can provide precious clues on the definition of different progenitor cell populations, their physiology and their autocrine/paracrine regulatory/signaling networks. Interdisciplinary approaches between biology and biochemistry can provide productive insights on stem/progenitor cells, allowing the development of novel strategies and protocols for effective cardiac cell therapy clinical translation. This article is part of a Special Issue entitled Biochemistry of Stem Cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. The mechanical role of the cervix in pregnancy

    PubMed Central

    Myers, Kristin M.; Feltovich, Helen; Mazza, Edoardo; Vink, Joy; Bajka, Michael; Wapner, Ronald J.; Hall, Timothy J.; House, Michael

    2015-01-01

    Appropriate mechanical function of the uterine cervix is critical for maintaining a pregnancy to term so that the fetus can develop fully. At the end of pregnancy, however, the cervix must allow delivery, which requires it to markedly soften, shorten and dilate. There are multiple pathways to spontaneous preterm birth, the leading global cause of death in children less than 5 years old, but all culminate in premature cervical change, because that is the last step in the final common pathway to delivery. The mechanisms underlying premature cervical change in pregnancy are poorly understood, and therefore current clinical protocols to assess preterm birth risk are limited to surrogate markers of mechanical function, such as sonographically measured cervical length. This is what motivates us to study the cervix, for which we propose investigating clinical cervical function in parallel with a quantitative engineering evaluation of its structural function. We aspire to develop a common translational language, as well as generate a rigorous integrated clinical-engineering framework for assessing cervical mechanical function at the cellular to organ level. In this review, we embark on that challenge by describing the current landscape of clinical, biochemical, and engineering concepts associated with the mechanical function of the cervix during pregnancy. Our goal is to use this common platform to inspire novel approaches to delineation of normal and abnormal cervical function in pregnancy. PMID:25841293

  19. The mechanical role of the cervix in pregnancy.

    PubMed

    Myers, Kristin M; Feltovich, Helen; Mazza, Edoardo; Vink, Joy; Bajka, Michael; Wapner, Ronald J; Hall, Timothy J; House, Michael

    2015-06-25

    Appropriate mechanical function of the uterine cervix is critical for maintaining a pregnancy to term so that the fetus can develop fully. At the end of pregnancy, however, the cervix must allow delivery, which requires it to markedly soften, shorten and dilate. There are multiple pathways to spontaneous preterm birth, the leading global cause of death in children less than 5 years old, but all culminate in premature cervical change, because that is the last step in the final common pathway to delivery. The mechanisms underlying premature cervical change in pregnancy are poorly understood, and therefore current clinical protocols to assess preterm birth risk are limited to surrogate markers of mechanical function, such as sonographically measured cervical length. This is what motivates us to study the cervix, for which we propose investigating clinical cervical function in parallel with a quantitative engineering evaluation of its structural function. We aspire to develop a common translational language, as well as generate a rigorous integrated clinical-engineering framework for assessing cervical mechanical function at the cellular to organ level. In this review, we embark on that challenge by describing the current landscape of clinical, biochemical, and engineering concepts associated with the mechanical function of the cervix during pregnancy. Our goal is to use this common platform to inspire novel approaches to delineate normal and abnormal cervical function in pregnancy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Convergence of Hippocampal Pathophysiology in Syngap+/- and Fmr1-/y Mice.

    PubMed

    Barnes, Stephanie A; Wijetunge, Lasani S; Jackson, Adam D; Katsanevaki, Danai; Osterweil, Emily K; Komiyama, Noboru H; Grant, Seth G N; Bear, Mark F; Nägerl, U Valentin; Kind, Peter C; Wyllie, David J A

    2015-11-11

    Previous studies have hypothesized that diverse genetic causes of intellectual disability (ID) and autism spectrum disorders (ASDs) converge on common cellular pathways. Testing this hypothesis requires detailed phenotypic analyses of animal models with genetic mutations that accurately reflect those seen in the human condition (i.e., have structural validity) and which produce phenotypes that mirror ID/ASDs (i.e., have face validity). We show that SynGAP haploinsufficiency, which causes ID with co-occurring ASD in humans, mimics and occludes the synaptic pathophysiology associated with deletion of the Fmr1 gene. Syngap(+/-) and Fmr1(-/y) mice show increases in basal protein synthesis and metabotropic glutamate receptor (mGluR)-dependent long-term depression that, unlike in their wild-type controls, is independent of new protein synthesis. Basal levels of phosphorylated ERK1/2 are also elevated in Syngap(+/-) hippocampal slices. Super-resolution microscopy reveals that Syngap(+/-) and Fmr1(-/y) mice show nanoscale alterations in dendritic spine morphology that predict an increase in biochemical compartmentalization. Finally, increased basal protein synthesis is rescued by negative regulators of the mGlu subtype 5 receptor and the Ras-ERK1/2 pathway, indicating that therapeutic interventions for fragile X syndrome may benefit patients with SYNGAP1 haploinsufficiency. As the genetics of intellectual disability (ID) and autism spectrum disorders (ASDs) are unraveled, a key issue is whether genetically divergent forms of these disorders converge on common biochemical/cellular pathways and hence may be amenable to common therapeutic interventions. This study compares the pathophysiology associated with the loss of fragile X mental retardation protein (FMRP) and haploinsufficiency of synaptic GTPase-activating protein (SynGAP), two prevalent monogenic forms of ID. We show that Syngap(+/-) mice phenocopy Fmr1(-/y) mice in the alterations in mGluR-dependent long-term depression, basal protein synthesis, and dendritic spine morphology. Deficits in basal protein synthesis can be rescued by pharmacological interventions that reduce the mGlu5 receptor-ERK1/2 signaling pathway, which also rescues the same deficit in Fmr1(-/y) mice. Our findings support the hypothesis that phenotypes associated with genetically diverse forms of ID/ASDs result from alterations in common cellular/biochemical pathways. Copyright © 2015 Barnes et al.

  1. Basal Ganglia Neuromodulation Over Multiple Temporal and Structural Scales—Simulations of Direct Pathway MSNs Investigate the Fast Onset of Dopaminergic Effects and Predict the Role of Kv4.2

    PubMed Central

    Lindroos, Robert; Dorst, Matthijs C.; Du, Kai; Filipović, Marko; Keller, Daniel; Ketzef, Maya; Kozlov, Alexander K.; Kumar, Arvind; Lindahl, Mikael; Nair, Anu G.; Pérez-Fernández, Juan; Grillner, Sten; Silberberg, Gilad; Hellgren Kotaleski, Jeanette

    2018-01-01

    The basal ganglia are involved in the motivational and habitual control of motor and cognitive behaviors. Striatum, the largest basal ganglia input stage, integrates cortical and thalamic inputs in functionally segregated cortico-basal ganglia-thalamic loops, and in addition the basal ganglia output nuclei control targets in the brainstem. Striatal function depends on the balance between the direct pathway medium spiny neurons (D1-MSNs) that express D1 dopamine receptors and the indirect pathway MSNs that express D2 dopamine receptors. The striatal microstructure is also divided into striosomes and matrix compartments, based on the differential expression of several proteins. Dopaminergic afferents from the midbrain and local cholinergic interneurons play crucial roles for basal ganglia function, and striatal signaling via the striosomes in turn regulates the midbrain dopaminergic system directly and via the lateral habenula. Consequently, abnormal functions of the basal ganglia neuromodulatory system underlie many neurological and psychiatric disorders. Neuromodulation acts on multiple structural levels, ranging from the subcellular level to behavior, both in health and disease. For example, neuromodulation affects membrane excitability and controls synaptic plasticity and thus learning in the basal ganglia. However, it is not clear on what time scales these different effects are implemented. Phosphorylation of ion channels and the resulting membrane effects are typically studied over minutes while it has been shown that neuromodulation can affect behavior within a few hundred milliseconds. So how do these seemingly contradictory effects fit together? Here we first briefly review neuromodulation of the basal ganglia, with a focus on dopamine. We furthermore use biophysically detailed multi-compartmental models to integrate experimental data regarding dopaminergic effects on individual membrane conductances with the aim to explain the resulting cellular level dopaminergic effects. In particular we predict dopaminergic effects on Kv4.2 in D1-MSNs. Finally, we also explore dynamical aspects of the onset of neuromodulation effects in multi-scale computational models combining biochemical signaling cascades and multi-compartmental neuron models. PMID:29467627

  2. Spatially organizing biochemistry: choosing a strategy to translate synthetic biology to the factory.

    PubMed

    Jakobson, Christopher M; Tullman-Ercek, Danielle; Mangan, Niall M

    2018-05-29

    Natural biochemical systems are ubiquitously organized both in space and time. Engineering the spatial organization of biochemistry has emerged as a key theme of synthetic biology, with numerous technologies promising improved biosynthetic pathway performance. One strategy, however, may produce disparate results for different biosynthetic pathways. We use a spatially resolved kinetic model to explore this fundamental design choice in systems and synthetic biology. We predict that two example biosynthetic pathways have distinct optimal organization strategies that vary based on pathway-dependent and cell-extrinsic factors. Moreover, we demonstrate that the optimal design varies as a function of kinetic and biophysical properties, as well as culture conditions. Our results suggest that organizing biosynthesis has the potential to substantially improve performance, but that choosing the appropriate strategy is key. The flexible design-space analysis we propose can be adapted to diverse biosynthetic pathways, and lays a foundation to rationally choose organization strategies for biosynthesis.

  3. Phosphatidylcholine and the CDP-Choline Cycle

    PubMed Central

    Fagone, Paolo; Jackowski, Suzanne

    2012-01-01

    The CDP-choline pathway of phosphatidylcholine (PtdCho) biosynthesis was first described more than 50 years ago. Investigation of the CDP-choline pathway in yeast provides a basis for understanding the CDP-choline pathway in mammals. PtdCho is considered as an intermediate in a cycle of synthesis and degradation, and the activity of a CDP-choline cycle is linked to subcellular membrane lipid movement. The components of the mammalian CDP-choline pathway include choline transport, choline kinase, phosphocholine cytidylyltransferase, and choline phosphotransferase activities. The protein isoforms and biochemical mechanisms of regulation of the pathway enzymes are related to their cell and tissue-specific functions. Regulated PtdCho turnover mediated by phospholipases or neuropathy target esterase participates in the mammalian CDP-choline cycle. Knockout mouse models define the biological functions of the CDP-choline cycle in mammalian cells and tissues. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism. PMID:23010477

  4. Electrochemistry suggests proton access from the exit site to the binuclear center in Paracoccus denitrificans cytochrome c oxidase pathway variants.

    PubMed

    Meyer, Thomas; Melin, Frédéric; Richter, Oliver-M H; Ludwig, Bernd; Kannt, Aimo; Müller, Hanne; Michel, Hartmut; Hellwig, Petra

    2015-02-27

    Two different pathways through which protons access cytochrome c oxidase operate during oxygen reduction from the mitochondrial matrix, or the bacterial cytoplasm. Here, we use electrocatalytic current measurements to follow oxygen reduction coupled to proton uptake in cytochrome c oxidase isolated from Paracoccus denitrificans. Wild type enzyme and site-specific variants with defects in both proton uptake pathways (K354M, D124N and K354M/D124N) were immobilized on gold nanoparticles, and oxygen reduction was probed electrochemically in the presence of varying concentrations of Zn(2+) ions, which are known to inhibit both the entry and the exit proton pathways in the enzyme. Our data suggest that under these conditions substrate protons gain access to the oxygen reduction site via the exit pathway. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  5. Simulation of triacylglycerol ion profiles: bioinformatics for interpretation of triacylglycerol biosynthesis[S

    PubMed Central

    Han, Rowland H.; Wang, Miao; Fang, Xiaoling; Han, Xianlin

    2013-01-01

    Although the synthesis pathways of intracellular triacylglycerol (TAG) species have been well elucidated, assessment of the contribution of an individual pathway to TAG pools in different mammalian organs, particularly under pathophysiological conditions, is difficult, although not impossible. Herein, we developed and validated a novel bioinformatic approach to assess the differential contributions of the known pathways to TAG pools through simulation of TAG ion profiles determined by shotgun lipidomics. This powerful approach was applied to determine such contributions in mouse heart, liver, and skeletal muscle and to examine the changes of these pathways in mouse liver induced after treatment with a high-fat diet. It was clearly demonstrated that assessment of the altered TAG biosynthesis pathways under pathophysiological conditions can be readily achieved through simulation of lipidomics data. Collectively, this new development should greatly facilitate our understanding of the biochemical mechanisms underpinning TAG accumulation at the states of obesity and lipotoxicity. PMID:23365150

  6. Aniline Is an Inducer, and Not a Precursor, for Indole Derivatives in Rubrivivax benzoatilyticus JA2

    PubMed Central

    Mohammed, Mujahid; Ch, Sasikala; Ch, Ramana V.

    2014-01-01

    Rubrivivax benzoatilyticus JA2 and other anoxygenic photosynthetic bacteria produce indole derivatives when exposed to aniline, a xenobiotic compound. Though this phenomenon has been reported previously, the role of aniline in the production of indoles is still a biochemical riddle. The present study aims at understanding the specific role of aniline (as precursor or stimulator) in the production of indoles and elucidating the biochemical pathway of indoles in aniline-exposed cells by using stable isotope approaches. Metabolic profiling revealed tryptophan accumulation only in aniline exposed cells along with indole 3-acetic acid (IAA) and indole 3-aldehyde (IAld), the two major catabolites of tryptophan. Deuterium labelled aniline feeding studies revealed that aniline is not a precursor of indoles in strain JA2. Further, production of indoles only in aniline-exposed cells suggests that aniline is an indoles stimulator. In addition, production of indoles depended on the presence of a carbon source, and production enhanced when carbon sources were added to the culture. Isotope labelled fumarate feeding identified, fumarate as the precursor of indole, indicating de novo synthesis of indoles. Glyphosate (shikimate pathway inhibitor) inhibited the indoles production, accumulation of tryptophan, IAA and IAld indicating that indoles synthesis in strain JA2 occurs via the de novo shikimate pathway. The up-regulation of anthranilate synthase gene and induction of anthranilate synthase activity correlated well with tryptophan production in strain JA2. Induction of tryptophan aminotransferase and tryptophan 2-monooxygenase activities corroborated well with IAA levels, suggesting that tryptophan catabolism occurs simultaneously in aniline exposed cells. Our study demonstrates that aniline (stress) stimulates tryptophan/indoles synthesis via the shikimate pathway by possibly modulating the metabolic pathway. PMID:24533057

  7. Aniline is an inducer, and not a precursor, for indole derivatives in Rubrivivax benzoatilyticus JA2.

    PubMed

    Mujahid, Mohammed; Sasikala, Ch; Ramana, Ch V

    2014-01-01

    Rubrivivax benzoatilyticus JA2 and other anoxygenic photosynthetic bacteria produce indole derivatives when exposed to aniline, a xenobiotic compound. Though this phenomenon has been reported previously, the role of aniline in the production of indoles is still a biochemical riddle. The present study aims at understanding the specific role of aniline (as precursor or stimulator) in the production of indoles and elucidating the biochemical pathway of indoles in aniline-exposed cells by using stable isotope approaches. Metabolic profiling revealed tryptophan accumulation only in aniline exposed cells along with indole 3-acetic acid (IAA) and indole 3-aldehyde (IAld), the two major catabolites of tryptophan. Deuterium labelled aniline feeding studies revealed that aniline is not a precursor of indoles in strain JA2. Further, production of indoles only in aniline-exposed cells suggests that aniline is an indoles stimulator. In addition, production of indoles depended on the presence of a carbon source, and production enhanced when carbon sources were added to the culture. Isotope labelled fumarate feeding identified, fumarate as the precursor of indole, indicating de novo synthesis of indoles. Glyphosate (shikimate pathway inhibitor) inhibited the indoles production, accumulation of tryptophan, IAA and IAld indicating that indoles synthesis in strain JA2 occurs via the de novo shikimate pathway. The up-regulation of anthranilate synthase gene and induction of anthranilate synthase activity correlated well with tryptophan production in strain JA2. Induction of tryptophan aminotransferase and tryptophan 2-monooxygenase activities corroborated well with IAA levels, suggesting that tryptophan catabolism occurs simultaneously in aniline exposed cells. Our study demonstrates that aniline (stress) stimulates tryptophan/indoles synthesis via the shikimate pathway by possibly modulating the metabolic pathway.

  8. Transcriptomic analysis of adaptive mechanisms in response to sudden salinity drop in the mud crab, Scylla paramamosain.

    PubMed

    Wang, Huan; Tang, Lei; Wei, Hongling; Lu, Junkai; Mu, Changkao; Wang, Chunlin

    2018-05-31

    Scylla paramamosain (Crustacea: Decapoda: Portunidae: Syclla De Hann) is a commercially important mud crab distributed along the coast of southern China and other Indo-Pacific countries (Lin Z, Hao M, Zhu D, et al, Comp Biochem Physiol B Biochem Mol Biol 208-209:29-37, 2017; Walton ME, Vay LL, Lebata JH, et al, Estuar Coast Shelf Sci 66(3-4):493-500, 2006; Wang Z, Sun B, Zhu F, Fish Shellfish Immunol 67:612-9, 2017). While S. paramamosain is a euryhaline species, a sudden drop in salinity induces a negative impact on growth, molting, and reproduction, and may even cause death. The mechanism of osmotic regulation of marine crustaceans has been recently under investigation. However, the mechanism of adapting to a sudden drop in salinity has not been reported. In this study, transcriptomics analysis was conducted on the gills of S. paramamosain to test its adaptive capabilities over 120 h with a sudden drop in salinity from 23 ‰ to 3 ‰. At the level of transcription, 135 DEGs (108 up-regulated and 27 down-regulated) annotated by NCBI non-redundant (nr) protein database were screened. GO analysis showed that the catalytic activity category showed the most participating genes in the 24 s-tier GO terms, indicating that intracellular metabolic activities in S. paramamosain were enhanced. Of the 164 mapped KEGG pathways, seven of the top 20 pathways were closely related to regulation of the Na + / K + -ATPase. Seven additional amino acid metabolism-related pathways were also found, along with other important signaling pathways. Ion transport and amino acid metabolism were key factors in regulating the salinity adaptation of S. paramamosain in addition to several important signaling pathways.

  9. Diversity of Innate Immune Recognition Mechanism for Bacterial Polymeric meso-Diaminopimelic Acid-type Peptidoglycan in Insects

    PubMed Central

    Yu, Yang; Park, Ji-Won; Kwon, Hyun-Mi; Hwang, Hyun-Ok; Jang, In-Hwan; Masuda, Akiko; Kurokawa, Kenji; Nakayama, Hiroshi; Lee, Won-Jae; Dohmae, Naoshi; Zhang, Jinghai; Lee, Bok Luel

    2010-01-01

    In Drosophila, the synthesis of antimicrobial peptides in response to microbial infections is under the control of the Toll and immune deficiency (Imd) signaling pathway. The Toll signaling pathway responds mainly to the lysine-type peptidoglycan of Gram-positive bacteria and fungal β-1,3-glucan, whereas the Imd pathway responds to the meso-diaminopimelic acid (DAP)-type peptidoglycan of Gram-negative bacteria and certain Gram-positive bacilli. Recently we determined the activation mechanism of a Toll signaling pathway biochemically using a large beetle, Tenebrio molitor. However, DAP-type peptidoglycan recognition mechanism and its signaling pathway are still unclear in the fly and beetle. Here, we show that polymeric DAP-type peptidoglycan, but not its monomeric form, formed a complex with Tenebrio peptidoglycan recognition protein-SA, and this complex activated the three-step proteolytic cascade to produce processed Spätzle, a Toll receptor ligand, and induced Drosophila defensin-like antimicrobial peptide in Tenebrio larvae similarly to polymeric lysine-type peptidoglycan. Monomeric DAP-type peptidoglycan induced Drosophila diptericin-like antimicrobial peptide in Tenebrio hemocytes. In addition, both polymeric and monomeric DAP-type peptidoglycans induced expression of Tenebrio peptidoglycan recognition protein-SC2, which is DAP-type peptidoglycan-selective N-acetylmuramyl-l-alanine amidase that functions as a DAP-type peptidoglycan scavenger, appearing to function as a negative regulator of the DAP-type peptidoglycan signaling by cleaving DAP-type peptidoglycan in Tenebrio larvae. Taken together, these results demonstrate that molecular recognition mechanism for polymeric DAP-type peptidoglycan is different between Tenebrio larvae and Drosophila adults, providing biochemical evidences of biological diversity of innate immune responses in insects. PMID:20702416

  10. Threonine-Insensitive Homoserine Dehydrogenase From Soybean: Genomic Organization, Kinetic Mechanism, and In vivo Activity

    USDA-ARS?s Scientific Manuscript database

    Aspartate kinase (AK) and homoserine dehydrogenase (HSD) functions as key regulatory enzymes at branch points in the aspartate amino acid pathway and are feedback inhibited by threonine. In plants, the biochemical properties of AK and bifunctional AK-HSD enzymes have been characterized, but the mol...

  11. Plant cell membranes as a marker for light-dependent and light-independent herbicide mechanisms of action

    USDA-ARS?s Scientific Manuscript database

    Plant cells possess a number of membrane bound organelles that play important roles in compartmentalizing a large number of biochemical pathways and physiological functions that have potentially harmful intermediates or by-products. The plasma membrane is particularly important as it holds the enti...

  12. Ecohydrological Responses of Dense Canopies to Environmental Variability Part 1: Interplay Between Vertical Structure and Photosynthetic Pathway

    USDA-ARS?s Scientific Manuscript database

    Vegetation acclimation to changing climate, in particular elevated atmospheric concentrations of carbon dioxide (CO2), has been observed to include modifications to the biochemical and eco physiological functioning of leaves and the structural components of the canopy. These responses have the poten...

  13. Metabolomics for Undergraduates: Identification and Pathway Assignment of Mitochondrial Metabolites

    ERIC Educational Resources Information Center

    Marques, Ana Patrícia; Serralheiro, Maria Luisa; Ferreira, António E. N.; Freire, Ana Ponces; Cordeiro, Carlos; Silva, Marta Sousa

    2016-01-01

    Metabolomics is a key discipline in systems biology, together with genomics, transcriptomics, and proteomics. In this omics cascade, the metabolome represents the biochemical products that arise from cellular processes and is often regarded as the final response of a biological system to environmental or genetic changes. The overall screening…

  14. THE USE OF GENE ARRAYS TO DETERMINE TEMPORAL GENE INDUCTION IN SHEEPSHEAD MINNOWS EXPOSED TO E2

    EPA Science Inventory

    Gene arrays provide a means to study differential gene expression in fish exposed to environmental estrogens by providing a "snapshot" of the genes expressed at a given time. Such array data may also uncover previously unknown biochemical pathways affected by estrogenic compounds...

  15. Proteomic Assessment of Biochemical Pathways That Are Critical to Nickel-Induced Toxicity Responses in Human Epithelial Cells

    EPA Science Inventory

    Understanding the mechanisms underlying toxicity initiated by nickel, a ubiquitous environmental contaminant and known human carcinogen is necessary for proper assessment of its risks to human and environment. Among a variety of toxic mechanisms, disruption of protein responses a...

  16. A Laboratory Exercise for Isolation and Characterizing Microbial Mutants with Metabolic Defects.

    ERIC Educational Resources Information Center

    Doe, Frank J.; Leslie, John F.

    1993-01-01

    Describes science experiments for undergraduate biology instruction on the concepts of mutation and characterization of the resulting mutant strains. The filamentous fungi "Fusarium moniliforme" is used to illustrate the induction of mutants (mutagenesis), identification of the mutated gene, construction of a biochemical pathway, and…

  17. Characteristics of the ToxCast In Vitro Datasets from Biochemical and Cellular Assays

    EPA Science Inventory

    Measurement of perturbation of critical signaling pathways and cellular processes using in vitro assays provides a means to predict the potential for chemicals to cause injury in the intact animal. To explore the utility of such an approach, a diverse collection of 467 assays acr...

  18. Effects of stress on endocrine and metabolic processes and redirection: Crosstalk between subcellular compartments

    USDA-ARS?s Scientific Manuscript database

    Recent advances in genome analysis and biochemical pathway mapping have advanced our understanding of how biological systems have evolved over time. Protein and DNA marker comparisons suggest that several of these systems are both ancient in origin but highly conserved into today’s evolved species. ...

  19. Hip1 and Hippi participate in a novel cell death-signaling pathway.

    PubMed

    Wanker, Erich E

    2002-02-01

    Neuronal apoptosis is a cardinal feature of late-onset neurodegenerative disorders such as Alzheimer's and Huntington's disease. Biochemical and cell biological studies point to a role for Hip1 and Hippi in caspase-8 activation and the initiation of apoptosis during the pathogenesis of Huntington's disease.

  20. Consensus-phenotype integration of transcriptomic and metabolomic data implies a role for metabolism in the chemosensitivity of tumour cells.

    PubMed

    Cavill, Rachel; Kamburov, Atanas; Ellis, James K; Athersuch, Toby J; Blagrove, Marcus S C; Herwig, Ralf; Ebbels, Timothy M D; Keun, Hector C

    2011-03-01

    Using transcriptomic and metabolomic measurements from the NCI60 cell line panel, together with a novel approach to integration of molecular profile data, we show that the biochemical pathways associated with tumour cell chemosensitivity to platinum-based drugs are highly coincident, i.e. they describe a consensus phenotype. Direct integration of metabolome and transcriptome data at the point of pathway analysis improved the detection of consensus pathways by 76%, and revealed associations between platinum sensitivity and several metabolic pathways that were not visible from transcriptome analysis alone. These pathways included the TCA cycle and pyruvate metabolism, lipoprotein uptake and nucleotide synthesis by both salvage and de novo pathways. Extending the approach across a wide panel of chemotherapeutics, we confirmed the specificity of the metabolic pathway associations to platinum sensitivity. We conclude that metabolic phenotyping could play a role in predicting response to platinum chemotherapy and that consensus-phenotype integration of molecular profiling data is a powerful and versatile tool for both biomarker discovery and for exploring the complex relationships between biological pathways and drug response.

  1. FNV: light-weight flash-based network and pathway viewer.

    PubMed

    Dannenfelser, Ruth; Lachmann, Alexander; Szenk, Mariola; Ma'ayan, Avi

    2011-04-15

    Network diagrams are commonly used to visualize biochemical pathways by displaying the relationships between genes, proteins, mRNAs, microRNAs, metabolites, regulatory DNA elements, diseases, viruses and drugs. While there are several currently available web-based pathway viewers, there is still room for improvement. To this end, we have developed a flash-based network viewer (FNV) for the visualization of small to moderately sized biological networks and pathways. Written in Adobe ActionScript 3.0, the viewer accepts simple Extensible Markup Language (XML) formatted input files to display pathways in vector graphics on any web-page providing flexible layout options, interactivity with the user through tool tips, hyperlinks and the ability to rearrange nodes on the screen. FNV was utilized as a component in several web-based systems, namely Genes2Networks, Lists2Networks, KEA, ChEA and PathwayGenerator. In addition, FVN can be used to embed pathways inside pdf files for the communication of pathways in soft publication materials. FNV is available for use and download along with the supporting documentation and sample networks at http://www.maayanlab.net/FNV. avi.maayan@mssm.edu.

  2. Stable isotope probing to study functional components of complex microbial ecosystems.

    PubMed

    Mazard, Sophie; Schäfer, Hendrik

    2014-01-01

    This protocol presents a method of dissecting the DNA or RNA of key organisms involved in a specific biochemical process within a complex ecosystem. Stable isotope probing (SIP) allows the labelling and separation of nucleic acids from community members that are involved in important biochemical transformations, yet are often not the most numerically abundant members of a community. This pure culture-independent technique circumvents limitations of traditional microbial isolation techniques or data mining from large-scale whole-community metagenomic studies to tease out the identities and genomic repertoires of microorganisms participating in biological nutrient cycles. SIP experiments can be applied to virtually any ecosystem and biochemical pathway under investigation provided a suitable stable isotope substrate is available. This versatile methodology allows a wide range of analyses to be performed, from fatty-acid analyses, community structure and ecology studies, and targeted metagenomics involving nucleic acid sequencing. SIP experiments provide an effective alternative to large-scale whole-community metagenomic studies by specifically targeting the organisms or biochemical transformations of interest, thereby reducing the sequencing effort and time-consuming bioinformatics analyses of large datasets.

  3. Possible Roles of Fluoride and Carbonate in Biochemical Carbonated Apatite Formation

    NASA Astrophysics Data System (ADS)

    Meouch, Orysia; Omelon, Sidney

    2016-04-01

    Marine phosphorites are predominantly composed of carbonated fluorapatite (CFA = Ca10-a-b-cNaaMgb(PO4)6-x(CO3)x-y-z(CO3.F)y(SO4)zF2, where x=y+a+2c, and c represents the number of Ca vacancies, with a P2O5 content that ranges from 18-40 %. Sulphur-oxidizing bacteria of the Beggiatoa genus concentration phosphorous as intracellular polyphosphate ((PO3-)n) which is depolymerized into inorganic orthophosphate (Pi). Consequently, an increase in pore water Pi concentration favours carbonated apatite precipitation. The carbonate and fluoride that is characteristic of phosphorite CFA is also located in the vertebrate skeleton. This similarity suggests a biochemical pathway for CFA precipitation. Preliminary Raman spectroscopy and powder x-ray diffraction results that suggest a role for fluoride, and possibly carbonate, in the biochemical depolymerisation of polyphosphates with alkaline phosphatase will be presented.

  4. Accelerator mass spectrometry in biomedical research

    NASA Astrophysics Data System (ADS)

    Vogel, J. S.; Turteltaub, K. W.

    1994-06-01

    Biological effects occur in natural systems at chemical concentrations of parts per billion (1:10 9) or less. Affected biomolecules may be separable in only milligram or microgram quantities. Quantification at attomole sensitivity is needed to study these interactions. AMS measures isotope concentrations to parts per 10 13-15 on milligram-sized samples and is ideal for quantifying long-lived radioisotopic labels for tracing biochemical pathways in natural systems. 14C-AMS has now been coupled to a variety of organic separation and definition technologies. Our primary research investigates pharmacokinetics and genotoxicities of toxins and drugs at very low doses. Human subjects research using AMS includes nutrition, toxicity and elemental balance studies. 3H, 41Ca and 26Al are also traced by AMS for fundamental biochemical kinetic research. Expansion of biomedical AMS awaits further development of biochemical and accelerator technologies designed specifically for these applications.

  5. Integrating genome-wide association studies and gene expression data highlights dysregulated multiple sclerosis risk pathways.

    PubMed

    Liu, Guiyou; Zhang, Fang; Jiang, Yongshuai; Hu, Yang; Gong, Zhongying; Liu, Shoufeng; Chen, Xiuju; Jiang, Qinghua; Hao, Junwei

    2017-02-01

    Much effort has been expended on identifying the genetic determinants of multiple sclerosis (MS). Existing large-scale genome-wide association study (GWAS) datasets provide strong support for using pathway and network-based analysis methods to investigate the mechanisms underlying MS. However, no shared genetic pathways have been identified to date. We hypothesize that shared genetic pathways may indeed exist in different MS-GWAS datasets. Here, we report results from a three-stage analysis of GWAS and expression datasets. In stage 1, we conducted multiple pathway analyses of two MS-GWAS datasets. In stage 2, we performed a candidate pathway analysis of the large-scale MS-GWAS dataset. In stage 3, we performed a pathway analysis using the dysregulated MS gene list from seven human MS case-control expression datasets. In stage 1, we identified 15 shared pathways. In stage 2, we successfully replicated 14 of these 15 significant pathways. In stage 3, we found that dysregulated MS genes were significantly enriched in 10 of 15 MS risk pathways identified in stages 1 and 2. We report shared genetic pathways in different MS-GWAS datasets and highlight some new MS risk pathways. Our findings provide new insights on the genetic determinants of MS.

  6. Glyphosate Resistance of C3 and C4 Weeds under Rising Atmospheric CO2

    PubMed Central

    Fernando, Nimesha; Manalil, Sudheesh; Florentine, Singarayer K.; Chauhan, Bhagirath S.; Seneweera, Saman

    2016-01-01

    The present paper reviews current knowledge on how changes of plant metabolism under elevated CO2 concentrations (e[CO2]) can affect the development of the glyphosate resistance of C3 and C4 weeds. Among the chemical herbicides, glyphosate, which is a non-selective and post-emergence herbicide, is currently the most widely used herbicide in global agriculture. As a consequence, glyphosate resistant weeds, particularly in major field crops, are a widespread problem and are becoming a significant challenge to future global food production. Of particular interest here it is known that the biochemical processes involved in photosynthetic pathways of C3 and C4 plants are different, which may have relevance to their competitive development under changing environmental conditions. It has already been shown that plant anatomical, morphological, and physiological changes under e[CO2] can be different, based on (i) the plant’s functional group, (ii) the available soil nutrients, and (iii) the governing water status. In this respect, C3 species are likely to have a major developmental advantage under a CO2 rich atmosphere, by being able to capitalize on the overall stimulatory effect of e[CO2]. For example, many tropical weed grass species fix CO2 from the atmosphere via the C4 photosynthetic pathway, which is a complex anatomical and biochemical variant of the C3 pathway. Thus, based on our current knowledge of CO2 fixing, it would appear obvious that the development of a glyphosate-resistant mechanism would be easier under an e[CO2] in C3 weeds which have a simpler photosynthetic pathway, than for C4 weeds. However, notwithstanding this logical argument, a better understanding of the biochemical, genetic, and molecular measures by which plants develop glyphosate resistance and how e[CO2] affects these measures will be important before attempting to innovate sustainable technology to manage the glyphosate-resistant evolution of weeds under e[CO2]. Such information will be of essential in managing weed control by herbicide use, and to thus ensure an increase in global food production in the event of increased atmospheric [CO2] levels. PMID:27446140

  7. Mechanotransduction and the functional response of bone to mechanical strain

    NASA Technical Reports Server (NTRS)

    Duncan, R. L.; Turner, C. H.

    1995-01-01

    Mechanotransduction plays a crucial role in the physiology of many tissues including bone. Mechanical loading can inhibit bone resorption and increase bone formation in vivo. In bone, the process of mechanotransduction can be divided into four distinct steps: (1) mechanocoupling, (2) biochemical coupling, (3) transmission of signal, and (4) effector cell response. In mechanocoupling, mechanical loads in vivo cause deformations in bone that stretch bone cells within and lining the bone matrix and create fluid movement within the canaliculae of bone. Dynamic loading, which is associated with extracellular fluid flow and the creation of streaming potentials within bone, is most effective for stimulating new bone formation in vivo. Bone cells in vitro are stimulated to produce second messengers when exposed to fluid flow or mechanical stretch. In biochemical coupling, the possible mechanisms for the coupling of cell-level mechanical signals into intracellular biochemical signals include force transduction through the integrin-cytoskeleton-nuclear matrix structure, stretch-activated cation channels within the cell membrane, G protein-dependent pathways, and linkage between the cytoskeleton and the phospholipase C or phospholipase A pathways. The tight interaction of each of these pathways would suggest that the entire cell is a mechanosensor and there are many different pathways available for the transduction of a mechanical signal. In the transmission of signal, osteoblasts, osteocytes, and bone lining cells may act as sensors of mechanical signals and may communicate the signal through cell processes connected by gap junctions. These cells also produce paracrine factors that may signal osteoprogenitors to differentiate into osteoblasts and attach to the bone surface. Insulin-like growth factors and prostaglandins are possible candidates for intermediaries in signal transduction. In the effector cell response, the effects of mechanical loading are dependent upon the magnitude, duration, and rate of the applied load. Longer duration, lower amplitude loading has the same effect on bone formation as loads with short duration and high amplitude. Loading must be cyclic to stimulate new bone formation. Aging greatly reduces the osteogenic effects of mechanical loading in vivo. Also, some hormones may interact with local mechanical signals to change the sensitivity of the sensor or effector cells to mechanical load.

  8. Glyphosate Resistance of C3 and C4 Weeds under Rising Atmospheric CO2.

    PubMed

    Fernando, Nimesha; Manalil, Sudheesh; Florentine, Singarayer K; Chauhan, Bhagirath S; Seneweera, Saman

    2016-01-01

    The present paper reviews current knowledge on how changes of plant metabolism under elevated CO2 concentrations (e[CO2]) can affect the development of the glyphosate resistance of C3 and C4 weeds. Among the chemical herbicides, glyphosate, which is a non-selective and post-emergence herbicide, is currently the most widely used herbicide in global agriculture. As a consequence, glyphosate resistant weeds, particularly in major field crops, are a widespread problem and are becoming a significant challenge to future global food production. Of particular interest here it is known that the biochemical processes involved in photosynthetic pathways of C3 and C4 plants are different, which may have relevance to their competitive development under changing environmental conditions. It has already been shown that plant anatomical, morphological, and physiological changes under e[CO2] can be different, based on (i) the plant's functional group, (ii) the available soil nutrients, and (iii) the governing water status. In this respect, C3 species are likely to have a major developmental advantage under a CO2 rich atmosphere, by being able to capitalize on the overall stimulatory effect of e[CO2]. For example, many tropical weed grass species fix CO2 from the atmosphere via the C4 photosynthetic pathway, which is a complex anatomical and biochemical variant of the C3 pathway. Thus, based on our current knowledge of CO2 fixing, it would appear obvious that the development of a glyphosate-resistant mechanism would be easier under an e[CO2] in C3 weeds which have a simpler photosynthetic pathway, than for C4 weeds. However, notwithstanding this logical argument, a better understanding of the biochemical, genetic, and molecular measures by which plants develop glyphosate resistance and how e[CO2] affects these measures will be important before attempting to innovate sustainable technology to manage the glyphosate-resistant evolution of weeds under e[CO2]. Such information will be of essential in managing weed control by herbicide use, and to thus ensure an increase in global food production in the event of increased atmospheric [CO2] levels.

  9. Patient-Level DNA Damage and Repair Pathway Profiles and Prognosis After Prostatectomy for High-Risk Prostate Cancer.

    PubMed

    Evans, Joseph R; Zhao, Shuang G; Chang, S Laura; Tomlins, Scott A; Erho, Nicholas; Sboner, Andrea; Schiewer, Matthew J; Spratt, Daniel E; Kothari, Vishal; Klein, Eric A; Den, Robert B; Dicker, Adam P; Karnes, R Jeffrey; Yu, Xiaochun; Nguyen, Paul L; Rubin, Mark A; de Bono, Johann; Knudsen, Karen E; Davicioni, Elai; Feng, Felix Y

    2016-04-01

    A substantial number of patients diagnosed with high-risk prostate cancer are at risk for metastatic progression after primary treatment. Better biomarkers are needed to identify patients at the highest risk to guide therapy intensification. To create a DNA damage and repair (DDR) pathway profiling method for use as a prognostic signature biomarker in high-risk prostate cancer. A cohort of 1090 patients with high-risk prostate cancer who underwent prostatectomy and were treated at 3 different academic institutions were divided into a training cohort (n = 545) and 3 pooled validation cohorts (n = 232, 130, and 183) assembled for case-control or case-cohort studies. Profiling of 9 DDR pathways using 17 gene sets for GSEA (Gene Set Enrichment Analysis) of high-density microarray gene expression data from formalin-fixed paraffin-embedded prostatectomy samples with median 10.3 years follow-up was performed. Prognostic signature development from DDR pathway profiles was studied, and DDR pathway gene mutation in published cohorts was analyzed. Biochemical recurrence-free, metastasis-free, and overall survival. Across the training cohort and pooled validation cohorts, 1090 men were studied; mean (SD) age at diagnosis was 65.3 (6.4) years. We found that there are distinct clusters of DDR pathways within the cohort, and DDR pathway enrichment is only weakly correlated with clinical variables such as age (Spearman ρ [ρ], range, -0.07 to 0.24), Gleason score (ρ, range, 0.03 to 0.20), prostate-specific antigen level (ρ, range, -0.07 to 0.10), while 13 of 17 DDR gene sets are strongly correlated with androgen receptor pathway enrichment (ρ, range, 0.33 to 0.82). In published cohorts, DDR pathway genes are rarely mutated. A DDR pathway profile prognostic signature built in the training cohort was significantly associated with biochemical recurrence-free, metastasis-free, and overall survival in the pooled validation cohorts independent of standard clinicopathological variables. The prognostic performance of the signature for metastasis-free survival appears to be stronger in the younger patients (HR, 1.67; 95% CI, 1.12-2.50) than in the older patients (HR, 0.77; 95% CI, 0.29-2.07) on multivariate Cox analysis. DNA damage and repair pathway profiling revealed patient-level variations and the DDR pathways are rarely affected by mutation. A DDR pathway signature showed strong prognostic performance with the long-term outcomes of metastasis-free and overall survival that may be useful for risk stratification of high-risk prostate cancer patients.

  10. Lung Macrophages “Digest” Carbon Nanotubes Using a Superoxide/Peroxynitrite Oxidative Pathway

    PubMed Central

    2015-01-01

    In contrast to short-lived neutrophils, macrophages display persistent presence in the lung of animals after pulmonary exposure to carbon nanotubes. While effective in the clearance of bacterial pathogens and injured host cells, the ability of macrophages to “digest” carbonaceous nanoparticles has not been documented. Here, we used chemical, biochemical, and cell and animal models and demonstrated oxidative biodegradation of oxidatively functionalized single-walled carbon nanotubes via superoxide/NO* → peroxynitrite-driven oxidative pathways of activated macrophages facilitating clearance of nanoparticles from the lung. PMID:24871084

  11. An evolving paradigm for the secretory pathway?

    PubMed Central

    Lippincott-Schwartz, Jennifer

    2011-01-01

    The paradigm that the secretory pathway consists of a stable endoplasmic reticulum and Golgi apparatus, using discrete transport vesicles to exchange their contents, gained important support from groundbreaking biochemical and genetic studies during the 1980s. However, the subsequent development of new imaging technologies with green fluorescent protein introduced data on dynamic processes not fully accounted for by the paradigm. As a result, we may be seeing an example of how a paradigm is evolving to account for the results of new technologies and their new ways of describing cellular processes. PMID:22039065

  12. A Model Incorporating Some of the Mechanical and Biochemical Factors Underlying Clot Formation and Dissolution in Flowing Blood

    DOE PAGES

    Anand, M.; Rajagopal, K.; Rajagopal, K. R.

    2003-01-01

    Multiple interacting mechanisms control the formation and dissolution of clots to maintain blood in a state of delicate balance. In addition to a myriad of biochemical reactions, rheological factors also play a crucial role in modulating the response of blood to external stimuli. To date, a comprehensive model for clot formation and dissolution, that takes into account the biochemical, medical and rheological factors, has not been put into place, the existing models emphasizing either one or the other of the factors. In this paper, after discussing the various biochemical, physiologic and rheological factors at some length, we develop a modelmore » for clot formation and dissolution that incorporates many of the relevant crucial factors that have a bearing on the problem. The model, though just a first step towards understanding a complex phenomenon, goes further than previous models in integrating the biochemical, physiologic and rheological factors that come into play.« less

  13. Nutraceuticals against Neurodegeneration: A Mechanistic Insight.

    PubMed

    Dadhania, Vivekkumar P; Trivedi, Priyanka P; Vikram, Ajit; Tripathi, Durga Nand

    2016-01-01

    The mechanisms underlying neurodegenerative disorders are complex and multifactorial; however, accumulating evidences suggest few common shared pathways. These common pathways include mitochondrial dysfunction, intracellular Ca2+ overload, oxidative stress and inflammation. Often multiple pathways co-exist, and therefore limit the benefits of therapeutic interventions. Nutraceuticals have recently gained importance owing to their multifaceted effects. These food-based approaches are believed to target multiple pathways in a slow but more physiological manner without causing severe adverse effects. Available information strongly supports the notion that apart from preventing the onset of neuronal damage, nutraceuticals can potentially attenuate the continued progression of neuronal destruction. In this article, we i) review the common pathways involved in the pathogenesis of the toxicants-induced neurotoxicity and neurodegenerative disorders with special emphasis on Alzheimer`s disease (AD), Parkinson`s disease (PD), Huntington`s disease (HD), Multiple sclerosis (MS) and Amyotrophic lateral sclerosis (ALS), and ii) summarize current research advancements on the effects of nutraceuticals against these detrimental pathways.

  14. Nutraceuticals against Neurodegeneration: A Mechanistic Insight

    PubMed Central

    Dadhania, Vivekkumar P.; Trivedi, Priyanka P.; Vikram, Ajit; Tripathi, Durga Nand

    2016-01-01

    The mechanisms underlying neurodegenerative disorders are complex and multifactorial; however, accumulating evidences suggest few common shared pathways. These common pathways include mitochondrial dysfunction, intracellular Ca2+ overload, oxidative stress and inflammation. Often multiple pathways co-exist, and therefore limit the benefits of therapeutic interventions. Nutraceuticals have recently gained importance owing to their multifaceted effects. These food-based approaches are believed to target multiple pathways in a slow but more physiological manner without causing severe adverse effects. Available information strongly supports the notion that apart from preventing the onset of neuronal damage, nutraceuticals can potentially attenuate the continued progression of neuronal destruction. In this article, we i) review the common pathways involved in the pathogenesis of the toxicants-induced neurotoxicity and neurodegenerative disorders with special emphasis on Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Multiple sclerosis (MS) and Amyotrophic lateral sclerosis (ALS), and ii) summarize current research advancements on the effects of nutraceuticals against these detrimental pathways. PMID:26725888

  15. Biochemical Network Stochastic Simulator (BioNetS): software for stochastic modeling of biochemical networks.

    PubMed

    Adalsteinsson, David; McMillen, David; Elston, Timothy C

    2004-03-08

    Intrinsic fluctuations due to the stochastic nature of biochemical reactions can have large effects on the response of biochemical networks. This is particularly true for pathways that involve transcriptional regulation, where generally there are two copies of each gene and the number of messenger RNA (mRNA) molecules can be small. Therefore, there is a need for computational tools for developing and investigating stochastic models of biochemical networks. We have developed the software package Biochemical Network Stochastic Simulator (BioNetS) for efficiently and accurately simulating stochastic models of biochemical networks. BioNetS has a graphical user interface that allows models to be entered in a straightforward manner, and allows the user to specify the type of random variable (discrete or continuous) for each chemical species in the network. The discrete variables are simulated using an efficient implementation of the Gillespie algorithm. For the continuous random variables, BioNetS constructs and numerically solves the appropriate chemical Langevin equations. The software package has been developed to scale efficiently with network size, thereby allowing large systems to be studied. BioNetS runs as a BioSpice agent and can be downloaded from http://www.biospice.org. BioNetS also can be run as a stand alone package. All the required files are accessible from http://x.amath.unc.edu/BioNetS. We have developed BioNetS to be a reliable tool for studying the stochastic dynamics of large biochemical networks. Important features of BioNetS are its ability to handle hybrid models that consist of both continuous and discrete random variables and its ability to model cell growth and division. We have verified the accuracy and efficiency of the numerical methods by considering several test systems.

  16. Truncated somatostatin receptor 5 may modulate therapy response to somatostatin analogues--Observations in two patients with acromegaly and severe headache.

    PubMed

    Marina, Djordje; Burman, Pia; Klose, Marianne; Casar-Borota, Olivera; Luque, Raúl M; Castaño, Justo P; Feldt-Rasmussen, Ulla

    2015-10-01

    Somatotropinomas have unique "fingerprints" of somatostatin receptor (sst) expression, which are targets in treatment of acromegaly with somatostatin analogues (SSAs). However, a significant expression of sst is not always related to the biochemical response to SSAs. Headache is a common complaint in acromegaly and considered a clinical marker of disease activity. SSAs are reported to have an own analgesic effect, but the sst involved are unknown. We investigated sst expression in two acromegalic patients with severe headache and no biochemical effects of octreotide, but a good response to pasireotide. We searched the literature for determinants of biochemical and analgesic effects of SSAs in somatotropinomas. Case 1 had no biochemical or analgesic effects of octreotide, a semi-selective SSA, but a rapid and significant effect of pasireotide, a pan-SSA. Case 2 demonstrated discordance between analgesic and biochemical effects of octreotide, in that headache disappeared, but without biochemical improvement. In contrast, pasireotide normalized insulin-like growth factor 1. Both adenomas were sparsely granulated and had strong membranous expressions of sst2a in 50-75% and sst5 in 75-100% of tumor cells. The truncated sst5 variant TMD4 (sst5TMD4) showed expression in 20-57% of tumor cells. A poor biochemical response to octreotide may be associated with tumor expression of a truncated sst5 variant, despite abundant sst2a expression, suggesting an influence from variant sst5 on common sst signaling pathways. Furthermore, unrelated analgesic and biochemical effects of SSAs supported a complex pathogenesis of acromegaly-associated headache. Finally, assessment of truncated sst5 in addition to full length sst could be important for a choice of postoperative SSA treatment in somatotropinomas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Kinetic insulation as an effective mechanism for achieving pathway specificity in intracellular signaling networks

    PubMed Central

    Behar, Marcelo; Dohlman, Henrik G.; Elston, Timothy C.

    2007-01-01

    Intracellular signaling pathways that share common components often elicit distinct physiological responses. In most cases, the biochemical mechanisms responsible for this signal specificity remain poorly understood. Protein scaffolds and cross-inhibition have been proposed as strategies to prevent unwanted cross-talk. Here, we report a mechanism for signal specificity termed “kinetic insulation.” In this approach signals are selectively transmitted through the appropriate pathway based on their temporal profile. In particular, we demonstrate how pathway architectures downstream of a common component can be designed to efficiently separate transient signals from signals that increase slowly over time. Furthermore, we demonstrate that upstream signaling proteins can generate the appropriate input to the common pathway component regardless of the temporal profile of the external stimulus. Our results suggest that multilevel signaling cascades may have evolved to modulate the temporal profile of pathway activity so that stimulus information can be efficiently encoded and transmitted while ensuring signal specificity. PMID:17913886

  18. Comparative Analysis of Argonaute-dependent Small RNA Pathways in Drosophila

    PubMed Central

    Zhou, Rui; Hotta, Ikuko; Denli, Ahmet M.; Hong, Pengyu; Perrimon, Norbert; Hannon, Gregory J.

    2008-01-01

    Summary The specificity of RNAi pathways is determined by several classes of small RNAs, which include siRNAs, piRNAs, endo-siRNAs, and microRNAs (miRNAs). These small RNAs are invariably incorporated into large Argonaute (Ago)-containing effector complexes known as RNA-induced silencing complexes (RISCs), which they guide to silencing targets. Both genetic and biochemical strategies have yielded conserved molecular components of small RNA biogenesis and effector machineries. However, given the complexity of these pathways, there are likely to be additional components and regulators that remain to be uncovered. We have undertaken a comparative and comprehensive RNAi screen to identify genes that impact three major Ago-dependent small RNA pathways that operate in Drosophila S2 cells. We identify subsets of candidates that act positively or negatively in siRNA, endo-siRNA and miRNA pathways. Our studies indicate that many components are shared among all three Argonaute-dependent silencing pathways, though each is also impacted by discrete sets of genes. PMID:19026789

  19. Lysosomal enzymes and their receptors in invertebrates: an evolutionary perspective.

    PubMed

    Kumar, Nadimpalli Siva; Bhamidimarri, Poorna M

    2015-01-01

    Lysosomal biogenesis is an important process in eukaryotic cells to maintain cellular homeostasis. The key components that are involved in the biogenesis such as the lysosomal enzymes, their modifications and the mannose 6-phosphate receptors have been well studied and their evolutionary conservation across mammalian and non-mammalian vertebrates is clearly established. Invertebrate lysosomal biogenesis pathway on the other hand is not well studied. Although, details on mannose 6-phosphate receptors and enzymes involved in lysosomal enzyme modifications were reported earlier, a clear cut pathway has not been established. Recent research on the invertebrate species involving biogenesis of lysosomal enzymes suggests a possible conserved pathway in invertebrates. This review presents certain observations based on these processes that include biochemical, immunological and functional studies. Major conclusions include conservation of MPR-dependent pathway in higher invertebrates and recent evidence suggests that MPR-independent pathway might have been more prominent among lower invertebrates. The possible components of MPR-independent pathway that may play a role in lysosomal enzyme targeting are also discussed here.

  20. A chloroplast pathway for the de novo biosynthesis of triacylglycerol in Chlamydomonas reinhardtii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, J.; Xu, C.; Andre, C.

    2011-06-23

    Neutral lipid metabolism has been extensively studied in yeast, plants and mammals. In contrast, little information is available regarding the biochemical pathway, enzymes and regulatory factors involved in the biosynthesis of triacylglycerol (TAG) in microalgae. In the conventional TAG biosynthetic pathway widely accepted for yeast, plants and mammals, TAG is assembled in the endoplasmic reticulum (ER) from its immediate precursor diacylglycerol (DAG) made by ER-specific acyltransferases, and is deposited exclusively in lipid droplets in the cytosol. Here, we demonstrated that the unicellular microalga Chlamydomonas reinhardtii employs a distinct pathway that uses DAG derived almost exclusively from the chloroplast to producemore » TAG. This unique TAG biosynthesis pathway is largely dependent on de novo fatty acid synthesis, and the TAG formed in this pathway is stored in lipid droplets in both the chloroplast and the cytosol. These findings have wide implications for understanding TAG biosynthesis and storage and other areas of lipid metabolism in microalgae and other organisms.« less

Top