Sample records for multiple biological samples

  1. Method and apparatus for determining nutrient stimulation of biological processes

    DOEpatents

    Colwell, F.S.; Geesey, G.G.; Gillis, R.J.; Lehman, R.M.

    1997-11-11

    A method and apparatus is described for determining the nutrients to stimulate microorganisms in a particular environment. A representative sample of microorganisms from a particular environment are contacted with multiple support means wherein each support means has intimately associated with the surface of the support means a different nutrient composition for said microorganisms in said sample. The multiple support means is allowed to remain in contact with the microorganisms in the sample for a time period sufficient to measure differences in microorganism effects for the multiple support means. Microorganism effects for the multiple support means are then measured and compared. The invention is particularly adaptable to being conducted in situ. The additional steps of regulating nutrients added to the particular environment of microorganisms can enhance the desired results. Biological systems particularly suitable for this invention are bioremediation, biologically enhanced oil recovery, biological leaching of metals, and agricultural bioprocesses. 5 figs.

  2. Method and apparatus for determining nutrient stimulation of biological processes

    DOEpatents

    Colwell, Frederick S.; Geesey, Gill G.; Gillis, Richard J.; Lehman, R. Michael

    1999-01-01

    A method and apparatus for determining the nutrients to stimulate microorganisms in a particular environment. A representative sample of microorganisms from a particular environment are contacted with multiple support means wherein each support means has intimately associated with the surface of the support means a different nutrient composition for said microorganisms in said sample. The multiple support means is allowed to remain in contact with the microorganisms in the sample for a time period sufficient to measure difference in microorganism effects for the multiple support means. Microorganism effects for the multiple support means are then measured and compared. The invention is particularly adaptable to being conducted in situ. The additional steps of regulating nutrients added to the particular environment of microorganisms can enhance the desired results. Biological systems particularly suitable for this invention are bioremediation, biologically enhanced oil recovery, biological leaching of metals, and agricultural bioprocesses.

  3. Method and apparatus for determining nutrient stimulation of biological processes

    DOEpatents

    Colwell, F.S.; Geesey, G.G.; Gillis, R.J.; Lehman, R.M.

    1999-07-13

    A method and apparatus are disclosed for determining the nutrients to stimulate microorganisms in a particular environment. A representative sample of microorganisms from a particular environment are contacted with multiple support means wherein each support means has intimately associated with the surface of the support means a different nutrient composition for microorganisms in the sample. The multiple support means is allowed to remain in contact with the microorganisms in the sample for a time period sufficient to measure difference in microorganism effects for the multiple support means. Microorganism effects for the multiple support means are then measured and compared. The invention is particularly adaptable to being conducted in situ. The additional steps of regulating nutrients added to the particular environment of microorganisms can enhance the desired results. Biological systems particularly suitable for this invention are bioremediation, biologically enhanced oil recovery, biological leaching of metals, and agricultural bioprocesses. 5 figs.

  4. Method and apparatus for determining nutrient stimulation of biological processes

    DOEpatents

    Colwell, Frederick S.; Geesey, Gill G.; Gillis, Richard J.; Lehman, R. Michael

    1997-01-01

    A method and apparatus for determining the nutrients to stimulate microorganisms in a particular environment. A representative sample of microorganisms from a particular environment are contacted with multiple support means wherein each support means has intimately associated with the surface of the support means a different nutrient composition for said microorganisms in said sample. The multiple support means is allowed to remain in contact with the microorganisms in the sample for a time period sufficient to measure differences in microorganism effects for the multiple support means. Microorganism effects for the multiple support means are then measured and compared. The invention is particularly adaptable to being conducted in situ. The additional steps of regulating nutrients added to the particular environment of microorganisms can enhance the desired results. Biological systems particularly suitable for this invention are bioremediation, biologically enhanced oil recovery, biological leaching of metals, and agricultural bioprocesses.

  5. Statistical inference from multiple iTRAQ experiments without using common reference standards.

    PubMed

    Herbrich, Shelley M; Cole, Robert N; West, Keith P; Schulze, Kerry; Yager, James D; Groopman, John D; Christian, Parul; Wu, Lee; O'Meally, Robert N; May, Damon H; McIntosh, Martin W; Ruczinski, Ingo

    2013-02-01

    Isobaric tags for relative and absolute quantitation (iTRAQ) is a prominent mass spectrometry technology for protein identification and quantification that is capable of analyzing multiple samples in a single experiment. Frequently, iTRAQ experiments are carried out using an aliquot from a pool of all samples, or "masterpool", in one of the channels as a reference sample standard to estimate protein relative abundances in the biological samples and to combine abundance estimates from multiple experiments. In this manuscript, we show that using a masterpool is counterproductive. We obtain more precise estimates of protein relative abundance by using the available biological data instead of the masterpool and do not need to occupy a channel that could otherwise be used for another biological sample. In addition, we introduce a simple statistical method to associate proteomic data from multiple iTRAQ experiments with a numeric response and show that this approach is more powerful than the conventionally employed masterpool-based approach. We illustrate our methods using data from four replicate iTRAQ experiments on aliquots of the same pool of plasma samples and from a 406-sample project designed to identify plasma proteins that covary with nutrient concentrations in chronically undernourished children from South Asia.

  6. Integrative Exploratory Analysis of Two or More Genomic Datasets.

    PubMed

    Meng, Chen; Culhane, Aedin

    2016-01-01

    Exploratory analysis is an essential step in the analysis of high throughput data. Multivariate approaches such as correspondence analysis (CA), principal component analysis, and multidimensional scaling are widely used in the exploratory analysis of single dataset. Modern biological studies often assay multiple types of biological molecules (e.g., mRNA, protein, phosphoproteins) on a same set of biological samples, thereby creating multiple different types of omics data or multiassay data. Integrative exploratory analysis of these multiple omics data is required to leverage the potential of multiple omics studies. In this chapter, we describe the application of co-inertia analysis (CIA; for analyzing two datasets) and multiple co-inertia analysis (MCIA; for three or more datasets) to address this problem. These methods are powerful yet simple multivariate approaches that represent samples using a lower number of variables, allowing a more easily identification of the correlated structure in and between multiple high dimensional datasets. Graphical representations can be employed to this purpose. In addition, the methods simultaneously project samples and variables (genes, proteins) onto the same lower dimensional space, so the most variant variables from each dataset can be selected and associated with samples, which can be further used to facilitate biological interpretation and pathway analysis. We applied CIA to explore the concordance between mRNA and protein expression in a panel of 60 tumor cell lines from the National Cancer Institute. In the same 60 cell lines, we used MCIA to perform a cross-platform comparison of mRNA gene expression profiles obtained on four different microarray platforms. Last, as an example of integrative analysis of multiassay or multi-omics data we analyzed transcriptomic, proteomic, and phosphoproteomic data from pluripotent (iPS) and embryonic stem (ES) cell lines.

  7. 9 CFR 113.3 - Sampling of biological products.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... bacterial vaccines; (iii) Two samples of Coccidiosis Vaccine; (iv) Eighteen samples of Rabies Vaccine...) Twenty-two single-dose or 14 multiple-dose samples of Rabies Vaccine, Killed Virus; (viii) Sixteen single...

  8. 9 CFR 113.3 - Sampling of biological products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... bacterial vaccines; (iii) Two samples of Coccidiosis Vaccine; (iv) Eighteen samples of Rabies Vaccine...) Twenty-two single-dose or 14 multiple-dose samples of Rabies Vaccine, Killed Virus; (viii) Sixteen single...

  9. 9 CFR 113.3 - Sampling of biological products.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... bacterial vaccines; (iii) Two samples of Coccidiosis Vaccine; (iv) Eighteen samples of Rabies Vaccine...) Twenty-two single-dose or 14 multiple-dose samples of Rabies Vaccine, Killed Virus; (viii) Sixteen single...

  10. "Shoot and Sense" Janus Micromotors-Based Strategy for the Simultaneous Degradation and Detection of Persistent Organic Pollutants in Food and Biological Samples.

    PubMed

    Rojas, D; Jurado-Sánchez, B; Escarpa, A

    2016-04-05

    A novel Janus micromotor-based strategy for the direct determination of diphenyl phthalate (DPP) in food and biological samples is presented. Mg/Au Janus micromotors are employed as novel analytical platforms for the degradation of the non-electroactive DPP into phenol, which is directly measured by difference pulse voltammetry on disposable screen-printed electrodes. The self-movement of the micromotors along the samples result in the generation of hydrogen microbubbles and hydroxyl ions for DPP degradation. The increased fluid transport improves dramatically the analytical signal, increasing the sensitivity while lowering the detection potential. The method has been successfully applied to the direct analysis of DPP in selected food and biological samples, without any sample treatment and avoiding any potential contamination from laboratory equipment. The developed approach is fast (∼5 min) and accurate with recoveries of ∼100%. In addition, efficient propulsion of multiple Mg/Au micromotors in complex samples has also been demonstrated. The advantages of the micromotors-assisted technology, i.e., disposability, portability, and the possibility to carry out multiple analysis simultaneously, hold considerable promise for its application in food and biological control in analytical applications with high significance.

  11. Father Involvement and Young, Rural African American Men's Engagement in Substance Misuse and Multiple Sexual Partnerships.

    PubMed

    Barton, Allen W; Kogan, Steven M; Cho, Junhan; Brown, Geoffrey L

    2015-12-01

    This study was designed to examine the associations of biological father and social father involvement during childhood with African American young men's development and engagement in risk behaviors. With a sample of 505 young men living in the rural South of the United States, a dual mediation model was tested in which retrospective reports of involvement from biological fathers and social fathers were linked to young men's substance misuse and multiple sexual partnerships through men's relational schemas and future expectations. Results from structural equation modeling indicated that levels of involvement from biological fathers and social fathers predicted young men's relational schemas; only biological fathers' involvement predicted future expectations. In turn, future expectations predicted levels of substance misuse, and negative relational schemas predicted multiple sexual partnerships. Biological fathers' involvement evinced significant indirect associations with young men's substance misuse and multiple sexual partnerships through both schemas and expectations; social fathers' involvement exhibited an indirect association with multiple sexual partnerships through relational schemas. Findings highlight the unique influences of biological fathers and social fathers on multiple domains of African American young men's psychosocial development that subsequently render young men more or less likely to engage in risk behaviors.

  12. Detecting Biological Warfare Agents

    PubMed Central

    Song, Linan; Ahn, Soohyoun

    2005-01-01

    We developed a fiber-optic, microsphere-based, high-density array composed of 18 species-specific probe microsensors to identify biological warfare agents. We simultaneously identified multiple biological warfare agents in environmental samples by looking at specific probe responses after hybridization and response patterns of the multiplexed array. PMID:16318712

  13. [Establishment and Management of Multiple Myeloma Specimen Bank Applied for Molecular Biological Researches].

    PubMed

    Li, Han-Qing; Mei, Jian-Gang; Cao, Hong-Qin; Shao, Liang-Jing; Zhai, Yong-Ping

    2017-12-01

    To establish a multiple myeloma specimen bank applied for molecular biological researches and to explore the methods of specimen collection, transportation, storage, quality control and the management of specimen bank. Bone marrow and blood samples were collected from multiple myeloma patients, plasma cell sorting were operated after the separation of mononuclear cells from bone marrow specimens. The plasma cells were divided into 2 parts, one was added with proper amount of TRIzol and then kept in -80 °C refrigerator for subsequent RNA extraction, the other was added with proper amount of calf serum cell frozen liquid and then kept in -80 °C refrigerator for subsequent cryopreservation of DNA extraction after numbered respectively. Serum and plasma were separated from peripheral blood, specimens of serum and plasma were then stored at -80 °C refrigerator after registration. Meantime, the myeloma specimen information management system was established, managed and maintained by specially-assigned persons and continuous modification and improvement in the process of use as to facilitate the rapid collection, management, query of the effective samples and clinical data. A total of 244 portions plasma cells, 564 portions of serum, and 1005 portions of plasma were collected, clinical characters were documented. A multiple myeloma specimen bank have been established initially, which can provide quality samples and related clinical information for molecular biological research on multiple myeloma.

  14. Quantitative Analysis of Tissue Samples by Combining iTRAQ Isobaric Labeling with Selected/Multiple Reaction Monitoring (SRM/MRM).

    PubMed

    Narumi, Ryohei; Tomonaga, Takeshi

    2016-01-01

    Mass spectrometry-based phosphoproteomics is an indispensible technique used in the discovery and quantification of phosphorylation events on proteins in biological samples. The application of this technique to tissue samples is especially useful for the discovery of biomarkers as well as biological studies. We herein describe the application of a large-scale phosphoproteome analysis and SRM/MRM-based quantitation to develop a strategy for the systematic discovery and validation of biomarkers using tissue samples.

  15. A novel nano-immunoassay method for quantification of proteins from CD138-purified myeloma cells: biological and clinical utility

    PubMed Central

    Misiewicz-Krzeminska, Irena; Corchete, Luis Antonio; Rojas, Elizabeta A.; Martínez-López, Joaquín; García-Sanz, Ramón; Oriol, Albert; Bladé, Joan; Lahuerta, Juan-José; Miguel, Jesús San; Mateos, María-Victoria; Gutiérrez, Norma C.

    2018-01-01

    Protein analysis in bone marrow samples from patients with multiple myeloma has been limited by the low concentration of proteins obtained after CD138+ cell selection. A novel approach based on capillary nano-immunoassay could make it possible to quantify dozens of proteins from each myeloma sample in an automated manner. Here we present a method for the accurate and robust quantification of the expression of multiple proteins extracted from CD138-purified multiple myeloma samples frozen in RLT Plus buffer, which is commonly used for nucleic acid preservation and isolation. Additionally, the biological and clinical value of this analysis for a panel of 12 proteins essential to the pathogenesis of multiple myeloma was evaluated in 63 patients with newly diagnosed multiple myeloma. The analysis of the prognostic impact of CRBN/Cereblon and IKZF1/Ikaros mRNA/protein showed that only the protein levels were able to predict progression-free survival of patients; mRNA levels were not associated with prognosis. Interestingly, high levels of Cereblon and Ikaros proteins were associated with longer progression-free survival only in patients who received immunomodulatory drugs and not in those treated with other drugs. In conclusion, the capillary nano-immunoassay platform provides a novel opportunity for automated quantification of the expression of more than 20 proteins in CD138+ primary multiple myeloma samples. PMID:29545347

  16. A novel nano-immunoassay method for quantification of proteins from CD138-purified myeloma cells: biological and clinical utility.

    PubMed

    Misiewicz-Krzeminska, Irena; Corchete, Luis Antonio; Rojas, Elizabeta A; Martínez-López, Joaquín; García-Sanz, Ramón; Oriol, Albert; Bladé, Joan; Lahuerta, Juan-José; Miguel, Jesús San; Mateos, María-Victoria; Gutiérrez, Norma C

    2018-05-01

    Protein analysis in bone marrow samples from patients with multiple myeloma has been limited by the low concentration of proteins obtained after CD138 + cell selection. A novel approach based on capillary nano-immunoassay could make it possible to quantify dozens of proteins from each myeloma sample in an automated manner. Here we present a method for the accurate and robust quantification of the expression of multiple proteins extracted from CD138-purified multiple myeloma samples frozen in RLT Plus buffer, which is commonly used for nucleic acid preservation and isolation. Additionally, the biological and clinical value of this analysis for a panel of 12 proteins essential to the pathogenesis of multiple myeloma was evaluated in 63 patients with newly diagnosed multiple myeloma. The analysis of the prognostic impact of CRBN /Cereblon and IKZF1 /Ikaros mRNA/protein showed that only the protein levels were able to predict progression-free survival of patients; mRNA levels were not associated with prognosis. Interestingly, high levels of Cereblon and Ikaros proteins were associated with longer progression-free survival only in patients who received immunomodulatory drugs and not in those treated with other drugs. In conclusion, the capillary nano-immunoassay platform provides a novel opportunity for automated quantification of the expression of more than 20 proteins in CD138 + primary multiple myeloma samples. Copyright © 2018 Ferrata Storti Foundation.

  17. Assessing signal-to-noise in quantitative proteomics: multivariate statistical analysis in DIGE experiments.

    PubMed

    Friedman, David B

    2012-01-01

    All quantitative proteomics experiments measure variation between samples. When performing large-scale experiments that involve multiple conditions or treatments, the experimental design should include the appropriate number of individual biological replicates from each condition to enable the distinction between a relevant biological signal from technical noise. Multivariate statistical analyses, such as principal component analysis (PCA), provide a global perspective on experimental variation, thereby enabling the assessment of whether the variation describes the expected biological signal or the unanticipated technical/biological noise inherent in the system. Examples will be shown from high-resolution multivariable DIGE experiments where PCA was instrumental in demonstrating biologically significant variation as well as sample outliers, fouled samples, and overriding technical variation that would not be readily observed using standard univariate tests.

  18. DEIsoM: a hierarchical Bayesian model for identifying differentially expressed isoforms using biological replicates

    PubMed Central

    Peng, Hao; Yang, Yifan; Zhe, Shandian; Wang, Jian; Gribskov, Michael; Qi, Yuan

    2017-01-01

    Abstract Motivation High-throughput mRNA sequencing (RNA-Seq) is a powerful tool for quantifying gene expression. Identification of transcript isoforms that are differentially expressed in different conditions, such as in patients and healthy subjects, can provide insights into the molecular basis of diseases. Current transcript quantification approaches, however, do not take advantage of the shared information in the biological replicates, potentially decreasing sensitivity and accuracy. Results We present a novel hierarchical Bayesian model called Differentially Expressed Isoform detection from Multiple biological replicates (DEIsoM) for identifying differentially expressed (DE) isoforms from multiple biological replicates representing two conditions, e.g. multiple samples from healthy and diseased subjects. DEIsoM first estimates isoform expression within each condition by (1) capturing common patterns from sample replicates while allowing individual differences, and (2) modeling the uncertainty introduced by ambiguous read mapping in each replicate. Specifically, we introduce a Dirichlet prior distribution to capture the common expression pattern of replicates from the same condition, and treat the isoform expression of individual replicates as samples from this distribution. Ambiguous read mapping is modeled as a multinomial distribution, and ambiguous reads are assigned to the most probable isoform in each replicate. Additionally, DEIsoM couples an efficient variational inference and a post-analysis method to improve the accuracy and speed of identification of DE isoforms over alternative methods. Application of DEIsoM to an hepatocellular carcinoma (HCC) dataset identifies biologically relevant DE isoforms. The relevance of these genes/isoforms to HCC are supported by principal component analysis (PCA), read coverage visualization, and the biological literature. Availability and implementation The software is available at https://github.com/hao-peng/DEIsoM Contact pengh@alumni.purdue.edu Supplementary information Supplementary data are available at Bioinformatics online. PMID:28595376

  19. Multiple Replica Repulsion Technique for Efficient Conformational Sampling of Biological Systems

    PubMed Central

    Malevanets, Anatoly; Wodak, Shoshana J.

    2011-01-01

    Here, we propose a technique for sampling complex molecular systems with many degrees of freedom. The technique, termed “multiple replica repulsion” (MRR), does not suffer from poor scaling with the number of degrees of freedom associated with common replica exchange procedures and does not require sampling at high temperatures. The algorithm involves creation of multiple copies (replicas) of the system, which interact with one another through a repulsive potential that can be applied to the system as a whole or to portions of it. The proposed scheme prevents oversampling of the most populated states and provides accurate descriptions of conformational perturbations typically associated with sampling ground-state energy wells. The performance of MRR is illustrated for three systems of increasing complexity. A two-dimensional toy potential surface is used to probe the sampling efficiency as a function of key parameters of the procedure. MRR simulations of the Met-enkephalin pentapeptide, and the 76-residue protein ubiquitin, performed in presence of explicit water molecules and totaling 32 ns each, investigate the ability of MRR to characterize the conformational landscape of the peptide, and the protein native basin, respectively. Results obtained for the enkephalin peptide reflect more closely the extensive conformational flexibility of this peptide than previously reported simulations. Those obtained for ubiquitin show that conformational ensembles sampled by MRR largely encompass structural fluctuations relevant to biological recognition, which occur on the microsecond timescale, or are observed in crystal structures of ubiquitin complexes with other proteins. MRR thus emerges as a very promising simple and versatile technique for modeling the structural plasticity of complex biological systems. PMID:21843487

  20. SAMPLING LARGE RIVERS FOR ALGAE, BENTHIC MACROINVERTEBRATES AND FISH

    EPA Science Inventory

    Multiple projects are currently underway to increase our understanding of the effects of different sampling methods and designs used for the biological assessment and monitoring of large (boatable) rivers. Studies include methods used to assess fish, benthic macroinvertebrates, ...

  1. Optimization of techniques for multiple platform testing in small, precious samples such as human chorionic villus sampling.

    PubMed

    Pisarska, Margareta D; Akhlaghpour, Marzieh; Lee, Bora; Barlow, Gillian M; Xu, Ning; Wang, Erica T; Mackey, Aaron J; Farber, Charles R; Rich, Stephen S; Rotter, Jerome I; Chen, Yii-der I; Goodarzi, Mark O; Guller, Seth; Williams, John

    2016-11-01

    Multiple testing to understand global changes in gene expression based on genetic and epigenetic modifications is evolving. Chorionic villi, obtained for prenatal testing, is limited, but can be used to understand ongoing human pregnancies. However, optimal storage, processing and utilization of CVS for multiple platform testing have not been established. Leftover CVS samples were flash-frozen or preserved in RNAlater. Modifications to standard isolation kits were performed to isolate quality DNA and RNA from samples as small as 2-5 mg. RNAlater samples had significantly higher RNA yields and quality and were successfully used in microarray and RNA-sequencing (RNA-seq). RNA-seq libraries generated using 200 versus 800-ng RNA showed similar biological coefficients of variation. RNAlater samples had lower DNA yields and quality, which improved by heating the elution buffer to 70 °C. Purification of DNA was not necessary for bisulfite-conversion and genome-wide methylation profiling. CVS cells were propagated and continue to express genes found in freshly isolated chorionic villi. CVS samples preserved in RNAlater are superior. Our optimized techniques provide specimens for genetic, epigenetic and gene expression studies from a single small sample which can be used to develop diagnostics and treatments using a systems biology approach in the prenatal period. © 2016 John Wiley & Sons, Ltd. © 2016 John Wiley & Sons, Ltd.

  2. MultiFocus Polarization Microscope (MF-PolScope) for 3D polarization imaging of up to 25 focal planes simultaneously

    PubMed Central

    Abrahamsson, Sara; McQuilken, Molly; Mehta, Shalin B.; Verma, Amitabh; Larsch, Johannes; Ilic, Rob; Heintzmann, Rainer; Bargmann, Cornelia I.; Gladfelter, Amy S.; Oldenbourg, Rudolf

    2015-01-01

    We have developed an imaging system for 3D time-lapse polarization microscopy of living biological samples. Polarization imaging reveals the position, alignment and orientation of submicroscopic features in label-free as well as fluorescently labeled specimens. Optical anisotropies are calculated from a series of images where the sample is illuminated by light of different polarization states. Due to the number of images necessary to collect both multiple polarization states and multiple focal planes, 3D polarization imaging is most often prohibitively slow. Our MF-PolScope system employs multifocus optics to form an instantaneous 3D image of up to 25 simultaneous focal-planes. We describe this optical system and show examples of 3D multi-focus polarization imaging of biological samples, including a protein assembly study in budding yeast cells. PMID:25837112

  3. Quantitative Interpretation of Multifrequency Multimode EPR Spectra of Metal Containing Proteins, Enzymes, and Biomimetic Complexes.

    PubMed

    Petasis, Doros T; Hendrich, Michael P

    2015-01-01

    Electron paramagnetic resonance (EPR) spectroscopy has long been a primary method for characterization of paramagnetic centers in materials and biological complexes. Transition metals in biological complexes have valence d-orbitals that largely define the chemistry of the metal centers. EPR spectra are distinctive for metal type, oxidation state, protein environment, substrates, and inhibitors. The study of many metal centers in proteins, enzymes, and biomimetic complexes has led to the development of a systematic methodology for quantitative interpretation of EPR spectra from a wide array of metal containing complexes. The methodology is now contained in the computer program SpinCount. SpinCount allows simulation of EPR spectra from any sample containing multiple species composed of one or two metals in any spin state. The simulations are quantitative, thus allowing determination of all species concentrations in a sample directly from spectra. This chapter will focus on applications to transition metals in biological systems using EPR spectra from multiple microwave frequencies and modes. © 2015 Elsevier Inc. All rights reserved.

  4. Large-scale atlas of microarray data reveals biological landscape of gene expression in Arabidopsis

    USDA-ARS?s Scientific Manuscript database

    Transcriptome datasets from thousands of samples of the model plant Arabidopsis thaliana have been collectively generated by multiple individual labs. Although integration and meta-analysis of these samples has become routine in the plant research community, it is often hampered by the lack of metad...

  5. Design tradeoffs for trend assessment in aquatic biological monitoring programs

    USGS Publications Warehouse

    Gurtz, Martin E.; Van Sickle, John; Carlisle, Daren M.; Paulsen, Steven G.

    2013-01-01

    Assessments of long-term (multiyear) temporal trends in biological monitoring programs are generally undertaken without an adequate understanding of the temporal variability of biological communities. When the sources and levels of variability are unknown, managers cannot make informed choices in sampling design to achieve monitoring goals in a cost-effective manner. We evaluated different trend sampling designs by estimating components of both short- and long-term variability in biological indicators of water quality in streams. Invertebrate samples were collected from 32 sites—9 urban, 6 agricultural, and 17 relatively undisturbed (reference) streams—distributed throughout the United States. Between 5 and 12 yearly samples were collected at each site during the period 1993–2008, plus 2 samples within a 10-week index period during either 2007 or 2008. These data allowed calculation of four sources of variance for invertebrate indicators: among sites, among years within sites, interaction among sites and years (site-specific annual variation), and among samples collected within an index period at a site (residual). When estimates of these variance components are known, changes to sampling design can be made to improve trend detection. Design modifications that result in the ability to detect the smallest trend with the fewest samples are, from most to least effective: (1) increasing the number of years in the sampling period (duration of the monitoring program), (2) decreasing the interval between samples, and (3) increasing the number of repeat-visit samples per year (within an index period). This order of improvement in trend detection, which achieves the greatest gain for the fewest samples, is the same whether trends are assessed at an individual site or an average trend of multiple sites. In multiple-site surveys, increasing the number of sites has an effect similar to that of decreasing the sampling interval; the benefit of adding sites is greater when a new set of different sites is selected for each sampling effort than when the same sites are sampled each time. Understanding variance components of the ecological attributes of interest can lead to more cost-effective monitoring designs to detect trends.

  6. ARTS: automated randomization of multiple traits for study design.

    PubMed

    Maienschein-Cline, Mark; Lei, Zhengdeng; Gardeux, Vincent; Abbasi, Taimur; Machado, Roberto F; Gordeuk, Victor; Desai, Ankit A; Saraf, Santosh; Bahroos, Neil; Lussier, Yves

    2014-06-01

    Collecting data from large studies on high-throughput platforms, such as microarray or next-generation sequencing, typically requires processing samples in batches. There are often systematic but unpredictable biases from batch-to-batch, so proper randomization of biologically relevant traits across batches is crucial for distinguishing true biological differences from experimental artifacts. When a large number of traits are biologically relevant, as is common for clinical studies of patients with varying sex, age, genotype and medical background, proper randomization can be extremely difficult to prepare by hand, especially because traits may affect biological inferences, such as differential expression, in a combinatorial manner. Here we present ARTS (automated randomization of multiple traits for study design), which aids researchers in study design by automatically optimizing batch assignment for any number of samples, any number of traits and any batch size. ARTS is implemented in Perl and is available at github.com/mmaiensc/ARTS. ARTS is also available in the Galaxy Tool Shed, and can be used at the Galaxy installation hosted by the UIC Center for Research Informatics (CRI) at galaxy.cri.uic.edu. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Biomedical imaging with THz waves

    NASA Astrophysics Data System (ADS)

    Nguyen, Andrew

    2010-03-01

    We discuss biomedical imaging using radio waves operating in the terahertz (THz) range between 300 GHz to 3 THz. Particularly, we present the concept for two THz imaging systems. One system employs single antenna, transmitter and receiver operating over multi-THz-frequency simultaneously for sensing and imaging small areas of the human body or biological samples. Another system consists of multiple antennas, a transmitter, and multiple receivers operating over multi-THz-frequency capable of sensing and imaging simultaneously the whole body or large biological samples. Using THz waves for biomedical imaging promises unique and substantial medical benefits including extremely small medical devices, extraordinarily fine spatial resolution, and excellent contrast between images of diseased and healthy tissues. THz imaging is extremely attractive for detection of cancer in the early stages, sensing and imaging of tissues near the skin, and study of disease and its growth versus time.

  8. Epsilon-Q: An Automated Analyzer Interface for Mass Spectral Library Search and Label-Free Protein Quantification.

    PubMed

    Cho, Jin-Young; Lee, Hyoung-Joo; Jeong, Seul-Ki; Paik, Young-Ki

    2017-12-01

    Mass spectrometry (MS) is a widely used proteome analysis tool for biomedical science. In an MS-based bottom-up proteomic approach to protein identification, sequence database (DB) searching has been routinely used because of its simplicity and convenience. However, searching a sequence DB with multiple variable modification options can increase processing time, false-positive errors in large and complicated MS data sets. Spectral library searching is an alternative solution, avoiding the limitations of sequence DB searching and allowing the detection of more peptides with high sensitivity. Unfortunately, this technique has less proteome coverage, resulting in limitations in the detection of novel and whole peptide sequences in biological samples. To solve these problems, we previously developed the "Combo-Spec Search" method, which uses manually multiple references and simulated spectral library searching to analyze whole proteomes in a biological sample. In this study, we have developed a new analytical interface tool called "Epsilon-Q" to enhance the functions of both the Combo-Spec Search method and label-free protein quantification. Epsilon-Q performs automatically multiple spectral library searching, class-specific false-discovery rate control, and result integration. It has a user-friendly graphical interface and demonstrates good performance in identifying and quantifying proteins by supporting standard MS data formats and spectrum-to-spectrum matching powered by SpectraST. Furthermore, when the Epsilon-Q interface is combined with the Combo-Spec search method, called the Epsilon-Q system, it shows a synergistic function by outperforming other sequence DB search engines for identifying and quantifying low-abundance proteins in biological samples. The Epsilon-Q system can be a versatile tool for comparative proteome analysis based on multiple spectral libraries and label-free quantification.

  9. GENESIS 1.1: A hybrid-parallel molecular dynamics simulator with enhanced sampling algorithms on multiple computational platforms.

    PubMed

    Kobayashi, Chigusa; Jung, Jaewoon; Matsunaga, Yasuhiro; Mori, Takaharu; Ando, Tadashi; Tamura, Koichi; Kamiya, Motoshi; Sugita, Yuji

    2017-09-30

    GENeralized-Ensemble SImulation System (GENESIS) is a software package for molecular dynamics (MD) simulation of biological systems. It is designed to extend limitations in system size and accessible time scale by adopting highly parallelized schemes and enhanced conformational sampling algorithms. In this new version, GENESIS 1.1, new functions and advanced algorithms have been added. The all-atom and coarse-grained potential energy functions used in AMBER and GROMACS packages now become available in addition to CHARMM energy functions. The performance of MD simulations has been greatly improved by further optimization, multiple time-step integration, and hybrid (CPU + GPU) computing. The string method and replica-exchange umbrella sampling with flexible collective variable choice are used for finding the minimum free-energy pathway and obtaining free-energy profiles for conformational changes of a macromolecule. These new features increase the usefulness and power of GENESIS for modeling and simulation in biological research. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Three-dimensional refractive index and fluorescence tomography using structured illumination (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Park, GwangSik; Shin, SeungWoo; Kim, Kyoohyun; Park, YongKeun

    2017-02-01

    Optical diffraction tomography (ODT) has been an emerging optical technique for label-free imaging of three-dimensional (3-D) refractive index (RI) distribution of biological samples. ODT employs interferometric microscopy for measuring multiple holograms of samples with various incident angles, from which the Fourier diffraction theorem reconstructs the 3-D RI distribution of samples from retrieved complex optical fields. Since the RI value is linearly proportional to the protein concentration of biological samples where the proportional coefficient is called as refractive index increment (RII), reconstructed 3-D RI tomograms provide precise structural and biochemical information of individual biological samples. Because most proteins have similar RII value, however, ODT has limited molecular specificity, especially for imaging eukaryotic cells having various types of proteins and subcellular organelles. Here, we present an ODT system combined with structured illumination microscopy which can measure the 3-D RI distribution of biological samples as well as 3-D super-resolution fluorescent images in the same optical setup. A digital micromirror device (DMD) controls the incident angle of the illumination beam for tomogram reconstruction, and the same DMD modulates the structured illumination pattern of the excitation beam for super-resolution fluorescent imaging. We first validate the proposed method for simultaneous optical diffraction tomographic imaging and super-resolution fluorescent imaging of fluorescent beads. The proposed method is also exploited for various biological samples.

  11. The profiling of the metabolites of hirsutine in rat by ultra-high performance liquid chromatography coupled with linear ion trap Orbitrap mass spectrometry: An improved strategy for the systematic screening and identification of metabolites in multi-samples in vivo.

    PubMed

    Wang, Jianwei; Qi, Peng; Hou, Jinjun; Shen, Yao; Yang, Min; Bi, Qirui; Deng, Yanping; Shi, Xiaojian; Feng, Ruihong; Feng, Zijin; Wu, Wanying; Guo, Dean

    2017-02-05

    Drug metabolites identification and construction of metabolic profile are meaningful work for the drug discovery and development. The great challenge during this process is the work of the structural clarification of possible metabolites in the complicated biological matrix, which often resulting in a huge amount data sets, especially in multi-samples in vivo. Analyzing these complex data manually is time-consuming and laborious. The object of this study was to develop a practical strategy for screening and identifying of metabolites from multiple biological samples efficiently. Using hirsutine (HTI), an active components of Uncaria rhynchophylla (Gouteng in Chinese) as a model and its plasma, urine, bile, feces and various tissues were analyzed with data processing software (Metwork), data mining tool (Progenesis QI), and HR-MS n data by ultra-high performance liquid chromatography/linear ion trap-Orbitrap mass spectrometry (U-HPLC/LTQ-Orbitrap-MS). A total of 67 metabolites of HTI in rat biological samples were tentatively identified with established library, and to our knowledge most of which were reported for the first time. The possible metabolic pathways were subsequently proposed, hydroxylation, dehydrogenation, oxidation, N-oxidation, hydrolysis, reduction and glucuronide conjugation were mainly involved according to metabolic profile. The result proved application of this improved strategy was efficient, rapid, and reliable for metabolic profiling of components in multiple biological samples and could significantly expand our understanding of metabolic situation of TCM in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Universal nucleic acids sample preparation method for cells, spores and their mixture

    DOEpatents

    Bavykin, Sergei [Darien, IL

    2011-01-18

    The present invention relates to a method for extracting nucleic acids from biological samples. More specifically the invention relates to a universal method for extracting nucleic acids from unidentified biological samples. An advantage of the presently invented method is its ability to effectively and efficiently extract nucleic acids from a variety of different cell types including but not limited to prokaryotic or eukaryotic cells and/or recalcitrant organisms (i.e. spores). Unlike prior art methods which are focused on extracting nucleic acids from vegetative cell or spores, the present invention effectively extracts nucleic acids from spores, multiple cell types or mixtures thereof using a single method. Important that the invented method has demonstrated an ability to extract nucleic acids from spores and vegetative bacterial cells with similar levels effectiveness. The invented method employs a multi-step protocol which erodes the cell structure of the biological sample, isolates, labels, fragments nucleic acids and purifies labeled samples from the excess of dye.

  13. Customized oligonucleotide microchips that convert multiple genetic information to simple patterns, are portable and reusable

    DOEpatents

    Mirzabekov, Andrei; Guschin, Dmitry Y.; Chik, Valentine; Drobyshev, Aleksei; Fotin, Alexander; Yershov, Gennadiy; Lysov, Yuri

    2002-01-01

    This invention relates to using customized oligonucleotide microchips as biosensors for the detection and identification of nucleic acids specific for different genes, organisms and/or individuals in the environment, in food and in biological samples. The microchips are designed to convert multiple bits of genetic information into simpler patterns of signals that are interpreted as a unit. Because of an improved method of hybridizing oligonucleotides from samples to microchips, microchips are reusable and transportable. For field study, portable laser or bar code scanners are suitable.

  14. Flexible imaging payload for real-time fluorescent biological imaging in parabolic, suborbital and space analog environments

    NASA Astrophysics Data System (ADS)

    Bamsey, Matthew T.; Paul, Anna-Lisa; Graham, Thomas; Ferl, Robert J.

    2014-10-01

    Fluorescent imaging offers the ability to monitor biological functions, in this case biological responses to space-related environments. For plants, fluorescent imaging can include general health indicators such as chlorophyll fluorescence as well as specific metabolic indicators such as engineered fluorescent reporters. This paper describes the Flex Imager a fluorescent imaging payload designed for Middeck Locker deployment and now tested on multiple flight and flight-related platforms. The Flex Imager and associated payload elements have been developed with a focus on 'flexibility' allowing for multiple imaging modalities and change-out of individual imaging or control components in the field. The imaging platform is contained within the standard Middeck Locker spaceflight form factor, with components affixed to a baseplate that permits easy rearrangement and fine adjustment of components. The Flex Imager utilizes standard software packages to simplify operation, operator training, and evaluation by flight provider flight test engineers, or by researchers processing the raw data. Images are obtained using a commercial cooled CCD image sensor, with light-emitting diodes for excitation and a suite of filters that allow biological samples to be imaged over wavelength bands of interest. Although baselined for the monitoring of green fluorescent protein and chlorophyll fluorescence from Arabidopsis samples, the Flex Imager payload permits imaging of any biological sample contained within a standard 10 cm by 10 cm square Petri plate. A sample holder was developed to secure sample plates under different flight profiles while permitting sample change-out should crewed operations be possible. In addition to crew-directed imaging, autonomous or telemetric operation of the payload is also a viable operational mode. An infrared camera has also been integrated into the Flex Imager payload to allow concurrent fluorescent and thermal imaging of samples. The Flex Imager has been utilized to assess, in real-time, the response of plants to novel environments including various spaceflight analogs, including several parabolic flight environments as well as hypobaric plant growth chambers. Basic performance results obtained under these operational environments, as well as laboratory-based tests are described. The Flex Imager has also been designed to be compatible with emerging suborbital platforms.

  15. Multiple analyte adduct formation in liquid chromatography-tandem mass spectrometry - Advantages and limitations in the analysis of biologically-related samples.

    PubMed

    Dziadosz, Marek

    2018-05-01

    Multiple analyte adduct formation was examined and discussed in the context of reproducible signal detection in liquid chromatography-tandem mass spectrometry applied in the analysis of biologically-related samples. Appropriate infusion solutions were prepared in H 2 O/methanol (3/97, v/v) with 1 mM sodium acetate and 10 mM acetic acid. An API 4000 QTrap tandem mass spectrometer was used for experiments performed in the negative scan mode (-Q1 MS) and the negative enhanced product ion mode (-EPI). γ‑Hydroxybutyrate and its deuterated form were used as model compounds to highlight both the complexity of adduct formation in popular mobile phases used and the effective signal compensation by the application of isotope-labelled analytes as internal standards. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Complex, non-monotonic dose-response curves with multiple maxima: Do we (ever) sample densely enough?

    PubMed

    Cvrčková, Fatima; Luštinec, Jiří; Žárský, Viktor

    2015-01-01

    We usually expect the dose-response curves of biological responses to quantifiable stimuli to be simple, either monotonic or exhibiting a single maximum or minimum. Deviations are often viewed as experimental noise. However, detailed measurements in plant primary tissue cultures (stem pith explants of kale and tobacco) exposed to varying doses of sucrose, cytokinins (BA or kinetin) or auxins (IAA or NAA) revealed that growth and several biochemical parameters exhibit multiple reproducible, statistically significant maxima over a wide range of exogenous substance concentrations. This results in complex, non-monotonic dose-response curves, reminiscent of previous reports of analogous observations in both metazoan and plant systems responding to diverse pharmacological treatments. These findings suggest the existence of a hitherto neglected class of biological phenomena resulting in dose-response curves exhibiting periodic patterns of maxima and minima, whose causes remain so far uncharacterized, partly due to insufficient sampling frequency used in many studies.

  17. Ultra-high performance liquid chromatography tandem mass spectrometry for the determination of five glycopeptide antibiotics in food and biological samples using solid-phase extraction.

    PubMed

    Deng, Fenfang; Yu, Hong; Pan, Xinhong; Hu, Guoyuan; Wang, Qiqin; Peng, Rongfei; Tan, Lei; Yang, Zhicong

    2018-02-23

    This paper demonstrated the development and validation of an ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method for simultaneous determination of five glycopeptide antibiotics in food and biological samples. The target glycopeptide antibiotics were isolated from the samples by solvent extraction, and the extracts were cleaned with a tandem solid-phase extraction step using mixed strong cation exchange and hydrophilic/lipophilic balance cartridges. Subsequently, the analytes were eluted with different solvents, and then quantified by UHPLC-MS/MS in the positive ionization mode with multiple reaction monitoring. Under optimal conditions, good linear correlations were obtained for the five glycopeptide antibiotics in the concentration range of 1.0 μg/L to 20.0 μg/L, and with linear correlation coefficients >0.998. Employing this method, the target glycopeptide antibiotics in food and biological samples were identified with a recovery of 83.0-102%, and a low quantitation limit of 1.0 μg/kg in food and 2.0 μg/L in biological samples with low matrix effects. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. A structured sparse regression method for estimating isoform expression level from multi-sample RNA-seq data.

    PubMed

    Zhang, L; Liu, X J

    2016-06-03

    With the rapid development of next-generation high-throughput sequencing technology, RNA-seq has become a standard and important technique for transcriptome analysis. For multi-sample RNA-seq data, the existing expression estimation methods usually deal with each single-RNA-seq sample, and ignore that the read distributions are consistent across multiple samples. In the current study, we propose a structured sparse regression method, SSRSeq, to estimate isoform expression using multi-sample RNA-seq data. SSRSeq uses a non-parameter model to capture the general tendency of non-uniformity read distribution for all genes across multiple samples. Additionally, our method adds a structured sparse regularization, which not only incorporates the sparse specificity between a gene and its corresponding isoform expression levels, but also reduces the effects of noisy reads, especially for lowly expressed genes and isoforms. Four real datasets were used to evaluate our method on isoform expression estimation. Compared with other popular methods, SSRSeq reduced the variance between multiple samples, and produced more accurate isoform expression estimations, and thus more meaningful biological interpretations.

  19. Testing biological liquid samples using modified m-line spectroscopy method

    NASA Astrophysics Data System (ADS)

    Augusciuk, Elzbieta; Rybiński, Grzegorz

    2005-09-01

    Non-chemical method of detection of sugar concentration in biological (animal and plant source) liquids has been investigated. Simplified set was build to show the easy way of carrying out the survey and to make easy to gather multiple measurements for error detecting and statistics. Method is suggested as easy and cheap alternative for chemical methods of measuring sugar concentration, but needing a lot effort to be made precise.

  20. Cell purification: a new challenge for biobanks.

    PubMed

    Almeida, Maria; García-Montero, Andres C; Orfao, Alberto

    2014-01-01

    Performing '-omics' analyses on heterogeneous biological tissue samples, such as blood or bone marrow, can lead to biased or even erroneous results, particularly when the targeted cells and/or molecules are present at relatively low percentages/amounts. In such cases, whole sample analysis will most probably dilute and mask the features of the cell and/or molecules of interest, and this will negatively impact the results and their interpretation. Therefore, frequently it is critically important to have well-characterized and high-quality purified cell populations for the reliable detection of subtle variations in their specific features, such as gene expression profile, protein expression pattern and metabolic status. Biobanks are technological platforms which aim to provide researchers access to a large number of high-quality biological samples and their associated data, particularly to support high-quality scientific and clinical research projects, and such projects will benefit enormously by having access to high-quality purified cell populations or their biological components (e.g. DNA, RNA, proteins). Therefore, a clear opportunity exists for preparative cell sorting techniques in biobanks. Although multiple different cell purification approaches exist or are under development (e.g. cell purification techniques based on cell adherence, density and/or cell size properties, methods based on antibody binding as well as new lab-on-a-chip purification techniques), the choice for a specific technology depends on multiple variables, including cell recovery, purity and yield, among others. In addition, most cell purification approaches are not well suited for high-throughput (HT) purification of multiple cell populations coexisting in a sample. Here we review the most (currently) used cell sorting methods that may be applied for sample preparation in biobanks. For the different approaches, technical considerations about their advantages and limitations are highlighted, and the requirements to be met by a HT cell sorting technology to be used in biobanks are also discussed.

  1. Identification of Chiari Type I Malformation subtypes using whole genome expression profiles and cranial base morphometrics

    PubMed Central

    2014-01-01

    Background Chiari Type I Malformation (CMI) is characterized by herniation of the cerebellar tonsils through the foramen magnum at the base of the skull, resulting in significant neurologic morbidity. As CMI patients display a high degree of clinical variability and multiple mechanisms have been proposed for tonsillar herniation, it is hypothesized that this heterogeneous disorder is due to multiple genetic and environmental factors. The purpose of the present study was to gain a better understanding of what factors contribute to this heterogeneity by using an unsupervised statistical approach to define disease subtypes within a case-only pediatric population. Methods A collection of forty-four pediatric CMI patients were ascertained to identify disease subtypes using whole genome expression profiles generated from patient blood and dura mater tissue samples, and radiological data consisting of posterior fossa (PF) morphometrics. Sparse k-means clustering and an extension to accommodate multiple data sources were used to cluster patients into more homogeneous groups using biological and radiological data both individually and collectively. Results All clustering analyses resulted in the significant identification of patient classes, with the pure biological classes derived from patient blood and dura mater samples demonstrating the strongest evidence. Those patient classes were further characterized by identifying enriched biological pathways, as well as correlated cranial base morphological and clinical traits. Conclusions Our results implicate several strong biological candidates warranting further investigation from the dura expression analysis and also identified a blood gene expression profile corresponding to a global down-regulation in protein synthesis. PMID:24962150

  2. Leaf LIMS: A Flexible Laboratory Information Management System with a Synthetic Biology Focus.

    PubMed

    Craig, Thomas; Holland, Richard; D'Amore, Rosalinda; Johnson, James R; McCue, Hannah V; West, Anthony; Zulkower, Valentin; Tekotte, Hille; Cai, Yizhi; Swan, Daniel; Davey, Robert P; Hertz-Fowler, Christiane; Hall, Anthony; Caddick, Mark

    2017-12-15

    This paper presents Leaf LIMS, a flexible laboratory information management system (LIMS) designed to address the complexity of synthetic biology workflows. At the project's inception there was a lack of a LIMS designed specifically to address synthetic biology processes, with most systems focused on either next generation sequencing or biobanks and clinical sample handling. Leaf LIMS implements integrated project, item, and laboratory stock tracking, offering complete sample and construct genealogy, materials and lot tracking, and modular assay data capture. Hence, it enables highly configurable task-based workflows and supports data capture from project inception to completion. As such, in addition to it supporting synthetic biology it is ideal for many laboratory environments with multiple projects and users. The system is deployed as a web application through Docker and is provided under a permissive MIT license. It is freely available for download at https://leaflims.github.io .

  3. LARGE RIVER ASSESSMENT METHODS FOR BENTHIC MACROINVERTEBRATES AND FISH

    EPA Science Inventory

    Multiple projects are currently underway to increase our understanding of the varying results of different sampling methods and designs used for the biological assessment and monitoring of large (boatable) rivers. Studies include methods used to assess fish, benthic macroinverte...

  4. “It’s my blood”: ethical complexities in the use, storage and export of biological samples: perspectives from South African research participants

    PubMed Central

    2014-01-01

    Background The use of biological samples in research raises a number of ethical issues in relation to consent, storage, export, benefit sharing and re-use of samples. Participant perspectives have been explored in North America and Europe, with only a few studies reported in Africa. The amount of research being conducted in Africa is growing exponentially with volumes of biological samples being exported from the African continent. In order to investigate the perspectives of African research participants, we conducted a study at research sites in the Western Cape and Gauteng, South Africa. Methods Data were collected using a semi-structured questionnaire that captured both quantitative and qualitative information at 6 research sites in South Africa. Interviews were conducted in English and Afrikaans. Data were analysed both quantitatively and qualitatively. Results Our study indicates that while the majority of participants were supportive of providing samples for research, serious concerns were voiced about future use, benefit sharing and export of samples. While researchers view the provision of biosamples as a donation, participants believe that they still have ownership rights and are therefore in favour of benefit sharing. Almost half of the participants expressed a desire to be re-contacted for consent for future use of their samples. Interesting opinions were expressed with respect to export of samples. Conclusions Eliciting participant perspectives is an important part of community engagement in research involving biological sample collection, export, storage and future use. A tiered consent process appears to be more acceptable to participants in this study. Eliciting opinions of researchers and research ethics committee (REC) members would contribute multiple perspectives. Further research is required to interrogate the concept of ownership and the consent process in research involving biological samples. PMID:24447822

  5. MPLEx: a Robust and Universal Protocol for Single-Sample Integrative Proteomic, Metabolomic, and Lipidomic Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakayasu, Ernesto S.; Nicora, Carrie D.; Sims, Amy C.

    2016-05-03

    ABSTRACT Integrative multi-omics analyses can empower more effective investigation and complete understanding of complex biological systems. Despite recent advances in a range of omics analyses, multi-omic measurements of the same sample are still challenging and current methods have not been well evaluated in terms of reproducibility and broad applicability. Here we adapted a solvent-based method, widely applied for extracting lipids and metabolites, to add proteomics to mass spectrometry-based multi-omics measurements. Themetabolite,protein, andlipidextraction (MPLEx) protocol proved to be robust and applicable to a diverse set of sample types, including cell cultures, microbial communities, and tissues. To illustrate the utility of thismore » protocol, an integrative multi-omics analysis was performed using a lung epithelial cell line infected with Middle East respiratory syndrome coronavirus, which showed the impact of this virus on the host glycolytic pathway and also suggested a role for lipids during infection. The MPLEx method is a simple, fast, and robust protocol that can be applied for integrative multi-omic measurements from diverse sample types (e.g., environmental,in vitro, and clinical). IMPORTANCEIn systems biology studies, the integration of multiple omics measurements (i.e., genomics, transcriptomics, proteomics, metabolomics, and lipidomics) has been shown to provide a more complete and informative view of biological pathways. Thus, the prospect of extracting different types of molecules (e.g., DNAs, RNAs, proteins, and metabolites) and performing multiple omics measurements on single samples is very attractive, but such studies are challenging due to the fact that the extraction conditions differ according to the molecule type. Here, we adapted an organic solvent-based extraction method that demonstrated broad applicability and robustness, which enabled comprehensive proteomics, metabolomics, and lipidomics analyses from the same sample.« less

  6. Hyperspectral stimulated emission depletion microscopy and methods of use thereof

    DOEpatents

    Timlin, Jerilyn A; Aaron, Jesse S

    2014-04-01

    A hyperspectral stimulated emission depletion ("STED") microscope system for high-resolution imaging of samples labeled with multiple fluorophores (e.g., two to ten fluorophores). The hyperspectral STED microscope includes a light source, optical systems configured for generating an excitation light beam and a depletion light beam, optical systems configured for focusing the excitation and depletion light beams on a sample, and systems for collecting and processing data generated by interaction of the excitation and depletion light beams with the sample. Hyperspectral STED data may be analyzed using multivariate curve resolution analysis techniques to deconvolute emission from the multiple fluorophores. The hyperspectral STED microscope described herein can be used for multi-color, subdiffraction imaging of samples (e.g., materials and biological materials) and for analyzing a tissue by Forster Resonance Energy Transfer ("FRET").

  7. Imaging complex objects using learning tomography

    NASA Astrophysics Data System (ADS)

    Lim, JooWon; Goy, Alexandre; Shoreh, Morteza Hasani; Unser, Michael; Psaltis, Demetri

    2018-02-01

    Optical diffraction tomography (ODT) can be described using the scattering process through an inhomogeneous media. An inherent nonlinearity exists relating the scattering medium and the scattered field due to multiple scattering. Multiple scattering is often assumed to be negligible in weakly scattering media. This assumption becomes invalid as the sample gets more complex resulting in distorted image reconstructions. This issue becomes very critical when we image a complex sample. Multiple scattering can be simulated using the beam propagation method (BPM) as the forward model of ODT combined with an iterative reconstruction scheme. The iterative error reduction scheme and the multi-layer structure of BPM are similar to neural networks. Therefore we refer to our imaging method as learning tomography (LT). To fairly assess the performance of LT in imaging complex samples, we compared LT with the conventional iterative linear scheme using Mie theory which provides the ground truth. We also demonstrate the capacity of LT to image complex samples using experimental data of a biological cell.

  8. Sample preparation techniques for the determination of natural 15N/14N variations in amino acids by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS).

    PubMed

    Hofmann, D; Gehre, M; Jung, K

    2003-09-01

    In order to identify natural nitrogen isotope variations of biologically important amino acids four derivatization reactions (t-butylmethylsilylation, esterification with subsequent trifluoroacetylation, acetylation and pivaloylation) were tested with standard mixtures of 17 proteinogenic amino acids and plant (moss) samples using GC-C-IRMS. The possible fractionation of the nitrogen isotopes, caused for instance by the formation of multiple reaction products, was investigated. For biological samples, the esterification of the amino acids with subsequent trifluoroacetylation is recommended for nitrogen isotope ratio analysis. A sample preparation technique is described for the isotope ratio mass spectrometric analysis of amino acids from the non-protein (NPN) fraction of terrestrial moss. 14N/15N ratios from moss (Scleropodium spec.) samples from different anthropogenically polluted areas were studied with respect to ecotoxicologal bioindication.

  9. Semi-automated 96-well liquid-liquid extraction for quantitation of drugs in biological fluids.

    PubMed

    Zhang, N; Hoffman, K L; Li, W; Rossi, D T

    2000-02-01

    A semi-automated liquid-liquid extraction (LLE) technique for biological fluid sample preparation was introduced for the quantitation of four drugs in rat plasma. All liquid transferring during the sample preparation was automated using a Tomtec Quadra 96 Model 320 liquid handling robot, which processed up to 96 samples in parallel. The samples were either in 96-deep-well plate or tube-rack format. One plate of samples can be prepared in approximately 1.5 h, and the 96-well plate is directly compatible with the autosampler of an LC/MS system. Selection of organic solvents and recoveries are discussed. Also, precision, relative error, linearity and quantitation of the semi automated LLE method are estimated for four example drugs using LC/MS/MS with a multiple reaction monitoring (MRM) approach. The applicability of this method and future directions are evaluated.

  10. Integrated experimental platforms to study blast injuries: a bottom-up approach

    NASA Astrophysics Data System (ADS)

    Bo, C.; Williams, A.; Rankin, S.; Proud, W. G.; Brown, K. A.

    2014-05-01

    We are developing experimental models of blast injury using data from live biological samples. An integrated research strategy is followed to study material and biological properties of cells, tissues and organs, that are subjected to dynamic and static pressures, relevant to those of battlefield blast. We have developed a confined Split Hopkinson Pressure Bar (SHPB) system, which allows cells, either in suspension or as a monolayer, to be subjected to compression waves with pressures on the order of a few MPa and durations of hundreds of microseconds. The chamber design enables recovery of biological samples for cellular and molecular analysis. The SHPB platform, coupled with Quasi-Static experiments, is used to determine stress-strain curves of soft biological tissues under compression at low, medium and high strain rates. Tissue samples are examined, using histological techniques, to study macro- and microscopic changes induced by compression waves. In addition, a shock tube enables application of single or multiple air blasts with pressures on the order of kPa and a few milliseconds duration; this platform was used for initial studies on mesenchymal stem cells responses to blast pressures.

  11. Methods to Detect Nitric Oxide and its Metabolites in Biological Samples

    PubMed Central

    Bryan, Nathan S.; Grisham, Matthew B.

    2007-01-01

    Nitric oxide (NO) methodology is a complex and often confusing science and the focus of many debates and discussion concerning NO biochemistry. NO is involved in many physiological processes including regulation of blood pressure, immune response and neural communication. Therefore its accurate detection and quantification is critical to understanding health and disease. Due to the extremely short physiological half life of this gaseous free radical, alternative strategies for the detection of reaction products of NO biochemistry have been developed. The quantification of NO metabolites in biological samples provides valuable information with regards to in vivo NO production, bioavailability and metabolism. Simply sampling a single compartment such as blood or plasma may not always provide an accurate assessment of whole body NO status, particularly in tissues. Therefore, extrapolation of plasma or blood NO status to specific tissues of interest is no longer a valid approach. As a result, methods continue to be developed and validated which allow the detection and quantification of NO and NO-related products/metabolites in multiple compartments of experimental animals in vivo. The methods described in this review is not an exhaustive or comprehensive discussion of all methods available for the detection of NO but rather a description of the most commonly used and practical methods which allow accurate and sensitive quantification of NO products/metabolites in multiple biological matrices under normal physiological conditions. PMID:17664129

  12. Simultaneous measurement of NAD metabolome in aged mice tissue using liquid chromatography tandem-mass spectrometry.

    PubMed

    Yaku, Keisuke; Okabe, Keisuke; Nakagawa, Takashi

    2018-06-01

    Nicotinamide adenine dinucleotide (NAD) is a major co-factor that mediates multiple biological processes including redox reaction and gene expression. Recently, NAD metabolism has received considerable attention because administration of NAD precursors exhibited beneficial effects against aging-related metabolic disorders in animals. Although numerous studies have reported that NAD levels decline with aging in multiple animal tissues, the pathway and kinetics of NAD metabolism in aged organs are not completely understood. To determine the NAD metabolism upon aging, we developed targeted metabolomics based on an LC/MS/MS system. Our method is simple and applicable to crude biological samples, including culture cells and animal tissues. Unlike a conventional enzymatic cycling assay, our approach can determine NAD and NADH (reduced form of NAD) by performing a single sample preparation. Further, we validated our method using biological samples and investigated the alteration of the NAD metabolome during aging. Consistent with previous reports, the NAD levels in the liver and skeletal muscle decreased with aging. Further, we detected a significant increase in nicotinamide mononucleotide and nicotinamide riboside in the kidney upon aging. The LC/MS/MS-based NAD metabolomics that we have developed is extensively applicable to biomedical studies, and the results will present innovative ideas for the aging studies, especially for that of NAD metabolism. Copyright © 2018 John Wiley & Sons, Ltd.

  13. Out-of-School Experience Categories Influencing Interest in Science of Upper Primary Students by Gender and Locale: Exploration on an Indian Sample

    ERIC Educational Resources Information Center

    Gafoor, K. Abdul; Narayan, Smitha

    2012-01-01

    In view of student shift away from science at advanced levels, and gender and locale based divergence in interest in studying physics, chemistry and biology, this study explores experience categories that significantly contribute to interest in science on a sample of upper primary school students from Kerala, India. A series of multiple regression…

  14. A Centrifugal Microfluidic Platform That Separates Whole Blood Samples into Multiple Removable Fractions Due to Several Discrete but Continuous Density Gradient Sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moen, Scott T.; Hatcher, Christopher L.; Singh, Anup K.

    We present a miniaturized centrifugal platform that uses density centrifugation for separation and analysis of biological components in small volume samples (~5 μL). We demonstrate the ability to enrich leukocytes for on-disk visualization via microscopy, as well as recovery of viable cells from each of the gradient partitions. In addition, we simplified the traditional Modified Wright-Giemsa staining by decreasing the time, volume, and expertise involved in the procedure. From a whole blood sample, we were able to extract 95.15% of leukocytes while excluding 99.8% of red blood cells. Furthermore, this platform has great potential in both medical diagnostics and researchmore » applications as it offers a simpler, automated, and inexpensive method for biological sample separation, analysis, and downstream culturing.« less

  15. A Centrifugal Microfluidic Platform That Separates Whole Blood Samples into Multiple Removable Fractions Due to Several Discrete but Continuous Density Gradient Sections

    DOE PAGES

    Moen, Scott T.; Hatcher, Christopher L.; Singh, Anup K.

    2016-04-07

    We present a miniaturized centrifugal platform that uses density centrifugation for separation and analysis of biological components in small volume samples (~5 μL). We demonstrate the ability to enrich leukocytes for on-disk visualization via microscopy, as well as recovery of viable cells from each of the gradient partitions. In addition, we simplified the traditional Modified Wright-Giemsa staining by decreasing the time, volume, and expertise involved in the procedure. From a whole blood sample, we were able to extract 95.15% of leukocytes while excluding 99.8% of red blood cells. Furthermore, this platform has great potential in both medical diagnostics and researchmore » applications as it offers a simpler, automated, and inexpensive method for biological sample separation, analysis, and downstream culturing.« less

  16. A review of microdialysis coupled to microchip electrophoresis for monitoring biological events

    PubMed Central

    Saylor, Rachel A.; Lunte, Susan M.

    2015-01-01

    Microdialysis is a powerful sampling technique that enables monitoring of dynamic processes in vitro and in vivo. The combination of microdialysis with chromatographic or electrophoretic methods yields along with selective detection methods yields a “separation-based sensor” capable of monitoring multiple analytes in near real time. Analysis of microdialysis samples requires techniques that are fast (<1 min), have low volume requirements (nL–pL), and, ideally, can be employed on-line. Microchip electrophoresis fulfills these requirements and also permits the possibility of integrating sample preparation and manipulation with detection strategies directly on-chip. Microdialysis coupled to microchip electrophoresis has been employed for monitoring biological events in vivo and in vitro. This review discusses technical considerations for coupling microdialysis sampling and microchip electrophoresis, including various interface designs, and current applications in the field. PMID:25637011

  17. Single and multiple streamer DBD micro-discharges for testing inactivation of biologically contaminated surfaces

    NASA Astrophysics Data System (ADS)

    Prukner, Vaclav; Dolezalova, Eva; Simek, Milan

    2014-10-01

    Highly reactive environment produced by atmospheric-pressure, non-equilibrium plasmas generated by surface dielectric barrier discharges (SDBDs) may be used for inactivation of biologically contaminated surfaces. We investigated decontamination efficiency of reactive environment produced by single/multiple surface streamer micro-discharge driven by amplitude-modulated AC power in coplanar electrode geometry on biologically contaminated surface by Escherichia coli. The discharges were fed by synthetic air with water vapor admixtures at atmospheric pressure, time of treatment was set from 10 second to 10 minutes, diameters of used SDBD electrodes (single and multiple streamer) and homogeneously contaminated disc samples were equal (25 mm), the distance between the electrode and contaminated surface was 2 mm. Both a conventional cultivation and fluorescent method LIVE/DEAD Bacterial Viability kit were applied to estimate counts of bacteria after the plasma treatment. Inactivation was effective and bacteria partly lost ability to grow and became injured and viable/active but non-cultivable (VBNC/ABNC). Work was supported by the MEYS under Project LD13010, VES13 COST CZ (COST Action MP 1101).

  18. Biological classification with RNA-Seq data: Can alternatively spliced transcript expression enhance machine learning classifier?

    PubMed

    Johnson, Nathan T; Dhroso, Andi; Hughes, Katelyn J; Korkin, Dmitry

    2018-06-25

    The extent to which the genes are expressed in the cell can be simplistically defined as a function of one or more factors of the environment, lifestyle, and genetics. RNA sequencing (RNA-Seq) is becoming a prevalent approach to quantify gene expression, and is expected to gain better insights to a number of biological and biomedical questions, compared to the DNA microarrays. Most importantly, RNA-Seq allows to quantify expression at the gene and alternative splicing isoform levels. However, leveraging the RNA-Seq data requires development of new data mining and analytics methods. Supervised machine learning methods are commonly used approaches for biological data analysis, and have recently gained attention for their applications to the RNA-Seq data. In this work, we assess the utility of supervised learning methods trained on RNA-Seq data for a diverse range of biological classification tasks. We hypothesize that the isoform-level expression data is more informative for biological classification tasks than the gene-level expression data. Our large-scale assessment is done through utilizing multiple datasets, organisms, lab groups, and RNA-Seq analysis pipelines. Overall, we performed and assessed 61 biological classification problems that leverage three independent RNA-Seq datasets and include over 2,000 samples that come from multiple organisms, lab groups, and RNA-Seq analyses. These 61 problems include predictions of the tissue type, sex, or age of the sample, healthy or cancerous phenotypes and, the pathological tumor stage for the samples from the cancerous tissue. For each classification problem, the performance of three normalization techniques and six machine learning classifiers was explored. We find that for every single classification problem, the isoform-based classifiers outperform or are comparable with gene expression based methods. The top-performing supervised learning techniques reached a near perfect classification accuracy, demonstrating the utility of supervised learning for RNA-Seq based data analysis. Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  19. High resolution computational on-chip imaging of biological samples using sparsity constraint (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Rivenson, Yair; Wu, Chris; Wang, Hongda; Zhang, Yibo; Ozcan, Aydogan

    2017-03-01

    Microscopic imaging of biological samples such as pathology slides is one of the standard diagnostic methods for screening various diseases, including cancer. These biological samples are usually imaged using traditional optical microscopy tools; however, the high cost, bulkiness and limited imaging throughput of traditional microscopes partially restrict their deployment in resource-limited settings. In order to mitigate this, we previously demonstrated a cost-effective and compact lens-less on-chip microscopy platform with a wide field-of-view of >20-30 mm^2. The lens-less microscopy platform has shown its effectiveness for imaging of highly connected biological samples, such as pathology slides of various tissue samples and smears, among others. This computational holographic microscope requires a set of super-resolved holograms acquired at multiple sample-to-sensor distances, which are used as input to an iterative phase recovery algorithm and holographic reconstruction process, yielding high-resolution images of the samples in phase and amplitude channels. Here we demonstrate that in order to reconstruct clinically relevant images with high resolution and image contrast, we require less than 50% of the previously reported nominal number of holograms acquired at different sample-to-sensor distances. This is achieved by incorporating a loose sparsity constraint as part of the iterative holographic object reconstruction. We demonstrate the success of this sparsity-based computational lens-less microscopy platform by imaging pathology slides of breast cancer tissue and Papanicolaou (Pap) smears.

  20. A microfluidic platform for precision small-volume sample processing and its use to size separate biological particles with an acoustic microdevice [Precision size separation of biological particles in small-volume samples by an acoustic microfluidic system

    DOE PAGES

    Fong, Erika J.; Huang, Chao; Hamilton, Julie; ...

    2015-11-23

    Here, a major advantage of microfluidic devices is the ability to manipulate small sample volumes, thus reducing reagent waste and preserving precious sample. However, to achieve robust sample manipulation it is necessary to address device integration with the macroscale environment. To realize repeatable, sensitive particle separation with microfluidic devices, this protocol presents a complete automated and integrated microfluidic platform that enables precise processing of 0.15–1.5 ml samples using microfluidic devices. Important aspects of this system include modular device layout and robust fixtures resulting in reliable and flexible world to chip connections, and fully-automated fluid handling which accomplishes closed-loop sample collection,more » system cleaning and priming steps to ensure repeatable operation. Different microfluidic devices can be used interchangeably with this architecture. Here we incorporate an acoustofluidic device, detail its characterization, performance optimization, and demonstrate its use for size-separation of biological samples. By using real-time feedback during separation experiments, sample collection is optimized to conserve and concentrate sample. Although requiring the integration of multiple pieces of equipment, advantages of this architecture include the ability to process unknown samples with no additional system optimization, ease of device replacement, and precise, robust sample processing.« less

  1. Allostatic load and biological anthropology.

    PubMed

    Edes, Ashley N; Crews, Douglas E

    2017-01-01

    Multiple stressors affect developing and adult organisms, thereby partly structuring their phenotypes. Determining how stressors influence health, well-being, and longevity in human and nonhuman primate populations are major foci within biological anthropology. Although much effort has been devoted to examining responses to multiple environmental and sociocultural stressors, no holistic metric to measure stress-related physiological dysfunction has been widely applied within biological anthropology. Researchers from disciplines outside anthropology are using allostatic load indices (ALIs) to estimate such dysregulation and examine life-long outcomes of stressor exposures, including morbidity and mortality. Following allostasis theory, allostatic load represents accumulated physiological and somatic damage secondary to stressors and senescent processes experienced over the lifespan. ALIs estimate this wear-and-tear using a composite of biomarkers representing neuroendocrine, cardiovascular, metabolic, and immune systems. Across samples, ALIs are associated significantly with multiple individual characteristics (e.g., age, sex, education, DNA variation) of interest within biological anthropology. They also predict future outcomes, including aspects of life history variation (e.g., survival, lifespan), mental and physical health, morbidity and mortality, and likely health disparities between groups, by stressor exposures, ethnicity, occupations, and degree of departure from local indigenous life ways and integration into external and commodified ones. ALIs also may be applied to similar stress-related research areas among nonhuman primates. Given the reports from multiple research endeavors, here we propose ALIs may be useful for assessing stressors, stress responses, and stress-related dysfunction, current and long-term cognitive function, health and well-being, and risk of early mortality across many research programs within biological anthropology. © 2017 American Association of Physical Anthropologists.

  2. Network-based analysis of differentially expressed genes in cerebrospinal fluid (CSF) and blood reveals new candidate genes for multiple sclerosis

    PubMed Central

    Safari-Alighiarloo, Nahid; Taghizadeh, Mohammad; Tabatabaei, Seyyed Mohammad; Namaki, Saeed

    2016-01-01

    Background The involvement of multiple genes and missing heritability, which are dominant in complex diseases such as multiple sclerosis (MS), entail using network biology to better elucidate their molecular basis and genetic factors. We therefore aimed to integrate interactome (protein–protein interaction (PPI)) and transcriptomes data to construct and analyze PPI networks for MS disease. Methods Gene expression profiles in paired cerebrospinal fluid (CSF) and peripheral blood mononuclear cells (PBMCs) samples from MS patients, sampled in relapse or remission and controls, were analyzed. Differentially expressed genes which determined only in CSF (MS vs. control) and PBMCs (relapse vs. remission) separately integrated with PPI data to construct the Query-Query PPI (QQPPI) networks. The networks were further analyzed to investigate more central genes, functional modules and complexes involved in MS progression. Results The networks were analyzed and high centrality genes were identified. Exploration of functional modules and complexes showed that the majority of high centrality genes incorporated in biological pathways driving MS pathogenesis. Proteasome and spliceosome were also noticeable in enriched pathways in PBMCs (relapse vs. remission) which were identified by both modularity and clique analyses. Finally, STK4, RB1, CDKN1A, CDK1, RAC1, EZH2, SDCBP genes in CSF (MS vs. control) and CDC37, MAP3K3, MYC genes in PBMCs (relapse vs. remission) were identified as potential candidate genes for MS, which were the more central genes involved in biological pathways. Discussion This study showed that network-based analysis could explicate the complex interplay between biological processes underlying MS. Furthermore, an experimental validation of candidate genes can lead to identification of potential therapeutic targets. PMID:28028462

  3. Current dichotomy between traditional molecular biological and omic research in cancer biology and pharmacology.

    PubMed

    Reinhold, William C

    2015-12-10

    There is currently a split within the cancer research community between traditional molecular biological hypothesis-driven and the more recent "omic" forms or research. While the molecular biological approach employs the tried and true single alteration-single response formulations of experimentation, the omic employs broad-based assay or sample collection approaches that generate large volumes of data. How to integrate the benefits of these two approaches in an efficient and productive fashion remains an outstanding issue. Ideally, one would merge the understandability, exactness, simplicity, and testability of the molecular biological approach, with the larger amounts of data, simultaneous consideration of multiple alterations, consideration of genes both of known interest along with the novel, cross-sample comparisons among cell lines and patient samples, and consideration of directed questions while simultaneously gaining exposure to the novel provided by the omic approach. While at the current time integration of the two disciplines remains problematic, attempts to do so are ongoing, and will be necessary for the understanding of the large cell line screens including the Developmental Therapeutics Program's NCI-60, the Broad Institute's Cancer Cell Line Encyclopedia, and the Wellcome Trust Sanger Institute's Cancer Genome Project, as well as the the Cancer Genome Atlas clinical samples project. Going forward there is significant benefit to be had from the integration of the molecular biological and the omic forms or research, with the desired goal being improved translational understanding and application.

  4. Analysis of fuel using the Direct LSC method determination of bio-originated fuel in the presence of quenching

    DOE PAGES

    Doll, Charles G.; Wright, Cherylyn W.; Morley, Shannon M.; ...

    2017-02-01

    In this paper, a modified version of the Direct LSC method to correct for quenching effect was investigated for the determination of bio-originated fuel content in fuel samples produced from multiple biological starting materials. The modified method was found to be accurate in determining the percent bio-originated fuel to within 5% of the actual value for samples with quenching effects ≤43%. Finally, analysis of highly quenched samples was possible when diluted with the exception of one sample with a 100% quenching effect.

  5. Analysis of fuel using the Direct LSC method determination of bio-originated fuel in the presence of quenching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doll, Charles G.; Wright, Cherylyn W.; Morley, Shannon M.

    A modified version of the Direct LSC method to correct for quenching effect was investigated for the determination of bio-originated fuel content in fuel samples produced from multiple biological starting materials. The modified method was found to be accurate in determining the percent bio-originated fuel to within 5% of the actual value for samples with quenching effects ≤43%. Analysis of highly quenched samples was possible when diluted with the exception of one sample with a 100% quenching effect.

  6. Analysis of fuel using the Direct LSC method determination of bio-originated fuel in the presence of quenching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doll, Charles G.; Wright, Cherylyn W.; Morley, Shannon M.

    In this paper, a modified version of the Direct LSC method to correct for quenching effect was investigated for the determination of bio-originated fuel content in fuel samples produced from multiple biological starting materials. The modified method was found to be accurate in determining the percent bio-originated fuel to within 5% of the actual value for samples with quenching effects ≤43%. Finally, analysis of highly quenched samples was possible when diluted with the exception of one sample with a 100% quenching effect.

  7. Generation of light-sheet at the end of multimode fibre (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Plöschner, Martin; Kollárová, Véra; Dostál, Zbyněk.; Nylk, Jonathan; Barton-Owen, Thomas; Ferrier, David E. K.; Chmelik, Radim; Dholakia, Kishan; Cizmár, TomáÅ.¡

    2017-02-01

    Light-sheet fluorescence microscopy is quickly becoming one of the cornerstone imaging techniques in biology as it provides rapid, three-dimensional sectioning of specimens at minimal levels of phototoxicity. It is very appealing to bring this unique combination of imaging properties into an endoscopic setting and be able to perform optical sectioning deep in tissues. Current endoscopic approaches for delivery of light-sheet illumination are based on single-mode optical fibre terminated by cylindrical gradient index lens. Such configuration generates a light-sheet plane that is axially fixed and a mechanical movement of either the sample or the endoscope is required to acquire three-dimensional information about the sample. Furthermore, the axial resolution of this technique is limited to 5um. The delivery of the light-sheet through the multimode fibre provides better axial resolution limited only by its numerical aperture, the light-sheet is scanned holographically without any mechanical movement, and multiple advanced light-sheet imaging modalities, such as Bessel and structured illumination Bessel beam, are intrinsically supported by the system due to the cylindrical symmetry of the fibre. We discuss the holographic techniques for generation of multiple light-sheet types and demonstrate the imaging on a sample of fluorescent beads fixed in agarose gel, as well as on a biological sample of Spirobranchus Lamarcki.

  8. ASSESSING THE CONDITION OF SOUTH CAROLINA'S ESTUARIES: A NEW APPROACH INVOLVING INTEGRATED MEASURES OF CONDITION

    EPA Science Inventory

    The South Carolina Estuarine and Coastal Assessment Program (SCECAP) was initiated in 1999 to assess the condition of the state's coastal habitats using multiple measures of water quality, sediment quality, and biological condition. Sampling has subsequently been expanded to incl...

  9. Advancing microwave technology for dehydration processing of biologics.

    PubMed

    Cellemme, Stephanie L; Van Vorst, Matthew; Paramore, Elisha; Elliott, Gloria D

    2013-10-01

    Our prior work has shown that microwave processing can be effective as a method for dehydrating cell-based suspensions in preparation for anhydrous storage, yielding homogenous samples with predictable and reproducible drying times. In the current work an optimized microwave-based drying process was developed that expands upon this previous proof-of-concept. Utilization of a commercial microwave (CEM SAM 255, Matthews, NC) enabled continuous drying at variable low power settings. A new turntable was manufactured from Ultra High Molecular Weight Polyethylene (UHMW-PE; Grainger, Lake Forest, IL) to provide for drying of up to 12 samples at a time. The new process enabled rapid and simultaneous drying of multiple samples in containment devices suitable for long-term storage and aseptic rehydration of the sample. To determine sample repeatability and consistency of drying within the microwave cavity, a concentration series of aqueous trehalose solutions were dried for specific intervals and water content assessed using Karl Fischer Titration at the end of each processing period. Samples were dried on Whatman S-14 conjugate release filters (Whatman, Maidestone, UK), a glass fiber membrane used currently in clinical laboratories. The filters were cut to size for use in a 13 mm Swinnex(®) syringe filter holder (Millipore(™), Billerica, MA). Samples of 40 μL volume could be dehydrated to the equilibrium moisture content by continuous processing at 20% with excellent sample-to-sample repeatability. The microwave-assisted procedure enabled high throughput, repeatable drying of multiple samples, in a manner easily adaptable for drying a wide array of biological samples. Depending on the tolerance for sample heating, the drying time can be altered by changing the power level of the microwave unit.

  10. On sampling biases arising from insufficient bottle flushing

    NASA Astrophysics Data System (ADS)

    Codispoti, L. A.; Paver, C. R.

    2016-02-01

    Collection of representative water samples using carousel bottles is important for accurately determining biological and chemical gradients. The development of more technologically advanced instrumentation and sampling apparatus causes sampling packages to increase and "soak times" to decrease, increasing the probability that insufficient bottle flushing will produce biased results. Qualitative evidence from various expeditions suggest that insufficient flushing may be a problem. Here we report on multiple field experiments that were conducted to better quantify the errors that can arise from insufficient bottle flushing. Our experiments suggest that soak times of more than 2 minutes are sometimes required to collect a representative sample.

  11. Chromatographic analysis of tryptophan metabolites

    PubMed Central

    Sadok, Ilona; Gamian, Andrzej

    2017-01-01

    The kynurenine pathway generates multiple tryptophan metabolites called collectively kynurenines and leads to formation of the enzyme cofactor nicotinamide adenine dinucleotide. The first step in this pathway is tryptophan degradation, initiated by the rate‐limiting enzymes indoleamine 2,3‐dioxygenase, or tryptophan 2,3‐dioxygenase, depending on the tissue. The balanced kynurenine metabolism, which has been a subject of multiple studies in last decades, plays an important role in several physiological and pathological conditions such as infections, autoimmunity, neurological disorders, cancer, cataracts, as well as pregnancy. Understanding the regulation of tryptophan depletion provide novel diagnostic and treatment opportunities, however it requires reliable methods for quantification of kynurenines in biological samples with complex composition (body fluids, tissues, or cells). Trace concentrations, interference of sample components, and instability of some tryptophan metabolites need to be addressed using analytical methods. The novel separation approaches and optimized extraction protocols help to overcome difficulties in analyzing kynurenines within the complex tissue material. Recent developments in chromatography coupled with mass spectrometry provide new opportunity for quantification of tryptophan and its degradation products in various biological samples. In this review, we present current accomplishments in the chromatographic methodologies proposed for detection of tryptophan metabolites and provide a guide for choosing the optimal approach. PMID:28590049

  12. Amino Acid Enantiomeric Ratios in Biogeochemistry: Complications and Opportunities

    NASA Astrophysics Data System (ADS)

    McDonald, G. D.; Sun, H. J.; Tsapin, A. I.

    2003-12-01

    Amino acid enantiomeric ratios have been used for many years as an indicator of the process of racemization, and thus as a method to determine the age of biological samples such as bones, shells, and teeth. Dating biological samples by this method relies on an accurate knowledge of the environmental temperatures the sample has experienced, and the racemization kinetic parameters in the sample matrix. In some environments, where an independent dating method such as radiocarbon is available, the observed amino acid D/L ratios are found to be either higher or lower than those expected due to racemization alone. The observed D/L ratios in these cases can be clues to biogeochemical processes operating in addition to, or in place of, chemical racemization. In Siberian permafrost (Brinton et al. 2002, Astrobiology 2, 77) we have found D/L ratios lower than expected, which we have interpreted as evidence for low-level D-amino acid metabolism and recycling in microorganisms previously thought to be metabolically dormant. In microbially-colonized Antarctic Dry Valley sandstones (McDonald and Sun 2002, Eos Trans. AGU 83, Fall Meet. Suppl., Abstract B11A-0720) we have found D/L ratios higher than can be accounted for by racemization alone, most likely due to the accumulation of D-amino-acid-containing peptidoglycan material from multiple bacterial generations. D/L profiles in polar ices and in ice-covered lakes (Tsapin et al. 2002, Astrobiology 2, 632) can be used to indicate the sources and histories of water or ice samples. Multiple biological and biogeochemical processes may complicate the interpretation of amino acid enantiomeric excesses in both terrestrial and extraterrestrial samples; however, amino acid racemization remains a useful tool in biogeochemistry and astrobiology. With a good knowledge of the environmental history of samples, amino acid D/L profiles can be used as a window into processes such as molecular repair and biomass turnover that are difficult to detect by other means, particularly over geological time scales.

  13. Variance partitioning of stream diatom, fish, and invertebrate indicators of biological condition

    USGS Publications Warehouse

    Zuellig, Robert E.; Carlisle, Daren M.; Meador, Michael R.; Potapova, Marina

    2012-01-01

    Stream indicators used to make assessments of biological condition are influenced by many possible sources of variability. To examine this issue, we used multiple-year and multiple-reach diatom, fish, and invertebrate data collected from 20 least-disturbed and 46 developed stream segments between 1993 and 2004 as part of the US Geological Survey National Water Quality Assessment Program. We used a variance-component model to summarize the relative and absolute magnitude of 4 variance components (among-site, among-year, site × year interaction, and residual) in indicator values (observed/expected ratio [O/E] and regional multimetric indices [MMI]) among assemblages and between basin types (least-disturbed and developed). We used multiple-reach samples to evaluate discordance in site assessments of biological condition caused by sampling variability. Overall, patterns in variance partitioning were similar among assemblages and basin types with one exception. Among-site variance dominated the relative contribution to the total variance (64–80% of total variance), residual variance (sampling variance) accounted for more variability (8–26%) than interaction variance (5–12%), and among-year variance was always negligible (0–0.2%). The exception to this general pattern was for invertebrates at least-disturbed sites where variability in O/E indicators was partitioned between among-site and residual (sampling) variance (among-site  =  36%, residual  =  64%). This pattern was not observed for fish and diatom indicators (O/E and regional MMI). We suspect that unexplained sampling variability is what largely remained after the invertebrate indicators (O/E predictive models) had accounted for environmental differences among least-disturbed sites. The influence of sampling variability on discordance of within-site assessments was assemblage or basin-type specific. Discordance among assessments was nearly 2× greater in developed basins (29–31%) than in least-disturbed sites (15–16%) for invertebrates and diatoms, whereas discordance among assessments based on fish did not differ between basin types (least-disturbed  =  16%, developed  =  17%). Assessments made using invertebrate and diatom indicators from a single reach disagreed with other samples collected within the same stream segment nearly ⅓ of the time in developed basins, compared to ⅙ for all other cases.

  14. False positives in Biolog EcoPlates™ and MT2 MicroPlates™ caused by calcium.

    PubMed

    Pierce, Melissa L; Ward, J Evan; Dobbs, Fred C

    2014-02-01

    Biolog MicroPlates(TM) (e.g. EcoPlate(TM), MT2 MicroPlate(TM), GN MicroPlate(TM)) are useful tools for characterizing microbial communities, providing community-level physiological profiles to terrestrial and aquatic ecologists. The more recently designed Biolog EcoPlates have been used frequently in aquatic ecology with success. This study, however, reveals one major problem when using EcoPlates to evaluate samples within an estuarine or seawater matrix. At concentrations greater than 100 parts per million, the cation calcium begins to interfere with the microplate chemistry, causing false positive readings. Experiments, in which multiple treatments of natural and artificial seawater were tested, as well as calcium-addition experiments, demonstrate that calcium inhibits complete dissolution of the minimal growth medium in wells. Future studies involving Biolog EcoPlates and MicroPlates should take this effect into account, and the dilution of samples is strongly recommended to diminish the "calcium effect." Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Case studies of hydrogen sulphide occupational exposure incidents in the UK.

    PubMed

    Jones, Kate

    2014-12-15

    The UK Health and Safety Executive has investigated several incidents of workplace accidents involving hydrogen sulphide exposure in recent years. Biological monitoring has been used in some incidents to determine the cause of unconsciousness resulting from these incidents and as a supporting evidence in regulatory enforcement. This paper reports on three case incidents and discusses the use of biological monitoring in such cases. Biological monitoring has a role in identifying hydrogen sulphide exposure in incidents, whether these are occupational or in the wider environment. Sample type, time of collection and sample storage are important factors in the applicability of this technique. For non-fatal incidents, multiple urine samples are recommended at two or more time points between the incident and 15 h post-exposure. For routine occupational monitoring, post-shift samples should be adequate. Due to endogenous levels of urinary thiosulphate, it is likely that exposures in excess of 12 ppm for 30 min (or 360 ppm/min equivalent) would be detectable using biological monitoring. This is within the Acute Exposure Guideline Level 2 (the level of the chemical in air at or above which there may be irreversible or other serious long-lasting effects or impaired ability to escape) for hydrogen sulphide. Crown Copyright © 2014. Published by Elsevier Ireland Ltd. All rights reserved.

  16. Super-resolution atomic force photoactivated microscopy of biological samples (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lee, Seunghyun; Kim, Hyemin; Shin, Seungjun; Doh, Junsang; Kim, Chulhong

    2017-03-01

    Optical microscopy (OM) and photoacoustic microscopy (PAM) have previously been used to image the optical absorption of intercellular features of biological cells. However, the optical diffraction limit ( 200 nm) makes it difficult for these modalities to image nanoscale inner cell structures and the distribution of internal cell components. Although super-resolution fluorescence microscopy, such as stimulated emission depletion microscopy (STED) and stochastic optical reconstruction microscopy (STORM), has successfully performed nanoscale biological imaging, these modalities require the use of exogenous fluorescence agents, which are unfavorable for biological samples. Our newly developed atomic force photoactivated microscopy (AFPM) can provide optical absorption images with nanoscale lateral resolution without any exogenous contrast agents. AFPM combines conventional atomic force microscopy (AFM) and an optical excitation system, and simultaneously provides multiple contrasts, such as the topography and magnitude of optical absorption. AFPM can detect the intrinsic optical absorption of samples with 8 nm lateral resolution, easily overcoming the diffraction limit. Using the label-free AFPM system, we have successfully imaged the optical absorption properties of a single melanoma cell (B16F10) and a rosette leaf epidermal cell of Arabidopsis (ecotype Columbia (Col-0)) with nanoscale lateral resolution. The remarkable images show the melanosome distribution of a melanoma cell and the biological structures of a plant cell. AFPM provides superior imaging of optical absorption with a nanoscale lateral resolution, and it promises to become widely used in biological and chemical research.

  17. Neuropsychological and Early Maturational Correlates of Intelligence.

    ERIC Educational Resources Information Center

    Denno, Deborah J.

    A study designed to examine biological, sociological, and early maturational correlates of intelligence collected data prospectively, from birth to 15 years of age, on a sample of 987 black children. Multiple indicators of eight independent and three dependent variables were tested in a structural equation model. Altogether, clear sex differences…

  18. Mass spectrometry-based targeted quantitative proteomics: achieving sensitive and reproducible detection of proteins.

    PubMed

    Boja, Emily S; Rodriguez, Henry

    2012-04-01

    Traditional shotgun proteomics used to detect a mixture of hundreds to thousands of proteins through mass spectrometric analysis, has been the standard approach in research to profile protein content in a biological sample which could lead to the discovery of new (and all) protein candidates with diagnostic, prognostic, and therapeutic values. In practice, this approach requires significant resources and time, and does not necessarily represent the goal of the researcher who would rather study a subset of such discovered proteins (including their variations or posttranslational modifications) under different biological conditions. In this context, targeted proteomics is playing an increasingly important role in the accurate measurement of protein targets in biological samples in the hope of elucidating the molecular mechanism of cellular function via the understanding of intricate protein networks and pathways. One such (targeted) approach, selected reaction monitoring (or multiple reaction monitoring) mass spectrometry (MRM-MS), offers the capability of measuring multiple proteins with higher sensitivity and throughput than shotgun proteomics. Developing and validating MRM-MS-based assays, however, is an extensive and iterative process, requiring a coordinated and collaborative effort by the scientific community through the sharing of publicly accessible data and datasets, bioinformatic tools, standard operating procedures, and well characterized reagents. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Distinguishing Biologically Relevant Hexoses by Water Adduction to the Lithium-Cationized Molecule.

    PubMed

    Campbell, Matthew T; Chen, Dazhe; Wallbillich, Nicholas J; Glish, Gary L

    2017-10-03

    A method to distinguish the four most common biologically relevant underivatized hexoses, d-glucose, d-galactose, d-mannose, and d-fructose, using only mass spectrometry with no prior separation/derivatization step has been developed. Electrospray of a solution containing hexose and a lithium salt generates [Hexose+Li] + . The lithium-cationized hexoses adduct water in a quadrupole ion trap. The rate of this water adduction reaction can be used to distinguish the four hexoses. Additionally, for each hexose, multiple lithiation sites are possible, allowing for multiple structures of [Hexose+Li] + . Electrospray produces at least one structure that reacts with water and at least one that does not. The ratio of unreactive lithium-cationized hexose to total lithium-cationized hexose is unique for the four hexoses studied, providing a second method for distinguishing the isomers. Use of the water adduction reaction rate or the unreactive ratio provides two separate methods for confidently (p ≤ 0.02) distinguishing the most common biologically relevant hexoses using only femtomoles of hexose. Additionally, binary mixtures of glucose and fructose were studied. A calibration curve was created by measuring the reaction rate of various samples with different ratios of fructose and glucose. The calibration curve was used to accurately measure the percentage of fructose in three samples of high fructose corn syrup (<4% error).

  20. The Coherent X-ray Imaging instrument at the Linac Coherent Light Source

    DOE PAGES

    Liang, Mengning; Williams, Garth J.; Messerschmidt, Marc; ...

    2015-04-15

    The Coherent X-ray Imaging (CXI) instrument specializes in hard X-ray, in-vacuum, high power density experiments in all areas of science. Two main sample chambers, one containing a 100 nm focus and one a 1 µm focus, are available, each with multiple diagnostics, sample injection, pump–probe and detector capabilities. The flexibility of CXI has enabled it to host a diverse range of experiments, from biological to extreme matter.

  1. Paper SERS chromatography for detection of trace analytes in complex samples

    NASA Astrophysics Data System (ADS)

    Yu, Wei W.; White, Ian M.

    2013-05-01

    We report the application of paper SERS substrates for the detection of trace quantities of multiple analytes in a complex sample in the form of paper chromatography. Paper chromatography facilitates the separation of different analytes from a complex sample into distinct sections in the chromatogram, which can then be uniquely identified using SERS. As an example, the separation and quantitative detection of heroin in a highly fluorescent mixture is demonstrated. Paper SERS chromatography has obvious applications, including law enforcement, food safety, and border protection, and facilitates the rapid detection of chemical and biological threats at the point of sample.

  2. Analysis of fuel using the Direct LSC method determination of bio-originated fuel in the presence of quenching.

    PubMed

    Doll, Charles G; Wright, Cherylyn W; Morley, Shannon M; Wright, Bob W

    2017-04-01

    A modified version of the Direct LSC method to correct for quenching effect was investigated for the determination of bio-originated fuel content in fuel samples produced from multiple biological starting materials. The modified method was found to be accurate in determining the percent bio-originated fuel to within 5% of the actual value for samples with quenching effects ≤43%. Analysis of highly quenched samples was possible when diluted with the exception of one sample with a 100% quenching effect. Copyright © 2017. Published by Elsevier Ltd.

  3. Multiple Reaction Monitoring Enables Precise Quantification of 97 Proteins in Dried Blood Spots*

    PubMed Central

    Chambers, Andrew G.; Percy, Andrew J.; Yang, Juncong; Borchers, Christoph H.

    2015-01-01

    The dried blood spot (DBS) methodology provides a minimally invasive approach to sample collection and enables room-temperature storage for most analytes. DBS samples have successfully been analyzed by liquid chromatography multiple reaction monitoring mass spectrometry (LC/MRM-MS) to quantify a large range of small molecule biomarkers and drugs; however, this strategy has only recently been explored for MS-based proteomics applications. Here we report the development of a highly multiplexed MRM assay to quantify endogenous proteins in human DBS samples. This assay uses matching stable isotope-labeled standard peptides for precise, relative quantification, and standard curves to characterize the analytical performance. A total of 169 peptides, corresponding to 97 proteins, were quantified in the final assay with an average linear dynamic range of 207-fold and an average R2 value of 0.987. The total range of this assay spanned almost 5 orders of magnitude from serum albumin (P02768) at 18.0 mg/ml down to cholinesterase (P06276) at 190 ng/ml. The average intra-assay and inter-assay precision for 6 biological samples ranged from 6.1–7.5% CV and 9.5–11.0% CV, respectively. The majority of peptide targets were stable after 154 days at storage temperatures from −20 °C to 37 °C. Furthermore, protein concentration ratios between matching DBS and whole blood samples were largely constant (<20% CV) across six biological samples. This assay represents the highest multiplexing yet achieved for targeted protein quantification in DBS samples and is suitable for biomedical research applications. PMID:26342038

  4. MPLEx: a Robust and Universal Protocol for Single-Sample Integrative Proteomic, Metabolomic, and Lipidomic Analyses

    PubMed Central

    Nakayasu, Ernesto S.; Nicora, Carrie D.; Sims, Amy C.; Burnum-Johnson, Kristin E.; Kim, Young-Mo; Kyle, Jennifer E.; Matzke, Melissa M.; Shukla, Anil K.; Chu, Rosalie K.; Schepmoes, Athena A.; Jacobs, Jon M.; Baric, Ralph S.; Webb-Robertson, Bobbie-Jo; Smith, Richard D.

    2016-01-01

    ABSTRACT Integrative multi-omics analyses can empower more effective investigation and complete understanding of complex biological systems. Despite recent advances in a range of omics analyses, multi-omic measurements of the same sample are still challenging and current methods have not been well evaluated in terms of reproducibility and broad applicability. Here we adapted a solvent-based method, widely applied for extracting lipids and metabolites, to add proteomics to mass spectrometry-based multi-omics measurements. The metabolite, protein, and lipid extraction (MPLEx) protocol proved to be robust and applicable to a diverse set of sample types, including cell cultures, microbial communities, and tissues. To illustrate the utility of this protocol, an integrative multi-omics analysis was performed using a lung epithelial cell line infected with Middle East respiratory syndrome coronavirus, which showed the impact of this virus on the host glycolytic pathway and also suggested a role for lipids during infection. The MPLEx method is a simple, fast, and robust protocol that can be applied for integrative multi-omic measurements from diverse sample types (e.g., environmental, in vitro, and clinical). IMPORTANCE In systems biology studies, the integration of multiple omics measurements (i.e., genomics, transcriptomics, proteomics, metabolomics, and lipidomics) has been shown to provide a more complete and informative view of biological pathways. Thus, the prospect of extracting different types of molecules (e.g., DNAs, RNAs, proteins, and metabolites) and performing multiple omics measurements on single samples is very attractive, but such studies are challenging due to the fact that the extraction conditions differ according to the molecule type. Here, we adapted an organic solvent-based extraction method that demonstrated broad applicability and robustness, which enabled comprehensive proteomics, metabolomics, and lipidomics analyses from the same sample. Author Video: An author video summary of this article is available. PMID:27822525

  5. Resolving molecule-specific information in dynamic lipid membrane processes with multi-resonant infrared metasurfaces.

    PubMed

    Rodrigo, Daniel; Tittl, Andreas; Ait-Bouziad, Nadine; John-Herpin, Aurelian; Limaj, Odeta; Kelly, Christopher; Yoo, Daehan; Wittenberg, Nathan J; Oh, Sang-Hyun; Lashuel, Hilal A; Altug, Hatice

    2018-06-04

    A multitude of biological processes are enabled by complex interactions between lipid membranes and proteins. To understand such dynamic processes, it is crucial to differentiate the constituent biomolecular species and track their individual time evolution without invasive labels. Here, we present a label-free mid-infrared biosensor capable of distinguishing multiple analytes in heterogeneous biological samples with high sensitivity. Our technology leverages a multi-resonant metasurface to simultaneously enhance the different vibrational fingerprints of multiple biomolecules. By providing up to 1000-fold near-field intensity enhancement over both amide and methylene bands, our sensor resolves the interactions of lipid membranes with different polypeptides in real time. Significantly, we demonstrate that our label-free chemically specific sensor can analyze peptide-induced neurotransmitter cargo release from synaptic vesicle mimics. Our sensor opens up exciting possibilities for gaining new insights into biological processes such as signaling or transport in basic research as well as provides a valuable toolkit for bioanalytical and pharmaceutical applications.

  6. MCAM: multiple clustering analysis methodology for deriving hypotheses and insights from high-throughput proteomic datasets.

    PubMed

    Naegle, Kristen M; Welsch, Roy E; Yaffe, Michael B; White, Forest M; Lauffenburger, Douglas A

    2011-07-01

    Advances in proteomic technologies continue to substantially accelerate capability for generating experimental data on protein levels, states, and activities in biological samples. For example, studies on receptor tyrosine kinase signaling networks can now capture the phosphorylation state of hundreds to thousands of proteins across multiple conditions. However, little is known about the function of many of these protein modifications, or the enzymes responsible for modifying them. To address this challenge, we have developed an approach that enhances the power of clustering techniques to infer functional and regulatory meaning of protein states in cell signaling networks. We have created a new computational framework for applying clustering to biological data in order to overcome the typical dependence on specific a priori assumptions and expert knowledge concerning the technical aspects of clustering. Multiple clustering analysis methodology ('MCAM') employs an array of diverse data transformations, distance metrics, set sizes, and clustering algorithms, in a combinatorial fashion, to create a suite of clustering sets. These sets are then evaluated based on their ability to produce biological insights through statistical enrichment of metadata relating to knowledge concerning protein functions, kinase substrates, and sequence motifs. We applied MCAM to a set of dynamic phosphorylation measurements of the ERRB network to explore the relationships between algorithmic parameters and the biological meaning that could be inferred and report on interesting biological predictions. Further, we applied MCAM to multiple phosphoproteomic datasets for the ERBB network, which allowed us to compare independent and incomplete overlapping measurements of phosphorylation sites in the network. We report specific and global differences of the ERBB network stimulated with different ligands and with changes in HER2 expression. Overall, we offer MCAM as a broadly-applicable approach for analysis of proteomic data which may help increase the current understanding of molecular networks in a variety of biological problems. © 2011 Naegle et al.

  7. Determination of the molecular weight of poly(ethylene glycol) in biological samples by reversed-phase LC-MS with in-source fragmentation.

    PubMed

    Warrack, Bethanne M; Redding, Brian P; Chen, Guodong; Bolgar, Mark S

    2013-05-01

    PEGylation has been widely used to improve the biopharmaceutical properties of therapeutic proteins and peptides. Previous studies have used multiple analytical techniques to determine the fate of both the therapeutic molecule and unconjugated poly(ethylene glycol) (PEG) after drug administration. A straightforward strategy utilizing liquid chromatography-mass spectrometry (LC-MS) to characterize high-molecular weight PEG in biologic matrices without a need for complex sample preparation is presented. The method is capable of determining whether high-MW PEG is cleaved in vivo to lower-molecular weight PEG species. Reversed-phase chromatographic separation is used to take advantage of the retention principles of polymeric materials whereby elution order correlates with PEG molecular weight. In-source collision-induced dissociation (CID) combined with selected reaction monitoring (SRM) or selected ion monitoring (SIM) mass spectrometry (MS) is then used to monitor characteristic PEG fragment ions in biological samples. MS provides high sensitivity and specificity for PEG and the observed retention times in reversed-phase LC enable estimation of molecular weight. This method was successfully used to characterize PEG molecular weight in mouse serum samples. No change in molecular weight was observed for 48 h after dosing.

  8. Hexagonal ice in pure water and biological NMR samples.

    PubMed

    Bauer, Thomas; Gath, Julia; Hunkeler, Andreas; Ernst, Matthias; Böckmann, Anja; Meier, Beat H

    2017-01-01

    Ice, in addition to "liquid" water and protein, is an important component of protein samples for NMR spectroscopy at subfreezing temperatures but it has rarely been observed spectroscopically in this context. We characterize its spectroscopic behavior in the temperature range from 100 to 273 K, and find that it behaves like pure water ice. The interference of magic-angle spinning (MAS) as well as rf multiple-pulse sequences with Bjerrum-defect motion greatly influences the ice spectra.

  9. On-chip wavelength multiplexed detection of cancer DNA biomarkers in blood

    PubMed Central

    Cai, H.; Stott, M. A.; Ozcelik, D.; Parks, J. W.; Hawkins, A. R.; Schmidt, H.

    2016-01-01

    We have developed an optofluidic analysis system that processes biomolecular samples starting from whole blood and then analyzes and identifies multiple targets on a silicon-based molecular detection platform. We demonstrate blood filtration, sample extraction, target enrichment, and fluorescent labeling using programmable microfluidic circuits. We detect and identify multiple targets using a spectral multiplexing technique based on wavelength-dependent multi-spot excitation on an antiresonant reflecting optical waveguide chip. Specifically, we extract two types of melanoma biomarkers, mutated cell-free nucleic acids —BRAFV600E and NRAS, from whole blood. We detect and identify these two targets simultaneously using the spectral multiplexing approach with up to a 96% success rate. These results point the way toward a full front-to-back chip-based optofluidic compact system for high-performance analysis of complex biological samples. PMID:28058082

  10. Monitoring corneal crosslinking using phase-decorrelation OCT (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Blackburn, Brecken J.; Gu, Shi; Jenkins, Michael W.; Rollins, Andrew M.

    2017-02-01

    Viscosity is often a critical characteristic of biological fluids such as blood and mucus. However, traditional rheology is often inadequate when only small quantities of sample are available. A robust method to measure viscosity of microquantities of biological samples could lead to a better understanding and diagnosis of diseases. Here, we present a method to measure viscosity by observing particle Brownian motion within a sample. M-mode optical coherence tomography (OCT) imaging, obtained with a phase-sensitive 47 kHz spectral domain system, yields a viscosity measurement from multiple 200-1000 microsecond frames. This very short period of continuous acquisition, as compared to laser speckle decorrelation, decreases sensitivity to bulk motion, thereby potentially enabling in vivo and in situ applications. The theory linking g(1) first-order image autocorrelation to viscosity is derived from first principles of Brownian motion and the Stokes-Einstein relation. To improve precision, multiple windows acquired over 500 milliseconds are analyzed and the resulting linear fit parameters are averaged. Verification experiments were performed with 200 µL samples of glycerol and water with polystyrene microbeads. Lateral bulk motion up to 2 mm/s was tolerated and accurate viscosity measurements were obtained to a depth of 400 µm or more. Additionally, the method measured a significant decrease of the apparent diffusion constant of soft tissue after formalin fixation, suggesting potential for mapping tissue stiffness over a volume.

  11. Biological tissue imaging with a position and time sensitive pixelated detector.

    PubMed

    Jungmann, Julia H; Smith, Donald F; MacAleese, Luke; Klinkert, Ivo; Visser, Jan; Heeren, Ron M A

    2012-10-01

    We demonstrate the capabilities of a highly parallel, active pixel detector for large-area, mass spectrometric imaging of biological tissue sections. A bare Timepix assembly (512 × 512 pixels) is combined with chevron microchannel plates on an ion microscope matrix-assisted laser desorption time-of-flight mass spectrometer (MALDI TOF-MS). The detector assembly registers position- and time-resolved images of multiple m/z species in every measurement frame. We prove the applicability of the detection system to biomolecular mass spectrometry imaging on biologically relevant samples by mass-resolved images from Timepix measurements of a peptide-grid benchmark sample and mouse testis tissue slices. Mass-spectral and localization information of analytes at physiologic concentrations are measured in MALDI-TOF-MS imaging experiments. We show a high spatial resolution (pixel size down to 740 × 740 nm(2) on the sample surface) and a spatial resolving power of 6 μm with a microscope mode laser field of view of 100-335 μm. Automated, large-area imaging is demonstrated and the Timepix' potential for fast, large-area image acquisition is highlighted.

  12. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa

    PubMed Central

    Petegrosso, Raphael; Tolar, Jakub

    2018-01-01

    Single-cell RNA sequencing (scRNA-seq) has been widely applied to discover new cell types by detecting sub-populations in a heterogeneous group of cells. Since scRNA-seq experiments have lower read coverage/tag counts and introduce more technical biases compared to bulk RNA-seq experiments, the limited number of sampled cells combined with the experimental biases and other dataset specific variations presents a challenge to cross-dataset analysis and discovery of relevant biological variations across multiple cell populations. In this paper, we introduce a method of variance-driven multitask clustering of single-cell RNA-seq data (scVDMC) that utilizes multiple single-cell populations from biological replicates or different samples. scVDMC clusters single cells in multiple scRNA-seq experiments of similar cell types and markers but varying expression patterns such that the scRNA-seq data are better integrated than typical pooled analyses which only increase the sample size. By controlling the variance among the cell clusters within each dataset and across all the datasets, scVDMC detects cell sub-populations in each individual experiment with shared cell-type markers but varying cluster centers among all the experiments. Applied to two real scRNA-seq datasets with several replicates and one large-scale droplet-based dataset on three patient samples, scVDMC more accurately detected cell populations and known cell markers than pooled clustering and other recently proposed scRNA-seq clustering methods. In the case study applied to in-house Recessive Dystrophic Epidermolysis Bullosa (RDEB) scRNA-seq data, scVDMC revealed several new cell types and unknown markers validated by flow cytometry. MATLAB/Octave code available at https://github.com/kuanglab/scVDMC. PMID:29630593

  13. Nonlinear interferometric vibrational imaging of biological tissue

    NASA Astrophysics Data System (ADS)

    Jiang, Zhi; Marks, Daniel L.; Geddes, Joseph B., III; Boppart, Stephen A.

    2008-02-01

    We demonstrate imaging with the technique of nonlinear interferometric vibrational imaging (NIVI). Experimental images using this instrumentation and method have been acquired from both phantom and biological tissues. In our system, coherent anti-Stokes Raman scattering (CARS) signals are detected by spectral interferometry, which is able to fully restore high resolution Raman spectrum on each focal spot of a sample covering multiple Raman bands using broadband pump and Stokes laser beams. Spectral-domain detection has been demonstrated and allows for a significant increase in image acquiring speed, in signal-to-noise, and in interferometric signal stability.

  14. Simultaneous extraction of proteins and metabolites from cells in culture

    PubMed Central

    Sapcariu, Sean C.; Kanashova, Tamara; Weindl, Daniel; Ghelfi, Jenny; Dittmar, Gunnar; Hiller, Karsten

    2014-01-01

    Proper sample preparation is an integral part of all omics approaches, and can drastically impact the results of a wide number of analyses. As metabolomics and proteomics research approaches often yield complementary information, it is desirable to have a sample preparation procedure which can yield information for both types of analyses from the same cell population. This protocol explains a method for the separation and isolation of metabolites and proteins from the same biological sample, in order for downstream use in metabolomics and proteomics analyses simultaneously. In this way, two different levels of biological regulation can be studied in a single sample, minimizing the variance that would result from multiple experiments. This protocol can be used with both adherent and suspension cell cultures, and the extraction of metabolites from cellular medium is also detailed, so that cellular uptake and secretion of metabolites can be quantified. Advantages of this technique includes:1.Inexpensive and quick to perform; this method does not require any kits.2.Can be used on any cells in culture, including cell lines and primary cells extracted from living organisms.3.A wide variety of different analysis techniques can be used, adding additional value to metabolomics data analyzed from a sample; this is of high value in experimental systems biology. PMID:26150938

  15. Biomolecular signatures of diabetic wound healing by structural mass spectrometry

    PubMed Central

    Hines, Kelly M.; Ashfaq, Samir; Davidson, Jeffrey M.; Opalenik, Susan R.; Wikswo, John P.; McLean, John A.

    2013-01-01

    Wound fluid is a complex biological sample containing byproducts associated with the wound repair process. Contemporary techniques, such as immunoblotting and enzyme immunoassays, require extensive sample manipulation and do not permit the simultaneous analysis of multiple classes of biomolecular species. Structural mass spectrometry, implemented as ion mobility-mass spectrometry (IM-MS), comprises two sequential, gas-phase dispersion techniques well suited for the study of complex biological samples due to its ability to separate and simultaneously analyze multiple classes of biomolecules. As a model of diabetic wound healing, polyvinyl alcohol (PVA) sponges were inserted subcutaneously into non-diabetic (control) and streptozotocin-induced diabetic rats to elicit a granulation tissue response and to collect acute wound fluid. Sponges were harvested at days 2 or 5 to capture different stages of the early wound healing process. Utilizing IM-MS, statistical analysis, and targeted ultra-performance liquid chromatography (UPLC) analysis, biomolecular signatures of diabetic wound healing have been identified. The protein S100-A8 was highly enriched in the wound fluids collected from day 2 diabetic rats. Lysophosphatidylcholine (20:4) and cholic acid also contributed significantly to the differences between diabetic and control groups. This report provides a generalized workflow for wound fluid analysis demonstrated with a diabetic rat model. PMID:23452326

  16. The Effect of Multiple Surface Treatments on Biological Properties of Ti-6Al-4V Alloy

    NASA Astrophysics Data System (ADS)

    Parsikia, Farhang; Amini, Pupak; Asgari, Sirous

    2014-09-01

    In this research, the effect of various surface treatments including laser processing, grit blasting and anodizing on chemical structure, surface topography, and bioactivity of Ti-6Al-4V was investigated. Six groups of samples were prepared by a combination of two alternative laser processes, grit blasting and anodizing. Selected samples were first evaluated using microanalysis techniques and contact roughness testing and were then exposed to in vitro environment. Scanning electron microscopy was used to characterize the corresponding final surface morphologies. Weight measurement and atomic absorption tests were employed for determination of bioactivity limits of different surface conditions. Based on the data obtained in this study, low-energy laser processing generally yields a better biological response. The maximum bioactivity was attained in those samples exposed to a three step treatment including low-energy laser treatment followed by grit blasting and anodizing.

  17. Proposed BioRepository platform solution for the ALS research community.

    PubMed

    Sherman, Alex; Bowser, Robert; Grasso, Daniela; Power, Breen; Milligan, Carol; Jaffa, Matthew; Cudkowicz, Merit

    2011-01-01

    ALS is a rare disorder whose cause and pathogenesis is largely unknown ( 1 ). There is a recognized need to develop biomarkers for ALS to better understand the disease, expedite diagnosis and to facilitate therapy development. Collaboration is essential to obtain a sufficient number of samples to allow statistically meaningful studies. The availability of high quality biological specimens for research purposes requires the development of standardized methods for collection, long-term storage, retrieval and distribution of specimens. The value of biological samples to scientists and clinicians correlates with the completeness and relevance of phenotypical and clinical information associated with the samples ( 2 , 3 ). While developing a secure Web-based system to manage an inventory of multi-site BioRepositories, algorithms were implemented to facilitate ad hoc parametric searches across heterogeneous data sources that contain data from clinical trials and research studies. A flexible schema for a barcode label was introduced to allow association of samples to these data. The ALSBank™ BioRepository platform solution for managing biological samples and associated data is currently deployed by the Northeast ALS Consortium (NEALS). The NEALS Consortium and the Massachusetts General Hospital (MGH) Neurology Clinical Trials Unit (NCTU) support a network of multiple BioBanks, thus allowing researchers to take advantage of a larger specimen collection than they might have at an individual institution. Standard operating procedures are utilized at all collection sites to promote common practices for biological sample integrity, quality control and associated clinical data. Utilizing this platform, we have created one of the largest virtual collections of ALS-related specimens available to investigators studying ALS.

  18. Evaluation of an index of biotic integrity approach used to assess biological condition in western U.S. streams and rivers at varying spatial scales

    USGS Publications Warehouse

    Meador, M.R.; Whittier, T.R.; Goldstein, R.M.; Hughes, R.M.; Peck, D.V.

    2008-01-01

    Consistent assessments of biological condition are needed across multiple ecoregions to provide a greater understanding of the spatial extent of environmental degradation. However, consistent assessments at large geographic scales are often hampered by lack of uniformity in data collection, analyses, and interpretation. The index of biotic integrity (IBI) has been widely used in eastern and central North America, where fish assemblages are complex and largely composed of native species, but IBI development has been hindered in the western United States because of relatively low fish species richness and greater relative abundance of alien fishes. Approaches to developing IBIs rarely provide a consistent means of assessing biological condition across multiple ecoregions. We conducted an evaluation of IBIs recently proposed for three ecoregions of the western United States using an independent data set covering a large geographic scale. We standardized the regional IBIs and developed biological condition criteria, assessed the responsiveness of IBIs to basin-level land uses, and assessed their precision and concordance with basin-scale IBIs. Standardized IBI scores from 318 sites in the western United States comprising mountain, plains, and xeric ecoregions were significantly related to combined urban and agricultural land uses. Standard deviations and coefficients of variation revealed relatively low variation in IBI scores based on multiple sampling reaches at sites. A relatively high degree of corroboration with independent, locally developed IBIs indicates that the regional IBIs are robust across large geographic scales, providing precise and accurate assessments of biological condition for western U.S. streams. ?? Copyright by the American Fisheries Society 2008.

  19. Temporally flickering nanoparticles for compound cellular imaging and super resolution

    NASA Astrophysics Data System (ADS)

    Ilovitsh, Tali; Danan, Yossef; Meir, Rinat; Meiri, Amihai; Zalevsky, Zeev

    2016-03-01

    This work presents the use of flickering nanoparticles for imaging biological samples. The method has high noise immunity, and it enables the detection of overlapping types of GNPs, at significantly sub-diffraction distances, making it attractive for super resolving localization microscopy techniques. The method utilizes a lock-in technique at which the imaging of the sample is done using a time-modulated laser beam that match the number of the types of gold nanoparticles (GNPs) that label a given sample, and resulting in the excitation of the temporal flickering of the scattered light at known temporal frequencies. The final image where the GNPs are spatially separated is obtained using post processing where the proper spectral components corresponding to the different modulation frequencies are extracted. This allows the simultaneous super resolved imaging of multiple types of GNPs that label targets of interest within biological samples. Additionally applying the post-processing algorithm of the K-factor image decomposition algorithm can further improve the performance of the proposed approach.

  20. Using Genotype Abundance to Improve Phylogenetic Inference

    PubMed Central

    Mesin, Luka; Victora, Gabriel D; Minin, Vladimir N; Matsen, Frederick A

    2018-01-01

    Abstract Modern biological techniques enable very dense genetic sampling of unfolding evolutionary histories, and thus frequently sample some genotypes multiple times. This motivates strategies to incorporate genotype abundance information in phylogenetic inference. In this article, we synthesize a stochastic process model with standard sequence-based phylogenetic optimality, and show that tree estimation is substantially improved by doing so. Our method is validated with extensive simulations and an experimental single-cell lineage tracing study of germinal center B cell receptor affinity maturation. PMID:29474671

  1. Measurement of temperature-dependent specific heat of biological tissues.

    PubMed

    Haemmerich, Dieter; Schutt, David J; dos Santos, Icaro; Webster, John G; Mahvi, David M

    2005-02-01

    We measured specific heat directly by heating a sample uniformly between two electrodes by an electric generator. We minimized heat loss by styrofoam insulation. We measured temperature from multiple thermocouples at temperatures from 25 degrees C to 80 degrees C while heating the sample, and corrected for heat loss. We confirm method accuracy with a 2.5% agar-0.4% saline physical model and obtain specific heat of 4121+/-89 J (kg K)(-1), with an average error of 3.1%.

  2. Biology and Sampling of Red Oak Borer Populations in the Ozark Mountains of Arkansas

    Treesearch

    Damon Crook; Fred Stephen; Melissa Fierke; Dana Kinney; Vaughn Silisbury

    2004-01-01

    A complex interaction of multiple factors has resulted in >75 percent mortality/decline of more than 1 million acres of red oak (Quercus, subgenus Erythrobalanus) on the Ozark-St. Francis National Forests. The most striking feature of this oak decline event is an unprecedented outbreak of red oak borer. A visual stand assessment...

  3. Multivariate two-part statistics for analysis of correlated mass spectrometry data from multiple biological specimens.

    PubMed

    Taylor, Sandra L; Ruhaak, L Renee; Weiss, Robert H; Kelly, Karen; Kim, Kyoungmi

    2017-01-01

    High through-put mass spectrometry (MS) is now being used to profile small molecular compounds across multiple biological sample types from the same subjects with the goal of leveraging information across biospecimens. Multivariate statistical methods that combine information from all biospecimens could be more powerful than the usual univariate analyses. However, missing values are common in MS data and imputation can impact between-biospecimen correlation and multivariate analysis results. We propose two multivariate two-part statistics that accommodate missing values and combine data from all biospecimens to identify differentially regulated compounds. Statistical significance is determined using a multivariate permutation null distribution. Relative to univariate tests, the multivariate procedures detected more significant compounds in three biological datasets. In a simulation study, we showed that multi-biospecimen testing procedures were more powerful than single-biospecimen methods when compounds are differentially regulated in multiple biospecimens but univariate methods can be more powerful if compounds are differentially regulated in only one biospecimen. We provide R functions to implement and illustrate our method as supplementary information CONTACT: sltaylor@ucdavis.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Discrimination of biological and chemical threat simulants in residue mixtures on multiple substrates.

    PubMed

    Gottfried, Jennifer L

    2011-07-01

    The potential of laser-induced breakdown spectroscopy (LIBS) to discriminate biological and chemical threat simulant residues prepared on multiple substrates and in the presence of interferents has been explored. The simulant samples tested include Bacillus atrophaeus spores, Escherichia coli, MS-2 bacteriophage, α-hemolysin from Staphylococcus aureus, 2-chloroethyl ethyl sulfide, and dimethyl methylphosphonate. The residue samples were prepared on polycarbonate, stainless steel and aluminum foil substrates by Battelle Eastern Science and Technology Center. LIBS spectra were collected by Battelle on a portable LIBS instrument developed by A3 Technologies. This paper presents the chemometric analysis of the LIBS spectra using partial least-squares discriminant analysis (PLS-DA). The performance of PLS-DA models developed based on the full LIBS spectra, and selected emission intensities and ratios have been compared. The full-spectra models generally provided better classification results based on the inclusion of substrate emission features; however, the intensity/ratio models were able to correctly identify more types of simulant residues in the presence of interferents. The fusion of the two types of PLS-DA models resulted in a significant improvement in classification performance for models built using multiple substrates. In addition to identifying the major components of residue mixtures, minor components such as growth media and solvents can be identified with an appropriately designed PLS-DA model.

  5. Image processing for cryogenic transmission electron microscopy of symmetry-mismatched complexes.

    PubMed

    Huiskonen, Juha T

    2018-02-08

    Cryogenic transmission electron microscopy (cryo-TEM) is a high-resolution biological imaging method, whereby biological samples, such as purified proteins, macromolecular complexes, viral particles, organelles and cells, are embedded in vitreous ice preserving their native structures. Due to sensitivity of biological materials to the electron beam of the microscope, only relatively low electron doses can be applied during imaging. As a result, the signal arising from the structure of interest is overpowered by noise in the images. To increase the signal-to-noise ratio, different image processing-based strategies that aim at coherent averaging of signal have been devised. In such strategies, images are generally assumed to arise from multiple identical copies of the structure. Prior to averaging, the images must be grouped according to the view of the structure they represent and images representing the same view must be simultaneously aligned relatively to each other. For computational reconstruction of the three-dimensional structure, images must contain different views of the original structure. Structures with multiple symmetry-related substructures are advantageous in averaging approaches because each image provides multiple views of the substructures. However, the symmetry assumption may be valid for only parts of the structure, leading to incoherent averaging of the other parts. Several image processing approaches have been adapted to tackle symmetry-mismatched substructures with increasing success. Such structures are ubiquitous in nature and further computational method development is needed to understanding their biological functions. ©2018 The Author(s).

  6. Adaptive optics in spinning disk microscopy: improved contrast and brightness by a simple and fast method.

    PubMed

    Fraisier, V; Clouvel, G; Jasaitis, A; Dimitrov, A; Piolot, T; Salamero, J

    2015-09-01

    Multiconfocal microscopy gives a good compromise between fast imaging and reasonable resolution. However, the low intensity of live fluorescent emitters is a major limitation to this technique. Aberrations induced by the optical setup, especially the mismatch of the refractive index and the biological sample itself, distort the point spread function and further reduce the amount of detected photons. Altogether, this leads to impaired image quality, preventing accurate analysis of molecular processes in biological samples and imaging deep in the sample. The amount of detected fluorescence can be improved with adaptive optics. Here, we used a compact adaptive optics module (adaptive optics box for sectioning optical microscopy), which was specifically designed for spinning disk confocal microscopy. The module overcomes undesired anomalies by correcting for most of the aberrations in confocal imaging. Existing aberration detection methods require prior illumination, which bleaches the sample. To avoid multiple exposures of the sample, we established an experimental model describing the depth dependence of major aberrations. This model allows us to correct for those aberrations when performing a z-stack, gradually increasing the amplitude of the correction with depth. It does not require illumination of the sample for aberration detection, thus minimizing photobleaching and phototoxicity. With this model, we improved both signal-to-background ratio and image contrast. Here, we present comparative studies on a variety of biological samples. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  7. Development of automated high throughput single molecular microfluidic detection platform for signal transduction analysis

    NASA Astrophysics Data System (ADS)

    Huang, Po-Jung; Baghbani Kordmahale, Sina; Chou, Chao-Kai; Yamaguchi, Hirohito; Hung, Mien-Chie; Kameoka, Jun

    2016-03-01

    Signal transductions including multiple protein post-translational modifications (PTM), protein-protein interactions (PPI), and protein-nucleic acid interaction (PNI) play critical roles for cell proliferation and differentiation that are directly related to the cancer biology. Traditional methods, like mass spectrometry, immunoprecipitation, fluorescence resonance energy transfer, and fluorescence correlation spectroscopy require a large amount of sample and long processing time. "microchannel for multiple-parameter analysis of proteins in single-complex (mMAPS)"we proposed can reduce the process time and sample volume because this system is composed by microfluidic channels, fluorescence microscopy, and computerized data analysis. In this paper, we will present an automated mMAPS including integrated microfluidic device, automated stage and electrical relay for high-throughput clinical screening. Based on this result, we estimated that this automated detection system will be able to screen approximately 150 patient samples in a 24-hour period, providing a practical application to analyze tissue samples in a clinical setting.

  8. Quantification of Inflammasome Adaptor Protein ASC in Biological Samples by Multiple-Reaction Monitoring Mass Spectrometry.

    PubMed

    Ulke-Lemée, Annegret; Lau, Arthur; Nelson, Michelle C; James, Matthew T; Muruve, Daniel A; MacDonald, Justin A

    2018-06-09

    Inflammation is an integral component of many diseases, including chronic kidney disease (CKD). ASC (apoptosis-associated speck-like protein containing CARD, also PYCARD) is the key inflammasome adaptor protein in the innate immune response. Since ASC specks, a macromolecular condensate of ASC protein, can be released by inflammasome-activated cells into the extracellular space to amplify inflammatory responses, the ASC protein could be an important biomarker in diagnostic applications. Herein, we describe the development and validation of a multiple reaction monitoring mass spectrometry (MRM-MS) assay for the accurate quantification of ASC in human biospecimens. Limits of detection and quantification for the signature DLLLQALR peptide (used as surrogate for the target ASC protein) were determined by the method of standard addition using synthetic isotope-labeled internal standard (SIS) peptide and urine matrix from a healthy donor (LOQ was 8.25 pM, with a ~ 1000-fold linear range). We further quantified ASC in the urine of CKD patients (8.4 ± 1.3 ng ASC/ml urine, n = 13). ASC was positively correlated with proteinuria and urinary IL-18 in CKD samples but not with urinary creatinine. Unfortunately, the ASC protein is susceptible to degradation, and patient urine that was thawed and refrozen lost 85% of the ASC signal. In summary, the MRM-MS assay provides a robust means to quantify ASC in biological samples, including clinical biospecimens; however, sample collection and storage conditions will have a critical impact on assay reliability.

  9. Multiplex cytokine profiling with highly pathogenic material: use of formalin solution in luminex analysis.

    PubMed

    Dowall, Stuart D; Graham, Victoria A; Tipton, Thomas R W; Hewson, Roger

    2009-08-31

    Work with highly pathogenic material mandates the use of biological containment facilities, involving microbiological safety cabinets and specialist laboratory engineering structures typified by containment level 3 (CL3) and CL4 laboratories. Consequences of working in high containment are the practical difficulties associated with containing specialist assays and equipment often essential for experimental analyses. In an era of increased interest in biodefence pathogens and emerging diseases, immunological analysis has developed rapidly alongside traditional techniques in virology and molecular biology. For example, in order to maximise the use of small sample volumes, multiplexing has become a more popular and widespread approach to quantify multiple analytes simultaneously, such as cytokines and chemokines. The luminex microsphere system allows for the detection of many cytokines and chemokines in a single sample, but the detection method of using aligned lasers and fluidics means that samples often have to be analysed in low containment facilities. In order to perform cytokine analysis in materials from high containment (CL3 and CL4 laboratories), we have developed an appropriate inactivation methodology after staining steps, which although results in a reduction of median fluorescent intensity, produces statistically comparable outcomes when judged against non-inactivated samples. This methodology thus extends the use of luminex technology for material that contains highly pathogenic biological agents.

  10. Novel strategies to construct complex synthetic vectors to produce DNA molecular weight standards.

    PubMed

    Chen, Zhe; Wu, Jianbing; Li, Xiaojuan; Ye, Chunjiang; Wenxing, He

    2009-05-01

    DNA molecular weight standards (DNA markers, nucleic acid ladders) are commonly used in molecular biology laboratories as references to estimate the size of various DNA samples in electrophoresis process. One method of DNA marker production is digestion of synthetic vectors harboring multiple DNA fragments of known sizes by restriction enzymes. In this article, we described three novel strategies-sequential DNA fragment ligation, screening of ligation products by polymerase chain reaction (PCR) with end primers, and "small fragment accumulation"-for constructing complex synthetic vectors and minimizing the mass differences between DNA fragments produced from restrictive digestion of synthetic vectors. The strategy could be applied to construct various complex synthetic vectors to produce any type of low-range DNA markers, usually available commercially. In addition, the strategy is useful for single-step ligation of multiple DNA fragments for construction of complex synthetic vectors and other applications in molecular biology field.

  11. Targeted quantitative analysis of Streptococcus pyogenes virulence factors by multiple reaction monitoring.

    PubMed

    Lange, Vinzenz; Malmström, Johan A; Didion, John; King, Nichole L; Johansson, Björn P; Schäfer, Juliane; Rameseder, Jonathan; Wong, Chee-Hong; Deutsch, Eric W; Brusniak, Mi-Youn; Bühlmann, Peter; Björck, Lars; Domon, Bruno; Aebersold, Ruedi

    2008-08-01

    In many studies, particularly in the field of systems biology, it is essential that identical protein sets are precisely quantified in multiple samples such as those representing differentially perturbed cell states. The high degree of reproducibility required for such experiments has not been achieved by classical mass spectrometry-based proteomics methods. In this study we describe the implementation of a targeted quantitative approach by which predetermined protein sets are first identified and subsequently quantified at high sensitivity reliably in multiple samples. This approach consists of three steps. First, the proteome is extensively mapped out by multidimensional fractionation and tandem mass spectrometry, and the data generated are assembled in the PeptideAtlas database. Second, based on this proteome map, peptides uniquely identifying the proteins of interest, proteotypic peptides, are selected, and multiple reaction monitoring (MRM) transitions are established and validated by MS2 spectrum acquisition. This process of peptide selection, transition selection, and validation is supported by a suite of software tools, TIQAM (Targeted Identification for Quantitative Analysis by MRM), described in this study. Third, the selected target protein set is quantified in multiple samples by MRM. Applying this approach we were able to reliably quantify low abundance virulence factors from cultures of the human pathogen Streptococcus pyogenes exposed to increasing amounts of plasma. The resulting quantitative protein patterns enabled us to clearly define the subset of virulence proteins that is regulated upon plasma exposure.

  12. Functional characterization of somatic mutations in cancer using network-based inference of protein activity | Office of Cancer Genomics

    Cancer.gov

    Identifying the multiple dysregulated oncoproteins that contribute to tumorigenesis in a given patient is crucial for developing personalized treatment plans. However, accurate inference of aberrant protein activity in biological samples is still challenging as genetic alterations are only partially predictive and direct measurements of protein activity are generally not feasible.

  13. Quantification of myo-inositol, 1,5-anhydro-D-sorbitol, and D-chiro-inositol using high-performance liquid chromatography with electrochemical detection in very small volume clinical samples

    PubMed Central

    Schimpf, Karen J.; Meek, Claudia C.; Leff, Richard D.; Phelps, Dale L.; Schmitz, Daniel J.; Cordle, Christopher T.

    2015-01-01

    Inositol is a six-carbon sugar alcohol and is one of nine biologically significant isomers of hexahydroxycyclohexane. Myo-inositol is the primary biologically active form and is present in higher concentrations in the fetus and newborn than in adults. It is currently being examined for the prevention of retinopathy of prematurity in newborn preterm infants. A robust method for quantifying myo-inositol (MI), D-chiro-inositol (DCI) and 1,5-anhydro-D-sorbitol (ADS) in very small-volume (25 μL) urine, blood serum and/or plasma samples was developed. Using a multiple-column, multiple mobile phase liquid chromatographic system with electrochemical detection, the method was validated with respect to (a) selectivity, (b) accuracy/recovery, (c) precision/reproducibility, (d) sensitivity, (e) stability and (f) ruggedness. The standard curve was linear and ranged from 0.5 to 30 mg/L for each of the three analytes. Above-mentioned performance measures were within acceptable limits described in the Food and Drug Administration’s Guidance for Industry: Bioanalytical Method Validation. The method was validated using blood serum and plasma collected using four common anticoagulants, and also by quantifying the accuracy and sensitivity of MI measured in simulated urine samples recovered from preterm infant diaper systems. The method performs satisfactorily measuring the three most common inositol isomers on 25 μL clinical samples of serum, plasma milk, and/or urine. Similar performance is seen testing larger volume samples of infant formulas and infant formula ingredients. MI, ADS and DCI may be accurately tested in urine samples collected from five different preterm infant diapers if the urine volume is greater than 2–5 mL. PMID:26010453

  14. The relevance of time series in molecular ecology and conservation biology.

    PubMed

    Habel, Jan C; Husemann, Martin; Finger, Aline; Danley, Patrick D; Zachos, Frank E

    2014-05-01

    The genetic structure of a species is shaped by the interaction of contemporary and historical factors. Analyses of individuals from the same population sampled at different points in time can help to disentangle the effects of current and historical forces and facilitate the understanding of the forces driving the differentiation of populations. The use of such time series allows for the exploration of changes at the population and intraspecific levels over time. Material from museum collections plays a key role in understanding and evaluating observed population structures, especially if large numbers of individuals have been sampled from the same locations at multiple time points. In these cases, changes in population structure can be assessed empirically. The development of new molecular markers relying on short DNA fragments (such as microsatellites or single nucleotide polymorphisms) allows for the analysis of long-preserved and partially degraded samples. Recently developed techniques to construct genome libraries with a reduced complexity and next generation sequencing and their associated analysis pipelines have the potential to facilitate marker development and genotyping in non-model species. In this review, we discuss the problems with sampling and available marker systems for historical specimens and demonstrate that temporal comparative studies are crucial for the estimation of important population genetic parameters and to measure empirically the effects of recent habitat alteration. While many of these analyses can be performed with samples taken at a single point in time, the measurements are more robust if multiple points in time are studied. Furthermore, examining the effects of habitat alteration, population declines, and population bottlenecks is only possible if samples before and after the respective events are included. © 2013 The Authors. Biological Reviews © 2013 Cambridge Philosophical Society.

  15. HOMER: the Holographic Optical Microscope for Education and Research

    NASA Astrophysics Data System (ADS)

    Luviano, Anali

    Holography was invented in 1948 by Dennis Gabor and has undergone major advancements since the 2000s leading to the development of commercial digital holographic microscopes (DHM). This noninvasive form of microscopy produces a three-dimensional (3-D) digital model of a sample without altering or destroying the sample, thus allowing the same sample to be studied multiple times. HOMER-the Holographic Optical Microscope for Education and Research-produces a 3-D image from a two-dimensional (2-D) interference pattern captured by a camera that is then put through reconstruction software. This 2-D pattern is created when a reference wave interacts with the sample to produce a secondary wave that interferes with the unaltered part of the reference wave. I constructed HOMER to be an efficient, portable in-line DHM using inexpensive material and free reconstruction software. HOMER uses three different-colored LEDs as light sources. I am testing the performance of HOMER with the goal of producing tri-color images of samples. I'm using small basic biological samples to test the effectiveness of HOMER and plan to transition to complex cellular and biological specimens as I pursue my interest in biophysics. Norwich University.

  16. Space Station Biological Research Project (SSBRP) Cell Culture Unit (CCU) and incubator for International Space Station (ISS) cell culture experiments

    NASA Technical Reports Server (NTRS)

    Vandendriesche, Donald; Parrish, Joseph; Kirven-Brooks, Melissa; Fahlen, Thomas; Larenas, Patricia; Havens, Cindy; Nakamura, Gail; Sun, Liping; Krebs, Chris; de Luis, Javier; hide

    2004-01-01

    The CCU and Incubator are habitats under development by SSBRP for gravitational biology research on ISS. They will accommodate multiple specimen types and reside in either Habitat Holding Racks, or the Centrifuge Rotor, which provides selectable gravity levels of up to 2 g. The CCU can support multiple Cell Specimen Chambers, CSCs (18, 9 or 6 CSCs; 3, 10 or 30 mL in volume, respectively). CSCs are temperature controlled from 4-39 degrees C, with heat shock to 45 degrees C. CCU provides automated nutrient supply, magnetic stirring, pH/O2 monitoring, gas supply, specimen lighting, and video microscopy. Sixty sample containers holding up to 2 mL each, stored at 4-39 degrees C, are available for automated cell sampling, subculture, and injection of additives and fixatives. CSCs, sample containers, and fresh/spent media bags are crew-replaceable for long-term experiments. The Incubator provides a 4-45 degrees C controlled environment for life science experiments or storage of experimental reagents. Specimen containers and experiment unique equipment are experimenter-provided. The Specimen Chamber exchanges air with ISS cabin and has 18.8 liters of usable volume that can accommodate six trays and the following instrumentation: five relocatable thermometers, two 60 W power outlets, four analog ports, and one each relative humidity sensor, video port, ethernet port and digital input/output port.

  17. Lipidomics by ultrahigh performance liquid chromatography-high resolution mass spectrometry and its application to complex biological samples.

    PubMed

    Triebl, Alexander; Trötzmüller, Martin; Hartler, Jürgen; Stojakovic, Tatjana; Köfeler, Harald C

    2017-05-15

    An improved approach for selective and sensitive identification and quantitation of lipid molecular species using reversed phase chromatography coupled to high resolution mass spectrometry was developed. The method is applicable to a wide variety of biological matrices using a simple liquid-liquid extraction procedure. Together, this approach combines multiple selectivity criteria: Reversed phase chromatography separates lipids according to their acyl chain length and degree of unsaturation and is capable of resolving positional isomers of lysophospholipids, as well as structural isomers of diacyl phospholipids and glycerolipids. Orbitrap mass spectrometry delivers the elemental composition of both positive and negative ions with high mass accuracy. Finally, automatically generated tandem mass spectra provide structural insight into numerous glycerolipids, phospholipids, and sphingolipids within a single run. Calibration showed linearity ranges of more than four orders of magnitude, good values for accuracy and precision at biologically relevant concentration levels, and limits of quantitation of a few femtomoles on column. Hundreds of lipid molecular species were detected and quantified in three different biological matrices, which cover well the wide variety and complexity of various model organisms in lipidomic research. Together with a software package, this method is a prime choice for global lipidomic analysis of even the most complex biological samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Shared-environmental contributions to high cognitive ability.

    PubMed

    Kirkpatrick, Robert M; McGue, Matt; Iacono, William G

    2009-07-01

    Using a combined sample of adolescent twins, biological siblings, and adoptive siblings, we estimated and compared the differential shared-environmentality for high cognitive ability and the shared-environmental variance for the full range of ability during adolescence. Estimates obtained via multiple methods were in the neighborhood of 0.20, and suggest a modest effect of the shared environment on both high and full-range ability. We then examined the association of ability with three measures of the family environment in a subsample of adoptive siblings: parental occupational status, parental education, and disruptive life events. Only parental education showed significant (albeit modest) association with ability in both the biological and adoptive samples. We discuss these results in terms of the need for cognitive-development research to combine genetically sensitive designs and modern statistical methods with broad, thorough environmental measurement.

  19. Geographic, seasonal, and precipitation chemistry influence on the abundance and activity of biological ice nucleators in rain and snow

    PubMed Central

    Christner, Brent C.; Cai, Rongman; Morris, Cindy E.; McCarter, Kevin S.; Foreman, Christine M.; Skidmore, Mark L.; Montross, Scott N.; Sands, David C.

    2008-01-01

    Biological ice nucleators (IN) function as catalysts for freezing at relatively warm temperatures (warmer than −10 °C). We examined the concentration (per volume of liquid) and nature of IN in precipitation collected from Montana and Louisiana, the Alps and Pyrenees (France), Ross Island (Antarctica), and Yukon (Canada). The temperature of detectable ice-nucleating activity for more than half of the samples was ≥ −5 °C based on immersion freezing testing. Digestion of the samples with lysozyme (i.e., to hydrolyze bacterial cell walls) led to reductions in the frequency of freezing (0–100%); heat treatment greatly reduced (95% average) or completely eliminated ice nucleation at the measured conditions in every sample. These behaviors were consistent with the activity being bacterial and/or proteinaceous in origin. Statistical analysis revealed seasonal similarities between warm-temperature ice-nucleating activities in snow samples collected over 7 months in Montana. Multiple regression was used to construct models with biogeochemical data [major ions, total organic carbon (TOC), particle, and cell concentration] that were accurate in predicting the concentration of microbial cells and biological IN in precipitation based on the concentration of TOC, Ca2+, and NH4+, or TOC, cells, Ca2+, NH4+, K+, PO43−, SO42−, Cl−, and HCO3−. Our results indicate that biological IN are ubiquitous in precipitation and that for some geographic locations the activity and concentration of these particles is related to the season and precipitation chemistry. Thus, our research suggests that biological IN are widespread in the atmosphere and may affect meteorological processes that lead to precipitation. PMID:19028877

  20. Biological variation in a large sample of mouse lemurs from Amboasary, Madagascar: implications for interpreting variation in primate biology and paleobiology.

    PubMed

    Cuozzo, Frank P; Rasoazanabary, Emilienne; Godfrey, Laurie R; Sauther, Michelle L; Youssouf, Ibrahim Antho; LaFleur, Marni M

    2013-01-01

    A thorough knowledge of biological variation in extant primates is imperative for interpreting variation, and for delineating species in primate biology and paleobiology. This is especially the case given the recent, rapid taxonomic expansion in many primate groups, notably among small-bodied nocturnal forms. Here we present data on dental, cranial, and pelage variation in a single-locality museum sample of mouse lemurs from Amboasary, Madagascar. To interpret these data, we include comparative information from other museum samples, and from a newly collected mouse lemur skeletal sample from the Beza Mahafaly Special Reserve (BMSR), Madagascar. We scored forty dental traits (n = 126) and three pelage variants (n = 19), and collected 21 cranial/dental measures. Most dental traits exhibit variable frequencies, with some only rarely present. Individual dental variants include misshapen and supernumerary teeth. All Amboasary pelage specimens display a "reversed V" on the cap, and a distinct dorsal median stripe on the back. All but two displayed the dominant gray-brown pelage coloration typical of Microcebus griseorufus. Cranial and dental metric variability are each quite low, and craniometric variation does not illustrate heteroscedasticity. To assess whether this sample represents a single species, we compared dental and pelage variation to a documented, single-species M. griseorufus sample from BMSR. As at Amboasary, BMSR mouse lemurs display limited odontometric variation and wide variation in non-metric dental traits. In contrast, BMSR mouse lemurs display diverse pelage, despite reported genetic homogeneity. Ranges of dental and pelage variation at BMSR and Amboasary overlap. Thus, we conclude that the Amboasary mouse lemurs represent a single species - most likely (in the absence of genetic data to the contrary) M. griseorufus, and we reject their previous allocation to Microcebus murinus. Patterns of variation in the Amboasary sample provide a comparative template for recognizing the degree of variation manifested in a single primate population, and by implication, they provide minimum values for this species' intraspecific variation. Finally, discordance between different biological systems in our mouse lemur samples illustrates the need to examine multiple systems when conducting taxonomic analyses among living or fossil primates. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Development of an Autonomous, Dual Chamber Bioreactor for the Growth of 3-Dimensional Epithelial-Stromal Tissues in Microgravity

    NASA Technical Reports Server (NTRS)

    Patel, Zarana S.; Wettergreen, Matthew A.; Huff, Janice L.

    2014-01-01

    We are developing a novel, autonomous bioreactor that can provide for the growth and maintenance in microgravity of 3-D organotypic epithelial-stromal cultures that require an air-liquid interface. These complex 3-D tissue models accurately represent the morphological features, differentiation markers, and growth characteristics observed in normal human epithelial tissues, including the skin, esophagus, lung, breast, pancreas, and colon. However, because of their precise and complex culture requirements, including that of an air-liquid interface, these 3-D models have yet to be utilized for life sciences research aboard the International Space Station. The development of a bioreactor for these cultures will provide the capability to perform biological research on the ISS using these realistic, tissue-like human epithelial-stromal cell models and will contribute significantly to advances in fundamental space biology research on questions regarding microgravity effects on normal tissue development, aging, cancer, and other disease processes. It will also allow for the study of how combined stressors, such as microgravity with radiation and nutritional deficiencies, affect multiple biological processes and will provide a platform for conducting countermeasure investigations on the ISS without the use of animal models. The technology will be autonomous and consist of a cell culture chamber that provides for air-liquid, liquid-liquid, and liquid-air exchanges within the chambers while maintaining the growth and development of the biological samples. The bioreactor will support multiple tissue types and its modular design will provide for incorporation of add-on capabilities such as microfluidics drug delivery, media sampling, and in situ biomarker analysis. Preliminary flight testing of the hardware will be conducted on a parabolic platform through NASA's Flight Opportunities Program.

  2. Detecting concerted demographic response across community assemblages using hierarchical approximate Bayesian computation.

    PubMed

    Chan, Yvonne L; Schanzenbach, David; Hickerson, Michael J

    2014-09-01

    Methods that integrate population-level sampling from multiple taxa into a single community-level analysis are an essential addition to the comparative phylogeographic toolkit. Detecting how species within communities have demographically tracked each other in space and time is important for understanding the effects of future climate and landscape changes and the resulting acceleration of extinctions, biological invasions, and potential surges in adaptive evolution. Here, we present a statistical framework for such an analysis based on hierarchical approximate Bayesian computation (hABC) with the goal of detecting concerted demographic histories across an ecological assemblage. Our method combines population genetic data sets from multiple taxa into a single analysis to estimate: 1) the proportion of a community sample that demographically expanded in a temporally clustered pulse and 2) when the pulse occurred. To validate the accuracy and utility of this new approach, we use simulation cross-validation experiments and subsequently analyze an empirical data set of 32 avian populations from Australia that are hypothesized to have expanded from smaller refugia populations in the late Pleistocene. The method can accommodate data set heterogeneity such as variability in effective population size, mutation rates, and sample sizes across species and exploits the statistical strength from the simultaneous analysis of multiple species. This hABC framework used in a multitaxa demographic context can increase our understanding of the impact of historical climate change by determining what proportion of the community responded in concert or independently and can be used with a wide variety of comparative phylogeographic data sets as biota-wide DNA barcoding data sets accumulate. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  3. Trends in mortality and biological stress in a medieval polish urban population.

    PubMed

    Betsinger, Tracy K; DeWitte, Sharon

    2017-12-01

    Urbanization in pre-modern populations may have had a variety of consequences related to population crowding. However, research on the effects of urbanization have provided inconsistent results regarding the biological impact of this transition on human populations. The purpose of this study is to test the hypothesis that urbanization caused an increase in overall biological stress in a medieval (10th-13th centuries AD) Polish population. A human skeletal sample (n=164) was examined for the presence of porotic hyperostosis, cribra orbitalia, linear enamel hypoplasia, periosteal reaction, and specific infectious diseases. Prevalence rates were compared among three temporal samples: initial urbanization, early urbanization, and later urbanization. Results indicate no significant trends for any of the pathological conditions. Cox proportional hazards analyses, however, revealed a significant increase in the risk of death over time, which supports the hypothesis. These results reflect the necessity of using multiple analyses to address bioarchaeological questions. The lack of significant results from skeletal indicators may be due to an earlier urbanization trend in the population. This study illustrates that the association of urbanization with elevated biological stress is complicated and dependent on various factors, including culture and time period. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Enzyme-regulated the changes of pH values for assembling a colorimetric and multistage interconnection logic network with multiple readouts.

    PubMed

    Huang, Yanyan; Ran, Xiang; Lin, Youhui; Ren, Jinsong; Qu, Xiaogang

    2015-04-22

    Based on enzymatic reactions-triggered changes of pH values and biocomputing, a novel and multistage interconnection biological network with multiple easy-detectable signal outputs has been developed. Compared with traditional chemical computing, the enzyme-based biological system could overcome the interference between reactions or the incompatibility of individual computing gates and offer a unique opportunity to assemble multicomponent/multifunctional logic circuitries. Our system included four enzyme inputs: β-galactosidase (β-gal), glucose oxidase (GOx), esterase (Est) and urease (Ur). With the assistance of two signal transducers (gold nanoparticles and acid-base indicators) or pH meter, the outputs of the biological network could be conveniently read by the naked eyes. In contrast to current methods, the approach present here could realize cost-effective, label-free and colorimetric logic operations without complicated instrument. By designing a series of Boolean logic operations, we could logically make judgment of the compositions of the samples on the basis of visual output signals. Our work offered a promising paradigm for future biological computing technology and might be highly useful in future intelligent diagnostics, prodrug activation, smart drug delivery, process control, and electronic applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Ruminal bacteria and protozoa composition, digestibility, and amino acid profile determined by multiple hydrolysis times.

    PubMed

    Fessenden, S W; Hackmann, T J; Ross, D A; Foskolos, A; Van Amburgh, M E

    2017-09-01

    Microbial samples from 4 independent experiments in lactating dairy cattle were obtained and analyzed for nutrient composition, AA digestibility, and AA profile after multiple hydrolysis times ranging from 2 to 168 h. Similar bacterial and protozoal isolation techniques were used for all isolations. Omasal bacteria and protozoa samples were analyzed for AA digestibility using a new in vitro technique. Multiple time point hydrolysis and least squares nonlinear regression were used to determine the AA content of omasal bacteria and protozoa, and equivalency comparisons were made against single time point hydrolysis. Formalin was used in 1 experiment, which negatively affected AA digestibility and likely limited the complete release of AA during acid hydrolysis. The mean AA digestibility was 87.8 and 81.6% for non-formalin-treated bacteria and protozoa, respectively. Preservation of microbe samples in formalin likely decreased recovery of several individual AA. Results from the multiple time point hydrolysis indicated that Ile, Val, and Met hydrolyzed at a slower rate compared with other essential AA. Singe time point hydrolysis was found to be nonequivalent to multiple time point hydrolysis when considering biologically important changes in estimated microbial AA profiles. Several AA, including Met, Ile, and Val, were underpredicted using AA determination after a single 24-h hydrolysis. Models for predicting postruminal supply of AA might need to consider potential bias present in postruminal AA flow literature when AA determinations are performed after single time point hydrolysis and when using formalin as a preservative for microbial samples. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Development of Sorbents for Extraction and Stabilization of Nucleic Acids

    DTIC Science & Technology

    2016-09-13

    ensure safe food and water supplies and to maintain the health and readiness of deployed troops. Identification of molecular signatures (genomic...biological, environmental, forensics, and food safety, drive the need for preservation of nucleic acid integrity during sample collection, transportation... antimicrobial activity as well as the potential for multiple and complex cationic interactions with nucleic acids (Fig. 10). Two different approaches were used

  7. Imaging System and Method for Biomedical Analysis

    DTIC Science & Technology

    2013-03-11

    biological particles and items of interest. Broadly, Padmanabhan et al. utilize the diffraction of a laser light source in flow cytometry to count...spread of light from multiple LED devices over the entire sample surface. Preferably, light source 308 projects a full spectrum white light. Light...for example, red blood cells, white blood cells (which may include lymphocytes which are relatively large and easily detectable), T-helper cells

  8. Quantification of Fatty Acid Oxidation Products Using On-line High Performance Liquid Chromatography Tandem Mass Spectrometry

    PubMed Central

    Levison, Bruce S.; Zhang, Renliang; Wang, Zeneng; Fu, Xiaoming; DiDonato, Joseph A.; Hazen, Stanley L.

    2013-01-01

    Oxidized fatty acids formed via lipid peroxidation are implicated in pathological processes such as inflammation and atherosclerosis. A number of methods may be used to detect specific oxidized fatty acids containing a single or multiple combinations of epoxide, hydroxyl, ketone and hydroperoxide moieties on varying carbon chain lengths from C8 up to C30. Some of these methods are nonspecific and their use in biological systems is fraught with difficulty. Measures of specific-oxidized fatty acid derivatives help in identifying oxidation pathways in pathological processes. We used liquid chromatography coupled with electrospray ionization tandem mass spectrometry (LC-MS/MS) as efficient, selective and sensitive methods for identifying and analyzing multiple specific fatty acid peroxidation products in human plasma and other biological matrices. We then distilled the essential components of a number of these analyses to provide an efficient protocol by which fatty acid oxidation products and their parent compounds can be determined. In this protocol, addition of synthetic internal standard to the sample, followed by base hydrolysis at elevated temperature, and liquid-liquid phase sample extraction with lighter than water solvents facilitates isolation of the oxidized fatty acid species. These species can be identified and accurately quantified using stable isotope dilution and multiple reaction monitoring. Use of a coupled multiplexed gradient HPLC system on the front end enables high-throughput chromatography and more efficient use of mass spectrometer time. PMID:23499838

  9. MixGF: spectral probabilities for mixture spectra from more than one peptide.

    PubMed

    Wang, Jian; Bourne, Philip E; Bandeira, Nuno

    2014-12-01

    In large-scale proteomic experiments, multiple peptide precursors are often cofragmented simultaneously in the same mixture tandem mass (MS/MS) spectrum. These spectra tend to elude current computational tools because of the ubiquitous assumption that each spectrum is generated from only one peptide. Therefore, tools that consider multiple peptide matches to each MS/MS spectrum can potentially improve the relatively low spectrum identification rate often observed in proteomics experiments. More importantly, data independent acquisition protocols promoting the cofragmentation of multiple precursors are emerging as alternative methods that can greatly improve the throughput of peptide identifications but their success also depends on the availability of algorithms to identify multiple peptides from each MS/MS spectrum. Here we address a fundamental question in the identification of mixture MS/MS spectra: determining the statistical significance of multiple peptides matched to a given MS/MS spectrum. We propose the MixGF generating function model to rigorously compute the statistical significance of peptide identifications for mixture spectra and show that this approach improves the sensitivity of current mixture spectra database search tools by a ≈30-390%. Analysis of multiple data sets with MixGF reveals that in complex biological samples the number of identified mixture spectra can be as high as 20% of all the identified spectra and the number of unique peptides identified only in mixture spectra can be up to 35.4% of those identified in single-peptide spectra. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Thin film bioreactors in space

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, M.; Scheld, H. W.

    1989-01-01

    Studies from the Skylab, SL-3 and D-1 missions have demonstrated that biological organisms grown in microgravity have changes in basic cellular functions such as DNA, mRNA and protein synthesis, cytoskeleton synthesis, glucose utilization, and cellular differentiation. Since microgravity could affect prokaryotic and eukaryotic cells at a subcellular and molecular level, space offers an opportunity to learn more about basic biological systems with one inmportant variable removed. The thin film bioreactor will facilitate the handling of fluids in microgravity, under constant temperature and will allow multiple samples of cells to be grown with variable conditions. Studies on cell cultures grown in microgravity would make it possible to identify and quantify changes in basic biological function in microgravity which are needed to develop new applications of orbital research and future biotechnology.

  11. Towards fast, rigorous and efficient conformational sampling of biomolecules: Advances in accelerated molecular dynamics.

    PubMed

    Doshi, Urmi; Hamelberg, Donald

    2015-05-01

    Accelerated molecular dynamics (aMD) has been proven to be a powerful biasing method for enhanced sampling of biomolecular conformations on general-purpose computational platforms. Biologically important long timescale events that are beyond the reach of standard molecular dynamics can be accessed without losing the detailed atomistic description of the system in aMD. Over other biasing methods, aMD offers the advantages of tuning the level of acceleration to access the desired timescale without any advance knowledge of the reaction coordinate. Recent advances in the implementation of aMD and its applications to small peptides and biological macromolecules are reviewed here along with a brief account of all the aMD variants introduced in the last decade. In comparison to the original implementation of aMD, the recent variant in which all the rotatable dihedral angles are accelerated (RaMD) exhibits faster convergence rates and significant improvement in statistical accuracy of retrieved thermodynamic properties. RaMD in conjunction with accelerating diffusive degrees of freedom, i.e. dual boosting, has been rigorously tested for the most difficult conformational sampling problem, protein folding. It has been shown that RaMD with dual boosting is capable of efficiently sampling multiple folding and unfolding events in small fast folding proteins. RaMD with the dual boost approach opens exciting possibilities for sampling multiple timescales in biomolecules. While equilibrium properties can be recovered satisfactorily from aMD-based methods, directly obtaining dynamics and kinetic rates for larger systems presents a future challenge. This article is part of a Special Issue entitled Recent developments of molecular dynamics. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Accurate and fast multiple-testing correction in eQTL studies.

    PubMed

    Sul, Jae Hoon; Raj, Towfique; de Jong, Simone; de Bakker, Paul I W; Raychaudhuri, Soumya; Ophoff, Roel A; Stranger, Barbara E; Eskin, Eleazar; Han, Buhm

    2015-06-04

    In studies of expression quantitative trait loci (eQTLs), it is of increasing interest to identify eGenes, the genes whose expression levels are associated with variation at a particular genetic variant. Detecting eGenes is important for follow-up analyses and prioritization because genes are the main entities in biological processes. To detect eGenes, one typically focuses on the genetic variant with the minimum p value among all variants in cis with a gene and corrects for multiple testing to obtain a gene-level p value. For performing multiple-testing correction, a permutation test is widely used. Because of growing sample sizes of eQTL studies, however, the permutation test has become a computational bottleneck in eQTL studies. In this paper, we propose an efficient approach for correcting for multiple testing and assess eGene p values by utilizing a multivariate normal distribution. Our approach properly takes into account the linkage-disequilibrium structure among variants, and its time complexity is independent of sample size. By applying our small-sample correction techniques, our method achieves high accuracy in both small and large studies. We have shown that our method consistently produces extremely accurate p values (accuracy > 98%) for three human eQTL datasets with different sample sizes and SNP densities: the Genotype-Tissue Expression pilot dataset, the multi-region brain dataset, and the HapMap 3 dataset. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  13. Development of a Multiplexed Liquid Chromatography Multiple-Reaction-Monitoring Mass Spectrometry (LC-MRM/MS) Method for Evaluation of Salivary Proteins as Oral Cancer Biomarkers.

    PubMed

    Chen, Yi-Ting; Chen, Hsiao-Wei; Wu, Chun-Feng; Chu, Lichieh Julie; Chiang, Wei-Fang; Wu, Chih-Ching; Yu, Jau-Song; Tsai, Cheng-Han; Liang, Kung-Hao; Chang, Yu-Sun; Wu, Maureen; Ou Yang, Wei-Ting

    2017-05-01

    Multiple (selected) reaction monitoring (MRM/SRM) of peptides is a growing technology for target protein quantification because it is more robust, precise, accurate, high-throughput, and multiplex-capable than antibody-based techniques. The technique has been applied clinically to the large-scale quantification of multiple target proteins in different types of fluids. However, previous MRM-based studies have placed less focus on sample-preparation workflow and analytical performance in the precise quantification of proteins in saliva, a noninvasively sampled body fluid. In this study, we evaluated the analytical performance of a simple and robust multiple reaction monitoring (MRM)-based targeted proteomics approach incorporating liquid chromatography with mass spectrometry detection (LC-MRM/MS). This platform was used to quantitatively assess the biomarker potential of a group of 56 salivary proteins that have previously been associated with human cancers. To further enhance the development of this technology for assay of salivary samples, we optimized the workflow for salivary protein digestion and evaluated quantification performance, robustness and technical limitations in analyzing clinical samples. Using a clinically well-characterized cohort of two independent clinical sample sets (total n = 119), we quantitatively characterized these protein biomarker candidates in saliva specimens from controls and oral squamous cell carcinoma (OSCC) patients. The results clearly showed a significant elevation of most targeted proteins in saliva samples from OSCC patients compared with controls. Overall, this platform was capable of assaying the most highly multiplexed panel of salivary protein biomarkers, highlighting the clinical utility of MRM in oral cancer biomarker research. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Learning style and concept acquisition of community college students in introductory biology

    NASA Astrophysics Data System (ADS)

    Bobick, Sandra Burin

    This study investigated the influence of learning style on concept acquisition within a sample of community college students in a general biology course. There are two subproblems within the larger problem: (1) the influence of demographic variables (age, gender, number of college credits, prior exposure to scientific information) on learning style, and (2) the correlations between prior scientific knowledge, learning style and student understanding of the concept of the gene. The sample included all students enrolled in an introductory general biology course during two consecutive semesters at an urban community college. Initial data was gathered during the first week of the semester, at which time students filled in a short questionnaire (age, gender, number of college credits, prior exposure to science information either through reading/visual sources or a prior biology course). Subjects were then given the Inventory of Learning Processes-Revised (ILP-R) which measures general preferences in five learning styles; Deep Learning; Elaborative Learning, Agentic Learning, Methodical Learning and Literal Memorization. Subjects were then given the Gene Conceptual Knowledge pretest: a 15 question objective section and an essay section. Subjects were exposed to specific concepts during lecture and laboratory exercises. At the last lab, students were given the Genetics Conceptual Knowledge Posttest. Pretest/posttest gains were correlated with demographic variables and learning styles were analyzed for significant correlations. Learning styles, as the independent variable in a simultaneous multiple regression, were significant predictors of results on the gene assessment tests, including pretest, posttest and gain. Of the learning styles, Deep Learning accounted for the greatest positive predictive value of pretest essay and pretest objective results. Literal Memorization was a significant negative predictor for posttest essay, essay gain and objective gain. Simultaneous multiple regression indicated that demographic variables were significant positive predictors for Methodical, Deep and Elaborative Learning Styles. Stepwise multiple regression resulted in number of credits, Read Science and gender (female) as significant predictors of learning styles. The findings of this study emphasize the importance of learning styles in conceptual understanding of the gene and the correlation of nonformal exposure to science information with learning style and conceptual understanding.

  15. NASA Biological Specimen Repository

    NASA Technical Reports Server (NTRS)

    Pietrzyk, Robert; McMonigal, K. A.; Sams, C. F.; Johnson, M. A.

    2009-01-01

    The NASA Biological Specimen Repository (NBSR) has been established to collect, process, annotate, store, and distribute specimens under the authority of the NASA/JSC Committee for the Protection of Human Subjects. The International Space Station (ISS) provides a platform to investigate the effects of microgravity on human physiology prior to lunar and exploration class missions. The NBSR is a secure controlled storage facility that is used to maintain biological specimens over extended periods of time, under well-controlled conditions, for future use in approved human spaceflight-related research protocols. The repository supports the Human Research Program, which is charged with identifying and investigating physiological changes that occur during human spaceflight, and developing and implementing effective countermeasures when necessary. The storage of crewmember samples from many different ISS flights in a single repository will be a valuable resource with which researchers can validate clinical hypotheses, study space-flight related changes, and investigate physiological markers All samples collected require written informed consent from each long duration crewmember. The NBSR collects blood and urine samples from all participating long duration ISS crewmembers. These biological samples are collected pre-flight at approximately 45 days prior to launch, during flight on flight days 15, 30, 60 120 and within 2 weeks of landing. Postflight sessions are conducted 3 and 30 days following landing. The number of inflight sessions is dependent on the duration of the mission. Operations began in 2007 and as of October 2009, 23 USOS crewmembers have completed or agreed to participate in this project. As currently planned, these human biological samples will be collected from crewmembers covering multiple ISS missions until the end of U.S. presence on the ISS or 2017. The NBSR will establish guidelines for sample distribution that are consistent with ethical principles, protection of crewmember confidentiality, prevailing laws and regulations, intellectual property policies, and consent form language. A NBSR Advisory Board composed of representatives of all participating agencies will be established to evaluate each request by an investigator for use of the samples to ensure the request reflects the mission of the NBSR.

  16. Implementation of a Multiplex and Quantitative Proteomics Platform for Assessing Protein Lysates Using DNA-Barcoded Antibodies.

    PubMed

    Lee, Jinho; Geiss, Gary K; Demirkan, Gokhan; Vellano, Christopher P; Filanoski, Brian; Lu, Yiling; Ju, Zhenlin; Yu, Shuangxing; Guo, Huifang; Bogatzki, Lisa Y; Carter, Warren; Meredith, Rhonda K; Krishnamurthy, Savitri; Ding, Zhiyong; Beechem, Joseph M; Mills, Gordon B

    2018-06-01

    Molecular analysis of tumors forms the basis for personalized cancer medicine and increasingly guides patient selection for targeted therapy. Future opportunities for personalized medicine are highlighted by the measurement of protein expression levels via immunohistochemistry, protein arrays, and other approaches; however, sample type, sample quantity, batch effects, and "time to result" are limiting factors for clinical application. Here, we present a development pipeline for a novel multiplexed DNA-labeled antibody platform which digitally quantifies protein expression from lysate samples. We implemented a rigorous validation process for each antibody and show that the platform is amenable to multiple protocols covering nitrocellulose and plate-based methods. Results are highly reproducible across technical and biological replicates, and there are no observed "batch effects" which are common for most multiplex molecular assays. Tests from basal and perturbed cancer cell lines indicate that this platform is comparable to orthogonal proteomic assays such as Reverse-Phase Protein Array, and applicable to measuring the pharmacodynamic effects of clinically-relevant cancer therapeutics. Furthermore, we demonstrate the potential clinical utility of the platform with protein profiling from breast cancer patient samples to identify molecular subtypes. Together, these findings highlight the potential of this platform for enhancing our understanding of cancer biology in a clinical translation setting. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Comparability among four invertebrate sampling methods, Fountain Creek Basin, Colorado, 2010-2012

    USGS Publications Warehouse

    Zuellig, Robert E.; Bruce, James F.; Stogner, Sr., Robert W.; Brown, Krystal D.

    2014-01-01

    The U.S. Geological Survey, in cooperation with Colorado Springs City Engineering and Colorado Springs Utilities, designed a study to determine if sampling method and sample timing resulted in comparable samples and assessments of biological condition. To accomplish this task, annual invertebrate samples were collected concurrently using four sampling methods at 15 U.S. Geological Survey streamflow gages in the Fountain Creek basin from 2010 to 2012. Collectively, the four methods are used by local (U.S. Geological Survey cooperative monitoring program) and State monitoring programs (Colorado Department of Public Health and Environment) in the Fountain Creek basin to produce two distinct sample types for each program that target single-and multiple-habitats. This study found distinguishable differences between single-and multi-habitat sample types using both community similarities and multi-metric index values, while methods from each program within sample type were comparable. This indicates that the Colorado Department of Public Health and Environment methods were compatible with the cooperative monitoring program methods within multi-and single-habitat sample types. Comparisons between September and October samples found distinguishable differences based on community similarities for both sample types, whereas only differences were found for single-habitat samples when multi-metric index values were considered. At one site, differences between September and October index values from single-habitat samples resulted in opposing assessments of biological condition. Direct application of the results to inform the revision of the existing Fountain Creek basin U.S. Geological Survey cooperative monitoring program are discussed.

  18. TRAM (Transcriptome Mapper): database-driven creation and analysis of transcriptome maps from multiple sources

    PubMed Central

    2011-01-01

    Background Several tools have been developed to perform global gene expression profile data analysis, to search for specific chromosomal regions whose features meet defined criteria as well as to study neighbouring gene expression. However, most of these tools are tailored for a specific use in a particular context (e.g. they are species-specific, or limited to a particular data format) and they typically accept only gene lists as input. Results TRAM (Transcriptome Mapper) is a new general tool that allows the simple generation and analysis of quantitative transcriptome maps, starting from any source listing gene expression values for a given gene set (e.g. expression microarrays), implemented as a relational database. It includes a parser able to assign univocal and updated gene symbols to gene identifiers from different data sources. Moreover, TRAM is able to perform intra-sample and inter-sample data normalization, including an original variant of quantile normalization (scaled quantile), useful to normalize data from platforms with highly different numbers of investigated genes. When in 'Map' mode, the software generates a quantitative representation of the transcriptome of a sample (or of a pool of samples) and identifies if segments of defined lengths are over/under-expressed compared to the desired threshold. When in 'Cluster' mode, the software searches for a set of over/under-expressed consecutive genes. Statistical significance for all results is calculated with respect to genes localized on the same chromosome or to all genome genes. Transcriptome maps, showing differential expression between two sample groups, relative to two different biological conditions, may be easily generated. We present the results of a biological model test, based on a meta-analysis comparison between a sample pool of human CD34+ hematopoietic progenitor cells and a sample pool of megakaryocytic cells. Biologically relevant chromosomal segments and gene clusters with differential expression during the differentiation toward megakaryocyte were identified. Conclusions TRAM is designed to create, and statistically analyze, quantitative transcriptome maps, based on gene expression data from multiple sources. The release includes FileMaker Pro database management runtime application and it is freely available at http://apollo11.isto.unibo.it/software/, along with preconfigured implementations for mapping of human, mouse and zebrafish transcriptomes. PMID:21333005

  19. A journey from reductionist to systemic cell biology aboard the schooner Tara.

    PubMed

    Karsenti, Eric

    2012-07-01

    In this essay I describe my personal journey from reductionist to systems cell biology and describe how this in turn led to a 3-year sea voyage to explore complex ocean communities. In describing this journey, I hope to convey some important principles that I gleaned along the way. I realized that cellular functions emerge from multiple molecular interactions and that new approaches borrowed from statistical physics are required to understand the emergence of such complex systems. Then I wondered how such interaction networks developed during evolution. Because life first evolved in the oceans, it became a natural thing to start looking at the small organisms that compose the plankton in the world's oceans, of which 98% are … individual cells-hence the Tara Oceans voyage, which finished on 31 March 2012 in Lorient, France, after a 60,000-mile around-the-world journey that collected more than 30,000 samples from 153 sampling stations.

  20. Joint analysis of multiple high-dimensional data types using sparse matrix approximations of rank-1 with applications to ovarian and liver cancer.

    PubMed

    Okimoto, Gordon; Zeinalzadeh, Ashkan; Wenska, Tom; Loomis, Michael; Nation, James B; Fabre, Tiphaine; Tiirikainen, Maarit; Hernandez, Brenda; Chan, Owen; Wong, Linda; Kwee, Sandi

    2016-01-01

    Technological advances enable the cost-effective acquisition of Multi-Modal Data Sets (MMDS) composed of measurements for multiple, high-dimensional data types obtained from a common set of bio-samples. The joint analysis of the data matrices associated with the different data types of a MMDS should provide a more focused view of the biology underlying complex diseases such as cancer that would not be apparent from the analysis of a single data type alone. As multi-modal data rapidly accumulate in research laboratories and public databases such as The Cancer Genome Atlas (TCGA), the translation of such data into clinically actionable knowledge has been slowed by the lack of computational tools capable of analyzing MMDSs. Here, we describe the Joint Analysis of Many Matrices by ITeration (JAMMIT) algorithm that jointly analyzes the data matrices of a MMDS using sparse matrix approximations of rank-1. The JAMMIT algorithm jointly approximates an arbitrary number of data matrices by rank-1 outer-products composed of "sparse" left-singular vectors (eigen-arrays) that are unique to each matrix and a right-singular vector (eigen-signal) that is common to all the matrices. The non-zero coefficients of the eigen-arrays identify small subsets of variables for each data type (i.e., signatures) that in aggregate, or individually, best explain a dominant eigen-signal defined on the columns of the data matrices. The approximation is specified by a single "sparsity" parameter that is selected based on false discovery rate estimated by permutation testing. Multiple signals of interest in a given MDDS are sequentially detected and modeled by iterating JAMMIT on "residual" data matrices that result from a given sparse approximation. We show that JAMMIT outperforms other joint analysis algorithms in the detection of multiple signatures embedded in simulated MDDS. On real multimodal data for ovarian and liver cancer we show that JAMMIT identified multi-modal signatures that were clinically informative and enriched for cancer-related biology. Sparse matrix approximations of rank-1 provide a simple yet effective means of jointly reducing multiple, big data types to a small subset of variables that characterize important clinical and/or biological attributes of the bio-samples from which the data were acquired.

  1. Plasmodium vivax: modern strategies to study a persistent parasite's life cycle.

    PubMed

    Galinski, Mary R; Meyer, Esmeralda V S; Barnwell, John W

    2013-01-01

    Plasmodium vivax has unique attributes to support its survival in varying ecologies and climates. These include hypnozoite forms in the liver, an invasion preference for reticulocytes, caveola-vesicle complex structures in the infected erythrocyte membrane and rapidly forming and circulating gametocytes. These characteristics make this species very different from P. falciparum. Plasmodium cynomolgi and other related simian species have identical biology and can serve as informative models of P. vivax infections. Plasmodium vivax and its model parasites can be grown in non-human primates (NHP), and in short-term ex vivo cultures. For P. vivax, in the absence of in vitro culture systems, these models remain highly relevant side by side with human clinical studies. While post-genomic technologies allow for greater exploration of P. vivax-infected blood samples from humans, these come with restrictions. Two advantages of NHP models are that infections can be experimentally tailored to address hypotheses, including genetic manipulation. Also, systems biology approaches can capitalise on computational biology combined with set experimental infection periods and protocols, which may include multiple sampling times, different types of samples, and the broad use of "omics" technologies. Opportunities for research on vivax malaria are increasing with the use of existing and new methodological strategies in combination with modern technologies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Unsupervised multiple kernel learning for heterogeneous data integration.

    PubMed

    Mariette, Jérôme; Villa-Vialaneix, Nathalie

    2018-03-15

    Recent high-throughput sequencing advances have expanded the breadth of available omics datasets and the integrated analysis of multiple datasets obtained on the same samples has allowed to gain important insights in a wide range of applications. However, the integration of various sources of information remains a challenge for systems biology since produced datasets are often of heterogeneous types, with the need of developing generic methods to take their different specificities into account. We propose a multiple kernel framework that allows to integrate multiple datasets of various types into a single exploratory analysis. Several solutions are provided to learn either a consensus meta-kernel or a meta-kernel that preserves the original topology of the datasets. We applied our framework to analyse two public multi-omics datasets. First, the multiple metagenomic datasets, collected during the TARA Oceans expedition, was explored to demonstrate that our method is able to retrieve previous findings in a single kernel PCA as well as to provide a new image of the sample structures when a larger number of datasets are included in the analysis. To perform this analysis, a generic procedure is also proposed to improve the interpretability of the kernel PCA in regards with the original data. Second, the multi-omics breast cancer datasets, provided by The Cancer Genome Atlas, is analysed using a kernel Self-Organizing Maps with both single and multi-omics strategies. The comparison of these two approaches demonstrates the benefit of our integration method to improve the representation of the studied biological system. Proposed methods are available in the R package mixKernel, released on CRAN. It is fully compatible with the mixOmics package and a tutorial describing the approach can be found on mixOmics web site http://mixomics.org/mixkernel/. jerome.mariette@inra.fr or nathalie.villa-vialaneix@inra.fr. Supplementary data are available at Bioinformatics online.

  3. Toxigenic Corynebacterium ulcerans in a fatal human case and her feline contacts, France, March 2014.

    PubMed

    Vandentorren, S; Guiso, N; Badell, E; Boisrenoult, P; Micaelo, M; Troché, G; Lecouls, P; Moquet, M J; Patey, O; Belchior, E

    2014-09-25

    In March 2014, a person in their eighties who was diagnosed with extensive cellulitis due to toxigenic Corynebacterium ulcerans died from multiple organ failure. Environmental investigation also isolated C. ulcerans in biological samples from two stray cats in contact with the case. This finding provides further evidence that pets can carry toxigenic C. ulcerans and may be a source of the infection in humans.

  4. Faunal assemblages and multi-scale habitat patterns in headwater tributaries of the South Fork Trinity River - an unregulated river embedded within a multiple-use landscape

    Treesearch

    H. H. Jr. Welsh; J. J. G. R. Hodgson; J. M. Emlen Duda

    2010-01-01

    Headwaters can represent 80% of stream kilometers in a watershed, and they also have unique physical and biological properties that have only recently been recognized for their importance in sustaining healthy functioning stream networks and their ecological services. We sampled 60 headwater tributaries in the South Fork Trinity River, a 2,430 km2...

  5. Nested Sampling for Bayesian Model Comparison in the Context of Salmonella Disease Dynamics

    PubMed Central

    Dybowski, Richard; McKinley, Trevelyan J.; Mastroeni, Pietro; Restif, Olivier

    2013-01-01

    Understanding the mechanisms underlying the observed dynamics of complex biological systems requires the statistical assessment and comparison of multiple alternative models. Although this has traditionally been done using maximum likelihood-based methods such as Akaike's Information Criterion (AIC), Bayesian methods have gained in popularity because they provide more informative output in the form of posterior probability distributions. However, comparison between multiple models in a Bayesian framework is made difficult by the computational cost of numerical integration over large parameter spaces. A new, efficient method for the computation of posterior probabilities has recently been proposed and applied to complex problems from the physical sciences. Here we demonstrate how nested sampling can be used for inference and model comparison in biological sciences. We present a reanalysis of data from experimental infection of mice with Salmonella enterica showing the distribution of bacteria in liver cells. In addition to confirming the main finding of the original analysis, which relied on AIC, our approach provides: (a) integration across the parameter space, (b) estimation of the posterior parameter distributions (with visualisations of parameter correlations), and (c) estimation of the posterior predictive distributions for goodness-of-fit assessments of the models. The goodness-of-fit results suggest that alternative mechanistic models and a relaxation of the quasi-stationary assumption should be considered. PMID:24376528

  6. Parallelism in integrated fluidic circuits

    NASA Astrophysics Data System (ADS)

    Bousse, Luc J.; Kopf-Sill, Anne R.; Parce, J. W.

    1998-04-01

    Many research groups around the world are working on integrated microfluidics. The goal of these projects is to automate and integrate the handling of liquid samples and reagents for measurement and assay procedures in chemistry and biology. Ultimately, it is hoped that this will lead to a revolution in chemical and biological procedures similar to that caused in electronics by the invention of the integrated circuit. The optimal size scale of channels for liquid flow is determined by basic constraints to be somewhere between 10 and 100 micrometers . In larger channels, mixing by diffusion takes too long; in smaller channels, the number of molecules present is so low it makes detection difficult. At Caliper, we are making fluidic systems in glass chips with channels in this size range, based on electroosmotic flow, and fluorescence detection. One application of this technology is rapid assays for drug screening, such as enzyme assays and binding assays. A further challenge in this area is to perform multiple functions on a chip in parallel, without a large increase in the number of inputs and outputs. A first step in this direction is a fluidic serial-to-parallel converter. Fluidic circuits will be shown with the ability to distribute an incoming serial sample stream to multiple parallel channels.

  7. Current strategies for protein production and purification enabling membrane protein structural biology.

    PubMed

    Pandey, Aditya; Shin, Kyungsoo; Patterson, Robin E; Liu, Xiang-Qin; Rainey, Jan K

    2016-12-01

    Membrane proteins are still heavily under-represented in the protein data bank (PDB), owing to multiple bottlenecks. The typical low abundance of membrane proteins in their natural hosts makes it necessary to overexpress these proteins either in heterologous systems or through in vitro translation/cell-free expression. Heterologous expression of proteins, in turn, leads to multiple obstacles, owing to the unpredictability of compatibility of the target protein for expression in a given host. The highly hydrophobic and (or) amphipathic nature of membrane proteins also leads to challenges in producing a homogeneous, stable, and pure sample for structural studies. Circumventing these hurdles has become possible through the introduction of novel protein production protocols; efficient protein isolation and sample preparation methods; and, improvement in hardware and software for structural characterization. Combined, these advances have made the past 10-15 years very exciting and eventful for the field of membrane protein structural biology, with an exponential growth in the number of solved membrane protein structures. In this review, we focus on both the advances and diversity of protein production and purification methods that have allowed this growth in structural knowledge of membrane proteins through X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM).

  8. Current strategies for protein production and purification enabling membrane protein structural biology

    PubMed Central

    Pandey, Aditya; Shin, Kyungsoo; Patterson, Robin E.; Liu, Xiang-Qin; Rainey, Jan K.

    2017-01-01

    Membrane proteins are still heavily underrepresented in the protein data bank (PDB) due to multiple bottlenecks. The typical low abundance of membrane proteins in their natural hosts makes it necessary to overexpress these proteins either in heterologous systems or through in vitro translation/cell-free expression. Heterologous expression of proteins, in turn, leads to multiple obstacles due to the unpredictability of compatibility of the target protein for expression in a given host. The highly hydrophobic and/or amphipathic nature of membrane proteins also leads to challenges in producing a homogeneous, stable, and pure sample for structural studies. Circumventing these hurdles has become possible through introduction of novel protein production protocols; efficient protein isolation and sample preparation methods; and, improvement in hardware and software for structural characterization. Combined, these advances have made the past 10–15 years very exciting and eventful for the field of membrane protein structural biology, with an exponential growth in the number of solved membrane protein structures. In this review, we focus on both the advances and diversity of protein production and purification methods that have allowed this growth in structural knowledge of membrane proteins through X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM). PMID:27010607

  9. Spectral features of biogenic calcium carbonates and implications for astrobiology

    NASA Astrophysics Data System (ADS)

    Berg, B. L.; Ronholm, J.; Applin, D. M.; Mann, P.; Izawa, M.; Cloutis, E. A.; Whyte, L. G.

    2014-09-01

    The ability to discriminate biogenic from abiogenic calcium carbonate (CaCO3) would be useful in the search for extant or extinct life, since CaCO3 can be produced by both biotic and abiotic processes on Earth. Bioprecipitated CaCO3 material was produced during the growth of heterotrophic microbial isolates on medium enriched with calcium acetate or calcium citrate. These biologically produced CaCO3, along with natural and synthetic non-biologically produced CaCO3 samples, were analysed by reflectance spectroscopy (0.35-2.5 μm), Raman spectroscopy (532 and 785 nm), and laser-induced fluorescence spectroscopy (365 and 405 nm excitation). Optimal instruments for the discrimination of biogenic from abiogenic CaCO3 were determined to be reflectance spectroscopy, and laser-induced fluorescence spectroscopy. Multiple absorption features in the visible light region occurred in reflectance spectra for most biogenic CaCO3 samples, which are likely due to organic pigments. Multiple fluorescence peaks occurred in emission spectra (405 nm excitation) of biogenic CaCO3 samples, which also are best attributed to the presence of organic compounds; however, further analyses must be performed in order to better determine the cause of these features to establish criteria for confirming the origin of a given CaCO3 sample. Raman spectroscopy was not useful for discrimination since any potential Raman peaks in spectra of biogenic carbonates collected by both the 532 and 785 nm lasers were overwhelmed by fluorescence. However, this also suggests that biogenic carbonates may be identified by the presence of this organic-associated fluorescence. No reliable spectroscopic differences in terms of parameters such as positions or widths of carbonate-associated absorption bands were found between the biogenic and abiogenic carbonate samples. These results indicate that the presence or absence of organic matter intimately associated with carbonate minerals is the only potentially useful spectral discriminator for the techniques that were examined, and that multiple spectroscopic techniques are capable of detecting the presence of associated organic materials. However, the presence or absence of intimately associated organic matter is not, in itself, an indicator of biogenicity.

  10. Bi-Fi: an embedded sensor/system architecture for REMOTE biological monitoring.

    PubMed

    Farshchi, Shahin; Pesterev, Aleksey; Nuyujukian, Paul H; Mody, Istvan; Judy, Jack W

    2007-11-01

    Wireless-enabled processor modules intended for communicating low-frequency phenomena (i.e., temperature, humidity, and ambient light) have been enabled to acquire and transmit multiple biological signals in real time, which has been achieved by using computationally efficient data acquisition, filtering, and compression algorithms, and interfacing the modules with biological interface hardware. The sensor modules can acquire and transmit raw biological signals at a rate of 32 kb/s, which is near the hardware limit of the modules. Furthermore, onboard signal processing enables one channel, sampled at a rate of 4000 samples/s at 12-bit resolution, to be compressed via adaptive differential-pulse-code modulation (ADPCM) and transmitted in real time. In addition, the sensors can be configured to filter and transmit individual time-referenced "spike" waveforms, or to transmit the spike height and width for alleviating network traffic and increasing battery life. The system is capable of acquiring eight channels of analog signals as well as data via an asynchronous serial connection. A back-end server archives the biological data received via networked gateway sensors, and hosts them to a client application that enables users to browse recorded data. The system also acquires, filters, and transmits oxygen saturation and pulse rate via a commercial-off-the-shelf interface board. The system architecture can be configured for performing real-time nonobtrusive biological monitoring of humans or rodents. This paper demonstrates that low-power, computational, and bandwidth-constrained wireless-enabled platforms can indeed be leveraged for wireless biosignal monitoring.

  11. Long-wavelength optical coherence tomography at 1.7 µm for enhanced imaging depth

    PubMed Central

    Sharma, Utkarsh; Chang, Ernest W.; Yun, Seok H.

    2009-01-01

    Multiple scattering in a sample presents a significant limitation to achieve meaningful structural information at deeper penetration depths in optical coherence tomography (OCT). Previous studies suggest that the spectral region around 1.7 µm may exhibit reduced scattering coefficients in biological tissues compared to the widely used wavelengths around 1.3 µm. To investigate this long-wavelength region, we developed a wavelength-swept laser at 1.7 µm wavelength and conducted OCT or optical frequency domain imaging (OFDI) for the first time in this spectral range. The constructed laser is capable of providing a wide tuning range from 1.59 to 1.75 µm over 160 nm. When the laser was operated with a reduced tuning range over 95 nm at a repetition rate of 10.9 kHz and an average output power of 12.3 mW, the OFDI imaging system exhibited a sensitivity of about 100 dB and axial and lateral resolution of 24 µm and 14 µm, respectively. We imaged several phantom and biological samples using 1.3 µm and 1.7 µm OFDI systems and found that the depth-dependent signal decay rate is substantially lower at 1.7 µm wavelength in most, if not all samples. Our results suggest that this imaging window may offer an advantage over shorter wavelengths by increasing the penetration depths as well as enhancing image contrast at deeper penetration depths where otherwise multiple scattered photons dominate over ballistic photons. PMID:19030057

  12. Super-Resolution Imaging of Molecular Emission Spectra and Single Molecule Spectral Fluctuations

    PubMed Central

    Mlodzianoski, Michael J.; Curthoys, Nikki M.; Gunewardene, Mudalige S.; Carter, Sean; Hess, Samuel T.

    2016-01-01

    Localization microscopy can image nanoscale cellular details. To address biological questions, the ability to distinguish multiple molecular species simultaneously is invaluable. Here, we present a new version of fluorescence photoactivation localization microscopy (FPALM) which detects the emission spectrum of each localized molecule, and can quantify changes in emission spectrum of individual molecules over time. This information can allow for a dramatic increase in the number of different species simultaneously imaged in a sample, and can create super-resolution maps showing how single molecule emission spectra vary with position and time in a sample. PMID:27002724

  13. Principal network analysis: identification of subnetworks representing major dynamics using gene expression data

    PubMed Central

    Kim, Yongsoo; Kim, Taek-Kyun; Kim, Yungu; Yoo, Jiho; You, Sungyong; Lee, Inyoul; Carlson, George; Hood, Leroy; Choi, Seungjin; Hwang, Daehee

    2011-01-01

    Motivation: Systems biology attempts to describe complex systems behaviors in terms of dynamic operations of biological networks. However, there is lack of tools that can effectively decode complex network dynamics over multiple conditions. Results: We present principal network analysis (PNA) that can automatically capture major dynamic activation patterns over multiple conditions and then generate protein and metabolic subnetworks for the captured patterns. We first demonstrated the utility of this method by applying it to a synthetic dataset. The results showed that PNA correctly captured the subnetworks representing dynamics in the data. We further applied PNA to two time-course gene expression profiles collected from (i) MCF7 cells after treatments of HRG at multiple doses and (ii) brain samples of four strains of mice infected with two prion strains. The resulting subnetworks and their interactions revealed network dynamics associated with HRG dose-dependent regulation of cell proliferation and differentiation and early PrPSc accumulation during prion infection. Availability: The web-based software is available at: http://sbm.postech.ac.kr/pna. Contact: dhhwang@postech.ac.kr; seungjin@postech.ac.kr Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21193522

  14. Conducting On-orbit Gene Expression Analysis on ISS: WetLab-2

    NASA Technical Reports Server (NTRS)

    Parra, Macarena; Almeida, Eduardo; Boone, Travis; Jung, Jimmy; Lera, Matthew P.; Ricco, Antonio; Souza, Kenneth; Wu, Diana; Richey, C. Scott

    2013-01-01

    WetLab-2 will enable expanded genomic research on orbit by developing tools that support in situ sample collection, processing, and analysis on ISS. This capability will reduce the time-to-results for investigators and define new pathways for discovery on the ISS National Lab. The primary objective is to develop a research platform on ISS that will facilitate real-time quantitative gene expression analysis of biological samples collected on orbit. WetLab-2 will be capable of processing multiple sample types ranging from microbial cultures to animal tissues dissected on orbit. WetLab-2 will significantly expand the analytical capabilities onboard ISS and enhance science return from ISS.

  15. Quantitation of DNA adducts by stable isotope dilution mass spectrometry

    PubMed Central

    Tretyakova, Natalia; Goggin, Melissa; Janis, Gregory

    2012-01-01

    Exposure to endogenous and exogenous chemicals can lead to the formation of structurally modified DNA bases (DNA adducts). If not repaired, these nucleobase lesions can cause polymerase errors during DNA replication, leading to heritable mutations potentially contributing to the development of cancer. Due to their critical role in cancer initiation, DNA adducts represent mechanism-based biomarkers of carcinogen exposure, and their quantitation is particularly useful for cancer risk assessment. DNA adducts are also valuable in mechanistic studies linking tumorigenic effects of environmental and industrial carcinogens to specific electrophilic species generated from their metabolism. While multiple experimental methodologies have been developed for DNA adduct analysis in biological samples – including immunoassay, HPLC, and 32P-postlabeling – isotope dilution high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) generally has superior selectivity, sensitivity, accuracy, and reproducibility. As typical DNA adducts concentrations in biological samples are between 0.01 – 10 adducts per 108 normal nucleotides, ultrasensitive HPLC-ESI-MS/MS methodologies are required for their analysis. Recent developments in analytical separations and biological mass spectrometry – especially nanoflow HPLC, nanospray ionization MS, chip-MS, and high resolution MS – have pushed the limits of analytical HPLC-ESI-MS/MS methodologies for DNA adducts, allowing researchers to accurately measure their concentrations in biological samples from patients treated with DNA alkylating drugs and in populations exposed to carcinogens from urban air, drinking water, cooked food, alcohol, and cigarette smoke. PMID:22827593

  16. Genetic and environmental contributions to body mass index: comparative analysis of monozygotic twins, dizygotic twins and same-age unrelated siblings.

    PubMed

    Segal, N L; Feng, R; McGuire, S A; Allison, D B; Miller, S

    2009-01-01

    Earlier studies have established that a substantial percentage of variance in obesity-related phenotypes is explained by genetic components. However, only one study has used both virtual twins (VTs) and biological twins and was able to simultaneously estimate additive genetic, non-additive genetic, shared environmental and unshared environmental components in body mass index (BMI). Our current goal was to re-estimate four components of variance in BMI, applying a more rigorous model to biological and virtual multiples with additional data. Virtual multiples share the same family environment, offering unique opportunities to estimate common environmental influence on phenotypes that cannot be separated from the non-additive genetic component using only biological multiples. Data included 929 individuals from 164 monozygotic twin pairs, 156 dizygotic twin pairs, five triplet sets, one quadruplet set, 128 VT pairs, two virtual triplet sets and two virtual quadruplet sets. Virtual multiples consist of one biological child (or twins or triplets) plus one same-aged adoptee who are all raised together since infancy. We estimated the additive genetic, non-additive genetic, shared environmental and unshared random components in BMI using a linear mixed model. The analysis was adjusted for age, age(2), age(3), height, height(2), height(3), gender and race. Both non-additive genetic and common environmental contributions were significant in our model (P-values<0.0001). No significant additive genetic contribution was found. In all, 63.6% (95% confidence interval (CI) 51.8-75.3%) of the total variance of BMI was explained by a non-additive genetic component, 25.7% (95% CI 13.8-37.5%) by a common environmental component and the remaining 10.7% by an unshared component. Our results suggest that genetic components play an essential role in BMI and that common environmental factors such as diet or exercise also affect BMI. This conclusion is consistent with our earlier study using a smaller sample and shows the utility of virtual multiples for separating non-additive genetic variance from common environmental variance.

  17. A robust high resolution reversed-phase HPLC strategy to investigate various metabolic species in different biological models.

    PubMed

    D'Alessandro, Angelo; Gevi, Federica; Zolla, Lello

    2011-04-01

    Recent advancements in the field of omics sciences have paved the way for further expansion of metabolomics. Originally tied to NMR spectroscopy, metabolomic disciplines are constantly and growingly involving HPLC and mass spectrometry (MS)-based analytical strategies and, in this context, we hereby propose a robust and efficient extraction protocol for metabolites from four different biological sources which are subsequently analysed, identified and quantified through high resolution reversed-phase fast HPLC and mass spectrometry. To this end, we demonstrate the elevated intra- and inter-day technical reproducibility, ease of an MRM-based MS method, allowing simultaneous detection of up to 10 distinct features, and robustness of multiple metabolite detection and quantification in four different biological samples. This strategy might become routinely applicable to various samples/biological matrices, especially for low-availability ones. In parallel, we compare the present strategy for targeted detection of a representative metabolite, L-glutamic acid, with our previously-proposed chemical-derivatization through dansyl chloride. A direct comparison of the present method against spectrophotometric assays is proposed as well. An application of the proposed method is also introduced, using the SAOS-2 cell line, either induced or non-induced to express the TAp63 isoform of the p63 gene, as a model for determination of variations of glutamate concentrations.

  18. Exposure to BTEX and Ethers in Petrol Station Attendants and Proposal of Biological Exposure Equivalents for Urinary Benzene and MTBE.

    PubMed

    Campo, Laura; Rossella, Federica; Mercadante, Rosa; Fustinoni, Silvia

    2016-04-01

    To assess exposure to benzene (BEN) and other aromatic compounds (toluene, ethylbenzene, m+p-xylene, o-xylene) (BTEX), methyl tert-butyl ether (MTBE), and ethyl tert-butyl ether (ETBE) in petrol station workers using air sampling and biological monitoring and to propose biological equivalents to occupational limit values. Eighty-nine petrol station workers and 90 control subjects were investigated. Personal exposure to airborne BTEX and ethers was assessed during a mid-week shift; urine samples were collected at the beginning of the work week, prior to and at the end of air sampling. Petrol station workers had median airborne exposures to benzene and MTBE of 59 and 408 µg m(-3), respectively, with urinary benzene (BEN-U) and MTBE (MTBE-U) of 339 and 780 ng l(-1), respectively. Concentrations in petrol station workers were higher than in control subjects. There were significant positive correlations between airborne exposure and the corresponding biological marker, with Pearson's correlation coefficient (r) values of 0.437 and 0.865 for benzene and MTBE, respectively. There was also a strong correlation between airborne benzene and urinary MTBE (r = 0.835). Multiple linear regression analysis showed that the urinary levels of benzene were influenced by personal airborne exposure, urinary creatinine, and tobacco smoking [determination coefficient (R(2)) 0.572], while MTBE-U was influenced only by personal exposure (R(2) = 0.741). BEN-U and MTBE-U are sensitive and specific biomarkers of low occupational exposures. We propose using BEN-U as biomarker of exposure to benzene in nonsmokers and suggest 1457 ng l(-1) in end shift urine samples as biological exposure equivalent to the EU occupational limit value of 1 p.p.m.; for both smokers and nonsmokers, MTBE-U may be proposed as a surrogate biomarker of benzene exposure, with a biological exposure equivalent of 22 µg l(-1) in end shift samples. For MTBE exposure, we suggest the use of MTBE-U with a biological exposure equivalent of 22 µg l(-1) corresponding to the occupational limit value of 50 p.p.m. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  19. Efficient recovery of proteins from multiple source samples after TRIzol(®) or TRIzol(®)LS RNA extraction and long-term storage.

    PubMed

    Simões, André E S; Pereira, Diane M; Amaral, Joana D; Nunes, Ana F; Gomes, Sofia E; Rodrigues, Pedro M; Lo, Adrian C; D'Hooge, Rudi; Steer, Clifford J; Thibodeau, Stephen N; Borralho, Pedro M; Rodrigues, Cecília M P

    2013-03-15

    Simultaneous isolation of nucleic acids and proteins from a single biological sample facilitates meaningful data interpretation and reduces time, cost and sampling errors. This is particularly relevant for rare human and animal specimens, often scarce, and/or irreplaceable. TRIzol(®) and TRIzol(®)LS are suitable for simultaneous isolation of RNA, DNA and proteins from the same biological sample. These reagents are widely used for RNA and/or DNA isolation, while reports on their use for protein extraction are limited, attributable to technical difficulties in protein solubilisation. TRIzol(®)LS was used for RNA isolation from 284 human colon cancer samples, including normal colon mucosa, tubulovillous adenomas, and colon carcinomas with proficient and deficient mismatch repair system. TRIzol(®) was used for RNA isolation from human colon cancer cells, from brains of transgenic Alzheimer's disease mice model, and from cultured mouse cortical neurons. Following RNA extraction, the TRIzol(®)-chloroform fractions from human colon cancer samples and from mouse hippocampus and frontal cortex were stored for 2 years and 3 months, respectively, at -80°C until used for protein isolation.Simple modifications to the TRIzol(®) manufacturer's protocol, including Urea:SDS solubilization and sonication, allowed improved protein recovery yield compared to the TRIzol(®) manufacturer's protocol. Following SDS-PAGE and Ponceau and Coomassie staining, recovered proteins displayed wide molecular weight range and staining pattern comparable to those obtainable with commonly used protein extraction protocols. We also show that nuclear and cytosolic proteins can be easily extracted and detected by immunoblotting, and that posttranslational modifications, such as protein phosphorylation, are detectable in proteins recovered from TRIzol(®)-chloroform fractions stored for up to 2 years at -80°C. We provide a novel approach to improve protein recovery from samples processed for nucleic acid extraction with TRIzol(®) and TRIzol(®)LS compared to the manufacturer`s protocol, allowing downstream immunoblotting and evaluation of steady-state relative protein expression levels. The method was validated in large sets of samples from multiple sources, including human colon cancer and brains of transgenic Alzheimer's disease mice model, stored in TRIzol(®)-chloroform for up to two years. Collectively, we provide a faster and cheaper alternative to the TRIzol(®) manufacturer`s protein extraction protocol, illustrating the high relevance, and wide applicability, of the present protein isolation method for the immunoblot evaluation of steady-state relative protein expression levels in samples from multiple sources, and following prolonged storage.

  20. Quantitative Proteomics via High Resolution MS Quantification: Capabilities and Limitations

    PubMed Central

    Higgs, Richard E.; Butler, Jon P.; Han, Bomie; Knierman, Michael D.

    2013-01-01

    Recent improvements in the mass accuracy and resolution of mass spectrometers have led to renewed interest in label-free quantification using data from the primary mass spectrum (MS1) acquired from data-dependent proteomics experiments. The capacity for higher specificity quantification of peptides from samples enriched for proteins of biological interest offers distinct advantages for hypothesis generating experiments relative to immunoassay detection methods or prespecified peptide ions measured by multiple reaction monitoring (MRM) approaches. Here we describe an evaluation of different methods to post-process peptide level quantification information to support protein level inference. We characterize the methods by examining their ability to recover a known dilution of a standard protein in background matrices of varying complexity. Additionally, the MS1 quantification results are compared to a standard, targeted, MRM approach on the same samples under equivalent instrument conditions. We show the existence of multiple peptides with MS1 quantification sensitivity similar to the best MRM peptides for each of the background matrices studied. Based on these results we provide recommendations on preferred approaches to leveraging quantitative measurements of multiple peptides to improve protein level inference. PMID:23710359

  1. Triple-Label β Liquid Scintillation Counting

    PubMed Central

    Bukowski, Thomas R.; Moffett, Tyler C.; Revkin, James H.; Ploger, James D.; Bassingthwaighte, James B.

    2010-01-01

    The detection of radioactive compounds by liquid scintillation has revolutionized modern biology, yet few investigators make full use of the power of this technique. Even though multiple isotope counting is considerably more difficult than single isotope counting, many experimental designs would benefit from using more than one isotope. The development of accurate isotope counting techniques enabling the simultaneous use of three β-emitting tracers has facilitated studies in our laboratory using the multiple tracer indicator dilution technique for assessing rates of transmembrane transport and cellular metabolism. The details of sample preparation, and of stabilizing the liquid scintillation spectra of the tracers, are critical to obtaining good accuracy. Reproducibility is enhanced by obtaining detailed efficiency/quench curves for each particular set of tracers and solvent media. The numerical methods for multiple-isotope quantitation depend on avoiding error propagation (inherent to successive subtraction techniques) by using matrix inversion. Experimental data obtained from triple-label β counting illustrate reproducibility and good accuracy even when the relative amounts of different tracers in samples of protein/electrolyte solutions, plasma, and blood are changed. PMID:1514684

  2. OBIS-USA and Ocean Acidification: Chemical and Biological Observation Data, Integrated for Discovery and Applications

    NASA Astrophysics Data System (ADS)

    Fornwall, M.; Jewett, L.; Yates, K.; Goldstein, P.

    2012-12-01

    OBIS-USA (usgs.gov/obis-usa), a program of USGS Core Science, Analytics and Synthesis, is the US Regional node of the International Ocean Biogeographic Information System (iobis.org). OBIS data records observations of biological occurrences - identifiable species - at known time and coordinates. Within US research and operational communities, OBIS-USA serves an expanding range of applications by capturing details to accompany each observation: information to understand record quality and suitability for applications, details about observation circumstances such as sampling method and sampling conditions, and biological details such as sex, life stage, behavior and other characteristics. The NOAA Ocean Acidification Program and its associated data management effort (led by National Oceanographic Data Center) aim to enable users to locate, understand and use marine data from multiple sources and of multiple types to address questions related to ocean acidification and it impacts on marine ecosystems. By the nature of researching ocean acidification, data-driven applications require users to find and apply datasets that represent different disciplines as well as different researchers, organizations, agencies, funding models, data management practices and formats, and survey and observation methods. We refer to any collection(s) of data having diverse characteristics on these and other dimensions as "heterogeneous data". However, data management and Internet technologies enable the data itself and many of its diverse characteristics to be discoverable and understandable enough for users to build effective models, applications, and solutions. While it may not be simple to make heterogeneous data uniform or "seamless", current technologies enable at least the data characteristics to be sufficiently well-understood that users can consume data and accommodate its diverse characteristics in their process of generating outputs. Via this abstract and accompanying poster presentation, OBIS-USA and the NOAA Ocean Acidification Program describe proposed methods for obtaining diverse data, such as both chemical observations (those necessary to derive calcium carbonate saturation state) and biological marine observations (species occurrence, abundance), in order to use these sources of information in combined analysis for current and future research on ocean acidification and its relation to observed biology. Current OBIS-USA biological observations represent in-situ observations of marine taxa, and in the context of Ocean Acidification and this poster presentation, OBIS-USA shows a path toward including experimental biology observations as well as in-situ.

  3. Mapping of native inorganic elements and injected nanoparticles in a biological organ with laser-induced plasma

    NASA Astrophysics Data System (ADS)

    Motto-Ros, V.; Sancey, L.; Ma, Q. L.; Lux, F.; Bai, X. S.; Wang, X. C.; Yu, Jin; Panczer, G.; Tillement, O.

    2012-11-01

    Emission spectroscopy of laser-induced plasma from a thin section of mouse kidney successfully detected inorganic elements, Na, Ca, Cu, and Gd, naturally contained in the organ or artificially injected in the form of Gd-based nanoparticle. A two-dimensional scan of the sample allowed the laser beam to explore its surface with a resolution of 100 μm, resulting in a quantitative elemental mapping of the organ with sub-mM sensitivity. The compatibility of the setup with standard optical microscopy emphasizes the potential to provide multiple images of a same biological tissue with different types of response which can be elemental, molecular, or cellular.

  4. Differential Multiphoton Laser Scanning Microscopy

    PubMed Central

    Field, Jeffrey J.; Sheetz, Kraig E.; Chandler, Eric V.; Hoover, Erich E.; Young, Michael D.; Ding, Shi-you; Sylvester, Anne W.; Kleinfeld, David; Squier, Jeff A.

    2016-01-01

    Multifocal multiphoton microscopy (MMM) in the biological and medical sciences has become an important tool for obtaining high resolution images at video rates. While current implementations of MMM achieve very high frame rates, they are limited in their applicability to essentially those biological samples that exhibit little or no scattering. In this paper, we report on a method for MMM in which imaging detection is not necessary (single element point detection is implemented), and is therefore fully compatible for use in imaging through scattering media. Further, we demonstrate that this method leads to a new type of MMM wherein it is possible to simultaneously obtain multiple images and view differences in excitation parameters in a single shot. PMID:27390511

  5. High-resolution nuclear magnetic resonance measurements in inhomogeneous magnetic fields: A fast two-dimensional J-resolved experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yuqing; Cai, Shuhui; Yang, Yu

    2016-03-14

    High spectral resolution in nuclear magnetic resonance (NMR) is a prerequisite for achieving accurate information relevant to molecular structures and composition assignments. The continuous development of superconducting magnets guarantees strong and homogeneous static magnetic fields for satisfactory spectral resolution. However, there exist circumstances, such as measurements on biological tissues and heterogeneous chemical samples, where the field homogeneity is degraded and spectral line broadening seems inevitable. Here we propose an NMR method, named intermolecular zero-quantum coherence J-resolved spectroscopy (iZQC-JRES), to face the challenge of field inhomogeneity and obtain desired high-resolution two-dimensional J-resolved spectra with fast acquisition. Theoretical analyses for this methodmore » are given according to the intermolecular multiple-quantum coherence treatment. Experiments on (a) a simple chemical solution and (b) an aqueous solution of mixed metabolites under externally deshimmed fields, and on (c) a table grape sample with intrinsic field inhomogeneity from magnetic susceptibility variations demonstrate the feasibility and applicability of the iZQC-JRES method. The application of this method to inhomogeneous chemical and biological samples, maybe in vivo samples, appears promising.« less

  6. A conceptual design for cosmo-biology experiments in Earth's Orbit.

    PubMed

    Hashimoto, H; Greenberg, M; Brack, A; Colangeli, L; Horneck, G; Navarro-Gonzalez, R; Raulin, F; Kouchi, A; Saito, T; Yamashita, M; Kobayashi, K

    1998-06-01

    A conceptual design was developed for a cosmo-biology experiment. It is intended to expose simulated interstellar ice materials deposited on dust grains to the space environment. The experimental system consists of a cryogenic system to keep solidified gas sample, and an optical device to select and amplify the ultraviolet part of the solar light for irradiation. By this approach, the long lasting chemical evolution of icy species could be examined in a much shorter time of exposure by amplification of light intensity. The removal of light at longer wavelength, which is ineffective to induce photochemical reactions, reduces the heat load to the cryogenic system that holds solidified reactants including CO as a constituent species of interstellar materials. Other major hardware components were also defined in order to achieve the scientific objectives of this experiment. Those are a cold trap maintained at liquid nitrogen temperature to prevent the contamination of the sample during the exposure, a mechanism to exchange multiple samples, and a system to perform bake-out of the sample exposure chamber. This experiment system is proposed as a candidate payload implemented on the exposed facility of Japanese Experiment Module on International Space Station.

  7. Quantitative estimation of global patterns of surface ocean biological productivity and its seasonal variation on timescales from centuries to millennia

    NASA Astrophysics Data System (ADS)

    Loubere, Paul; Fariduddin, Mohammad

    1999-03-01

    We present a quantitative method, based on the relative abundances of benthic foraminifera in deep-sea sediments, for estimating surface ocean biological productivity over the timescale of centuries to millennia. We calibrate the method using a global data set composed of 207 samples from the Atlantic, Pacific, and Indian Oceans from a water depth range between 2300 and 3600 m. The sample set was developed so that other, potentially significant, environmental variables would be uncorrelated to overlying surface ocean productivity. A regression of assemblages against productivity yielded an r2 = 0.89 demonstrating a strong productivity signal in the faunal data. In addition, we examined assemblage response to annual variability in biological productivity (seasonality). Our data set included a range of seasonalities which we quantified into a seasonality index using the pigment color bands from the coastal zone color scanner (CZCS). The response of benthic foraminiferal assemblage composition to our seasonality index was tested with regression analysis. We obtained a statistically highly significant r2 = 0.75. Further, discriminant function analysis revealed a clear separation among sample groups based on surface ocean productivity and our seasonality index. Finally, we tested the response of benthic foraminiferal assemblages to three different modes of seasonality. We observed a distinct separation of our samples into groups representing low seasonal variability, strong seasonality with a single main productivity event in the year, and strong seasonality with multiple productivity events in the year. Reconstructing surface ocean biological productivity with benthic foraminifera will aid in modeling marine biogeochemical cycles. Also, estimating mode and range of annual seasonality will provide insight to changing oceanic processes, allowing the examination of the mechanisms causing changes in the marine biotic system over time. This article contains supplementary material.

  8. Mapping a multiplexed zoo of mRNA expression.

    PubMed

    Choi, Harry M T; Calvert, Colby R; Husain, Naeem; Huss, David; Barsi, Julius C; Deverman, Benjamin E; Hunter, Ryan C; Kato, Mihoko; Lee, S Melanie; Abelin, Anna C T; Rosenthal, Adam Z; Akbari, Omar S; Li, Yuwei; Hay, Bruce A; Sternberg, Paul W; Patterson, Paul H; Davidson, Eric H; Mazmanian, Sarkis K; Prober, David A; van de Rijn, Matt; Leadbetter, Jared R; Newman, Dianne K; Readhead, Carol; Bronner, Marianne E; Wold, Barbara; Lansford, Rusty; Sauka-Spengler, Tatjana; Fraser, Scott E; Pierce, Niles A

    2016-10-01

    In situ hybridization methods are used across the biological sciences to map mRNA expression within intact specimens. Multiplexed experiments, in which multiple target mRNAs are mapped in a single sample, are essential for studying regulatory interactions, but remain cumbersome in most model organisms. Programmable in situ amplifiers based on the mechanism of hybridization chain reaction (HCR) overcome this longstanding challenge by operating independently within a sample, enabling multiplexed experiments to be performed with an experimental timeline independent of the number of target mRNAs. To assist biologists working across a broad spectrum of organisms, we demonstrate multiplexed in situ HCR in diverse imaging settings: bacteria, whole-mount nematode larvae, whole-mount fruit fly embryos, whole-mount sea urchin embryos, whole-mount zebrafish larvae, whole-mount chicken embryos, whole-mount mouse embryos and formalin-fixed paraffin-embedded human tissue sections. In addition to straightforward multiplexing, in situ HCR enables deep sample penetration, high contrast and subcellular resolution, providing an incisive tool for the study of interlaced and overlapping expression patterns, with implications for research communities across the biological sciences. © 2016. Published by The Company of Biologists Ltd.

  9. Mapping a multiplexed zoo of mRNA expression

    PubMed Central

    Choi, Harry M. T.; Calvert, Colby R.; Husain, Naeem; Huss, David; Barsi, Julius C.; Deverman, Benjamin E.; Hunter, Ryan C.; Kato, Mihoko; Lee, S. Melanie; Abelin, Anna C. T.; Rosenthal, Adam Z.; Akbari, Omar S.; Li, Yuwei; Hay, Bruce A.; Sternberg, Paul W.; Patterson, Paul H.; Davidson, Eric H.; Mazmanian, Sarkis K.; Prober, David A.; van de Rijn, Matt; Leadbetter, Jared R.; Newman, Dianne K.; Readhead, Carol; Bronner, Marianne E.; Wold, Barbara; Lansford, Rusty; Sauka-Spengler, Tatjana; Fraser, Scott E.

    2016-01-01

    In situ hybridization methods are used across the biological sciences to map mRNA expression within intact specimens. Multiplexed experiments, in which multiple target mRNAs are mapped in a single sample, are essential for studying regulatory interactions, but remain cumbersome in most model organisms. Programmable in situ amplifiers based on the mechanism of hybridization chain reaction (HCR) overcome this longstanding challenge by operating independently within a sample, enabling multiplexed experiments to be performed with an experimental timeline independent of the number of target mRNAs. To assist biologists working across a broad spectrum of organisms, we demonstrate multiplexed in situ HCR in diverse imaging settings: bacteria, whole-mount nematode larvae, whole-mount fruit fly embryos, whole-mount sea urchin embryos, whole-mount zebrafish larvae, whole-mount chicken embryos, whole-mount mouse embryos and formalin-fixed paraffin-embedded human tissue sections. In addition to straightforward multiplexing, in situ HCR enables deep sample penetration, high contrast and subcellular resolution, providing an incisive tool for the study of interlaced and overlapping expression patterns, with implications for research communities across the biological sciences. PMID:27702788

  10. Contaminants of emerging concern presence and adverse effects in fish: A case study in the Laurentian Great Lakes.

    PubMed

    Jorgenson, Zachary G; Thomas, Linnea M; Elliott, Sarah M; Cavallin, Jenna E; Randolph, Eric C; Choy, Steven J; Alvarez, David A; Banda, Jo A; Gefell, Daniel J; Lee, Kathy E; Furlong, Edward T; Schoenfuss, Heiko L

    2018-05-01

    The Laurentian Great Lakes are a valuable natural resource that is affected by contaminants of emerging concern (CECs), including sex steroid hormones, personal care products, pharmaceuticals, industrial chemicals, and new generation pesticides. However, little is known about the fate and biological effects of CECs in tributaries to the Great Lakes. In the current study, 16 sites on three rivers in the Great Lakes basin (Fox, Cuyahoga, and Raquette Rivers) were assessed for CEC presence using polar organic chemical integrative samplers (POCIS) and grab water samplers. Biological activity was assessed through a combination of in vitro bioassays (focused on estrogenic activity) and in vivo assays with larval fathead minnows. In addition, resident sunfish, largemouth bass, and white suckers were assessed for changes in biological endpoints associated with CEC exposure. CECs were present in all water samples and POCIS extracts. A total of 111 and 97 chemicals were detected in at least one water sample and POCIS extract, respectively. Known estrogenic chemicals were detected in water samples at all 16 sites and in POCIS extracts at 13 sites. Most sites elicited estrogenic activity in bioassays. Ranking sites and rivers based on water chemistry, POCIS chemistry, or total in vitro estrogenicity produced comparable patterns with the Cuyahoga River ranking as most and the Raquette River as least affected by CECs. Changes in biological responses grouped according to physiological processes, and differed between species but not sex. The Fox and Cuyahoga Rivers often had significantly different patterns in biological response Our study supports the need for multiple lines of evidence and provides a framework to assess CEC presence and effects in fish in the Laurentian Great Lakes basin. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. High-resolution, high-throughput imaging with a multibeam scanning electron microscope.

    PubMed

    Eberle, A L; Mikula, S; Schalek, R; Lichtman, J; Knothe Tate, M L; Zeidler, D

    2015-08-01

    Electron-electron interactions and detector bandwidth limit the maximal imaging speed of single-beam scanning electron microscopes. We use multiple electron beams in a single column and detect secondary electrons in parallel to increase the imaging speed by close to two orders of magnitude and demonstrate imaging for a variety of samples ranging from biological brain tissue to semiconductor wafers. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  12. How do geological sampling biases affect studies of morphological evolution in deep time? A case study of pterosaur (Reptilia: Archosauria) disparity.

    PubMed

    Butler, Richard J; Brusatte, Stephen L; Andres, Brian; Benson, Roger B J

    2012-01-01

    A fundamental contribution of paleobiology to macroevolutionary theory has been the illumination of deep time patterns of diversification. However, recent work has suggested that taxonomic diversity counts taken from the fossil record may be strongly biased by uneven spatiotemporal sampling. Although morphological diversity (disparity) is also frequently used to examine evolutionary radiations, no empirical work has yet addressed how disparity might be affected by uneven fossil record sampling. Here, we use pterosaurs (Mesozoic flying reptiles) as an exemplar group to address this problem. We calculate multiple disparity metrics based upon a comprehensive anatomical dataset including a novel phylogenetic correction for missing data, statistically compare these metrics to four geological sampling proxies, and use multiple regression modeling to assess the importance of uneven sampling and exceptional fossil deposits (Lagerstätten). We find that range-based disparity metrics are strongly affected by uneven fossil record sampling, and should therefore be interpreted cautiously. The robustness of variance-based metrics to sample size and geological sampling suggests that they can be more confidently interpreted as reflecting true biological signals. In addition, our results highlight the problem of high levels of missing data for disparity analyses, indicating a pressing need for more theoretical and empirical work. © 2011 The Author(s). Evolution © 2011 The Society for the Study of Evolution.

  13. Score distributions of gapped multiple sequence alignments down to the low-probability tail

    NASA Astrophysics Data System (ADS)

    Fieth, Pascal; Hartmann, Alexander K.

    2016-08-01

    Assessing the significance of alignment scores of optimally aligned DNA or amino acid sequences can be achieved via the knowledge of the score distribution of random sequences. But this requires obtaining the distribution in the biologically relevant high-scoring region, where the probabilities are exponentially small. For gapless local alignments of infinitely long sequences this distribution is known analytically to follow a Gumbel distribution. Distributions for gapped local alignments and global alignments of finite lengths can only be obtained numerically. To obtain result for the small-probability region, specific statistical mechanics-based rare-event algorithms can be applied. In previous studies, this was achieved for pairwise alignments. They showed that, contrary to results from previous simple sampling studies, strong deviations from the Gumbel distribution occur in case of finite sequence lengths. Here we extend the studies to multiple sequence alignments with gaps, which are much more relevant for practical applications in molecular biology. We study the distributions of scores over a large range of the support, reaching probabilities as small as 10-160, for global and local (sum-of-pair scores) multiple alignments. We find that even after suitable rescaling, eliminating the sequence-length dependence, the distributions for multiple alignment differ from the pairwise alignment case. Furthermore, we also show that the previously discussed Gaussian correction to the Gumbel distribution needs to be refined, also for the case of pairwise alignments.

  14. Single input state, single–mode fiber–based polarization sensitive optical frequency domain imaging by eigenpolarization referencing

    PubMed Central

    Lippok, Norman; Villiger, Martin; Jun, Chang–Su; Bouma, Brett E.

    2015-01-01

    Fiber–based polarization sensitive OFDI is more challenging than free–space implementations. Using multiple input states, fiber–based systems provide sample birefringence information with the benefit of a flexible sample arm but come at the cost of increased system and acquisition complexity, and either reduce acquisition speed or require increased acquisition bandwidth. Here we show that with the calibration of a single polarization state, fiber–based configurations can approach the conceptual simplicity of traditional free–space configurations. We remotely control the polarization state of the light incident at the sample using the eigenpolarization states of a wave plate as a reference, and determine the Jones matrix of the output fiber. We demonstrate this method for polarization sensitive imaging of biological samples. PMID:25927775

  15. Predicting Droplet Formation on Centrifugal Microfluidic Platforms

    NASA Astrophysics Data System (ADS)

    Moebius, Jacob Alfred

    Centrifugal microfluidics is a widely known research tool for biological sample and water quality analysis. Currently, the standard equipment used for such diagnostic applications include slow, bulky machines controlled by multiple operators. These machines can be condensed into a smaller, faster benchtop sample-to-answer system. Sample processing is an important step taken to extract, isolate, and convert biological factors, such as nucleic acids or proteins, from a raw sample to an analyzable solution. Volume definition is one such step. The focus of this thesis is the development of a model predicting monodispersed droplet formation and the application of droplets as a technique for volume definition. First, a background of droplet microfluidic platforms is presented, along with current biological analysis technologies and the advantages of integrating such technologies onto microfluidic platforms. Second, background and theories of centrifugal microfluidics is given, followed by theories relevant to droplet emulsions. Third, fabrication techniques for centrifugal microfluidic designs are discussed. Finally, the development of a model for predicting droplet formation on the centrifugal microfluidic platform are presented for the rest of the thesis. Predicting droplet formation analytically based on the volumetric flow rates of the continuous and dispersed phases, the ratios of these two flow rates, and the interfacial tension between the continuous and dispersed phases presented many challenges, which will be discussed in this work. Experimental validation was completed using continuous phase solutions of different interfacial tensions. To conclude, prospective applications are discussed with expected challenges.

  16. Autofluorescence of atmospheric bioaerosols - fluorescent biomolecules and potential interferences

    NASA Astrophysics Data System (ADS)

    Pöhlker, C.; Huffman, J. A.; Pöschl, U.

    2012-01-01

    Primary biological aerosol particles (PBAP) are an important subset of air particulate matter with a substantial contribution to the organic aerosol fraction and potentially strong effects on public health and climate. Recent progress has been made in PBAP quantification by utilizing real-time bioaerosol detectors based on the principle that specific organic molecules of biological origin such as proteins, coenzymes, cell wall compounds and pigments exhibit intrinsic fluorescence. The properties of many fluorophores have been well documented, but it is unclear which are most relevant for detection of atmospheric PBAP. The present study provides a systematic synthesis of literature data on potentially relevant biological fluorophores. We analyze and discuss their relative importance for the detection of fluorescent biological aerosol particles (FBAP) by online instrumentation for atmospheric measurements such as the ultraviolet aerodynamic particle sizer (UV-APS) or the wide issue bioaerosol sensor (WIBS). In addition, we provide new laboratory measurement data for selected compounds using bench-top fluorescence spectroscopy. Relevant biological materials were chosen for comparison with existing literature data and to fill in gaps of understanding. The excitation-emission matrices (EEM) exhibit pronounced peaks at excitation wavelengths of ~280 nm and ~360 nm, confirming the suitability of light sources used for online detection of FBAP. They also show, however, that valuable information is missed by instruments that do not record full emission spectra at multiple wavelengths of excitation, and co-occurrence of multiple fluorophores within a detected sample will likely confound detailed molecular analysis. Selected non-biological materials were also analyzed to assess their possible influence on FBAP detection and generally exhibit only low levels of background-corrected fluorescent emission. This study strengthens the hypothesis that ambient supermicron particle fluorescence in wavelength ranges used for most FBAP instruments is likely to be dominated by biological material and that such instrumentation is able to discriminate between FBAP and non-biological material in many situations. More detailed follow-up studies on single particle fluorescence are still required to reduce these uncertainties further, however.

  17. Autofluorescence of atmospheric bioaerosols - fluorescent biomolecules and potential interferences

    NASA Astrophysics Data System (ADS)

    Pöhlker, C.; Huffman, J. A.; Pöschl, U.

    2011-09-01

    Primary biological aerosol particles (PBAP) are an important subset of air particulate matter with a substantial contribution to the organic aerosol fraction and potentially strong effects on public health and climate. Recent progress has been made in PBAP quantification by utilizing real-time bioaerosol detectors based on the principle that specific organic molecules of biological origin such as proteins, coenzymes, cell wall compounds and pigments exhibit intrinsic fluorescence. The properties of many fluorophores have been well documented, but it is unclear which are most relevant for detection of atmospheric PBAP. The present study provides a systematic synthesis of literature data on potentially relevant biological fluorophores. We analyze and discuss their relative importance for the detection of fluorescent biological aerosol particles (FBAP) by online instrumentation for atmospheric measurements such as the ultraviolet aerodynamic particle sizer (UV-APS) or the wide issue bioaerosol sensor (WIBS). In addition, we provide new laboratory measurement data for selected compounds using bench-top fluorescence spectroscopy. Relevant biological materials were chosen for comparison with existing literature data and to fill in gaps of understanding. The excitation-emission matrices (EEM) exhibit pronounced peaks at excitation wavelengths of ~280 nm and ~360 nm, confirming the suitability of light sources used for online detection of FBAP. They also show, however, that valuable information is missed by instruments that do not record full emission spectra at multiple wavelengths of excitation, and co-occurrence of multiple fluorophores within a detected sample will likely confound detailed molecular analysis. Selected non-biological materials were also analyzed to assess their possible influence on FBAP detection and generally exhibit only low levels of background-corrected fluorescent emission. This study strengthens the hypothesis that ambient supermicron particle fluorescence in wavelength ranges used for most FBAP instruments is likely to be dominated by biological material and that such instrumentation is able to discriminate between FBAP and non-biological material in many situations. More detailed follow-up studies on single particle fluorescence are still required to reduce these uncertainties further, however.

  18. Development of a solenoid actuated planar valveless micropump with single and multiple inlet-outlet arrangements

    NASA Astrophysics Data System (ADS)

    Kumar, N.; George, D.; Sajeesh, P.; Manivannan, P. V.; Sen, A. K.

    2016-07-01

    We report a planar solenoid actuated valveless micropump with multiple inlet-outlet configurations. The self-priming characteristics of the multiple inlet-multiple outlet micropump are studied. The filling dynamics of the micropump chamber during start-up and the effects of fluid viscosity, voltage and frequency on the dynamics are investigated. Numerical simulations for multiple inlet-multiple outlet micropumps are carried out using fluid structure algorithm. With DI water and at 5.0 Vp-p, 20 Hz frequency, the two inlet-two outlet micropump provides a maximum flow rate of 336 μl min-1 and maximum back pressure of 441 Pa. Performance characteristics of the two inlet-two outlet micropump are studied for aqueous fluids of different viscosity. Transport of biological cell lines and diluted blood samples are demonstrated; the flow rate-frequency characteristics are studied. Viability of cells during pumping with multiple inlet multiple outlet configuration is also studied in this work, which shows 100% of cells are viable. Application of the proposed micropump for simultaneous pumping, mixing and distribution of fluids is demonstrated. The proposed integrated, standalone and portable micropump is suitable for drug delivery, lab-on-chip and micro-total-analysis applications.

  19. On spatial coalescents with multiple mergers in two dimensions.

    PubMed

    Heuer, Benjamin; Sturm, Anja

    2013-08-01

    We consider the genealogy of a sample of individuals taken from a spatially structured population when the variance of the offspring distribution is relatively large. The space is structured into discrete sites of a graph G. If the population size at each site is large, spatial coalescents with multiple mergers, so called spatial Λ-coalescents, for which ancestral lines migrate in space and coalesce according to some Λ-coalescent mechanism, are shown to be appropriate approximations to the genealogy of a sample of individuals. We then consider as the graph G the two dimensional torus with side length 2L+1 and show that as L tends to infinity, and time is rescaled appropriately, the partition structure of spatial Λ-coalescents of individuals sampled far enough apart converges to the partition structure of a non-spatial Kingman coalescent. From a biological point of view this means that in certain circumstances both the spatial structure as well as larger variances of the underlying offspring distribution are harder to detect from the sample. However, supplemental simulations show that for moderately large L the different structure is still evident. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Pushing the size limit of de novo structure ensemble prediction guided by sparse SDSL-EPR restraints to 200 residues: The monomeric and homodimeric forms of BAX

    PubMed Central

    Fischer, Axel W.; Bordignon, Enrica; Bleicken, Stephanie; García-Sáez, Ana J.; Jeschke, Gunnar; Meiler, Jens

    2016-01-01

    Structure determination remains a challenge for many biologically important proteins. In particular, proteins that adopt multiple conformations often evade crystallization in all biologically relevant states. Although computational de novo protein folding approaches often sample biologically relevant conformations, the selection of the most accurate model for different functional states remains a formidable challenge, in particular, for proteins with more than about 150 residues. Electron paramagnetic resonance (EPR) spectroscopy can obtain limited structural information for proteins in well-defined biological states and thereby assist in selecting biologically relevant conformations. The present study demonstrates that de novo folding methods are able to accurately sample the folds of 192-residue long soluble monomeric Bcl-2-associated X protein (BAX). The tertiary structures of the monomeric and homodimeric forms of BAX were predicted using the primary structure as well as 25 and 11 EPR distance restraints, respectively. The predicted models were subsequently compared to respective NMR/X-ray structures of BAX. EPR restraints improve the protein-size normalized root-mean-square-deviation (RMSD100) of the most accurate models with respect to the NMR/crystal structure from 5.9 Å to 3.9 Å and from 5.7 Å to 3.3 Å, respectively. Additionally, the model discrimination is improved, which is demonstrated by an improvement of the enrichment from 5% to 15% and from 13% to 21%, respectively. PMID:27129417

  1. Integrated Analyses of Cuticular Hydrocarbons, Chromosome and mtDNA in the Neotropical Social Wasp Mischocyttarus consimilis Zikán (Hymenoptera, Vespidae).

    PubMed

    Cunha, D A S; Menezes, R S T; Costa, M A; Lima, S M; Andrade, L H C; Antonialli, W F

    2017-12-01

    In the present work, we explored multiple data from different biological levels such as cuticular hydrocarbons, chromosomal features, and mtDNA sequences in the Neotropical social wasp Mischocyttarus consimilis (J.F. Zikán). Particularly, we explored the genetic and chemical differentiation level within and between populations of this insect. Our dataset revealed shallow intraspecific differentiation in M. consimilis. The similarity among the analyzed samples can probably be due to the geographical proximity where the colonies were sampled, and we argue that Paraná River did not contribute effectively as a historical barrier to this wasp.

  2. Epidemiological profile of work-related accidents with biological exposure among medical students in a surgical emergency room.

    PubMed

    Reis, Phillipe Geraldo Teixeira de Abreu; Driessen, Anna Luiza; da Costa, Ana Claudia Brenner Affonso; Nasr, Adonis; Collaço, Iwan Augusto; Tomasich, Flávio Daniel Saavedra

    2013-01-01

    To evaluate the accidents with biological material among medical students interning in a trauma emergency room and identify key related situations, attributed causes and prevention. we conducted a study with a quantitative approach. Data were collected through a questionnaire applied via internet, with closed, multiple-choice questions regarding accidents with biological material. The sample comprised 100 students. thirty-two had accidents with biological material. Higher-risk activities were local anesthesia (39.47%), suture (18.42%) and needle recapping (15.79%). The main routes of exposure to biological material were the eyes or mucosa, with 34%, and syringe needle puncture, with 45%. After contamination, only 52% reported the accident to the responsible department. The main causes of accidents and routes of exposure found may be attributed to several factors, such as lack of training and failure to use personal protective equipment. Educational and preventive actions are extremely important to reduce the incidence of accidents with biological materials and improve the conduct of post-exposure. It is important to understand the main causes attributed and situations related, so as general and effective measures can be applied.

  3. Cryptosporidium as a testbed for single cell genome characterization of unicellular eukaryotes.

    PubMed

    Troell, Karin; Hallström, Björn; Divne, Anna-Maria; Alsmark, Cecilia; Arrighi, Romanico; Huss, Mikael; Beser, Jessica; Bertilsson, Stefan

    2016-06-23

    Infectious disease involving multiple genetically distinct populations of pathogens is frequently concurrent, but difficult to detect or describe with current routine methodology. Cryptosporidium sp. is a widespread gastrointestinal protozoan of global significance in both animals and humans. It cannot be easily maintained in culture and infections of multiple strains have been reported. To explore the potential use of single cell genomics methodology for revealing genome-level variation in clinical samples from Cryptosporidium-infected hosts, we sorted individual oocysts for subsequent genome amplification and full-genome sequencing. Cells were identified with fluorescent antibodies with an 80 % success rate for the entire single cell genomics workflow, demonstrating that the methodology can be applied directly to purified fecal samples. Ten amplified genomes from sorted single cells were selected for genome sequencing and compared both to the original population and a reference genome in order to evaluate the accuracy and performance of the method. Single cell genome coverage was on average 81 % even with a moderate sequencing effort and by combining the 10 single cell genomes, the full genome was accounted for. By a comparison to the original sample, biological variation could be distinguished and separated from noise introduced in the amplification. As a proof of principle, we have demonstrated the power of applying single cell genomics to dissect infectious disease caused by closely related parasite species or subtypes. The workflow can easily be expanded and adapted to target other protozoans, and potential applications include mapping genome-encoded traits, virulence, pathogenicity, host specificity and resistance at the level of cells as truly meaningful biological units.

  4. Integrated Experimental Platforms to Study Blast Injuries: a Bottom-Up Approach

    NASA Astrophysics Data System (ADS)

    Bo, Chiara

    2013-06-01

    Developing a cellular and molecular understanding of the nature of traumatic and post-traumatic effects of blast events on live biological samples is critical for improving clinical outcomes.1 To investigate the consequences of pressure waves upon cellular structures and the underlying physiological and biochemical changes, we are using an integrated approach to study the material and biological properties of cells, tissues and organs when subjected to extreme conditions. In particular we have developed a confined Split Hopkinson Pressure Bar (SHPB) system, which allows us to subject cells in suspension or in a monolayer to compression waves of the order of few MPa and duration of hundreds of microseconds.2 The chamber design also enables recovery of the biological samples for cellular and molecular analysis. Specifically, cell survivability, viability, proliferation and morphological changes are investigated post compression for different cell populations. The SHPB platform, coupled with Quasi-Static experiments, is also used to determine stress-strain curves of soft biological tissues under compression at low, medium and high strain rates. Samples are also examined using histological techniques to study macro- and microscopical changes induced by compression waves. Finally, a shock tube has been developed to replicate primary blast damage on organs (i.e. mice lungs) and cell monolayers by generating single or multiple air blast of the order of kPa and few milliseconds duration. This platform allows us to visualize post-traumatic morphological changes at the cellular level as a function of the stimulus pressure and duration as well as biomarker signatures of blast injuries. Adapting and integrating a variety of approaches with different experimental platforms allows us to sample a vast pressure-time space in terms of biological and structural damage that mimic blast injuries and also to determine which physical parameters (peak pressure, stimulus duration, impulse) are contributing to the injury process. Moreover, understanding biological damage following blast events is crucial to developing novel clinical approaches to detect and treat traumatic injury pathologies. This work is supported by he Atomic Weapons Establishment, UK and The Royal British Legion Centre for Blast Injury Studies at Imperial College London, UK

  5. Identification of Single- and Multiple-Class Specific Signature Genes from Gene Expression Profiles by Group Marker Index

    PubMed Central

    Tsai, Yu-Shuen; Aguan, Kripamoy; Pal, Nikhil R.; Chung, I-Fang

    2011-01-01

    Informative genes from microarray data can be used to construct prediction model and investigate biological mechanisms. Differentially expressed genes, the main targets of most gene selection methods, can be classified as single- and multiple-class specific signature genes. Here, we present a novel gene selection algorithm based on a Group Marker Index (GMI), which is intuitive, of low-computational complexity, and efficient in identification of both types of genes. Most gene selection methods identify only single-class specific signature genes and cannot identify multiple-class specific signature genes easily. Our algorithm can detect de novo certain conditions of multiple-class specificity of a gene and makes use of a novel non-parametric indicator to assess the discrimination ability between classes. Our method is effective even when the sample size is small as well as when the class sizes are significantly different. To compare the effectiveness and robustness we formulate an intuitive template-based method and use four well-known datasets. We demonstrate that our algorithm outperforms the template-based method in difficult cases with unbalanced distribution. Moreover, the multiple-class specific genes are good biomarkers and play important roles in biological pathways. Our literature survey supports that the proposed method identifies unique multiple-class specific marker genes (not reported earlier to be related to cancer) in the Central Nervous System data. It also discovers unique biomarkers indicating the intrinsic difference between subtypes of lung cancer. We also associate the pathway information with the multiple-class specific signature genes and cross-reference to published studies. We find that the identified genes participate in the pathways directly involved in cancer development in leukemia data. Our method gives a promising way to find genes that can involve in pathways of multiple diseases and hence opens up the possibility of using an existing drug on other diseases as well as designing a single drug for multiple diseases. PMID:21909426

  6. Fully automatic characterization and data collection from crystals of biological macromolecules.

    PubMed

    Svensson, Olof; Malbet-Monaco, Stéphanie; Popov, Alexander; Nurizzo, Didier; Bowler, Matthew W

    2015-08-01

    Considerable effort is dedicated to evaluating macromolecular crystals at synchrotron sources, even for well established and robust systems. Much of this work is repetitive, and the time spent could be better invested in the interpretation of the results. In order to decrease the need for manual intervention in the most repetitive steps of structural biology projects, initial screening and data collection, a fully automatic system has been developed to mount, locate, centre to the optimal diffraction volume, characterize and, if possible, collect data from multiple cryocooled crystals. Using the capabilities of pixel-array detectors, the system is as fast as a human operator, taking an average of 6 min per sample depending on the sample size and the level of characterization required. Using a fast X-ray-based routine, samples are located and centred systematically at the position of highest diffraction signal and important parameters for sample characterization, such as flux, beam size and crystal volume, are automatically taken into account, ensuring the calculation of optimal data-collection strategies. The system is now in operation at the new ESRF beamline MASSIF-1 and has been used by both industrial and academic users for many different sample types, including crystals of less than 20 µm in the smallest dimension. To date, over 8000 samples have been evaluated on MASSIF-1 without any human intervention.

  7. Simultaneous quantification of multiple components in rat plasma by UPLC-MS/MS and pharmacokinetic study after oral administration of Huangqi decoction.

    PubMed

    Zeng, Jia-Kai; Li, Yuan-Yuan; Wang, Tian-Ming; Zhong, Jie; Wu, Jia-Sheng; Liu, Ping; Zhang, Hua; Ma, Yue-Ming

    2018-05-01

    A rapid, sensitive and accurate UPLC-MS/MS method was developed for the simultaneous quantification of components of Huangqi decoction (HQD), such as calycosin-7-O-β-d-glucoside, calycosin-glucuronide, liquiritin, formononetin-glucuronide, isoliquiritin, liquiritigenin, ononin, calycosin, isoliquiritigenin, formononetin, glycyrrhizic acid, astragaloside IV, cycloastragenol, and glycyrrhetinic acid, in rat plasma. After plasma samples were extracted by protein precipitation, chromatographic separation was performed with a C 18 column, using a gradient of methanol and 0.05% acetic acid containing 4mm ammonium acetate as the mobile phase. Multiple reaction monitoring scanning was performed to quantify the analytes, and the electrospray ion source polarity was switched between positive and negative modes in a single run of 10 min. Method validation showed that specificity, linearity, accuracy, precision, extraction recovery, matrix effect and stability for 14 components met the requirements for their quantitation in biological samples. The established method was successfully applied to the pharmacokinetic study of multiple components in rats after intragastric administration of HQD. The results clarified the pharmacokinetic characteristics of multiple components found in HQD. This research provides useful information for understanding the relation between the chemical components of HQD and their therapeutic effects. Copyright © 2017 John Wiley & Sons, Ltd.

  8. A DNA logic gate based on strand displacement reaction and rolling circle amplification, responding to multiple low-abundance DNA fragment input signals, and its application in detecting miRNAs.

    PubMed

    Chen, Yuqi; Song, Yanyan; Wu, Fan; Liu, Wenting; Fu, Boshi; Feng, Bingkun; Zhou, Xiang

    2015-04-25

    A conveniently amplified DNA AND logic gate platform was designed for the highly sensitive detection of low-abundance DNA fragment inputs based on strand displacement reaction and rolling circle amplification strategy. Compared with others, this system can detect miRNAs in biological samples. The success of this strategy demonstrates the potential of DNA logic gates in disease diagnosis.

  9. Novel peptide-based platform for the dual presentation of biologically active peptide motifs on biomaterials.

    PubMed

    Mas-Moruno, Carlos; Fraioli, Roberta; Albericio, Fernando; Manero, José María; Gil, F Javier

    2014-05-14

    Biofunctionalization of metallic materials with cell adhesive molecules derived from the extracellular matrix is a feasible approach to improve cell-material interactions and enhance the biointegration of implant materials (e.g., osseointegration of bone implants). However, classical biomimetic strategies may prove insufficient to elicit complex and multiple biological signals required in the processes of tissue regeneration. Thus, newer strategies are focusing on installing multifunctionality on biomaterials. In this work, we introduce a novel peptide-based divalent platform with the capacity to simultaneously present distinct bioactive peptide motifs in a chemically controlled fashion. As a proof of concept, the integrin-binding sequences RGD and PHSRN were selected and introduced in the platform. The biofunctionalization of titanium with this platform showed a positive trend towards increased numbers of cell attachment, and statistically higher values of spreading and proliferation of osteoblast-like cells compared to control noncoated samples. Moreover, it displayed statistically comparable or improved cell responses compared to samples coated with the single peptides or with an equimolar mixture of the two motifs. Osteoblast-like cells produced higher levels of alkaline phosphatase on surfaces functionalized with the platform than on control titanium; however, these values were not statistically significant. This study demonstrates that these peptidic structures are versatile tools to convey multiple biofunctionality to biomaterials in a chemically defined manner.

  10. Pharmacokinetics and tissue distribution of furanodiene W/O/W multiple emulsions in rats by a fast and sensitive HPLC-APCI-MS/MS method.

    PubMed

    Zhang, Li-Feng; Lu, Tao-Tao; Zhang, Shu-Qiu; Lin, Wen-Han; Li, Qing-Shan

    2013-12-01

    A sensitive and specific HPLC-APCI-MS/MS method was developed and validated for the quantification of furanodiene, a natural antitumor compound in rat plasma and tissues. W/O/W multiple emulsions of furanodiene, identified through microscope-observation and eosin staining method, were prepared with a two-step-procedure. Pharmacokinetics and tissue distribution were studied in rats after oral, intraperitoneal and intravenous injection with the dose of 5, 10 and 50 mg/kg, respectively. The assay achieved a good sensitivity and specificity for the determination of furanodiene in biological samples. The results showed that the concentration-time curves of furanodiene in rats after intravenous injection were fitted to a two-compartment model and the linear pharmacokinetic characteristic. The highest concentration in rat tissue was observed in the spleen, followed by heart, liver, lung, kidney, small intestine and brain. Comparing with the low concentration in plasma, furanodiene could be detected in various tissue samples after oral or intraperitoneal injection which indicated furanodiene had good and rapid tissue uptake. The results suggested that the wide tissue distribution of furanodiene could conduce to the therapeutic effects, but the short biological half-life limited its further application as an antitumor agent. The results are helpful for the structure modification of furanodiene as an antitumor candidate.

  11. RBE of Energetic Iron Ions for the Induction of Early and Late Chromosome Aberrations in Different Cell Types

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Yeshitla, Samrawit; Hada, Megumi; Kadhim, Munira; Wilson, Bobby; Wu, Honglu

    2015-01-01

    Numerous published studies have reported the Relative Biological Effectiveness (RBE) values for chromosome aberrations induced by charged particles of different LET. The RBE for chromosome aberrations in human lymphocytes exposed ex vivo has been suggested to show a similar relationship as the quality factor for cancer induction. Therefore, increased chromosome aberrations in the astronauts' white blood cells post long-duration missions are used to determine the biological doses from exposures to space radiation. However, the RBE value is known to be very different for different types of cancer. Previously, we reported that, even though the RBE for initial chromosome damages was high in human lymphocytes exposed to Fe ions, the RBE was significantly reduced after multiple cell divisions post irradiation. To test the hypothesis that RBE values for chromosome aberrations are cell type dependent, and different between early and late damages, we exposed human lymphocytes ex vivo, and human mammary epithelial cells in vitro to various charged particles. Chromosome aberrations were quantified using the samples collected at first mitosis post irradiation for initial damages, and the samples collected after multiple generations for the remaining or late arising aberrations. Results of the study suggested that the effectiveness of high-LET charged particles for late chromosome aberrations may be cell type dependent, even though the RBE values are similar for early damages.

  12. Maternal Smoking During Pregnancy and Offspring Birth Weight: A Genetically-Informed Approach Comparing Multiple Raters

    PubMed Central

    Knopik, Valerie S.; Marceau, Kristine; Palmer, Rohan H. C.; Smith, Taylor F.; Heath, Andrew C.

    2016-01-01

    Maternal smoking during pregnancy (SDP) is a significant public health concern with adverse consequences to the health and well-being of the fetus. There is considerable debate about the best method of assessing SDP, including birth/medical records, timeline follow-back approaches, multiple reporters, and biological verification (e.g., cotinine). This is particularly salient for genetically-informed approaches where it is not always possible or practical to do a prospective study starting during the prenatal period when concurrent biological specimen samples can be collected with ease. In a sample of families (N = 173) specifically selected for sibling pairs discordant for prenatal smoking exposure, we: (1) compare rates of agreement across different types of report—maternal report of SDP, paternal report of maternal SDP, and SDP contained on birth records from the Department of Vital Statistics; (2) examine whether SDP is predictive of birth weight outcomes using our best SDP report as identified via step (1); and (3) use a sibling-comparison approach that controls for genetic and familial influences that siblings share in order to assess the effects of SDP on birth weight. Results show high agreement between reporters and support the utility of retrospective report of SDP. Further, we replicate a causal association between SDP and birth weight, wherein SDP results in reduced birth weight even when accounting for genetic and familial confounding factors via a sibling comparison approach. PMID:26494459

  13. High-precision measurement of variations in calcium isotope ratios in urine by multiple collector inductively coupled plasma mass spectrometry

    USGS Publications Warehouse

    Morgan, J.L.L.; Gordon, G.W.; Arrua, R.C.; Skulan, J.L.; Anbar, A.D.; Bullen, T.D.

    2011-01-01

    We describe a new chemical separation method to isolate Ca from other matrix elements in biological samples, developed with the long-term goal of making high-precision measurement of natural stable Ca isotope variations a clinically applicable tool to assess bone mineral balance. A new two-column procedure utilizing HBr achieves the purity required to accurately and precisely measure two Ca isotope ratios (44Ca/42Ca and 44Ca/43Ca) on a Neptune multiple collector inductively coupled plasma mass spectrometer (MC-ICPMS) in urine. Purification requirements for Sr, Ti, and K (Ca/Sr > 10000; Ca/Ti > 10000000; and Ca/K > 10) were determined by addition of these elements to Ca standards of known isotopic composition. Accuracy was determined by (1) comparing Ca isotope results for samples and standards to published data obtained using thermal ionization mass spectrometry (TIMS), (2) adding a Ca standard of known isotopic composition to a urine sample purified of Ca, and (3) analyzing mixtures of urine samples and standards in varying proportions. The accuracy and precision of δ44/42Ca measurements of purified samples containing 25 μg of Ca can be determined with typical errors less than ±0.2‰ (2σ).

  14. APDS: Autonomous Pathogen Detection System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langlois, R G; Brown, S; Burris, L

    An early warning system to counter bioterrorism, the Autonomous Pathogen Detection System (APDS) continuously monitors the environment for the presence of biological pathogens (e.g., anthrax) and once detected, it sounds an alarm much like a smoke detector warns of a fire. Long before September 11, 2001, this system was being developed to protect domestic venues and events including performing arts centers, mass transit systems, major sporting and entertainment events, and other high profile situations in which the public is at risk of becoming a target of bioterrorist attacks. Customizing off-the-shelf components and developing new components, a multidisciplinary team developed APDS,more » a stand-alone system for rapid, continuous monitoring of multiple airborne biological threat agents in the environment. The completely automated APDS samples the air, prepares fluid samples in-line, and performs two orthogonal tests: immunoassay and nucleic acid detection. When compared to competing technologies, APDS is unprecedented in terms of flexibility and system performance.« less

  15. Tara Oceans: Eco-Systems Biology at Planetary Scale

    NASA Astrophysics Data System (ADS)

    Bowler, C.; Malviya, S.

    2016-02-01

    The ocean is the largest ecosystem on Earth and yet we know very little about the plankton that drift within. To increase our understanding of this underexplored world a multidisciplinary consortium, Tara Oceans, was formed around the 110-ft research schooner Tara, which sampled plankton at more than 210 sites and multiple depth layers in all the major oceanic regions during expeditions from 2009-2013 (Karsenti et al. Plos Biol., 2011). The presentation will describe the first foundational resources from the project (based on a first data freeze from 579 samples at 75 stations; see Science special issue May 22, 2015) and their initial analyses, illustrating several aspects of the Tara Oceans' eco-systems biology approach. The project provides unique resources for several scientific disciplines, capturing biodiversity of a wide range of organisms that are rarely studied together, exploring interactions between them and integrating them with environmental conditions to further our understanding of life in the ocean and beyond in the context of ongoing climate changes.

  16. Theory and methodology for utilizing genes as biomarkers to determine potential biological mixtures.

    PubMed

    Shrestha, Sadeep; Smith, Michael W; Beaty, Terri H; Strathdee, Steffanie A

    2005-01-01

    Genetically determined mixture information can be used as a surrogate for physical or behavioral characteristics in epidemiological studies examining research questions related to socially stigmatized behaviors and horizontally transmitted infections. A new measure, the probability of mixture discrimination (PMD), was developed to aid mixture analysis that estimates the ability to differentiate single from multiple genomes in biological mixtures. Four autosomal short tandem repeats (STRs) were identified, genotyped and evaluated in African American, European American, Hispanic, and Chinese individuals to estimate PMD. Theoretical PMD frameworks were also developed for autosomal and sex-linked (X and Y) STR markers in potential male/male, male/female and female/female mixtures. Autosomal STRs genetically determine the presence of multiple genomes in mixture samples of unknown genders with more power than the apparently simpler X and Y chromosome STRs. Evaluation of four autosomal STR loci enables the detection of mixtures of DNA from multiple sources with above 99% probability in all four racial/ethnic populations. The genetic-based approach has applications in epidemiology that provide viable alternatives to survey-based study designs. The analysis of genes as biomarkers can be used as a gold standard for validating measurements from self-reported behaviors that tend to be sensitive or socially stigmatizing, such as those involving sex and drugs.

  17. Contact nanomechanical measurements with the AFM

    NASA Astrophysics Data System (ADS)

    Geisse, Nicholas

    2013-03-01

    The atomic force microscope (AFM) has found broad use in the biological sciences largely due to its ability to make measurements on unfixed and unstained samples under liquid. In addition to imaging at multiple spatial scales ranging from micro- to nanometer, AFMs are commonly used as nanomechanical probes. This is pertinent for cell biology, as it has been demonstrated that the geometrical and mechanical properties of the extracellular microenvironment are important in such processes as cancer, cardiovascular disease, muscular dystrophy, and even the control of cell life and death. Indeed, the ability to control and quantify these external geometrical and mechanical parameters arises as a key issue in the field. Because AFM can quantitatively measure the mechanical properties of various biological samples, novel insights to cell function and to cell-substrate interactions are now possible. As the application of AFM to these types of problems is widened, it is important to understand the performance envelope of the technique and its associated data analyses. This talk will discuss the important issues that must be considered when mechanical models are applied to real-world data. Examples of the effect of different model assumptions on our understanding of the measured material properties will be shown. Furthermore, specific examples of the importance of mechanical stimuli and the micromechanical environment to the structure and function of biological materials will be presented.

  18. Development and Applications of a Mobile Ecogenomic Sensor

    NASA Astrophysics Data System (ADS)

    Yamahara, K.; Preston, C. M.; Pargett, D.; Jensen, S.; Roman, B.; Walz, K.; Birch, J. M.; Hobson, B.; Kieft, B.; Zhang, Y.; Ryan, J. P.; Chavez, F.; Scholin, C. A.

    2016-12-01

    Modern molecular biological analytical methods have revolutionized our understanding of organism diversity in the ocean. Such advancements have profound implications for use in environmental research and resource management. However, the application of such technology to comprehensively document biodiversity and understand ecosystem processes in an ocean setting will require repeated observations over vast space and time scales. A fundamental challenge associated with meeting that requirement is acquiring discrete samples over spatial scales and frequencies necessary to document cause-and-effect relationships that link biological processes to variable physical and chemical gradients in rapidly changing water masses. Accomplishing that objective using ships alone is not practical. We are working to overcome this fundamental challenge by developing a new generation of biological instrumentation, the third generation ESP (3G ESP). The 3G ESP is a robotic device that automates sample collection, preservation, and/or in situ processing for real-time target molecule detection. Here we present the development of the 3G ESP and its integration with a Tethys-class Long Range AUV (LRAUV), and demonstrate its ability to collect and preserve material for subsequent metagenomic and quantitative PCR (qPCR) analyses. Further, we elucidate the potential of employing multiple mobile ecogenomic sensors to monitor ocean biodiversity, as well as following ecosystems over time to reveal time/space relationships of biological processes in response to changing environmental conditions.

  19. Influence of genetic, biological and pharmacological factors on levodopa dose in Parkinson's disease.

    PubMed

    Altmann, Vivian; Schumacher-Schuh, Artur F; Rieck, Mariana; Callegari-Jacques, Sidia M; Rieder, Carlos R M; Hutz, Mara H

    2016-04-01

    Levodopa is first-line treatment of Parkinson's disease motor symptoms but, dose response is highly variable. Therefore, the aim of this study was to determine how much levodopa dose could be explained by biological, pharmacological and genetic factors. A total of 224 Parkinson's disease patients were genotyped for SV2C and SLC6A3 polymorphisms by allelic discrimination assays. Comedication, demographic and clinical data were also assessed. All variables with p < 0.20 were included in a multiple regression analysis for dose prediction. The final model explained 23% of dose variation (F = 11.54; p < 0.000001). Although a good prediction model was obtained, it still needs to be tested in an independent sample to be validated.

  20. Multiple immunofluorescence labelling of formalin-fixed paraffin-embedded (FFPE) tissue

    PubMed Central

    Robertson, David; Savage, Kay; Reis-Filho, Jorge S; Isacke, Clare M

    2008-01-01

    Background Investigating the expression of candidate genes in tissue samples usually involves either immunohistochemical labelling of formalin-fixed paraffin-embedded (FFPE) sections or immunofluorescence labelling of cryosections. Although both of these methods provide essential data, both have important limitations as research tools. Consequently, there is a demand in the research community to be able to perform routine, high quality immunofluorescence labelling of FFPE tissues. Results We present here a robust optimised method for high resolution immunofluorescence labelling of FFPE tissues, which involves the combination of antigen retrieval, indirect immunofluorescence and confocal laser scanning microscopy. We demonstrate the utility of this method with examples of immunofluorescence labelling of human kidney, human breast and a tissue microarray of invasive human breast cancers. Finally, we demonstrate that stained slides can be stored in the short term at 4°C or in the longer term at -20°C prior to images being collected. This approach has the potential to unlock a large in vivo database for immunofluorescence investigations and has the major advantages over immunohistochemistry in that it provides higher resolution imaging of antigen localization and the ability to label multiple antigens simultaneously. Conclusion This method provides a link between the cell biology and pathology communities. For the cell biologist, it will enable them to utilise the vast archive of pathology specimens to advance their in vitro data into in vivo samples, in particular archival material and tissue microarrays. For the pathologist, it will enable them to utilise multiple antibodies on a single section to characterise particular cell populations or to test multiple biomarkers in limited samples and define with greater accuracy cellular heterogeneity in tissue samples. PMID:18366689

  1. Neural Network and Nearest Neighbor Algorithms for Enhancing Sampling of Molecular Dynamics.

    PubMed

    Galvelis, Raimondas; Sugita, Yuji

    2017-06-13

    The free energy calculations of complex chemical and biological systems with molecular dynamics (MD) are inefficient due to multiple local minima separated by high-energy barriers. The minima can be escaped using an enhanced sampling method such as metadynamics, which apply bias (i.e., importance sampling) along a set of collective variables (CV), but the maximum number of CVs (or dimensions) is severely limited. We propose a high-dimensional bias potential method (NN2B) based on two machine learning algorithms: the nearest neighbor density estimator (NNDE) and the artificial neural network (ANN) for the bias potential approximation. The bias potential is constructed iteratively from short biased MD simulations accounting for correlation among CVs. Our method is capable of achieving ergodic sampling and calculating free energy of polypeptides with up to 8-dimensional bias potential.

  2. Assessment of potential effects of water produced from coalbed natural gas development on macroinvertebrate and algal communities in the Powder River and Tongue River, Wyoming and Montana, 2010

    USGS Publications Warehouse

    Peterson, David A.; Hargett, Eric G.; Feldman, David L.

    2011-01-01

    Ongoing development of coalbed natural gas in the Powder River structural basin in Wyoming and Montana led to formation of an interagency aquatic task group to address concerns about the effects of the resulting production water on biological communities in streams of the area. Ecological assessments, made from 2005–08 under the direction of the task group, indicated biological condition of the macroinvertebrate and algal communities in the middle reaches of the Powder was lower than in the upper or lower reaches. On the basis of the 2005–08 results, sampling of the macroinvertebrate and algae communities was conducted at 18 sites on the mainstem Powder River and 6 sites on the mainstem Tongue River in 2010. Sampling-site locations were selected on a paired approach, with sites located upstream and downstream of discharge points and tributaries associated with coalbed natural gas development. Differences in biological condition among site pairs were evaluated graphically and statistically using multiple lines of evidence that included macroinvertebrate and algal community metrics (such as taxa richness, relative abundance, functional feeding groups, and tolerance) and output from observed/expected (O/E) macroinvertebrate models from Wyoming and Montana. Multiple lines of evidence indicated a decline in biological condition in the middle reaches of the Powder River, potentially indicating cumulative effects from coalbed natural gas discharges within one or more reaches between Flying E Creek and Wild Horse Creek in Wyoming. The maximum concentrations of alkalinity in the Powder River also occurred in the middle reaches. Biological condition in the upper and lower reaches of the Powder River was variable, with declines between some site pairs, such as upstream and downstream of Dry Fork and Willow Creek, and increases at others, such as upstream and downstream of Beaver Creek. Biological condition at site pairs on the Tongue River showed an increase in one case, near the Wyoming-Montana border, and a decrease in another case, upstream of Tongue River Reservoir. Few significant differences were noted from upstream to downstream of Prairie Dog Creek, a major tributary to the Tongue River. Further study would be needed to confirm the observed patterns and choose areas to examine in greater detail.

  3. Vaginal microbial flora analysis by next generation sequencing and microarrays; can microbes indicate vaginal origin in a forensic context?

    PubMed

    Benschop, Corina C G; Quaak, Frederike C A; Boon, Mathilde E; Sijen, Titia; Kuiper, Irene

    2012-03-01

    Forensic analysis of biological traces generally encompasses the investigation of both the person who contributed to the trace and the body site(s) from which the trace originates. For instance, for sexual assault cases, it can be beneficial to distinguish vaginal samples from skin or saliva samples. In this study, we explored the use of microbial flora to indicate vaginal origin. First, we explored the vaginal microbiome for a large set of clinical vaginal samples (n = 240) by next generation sequencing (n = 338,184 sequence reads) and found 1,619 different sequences. Next, we selected 389 candidate probes targeting genera or species and designed a microarray, with which we analysed a diverse set of samples; 43 DNA extracts from vaginal samples and 25 DNA extracts from samples from other body sites, including sites in close proximity of or in contact with the vagina. Finally, we used the microarray results and next generation sequencing dataset to assess the potential for a future approach that uses microbial markers to indicate vaginal origin. Since no candidate genera/species were found to positively identify all vaginal DNA extracts on their own, while excluding all non-vaginal DNA extracts, we deduce that a reliable statement about the cellular origin of a biological trace should be based on the detection of multiple species within various genera. Microarray analysis of a sample will then render a microbial flora pattern that is probably best analysed in a probabilistic approach.

  4. Tensor decomposition-based and principal-component-analysis-based unsupervised feature extraction applied to the gene expression and methylation profiles in the brains of social insects with multiple castes.

    PubMed

    Taguchi, Y-H

    2018-05-08

    Even though coexistence of multiple phenotypes sharing the same genomic background is interesting, it remains incompletely understood. Epigenomic profiles may represent key factors, with unknown contributions to the development of multiple phenotypes, and social-insect castes are a good model for elucidation of the underlying mechanisms. Nonetheless, previous studies have failed to identify genes associated with aberrant gene expression and methylation profiles because of the lack of suitable methodology that can address this problem properly. A recently proposed principal component analysis (PCA)-based and tensor decomposition (TD)-based unsupervised feature extraction (FE) can solve this problem because these two approaches can deal with gene expression and methylation profiles even when a small number of samples is available. PCA-based and TD-based unsupervised FE methods were applied to the analysis of gene expression and methylation profiles in the brains of two social insects, Polistes canadensis and Dinoponera quadriceps. Genes associated with differential expression and methylation between castes were identified, and analysis of enrichment of Gene Ontology terms confirmed reliability of the obtained sets of genes from the biological standpoint. Biologically relevant genes, shown to be associated with significant differential gene expression and methylation between castes, were identified here for the first time. The identification of these genes may help understand the mechanisms underlying epigenetic control of development of multiple phenotypes under the same genomic conditions.

  5. Nanoscale NMR spectroscopy and imaging of multiple nuclear species.

    PubMed

    DeVience, Stephen J; Pham, Linh M; Lovchinsky, Igor; Sushkov, Alexander O; Bar-Gill, Nir; Belthangady, Chinmay; Casola, Francesco; Corbett, Madeleine; Zhang, Huiliang; Lukin, Mikhail; Park, Hongkun; Yacoby, Amir; Walsworth, Ronald L

    2015-02-01

    Nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) provide non-invasive information about multiple nuclear species in bulk matter, with wide-ranging applications from basic physics and chemistry to biomedical imaging. However, the spatial resolution of conventional NMR and MRI is limited to several micrometres even at large magnetic fields (>1 T), which is inadequate for many frontier scientific applications such as single-molecule NMR spectroscopy and in vivo MRI of individual biological cells. A promising approach for nanoscale NMR and MRI exploits optical measurements of nitrogen-vacancy (NV) colour centres in diamond, which provide a combination of magnetic field sensitivity and nanoscale spatial resolution unmatched by any existing technology, while operating under ambient conditions in a robust, solid-state system. Recently, single, shallow NV centres were used to demonstrate NMR of nanoscale ensembles of proton spins, consisting of a statistical polarization equivalent to ∼100-1,000 spins in uniform samples covering the surface of a bulk diamond chip. Here, we realize nanoscale NMR spectroscopy and MRI of multiple nuclear species ((1)H, (19)F, (31)P) in non-uniform (spatially structured) samples under ambient conditions and at moderate magnetic fields (∼20 mT) using two complementary sensor modalities.

  6. Parent-reported suicidal behavior and correlates among adolescents in China.

    PubMed

    Liu, Xianchen; Sun, Zhenxiao; Yang, Yanyun

    2008-01-01

    Suicidal risk begins to increase during adolescence and is associated with multiple biological, psychological, social, and cultural factors. This study examined the prevalence and psychosocial factors of parent-reported suicidal behavior in Chinese adolescents. A community sample of 1920 adolescents in China participated in an epidemiological study. Parents completed a structured questionnaire including child suicidal behavior, illness history, mental health problems, family history, parenting, and family environment. Multiple logistic regression was used for data analysis. Overall, 2.4% of the sample talked about suicide in the previous 6 months, 3.2% had deliberately hurt themselves or attempted suicide, and 5.1% had either suicidal talk or self-harm. The rate of suicidal behavior increased as adolescents aged. Multivariate logistic regression indicated that the following factors were significantly associated with elevated risk for suicidal behavior: depressive/anxious symptoms, poor maternal health, family conflict, and physical punishment of parental discipline style. Suicidal behavior was reported by parents. No causal relationships could be made based on cross-sectional data. The prevalence rate of parent-reported suicidal behavior is markedly lower than self-reported rate in previous research. Depressive/anxious symptoms and multiple family environmental factors are associated with suicidal behavior in Chinese adolescents.

  7. Multiple speckle illumination for optical-resolution photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Poisson, Florian; Stasio, Nicolino; Moser, Christophe; Psaltis, Demetri; Bossy, Emmanuel

    2017-03-01

    Optical-resolution photoacoustic microscopy offers exquisite and specific contrast to optical absorption. Conventional approaches generally involves raster scanning a focused spot over the sample. Here, we demonstrate that a full-field illumination approach with multiple speckle illumination can also provide diffraction-limited optical-resolution photoacoustic images. Two different proof-of-concepts are demonstrated with micro-structured test samples. The first approach follows the principle of correlation/ghost imaging,1, 2 and is based on cross-correlating photoacoustic signals under multiple speckle illumination with known speckle patterns measured during a calibration step. The second approach is a speckle scanning microscopy technique, which adapts the technique proposed in fluorescence microscopy by Bertolotti and al.:3 in our work, spatially unresolved photoacoustic measurements are performed for various translations of unknown speckle patterns. A phase-retrieval algorithm is used to reconstruct the object from the knowledge of the modulus of its Fourier Transform yielded by the measurements. Because speckle patterns naturally appear in many various situations, including propagation through biological tissue or multi-mode fibers (for which focusing light is either very demanding if not impossible), speckle-illumination-based photoacoustic microscopy provides a powerful framework for the development of novel reconstruction approaches, well-suited to compressed sensing approaches.2

  8. Recovering hidden diagonal structures via non-negative matrix factorization with multiple constraints.

    PubMed

    Yang, Xi; Han, Guoqiang; Cai, Hongmin; Song, Yan

    2017-03-31

    Revealing data with intrinsically diagonal block structures is particularly useful for analyzing groups of highly correlated variables. Earlier researches based on non-negative matrix factorization (NMF) have been shown to be effective in representing such data by decomposing the observed data into two factors, where one factor is considered to be the feature and the other the expansion loading from a linear algebra perspective. If the data are sampled from multiple independent subspaces, the loading factor would possess a diagonal structure under an ideal matrix decomposition. However, the standard NMF method and its variants have not been reported to exploit this type of data via direct estimation. To address this issue, a non-negative matrix factorization with multiple constraints model is proposed in this paper. The constraints include an sparsity norm on the feature matrix and a total variational norm on each column of the loading matrix. The proposed model is shown to be capable of efficiently recovering diagonal block structures hidden in observed samples. An efficient numerical algorithm using the alternating direction method of multipliers model is proposed for optimizing the new model. Compared with several benchmark models, the proposed method performs robustly and effectively for simulated and real biological data.

  9. The selected reaction monitoring/multiple reaction monitoring-based mass spectrometry approach for the accurate quantitation of proteins: clinical applications in the cardiovascular diseases.

    PubMed

    Gianazza, Erica; Tremoli, Elena; Banfi, Cristina

    2014-12-01

    Selected reaction monitoring, also known as multiple reaction monitoring, is a powerful targeted mass spectrometry approach for a confident quantitation of proteins/peptides in complex biological samples. In recent years, its optimization and application have become pivotal and of great interest in clinical research to derive useful outcomes for patient care. Thus, selected reaction monitoring/multiple reaction monitoring is now used as a highly sensitive and selective method for the evaluation of protein abundances and biomarker verification with potential applications in medical screening. This review describes technical aspects for the development of a robust multiplex assay and discussing its recent applications in cardiovascular proteomics: verification of promising disease candidates to select only the highest quality peptides/proteins for a preclinical validation, as well as quantitation of protein isoforms and post-translational modifications.

  10. Correlative Tomography

    PubMed Central

    Burnett, T. L.; McDonald, S. A.; Gholinia, A.; Geurts, R.; Janus, M.; Slater, T.; Haigh, S. J.; Ornek, C.; Almuaili, F.; Engelberg, D. L.; Thompson, G. E.; Withers, P. J.

    2014-01-01

    Increasingly researchers are looking to bring together perspectives across multiple scales, or to combine insights from different techniques, for the same region of interest. To this end, correlative microscopy has already yielded substantial new insights in two dimensions (2D). Here we develop correlative tomography where the correlative task is somewhat more challenging because the volume of interest is typically hidden beneath the sample surface. We have threaded together x-ray computed tomography, serial section FIB-SEM tomography, electron backscatter diffraction and finally TEM elemental analysis all for the same 3D region. This has allowed observation of the competition between pitting corrosion and intergranular corrosion at multiple scales revealing the structural hierarchy, crystallography and chemistry of veiled corrosion pits in stainless steel. With automated correlative workflows and co-visualization of the multi-scale or multi-modal datasets the technique promises to provide insights across biological, geological and materials science that are impossible using either individual or multiple uncorrelated techniques. PMID:24736640

  11. Special Focus

    PubMed Central

    Nawrocki, Eric P.; Burge, Sarah W.

    2013-01-01

    The development of RNA bioinformatic tools began more than 30 y ago with the description of the Nussinov and Zuker dynamic programming algorithms for single sequence RNA secondary structure prediction. Since then, many tools have been developed for various RNA sequence analysis problems such as homology search, multiple sequence alignment, de novo RNA discovery, read-mapping, and many more. In this issue, we have collected a sampling of reviews and original research that demonstrate some of the many ways bioinformatics is integrated with current RNA biology research. PMID:23948768

  12. A swarm of autonomous miniature underwater robot drifters for exploring submesoscale ocean dynamics.

    PubMed

    Jaffe, Jules S; Franks, Peter J S; Roberts, Paul L D; Mirza, Diba; Schurgers, Curt; Kastner, Ryan; Boch, Adrien

    2017-01-24

    Measuring the ever-changing 3-dimensional (3D) motions of the ocean requires simultaneous sampling at multiple locations. In particular, sampling the complex, nonlinear dynamics associated with submesoscales (<1-10 km) requires new technologies and approaches. Here we introduce the Mini-Autonomous Underwater Explorer (M-AUE), deployed as a swarm of 16 independent vehicles whose 3D trajectories are measured near-continuously, underwater. As the vehicles drift with the ambient flow or execute preprogrammed vertical behaviours, the simultaneous measurements at multiple, known locations resolve the details of the flow within the swarm. We describe the design, construction, control and underwater navigation of the M-AUE. A field programme in the coastal ocean using a swarm of these robots programmed with a depth-holding behaviour provides a unique test of a physical-biological interaction leading to plankton patch formation in internal waves. The performance of the M-AUE vehicles illustrates their novel capability for measuring submesoscale dynamics.

  13. A swarm of autonomous miniature underwater robot drifters for exploring submesoscale ocean dynamics

    NASA Astrophysics Data System (ADS)

    Jaffe, Jules S.; Franks, Peter J. S.; Roberts, Paul L. D.; Mirza, Diba; Schurgers, Curt; Kastner, Ryan; Boch, Adrien

    2017-01-01

    Measuring the ever-changing 3-dimensional (3D) motions of the ocean requires simultaneous sampling at multiple locations. In particular, sampling the complex, nonlinear dynamics associated with submesoscales (<1-10 km) requires new technologies and approaches. Here we introduce the Mini-Autonomous Underwater Explorer (M-AUE), deployed as a swarm of 16 independent vehicles whose 3D trajectories are measured near-continuously, underwater. As the vehicles drift with the ambient flow or execute preprogrammed vertical behaviours, the simultaneous measurements at multiple, known locations resolve the details of the flow within the swarm. We describe the design, construction, control and underwater navigation of the M-AUE. A field programme in the coastal ocean using a swarm of these robots programmed with a depth-holding behaviour provides a unique test of a physical-biological interaction leading to plankton patch formation in internal waves. The performance of the M-AUE vehicles illustrates their novel capability for measuring submesoscale dynamics.

  14. DTWscore: differential expression and cell clustering analysis for time-series single-cell RNA-seq data.

    PubMed

    Wang, Zhuo; Jin, Shuilin; Liu, Guiyou; Zhang, Xiurui; Wang, Nan; Wu, Deliang; Hu, Yang; Zhang, Chiping; Jiang, Qinghua; Xu, Li; Wang, Yadong

    2017-05-23

    The development of single-cell RNA sequencing has enabled profound discoveries in biology, ranging from the dissection of the composition of complex tissues to the identification of novel cell types and dynamics in some specialized cellular environments. However, the large-scale generation of single-cell RNA-seq (scRNA-seq) data collected at multiple time points remains a challenge to effective measurement gene expression patterns in transcriptome analysis. We present an algorithm based on the Dynamic Time Warping score (DTWscore) combined with time-series data, that enables the detection of gene expression changes across scRNA-seq samples and recovery of potential cell types from complex mixtures of multiple cell types. The DTWscore successfully classify cells of different types with the most highly variable genes from time-series scRNA-seq data. The study was confined to methods that are implemented and available within the R framework. Sample datasets and R packages are available at https://github.com/xiaoxiaoxier/DTWscore .

  15. Endoscopic low-coherence topography measurement for upper airways and hollow samples

    NASA Astrophysics Data System (ADS)

    Delacrétaz, Yves; Shaffer, Etienne; Pavillon, Nicolas; Kühn, Jonas; Lang, Florian; Depeursinge, Christian

    2010-11-01

    To evaluate the severity of airway pathologies, quantitative dimensioning of airways is of utmost importance. Endoscopic vision gives a projective image and thus no true scaling information can be directly deduced from it. In this article, an approach based on an interferometric setup, a low-coherence laser source and a standard rigid endoscope is presented, and applied to hollow samples measurements. More generally, the use of the low-coherence interferometric setup detailed here could be extended to any other endoscopy-related field of interest, e.g., gastroscopy, arthroscopy and other medical or industrial applications where tri-dimensional topology is required. The setup design with a multiple fibers illumination system is presented. Demonstration of the method ability to operate on biological samples is assessed through measurements on ex vivo pig bronchi.

  16. 2D-DIGE in Proteomics.

    PubMed

    Pasquali, Matias; Serchi, Tommaso; Planchon, Sebastien; Renaut, Jenny

    2017-01-01

    The two-dimensional difference gel electrophoresis method is a valuable approach for proteomics. The method, using cyanine fluorescent dyes, allows the co-migration of multiple protein samples in the same gel and their simultaneous detection, thus reducing experimental and analytical time. 2D-DIGE, compared to traditional post-staining 2D-PAGE protocols (e.g., colloidal Coomassie or silver nitrate), provides faster and more reliable gel matching, limiting the impact of gel to gel variation, and allows also a good dynamic range for quantitative comparisons. By the use of internal standards, it is possible to normalize for experimental variations in spot intensities and gel patterns. Here we describe the experimental steps we follow in our routine 2D-DIGE procedure that we then apply to multiple biological questions.

  17. Microfluidic Sample Preparation for Diagnostic Cytopathology

    PubMed Central

    Mach, Albert J.; Adeyiga, Oladunni B.; Di Carlo, Dino

    2014-01-01

    The cellular components of body fluids are routinely analyzed to identify disease and treatment approaches. While significant focus has been placed on developing cell analysis technologies, tools to automate the preparation of cellular specimens have been more limited, especially for body fluids beyond blood. Preparation steps include separating, concentrating, and exposing cells to reagents. Sample preparation continues to be routinely performed off-chip by technicians, preventing cell-based point-of-care diagnostics, increasing the cost of tests, and reducing the consistency of the final analysis following multiple manually-performed steps. Here, we review the assortment of biofluids for which suspended cells are analyzed, along with their characteristics and diagnostic value. We present an overview of the conventional sample preparation processes for cytological diagnosis. We finally discuss the challenges and opportunities in developing microfluidic devices for the purpose of automating or miniaturizing these processes, with particular emphases on preparing large or small volume samples, working with samples of high cellularity, automating multi-step processes, and obtaining high purity subpopulations of cells. We hope to convey the importance of and help identify new research directions addressing the vast biological and clinical applications in preparing and analyzing the array of available biological fluids. Successfully addressing the challenges described in this review can lead to inexpensive systems to improve diagnostic accuracy while simultaneously reducing overall systemic healthcare costs. PMID:23380972

  18. Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets.

    PubMed

    Argelaguet, Ricard; Velten, Britta; Arnol, Damien; Dietrich, Sascha; Zenz, Thorsten; Marioni, John C; Buettner, Florian; Huber, Wolfgang; Stegle, Oliver

    2018-06-20

    Multi-omics studies promise the improved characterization of biological processes across molecular layers. However, methods for the unsupervised integration of the resulting heterogeneous data sets are lacking. We present Multi-Omics Factor Analysis (MOFA), a computational method for discovering the principal sources of variation in multi-omics data sets. MOFA infers a set of (hidden) factors that capture biological and technical sources of variability. It disentangles axes of heterogeneity that are shared across multiple modalities and those specific to individual data modalities. The learnt factors enable a variety of downstream analyses, including identification of sample subgroups, data imputation and the detection of outlier samples. We applied MOFA to a cohort of 200 patient samples of chronic lymphocytic leukaemia, profiled for somatic mutations, RNA expression, DNA methylation and ex vivo drug responses. MOFA identified major dimensions of disease heterogeneity, including immunoglobulin heavy-chain variable region status, trisomy of chromosome 12 and previously underappreciated drivers, such as response to oxidative stress. In a second application, we used MOFA to analyse single-cell multi-omics data, identifying coordinated transcriptional and epigenetic changes along cell differentiation. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  19. Step by Step: Biology Undergraduates' Problem-Solving Procedures during Multiple-Choice Assessment

    ERIC Educational Resources Information Center

    Prevost, Luanna B.; Lemons, Paula P.

    2016-01-01

    This study uses the theoretical framework of domain-specific problem solving to explore the procedures students use to solve multiple-choice problems about biology concepts. We designed several multiple-choice problems and administered them on four exams. We trained students to produce written descriptions of how they solved the problem, and this…

  20. Nonparametric relevance-shifted multiple testing procedures for the analysis of high-dimensional multivariate data with small sample sizes.

    PubMed

    Frömke, Cornelia; Hothorn, Ludwig A; Kropf, Siegfried

    2008-01-27

    In many research areas it is necessary to find differences between treatment groups with several variables. For example, studies of microarray data seek to find a significant difference in location parameters from zero or one for ratios thereof for each variable. However, in some studies a significant deviation of the difference in locations from zero (or 1 in terms of the ratio) is biologically meaningless. A relevant difference or ratio is sought in such cases. This article addresses the use of relevance-shifted tests on ratios for a multivariate parallel two-sample group design. Two empirical procedures are proposed which embed the relevance-shifted test on ratios. As both procedures test a hypothesis for each variable, the resulting multiple testing problem has to be considered. Hence, the procedures include a multiplicity correction. Both procedures are extensions of available procedures for point null hypotheses achieving exact control of the familywise error rate. Whereas the shift of the null hypothesis alone would give straight-forward solutions, the problems that are the reason for the empirical considerations discussed here arise by the fact that the shift is considered in both directions and the whole parameter space in between these two limits has to be accepted as null hypothesis. The first algorithm to be discussed uses a permutation algorithm, and is appropriate for designs with a moderately large number of observations. However, many experiments have limited sample sizes. Then the second procedure might be more appropriate, where multiplicity is corrected according to a concept of data-driven order of hypotheses.

  1. The use of selective adsorbents in capillary electrophoresis-mass spectrometry for analyte preconcentration and microreactions: a powerful three-dimensional tool for multiple chemical and biological applications.

    PubMed

    Guzman, N A; Stubbs, R J

    2001-10-01

    Much attention has recently been directed to the development and application of online sample preconcentration and microreactions in capillary electrophoresis using selective adsorbents based on chemical or biological specificity. The basic principle involves two interacting chemical or biological systems with high selectivity and affinity for each other. These molecular interactions in nature usually involve noncovalent and reversible chemical processes. Properly bound to a solid support, an "affinity ligand" can selectively adsorb a "target analyte" found in a simple or complex mixture at a wide range of concentrations. As a result, the isolated analyte is enriched and highly purified. When this affinity technique, allowing noncovalent chemical interactions and biochemical reactions to occur, is coupled on-line to high-resolution capillary electrophoresis and mass spectrometry, a powerful tool of chemical and biological information is created. This paper describes the concept of biological recognition and affinity interaction on-line with high-resolution separation, the fabrication of an "analyte concentrator-microreactor", optimization conditions of adsorption and desorption, the coupling to mass spectrometry, and various applications of clinical and pharmaceutical interest.

  2. Preservation of Liquid Biological Samples

    NASA Technical Reports Server (NTRS)

    Putcha, Lakshmi (Inventor); Nimmagudda, Ramalingeshwara (Inventor)

    2004-01-01

    The present invention related to the preservation of a liquid biological sample. The biological sample is exposed to a preservative containing at least about 0.15 g of sodium benzoate and at least about 0.025 g of citric acid per 100 ml of sample. The biological sample may be collected in a vessel or an absorbent mass. The biological sample may also be exposed to a substrate and/or a vehicle.

  3. [Oral multiple carcinomatosis in a patient from an area with endemic regional chronic hydroarsenicism (ERCH)].

    PubMed

    Carrica, Victoriano

    2006-01-01

    Arsenic (As) and its compounds may cause multiple harmful effects on the human organism, interfering with biological processes of vital importance. It is known that the inhabitants of vast areas of the Argentine Republic drink well water contaminated with AS, which results in a disease known as Endemic Regional Chronic Hydroarsenicism (ERCH). It has been observed that these patients present a clinical picture characterized by multiple carcinomatous skin lesions which occur concurrently or successively along long periods of time. To present the clinical case of a female patient from the arsenical area of Cordoba Province, who had multiple carcinomatous oral lesions. The patient's history was written and iconographies, surgical excision of the lip lesions, pathological studies of the samples, and evolution observations were done. Based on both the patient's history and follow-up studies, it was possible to prove the presence of multiple successive carcinomatous lesions in the oral mucosa. It is concluded that drinking water containing more AS than the quantity accepted by the WHO (0.0 5 ppm) can cause multiple carcinomatous lesions on the oral mucosa as well as on the skin.

  4. Challenging the Cancer Molecular Stratification Dogma: Intratumoral Heterogeneity Undermines Consensus Molecular Subtypes and Potential Diagnostic Value in Colorectal Cancer.

    PubMed

    Dunne, Philip D; McArt, Darragh G; Bradley, Conor A; O'Reilly, Paul G; Barrett, Helen L; Cummins, Robert; O'Grady, Tony; Arthur, Ken; Loughrey, Maurice B; Allen, Wendy L; McDade, Simon S; Waugh, David J; Hamilton, Peter W; Longley, Daniel B; Kay, Elaine W; Johnston, Patrick G; Lawler, Mark; Salto-Tellez, Manuel; Van Schaeybroeck, Sandra

    2016-08-15

    A number of independent gene expression profiling studies have identified transcriptional subtypes in colorectal cancer with potential diagnostic utility, culminating in publication of a colorectal cancer Consensus Molecular Subtype classification. The worst prognostic subtype has been defined by genes associated with stem-like biology. Recently, it has been shown that the majority of genes associated with this poor prognostic group are stromal derived. We investigated the potential for tumor misclassification into multiple diagnostic subgroups based on tumoral region sampled. We performed multiregion tissue RNA extraction/transcriptomic analysis using colorectal-specific arrays on invasive front, central tumor, and lymph node regions selected from tissue samples from 25 colorectal cancer patients. We identified a consensus 30-gene list, which represents the intratumoral heterogeneity within a cohort of primary colorectal cancer tumors. Using a series of online datasets, we showed that this gene list displays prognostic potential HR = 2.914 (confidence interval 0.9286-9.162) in stage II/III colorectal cancer patients, but in addition, we demonstrated that these genes are stromal derived, challenging the assumption that poor prognosis tumors with stem-like biology have undergone a widespread epithelial-mesenchymal transition. Most importantly, we showed that patients can be simultaneously classified into multiple diagnostically relevant subgroups based purely on the tumoral region analyzed. Gene expression profiles derived from the nonmalignant stromal region can influence assignment of colorectal cancer transcriptional subtypes, questioning the current molecular classification dogma and highlighting the need to consider pathology sampling region and degree of stromal infiltration when employing transcription-based classifiers to underpin clinical decision making in colorectal cancer. Clin Cancer Res; 22(16); 4095-104. ©2016 AACRSee related commentary by Morris and Kopetz, p. 3989. ©2016 American Association for Cancer Research.

  5. Two-dimensional correlation spectroscopy — Biannual survey 2007-2009

    NASA Astrophysics Data System (ADS)

    Noda, Isao

    2010-06-01

    The publication activities in the field of 2D correlation spectroscopy are surveyed with the emphasis on papers published during the last two years. Pertinent review articles and conference proceedings are discussed first, followed by the examination of noteworthy developments in the theory and applications of 2D correlation spectroscopy. Specific topics of interest include Pareto scaling, analysis of randomly sampled spectra, 2D analysis of data obtained under multiple perturbations, evolution of 2D spectra along additional variables, comparison and quantitative analysis of multiple 2D spectra, orthogonal sample design to eliminate interfering cross peaks, quadrature orthogonal signal correction and other data transformation techniques, data pretreatment methods, moving window analysis, extension of kernel and global phase angle analysis, covariance and correlation coefficient mapping, variant forms of sample-sample correlation, and different display methods. Various static and dynamic perturbation methods used in 2D correlation spectroscopy, e.g., temperature, composition, chemical reactions, H/D exchange, physical phenomena like sorption, diffusion and phase transitions, optical and biological processes, are reviewed. Analytical probes used in 2D correlation spectroscopy include IR, Raman, NIR, NMR, X-ray, mass spectrometry, chromatography, and others. Application areas of 2D correlation spectroscopy are diverse, encompassing synthetic and natural polymers, liquid crystals, proteins and peptides, biomaterials, pharmaceuticals, food and agricultural products, solutions, colloids, surfaces, and the like.

  6. Assessment of biological effects of pollutants in a hyper eutrophic tropical water body, Lake Beira, Sri Lanka using multiple biomarker responses of resident fish, Nile tilapia (Oreochromis niloticus).

    PubMed

    Pathiratne, Asoka; Pathiratne, K A S; De Seram, P K C

    2010-08-01

    Biomarkers measured at the molecular and cellular level in fish have been proposed as sensitive "early warning" tools for biological effect measurements in environmental quality assessments. Lake Beira is a hypertrophic urban water body with a complex mixture of pollutants including polycyclic aromatic hydrocarbons (PAHs) and Microcystins. In this study, a suite of biomarker responses viz. biliary fluorescent aromatic compounds (FACs), hepatic ethoxyresorufin O-deethylase (EROD) and glutathione S-transferase (GST), brain and muscle cholinesterases (ChE), serum sorbitol dehydrogenase (SDH), and liver histology of Oreochromis niloticus, the dominant fish inhabiting this tropical Lake were evaluated to assess the pollution exposure and biological effects. Some fish sampled in the dry periods demonstrated prominent structural abnormalities in the liver and concomitant increase in serum SDH and reduction in hepatic GST activities in comparison to the control fish and the fish sampled in the rainy periods. The resident fish with apparently normal liver demonstrated induction of hepatic EROD and GST activities and increase in biliary FACs irrespective of the sampling period indicating bioavailability of PAHs. Muscle ChE activities of the resident fish were depressed significantly indicating exposure to anticholinesterase substances. The results revealed that fish populations residing in this Lake is under threat due to the pollution stress. Hepatic abnormalities in the fish may be mainly associated with the pollution stress due to recurrent exposure to PAHs and toxigenic Microcystis blooms in the Lake.

  7. Occupational exposure to potentially infectious biological material in a dental teaching environment.

    PubMed

    Machado-Carvalhais, Helenaura P; Ramos-Jorge, Maria L; Auad, Sheyla M; Martins, Laura H P M; Paiva, Saul M; Pordeus, Isabela A

    2008-10-01

    The aims of this cross-sectional study were to determine the prevalence of occupational accidents with exposure to biological material among undergraduate students of dentistry and to estimate potential risk factors associated with exposure to blood. Data were collected through a self-administered questionnaire (86.4 percent return rate), which was completed by a sample of 286 undergraduate dental students (mean age 22.4 +/-2.4 years). The students were enrolled in the clinical component of the curriculum, which corresponds to the final six semesters of study. Descriptive, bivariate, simple logistic regression and multiple logistic regression (Forward Stepwise Procedure) analyses were performed. The level of statistical significance was set at 5 percent. Percutaneous and mucous exposures to potentially infectious biological material were reported by 102 individuals (35.6 percent); 26.8 percent reported the occurrence of multiple episodes of exposure. The logistic regression analyses revealed that the incomplete use of individual protection equipment (OR=3.7; 95 percent CI 1.5-9.3), disciplines where surgical procedures are carried out (OR=16.3; 95 percent CI 7.1-37.2), and handling sharp instruments (OR=4.4; 95 percent CI 2.1-9.1), more specifically, hollow-bore needles (OR=6.8; 95 percent CI 2.1-19.0), were independently associated with exposure to blood. Policies of reviewing the procedures during clinical practice are recommended in order to reduce occupational exposure.

  8. Spectral relative standard deviation: a practical benchmark in metabolomics.

    PubMed

    Parsons, Helen M; Ekman, Drew R; Collette, Timothy W; Viant, Mark R

    2009-03-01

    Metabolomics datasets, by definition, comprise of measurements of large numbers of metabolites. Both technical (analytical) and biological factors will induce variation within these measurements that is not consistent across all metabolites. Consequently, criteria are required to assess the reproducibility of metabolomics datasets that are derived from all the detected metabolites. Here we calculate spectrum-wide relative standard deviations (RSDs; also termed coefficient of variation, CV) for ten metabolomics datasets, spanning a variety of sample types from mammals, fish, invertebrates and a cell line, and display them succinctly as boxplots. We demonstrate multiple applications of spectral RSDs for characterising technical as well as inter-individual biological variation: for optimising metabolite extractions, comparing analytical techniques, investigating matrix effects, and comparing biofluids and tissue extracts from single and multiple species for optimising experimental design. Technical variation within metabolomics datasets, recorded using one- and two-dimensional NMR and mass spectrometry, ranges from 1.6 to 20.6% (reported as the median spectral RSD). Inter-individual biological variation is typically larger, ranging from as low as 7.2% for tissue extracts from laboratory-housed rats to 58.4% for fish plasma. In addition, for some of the datasets we confirm that the spectral RSD values are largely invariant across different spectral processing methods, such as baseline correction, normalisation and binning resolution. In conclusion, we propose spectral RSDs and their median values contained herein as practical benchmarks for metabolomics studies.

  9. Chemical mixtures and environmental effects: a pilot study to assess ecological exposure and effects in streams

    USGS Publications Warehouse

    Buxton, Herbert T.; Reilly, Timothy J.; Kuivila, Kathryn; Kolpin, Dana W.; Bradley, Paul M.; Villeneuve, Daniel L.; Mills, Marc A.

    2015-01-01

    Assessment and management of the risks of exposure to complex chemical mixtures in streams are priorities for human and environmental health organizations around the world. The current lack of information on the composition and variability of environmental mixtures and a limited understanding of their combined effects are fundamental obstacles to timely identification and prevention of adverse human and ecological effects of exposure. This report describes the design of a field-based study of the composition and biological activity of chemical mixtures in U.S. stream waters affected by a wide range of human activities and contaminant sources. The study is a collaborative effort by the U.S. Geological Survey and the U.S. Environmental Protection Agency. Scientists sampled 38 streams spanning 24 States and Puerto Rico. Thirty-four of the sites were located in watersheds impacted by multiple contaminant sources, including industrial and municipal wastewater discharges, crop and animal agricultural runoff, urban runoff, and other point and nonpoint contaminant sources. The remaining four sites were minimally development reference watersheds. All samples underwent comprehensive chemical and biological characterization, including sensitive and specific direct analysis for over 700 dissolved organic and inorganic chemicals and field parameters, identification of unknown contaminants (environmental diagnostics), and a variety of bioassays to evaluate biological activity and toxicity.

  10. High-Throughput Quantitative Lipidomics Analysis of Nonesterified Fatty Acids in Plasma by LC-MS.

    PubMed

    Christinat, Nicolas; Morin-Rivron, Delphine; Masoodi, Mojgan

    2017-01-01

    Nonesterified fatty acids are important biological molecules which have multiple functions such as energy storage, gene regulation, or cell signaling. Comprehensive profiling of nonesterified fatty acids in biofluids can facilitate studying and understanding their roles in biological systems. For these reasons, we have developed and validated a high-throughput, nontargeted lipidomics method coupling liquid chromatography to high-resolution mass spectrometry for quantitative analysis of nonesterified fatty acids. Sufficient chromatographic separation is achieved to separate positional isomers such as polyunsaturated and branched-chain species and quantify a wide range of nonesterified fatty acids in human plasma samples. However, this method is not limited only to these fatty acid species and offers the possibility to perform untargeted screening of additional nonesterified fatty acid species.

  11. Integrated multiscale biomaterials experiment and modelling: a perspective

    PubMed Central

    Buehler, Markus J.; Genin, Guy M.

    2016-01-01

    Advances in multiscale models and computational power have enabled a broad toolset to predict how molecules, cells, tissues and organs behave and develop. A key theme in biological systems is the emergence of macroscale behaviour from collective behaviours across a range of length and timescales, and a key element of these models is therefore hierarchical simulation. However, this predictive capacity has far outstripped our ability to validate predictions experimentally, particularly when multiple hierarchical levels are involved. The state of the art represents careful integration of multiscale experiment and modelling, and yields not only validation, but also insights into deformation and relaxation mechanisms across scales. We present here a sampling of key results that highlight both challenges and opportunities for integrated multiscale experiment and modelling in biological systems. PMID:28981126

  12. LC-MS Data Processing with MAVEN: A Metabolomic Analysis and Visualization Engine

    PubMed Central

    Clasquin, Michelle F.; Melamud, Eugene; Rabinowitz, Joshua D.

    2014-01-01

    MAVEN is an open-source software program for interactive processing of LC-MS-based metabolomics data. MAVEN enables rapid and reliable metabolite quantitation from multiple reaction monitoring data or high-resolution full-scan mass spectrometry data. It automatically detects and reports peak intensities for isotope-labeled metabolites. Menu-driven, click-based navigation allows visualization of raw and analyzed data. Here we provide a User Guide for MAVEN. Step-by-step instructions are provided for data import, peak alignment across samples, identification of metabolites that differ strongly between biological conditions, quantitation and visualization of isotope-labeling patterns, and export of tables of metabolite-specific peak intensities. Together, these instructions describe a workflow that allows efficient processing of raw LC-MS data into a form ready for biological analysis. PMID:22389014

  13. LC-MS data processing with MAVEN: a metabolomic analysis and visualization engine.

    PubMed

    Clasquin, Michelle F; Melamud, Eugene; Rabinowitz, Joshua D

    2012-03-01

    MAVEN is an open-source software program for interactive processing of LC-MS-based metabolomics data. MAVEN enables rapid and reliable metabolite quantitation from multiple reaction monitoring data or high-resolution full-scan mass spectrometry data. It automatically detects and reports peak intensities for isotope-labeled metabolites. Menu-driven, click-based navigation allows visualization of raw and analyzed data. Here we provide a User Guide for MAVEN. Step-by-step instructions are provided for data import, peak alignment across samples, identification of metabolites that differ strongly between biological conditions, quantitation and visualization of isotope-labeling patterns, and export of tables of metabolite-specific peak intensities. Together, these instructions describe a workflow that allows efficient processing of raw LC-MS data into a form ready for biological analysis.

  14. Multiple, novel biologically active endophytic actinomycetes isolated from upper Amazonian rainforests.

    PubMed

    Bascom-Slack, Carol A; Ma, Cong; Moore, Emily; Babbs, Beatrice; Fenn, Kathleen; Greene, Joshua S; Hann, Bradley D; Keehner, Jocelyn; Kelley-Swift, Elizabeth G; Kembaiyan, Vivek; Lee, Sun Jin; Li, Puyao; Light, David Y; Lin, Emily H; Schorn, Michelle A; Vekhter, Daniel; Boulanger, Lori-Ann; Hess, W M; Vargas, Percy Núñez; Strobel, Gary A; Strobel, Scott A

    2009-08-01

    Microbial biodiversity provides an increasingly important source of medically and industrially useful compounds. We have isolated 14 actinomycete species from a collection of approximately 300 plant stem samples from the upper Amazonian rainforest in Peru. All of the cultured isolates produce substances with inhibitory activity directed at a range of potential fungal and bacterial pathogens. For some organisms, this activity is very broad in spectrum while other organisms show specific activity against a limited number of organisms. Two of these organisms preferentially inhibit bacterial test organisms over eukaryotic organisms. rDNA sequence analysis indicates that these organisms are not equivalent to any other cultured deposits in GenBank. Our results provide evidence of the untapped biodiversity in the form of biologically active microbes present within the tissues of higher plants.

  15. Assessing secondary science students' knowledge of molecule movement, concentration gradients, and equilibrium through multiple contexts

    NASA Astrophysics Data System (ADS)

    Raven, Sara

    2015-09-01

    Background: Studies have shown that students' knowledge of osmosis and diffusion and the concepts associated with these processes is often inaccurate. This is important to address, as these concepts not only provide the foundation for more advanced topics in biology and chemistry, but are also threaded throughout both state and national science standards. Purpose: In this study, designed to determine the completeness and accuracy of three specific students' knowledge of molecule movement, concentration gradients, and equilibrium, I sought to address the following question: Using multiple evaluative methods, how can students' knowledge of molecule movement, concentration gradients, and equilibrium be characterized? Sample: This study focuses on data gathered from three students - Emma, Henry, and Riley - all of whom were gifted/honors ninth-grade biology students at a suburban high school in the southeast United States. Design and Methods: Using various qualitative data analysis techniques, I analyzed multiple sources of data from the three students, including multiple-choice test results, written free-response answers, think-aloud interview responses, and student drawings. Results: Results of the analysis showed that students maintained misconceptions about molecule movement, concentration gradients, and equilibrium. The conceptual knowledge students demonstrated differed depending on the assessment method, with the most distinct differences appearing on the multiple-choice versus the free-response questions, and in verbal versus written formats. Conclusions: Multiple levels of assessment may be required to obtain an accurate picture of content knowledge, as free-response and illustrative tasks made it difficult for students to conceal any misconceptions. Using a variety of assessment methods within a section of the curriculum can arguably help to provide a deeper understanding of student knowledge and learning, as well as illuminate misconceptions that may have remained unknown if only one assessment method was used. Furthermore, beyond simply evaluating past learning, multiple assessment methods may aid in student comprehension of key concepts.

  16. Multiple epitope presentation and surface density control enabled by chemoselective immobilization lead to enhanced performance in IgE-binding fingerprinting on peptide microarrays.

    PubMed

    Gori, Alessandro; Cretich, Marina; Vanna, Renzo; Sola, Laura; Gagni, Paola; Bruni, Giulia; Liprino, Marta; Gramatica, Furio; Burastero, Samuele; Chiari, Marcella

    2017-08-29

    Multiple ligand presentation is a powerful strategy to enhance the affinity of a probe for its corresponding target. A promising application of this concept lies in the analytical field, where surface immobilized probes interact with their corresponding targets in the context of complex biological samples. Here we investigate the effect of multiple epitope presentation (MEP) in the challenging context of IgE-detection in serum samples using peptide microarrays, and evaluate the influence of probes surface density on the assay results. Using the milk allergen alpha-lactalbumin as a model, we have synthesized three immunoreactive epitope sequences in a linear, branched and tandem form and exploited a chemoselective click strategy (CuAAC) for their immobilization on the surface of two biosensors, a microarray and an SPR chip both modified with the same clickable polymeric coating. We first demonstrated that a fine tuning of the surface peptide density plays a crucial role to fully exploit the potential of oriented and multiple peptide display. We then compared the three multiple epitope presentations in a microarray assay using sera samples from milk allergic patients, confirming that a multiple presentation, in particular that of the tandem construct, allows for a more efficient characterization of IgE-binding fingerprints at a statistically significant level. To gain insights on the binding parameters that characterize antibody/epitopes affinity, we selected the most reactive epitope of the series (LAC1) and performed a Surface Plasmon Resonance Imaging (SPRi) analysis comparing different epitope architectures (linear versus branched versus tandem). We demonstrated that the tandem peptide provides an approximately twofold increased binding capacity with respect to the linear and branched peptides, that could be attributed to a lower rate of dissociation (K d ). Copyright © 2017 Elsevier B.V. All rights reserved.

  17. On the ecological relevance of landscape mapping and its application in the spatial planning of very large marine protected areas.

    PubMed

    Hogg, Oliver T; Huvenne, Veerle A I; Griffiths, Huw J; Linse, Katrin

    2018-06-01

    In recent years very large marine protected areas (VLMPAs) have become the dominant form of spatial protection in the marine environment. Whilst seen as a holistic and geopolitically achievable approach to conservation, there is currently a mismatch between the size of VLMPAs, and the data available to underpin their establishment and inform on their management. Habitat mapping has increasingly been adopted as a means of addressing paucity in biological data, through use of environmental proxies to estimate species and community distribution. Small-scale studies have demonstrated environmental-biological links in marine systems. Such links, however, are rarely demonstrated across larger spatial scales in the benthic environment. As such, the utility of habitat mapping as an effective approach to the ecosystem-based management of VLMPAs remains, thus far, largely undetermined. The aim of this study was to assess the ecological relevance of broadscale landscape mapping. Specifically we test the relationship between broad-scale marine landscapes and the structure of their benthic faunal communities. We focussed our work at the sub-Antarctic island of South Georgia, site of one of the largest MPAs in the world. We demonstrate a statistically significant relationship between environmentally derived landscape mapping clusters, and the composition of presence-only species data from the region. To demonstrate this relationship required specific re-sampling of historical species occurrence data to balance biological rarity, biological cosmopolitism, range-restricted sampling and fine-scale heterogeneity between sampling stations. The relationship reveals a distinct biological signature in the faunal composition of individual landscapes, attributing ecological relevance to South Georgia's environmentally derived marine landscape map. We argue therefore, that landscape mapping represents an effective framework for ensuring representative protection of habitats in management plans. Such scientific underpinning of marine spatial planning is critical in balancing the needs of multiple stakeholders whilst maximising conservation payoff. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Mark J; Efroymson, Rebecca Ann; Adams, Marshall

    The long-term ecological recovery of an impaired stream in response to an industrial facility's pollution abatement actions and the implications of the biological monitoring effort to environmental management is the subject of this special issue of Environmental Management. This final article focuses on the synthesis of the biological monitoring program's components and methods, the efficacy of various biological monitoring techniques to environmental management, and the lessons learned from the program that might be applicable to the design and application of other programs. The focus of the 25-year program has been on East Fork Poplar Creek, an ecologically impaired stream inmore » Oak Ridge, Tennessee with varied and complex stressors from a Department of Energy facility in its headwaters. Major components of the long-term program included testing and monitoring of invertebrate and fish toxicity, bioindicators of fish health, fish contaminant accumulation, and instream communities (including periphyton, benthic macroinvertebrate, and fish). Key parallel components of the program include water chemistry sampling and data management. Multiple lines of evidence suggested positive ecological responses during three major pollution abatement periods. Based on this case study and the related literature, effective environmental management of impaired streams starts with program design that is consistent across space and time, but also adaptable to changing conditions. The biological monitoring approaches used for the program provided a strong basis for assessments of recovery from remedial actions, and the likely causes of impairment. This case study provides a unique application of multidisciplinary and quantitative techniques to address multiple and complex regulatory and programmatic goals, environmental stressors, and remedial actions.« less

  19. Increased Depth and Breadth of Plasma Protein Quantitation via Two-Dimensional Liquid Chromatography/Multiple Reaction Monitoring-Mass Spectrometry with Labeled Peptide Standards.

    PubMed

    Percy, Andrew J; Yang, Juncong; Chambers, Andrew G; Borchers, Christoph H

    2016-01-01

    Absolute quantitative strategies are emerging as a powerful and preferable means of deriving concentrations in biological samples for systems biology applications. Method development is driven by the need to establish new-and validate current-protein biomarkers of high-to-low abundance for clinical utility. In this chapter, we describe a methodology involving two-dimensional (2D) reversed-phase liquid chromatography (RPLC), operated under alkaline and acidic pH conditions, combined with multiple reaction monitoring (MRM)-mass spectrometry (MS) (also called selected reaction monitoring (SRM)-MS) and a complex mixture of stable isotope-labeled standard (SIS) peptides, to quantify a broad and diverse panel of 253 proteins in human blood plasma. The quantitation range spans 8 orders of magnitude-from 15 mg/mL (for vitamin D-binding protein) to 450 pg/mL (for protein S100-B)-and includes 31 low-abundance proteins (defined as being <10 ng/mL) of potential disease relevance. The method is designed to assess candidates at the discovery and/or verification phases of the biomarker pipeline and can be adapted to examine smaller or alternate panels of proteins for higher sample throughput. Also detailed here is the application of our recently developed software tool-Qualis-SIS-for protein quantitation (via regression analysis of standard curves) and quality assessment of the resulting data. Overall, this chapter provides the blueprint for the replication of this quantitative proteomic method by proteomic scientists of all skill levels.

  20. Examining the Effect of Multiple Writing Tasks on Year 10 Biology Students' Understandings of Cell and Molecular Biology Concepts

    ERIC Educational Resources Information Center

    Hand, Brian; Hohenshell, Liesl; Prain, Vaughan

    2007-01-01

    This paper reports on a study that examined the cumulative effects on students' learning of science, and perceptions of the role of writing in learning, when the students engaged in multiple writing tasks with planning strategy support. The study was conducted with Year 10 biology students who completed two consecutive units on Cells and Molecular…

  1. Bayesian approach to MSD-based analysis of particle motion in live cells.

    PubMed

    Monnier, Nilah; Guo, Syuan-Ming; Mori, Masashi; He, Jun; Lénárt, Péter; Bathe, Mark

    2012-08-08

    Quantitative tracking of particle motion using live-cell imaging is a powerful approach to understanding the mechanism of transport of biological molecules, organelles, and cells. However, inferring complex stochastic motion models from single-particle trajectories in an objective manner is nontrivial due to noise from sampling limitations and biological heterogeneity. Here, we present a systematic Bayesian approach to multiple-hypothesis testing of a general set of competing motion models based on particle mean-square displacements that automatically classifies particle motion, properly accounting for sampling limitations and correlated noise while appropriately penalizing model complexity according to Occam's Razor to avoid over-fitting. We test the procedure rigorously using simulated trajectories for which the underlying physical process is known, demonstrating that it chooses the simplest physical model that explains the observed data. Further, we show that computed model probabilities provide a reliability test for the downstream biological interpretation of associated parameter values. We subsequently illustrate the broad utility of the approach by applying it to disparate biological systems including experimental particle trajectories from chromosomes, kinetochores, and membrane receptors undergoing a variety of complex motions. This automated and objective Bayesian framework easily scales to large numbers of particle trajectories, making it ideal for classifying the complex motion of large numbers of single molecules and cells from high-throughput screens, as well as single-cell-, tissue-, and organism-level studies. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Estimating replicate time shifts using Gaussian process regression

    PubMed Central

    Liu, Qiang; Andersen, Bogi; Smyth, Padhraic; Ihler, Alexander

    2010-01-01

    Motivation: Time-course gene expression datasets provide important insights into dynamic aspects of biological processes, such as circadian rhythms, cell cycle and organ development. In a typical microarray time-course experiment, measurements are obtained at each time point from multiple replicate samples. Accurately recovering the gene expression patterns from experimental observations is made challenging by both measurement noise and variation among replicates' rates of development. Prior work on this topic has focused on inference of expression patterns assuming that the replicate times are synchronized. We develop a statistical approach that simultaneously infers both (i) the underlying (hidden) expression profile for each gene, as well as (ii) the biological time for each individual replicate. Our approach is based on Gaussian process regression (GPR) combined with a probabilistic model that accounts for uncertainty about the biological development time of each replicate. Results: We apply GPR with uncertain measurement times to a microarray dataset of mRNA expression for the hair-growth cycle in mouse back skin, predicting both profile shapes and biological times for each replicate. The predicted time shifts show high consistency with independently obtained morphological estimates of relative development. We also show that the method systematically reduces prediction error on out-of-sample data, significantly reducing the mean squared error in a cross-validation study. Availability: Matlab code for GPR with uncertain time shifts is available at http://sli.ics.uci.edu/Code/GPRTimeshift/ Contact: ihler@ics.uci.edu PMID:20147305

  3. Preliminary biological sampling of GT3 and BT1 cores and the microbial community dynamics of existing subsurface wells

    NASA Astrophysics Data System (ADS)

    Kraus, E. A.; Stamps, B. W.; Rempfert, K. R.; Ellison, E. T.; Nothaft, D. B.; Boyd, E. S.; Templeton, A. S.; Spear, J. R.

    2017-12-01

    Subsurface microbial life is poorly understood but potentially very important to the search for life on other planets as well as increasing our understanding of Earth's geobiological processes. Fluids and rocks of actively serpentinizing subsurface environments are a recent target of biological study due to their apparent ubiquity across the solar system. Areas of serpentinization can contain high concentrations of molecular hydrogen, H2, that can serve as the dominant fuel source for subsurface microbiota. Working with the Oman Drilling Project, DNA and RNA were extracted from fluids of seven alkaline wells and two rock cores from drill sites GT3 and BT1 within the Samail ophiolite. DNA and cDNA (produced via reverse transcription from the recovered RNA) were sequenced using universal primers to identify microbial life across all three domains. Alkaline subsurface fluids support a microbial community that changes with pH and host-rock type. In peridotite with pH values of >11, wells NSHQ 14 and WAB 71 have high relative abundances of Meiothermus, Methanobacterium, the family Nitrospiraceae, and multiple types of the class Dehalococcoidia. While also hosted in peridotite but at pH 8.5, wells WAB 104 and 105 have a distinct, more diverse microbial community. This increased variance in community make-up is seen in wells that sit near/at the contact of gabbro and peridotite formations as well. Core results indicate both sampled rock types host a very low biomass environment subject to multiple sources of contamination during the drilling process. Suggestions for contaminant reduction, such as having core handlers wear nitrile gloves and flame-sterilizing the outer surfaces of core rounds for biological sampling, would have minimal impact to overall ODP coreflow and maximize the ability to better understand in situ microbiota in this low-biomass serpentinizing subsurface environment. While DNA extraction was successful with gram amounts of crushed rock, much can be done to improve yields and reduce contamination sources for Phase II drilling.

  4. Gene Expression Measurement Module (GEMM) - A Fully Automated, Miniaturized Instrument for Measuring Gene Expression in Space

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Peyvan, Kia; Karouia, Fathi; Ricco, Antonio

    2012-01-01

    The capability to measure gene expression on board spacecraft opens the door to a large number of high-value experiments on the influence of the space environment on biological systems. For example, measurements of gene expression will help us to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment on a wide range of organisms from microbes to humans, develop effective countermeasures against these effects, and determine the metabolic bases of microbial pathogenicity and drug resistance. These and other applications hold significant potential for discoveries in space biology, biotechnology, and medicine. Supported by funding from the NASA Astrobiology Science and Technology Instrument Development Program, we are developing a fully automated, miniaturized, integrated fluidic system for small spacecraft capable of in-situ measurement of expression of several hundreds of microbial genes from multiple samples. The instrument will be capable of (1) lysing cell walls of bacteria sampled from cultures grown in space, (2) extracting and purifying RNA released from cells, (3) hybridizing the RNA on a microarray and (4) providing readout of the microarray signal, all in a single microfluidics cartridge. The device is suitable for deployment on nanosatellite platforms developed by NASA Ames' Small Spacecraft Division. To meet space and other technical constraints imposed by these platforms, a number of technical innovations are being implemented. The integration and end-to-end technological and biological validation of the instrument are carried out using as a model the photosynthetic bacterium Synechococcus elongatus, known for its remarkable metabolic diversity and resilience to adverse conditions. Each step in the measurement process-lysis, nucleic acid extraction, purification, and hybridization to an array-is assessed through comparison of the results obtained using the instrument with those from standard laboratory protocols. Once developed, the system can be used with minor modifications for multiple experiments on different platforms in space, including extension to higher organisms and microbial monitoring. A proposed version of GEMM that is capable of handling both microbial and tissue samples on the International Space Station will be briefly summarized.

  5. Rapid, low dose X-ray diffractive imaging of the malaria parasite Plasmodium falciparum.

    PubMed

    Jones, Michael W M; Dearnley, Megan K; van Riessen, Grant A; Abbey, Brian; Putkunz, Corey T; Junker, Mark D; Vine, David J; McNulty, Ian; Nugent, Keith A; Peele, Andrew G; Tilley, Leann

    2014-08-01

    Phase-diverse X-ray coherent diffractive imaging (CDI) provides a route to high sensitivity and spatial resolution with moderate radiation dose. It also provides a robust solution to the well-known phase-problem, making on-line image reconstruction feasible. Here we apply phase-diverse CDI to a cellular sample, obtaining images of an erythrocyte infected by the sexual stage of the malaria parasite, Plasmodium falciparum, with a radiation dose significantly lower than the lowest dose previously reported for cellular imaging using CDI. The high sensitivity and resolution allow key biological features to be identified within intact cells, providing complementary information to optical and electron microscopy. This high throughput method could be used for fast tomographic imaging, or to generate multiple replicates in two-dimensions of hydrated biological systems without freezing or fixing. This work demonstrates that phase-diverse CDI is a valuable complementary imaging method for the biological sciences and ready for immediate application. © 2013 Elsevier B.V. All rights reserved.

  6. Methods for Investigating Mercury Speciation, Transport, Methylation, and Bioaccumulation in Watersheds Affected by Historical Mining

    NASA Astrophysics Data System (ADS)

    Alpers, C. N.; Marvin-DiPasquale, M. C.; Fleck, J.; Ackerman, J. T.; Eagles-Smith, C.; Stewart, A. R.; Windham-Myers, L.

    2016-12-01

    Many watersheds in the western U.S. have mercury (Hg) contamination from historical mining of Hg and precious metals (gold and silver), which were concentrated using Hg amalgamation (mid 1800's to early 1900's). Today, specialized sampling and analytical protocols for characterizing Hg and methylmercury (MeHg) in water, sediment, and biota generate high-quality data to inform management of land, water, and biological resources. Collection of vertically and horizontally integrated water samples in flowing streams and use of a Teflon churn splitter or cone splitter ensure that samples and subsamples are representative. Both dissolved and particulate components of Hg species in water are quantified because each responds to different hydrobiogeochemical processes. Suspended particles trapped on pre-combusted (Hg-free) glass- or quartz-fiber filters are analyzed for total mercury (THg), MeHg, and reactive divalent mercury. Filtrates are analyzed for THg and MeHg to approximate the dissolved fraction. The sum of concentrations in particulate and filtrate fractions represents whole water, equivalent to an unfiltered sample. This approach improves upon analysis of filtered and unfiltered samples and computation of particulate concentration by difference; volume filtered is adjusted based on suspended-sediment concentration to minimize particulate non-detects. Information from bed-sediment sampling is enhanced by sieving into multiple size fractions and determining detailed grain-size distribution. Wet sieving ensures particle disaggregation; sieve water is retained and fines are recovered by centrifugation. Speciation analysis by sequential extraction and examination of heavy mineral concentrates by scanning electron microscopy provide additional information regarding Hg mineralogy and geochemistry. Biomagnification of MeHg in food webs is tracked using phytoplankton, zooplankton, aquatic and emergent vegetation, invertebrates, fish, and birds. Analysis of zooplankton in multiple size fractions from multiple depths in reservoirs can provide insight into food-web dynamics. The presentation will highlight application of these methods in several Hg-contaminated watersheds, with emphasis on understanding seasonal variability in designing effective sampling strategies.

  7. FISH-in-CHIPS: A Microfluidic Platform for Molecular Typing of Cancer Cells.

    PubMed

    Perez-Toralla, Karla; Mottet, Guillaume; Tulukcuoglu-Guneri, Ezgi; Champ, Jérôme; Bidard, François-Clément; Pierga, Jean-Yves; Klijanienko, Jerzy; Draskovic, Irena; Malaquin, Laurent; Viovy, Jean-Louis; Descroix, Stéphanie

    2017-01-01

    Microfluidics offer powerful tools for the control, manipulation, and analysis of cells, in particular for the assessment of cell malignancy or the study of cell subpopulations. However, implementing complex biological protocols on chip remains a challenge. Sample preparation is often performed off chip using multiple manually performed steps, and protocols usually include different dehydration and drying steps that are not always compatible with a microfluidic format.Here, we report the implementation of a Fluorescence in situ Hybridization (FISH) protocol for the molecular typing of cancer cells in a simple and low-cost device. The geometry of the chip allows integrating the sample preparation steps to efficiently assess the genomic content of individual cells using a minute amount of sample. The FISH protocol can be fully automated, thus enabling its use in routine clinical practice.

  8. Comparative study of classification algorithms for immunosignaturing data

    PubMed Central

    2012-01-01

    Background High-throughput technologies such as DNA, RNA, protein, antibody and peptide microarrays are often used to examine differences across drug treatments, diseases, transgenic animals, and others. Typically one trains a classification system by gathering large amounts of probe-level data, selecting informative features, and classifies test samples using a small number of features. As new microarrays are invented, classification systems that worked well for other array types may not be ideal. Expression microarrays, arguably one of the most prevalent array types, have been used for years to help develop classification algorithms. Many biological assumptions are built into classifiers that were designed for these types of data. One of the more problematic is the assumption of independence, both at the probe level and again at the biological level. Probes for RNA transcripts are designed to bind single transcripts. At the biological level, many genes have dependencies across transcriptional pathways where co-regulation of transcriptional units may make many genes appear as being completely dependent. Thus, algorithms that perform well for gene expression data may not be suitable when other technologies with different binding characteristics exist. The immunosignaturing microarray is based on complex mixtures of antibodies binding to arrays of random sequence peptides. It relies on many-to-many binding of antibodies to the random sequence peptides. Each peptide can bind multiple antibodies and each antibody can bind multiple peptides. This technology has been shown to be highly reproducible and appears promising for diagnosing a variety of disease states. However, it is not clear what is the optimal classification algorithm for analyzing this new type of data. Results We characterized several classification algorithms to analyze immunosignaturing data. We selected several datasets that range from easy to difficult to classify, from simple monoclonal binding to complex binding patterns in asthma patients. We then classified the biological samples using 17 different classification algorithms. Using a wide variety of assessment criteria, we found ‘Naïve Bayes’ far more useful than other widely used methods due to its simplicity, robustness, speed and accuracy. Conclusions ‘Naïve Bayes’ algorithm appears to accommodate the complex patterns hidden within multilayered immunosignaturing microarray data due to its fundamental mathematical properties. PMID:22720696

  9. A dynamic programming approach for the alignment of signal peaks in multiple gas chromatography-mass spectrometry experiments.

    PubMed

    Robinson, Mark D; De Souza, David P; Keen, Woon Wai; Saunders, Eleanor C; McConville, Malcolm J; Speed, Terence P; Likić, Vladimir A

    2007-10-29

    Gas chromatography-mass spectrometry (GC-MS) is a robust platform for the profiling of certain classes of small molecules in biological samples. When multiple samples are profiled, including replicates of the same sample and/or different sample states, one needs to account for retention time drifts between experiments. This can be achieved either by the alignment of chromatographic profiles prior to peak detection, or by matching signal peaks after they have been extracted from chromatogram data matrices. Automated retention time correction is particularly important in non-targeted profiling studies. A new approach for matching signal peaks based on dynamic programming is presented. The proposed approach relies on both peak retention times and mass spectra. The alignment of more than two peak lists involves three steps: (1) all possible pairs of peak lists are aligned, and similarity of each pair of peak lists is estimated; (2) the guide tree is built based on the similarity between the peak lists; (3) peak lists are progressively aligned starting with the two most similar peak lists, following the guide tree until all peak lists are exhausted. When two or more experiments are performed on different sample states and each consisting of multiple replicates, peak lists within each set of replicate experiments are aligned first (within-state alignment), and subsequently the resulting alignments are aligned themselves (between-state alignment). When more than two sets of replicate experiments are present, the between-state alignment also employs the guide tree. We demonstrate the usefulness of this approach on GC-MS metabolic profiling experiments acquired on wild-type and mutant Leishmania mexicana parasites. We propose a progressive method to match signal peaks across multiple GC-MS experiments based on dynamic programming. A sensitive peak similarity function is proposed to balance peak retention time and peak mass spectra similarities. This approach can produce the optimal alignment between an arbitrary number of peak lists, and models explicitly within-state and between-state peak alignment. The accuracy of the proposed method was close to the accuracy of manually-curated peak matching, which required tens of man-hours for the analyzed data sets. The proposed approach may offer significant advantages for processing of high-throughput metabolomics data, especially when large numbers of experimental replicates and multiple sample states are analyzed.

  10. Hyperspectral microscopic imaging by multiplex coherent anti-Stokes Raman scattering (CARS)

    NASA Astrophysics Data System (ADS)

    Khmaladze, Alexander; Jasensky, Joshua; Zhang, Chi; Han, Xiaofeng; Ding, Jun; Seeley, Emily; Liu, Xinran; Smith, Gary D.; Chen, Zhan

    2011-10-01

    Coherent anti-Stokes Raman scattering (CARS) microscopy is a powerful technique to image the chemical composition of complex samples in biophysics, biology and materials science. CARS is a four-wave mixing process. The application of a spectrally narrow pump beam and a spectrally wide Stokes beam excites multiple Raman transitions, which are probed by a probe beam. This generates a coherent directional CARS signal with several orders of magnitude higher intensity relative to spontaneous Raman scattering. Recent advances in the development of ultrafast lasers, as well as photonic crystal fibers (PCF), enable multiplex CARS. In this study, we employed two scanning imaging methods. In one, the detection is performed by a photo-multiplier tube (PMT) attached to the spectrometer. The acquisition of a series of images, while tuning the wavelengths between images, allows for subsequent reconstruction of spectra at each image point. The second method detects CARS spectrum in each point by a cooled coupled charged detector (CCD) camera. Coupled with point-by-point scanning, it allows for a hyperspectral microscopic imaging. We applied this CARS imaging system to study biological samples such as oocytes.

  11. Metabolic profile of esculin in rats by ultra high performance liquid chromatography combined with Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Wang, Yinan; Zhao, Min; Ou, Yingfu; Zeng, Bowen; Lou, Xinyu; Wang, Miao; Zhao, Chunjie

    2016-05-01

    Esculin, a coumarin derivative found in Fraxinus rhynchophylla, has been reported to possess multiple biological activities. This present study is designed to investigate the metabolic profile of esculin in vivo based on ultra high performance liquid chromatography coupled to Fourier transform ion cyclotron resonance mass spectrometry (UHPLC-FT-ICR-MS) for the first time. After oral administration of esculin (100 mg/kg) for rats, plasma, urine, feces and bile samples were collected to screen metabolites. As a result, a total of 19 metabolites (10 phase I metabolites and 9 phase II metabolites) were found and identified. Results showed that metabolic pathways of esculin included hydrolysis, dehydrogenation, hydroxylation, methylation, dehydrogenation, glucuronidation, sulfation, and glycine conjugation. It was also found that after oral administration of esculin, the esculin could be metabolized to esculetin in vivo via deglycosylation, and esculetin was found in all biological samples. This study also laid solid basis for in-depth development of esculin and provided important information for clarifying the biotransformation process of esculin in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Family structure, victimization, and child mental health in a nationally representative sample.

    PubMed

    Turner, Heather A; Finkelhor, David; Hamby, Sherry L; Shattuck, Anne

    2013-06-01

    Utilizing the 2008 National Survey of Children's Exposure to Violence (NatSCEV), the current study compares past year rates of 7 forms of child victimization (maltreatment, assault, peer victimization, property crime, witnessing family violence and exposure to community violence) across 3 different family structure types (two biological/adoptive parents, single parent, step/cohabiting family) among a representative sample of 4046 U.S. children ages 2-17. The study also considers whether certain social-contextual risk factors help to explain family structure variations in victimization, and the extent to which victimization exposure accounts for family structure differences in distress symptom levels. Findings showed significantly elevated rates of almost all types of victimization among children in both nontraditional family types, relative to those living with two biological/adoptive parents. Factors associated with increased victimization risk in these families include high parental conflict, drug or alcohol problems, family adversity, and community disorder. A summary measure of children's exposure to multiple forms of victimization was the strongest predictor of distress symptoms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Laser-induced Breakdown Spectroscopy: A New Approach for Nanoparticle's Mapping and Quantification in Organ Tissue

    PubMed Central

    Sancey, Lucie; Motto-Ros, Vincent; Kotb, Shady; Wang, Xiaochun; Lux, François; Panczer, Gérard; Yu, Jin; Tillement, Olivier

    2014-01-01

    Emission spectroscopy of laser-induced plasma was applied to elemental analysis of biological samples. Laser-induced breakdown spectroscopy (LIBS) performed on thin sections of rodent tissues: kidneys and tumor, allows the detection of inorganic elements such as (i) Na, Ca, Cu, Mg, P, and Fe, naturally present in the body and (ii) Si and Gd, detected after the injection of gadolinium-based nanoparticles. The animals were euthanized 1 to 24 hr after intravenous injection of particles. A two-dimensional scan of the sample, performed using a motorized micrometric 3D-stage, allowed the infrared laser beam exploring the surface with a lateral resolution less than 100 μm. Quantitative chemical images of Gd element inside the organ were obtained with sub-mM sensitivity. LIBS offers a simple and robust method to study the distribution of inorganic materials without any specific labeling. Moreover, the compatibility of the setup with standard optical microscopy emphasizes its potential to provide multiple images of the same biological tissue with different types of response: elemental, molecular, or cellular. PMID:24962015

  14. Quantum Cascade Lasers-Based Detection of Nitric Oxide.

    PubMed

    Montilla-Bascón, Gracia; Mandon, Julien; Harren, Frans J M; Mur, Luis A J; Cristescu, Simona M; Prats, Elena

    2018-01-01

    Despite the established importance of nitric oxide (NO) in many physiological and molecular processes in plants, most methods for quantifying NO are open to criticism This reflects the differing methods either lacking specificity or sensitivity, or even from an undue dependence of results on experimental conditions (i.e., chemical concentrations, pH, etc.). In this chapter we describe a protocol to measure gaseous NO produced by a biological sample using quantum cascade laser (QCL)-based spectroscopy. This technique is based on absorption of the laser light by the NO molecules which have been passed from a biological sample into an optical s cell that is equipped with two mirrors placed at both ends. This design greatly increases the interaction path length with the NO molecules due to multiple reflections of the light coupled inside the cell. Thus, the method is able to provide online, in planta measurements of the dynamics of NO production, being highly selective and sensitive (down to ppbv levels;1 ppbv = part per billion by volume mixing ratio = 1:10 -9 ).

  15. A novel approach to quantifying the spatiotemporal behavior of instrumented grey seals used to sample the environment.

    PubMed

    Baker, Laurie L; Mills Flemming, Joanna E; Jonsen, Ian D; Lidgard, Damian C; Iverson, Sara J; Bowen, W Don

    2015-01-01

    Paired with satellite location telemetry, animal-borne instruments can collect spatiotemporal data describing the animal's movement and environment at a scale relevant to its behavior. Ecologists have developed methods for identifying the area(s) used by an animal (e.g., home range) and those used most intensely (utilization distribution) based on location data. However, few have extended these models beyond their traditional roles as descriptive 2D summaries of point data. Here we demonstrate how the home range method, T-LoCoH, can be expanded to quantify collective sampling coverage by multiple instrumented animals using grey seals (Halichoerus grypus) equipped with GPS tags and acoustic transceivers on the Scotian Shelf (Atlantic Canada) as a case study. At the individual level, we illustrate how time and space-use metrics quantifying individual sampling coverage may be used to determine the rate of acoustic transmissions received. Grey seals collectively sampled an area of 11,308 km (2) and intensely sampled an area of 31 km (2) from June-December. The largest area sampled was in July (2094.56 km (2)) and the smallest area sampled occurred in August (1259.80 km (2)), with changes in sampling coverage observed through time. T-LoCoH provides an effective means to quantify changes in collective sampling effort by multiple instrumented animals and to compare these changes across time. We also illustrate how time and space-use metrics of individual instrumented seal movement calculated using T-LoCoH can be used to account for differences in the amount of time a bioprobe (biological sampling platform) spends in an area.

  16. Plant-RRBS, a bisulfite and next-generation sequencing-based methylome profiling method enriching for coverage of cytosine positions.

    PubMed

    Schmidt, Martin; Van Bel, Michiel; Woloszynska, Magdalena; Slabbinck, Bram; Martens, Cindy; De Block, Marc; Coppens, Frederik; Van Lijsebettens, Mieke

    2017-07-06

    Cytosine methylation in plant genomes is important for the regulation of gene transcription and transposon activity. Genome-wide methylomes are studied upon mutation of the DNA methyltransferases, adaptation to environmental stresses or during development. However, from basic biology to breeding programs, there is a need to monitor multiple samples to determine transgenerational methylation inheritance or differential cytosine methylation. Methylome data obtained by sodium hydrogen sulfite (bisulfite)-conversion and next-generation sequencing (NGS) provide genome-wide information on cytosine methylation. However, a profiling method that detects cytosine methylation state dispersed over the genome would allow high-throughput analysis of multiple plant samples with distinct epigenetic signatures. We use specific restriction endonucleases to enrich for cytosine coverage in a bisulfite and NGS-based profiling method, which was compared to whole-genome bisulfite sequencing of the same plant material. We established an effective methylome profiling method in plants, termed plant-reduced representation bisulfite sequencing (plant-RRBS), using optimized double restriction endonuclease digestion, fragment end repair, adapter ligation, followed by bisulfite conversion, PCR amplification and NGS. We report a performant laboratory protocol and a straightforward bioinformatics data analysis pipeline for plant-RRBS, applicable for any reference-sequenced plant species. As a proof of concept, methylome profiling was performed using an Oryza sativa ssp. indica pure breeding line and a derived epigenetically altered line (epiline). Plant-RRBS detects methylation levels at tens of millions of cytosine positions deduced from bisulfite conversion in multiple samples. To evaluate the method, the coverage of cytosine positions, the intra-line similarity and the differential cytosine methylation levels between the pure breeding line and the epiline were determined. Plant-RRBS reproducibly covers commonly up to one fourth of the cytosine positions in the rice genome when using MspI-DpnII within a group of five biological replicates of a line. The method predominantly detects cytosine methylation in putative promoter regions and not-annotated regions in rice. Plant-RRBS offers high-throughput and broad, genome-dispersed methylation detection by effective read number generation obtained from reproducibly covered genome fractions using optimized endonuclease combinations, facilitating comparative analyses of multi-sample studies for cytosine methylation and transgenerational stability in experimental material and plant breeding populations.

  17. MStern Blotting-High Throughput Polyvinylidene Fluoride (PVDF) Membrane-Based Proteomic Sample Preparation for 96-Well Plates.

    PubMed

    Berger, Sebastian T; Ahmed, Saima; Muntel, Jan; Cuevas Polo, Nerea; Bachur, Richard; Kentsis, Alex; Steen, Judith; Steen, Hanno

    2015-10-01

    We describe a 96-well plate compatible membrane-based proteomic sample processing method, which enables the complete processing of 96 samples (or multiples thereof) within a single workday. This method uses a large-pore hydrophobic PVDF membrane that efficiently adsorbs proteins, resulting in fast liquid transfer through the membrane and significantly reduced sample processing times. Low liquid transfer speeds have prevented the useful 96-well plate implementation of FASP as a widely used membrane-based proteomic sample processing method. We validated our approach on whole-cell lysate and urine and cerebrospinal fluid as clinically relevant body fluids. Without compromising peptide and protein identification, our method uses a vacuum manifold and circumvents the need for digest desalting, making our processing method compatible with standard liquid handling robots. In summary, our new method maintains the strengths of FASP and simultaneously overcomes one of the major limitations of FASP without compromising protein identification and quantification. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. An integrated approach for identifying priority contaminant in ...

    EPA Pesticide Factsheets

    Environmental assessment of complex mixtures typically requires integration of chemical and biological measurements. This study demonstrates the use of a combination of instrumental chemical analyses, effects-based monitoring, and bio-effects prediction approaches to help identify potential hazards and priority contaminants in two Great Lakes Areas of Concern (AOCs), the Lower Green Bay/Fox River located near Green Bay, WI, USA and the Milwaukee River Estuary, located near Milwaukee, WI, USA. Fathead minnows were caged at four sites within each AOC (eight sites total). Following 4 d of in situ exposure, tissues and biofluids were sampled and used for targeted biological effects analyses. Additionally, 4 d composite water samples were collected concurrently at each caged fish site and analyzed for 134 analytes as well as evaluated for total estrogenic and androgenic activity using cell-based bioassays. Of the analytes examined, 75 were detected in composite samples from at least one site. Based on multiple analyses, one site in the East River and another site near a paper mill discharge from lower Green Bay/Fox River AOC, were prioritized due to their estrogenic and androgenic acitvity, respectively. The water samples from other sites generally did not exhibit significant estrogenic or androgenic activity, nor was there evidence for endocrine disruption in the fish exposed at these sites as indicated the the lack of alterations in ex vivo steroid production, c

  19. Improving the accuracy of effect-directed analysis: the role of bioavailability.

    PubMed

    You, Jing; Li, Huizhen

    2017-12-13

    Aquatic ecosystems have been suffering from contamination by multiple stressors. Traditional chemical-based risk assessment usually fails to explain the toxicity contributions from contaminants that are not regularly monitored or that have an unknown identity. Diagnosing the causes of noted adverse outcomes in the environment is of great importance in ecological risk assessment and in this regard effect-directed analysis (EDA) has been designed to fulfill this purpose. The EDA approach is now increasingly used in aquatic risk assessment owing to its specialty in achieving effect-directed nontarget analysis; however, a lack of environmental relevance makes conventional EDA less favorable. In particular, ignoring the bioavailability in EDA may cause a biased and even erroneous identification of causative toxicants in a mixture. Taking bioavailability into consideration is therefore of great importance to improve the accuracy of EDA diagnosis. The present article reviews the current status and applications of EDA practices that incorporate bioavailability. The use of biological samples is the most obvious way to include bioavailability into EDA applications, but its development is limited due to the small sample size and lack of evidence for metabolizable compounds. Bioavailability/bioaccessibility-based extraction (bioaccessibility-directed and partitioning-based extraction) and passive-dosing techniques are recommended to be used to integrate bioavailability into EDA diagnosis in abiotic samples. Lastly, the future perspectives of expanding and standardizing the use of biological samples and bioavailability-based techniques in EDA are discussed.

  20. Single mimivirus particles intercepted and imaged with an X-ray laser

    PubMed Central

    Seibert, M. Marvin; Ekeberg, Tomas; Maia, Filipe R. N. C.; Svenda, Martin; Andreasson, Jakob; Jönsson, Olof; Odić, Duško; Iwan, Bianca; Rocker, Andrea; Westphal, Daniel; Hantke, Max; DePonte, Daniel P.; Barty, Anton; Schulz, Joachim; Gumprecht, Lars; Coppola, Nicola; Aquila, Andrew; Liang, Mengning; White, Thomas A.; Martin, Andrew; Caleman, Carl; Stern, Stephan; Abergel, Chantal; Seltzer, Virginie; Claverie, Jean-Michel; Bostedt, Christoph; Bozek, John D.; Boutet, Sébastien; Miahnahri, A. Alan; Messerschmidt, Marc; Krzywinski, Jacek; Williams, Garth; Hodgson, Keith O.; Bogan, Michael J.; Hampton, Christina Y.; Sierra, Raymond G.; Starodub, Dmitri; Andersson, Inger; Bajt, Saša; Barthelmess, Miriam; Spence, John C. H.; Fromme, Petra; Weierstall, Uwe; Kirian, Richard; Hunter, Mark; Doak, R. Bruce; Marchesini, Stefano; Hau-Riege, Stefan P.; Frank, Matthias; Shoeman, Robert L.; Lomb, Lukas; Epp, Sascha W.; Hartmann, Robert; Rolles, Daniel; Rudenko, Artem; Schmidt, Carlo; Foucar, Lutz; Kimmel, Nils; Holl, Peter; Rudek, Benedikt; Erk, Benjamin; Hömke, André; Reich, Christian; Pietschner, Daniel; Weidenspointner, Georg; Strüder, Lothar; Hauser, Günter; Gorke, Hubert; Ullrich, Joachim; Schlichting, Ilme; Herrmann, Sven; Schaller, Gerhard; Schopper, Florian; Soltau, Heike; Kühnel, Kai-Uwe; Andritschke, Robert; Schröter, Claus-Dieter; Krasniqi, Faton; Bott, Mario; Schorb, Sebastian; Rupp, Daniela; Adolph, Marcus; Gorkhover, Tais; Hirsemann, Helmut; Potdevin, Guillaume; Graafsma, Heinz; Nilsson, Björn; Chapman, Henry N.; Hajdu, Janos

    2014-01-01

    X-ray lasers offer new capabilities in understanding the structure of biological systems, complex materials and matter under extreme conditions1–4. Very short and extremely bright, coherent X-ray pulses can be used to outrun key damage processes and obtain a single diffraction pattern from a large macromolecule, a virus or a cell before the sample explodes and turns into plasma1. The continuous diffraction pattern of non-crystalline objects permits oversampling and direct phase retrieval2. Here we show that high-quality diffraction data can be obtained with a single X-ray pulse from a non-crystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source5. Calculations indicate that the energy deposited into the virus by the pulse heated the particle to over 100,000 K after the pulse had left the sample. The reconstructed exit wavefront (image) yielded 32-nm full-period resolution in a single exposure and showed no measurable damage. The reconstruction indicates inhomogeneous arrangement of dense material inside the virion. We expect that significantly higher resolutions will be achieved in such experiments with shorter and brighter photon pulses focused to a smaller area. The resolution in such experiments can be further extended for samples available in multiple identical copies. PMID:21293374

  1. A nano grating tunable MEMS optical filter for high-speed on-chip multispectral fluorescent detection.

    PubMed

    Truxal, Steven C; Huang, Nien-Tsu; Kurabayashi, Katsuo

    2009-01-01

    We report a microelectromechanical (MEMS) tunable optical filter and its integration in a fluorescence microscope for high speed on-chip spectral measurements. This integration allows for measurements of any fluorescence sample placed onto the microscope stage. We demonstrate the system capabilities by taking spectral measurements of multicolor fluorescent beads and fluorescently labeled cells passing through a microfluidic cytometer. The system has applications in biological studies where the measurement of multiple fluorescent peaks is restricted by the detection method's speed and sensitivity.

  2. A non-invasive test for receptor binding applied to nephrogenic diabetes insipidus.

    PubMed Central

    Britton, K. E.; Tedder, R. S.; Khokhar, A. M.; Brown, N. J.; Davison, A.; Slater, J. D.

    1977-01-01

    Studies in animals have determined the importance of specific receptors to the action of many hormones and drugs. In man, a non-invasive external counting technique has been used and absence of receptor function has been demonstrated in a patient with nephrogenic diabetes insipidus using radioactively labelled arginine vasopressin. This is in contrast to the findings in a patient with pituitary diabetes insipidus and a normal control. These results suggest a model for the study of hormone and drug kinetics in man avoiding multiple samplings of biological fluids. PMID:196275

  3. A Modified Alderman-Grant Coil makes possible an efficient cross-coil probe for high field solid-state NMR of lossy biological samples

    NASA Astrophysics Data System (ADS)

    Grant, Christopher V.; Yang, Yuan; Glibowicka, Mira; Wu, Chin H.; Park, Sang Ho; Deber, Charles M.; Opella, Stanley J.

    2009-11-01

    The design, construction, and performance of a cross-coil double-resonance probe for solid-state NMR experiments on lossy biological samples at high magnetic fields are described. The outer coil is a Modified Alderman-Grant Coil (MAGC) tuned to the 1H frequency. The inner coil consists of a multi-turn solenoid coil that produces a B 1 field orthogonal to that of the outer coil. This results in a compact nested cross-coil pair with the inner solenoid coil tuned to the low frequency detection channel. This design has several advantages over multiple-tuned solenoid coil probes, since RF heating from the 1H channel is substantially reduced, it can be tuned for samples with a wide range of dielectric constants, and the simplified circuit design and high inductance inner coil provides excellent sensitivity. The utility of this probe is demonstrated on two electrically lossy samples of membrane proteins in phospholipid bilayers (bicelles) that are particularly difficult for conventional NMR probes. The 72-residue polypeptide embedding the transmembrane helices 3 and 4 of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) (residues 194-241) requires a high salt concentration in order to be successfully reconstituted in phospholipid bicelles. A second application is to paramagnetic relaxation enhancement applied to the membrane-bound form of Pf1 coat protein in phospholipid bicelles where the resistance to sample heating enables high duty cycle solid-state NMR experiments to be performed.

  4. Agreement in DNA methylation levels from the Illumina 450K array across batches, tissues, and time

    PubMed Central

    Forest, Marie; O'Donnell, Kieran J.; Voisin, Greg; Gaudreau, Helene; MacIsaac, Julia L.; McEwen, Lisa M.; Silveira, Patricia P.; Steiner, Meir; Kobor, Michael S.; Meaney, Michael J.; Greenwood, Celia M.T.

    2018-01-01

    ABSTRACT Epigenome-wide association studies (EWAS) have focused primarily on DNA methylation as a chemically stable and functional epigenetic modification. However, the stability and accuracy of the measurement of methylation in different tissues and extraction types is still being actively studied, and the longitudinal stability of DNA methylation in commonly studied peripheral tissues is of great interest. Here, we used data from two studies, three tissue types, and multiple time points to assess the stability of DNA methylation measured with the Illumina Infinium HumanMethylation450 BeadChip array. Redundancy analysis enabled visual assessment of agreement of replicate samples overall and showed good agreement after removing effects of tissue type, age, and sex. At the probe level, analysis of variance contrasts separating technical and biological replicates clearly showed better agreement between technical replicates versus longitudinal samples, and suggested increased stability for buccal cells versus blood or blood spots. Intraclass correlations (ICCs) demonstrated that inter-individual variability is of similar magnitude to within-sample variability at many probes; however, as inter-individual variability increased, so did ICC. Furthermore, we were able to demonstrate decreasing agreement in methylation levels with time, despite a maximal sampling interval of only 576 days. Finally, at 6 popular candidate genes, there was a large range of stability across probes. Our findings highlight important sources of technical and biological variation in DNA methylation across different tissues over time. These data will help to inform longitudinal sampling strategies of future EWAS. PMID:29381404

  5. Evidence of a Prominent Genetic Basis for Associations between Psychoneurometric Traits and Common Mental Disorders

    PubMed Central

    Venables, Noah C.; Hicks, Brian M.; Yancey, James R.; Kramer, Mark D.; Nelson, Lindsay D.; Strickland, Casey M.; Krueger, Robert F.; Iacono, William G.; Patrick, Christopher J.

    2016-01-01

    Threat sensitivity (THT) and weak inhibitory control (or disinhibition; DIS) are trait constructs that relate to multiple types of psychopathology and can be assessed psychoneurometrically (i.e., using self-report and physiological indicators combined). However, to establish that psychoneurometric assessments of THT and DIS index biologically-based liabilities, it is first important to clarify the etiologic bases of these variables and their associations with clinical problems. The current work addressed this important issue using data from a sample of identical and fraternal adult twins (N = 454). THT was quantified using a scale measure and three physiological indicators of emotional reactivity to visual aversive stimuli. DIS was operationalized using scores on two scale measures combined with two brain indicators from cognitive processing tasks. THT and DIS operationalized in these ways both showed appreciable heritability (.45, .68), and genetic variance in these traits accounted for most of their phenotypic associations with fear, distress, and substance use disorder symptoms. Our findings suggest that, as indices of basic dispositional liabilities for multiple forms of psychopathology with direct links to neurophysiology, psychoneurometric assessments of THT and DIS represent novel and important targets for biologically-oriented research on psychopathology. PMID:27671504

  6. A portable array biosensor for food safety

    NASA Astrophysics Data System (ADS)

    Golden, Joel P.; Ngundi, Miriam M.; Shriver-Lake, Lisa C.; Taitt, Chris R.; Ligler, Frances S.

    2004-11-01

    An array biosensor developed for simultaneous analysis of multiple samples has been utilized to develop assays for toxins and pathogens in a variety of foods. The biochemical component of the multi-analyte biosensor consists of a patterned array of biological recognition elements immobilized on the surface of a planar waveguide. A fluorescence assay is performed on the patterned surface, yielding an array of fluorescent spots, the locations of which are used to identify what analyte is present. Signal transduction is accomplished by means of a diode laser for fluorescence excitation, optical filters and a CCD camera for image capture. A laptop computer controls the miniaturized fluidics system and image capture. Results for four mycotoxin competition assays in buffer and food samples are presented.

  7. QuickNGS elevates Next-Generation Sequencing data analysis to a new level of automation.

    PubMed

    Wagle, Prerana; Nikolić, Miloš; Frommolt, Peter

    2015-07-01

    Next-Generation Sequencing (NGS) has emerged as a widely used tool in molecular biology. While time and cost for the sequencing itself are decreasing, the analysis of the massive amounts of data remains challenging. Since multiple algorithmic approaches for the basic data analysis have been developed, there is now an increasing need to efficiently use these tools to obtain results in reasonable time. We have developed QuickNGS, a new workflow system for laboratories with the need to analyze data from multiple NGS projects at a time. QuickNGS takes advantage of parallel computing resources, a comprehensive back-end database, and a careful selection of previously published algorithmic approaches to build fully automated data analysis workflows. We demonstrate the efficiency of our new software by a comprehensive analysis of 10 RNA-Seq samples which we can finish in only a few minutes of hands-on time. The approach we have taken is suitable to process even much larger numbers of samples and multiple projects at a time. Our approach considerably reduces the barriers that still limit the usability of the powerful NGS technology and finally decreases the time to be spent before proceeding to further downstream analysis and interpretation of the data.

  8. -A curated transcriptomic dataset collection relevant to embryonic development associated with in vitro fertilization in healthy individuals and patients with polycystic ovary syndrome.

    PubMed

    Mackeh, Rafah; Boughorbel, Sabri; Chaussabel, Damien; Kino, Tomoshige

    2017-01-01

    The collection of large-scale datasets available in public repositories is rapidly growing and providing opportunities to identify and fill gaps in different fields of biomedical research. However, users of these datasets should be able to selectively browse datasets related to their field of interest. Here we made available a collection of transcriptome datasets related to human follicular cells from normal individuals or patients with polycystic ovary syndrome, in the process of their development, during in vitro fertilization. After RNA-seq dataset exclusion and careful selection based on study description and sample information, 12 datasets, encompassing a total of 85 unique transcriptome profiles, were identified in NCBI Gene Expression Omnibus and uploaded to the Gene Expression Browser (GXB), a web application specifically designed for interactive query and visualization of integrated large-scale data. Once annotated in GXB, multiple sample grouping has been made in order to create rank lists to allow easy data interpretation and comparison. The GXB tool also allows the users to browse a single gene across multiple projects to evaluate its expression profiles in multiple biological systems/conditions in a web-based customized graphical views. The curated dataset is accessible at the following link: http://ivf.gxbsidra.org/dm3/landing.gsp.

  9. ­A curated transcriptomic dataset collection relevant to embryonic development associated with in vitro fertilization in healthy individuals and patients with polycystic ovary syndrome

    PubMed Central

    Mackeh, Rafah; Boughorbel, Sabri; Chaussabel, Damien; Kino, Tomoshige

    2017-01-01

    The collection of large-scale datasets available in public repositories is rapidly growing and providing opportunities to identify and fill gaps in different fields of biomedical research. However, users of these datasets should be able to selectively browse datasets related to their field of interest. Here we made available a collection of transcriptome datasets related to human follicular cells from normal individuals or patients with polycystic ovary syndrome, in the process of their development, during in vitro fertilization. After RNA-seq dataset exclusion and careful selection based on study description and sample information, 12 datasets, encompassing a total of 85 unique transcriptome profiles, were identified in NCBI Gene Expression Omnibus and uploaded to the Gene Expression Browser (GXB), a web application specifically designed for interactive query and visualization of integrated large-scale data. Once annotated in GXB, multiple sample grouping has been made in order to create rank lists to allow easy data interpretation and comparison. The GXB tool also allows the users to browse a single gene across multiple projects to evaluate its expression profiles in multiple biological systems/conditions in a web-based customized graphical views. The curated dataset is accessible at the following link: http://ivf.gxbsidra.org/dm3/landing.gsp. PMID:28413616

  10. Morphomics: An integral part of systems biology of the human placenta.

    PubMed

    Mayhew, T M

    2015-04-01

    The placenta is a transient organ the functioning of which has health consequences far beyond the embryo/fetus. Understanding the biology of any system (organ, organism, single cell, etc) requires a comprehensive and inclusive approach which embraces all the biomedical disciplines and 'omic' technologies and then integrates information obtained from all of them. Among the latest 'omics' is morphomics. The terms morphome and morphomics have been applied incoherently in biology and biomedicine but, recently, they have been given clear and widescale definitions. Morphomics is placed in the context of other 'omics' and its pertinent technologies and tools for sampling and quantitation are reviewed. Emphasis is accorded to the importance of random sampling principles in systems biology and the value of combining 3D quantification with alternative imaging techniques to advance knowledge and understanding of the human placental morphome. By analogy to other 'omes', the morphome is the totality of morphological features within a system and morphomics is the systematic study of those structures. Information about structure is required at multiple levels of resolution in order to understand better the processes by which a given system alters with time, experimental treatment or environmental insult. Therefore, morphomics research includes all imaging techniques at all levels of achievable resolution from gross anatomy and medical imaging, via optical and electron microscopy, to molecular characterisation. Quantification is an important element of all 'omics' studies and, because biological systems exist and operate in 3-dimensional (3D) space, precise descriptions of form, content and spatial relationships require the quantification of structure in 3D. These considerations are relevant to future study contributions to the Human Placenta Project. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. xMSanalyzer: automated pipeline for improved feature detection and downstream analysis of large-scale, non-targeted metabolomics data.

    PubMed

    Uppal, Karan; Soltow, Quinlyn A; Strobel, Frederick H; Pittard, W Stephen; Gernert, Kim M; Yu, Tianwei; Jones, Dean P

    2013-01-16

    Detection of low abundance metabolites is important for de novo mapping of metabolic pathways related to diet, microbiome or environmental exposures. Multiple algorithms are available to extract m/z features from liquid chromatography-mass spectral data in a conservative manner, which tends to preclude detection of low abundance chemicals and chemicals found in small subsets of samples. The present study provides software to enhance such algorithms for feature detection, quality assessment, and annotation. xMSanalyzer is a set of utilities for automated processing of metabolomics data. The utilites can be classified into four main modules to: 1) improve feature detection for replicate analyses by systematic re-extraction with multiple parameter settings and data merger to optimize the balance between sensitivity and reliability, 2) evaluate sample quality and feature consistency, 3) detect feature overlap between datasets, and 4) characterize high-resolution m/z matches to small molecule metabolites and biological pathways using multiple chemical databases. The package was tested with plasma samples and shown to more than double the number of features extracted while improving quantitative reliability of detection. MS/MS analysis of a random subset of peaks that were exclusively detected using xMSanalyzer confirmed that the optimization scheme improves detection of real metabolites. xMSanalyzer is a package of utilities for data extraction, quality control assessment, detection of overlapping and unique metabolites in multiple datasets, and batch annotation of metabolites. The program was designed to integrate with existing packages such as apLCMS and XCMS, but the framework can also be used to enhance data extraction for other LC/MS data software.

  12. Is it ethical to prevent secondary use of stored biological samples and data derived from consenting research participants? The case of Malawi.

    PubMed

    Mungwira, Randy G; Nyangulu, Wongani; Misiri, James; Iphani, Steven; Ng'ong'ola, Ruby; Chirambo, Chawanangwa M; Masiye, Francis; Mfutso-Bengo, Joseph

    2015-12-02

    This paper discusses the contentious issue of reuse of stored biological samples and data obtained from research participants in past clinical research to answer future ethical and scientifically valid research questions. Many countries have regulations and guidelines that guide the use and exportation of stored biological samples and data. However, there are variations in regulations and guidelines governing the reuse of stored biological samples and data in Sub-Saharan Africa including Malawi. The current research ethics regulations and guidelines in Malawi do not allow indefinite storage and reuse of biological samples and data for future unspecified research. This comes even though the country has managed to answer pertinent research questions using stored biological samples and data. We acknowledge the limited technical expertise and equipment unavailable in Malawi that necessitates exportation of biological samples and data and the genuine concern raised by the regulatory authorities about the possible exploitation of biological samples and data by researchers. We also acknowledge that Malawi does not have bio-banks for storing biological samples and data for future research purposes. This creates room for possible exploitation of biological samples and data collected from research participants in primary research projects in Malawi. However, research ethics committees require completion and approval of material transfer agreements and data transfer agreements for biological samples and data collected for research purposes respectively and this requirement may partly address the concern raised by the regulatory authorities. Our concern though is that there is no such requirement for biological samples and data collected from patients for clinical or diagnostic purposes. In conclusion, we propose developing a medical data and material transfer agreement for biological samples and data collected from patients for clinical or diagnostic purposes in both public and private health facilities that may end up in research centers outside Malawi. We also propose revision of the current research ethics regulations and guidelines in Malawi in order to allow secondary use of biological samples and data collected from primary research projects as a way of maximizing the use of collected samples and data. Finally, we call for consultation of all stakeholders within the Malawi research community when regulatory authorities are developing policies that govern research in Malawi.

  13. The cost of large numbers of hypothesis tests on power, effect size and sample size.

    PubMed

    Lazzeroni, L C; Ray, A

    2012-01-01

    Advances in high-throughput biology and computer science are driving an exponential increase in the number of hypothesis tests in genomics and other scientific disciplines. Studies using current genotyping platforms frequently include a million or more tests. In addition to the monetary cost, this increase imposes a statistical cost owing to the multiple testing corrections needed to avoid large numbers of false-positive results. To safeguard against the resulting loss of power, some have suggested sample sizes on the order of tens of thousands that can be impractical for many diseases or may lower the quality of phenotypic measurements. This study examines the relationship between the number of tests on the one hand and power, detectable effect size or required sample size on the other. We show that once the number of tests is large, power can be maintained at a constant level, with comparatively small increases in the effect size or sample size. For example at the 0.05 significance level, a 13% increase in sample size is needed to maintain 80% power for ten million tests compared with one million tests, whereas a 70% increase in sample size is needed for 10 tests compared with a single test. Relative costs are less when measured by increases in the detectable effect size. We provide an interactive Excel calculator to compute power, effect size or sample size when comparing study designs or genome platforms involving different numbers of hypothesis tests. The results are reassuring in an era of extreme multiple testing.

  14. Phenotypic and genotypic identification of Aeromonas spp. isolated from a chlorinated intermittent water distribution system in Lebanon.

    PubMed

    Tokajian, Sima; Hashwa, Fuad

    2004-06-01

    Aeromonas spp. were detected in samples collected from both untreated groundwater and treated drinking water in Lebanon. Aeromonas spp. levels ranged between 2 and 1,100 colonies per 100 ml in the intake underground well and between 3 and 43 colonies per 100 ml in samples from the distribution system. Samples positive for Aeromonas spp. from the network had a free chlorine level ranging between 0 and 0.4 mg l(-1). Multiple antibiotic-resistance was common among the isolated aeromonads; all were resistant to amoxycillin while 92% showed resistance to cephalexin. Haemolysis on blood agar was detected in 52% of the isolates recovered from the distribution network and 81% of isolates from the untreated underground source. The Biolog microbial identification system assigned identities to all of the isolated presumptive aeromonads (at least at the genus level), which was not the case with the API 20NE strips. Differences at the species level were observed when results from the Biolog system were compared with identification based on the MicroSeq 500 16S rDNA sequence analysis. The presence of Aeromonas spp. in drinking water can be an important threat to public health, thus greater awareness of Aeromonas strains as potential enteropathogens is warranted.

  15. Differential principal component analysis of ChIP-seq.

    PubMed

    Ji, Hongkai; Li, Xia; Wang, Qian-fei; Ning, Yang

    2013-04-23

    We propose differential principal component analysis (dPCA) for analyzing multiple ChIP-sequencing datasets to identify differential protein-DNA interactions between two biological conditions. dPCA integrates unsupervised pattern discovery, dimension reduction, and statistical inference into a single framework. It uses a small number of principal components to summarize concisely the major multiprotein synergistic differential patterns between the two conditions. For each pattern, it detects and prioritizes differential genomic loci by comparing the between-condition differences with the within-condition variation among replicate samples. dPCA provides a unique tool for efficiently analyzing large amounts of ChIP-sequencing data to study dynamic changes of gene regulation across different biological conditions. We demonstrate this approach through analyses of differential chromatin patterns at transcription factor binding sites and promoters as well as allele-specific protein-DNA interactions.

  16. Towards optical brain imaging: getting light through a bone

    NASA Astrophysics Data System (ADS)

    Thompson, J. V.; Hokr, B. H.; Nodurft, D. T.; Yakovlev, V. V.

    2018-06-01

    Optical imaging and detection in biological samples is severely limited by scattering effects. In particular, optical techniques for measuring conditions beneath the skull and within the bone marrow hold significant promise when it comes to speed, sensitivity and specificity. However, the strong optical scattering due to bone hinders the realization of these methods. In this article, we propose a technique to enhance the transmittance of light through bone. This is achieved by injecting light below the top surface of the bone and utilizing multiple scattering to increase transmittance. This technique suggests that enhancements of 2-6 times may be realized by injection of light 1 mm below the surface of the bone. By enhancing the transmittance of light through bone, we will greatly improve our ability to utilize optical methods to better understand and diagnose conditions within biological media.

  17. Fully automatic characterization and data collection from crystals of biological macromolecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svensson, Olof; Malbet-Monaco, Stéphanie; Popov, Alexander

    A fully automatic system has been developed that performs X-ray centring and characterization of, and data collection from, large numbers of cryocooled crystals without human intervention. Considerable effort is dedicated to evaluating macromolecular crystals at synchrotron sources, even for well established and robust systems. Much of this work is repetitive, and the time spent could be better invested in the interpretation of the results. In order to decrease the need for manual intervention in the most repetitive steps of structural biology projects, initial screening and data collection, a fully automatic system has been developed to mount, locate, centre to themore » optimal diffraction volume, characterize and, if possible, collect data from multiple cryocooled crystals. Using the capabilities of pixel-array detectors, the system is as fast as a human operator, taking an average of 6 min per sample depending on the sample size and the level of characterization required. Using a fast X-ray-based routine, samples are located and centred systematically at the position of highest diffraction signal and important parameters for sample characterization, such as flux, beam size and crystal volume, are automatically taken into account, ensuring the calculation of optimal data-collection strategies. The system is now in operation at the new ESRF beamline MASSIF-1 and has been used by both industrial and academic users for many different sample types, including crystals of less than 20 µm in the smallest dimension. To date, over 8000 samples have been evaluated on MASSIF-1 without any human intervention.« less

  18. Optimal design of clinical trials with biologics using dose-time-response models.

    PubMed

    Lange, Markus R; Schmidli, Heinz

    2014-12-30

    Biologics, in particular monoclonal antibodies, are important therapies in serious diseases such as cancer, psoriasis, multiple sclerosis, or rheumatoid arthritis. While most conventional drugs are given daily, the effect of monoclonal antibodies often lasts for months, and hence, these biologics require less frequent dosing. A good understanding of the time-changing effect of the biologic for different doses is needed to determine both an adequate dose and an appropriate time-interval between doses. Clinical trials provide data to estimate the dose-time-response relationship with semi-mechanistic nonlinear regression models. We investigate how to best choose the doses and corresponding sample size allocations in such clinical trials, so that the nonlinear dose-time-response model can be precisely estimated. We consider both local and conservative Bayesian D-optimality criteria for the design of clinical trials with biologics. For determining the optimal designs, computer-intensive numerical methods are needed, and we focus here on the particle swarm optimization algorithm. This metaheuristic optimizer has been successfully used in various areas but has only recently been applied in the optimal design context. The equivalence theorem is used to verify the optimality of the designs. The methodology is illustrated based on results from a clinical study in patients with gout, treated by a monoclonal antibody. Copyright © 2014 John Wiley & Sons, Ltd.

  19. A Robust Unified Approach to Analyzing Methylation and Gene Expression Data

    PubMed Central

    Khalili, Abbas; Huang, Tim; Lin, Shili

    2009-01-01

    Microarray technology has made it possible to investigate expression levels, and more recently methylation signatures, of thousands of genes simultaneously, in a biological sample. Since more and more data from different biological systems or technological platforms are being generated at an incredible rate, there is an increasing need to develop statistical methods that are applicable to multiple data types and platforms. Motivated by such a need, a flexible finite mixture model that is applicable to methylation, gene expression, and potentially data from other biological systems, is proposed. Two major thrusts of this approach are to allow for a variable number of components in the mixture to capture non-biological variation and small biases, and to use a robust procedure for parameter estimation and probe classification. The method was applied to the analysis of methylation signatures of three breast cancer cell lines. It was also tested on three sets of expression microarray data to study its power and type I error rates. Comparison with a number of existing methods in the literature yielded very encouraging results; lower type I error rates and comparable/better power were achieved based on the limited study. Furthermore, the method also leads to more biologically interpretable results for the three breast cancer cell lines. PMID:20161265

  20. GeLC-MRM quantitation of mutant KRAS oncoprotein in complex biological samples.

    PubMed

    Halvey, Patrick J; Ferrone, Cristina R; Liebler, Daniel C

    2012-07-06

    Tumor-derived mutant KRAS (v-Ki-ras-2 Kirsten rat sarcoma viral oncogene) oncoprotein is a critical driver of cancer phenotypes and a potential biomarker for many epithelial cancers. Targeted mass spectrometry analysis by multiple reaction monitoring (MRM) enables selective detection and quantitation of wild-type and mutant KRAS proteins in complex biological samples. A recently described immunoprecipitation approach (Proc. Nat. Acad. Sci.2011, 108, 2444-2449) can be used to enrich KRAS for MRM analysis, but requires large protein inputs (2-4 mg). Here, we describe sodium dodecyl sulfate-polyacrylamide gel electrophoresis-based enrichment of KRAS in a low molecular weight (20-25 kDa) protein fraction prior to MRM analysis (GeLC-MRM). This approach reduces background proteome complexity, thus, allowing mutant KRAS to be reliably quantified in low protein inputs (5-50 μg). GeLC-MRM detected KRAS mutant variants (G12D, G13D, G12V, G12S) in a panel of cancer cell lines. GeLC-MRM analysis of wild-type and mutant was linear with respect to protein input and showed low variability across process replicates (CV = 14%). Concomitant analysis of a peptide from the highly similar HRAS and NRAS proteins enabled correction of KRAS-targeted measurements for contributions from these other proteins. KRAS peptides were also quantified in fluid from benign pancreatic cysts and pancreatic cancers at concentrations from 0.08 to 1.1 fmol/μg protein. GeLC-MRM provides a robust, sensitive approach to quantitation of mutant proteins in complex biological samples.

  1. Neighborhood Disadvantage and Cumulative Biological Risk Among a Socioeconomically Diverse Sample of African American Adults: An Examination in the Jackson Heart Study.

    PubMed

    Barber, Sharrelle; Hickson, DeMarc A; Kawachi, Ichiro; Subramanian, S V; Earls, Felton

    2016-09-01

    Neighborhoods characterized by disadvantage influence multiple risk factors for chronic disease and are considered potential drivers of racial and ethnic health inequities in the USA. The objective of the present study was to examine the relationship between neighborhood disadvantage and cumulative biological risk (CBR) and the extent to which the association differs by individual income and education among a large, socioeconomically diverse sample of African American adults. Data from the baseline examination of the Jackson Heart Study (2000-2004) were used for the analyses. The sample consisted of African American adults ages 21-85 with complete, geocoded data on CBR biomarkers and behavioral covariates (n = 4410). Neighborhood disadvantage was measured using a composite score of socioeconomic indicators from the 2000 US Census. Eight biomarkers representing cardiovascular, metabolic, inflammatory, and neuroendocrine systems were used to create a CBR score. We fit two-level linear regression models with random intercepts and included cross-level interaction terms between neighborhood disadvantage and individual socioeconomic status (SES). Living in a disadvantaged neighborhood was associated with greater CBR after covariate adjustment (B = 0.18, standard error (SE) 0.07, p < 0.05). Interactions showed a weaker association for individuals with ≤high school education but were not statistically significant. Disadvantaged neighborhoods contribute to poor health among African American adults via cumulative biological risk. Policies directly addressing the socioeconomic conditions of these environments should be considered as viable options to reduce disease risk in this group and mitigate racial/ethnic health inequities.

  2. Neighborhood Disadvantage and Cumulative Biological Risk Among a Socioeconomically Diverse Sample of African American Adults: An Examination in the Jackson Heart Study

    PubMed Central

    Barber, Sharrelle; Hickson, DeMarc A.; Kawachi, Ichiro; Subramanian, S.V.; Earls, Felton

    2015-01-01

    Objectives Neighborhoods characterized by disadvantage influence multiple risk factors for chronic disease and are considered potential drivers of racial and ethnic health inequities in the United States. The objective of the present study was to examine the relationship between neighborhood disadvantage and cumulative biological risk (CBR) and the extent to which the association differs by individual income and education among a large, socio-economically diverse sample of African American adults. Methods Data from the baseline examination of the Jackson Heart Study (2000-2004) were used for the analyses. The sample consisted of African American adults ages 21-85 with complete, geocoded data on CBR biomarkers and behavioral covariates (n=4,410). Neighborhood disadvantage was measured using a composite score of socioeconomic indicators from the 2000 US Census. Eight biomarkers representing cardiovascular, metabolic, inflammatory, and neuroendocrine systems were used to create a CBR score. We fit two-level linear regression models with random intercepts and included cross-level interaction terms between neighborhood disadvantage and individual SES. Results Living in a disadvantaged neighborhood was associated with greater CBR after covariate adjustment (B=0.18, SE: 0.07, p<0.05). Interactions showed a weaker association for individuals with ≤ high school education, but were not statistically significant. Conclusion Disadvantaged neighborhoods contribute to poor health among African American adults via cumulative biological risk. Policies directly addressing the socioeconomic conditions of these environments should be considered as viable options to reduce disease risk in this group and mitigate racial/ethnic health inequities. PMID:27294737

  3. A distributed system for fast alignment of next-generation sequencing data.

    PubMed

    Srimani, Jaydeep K; Wu, Po-Yen; Phan, John H; Wang, May D

    2010-12-01

    We developed a scalable distributed computing system using the Berkeley Open Interface for Network Computing (BOINC) to align next-generation sequencing (NGS) data quickly and accurately. NGS technology is emerging as a promising platform for gene expression analysis due to its high sensitivity compared to traditional genomic microarray technology. However, despite the benefits, NGS datasets can be prohibitively large, requiring significant computing resources to obtain sequence alignment results. Moreover, as the data and alignment algorithms become more prevalent, it will become necessary to examine the effect of the multitude of alignment parameters on various NGS systems. We validate the distributed software system by (1) computing simple timing results to show the speed-up gained by using multiple computers, (2) optimizing alignment parameters using simulated NGS data, and (3) computing NGS expression levels for a single biological sample using optimal parameters and comparing these expression levels to that of a microarray sample. Results indicate that the distributed alignment system achieves approximately a linear speed-up and correctly distributes sequence data to and gathers alignment results from multiple compute clients.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fong, Erika J.; Huang, Chao; Hamilton, Julie

    Here, a major advantage of microfluidic devices is the ability to manipulate small sample volumes, thus reducing reagent waste and preserving precious sample. However, to achieve robust sample manipulation it is necessary to address device integration with the macroscale environment. To realize repeatable, sensitive particle separation with microfluidic devices, this protocol presents a complete automated and integrated microfluidic platform that enables precise processing of 0.15–1.5 ml samples using microfluidic devices. Important aspects of this system include modular device layout and robust fixtures resulting in reliable and flexible world to chip connections, and fully-automated fluid handling which accomplishes closed-loop sample collection,more » system cleaning and priming steps to ensure repeatable operation. Different microfluidic devices can be used interchangeably with this architecture. Here we incorporate an acoustofluidic device, detail its characterization, performance optimization, and demonstrate its use for size-separation of biological samples. By using real-time feedback during separation experiments, sample collection is optimized to conserve and concentrate sample. Although requiring the integration of multiple pieces of equipment, advantages of this architecture include the ability to process unknown samples with no additional system optimization, ease of device replacement, and precise, robust sample processing.« less

  5. Joint Identification of Genetic Variants for Physical Activity in Korean Population

    PubMed Central

    Kim, Jayoun; Kim, Jaehee; Min, Haesook; Oh, Sohee; Kim, Yeonjung; Lee, Andy H.; Park, Taesung

    2014-01-01

    There has been limited research on genome-wide association with physical activity (PA). This study ascertained genetic associations between PA and 344,893 single nucleotide polymorphism (SNP) markers in 8842 Korean samples. PA data were obtained from a validated questionnaire that included information on PA intensity and duration. Metabolic equivalent of tasks were calculated to estimate the total daily PA level for each individual. In addition to single- and multiple-SNP association tests, a pathway enrichment analysis was performed to identify the biological significance of SNP markers. Although no significant SNP was found at genome-wide significance level via single-SNP association tests, 59 genetic variants mapped to 76 genes were identified via a multiple SNP approach using a bootstrap selection stability measure. Pathway analysis for these 59 variants showed that maturity onset diabetes of the young (MODY) was enriched. Joint identification of SNPs could enable the identification of multiple SNPs with good predictive power for PA and a pathway enriched for PA. PMID:25026172

  6. Multiple signal classification algorithm for super-resolution fluorescence microscopy

    PubMed Central

    Agarwal, Krishna; Macháň, Radek

    2016-01-01

    Single-molecule localization techniques are restricted by long acquisition and computational times, or the need of special fluorophores or biologically toxic photochemical environments. Here we propose a statistical super-resolution technique of wide-field fluorescence microscopy we call the multiple signal classification algorithm which has several advantages. It provides resolution down to at least 50 nm, requires fewer frames and lower excitation power and works even at high fluorophore concentrations. Further, it works with any fluorophore that exhibits blinking on the timescale of the recording. The multiple signal classification algorithm shows comparable or better performance in comparison with single-molecule localization techniques and four contemporary statistical super-resolution methods for experiments of in vitro actin filaments and other independently acquired experimental data sets. We also demonstrate super-resolution at timescales of 245 ms (using 49 frames acquired at 200 frames per second) in samples of live-cell microtubules and live-cell actin filaments imaged without imaging buffers. PMID:27934858

  7. Zika virus evolution and spread in the Americas.

    PubMed

    Metsky, Hayden C; Matranga, Christian B; Wohl, Shirlee; Schaffner, Stephen F; Freije, Catherine A; Winnicki, Sarah M; West, Kendra; Qu, James; Baniecki, Mary Lynn; Gladden-Young, Adrianne; Lin, Aaron E; Tomkins-Tinch, Christopher H; Ye, Simon H; Park, Daniel J; Luo, Cynthia Y; Barnes, Kayla G; Shah, Rickey R; Chak, Bridget; Barbosa-Lima, Giselle; Delatorre, Edson; Vieira, Yasmine R; Paul, Lauren M; Tan, Amanda L; Barcellona, Carolyn M; Porcelli, Mario C; Vasquez, Chalmers; Cannons, Andrew C; Cone, Marshall R; Hogan, Kelly N; Kopp, Edgar W; Anzinger, Joshua J; Garcia, Kimberly F; Parham, Leda A; Ramírez, Rosa M Gélvez; Montoya, Maria C Miranda; Rojas, Diana P; Brown, Catherine M; Hennigan, Scott; Sabina, Brandon; Scotland, Sarah; Gangavarapu, Karthik; Grubaugh, Nathan D; Oliveira, Glenn; Robles-Sikisaka, Refugio; Rambaut, Andrew; Gehrke, Lee; Smole, Sandra; Halloran, M Elizabeth; Villar, Luis; Mattar, Salim; Lorenzana, Ivette; Cerbino-Neto, Jose; Valim, Clarissa; Degrave, Wim; Bozza, Patricia T; Gnirke, Andreas; Andersen, Kristian G; Isern, Sharon; Michael, Scott F; Bozza, Fernando A; Souza, Thiago M L; Bosch, Irene; Yozwiak, Nathan L; MacInnis, Bronwyn L; Sabeti, Pardis C

    2017-06-15

    Although the recent Zika virus (ZIKV) epidemic in the Americas and its link to birth defects have attracted a great deal of attention, much remains unknown about ZIKV disease epidemiology and ZIKV evolution, in part owing to a lack of genomic data. Here we address this gap in knowledge by using multiple sequencing approaches to generate 110 ZIKV genomes from clinical and mosquito samples from 10 countries and territories, greatly expanding the observed viral genetic diversity from this outbreak. We analysed the timing and patterns of introductions into distinct geographic regions; our phylogenetic evidence suggests rapid expansion of the outbreak in Brazil and multiple introductions of outbreak strains into Puerto Rico, Honduras, Colombia, other Caribbean islands, and the continental United States. We find that ZIKV circulated undetected in multiple regions for many months before the first locally transmitted cases were confirmed, highlighting the importance of surveillance of viral infections. We identify mutations with possible functional implications for ZIKV biology and pathogenesis, as well as those that might be relevant to the effectiveness of diagnostic tests.

  8. Acquisition of Cooperative Small Unmanned Aerial Systems for Advancing Man Machine Interface Research

    DTIC Science & Technology

    2016-08-24

    global sensor field of views (FOVs), mimicking biological systems such as an insect fly eye , but allowing multiple aperture configurations. Due to...synthetic, global sensor field of views (FOVs), mimicking biological systems such as an insect fly eye , but allowing multiple aperture configurations. Due to...such as an insect fly eye , but allowing multiple aperture configurations. Due to the desired nature of distributed networked aerial vehicles (for the

  9. From 'omics to otoliths: responses of an estuarine fish to endocrine disrupting compounds across biological scales.

    PubMed

    Brander, Susanne M; Connon, Richard E; He, Guochun; Hobbs, James A; Smalling, Kelly L; Teh, Swee J; White, J Wilson; Werner, Inge; Denison, Michael S; Cherr, Gary N

    2013-01-01

    Endocrine disrupting chemicals (EDCs) cause physiological abnormalities and population decline in fishes. However, few studies have linked environmental EDC exposures with responses at multiple tiers of the biological hierarchy, including population-level effects. To this end, we undertook a four-tiered investigation in the impacted San Francisco Bay estuary with the Mississippi silverside (Menidia audens), a small pelagic fish. This approach demonstrated links between different EDC sources and fish responses at different levels of biological organization. First we determined that water from a study site primarily impacted by ranch run-off had only estrogenic activity in vitro, while water sampled from a site receiving a combination of urban, limited ranch run-off, and treated wastewater effluent had both estrogenic and androgenic activity. Secondly, at the molecular level we found that fish had higher mRNA levels for estrogen-responsive genes at the site where only estrogenic activity was detected but relatively lower expression levels where both estrogenic and androgenic EDCs were detected. Thirdly, at the organism level, males at the site exposed to both estrogens and androgens had significantly lower mean gonadal somatic indices, significantly higher incidence of severe testicular necrosis and altered somatic growth relative to the site where only estrogens were detected. Finally, at the population level, the sex ratio was significantly skewed towards males at the site with measured androgenic and estrogenic activity. Our results suggest that mixtures of androgenic and estrogenic EDCs have antagonistic and potentially additive effects depending on the biological scale being assessed, and that mixtures containing androgens and estrogens may produce unexpected effects. In summary, evaluating EDC response at multiple tiers is necessary to determine the source of disruption (lowest scale, i.e. cell line) and what the ecological impact will be (largest scale, i.e. sex ratio).

  10. Quantification of methionine and selenomethionine in biological samples using multiple reaction monitoring high performance liquid chromatography tandem mass spectrometry (MRM-HPLC-MS/MS).

    PubMed

    Vu, Dai Long; Ranglová, Karolína; Hájek, Jan; Hrouzek, Pavel

    2018-05-01

    Quantification of selenated amino-acids currently relies on methods employing inductively coupled plasma mass spectrometry (ICP-MS). Although very accurate, these methods do not allow the simultaneous determination of standard amino-acids, hampering the comparison of the content of selenated versus non-selenated species such as methionine (Met) and selenomethionine (SeMet). This paper reports two approaches for the simultaneous quantification of Met and SeMet. In the first approach, standard enzymatic hydrolysis employing Protease XIV was applied for the preparation of samples. The second approach utilized methanesulfonic acid (MA) for the hydrolysis of samples, either in a reflux system or in a microwave oven, followed by derivatization with diethyl ethoxymethylenemalonate. The prepared samples were then analyzed by multiple reaction monitoring high performance liquid chromatography tandem mass spectrometry (MRM-HPLC-MS/MS). Both approaches provided platforms for the accurate determination of selenium/sulfur substitution rate in Met. Moreover the second approach also provided accurate simultaneous quantification of Met and SeMet with a low limit of detection, low limit of quantification and wide linearity range, comparable to the commonly used gas chromatography mass spectrometry (GC-MS) method or ICP-MS. The novel method was validated using certified reference material in conjunction with the GC-MS reference method. Copyright © 2018. Published by Elsevier B.V.

  11. Methods to increase reproducibility in differential gene expression via meta-analysis

    PubMed Central

    Sweeney, Timothy E.; Haynes, Winston A.; Vallania, Francesco; Ioannidis, John P.; Khatri, Purvesh

    2017-01-01

    Findings from clinical and biological studies are often not reproducible when tested in independent cohorts. Due to the testing of a large number of hypotheses and relatively small sample sizes, results from whole-genome expression studies in particular are often not reproducible. Compared to single-study analysis, gene expression meta-analysis can improve reproducibility by integrating data from multiple studies. However, there are multiple choices in designing and carrying out a meta-analysis. Yet, clear guidelines on best practices are scarce. Here, we hypothesized that studying subsets of very large meta-analyses would allow for systematic identification of best practices to improve reproducibility. We therefore constructed three very large gene expression meta-analyses from clinical samples, and then examined meta-analyses of subsets of the datasets (all combinations of datasets with up to N/2 samples and K/2 datasets) compared to a ‘silver standard’ of differentially expressed genes found in the entire cohort. We tested three random-effects meta-analysis models using this procedure. We showed relatively greater reproducibility with more-stringent effect size thresholds with relaxed significance thresholds; relatively lower reproducibility when imposing extraneous constraints on residual heterogeneity; and an underestimation of actual false positive rate by Benjamini–Hochberg correction. In addition, multivariate regression showed that the accuracy of a meta-analysis increased significantly with more included datasets even when controlling for sample size. PMID:27634930

  12. An investigation of outcome expectancies as a predictor of treatment response for combat veterans with PTSD: comparison of clinician, self-report, and biological measures.

    PubMed

    Price, Matthew; Maples, Jessica L; Jovanovic, Tanja; Norrholm, Seth D; Heekin, Mary; Rothbaum, Barbara O

    2015-06-01

    Outcome expectancy, or the degree to which a client believes that therapy will result in improvement, is related to improved treatment outcomes for multiple disorders. There is a paucity of research investigating this relation in regards to posttraumatic stress disorder (PTSD). Additionally, the bulk of the research on outcome expectancy and treatment outcomes has relied mostly on self-report outcome measures. The relation between outcome expectancy on self-report measures, clinician-rated measures, and two biological indices (fear-potentiated startle and cortisol reactivity) of PTSD symptoms was explored. The sample included combat veterans (N = 116) treated with virtual reality exposure therapy for PTSD. Results supported a negative association between outcome expectancy and both self-report and clinician-rated symptoms at the conclusion of treatment, but outcome expectancy was related to the magnitude of change during treatment for self-report measures only. Outcome expectancy was unrelated to biological measures of treatment response. These findings suggest that outcome expectancy may be related to patient and clinician perceptions of outcomes, but not biological indices of outcome for PTSD. © 2015 Wiley Periodicals, Inc.

  13. Integrated Analysis of Pharmacologic, Clinical, and SNP Microarray Data using Projection onto the Most Interesting Statistical Evidence with Adaptive Permutation Testing

    PubMed Central

    Pounds, Stan; Cao, Xueyuan; Cheng, Cheng; Yang, Jun; Campana, Dario; Evans, William E.; Pui, Ching-Hon; Relling, Mary V.

    2010-01-01

    Powerful methods for integrated analysis of multiple biological data sets are needed to maximize interpretation capacity and acquire meaningful knowledge. We recently developed Projection Onto the Most Interesting Statistical Evidence (PROMISE). PROMISE is a statistical procedure that incorporates prior knowledge about the biological relationships among endpoint variables into an integrated analysis of microarray gene expression data with multiple biological and clinical endpoints. Here, PROMISE is adapted to the integrated analysis of pharmacologic, clinical, and genome-wide genotype data that incorporating knowledge about the biological relationships among pharmacologic and clinical response data. An efficient permutation-testing algorithm is introduced so that statistical calculations are computationally feasible in this higher-dimension setting. The new method is applied to a pediatric leukemia data set. The results clearly indicate that PROMISE is a powerful statistical tool for identifying genomic features that exhibit a biologically meaningful pattern of association with multiple endpoint variables. PMID:21516175

  14. Rapid and Portable Methods for Identification of Bacterially Influenced Calcite: Application of Laser-Induced Breakdown Spectroscopy and AOTF Reflectance Spectroscopy, Fort Stanton Cave, New Mexico

    NASA Astrophysics Data System (ADS)

    McMillan, N. J.; Chavez, A.; Chanover, N.; Voelz, D.; Uckert, K.; Tawalbeh, R.; Gariano, J.; Dragulin, I.; Xiao, X.; Hull, R.

    2014-12-01

    Rapid, in-situ methods for identification of biologic and non-biologic mineral precipitation sites permit mapping of biological hot spots. Two portable spectrometers, Laser-Induced Breakdown Spectroscopy (LIBS) and Acoustic-Optic Tunable Filter Reflectance Spectroscopy (AOTFRS) were used to differentiate between bacterially influenced and inorganically precipitated calcite specimens from Fort Stanton Cave, NM, USA. LIBS collects light emitted from the decay of excited electrons in a laser ablation plasma; the spectrum is a chemical fingerprint of the analyte. AOTFRS collects light reflected from the surface of a specimen and provides structural information about the material (i.e., the presence of O-H bonds). These orthogonal data sets provide a rigorous method to determine the origin of calcite in cave deposits. This study used a set of 48 calcite samples collected from Fort Stanton cave. Samples were examined in SEM for the presence of biologic markers; these data were used to separate the samples into biologic and non-biologic groups. Spectra were modeled using the multivariate technique Partial Least Squares Regression (PLSR). Half of the spectra were used to train a PLSR model, in which biologic samples were assigned to the independent variable "0" and non-biologic samples were assigned the variable "1". Values of the independent variable were calculated for each of the training samples, which were close to 0 for the biologic samples (-0.09 - 0.23) and close to 1 for the non-biologic samples (0.57 - 1.14). A Value of Apparent Distinction (VAD) of 0.55 was used to numerically distinguish between the two groups; any sample with an independent variable value < 0.55 was classified as having a biologic origin; a sample with a value > 0.55 was determined to be non-biologic in origin. After the model was trained, independent variable values for the remaining half of the samples were calculated. Biologic or non-biologic origin was assigned by comparison to the VAD. Using LIBS data alone, the model has a 92% success rate, correctly identifying 23 of 25 samples. Modeling of AOTFRS spectra and the combined LIBS-AOTFRS data set have similar success rates. This study demonstrates that rapid, portable LIBS and AOTFRS instruments can be used to map the spatial distribution of biologic precipitation in caves.

  15. Metagenomic analyses of drinking water receiving different disinfection treatments.

    PubMed

    Gomez-Alvarez, Vicente; Revetta, Randy P; Santo Domingo, Jorge W

    2012-09-01

    A metagenome-based approach was used to assess the taxonomic affiliation and function potential of microbial populations in free-chlorine-treated (CHL) and monochloramine-treated (CHM) drinking water (DW). In all, 362,640 (averaging 544 bp) and 155,593 (averaging 554 bp) pyrosequencing reads were analyzed for the CHL and CHM samples, respectively. Most annotated proteins were found to be of bacterial origin, although eukaryotic, archaeal, and viral proteins were also identified. Differences in community structure and function were noted. Most notably, Legionella-like genes were more abundant in the CHL samples while mycobacterial genes were more abundant in CHM samples. Genes associated with multiple disinfectant mechanisms were identified in both communities. Moreover, sequences linked to virulence factors, such as antibiotic resistance mechanisms, were observed in both microbial communities. This study provides new insights into the genetic network and potential biological processes associated with the molecular microbial ecology of DW microbial communities.

  16. Metagenomic Analyses of Drinking Water Receiving Different Disinfection Treatments

    PubMed Central

    Gomez-Alvarez, Vicente; Revetta, Randy P.

    2012-01-01

    A metagenome-based approach was used to assess the taxonomic affiliation and function potential of microbial populations in free-chlorine-treated (CHL) and monochloramine-treated (CHM) drinking water (DW). In all, 362,640 (averaging 544 bp) and 155,593 (averaging 554 bp) pyrosequencing reads were analyzed for the CHL and CHM samples, respectively. Most annotated proteins were found to be of bacterial origin, although eukaryotic, archaeal, and viral proteins were also identified. Differences in community structure and function were noted. Most notably, Legionella-like genes were more abundant in the CHL samples while mycobacterial genes were more abundant in CHM samples. Genes associated with multiple disinfectant mechanisms were identified in both communities. Moreover, sequences linked to virulence factors, such as antibiotic resistance mechanisms, were observed in both microbial communities. This study provides new insights into the genetic network and potential biological processes associated with the molecular microbial ecology of DW microbial communities. PMID:22729545

  17. Three-dimensional, automated, real-time video system for tracking limb motion in brain-machine interface studies.

    PubMed

    Peikon, Ian D; Fitzsimmons, Nathan A; Lebedev, Mikhail A; Nicolelis, Miguel A L

    2009-06-15

    Collection and analysis of limb kinematic data are essential components of the study of biological motion, including research into biomechanics, kinesiology, neurophysiology and brain-machine interfaces (BMIs). In particular, BMI research requires advanced, real-time systems capable of sampling limb kinematics with minimal contact to the subject's body. To answer this demand, we have developed an automated video tracking system for real-time tracking of multiple body parts in freely behaving primates. The system employs high-contrast markers painted on the animal's joints to continuously track the three-dimensional positions of their limbs during activity. Two-dimensional coordinates captured by each video camera are combined and converted to three-dimensional coordinates using a quadratic fitting algorithm. Real-time operation of the system is accomplished using direct memory access (DMA). The system tracks the markers at a rate of 52 frames per second (fps) in real-time and up to 100fps if video recordings are captured to be later analyzed off-line. The system has been tested in several BMI primate experiments, in which limb position was sampled simultaneously with chronic recordings of the extracellular activity of hundreds of cortical cells. During these recordings, multiple computational models were employed to extract a series of kinematic parameters from neuronal ensemble activity in real-time. The system operated reliably under these experimental conditions and was able to compensate for marker occlusions that occurred during natural movements. We propose that this system could also be extended to applications that include other classes of biological motion.

  18. Biological tracer method

    DOEpatents

    Strong-Gunderson, Janet M.; Palumbo, Anthony V.

    1998-01-01

    The present invention is a biological tracer method for characterizing the movement of a material through a medium, comprising the steps of: introducing a biological tracer comprising a microorganism having ice nucleating activity into a medium; collecting at least one sample of the medium from a point removed from the introduction point; and analyzing the sample for the presence of the biological tracer. The present invention is also a method for using a biological tracer as a label for material identification by introducing a biological tracer having ice nucleating activity into a material, collecting a sample of a portion of the labelled material and analyzing the sample for the presence of the biological tracer.

  19. Biological tracer method

    DOEpatents

    Strong-Gunderson, J.M.; Palumbo, A.V.

    1998-09-15

    The present invention is a biological tracer method for characterizing the movement of a material through a medium, comprising the steps of: introducing a biological tracer comprising a microorganism having ice nucleating activity into a medium; collecting at least one sample of the medium from a point removed from the introduction point; and analyzing the sample for the presence of the biological tracer. The present invention is also a method for using a biological tracer as a label for material identification by introducing a biological tracer having ice nucleating activity into a material, collecting a sample of a portion of the labelled material and analyzing the sample for the presence of the biological tracer. 2 figs.

  20. When things don't add up: quantifying impacts of multiple stressors from individual metabolism to ecosystem processing.

    PubMed

    Galic, Nika; Sullivan, Lauren L; Grimm, Volker; Forbes, Valery E

    2018-04-01

    Ecosystems are exposed to multiple stressors which can compromise functioning and service delivery. These stressors often co-occur and interact in different ways which are not yet fully understood. Here, we applied a population model representing a freshwater amphipod feeding on leaf litter in forested streams. We simulated impacts of hypothetical stressors, individually and in pairwise combinations that target the individuals' feeding, maintenance, growth and reproduction. Impacts were quantified by examining responses at three levels of biological organisation: individual-level body sizes and cumulative reproduction, population-level abundance and biomass and ecosystem-level leaf litter decomposition. Interactive effects of multiple stressors at the individual level were mostly antagonistic, that is, less negative than expected. Most population- and ecosystem-level responses to multiple stressors were stronger than expected from an additive model, that is, synergistic. Our results suggest that across levels of biological organisation responses to multiple stressors are rarely only additive. We suggest methods for efficiently quantifying impacts of multiple stressors at different levels of biological organisation. © 2018 John Wiley & Sons Ltd/CNRS.

  1. A multispecies framework for landscape conservation planning.

    PubMed

    Schwenk, W Scott; Donovan, Therese M

    2011-10-01

    Rapidly changing landscapes have spurred the need for quantitative methods for conservation assessment and planning that encompass large spatial extents. We devised and tested a multispecies framework for conservation planning to complement single-species assessments and ecosystem-level approaches. Our framework consisted of 4 elements: sampling to effectively estimate population parameters, measuring how human activity affects landscapes at multiple scales, analyzing the relation between landscape characteristics and individual species occurrences, and evaluating and comparing the responses of multiple species to landscape modification. We applied the approach to a community of terrestrial birds across 25,000 km(2) with a range of intensities of human development. Human modification of land cover, road density, and other elements of the landscape, measured at multiple spatial extents, had large effects on occupancy of the 67 species studied. Forest composition within 1 km of points had a strong effect on occupancy of many species and a range of negative, intermediate, and positive associations. Road density within 1 km of points, percent evergreen forest within 300 m, and distance from patch edge were also strongly associated with occupancy for many species. We used the occupancy results to group species into 11 guilds that shared patterns of association with landscape characteristics. Our multispecies approach to conservation planning allowed us to quantify the trade-offs of different scenarios of land-cover change in terms of species occupancy. Conservation Biology © 2011 Society for Conservation Biology. No claim to original US government works.

  2. Principal component analysis-based unsupervised feature extraction applied to in silico drug discovery for posttraumatic stress disorder-mediated heart disease.

    PubMed

    Taguchi, Y-h; Iwadate, Mitsuo; Umeyama, Hideaki

    2015-04-30

    Feature extraction (FE) is difficult, particularly if there are more features than samples, as small sample numbers often result in biased outcomes or overfitting. Furthermore, multiple sample classes often complicate FE because evaluating performance, which is usual in supervised FE, is generally harder than the two-class problem. Developing sample classification independent unsupervised methods would solve many of these problems. Two principal component analysis (PCA)-based FE, specifically, variational Bayes PCA (VBPCA) was extended to perform unsupervised FE, and together with conventional PCA (CPCA)-based unsupervised FE, were tested as sample classification independent unsupervised FE methods. VBPCA- and CPCA-based unsupervised FE both performed well when applied to simulated data, and a posttraumatic stress disorder (PTSD)-mediated heart disease data set that had multiple categorical class observations in mRNA/microRNA expression of stressed mouse heart. A critical set of PTSD miRNAs/mRNAs were identified that show aberrant expression between treatment and control samples, and significant, negative correlation with one another. Moreover, greater stability and biological feasibility than conventional supervised FE was also demonstrated. Based on the results obtained, in silico drug discovery was performed as translational validation of the methods. Our two proposed unsupervised FE methods (CPCA- and VBPCA-based) worked well on simulated data, and outperformed two conventional supervised FE methods on a real data set. Thus, these two methods have suggested equivalence for FE on categorical multiclass data sets, with potential translational utility for in silico drug discovery.

  3. Do Houseflies Think? Patterns of Induction and Biological Beliefs in Development.

    ERIC Educational Resources Information Center

    Gutheil, Grant; Vera, Alonzo; Keil, Frank C.

    1998-01-01

    Examined preschoolers' inductive inferences across biological and non-biological kinds. Found support for gradual-enrichment model of conceptual change. Four-year-olds had a limited, coherent, independent biological theory which may form the basis of mature understanding of biological kinds. Explored results in terms of multiple explanatory…

  4. Effect of Processing Delay and Storage Conditions on Urine Albumin-to-Creatinine Ratio.

    PubMed

    Herrington, William; Illingworth, Nicola; Staplin, Natalie; Kumar, Aishwarya; Storey, Ben; Hrusecka, Renata; Judge, Parminder; Mahmood, Maria; Parish, Sarah; Landray, Martin; Haynes, Richard; Baigent, Colin; Hill, Michael; Clark, Sarah

    2016-10-07

    Because there is substantial biologic intraindividual variation in albumin excretion, randomized trials of albuminuria-reducing therapies may need multiple urine samples to estimate daily urinary albumin excretion. Mailing spot urine samples could offer a convenient and cost-effective method to collect multiple samples, but urine albumin-to-creatinine ratio stability in samples stored at ambient temperatures for several days is unknown. Patients with kidney disease provided fresh urine samples in two tubes (with and without boric acid preservative). Reference aliquots from each participant were analyzed immediately, whereas remaining aliquots were subject to different handling/storage conditions before analysis, including delayed processing for up to 7 days at three different storage temperatures (4°C, 18°C, and 30°C), multiple freeze-thaw cycles, and long-term frozen storage at -80°C, -40°C, and -20°C. We calculated the mean percentage change in urine albumin-to-creatinine ratio for each condition, and we considered samples stable if the 95% confidence interval was within a ±5% threshold. Ninety-three patients provided samples with detectable albuminuria in the reference aliquot. Median (interquartile range) urine albumin-to-creatinine ratio was 87 (20-499) mg/g. The inclusion of preservative had minimal effect on fresh urine albumin-to-creatinine ratio measurements but reduced the changes in albumin and creatinine in samples subject to processing delay and storage conditions. The urine albumin-to-creatinine ratio was stable for 7 days in samples containing preservative at 4°C and 18°C and 2 days when stored at 30°C. It was also stable in samples with preservative after three freeze-thaw cycles and in frozen storage for 6 months at -80°C or -40°C but not at -20°C. Mailed urine samples collected with preservative and received within 7 days if ambient temperature is ≤18°C, or within 2 days if the temperature is higher but does not exceed 30°C, are suitable for the measurement of urine albumin-to-creatinine ratio in randomized trials. Preserved samples frozen to -40°C or -80°C for 6 months before analysis also seem suitable. Copyright © 2016 by the American Society of Nephrology.

  5. Effect of Processing Delay and Storage Conditions on Urine Albumin-to-Creatinine Ratio

    PubMed Central

    Illingworth, Nicola; Staplin, Natalie; Kumar, Aishwarya; Storey, Ben; Hrusecka, Renata; Judge, Parminder; Mahmood, Maria; Parish, Sarah; Landray, Martin; Haynes, Richard; Baigent, Colin; Hill, Michael; Clark, Sarah

    2016-01-01

    Background and objectives Because there is substantial biologic intraindividual variation in albumin excretion, randomized trials of albuminuria-reducing therapies may need multiple urine samples to estimate daily urinary albumin excretion. Mailing spot urine samples could offer a convenient and cost-effective method to collect multiple samples, but urine albumin-to-creatinine ratio stability in samples stored at ambient temperatures for several days is unknown. Design, setting, participants, & measurements Patients with kidney disease provided fresh urine samples in two tubes (with and without boric acid preservative). Reference aliquots from each participant were analyzed immediately, whereas remaining aliquots were subject to different handling/storage conditions before analysis, including delayed processing for up to 7 days at three different storage temperatures (4°C, 18°C, and 30°C), multiple freeze-thaw cycles, and long–term frozen storage at −80°C, −40°C, and −20°C. We calculated the mean percentage change in urine albumin-to-creatinine ratio for each condition, and we considered samples stable if the 95% confidence interval was within a ±5% threshold. Results Ninety-three patients provided samples with detectable albuminuria in the reference aliquot. Median (interquartile range) urine albumin-to-creatinine ratio was 87 (20–499) mg/g. The inclusion of preservative had minimal effect on fresh urine albumin-to-creatinine ratio measurements but reduced the changes in albumin and creatinine in samples subject to processing delay and storage conditions. The urine albumin-to-creatinine ratio was stable for 7 days in samples containing preservative at 4°C and 18°C and 2 days when stored at 30°C. It was also stable in samples with preservative after three freeze-thaw cycles and in frozen storage for 6 months at −80°C or −40°C but not at −20°C. Conclusions Mailed urine samples collected with preservative and received within 7 days if ambient temperature is ≤18°C, or within 2 days if the temperature is higher but does not exceed 30°C, are suitable for the measurement of urine albumin-to-creatinine ratio in randomized trials. Preserved samples frozen to −40°C or −80°C for 6 months before analysis also seem suitable. PMID:27654930

  6. Salmonella, Shigella and growth potential of other food-borne pathogens in Ethiopian street vended foods.

    PubMed

    Muleta, D; Ashenafi, M

    2001-11-01

    To evaluate the bacteriological safety of food items sold by street vendors with regard to Salmonella and Shigella and to assess the growth potential of some foodborne pathogens in some street foods. Collection of street-vended foods and laboratory based microbiological analysis. Microbiology Laboratory, Department of Biology, Addis Ababa University, Addis Ababa, Ethiopia. Most of the street food samples had aerobic mesophilic counts >10(7) cfu/g. Nine "kitfo" and one "egg sandwich" samples yielded Salmonella. Shigella was isolated from three "macaroni" samples. The Salmonella isolates were sensitive to all ten drugs tested but the Shigella isolates had multiple resistance against five drugs. In a challenge study, Salmonella typhimurium, Shigella flexneri and Staphylococcus aureus grew in street-vended food samples to hazardous levels within eight to twelve hours. Street foods are heavily contaminated with micro-organisms and are potential sources of food borne infections. Health hazards from street foods may be significantly minimised by consumption within four hours of preparation.

  7. Optical Ptychographic Microscope for Quantitative Bio-Mechanical Imaging

    NASA Astrophysics Data System (ADS)

    Anthony, Nicholas; Cadenazzi, Guido; Nugent, Keith; Abbey, Brian

    The role that mechanical forces play in biological processes such as cell movement and death is becoming of significant interest to further develop our understanding of the inner workings of cells. The most common method used to obtain stress information is photoelasticity which maps a samples birefringence, or its direction dependent refractive indices, using polarized light. However this method only provides qualitative data and for stress information to be useful quantitative data is required. Ptychography is a method for quantitatively determining the phase of a samples complex transmission function. The technique relies upon the collection of multiple overlapping coherent diffraction patterns from laterally displaced points on the sample. The overlap of measurement points provides complementary information that significantly aids in the reconstruction of the complex wavefield exiting the sample and allows for quantitative imaging of weakly interacting specimens. Here we describe recent advances at La Trobe University Melbourne on achieving quantitative birefringence mapping using polarized light ptychography with applications in cell mechanics. Australian Synchrotron, ARC Centre of Excellence for Advanced Molecular Imaging.

  8. Exploring protein kinase conformation using swarm-enhanced sampling molecular dynamics.

    PubMed

    Atzori, Alessio; Bruce, Neil J; Burusco, Kepa K; Wroblowski, Berthold; Bonnet, Pascal; Bryce, Richard A

    2014-10-27

    Protein plasticity, while often linked to biological function, also provides opportunities for rational design of selective and potent inhibitors of their function. The application of computational methods to the prediction of concealed protein concavities is challenging, as the motions involved can be significant and occur over long time scales. Here we introduce the swarm-enhanced sampling molecular dynamics (sesMD) method as a tool to improve sampling of conformational landscapes. In this approach, a swarm of replica simulations interact cooperatively via a set of pairwise potentials incorporating attractive and repulsive components. We apply the sesMD approach to explore the conformations of the DFG motif in the protein p38α mitogen-activated protein kinase. In contrast to multiple MD simulations, sesMD trajectories sample a range of DFG conformations, some of which map onto existing crystal structures. Simulated structures intermediate between the DFG-in and DFG-out conformations are predicted to have druggable pockets of interest for structure-based ligand design.

  9. Analysis of Multiple Metabolites of Tocopherols and Tocotrienols in Mice and Humans

    PubMed Central

    Zhao, Yang; Lee, Mao-Jung; Cheung, Connie; Ju, Ji-Hyeung; Chen, Yu-Kuo; Liu, Ba; Hu, Long-Qin; Yang, Chung S.

    2010-01-01

    Tocopherols and tocotrienols, collectively known as vitamin E, are essential antioxidant nutrients. The biological fates and metabolite profiles of the different forms are not clearly understood. The objective of this study is to simultaneously analyze the metabolites of different tocopherols and tocotrienols in mouse and human samples. Using HPLC/electrochemical detection and mass spectrometry, 18 tocopherol-derived and 24 tocotrienol-derived side-chain degradation metabolites were identified in fecal samples. Short-chain degradation metabolites, in particular γ- and δ- carboxyethyl hydroxychromans (CEHCs) and carboxymethylbutyl hydroxychromans (CMBHCs) were detected in urine, serum and liver samples, with tocopherols additionally detected in serum and liver samples. The metabolite profiles of tocotrienols and tocopherols were similar, but new tocotrienol metabolites with double bonds were identified. This is the first comprehensive report describing simultaneous analysis of different side-chain metabolites of tocopherols and tocotrienols in mice and humans. Urinary metabolites may serve as useful biomarkers for nutritional assessment of vitamin E. PMID:20222730

  10. Biological and nonbiological complex drugs for multiple sclerosis in Latin America: regulations and risk management.

    PubMed

    Carrá, Adriana; Macías Islas, Miguel Angel; Tarulla, Adriana; Bichuetti, Denis Bernardi; Finkelsztejn, Alessandro; Fragoso, Yara Dadalti; Árcega-Revilla, Raul; Cárcamo Rodríguez, Claudia; Durán, Juan Carlos; Bonitto, Juan García; León, Rosalba; Oehninger Gatti, Carlos; Orozco, Geraldine; Vizcarra Escobar, Darwin

    2015-06-01

    Biological drugs and nonbiological complex drugs with expired patents are followed by biosimilars and follow-on drugs that are supposedly similar and comparable with the reference product in terms of quality, safety and efficacy. Unlike simple molecules that can be copied and reproduced, biosimilars and follow-on complex drugs are heterogeneous and need specific regulations from health and pharmacovigilance agencies. A panel of 14 Latin American experts on multiple sclerosis from nine different countries met to discuss the recommendations regarding biosimilars and follow-on complex drugs for treating multiple sclerosis. Specific measures relating to manufacturing, therapeutic equivalence assessment and pharmacovigilance reports need to be implemented before commercialization. Physical, chemical, biological and immunogenic characterizations of the new product need to be available before clinical trials start. The new product must maintain the same immunogenicity as the original. Automatic substitution of biological and complex drugs poses unacceptable risks to the patient.

  11. Chirality, quantum mechanics, and biological determinism

    NASA Astrophysics Data System (ADS)

    Davies, P. C. W.

    2006-08-01

    The holy grail of astrobiology is the discovery of a second sample of life that has emerged de novo, independently of life on Earth (as opposed to extraterrestrial life that shares a common origin with terrestrial life via a panspermia process). It would then be possible to separate aspects of biology that are lawlike and expected from those that are accidental and contingent, and thus to address the question of whether the laws of nature are intrinsically bio-friendly. The popular assumption that life is an almost inevitable product of physics and chemistry, and therefore widespread in the universe, is known as biological determinism. It remains an open question whether biological determinism is correct, as there is little direct evidence in its favour from fundamental physics. Homochirality is a deep property of known life, and provides an important test case for the competing ideas of contingency versus lawfulness - or chance versus necessity. Conceivably, a chiral signature is imprinted on life by fundamental physics via parity-violating mixing of the weak and electromagnetic interactions. If so, homochirality would be universal and lawlike. On the other hand, it may be the result of chance: a random molecular accident during the pre-biotic phase. If the latter explanation is correct, one could expect that a second sample of life may have opposite chiral signature even if it resembled known life in its basic biochemistry. There is thus a curious obverse relationship between chirality and biogenesis in relation to biological determinism. If the chiral signature of life is the product of chance, we may hope to discover "mirror life" (i.e. organisms with opposite chiral signature) as evidence of a second genesis, and the latter would establish that life's emergence from non-life is quasi-deterministic. On the other hand, if the chiral signature is determined by fundamental physics, then it may be much harder to establish an independent origin for extraterrestrial life with biochemical make-up resembling that of known life. Whilst the experimental search for a second sample of life - possibly by detecting a chiral "anomaly" - continues, some theoretical investigations may be pursued to narrow down the options. Chiral determinism would be an intrinsically quantum process. There are hints that quantum mechanics plays a key role in biology, but the claim remains contentious. Here I review some of the evidence for quantum aspects of biology. I also summarize some proposals for testing biological determinism by seeking evidence for a multiple genesis events on Earth, and for identifying extant "alien microbes" - micro-organisms descended from an independent origin from familiar life.

  12. Preservation of Liquid Biological Samples

    NASA Technical Reports Server (NTRS)

    Putcha, Lakshmi (Inventor); Nimmagudda, Ramalingeshwara R. (Inventor)

    2000-01-01

    The present invention provides a method of preserving a liquid biological sample, comprising the step of: contacting said liquid biological sample with a preservative comprising, sodium benzoate in an amount of at least about 0.15% of the sample (weight/volume) and citric acid in an amount of at least about 0.025% of the sample (weight/volume).

  13. Quantitative multiplex detection of biomarkers on a waveguide-based biosensor using quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Hongzhi; Mukundan, Harshini; Martinez, Jennifer S

    2009-01-01

    The quantitative, simultaneous detection of multiple biomarkers with high sensitivity and specificity is critical for biomedical diagnostics, drug discovery and biomarker characterization [Wilson 2006, Tok 2006, Straub 2005, Joos 2002, Jani 2000]. Detection systems relying on optical signal transduction are, in general, advantageous because they are fast, portable, inexpensive, sensitive, and have the potential for multiplex detection of analytes of interest. However, conventional immunoassays for the detection of biomarkers, such as the Enzyme Linked Immunosorbant Assays (ELISAs) are semi-quantitative, time consuming and insensitive. ELISA assays are also limited by high non-specific binding, especially when used with complex biological samples suchmore » as serum and urine (REF). Organic fluorophores that are commonly used in such applications lack photostability and possess a narrow Stoke's shift that makes simultaneous detection of multiple fluorophores with a single excitation source difficult, thereby restricting their use in multiplex assays. The above limitations with traditional assay platforms have resulted in the increased use of nanotechnology-based tools and techniques in the fields of medical imaging [ref], targeted drug delivery [Caruthers 2007, Liu 2007], and sensing [ref]. One such area of increasing interest is the use of semiconductor quantum dots (QDs) for biomedical research and diagnostics [Gao and Cui 2004, Voura 2004, Michalet 2005, Chan 2002, Jaiswal 2004, Gao 2005, Medintz 2005, So 2006 2006, Wu 2003]. Compared to organic dyes, QDs provide several advantages for use in immunoassay platforms, including broad absorption bands with high extinction coefficients, narrow and symmetric emission bands with high quantum yields, high photostablility, and a large Stokes shift [Michalet 2005, Gu 2002]. These features prompted the use of QDs as probes in biodetection [Michalet 2005, Medintz 2005]. For example, Jaiswal et al. reported long term multiple color imaging of live cells using QD-bioconjugates [Jaiswal 2003]. Gao [Gao 2004] and So [So 2006] have used QDs as probes for in-vivo cancer targeting and imaging. Medintz et al. reported self-assembled QD-based biosensors for detection of analytes based on energy transfer [Medintz 2003]. Others have developed an approach for multiplex optical encoding of biomolecules using QDs [Han 2001]. Immunoassays have also benefited from the advantages of QDs. Recently, dihydrolipoic acid (DHLA) capped-QDs have been attached to antibodies and used as fluorescence reporters in plate-based multiplex immunoassays [Goodman 2004]. However, DHLA-QDs are associated with low quantum efficiency and are unstable at neutral pH. These problems limit the application of this technology to the sensitive detection of biomolecules, especially in complex biological samples. Thus, the development of a rapid, sensitive, quantitative, and specific multiplex platform for the detection of biomarkers in difficult samples remains an elusive target. The goal stated above has applications in many fields including medical diagnostics, biological research, and threat reduction. The current decade alone has seen the development of a need to rapidly and accurately detect potential biological warfare agents. For example, current methods for the detection of anthrax are grossly inadequate for a variety of reasons including long incubation time (5 days from time of exposure to onset of symptoms) and non-specific ('flu-like') symptoms. When five employees of the United State Senate were exposed to B. anthracis in the mail (2001), only one patient had a confirmed diagnosis before death. Since then, sandwich immunoassays using both colorimetric and fluorescence detectors have been developed for key components of the anthrax lethal toxin, namely protective antigen (PA), lethal factor (LF), and the edema factor [Mourez 2001]. While these platforms were successful in assays against anthrax toxins, the sensitivity was poor. Furthermore, no single platform exists for the simultaneous and quantitative detection of multiple components of the B. anthracis toxin. Addressing multiple biomarkers at the same time will increase confidence in a positive result, and may lead to application in the simultaneous detection of anthrax and other biowarfare agents.« less

  14. Screening molecular associations with lipid membranes using natural abundance 13C cross-polarization magic-angle spinning NMR and principal component analysis.

    PubMed

    Middleton, David A; Hughes, Eleri; Madine, Jillian

    2004-08-11

    We describe an NMR approach for detecting the interactions between phospholipid membranes and proteins, peptides, or small molecules. First, 1H-13C dipolar coupling profiles are obtained from hydrated lipid samples at natural isotope abundance using cross-polarization magic-angle spinning NMR methods. Principal component analysis of dipolar coupling profiles for synthetic lipid membranes in the presence of a range of biologically active additives reveals clusters that relate to different modes of interaction of the additives with the lipid bilayer. Finally, by representing profiles from multiple samples in the form of contour plots, it is possible to reveal statistically significant changes in dipolar couplings, which reflect perturbations in the lipid molecules at the membrane surface or within the hydrophobic interior.

  15. Principles of metadata organization at the ENCODE data coordination center

    PubMed Central

    Hong, Eurie L.; Sloan, Cricket A.; Chan, Esther T.; Davidson, Jean M.; Malladi, Venkat S.; Strattan, J. Seth; Hitz, Benjamin C.; Gabdank, Idan; Narayanan, Aditi K.; Ho, Marcus; Lee, Brian T.; Rowe, Laurence D.; Dreszer, Timothy R.; Roe, Greg R.; Podduturi, Nikhil R.; Tanaka, Forrest; Hilton, Jason A.; Cherry, J. Michael

    2016-01-01

    The Encyclopedia of DNA Elements (ENCODE) Data Coordinating Center (DCC) is responsible for organizing, describing and providing access to the diverse data generated by the ENCODE project. The description of these data, known as metadata, includes the biological sample used as input, the protocols and assays performed on these samples, the data files generated from the results and the computational methods used to analyze the data. Here, we outline the principles and philosophy used to define the ENCODE metadata in order to create a metadata standard that can be applied to diverse assays and multiple genomic projects. In addition, we present how the data are validated and used by the ENCODE DCC in creating the ENCODE Portal (https://www.encodeproject.org/). Database URL: www.encodeproject.org PMID:26980513

  16. Identification Of Cells With A Compact Microscope Imaging System With Intelligent Controls

    NASA Technical Reports Server (NTRS)

    McDowell, Mark (Inventor)

    2006-01-01

    A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking mic?oscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to autofocus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously.

  17. Tracking of Cells with a Compact Microscope Imaging System with Intelligent Controls

    NASA Technical Reports Server (NTRS)

    McDowell, Mark (Inventor)

    2007-01-01

    A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking microscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to autofocus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously

  18. Tracking of cells with a compact microscope imaging system with intelligent controls

    NASA Technical Reports Server (NTRS)

    McDowell, Mark (Inventor)

    2007-01-01

    A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking microscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to auto-focus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously.

  19. Operation of a Cartesian Robotic System in a Compact Microscope with Intelligent Controls

    NASA Technical Reports Server (NTRS)

    McDowell, Mark (Inventor)

    2006-01-01

    A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking microscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to autofocus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously.

  20. Biological sample collector

    DOEpatents

    Murphy, Gloria A [French Camp, CA

    2010-09-07

    A biological sample collector is adapted to a collect several biological samples in a plurality of filter wells. A biological sample collector may comprise a manifold plate for mounting a filter plate thereon, the filter plate having a plurality of filter wells therein; a hollow slider for engaging and positioning a tube that slides therethrough; and a slide case within which the hollow slider travels to allow the tube to be aligned with a selected filter well of the plurality of filter wells, wherein when the tube is aligned with the selected filter well, the tube is pushed through the hollow slider and into the selected filter well to sealingly engage the selected filter well and to allow the tube to deposit a biological sample onto a filter in the bottom of the selected filter well. The biological sample collector may be portable.

  1. Promoting Inquiry-Based Teaching in Laboratory Courses: Are We Meeting the Grade?

    PubMed Central

    Butler, Amy; Burke da Silva, Karen

    2014-01-01

    Over the past decade, repeated calls have been made to incorporate more active teaching and learning in undergraduate biology courses. The emphasis on inquiry-based teaching is especially important in laboratory courses, as these are the courses in which students are applying the process of science. To determine the current state of research on inquiry-based teaching in undergraduate biology laboratory courses, we reviewed the recent published literature on inquiry-based exercises. The majority of studies in our data set were in the subdisciplines of biochemistry, cell biology, developmental biology, genetics, and molecular biology. In addition, most exercises were guided inquiry, rather than open ended or research based. Almost 75% of the studies included assessment data, with two-thirds of these studies including multiple types of assessment data. However, few exercises were assessed in multiple courses or at multiple institutions. Furthermore, assessments were rarely based on published instruments. Although the results of the studies in our data set show a positive effect of inquiry-based teaching in biology laboratory courses on student learning gains, research that uses the same instrument across a range of courses and institutions is needed to determine whether these results can be generalized. PMID:25185228

  2. A formal concept analysis approach to consensus clustering of multi-experiment expression data

    PubMed Central

    2014-01-01

    Background Presently, with the increasing number and complexity of available gene expression datasets, the combination of data from multiple microarray studies addressing a similar biological question is gaining importance. The analysis and integration of multiple datasets are expected to yield more reliable and robust results since they are based on a larger number of samples and the effects of the individual study-specific biases are diminished. This is supported by recent studies suggesting that important biological signals are often preserved or enhanced by multiple experiments. An approach to combining data from different experiments is the aggregation of their clusterings into a consensus or representative clustering solution which increases the confidence in the common features of all the datasets and reveals the important differences among them. Results We propose a novel generic consensus clustering technique that applies Formal Concept Analysis (FCA) approach for the consolidation and analysis of clustering solutions derived from several microarray datasets. These datasets are initially divided into groups of related experiments with respect to a predefined criterion. Subsequently, a consensus clustering algorithm is applied to each group resulting in a clustering solution per group. These solutions are pooled together and further analysed by employing FCA which allows extracting valuable insights from the data and generating a gene partition over all the experiments. In order to validate the FCA-enhanced approach two consensus clustering algorithms are adapted to incorporate the FCA analysis. Their performance is evaluated on gene expression data from multi-experiment study examining the global cell-cycle control of fission yeast. The FCA results derived from both methods demonstrate that, although both algorithms optimize different clustering characteristics, FCA is able to overcome and diminish these differences and preserve some relevant biological signals. Conclusions The proposed FCA-enhanced consensus clustering technique is a general approach to the combination of clustering algorithms with FCA for deriving clustering solutions from multiple gene expression matrices. The experimental results presented herein demonstrate that it is a robust data integration technique able to produce good quality clustering solution that is representative for the whole set of expression matrices. PMID:24885407

  3. Analytical Challenge in Postmortem Toxicology Applied to a Human Body Found into a Lake after Three Years Immersion.

    PubMed

    Morini, Luca; Vignali, Claudia; Tricomi, Paolo; Groppi, Angelo

    2015-09-01

    The body of a 30-year-old woman was found in Como lake at a depth of about 120 meters in her own car after 3 years of immersion. The aim of this study was to evaluate psychoactive drugs as well as alcohol biomarkers in biological matrices. The following analyses were initially performed: GC-MS systematic toxicological analysis on biological fluids and tissues; GC-MS analysis of drugs of abuse on pubic hair; direct ethanol metabolite determination in pubic hair by LC-MS/MS. After 7 years, the samples, that had been stored at -20°C, were re-analyzed and submitted to an LC-MS/MS targeted screening method, using multiple reaction monitoring mode. These analyses detected citalopram (150-3000 ng/mL), desmethylcitalopram (50-2300 ng/mL), clotiapine (20-65 ng/mL), and ethyl glucuronide (97 pg/mg). The methods showed an acceptable reproducibility, and the concentrations of citalopram and desmethylcitalopram calculated through the two analytical techniques did not significantly differ in biological fluids. © 2015 American Academy of Forensic Sciences.

  4. Discovery and validation of a glioblastoma co-expressed gene module

    PubMed Central

    Dunwoodie, Leland J.; Poehlman, William L.; Ficklin, Stephen P.; Feltus, Frank Alexander

    2018-01-01

    Tumors exhibit complex patterns of aberrant gene expression. Using a knowledge-independent, noise-reducing gene co-expression network construction software called KINC, we created multiple RNAseq-based gene co-expression networks relevant to brain and glioblastoma biology. In this report, we describe the discovery and validation of a glioblastoma-specific gene module that contains 22 co-expressed genes. The genes are upregulated in glioblastoma relative to normal brain and lower grade glioma samples; they are also hypo-methylated in glioblastoma relative to lower grade glioma tumors. Among the proneural, neural, mesenchymal, and classical glioblastoma subtypes, these genes are most-highly expressed in the mesenchymal subtype. Furthermore, high expression of these genes is associated with decreased survival across each glioblastoma subtype. These genes are of interest to glioblastoma biology and our gene interaction discovery and validation workflow can be used to discover and validate co-expressed gene modules derived from any co-expression network. PMID:29541392

  5. Discovery and validation of a glioblastoma co-expressed gene module.

    PubMed

    Dunwoodie, Leland J; Poehlman, William L; Ficklin, Stephen P; Feltus, Frank Alexander

    2018-02-16

    Tumors exhibit complex patterns of aberrant gene expression. Using a knowledge-independent, noise-reducing gene co-expression network construction software called KINC, we created multiple RNAseq-based gene co-expression networks relevant to brain and glioblastoma biology. In this report, we describe the discovery and validation of a glioblastoma-specific gene module that contains 22 co-expressed genes. The genes are upregulated in glioblastoma relative to normal brain and lower grade glioma samples; they are also hypo-methylated in glioblastoma relative to lower grade glioma tumors. Among the proneural, neural, mesenchymal, and classical glioblastoma subtypes, these genes are most-highly expressed in the mesenchymal subtype. Furthermore, high expression of these genes is associated with decreased survival across each glioblastoma subtype. These genes are of interest to glioblastoma biology and our gene interaction discovery and validation workflow can be used to discover and validate co-expressed gene modules derived from any co-expression network.

  6. Imaging of human differentiated 3D neural aggregates using light sheet fluorescence microscopy.

    PubMed

    Gualda, Emilio J; Simão, Daniel; Pinto, Catarina; Alves, Paula M; Brito, Catarina

    2014-01-01

    The development of three dimensional (3D) cell cultures represents a big step for the better understanding of cell behavior and disease in a more natural like environment, providing not only single but multiple cell type interactions in a complex 3D matrix, highly resembling physiological conditions. Light sheet fluorescence microscopy (LSFM) is becoming an excellent tool for fast imaging of such 3D biological structures. We demonstrate the potential of this technique for the imaging of human differentiated 3D neural aggregates in fixed and live samples, namely calcium imaging and cell death processes, showing the power of imaging modality compared with traditional microscopy. The combination of light sheet microscopy and 3D neural cultures will open the door to more challenging experiments involving drug testing at large scale as well as a better understanding of relevant biological processes in a more realistic environment.

  7. A reference protocol for comparing the biocidal properties of gas plasma generating devices

    NASA Astrophysics Data System (ADS)

    Shaw, A.; Seri, P.; Borghi, C. A.; Shama, G.; Iza, F.

    2015-12-01

    Growing interest in the use of non-thermal, atmospheric pressure gas plasmas for decontamination purposes has resulted in a multiplicity of plasma-generating devices. There is currently no universally approved method of comparing the biocidal performance of such devices and in the work described here spores of the Gram positive bacterium Bacillus subtilis (ATCC 6633) are proposed as a suitable reference biological agent. In order to achieve consistency in the form in which the biological agent in question is presented to the plasma, a polycarbonate membrane loaded with a monolayer of spores is proposed. The advantages of the proposed protocol are evaluated by comparing inactivation tests in which an alternative microorganism (methicillin resistant Staphylococcus aureus—MRSA) and the widely-used sample preparation technique of directly pipetting cell suspensions onto membranes are employed. In all cases, inactivation tests with either UV irradiation or plasma exposure were more reproducible when the proposed protocol was followed.

  8. Daily variations in oligosaccharides of human milk determined by microfluidic chips and mass spectrometry.

    PubMed

    Niñonuevo, Milady R; Perkins, Patrick D; Francis, Jimi; Lamotte, Latasha M; LoCascio, Riccardo G; Freeman, Samara L; Mills, David A; German, J Bruce; Grimm, Rudolf; Lebrilla, Carlito B

    2008-01-23

    Human milk is a complex biological fluid that provides not only primary nourishment for infants but also protection against pathogens and influences their metabolic, immunologic, and even cognitive development. The presence of oligosaccharides in remarkable abundance in human milk has been associated to provide diverse biological functions including directing the development of an infant's intestinal microflora and immune system. Recent advances in analytical tools offer invaluable insights in understanding the specific functions and health benefits these biomolecules impart to infants. Oligosaccharides in human milk samples obtained from five different individual donors over the course of a 3 month lactation period were isolated and analyzed using HPLC-Chip/TOF-MS technology. The levels and compositions of oligosaccharides in human milk were investigated from five individual donors. Comparison of HPLC-Chip/TOF-MS oligosaccharides profiles revealed heterogeneity among multiple individuals with no significant variations at different stages of lactation within individual donors.

  9. Imaging of human differentiated 3D neural aggregates using light sheet fluorescence microscopy

    PubMed Central

    Gualda, Emilio J.; Simão, Daniel; Pinto, Catarina; Alves, Paula M.; Brito, Catarina

    2014-01-01

    The development of three dimensional (3D) cell cultures represents a big step for the better understanding of cell behavior and disease in a more natural like environment, providing not only single but multiple cell type interactions in a complex 3D matrix, highly resembling physiological conditions. Light sheet fluorescence microscopy (LSFM) is becoming an excellent tool for fast imaging of such 3D biological structures. We demonstrate the potential of this technique for the imaging of human differentiated 3D neural aggregates in fixed and live samples, namely calcium imaging and cell death processes, showing the power of imaging modality compared with traditional microscopy. The combination of light sheet microscopy and 3D neural cultures will open the door to more challenging experiments involving drug testing at large scale as well as a better understanding of relevant biological processes in a more realistic environment. PMID:25161607

  10. GHSI EMERGENCY RADIONUCLIDE BIOASSAY LABORATORY NETWORK - SUMMARY OF THE SECOND EXERCISE.

    PubMed

    Li, Chunsheng; Bartizel, Christine; Battisti, Paolo; Böttger, Axel; Bouvier, Céline; Capote-Cuellar, Antonio; Carr, Zhanat; Hammond, Derek; Hartmann, Martina; Heikkinen, Tarja; Jones, Robert L; Kim, Eunjoo; Ko, Raymond; Koga, Roberto; Kukhta, Boris; Mitchell, Lorna; Morhard, Ryan; Paquet, Francois; Quayle, Debora; Rulik, Petr; Sadi, Baki; Sergei, Aleksanin; Sierra, Inmaculada; de Oliveira Sousa, Wanderson; Szab, Gyula

    2017-05-01

    The Global Health Security Initiative (GHSI) established a laboratory network within the GHSI community to develop collective surge capacity for radionuclide bioassay in response to a radiological or nuclear emergency as a means of enhancing response capability, health outcomes and community resilience. GHSI partners conducted an exercise in collaboration with the WHO Radiation Emergency Medical Preparedness and Assistance Network and the IAEA Response and Assistance Network, to test the participating laboratories (18) for their capabilities in in vitro assay of biological samples, using a urine sample spiked with multiple high-risk radionuclides (90Sr, 106Ru, 137Cs, and 239Pu). Laboratories were required to submit their reports within 72 h following receipt of the sample, using a pre-formatted template, on the procedures, methods and techniques used to identify and quantify the radionuclides in the sample, as well as the bioassay results with a 95% confidence interval. All of the participating laboratories identified and measured all or some of the radionuclides in the sample. However, gaps were identified in both the procedures used to assay multiple radionuclides in one sample, as well as in the methods or techniques used to assay specific radionuclides in urine. Two-third of the participating laboratories had difficulties in determining all the radionuclides in the sample. Results from this exercise indicate that challenges remain with respect to ensuring that results are delivered in a timely, consistent and reliable manner to support medical interventions. Laboratories within the networks are encouraged to work together to develop and maintain collective capabilities and capacity for emergency bioassay, which is an important component of radiation emergency response. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. GHSI Emergency Radionuclide Bioassay Laboratory Network - Summary of the Second Exercise

    PubMed Central

    Li, Chunsheng; Bartizel, Christine; Battisti, Paolo; Böttger, Axel; Bouvier, Céline; Capote-Cuellar, Antonio; Carr, Zhanat; Hammond, Derek; Hartmann, Martina; Heikkinen, Tarja; Jones, Robert L.; Kim, Eunjoo; Ko, Raymond; Koga, Roberto; Kukhta, Boris; Mitchell, Lorna; Morhard, Ryan; Paquet, Francois; Quayle, Debora; Rulik, Petr; Sadi, Baki; Sergei, Aleksanin; Sierra, Inmaculada; de Oliveira Sousa, Wanderson; Szabó, Gyula

    2017-01-01

    The Global Health Security Initiative (GHSI) established a laboratory network within the GHSI community to develop collective surge capacity for radionuclide bioassay in response to a radiological or nuclear emergency as a means of enhancing response capability, health outcomes and community resilience. GHSI partners conducted an exercise in collaboration with the WHO REMPAN (Radiation Emergency Medical Preparedness and Assistance Network) and the IAEA RANET (Response and Assistance Network), to test the participating laboratories (18) for their capabilities in in vitro assay of biological samples, using a urine sample spiked with multiple high-risk radionuclides (90Sr, 106Ru, 137Cs, and 239Pu). Laboratories were required to submit their reports within 72 hours following receipt of the sample, using a pre-formatted template, on the procedures, methods and techniques used to identify and quantify the radionuclides in the sample, as well as the bioassay results with a 95% confidence interval. All of the participating laboratories identified and measured all or some of the radionuclides in the sample. However, gaps were identified in both the procedures used to assay multiple radionuclides in one sample, as well as in the methods or techniques used to assay specific radionuclides in urine. Two third of the participating laboratories had difficulties in determining all the radionuclides in the sample. Results from this exercise indicate that challenges remain with respect to ensuring that results are delivered in a timely, consistent and reliable manner to support medical interventions. Laboratories within the networks are encouraged to work together to develop and maintain collective capabilities and capacity for emergency bioassay, which is an important component of radiation emergency response. PMID:27574317

  12. Rapid LC-MS/MS profiling of protein amino acids and metabolically related compounds for large-scale assessment of metabolic phenotypes.

    PubMed

    Gu, Liping; Jones, A Daniel; Last, Robert L

    2012-01-01

    Amino acids extracted from a biological matrix can be resolved and measured using a 6-min per sample method through high-performance liquid chromatography with a short C18 column and rapid gradient using the ion-pairing reagent perfluoroheptanoic acid. LC-tandem mass spectrometry with multiple reaction monitoring (MRM) transitions selective for each compound allows simultaneous quantification of the 20 proteinogenic amino acids and 5 metabolically related compounds. Distinct MRM transitions were also established for selective detection of the isomers leucine/isoleucine and threonine/homoserine.

  13. Using multi-criteria analysis of simulation models to understand complex biological systems

    Treesearch

    Maureen C. Kennedy; E. David Ford

    2011-01-01

    Scientists frequently use computer-simulation models to help solve complex biological problems. Typically, such models are highly integrated, they produce multiple outputs, and standard methods of model analysis are ill suited for evaluating them. We show how multi-criteria optimization with Pareto optimality allows for model outputs to be compared to multiple system...

  14. Practice Makes Pretty Good: Assessment of Primary Literature Reading Abilities across Multiple Large-Enrollment Biology Laboratory Courses

    ERIC Educational Resources Information Center

    Sato, Brian K.; Kadandale, Pavan; He, Wenliang; Murata, Paige M. N.; Latif, Yama; Warschauer, Mark

    2014-01-01

    Primary literature is essential for scientific communication and is commonly utilized in undergraduate biology education. Despite this, there is often little time spent "training" our students how to critically analyze a paper. To address this, we introduced a primary literature module in multiple upper-division laboratory courses. In…

  15. Inspiring Integration in College Students Reading Multiple Biology Texts

    ERIC Educational Resources Information Center

    Firetto, Carla

    2013-01-01

    Introductory biology courses typically present topics on related biological systems across separate chapters and lectures. A complete foundational understanding requires that students understand how these biological systems are related. Unfortunately, spontaneous generation of these connections is rare for novice learners. These experiments focus…

  16. An integrated approach for identifying priority contaminant in the Great Lakes Basin - Investigations in the Lower Green Bay/Fox River and Milwaukee Estuary areas of concern.

    PubMed

    Li, Shibin; Villeneuve, Daniel L; Berninger, Jason P; Blackwell, Brett R; Cavallin, Jenna E; Hughes, Megan N; Jensen, Kathleen M; Jorgenson, Zachary; Kahl, Michael D; Schroeder, Anthony L; Stevens, Kyle E; Thomas, Linnea M; Weberg, Matthew A; Ankley, Gerald T

    2017-02-01

    Environmental assessment of complex mixtures typically requires integration of chemical and biological measurements. This study demonstrates the use of a combination of instrumental chemical analyses, effects-based monitoring, and bio-effects prediction approaches to help identify potential hazards and priority contaminants in two Great Lakes Areas of Concern (AOCs), the Lower Green Bay/Fox River located near Green Bay, WI, USA and the Milwaukee Estuary, located near Milwaukee, WI, USA. Fathead minnows were caged at four sites within each AOC (eight sites total). Following 4d of in situ exposure, tissues and biofluids were sampled and used for targeted biological effects analyses. Additionally, 4d composite water samples were collected concurrently at each caged fish site and analyzed for 132 analytes as well as evaluated for total estrogenic and androgenic activity using cell-based bioassays. Of the analytes examined, 75 were detected in composite samples from at least one site. Based on multiple analyses, one site in the East River and another site near a paper mill discharge in the Lower Green Bay/Fox River AOC, were prioritized due to their estrogenic and androgenic activity, respectively. The water samples from other sites generally did not exhibit significant estrogenic or androgenic activity, nor was there evidence for endocrine disruption in the fish exposed at these sites as indicated by the lack of alterations in ex vivo steroid production, circulating steroid concentrations, or vitellogenin mRNA expression in males. Induction of hepatic cyp1a mRNA expression was detected at several sites, suggesting the presence of chemicals that activate the aryl hydrocarbon receptor. To expand the scope beyond targeted investigation of endpoints selected a priori, several bio-effects prediction approaches were employed to identify other potentially disturbed biological pathways and related chemical constituents that may warrant future monitoring at these sites. For example, several chemicals such as diethylphthalate and naphthalene, and genes and related pathways, such as cholinergic receptor muscarinic 3 (CHRM3), estrogen receptor alpha1 (esr1), chemokine ligand 10 protein (CXCL10), tumor protein p53 (p53), and monoamine oxidase B (Maob), were identified as candidates for future assessments at these AOCs. Overall, this study demonstrates that a better prioritization of contaminants and associated hazards can be achieved through integrated evaluation of multiple lines of evidence. Such prioritization can guide more comprehensive follow-up risk assessment efforts. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Molecular design of boronic acid-functionalized squarylium cyanine dyes for multiple discriminant analysis of sialic acid in biological samples: selectivity toward monosaccharides controlled by different alkyl side chain lengths.

    PubMed

    Ouchi, Kazuki; Colyer, Christa L; Sebaiy, Mahmoud; Zhou, Jin; Maeda, Takeshi; Nakazumi, Hiroyuki; Shibukawa, Masami; Saito, Shingo

    2015-02-03

    We designed a new series of boronic acid-functionalized squarylium cyanine dyes (SQ-BA) with different lengths of alkyl chain residues, suitable for multiple discriminant analysis (MDA) of sialic acid (Neu5Ac) in biological samples. The SQ-BA dyes form aggregates based on hydrophobic interactions, which result in quenched fluorescence in aqueous solutions. When the boronic acid binds with saccharides, the fluorescence intensity increases as a result of dissociation to the emissive monomeric complex. We inferred that different dye aggregate structures (H-aggregates and J-aggregates) were induced depending on the alkyl chain length, so that monosaccharides would be recognized in different ways (especially, multipoint interaction with J-aggregates). A distinctive emission enhancement of SQ-BA dyes with shorter-alkyl-chains in the presence of Neu5Ac was observed (2.4-fold fluorescence enhancement; with formation constant 10(1.7) M(-1)), with no such enhancement for SQ-BA dyes with longer-alkyl-chain. In addition, various enhancement factors for other monosaccharides were observed depending on the alkyl chain length. Detailed thermodynamic and NMR studies of the SQ-BA complexes revealed the unique recognition mechanism: the dye aggregate with a shorter-alkyl-chain causes the slipped parallel structure and forms a stable 2:1 complex with Neu5Ac, as distinct from longer-alkyl-chain dyes, which form a 1:1 monomeric complex. MDA using the four SQ-BA dyes was performed for human urine samples, resulting in the successful discrimination between normal and abnormal Neu5Ac levels characteristic of disease. Thus, we successfully controlled various responses to similar monosaccharides with a novel approach that chemically modified not the boronic acid moiety itself but the length of the alkyl chain residue attached to the dye in order to generate specificity.

  18. Evaluation of Protein Profiles From Treated Xenograft Tumor Models Identifies an Antibody Panel for Formalin-fixed and Paraffin-embedded (FFPE) Tissue Analysis by Reverse Phase Protein Arrays (RPPA)*

    PubMed Central

    Bader, Sabine; Zajac, Magdalena; Friess, Thomas; Ruge, Elisabeth; Rieder, Natascha; Gierke, Berthold; Heubach, Yvonne; Thomas, Marlene; Pawlak, Michael

    2015-01-01

    Reverse phase protein arrays (RPPA) are an established tool for measuring the expression and activation status of multiple proteins in parallel using only very small amounts of tissue. Several studies have demonstrated the value of this technique for signaling pathway analysis using proteins extracted from fresh frozen (FF) tissue in line with validated antibodies for this tissue type; however, formalin fixation and paraffin embedding (FFPE) is the standard method for tissue preservation in the clinical setting. Hence, we performed RPPA to measure profiles for a set of 300 protein markers using matched FF and FFPE tissue specimens to identify which markers performed similarly using the RPPA technique in fixed and unfixed tissues. Protein lysates were prepared from matched FF and FFPE tissue specimens of individual tumors taken from three different xenograft models of human cancer. Materials from both untreated mice and mice treated with either anti-HER3 or bispecific anti-IGF-1R/EGFR monoclonal antibodies were analyzed. Correlations between signals from FF and FFPE tissue samples were investigated. Overall, 60 markers were identified that produced comparable profiles between FF and FFPE tissues, demonstrating significant correlation between the two sample types. The top 25 markers also showed significance after correction for multiple testing. The panel of markers covered several clinically relevant tumor signaling pathways and both phosphorylated and nonphosphorylated proteins were represented. Biologically relevant changes in marker expression were noted when RPPA profiles from treated and untreated xenografts were compared. These data demonstrate that, using appropriately selected antibodies, RPPA analysis from FFPE tissue is well feasible and generates biologically meaningful information. The identified panel of markers that generate similar profiles in matched fixed and unfixed tissue samples may be clinically useful for pharmacodynamic studies of drug effect using FFPE tissues. PMID:26106084

  19. A Combined Pathway and Regional Heritability Analysis Indicates NETRIN1 Pathway Is Associated With Major Depressive Disorder.

    PubMed

    Zeng, Yanni; Navarro, Pau; Fernandez-Pujals, Ana M; Hall, Lynsey S; Clarke, Toni-Kim; Thomson, Pippa A; Smith, Blair H; Hocking, Lynne J; Padmanabhan, Sandosh; Hayward, Caroline; MacIntyre, Donald J; Wray, Naomi R; Deary, Ian J; Porteous, David J; Haley, Chris S; McIntosh, Andrew M

    2017-02-15

    Genome-wide association studies (GWASs) of major depressive disorder (MDD) have identified few significant associations. Testing the aggregation of genetic variants, in particular biological pathways, may be more powerful. Regional heritability analysis can be used to detect genomic regions that contribute to disease risk. We integrated pathway analysis and multilevel regional heritability analyses in a pipeline designed to identify MDD-associated pathways. The pipeline was applied to two independent GWAS samples [Generation Scotland: The Scottish Family Health Study (GS:SFHS, N = 6455) and Psychiatric Genomics Consortium (PGC:MDD) (N = 18,759)]. A polygenic risk score (PRS) composed of single nucleotide polymorphisms from the pathway most consistently associated with MDD was created, and its accuracy to predict MDD, using area under the curve, logistic regression, and linear mixed model analyses, was tested. In GS:SFHS, four pathways were significantly associated with MDD, and two of these explained a significant amount of pathway-level regional heritability. In PGC:MDD, one pathway was significantly associated with MDD. Pathway-level regional heritability was significant in this pathway in one subset of PGC:MDD. For both samples the regional heritabilities were further localized to the gene and subregion levels. The NETRIN1 signaling pathway showed the most consistent association with MDD across the two samples. PRSs from this pathway showed competitive predictive accuracy compared with the whole-genome PRSs when using area under the curve statistics, logistic regression, and linear mixed model. These post-GWAS analyses highlight the value of combining multiple methods on multiple GWAS data for the identification of risk pathways for MDD. The NETRIN1 signaling pathway is identified as a candidate pathway for MDD and should be explored in further large population studies. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  20. Effects of cyanoacrylate fuming, time after recovery, and location of biological material on the recovery and analysis of DNA from post-blast pipe bomb fragments*.

    PubMed

    Bille, Todd W; Cromartie, Carter; Farr, Matthew

    2009-09-01

    This study investigated the effects of time, cyanoacrylate fuming, and location of the biological material on DNA analysis of post-blast pipe bomb fragments. Multiple aliquots of a cell suspension (prepared by soaking buccal swabs in water) were deposited on components of the devices prior to assembly. The pipe bombs were then deflagrated and the fragments recovered. Fragments from half of the devices were cyanoacrylate fumed. The cell spots on the fragments were swabbed and polymerase chain reaction/short tandem repeat analysis was performed 1 week and 3 months after deflagration. A significant decrease in the amount of DNA recovered was observed between samples collected and analyzed within 1 week compared with the samples collected and analyzed 3 months after deflagration. Cyanoacrylate fuming did not have a measurable effect on the success of the DNA analysis at either time point. Greater quantities of DNA were recovered from the pipe nipples than the end caps. Undeflagrated controls showed that the majority (>95%) of the DNA deposited on the devices was not recovered at a week or 3 months.

  1. Mutagenicity and in vivo toxicity of combined particulate and semivolatile organic fractions of gasoline and diesel engine emissions.

    PubMed

    Seagrave, JeanClare; McDonald, Jacob D; Gigliotti, Andrew P; Nikula, Kristen J; Seilkop, Steven K; Gurevich, Michael; Mauderly, Joe L

    2002-12-01

    Exposure to engine emissions is associated with adverse health effects. However, little is known about the relative effects of emissions produced by different operating conditions, fuels, or technologies. Rapid screening techniques are needed to compare the biological effects of emissions with different characteristics. Here, we examined a set of engine emission samples using conventional bioassays. The samples included combined particulate material and semivolatile organic compound fractions of emissions collected from normal- and high-emitter gasoline and diesel vehicles collected at 72 degrees F, and from normal-emitter groups collected at 30 degrees F. The relative potency of the samples was determined by statistical analysis of the dose-response curves. All samples induced bacterial mutagenicity, with a 10-fold range of potency among the samples. Responses to intratracheal instillation in rats indicated generally parallel rankings of the samples by multiple endpoints reflecting cytotoxic, inflammatory, and lung parenchymal changes, allowing selection of a more limited set of parameters for future studies. The parameters selected to assess oxidative stress and macrophage function yielded little useful information. Responses to instillation indicated little difference in potency per unit of combined particulate material and semivolatile organic compound mass between normal-emitter gasoline and diesel vehicles, or between emissions collected at different temperatures. However, equivalent masses of emissions from high-emitter vehicles of both types were more potent than those from normal-emitters. While preliminary in terms of assessing contributions of different emissions to health hazards, the results indicate that a subset of this panel of assays will be useful in providing rapid, cost-effective feedback on the biological impact of modified technology.

  2. Reproducibility of combinatorial peptide ligand libraries for proteome capture evaluated by selected reaction monitoring.

    PubMed

    Di Girolamo, Francesco; Righetti, Pier Giorgio; Soste, Martin; Feng, Yuehan; Picotti, Paola

    2013-08-26

    Systems biology studies require the capability to quantify with high precision proteins spanning a broad range of abundances across multiple samples. However, the broad range of protein expression in cells often precludes the detection of low-abundance proteins. Different sample processing techniques can be applied to increase proteome coverage. Among these, combinatorial (hexa)peptide ligand libraries (CPLLs) bound to solid matrices have been used to specifically capture and detect low-abundance proteins in complex samples. To assess whether CPLL capture can be applied in systems biology studies involving the precise quantitation of proteins across a multitude of samples, we evaluated its performance across the whole range of protein abundances in Saccharomyces cerevisiae. We used selected reaction monitoring assays for a set of target proteins covering a broad abundance range to quantitatively evaluate the precision of the approach and its capability to detect low-abundance proteins. Replicated CPLL-isolates showed an average variability of ~10% in the amount of the isolated proteins. The high reproducibility of the technique was not dependent on the abundance of the protein or the amount of beads used for the capture. However, the protein-to-bead ratio affected the enrichment of specific proteins. We did not observe a normalization effect of CPLL beads on protein abundances. However, CPLLs enriched for and depleted specific sets of proteins and thus changed the abundances of proteins from a whole proteome extract. This allowed the identification of ~400 proteins otherwise undetected in an untreated sample, under the experimental conditions used. CPLL capture is thus a useful tool to increase protein identifications in proteomic experiments, but it should be coupled to the analysis of untreated samples, to maximize proteome coverage. Our data also confirms that CPLL capture is reproducible and can be confidently used in quantitative proteomic experiments. Combinatorial hexapeptide ligand libraries (CPLLs) bound to solid matrices have been proposed to specifically capture and detect low-abundance proteins in complex samples. To assess whether the CPLL capture can be confidently applied in systems biology studies involving the precise quantitation of proteins across a broad range of abundances and a multitude of samples, we evaluated its reproducibility and performance features. Using selected reaction monitoring assays for proteins covering the whole range of abundances we show that the technique is reproducible and compatible with quantitative proteomic studies. However, the protein-to-bead ratio affects the enrichment of specific proteins and CPLLs depleted specific sets of proteins from a whole proteome extract. Our results suggest that CPLL-based analyses should be coupled to the analysis of untreated samples, to maximize proteome coverage. Overall, our data confirms the applicability of CPLLs in systems biology research and guides the correct use of this technique. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Evaluating levels and health risk of heavy metals in exposed workers from surgical instrument manufacturing industries of Sialkot, Pakistan.

    PubMed

    Junaid, Muhammad; Hashmi, Muhammad Zaffar; Malik, Riffat Naseem

    2016-09-01

    The study aimed to monitor heavy metal (chromium, Cr; cadmium, Cd; nickel, Ni; copper, Cu; lead, Pb; iron, Fe; manganese, Mn; and zinc, Zn) footprints in biological matrices (urine, whole blood, saliva, and hair), as well as in indoor industrial dust samples, and their toxic effects on oxidative stress and health risks in exposed workers. Overall, blood, urine, and saliva samples exhibited significantly higher concentrations of toxic metals in exposed workers (Cr; blood 16.30 μg/L, urine 58.15 μg/L, saliva 5.28 μg/L) than the control samples (Cr; blood 5.48 μg/L, urine 4.47 μg/L, saliva 2.46 μg/L). Indoor industrial dust samples also reported to have elevated heavy metal concentrations, as an example, Cr quantified with concentration of 299 mg/kg of dust, i.e., more than twice the level of Cr in household dust (136 mg/kg). Superoxide dismutase (SOD) level presented significant positive correlation (p ≤ 0.01) with Cr, Zn, and Cd (Cr > Zn > Cd) which is an indication of heavy metal's associated raised oxidative stress in exposed workers. Elevated average daily intake (ADI) of heavy metals resulted in cumulative hazard quotient (HQ) range of 2.97-18.88 in workers of different surgical units; this is an alarming situation of health risk implications. Principal component analysis-multiple linear regression (PCA-MLR)-based pie charts represent that polishing and cutting sections exhibited highest metal inputs to the biological and environmental matrices than other sources. Heavy metal concentrations in biological matrices and dust samples showed a significant positive correlation between Cr in dust, urine, and saliva samples. Current study will help to generate comprehensive base line data of heavy metal status in biomatrices and dust from scientifically ignored industrial sector. Our findings can play vital role for health departments and industrial environmental management system (EMS) authorities in policy making and implementation.

  4. Direct Analysis of Amphetamine Stimulants in a Whole Urine Sample by Atmospheric Solids Analysis Probe Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Crevelin, Eduardo J.; Salami, Fernanda H.; Alves, Marcela N. R.; De Martinis, Bruno S.; Crotti, Antônio E. M.; Moraes, Luiz A. B.

    2016-05-01

    Amphetamine-type stimulants (ATS) are among illicit stimulant drugs that are most often used worldwide. A major challenge is to develop a fast and efficient methodology involving minimal sample preparation to analyze ATS in biological fluids. In this study, a urine pool solution containing amphetamine, methamphetamine, ephedrine, sibutramine, and fenfluramine at concentrations ranging from 0.5 pg/mL to 100 ng/mL was prepared and analyzed by atmospheric solids analysis probe tandem mass spectrometry (ASAP-MS/MS) and multiple reaction monitoring (MRM). A urine sample and saliva collected from a volunteer contributor (V1) were also analyzed. The limit of detection of the tested compounds ranged between 0.002 and 0.4 ng/mL in urine samples; the signal-to-noise ratio was 5. These results demonstrated that the ASAP-MS/MS methodology is applicable for the fast detection of ATS in urine samples with great sensitivity and specificity, without the need for cleanup, preconcentration, or chromatographic separation. Thus ASAP-MS/MS could potentially be used in clinical and forensic toxicology applications.

  5. Proteasome 20S in multiple myeloma: comparison of concentration and chymotrypsin-like activity in plasma and serum.

    PubMed

    Romaniuk, Wioletta; Kalita, Joanna; Ostrowska, Halina; Kloczko, Janusz

    2018-03-05

    The ubiquitin-proteasome system is relevant in the pathobiology of many haematological malignancies, including multiple myeloma. The assessment of proteasome concentration and chymotrypsin-like (ChT-L) activity might constitute a new approach to diagnosis, prognosis and monitoring of anticancer treatment of patients with haematological malignancies and other diseases. The aim of our study was to determine which material, plasma or serum, is better for measuring chymotrypsin-like (ChT-L) activity and proteasome concentration. We analysed proteasome concentration and chymotrypsin-like (ChT-L) activity in 70 plasma and serum samples drawn from 28 patients at different treatment stages for multiple myeloma (MM) and 31 healthy volunteers. Proteasome ChT-L activity and concentration in multiple myeloma patients were significantly higher in plasma compared to serum. In this group we observed significant and positive correlations both between the plasma and serum proteasome ChT-L activity and plasma and serum proteasome concentration. The higher values of proteasome concentration and ChT-L activity in plasma than in serum and their better correlations with parameters of tumour load and prognosis suggest that plasma constitutes a better biological material for measuring ChT-L activity and proteasome concentration than serum in multiple myeloma patients.

  6. Seeking unique and common biological themes in multiple gene lists or datasets: pathway pattern extraction pipeline for pathway-level comparative analysis.

    PubMed

    Yi, Ming; Mudunuri, Uma; Che, Anney; Stephens, Robert M

    2009-06-29

    One of the challenges in the analysis of microarray data is to integrate and compare the selected (e.g., differential) gene lists from multiple experiments for common or unique underlying biological themes. A common way to approach this problem is to extract common genes from these gene lists and then subject these genes to enrichment analysis to reveal the underlying biology. However, the capacity of this approach is largely restricted by the limited number of common genes shared by datasets from multiple experiments, which could be caused by the complexity of the biological system itself. We now introduce a new Pathway Pattern Extraction Pipeline (PPEP), which extends the existing WPS application by providing a new pathway-level comparative analysis scheme. To facilitate comparing and correlating results from different studies and sources, PPEP contains new interfaces that allow evaluation of the pathway-level enrichment patterns across multiple gene lists. As an exploratory tool, this analysis pipeline may help reveal the underlying biological themes at both the pathway and gene levels. The analysis scheme provided by PPEP begins with multiple gene lists, which may be derived from different studies in terms of the biological contexts, applied technologies, or methodologies. These lists are then subjected to pathway-level comparative analysis for extraction of pathway-level patterns. This analysis pipeline helps to explore the commonality or uniqueness of these lists at the level of pathways or biological processes from different but relevant biological systems using a combination of statistical enrichment measurements, pathway-level pattern extraction, and graphical display of the relationships of genes and their associated pathways as Gene-Term Association Networks (GTANs) within the WPS platform. As a proof of concept, we have used the new method to analyze many datasets from our collaborators as well as some public microarray datasets. This tool provides a new pathway-level analysis scheme for integrative and comparative analysis of data derived from different but relevant systems. The tool is freely available as a Pathway Pattern Extraction Pipeline implemented in our existing software package WPS, which can be obtained at http://www.abcc.ncifcrf.gov/wps/wps_index.php.

  7. Open sepulchers and closed boundaries? Biodistance analysis of cemetery structure and postmarital residence in the late prehispanic Andes.

    PubMed

    Velasco, Matthew C

    2018-05-16

    In the Late Intermediate Period Andes (AD 1100-1450), the proliferation of above-ground sepulchers reconfigured social boundaries within and between communities engaged in protracted conflict. However, the biosocial dimensions of these mortuary practices, and their implications for conflict and alliance formation, remain unexplored. This study examines patterns of phenotypic variation to: (1) evaluate if open sepulchers were organized on the basis of biological relatedness, and (2) explore if sex-specific phenotypic variability conforms to models of postmarital residence. Cranial nonmetric traits were recorded in five skeletal samples from two cemeteries in the Colca Valley, Peru. Biological distances between burial groups were calculated using the Mean Measure of Divergence (MMD) statistic. Postmarital residence was explored by calculating and bootstrapping the ratio of male-to-female mean pairwise differences (MPD) at the within-group level. The MMD analysis yields greater than expected between-group distances for burial groups with a minimum sample size of 20 individuals. In contrast, a prevailing pattern of sex-specific, within-group phenotypic variability is not apparent from the analysis of MPD. The use of 12 or 24 dichotomous traits produces similar results. Greater than expected biological distances suggest that above-ground mortuary practices reinforced biosocial boundaries between corporate household groups. Intracemetery heterogeneity persisted even as cranial vault modification, a correlate of social identity, became more homogenous, revealing how corporate group organization was negotiated at multiple scales. Sex-specific variation does not conform to traditional migration models. If migration occurred, it did not have a homogenizing effect on phenotypic variation. These results should be viewed with caution in light of the smaller sample sizes of sex-specific groupings. © 2018 Wiley Periodicals, Inc.

  8. Microscopy of biological sample through advanced diffractive optics from visible to X-ray wavelength regime.

    PubMed

    Di Fabrizio, Enzo; Cojoc, Dan; Emiliani, Valentina; Cabrini, Stefano; Coppey-Moisan, Maite; Ferrari, Enrico; Garbin, Valeria; Altissimo, Matteo

    2004-11-01

    The aim of this report is to demonstrate a unified version of microscopy through the use of advanced diffractive optics. The unified scheme derives from the technical possibility of realizing front wave engineering in a wide range of electromagnetic spectrum. The unified treatment is realized through the design and nanofabrication of phase diffractive elements (PDE) through which wave front beam shaping is obtained. In particular, we will show applications, by using biological samples, ranging from micromanipulation using optical tweezers to X-ray differential interference contrast (DIC) microscopy combined with X-ray fluorescence. We report some details on the design and physical implementation of diffractive elements that besides focusing also perform other optical functions: beam splitting, beam intensity, and phase redistribution or mode conversion. Laser beam splitting is used for multiple trapping and independent manipulation of micro-beads surrounding a cell as an array of tweezers and for arraying and sorting microscopic size biological samples. Another application is the Gauss to Laguerre-Gauss mode conversion, which allows for trapping and transfering orbital angular momentum of light to micro-particles immersed in a fluid. These experiments are performed in an inverted optical microscope coupled with an infrared laser beam and a spatial light modulator for diffractive optics implementation. High-resolution optics, fabricated by means of e-beam lithography, are demonstrated to control the intensity and the phase of the sheared beams in x-ray DIC microscopy. DIC experiments with phase objects reveal a dramatic increase in image contrast compared to bright-field x-ray microscopy. Besides the topographic information, fluorescence allows detection of certain chemical elements (Cl, P, Sc, K) in the same setup, by changing the photon energy of the x-ray beam. (c) 2005 Wiley-Liss, Inc.

  9. Do Sophisticated Epistemic Beliefs Predict Meaningful Learning? Findings from a Structural Equation Model of Undergraduate Biology Learning

    ERIC Educational Resources Information Center

    Lee, Silvia Wen-Yu; Liang, Jyh-Chong; Tsai, Chin-Chung

    2016-01-01

    This study investigated the relationships among college students' epistemic beliefs in biology (EBB), conceptions of learning biology (COLB), and strategies of learning biology (SLB). EBB includes four dimensions, namely "multiple-source," "uncertainty," "development," and "justification." COLB is further…

  10. Identification of species by multiplex analysis of variable-length sequences

    PubMed Central

    Pereira, Filipe; Carneiro, João; Matthiesen, Rune; van Asch, Barbara; Pinto, Nádia; Gusmão, Leonor; Amorim, António

    2010-01-01

    The quest for a universal and efficient method of identifying species has been a longstanding challenge in biology. Here, we show that accurate identification of species in all domains of life can be accomplished by multiplex analysis of variable-length sequences containing multiple insertion/deletion variants. The new method, called SPInDel, is able to discriminate 93.3% of eukaryotic species from 18 taxonomic groups. We also demonstrate that the identification of prokaryotic and viral species with numeric profiles of fragment lengths is generally straightforward. A computational platform is presented to facilitate the planning of projects and includes a large data set with nearly 1800 numeric profiles for species in all domains of life (1556 for eukaryotes, 105 for prokaryotes and 130 for viruses). Finally, a SPInDel profiling kit for discrimination of 10 mammalian species was successfully validated on highly processed food products with species mixtures and proved to be easily adaptable to multiple screening procedures routinely used in molecular biology laboratories. These results suggest that SPInDel is a reliable and cost-effective method for broad-spectrum species identification that is appropriate for use in suboptimal samples and is amenable to different high-throughput genotyping platforms without the need for DNA sequencing. PMID:20923781

  11. Evidence of a prominent genetic basis for associations between psychoneurometric traits and common mental disorders.

    PubMed

    Venables, Noah C; Hicks, Brian M; Yancey, James R; Kramer, Mark D; Nelson, Lindsay D; Strickland, Casey M; Krueger, Robert F; Iacono, William G; Patrick, Christopher J

    2017-05-01

    Threat sensitivity (THT) and weak inhibitory control (or disinhibition; DIS) are trait constructs that relate to multiple types of psychopathology and can be assessed psychoneurometrically (i.e., using self-report and physiological indicators combined). However, to establish that psychoneurometric assessments of THT and DIS index biologically-based liabilities, it is important to clarify the etiologic bases of these variables and their associations with clinical problems. The current work addressed this important issue using data from a sample of identical and fraternal adult twins (N=454). THT was quantified using a scale measure and three physiological indicators of emotional reactivity to visual aversive stimuli. DIS was operationalized using scores on two scale measures combined with two brain indicators from cognitive processing tasks. THT and DIS operationalized in these ways both showed appreciable heritability (0.45, 0.68), and genetic variance in these traits accounted for most of their phenotypic associations with fear, distress, and substance use disorder symptoms. Our findings suggest that, as indices of basic dispositional liabilities for multiple forms of psychopathology with direct links to neurophysiology, psychoneurometric assessments of THT and DIS represent novel and important targets for biologically-oriented research on psychopathology. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Pathway-Based Kernel Boosting for the Analysis of Genome-Wide Association Studies

    PubMed Central

    Manitz, Juliane; Burger, Patricia; Amos, Christopher I.; Chang-Claude, Jenny; Wichmann, Heinz-Erich; Kneib, Thomas; Bickeböller, Heike

    2017-01-01

    The analysis of genome-wide association studies (GWAS) benefits from the investigation of biologically meaningful gene sets, such as gene-interaction networks (pathways). We propose an extension to a successful kernel-based pathway analysis approach by integrating kernel functions into a powerful algorithmic framework for variable selection, to enable investigation of multiple pathways simultaneously. We employ genetic similarity kernels from the logistic kernel machine test (LKMT) as base-learners in a boosting algorithm. A model to explain case-control status is created iteratively by selecting pathways that improve its prediction ability. We evaluated our method in simulation studies adopting 50 pathways for different sample sizes and genetic effect strengths. Additionally, we included an exemplary application of kernel boosting to a rheumatoid arthritis and a lung cancer dataset. Simulations indicate that kernel boosting outperforms the LKMT in certain genetic scenarios. Applications to GWAS data on rheumatoid arthritis and lung cancer resulted in sparse models which were based on pathways interpretable in a clinical sense. Kernel boosting is highly flexible in terms of considered variables and overcomes the problem of multiple testing. Additionally, it enables the prediction of clinical outcomes. Thus, kernel boosting constitutes a new, powerful tool in the analysis of GWAS data and towards the understanding of biological processes involved in disease susceptibility. PMID:28785300

  13. Pathway-Based Kernel Boosting for the Analysis of Genome-Wide Association Studies.

    PubMed

    Friedrichs, Stefanie; Manitz, Juliane; Burger, Patricia; Amos, Christopher I; Risch, Angela; Chang-Claude, Jenny; Wichmann, Heinz-Erich; Kneib, Thomas; Bickeböller, Heike; Hofner, Benjamin

    2017-01-01

    The analysis of genome-wide association studies (GWAS) benefits from the investigation of biologically meaningful gene sets, such as gene-interaction networks (pathways). We propose an extension to a successful kernel-based pathway analysis approach by integrating kernel functions into a powerful algorithmic framework for variable selection, to enable investigation of multiple pathways simultaneously. We employ genetic similarity kernels from the logistic kernel machine test (LKMT) as base-learners in a boosting algorithm. A model to explain case-control status is created iteratively by selecting pathways that improve its prediction ability. We evaluated our method in simulation studies adopting 50 pathways for different sample sizes and genetic effect strengths. Additionally, we included an exemplary application of kernel boosting to a rheumatoid arthritis and a lung cancer dataset. Simulations indicate that kernel boosting outperforms the LKMT in certain genetic scenarios. Applications to GWAS data on rheumatoid arthritis and lung cancer resulted in sparse models which were based on pathways interpretable in a clinical sense. Kernel boosting is highly flexible in terms of considered variables and overcomes the problem of multiple testing. Additionally, it enables the prediction of clinical outcomes. Thus, kernel boosting constitutes a new, powerful tool in the analysis of GWAS data and towards the understanding of biological processes involved in disease susceptibility.

  14. The Dominance Behavioral System and Psychopathology: Evidence from Self-Report, Observational, and Biological Studies

    PubMed Central

    Johnson, Sheri L.; Leedom, Liane J.; Muhtadie, Luma

    2012-01-01

    The dominance behavioral system (DBS) can be conceptualized as a biologically-based system which guides dominance motivation, dominant and subordinate behavior, and responsivity to perceptions of power and subordination. A growing body of research suggests that problems with the DBS are evident across a broad range of psychopathologies. We begin by describing psychological, social, and biological correlates of the dominance behavioral system (DBS). Extensive research suggests that externalizing disorders, mania-proneness, and narcissistic traits are related to heightened dominance motivation and behaviors. Mania and narcissistic traits also appear related to inflated self-perceptions of power. Anxiety and depression are related to subordination and submissiveness, as well as a desire to avoid subordination. Models of the DBS have received support from research with humans and animals; from self-report, observational, and biological methods; and using naturalistic and experimental paradigms. Limitations of available research include the relative lack of longitudinal studies using multiple measures of the DBS and the absence of relevant studies using diagnosed samples to study narcissistic personality disorder and bipolar disorder. We provide suggestions for future research on the DBS and psychopathology, including investigations of whether the DBS can be used to differentiate specific disorder outcomes; the need for more sophisticated biological research; and the value of longitudinal dynamical research. Implications of using the DBS as a tool in clinical assessment and treatment are discussed. PMID:22506751

  15. Analysis of Biological Interactions by Affinity Chromatography: Clinical and Pharmaceutical Applications

    PubMed Central

    Hage, David S.

    2017-01-01

    BACKGROUND The interactions between biochemical and chemical agents in the body are important in many clinical processes. Affinity chromatography and high-performance affinity chromatography (HPAC), in which a column contains an immobilized biologically-related binding agent, are two methods that can be used to study these interactions. CONTENT This review looks at various approaches that can be used in affinity chromatography and HPAC to characterize the strength or rate of a biological interaction, the number and types of sites that are involved in this process, and the interactions between multiple solutes for the same binding agent. A number of applications for these methods are examined, with an emphasis on recent developments and high-performance affinity methods. These applications include the use of these techniques for fundamental studies of biological interactions, high-throughput screening of drugs, work with modified proteins, tools for personalized medicine, and studies of drug-drug competition for a common binding agent. SUMMARY The wide range of formats and detection methods that can be used with affinity chromatography and HPAC for examining biological interactions makes these tools attractive for various clinical and pharmaceutical applications. Future directions in the development of small-scale columns and the coupling of these methods with other techniques, such as mass spectrometry or other separation methods, should continue to increase the flexibility and ease with which these approaches can be used in work involving clinical or pharmaceutical samples. PMID:28396561

  16. Internet-based recruitment system for HIV and STI screening for men who have sex with men in Estonia, 2013: analysis of preliminary outcomes.

    PubMed

    Ruutel, K; Lohmus, L; Janes, J

    2015-04-16

    The aim of the current project was to develop an Internet-based recruitment system for HIV and sexually transmitted infection (STI) screening for men who have sex with men (MSM) in Estonia in order to collect biological samples during behavioural studies. In 2013, an Internet-based HIV risk-behaviour survey was conducted among MSM living in Estonia. After completing the questionnaire, all participants were offered anonymous and free-of-charge STI testing. They could either order a urine sample kit by post to screen for chlamydia infections (including lymphogranuloma venereum (LGV)), trichomoniasis, gonorrhoea and Mycoplasma genitalium infections, or visit a laboratory for HIV, hepatitis A virus, hepatitis B virus,hepatitis C virus and syphilis screening. Of 301 participants who completed the questionnaire, 265 (88%),reported that they were MSM. Of these 265 MSM,68 (26%) underwent various types of testing. In the multiple regression analysis, Russian as the first language,previous HIV testing and living in a city or town increased the odds of testing during the study. Linking Internet-based behavioural data collection with biological sample collection is a promising approach. As there are no specific STI services for MSM in Estonia,this system could also be used as an additional option for anonymous and free-of-charge STI screening.

  17. Emerging Methods and Systems for Observing Life in the Sea

    NASA Astrophysics Data System (ADS)

    Chavez, F.; Pearlman, J.; Simmons, S. E.

    2016-12-01

    There is a growing need for observations of life in the sea at time and space scales consistent with those made for physical and chemical parameters. International programs such as the Global Ocean Observing System (GOOS) and Marine Biodiversity Observation Networks (MBON) are making the case for expanded biological observations and working diligently to prioritize essential variables. Here we review past, present and emerging systems and methods for observing life in the sea from the perspective of maintaining continuous observations over long time periods. Methods that rely on ships with instrumentation and over-the-side sample collections will need to be supplemented and eventually replaced with those based from autonomous platforms. Ship-based optical and acoustic instruments are being reduced in size and power for deployment on moorings and autonomous vehicles. In parallel a new generation of low power, improved resolution sensors are being developed. Animal bio-logging is evolving with new, smaller and more sophisticated tags being developed. New genomic methods, capable of assessing multiple trophic levels from a single water sample, are emerging. Autonomous devices for genomic sample collection are being miniaturized and adapted to autonomous vehicles. The required processing schemes and methods for these emerging data collections are being developed in parallel with the instrumentation. An evolving challenge will be the integration of information from these disparate methods given that each provides their own unique view of life in the sea.

  18. Incorporation of multiple cloud layers for ultraviolet radiation modeling studies

    NASA Technical Reports Server (NTRS)

    Charache, Darryl H.; Abreu, Vincent J.; Kuhn, William R.; Skinner, Wilbert R.

    1994-01-01

    Cloud data sets compiled from surface observations were used to develop an algorithm for incorporating multiple cloud layers into a multiple-scattering radiative transfer model. Aerosol extinction and ozone data sets were also incorporated to estimate the seasonally averaged ultraviolet (UV) flux reaching the surface of the Earth in the Detroit, Michigan, region for the years 1979-1991, corresponding to Total Ozone Mapping Spectrometer (TOMS) version 6 ozone observations. The calculated UV spectrum was convolved with an erythema action spectrum to estimate the effective biological exposure for erythema. Calculations show that decreasing the total column density of ozone by 1% leads to an increase in erythemal exposure by approximately 1.1-1.3%, in good agreement with previous studies. A comparison of the UV radiation budget at the surface between a single cloud layer method and a multiple cloud layer method presented here is discussed, along with limitations of each technique. With improved parameterization of cloud properties, and as knowledge of biological effects of UV exposure increase, inclusion of multiple cloud layers may be important in accurately determining the biologically effective UV budget at the surface of the Earth.

  19. Upper Secondary Students' Understanding of the Use of Multiple Models in Biology Textbooks--The Importance of Conceptual Variation and Incommensurability

    ERIC Educational Resources Information Center

    Gericke, Niklas; Hagberg, Mariana; Jorde, Doris

    2013-01-01

    In this study we investigate students' ability to discern conceptual variation and the use of multiple models in genetics when reading content-specific excerpts from biology textbooks. Using the history and philosophy of science as our reference, we were able to develop a research instrument allowing students themselves to investigate the…

  20. Structure and Dynamics of Type III Secretion Effector Protein ExoU As determined by SDSL-EPR Spectroscopy in Conjunction with De Novo Protein Folding

    PubMed Central

    2017-01-01

    ExoU is a 74 kDa cytotoxin that undergoes substantial conformational changes as part of its function, that is, it has multiple thermodynamically stable conformations that interchange depending on its environment. Such flexible proteins pose unique challenges to structural biology: (1) not only is it often difficult to determine structures by X-ray crystallography for all biologically relevant conformations because of the flat energy landscape (2) but also experimental conditions can easily perturb the biologically relevant conformation. The first challenge can be overcome by applying orthogonal structural biology techniques that are capable of observing alternative, biologically relevant conformations. The second challenge can be addressed by determining the structure in the same biological state with two independent techniques under different experimental conditions. If both techniques converge to the same structural model, the confidence that an unperturbed biologically relevant conformation is observed increases. To this end, we determine the structure of the C-terminal domain of the effector protein, ExoU, from data obtained by electron paramagnetic resonance spectroscopy in conjunction with site-directed spin labeling and in silico de novo structure determination. Our protocol encompasses a multimodule approach, consisting of low-resolution topology sampling, clustering, and high-resolution refinement. The resulting model was compared with an ExoU model in complex with its chaperone SpcU obtained previously by X-ray crystallography. The two models converged to a minimal RMSD100 of 3.2 Å, providing evidence that the unbound structure of ExoU matches the fold observed in complex with SpcU. PMID:28691114

  1. Network-based drug discovery by integrating systems biology and computational technologies

    PubMed Central

    Leung, Elaine L.; Cao, Zhi-Wei; Jiang, Zhi-Hong; Zhou, Hua

    2013-01-01

    Network-based intervention has been a trend of curing systemic diseases, but it relies on regimen optimization and valid multi-target actions of the drugs. The complex multi-component nature of medicinal herbs may serve as valuable resources for network-based multi-target drug discovery due to its potential treatment effects by synergy. Recently, robustness of multiple systems biology platforms shows powerful to uncover molecular mechanisms and connections between the drugs and their targeting dynamic network. However, optimization methods of drug combination are insufficient, owning to lacking of tighter integration across multiple ‘-omics’ databases. The newly developed algorithm- or network-based computational models can tightly integrate ‘-omics’ databases and optimize combinational regimens of drug development, which encourage using medicinal herbs to develop into new wave of network-based multi-target drugs. However, challenges on further integration across the databases of medicinal herbs with multiple system biology platforms for multi-target drug optimization remain to the uncertain reliability of individual data sets, width and depth and degree of standardization of herbal medicine. Standardization of the methodology and terminology of multiple system biology and herbal database would facilitate the integration. Enhance public accessible databases and the number of research using system biology platform on herbal medicine would be helpful. Further integration across various ‘-omics’ platforms and computational tools would accelerate development of network-based drug discovery and network medicine. PMID:22877768

  2. Multistrip Western blotting: a tool for comparative quantitative analysis of multiple proteins.

    PubMed

    Aksamitiene, Edita; Hoek, Jan B; Kiyatkin, Anatoly

    2015-01-01

    The qualitative and quantitative measurements of protein abundance and modification states are essential in understanding their functions in diverse cellular processes. Typical Western blotting, though sensitive, is prone to produce substantial errors and is not readily adapted to high-throughput technologies. Multistrip Western blotting is a modified immunoblotting procedure based on simultaneous electrophoretic transfer of proteins from multiple strips of polyacrylamide gels to a single membrane sheet. In comparison with the conventional technique, Multistrip Western blotting increases data output per single blotting cycle up to tenfold; allows concurrent measurement of up to nine different total and/or posttranslationally modified protein expression obtained from the same loading of the sample; and substantially improves the data accuracy by reducing immunoblotting-derived signal errors. This approach enables statistically reliable comparison of different or repeated sets of data and therefore is advantageous to apply in biomedical diagnostics, systems biology, and cell signaling research.

  3. Glyphosate-tolerant soybeans remain compositionally equivalent to conventional soybeans (Glycine max L.) during three years of field testing.

    PubMed

    McCann, Melinda C; Liu, Keshun; Trujillo, William A; Dobert, Raymond C

    2005-06-29

    Previous studies have shown that the composition of glyphosate-tolerant soybeans (GTS) and selected processed fractions was substantially equivalent to that of conventional soybeans over a wide range of analytes. This study was designed to determine if the composition of GTS remains substantially equivalent to conventional soybeans over the course of several years and when introduced into multiple genetic backgrounds. Soybean seed samples of both GTS and conventional varieties were harvested during 2000, 2001, and 2002 and analyzed for the levels of proximates, lectin, trypsin inhibitor, and isoflavones. The measured analytes are representative of the basic nutritional and biologically active components in soybeans. Results show a similar range of natural variability for the GTS soybeans as well as conventional soybeans. It was concluded that the composition of commercial GTS over the three years of breeding into multiple varieties remains equivalent to that of conventional soybeans.

  4. High-speed femtosecond pump-probe spectroscopy with a smart pixel detector array.

    PubMed

    Bourquin, S; Prasankumar, R P; Kärtner, F X; Fujimoto, J G; Lasser, T; Salathé, R P

    2003-09-01

    A new femtosecond pump-probe spectroscopy technique is demonstrated that permits the high-speed, parallel acquisition of pump-probe measurements at multiple wavelengths. This is made possible by use of a novel, two-dimensional smart pixel detector array that performs amplitude demodulation in real time on each pixel. This detector array can not only achieve sensitivities comparable with lock-in amplification but also simultaneously performs demodulation of probe transmission signals at multiple wavelengths, thus permitting rapid time- and wavelength-resolved femtosecond pump-probe spectroscopy. Measurements on a thin sample of bulk GaAs are performed across 58 simultaneous wavelengths. Differential probe transmission changes as small as approximately 2 x 10(-4) can be measured over a 5-ps delay scan in only approximately 3 min. This technology can be applied to a wide range of pump-probe measurements in condensed matter, chemistry, and biology.

  5. Integrated photoacoustic, ultrasound and fluorescence platform for diagnostic medical imaging-proof of concept study with a tissue mimicking phantom.

    PubMed

    James, Joseph; Murukeshan, Vadakke Matham; Woh, Lye Sun

    2014-07-01

    The structural and molecular heterogeneities of biological tissues demand the interrogation of the samples with multiple energy sources and provide visualization capabilities at varying spatial resolution and depth scales for obtaining complementary diagnostic information. A novel multi-modal imaging approach that uses optical and acoustic energies to perform photoacoustic, ultrasound and fluorescence imaging at multiple resolution scales from the tissue surface and depth is proposed in this paper. The system comprises of two distinct forms of hardware level integration so as to have an integrated imaging system under a single instrumentation set-up. The experimental studies show that the system is capable of mapping high resolution fluorescence signatures from the surface, optical absorption and acoustic heterogeneities along the depth (>2cm) of the tissue at multi-scale resolution (<1µm to <0.5mm).

  6. Detecting bacteria and Determining Their Susceptibility to Antibiotics by Stochastic Confinement in Nanoliter Droplets using Plug-Based Microfluidics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boedicker, J.; Li, L; Kline, T

    2008-01-01

    This article describes plug-based microfluidic technology that enables rapid detection and drug susceptibility screening of bacteria in samples, including complex biological matrices, without pre-incubation. Unlike conventional bacterial culture and detection methods, which rely on incubation of a sample to increase the concentration of bacteria to detectable levels, this method confines individual bacteria into droplets nanoliters in volume. When single cells are confined into plugs of small volume such that the loading is less than one bacterium per plug, the detection time is proportional to plug volume. Confinement increases cell density and allows released molecules to accumulate around the cell, eliminatingmore » the pre-incubation step and reducing the time required to detect the bacteria. We refer to this approach as stochastic confinement. Using the microfluidic hybrid method, this technology was used to determine the antibiogram - or chart of antibiotic sensitivity - of methicillin-resistant Staphylococcus aureus (MRSA) to many antibiotics in a single experiment and to measure the minimal inhibitory concentration (MIC) of the drug cefoxitin (CFX) against this strain. In addition, this technology was used to distinguish between sensitive and resistant strains of S. aureus in samples of human blood plasma. High-throughput microfluidic techniques combined with single-cell measurements also enable multiple tests to be performed simultaneously on a single sample containing bacteria. This technology may provide a method of rapid and effective patient-specific treatment of bacterial infections and could be extended to a variety of applications that require multiple functional tests of bacterial samples on reduced timescales.« less

  7. An evaluation of a reagentless method for the determination of total mercury in aquatic life

    USGS Publications Warehouse

    Haynes, Sekeenia; Gragg, Richard D.; Johnson, Elijah; Robinson, Larry; Orazio, Carl E.

    2006-01-01

    Multiple treatment (i.e., drying, chemical digestion, and oxidation) steps are often required during preparation of biological matrices for quantitative analysis of mercury; these multiple steps could potentially lead to systematic errors and poor recovery of the analyte. In this study, the Direct Mercury Analyzer (Milestone Inc., Monroe, CT) was utilized to measure total mercury in fish tissue by integrating steps of drying, sample combustion and gold sequestration with successive identification using atomic absorption spectrometry. We also evaluated the differences between the mercury concentrations found in samples that were homogenized and samples with no preparation. These results were confirmed with cold vapor atomic absorbance and fluorescence spectrometric methods of analysis. Finally, total mercury in wild captured largemouth bass (n = 20) were assessed using the Direct Mercury Analyzer to examine internal variability between mercury concentrations in muscle, liver and brain organs. Direct analysis of total mercury measured in muscle tissue was strongly correlated with muscle tissue that was homogenized before analysis (r = 0.81, p < 0.0001). Additionally, results using this integrated method compared favorably (p < 0.05) with conventional cold vapor spectrometry with atomic absorbance and fluorescence detection methods. Mercury concentrations in brain were significantly lower than concentrations in muscle (p < 0.001) and liver (p < 0.05) tissues. This integrated method can measure a wide range of mercury concentrations (0-500 ??g) using small sample sizes. Total mercury measurements in this study are comparative to the methods (cold vapor) commonly used for total mercury analysis and are devoid of laborious sample preparation and expensive hazardous waste. ?? Springer 2006.

  8. Profiling physicochemical and planktonic features from discretely/continuously sampled surface water.

    PubMed

    Oita, Azusa; Tsuboi, Yuuri; Date, Yasuhiro; Oshima, Takahiro; Sakata, Kenji; Yokoyama, Akiko; Moriya, Shigeharu; Kikuchi, Jun

    2018-04-24

    There is an increasing need for assessing aquatic ecosystems that are globally endangered. Since aquatic ecosystems are complex, integrated consideration of multiple factors utilizing omics technologies can help us better understand aquatic ecosystems. An integrated strategy linking three analytical (machine learning, factor mapping, and forecast-error-variance decomposition) approaches for extracting the features of surface water from datasets comprising ions, metabolites, and microorganisms is proposed herein. The three developed approaches can be employed for diverse datasets of sample sizes and experimentally analyzed factors. The three approaches are applied to explore the features of bay water surrounding Odaiba, Tokyo, Japan, as a case study. Firstly, the machine learning approach separated 681 surface water samples within Japan into three clusters, categorizing Odaiba water into seawater with relatively low inorganic ions, including Mg, Ba, and B. Secondly, the factor mapping approach illustrated Odaiba water samples from the summer as rich in multiple amino acids and some other metabolites and poor in inorganic ions relative to other seasons based on their seasonal dynamics. Finally, forecast-error-variance decomposition using vector autoregressive models indicated that a type of microalgae (Raphidophyceae) grows in close correlation with alanine, succinic acid, and valine on filters and with isobutyric acid and 4-hydroxybenzoic acid in filtrate, Ba, and average wind speed. Our integrated strategy can be used to examine many biological, chemical, and environmental physical factors to analyze surface water. Copyright © 2018. Published by Elsevier B.V.

  9. Development of quantitative screen for 1550 chemicals with GC-MS.

    PubMed

    Bergmann, Alan J; Points, Gary L; Scott, Richard P; Wilson, Glenn; Anderson, Kim A

    2018-05-01

    With hundreds of thousands of chemicals in the environment, effective monitoring requires high-throughput analytical techniques. This paper presents a quantitative screening method for 1550 chemicals based on statistical modeling of responses with identification and integration performed using deconvolution reporting software. The method was evaluated with representative environmental samples. We tested biological extracts, low-density polyethylene, and silicone passive sampling devices spiked with known concentrations of 196 representative chemicals. A multiple linear regression (R 2  = 0.80) was developed with molecular weight, logP, polar surface area, and fractional ion abundance to predict chemical responses within a factor of 2.5. Linearity beyond the calibration had R 2  > 0.97 for three orders of magnitude. Median limits of quantitation were estimated to be 201 pg/μL (1.9× standard deviation). The number of detected chemicals and the accuracy of quantitation were similar for environmental samples and standard solutions. To our knowledge, this is the most precise method for the largest number of semi-volatile organic chemicals lacking authentic standards. Accessible instrumentation and software make this method cost effective in quantifying a large, customizable list of chemicals. When paired with silicone wristband passive samplers, this quantitative screen will be very useful for epidemiology where binning of concentrations is common. Graphical abstract A multiple linear regression of chemical responses measured with GC-MS allowed quantitation of 1550 chemicals in samples such as silicone wristbands.

  10. A sensitive UPLC-MS/MS method for simultaneous determination of eleven bioactive components of Tong-Xie-Yao-Fang decoction in rat biological matrices.

    PubMed

    Li, Tian-xue; Hu, Lang; Zhang, Meng-meng; Sun, Jian; Qiu, Yue; Rui, Jun-qian; Yang, Xing-hao

    2014-01-01

    There is a growing concern for the sensitive quantification of multiple components using advanced data acquisition method in herbal medicines (HMs). An improved and rugged UPLC-MS/MS method has been developed and validated for sensitive and rapid determination of multiply analytes from Tong-Xie-Yao-Fang (TXYF) decoction in three biological matrices (plasma/brain tissue/urine) using geniposide and formononetin as internal standards. After solid-phase extraction, chromatographic separation was performed on a C18 column using gradient elution. Quantifier and qualifier transitions were monitored using novel Triggered Dynamic multiple reaction monitoring (TdMRM) in the positive ionization mode. A significant peak symmetry and sensitivity improvement in the TdMRM mode was achieved as compared to conventional MRM. The reproducibility (RSD%) was ≤7.9% by applying TdMRM transition while the values were 6.8-20.6% for MRM. Excellent linear calibration curves were obtained under TdMRM transitions over the tested concentration ranges. Intra- and inter-day precisions (RSD%) were ≤14.2% and accuracies (RE%) ranged from -9.6% to 10.6%. The validation data of specificity, carryover, recovery, matrix effect and stability were within the required limits. The method was effectively applied to simultaneously detect and quantify 1 lactone, 2 monoterpene glucosides, 1 alkaloid, 5 flavonoids and 2 chromones in plasma, brain tissue and urine after oral administration of TXYF decoction. In conclusion, this new and reliable method is beneficial for quantification and confirmation assays of multiply components in complex biological samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Use of Graph Database for the Integration of Heterogeneous Biological Data.

    PubMed

    Yoon, Byoung-Ha; Kim, Seon-Kyu; Kim, Seon-Young

    2017-03-01

    Understanding complex relationships among heterogeneous biological data is one of the fundamental goals in biology. In most cases, diverse biological data are stored in relational databases, such as MySQL and Oracle, which store data in multiple tables and then infer relationships by multiple-join statements. Recently, a new type of database, called the graph-based database, was developed to natively represent various kinds of complex relationships, and it is widely used among computer science communities and IT industries. Here, we demonstrate the feasibility of using a graph-based database for complex biological relationships by comparing the performance between MySQL and Neo4j, one of the most widely used graph databases. We collected various biological data (protein-protein interaction, drug-target, gene-disease, etc.) from several existing sources, removed duplicate and redundant data, and finally constructed a graph database containing 114,550 nodes and 82,674,321 relationships. When we tested the query execution performance of MySQL versus Neo4j, we found that Neo4j outperformed MySQL in all cases. While Neo4j exhibited a very fast response for various queries, MySQL exhibited latent or unfinished responses for complex queries with multiple-join statements. These results show that using graph-based databases, such as Neo4j, is an efficient way to store complex biological relationships. Moreover, querying a graph database in diverse ways has the potential to reveal novel relationships among heterogeneous biological data.

  12. Use of Graph Database for the Integration of Heterogeneous Biological Data

    PubMed Central

    Yoon, Byoung-Ha; Kim, Seon-Kyu

    2017-01-01

    Understanding complex relationships among heterogeneous biological data is one of the fundamental goals in biology. In most cases, diverse biological data are stored in relational databases, such as MySQL and Oracle, which store data in multiple tables and then infer relationships by multiple-join statements. Recently, a new type of database, called the graph-based database, was developed to natively represent various kinds of complex relationships, and it is widely used among computer science communities and IT industries. Here, we demonstrate the feasibility of using a graph-based database for complex biological relationships by comparing the performance between MySQL and Neo4j, one of the most widely used graph databases. We collected various biological data (protein-protein interaction, drug-target, gene-disease, etc.) from several existing sources, removed duplicate and redundant data, and finally constructed a graph database containing 114,550 nodes and 82,674,321 relationships. When we tested the query execution performance of MySQL versus Neo4j, we found that Neo4j outperformed MySQL in all cases. While Neo4j exhibited a very fast response for various queries, MySQL exhibited latent or unfinished responses for complex queries with multiple-join statements. These results show that using graph-based databases, such as Neo4j, is an efficient way to store complex biological relationships. Moreover, querying a graph database in diverse ways has the potential to reveal novel relationships among heterogeneous biological data. PMID:28416946

  13. TimesVector: a vectorized clustering approach to the analysis of time series transcriptome data from multiple phenotypes.

    PubMed

    Jung, Inuk; Jo, Kyuri; Kang, Hyejin; Ahn, Hongryul; Yu, Youngjae; Kim, Sun

    2017-12-01

    Identifying biologically meaningful gene expression patterns from time series gene expression data is important to understand the underlying biological mechanisms. To identify significantly perturbed gene sets between different phenotypes, analysis of time series transcriptome data requires consideration of time and sample dimensions. Thus, the analysis of such time series data seeks to search gene sets that exhibit similar or different expression patterns between two or more sample conditions, constituting the three-dimensional data, i.e. gene-time-condition. Computational complexity for analyzing such data is very high, compared to the already difficult NP-hard two dimensional biclustering algorithms. Because of this challenge, traditional time series clustering algorithms are designed to capture co-expressed genes with similar expression pattern in two sample conditions. We present a triclustering algorithm, TimesVector, specifically designed for clustering three-dimensional time series data to capture distinctively similar or different gene expression patterns between two or more sample conditions. TimesVector identifies clusters with distinctive expression patterns in three steps: (i) dimension reduction and clustering of time-condition concatenated vectors, (ii) post-processing clusters for detecting similar and distinct expression patterns and (iii) rescuing genes from unclassified clusters. Using four sets of time series gene expression data, generated by both microarray and high throughput sequencing platforms, we demonstrated that TimesVector successfully detected biologically meaningful clusters of high quality. TimesVector improved the clustering quality compared to existing triclustering tools and only TimesVector detected clusters with differential expression patterns across conditions successfully. The TimesVector software is available at http://biohealth.snu.ac.kr/software/TimesVector/. sunkim.bioinfo@snu.ac.kr. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  14. Designed multiple ligands in metabolic disease research: from concept to platform.

    PubMed

    Gattrell, W; Johnstone, C; Patel, S; Smith, C Sambrook; Scheel, A; Schindler, M

    2013-08-01

    Type 2 diabetes mellitus (T2DM) is a multifactorial disease, and drug monotherapy typically results in unsatisfactory treatment outcomes for patients. Even when used in combination, existing therapies lack efficacy in the long term. Designed multiple ligands (DMLs) are compounds developed to modulate multiple targets relevant to a disease. DMLs offer the potential to yield greater efficacy over monotherapies, either by modulating different biological pathways, or by boosting a single one. However, examples of DMLs progressing into clinical trials, or onto the market are rare; DML drug discovery is challenging, and perceived by some to be almost impossible. Nevertheless, with the judicious selection of biological targets, both from a biological and chemical perspective, it is possible to develop drug-like DMLs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Towards enhanced and interpretable clustering/classification in integrative genomics

    PubMed Central

    Lu, Yang Young; Lv, Jinchi; Fuhrman, Jed A.

    2017-01-01

    Abstract High-throughput technologies have led to large collections of different types of biological data that provide unprecedented opportunities to unravel molecular heterogeneity of biological processes. Nevertheless, how to jointly explore data from multiple sources into a holistic, biologically meaningful interpretation remains challenging. In this work, we propose a scalable and tuning-free preprocessing framework, Heterogeneity Rescaling Pursuit (Hetero-RP), which weighs important features more highly than less important ones in accord with implicitly existing auxiliary knowledge. Finally, we demonstrate effectiveness of Hetero-RP in diverse clustering and classification applications. More importantly, Hetero-RP offers an interpretation of feature importance, shedding light on the driving forces of the underlying biology. In metagenomic contig binning, Hetero-RP automatically weighs abundance and composition profiles according to the varying number of samples, resulting in markedly improved performance of contig binning. In RNA-binding protein (RBP) binding site prediction, Hetero-RP not only improves the prediction performance measured by the area under the receiver operating characteristic curves (AUC), but also uncovers the evidence supported by independent studies, including the distribution of the binding sites of IGF2BP and PUM2, the binding competition between hnRNPC and U2AF2, and the intron–exon boundary of U2AF2 [availability: https://github.com/younglululu/Hetero-RP]. PMID:28977511

  16. Mining textural knowledge in biological images: Applications, methods and trends.

    PubMed

    Di Cataldo, Santa; Ficarra, Elisa

    2017-01-01

    Texture analysis is a major task in many areas of computer vision and pattern recognition, including biological imaging. Indeed, visual textures can be exploited to distinguish specific tissues or cells in a biological sample, to highlight chemical reactions between molecules, as well as to detect subcellular patterns that can be evidence of certain pathologies. This makes automated texture analysis fundamental in many applications of biomedicine, such as the accurate detection and grading of multiple types of cancer, the differential diagnosis of autoimmune diseases, or the study of physiological processes. Due to their specific characteristics and challenges, the design of texture analysis systems for biological images has attracted ever-growing attention in the last few years. In this paper, we perform a critical review of this important topic. First, we provide a general definition of texture analysis and discuss its role in the context of bioimaging, with examples of applications from the recent literature. Then, we review the main approaches to automated texture analysis, with special attention to the methods of feature extraction and encoding that can be successfully applied to microscopy images of cells or tissues. Our aim is to provide an overview of the state of the art, as well as a glimpse into the latest and future trends of research in this area.

  17. Rapid Sequential in Situ Multiplexing with DNA Exchange Imaging in Neuronal Cells and Tissues.

    PubMed

    Wang, Yu; Woehrstein, Johannes B; Donoghue, Noah; Dai, Mingjie; Avendaño, Maier S; Schackmann, Ron C J; Zoeller, Jason J; Wang, Shan Shan H; Tillberg, Paul W; Park, Demian; Lapan, Sylvain W; Boyden, Edward S; Brugge, Joan S; Kaeser, Pascal S; Church, George M; Agasti, Sarit S; Jungmann, Ralf; Yin, Peng

    2017-10-11

    To decipher the molecular mechanisms of biological function, it is critical to map the molecular composition of individual cells or even more importantly tissue samples in the context of their biological environment in situ. Immunofluorescence (IF) provides specific labeling for molecular profiling. However, conventional IF methods have finite multiplexing capabilities due to spectral overlap of the fluorophores. Various sequential imaging methods have been developed to circumvent this spectral limit but are not widely adopted due to the common limitation of requiring multirounds of slow (typically over 2 h at room temperature to overnight at 4 °C in practice) immunostaining. We present here a practical and robust method, which we call DNA Exchange Imaging (DEI), for rapid in situ spectrally unlimited multiplexing. This technique overcomes speed restrictions by allowing for single-round immunostaining with DNA-barcoded antibodies, followed by rapid (less than 10 min) buffer exchange of fluorophore-bearing DNA imager strands. The programmability of DEI allows us to apply it to diverse microscopy platforms (with Exchange Confocal, Exchange-SIM, Exchange-STED, and Exchange-PAINT demonstrated here) at multiple desired resolution scales (from ∼300 nm down to sub-20 nm). We optimized and validated the use of DEI in complex biological samples, including primary neuron cultures and tissue sections. These results collectively suggest DNA exchange as a versatile, practical platform for rapid, highly multiplexed in situ imaging, potentially enabling new applications ranging from basic science, to drug discovery, and to clinical pathology.

  18. Database Resources of the BIG Data Center in 2018

    PubMed Central

    Xu, Xingjian; Hao, Lili; Zhu, Junwei; Tang, Bixia; Zhou, Qing; Song, Fuhai; Chen, Tingting; Zhang, Sisi; Dong, Lili; Lan, Li; Wang, Yanqing; Sang, Jian; Hao, Lili; Liang, Fang; Cao, Jiabao; Liu, Fang; Liu, Lin; Wang, Fan; Ma, Yingke; Xu, Xingjian; Zhang, Lijuan; Chen, Meili; Tian, Dongmei; Li, Cuiping; Dong, Lili; Du, Zhenglin; Yuan, Na; Zeng, Jingyao; Zhang, Zhewen; Wang, Jinyue; Shi, Shuo; Zhang, Yadong; Pan, Mengyu; Tang, Bixia; Zou, Dong; Song, Shuhui; Sang, Jian; Xia, Lin; Wang, Zhennan; Li, Man; Cao, Jiabao; Niu, Guangyi; Zhang, Yang; Sheng, Xin; Lu, Mingming; Wang, Qi; Xiao, Jingfa; Zou, Dong; Wang, Fan; Hao, Lili; Liang, Fang; Li, Mengwei; Sun, Shixiang; Zou, Dong; Li, Rujiao; Yu, Chunlei; Wang, Guangyu; Sang, Jian; Liu, Lin; Li, Mengwei; Li, Man; Niu, Guangyi; Cao, Jiabao; Sun, Shixiang; Xia, Lin; Yin, Hongyan; Zou, Dong; Xu, Xingjian; Ma, Lina; Chen, Huanxin; Sun, Yubin; Yu, Lei; Zhai, Shuang; Sun, Mingyuan; Zhang, Zhang; Zhao, Wenming; Xiao, Jingfa; Bao, Yiming; Song, Shuhui; Hao, Lili; Li, Rujiao; Ma, Lina; Sang, Jian; Wang, Yanqing; Tang, Bixia; Zou, Dong; Wang, Fan

    2018-01-01

    Abstract The BIG Data Center at Beijing Institute of Genomics (BIG) of the Chinese Academy of Sciences provides freely open access to a suite of database resources in support of worldwide research activities in both academia and industry. With the vast amounts of omics data generated at ever-greater scales and rates, the BIG Data Center is continually expanding, updating and enriching its core database resources through big-data integration and value-added curation, including BioCode (a repository archiving bioinformatics tool codes), BioProject (a biological project library), BioSample (a biological sample library), Genome Sequence Archive (GSA, a data repository for archiving raw sequence reads), Genome Warehouse (GWH, a centralized resource housing genome-scale data), Genome Variation Map (GVM, a public repository of genome variations), Gene Expression Nebulas (GEN, a database of gene expression profiles based on RNA-Seq data), Methylation Bank (MethBank, an integrated databank of DNA methylomes), and Science Wikis (a series of biological knowledge wikis for community annotations). In addition, three featured web services are provided, viz., BIG Search (search as a service; a scalable inter-domain text search engine), BIG SSO (single sign-on as a service; a user access control system to gain access to multiple independent systems with a single ID and password) and Gsub (submission as a service; a unified submission service for all relevant resources). All of these resources are publicly accessible through the home page of the BIG Data Center at http://bigd.big.ac.cn. PMID:29036542

  19. A method for three-dimensional quantitative observation of the microstructure of biological samples

    NASA Astrophysics Data System (ADS)

    Wang, Pengfei; Chen, Dieyan; Ma, Wanyun; Wu, Hongxin; Ji, Liang; Sun, Jialin; Lv, Danyu; Zhang, Lu; Li, Ying; Tian, Ning; Zheng, Jinggao; Zhao, Fengying

    2009-07-01

    Contemporary biology has developed into the era of cell biology and molecular biology, and people try to study the mechanism of all kinds of biological phenomena at the microcosmic level now. Accurate description of the microstructure of biological samples is exigent need from many biomedical experiments. This paper introduces a method for 3-dimensional quantitative observation on the microstructure of vital biological samples based on two photon laser scanning microscopy (TPLSM). TPLSM is a novel kind of fluorescence microscopy, which has excellence in its low optical damage, high resolution, deep penetration depth and suitability for 3-dimensional (3D) imaging. Fluorescent stained samples were observed by TPLSM, and afterward the original shapes of them were obtained through 3D image reconstruction. The spatial distribution of all objects in samples as well as their volumes could be derived by image segmentation and mathematic calculation. Thus the 3-dimensionally and quantitatively depicted microstructure of the samples was finally derived. We applied this method to quantitative analysis of the spatial distribution of chromosomes in meiotic mouse oocytes at metaphase, and wonderful results came out last.

  20. Global gene expression associated with hepatocarcinogenesis in adult male mice induced by in utero arsenic exposure.

    PubMed

    Liu, Jie; Xie, Yaxiong; Ducharme, Danica M K; Shen, Jun; Diwan, Bhalchandra A; Merrick, B Alex; Grissom, Sherry F; Tucker, Charles J; Paules, Richard S; Tennant, Raymond; Waalkes, Michael P

    2006-03-01

    Our previous work has shown that exposure to inorganic arsenic in utero produces hepatocellular carcinoma (HCC) in adult male mice. To explore further the molecular mechanisms of transplacental arsenic hepatocarcinogenesis, we conducted a second arsenic transplacental carcinogenesis study and used a genomewide microarray to profile arsenic-induced aberrant gene expression more extensively. Briefly, pregnant C3H mice were given drinking water containing 85 ppm arsenic as sodium arsenite or unaltered water from days 8 to 18 of gestation. The incidence of HCC in adult male offspring was increased 4-fold and tumor multiplicity 3-fold after transplacental arsenic exposure. Samples of normal liver and liver tumors were taken at autopsy for genomic analysis. Arsenic exposure in utero resulted in significant alterations (p < 0.001) in the expression of 2,010 genes in arsenic-exposed liver samples and in the expression of 2,540 genes in arsenic-induced HCC. Ingenuity Pathway Analysis revealed that significant alterations in gene expression occurred in a number of biological networks, and Myc plays a critical role in one of the primary networks. Real-time reverse transcriptase-polymerase chain reaction and Western blot analysis of selected genes/proteins showed > 90% concordance. Arsenic-altered gene expression included activation of oncogenes and HCC biomarkers, and increased expression of cell proliferation-related genes, stress proteins, and insulin-like growth factors and genes involved in cell-cell communications. Liver feminization was evidenced by increased expression of estrogen-linked genes and altered expression of genes that encode gender-related metabolic enzymes. These novel findings are in agreement with the biology and histology of arsenic-induced HCC, thereby indicating that multiple genetic events are associated with transplacental arsenic hepatocarcinogenesis.

  1. Effects of imputation on correlation: implications for analysis of mass spectrometry data from multiple biological matrices.

    PubMed

    Taylor, Sandra L; Ruhaak, L Renee; Kelly, Karen; Weiss, Robert H; Kim, Kyoungmi

    2017-03-01

    With expanded access to, and decreased costs of, mass spectrometry, investigators are collecting and analyzing multiple biological matrices from the same subject such as serum, plasma, tissue and urine to enhance biomarker discoveries, understanding of disease processes and identification of therapeutic targets. Commonly, each biological matrix is analyzed separately, but multivariate methods such as MANOVAs that combine information from multiple biological matrices are potentially more powerful. However, mass spectrometric data typically contain large amounts of missing values, and imputation is often used to create complete data sets for analysis. The effects of imputation on multiple biological matrix analyses have not been studied. We investigated the effects of seven imputation methods (half minimum substitution, mean substitution, k-nearest neighbors, local least squares regression, Bayesian principal components analysis, singular value decomposition and random forest), on the within-subject correlation of compounds between biological matrices and its consequences on MANOVA results. Through analysis of three real omics data sets and simulation studies, we found the amount of missing data and imputation method to substantially change the between-matrix correlation structure. The magnitude of the correlations was generally reduced in imputed data sets, and this effect increased with the amount of missing data. Significant results from MANOVA testing also were substantially affected. In particular, the number of false positives increased with the level of missing data for all imputation methods. No one imputation method was universally the best, but the simple substitution methods (Half Minimum and Mean) consistently performed poorly. © The Author 2016. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  2. PROMISE: a tool to identify genomic features with a specific biologically interesting pattern of associations with multiple endpoint variables.

    PubMed

    Pounds, Stan; Cheng, Cheng; Cao, Xueyuan; Crews, Kristine R; Plunkett, William; Gandhi, Varsha; Rubnitz, Jeffrey; Ribeiro, Raul C; Downing, James R; Lamba, Jatinder

    2009-08-15

    In some applications, prior biological knowledge can be used to define a specific pattern of association of multiple endpoint variables with a genomic variable that is biologically most interesting. However, to our knowledge, there is no statistical procedure designed to detect specific patterns of association with multiple endpoint variables. Projection onto the most interesting statistical evidence (PROMISE) is proposed as a general procedure to identify genomic variables that exhibit a specific biologically interesting pattern of association with multiple endpoint variables. Biological knowledge of the endpoint variables is used to define a vector that represents the biologically most interesting values for statistics that characterize the associations of the endpoint variables with a genomic variable. A test statistic is defined as the dot-product of the vector of the observed association statistics and the vector of the most interesting values of the association statistics. By definition, this test statistic is proportional to the length of the projection of the observed vector of correlations onto the vector of most interesting associations. Statistical significance is determined via permutation. In simulation studies and an example application, PROMISE shows greater statistical power to identify genes with the interesting pattern of associations than classical multivariate procedures, individual endpoint analyses or listing genes that have the pattern of interest and are significant in more than one individual endpoint analysis. Documented R routines are freely available from www.stjuderesearch.org/depts/biostats and will soon be available as a Bioconductor package from www.bioconductor.org.

  3. Invited Article: Mask-modulated lensless imaging with multi-angle illuminations

    NASA Astrophysics Data System (ADS)

    Zhang, Zibang; Zhou, You; Jiang, Shaowei; Guo, Kaikai; Hoshino, Kazunori; Zhong, Jingang; Suo, Jinli; Dai, Qionghai; Zheng, Guoan

    2018-06-01

    The use of multiple diverse measurements can make lensless phase retrieval more robust. Conventional diversity functions include aperture diversity, wavelength diversity, translational diversity, and defocus diversity. Here we discuss a lensless imaging scheme that employs multiple spherical-wave illuminations from a light-emitting diode array as diversity functions. In this scheme, we place a binary mask between the sample and the detector for imposing support constraints for the phase retrieval process. This support constraint enforces the light field to be zero at certain locations and is similar to the aperture constraint in Fourier ptychographic microscopy. We use a self-calibration algorithm to correct the misalignment of the binary mask. The efficacy of the proposed scheme is first demonstrated by simulations where we evaluate the reconstruction quality using mean square error and structural similarity index. The scheme is then experimentally tested by recovering images of a resolution target and biological samples. The proposed scheme may provide new insights for developing compact and large field-of-view lensless imaging platforms. The use of the binary mask can also be combined with other diversity functions for better constraining the phase retrieval solution space. We provide the open-source implementation code for the broad research community.

  4. Microarray-integrated optoelectrofluidic immunoassay system

    PubMed Central

    Han, Dongsik

    2016-01-01

    A microarray-based analytical platform has been utilized as a powerful tool in biological assay fields. However, an analyte depletion problem due to the slow mass transport based on molecular diffusion causes low reaction efficiency, resulting in a limitation for practical applications. This paper presents a novel method to improve the efficiency of microarray-based immunoassay via an optically induced electrokinetic phenomenon by integrating an optoelectrofluidic device with a conventional glass slide-based microarray format. A sample droplet was loaded between the microarray slide and the optoelectrofluidic device on which a photoconductive layer was deposited. Under the application of an AC voltage, optically induced AC electroosmotic flows caused by a microarray-patterned light actively enhanced the mass transport of target molecules at the multiple assay spots of the microarray simultaneously, which reduced tedious reaction time from more than 30 min to 10 min. Based on this enhancing effect, a heterogeneous immunoassay with a tiny volume of sample (5 μl) was successfully performed in the microarray-integrated optoelectrofluidic system using immunoglobulin G (IgG) and anti-IgG, resulting in improved efficiency compared to the static environment. Furthermore, the application of multiplex assays was also demonstrated by multiple protein detection. PMID:27190571

  5. Microarray-integrated optoelectrofluidic immunoassay system.

    PubMed

    Han, Dongsik; Park, Je-Kyun

    2016-05-01

    A microarray-based analytical platform has been utilized as a powerful tool in biological assay fields. However, an analyte depletion problem due to the slow mass transport based on molecular diffusion causes low reaction efficiency, resulting in a limitation for practical applications. This paper presents a novel method to improve the efficiency of microarray-based immunoassay via an optically induced electrokinetic phenomenon by integrating an optoelectrofluidic device with a conventional glass slide-based microarray format. A sample droplet was loaded between the microarray slide and the optoelectrofluidic device on which a photoconductive layer was deposited. Under the application of an AC voltage, optically induced AC electroosmotic flows caused by a microarray-patterned light actively enhanced the mass transport of target molecules at the multiple assay spots of the microarray simultaneously, which reduced tedious reaction time from more than 30 min to 10 min. Based on this enhancing effect, a heterogeneous immunoassay with a tiny volume of sample (5 μl) was successfully performed in the microarray-integrated optoelectrofluidic system using immunoglobulin G (IgG) and anti-IgG, resulting in improved efficiency compared to the static environment. Furthermore, the application of multiplex assays was also demonstrated by multiple protein detection.

  6. Zika virus evolution and spread in the Americas

    PubMed Central

    Metsky, Hayden C.; Matranga, Christian B.; Wohl, Shirlee; Schaffner, Stephen F.; Freije, Catherine A.; Winnicki, Sarah M.; West, Kendra; Qu, James; Baniecki, Mary Lynn; Gladden-Young, Adrianne; Lin, Aaron E.; Tomkins-Tinch, Christopher H.; Ye, Simon H.; Park, Daniel J.; Luo, Cynthia Y.; Barnes, Kayla G.; Shah, Rickey R.; Chak, Bridget; Barbosa-Lima, Giselle; Delatorre, Edson; Vieira, Yasmine R.; Paul, Lauren M.; Tan, Amanda L.; Barcellona, Carolyn M.; Porcelli, Mario C.; Vasquez, Chalmers; Cannons, Andrew C.; Cone, Marshall R.; Hogan, Kelly N.; Kopp, Edgar W.; Anzinger, Joshua J.; Garcia, Kimberly F.; Parham, Leda A.; Gélvez Ramírez, Rosa M.; Miranda Montoya, Maria C.; Rojas, Diana P.; Brown, Catherine M.; Hennigan, Scott; Sabina, Brandon; Scotland, Sarah; Gangavarapu, Karthik; Grubaugh, Nathan D.; Oliveira, Glenn; Robles-Sikisaka, Refugio; Rambaut, Andrew; Gehrke, Lee; Smole, Sandra; Halloran, M. Elizabeth; Villar, Luis; Mattar, Salim; Lorenzana, Ivette; Cerbino-Neto, Jose; Valim, Clarissa; Degrave, Wim; Bozza, Patricia T.; Gnirke, Andreas; Andersen, Kristian G.; Isern, Sharon; Michael, Scott F.; Bozza, Fernando A.; Souza, Thiago M. L.; Bosch, Irene; Yozwiak, Nathan L.; MacInnis, Bronwyn L.; Sabeti, Pardis C.

    2017-01-01

    Although the recent Zika virus (ZIKV) epidemic in the Americas and its link to birth defects have attracted a great deal of attention1,2, much remains unknown about ZIKV disease epidemiology and ZIKV evolution, in part owing to a lack of genomic data. Here we address this gap in knowledge by using multiple sequencing approaches to generate 110 ZIKV genomes from clinical and mosquito samples from 10 countries and territories, greatly expanding the observed viral genetic diversity from this outbreak. We analysed the timing and patterns of introductions into distinct geographic regions; our phylogenetic evidence suggests rapid expansion of the outbreak in Brazil and multiple introductions of outbreak strains into Puerto Rico, Honduras, Colombia, other Caribbean islands, and the continental United States. We find that ZIKV circulated undetected in multiple regions for many months before the first locally transmitted cases were confirmed, highlighting the importance of surveillance of viral infections. We identify mutations with possible functional implications for ZIKV biology and pathogenesis, as well as those that might be relevant to the effectiveness of diagnostic tests. PMID:28538734

  7. Multienzyme kinetics and sequential metabolism.

    PubMed

    Wienkers, Larry C; Rock, Brooke

    2014-01-01

    Enzymes are the catalysts of biological systems and are extremely efficient. A typical enzyme accelerates the rate of a reaction by factors of at least a million compared to the rate of the same reaction in the absence of the enzyme. In contrast to traditional catalytic enzymes, the family of cytochrome P450 (CYP) enzymes are catalytically promiscuous, and thus they possess remarkable versatility in substrates. The great diversity of reactions catalyzed by CYP enzymes appears to be based on two unique properties of these heme proteins, the ability of their iron to exist under multiple oxidation states with different reactivities and a flexible active site that can accommodate a wide variety of substrates. Herein is a discussion of two distinct types of kinetics observed with CYP enzymes. The first example is of CYP complex kinetic profiles when multiple CYP enzymes form the sample product. The second is sequential metabolism, in other words, the formation of multiple products from one CYP enzyme. Given the degree of CYP enzyme promiscuity, it is hardly surprising that there is also a high degree of complex kinetic profiles generated during the catalytic cycle.

  8. Bottom-up synthetic biology: modular design for making artificial platelets

    NASA Astrophysics Data System (ADS)

    Majumder, Sagardip; Liu, Allen P.

    2018-01-01

    Engineering artificial cells to mimic one or multiple fundamental cell biological functions is an emerging area of synthetic biology. Reconstituting functional modules from biological components in vitro is a challenging yet an important essence of bottom-up synthetic biology. Here we describe the concept of building artificial platelets using bottom-up synthetic biology and the four functional modules that together could enable such an ambitious effort.

  9. A Modified LC/MS/MS Method with Enhanced Sensitivity for the Determination of Scopolamine in Human Plasma

    NASA Technical Reports Server (NTRS)

    Wang, Zuwei; Vaksman, Zalman; Putcha, Lakshmi

    2008-01-01

    Intranasal scopolamine is a choice drug for the treatment of motion sickness during space flight because of its quick onset of action, short half-life and favorable sideeffects profile. The dose administered usually ranges between 0.1 and 0.4 mg. Such small doses make it difficult to detect concentrations of scopolamine in biological fluids using existing sensitive LC/MS/MS method, especially when the biological sample volumes are limited. To measure scopolamine in human plasma to facilitate pharmacokinetic evaluation of the drug, we developed a sensitive LC/MS/MS method using 96 well micro elution plates for solid phase extraction (SPE) of scopolamine in human plasma. Human plasma (100-250 micro L) were loaded onto Waters Oasis HLB 96 well micro elution plate and eluted with 50 L of organic solvent without evaporation and reconstitution. HPLC separation of the eluted sample was performed using an Agilent Zorbax SB-CN column (50 x 2.1 mm) at a flow rate of 0.2 mL/min for 3 minutes. The mobile phase for separation was 80:20 (v/v) methanol: ammonium acetate (30 mM) in water. Concentrations of scopolamine were determined using a Micromass Quattro Micro(TM) mass spectrometer with electrospray ionization (ESI). ESI mass spectra were acquired in positive ion mode with multiple reaction monitoring for the determination of scopolamine m/z = 304.2 right arrow 138.1 and internal standard hyoscyamine m/z = 290.2 right arrow 124.1. The method is rapid, reproducible, specific and has the following parameters: scopolamine and the IS are eluted at about 1.1 and 1.7 min respectively. The linear range is 25-10000 pg/mL for scopolamine in human plasma with correlation coefficients greater than 0.99 and CV less than 0.5%. The intra-day and inter-day CVs are less than 15% for quality control samples with concentrations of 75,300, and 750 pg/mL of scopolamine in human plasma. SPE using 96 well micro elution plates allows rapid sample preparation and enhanced sensitivity for the LC/MS/MS determination of scopolamine in a small volume of biological samples. The new method is also cost effective since it uses a small volume of organic solvents compared to the methods using SPE cartridges or regular 96 well SPE plates. This method can be successfully used for bioavailability and pharmacokinetic evaluations of scopolamine, especially when volumes of biological samples are limited. Further investigation to use automated SPE system with 96 well micro elution plates is planned.

  10. Principles of metadata organization at the ENCODE data coordination center.

    PubMed

    Hong, Eurie L; Sloan, Cricket A; Chan, Esther T; Davidson, Jean M; Malladi, Venkat S; Strattan, J Seth; Hitz, Benjamin C; Gabdank, Idan; Narayanan, Aditi K; Ho, Marcus; Lee, Brian T; Rowe, Laurence D; Dreszer, Timothy R; Roe, Greg R; Podduturi, Nikhil R; Tanaka, Forrest; Hilton, Jason A; Cherry, J Michael

    2016-01-01

    The Encyclopedia of DNA Elements (ENCODE) Data Coordinating Center (DCC) is responsible for organizing, describing and providing access to the diverse data generated by the ENCODE project. The description of these data, known as metadata, includes the biological sample used as input, the protocols and assays performed on these samples, the data files generated from the results and the computational methods used to analyze the data. Here, we outline the principles and philosophy used to define the ENCODE metadata in order to create a metadata standard that can be applied to diverse assays and multiple genomic projects. In addition, we present how the data are validated and used by the ENCODE DCC in creating the ENCODE Portal (https://www.encodeproject.org/). Database URL: www.encodeproject.org. © The Author(s) 2016. Published by Oxford University Press.

  11. Simultaneous determination of three anticonvulsants using hydrophilic interaction LC-MS.

    PubMed

    Oertel, Reinhard; Arenz, Norman; Pietsch, Jörg; Kirch, Wilhelm

    2009-01-01

    A specific and automated method was developed to quantify the anticonvulsants gabapentin, pregabalin and vigabatrin simultaneously in human serum. Samples were prepared with a protein precipitation. The hydrophilic interaction chromatography (HILIC) with a mobile phase gradient was used to divide off ions of the matrix and for separation of the analytes. Four different HILIC-columns and two different column temperatures were tested. The Tosoh-Amid column gave the best results: single small peaks. The anticonvulsants were detected in the multiple reaction monitoring mode (MRM) with ESI-MS-MS. Using a volume of 100 microL biological sample the lowest point of the standard curve, i.e. the lower LOQs were 312 ng/mL. The described HILIC-MS-MS method is suitable for therapeutic drug monitoring and for clinical and pharmcokinetical investigations of the anticonvulsives.

  12. Scaling in cognitive performance reflects multiplicative multifractal cascade dynamics

    PubMed Central

    Stephen, Damian G.; Anastas, Jason R.; Dixon, James A.

    2012-01-01

    Self-organized criticality purports to build multi-scaled structures out of local interactions. Evidence of scaling in various domains of biology may be more generally understood to reflect multiplicative interactions weaving together many disparate scales. The self-similarity of power-law scaling entails homogeneity: fluctuations distribute themselves similarly across many spatial and temporal scales. However, this apparent homogeneity can be misleading, especially as it spans more scales. Reducing biological processes to one power-law relationship neglects rich cascade dynamics. We review recent research into multifractality in executive-function cognitive tasks and propose that scaling reflects not criticality but instead interactions across multiple scales and among fluctuations of multiple sizes. PMID:22529819

  13. Effects of biologically-active chemical mixtures on fish in a wastewater-impacted urban stream

    USGS Publications Warehouse

    Barber, Larry B.; Brown, Gregory K.; Nettesheim, Todd G.; Murphy, Elizabeth W.; Bartell, Stephen E.; Schoenfuss, Heiko L.

    2011-01-01

    Stream flow in urban aquatic ecosystems often is maintained by water-reclamation plant (WRP) effluents that contain mixtures of natural and anthropogenic chemicals that persist through the treatment processes. In effluent-impactedstreams, aquatic organisms such as fish are continuously exposed to biologically-activechemicals throughout their life cycles. The North Shore Channel of the Chicago River (Chicago, Illinois) is part of an urban ecosystem in which > 80% of the annual flow consists of effluent from the North Side WRP. In this study, multiple samplings of the effluent and stream water were conducted and fish (largemouth bass and carp) were collected on 2 occasions from the North Shore Channel. Fish also were collected once from the Outer Chicago Harbor in Lake Michigan, a reference site not impacted by WRP discharges. Over 100 organic chemicals with differing behaviors and biological effects were measured, and 23 compounds were detected in all of the water samples analyzed. The most frequently detected and highest concentration (> 100 μg/L) compounds were ethylenediaminetetraacetic acid and 4-nonylphenolmono-to-tetraethoxycarboxylic acids. Other biologically-activechemicals including bisphenol A, 4-nonylphenol, 4-nonylphenolmono-to-tetraethoxylates, 4-tert-octylphenol, and 4-tert-octylphenolmono-to-tetraethoxylates were detected at lower concentrations (cis-androsterone were detected at even lower concentrations (< 0.005 μg/L). There were slight differences in concentrations between the North Side WRP effluent and the North Shore Channel, indicating minimal in-stream attenuation. Fish populations are continuously exposed to mixtures of biologically-activechemicals because of the relative persistency of the chemicals with respect to stream hydraulic residence time, and the lack of a fresh water source for dilution. The majority of male fish exhibited vitellogenin induction, a physiological response consistent with exposure to estrogenic compounds. Tissue-level signs of reproductive disruption, such as ovatestis, were not observed.

  14. Effects of biologically-active chemical mixtures on fish in a wastewater-impacted urban stream

    USGS Publications Warehouse

    Barber, L.B.; Brown, G.K.; Nettesheim, T.G.; Murphy, E.W.; Bartell, S.E.; Schoenfuss, H.L.

    2011-01-01

    Stream flow in urban aquatic ecosystems often is maintained by water-reclamation plant (WRP) effluents that contain mixtures of natural and anthropogenic chemicals that persist through the treatment processes. In effluent-impacted streams, aquatic organisms such as fish are continuously exposed to biologically-active chemicals throughout their life cycles. The North Shore Channel of the Chicago River (Chicago, Illinois) is part of an urban ecosystem in which > 80% of the annual flow consists of effluent from the North Side WRP. In this study, multiple samplings of the effluent and stream water were conducted and fish (largemouth bass and carp) were collected on 2 occasions from the North Shore Channel. Fish also were collected once from the Outer Chicago Harbor in Lake Michigan, a reference site not impacted by WRP discharges. Over 100 organic chemicals with differing behaviors and biological effects were measured, and 23 compounds were detected in all of the water samples analyzed. The most frequently detected and highest concentration (> 100 ??g/L) compounds were ethylenediaminetetraacetic acid and 4-nonylphenolmono-to-tetraethoxycarboxylic acids. Other biologically-active chemicals including bisphenol A, 4-nonylphenol, 4-nonylphenolmono-to-tetraethoxylates, 4- tert-octylphenol, and 4- tert-octylphenolmono-to-tetraethoxylates were detected at lower concentrations (< 5 ??g/L). The biogenic steroidal hormones 17??-estradiol, estrone, testosterone, 4-androstene-3,17-dione, and cis-androsterone were detected at even lower concentrations (< 0.005 ??g/L). There were slight differences in concentrations between the North Side WRP effluent and the North Shore Channel, indicating minimal in-stream attenuation. Fish populations are continuously exposed to mixtures of biologically-active chemicals because of the relative persistency of the chemicals with respect to stream hydraulic residence time, and the lack of a fresh water source for dilution. The majority of male fish exhibited vitellogenin induction, a physiological response consistent with exposure to estrogenic compounds. Tissue-level signs of reproductive disruption, such as ovatestis, were not observed. ?? 2011.

  15. 50 CFR 679.7 - Prohibitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... and the collection of scientific data or biological samples from the salmon has been completed. (B... scientific data or biological samples from the previous haul. (5) For the operator of a catcher vessel, to... count of salmon and the collection of scientific data or biological samples from the previous offload...

  16. 50 CFR 679.7 - Prohibitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... collection of scientific data or biological samples from the salmon has been completed. (B) Non-Chinook... scientific data or biological samples from the previous haul. (5) For the operator of a catcher vessel, to... count of salmon and the collection of scientific data or biological samples from the previous offload...

  17. Micromechanical properties of canine femoral articular cartilage following multiple freeze-thaw cycles.

    PubMed

    Peters, Abby E; Comerford, Eithne J; Macaulay, Sophie; Bates, Karl T; Akhtar, Riaz

    2017-07-01

    Tissue material properties are crucial to understanding their mechanical function, both in healthy and diseased states. However, in certain circumstances logistical limitations can prevent testing on fresh samples necessitating one or more freeze-thaw cycles. To date, the nature and extent to which the material properties of articular cartilage are altered by repetitive freezing have not been explored. Therefore, the aim of this study is to quantify how articular cartilage mechanical properties, measured by nanoindentation, are affected by multiple freeze-thaw cycles. Canine cartilage plugs (n = 11) from medial and lateral femoral condyles were submerged in phosphate buffered saline, stored at 3-5°C and tested using nanoindentation within 12h. Samples were then frozen at -20°C and later thawed at 3-5°C for 3h before material properties were re-tested and samples re-frozen under the same conditions. This process was repeated for all 11 samples over three freeze-thaw cycles. Overall mean and standard deviation of shear storage modulus decreased from 1.76 ± 0.78 to 1.21 ± 0.77MPa (p = 0.91), shear loss modulus from 0.42 ± 0.19 to 0.39 ± 0.17MPa (p=0.70) and elastic modulus from 5.13 ± 2.28 to 3.52 ± 2.24MPa (p = 0.20) between fresh and three freeze-thaw cycles respectively. The loss factor increased from 0.31 ± 0.38 to 0.71 ± 1.40 (p = 0.18) between fresh and three freeze-thaw cycles. Inter-sample variability spanned as much as 10.47MPa across freezing cycles and this high-level of biological variability across samples likely explains why overall mean "whole-joint" trends do not reach statistical significance across the storage conditions tested. As a result multiple freeze-thaw cycles cannot be explicitly or statistically linked to mechanical changes within the cartilage. However, the changes in material properties observed herein may be sufficient in magnitude to impact on a variety of clinical and scientific studies of cartilage, and should be considered when planning experimental protocols. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. X-Ray Absorption Near Edge Structure And Extended X-Ray Absorption Fine Structure Analysis of Standards And Biological Samples Containing Mixed Oxidation States of Chromium(III) And Chromium(VI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsons, J.G.; Dokken, K.; Peralta-Videa, J.R.

    For the first time a method has been developed for the extended X-ray absorption fine structure (EXAFS) data analyses of biological samples containing multiple oxidation states of chromium. In this study, the first shell coordination and interatomic distances based on the data analysis of known standards of potassium chromate (Cr(VI)) and chromium nitrate hexahydrate (Cr(III)) were investigated. The standards examined were mixtures of the following molar ratios of Cr(VI):Cr(III), 0:1, 0.25:0.75, 0.5:0.5, 0.75:0.25, and 1:0. It was determined from the calibration data that the fitting error associated with linear combination X-ray absorption near edge structure (LC-XANES) fittings was approximately {+-}10%more » of the total fitting. The peak height of the Cr(VI) pre-edge feature after normalization of the X-ray absorption (XAS) spectra was used to prepare a calibration curve. The EXAFS fittings of the standards were also investigated and fittings to lechuguilla biomass samples laden with different ratios of Cr(III) and Cr(VI) were performed as well. An excellent agreement between the XANES data and the data presented in the EXAFS spectra was observed. The EXFAS data also presented mean coordination numbers directly related to the ratios of the different chromium oxidation states in the sample. The chromium oxygen interactions had two different bond lengths at approximately 1.68 and 1.98 {angstrom} for the Cr(VI) and Cr(III) in the sample, respectively.« less

  19. Diagnosing phenotypes of single-sample individuals by edge biomarkers.

    PubMed

    Zhang, Wanwei; Zeng, Tao; Liu, Xiaoping; Chen, Luonan

    2015-06-01

    Network or edge biomarkers are a reliable form to characterize phenotypes or diseases. However, obtaining edges or correlations between molecules for an individual requires measurement of multiple samples of that individual, which are generally unavailable in clinical practice. Thus, it is strongly demanded to diagnose a disease by edge or network biomarkers in one-sample-for-one-individual context. Here, we developed a new computational framework, EdgeBiomarker, to integrate edge and node biomarkers to diagnose phenotype of each single test sample. By applying the method to datasets of lung and breast cancer, it reveals new marker genes/gene-pairs and related sub-networks for distinguishing earlier and advanced cancer stages. Our method shows advantages over traditional methods: (i) edge biomarkers extracted from non-differentially expressed genes achieve better cross-validation accuracy of diagnosis than molecule or node biomarkers from differentially expressed genes, suggesting that certain pathogenic information is only present at the level of network and under-estimated by traditional methods; (ii) edge biomarkers categorize patients into low/high survival rate in a more reliable manner; (iii) edge biomarkers are significantly enriched in relevant biological functions or pathways, implying that the association changes in a network, rather than expression changes in individual molecules, tend to be causally related to cancer development. The new framework of edge biomarkers paves the way for diagnosing diseases and analyzing their molecular mechanisms by edges or networks in one-sample-for-one-individual basis. This also provides a powerful tool for precision medicine or big-data medicine. © The Author (2015). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

  20. 9 CFR 113.3 - Sampling of biological products.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Sampling of biological products. 113.3 Section 113.3 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF... Applicability § 113.3 Sampling of biological products. Each licensee and permittee shall furnish representative...

  1. 9 CFR 113.3 - Sampling of biological products.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Sampling of biological products. 113.3 Section 113.3 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF... Applicability § 113.3 Sampling of biological products. Each licensee and permittee shall furnish representative...

  2. [Confirming Indicators of Qualitative Results by Chromatography-mass Spectrometry in Biological Samples].

    PubMed

    Liu, S D; Zhang, D M; Zhang, W; Zhang, W F

    2017-04-01

    Because of the exist of complex matrix, the confirming indicators of qualitative results for toxic substances in biological samples by chromatography-mass spectrometry are different from that in non-biological samples. Even in biological samples, the confirming indicators are different in various application areas. This paper reviews the similarities and differences of confirming indicators for the analyte in biological samples by chromatography-mass spectrometry in the field of forensic toxicological analysis and other application areas. These confirming indicators include retention time (RT), relative retention time (RRT), signal to noise (S/N), characteristic ions, relative abundance of characteristic ions, parent ion-daughter ion pair and abundance ratio of ion pair, etc. Copyright© by the Editorial Department of Journal of Forensic Medicine.

  3. Primary sources and toxicity of PAHs in Milwaukee-area streambed sediment

    USGS Publications Warehouse

    Baldwin, Austin K.; Corsi, Steven R.; Lutz, Michelle A.; Ingersoll, Christopher G.; Dorman, Rebecca A.; Magruder, Christopher; Magruder, Matthew

    2017-01-01

    High concentrations of polycyclic aromatic hydrocarbons (PAHs) in streams can be a significant stressor to aquatic organisms. To understand the likely sources and toxicity of PAHs in Milwaukee-area streams, streambed sediment samples from 40 sites and parking lot dust samples from 6 sites were analyzed for 38 parent PAHs and 25 alkylated PAHs. Diagnostic ratios, profile correlations, principal components analysis, source-receptor modeling, and mass fractions analysis were used to identify potential PAH sources to streambed sediment samples, and land-use analysis was used to relate streambed sediment PAH concentrations to different urban-related land uses. On the basis of this multiple lines-of-evidence approach, coal-tar pavement sealant was indicated as the primary source of PAHs in a majority of streambed sediment samples, contributing an estimated 77% of total PAHs to samples, on average. Comparison to the Probable Effect Concentrations and (or) the Equilibrium Partitioning Sediment Benchmark indicates that 78% of stream sediment samples are likely to cause adverse effects to benthic organisms. Laboratory toxicity tests on a 16-sample subset of the streambed sites using the amphipod Hyalella azteca (28-day) and the midge Chironomus dilutus (10-day) measured significant reductions in one or more biological endpoints, including survival, in 75% of samples, with H. azteca more responsive than C. dilutus.

  4. Novel associations between contaminant body burdens and biomarkers of reproductive condition in male Common Carp along multiple gradients of contaminant exposure in Lake Mead National Recreation Area, USA

    USGS Publications Warehouse

    Patino, Reynaldo; VanLandeghem, Matthew M.; Goodbred, Steven L.; Orsak, Erik; Jenkins, Jill A.; Echols, Kathy R.; Rosen, Michael R.; Torres, Leticia

    2015-01-01

    Adult male Common Carp were sampled in 2007/08 over a full reproductive cycle at Lake Mead National Recreation Area. Sites sampled included a stream dominated by treated wastewater effluent, a lake basin receiving the streamflow, an upstream lake basin (reference), and a site below Hoover Dam. Individual body burdens for 252 contaminants were measured, and biological variables assessed included physiological [plasma vitellogenin (VTG), estradiol-17β (E2), 11-ketotestosterone (11KT)] and organ [gonadosomatic index (GSI)] endpoints. Patterns in contaminant composition and biological condition were determined by Principal Component Analysis, and their associations modeled by Principal Component Regression. Three spatially distinct but temporally stable gradients of contaminant distribution were recognized: a contaminant mixture typical of wastewaters (PBDEs, methyl triclosan, galaxolide), PCBs, and DDTs. Two spatiotemporally variable patterns of biological condition were recognized: a primary pattern consisting of reproductive condition variables (11KT, E2, GSI), and a secondary pattern including general condition traits (condition factor, hematocrit, fork length). VTG was low in all fish, indicating low estrogenic activity of water at all sites. Wastewater contaminants associated negatively with GSI, 11KT and E2; PCBs associated negatively with GSI and 11KT; and DDTs associated positively with GSI and 11KT. Regression of GSI on sex steroids revealed a novel, nonlinear association between these variables. Inclusion of sex steroids in the GSI regression on contaminants rendered wastewater contaminants nonsignificant in the model and reduced the influence of PCBs and DDTs. Thus, the influence of contaminants on GSI may have been partially driven by organismal modes-of-action that include changes in sex steroid production. The positive association of DDTs with 11KT and GSI suggests that lifetime, sub-lethal exposures to DDTs have effects on male carp opposite of those reported by studies where exposure concentrations were relatively high. Lastly, this study highlighted advantages of multivariate/multiple regression approaches for exploring associations between complex contaminant mixtures and gradients and reproductive condition in wild fishes.

  5. Novel associations between contaminant body burdens and biomarkers of reproductive condition in male Common Carp along multiple gradients of contaminant exposure in Lake Mead National Recreation Area, USA.

    PubMed

    Patiño, Reynaldo; VanLandeghem, Matthew M; Goodbred, Steven L; Orsak, Erik; Jenkins, Jill A; Echols, Kathy; Rosen, Michael R; Torres, Leticia

    2015-08-01

    Adult male Common Carp were sampled in 2007/08 over a full reproductive cycle at Lake Mead National Recreation Area. Sites sampled included a stream dominated by treated wastewater effluent, a lake basin receiving the streamflow, an upstream lake basin (reference), and a site below Hoover Dam. Individual body burdens for 252 contaminants were measured, and biological variables assessed included physiological [plasma vitellogenin (VTG), estradiol-17β (E2), 11-ketotestosterone (11KT)] and organ [gonadosomatic index (GSI)] endpoints. Patterns in contaminant composition and biological condition were determined by Principal Component Analysis, and their associations modeled by Principal Component Regression. Three spatially distinct but temporally stable gradients of contaminant distribution were recognized: a contaminant mixture typical of wastewaters (PBDEs, methyl triclosan, galaxolide), PCBs, and DDTs. Two spatiotemporally variable patterns of biological condition were recognized: a primary pattern consisting of reproductive condition variables (11KT, E2, GSI), and a secondary pattern including general condition traits (condition factor, hematocrit, fork length). VTG was low in all fish, indicating low estrogenic activity of water at all sites. Wastewater contaminants associated negatively with GSI, 11KT and E2; PCBs associated negatively with GSI and 11KT; and DDTs associated positively with GSI and 11KT. Regression of GSI on sex steroids revealed a novel, nonlinear association between these variables. Inclusion of sex steroids in the GSI regression on contaminants rendered wastewater contaminants nonsignificant in the model and reduced the influence of PCBs and DDTs. Thus, the influence of contaminants on GSI may have been partially driven by organismal modes-of-action that include changes in sex steroid production. The positive association of DDTs with 11KT and GSI suggests that lifetime, sub-lethal exposures to DDTs have effects on male carp opposite of those reported by studies where exposure concentrations were relatively high. Lastly, this study highlighted advantages of multivariate/multiple regression approaches for exploring associations between complex contaminant mixtures and gradients and reproductive condition in wild fishes. Published by Elsevier Inc.

  6. Subclonal diversification of primary breast cancer revealed by multiregion sequencing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yates, Lucy R.; Gerstung, Moritz; Knappskog, Stian

    Sequencing cancer genomes may enable tailoring of therapeutics to the underlying biological abnormalities driving a particular patient's tumor. However, sequencing-based strategies rely heavily on representative sampling of tumors. To understand the subclonal structure of primary breast cancer, we applied whole-genome and targeted sequencing to multiple samples from each of 50 patients' tumors (303 samples in total). The extent of subclonal diversification varied among cases and followed spatial patterns. No strict temporal order was evident, with point mutations and rearrangements affecting the most common breast cancer genes, including PIK3CA, TP53, PTEN, BRCA2 and MYC, occurring early in some tumors and latemore » in others. In 13 out of 50 cancers, potentially targetable mutations were subclonal. Landmarks of disease progression, such as resistance to chemotherapy and the acquisition of invasive or metastatic potential, arose within detectable subclones of antecedent lesions. These findings highlight the importance of including analyses of subclonal structure and tumor evolution in clinical trials of primary breast cancer.« less

  7. Subclonal diversification of primary breast cancer revealed by multiregion sequencing

    DOE PAGES

    Yates, Lucy R.; Gerstung, Moritz; Knappskog, Stian; ...

    2015-06-22

    Sequencing cancer genomes may enable tailoring of therapeutics to the underlying biological abnormalities driving a particular patient's tumor. However, sequencing-based strategies rely heavily on representative sampling of tumors. To understand the subclonal structure of primary breast cancer, we applied whole-genome and targeted sequencing to multiple samples from each of 50 patients' tumors (303 samples in total). The extent of subclonal diversification varied among cases and followed spatial patterns. No strict temporal order was evident, with point mutations and rearrangements affecting the most common breast cancer genes, including PIK3CA, TP53, PTEN, BRCA2 and MYC, occurring early in some tumors and latemore » in others. In 13 out of 50 cancers, potentially targetable mutations were subclonal. Landmarks of disease progression, such as resistance to chemotherapy and the acquisition of invasive or metastatic potential, arose within detectable subclones of antecedent lesions. These findings highlight the importance of including analyses of subclonal structure and tumor evolution in clinical trials of primary breast cancer.« less

  8. Multi-template polymerase chain reaction.

    PubMed

    Kalle, Elena; Kubista, Mikael; Rensing, Christopher

    2014-12-01

    PCR is a formidable and potent technology that serves as an indispensable tool in a wide range of biological disciplines. However, due to the ease of use and often lack of rigorous standards many PCR applications can lead to highly variable, inaccurate, and ultimately meaningless results. Thus, rigorous method validation must precede its broad adoption to any new application. Multi-template samples possess particular features, which make their PCR analysis prone to artifacts and biases: multiple homologous templates present in copy numbers that vary within several orders of magnitude. Such conditions are a breeding ground for chimeras and heteroduplexes. Differences in template amplification efficiencies and template competition for reaction compounds undermine correct preservation of the original template ratio. In addition, the presence of inhibitors aggravates all of the above-mentioned problems. Inhibitors might also have ambivalent effects on the different templates within the same sample. Yet, no standard approaches exist for monitoring inhibitory effects in multitemplate PCR, which is crucial for establishing compatibility between samples.

  9. Watershed-based survey designs

    USGS Publications Warehouse

    Detenbeck, N.E.; Cincotta, D.; Denver, J.M.; Greenlee, S.K.; Olsen, A.R.; Pitchford, A.M.

    2005-01-01

    Watershed-based sampling design and assessment tools help serve the multiple goals for water quality monitoring required under the Clean Water Act, including assessment of regional conditions to meet Section 305(b), identification of impaired water bodies or watersheds to meet Section 303(d), and development of empirical relationships between causes or sources of impairment and biological responses. Creation of GIS databases for hydrography, hydrologically corrected digital elevation models, and hydrologic derivatives such as watershed boundaries and upstream–downstream topology of subcatchments would provide a consistent seamless nationwide framework for these designs. The elements of a watershed-based sample framework can be represented either as a continuous infinite set defined by points along a linear stream network, or as a discrete set of watershed polygons. Watershed-based designs can be developed with existing probabilistic survey methods, including the use of unequal probability weighting, stratification, and two-stage frames for sampling. Case studies for monitoring of Atlantic Coastal Plain streams, West Virginia wadeable streams, and coastal Oregon streams illustrate three different approaches for selecting sites for watershed-based survey designs.

  10. Chemical and botanical characterization of Chilean propolis and biological activity on cariogenic bacteria Streptococcus mutans and Streptococcus sobrinus.

    PubMed

    Barrientos, Leticia; Herrera, Christian L; Montenegro, Gloria; Ortega, Ximena; Veloz, Jorge; Alvear, Marysol; Cuevas, Alejandro; Saavedra, Nicolás; Salazar, Luis A

    2013-01-01

    Propolis is a non-toxic natural substance with multiple pharmacological properties including anti-cancer, antioxidant, fungicidal, antibacterial, antiviral, and anti-inflammatory among others. The aim of this study was to determine the chemical and botanical characterization of Chilean propolis samples and to evaluate their biological activity against the cariogenic bacteria Streptococcus mutans and Streptococcus sobrinus. Twenty propolis samples were obtained from beekeeping producers from the central and southern regions of Chile. The botanical profile was determined by palynological analysis. Total phenolic contents were determined using colorimetric assays. Reverse phase HPLC and HPLC-MS were used to determine the chemical composition. The minimum inhibitory concentration (MIC) was determined on S. mutans and S. sobrinus. All propolis samples were dominated by structures from native plant species. The characterization by HPLC/MS, evidenced the presence of quercetin, myricetin, kaempferol, rutine, pinocembrin, coumaric acid, caffeic acid and caffeic acid phenethyl ester, that have already been described in these propolis with conventional HPLC. Although all propolis samples inhibited the mutans streptococci growth, it was observed a wide spectrum of action (MIC 0.90 to 8.22 μg mL(-1)). Given that results it becomes increasingly evident the need of standardization procedures, where we combine both the determination of botanical and the chemical characterization of the extracts. Research conducted to date, describes a promising effectiveness of propolis in the prevention of caries and other diseases of the oral cavity, making it necessary to develop studies to identify and understand the therapeutic targets or mechanisms of molecular action of the various compounds present on them.

  11. Promoting inquiry-based teaching in laboratory courses: are we meeting the grade?

    PubMed

    Beck, Christopher; Butler, Amy; da Silva, Karen Burke

    2014-01-01

    Over the past decade, repeated calls have been made to incorporate more active teaching and learning in undergraduate biology courses. The emphasis on inquiry-based teaching is especially important in laboratory courses, as these are the courses in which students are applying the process of science. To determine the current state of research on inquiry-based teaching in undergraduate biology laboratory courses, we reviewed the recent published literature on inquiry-based exercises. The majority of studies in our data set were in the subdisciplines of biochemistry, cell biology, developmental biology, genetics, and molecular biology. In addition, most exercises were guided inquiry, rather than open ended or research based. Almost 75% of the studies included assessment data, with two-thirds of these studies including multiple types of assessment data. However, few exercises were assessed in multiple courses or at multiple institutions. Furthermore, assessments were rarely based on published instruments. Although the results of the studies in our data set show a positive effect of inquiry-based teaching in biology laboratory courses on student learning gains, research that uses the same instrument across a range of courses and institutions is needed to determine whether these results can be generalized. © 2014 C. Beck et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  12. Life sciences research in space: The requirement for animal models

    NASA Technical Reports Server (NTRS)

    Fuller, C. A.; Philips, R. W.; Ballard, R. W.

    1987-01-01

    Use of animals in NASA space programs is reviewed. Animals are needed because life science experimentation frequently requires long-term controlled exposure to environments, statistical validation, invasive instrumentation or biological tissue sampling, tissue destruction, exposure to dangerous or unknown agents, or sacrifice of the subject. The availability and use of human subjects inflight is complicated by the multiple needs and demands upon crew time. Because only living organisms can sense, integrate and respond to the environment around them, the sole use of tissue culture and computer models is insufficient for understanding the influence of the space environment on intact organisms. Equipment for spaceborne experiments with animals is described.

  13. Rainfall and runoff quantity and quality data collected at four urban land-use catchments in Fresno, California, October 1981-April 1983

    USGS Publications Warehouse

    Oltmann, R.N.; Guay, J.R.; Shay, J.M.

    1987-01-01

    Data were collected as part of the National Urban Runoff Program to characterize urban runoff in Fresno, California. Rainfall-runoff quantity and quality data are included along with atmospheric dry-deposition and street-surface particulate quality data. The data are presented in figures and tables that reflect four land uses: industrial, single-dwelling residential, multiple-dwelling residential, and commercial. A total of 255 storms were monitored for rainfall and runoff quantity. Runoff samples from 112 of these storms were analyzed for physical, organic, inorganic, and biological constituents. The majority of the remaining storms have pH and specific conductance data only. Ninety-two composite rain samples were collected. Of these, 63 were analyzed for physical, inorganic, and (or) organic constituents. The remaining rainfall samples have pH and specific conductance data only. Nineteen atmospheric deposition and 21 street-particulate samples were collected and analyzed for inorganic and organic constituents. The report also details equipment utilization and operation, and discusses data collection methods. (USGS)

  14. Combined, solid-state molecular property and gamma spectrometers for CBRNE detection

    NASA Astrophysics Data System (ADS)

    Rogers, Ben; Grate, Jay; Pearson, Brett; Gallagher, Neal; Wise, Barry; Whitten, Ralph; Adams, Jesse

    2013-05-01

    Nevada Nanotech Systems, Inc. (Nevada Nano) has developed a multi-sensor solution to Chemical, Biological, Radiological, Nuclear and Explosives (CBRNE) detection that combines the Molecular Property Spectrometer™ (MPS™)—a micro-electro-mechanical chip-based technology capable of measuring a variety of thermodynamic and electrostatic molecular properties of sampled vapors and particles—and a compact, high-resolution, solid-state gamma spectrometer module for identifying radioactive materials, including isotopes used in dirty bombs and nuclear weapons. By conducting multiple measurements, the system can provide a more complete characterization of an unknown sample, leading to a more accurate identification. Positive identifications of threats are communicated using an integrated wireless module. Currently, system development is focused on detection of commercial, military and improvised explosives, radioactive materials, and chemical threats. The system can be configured for a variety of CBRNE applications, including handheld wands and swab-type threat detectors requiring short sample times, and ultra-high sensitivity detectors in which longer sampling times are used. Here we provide an overview of the system design and operation and present results from preliminary testing.

  15. Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change-A review.

    PubMed

    Boyd, Philip W; Collins, Sinead; Dupont, Sam; Fabricius, Katharina; Gattuso, Jean-Pierre; Havenhand, Jonathan; Hutchins, David A; Riebesell, Ulf; Rintoul, Max S; Vichi, Marcello; Biswas, Haimanti; Ciotti, Aurea; Gao, Kunshan; Gehlen, Marion; Hurd, Catriona L; Kurihara, Haruko; McGraw, Christina M; Navarro, Jorge M; Nilsson, Göran E; Passow, Uta; Pörtner, Hans-Otto

    2018-06-01

    Marine life is controlled by multiple physical and chemical drivers and by diverse ecological processes. Many of these oceanic properties are being altered by climate change and other anthropogenic pressures. Hence, identifying the influences of multifaceted ocean change, from local to global scales, is a complex task. To guide policy-making and make projections of the future of the marine biosphere, it is essential to understand biological responses at physiological, evolutionary and ecological levels. Here, we contrast and compare different approaches to multiple driver experiments that aim to elucidate biological responses to a complex matrix of ocean global change. We present the benefits and the challenges of each approach with a focus on marine research, and guidelines to navigate through these different categories to help identify strategies that might best address research questions in fundamental physiology, experimental evolutionary biology and community ecology. Our review reveals that the field of multiple driver research is being pulled in complementary directions: the need for reductionist approaches to obtain process-oriented, mechanistic understanding and a requirement to quantify responses to projected future scenarios of ocean change. We conclude the review with recommendations on how best to align different experimental approaches to contribute fundamental information needed for science-based policy formulation. © 2018 John Wiley & Sons Ltd.

  16. Adaption of Ulva pertusa to multiple-contamination of heavy metals and nutrients: Biological mechanism of outbreak of Ulva sp. green tide.

    PubMed

    Ge, Changzi; Yu, Xiru; Kan, Manman; Qu, Chunfeng

    2017-12-15

    The multiple-contamination of heavy metals and nutrients worsens increasingly and Ulva sp. green tide occurs almost simultaneously. To reveal the biological mechanism for outbreak of the green tide, Ulva pertusa was exposed to seven-day-multiple-contamination. The relation between pH variation (V pH ), Chl a content, ratio of (Chl a content)/(Chl b content) (R chla/chlb ), SOD activity of U. pertusa (A SOD ) and contamination concentration is [Formula: see text] (p<0.05), C chla =0.88 ±0.09 -0.01 ±0.00 ×C Cd (p<0.05), [Formula: see text] (p<0.05), and [Formula: see text] (p<0.05), respectively. C ammonia , C Cd and C Zn is concentration of ammonia, Cd 2+ and Zn 2+ , respectively. Comparing the contamination concentrations of seawaters where Ulva sp. green tide occurred and the contamination concentrations set in the present work, U. pertusa can adapt to multiple-contaminations in these waters. Thus, the adaption to multiple-contamination may be one biological mechanism for the outbreak of Ulva sp. green tide. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Detection of multiple perturbations in multi-omics biological networks.

    PubMed

    Griffin, Paula J; Zhang, Yuqing; Johnson, William Evan; Kolaczyk, Eric D

    2018-05-17

    Cellular mechanism-of-action is of fundamental concern in many biological studies. It is of particular interest for identifying the cause of disease and learning the way in which treatments act against disease. However, pinpointing such mechanisms is difficult, due to the fact that small perturbations to the cell can have wide-ranging downstream effects. Given a snapshot of cellular activity, it can be challenging to tell where a disturbance originated. The presence of an ever-greater variety of high-throughput biological data offers an opportunity to examine cellular behavior from multiple angles, but also presents the statistical challenge of how to effectively analyze data from multiple sources. In this setting, we propose a method for mechanism-of-action inference by extending network filtering to multi-attribute data. We first estimate a joint Gaussian graphical model across multiple data types using penalized regression and filter for network effects. We then apply a set of likelihood ratio tests to identify the most likely site of the original perturbation. In addition, we propose a conditional testing procedure to allow for detection of multiple perturbations. We demonstrate this methodology on paired gene expression and methylation data from The Cancer Genome Atlas (TCGA). © 2018, The International Biometric Society.

  18. Chemical biology 2012: from drug targets to biological systems and back.

    PubMed

    Socher, Elke; Grossmann, Tom N

    2013-01-02

    Multiple sites sharing a common target: This year's EMBO conference on chemical biology encouraged over 340 researchers to come to Heidelberg, Germany, and discuss the use of diverse chemical strategies and tools to investigate biological questions and better understand cellular processes. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Speciation analysis of arsenic in biological matrices by automated hydride generation-cryotrapping-atomic absorption spectrometry with multiple microflame quartz tube atomizer (multiatomizer)

    PubMed Central

    Hernández-Zavala, Araceli; Matoušek, Tomáš; Drobná, Zuzana; Paul, David S.; Walton, Felecia; Adair, Blakely M.; Jiří, Dědina; Thomas, David J.

    2008-01-01

    Analyses of arsenic (As) species in tissues and body fluids of individuals chronically exposed to inorganic arsenic (iAs) provide essential information about the exposure level and pattern of iAs metabolism. We have previously described an oxidation state-specific analysis of As species in biological matrices by hydride-generation atomic absorption spectrometry (HG-AAS), using cryotrapping (CT) for preconcentration and separation of arsines. To improve performance and detection limits of the method, HG and CT steps are automated and a conventional flame-in-tube atomizer replaced with a recently developed multiple microflame quartz tube atomizer (multiatomizer). In this system, arsines from AsIII-species are generated in a mixture of Tris-HCl (pH 6) and sodium borohydride. For generation of arsines from both AsIII- and AsV-species, samples are pretreated with L-cysteine. Under these conditions, dimethylthioarsinic acid, a newly described metabolite of iAs, does not interfere significantly with detection and quantification of methylated trivalent arsenicals. Analytical performance of the automated HG-CT-AAS was characterized by analyses of cultured cells and mouse tissues that contained mono- and dimethylated metabolites of iAs. The capacity to detect methylated AsIII- and AsV-species was verified, using an in vitro methylation system containing recombinant rat arsenic (+3 oxidation state) methyltransferase and cultured rat hepatocytes treated with iAs. Compared with the previous HG-CT-AAS design, detection limits for iAs and its metabolites have improved significantly with the current system, ranging from 8 to 20 pg. Recoveries of As were between 78 and 117%. The precision of the method was better than 5% for all biological matrices examined. Thus, the automated HG-CT-AAS system provides an effective and sensitive tool for analysis of all major human metabolites of iAs in complex biological matrices. PMID:18677417

  20. Integration of genome-wide association studies with biological knowledge identifies six novel genes related to kidney function.

    PubMed

    Chasman, Daniel I; Fuchsberger, Christian; Pattaro, Cristian; Teumer, Alexander; Böger, Carsten A; Endlich, Karlhans; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Taliun, Daniel; Li, Man; Gao, Xiaoyi; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C; O'Seaghdha, Conall M; Glazer, Nicole; Isaacs, Aaron; Liu, Ching-Ti; Smith, Albert V; O'Connell, Jeffrey R; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Johnson, Andrew D; Gierman, Hinco J; Feitosa, Mary F; Hwang, Shih-Jen; Atkinson, Elizabeth J; Lohman, Kurt; Cornelis, Marilyn C; Johansson, Asa; Tönjes, Anke; Dehghan, Abbas; Lambert, Jean-Charles; Holliday, Elizabeth G; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y; Murgia, Federico; Trompet, Stella; Imboden, Medea; Coassin, Stefan; Pistis, Giorgio; Harris, Tamara B; Launer, Lenore J; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D; Boerwinkle, Eric; Schmidt, Helena; Cavalieri, Margherita; Rao, Madhumathi; Hu, Frank; Demirkan, Ayse; Oostra, Ben A; de Andrade, Mariza; Turner, Stephen T; Ding, Jingzhong; Andrews, Jeanette S; Freedman, Barry I; Giulianini, Franco; Koenig, Wolfgang; Illig, Thomas; Meisinger, Christa; Gieger, Christian; Zgaga, Lina; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H; Wright, Alan F; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G; Rivadeneira, Fernando; Aulchenko, Yurii S; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Stengel, Bénédicte; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Ketkar, Shamika; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Krämer, Bernhard K; Portas, Laura; Ford, Ian; Buckley, Brendan M; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Mitchell, Paul; Ciullo, Marina; Kim, Stuart K; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J Wouter; Probst-Hensch, Nicole M; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; Siscovick, David S; van Duijn, Cornelia M; Borecki, Ingrid B; Kardia, Sharon L R; Liu, Yongmei; Curhan, Gary C; Rudan, Igor; Gyllensten, Ulf; Wilson, James F; Franke, Andre; Pramstaller, Peter P; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline; Hayward, Caroline; Ridker, Paul M; Parsa, Afshin; Bochud, Murielle; Heid, Iris M; Kao, W H Linda; Fox, Caroline S; Köttgen, Anna

    2012-12-15

    In conducting genome-wide association studies (GWAS), analytical approaches leveraging biological information may further understanding of the pathophysiology of clinical traits. To discover novel associations with estimated glomerular filtration rate (eGFR), a measure of kidney function, we developed a strategy for integrating prior biological knowledge into the existing GWAS data for eGFR from the CKDGen Consortium. Our strategy focuses on single nucleotide polymorphism (SNPs) in genes that are connected by functional evidence, determined by literature mining and gene ontology (GO) hierarchies, to genes near previously validated eGFR associations. It then requires association thresholds consistent with multiple testing, and finally evaluates novel candidates by independent replication. Among the samples of European ancestry, we identified a genome-wide significant SNP in FBXL20 (P = 5.6 × 10(-9)) in meta-analysis of all available data, and additional SNPs at the INHBC, LRP2, PLEKHA1, SLC3A2 and SLC7A6 genes meeting multiple-testing corrected significance for replication and overall P-values of 4.5 × 10(-4)-2.2 × 10(-7). Neither the novel PLEKHA1 nor FBXL20 associations, both further supported by association with eGFR among African Americans and with transcript abundance, would have been implicated by eGFR candidate gene approaches. LRP2, encoding the megalin receptor, was identified through connection with the previously known eGFR gene DAB2 and extends understanding of the megalin system in kidney function. These findings highlight integration of existing genome-wide association data with independent biological knowledge to uncover novel candidate eGFR associations, including candidates lacking known connections to kidney-specific pathways. The strategy may also be applicable to other clinical phenotypes, although more testing will be needed to assess its potential for discovery in general.

  1. Integration of genome-wide association studies with biological knowledge identifies six novel genes related to kidney function

    PubMed Central

    Chasman, Daniel I.; Fuchsberger, Christian; Pattaro, Cristian; Teumer, Alexander; Böger, Carsten A.; Endlich, Karlhans; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Taliun, Daniel; Li, Man; Gao, Xiaoyi; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C.; O'Seaghdha, Conall M.; Glazer, Nicole; Isaacs, Aaron; Liu, Ching-Ti; Smith, Albert V.; O'Connell, Jeffrey R.; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Johnson, Andrew D.; Gierman, Hinco J.; Feitosa, Mary F.; Hwang, Shih-Jen; Atkinson, Elizabeth J.; Lohman, Kurt; Cornelis, Marilyn C.; Johansson, Åsa; Tönjes, Anke; Dehghan, Abbas; Lambert, Jean-Charles; Holliday, Elizabeth G.; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y.; Murgia, Federico; Trompet, Stella; Imboden, Medea; Coassin, Stefan; Pistis, Giorgio; Harris, Tamara B.; Launer, Lenore J.; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D.; Boerwinkle, Eric; Schmidt, Helena; Cavalieri, Margherita; Rao, Madhumathi; Hu, Frank; Demirkan, Ayse; Oostra, Ben A.; de Andrade, Mariza; Turner, Stephen T.; Ding, Jingzhong; Andrews, Jeanette S.; Freedman, Barry I.; Giulianini, Franco; Koenig, Wolfgang; Illig, Thomas; Meisinger, Christa; Gieger, Christian; Zgaga, Lina; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E.; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H.; Wright, Alan F.; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K.; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G.; Rivadeneira, Fernando; Aulchenko, Yurii S.; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Stengel, Bénédicte; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Ketkar, Shamika; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Krämer, Bernhard K.; Portas, Laura; Ford, Ian; Buckley, Brendan M.; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Mitchell, Paul; Ciullo, Marina; Kim, Stuart K.; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J. Wouter; Probst-Hensch, Nicole M.; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R.; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; Siscovick, David S.; van Duijn, Cornelia M.; Borecki, Ingrid B.; Kardia, Sharon L.R.; Liu, Yongmei; Curhan, Gary C.; Rudan, Igor; Gyllensten, Ulf; Wilson, James F.; Franke, Andre; Pramstaller, Peter P.; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline; Hayward, Caroline; Ridker, Paul M; Parsa, Afshin; Bochud, Murielle; Heid, Iris M.; Kao, W.H. Linda; Fox, Caroline S.; Köttgen, Anna

    2012-01-01

    In conducting genome-wide association studies (GWAS), analytical approaches leveraging biological information may further understanding of the pathophysiology of clinical traits. To discover novel associations with estimated glomerular filtration rate (eGFR), a measure of kidney function, we developed a strategy for integrating prior biological knowledge into the existing GWAS data for eGFR from the CKDGen Consortium. Our strategy focuses on single nucleotide polymorphism (SNPs) in genes that are connected by functional evidence, determined by literature mining and gene ontology (GO) hierarchies, to genes near previously validated eGFR associations. It then requires association thresholds consistent with multiple testing, and finally evaluates novel candidates by independent replication. Among the samples of European ancestry, we identified a genome-wide significant SNP in FBXL20 (P = 5.6 × 10−9) in meta-analysis of all available data, and additional SNPs at the INHBC, LRP2, PLEKHA1, SLC3A2 and SLC7A6 genes meeting multiple-testing corrected significance for replication and overall P-values of 4.5 × 10−4–2.2 × 10−7. Neither the novel PLEKHA1 nor FBXL20 associations, both further supported by association with eGFR among African Americans and with transcript abundance, would have been implicated by eGFR candidate gene approaches. LRP2, encoding the megalin receptor, was identified through connection with the previously known eGFR gene DAB2 and extends understanding of the megalin system in kidney function. These findings highlight integration of existing genome-wide association data with independent biological knowledge to uncover novel candidate eGFR associations, including candidates lacking known connections to kidney-specific pathways. The strategy may also be applicable to other clinical phenotypes, although more testing will be needed to assess its potential for discovery in general. PMID:22962313

  2. Smarten

    NASA Astrophysics Data System (ADS)

    Metcalfe, C.; Bennett, E.; Chappell, M.; Steevens, J.; Depledge, M.; Goss, G.; Goudey, S.; Kaczmar, S.; O'Brien, N.; Picado, A.; Ramadan, A. B.

    Traditional risk assessment procedures are inadequate for predicting the ecological risks associated with the release of nanomaterials (NM) into the environment. The root of the problem lies in an inadequate application of solid phase chemical principles (e.g. particle size, shape, functionality) for the risk assessment of NMs. Thus, the "solubility" paradigm used to evaluate the risks associated with other classes of contaminants must be replaced by a "dispersivity" paradigm for evaluating the risks associated with NM. The pace of development of NM will exceed the capacity to conduct adequate risk assessments using current methods and approaches. Each NM product will be available in a variety of size classes and with different surface functionalizations; probably requiring multiple risk assessments for each NM. The "SMARTEN" approach to risk assessment involves having risk assessors play a more proactive role in evaluating all aspects of the NM life cycle and in making decisions to develop lower risk NM products. Improved problem formulation could come from considering the chemical, physical and biological properties of NMs. New effects assessment techniques are needed to evaluate cellular binding and uptake potential, such as biological assays for binding to macromolecules or organelles, phagocytic activity, and active/passive uptake processes. Tests should be developed to evaluate biological effects with multiple species across a range of trophic levels. Despite our best efforts to assess the risks associated with NM, previous experience indicates that some NM products will enter the environment and cause biological effects. Therefore, risk assessors should support programs for reconnaissance and surveillance to detect the impacts of NM before irreversible damage occurs. New analytical tools are needed for surveillance, including sensors for detecting NMs, passive sampling systems, and improved methods for separation and characterization of NMs in environmental matrices, as well as biomarker techniques to evaluate exposure to NMs. Risk assessors should use this information to refine data quality, determine future risk assessment objectives and to communicate interim conclusions to a wide group of stakeholders.1

  3. PROMISE: a tool to identify genomic features with a specific biologically interesting pattern of associations with multiple endpoint variables

    PubMed Central

    Pounds, Stan; Cheng, Cheng; Cao, Xueyuan; Crews, Kristine R.; Plunkett, William; Gandhi, Varsha; Rubnitz, Jeffrey; Ribeiro, Raul C.; Downing, James R.; Lamba, Jatinder

    2009-01-01

    Motivation: In some applications, prior biological knowledge can be used to define a specific pattern of association of multiple endpoint variables with a genomic variable that is biologically most interesting. However, to our knowledge, there is no statistical procedure designed to detect specific patterns of association with multiple endpoint variables. Results: Projection onto the most interesting statistical evidence (PROMISE) is proposed as a general procedure to identify genomic variables that exhibit a specific biologically interesting pattern of association with multiple endpoint variables. Biological knowledge of the endpoint variables is used to define a vector that represents the biologically most interesting values for statistics that characterize the associations of the endpoint variables with a genomic variable. A test statistic is defined as the dot-product of the vector of the observed association statistics and the vector of the most interesting values of the association statistics. By definition, this test statistic is proportional to the length of the projection of the observed vector of correlations onto the vector of most interesting associations. Statistical significance is determined via permutation. In simulation studies and an example application, PROMISE shows greater statistical power to identify genes with the interesting pattern of associations than classical multivariate procedures, individual endpoint analyses or listing genes that have the pattern of interest and are significant in more than one individual endpoint analysis. Availability: Documented R routines are freely available from www.stjuderesearch.org/depts/biostats and will soon be available as a Bioconductor package from www.bioconductor.org. Contact: stanley.pounds@stjude.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19528086

  4. Membrane materials for storing biological samples intended for comparative nanotoxicological testing

    NASA Astrophysics Data System (ADS)

    Metelkin, A.; Kuznetsov, D.; Kolesnikov, E.; Chuprunov, K.; Kondakov, S.; Osipov, A.; Samsonova, J.

    2015-11-01

    The study is aimed at identifying the samples of most promising membrane materials for storing dry specimens of biological fluids (Dried Blood Spots, DBS technology). Existing sampling systems using cellulose fiber filter paper have a number of drawbacks such as uneven distribution of the sample spot, dependence of the spot spreading area on the individual biosample properties, incomplete washing-off of the sample due to partially inconvertible sorption of blood components on cellulose fibers, etc. Samples of membrane materials based on cellulose, polymers and glass fiber with applied biosamples were studied using methods of scanning electron microscopy, FT-IR spectroscopy and surface-wetting measurement. It was discovered that cellulose-based membrane materials sorb components of biological fluids inside their structure, while membranes based on glass fiber display almost no interaction with the samples and biological fluid components dry to films in the membrane pores between the structural fibers. This characteristic, together with the fact that membrane materials based on glass fiber possess sufficient strength, high wetting properties and good storage capacity, attests them as promising material for dry samples of biological fluids storage systems.

  5. Mosaicing of single plane illumination microscopy images using groupwise registration and fast content-based image fusion

    NASA Astrophysics Data System (ADS)

    Preibisch, Stephan; Rohlfing, Torsten; Hasak, Michael P.; Tomancak, Pavel

    2008-03-01

    Single Plane Illumination Microscopy (SPIM; Huisken et al., Nature 305(5686):1007-1009, 2004) is an emerging microscopic technique that enables live imaging of large biological specimens in their entirety. By imaging the living biological sample from multiple angles SPIM has the potential to achieve isotropic resolution throughout even relatively large biological specimens. For every angle, however, only a relatively shallow section of the specimen is imaged with high resolution, whereas deeper regions appear increasingly blurred. In order to produce a single, uniformly high resolution image, we propose here an image mosaicing algorithm that combines state of the art groupwise image registration for alignment with content-based image fusion to prevent degrading of the fused image due to regional blurring of the input images. For the registration stage, we introduce an application-specific groupwise transformation model that incorporates per-image as well as groupwise transformation parameters. We also propose a new fusion algorithm based on Gaussian filters, which is substantially faster than fusion based on local image entropy. We demonstrate the performance of our mosaicing method on data acquired from living embryos of the fruit fly, Drosophila, using four and eight angle acquisitions.

  6. GenoMetric Query Language: a novel approach to large-scale genomic data management.

    PubMed

    Masseroli, Marco; Pinoli, Pietro; Venco, Francesco; Kaitoua, Abdulrahman; Jalili, Vahid; Palluzzi, Fernando; Muller, Heiko; Ceri, Stefano

    2015-06-15

    Improvement of sequencing technologies and data processing pipelines is rapidly providing sequencing data, with associated high-level features, of many individual genomes in multiple biological and clinical conditions. They allow for data-driven genomic, transcriptomic and epigenomic characterizations, but require state-of-the-art 'big data' computing strategies, with abstraction levels beyond available tool capabilities. We propose a high-level, declarative GenoMetric Query Language (GMQL) and a toolkit for its use. GMQL operates downstream of raw data preprocessing pipelines and supports queries over thousands of heterogeneous datasets and samples; as such it is key to genomic 'big data' analysis. GMQL leverages a simple data model that provides both abstractions of genomic region data and associated experimental, biological and clinical metadata and interoperability between many data formats. Based on Hadoop framework and Apache Pig platform, GMQL ensures high scalability, expressivity, flexibility and simplicity of use, as demonstrated by several biological query examples on ENCODE and TCGA datasets. The GMQL toolkit is freely available for non-commercial use at http://www.bioinformatics.deib.polimi.it/GMQL/. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Protein crystallography prescreen kit

    DOEpatents

    Segelke, Brent W.; Krupka, Heike I.; Rupp, Bernhard

    2007-10-02

    A kit for prescreening protein concentration for crystallization includes a multiplicity of vials, a multiplicity of pre-selected reagents, and a multiplicity of sample plates. The reagents and a corresponding multiplicity of samples of the protein in solutions of varying concentrations are placed on sample plates. The sample plates containing the reagents and samples are incubated. After incubation the sample plates are examined to determine which of the sample concentrations are too low and which the sample concentrations are too high. The sample concentrations that are optimal for protein crystallization are selected and used.

  8. Protein crystallography prescreen kit

    DOEpatents

    Segelke, Brent W.; Krupka, Heike I.; Rupp, Bernhard

    2005-07-12

    A kit for prescreening protein concentration for crystallization includes a multiplicity of vials, a multiplicity of pre-selected reagents, and a multiplicity of sample plates. The reagents and a corresponding multiplicity of samples of the protein in solutions of varying concentrations are placed on sample plates. The sample plates containing the reagents and samples are incubated. After incubation the sample plates are examined to determine which of the sample concentrations are too low and which the sample concentrations are too high. The sample concentrations that are optimal for protein crystallization are selected and used.

  9. Evidence-based point-of-care tests and device designs for disaster preparedness.

    PubMed

    Brock, T Keith; Mecozzi, Daniel M; Sumner, Stephanie; Kost, Gerald J

    2010-01-01

    To define pathogen tests and device specifications needed for emerging point-of-care (POC) technologies used in disasters. Surveys included multiple-choice and ranking questions. Multiple-choice questions were analyzed with the chi2 test for goodness-of-fit and the binomial distribution test. Rankings were scored and compared using analysis of variance and Tukey's multiple comparison test. Disaster care experts on the editorial boards of the American Journal of Disaster Medicine and the Disaster Medicine and Public Health Preparedness, and the readers of the POC Journal. Vibrio cholera and Staphylococcus aureus were top-ranked pathogens for testing in disaster settings. Respondents felt that disaster response teams should be equipped with pandemic infectious disease tests for novel 2009 H1N1 and avian H5N1 influenza (disaster care, p < 0.05; POC, p < 0.01). In disaster settings, respondents preferred self-contained test cassettes (disaster care, p < 0.05; POC, p < 0.001) for direct blood sampling (POC, p < 0.01) and disposal of biological waste (disaster care, p < 0.05; POC, p < 0.001). Multiplex testing performed at the POC was preferred in urgent care and emergency room settings. Evidence-based needs assessment identifies pathogen detection priorities in disaster care scenarios, in which Vibrio cholera, methicillin-sensitive and methicillin-resistant Staphylococcus aureus, and Escherichia coli ranked the highest. POC testing should incorporate setting-specific design criteria such as safe disposable cassettes and direct blood sampling at the site of care.

  10. Multiple single-element transducer photoacoustic computed tomography system

    NASA Astrophysics Data System (ADS)

    Kalva, Sandeep Kumar; Hui, Zhe Zhi; Pramanik, Manojit

    2018-02-01

    Light absorption by the chromophores (hemoglobin, melanin, water etc.) present in any biological tissue results in local temperature rise. This rise in temperature results in generation of pressure waves due to the thermoelastic expansion of the tissue. In a circular scanning photoacoustic computed tomography (PACT) system, these pressure waves can be detected using a single-element ultrasound transducer (SUST) (while rotating in full 360° around the sample) or using a circular array transducer. SUST takes several minutes to acquire the PA data around the sample whereas the circular array transducer takes only a fraction of seconds. Hence, for real time imaging circular array transducers are preferred. However, these circular array transducers are custom made, expensive and not easily available in the market whereas SUSTs are cheap and readily available in the market. Using SUST for PACT systems is still cost effective. In order to reduce the scanning time to few seconds instead of using single SUST (rotating 360° ), multiple SUSTs can be used at the same time to acquire the PA data. This will reduce the scanning time by two-fold in case of two SUSTs (rotating 180° ) or by four-fold and eight-fold in case of four SUSTs (rotating 90° ) and eight SUSTs (rotating 45° ) respectively. Here we show that with multiple SUSTs, similar PA images (numerical and experimental phantom data) can be obtained as that of PA images obtained using single SUST.

  11. Identifying Shifts in Leaf-Litter Ant Assemblages (Hymenoptera: Formicidae) across Ecosystem Boundaries Using Multiple Sampling Methods

    PubMed Central

    Wiezik, Michal; Svitok, Marek; Wieziková, Adela; Dovčiak, Martin

    2015-01-01

    Global or regional environmental changes in climate or land use have been increasingly implied in shifts in boundaries (ecotones) between adjacent ecosystems such as beech or oak-dominated forests and forest-steppe ecotones that frequently co-occur near the southern range limits of deciduous forest biome in Europe. Yet, our ability to detect changes in biological communities across these ecosystems, or to understand their environmental drivers, can be hampered when different sampling methods are required to characterize biological communities of the adjacent but ecologically different ecosystems. Ants (Hymenoptera: Formicidae) have been shown to be particularly sensitive to changes in temperature and vegetation and they require different sampling methods in closed vs. open habitats. We compared ant assemblages of closed-forests (beech- or oak-dominated) and open forest-steppe habitats in southwestern Carpathians using methods for closed-forest (litter sifting) and open habitats (pitfall trapping), and developed an integrated sampling approach to characterize changes in ant assemblages across these adjacent ecosystems. Using both methods, we collected 5,328 individual ant workers from 28 species. Neither method represented ant communities completely, but pitfall trapping accounted for more species (24) than litter sifting (16). Although pitfall trapping characterized differences in species richness and composition among the ecosystems better, with beech forest being most species poor and ecotone most species rich, litter sifting was more successful in identifying characteristic litter-dwelling species in oak-dominated forest. The integrated sampling approach using both methods yielded more accurate characterization of species richness and composition, and particularly so in species-rich forest-steppe habitat where the combined sample identified significantly higher number of species compared to either of the two methods on their own. Thus, an integrated sampling approach should be used to fully characterize changes in ant assemblages across ecosystem boundaries, or with vegetation change over time, and particularly so in species-rich habitats such as forest-steppe ecotones. PMID:26226140

  12. Identifying Shifts in Leaf-Litter Ant Assemblages (Hymenoptera: Formicidae) across Ecosystem Boundaries Using Multiple Sampling Methods.

    PubMed

    Wiezik, Michal; Svitok, Marek; Wieziková, Adela; Dovčiak, Martin

    2015-01-01

    Global or regional environmental changes in climate or land use have been increasingly implied in shifts in boundaries (ecotones) between adjacent ecosystems such as beech or oak-dominated forests and forest-steppe ecotones that frequently co-occur near the southern range limits of deciduous forest biome in Europe. Yet, our ability to detect changes in biological communities across these ecosystems, or to understand their environmental drivers, can be hampered when different sampling methods are required to characterize biological communities of the adjacent but ecologically different ecosystems. Ants (Hymenoptera: Formicidae) have been shown to be particularly sensitive to changes in temperature and vegetation and they require different sampling methods in closed vs. open habitats. We compared ant assemblages of closed-forests (beech- or oak-dominated) and open forest-steppe habitats in southwestern Carpathians using methods for closed-forest (litter sifting) and open habitats (pitfall trapping), and developed an integrated sampling approach to characterize changes in ant assemblages across these adjacent ecosystems. Using both methods, we collected 5,328 individual ant workers from 28 species. Neither method represented ant communities completely, but pitfall trapping accounted for more species (24) than litter sifting (16). Although pitfall trapping characterized differences in species richness and composition among the ecosystems better, with beech forest being most species poor and ecotone most species rich, litter sifting was more successful in identifying characteristic litter-dwelling species in oak-dominated forest. The integrated sampling approach using both methods yielded more accurate characterization of species richness and composition, and particularly so in species-rich forest-steppe habitat where the combined sample identified significantly higher number of species compared to either of the two methods on their own. Thus, an integrated sampling approach should be used to fully characterize changes in ant assemblages across ecosystem boundaries, or with vegetation change over time, and particularly so in species-rich habitats such as forest-steppe ecotones.

  13. High-throughput biological small-angle X-ray scattering with a robotically loaded capillary cell

    PubMed Central

    Nielsen, S. S.; Møller, M.; Gillilan, R. E.

    2012-01-01

    With the rise in popularity of biological small-angle X-ray scattering (BioSAXS) measurements, synchrotron beamlines are confronted with an ever-increasing number of samples from a wide range of solution conditions. To meet these demands, an increasing number of beamlines worldwide have begun to provide automated liquid-handling systems for sample loading. This article presents an automated sample-loading system for BioSAXS beamlines, which combines single-channel disposable-tip pipetting with a vacuum-enclosed temperature-controlled capillary flow cell. The design incorporates an easily changeable capillary to reduce the incidence of X-ray window fouling and cross contamination. Both the robot-control and the data-processing systems are written in Python. The data-processing code, RAW, has been enhanced with several new features to form a user-friendly BioSAXS pipeline for the robot. The flow cell also supports efficient manual loading and sample recovery. An effective rinse protocol for the sample cell is developed and tested. Fluid dynamics within the sample capillary reveals a vortex ring pattern of circulation that redistributes radiation-damaged material. Radiation damage is most severe in the boundary layer near the capillary surface. At typical flow speeds, capillaries below 2 mm in diameter are beginning to enter the Stokes (creeping flow) regime in which mixing due to oscillation is limited. Analysis within this regime shows that single-pass exposure and multiple-pass exposure of a sample plug are functionally the same with regard to exposed volume when plug motion reversal is slow. The robot was tested on three different beamlines at the Cornell High-Energy Synchrotron Source, with a variety of detectors and beam characteristics, and it has been used successfully in several published studies as well as in two introductory short courses on basic BioSAXS methods. PMID:22509071

  14. PeTTSy: a computational tool for perturbation analysis of complex systems biology models.

    PubMed

    Domijan, Mirela; Brown, Paul E; Shulgin, Boris V; Rand, David A

    2016-03-10

    Over the last decade sensitivity analysis techniques have been shown to be very useful to analyse complex and high dimensional Systems Biology models. However, many of the currently available toolboxes have either used parameter sampling, been focused on a restricted set of model observables of interest, studied optimisation of a objective function, or have not dealt with multiple simultaneous model parameter changes where the changes can be permanent or temporary. Here we introduce our new, freely downloadable toolbox, PeTTSy (Perturbation Theory Toolbox for Systems). PeTTSy is a package for MATLAB which implements a wide array of techniques for the perturbation theory and sensitivity analysis of large and complex ordinary differential equation (ODE) based models. PeTTSy is a comprehensive modelling framework that introduces a number of new approaches and that fully addresses analysis of oscillatory systems. It examines sensitivity analysis of the models to perturbations of parameters, where the perturbation timing, strength, length and overall shape can be controlled by the user. This can be done in a system-global setting, namely, the user can determine how many parameters to perturb, by how much and for how long. PeTTSy also offers the user the ability to explore the effect of the parameter perturbations on many different types of outputs: period, phase (timing of peak) and model solutions. PeTTSy can be employed on a wide range of mathematical models including free-running and forced oscillators and signalling systems. To enable experimental optimisation using the Fisher Information Matrix it efficiently allows one to combine multiple variants of a model (i.e. a model with multiple experimental conditions) in order to determine the value of new experiments. It is especially useful in the analysis of large and complex models involving many variables and parameters. PeTTSy is a comprehensive tool for analysing large and complex models of regulatory and signalling systems. It allows for simulation and analysis of models under a variety of environmental conditions and for experimental optimisation of complex combined experiments. With its unique set of tools it makes a valuable addition to the current library of sensitivity analysis toolboxes. We believe that this software will be of great use to the wider biological, systems biology and modelling communities.

  15. Exploring Earth's Atmospheric Biology using a Platform-Extensible Sampling Payload

    NASA Astrophysics Data System (ADS)

    Gentry, D.; Rothschild, L.

    2012-12-01

    The interactions between Earth's atmosphere and its biosphere, or aerobiology, remain a significant unknown. What few studies have been done conclusively show that Earth's atmosphere has a rich and dynamic microbial presence[Bowers et al., 2010]; that microbes suspended in air survive over long times (1-2 weeks)[Smith et al., 2010] and travel great distances (>5000 km)[Kellogg and Griffin, 2006]; that some airborne bacteria actively nucleate ice crystals, affecting meteorology[Delort et al., 2010]; and that the presence of microbes in the atmosphere has other planetary-scale effects[Delort et al., 2010]. Basic questions, however, such as the number of microbes present, their activity level and state, the different species present and their variance over time and space, remain largely unquantified. Compounding the significant physical and environmental challenges of reliable aerobiological sampling, collection and analysis of biological samples at altitudes above ~10-20 km has traditionally used ad hoc instrumentation and techniques, yielding primarily qualitative analytical results that lack a common basis for comparison[Bowers et al., 2010]. There is a strong need for broad-basis, repeatable, reliably comparable data about aerobiological basics. We describe here a high-altitude environmental and biological sampling project designed specifically to address these issues. The goal is a robust, reliable, re-usable sampling system, with open reproducibility and adaptability for multiple low-cost flight platforms (including ground-tethered systems, high-altitude balloons, and suborbital sounding rockets); by establishing a common modular payload structure for high-altitude sampling with appeal to a broad user base, we hope to encourage widespread collection of comparable aerobiological data. We are on our third prototype iteration, with demonstrated function of two sample capture modules, a support backbone (tracking, data logging, event response, etc.), a simple ground station, and a partially complete environmental sensing module. Successful deployments include ground sampling (Dec. 2011-ongoing, with biological and environmental data correlation) and instrument verification suborbital launches (Apr. 2012). Intensive calibration and characterization of the sampling modules is ongoing. Full three-module balloon flights are scheduled for Sep. 2012. References: Bowers, R. et al. (2010), Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments, The ISME Journal (2010), 1-12, doi:doi:10.1038/ismej.2010.167. Delort, A. M. et al. (2010), A short overview of the microbial population in clouds: Potential roles in atmospheric chemistry and nucleation processes, Atmospheric Research, 98249-260, doi:10.1016/j.atmosres.2010.07.004. Kellogg, C. A., and Griffin, D. W. (2006), Aerobiology and the global transport of desert dust, Trends in Ecology and Evolution, 21(11), 638-644, doi:10.1016/j.tree.2006.07.004. Smith, D. J. et al. (2010), Stratospheric microbiology at 20 km over the Pacific Ocean, Aerobiologia, 26(1), 35-46, doi:10.1007/s10453-009-9141-7.

  16. MixGF: Spectral Probabilities for Mixture Spectra from more than One Peptide*

    PubMed Central

    Wang, Jian; Bourne, Philip E.; Bandeira, Nuno

    2014-01-01

    In large-scale proteomic experiments, multiple peptide precursors are often cofragmented simultaneously in the same mixture tandem mass (MS/MS) spectrum. These spectra tend to elude current computational tools because of the ubiquitous assumption that each spectrum is generated from only one peptide. Therefore, tools that consider multiple peptide matches to each MS/MS spectrum can potentially improve the relatively low spectrum identification rate often observed in proteomics experiments. More importantly, data independent acquisition protocols promoting the cofragmentation of multiple precursors are emerging as alternative methods that can greatly improve the throughput of peptide identifications but their success also depends on the availability of algorithms to identify multiple peptides from each MS/MS spectrum. Here we address a fundamental question in the identification of mixture MS/MS spectra: determining the statistical significance of multiple peptides matched to a given MS/MS spectrum. We propose the MixGF generating function model to rigorously compute the statistical significance of peptide identifications for mixture spectra and show that this approach improves the sensitivity of current mixture spectra database search tools by a ≈30–390%. Analysis of multiple data sets with MixGF reveals that in complex biological samples the number of identified mixture spectra can be as high as 20% of all the identified spectra and the number of unique peptides identified only in mixture spectra can be up to 35.4% of those identified in single-peptide spectra. PMID:25225354

  17. Use of multiple colorimetric indicators for paper-based microfluidic devices.

    PubMed

    Dungchai, Wijitar; Chailapakul, Orawon; Henry, Charles S

    2010-08-03

    We report here the use of multiple indicators for a single analyte for paper-based microfluidic devices (microPAD) in an effort to improve the ability to visually discriminate between analyte concentrations. In existing microPADs, a single dye system is used for the measurement of a single analyte. In our approach, devices are designed to simultaneously quantify analytes using multiple indicators for each analyte improving the accuracy of the assay. The use of multiple indicators for a single analyte allows for different indicator colors to be generated at different analyte concentration ranges as well as increasing the ability to better visually discriminate colors. The principle of our devices is based on the oxidation of indicators by hydrogen peroxide produced by oxidase enzymes specific for each analyte. Each indicator reacts at different peroxide concentrations and therefore analyte concentrations, giving an extended range of operation. To demonstrate the utility of our approach, the mixture of 4-aminoantipyrine and 3,5-dichloro-2-hydroxy-benzenesulfonic acid, o-dianisidine dihydrochloride, potassium iodide, acid black, and acid yellow were chosen as the indicators for simultaneous semi-quantitative measurement of glucose, lactate, and uric acid on a microPAD. Our approach was successfully applied to quantify glucose (0.5-20 mM), lactate (1-25 mM), and uric acid (0.1-7 mM) in clinically relevant ranges. The determination of glucose, lactate, and uric acid in control serum and urine samples was also performed to demonstrate the applicability of this device for biological sample analysis. Finally results for the multi-indicator and single indicator system were compared using untrained readers to demonstrate the improvements in accuracy achieved with the new system. 2010 Elsevier B.V. All rights reserved.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timmermans, F. J.; Otto, C.

    New developments in the field of microscopy enable to acquire increasing amounts of information from large sample areas and at an increased resolution. Depending on the nature of the technique, the information may reveal morphological, structural, chemical, and still other sample characteristics. In research fields, such as cell biology and materials science, there is an increasing demand to correlate these individual levels of information and in this way to obtain a better understanding of sample preparation and specific sample properties. To address this need, integrated systems were developed that combine nanometer resolution electron microscopes with optical microscopes, which produce chemicallymore » or label specific information through spectroscopy. The complementary information from electron microscopy and light microscopy presents an opportunity to investigate a broad range of sample properties in a correlated fashion. An important part of correlating the differences in information lies in bridging the different resolution and image contrast features. The trend to analyse samples using multiple correlated microscopes has resulted in a new research field. Current research is focused, for instance, on (a) the investigation of samples with nanometer scale distribution of inorganic and organic materials, (b) live cell analysis combined with electron microscopy, and (c) in situ spectroscopic and electron microscopy analysis of catalytic materials, but more areas will benefit from integrated correlative microscopy.« less

  19. Genetic Association of MPPED2 and ACTN2 with Dental Caries

    PubMed Central

    Stanley, B.O.C.; Feingold, E.; Cooper, M.; Vanyukov, M.M.; Maher, B.S.; Slayton, R.L.; Willing, M.C.; Reis, S.E.; McNeil, D.W.; Crout, R.J.; Weyant, R.J.; Levy, S.M.; Vieira, A.R.; Marazita, M.L.; Shaffer, J.R.

    2014-01-01

    The first genome-wide association study of dental caries focused on primary teeth in children aged 3 to 12 yr and nominated several novel genes: ACTN2, EDARADD, EPHA7, LPO, MPPED2, MTR, and ZMPSTE24. Here we interrogated 156 single-nucleotide polymorphisms (SNPs) within these candidate genes for evidence of association with dental caries experience in 13 race- and age-stratified samples from 6 independent studies (n = 3600). Analysis was performed separately for each sample, and results were combined across samples via meta-analysis. MPPED2 was significantly associated with caries via meta-analysis across the 5 childhood samples, with 4 SNPs showing significant associations after gene-wise adjustment for multiple comparisons (p < .0026). These results corroborate the previous genome-wide association study, although the functional role of MPPED2 in caries etiology remains unknown. ACTN2 also showed significant association via meta-analysis across childhood samples (p = .0014). Moreover, in adults, genetic association was observed for ACTN2 SNPs in individual samples (p < .0025), but no single SNP was significant via meta-analysis across all 8 adult samples. Given its compelling biological role in organizing ameloblasts during amelogenesis, this study strengthens the hypothesis that ACTN2 influences caries risk. Results for the other candidate genes neither proved nor precluded their associations with dental caries. PMID:24810274

  20. Contributed review: Review of integrated correlative light and electron microscopy.

    PubMed

    Timmermans, F J; Otto, C

    2015-01-01

    New developments in the field of microscopy enable to acquire increasing amounts of information from large sample areas and at an increased resolution. Depending on the nature of the technique, the information may reveal morphological, structural, chemical, and still other sample characteristics. In research fields, such as cell biology and materials science, there is an increasing demand to correlate these individual levels of information and in this way to obtain a better understanding of sample preparation and specific sample properties. To address this need, integrated systems were developed that combine nanometer resolution electron microscopes with optical microscopes, which produce chemically or label specific information through spectroscopy. The complementary information from electron microscopy and light microscopy presents an opportunity to investigate a broad range of sample properties in a correlated fashion. An important part of correlating the differences in information lies in bridging the different resolution and image contrast features. The trend to analyse samples using multiple correlated microscopes has resulted in a new research field. Current research is focused, for instance, on (a) the investigation of samples with nanometer scale distribution of inorganic and organic materials, (b) live cell analysis combined with electron microscopy, and (c) in situ spectroscopic and electron microscopy analysis of catalytic materials, but more areas will benefit from integrated correlative microscopy.

  1. Quantitation of 47 human tear proteins using high resolution multiple reaction monitoring (HR-MRM) based-mass spectrometry.

    PubMed

    Tong, Louis; Zhou, Xi Yuan; Jylha, Antti; Aapola, Ulla; Liu, Dan Ning; Koh, Siew Kwan; Tian, Dechao; Quah, Joanne; Uusitalo, Hannu; Beuerman, Roger W; Zhou, Lei

    2015-02-06

    Tear proteins are intimately related to the pathophysiology of the ocular surface. Many recent studies have demonstrated that the tear is an accessible fluid for studying eye diseases and biomarker discovery. This study describes a high resolution multiple reaction monitoring (HR-MRM) approach for developing assays for quantification of biologically important tear proteins. Human tear samples were collected from 1000 subjects with no eye complaints (411 male, 589 female, average age: 55.5±14.5years) after obtaining informed consent. Tear samples were collected using Schirmer's strips and pooled into a single global control sample. Quantification of proteins was carried out by selecting "signature" peptides derived by trypsin digestion. A 1-h nanoLC-MS/MS run was used to quantify the tear proteins in HR-MRM mode. Good reproducibility of signal intensity (using peak areas) was demonstrated for all 47 HR-MRM assays with an average coefficient of variation (CV%) of 4.82% (range: 1.52-10.30%). All assays showed consistent retention time with a CV of less than 0.80% (average: 0.57%). HR-MRM absolute quantitation of eight tear proteins was demonstrated using stable isotope-labeled peptides. In this study, we demonstrated for the first time the technique to quantify 47 human tear proteins in HR-MRM mode using approximately 1μl of human tear sample. These multiplexed HR-MRM-based assays show great promise of further development for biomarker validation in human tear samples. Both discovery-based and targeted quantitative proteomics can be achieved in a single quadrupole time-of-flight mass spectrometer platform (TripleTOF 5600 system). Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Biopolymers for sample collection, protection, and preservation.

    PubMed

    Sorokulova, Iryna; Olsen, Eric; Vodyanoy, Vitaly

    2015-07-01

    One of the principal challenges in the collection of biological samples from air, water, and soil matrices is that the target agents are not stable enough to be transferred from the collection point to the laboratory of choice without experiencing significant degradation and loss of viability. At present, there is no method to transport biological samples over considerable distances safely, efficiently, and cost-effectively without the use of ice or refrigeration. Current techniques of protection and preservation of biological materials have serious drawbacks. Many known techniques of preservation cause structural damages, so that biological materials lose their structural integrity and viability. We review applications of a novel bacterial preservation process, which is nontoxic and water soluble and allows for the storage of samples without refrigeration. The method is capable of protecting the biological sample from the effects of environment for extended periods of time and then allows for the easy release of these collected biological materials from the protective medium without structural or DNA damage. Strategies for sample collection, preservation, and shipment of bacterial, viral samples are described. The water-soluble polymer is used to immobilize the biological material by replacing the water molecules within the sample with molecules of the biopolymer. The cured polymer results in a solid protective film that is stable to many organic solvents, but quickly removed by the application of the water-based solution. The process of immobilization does not require the use of any additives, accelerators, or plastifiers and does not involve high temperature or radiation to promote polymerization.

  3. Microbiome studies in the biological control of plant pathogens

    USDA-ARS?s Scientific Manuscript database

    Biological control of plant pathogens, although it has been a successful alternative that has allowed to select microorganisms for the generation of bioproducts and to understand multiple biological mechanisms, cannot be considered as a strategy defined only from the selection of a range of cultiva...

  4. Multiple productive immunoglobulin heavy chain gene rearrangements in chronic lymphocytic leukemia are mostly derived from independent clones

    PubMed Central

    Plevova, Karla; Francova, Hana Skuhrova; Burckova, Katerina; Brychtova, Yvona; Doubek, Michael; Pavlova, Sarka; Malcikova, Jitka; Mayer, Jiri; Tichy, Boris; Pospisilova, Sarka

    2014-01-01

    In chronic lymphocytic leukemia, usually a monoclonal disease, multiple productive immunoglobulin heavy chain gene rearrangements are identified sporadically. Prognostication of such cases based on immunoglobulin heavy variable gene mutational status can be problematic, especially if the different rearrangements have discordant mutational status. To gain insight into the possible biological mechanisms underlying the origin of the multiple rearrangements, we performed a comprehensive immunogenetic and immunophenotypic characterization of 31 cases with the multiple rearrangements identified in a cohort of 1147 patients with chronic lymphocytic leukemia. For the majority of cases (25/31), we provide evidence of the co-existence of at least two B lymphocyte clones with a chronic lymphocytic leukemia phenotype. We also identified clonal drifts in serial samples, likely driven by selection forces. More specifically, higher immunoglobulin variable gene identity to germline and longer complementarity determining region 3 were preferred in persistent or newly appearing clones, a phenomenon more pronounced in patients with stereotyped B-cell receptors. Finally, we report that other factors, such as TP53 gene defects and therapy administration, influence clonal selection. Our findings are relevant to clonal evolution in the context of antigen stimulation and transition of monoclonal B-cell lymphocytosis to chronic lymphocytic leukemia. PMID:24038023

  5. Use of synchrotron tomography to image naturalistic anatomy in insects

    NASA Astrophysics Data System (ADS)

    Socha, John J.; De Carlo, Francesco

    2008-08-01

    Understanding the morphology of anatomical structures is a cornerstone of biology. For small animals, classical methods such as histology have provided a wealth of data, but such techniques can be problematic due to destruction of the sample. More importantly, fixation and physical slicing can cause deformation of anatomy, a critical limitation when precise three-dimensional data are required. Modern techniques such as confocal microscopy, MRI, and tabletop x-ray microCT provide effective non-invasive methods, but each of these tools each has limitations including sample size constraints, resolution limits, and difficulty visualizing soft tissue. Our research group at the Advanced Photon Source (Argonne National Laboratory) studies physiological processes in insects, focusing on the dynamics of breathing and feeding. To determine the size, shape, and relative location of internal anatomy in insects, we use synchrotron microtomography at the beamline 2-BM to image structures including tracheal tubes, muscles, and gut. Because obtaining naturalistic, undeformed anatomical information is a key component of our studies, we have developed methods to image fresh and non-fixed whole animals and tissues. Although motion artifacts remain a problem, we have successfully imaged multiple species including beetles, ants, fruit flies, and butterflies. Here we discuss advances in biological imaging and highlight key findings in insect morphology.

  6. Genome-wide analysis of day/night DNA methylation differences in Populus nigra.

    PubMed

    Ding, Chang-Jun; Liang, Li-Xiong; Diao, Shu; Su, Xiao-Hua; Zhang, Bing-Yu

    2018-01-01

    DNA methylation is an important mechanism of epigenetic modification. Methylation changes during stress responses and developmental processes have been well studied; however, their role in plant adaptation to the day/night cycle is poorly understood. In this study, we detected global methylation patterns in leaves of the black poplar Populus nigra 'N46' at 8:00 and 24:00 by methylated DNA immunoprecipitation sequencing (MeDIP-seq). We found 10,027 and 10,242 genes to be methylated in the 8:00 and 24:00 samples, respectively. The methylated genes appeared to be involved in multiple biological processes, molecular functions, and cellular components, suggesting important roles for DNA methylation in poplar cells. Comparing the 8:00 and 24:00 samples, only 440 differentially methylated regions (DMRs) overlapped with genic regions, including 193 hyper- and 247 hypo-methylated DMRs, and may influence the expression of 137 downstream genes. Most hyper-methylated genes were associated with transferase activity, kinase activity, and phosphotransferase activity, whereas most hypo-methylated genes were associated with protein binding, ATP binding, and adenyl ribonucleotide binding, suggesting that different biological processes were activated during the day and night. Our results indicated that methylated genes were prevalent in the poplar genome, but that only a few of these participated in diurnal gene expression regulation.

  7. Optimizing methods and dodging pitfalls in microbiome research.

    PubMed

    Kim, Dorothy; Hofstaedter, Casey E; Zhao, Chunyu; Mattei, Lisa; Tanes, Ceylan; Clarke, Erik; Lauder, Abigail; Sherrill-Mix, Scott; Chehoud, Christel; Kelsen, Judith; Conrad, Máire; Collman, Ronald G; Baldassano, Robert; Bushman, Frederic D; Bittinger, Kyle

    2017-05-05

    Research on the human microbiome has yielded numerous insights into health and disease, but also has resulted in a wealth of experimental artifacts. Here, we present suggestions for optimizing experimental design and avoiding known pitfalls, organized in the typical order in which studies are carried out. We first review best practices in experimental design and introduce common confounders such as age, diet, antibiotic use, pet ownership, longitudinal instability, and microbial sharing during cohousing in animal studies. Typically, samples will need to be stored, so we provide data on best practices for several sample types. We then discuss design and analysis of positive and negative controls, which should always be run with experimental samples. We introduce a convenient set of non-biological DNA sequences that can be useful as positive controls for high-volume analysis. Careful analysis of negative and positive controls is particularly important in studies of samples with low microbial biomass, where contamination can comprise most or all of a sample. Lastly, we summarize approaches to enhancing experimental robustness by careful control of multiple comparisons and to comparing discovery and validation cohorts. We hope the experimental tactics summarized here will help researchers in this exciting field advance their studies efficiently while avoiding errors.

  8. Laser biostimulation of patients suffering from multiple sclerosis in respect to the biological influence of laser light

    NASA Astrophysics Data System (ADS)

    Peszynski-Drews, Cezary; Klimek, Andrzej; Sopinski, Marek; Obrzejta, Dominik

    2003-10-01

    The authors discuss the results, obtained so far during three years' clinical examination, of laser therapy in the treatment of patients suffering from multiple sclerosis. They regard both the results of former laboratory experiments and so far discovered mechanisms of biological influence of laser light as an objective explanation of high effectiveness of laser therapy in the csae of this so far incurable disease. They discuss wide range of biological mechanisms of laser therapy, examined so far on different levels (cell, tissue, organ), allowing the explanation of beneficial influence of laser light in pathogenetically different morbidities.

  9. Robust, Sensitive, and Automated Phosphopeptide Enrichment Optimized for Low Sample Amounts Applied to Primary Hippocampal Neurons.

    PubMed

    Post, Harm; Penning, Renske; Fitzpatrick, Martin A; Garrigues, Luc B; Wu, W; MacGillavry, Harold D; Hoogenraad, Casper C; Heck, Albert J R; Altelaar, A F Maarten

    2017-02-03

    Because of the low stoichiometry of protein phosphorylation, targeted enrichment prior to LC-MS/MS analysis is still essential. The trend in phosphoproteome analysis is shifting toward an increasing number of biological replicates per experiment, ideally starting from very low sample amounts, placing new demands on enrichment protocols to make them less labor-intensive, more sensitive, and less prone to variability. Here we assessed an automated enrichment protocol using Fe(III)-IMAC cartridges on an AssayMAP Bravo platform to meet these demands. The automated Fe(III)-IMAC-based enrichment workflow proved to be more effective when compared to a TiO 2 -based enrichment using the same platform and a manual Ti(IV)-IMAC-based enrichment workflow. As initial samples, a dilution series of both human HeLa cell and primary rat hippocampal neuron lysates was used, going down to 0.1 μg of peptide starting material. The optimized workflow proved to be efficient, sensitive, and reproducible, identifying, localizing, and quantifying thousands of phosphosites from just micrograms of starting material. To further test the automated workflow in genuine biological applications, we monitored EGF-induced signaling in hippocampal neurons, starting with only 200 000 primary cells, resulting in ∼50 μg of protein material. This revealed a comprehensive phosphoproteome, showing regulation of multiple members of the MAPK pathway and reduced phosphorylation status of two glutamate receptors involved in synaptic plasticity.

  10. 3D surface scan of biological samples with a Push-broom Imaging Spectrometer

    NASA Astrophysics Data System (ADS)

    Yao, Haibo; Kincaid, Russell; Hruska, Zuzana; Brown, Robert L.; Bhatnagar, Deepak; Cleveland, Thomas E.

    2013-08-01

    The food industry is always on the lookout for sensing technologies for rapid and nondestructive inspection of food products. Hyperspectral imaging technology integrates both imaging and spectroscopy into unique imaging sensors. Its application for food safety and quality inspection has made significant progress in recent years. Specifically, hyperspectral imaging has shown its potential for surface contamination detection in many food related applications. Most existing hyperspectral imaging systems use pushbroom scanning which is generally used for flat surface inspection. In some applications it is desirable to be able to acquire hyperspectral images on circular objects such as corn ears, apples, and cucumbers. Past research describes inspection systems that examine all surfaces of individual objects. Most of these systems did not employ hyperspectral imaging. These systems typically utilized a roller to rotate an object, such as an apple. During apple rotation, the camera took multiple images in order to cover the complete surface of the apple. The acquired image data lacked the spectral component present in a hyperspectral image. This paper discusses the development of a hyperspectral imaging system for a 3-D surface scan of biological samples. The new instrument is based on a pushbroom hyperspectral line scanner using a rotational stage to turn the sample. The system is suitable for whole surface hyperspectral imaging of circular objects. In addition to its value to the food industry, the system could be useful for other applications involving 3-D surface inspection.

  11. [A complexity analysis of Chinese herbal property theory: the multiple expressions of herbal property].

    PubMed

    Jin, Rui; Zhang, Bing

    2012-12-01

    Chinese herbal property is the highly summarized concept of herbal nature and pharmaceutical effect, which reflect the characteristics of herbal actions on human body. These herbal actions, also interpreted as presenting the information about pharmaceutical effect contained in herbal property on the biological carrier, are defined as herbal property expressions. However, the biological expression of herbal property is believed to possess complex features for the involved complexity of Chinese medicine and organism. Firstly, there are multiple factors which could influence the expression results of herbal property such as the growth environment, harvest season and preparing methods of medicinal herbs, and physique and syndrome of body. Secondly, there are multiple biological approaches and biochemical indicators for the expression of the same property. This paper elaborated these complexities for further understanding of herbal property. The individuality of herbs and expression factors should be well analyzed in the related studies.

  12. Ex-vivo dynamic 3-D culture of human tissues in the RCCS™ bioreactor allows the study of Multiple Myeloma biology and response to therapy.

    PubMed

    Ferrarini, Marina; Steimberg, Nathalie; Ponzoni, Maurilio; Belloni, Daniela; Berenzi, Angiola; Girlanda, Stefania; Caligaris-Cappio, Federico; Mazzoleni, Giovanna; Ferrero, Elisabetta

    2013-01-01

    Three-dimensional (3-D) culture models are emerging as invaluable tools in tumor biology, since they reproduce tissue-specific structural features and cell-cell interactions more accurately than conventional 2-D cultures. Multiple Myeloma, which depends on myeloma cell-Bone Marrow microenvironment interactions for development and response to drugs, may particularly benefit from such an approach. An innovative 3-D dynamic culture model based on the use of the RCCS™ Bioreactor was developed to allow long-term culture of myeloma tissue explants. This model was first validated with normal and pathological explants, then applied to tissues from myeloma patients. In all cases, histological examination demonstrated maintenance of viable myeloma cells inside their native microenvironment, with an overall well preserved histo-architecture including bone lamellae and vessels. This system was then successfully applied to evaluate the cytotoxic effects exerted by the proteasome inhibitor Bortezomib not only on myeloma cells but also on angiogenic vessels. Moreover, as surrogate markers of specialized functions expressed by myeloma cells and microenvironment, β2 microglobulin, VEGF and Angiopoietin-2 levels, as well as Matrix Metalloproteases activity, were evaluated in supernatants from 3D cultures and their levels reflected the effects of Bortezomib treatment. Notably, determination of β2 microglobulin levels in supernatants from Bortezomib-treated samples and in patients'sera following Bortezomib-based therapies disclosed an overall concordance in the response to the drug ex vivo and in vivo. Our findings indicate, as a proof of principle, that 3-D, RCCS™ bioreactor-based culture of tissue explants can be exploited for studying myeloma biology and for a pre-clinical approach to patient-targeted therapy.

  13. Ex-Vivo Dynamic 3-D Culture of Human Tissues in the RCCS™ Bioreactor Allows the Study of Multiple Myeloma Biology and Response to Therapy

    PubMed Central

    Ponzoni, Maurilio; Belloni, Daniela; Berenzi, Angiola; Girlanda, Stefania; Caligaris-Cappio, Federico; Mazzoleni, Giovanna; Ferrero, Elisabetta

    2013-01-01

    Three-dimensional (3-D) culture models are emerging as invaluable tools in tumor biology, since they reproduce tissue-specific structural features and cell-cell interactions more accurately than conventional 2-D cultures. Multiple Myeloma, which depends on myeloma cell-Bone Marrow microenvironment interactions for development and response to drugs, may particularly benefit from such an approach. An innovative 3-D dynamic culture model based on the use of the RCCS™ Bioreactor was developed to allow long-term culture of myeloma tissue explants. This model was first validated with normal and pathological explants, then applied to tissues from myeloma patients. In all cases, histological examination demonstrated maintenance of viable myeloma cells inside their native microenvironment, with an overall well preserved histo-architecture including bone lamellae and vessels. This system was then successfully applied to evaluate the cytotoxic effects exerted by the proteasome inhibitor Bortezomib not only on myeloma cells but also on angiogenic vessels. Moreover, as surrogate markers of specialized functions expressed by myeloma cells and microenvironment, β2 microglobulin, VEGF and Angiopoietin-2 levels, as well as Matrix Metalloproteases activity, were evaluated in supernatants from 3D cultures and their levels reflected the effects of Bortezomib treatment. Notably, determination of β2 microglobulin levels in supernatants from Bortezomib-treated samples and in patients'sera following Bortezomib-based therapies disclosed an overall concordance in the response to the drug ex vivo and in vivo. Our findings indicate, as a proof of principle, that 3-D, RCCS™ bioreactor-based culture of tissue explants can be exploited for studying myeloma biology and for a pre-clinical approach to patient-targeted therapy. PMID:23990965

  14. Analysis of selected sugars and sugar phosphates in mouse heart tissue by reductive amination and liquid chromatography-electrospray ionization mass spectrometry.

    PubMed

    Han, Jun; Tschernutter, Vera; Yang, Juncong; Eckle, Tobias; Borchers, Christoph H

    2013-06-18

    Sensitive and reliable analysis of sugars and sugar phosphates in tissues and cells is essential for many biological and cell engineering studies. However, the successful analysis of these endogenous compounds in biological samples by liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS) is often difficult because of their poor chromatographic retention properties in reversed-phase LC, the complex biological matrices, and the ionization suppression in ESI. This situation is further complicated by the existence of their multiple structural isomers in vivo. This work describes the combination of reductive amination using 3-amino-9-ethylcarbazole, with a new LC approach using a pentafluorophenyl core-shell ultrahigh performance (UP) LC column and methylphosphonic acid as an efficient tail-sweeping reagent for improved chromatographic separation. This new method was used for selected detection and accurate quantitation of the major free and phosphorylated reducing sugars in mouse heart tissue. Among the detected compounds, accurate quantitation of glyceraldehyde, ribose, glucose, glycerylaldehyde-3-phosphate, ribose-5-phosphate, glucose-6-phosphate, and mannose-6-phosphate was achieved by UPLC/multiple-reaction monitoring (MRM)-MS, with analytical accuracies ranging from 87.4% to 109.4% and CVs of ≤8.5% (n = 6). To demonstrate isotope-resolved metabolic profiling, we used UPLC/quadrupole time-of-flight (QTOF)-MS to analyze the isotope distribution patterns of C3 to C6 free and phosphorylated reducing sugars in heart tissues from (13)C-labeled wild type and knockout mice. In conclusion, the preanalytical derivatization-LC/ESI-MS method has resulted in selective determination of free and phosphorylated reducing sugars without the interferences from their nonreducing structural isomers in mouse heart tissue, with analytical sensitivities in the femtomole to low picomole range.

  15. Improvement of Vivarium Biodecontamination through Data-acquisition Systems and Automation.

    PubMed

    Devan, Shakthi Rk; Vasu, Suresh; Mallikarjuna, Yogesha; Ponraj, Ramkumar; Kamath, Gireesh; Poosala, Suresh

    2018-03-01

    Biodecontamination is important for eliminating pathogens at research animal facilities, thereby preventing contamination within barrier systems. We enhanced our facility's standard biodecontamination method to replace the traditional foggers, and the new system was used effectively after creating bypass ducts in HVAC units so that individual rooms could be isolated. The entire system was controlled by inhouse-developed supervisory control and data-acquisition software that supported multiple cycles of decontamination by equipment, which had different decontamination capacities, operated in parallel, and used different agents, including H2O2 vapor and ClO2 gas. The process was validated according to facility mapping, and effectiveness was assessed by using biologic (Geobacillus stearothermophilus) and chemical indicator strips, which were positioned before decontamination, and by sampling contact plates after the completion of each cycle. The results of biologic indicators showed 6-log reduction in microbial counts after successful decontamination cycles for both agents and found to be compatible with clean-room panels including commonly used materials in vivarium such as racks, cages, trolleys, cage changing stations, biosafety cabinets, refrigerators and other equipment in both procedure and animal rooms. In conclusion, the automated process enabled users to perform effective decontamination through multiple cycles with realtime documentation and provided additional capability to deal with potential outbreaks. Enabling software integration of automation improved quality-control systems in our vivarium.

  16. Identification of More Feasible MicroRNA-mRNA Interactions within Multiple Cancers Using Principal Component Analysis Based Unsupervised Feature Extraction.

    PubMed

    Taguchi, Y-H

    2016-05-10

    MicroRNA(miRNA)-mRNA interactions are important for understanding many biological processes, including development, differentiation and disease progression, but their identification is highly context-dependent. When computationally derived from sequence information alone, the identification should be verified by integrated analyses of mRNA and miRNA expression. The drawback of this strategy is the vast number of identified interactions, which prevents an experimental or detailed investigation of each pair. In this paper, we overcome this difficulty by the recently proposed principal component analysis (PCA)-based unsupervised feature extraction (FE), which reduces the number of identified miRNA-mRNA interactions that properly discriminate between patients and healthy controls without losing biological feasibility. The approach is applied to six cancers: hepatocellular carcinoma, non-small cell lung cancer, esophageal squamous cell carcinoma, prostate cancer, colorectal/colon cancer and breast cancer. In PCA-based unsupervised FE, the significance does not depend on the number of samples (as in the standard case) but on the number of features, which approximates the number of miRNAs/mRNAs. To our knowledge, we have newly identified miRNA-mRNA interactions in multiple cancers based on a single common (universal) criterion. Moreover, the number of identified interactions was sufficiently small to be sequentially curated by literature searches.

  17. Analysis of translation using polysome profiling

    PubMed Central

    Chassé, Héloïse; Boulben, Sandrine; Costache, Vlad; Cormier, Patrick

    2017-01-01

    Abstract During the past decade, there has been growing interest in the role of translational regulation of gene expression in many organisms. Polysome profiling has been developed to infer the translational status of a specific mRNA species or to analyze the translatome, i.e. the subset of mRNAs actively translated in a cell. Polysome profiling is especially suitable for emergent model organisms for which genomic data are limited. In this paper, we describe an optimized protocol for the purification of sea urchin polysomes and highlight the critical steps involved in polysome purification. We applied this protocol to obtain experimental results on translational regulation of mRNAs following fertilization. Our protocol should prove useful for integrating the study of the role of translational regulation in gene regulatory networks in any biological model. In addition, we demonstrate how to carry out high-throughput processing of polysome gradient fractions, for the simultaneous screening of multiple biological conditions and large-scale preparation of samples for next-generation sequencing. PMID:28180329

  18. Lipidomics of oxidized polyunsaturated fatty acids

    PubMed Central

    Massey, Karen A.; Nicolaou, Anna

    2013-01-01

    Lipid mediators are produced from the oxidation of polyunsaturated fatty acids through enzymatic and free radical-mediated reactions. When subject to oxygenation via cyclooxygenases, lipoxygenases, and cytochrome P450 monooxygenases, polyunsaturated fatty acids give rise to an array of metabolites including eicosanoids, docosanoids, and octadecanoids. These potent bioactive lipids are involved in many biochemical and signaling pathways, with inflammation being of particular importance. Moreover, because they are produced by more than one pathway and substrate, and are present in a variety of biological milieus, their analysis is not always possible with conventional assays. Liquid chromatography coupled to electrospray mass spectrometry offers a versatile and sensitive approach for the analysis of bioactive lipids, allowing specific and accurate quantitation of multiple species present in the same sample. Here we explain the principles of this approach to mediator lipidomics and present detailed protocols for the assay of enzymatically produced oxygenated metabolites of polyunsaturated fatty acids that can be tailored to answer biological questions or facilitate assessment of nutritional and pharmacological interventions. PMID:22940496

  19. Environmental contamination associated with a marine landfill ('seafill') beside a coral reef.

    PubMed

    Jones, Ross

    2010-11-01

    In Bermuda, bulk waste such as scrap metal, cars, etc., and blocks of cement-stabilized incinerator ash (produced from burning garbage) are disposed of in a foreshore reclamation site, i.e., a seafill. Chemical analyses show that seawater leaching out of the dump regularly exceeds water quality guidelines for Zn and Cu, and that the surrounding sediments are enriched in multiple contaminant classes (metals, polycyclic aromatic hydrocarbons, petroleum hydrocarbons, dioxins and furans, polychlorinated biphenyls and an organochlorine pesticide), i.e., there is a halo of contamination. When compared against biological effects-based sediment quality guidelines (SQGs), numerous sediment samples exceeded the low-range values (where biological effects become possible), and for Hg and Zn exceeded the mid-range value (where they become probable). A few metres away from the edge of the 25 acre dump lies a small coral patch reef, proposed here as most contaminated coral reef in the world. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Functionalized poly(ethylene glycol) diacrylate microgels by microfluidics: In situ peptide encapsulation for in serum selective protein detection.

    PubMed

    Celetti, Giorgia; Natale, Concetta Di; Causa, Filippo; Battista, Edmondo; Netti, Paolo A

    2016-09-01

    Polymeric microparticles represent a robustly platform for the detection of clinically relevant analytes in biological samples; they can be functionalized encapsulating a multiple types of biologics entities, enhancing their applications as a new class of colloid materials. Microfluidic offers a versatile platform for the synthesis of monodisperse and engineered microparticles. In this work, we report microfluidic synthesis of novel polymeric microparticles endowed with specific peptide due to its superior specificity for target binding in complex media. A peptide sequence was efficiently encapsulated into the polymeric network and protein binding occurred with high affinity (KD 0.1-0.4μM). Fluidic dynamics simulation was performed to optimize the production conditions for monodisperse and stable functionalized microgels. The results demonstrate the easy and fast realization, in a single step, of functionalized monodisperse microgels using droplet-microfluidic technique, and how the inclusion of the peptide within polymeric network improve both the affinity and the specificity of protein capture. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Computational circular dichroism estimation for point-of-care diagnostics via vortex half-wave retarders

    NASA Astrophysics Data System (ADS)

    Haider, Shahid A.; Tran, Megan Y.; Wong, Alexander

    2018-02-01

    Observing the circular dichroism (CD) caused by organic molecules in biological fluids can provide powerful indicators of patient health and provide diagnostic clues for treatment. Methods for this kind of analysis involve tabletop devices that weigh tens of kilograms with costs on the order of tens of thousands of dollars, making them prohibitive in point-of-care diagnostic applications. In an e ort to reduce the size, cost, and complexity of CD estimation systems for point-of-care diagnostics, we propose a novel method for CD estimation that leverages a vortex half-wave retarder in between two linear polarizers and a two-dimensional photodetector array to provide an overall complexity reduction in the system. This enables the measurement of polarization variations across multiple polarizations after they interact with a biological sample, simultaneously, without the need for mechanical actuation. We further discuss design considerations of this methodology in the context of practical applications to point-of-care diagnostics.

  2. Towards improved biomonitoring tools for an intensified sustainable multi-use environment.

    PubMed

    van der Meer, Jan Roelof

    2016-09-01

    The increasing use of our environment for multiple contrasting activities (e.g. fisheries, tourism) will have to be accompanied by improved monitoring of environmental quality, to avoid transboundary conflicts and ensure long-term sustainable intensified usage. Biomonitoring approaches are appropriate for this, since they can integrate biological effects of environmental exposure rather than measure individual compound concentrations. Recent advances in biomonitoring concepts and tools focus on single-cell assays and purified biological components that can be miniaturized and integrated in automated systems. Despite these advances, we are still very far from being able to deploy bioassays routinely in environmental monitoring, mostly because of lack of experience in interpreting responses and insufficient robustness of the biosensors for their environmental application. Further future challenges include broadening the spectrum of detectable compounds by biosensors, accelerate response times and combining sample pretreatment strategies with bioassays. © 2016 The Author. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  3. Large-scale GWAS identifies multiple loci for hand grip strength providing biological insights into muscular fitness.

    PubMed

    Willems, Sara M; Wright, Daniel J; Day, Felix R; Trajanoska, Katerina; Joshi, Peter K; Morris, John A; Matteini, Amy M; Garton, Fleur C; Grarup, Niels; Oskolkov, Nikolay; Thalamuthu, Anbupalam; Mangino, Massimo; Liu, Jun; Demirkan, Ayse; Lek, Monkol; Xu, Liwen; Wang, Guan; Oldmeadow, Christopher; Gaulton, Kyle J; Lotta, Luca A; Miyamoto-Mikami, Eri; Rivas, Manuel A; White, Tom; Loh, Po-Ru; Aadahl, Mette; Amin, Najaf; Attia, John R; Austin, Krista; Benyamin, Beben; Brage, Søren; Cheng, Yu-Ching; Cięszczyk, Paweł; Derave, Wim; Eriksson, Karl-Fredrik; Eynon, Nir; Linneberg, Allan; Lucia, Alejandro; Massidda, Myosotis; Mitchell, Braxton D; Miyachi, Motohiko; Murakami, Haruka; Padmanabhan, Sandosh; Pandey, Ashutosh; Papadimitriou, Ioannis; Rajpal, Deepak K; Sale, Craig; Schnurr, Theresia M; Sessa, Francesco; Shrine, Nick; Tobin, Martin D; Varley, Ian; Wain, Louise V; Wray, Naomi R; Lindgren, Cecilia M; MacArthur, Daniel G; Waterworth, Dawn M; McCarthy, Mark I; Pedersen, Oluf; Khaw, Kay-Tee; Kiel, Douglas P; Pitsiladis, Yannis; Fuku, Noriyuki; Franks, Paul W; North, Kathryn N; van Duijn, Cornelia M; Mather, Karen A; Hansen, Torben; Hansson, Ola; Spector, Tim; Murabito, Joanne M; Richards, J Brent; Rivadeneira, Fernando; Langenberg, Claudia; Perry, John R B; Wareham, Nick J; Scott, Robert A

    2017-07-12

    Hand grip strength is a widely used proxy of muscular fitness, a marker of frailty, and predictor of a range of morbidities and all-cause mortality. To investigate the genetic determinants of variation in grip strength, we perform a large-scale genetic discovery analysis in a combined sample of 195,180 individuals and identify 16 loci associated with grip strength (P<5 × 10 -8 ) in combined analyses. A number of these loci contain genes implicated in structure and function of skeletal muscle fibres (ACTG1), neuronal maintenance and signal transduction (PEX14, TGFA, SYT1), or monogenic syndromes with involvement of psychomotor impairment (PEX14, LRPPRC and KANSL1). Mendelian randomization analyses are consistent with a causal effect of higher genetically predicted grip strength on lower fracture risk. In conclusion, our findings provide new biological insight into the mechanistic underpinnings of grip strength and the causal role of muscular strength in age-related morbidities and mortality.

  4. Coupling Front-End Separations, Ion Mobility Spectrometry, and Mass Spectrometry For Enhanced Multidimensional Biological and Environmental Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Xueyun; Wojcik, Roza; Zhang, Xing

    Ion mobility spectrometry (IMS) is a widely used analytical technique for rapid molecular separations in the gas phase. IMS alone is useful, but its coupling with mass spectrometry (MS) and front-end separations has been extremely beneficial for increasing measurement sensitivity, peak capacity of complex mixtures, and the scope of molecular information in biological and environmental sample analyses. Multiple studies in disease screening and environmental evaluations have even shown these IMS-based multidimensional separations extract information not possible with each technique individually. This review highlights 3-dimensional separations using IMS-MS in conjunction with a range of front-end techniques, such as gas chromatography (GC),more » supercritical fluid chromatography (SFC), liquid chromatography (LC), solid phase extractions (SPE), capillary electrophoresis (CE), field asymmetric ion mobility spectrometry (FAIMS), and microfluidic devices. The origination, current state, various applications, and future capabilities for these multidimensional approaches are described to provide insight into the utility and potential of each technique.« less

  5. Inter-Annual and Shorter-Term Variability in Physical and Biological Characteristics Across Barrow Canyon in August - September 2005-2014

    NASA Astrophysics Data System (ADS)

    Ashjian, C. J.; Okkonen, S. R.; Campbell, R. G.; Alatalo, P.

    2014-12-01

    Late summer physical and biological conditions along a 37-km transect crossing Barrow Canyon have been described for the past ten years as part of an ongoing program, supported by multiple funding sources including the NSF AON, focusing on inter-annual variability and the formation of a bowhead whale feeding hotspot near Barrow. These repeated transects (at least two per year, separated in time by days-weeks) provide an opportunity to assess the inter-annual and shorter term (days-weeks) changes in hydrographic structure, ocean temperature, current velocity and transport, chlorophyll fluorescence, nutrients, and micro- and mesozooplankton community composition and abundance. Inter-annual variability in all properties was high and was associated with larger scale, meteorological forcing. Shorter-term variability could also be high but was strongly influenced by changes in local wind forcing. The sustained sampling at this location provided critical measures of inter-annual variability that should permit detection of longer-term trends that are associated with ongoing climate change.

  6. Structural and molecular interrogation of intact biological systems

    PubMed Central

    Chung, Kwanghun; Wallace, Jenelle; Kim, Sung-Yon; Kalyanasundaram, Sandhiya; Andalman, Aaron S.; Davidson, Thomas J.; Mirzabekov, Julie J.; Zalocusky, Kelly A.; Mattis, Joanna; Denisin, Aleksandra K.; Pak, Sally; Bernstein, Hannah; Ramakrishnan, Charu; Grosenick, Logan; Gradinaru, Viviana; Deisseroth, Karl

    2014-01-01

    Obtaining high-resolution information from a complex system, while maintaining the global perspective needed to understand system function, represents a key challenge in biology. Here we address this challenge with a method (termed CLARITY) for the transformation of intact tissue into a nanoporous hydrogel-hybridized form (crosslinked to a three-dimensional network of hydrophilic polymers) that is fully assembled but optically transparent and macromolecule-permeable. Using mouse brains, we show intact-tissue imaging of long-range projections, local circuit wiring, cellular relationships, subcellular structures, protein complexes, nucleic acids and neurotransmitters. CLARITY also enables intact-tissue in situ hybridization, immunohistochemistry with multiple rounds of staining and de-staining in non-sectioned tissue, and antibody labelling throughout the intact adult mouse brain. Finally, we show that CLARITY enables fine structural analysis of clinical samples, including non-sectioned human tissue from a neuropsychiatric-disease setting, establishing a path for the transmutation of human tissue into a stable, intact and accessible form suitable for probing structural and molecular underpinnings of physiological function and disease. PMID:23575631

  7. Characterising meso-marine ecosystems of the North Pacific

    NASA Astrophysics Data System (ADS)

    Batten, Sonia D.; David Hyrenbach, K.; Sydeman, William J.; Morgan, Ken H.; Henry, Michael F.; Yen, Peggy P. Y.; Welch, David W.

    2006-02-01

    To delineate mesoscale variability in marine ecosystems of the subarctic North Pacific and identify "hotspots" of biological activity, we conducted contemporaneous surveys of plankton and avifaunal communites in 2000-2003. Plankton samples were collected with a continuous plankton recorder (CPR) towed by a commercial vessel while a trained observer recorded marine bird distributions using strip-transect techniques. Near- and sub-surface physical oceanographic properties and productivity patterns were measured using a temperature data logger and satellite-derived chlorophyll a concentrations. We identified 10 distinct biological communities across the North Pacific, which we refer to as 'meso-marine ecosystems' (MME). We examined the characteristics of MME over multiple years to assess temporal persistence. MME were associated with different bathymetric domains and current systems. MME differed in the overall abundance and species composition of their fauna and, therefore, almost certainly in productivity. Regular monitoring of the spatial and temporal variability of MME will enhance our ability to detect and understand coupled climate-ecosystem responses, and, in turn, help guide ecosystem-based fisheries and wildlife management.

  8. ClearSee: a rapid optical clearing reagent for whole-plant fluorescence imaging

    PubMed Central

    Kurihara, Daisuke; Mizuta, Yoko; Sato, Yoshikatsu; Higashiyama, Tetsuya

    2015-01-01

    Imaging techniques for visualizing and analyzing precise morphology and gene expression patterns are essential for understanding biological processes during development in all organisms. With the aid of chemical screening, we developed a clearing method using chemical solutions, termed ClearSee, for deep imaging of morphology and gene expression in plant tissues. ClearSee rapidly diminishes chlorophyll autofluorescence while maintaining fluorescent protein stability. By adjusting the refractive index mismatch, whole-organ and whole-plant imaging can be performed by both confocal and two-photon excitation microscopy in ClearSee-treated samples. Moreover, ClearSee is applicable to multicolor imaging of fluorescent proteins to allow structural analysis of multiple gene expression. Given that ClearSee is compatible with staining by chemical dyes, the technique is useful for deep imaging in conjunction with genetic markers and for plant species not amenable to transgenic approaches. This method is useful for whole imaging for intact morphology and will help to accelerate the discovery of new phenomena in plant biological research. PMID:26493404

  9. Portable and sensitive quantitative detection of DNA based on personal glucose meters and isothermal circular strand-displacement polymerization reaction.

    PubMed

    Xu, Xue-tao; Liang, Kai-yi; Zeng, Jia-ying

    2015-02-15

    A portable and sensitive quantitative DNA detection method based on personal glucose meters and isothermal circular strand-displacement polymerization reaction was developed. The target DNA triggered target recycling process, which opened capture DNA. The released target then found another capture DNA to trigger another polymerization cycle, which was repeated for many rounds, resulting in the multiplication of the DNA-invertase conjugation on the surface of Streptavidin-MNBs. The DNA-invertase was used to catalyze the hydrolysis of sucrose into glucose for PGM readout. There was a liner relationship between the signal of PGM and the concentration of target DNA in the range of 5.0 to 1000 fM, which is lower than some DNA detection method. In addition, the method exhibited excellent sequence selectivity and there was almost no effect of biological complex to the detection performance, which suggested our method can be successfully applied to DNA detection in real biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Coupling Front-End Separations, Ion Mobility Spectrometry, and Mass Spectrometry For Enhanced Multidimensional Biological and Environmental Analyses

    PubMed Central

    Zheng, Xueyun; Wojcik, Roza; Zhang, Xing; Ibrahim, Yehia M.; Burnum-Johnson, Kristin E.; Orton, Daniel J.; Monroe, Matthew E.; Moore, Ronald J.; Smith, Richard D.; Baker, Erin S.

    2017-01-01

    Ion mobility spectrometry (IMS) is a widely used analytical technique for rapid molecular separations in the gas phase. Though IMS alone is useful, its coupling with mass spectrometry (MS) and front-end separations is extremely beneficial for increasing measurement sensitivity, peak capacity of complex mixtures, and the scope of molecular information available from biological and environmental sample analyses. In fact, multiple disease screening and environmental evaluations have illustrated that the IMS-based multidimensional separations extract information that cannot be acquired with each technique individually. This review highlights three-dimensional separations using IMS-MS in conjunction with a range of front-end techniques, such as gas chromatography, supercritical fluid chromatography, liquid chromatography, solid-phase extractions, capillary electrophoresis, field asymmetric ion mobility spectrometry, and microfluidic devices. The origination, current state, various applications, and future capabilities of these multidimensional approaches are described in detail to provide insight into their uses and benefits. PMID:28301728

  11. A framework for list representation, enabling list stabilization through incorporation of gene exchangeabilities.

    PubMed

    Soneson, Charlotte; Fontes, Magnus

    2012-01-01

    Analysis of multivariate data sets from, for example, microarray studies frequently results in lists of genes which are associated with some response of interest. The biological interpretation is often complicated by the statistical instability of the obtained gene lists, which may partly be due to the functional redundancy among genes, implying that multiple genes can play exchangeable roles in the cell. In this paper, we use the concept of exchangeability of random variables to model this functional redundancy and thereby account for the instability. We present a flexible framework to incorporate the exchangeability into the representation of lists. The proposed framework supports straightforward comparison between any 2 lists. It can also be used to generate new more stable gene rankings incorporating more information from the experimental data. Using 2 microarray data sets, we show that the proposed method provides more robust gene rankings than existing methods with respect to sampling variations, without compromising the biological significance of the rankings.

  12. Prognostic value of angiogenesis in solitary bone plasmacytoma.

    PubMed

    Kumar, Shaji; Fonseca, Rafael; Dispenzieri, Angela; Lacy, Martha Q; Lust, John A; Wellik, Linda; Witzig, Thomas E; Gertz, Morie A; Kyle, Robert A; Greipp, Philip R; Rajkumar, S Vincent

    2003-03-01

    Angiogenesis plays an important role in the biology of multiple myeloma (MM) and has prognostic importance in this disease. Solitary plasmacytoma is a localized plasma cell malignancy that progresses to MM in a significant number of patients. We examined if angiogenesis is increased in solitary plasmacytoma and if it can help identify patients likely to progress to myeloma. We studied angiogenesis in plasmacytoma biopsy samples and bone marrow biopsies from 25 patients. High-grade angiogenesis was present in 64% of plasmacytomas. In contrast, bone marrow angiogenesis was low in all patients. Patients with high-grade angiogenesis in the plasmacytoma sample were more likely to progress to myeloma and had a shorter progression-free survival compared with patients with low-grade angiogenesis (P =.02). Angiogenesis is increased in solitary plasmacytoma and is a significant predictor of progression to myeloma and provides further evidence of its importance in the pathogenesis of myeloma.

  13. Preparation of the low molecular weight serum proteome for mass spectrometry analysis.

    PubMed

    Waybright, Timothy J; Chan, King C; Veenstra, Timothy D; Xiao, Zhen

    2013-01-01

    The discovery of viable biomarkers or indicators of disease states is complicated by the inherent complexity of the chosen biological specimen. Every sample, whether it is serum, plasma, urine, tissue, cells, or a host of others, contains thousands of large and small components, each interacting in multiple ways. The need to concentrate on a group of these components to narrow the focus on a potential biomarker candidate becomes, out of necessity, a priority, especially in the search for immune-related low molecular weight serum biomarkers. One such method in the field of proteomics is to divide the sample proteome into groups based on the size of the protein, analyze each group, and mine the data for statistically significant items. This chapter details a portion of this method, concentrating on a method for fractionating and analyzing the low molecular weight proteome of human serum.

  14. Broad Consent For Research With Biological Samples: Workshop Conclusions

    PubMed Central

    Grady, Christine; Eckstein, Lisa; Berkman, Ben; Brock, Dan; Cook-Deegan, Robert; Fullerton, Stephanie M.; Greely, Hank; Hansson, Mats G.; Hull, Sara; Kim, Scott; Lo, Bernie; Pentz, Rebecca; Rodriguez, Laura; Weil, Carol; Wilfond, Benjamin S.; Wendler, David

    2016-01-01

    Different types of consent are used to obtain human biospecimens for future research. This variation has resulted in confusion regarding what research is permitted, inadvertent constraints on future research, and research proceeding without consent. The NIH Clinical Center’s Department of Bioethics held a workshop to consider the ethical acceptability of addressing these concerns by using broad consent for future research on stored biospecimens. Multiple bioethics scholars, who have written on these issues, discussed the reasons for consent, the range of consent strategies, gaps in our understanding, and concluded with a proposal for broad initial consent coupled with oversight and, when feasible, ongoing provision of information to donors. The manuscript describes areas of agreement as well as areas that need more research and dialogue. Given recent proposed changes to the Common Rule, and new guidance regarding storing and sharing data and samples, this is an important and timely topic. PMID:26305750

  15. Study of coherent reflectometer for imaging internal structures of highly scattering media

    NASA Astrophysics Data System (ADS)

    Poupardin, Mathieu; Dolfi, Agnes

    1996-01-01

    Optical reflectometers are potentially useful tools for imaging internal structures of turbid media, particularly of biological media. To get a point by point image, an active imaging system has to distinguish light scattered from a sample volume and light scattered by other locations in the media. Operating this discrimination of light with reflectometers based on coherence can be realized in two ways: assuring a geometric selection or a temporal selection. In this paper we present both methods, showing in each case the influence of the different parameters on the size of the sample volume under the assumption of single scattering. We also study the influence on the detection efficiency of the coherence loss of the incident light resulting from multiple scattering. We adapt a model, first developed for atmospheric lidar in turbulent atmosphere, to get an analytical expression of this detection efficiency in the function of the optical coefficients of the media.

  16. Isotope Labeling for Solution and Solid-State NMR Spectroscopy of Membrane Proteins

    PubMed Central

    Verardi, Raffaello; Traaseth, Nathaniel J.; Masterson, Larry R.; Vostrikov, Vitaly V.; Veglia, Gianluigi

    2013-01-01

    In this chapter, we summarize the isotopic labeling strategies used to obtain high-quality solution and solid-state NMR spectra of biological samples, with emphasis on integral membrane proteins (IMPs). While solution NMR is used to study IMPs under fast tumbling conditions, such as in the presence of detergent micelles or isotropic bicelles, solid-state NMR is used to study the structure and orientation of IMPs in lipid vesicles and bilayers. In spite of the tremendous progress in biomolecular NMR spectroscopy, the homogeneity and overall quality of the sample is still a substantial obstacle to overcome. Isotopic labeling is a major avenue to simplify overlapped spectra by either diluting the NMR active nuclei or allowing the resonances to be separated in multiple dimensions. In the following we will discuss isotopic labeling approaches that have been successfully used in the study of IMPs by solution and solid-state NMR spectroscopy. PMID:23076578

  17. Digital microfluidics: A promising technique for biochemical applications

    NASA Astrophysics Data System (ADS)

    Wang, He; Chen, Liguo; Sun, Lining

    2017-12-01

    Digital microfluidics (DMF) is a versatile microfluidics technology that has significant application potential in the areas of automation and miniaturization. In DMF, discrete droplets containing samples and reagents are controlled to implement a series of operations via electrowetting-on-dielectric. This process works by applying electrical potentials to an array of electrodes coated with a hydrophobic dielectric layer. Unlike microchannels, DMF facilitates precise control over multiple reaction processes without using complex pump, microvalve, and tubing networks. DMF also presents other distinct features, such as portability, less sample consumption, shorter chemical reaction time, flexibility, and easier combination with other technology types. Due to its unique advantages, DMF has been applied to a broad range of fields (e.g., chemistry, biology, medicine, and environment). This study reviews the basic principles of droplet actuation, configuration design, and fabrication of the DMF device, as well as discusses the latest progress in DMF from the biochemistry perspective.

  18. Uncertainty, learning, and the optimal management of wildlife

    USGS Publications Warehouse

    Williams, B.K.

    2001-01-01

    Wildlife management is limited by uncontrolled and often unrecognized environmental variation, by limited capabilities to observe and control animal populations, and by a lack of understanding about the biological processes driving population dynamics. In this paper I describe a comprehensive framework for management that includes multiple models and likelihood values to account for structural uncertainty, along with stochastic factors to account for environmental variation, random sampling, and partial controllability. Adaptive optimization is developed in terms of the optimal control of incompletely understood populations, with the expected value of perfect information measuring the potential for improving control through learning. The framework for optimal adaptive control is generalized by including partial observability and non-adaptive, sample-based updating of model likelihoods. Passive adaptive management is derived as a special case of constrained adaptive optimization, representing a potentially efficient suboptimal alternative that nonetheless accounts for structural uncertainty.

  19. Real-time absorption and scattering characterization of slab-shaped turbid samples obtained by a combination of angular and spatially resolved measurements.

    PubMed

    Dam, Jan S; Yavari, Nazila; Sørensen, Søren; Andersson-Engels, Stefan

    2005-07-10

    We present a fast and accurate method for real-time determination of the absorption coefficient, the scattering coefficient, and the anisotropy factor of thin turbid samples by using simple continuous-wave noncoherent light sources. The three optical properties are extracted from recordings of angularly resolved transmittance in addition to spatially resolved diffuse reflectance and transmittance. The applied multivariate calibration and prediction techniques are based on multiple polynomial regression in combination with a Newton--Raphson algorithm. The numerical test results based on Monte Carlo simulations showed mean prediction errors of approximately 0.5% for all three optical properties within ranges typical for biological media. Preliminary experimental results are also presented yielding errors of approximately 5%. Thus the presented methods show a substantial potential for simultaneous absorption and scattering characterization of turbid media.

  20. Uptake and Disposition of Select Pharmaceuticals by Bluegill Exposed at Constant Concentrations in a Flow-Through Aquatic Exposure System.

    PubMed

    Zhao, Jian-Liang; Furlong, Edward T; Schoenfuss, Heiko L; Kolpin, Dana W; Bird, Kyle L; Feifarek, David J; Schwab, Eric A; Ying, Guang-Guo

    2017-04-18

    The increasing use of pharmaceuticals has led to their subsequent input into and release from wastewater treatment plants, with corresponding discharge into surface waters that may subsequently exert adverse effects upon aquatic organisms. Although the distribution of pharmaceuticals in surface water has been extensively studied, the details of uptake, internal distribution, and kinetic processing of pharmaceuticals in exposed fish have received less attention. For this research, we investigated the uptake, disposition, and toxicokinetics of five pharmaceuticals (diclofenac, methocarbamol, rosuvastatin, sulfamethoxazole, and temazepam) in bluegill sunfish (Lepomis macrochirus) exposed to environmentally relevant concentrations (1000-4000 ng L -1 ) in a flow-through exposure system. Temazepam and methocarbamol were consistently detected in bluegill biological samples with the highest concentrations in bile of 4, 940, and 180 ng g -1 , respectively, while sulfamethoxazole, diclofenac, and rosuvastatin were only infrequently detected. Over 30-day exposures, the relative magnitude of mean concentrations of temazepam and methocarbamol in biological samples generally followed the order: bile ≫ gut > liver and brain > muscle, plasma, and gill. Ranges of bioconcentration factors (BCFs) in different biological samples were 0.71-3960 and 0.13-48.6 for temazepam and methocarbamol, respectively. Log BCFs were statistically positively correlated to pH adjusted log K ow (that is, log D ow ), with the strongest relations for liver and brain (r 2 = 0.92 and 0.99, respectively), implying that bioconcentration patterns of ionizable pharmaceuticals depend on molecular status, that is, whether a pharmaceutical is un-ionized or ionized at ambient tissue pH. Methocarbamol and temazepam underwent rapid uptake and elimination in bluegill biological compartments with uptake rate constants (K u ) and elimination rate constants (K e ) at 0.0066-0.0330 h -1 and 0.0075-0.0384 h -1 , respectively, and half-lives at 18.1-92.4 h. Exposure to mixtures of diclofenac, methocarbamol, sulfamethoxazole, and temazepam had little or no influence on the uptake and elimination rates, suggesting independent multiple uptake and disposition behaviors of pharmaceuticals by fish would occur when exposed to effluent-influenced surface waters.

  1. Synthetical Analysis for Morphology, biological Species, and stable Isotopes (SAMSI) of single-cell planktonic foraminifer

    NASA Astrophysics Data System (ADS)

    Ujiie, Y.; Kimoto, K.; Ishimura, T.

    2017-12-01

    Planktonic foraminifers are widely used in the studies of paleontology and paleoceanography, because the morphology of their calcareous shells is enough highly variable to identify the morphospecies and the chemical composition of the shells reflect ambient seawater condition. Although the morphospecies were believed to represent environments associating with latitudinal temperature range of the world ocean, molecular phylogeographic studies have unveiled the presence of multiple biological species in a single morphospecies and their species-specific distributions. This implicates the actual complexity of planktonic foraminiferal ecology. Conversely, these biological species have a high potential for providing novel ecological and environmental information to us. In order to reassess the morphological and geochemical characters of biological species, the DNA extraction method with the guanidium isothiocyanate buffer was developed to preserve the calcareous shells. The present study carefully tested the physical and chemical damages of the DNA extraction process to the shells, by our novel approaches with geochemical analysis of the shells after non-destructive analysis for morphometrics on a same specimen. First, we checked the changes of the shell densities between pre- and post-DNA extraction by using the micro-focus X-ray CT (MXCT) scanning. Based on the simultaneous measurement of a sample and the standard material, we confirmed no significant changes to the shell densities through the DNA extraction process. As a next step, we compared stable oxygen and carbon isotopes among individuals of three sample sets: (1) no chemical and incubation as control, (2) incubation in the DNA extraction buffer at 65-70°C for 40 minutes as standard way, and (3) incubation in the DNA extraction buffer at 65-70°C for 120 minutes, by using the microscale isotopic analytical system (MICAL3c). Consequently, there were no significant differences among the three sample sets. These examinations clearly certified that we define morphological and geochemical features from same specimens after genetic identification. Thus, our novel approach (SAMSI) provides future studies to establish the accurate ecological and environmental proxies both in the modern and past oceans.

  2. Uptake and disposition of select pharmaceuticals by bluegill exposed at constant concentrations in a flow-through aquatic exposure system

    USGS Publications Warehouse

    Zhao, Jian-Liang; Furlong, Edward T.; Schoenfuss, Heiko L.; Kolpin, Dana W.; Bird, Kyle L.; Feifarek, David J.; Schwab, Eric A.; Ying, Guang-Guo

    2017-01-01

    The increasing use of pharmaceuticals has led to their subsequent input into and release from wastewater treatment plants, with corresponding discharge into surface waters that may subsequently exert adverse effects upon aquatic organisms. Although the distribution of pharmaceuticals in surface water has been extensively studied, the details of uptake, internal distribution, and kinetic processing of pharmaceuticals in exposed fish have received less attention. For this research, we investigated the uptake, disposition, and toxicokinetics of five pharmaceuticals (diclofenac, methocarbamol, rosuvastatin, sulfamethoxazole, and temazepam) in bluegill sunfish (Lepomis macrochirus) exposed to environmentally relevant concentrations (1000–4000 ng L–1) in a flow-through exposure system. Temazepam and methocarbamol were consistently detected in bluegill biological samples with the highest concentrations in bile of 4, 940, and 180 ng g–1, respectively, while sulfamethoxazole, diclofenac, and rosuvastatin were only infrequently detected. Over 30-day exposures, the relative magnitude of mean concentrations of temazepam and methocarbamol in biological samples generally followed the order: bile ≫ gut > liver and brain > muscle, plasma, and gill. Ranges of bioconcentration factors (BCFs) in different biological samples were 0.71–3960 and 0.13–48.6 for temazepam and methocarbamol, respectively. Log BCFs were statistically positively correlated to pH adjusted log Kow (that is, log Dow), with the strongest relations for liver and brain (r2 = 0.92 and 0.99, respectively), implying that bioconcentration patterns of ionizable pharmaceuticals depend on molecular status, that is, whether a pharmaceutical is un-ionized or ionized at ambient tissue pH. Methocarbamol and temazepam underwent rapid uptake and elimination in bluegill biological compartments with uptake rate constants (Ku) and elimination rate constants (Ke) at 0.0066–0.0330 h–1 and 0.0075–0.0384 h–1, respectively, and half-lives at 18.1–92.4 h. Exposure to mixtures of diclofenac, methocarbamol, sulfamethoxazole, and temazepam had little or no influence on the uptake and elimination rates, suggesting independent multiple uptake and disposition behaviors of pharmaceuticals by fish would occur when exposed to effluent-influenced surface waters.

  3. Magnetic separation techniques in sample preparation for biological analysis: a review.

    PubMed

    He, Jincan; Huang, Meiying; Wang, Dongmei; Zhang, Zhuomin; Li, Gongke

    2014-12-01

    Sample preparation is a fundamental and essential step in almost all the analytical procedures, especially for the analysis of complex samples like biological and environmental samples. In past decades, with advantages of superparamagnetic property, good biocompatibility and high binding capacity, functionalized magnetic materials have been widely applied in various processes of sample preparation for biological analysis. In this paper, the recent advancements of magnetic separation techniques based on magnetic materials in the field of sample preparation for biological analysis were reviewed. The strategy of magnetic separation techniques was summarized. The synthesis, stabilization and bio-functionalization of magnetic nanoparticles were reviewed in detail. Characterization of magnetic materials was also summarized. Moreover, the applications of magnetic separation techniques for the enrichment of protein, nucleic acid, cell, bioactive compound and immobilization of enzyme were described. Finally, the existed problems and possible trends of magnetic separation techniques for biological analysis in the future were proposed. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. A Diagnostic Assessment for Introductory Molecular and Cell Biology

    ERIC Educational Resources Information Center

    Shi, Jia; Wood, William B.; Martin, Jennifer M.; Guild, Nancy A.; Vicens, Quentin; Knight, Jennifer K.

    2010-01-01

    We have developed and validated a tool for assessing understanding of a selection of fundamental concepts and basic knowledge in undergraduate introductory molecular and cell biology, focusing on areas in which students often have misconceptions. This multiple-choice Introductory Molecular and Cell Biology Assessment (IMCA) instrument is designed…

  5. High-content adhesion assay to address limited cell samples†

    PubMed Central

    Warrick, Jay W.; Young, Edmond W. K.; Schmuck, Eric G.; Saupe, Kurt W.

    2013-01-01

    Cell adhesion is a broad topic in cell biology that involves physical interactions between cells and other cells or the surrounding extracellular matrix, and is implicated in major research areas including cancer, development, tissue engineering, and regenerative medicine. While current methods have contributed significantly to our understanding of cell adhesion, these methods are unsuitable for tackling many biological questions requiring intermediate numbers of cells (102–105), including small animal biopsies, clinical samples, and rare cell isolates. To overcome this fundamental limitation, we developed a new assay to quantify the adhesion of ~102–103 cells at a time on engineered substrates, and examined the adhesion strength and population heterogeneity via distribution-based modeling. We validated the platform by testing adhesion strength of cancer cells from three different cancer types (breast, prostate, and multiple myeloma) on both IL-1β activated and non-activated endothelial monolayers, and observed significantly increased adhesion for each cancer cell type upon endothelial activation, while identifying and quantifying distinct subpopulations of cell-substrate interactions. We then applied the assay to characterize adhesion of primary bone marrow stromal cells to different cardiac fibroblast-derived matrix substrates to demonstrate the ability to study limited cell populations in the context of cardiac cell-based therapies. Overall, these results demonstrate the sensitivity and robustness of the assay as well as its ability to enable extraction of high content, functional data from limited and potentially rare primary samples. We anticipate this method will enable a new class of biological studies with potential impact in basic and translational research. PMID:23426645

  6. Database Resources of the BIG Data Center in 2018.

    PubMed

    2018-01-04

    The BIG Data Center at Beijing Institute of Genomics (BIG) of the Chinese Academy of Sciences provides freely open access to a suite of database resources in support of worldwide research activities in both academia and industry. With the vast amounts of omics data generated at ever-greater scales and rates, the BIG Data Center is continually expanding, updating and enriching its core database resources through big-data integration and value-added curation, including BioCode (a repository archiving bioinformatics tool codes), BioProject (a biological project library), BioSample (a biological sample library), Genome Sequence Archive (GSA, a data repository for archiving raw sequence reads), Genome Warehouse (GWH, a centralized resource housing genome-scale data), Genome Variation Map (GVM, a public repository of genome variations), Gene Expression Nebulas (GEN, a database of gene expression profiles based on RNA-Seq data), Methylation Bank (MethBank, an integrated databank of DNA methylomes), and Science Wikis (a series of biological knowledge wikis for community annotations). In addition, three featured web services are provided, viz., BIG Search (search as a service; a scalable inter-domain text search engine), BIG SSO (single sign-on as a service; a user access control system to gain access to multiple independent systems with a single ID and password) and Gsub (submission as a service; a unified submission service for all relevant resources). All of these resources are publicly accessible through the home page of the BIG Data Center at http://bigd.big.ac.cn. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Vitiligo-like lesions occurring in patients receiving anti-programmed cell death-1 therapies are clinically and biologically distinct from vitiligo.

    PubMed

    Larsabal, Maiana; Marti, Aurélie; Jacquemin, Clément; Rambert, Jérôme; Thiolat, Denis; Dousset, Léa; Taieb, Alain; Dutriaux, Caroline; Prey, Sorilla; Boniface, Katia; Seneschal, Julien

    2017-05-01

    The use of anti-programmed cell death (PD)-1 therapies in metastatic tumors is associated with cutaneous side effects including vitiligo-like lesions. We sought to characterize clinically and biologically vitiligo-like lesions occurring in patients receiving anti-PD-1 therapies by studying a case series of 8 patients with metastatic tumors and 30 control subjects with vitiligo. Eight patients receiving anti-PD-1 therapies with features of vitiligo-like lesions seen in our department were recruited. Clinical features and photographs were analyzed. For some patients, skin and blood samples were obtained. Results were compared with the vitiligo group. All patients developed lesions localized on photoexposed areas with a specific depigmentation pattern consisting of multiple flecked lesions without Koebner phenomenon. In contrast to vitiligo, patients receiving anti-PD-1 therapies who developed vitiligo-like lesions did not report any personal or family histories of vitiligo, thyroiditis, or other autoimmune disorders. Analysis of blood and skin samples revealed increased C-X-C motif ligand 10 levels in serum of patients developing vitiligo-like lesions, associated with skin infiltration of CD8 T-cells expressing C-X-C motif receptor 3 and producing elevated levels of interferon-γ and tumor necrosis factor-alfa. This cross-sectional study concerned a single center. Clinical and biological patterns of vitiligo-like lesions occurring in patients receiving anti-PD-1 therapies differ from vitiligo, suggesting a different mechanism. Copyright © 2016 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  8. Biological auctions with multiple rewards

    PubMed Central

    Reiter, Johannes G.; Kanodia, Ayush; Gupta, Raghav; Nowak, Martin A.; Chatterjee, Krishnendu

    2015-01-01

    The competition for resources among cells, individuals or species is a fundamental characteristic of evolution. Biological all-pay auctions have been used to model situations where multiple individuals compete for a single resource. However, in many situations multiple resources with various values exist and single reward auctions are not applicable. We generalize the model to multiple rewards and study the evolution of strategies. In biological all-pay auctions the bid of an individual corresponds to its strategy and is equivalent to its payment in the auction. The decreasingly ordered rewards are distributed according to the decreasingly ordered bids of the participating individuals. The reproductive success of an individual is proportional to its fitness given by the sum of the rewards won minus its payments. Hence, successful bidding strategies spread in the population. We find that the results for the multiple reward case are very different from the single reward case. While the mixed strategy equilibrium in the single reward case with more than two players consists of mostly low-bidding individuals, we show that the equilibrium can convert to many high-bidding individuals and a few low-bidding individuals in the multiple reward case. Some reward values lead to a specialization among the individuals where one subpopulation competes for the rewards and the other subpopulation largely avoids costly competitions. Whether the mixed strategy equilibrium is an evolutionarily stable strategy (ESS) depends on the specific values of the rewards. PMID:26180069

  9. Systems biology as a conceptual framework for research in family medicine; use in predicting response to influenza vaccination.

    PubMed

    Majnarić-Trtica, Ljiljana; Vitale, Branko

    2011-10-01

    To introduce systems biology as a conceptual framework for research in family medicine, based on empirical data from a case study on the prediction of influenza vaccination outcomes. This concept is primarily oriented towards planning preventive interventions and includes systematic data recording, a multi-step research protocol and predictive modelling. Factors known to affect responses to influenza vaccination include older age, past exposure to influenza viruses, and chronic diseases; however, constructing useful prediction models remains a challenge, because of the need to identify health parameters that are appropriate for general use in modelling patients' responses. The sample consisted of 93 patients aged 50-89 years (median 69), with multiple medical conditions, who were vaccinated against influenza. Literature searches identified potentially predictive health-related parameters, including age, gender, diagnoses of the main chronic ageing diseases, anthropometric measures, and haematological and biochemical tests. By applying data mining algorithms, patterns were identified in the data set. Candidate health parameters, selected in this way, were then combined with information on past influenza virus exposure to build the prediction model using logistic regression. A highly significant prediction model was obtained, indicating that by using a systems biology approach it is possible to answer unresolved complex medical uncertainties. Adopting this systems biology approach can be expected to be useful in identifying the most appropriate target groups for other preventive programmes.

  10. Biological Sensitivity to Context Moderates the Effects of the Early Teacher-Child Relationship on the Development of Mental Health by Adolescence

    PubMed Central

    Essex, Marilyn J.; Armstrong, Jeffrey M.; Burk, Linnea R.; Goldsmith, H. Hill; Boyce, W. Thomas

    2010-01-01

    The moderating effects of biological sensitivity to context (physiological and behavioral stress reactivity) on the association between the early teacher-child relationship and the development of adolescent mental health problems were examined in a community sample of 96 children. Grade 1 measures of biological sensitivity to context included physiological (i.e., slope of mean arterial pressure across a 20-30 min stress protocol) and behavioral (i.e., temperamental inhibition/disinhibition) markers. Grade 1 measures of the teacher-child relationship included positive (i.e., closeness) and negative (i.e., conflict) qualities. Mental health symptoms were assessed at Grades 1 and 7. Results of a multiple regression analysis indicated substantial association of the teacher-child relationship with the development of adolescent mental health symptoms, especially for more reactive children. In addition to teacher-child relationship main effects, all four reactivity × teacher-child relationship interaction terms were statistically significant when controlling for Grade 1 symptom severity, suggesting that both physiological and behavioral reactivity moderate the association of both adverse and supportive aspects of the teacher-child relationship with Grade 7 symptom severity over and above Grade 1 severity. There were important differences depending on which stress reactivity measure was considered. The importance of these findings for recent theoretical arguments regarding biological sensitivity to context and differential susceptibility is discussed. PMID:21262045

  11. Method of and apparatus for determining the similarity of a biological analyte from a model constructed from known biological fluids

    DOEpatents

    Robinson, Mark R.; Ward, Kenneth J.; Eaton, Robert P.; Haaland, David M.

    1990-01-01

    The characteristics of a biological fluid sample having an analyte are determined from a model constructed from plural known biological fluid samples. The model is a function of the concentration of materials in the known fluid samples as a function of absorption of wideband infrared energy. The wideband infrared energy is coupled to the analyte containing sample so there is differential absorption of the infrared energy as a function of the wavelength of the wideband infrared energy incident on the analyte containing sample. The differential absorption causes intensity variations of the infrared energy incident on the analyte containing sample as a function of sample wavelength of the energy, and concentration of the unknown analyte is determined from the thus-derived intensity variations of the infrared energy as a function of wavelength from the model absorption versus wavelength function.

  12. Identification of urinary metabolites of imperatorin with a single run on an LC/Triple TOF system based on multiple mass defect filter data acquisition and multiple data mining techniques.

    PubMed

    Qiao, Shi; Shi, Xiaowei; Shi, Rui; Liu, Man; Liu, Ting; Zhang, Kerong; Wang, Qiao; Yao, Meicun; Zhang, Lantong

    2013-08-01

    The detection of drug metabolites, especially for minor metabolites, continues to be a challenge because of the complexity of biological samples. Imperatorin (IMP) is an active natural furocoumarin component originating from many traditional Chinese herbal medicines and is expected to be pursued as a new vasorelaxant agent. In the present study, a generic and efficient approach was developed for the in vivo screening and identification of IMP metabolites using liquid chromatography-Triple TOF mass spectrometry. In this approach, a novel on-line data acquisition method mutiple mass defect filter (MMDF) combined with dynamic background subtraction was developed to trace all probable urinary metabolites of IMP. Comparing with the traditionally intensity-dependent data acquisition method, MMDF method could give the information of low-level metabolites masked by background noise and endogenous components. Thus, the minor metabolites in complex biological matrices could be detected. Then, the sensitive and specific multiple data-mining techniques extracted ion chromatography, mass defect filter, product ion filter, and neutral loss filter were used for the discovery of IMP metabolites. Based on the proposed strategy, 44 phase I and 7 phase II metabolites were identified in rat urine after oral administration of IMP. The results indicated that oxidization was the main metabolic pathway and that different oxidized substituent positions had a significant influence on the fragmentation of the metabolites. Two types of characteristic ions at m/z 203 and 219 can be observed in the MS/MS spectra. This is the first study of IMP metabolism in vivo. The interpretation of the MS/MS spectra of these metabolites and the proposed metabolite pathway provide essential data for further pharmacological studies of other linear-type furocoumarins.

  13. Metabolite identification of triptolide by data-dependent accurate mass spectrometric analysis in combination with online hydrogen/deuterium exchange and multiple data-mining techniques.

    PubMed

    Du, Fuying; Liu, Ting; Liu, Tian; Wang, Yongwei; Wan, Yakun; Xing, Jie

    2011-10-30

    Triptolide (TP), the primary active component of the herbal medicine Tripterygium wilfordii Hook F, has shown promising antileukemic and anti-inflammatory activity. The pharmacokinetic profile of TP indicates an extensive metabolic elimination in vivo; however, its metabolic data is rarely available partly because of the difficulty in identifying it due to the absence of appropriate ultraviolet chromophores in the structure and the presence of endogenous interferences in biological samples. In the present study, the biotransformation of TP was investigated by improved data-dependent accurate mass spectrometric analysis, using an LTQ/Orbitrap hybrid mass spectrometer in conjunction with the online hydrogen (H)/deuterium (D) exchange technique for rapid structural characterization. Accurate full-scan MS and MS/MS data were processed with multiple post-acquisition data-mining techniques, which were complementary and effective in detecting both common and uncommon metabolites from biological matrices. As a result, 38 phase I, 9 phase II and 8 N-acetylcysteine (NAC) metabolites of TP were found in rat urine. Accurate MS/MS data were used to support assignments of metabolite structures, and online H/D exchange experiments provided additional evidence for exchangeable hydrogen atoms in the structure. The results showed the main phase I metabolic pathways of TP are hydroxylation, hydrolysis and desaturation, and the resulting metabolites subsequently undergo phase II processes. The presence of NAC conjugates indicated the capability of TP to form reactive intermediate species. This study also demonstrated the effectiveness of LC/HR-MS(n) in combination with multiple post-acquisition data-mining methods and the online H/D exchange technique for the rapid identification of drug metabolites. Copyright © 2011 John Wiley & Sons, Ltd.

  14. A novel anti-EMMPRIN function-blocking antibody reduces T cell proliferation and neurotoxicity: relevance to multiple sclerosis

    PubMed Central

    2012-01-01

    Background Extracellular matrix metalloproteinase inducer (EMMPRIN; CD147, basigin) is an inducer of the expression of several matrix metalloproteinases (MMPs). We reported previously that blocking EMMPRIN activity reduced neuroinflammation and severity of disease in an animal model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE). Methods To improve upon EMMPRIN blockade, and to help unravel the biological functions of EMMPRIN in inflammatory disorders, we have developed several anti-EMMPRIN monoclonal antibodies. Results Of these monoclonal antibodies, a particular one, clone 10, was efficient in binding mouse and human cells using several methods of detection. The specificity of clone 10 was demonstrated by its lack of staining of EMMPRIN-null embryos compared to heterozygous and wild-type mouse samples. Functionally, human T cells activated with anti-CD3 and anti-CD28 elevated their expression of EMMPRIN and the treatment of these T cells with clone 10 resulted in decreased proliferation and matrix metalloproteinase- 9 (MMP-9) production. Activated human T cells were toxic to human neurons in culture and clone 10 pretreatment reduced T cell cytotoxicity correspondent with decrease of granzyme B levels within T cells. In vivo, EAE mice treated with clone 10 had a markedly reduced disease score compared to mice treated with IgM isotype control. Conclusions We have produced a novel anti-EMMPRIN monoclonal antibody that blocks several aspects of T cell activity, thus highlighting the multiple roles of EMMPRIN in T cell biology. Moreover, clone 10 reduces EAE scores in mice compared to controls, and has activity on human cells, potentially allowing for the testing of anti-EMMPRIN treatment not only in EAE, but conceivably also in MS. PMID:22480370

  15. A novel anti-EMMPRIN function-blocking antibody reduces T cell proliferation and neurotoxicity: relevance to multiple sclerosis.

    PubMed

    Agrawal, Smriti M; Silva, Claudia; Wang, Janet; Tong, Jade Pui-Wai; Yong, V Wee

    2012-04-05

    Extracellular matrix metalloproteinase inducer (EMMPRIN; CD147, basigin) is an inducer of the expression of several matrix metalloproteinases (MMPs). We reported previously that blocking EMMPRIN activity reduced neuroinflammation and severity of disease in an animal model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE). To improve upon EMMPRIN blockade, and to help unravel the biological functions of EMMPRIN in inflammatory disorders, we have developed several anti-EMMPRIN monoclonal antibodies. Of these monoclonal antibodies, a particular one, clone 10, was efficient in binding mouse and human cells using several methods of detection. The specificity of clone 10 was demonstrated by its lack of staining of EMMPRIN-null embryos compared to heterozygous and wild-type mouse samples. Functionally, human T cells activated with anti-CD3 and anti-CD28 elevated their expression of EMMPRIN and the treatment of these T cells with clone 10 resulted in decreased proliferation and matrix metalloproteinase- 9 (MMP-9) production. Activated human T cells were toxic to human neurons in culture and clone 10 pretreatment reduced T cell cytotoxicity correspondent with decrease of granzyme B levels within T cells. In vivo, EAE mice treated with clone 10 had a markedly reduced disease score compared to mice treated with IgM isotype control. We have produced a novel anti-EMMPRIN monoclonal antibody that blocks several aspects of T cell activity, thus highlighting the multiple roles of EMMPRIN in T cell biology. Moreover, clone 10 reduces EAE scores in mice compared to controls, and has activity on human cells, potentially allowing for the testing of anti-EMMPRIN treatment not only in EAE, but conceivably also in MS.

  16. Determination of selenium in biological samples with an energy-dispersive X-ray fluorescence spectrometer.

    PubMed

    Li, Xiaoli; Yu, Zhaoshui

    2016-05-01

    Selenium is both a nutrient and a toxin. Selenium-especially organic selenium-is a core component of human nutrition. Thus, it is very important to measure selenium in biological samples. The limited sensitivity of conventional XRF hampers its widespread use in biological samples. Here, we describe the use of high-energy (100kV, 600W) linearly polarized beam energy-dispersive X-Ray fluorescence spectroscopy (EDXRF) in tandem with a three-dimensional optics design to determine 0.1-5.1μgg(-1) levels of selenium in biological samples. The effects of various experimental parameters such as applied voltage, acquisition time, secondary target and various filters were thoroughly investigated. The detection limit of selenium in biological samples via high-energy (100kV, 600W) linearly polarized beam energy-dispersive X-ray fluorescence spectroscopy was decreased by one order of magnitude versus conventional XRF (Paltridge et al., 2012) and found to be 0.1μg/g. To the best of our knowledge, this is the first report to describe EDXRF measurements of Se in biological samples with important implications for the nutrition and analytical chemistry communities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Marine Antifreeze Proteins: Structure, Function, and Application to Cryopreservation as a Potential Cryoprotectant

    PubMed Central

    Kim, Hak Jun; Lee, Jun Hyuck; Hur, Young Baek; Lee, Chang Woo; Park, Sun-Ha; Koo, Bon-Won

    2017-01-01

    Antifreeze proteins (AFPs) are biological antifreezes with unique properties, including thermal hysteresis (TH), ice recrystallization inhibition (IRI), and interaction with membranes and/or membrane proteins. These properties have been utilized in the preservation of biological samples at low temperatures. Here, we review the structure and function of marine-derived AFPs, including moderately active fish AFPs and hyperactive polar AFPs. We also survey previous and current reports of cryopreservation using AFPs. Cryopreserved biological samples are relatively diverse ranging from diatoms and reproductive cells to embryos and organs. Cryopreserved biological samples mainly originate from mammals. Most cryopreservation trials using marine-derived AFPs have demonstrated that addition of AFPs can improve post-thaw viability regardless of freezing method (slow-freezing or vitrification), storage temperature, and types of biological sample type. PMID:28134801

  18. Gamma-hydroxybutyric acid endogenous production and post-mortem behaviour - the importance of different biological matrices, cut-off reference values, sample collection and storage conditions.

    PubMed

    Castro, André L; Dias, Mário; Reis, Flávio; Teixeira, Helena M

    2014-10-01

    Gamma-Hydroxybutyric Acid (GHB) is an endogenous compound with a story of clinical use, since the 1960's. However, due to its secondary effects, it has become a controlled substance, entering the illicit market for recreational and "dance club scene" use, muscle enhancement purposes and drug-facilitated sexual assaults. Its endogenous context can bring some difficulties when interpreting, in a forensic context, the analytical values achieved in biological samples. This manuscript reviewed several crucial aspects related to GHB forensic toxicology evaluation, such as its post-mortem behaviour in biological samples; endogenous production values, whether in in vivo and in post-mortem samples; sampling and storage conditions (including stability tests); and cut-off reference values evaluation for different biological samples, such as whole blood, plasma, serum, urine, saliva, bile, vitreous humour and hair. This revision highlights the need of specific sampling care, storage conditions, and cut-off reference values interpretation in different biological samples, essential for proper practical application in forensic toxicology. Copyright © 2014 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  19. Image portion identification methods, image parsing methods, image parsing systems, and articles of manufacture

    DOEpatents

    Lassahn, Gordon D.; Lancaster, Gregory D.; Apel, William A.; Thompson, Vicki S.

    2013-01-08

    Image portion identification methods, image parsing methods, image parsing systems, and articles of manufacture are described. According to one embodiment, an image portion identification method includes accessing data regarding an image depicting a plurality of biological substrates corresponding to at least one biological sample and indicating presence of at least one biological indicator within the biological sample and, using processing circuitry, automatically identifying a portion of the image depicting one of the biological substrates but not others of the biological substrates.

  20. Synchronizing data from irregularly sampled sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uluyol, Onder

    A system and method include receiving a set of sampled measurements for each of multiple sensors, wherein the sampled measurements are at irregular intervals or different rates, re-sampling the sampled measurements of each of the multiple sensors at a higher rate than one of the sensor's set of sampled measurements, and synchronizing the sampled measurements of each of the multiple sensors.

Top